






























































inhomogeneity and e ical an itropy, which showed the derivation of the origi 1

trave me expression.



1.2 OBJECTIVES

The objective of thesis tc sessthe fit of real datatoz a  ytically derive

traveltime expression  alin  y inhomog: :ous elliptical anisotropic  del, thereby

i) validating e mett  »logy and . orithm used,
ii) confirmii  1e assumptions of linear inhomogeneity : d elliptical anisotropy,
and

iii) showing :contri tion of anisotropy in modelling :real earth.



























Integrating, we get

7\[‘1~p a \1+zyy
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«valuating, we obtain
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which is equation (1.3).
Using the identity for yperbc : functions

1
tanh—lg =%lr e

we can write
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This is the expression 1

upgoing arrivals.

The subsurface receiver

sour at (X 0),if
HH+/7v
X < \ 2a+b2)7 .
For the value of Xeqi  to the

reaches the receiver.

the cur

tt stinguishes between the downg

(0, Z) is reached by the dow:

t-hand side, the signal is at its deepest

1g and

ing signal from the

(1.41)

int when it












































































































5. Table E.10 and F 5.11: a, b, and », with maximum offsets increasing from 69.7 m
to 1014.4 m, forallre vers,f the longside, shortoffsets only (B'). This is the same as
Table E.2 and Figure 3 (from = above) up to the offset of 99¢.. m, and is inclu d here
so that a direct comparison can ~ made with results for the shortside only (B). F 1res

5.10and 5.11 arecon ed ire 6.7 nd discussed in section 6.3.1.
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For the shallow receiver, at 1974 m, the fit using values from the longoffsets only
is better (white-dotte rve) tI  (that obtained using all offsets  lack-dotted curve),
most of the white pe | :clc tothe O axis. For the deeper receiver, tl e is little
diffe 1ce, up to about 3200  offset and then the white-dotted curve is  etter{ i.e.,

the longoffsets only . n.



























Because the :
long, and traveltimes n

reality can hinder any

» py small, to determine values correctly, the offset must be

it be ‘pickable’ on the data. Discrepai

termination ¢ .
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es between models and















APPE! )

105




APPENDIX A

Zero-offset (Vertical

cide

e) VSP: T

reltimes
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@=tan"! _— _
Vertical res sth

Example:

First-break traveltime: 252.2 ms = 0.250 s
cos0: 0.98236

Source depth: 6.0 m

Water velocity: 1524 m/s

M &an 1
Observed (vertical) travelt :=(0.2522*0.! 36)+ =02517s=2! Tms
L 1224.U |
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APPENDIX B

Walkaround VSP:

veltin

)9












2645.19m
X

tgg="—"-—""
7 2636.58m

195 =1.202302s = 1.20230s

Corrections ¢~ Hplied with  pect to a reference receiver and then with respect

to a reference source or vice
receiver (No.4), adju:  toa

reference receiver and  :re

Table B.1 provides traveltimes adjusted to a reference
:ne  source (No.l4), and co 'dtot hthe

‘ence source.
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APPENDIX C

Walkaway VSP: Tr: :ltimes
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APPENDIX D

Synthetic Data
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APPENDIX E

Real Data: Offset
[sotropic Cases: Inver results ra, with y=0

Anisotropic Cases: In e s fora, b, and y

128












Table E.5: a, b, and
receivers, for the long
998.0  and is includ
Best values (minimun

with
shor
re fc
dard

. offsets increasing from 74.7 m to 1014.4 m, for all
y (B"). This is the same as T. le E.2

on wi
highli
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alts for the shortside only

to the offset of
), Table E.4.















APPENDIX F

Forward Modelling

Isotropic and Anisot

-Cases
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APPENDIX G

Elliptical Rays - Uj

ig and Downgoing signals

156





















