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Abstract

A Landau-type free energy model is developed to explain e: erimental ultrasonic
velocity measurements on the magnetoelectric compound CuFeQ, (provided by Dr.
G. Quirion at Memorial University) characterizing its low-temperature structural and
magnetic phase transitions.

In the first part of this thesis, we investigate the elastic properties of this compound
in the neighbourhood of the magnetic and structural phase t1 1sitions at 11 K and
14 K. The goal is to understand the measured temperature dependence of the elastic
constants of CuFeO,. In the high-temperature rhombohedral }._n phase, we observe
that the elastic constant Cgg shows a strong softening. This softening behavior is also
non-linear. Our Landau model reproduces key features of the data and we therefore can
conclude from our studies that the structural transition at 14 K is pseudoproper ferroe-
lastic. The crystal structural symmetry changes from the high-temperature rhombo-
hedral R3m to lower-temperature monoclinic C2/m at this structural transition. This
work has recently been published ([1] G. Quirion, M.J. Tagore, M.L. Plumer and O.A.
Petrenko, Phys. Rev. B 77, 094111 (2008)).

In the last part of this thesis, we examine the impact of the magnetoelastic cou-
pling. First, we develop a Landau model free energy which depe 1s only on magnetic
degrees of freedom (the spin de " y). Analysis shows that there are two magnetic
phase transitions at Tn, and Tn2, coincident with anomalies in the ultrasound data.
Second, we a lyze a Landau model free ene r which contains spin, elastic, and mag-
netoelastic coupling energy. We again obtain the temperature dependence of three of

the six independent elastic constants of CuFeO, and demonstrate strong effects due to
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spin-lattice coupling.

11



Dedication

I dedicate this work to my mother Thavamanidevi Mariathas, my father Arulappu

Mariathas and my wife Vicky.



l

Ackncowledee.aents

I wish to express my great appreciation to my supervisor Professor Martin Plumer
for his encouragement, moral support, frequent advice, unbeliev. le patience and help-
ful discussions and suggestions throughout my prc_ m.

I extend my deepest thanl to my co supervisor Professor ( y Quirion for his ad-
vices and time spent with me to learn more about Mathematica programming usage
and allow me to modify and use his Mathematica programming codes. I also thank
him for providing his experimental data of ultrasonic sound velocity measurements on
CuFeQO; to analysis my theoretical model.

[ sincerely acknowledge the School of Graduate Studies and :partment of Physics
and Physical Oceanography to their financial supports. I would like to say thank you
to all staff members at the Department of Physics and Physical Oceanography for their
kindness and great helps. My special thanks to Fred Perry for his assistance related to
the > ftware problems.

I am also grateful to my wife and my parents for their eternal love, emotional sup-
port and encouragement during this program.

It is my great pleasure to thank my friends and well - wishers who directly or
indirectly encouraged and helped ine in the M.Sc. program and contributed to this

dissertation, especially to.” n Mercer for his all assistances rclated to the program-

ming problems.




Contents

Abstract ii
Acknowlec :@ments v
List of Tables viii
List of Figures ix
1 Introduction 1
2 Elastic Theory 5
2.1 Ge etrical Interpretation of strain. . . . . . .. .. ... ..
2.2 Eq ibrium Conditions. . . . . . . .. ... ... L.
23 Elastic Constants. . . . . . . . .. .. ... 12
"4 Elastic Energy in Distorted Media. . . . . ... ... . ... ..., . 13
25 Crystals . . . . . .. 16
2.6 Elastic Energy . . . . . . . ... 17
2.7 Elastic Waves . . . . . . . ... 18
2.7.1 DBrief Note about waves . . . . . . .. ... L. 18
2.7.2 Elastic Waves in an Infinite Crystal: . . . .. .. . ... .. .. 19
3 Landau Tt iy of Ph:  Tr: ;ions. 25
3.1 Brief Introduction . . . . .. ... 25
3.2 Roleof Symmetry. . . . . . ... 26

vi




3.3

3.4

Landau free energy for the simplest case of one order parameter: Even

order invariants of the order parameter . . . . . . . . ... ... .. .. 28
3.3.1 Second Order Tr sitions: “4 po” ial. . . . .. ... ... . . 30
3.3.2 First Order T 1sitions: 2-4-6 potential . . . . . . . . . ... . . 30

2-3-4 Potential: Landau free energy for simplest case of one order pa-

rameter. . . .. ..., 32

Landa Free Energy Analysis of Ultrasonic Data on the . crroelastic

R3m — C2/m Transition in CuFeQ,. 34

4.1 Brief Introduction . . . . ... ... 34

4.2 Ferroelastics and Ferroelastic Transitions . . . . . . . . .. .. ... .. 36
4.3 Landau Free Energy for the 3m — C2/m Ferroelastic Transition in

C eOq. . . . 37

4.4 Derivation of the Model . . . . . . .. ... .. ... .. ... .. ... 38

4.5 Effective Elastic Constants . . . . . . . ... .. ... . .. ....... 42

4.6 Experimental Results . . . . . .. ... .. ... ... ... .. ... .. 44
4.7 Numerical Calculation and Model fitting to Ultraso1 : Experimental

Dataon CuFeOq . . . . . . . . . ... 48

4.7 Numerical Calcu ion . . . . ... ... ... ....... ... 48

4.7.2  Summary of the calculation and model fitting « the data . . . . 49

Magnetoelastic Couplir 54

9.1 Spin Energy . . . . . .. . 54

5.1.1 Theoretical Approach . . . . . . .. ... ... ... ... .. .. 54

5.1.2  Numerical Calculation . . .. . .. ... ... ... ... . ... 59

5.2 Effect of the Magnetoelastic Coupling . . . . . . .. ... ... .. ... 61

5.2.1 Numerical model calculation and its prediction . . . . . . . . . . 64

6 Conclusions 68

Bibliography 70

vil



List of Tables

2.1

2.2

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

Polarizations and expressions p v? for velocities for Trigonal (R3m) Crys-

Polarizations and and expressions p v? for velocities for I Hnoclinic (2/m)
Crystals. Note that we are using a coordinate system with the twofold
symmetry axis parallel to Z, not the conventional setting of twofold

symmetry axis parallel to 2. . . . . . .. ... 000000

Cartesian coordinate representations of the order pa: neters and the
correspondii  transformations under space group generatc . . . . . .
Strains under the generators . . . . . . .. ... ... .. ... .. ...
Effective elastic const s for both phases of CuFeO,. . . . . . .. . ..
Expression of pv? for trigonal and monoclinic phases . . ... ... ..
Velocity values at T 300 K . . .. . .. ... ... ... .......
E  ticCc an T=300K ...... ... ... ... ...
Coupling/other ¢ ants. . . . . .. . .. ... ... ... .. .. ...
Strains (S) and order parameters (OP) valuesat T=0HK . . . . . . ..

Other values: mass density, critical temperature. . . . . . . . . .. . ..

Effective elastic constants for both phases of CuFeO,  a function of S.

Values of coupling constants (LQand QQ) . . . . . . .. ... ... ..

viii

23

24

38
39
45
46
48
50
20
50

o0

65
66



List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1

3.2

3.3

3.4

(a) Crystal structure of CuFeO,. Only Fe** magnetic ions are shown.
(b) Temperature (T') versus magnetic field (B) phased  -am of CuFeQ,
with B applied along the ¢ - axis [7,8,9]. . ... .. ... .......

Lattice positions before the force action [12]. . . . . . . .. .. ... . .
Lattice positions under the force F [12].. . . . .. .. ... ... .. ..
Elastic distortion [12]. . . . . ... .. ... .. ... ...
Elastic distortion: 2D view [13].. . . . . . . ... .. ... ... ...,

Equilibrium forces [ 7. . . . . ... Lo oL

Order parameter as a function of temperature. Plot (a) represents a first
order transition, here ) decreases to zero discontinuously at T,. Plot (b)
represents a second order transition, () decreases to zero continuously
at T, [15]. . . . .
(a) epresents the ....n space group structure (Trigon , (b) represents
C2/m space group structure (Monoclinic) [19]. . . . . .. ... ... ..
Free energy F is a function of the order parameter Q for various values
of ternperature T. The minima occur at the equilibrium values of Q for
each T [15]. . . . .. . . ...
(a) Variation of the non juilibrium potential F as a function of tem-
perature, (b) Temperature dependence of the order parameter [15].

Variation of the non  uilibrium potential F}, as a function of tempera-

ture [15]. . . . . ..

1X

o 3 U W



4.1

4.2

4.3

4.4
4.5

5.1

5.2

5.3

9.4

9.5

Experimental values for the clastic constant Cgg as a function of tem-
perature for CuFeO,. . . . . . . . . ..o 35
Structural phase transition in CuFeQ,: R3m represented by solid lines
and C2/m represented by broken lines [31].. . . ... .. ... ... .. 41
Normalized Velocity Plots: (a) AVi;/Vie (Ch1), (b) A Ve (Py)/Vr(P,) (Ces),
(c) AVe./Vi: (Caa), (d) AVre(P.)/Vr:(P,) (Ca4) - We are using a dif-

ferent scale for each plot in order to show the good compatibility of the

model and data. . . . . . . ... ... 47
Plot of the order parameter )y, equation (4.6) . . . . . ... . ... .. 51
Temperature dependence of the strains. Plots correspond to the equa-
tion (4.6): (a) e, = - jpn (b) em = - ;e—g, (c)es,(d)eqg . . ... .. 52
Spin-exchange paths Jy, J; and J; within an FeQ, layer (in plane) and
spin-exchange path J' between adjacent FeOs layers (planes) [34]. . . . 57
Plot of the free ene for incommensurate and commensurate phases.
Fic, and F¢ represent the equations (5.30) and (5.32), respectively. . . 60

Resca |temperature dependence of the magnetic moment according to
equation (5.33). . . . . ... L 62
Normalized Velocity Plot: AVj./V.,. Red curve represents the mean
fiel result and blue cur represents the non-mean field. . . . . . . .. 66
Normalized Velocity Plots: (a) AV, /Vi,, (b) AVryp, /! p, - We are
using a different scale for each plot in order to show the good compati-

bility of the model and data fit. . . . . . . .. ... ... ... ... .. 67




Chapter 1

Introduction

Geometrically frustrated antiferromagnetic systems have re 1tly attracted consid-
erable attention, due to their magnetic and multiferroic (ferromagnetic and ferroelec-
tric) properties [2, 3]. Recent studies show that these types of materials can exhibit the
novel magnetoelectric effect under a modest magnetic field. In such systems, it is found
that an app d electric field induces a magnetic response and under a magnetic field it
shows an induced electric polarization. The m. 1etoelectric eff : is thought to be due
to strong magnetoelastic coupling, which couples the lattice and magnetic moments.
Some materials have two types of transitions at the same time, which are magnetic
and structural transitions. Cu. 204 is one of these classes of compounds, which we are
going to stu - in this thesis. These types of materials are being developed for potential
technological applications, such as in magnetic sensors for storage devices [4].

Cu. .0 is one of many ABO, type comnpounds where A is a nonmagnetic monova-
lent ion an B is a magnetic trivalent ion. These materials rm a delafossite structure
[5] which provide good examples of antiferromagnets on a triar _ lar lattice [2]. It also
provides the opportunity to study the influence of geometrical  stration on magnetic
systems. LiCrOg, and CuCrO, are another set of materials that ive the same geomet-
rical frustration. CuFeQ, has ABC stacking of triangular lattic of Fe3* (see Fig. 1.1
(a)). Recent studies on CuFeO, [6, 7, 8] show that both magnetic and structural tran-

sitions occur together due to magnetoelastic coupling, at Ty, = 14K and Ty X 11K






- ICM) (Tyy < T < Tyy) with sinusoidally amplitude-modulated magnetic structure
with magnetic moments along the c-axis. Above Ty, there is no long range magnetic
order (paramagnetic - see Fig 1.1 (b)). Below Tys, when we apply a niagnetic field
along the c-axis, we see that CuFeO, (see Fig 1.1 (b)) exhibits successive magnetic
phase trans ons. The inserts in Fig 1.1 show the schematic illustration of the mag-
netic structures on Fe3* sites. With an applied magnetic field alor the c-axis [7], a
transition occurs from collinear four-sublattice (T 1 ] ]) ground state (see lower insert
left area in Fig 1.1 (b)) to a field-induced incommensurate helical state at B; ~ 6.5T
(see grey area in Fig 1.1 (b)) where spins lie in the basal plane (3 L ¢), followed by a
transition to a collinear commensurate five-sublattice state (T T 1] |) at B, ~ 13.5T
(see lower insert right area in Fig 1.1 (b)), with 3 || €.

Let us discuss briefly the structural phase transition. A crystal is said to have a
structural phase transition when its structural state (orie; 1tic state) can be shifted
from one to another due to the exte il effect on it such as temperature, pressure,
mechanical stress etc. More about it can be found in Chapter 4.

The magnetoelastic effect invol . coupling between the lattice (elastic stress) and
spin degrees of freedom. If this coupling is strong in a materi its elastic properties
depend on its magnetic state, and its magnetic properties are influenced by the applied
and internal mechanical stresses. This concept is quite general, and has been observed
in ferromagnets, ferrimagnets, “rrom.  1ets, paramagnets, diamagnets and super-
conductors. Due to this m: 1etoelastic effect in CuFeQO,, it has the both structural
and magnetic transitions [7] at the sa : temperatures.

The focus of this thesis work is investigating elastic and magnetoelastic effects in
CuFeQO,, using the Landau T1 ry of phase transitions. This approach has been used
successfully as the theoretical background of many studies of systems undergoing phase
transitions. It has been demonstrated most clearly when it has been applied to intri-
cate sequences of transitions observed in structural and magne :systems. So first we

derive relevant theor: tl 14 1alyze our probleni. Tod 1 our results, we have




presented six chapters here. In Chapter 2, we develop the el tic theory and calcu-
late the ela ¢ energy and wave propagation for longitudinal and transverse ultrasonic
velocities modes for Cu..O;. In Chapter 3, we give a short account of the Landau
Theory of Phase Transitions in gene . In Chapter 4, we deri  our model to explain
ultrasonic experimental data, which was taken here at Memorial on CuFeO4. Then
we discuss e results of the model calculations fit to experimental data. In Chapter
9, we disc s the possible impact of the coupling between elastic and magnetic de-
grees of freedom. In Chapter 6, we conclude our project and discuss possible future

developments.



Chapter 2

Elastic Throry

This chi ter serves as a brief review of Stress and Strain in elastic media. The
discussion of this chapter follov that of Dieulesaint and Royer [12], Musgrave [13] and
Kittel [14]. The force acting on a unit area of an elastic bc - is called Stress and
the fractional displacement is called Strain. Consider a simple deformation of a one

dimensional example to understand these terms.

RPSH— x+Ax

oo X —M N

Figure 2.1: Lattice positions before the force action {12].

X+AXHU(X+AX)

e — x+u(x)

M’ N’ F

Figure 2.2: Lattice positions under the force F [12].




u(z + Or) —u(r) du

Strain : e = Al:irrB0 N o (2.1)
M'N"—MN _ u(r + Az) — u(r)

Relative deformation of MN = M A
Next, we are going to disct  the deformations of solids. The deformations of
solids depend on their shape: Under external forces, there is no reason for two points,
even neighboring points to move in the same direction. Angi r distortions also ap-
pear, as well as variations in 1gth. Let us illustrate briefly.
Let O be the origin and an arbitrary point be P(x, y, z) r. All points in crys-
tal move under the = ” ie1 :ternal for Ifu u(z,y,2) is a continuous

displacement, then the new position
r=r+u (2.2)

Before the force acts on it, the separation vector between two neighbouring points M
and N is
dr ry+ry (2.3)

Components of dr are dx, dy and dz, which move away from or towards each other at

the same time as the orientation of MN changes. Since

1'?;; = Tp + Uy,
ry ry + Uy,
uy = Ups + du, and
Jdu Jdu Ju
du —dr+ —d —dz.
oz " * dy v+ 9z

Then we have

!
Fy — Ty = Iy —Tp+ Uy — Uy
dr' = dr + du

(dr')? (dr)? + 2dr du + (du)?

Ju Jdu-, Ou
dr? — (dp)? = o Pt Uy Oty
(dr") (dr) 2 daodi3 + o O

deedid.
o9 o dy



Figu 2.3: Elastic distortion [12].

where a, 3, v =z, y, 2. Permuting the dummy indices o and 3, we get

uq _ Ous

ou ou Ou, Ou.
ne 2 a B v Y%y
(dr')” — (dr) (aﬁ * Ja * Oa Bﬁ) s

= 2eqapdadf
where
1 (0us  Oug | OuyOu,
fap = Q(Bﬁ " %a T3 38,

) . ou
Since our d' rmations are assumed to be small, so — <« 1

op

This means we can ignore second order infinitesimals, so that

_ L (Oua  Oup
€ad=5188 " Ba

Furthermore, the strain tensor is symmetric:

l Oug N lo,T
“sa 2\ 3a " 93

= fag-

(2.4)



Only six components of the strain tensor e,5 4 d  nct. It depends on the point M,

wherc the deforniation is observed.

2.1 Geometrical Interpretation of strain.

1+8n

1+ey i ; ;

@ ()]

Figure 2.4: Elastic distortion: 2 D view [13].

Consider a unit cube. In F 2.4 (a), the deformation of this unit cube by ex-
tensional strains e,,, e,,, €., parallel to the edges is shown. ..ae volumne before the

deformation is V = 1. The volume after the deformation is given by

V' = (14 en)(1+ e,)(1+c5:)

| 1+ €pr + 0y + 0.+ 07

‘ Thus
AV

= ) =Crr +Cpy + 0




The sum of the principal extensional strains measures dilatation, which is the frac-
tional increase of volume associated with this deformation. This means that volume
change remained invariant under rotation operations. Note that the dilations along
each principal axis are given by

Ax An Az
g = y =ew, =
In ig. 2.4 (b), the deformation of the face of a unit cube >wing angular change

ay. related to the difference of principal strains ey, and e,, is illustrated. We have

s 1+e
tan | — + « 1 4
(4 yz) 1+e,,
1+ tana
T 14y - e+ O()
1- Qy;

Since the deformations are small  are the a,,, then we get:

14+ v 1
= + e, —¢€
vy Tz
L — ay,
Quz = Eyy — €
Similarly, we can have
Qzp = €7z — €11

So
Qzy + Qy, + ;= 0. (2.5)

This means that the a1 1lar changes are not independent. We can conclude that
the three principal extensional strains define one volume chai 2 and two angular or

shape changes - the dilatation i 1 two shear deformations.

2.2 Equilibrium Conditions.

In static mechanical equilibrium, the net force and torque on anv /en volume

must be zero. Assume that stress comes from forces applied to the surface. Let T(r)
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be the mechanical stress on the boundary surface S at position r and F be the force

on this volume (see Fig. 2.5). We have

X,
|
Tds

ds v

@)

1) x
F

(a) (b)

Figure 2.5: Equilibrium forces [12].

F =.LThMS
T(r) Tik T
F; /ST;'kadS

aT;
= /—dV [By Green's T ecorem)]
\4 al‘k

oT;

fl = 8Ik ,

where f; is density of force per unit volume of the strained medium. When the solid
is subjected to forces exert  on its surface only, the static equilibriumn condition is

F,=0 = f,=0.Th

0T
a.lfk

=0 (2.6)
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Suppose we have an external force density, for example gravitational field g, so the
equilibrium condition becomes:

OTix

oxy,

where p is e density. The torque of the stress T about the ginis G =x x T. In

+pg: =0 (2.7)

tensor analysis, it is an antisymmetric second rank tensor 7T .r; — T, x;. The net force

tensor 1s:
A{i]‘ = [g(zj,—ﬂI])dS

,/.‘S‘(Tjkl‘i — T,-ka:j)lde

4 ik L — T ]
_ / Tz ik 7;) dV [By Green’s Theorem]
1% (0f "

Oy T oz, oz,
bl L oy T,
/v <6$k B o T ke, f"axk) av

- /V (Tje 8k — T 85)dV  [By equation (2.6)]
ie. M, = [/(Tj- ~T,)dV =0.
T; =Ty, foralliand j. (2.8)

The stress tensor is symmetric; this reduces the number of independent components

to six. which are following:
Ty, Tya, T33: stress norn  to the sides

Ty, Ty3, Ti3: shear stress

Suppose we have an external torque G per unit volume, then the torque on the

volume V is

My+ [ Geav,
‘/,

where k is such that the (ijk) permutation is even. So the equilibrium conditions are:
T =Ty + G =0 (2.9)

We can see from the above equation that the st s tensor is no longer symmetric.

This case is in practice encountered only for polar crystals in an electric field. In our
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discussion, we assume that for a small torque the symme  of the tensor 7;; remains

unchanged.

2.3 Elastic Constants.

A medium is said to be elastic if it returns to its initial state after the external
forces are removed. It returns to the initial state due to the internal stress. Let us
discuss in the case of small deformations, using Taylor expansion, how we can express

the stress as follows:

aT;; 1{ 68Ty

Tiilew) Ty(0) + ( ) exl + = (—J) extlemn + ... (2.10)

Bek[ eri=0 2 aek, Bemn exi=0 emn
Since T;;(0) = 0 (2.11)
T,-j(ek[) = C,'jk[ €Ll [Hooke's Law] (212)

OT:.:

Cin = |4 2.13
w = (o ) (21

The coefficient C;jy; is a fourth rank tensor (the elastic stiffness tensor), 7;; and ey are
rank two tensors.
A fourth rank tensor has 3* 81 components, but T;; and e are symmetric tensors
so that

Cijkl = Cj:kt; Cz’jkl = Cijlk~ (2-14)
Hooke's law (2.11) can be written in terms of the displacements:

T = %Cijkl% + ‘;‘Cijktg—z:
Since Ciju = Cijik, we have
. s
T;, = C,-]-k,znk (2.15)
By symmetry, we are left with only 36 independent elastic constants instead of 81.

The following Voigt notation is thus useful

(xz) e (yy) 2 (z2)e 3 (y:)=(zy) & 4,

(zr)=(rz) &5 (ry)=(r) 6
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Cag Cijr, a,3=1,2,3,4,56;, i j, kl=1xy, 2
ae (ij) 3 (ki)

Eg: CM = Cr:zy = C:zyz-

Using this notation, we can rewrite equation (2.11) as follows:
To = Capep (2.16)
€1 = €zz, €2 = €yy, €3 = €;;, €4 = 2€,;, €5 = 26,5, €6 = 20z
Inversion of the Hooke’s Law 5
€i; = Sijrt Thi, (2.17)

where S;;i is called Elastic compliance constants. With the above approach, the

equations become:

Ca — Sang
Sag = Caj
or Sa,ng-y = 507 (2.18)

2.4 Elastic Ener y in Tistorted Media.

The energy provided by the external forces during the deformation is stored in the
medium as .astic energy. After the forc are removed from it, the internal stress is
released, which makes the solid return to its initial state. Duri ; the deformation, the
work done by the external f s for a variation du of the displacement u consists of

two parts: forces per unit m: g and the external force p act g on the surface.

W = /ggdudV+/p.dudS
V S

= /gg.du,-dV+/p.du.dS
% s
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As per our assumption: The system is always in equilibrium, so this transformation is

thermodynamically reversible and the equilibrium equations are valid:

W = /gg,du,dVJr/T,kdu,-lde

_ lkdut
= /gg,du,d\/+/ Doy
0Ty ou,
— /;/(ggi o )du,dV+/’I,kd(d$k)dV

/ T d (a"‘) % /v Teed (a“"> dV  [By equation (2.7)]

81:k 81:1‘
Thus 6 W = /T.kd(au‘ a"")dv
2 aI,'
= / Tid S dV
14
= TidSi.

The internal energy variation per unit volume is
dU =0W +46¢

where 4§ ¢ is the heat received per unit volume. According to the first law of thermo-
dynamics: U is a function of state and dU is exact, while § W and 0 { separately are

not. For a reversible transformation, the second law of thermodynamics is:
0¢ Tdo,
where T is the absolute temperature, ¢ is entropy per unit volume. So

dU = Tdo+ TdSu

U
giving Ty = (;{;k>a

Inserting similar expressions - 7;; and Ty, into (2.13), we get

T, . 2
and  Cyy; =
()Skl 00,

Cijn
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so that,

(I)S,'J’ (‘)Sk[

Exchanging the first two indices with the last t  does not change the value of the

o o?U o
Ct(jk)l = (—) = Ck(ll?] (219)

isentropic elastic moduli, these are involved in elastic wave propagation, where the
vibration is so fast that there is no time for a thermal exct 1ge with the external
medium. Thus § { = 0 implies do = 0.

The free energy F for isothermal transformations is given by:

F = U-To (2.20)
dF = —odT + Ty dSi (2.21)
F = F(T,Su) (2.22)
So that Ty = ((,(;F) and for isothermal elastic constants:
Sik T
2

m_( OF } _om

Cijkl - ((’)S,']' aSkl)T klij (223)

Within the domain of validity of Hooke’s Law,
dU = Tdo + C)SudS;.
After perm i the dummy indii  (ij) and (kl), we get

1
dU = Tdo+ C,ySudS;+ Cyp)Sydi )
<

1 o
- Td0+§C,(jk),d(Sz‘jSkl)

Integrating this relation gives

1

U(U~ Sik) = Uo(a) + 2

CyyetSiy Skt

where U, (o) is the internal energy of the undeformed medium: U,(o) = U,(o, Si = 0).

In a similar way, we can have the expression for free energy:

T 1 Y N Y al
F(T,s4) = Fo(T) + =CU08:Su.
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Thus the elastic potential energy @ is

1
= ClaS,Su.

With the elastic moduli in matrix notation expressed as

Cll Cl2 013 014 Cls CIG
Cia Cn Cop Cyy Cys Cy
Ciz Co C33 C3y C3s Cye
Cl4 024 034 044 Cfls C46
Cis Cos C3s Cis Css Cse
Cie Ci Cizs Cie Cse Ces

(2.24)

The most general crystal system with only translational sy1 netry is triclinic. In
this case . 21 components of the elastic tensor are independent. For other crystal
systems with point groups symmetries, we can reduce the number of independent
components. The physical constants of an isotropic medium do not depend on the
choice of the orthonormal reference ‘ame. Elastics tensor C,jx; must be invariant
under all transformations of the refe ce frame (rotation, symmetry with respect to a

point or a | ne etc..).

2.5 Crystals

The genecral invariance condition for a stiffness tensor is:

— PAd
Cijkl = OORQ] Cpgrs (2.25)

where a represent the point groups element operation for a given crystal symmetry and
o’ represents the ip" element of . We can derive any cryst 's independent elastic
stiffness constants by using pc |, »up symmetry operations. Note that it is enough
to usc the generators of the . oint | wup element class to find the symmetry of the

clastic tensor a given crystal ¢ 5.
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Example: For trigonal system:

Generators Hr this crystal are I (inversion) and C3 (three fold rotation), which is

_1 V3

2 2

+ 3 1
Cy = T2 T2

0
0 (2.26)
0 0 1

First we apply the rotation (2.26) to elastic stiffness tensor matrix "~ 24), we get

Chh Ci Cs Cu -Cis 0
Ciz2 Cn Cy —-Cuy Cis

C C C 0 0 0
(Cap) = 13 13 33 (2.27)
Cy —-Cu O Csa 0 Cis
—-Cis5 <5 0 0 Cas Cis

0 0 0 Ci5 Cn S58n

For any one of the point groups element classes 3m, 32 or 3m, the elastic stiffness

tensor matrix (2.27) then reduc to

Ch Cn C3 Cu 0 0
C Ch, Cs —-Cy4 0 0
Cis Ca Ciz O 0 0
Cia —Cuy 0 Cu 0 0
0 0 0 0 Cu Cu

0 0 0 0 C SusCu

(Cap) = (2.28)

2.6 E astic Eneroy

The elastic energy of a crystal system is a quadratic function of the strains, in
the approximation of the Hoo s law (similar to the expres. n for the energy of a
stretched spring). Thus we may v te

1
. “((’) = 5 A\ C,Cijej, (229)

[ ]
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where C; is elastic stiffness tensor and e, is strain tensor. Therefore, the clastic energy

expression (2.29) becomes for high temperature R3m phase of CuFeQ,,

1 1 1
Fc(e) = ECp(el + 62)2 + —03383 + ECM(EE + Cg) + 50568‘25 +

2
1
5056(61 - 62)2 + Clg (Cl + 62)63 + 014 (6164 — €264 + 8565) (230)

where C, = C“%(—'u and Cgs = 91—2‘-9“

2.7 Elastic Waves

2.7.1 Brief Note about waves

There are a great variety of elastic waves. Some examples are Rayleigh waves,
Bleustein - Gulyaev waves, Lamb Waves, Love waves and Stonely waves. There are
two common types of waves: (1) Longitudinal waves or Compression waves: Particle
displacement is parallel to the direction of the propagation. Polarization is parallel
to the wave vector. (2) Transverse waves or Shear waves: Partic : displacement is
perpendicular to the direction of the propagation. (In the most general case, none of
the wave is purely longitudinal or transverse.) For any given irection, there can be

three waves:

e A quasi longitudinal wave (particle vibration and the wave vector make a non-

vanishing angle)
e A fast quasi-transverse wave
e A slow quasi-transverse wave

The polarizations of these threc waves (with different propagati 1 velocities) are always

mutually orthogonal.
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2.7.2 Elastic Waves in an Infinite Cryst:

The displacement of any point in a crystal depends on the initial coordinates ry and

time ¢, and
u; = Uz, t), (2.31)

where xj, is the initial coor¢” ates. Let us derive the propagation equation for a wave
in the crystal.
Propagation Equation:

The force density per unit volume of stressed material is given by

fo= T
BCC]'
. 2’U.'
We neglect effects due to gravity and all other external forces. So the acceleration 8—1‘;
along the i*" axis for the unit volume mass g obeys
8211.,' _ 8T',“
©ot T 8z,
By using Hooke’s Law:
Bul
Ti; = Cyjet =—,
i jkl a.’lfk
the equations of motion become
= C;jk‘ (2-32)
[ U Ok

This is a set of three second order d  rential equations for wave propagation.

The propagation equation in a fluid is isotropic so that

FPu 1 8u
® o ~ y 0r?
The general solution for it ren by

u F (f, I) with ©? = _L
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So by using this analogy, solution for equation (2.32) is a wave, traveling in the direction

of the unit vector n(n;, ny, n3) perpendicular to the wave planes n - x = &,:

w=uF (=22 = p (1= M) (2.33)

v [t

To calculate the phase velocity v and the wave polarization u (i.e. particle displace-

ment) using equations (2.32) and (2.33), we get

g—::;-_ = —yF' Evl
0%u n.n.
bz, G = WF
"
So oui F" = Cijunjmn -y
or pviu; = Cijkenyng ny,
where
[y = Cijun;ng (2.34)
and the Christoffel equation is
Tyw = pv?u,, (2.35)

where u; is an eigenvector of t] ', tensor with eigenvalue pv? = ~. Finally, the veloc-
ities and pc rizations of thc  plane waves with a stiffness tensor Cjjy; are obtained by
solving for the eigenvalues and eigenvectors of the tensor I'y; = Cj i n; ng. Generally,
for a given propagation direction, there are three velocities, which means that there

are three roots of the following secular equation:

| Ty — 01?6y |= 0 (2.36)

Properties of Elastic Plane Waves:

Note that T'yy = Cjjin;jne = Cryynjne = Ciunyne = Iy, which means that
Fli = Fl[
The eigenvalues of 'y are real and they are positive. Since the eigenvalues are real

and positive, there are in general ] . gating in the same direction with
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different velocities, and mutually orthogonal polarizations.

Example: Trigonal System:

Recall the . stic Stiffness tensor matrix (2.28):

( Cn Ci2 Ciz Cu
Ciz Cn Ciz —Cuy
C C 0
(Cop) = | G2 C0 O (2:37)
0 0 0 0 Cya Cha

0 0 0 0 G4 %,

o O O
o Qo O

The propagation tensor compo1 ts are

Fll = C” Tl% + CssTlgCMTlg +2 Cl4n2n3
Iy = (Ci2+ Ces)ning + 2C1ynng

I3 2C1umng + (Ciz + Cyy)nyng
Cll - Cl2

. (2.38)

I'y = Cesg Tl? +Cn ° + C44Tl§ — T Clangng with Cge =
Iy = Cl4(n? - n%) + (Ci3 + Cag)nans

F33 = C44(Tl? + ng) C331’L§

For example if propagation is along the r axis, n; =1, n; 0, n3 = 0, and our tensor

F,‘[ is

Ch O 0
I'= 0 Cs Cl
0 Ciy Cu

Cll

o
and two shear waves of velocit  V, and V5 such that

which implies a longitudinal wave of velocity V = , its polarization is (1, 0, 0)

20V = Cu+ Coe \ﬂ Css)? + 4CE, (2.39)
20V = Cu+ Cos — (Cu — Cos)? +4CY, (2.40)
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Cia — Can + \/(('14 - 066)2 + 4Ci24
, and
2C,

and its pol zations are (O, -

0 Cig — Cos — /(Caa — Cer) + 4C, X
' 2C4 '

In a similar way, we can calculate other propagations along the y and » axes. We list

respectively for each shear waves.

these in the following Table 2.1 for Trigonal crystals. Table 2.2 ontains the expression

for pv? and propagation for Monoclinic crystals.

In next chapter, we review the Landau theory of phase transitions.



Table 2.1: Polarizations and expressions pv? for velocities for Trigonal (R3m) Crystals

Direction of propagation Polarization Velocity
100 L Cn
Cis — Ces + /(Caa — Ce6)? + 4CE
[ )] , — \/ H, 3(Caa + Cos — \/(044 - Ces)2 + 1)
2C14 y
Cua—Cos — (Caa—C 12 +4CF :
Lo E (Cu =, 1 3(Cau+ Ces + (Cas — Ces)? + 4CYy)
. 2C14
n|T Ces
Cii = Caq — /(Cr1 — Cyq)? + 4CF
, = \/ 14» %(CII+C44_\ “n—-Cu)?+ L)
2C)4
Cii — Cag + /(Cr1 — Cy4)? + ACE
010] 0, — 11 44 \/( 11 44) 147 %(C“ +Cu + \/(C“ — Cy4)? + 4C%)
2C)4
(001] L Cs3
[001] [010] T Cis
[100] T Cls

£C




Table 2.2: Polarizations and and expressions pv? for vi cities for Monoclinic (2/m) Crystals. Note 1at we are

using a coor nate system with the twofold symmetry axis parallel to Z, not the conventional setting of twofold
syn 1e / axis parallel to Z.

Direction of propagation Polarization Velocity
100} L Cu
[ Css— Ces — \/(Css — Ces)? + 4C?,
00 0, -2 \/(25:5 ) 21 5(Css + Ces + (Css — C )2+ 4CE)
\
Css — Ces (Css — Cee)? +4C2
(0, - \/2056 = 2 5(Css + Cos — \@55 — Ces)? + 4C7)
/
(100] T Ces
—Coy + Cag + /(Cap ~ Cyq)? + 4C?
110] (0, - “ = \/.‘ZC: : 24’ %(022 + Cys — v Doy — Caq)? + 4C%,)
—Ca + Cyq — /(Cop — Cuy)? + 4C3
), — 2T \/20;2 “ “ 1) U(Co + Cas + \/(Cap = Cu)? + 4C3y)
C33 = Cyg — \/(Cy3 — Cuq)? + 4C3
(01 - \/2034 - =1 3(Cs3 + Caq + \/(Css — Cu)? +4C%)
X [100] T Css

0 _Css —Cy + \/(Css — Cu)? +4C%, |
’ 2C34 '

3(Cs3 + Caq — \/(ng - Cu)®+ 4C§4L
W




Chapter 3

Landau Theory of Phase

Transitions.

3.1 Brief Introduction

A phase characterizes a given assembly of atoms or molecules, which can be de-
scribed by thermodynamic variab  such volume V, pressure P, temperature T
and the free energy F. A phase transition or phase change is the transformation of a
thermodynamic system from o1 phase to another. The distinguishing characteristic
of a phase transition is an abrupt sudden change in one or more physical quantities
(e.g. heat capacity, volu ., entropy, etc...). The identifica n of this property is
(these properties are) an important step to understand this considered transition. Let
us describe this transition by using the free encrgy . . When the free energy is a mini-
mum, the phase will be stable unc - some specified thermodynamic conditions. As the
thermodynamic variables such as temperature, pressure, volume or any other variables
acting on the system is changed, the free encrgy is also changed. Whenever we have
such variations in free energy, we can have changes which lead to the free energy being
minimized by a different "ase of our system. By minimizing 1e free energy we can

thus describe phase transitions.
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Landau theory is useful to understand structural phase transitions. The proce-
dure of this theory is general and is one of the most useful tools in condensed matter
physics. By using it, we can dc¢ ribe and understand the nature of phase trausitions
among the states both ordered (low temperature phasc) and disordered (high temper-
ature phase). We can also use it as a starting point for under inding the behavior of
ordered states. The discussion in this chapter follows that of lédano [15], Salje [16}
and Burns [17].

A phase transition is characterized by an order parameter (@), which can charac-
terize an atomic displacement, electric polarization, magnetization etc. It is non zero
at low temperature and becomes zero above a certain temperature T,, which is called
the transition temperature. Transitions are said to be continuous/ second order phase
transitions if its order par: er decreases continuously to zero as the high-symmetry
phase is approached (see Fig. 3.1 (b)) and discontinuous transitions are said to be first
order phase transitions, and in that case the magnitude of 1e order parameter changes
suddenly at T as illustrated in Fig. 3.1 (a). Note that since we will be concerned only
with uniform deformations, adient terms in the free energy are zero. Let us begin

with a discussion of syminetry.

3.2 Role of Symmetry.

Let us now =~ " b~ " about the space  oup 1l « > play a role in phase
transitions and Landau the: . For some transitions, the @ rsical quantity which
characterizes the transition not only changes between the two phases, but it is also
changes in cach phase when some external variables such as temperature or pressure
are modified. For example the case of the liquid-vapour transition, a relevant property
is the fluid’s density (or specific volume). We nced to give qualitative differences
between phases, which can be defined precisely in terms of synunetry. The symmetry
of a phase is characterized by its space group, which contains the set of gcometrical

transformations. The geometrical transformations are all possible transformations such
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(@ (b)

o Q
: i
g ;
a a
B

5 o

Tem Temperature T

Figure 3.1: Order parameter as a function of temperature. Plot (a) represents a first
order transition, here ) decreases to zero discontinuously at T,. Plot (b) represents a
second order transition, Q decreases to zero continuously at T, [15].

as rotations, reflection, inversion etc such that the system remai . unchanged. So phase
transitions can be descril tl  way, as a symmetry ct 1ge from one phase to
another phase [18].

Phase transitions also satisfy a group/subgroup relation: In a phase transition, if
phase I represents a (space) ‘oup G, and phase II represents another (space) group
G, then G a subgroup of G,. To illustrate this, let us consider our thesis project
phase transition in CuFeO,: R3m — C2/m. Consider the unit cell of the crvstal
CuFeQ, (see Fig. 3.2). Phase I (trigonal) is left invariant by symmetry elements of
R3m (symmetry clements of R3m are E, Cy, C3, Cor, Cyy, Caz, 1, 5S¢, Sg, 04y, 02,
0.z). Clearly the product any two symmetries will also leave t!  structure unchanged.
The phase II (1nonoclinic) (see Fig. 3.2 (b)) is left invariant by its space group C2/m
(symmetry elements of C2/m are FE, (y;, I, 0,). We can see from this that elements
of C2/m also belong to R3m: ¢~ 'mis a sul  oup of R3m.

In Landau theory, the free energy must be invariant with respect to space group

symmetry and the Landau free energy can be expanded as a power series of order
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Figure 3.2: (a) Represents the R3m space group structure (Trigonal). (b) represents
C2/m space group structure (Monoclinic) [19].

paramcters near the transition temperature. Space group symmetries determine the

systems properties and the possible phase transitions that can oceur.

3.3 Landau free ener y for the simplest case of one
order parameter: "ven order invariants of the

order parameter

In the vieinity of a phase traunsition one can expand the Landau free energy in a

power series of order parameter. Let us begin with following general form up to sixth

order:
1 2 ] 3 1 b, 1 5,1 .
! b
The first derivative of F{Q) is:
A (C , .
or(Q) A AQ+bVQ*++BQ*+ Q'+ Q. (3.2)

0Q
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At high temperatures, the order parameter Q is always zero. Then equation (3.2)

becomes

?F,(_@:Al

o

For the minimum of F(Q) (since any stable state corresponds to a minimum of Fy),
the first derivative of F(Q) must be zero. Hence A, = 0. | — A, represents the
change in Landau free energy, so it is convenient to set A, = 0.

F1(Q) is constructed so as to be invariant with respect to the symmetry of the high
temperature phase I. So symmetry of the system plays an imp tant role to determine
the Landau free energy for a given system. Suppose we have any symmetry which gives
Q — —Q , then the system can have only even powers of (). Let us assume in this

section of our discussion we have this inversion symmetry. So (3.1) becomes
L 2, 1 4, 1 6
FL(Q)=§AQ +ZBQ +ECQ. (3.3)

where A is assumed to be strongly temperature dependent, and both B (which can be
either B > 0 or B < 0) and C (always C > 0) are assumed to be constant for T ~ T..

Let us now look at this power serii 0 see under what conditions there is a minimum
which moves around as we change the temperature. First, we assume A, B and C are
all positive. Then all of the terms increase the Landau free energy for all values of
@, so the minimum occurs when @ = 0. This describes 2 disordered phase. In the
ordered phase, one of them must be negative and this constant to be large enough
compared to the others. As A is temperature dependent  the Landau’s assumption,
we can take A = a(T — T,), with @ > 0, where T, is trans on ‘mperature. Then the

Landau free energy (3.3) 1 omes
1 o 1 4 - .
FL(Q)=§G(T—TO)Q +EBQ +GC : (3.4)
To analyze further, we can have two main situations based on e sign of constant B:
e [3 >0 - Second Order Phase Transitions (Continuous Transitions)

e [3 <0 - First Order Phase Transitions (Discontinuous Transitions)




30

3.3.1 Second Order Transitions: 2-4 potential

The transition is second order if B > 0. In this case, let us consider the simplest
case of Fy (2-4 potential): We neglect the sixth power term from our calculation. So

equation (3.4) becomes:
1 2, 1 4
FLQ) = a(T ~T)Q* + ; BQ". (3.5)

The equations minimizing F(Q) are:

oF.()

- T-T, ?) = :
L2 = QT -T)+ B@Y) =0 (36)
OPF(0) )
i LA— — >
o a(T-T,)+3BQR*>0 (3.7)
Solution of (3.6) is
Q = @7 T <T,
Q = 0, T>T, (3.8)

The first solution represent the low temperature phase (T < T,) and the second corre-
sponds that high temperature phase (T > T,), where T, = T, is the critical temperature

(transition temperature). (see Fig. 3.3).

3.3.2 First Order Transitions: 2-4-6 potenti

The transition is first order if B < 0. In this case, we need to keep sixth power term
in our calculation to restrain Fy(Q) (2-4-6 potential) from going to minus infinity (see
Fig. 3.4(a)).

The cquations minimizing F(Q) are:

a%@ QT -T,)+BQ +CQ") =0 (3.9)
FRQ o 3BQ2+5CQ" > 0 (3.10)

0Q?
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ree energy Fy is a function of the order parameter Q for various values of

Figure 3.3:
temperature T. The minima occur at the equilibrium values of Q for each T [15].

2
only one real root of (3.9) is Q = 0, because of B> —4a C(T —

ForT>T2=To+4 &
a
T,) < 0, so we can have only one stable phase, namely the parent phase I.

(3.11)

At T' = T, phase Il with

~B+ /B2 -4aC

T-To)\*
2C ’

_ min 1 in the

o=
appears as a metastable state (i.e. it is corresponding to second:
a)]).

non-equilibrium curve F(Q) [Fig. 3
For T < T, the stability of phase Il increases. Phase I and II are equally stable at
0 is fulfilled, i.e.

T = T, where Ty is found, when the additional condition F7 (i
1 ; y 1 .1 6

F[(Q)ZO = -G(T—FO)Q +ZBQ +60Q:0
)) :

(—33 + /984 —48a C(T - T,
1C

QK 0 |
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1
1
Qrder parameter

T<Tn
....... T-T|
T<T,

- T=T,
T>T,

‘o Yy L Temperature
L

Figure 3.4: (a) Variation of t| non-equilibrium potential Fy as a function of temper-
ature, (b) Temperature dependence of the order parameter [1.

For a real solution: 982 — 48a C(T — T,) > 0, which leads,

3B*?
16aC’

Below T3, phase I becom: less stable than Phase II, and remains as a metastable state

T < T, =T, +

(3.12)

until B changes sign for T' = T,. Thus, a first order phase trar tion occurs at T' = Tj.

3.4 2-3-4 Potential: Landau free energy for sim-

plest case of one order paramete .

We now consider cases where a third order (Q*) contribution to Fp(Q) is allowed

by symmetry. The Lanc 1 free energy expression for this case is, (with C = 0 for

convenience).
1 1 1
Fl@) =5aT T)Q+3bQ°+ 1 BQY (3.13)
«.le minima equations are
OFL(G
L(Q) Qa(T-T)+bQ+BQR*)=0 (3.14)

Q)
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O°F,
TrQ) _ aT-T,)+26Q+3B( >0 (3.15)
0Q?
Assuming b < 0, B > 0, as we discu :d in the above, we can have
2b?
T, = T,+ —, 3.16
! T 9aB (3.16)
the low-temperature phase appears as metastable. The high and low temperature
phases are equally stable for: ‘
b? |
T, = T,+ ——, 3.17
2 + 128 (3.17) 1

The transition is always first order if a third order (Q?) term is allowed by symmetry
3.5 illustrates the transition.

in the free energy. The F’

Figure 3.5: Variation of the non-equilibrium potential F, as a function of temperature

(15].
sition in CuFeQ,.

Based on the basic principles of the Landau theory of phase transition described in
ct | phase tr

this chapter, we can now apply this to the s



Chapter 4

Landau Free rnergy Analysis of
Ultrasonic Data on the Ferroelastic
R3m — C2/m Tr.nsition n
CuFeO».

4.1 Brief Introduction

In this chapter, we are going to use Landau theory to investigate the R3m — C2/m
structural phase transition in C....,.  st, we derive a Landau free energy compat-
ible with the symmetry propert  associated with the R3m high temperature phase.
Then, we verify the compatibility of our theoretical results with experimental observa-
tions obtained on CuFeQ,. In particularly, we compare theoretical calculations with
elastic constants determined from ultrasonic sound velocity measurements, realized as
a function « temperature by Dr. Guy Quirion at Memorial University.

As shovAvrlin Fig. 4.1, the data on the elastic constant Cgs shows a large variation

of 50 % 1 as the temperature is reduced to . 4, 14 K. This large variation
L 66
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in the value of (g indicates that some of the acoustic modes in CuFeO, substan-
tially soften close to 14 K. Similar softening is also found in ferroelectric compounds
(SrBry(NbTa);04 [20], SraTaOg [21], KNDO;3 and KTaO3 [22]), as well as in proper
ferroelastic (TeO, [23], Na, CO [24], (NH);LiH3(S)4)4 [25], KBr : KCN [26]) and pseudo-
proper ferroelastic (NasAlzF 4[21], LaP50,4, KH3(SeO3)2, [23] RbyLiH3(S)4)4 [27]). In
general, this softening can be accounted for by a linear-linear coupling term, such as
e @) between the strain e and an order parameter . In the case of ferroelectric mate-
rials, the order parameter is naturally the electric polarization. For proper ferroelastic
compounds the order parameter is rather the strain e associated with the softening of
an acoustic mode [24, 26]. Finally, for pseudo-proper ferroelastic transition the order

parameter can be associated with a soft optical mode [21, 27].

N/m
2.0x10" 4
1.8x10" 4
1.6x10"

g 1.4x10"
3)
1.2x10" 4

1.0x10" 4

8.0x10°

— —_—r—— |

0 2 L ou su 100 120 1eu 180
TK

Figure 4.1: Experimental values for the elastic constant Cgg as a function of tempera-
ture for CuFeQs.

Since CuFeQ, shows both structural and magnetic phase transition at Ty, 2, 19], it
would be natural to assume that the order parameter @ is the spin S. However, as the
coupling term e S bre stime ret sal symmetry, this coupling is not allowed and
tht  the  n moments cannot  d to the ot strong softening on ('ss.  1other

possibility would be to asst  : that the order parameter is associated with an acoustic
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mode, which leads to softening at high temperature and a structural transformation
observed below Ty;. In that case, the transition is called proper ferroelastic and the
temperature dependence of the soft-acoustic mode is linear over a wide range (27, 28].
As shown in Fig 4.1, this is not the case for CuFeQO,. The last scenario is to consider
that the softening is driven by a soft-optical mode. In that case, the temperature
dependence is non-linear (21, 27| and could potentially accou for the temperature
dependence of Cgg, as shown in Fig 4.1. Thus, in this chapter, we derive the free en-
ergy assuming that the character of the transition is a pseudo-proper ferroelastic. For

this reason, we give a short account of ferroelastic materi

4.2 Ferroelastics and Ferroelastic Transitions

A cryst. is said to be ferroelastic [11, 29] when it has t1 or more phases (ori-
entation states or structural domains) in the absence of mechanical stress. Any of
these structural domains are identical or enantiomorphous (structural mirror images).
These domains can be shifted from one to another by mechanical stress. The crystal
comes back to its original domain state soon after the removal ¢ the mechanical stress.
There is an analogy between ferroelastic and ferromagnetic materi: . In a ferromag-
netic crystal, the magnetic domains can be shifted from one to 10ther by an external
magnetic ficld. Thus, for a ferroelastic transition the mechanic stress corresponds to
the external magnetic field while mechanical strain corresponds to 1agnetization. A
ferroelastic transition is associated with a symmetry breaking spontaneous strain. The
symmetry change taking place at a ferroelastic transition is characterized by an clas-
tic tensor that has more independent components in the ‘rroelastic (low-symmetry)
phase than that of the tensor associated with the paraelastic igh-symmetry) phase.
Consequently, the high and 1  temperature phases must belong to different crystal
systems (point groups). In To ano’s paper [23], a detailed list of possible ferroclastic

point group char s, alot _ h corrc  mmding macroscopic properties, can be found.
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4.3 Landau Free Energy for the R3m — C2/m Fer-
roelastic Transition in CuFeQO,.

In this section, we derive a Landau free energy for the ferroelastic R3m — C2/m
phase transition. According to group theory, the order parameter associated with a
R3m — C2/m structural transition belongs to a two dimensional irreducible repre-

sentation E [30], represented by
(@, Q2)  (ay, 2 —y") or (32 yz). (4.1)

These representations are very useful as they can be used to determine how the order
parameter components transform unc  symmetry operations, even if the exact nature
of that order parameter is unkn n or undetermined.

Assuming the most general form of a Landau free energy, which includes all possible

terms up to fourth order in @, 1d @,

FL@i, Q) = AiQ%+ AQF  AsQiQq + b1 @} + bQ5 + 1Q1Q2 + :Q1Q3 +
BiQ{ + B " + BsQiQ3 + BaQiQa + BsC 3, (4.2)

the allowed terms can be identified by applying the symmetry operations associated
with the high temperature R3m point group. In fact, it is sufficient to only consider
operations sociated with the generators of point group. Thus, the invariant terms
can be identified using the rmn ry operation (Cy;, Cs;) wh' * correspond to a 180°
rotation around x-axis and a 120° rotation around z-axis. Thus, under these generator
operations, it is easy to show that the order parameter components must transforin as
shown in Table 4.1. For example, according to the Table 4.1, the contribution termn
Q1Q)- is not allowed, so A3 0. When we apply all transformation relations given in

Table 4.1, the Landau Free energy 4.2 reduces to

AQE+ @D+ Q- 3Q8Q) + | (@4 QDA (1)

SN

FL(QIv Qz) =

which is identical to the result published by Tolédano(23].



38

Table 4.1: Cartesian coordinate representations of the order parameters and the cor-
responding transformations under space group generators

W1 &2
- vy 24
g - o,
v 1 1
Cs. 4 Q-7 —5Q2- \/§Q1

4.4 Derivation of the Model

In order to calculate the variation in the elastic properties associated with a R3m —
C2/m structural phase transition, the free energy must contain terms involving order
parameters, the elastic energy, and the coupling energy due to the coupling betwecen

the order parameters and strains. Thus, the total free energy can be written as
Fle, Q) = F(Q) + Fe(e) + Fi(e, Q). (4.4)

As discussed, the Landau free energy for I.o.n — C2/m structural phase transition is
given by (4.3) with A = a,(T ~ .,). Here Ty defines the transition temperature in the
absence of elastic coupling. As we noted in Chapter 3 section 3.4, the above Landau
free energy (4.3) is a 2-3-4 potential. Consequently, the phase transition observed at
T should be first order or weakly first order. However, based on the experimental
data, the transition at 14 K shows no indication of any discontinuity or hysteresis.
Therefore, we simplify the analysis and set the third order coefficient in Landau free

energy to zero. So the considered Landau free energy becomes
1 - 2 n 1 2 2,2
Fr(Q1, Q2) = §al(T - To)(Q7 +@3) + 1 B(Qy +@3)". (4.5)

In Chapter 2, we derived the clastic energy Eq.(2.30) for our model

1 1 1 1
E,((") = 501,((’1 + (’2)2 + 5(."33(’:23 + 5(34((’3 + f?%) + QCGGCEi +

1 ] p ] v N
5(‘66("1 - (’2)2 + Cy3 (01 6’2)63 + Ch4 ((’1(’4 — 0y + (‘r)(‘ﬁ) (4~(’)







40

where 04, /33, O3 and A represent the coupling constants.
The equations which minimize F(e, @) Eq. 4.4 with respect to strains and order

paramecters are:

oF

Be. 0 fora=1,..6. (4.8)
F

,(?,\ = 0 forg=1, 2 (4.9)

g 3

General solutions of equations (4.8) in terms of order parameters @, and (), are:
(Q} + Q3)(51 Cra — 32 Cs3)

Cls = CoCas
29" A3(ACry — Cya)

e+ ez -2

aTe = Uy — CuaCls
(Q*+ Q23(5, Cp — 2 Ch3)
ey = 4.10
: C%a - CpCSS ( )
on — Q203(—Crs A Cés)
N 0124 — C44Ces
Qt[?q(—(7|‘ -+ A()ﬂ:\
€y = - 2
Cig — UgqUess
e . QI/BS(_C44 + /\C14)
6 =

Cly — C14Cés
Solving equations (4.10) lead three possible sets of solutions for the order parameters

Q1 d Q2

(i) @1 Q2=0.

(ii) @y =0and Q; O
(iii) Q; # 0 and Q, #0.

Case (i) corresponds to the high temperature R3m paraclastic phase. For case (ii),
strains es and eg are zero, which means that there is no clastic deformation along the
xz and xy planes. But other stains e, €5, ¢3 and e, are non zero, which means that there
are elastic deformations along x. v, z axes and yz plane. This changes the length of the

crystal axes and the shape of the structure that corresponds to monoclinic symmetry.
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Changes in the basal plane associated with e; and ey, are shown in Fig. 4.2. So case
(i1) corresponds to the phase trar  tion from Trigonal to Monoclinic (R3m — C2/m).
This is the case we are going to discuss here. Case (iii) corresponds a transition from

a high temperature R3m trigonal phase to a low temperature 1 triclinic phase.

Figure 4.2: Structural phase transition in CuFeQ,: R3m represented by solid lines and
C2/m repr nted by broken lit  [31].

For the I...n C2/m transition in CuFeQ,, the complete solution -t (case (ii)) can

be written as follows:

@ =0

Q2 # 0

Q%(ﬁl ("o — 13, Cy3)
€1 +ep = 2 -
! : ' .33
,,Qz/js(—f\ Cis + Cyy)

(8] p = &
(‘124 - (Y-H(vﬁ6
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P Q3(=A Cp + 52 Cr3)
’ Ct — CpC33
Q233(—Ci + A Cag)

e —— =
! ('124 — C44C 66

g = O

es = 0 (4.11)

Next, we need to calculate the critical temperature T, (T is the transition temperature
from high temperature phase to low teinperature phase). To calculate it, we first
substitute the above solution  (4.11) into our total free energy (4.4). This will give

that the total free energy expression (4.4) depends only on ;. Which is F(Q;) given

by
Q%((’»-(T - Tg)(C124 — C44Cae) + Bg(—Q/\ Cu + /\2066 + 044)
F(Q) = — — , +
2(Ciy — Caales)
4(Ci3 — CpCS3)
As we discussed in Chapter 3, ¢ :ion 3.3.1, the above energy expression clearly shows

that transition is second order. Let now calculate the transition temperature T..

First, we differentiate F( ~ ) with respect to @),, and find

Q%(Cpﬂ2 + 2[31/32013 — B2(75) _ Qz ﬁ%(‘ \Cha + /\2066 + CM)
Cll"a - CpC;;g '124 - 044066

a)(T=Ty)Qa+B Q5+2
(4.13)
Therefore at temperature T' = T, the order parameter (J; goes ) zero. Using this fact

in equation (4.13) leads to an expression for T, which is

— 3 —9ACyy + Cay + A Ces)

4.14
a) 0124 — C4Cs ( )

1. —Ts

4.5 Effective Elastic Constants

In this ction, we derive the t »erature dependence « the (effective) elastic
constants for the trigonal and monoclinic phi s. We show how the elastic constants

can be obtained from a Landau free ene -, defined as a function of a multi-component

=0.
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order parameter and strains. First, we consider the simplest case where the free energy

is only a function of strains (F'(e;)), with the effective elastic constants C;; given by

P F
Cij B 86,‘681'.

(4.15)

Next, we consider the case where the free energy is a function of a multi-component
order parameter and strains (F(e;, @;)). As the order parameters Q; and strains e,
are coupled, we must use the chain rule. In that case, t| effective elastic constants

Cj; can be obtained using the following mathematical calculations, where C;; is given

by
FPF dQnm O*F
Cii= — + 4.16
/ de;0e; g de; 0Qmde; ( )
We have to eliminate terms . " in order to get the formula for C; j-
€4
At ilibri 0. So, the condition OF 0 leads t
equilibrium: —— = 0. —— ] =0 leads to
4 9Qm e " de, \8Qn
F d 0*F
_OF +Y G =0 (4.17)
0€,0Q, 5 de; 0Qn0Qy
For convenience, let us introduce the llowing notation:
dQm FFr *F 0*F
i E Y F = _) € = ——, ’q‘ = 5 a
Fm, de, Qrm Qn OWm O Wn Fame 0QmOe; ) Oe; dej
Using this notation, equations (4.16) and (4.17) become
Ci; C?j+z R i Fqpe,- (4.18)
m
FQm e, T Z R, FQan =0. (419)

These two sets of equations can be solved in order to obtain effective elastic constants.

For this project, as we have two order parameters, Q) and @, we get

YO 1
(iJ C j + 5 [_FQlc‘ FQlt‘;FQzQz - FQN’. FQz!’JFQlQl +2FQ2¢’. FQlPJFQJQn]'
(4.20)
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where D = Fg, g, Fg, 9, — F, o,- Equation (4.20) has been used with the free energy
(4.4) in ord  to calculate the ef tive elastic constants. The results are conveniently

given in Table (4.3) in term of A(T) and the order parameter = @ by defining

AT) = a(T—Ty)
Yy 2Q P2+ 05
Y. 2Q08; — 55 (4.21)
Z(Q, T) = AT)+Q

Z(Q T) = AT)+3BQ*+Q
2Q%2 R 3 Cha — B2C, — 2 Cy3)
"‘(_/1‘3 + (./'p C33

4.6 Experimental Results

The principal elastic constants of CuFeQO, are obtained using the experimental
ultrasonic sound velocity measuremer ; provided by Dr. G. Quirion at Memorial Uni-
versity. The relationships be een these velocities and the elastic constants for any
corresponding acoustic modes can be derived using Christoffel equations [12], which
we discusse in Chapter 2. In ..ble 4.4, we list the importar  rincipal modes, which
can be used to calculate the princip ~ elastic constants of Cu..J;. The complete list

can be found in Chapter 2 (Ref. Tables 2.1 and 2.2).
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Figure 4.3: Normalized Velocity Plots: (a) AV ./Vi, (Cui), (b)
A VTJ:(PU)/VTJ:(Py) (CGG)v (C) ’ VLz/VLz (C33)a (d) A VTI(PZ)/VTI(Py) (C44) -
We are using a different scale for each plot in order to show the good compatibility of
the model and data.

The temperature dependence of the relative variation of the velocity Av/v mea-
surement data was taken for the five inodes (listed in Table 4.4) between 4 and 300
K. In Fig. 4.3, we present the temperature dependence of the relative variation of the
velocity Av/v measurement results m 4 K to 50 K. For convenience, all velocity
curves have been normalized relative to the maximum value ¢ served around 100 K.

We observed from Fig. 4.3 that there are two distinct anomalies at Ty,  13.7 K and
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Twn2 = 10.6 K. These temperatures coincide very well with the zero-field magnetic and
structural phase transition temperatures observed previously in specific heat, magne-
tization (8], X-ray [15, 19], and neutron diffraction [8, 32| experiments. At Ty, a
thermal hysteresis at AT = 0.5K is observed in the experimental measurement of all
modes [1]. This shows that the transition at Ty, is weakly first order. Above Ty, we
observe that the velocity of all modes presented in Fig. 4.3 increase non-linearly as a
function of temperature. This observation alone is a good indicator that the anomalies
observed at Ty, are associated with a pseudo-proper ferroelastic transition [23, 27].
The observed softening on Cgg is also very large, almost 50%. At the same time, the
softening on C33 and Cyy is at least two orders of magnitude smaller, shown in Fig.
4.3c and Fig. 4.3d. Finally, F _ 4.3a and 4.3b (note difference in scale) indicate that
the softening on (), is small compare to Cgs, nevertheless is ;nificant as V7, shows

a decrease of 6.5% at Ty,.

4.7 Numerical Calculation and Mode fitting to Ul-

trasonic Ex_c_imental Data on CaFeO,

4.7.1 Numerical Calculation

The absolute sound velocit: ¢ longitudinal waves (propagat 3 along x and z direc-
tions) and for transverse wav  (propagating along x direction) have been measured at

room temperature [1] (see Table 4.5).

Table 4.5: Velocity values at T' = 300 K

vewocity propagation  vi, VP Vr(P.)° Vre(P,)°

(m/e) 3767 4400 1400 1900
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The relationships between velocity and elastic constant for each mode are given by
Cull] = pVEIT
¢ [T = pVLIT]
CM[T] = PVTz(P:)2[T]
Cos[T) = pVry(Pe)*T]. (4.22)

The density of CuFeQ, is p = 5410kg/m3. We can use these uations 4.22 and the
velocity values listed in Table 4.5 to find some of the bare elastic constants (Cyy, Ca,
Cs3, Cua, Ces). To calculate Cy4, we have to find a; and A. For convenience, we fixed
ay = 1, and then try a number of values for A in order to get the best model fit for the
ultrasonic experimental velocity data Vi, on CuFeQO, for the temperature range from
0 to 100K. This leads to A = 0.07. We use experimental values of velocity Vi, (which
is Viz(T.) = 0.938 x V7, see Fig: 4.3a) and the elastic constant Cy; at T' = T, and first
equation of (4.22) to calculate C\4. Next we use again experimental values of velocity
Viz (which is Vi .(15) = 0.965 x V{,.) and the elastic constant Cy; at T = 15 K and
the first equation of (4.22) to calculate 3. Us  bare elastic constant values listed
in Table 4.6 and the values of a;, A, J3 listed in Table 4.7, we can find the elastic
tensor matrix at high temperature (above T,). Next, we can determine some strain
values at T = 0 K: €,(0) = ).0024, e5(0) = +0.0026, e3(0) = 0.00001. First we use
e, (0) — e2(C  and the fourth equation of (4.11) to find @2(0), then we use @Q2(0), e3(0)
and €;(0) e2(0) (sce complete values set ©= Table 4.8) and the cquations fr  (4.11)
to find rest of the 3,, #», B e Table 4.7). Using all these values, we can find the

elastic tensor matrix at low t rrature (below T,).

4.7.2 Summary of the calculation and model fitting of the
data

The following values are calcu  ed for our model. Table 4.6 sh s the elastic constants
at. 300 K. Coupling constants and other variable values resulting from the fit to the

data are listed in Table 4.7. Strains and order parameters values at 7 0 K are in the
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Figure 4.4: Plot of the order parameter ()3, equa n (4.6)

the x and y directions of the longitudinal modes. We notice from this fit that there are
two phase transitions. One is at about 10K and the other one about 13.7K. We can
also see from the Fig. 4.3 (a) that the longitudinal waves prop. iting along [100] with
a [100] polarization (Vi) agree very well with our experimental data. Both directions
(x and y) of polarizations : 2e with data above T,. The second plot in Fig. 4.3 (b)
corresponds to Vpr;(F,). Here the dashed line of the model exhib . the soft mode
(AV/V ~ 80%) behavior. This is also seen in F 4.3 (a). Unfortunately, due to large
acoustic attenuation for that particular mode, we were © ble to obtain data in the
ferroelastic phase below 13 K. The third plot Fig. 4.3 (¢) corresponds to V., here we
did not see any agreement between data and experiment above T, ~ 14 K. There is
deviation between the model and data for low temperature part. However, we notice
from the ale of ..g. 4.3 (¢) tt  /,/Vi. < 1%. The anomaly in Fig. 4.3 (c) is

shown in the next chapter to be due to magnetoelastic coupling. Our fourth plot in
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Fig. 4.3 (d) corresponds to Vr;(F;). The model (transverse wave propagation along
[001] with a [010] polarization) shows by dotted line agrees wit the data for both low
and high temperature. We see from all data plots except the soft mode, there is another
transition about 10K. Anomal in these modes are also visil : and variations near
critical point are small order in magnitude.

The overall good quality of the model fit to experimental ta for AV, /VP, and
AVrz(P,)/Vr:(P,)°, which exhibit nearly soft mode behavior, suggest that our theory
captures the essential features of the ferroelastic phase transi i in CuFeQO,. These
results have recently been published [1].

As men ned in the Introduction, CuFeO, also exhibits magnetic transitions at
Twny = 10K and Tx; = 14 K, which correspond to the temperatures at which anomalies
are seen in the ultrasound data. The possible impact of coupl 1 between elastic and

magnetic degrees of freedom is explored in the next chapter.



Chapter 5
Magnetoelastic Coupling

So far, we analyzed the elastic properties of CuFeO; using a Landau theory of
phase trans on which ignores the magnetic degrees of freedom. As own in Chapter
4, this preliminary model accounts well for the structural p! e transition observed
at 14 K. However, it fails to reproduce any of the anomalies observed on the velocity
measurements at 11 K. In this chapter, we are going to investigate how the magne-
toelastic coupling affects the elastic properties of CuFeO,. A¢ n, an approach based
on a nonlocal Landau free energy functional, as described by Plumer and Caillé [33],
is used. First, we consider the spin ordering alone, followed by the derivation of the
coupling between the elastic and magnetic degrees of freedom. Finally, the impact of

the magnetoelastic effect on the elastic constants (j; is presented.

5.1 Spin Energy

5.1.1 Theoretical Approach

In this section, the frce energy, as a functional of the spin density s(r) is derived at
H = 0 T. According to neutron diffraction experiments on CuFeQO; [2, 6] at zero field,
all spins : gn along the c-axis so that the spin polarization is parallel to the z-axis

which coincide with the c-direction. Moreover, due to time inversion symmetry, only
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even powers of s(r) are allowed. Consequently, the spin free energy up to fourth order

can be expressed as
Fls] = Fs[s] + Fisls], (5.1)

where the second order spin contribution is
1
ng = W /dl‘] dI‘Q Jag(l'l, I‘Q)Sa(l‘l) Sg(l'g), (52)
with the fourth order contribution given by
1
Fas = 4—v/dl'1 drydrydrs Bapys(ry, T, T3, Ta) 8a(r1) 85(r2) 84(r3) s5(rs).  (5.3)

Here, the summation convention has been used with a, 3,v,d = z,y, 2 with V
representing the volume of the crystal. Knowing that the s ce group of CuFeO,
is R3m, we impose that the f  energy (5.1) remains invariai under the symmetry
operations of the group generators C,; and Cj,. Using this argument, the second order

terms (5.2) can be written ¢

1 . 1
Fog = W/drl dry J(ry, vy 1y)-s(ry) + Q—V—/drldl‘z J:(r1, T2) 8:(11) 5:(12),

(5.4)
and the fourth order spin energy (5.3) can be expressed as
1 .
r = v /drl drydrydr, 7ty Ty, T3, 14)s(r1) - S(rp)s(rs) - s(rg) +
1
v /dr, “rpdrzdry Ba(ry, 1 ra, vy ) -s(r2)s.(r3)s.(ra) (5.5)

1
W/dl’] drg (ir;;(il] Bzg(rl, rog, I, m)s,(rl) SZ(TQ)S;(I';;)S,_(T‘;) +

1
'47 /(il‘l dr2 dr3 dr4 E(rl, T, I'z, r4) [331(1'1) SI(TQ) - .S‘y(l'l) Sy(l'g)] Sy(l';;) s:(r.,).

Here, J and B are coefficients associated with isotropic contributions while the other
constants are related to anisotropic contributions. The fourth order free energy (5.5)

can be sim] fied further using that s(r) || = || ¢ (at H = 0) so that

1 )
Fis = W/drldrzdrgdn, B(ry. ra. T3, 14)ss(r1) 5:(r2)s. (r3) 5:(rs),  (5.6)



where B = B + B, + B.,. Note that S || Z || & minimizes the free energy (5.1) for
J. < 0. For simplicity, we assume that the anisotropy contribution (second term of
(5.4)) is of the single-ion form —D [ dr[s,(r))?.

The long range ordering of the ma_ :tic ions can be described by a quantity p(r),

which is reli »d to the spin density s(r) [33] by
Vv

s(r) = 2_p(r)d(r - R), (5.7)
R
where R represents the lattice vectors and N is the number of Fe3* ions. We assume
further that p(r) [33] can be rep ited by a single component Fourier expansion
p(r) = SetQT 4 g* e QT (5.8)

where S is the spin polarization vector and Q represents the wave vector of the mod-
ulation restricted to the first ™ -illouin zone. The polarizatic vectors for the ABC

triangular layers is assumed to have the following form [35]:
Sy=S8e"" Sg=S8e Mz §;=5e0 3 (5.9)

where the magnitude S is real and ¢ is an overall phase angle and + is the phase angle
difference between the two ad ent layer stacks. Using (5.7), (5.8) and (5.9) in (5.4),

the second order contributic to the free energy reduces to
Fys = (Ag — D)S?, (5.10)

with Ag = a)(T + Jg), where a, is a constant, T is the temperature, and Jg [35]

represents the strength of the effective spin-spin coupling given by
2 )
JQ=§(J1f1+-/2f2+-]3f3+-]’f)- (5.11)

As illustrated in Fig. 5.1, J; is the near neighbour (NN) in plane (triangular) exchange
coupling, J, is the 2"4 NN coupling in plane, J; is the 3™ NN coupling in plane, and

J' is the coupling between planes. For this geometry, one finds [35] that f,, 1 =1, 2, 3
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and f" are given by

1
Ji = cosr+2cos rcosy (5.12)
3 :
J» = cos2y+2cos ol s Y (5.13)
fi = cos2r+2cosrcos 2y (5.14)
J= L 2o d)leos(y— ) 2 cos Lreo(yt ) (5.15)
= - cos ¢)|cos( -y — -~z cos _rcos(_y+ -2)]. 5.15
3 3773 A F L

= \/,‘*u

= ¢ (., and a is the in-plane lattice constant, b

(@]

where v = aQ,, y = bQ),,

and ¢ is the z-axis lattice constant (spanning three triangular layvers).

3

4

g

0

|
/

T
Jl

Figure 5.1: Spin-exchange paths Jy. J, and J3 within an FeO, laver (in plane) and
spin-exchange path J' between adjacent FeQ, layers (planes) [34].

Substituting (5.7), (5.8) and (5.9) in (5.6). the fourth order contribution to the free

cnergy can be written as

Fys = BoS*+ (o 8 cos(47)Asq.q. (5.16)
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where
~ ~ 1~
B = BQ.—Q,Q.-Q+§BQ.Q.—Q.—Qv
1~
Co = ;Bacee (5.17)

One can find expressions for By and Cg in Ref. [33], while Asq g represents the

Kronecker Delta function given by
1 .
Asq.c = I Yo etaR (5.18)
R

with G being a reciprocal latti  vector. Substituting (5 J) and (5.16) in (5.1), the

free energy can finally be written as
F(S) = Fic + FylAuq,c, (5.19)
where F)¢ represents the free energy contribution for an incommensurate modulation,
Fic = (Ag — D)S* + BicS*, (5.20)

where BQ = Bjc for the incommensurate modulation QQ. The free energy Fy is associ-
ated with e a Umklapp term allowed only for a commensurate modulation associated
with Ayq. g, so that
Fy, BeS*+ Co St cos(47), (5.21)
with BQ = Bc. Note that Q = %G does describe the observed criod-4 spin structure
for T < Tny.
Let us first restrict our anal, s to the incommensurate modulation. In this case,

the free energy is given by (5.20). Minimizing the free energy with respect to S gives

a, ) D
S? =——(’1+./ —-), 5.22
c QBIC' Q a ( )
As the transition is continuot  we unmediately obtain that Ty, = —Jg + —. Using
Q
(5.22) in (5.20), the frec energy for an incommensurate modulation is
2 o 2
ai(T =1

Fie _all = Tw)® (5.23)

4Bl('
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which is consistent with the wave vector of the spin modulation observed by neutron
scattering [ |. Setting a; =1, Bjc =1, and D = 0.1 (for convenience) with equations

(5.22) and (5.23), we then get

Sic =0.71V/—1.08 + T, (5.29)

and

Fre(T) = —0.25(—~1.08 + T2 (5.30)

From equation {5.29) the transition temperature is T; = 1.08 in units of J;.

0.00- [T
0.02 _/”'/—;T:k—/
> -7
P .
| iy
S 04
w o
3 —— FI
L. e ===
w0064 FC
0.084"
r— —
0.80 0.82 0.84 0.86 0.88 0.90

Temperati

Figure 5.2: Plot of the free energies for incommensurate and commensurate phases.
Fic, and Fe represent the equations (5.30) and (5.32), respectively.

Regarding the cominensurate phase, as neutron scattering measurements [10] indi-
cate that the wave vector of the spin modulation corresponds to a period-4, we set the
z, y and z parameters as t =%,y 7, 2 =0 with ¢ =0 and v = 1 [35]. With these
values, we then get J’Q -0 and T, = 0.88. The constant (g = 1.08 is determined

by setting BQ = 1.1 and imposing the experimental condition that Ty, = }—: T'nvy with
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equation (5.27). Substituting all these values into the equations (5.25) and (5.24) we

then get

Sc = 5.05v/=0.88 + T, (5.31)

and

Fo(T) = ~12.73(-0.88 + T)2. (5.32)
The first order transition temperature between incommensu: e and commensurate
phases is found to be T2 = 0.85, which can be determined from Fig.. 5.2, where F» =
Fijc. Combining equations (5.29) and (5.31), the mean fi | temperature dependence

of the spin amplitude is

5.05/—088+ T, T < Tnog:
S(T)=1¢ 0.71vV=1.08+T, Tny <T <Tni; (5.33)

0, otherwise,

where Ty, = 1.08 and Ty, = 0.85 are the re-normalized vi 1es defined with respect to
Ji. The temperature dependence of S(T’) is shown in Fig. 5.3 where the temperature
has been rescaled in order to coincide with the observed transition temperatures Ty =

14 K and Ty, 11 K.

5.2 Effect of the Magnetoelastic Coupling

In this section, we are going to determine ~* : ignetoelastic coupling terms and
analyze their impact on the elastic properties of CuFeO,. For that purpose, the free
energy must include the magnetic degrees of freedom (spin density) derived in section
5.1, the elastic energy, derived in section 2.6, and the magnetoelastic coupling energy
due to the coupling between the n  znetic degrees of freedom (spin density) and strains.

Thus, the total free energy can be written as
F(e. S) = Fi(S) + Fe(e) + Fucle, S). (5.34)

where F(S) corresponds to equation (5.19) and the elastic energy Fo(c) given by

cquation (2.30). We now derive the allowed coupling terms between the spin density
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Figure 5.3: Rescaled temperature dependence of the magnetic moment according to
equation (5.33).

and strains. For our analysis, we consider o _ pe of magnetoelastic coupling terms,
linear-quadratic (e S?) and quadratic-quadratic (e? S?). Thus, for our analysis these

countributions are represented by

Frne = FY 4 F9 (5.35)

meY

where FY and F99 are the linear-quadratic and quadratic-qu  Iratic coupling terms,

me mc
respectively.

The general expressi for the linear-quadratic and quadratic-quadratic coupling

enecrgy can be written as

1 . .
Fvlr(xlr‘ = oV /drl dradry Ky 346(ry, T2, T3) €a3(ry) 84(r2) s5(r3), (5.36)
and
1
,(,'lq( iV /dl'l drydrzdr, A[u,j'y&(n(rl\ Iy, 'z, 1'»1)‘"0;3(1'1)(36(1'2) -“((r:s) Sr}(r~1)~

(5.37)
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where V is the volume of the crystal. Again, the summation convention is used with
a, 3,7, 6, (,n= x,y, z. The invariant terms can be identified by applying the symn-
metry operations associated with the R3m point group as described in section 5.1.1.
Both linear-quadratic and quadratic-quadratic coupling terms can be reduced consid-
ering that S || Z || ¢. Thus, the possible terms compatible with the high temperature

symmetry correspond to

Fi%, = Ki(e1 + €2)S? + Kye35°, (5.38)

and

F99 = M e2S% + Mafed + €2)S? + Ms(dejez — €3)S? + My(e; + e9)e3S?
+ Ms((e) — ea)eq + e5e6)S? + Ms(2e2 + 265 + €2)5?, (5.39)

where K, K are linear-quadratic (LQ) constants and M,, Ma, M;, My, Ms, and Al
are quadratic-quadratic (QQ) cor ants. Minimizing the total free energy F(e, S)
(5.34) with respect to strains gives six equations:

OF
dey

Neglecting the quadratic-quadratic coupling, solutions for the system of equations

= 0 fora=1,..,6. (5.40)

(5.40) in terms of the spin polarization S correspond to

(K\Czg — Kol7) 52

e = S ~ A
! —2C13% 4 (G + C12) Cs3
. (K. — K3(h3)S?
2 —2C13* + (Ci1 + Ci2) Cs3
S2(K KyClp — 2K,C
0 = S5 (}‘2‘0121 + K2y ’21\1(13) (5.41)
—2613 + (C'll + C’l2)033
cy = 0
€y = 0
g = 0

‘The strains ey, e, and ez exhibit a linear temperature dependen  (like S2 - see solutions

5.33). As the strain ¢y = e with ey = €5 ¢s 0, these solutions indicate that the
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magnetoclastic coupling does not change the crystal’s symmetry. Other terms, such
as the coupling between the spins and the soft mode might account for the observed
symmetry change at low temperatures. The total free energy (5.34) can also be used to
calculate the elastic constants using (4.16). The elastic constants for this current model
with both linear-quadratic and quadratic-quadratic magnetoclastic coupling are listed
in Table 5.1. We note from Table 5.1 that the number of independent elastic constants
is unchanged. Again, this indicates that there is no symmetry change associated with
the magnetoelastic coupling. We also see that, the model predicts a jump at Th,
(S=0) for the elastic constants that depend on the linear-quad: ic coupling constants
K. As the experimental observations for C; do not exhibit any discontinuity at Ty,
we can consider that the linear-quadratic coupling coefficients -e small and we thus

set Kl = ’2:0.

5.2.1 Numerical model calculation and its prediction

In order to make contact with experimental data, the temperature scale of the spin
order parameter, as defined in equation (5.33), has been rescaled in order to coincide
with the anomalies observed on the ultrasound data presente in chapter 4. Let us
first analyze the temperature dependence of the velocity of longitudinal modes prop-

agating along the z-direction. This mode is particularly interesting as, according to

the non-spin model | sed in chapter 4 (see . .g.. 4.3 ¢), the coupling with the soft
mode is weak. At the. et 2, the prediction ciated wit the spin polarization,
Table 5.1, indicates that L~ 3 9(%'21 should be prc ort 1al to S?. Thus, we

compare in Fig. 5.4 the temperature dependence of %‘ with that of the square of the
spin polarization as given by equation (5.33). In that Fig., the experimental results
are represented by black continuous line while the mean field rediction corresponds
to the red continuous line. We immediately note that critical phenomena is significant
at low temperatures. In order ) obtain a 1nore realistic prediction, we also present
in Fig. 5.4 a non-mean field calculation (see continuous blue line), by replacing the

mean-field critical exponent ;3 = 0.5 with ;3 = 0.3 (close to Ising universality), where
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Table 5.2: Values of coupling constants (LQ and QQ)
K, Ky M, M, My

0 0 2.4 x 10° 1.1 x 107 1.1 x 1():

S ~ (Ty — 7). This value scems reasonable as we obtain a good agreement with
the experimental data. All proportional constants used for comparison in the present

calculations are given in Table 5.2

0.034
0.02
§ 0.01
<
0.00
oo .
5 10 15 20 25 30

T

Figure 5.4: Nornalized Velocity Plot: AVy,/Vy.. Red curve represents the mean field
result and blue curve represents the non-mean field.

We now focus our attention on the effect of the magnetic coupling on the veloeity of
longitudinal and transverse modes propagating along the y-direction (Vy,, and Viyp:).
For those particular modes, shown in Fig. 4.3 (a) and (d), it is clear that the coup ™

with the soft mode associated with the structural phase transition must also be taken
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Figure 5.5: Normalized Velocity Plots: (a) A Vi, /Viy, (b) AVeyp./Viyp: - We are
using a different scale for cach plot i1 order to show the good compatibility of the
model and data fit.

into consideration. To clearly illustrate the relative weight of both contributions, we
present in Fig. 5.5 cach contribution separately. Thus, in Fig. 5.5, the experimental
data are again represented by a black continuous line while the contributions associ-
ated with the spin and the  ft mode are illustrated by a blue, and red continuous line,
respectively. In this Fig. 5.5, the coupling constants A, and Af, given in Table 5.2
have been adjusted in order to reproduce the amplitude of the discontinuity observed
at Tna. Morcover, the spin contribution presented here correspond to a non- mean
field calculation using (4 = 0.3 as determine in Fig. 5.4. In Fig. 5.5, the continuous
green line represents the combined model, which includes both soft and spin contribu-
tion. It shows good agreement with experimental results. Our analysis indicates that
magnetoclastic effects principally account for anomalies observed on the velocity mea-
surcments below Ty while those observed around Ty, are de  inated by the coupling

with a soft mode.



Chapter 6

Conclusions

In this thesis, we study the temperature dependence of the elastic properties of the
magnetoelectric compound CuFeO; near structural and magnetic phase transitions us-
ing various Landau model free el 5. The results of this analysis are compared
to the experimental ultrasonic velocity measurements provided by Dr. G. Quirion at
Memorial University.

In the first part of this thesis  rk, we investigated the elastic properties of this
compound, in the neighborhood of the magnetic and structural phase transitions near
14 K. The temperature ran,  in our investigation was 4 K - 50 K. Dr. Quirion’s high
resolution sound velocity measurement show that CuFeO, und joes two phase transi-
tions at Ty, = 13.7 K and Txo  10.6 K, respectively. We derived a theoretical model
to explain these experimental results. In the high-temperature rhombohedral R3m
phase, we observed that the elastic constant Ceg shows a strong softening, while Cy,
and (4 show less softenit  TI  : experimental results  ees with our assumptions
and numerical predictions derived from the model. The softening behavior on Cgg is
large and non-linear. Therefore, we can conclude from our study that the structural
transition at Tw is categorized  pseudo-proper ferroelastic. The observed structural
phase transition corresponds to R3m  C2/m symmetry change. Using the ultrasonic
sound velocity measur s, we obtained the temnperature dependence of the inde-

pendent elastic constants of CuFeQ,.
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In the last part of this thesis work, we analyzed the impact of magnetoelastic cou-
pling. A Landau model free energy which depends only on magnetic degrees of freedom
(spin density) shows that there are two magnetic phase transitions at Ty, = 1.08 and
Tno = 0.85 in units of near-neighbour exchange coupling J;. A Landau model free
energy containing spin, el :ic, and magnetoelastic coupling was analyzed. We ob-
tained the temperature dependence of three of the six independent elastic constants of
CuFeQ, due to spin-lattice effects. We found that the transition at Txo is first order.
For the moment we don’t have experimental results to figure out the exact values of
the interaction quantities Jy, J2, J3 and J'. However, we conclude that our current
rescaled theoretical results agree with the experimental data for C,;. We also reproduce
the amplitude of the discontinuity ob rved in three principal modes at Ty9, which we
could not explain with the soft modes only. Our study shows that the anomalies at
Txny are dominated by the coupling with a soft mode while the anomalies at Ty, are
correlated to the spin polarization. Thus, conclude that magnetoelastic coupling is
strongly impacting the elastic properties of CuFeO, and that is results in magneto-
electric coupling [7].

Our theoretical studies are based on a Landau model free energy which was de-
veloped from symmetry arguments. We found good numerical predictions consistent
with the temperature dependence of the measured ultrasonic sound velocity modes.
However, our current theoretical model is not complete. For a complete quantitative
analysis, we need to l< 7 wndau model free energy, construe »d from the sym-
metry arguments, to include couplit  be  2en spin polarization (S) and the structural
order parameter (@}). This would then lead to a free energy with a multitude of terms
involving ¢, @ and S: F = Fo + Fo+ Fs+ F.g + Fes + Fgs, where F,, [ and Fg, are
elastic, structural Landau, spin energ  and F.q, F.s and Fyy are coupling involving
strain and the structural order parameter, strain and the spin polarization, and spin

polarization and the structural order parameter respectively.
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