

------ -------------------

Hardware Implementation of the Salsa20 and Phelix

Stream Ciphers

by

@ Junjie Yan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

m

Faculty of Engineering and Applied Science

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

October 2007

St. John's Newfoundland

Acknowledgements

First of all I would like to thank my supervisor Dr. Howard Heys for his constant

guidance and support. Without his supervision, this thesis would not exist.

I would also like to thank Dr. Cheng Li. His courses, especially LSI Design (Engr.

8863) and Digital Systems (Engr. 5865) not only made me familiar with the hardware

design flow but also the use of VHDL as design language and input for logic synthesis.

They are critical tools for my research.

I am very grateful to Canadian Microelectronic Corporation (CMC) as well as

Mentor Graphics for their help in providing design tools and the access to state-of-the-art

manufacturing technologies.

I thank Namin Yu for the useful literature she provided. With the literature as

guidance for chapter organization, grammars and format, I saved a lot of time in terms of

thesis writing.

Many thanks to Huiju Cheng for being a great lab partner, travel mate and my best

friend at MUN. Our cooperation resulted in more ideas in my research, which was truly

rewarding.

I thank Peter Vandrish for his insightful comments and criticism and for careful

reading of my papers before publishing. I very much appreciated the pleasant and fruitful

time studying together with him.

Furthermore, I would like to express my gratitude to Avalon Microelectronics

Incorporation, who has provided me with a fabulous job as an FPGA designer, making it

possible for me to continue my work and study on hardware implementation in a broader

range of applications.

Junjie Yan

July 15, 2007

ii

Abstract
This thesis investigates the hardware implementation and statistical analysis of new

stream ciphers, Phelix and Salsa20. Both are candidates for the eSTREAM project, a

project highlighting the state of stream cipher design and analysis.

From a physical technology perspective, hardware implementation methodology

consists of Application Specific Integrated Circuit (ASIC) design and Field

Programmable Gate Array (FPGA) design. When high performance is required, an ASIC

is typically chosen as the implementation platform. However, FPGA platforms have

become increasingly popular due to their flexibility and a diminishing performance

tradeoff as compared with ASIC technology. Following this trend we have developed two

versions of Salsa20, one for deployment on an ASIC, the other for an FPGA. The cipher

Phelix is studied for application to ASIC environment.

Implementing a cipher requires detailed knowledge of the cryptographic algorithm

itself, particularly the underlying arithmetic. In the case of Phelix and Salsa20, both of

which are composed of several simple operations: 32-bit addition, bitwise addition

(exclusive or) and rotation, the most important operation is the 32-bit addition, for which

we have investigated multiple structures for the adders and compared them in both speed

and area. Different adder architectures are chosen for different designs, and the basic

criteria is the concern of speed or area the overall implementation consumes.

Two structures for Phelix have been implemented, one is a high speed design and the

other one is aimed at compactness. The simulation results shows that it consumes about

12,000 two-input NAND gates in the compact design and achieves more than one Gbps

throughput in the high speed design. The speed of the compact design is 260 Mbps and

the area of the high speed design is 64,200 two-input NAND gates. Up to four different

structures are investigated for Salsa20 as extra considerations are given to the utilization

of FPGA. The proposed VLSI implementations achieve a data throughput up to 4.8

Gbps, and a compact FPGA design uses 194 slices and 4 memory blocks in a Xilinx

device. The proposed designs in the thesis serve mainly as a quick evaluation of their

hardware performance; hence, further architectural optimizations are certainly possible.

Security analysis is an important concern in cipher designs. Thus, we have applied

iii

certain statistical tests, which are publicly available in the NIST (National Institute of

Standards and Technology) test suite to test various sequences produced by using the

Phelix and Salsa20 algorithms. Since the test suite has not considered the relationship

between key, IV, internal state and the keystream, we also applied six novel tests to

examine the ciphers. Two strategies are employed to interpret the test results: the

examination of the proportion of sequences that pass a statistical test and the distribution

of P-values to check for uniformity. NIST gives the definition of P-value: the probability

that a perfect random number generator would have produced a sequence less random

than the sequence that was tested. The experimental results show that both Salsa20 and

Phelix have passed the tests in NIST, considering that P-value less than 0.01 indicate a

possible weakness. An easily understood deviation is observed in the correlation test for

the last internal state (the state after 9 double rounds) and the keystream in Salsa20.

However, how this could be exploited in an attack is an open question.

iv

Table of Contents

Acknowledgements ii

Abstract iii

Table of Contents v

List of Figures .. ix

List of Tables xi

List of Abbreviations xii

Chapter I An Introduction to Cryptography ... I

1.1 Brief History of cryptography I

1.2 Information Security 2

1.3 Background on Functions 3

1.3.1 One-way Function 3

1.3.2 Permutation 3

1.3.3 Substitution 4

1.3.4 Exclusive OR 5

1.3.5 Modular Addition 5

1.3.6 Modular Multiplication 6

1.4 Symmetric-key/Private-Key Cryptography 6

1.4.1 Block Ciphers 7

1.4.2 Stream Cipher 8

1.5 Asymmetric-key/Public-key cryptography II

1.6 Cryptanalysis 12

1.7 Summary 14

Chapter 2 Cipher Implementation 15

2. 1 Software Implementation 15

2.2 Hardware Implementation 16

2.2.1 Methodology 17

v

2.2.1.1 Traditional Methodology Used for Non-feedback Cipher Modes 16

2.2.1 .2 ASIC Design Flow & FPGA Design Flow 18

2.2.2 Main Concerns in Hardware Implementation 21

2.3 Software/Hardware Codesign 25

2.4 Summary 27

Chapter 3 Hardware Implementation of the Phelix Stream Cipher. 29

3.1 lntroduction of Phelix Stream Cipher 29

3 .1.1 Algorithm 29

3.1.2 Security 30

3.1.3 Previous Work on Hardware Implementation on Phelix 31

3.2 Compact ASIC Structure ofPhelix 33

3.2.1 Top Level Design 33

3.2.2 32-bitAdder 35

3.2.3 H Function Block 35

3.2.4 Key Mixing Block 38

3.2.5 Nonce Expanding Block 40

3 .2. 6 S ubkey Generator 41

3.3 High Speed ASIC Structure ofPhelix 42

3.3.1 H Function Block 43

3.3.2 Key Mixing Block 44

3.3.3 Nonce Expanding Block 45

3.3.4 Keystream Generation Block 45

3.3.5 The Controller 46

3.4 Synthesis Results ofPhelix 47

3.5 Summary 47

Chapter 4 Hardware Implementation of the Salsa20 Stream Cipher 49

4.1 Introduction of Salsa20 Stream Cipher 49

vi

4.1 .1 Algorithm 49

4.1.2 Security 50

4.1.3 Previous Work on Hardware Implementation on Salsa20 50

4.2 Analysis of Salsa20 Cipher Main Components 52

4.2.1 32-bit Adder 52

4.2.2 Quarterround Block 56

4.2.3 Memory Block 58

4.2.4 Control Unit based on Various Datapath 61

4.2.4.1 Controller of the Compact ASIC Structure 61

4.2.4.2 Controller of the Basic Iterative and High Speed ASIC Structure 63

4.2.4.3 Controller of the Compact FPGA Structure 64

4.3 The Synthesis Results ofSalsa20 65

4.4 Summary 66

Chapter 5 Statistical Test of Salsa20 and Phelix 68

5.1 Introduction 68

5.2 General Discussion 69

5.2.1 Randomness 69

5.2.2 Test Statistic and P-value 69

5.3 Test Model 71

5.4 Keystream Tests 72

5.4.1 Frequency (Monobit) Test 72

5.4.2 Frequency Test Within a Block 73

5.4.3 Discrete Fourier Transform Test 74

5.4.4 Runs Test (Wald-Wolfowitz Test) 75

5.4.5 Experimental Results and Analysis 75

5.4.5.1 Proportion of Sequences Passing a Test 75

5.4.5.2 Uniform Distribution ofP-values 76

vii

5.5 Correlation Tests 78

5.5.1 Testing New Sequences 79

5.5. I. I Sequence Generation Process .. 79

5.5. I .2 Experimental Results and Analysis 81

5.5.2 Keystream/Internal States Correlation Test.. 82

5.5.2.1 Algoritlun ... 83

5.5.2.2 Experimental Results and Analysis .. 84

5.5.3 Internal States Correlation Test 86

5.5.3.1 Algoritlun ... 86

5.5.3.2 Experimental Results and Analysis .. 88

5.6 Conclusions 89

Chapter 6 Conclusions and Future Work 91

6.1 Summary of Research 91

6.2 Future Work 95

Reference 97

Appendix A: Selected Simulations Results for Phelix I 03

Appendix 8: Selected Simulations Results for Salsa20 I 04

Appendix D: Selected Source Code for Phelix I 05

Appendix E: Selected Source Code for Salsa20 ... 120

Appendix F: Selected Codes for Statistical Tests ... 137

Appendix G: A Test Example to Illustrate the Distribution ofP-values 148

VIII

List of Figures

Figure 1.1 A Taxonomy of Cryptographic Primitives [6] ... 6
Figure 1.2 Two-party Communications Using Symmetric Key Cryptography 7
Figure 1.3 Encryption/Decryption Process of Block Ciphers 8
Figure 1.4 Encryption/Decryption Process of Stream Ciphers 9
Figure 1.5 A Linear feedback shift registers (LFSR) I 0
Figure 1.6 Encryption/Decryption Process for Public Key Ciphers 11
Figure I. 7 Sign/Verify Process for Digital Signature 12
Figure 2.1 Architectures Used for Non-feedback Cipher Modes 17
Figure 2.2 Comparison of ASIC & FPGA Design Flows [9] 19
Figure 2.3 Gated Clock for Register Bit 20
Figure 2.4 Typical Flip Flop Cell in FPGAs 21
Figure 2.5 NAND Gate Symbol 23
Figure 2.6 Parallel Scheme for Power Reduction [4] .. 24
Figure 2.7 Example Scenario for a Stream Cipher [60] 26
Figure 2.8 Typical FPGA Logic Block 27
Figure 3.1 H Function 30
Figure 3.2 Block Diagram of Hardware Accelerator for Phelix 32
Figure 3.3 Phelix Compact Structure 33
Figure 3.4 State Diagram of the Top Level Controller. 34
Figure 3.5 A 4-bit RCA 35
Figure 3.6 One block of Phelix Encryption [22] 36
Figure 3.7 Simplified Datapath of the H Function Block 37
Figure 3.8 Complete Datapath of the H Function Block 39
Figure 3.9 Datapath of the Key Mixing Block 40
Figure 3.10 Datapath ofNonce Expanding Block 40
Figure 3.11 Datapath of Sub key Generator. 42
Figure 3. 12 Phelix High Speed Structure 43
Figure 3.13 H Function Block 44
Figure 3.14 Block Diagram of Keystream Generator 46
Figure 4.1 Salsa20 Keystream Generation 50
Figure 4.2 Block Diagram of Hardware Accelerator for Salsa20 51
Figure 4.3 Carry Logic Diagram [74] 53
Figure 4.5 16-bit Ripple Carry Adder 55
Figure 4.6 16-bit Kogge-Stone Parallel Prefix Adder 56
Figure 4. 7 Block diagram of a 4-bit carry select adder. 56
Figure 4.8 Datapath ofQuarterround Block 57
Figure 4.9 Finite State Machine of the Sequential Quarterround Block 58
Figure 4.10 A 32-bit Wide RAM 59
Figure 4.11 Block Diagram of Memory Blocks in ASIC implementation 60
Figure 4.1 2 Block Diagram of FSM 61
Figure 4.13 Datapath of Compact ASIC Structure for Salsa20 62
Figure 4.14 FSM of Compact ASIC Structure for Salsa20 63
Figure 4. 15 Salsa20 Basic Iterative ASIC Structure 63
Figure 4.16 General Structure of Microprogramming Approach 64
Figure 5.1 An Example of Statistical Test [18] 71
Figure 5.2 Model for Statistical Hypothesis Test... 71
Figure 5.3 Frequency Test Algorithm 72
Figure 5.4 Block Frequency Test Algorithm 73
Figure 5.5 Discrete Fourier Transform Test Algorithm 74

ix

- -- ----------------------

Figure 5.6 Runs Test Algorithm 75
Figure 5. 7 Frame Correlation Sequence Generation Algorithm 79
Figure 5.8 Diagram of Frame Correlation Sequence 80
Figure 5.9 Diffusion Sequence Generation Algorithm 80
Figure 5.10 Theoretical Distribution 83
Figure 5.11 keystream/Internal States Correlation Test Algorithm 84
Figure 5.12 Salsa20 Internal States Matrix 87

X

- -- --

List of Tables

Table 2.1 Area complexity of CMOS standard cells 22
Table 2.2 The Truth Table of NAND Gate 23
Table 2.3 Power Consumption of0.18 Jlm CMOS Standard Cells [43) 23
Table 3.1 FPGA Hardware performance of Phelix [68) 31
Table 3.2 Results of Phelix Co-design 32
Table 3.3 ASIC Implementation Results of Phelix 47
Table 4.1 Results of Salsa20 Co-design [60) 51
Table 4.2 Comparison of Adder Implementations 53
Table 4.3 Synthesis Results for Different Memory Blocks 60
Table 4.4 Implementation Results of Salsa20 65
Table 4.5 Cipher performance and area comparison [47) 66
Table 5.1 the Result of Proportion of Sequences Passing a Test 76
Table 5.2 The Result of Uniform Distribution of P-values 78
Table 5.3 Proportion of Sequences Passing a Test.. 81
Table 5.4 The Result of Uniform Distribution of P-values 82
Table 5.5 Test Results for Salsa20 85
Table 5.6 Test Results for Phelix 86
Table 5.7 Test Results for Salsa20 89
Table 5.8 Test Results for Phelix 89
Table 6.1 Comparison of FPGA Design and ASIC Design 93

xi

List of Abbreviations

AES

ASIC

CBC

CFB

ECB

FPGA

FSM

GB

Gbps

GF

JP

TV

LFSR

MAC

Mbps

MUX

NIST

OFB

RAM

S-box

VPN

XOR

Advanced Encryption Standard

Application Specific Integrated Circuit

Cipher-block Chaining

Cipher Feedback

Electronic Codebook

Field Programmable Gate Array

Finite State Machine

Gigabyte

Gigabits per second

Galois Field

Intellectual Property

Initialization Vector

Linear Feedback Shift Register

Message Authentication Code

Megabits per second

Multiplexer

Institute of Standards and Technology

Output Feedback

Random Access Memory

Substitution Box (or vectorial Boolean function)

Virtual Private Network

Exclusive OR

X II

Chapter 1 An Introduction to Cryptography

1.1 Brief History of cryptography

Cryptography is a fascinating topic related to confidentiality, authenticity and integrity of

information and its origin. The earliest cryptography can be traced back to the Egyptians

4000 years ago. At that time, cryptography was concerned solely with message

confidentiality, such as encryption, which concerns the process of converting original

information (plaintext) into indistinguishable gibberish (ciphertext). The most striking

development of cryptography came with the proliferation of the computers and

communication systems since 1960s. During this time, when humans communicate with

each other by using digital signals instead of traditional written language symbols, large

volumes of information exchanging over untrusted medium, such as the Internet, make

the classical cryptographic methods out of date; security becomes a tremendously

important issue to deal with. The search for new encryption schemes and improvements

to existing information security mechanisms and cryptanalysis continues at a rapid pace.

In 1978, the first practical public-key encryption algorithm was discovered, known as

RSA, which is based on the intractability of factoring large integers. During 1970s, IBM

designed the Data Encryption Standard (DES), the most common symmetric key

cryptography scheme used today. DES has been used extensively in electronic commerce.

Since 1975, some people have noted that the key size of DES is too small. Moreover,

some others worried about NSA's involvement. In 1987, the well known stream cipher

RC4 was created by Ronald Rivest. To generate a pseudorandom keystream, the cipher

makes use of a secret internal state consist of 2064 bits and two 8-bit index pointers. The

plaintext is combined with the keystream using the exclusive-or (XOR) function. In 1997,

NIST launched a project to find primitives that were suitable to replace DES. Among the

candidates, the Rijndael algorithm was selected at last in 2001 and has become the

Advanced Encryption Standard (AES). Recently, quantum computing techniques in

cryptography have attracted a lot of attention as a new area of research. It is believed that

quantum mechanical principles used in computation might significantly outperform the

current prevailing cryptography methods.

Nowadays, the rapid growth of electronic applications and business based on the

Internet has fueled the need for cryptographic methods to protect information processing.

1.2 Information Security

A very important issue related to cryptography is information security. Both of them

share the common goals of protecting information. However, the scope of information

security is larger than cryptography. Over the centuries, information security does not

only use cryptography to mask usable information, but also includes the process of

protecting data from unauthorized access, use, disclosure, destruction, modification, or

disruption [1]. Information security requires a vast range of methods and the technical

means is typically provided by cryptography.

Some objectives are frequently used interchangeably in information security,

computer security and information assurance. For example, Data Integrity is one of the

objectives that are used in all of the three fields. It ensures that the information has not

been altered by unauthorized or unknown means. Some other objectives include:

I. Message Authentication: corroborates of the identity of an entity.

2. Signature: binds information to an entity.

3. Validation: provides timeliness of authorization to use information.

4. Witnessing: verifies the existence of information by an entity.

More objectives associated with information security are listed in [6].

Information security was mostly applied in military in the past, such as the old

Caesar Cipher [70] and the Playfair Cipher [70], which was widely used by the British

and U.S armies in World War I. World War II probably brought about most

advancement in information security. Also, it witnessed the formalized classification of

data based on the information sensitivity [61].

The core principles of information security include confidential ity, integrity and

availability, which are known as the CIA Triad. Confidentiality is a service used to

prevent information to be accessed, used or disclosed by unauthorized parties.

Approaches providing confidentiality range from physical protection to cryptographic

algorithms. Integrity is used to avoid unauthorized alteration of data. Data alteration

includes substitution, insertion and deletion. Availability means that all the resources used

2

to process and protect the information are available and work correctly when needed.

1.3 Background on Functions

While this thesis will look into the details of implementation of different functions in

selected ciphers, a familiarity with basic mathematical functions that are widely used in

cryptography will be helpful.

1.3.1 One-way Function

A function f is called a one-way function if f(x) is easy to compute but hard to invert.

"Easy to compute" means computationally feasible or equivalently, one can compute the

function in polynomial time. "Hard" in the context refers to average case complexity [6].

The existence of a one-way function is partly dependent on an open conjecture P=t:NP,

where P is the set of decision problems that are known to be solvable in polynomial time,

and NP is the set of decision problems that can be solved by a non-deterministic Turing

machine in polynomial time [51]. In other words, if P = NP, any function that can be

computed in polynomial time can be inverted in polynomial time, which means that

one-way functions do not exist. However, it is not know whether P =t:NP is the sufficient

condition of the existence of one-way function.

Many useful cryptographic primitives like pseudorandom number generators are

based on the existence of a one-way function. Obviously, it is not known whether a

one-way function candidate is indeed one-way at present. Some famous candidates

supported by current research results include integer factorization and discrete logarithm.

The widely used RSA cryptosystem is an example that utilizes integer factorization,

while the Digital Signature Algorithm (DSA) [82] uses the discrete logarithm problem.

1.3.2 Permutation

In a permutation, a set of objects or symbols are rearranged into distinguishable

sequences. Permutations are invertible functions that are often used as a basic component

in various cryptographic constructs, particularly in symmetric key cryptographic

algorithms to encrypt large volumes of data. That is because the permutation is easy to be

3

--·---

implemented and works fast in hardware implementations since bit or byte level

permutations do not require any extra resources but simply reorder logic signals. DES

and triple DES use bit level permutations to spread the redundancy of the plaintext over

the ciphertext.

However, in software implementations, bit level permutations bring two challenges

[63]. In existing RISC processors, O(n) • instructions are generally required in generic

ways to achieve any one of n! permutations, that is the reason for old processors not

supporting arbitrary bit level permutations except a restricted subset known as rotation.

The other challenge is that the instructions may need more than two word-sized operands

and/or produce more than one word-size result. For example, multiplying two I 024-bit

operands in RSA requires two 16-word operands, if the computer is 64-bit word based.

1.3.3 Substitution

In cryptography, substitution is a method that substitutes the units of plaintext with

ciphertext according to an alphabet; the "units" might be one symbol or a mixture of

symbols. The receiver decrypts the ciphertext by performing an inverse substitution.

The substitution function can be compared with transposition or permutation

functions. The difference is that, in a transposition procedure, what changes is the order

of the plaintext units, while in a substitution procedure, the units of the plaintext are

retained in the same position in the ciphertext, but the units themselves are changed.

Old substitution ciphers are often vulnerable to frequency analysis [10]. Hence, most

of them, such as a simple affine cipher, are no longer in serious use. However, the

concept of substitution is still being used today. From an unusual perspective, some

modern bit-oriented ciphers (e.g. DES) can be considered as substitution ciphers with an

enormously large binary alphabet. Additionally, some smaller substitution tools known as

an S-boxes are often used for confusion, which obscures the relationship between the

plaintext and the ciphertext.

If a substitution scheme and a permutation scheme are used serially in a cipher, then

it is called SP - network, or substitution-permutation network (SPN). AES is a case in

• O(n) is called big 0 notation in computational complexity theory. It is often used to describe the relationship between
the size of the input data and the running time or memory consumption of an algorithm [24] .

4

------·~~~~~~~~~~~~~~~~~~~~--~~~------------------

point [56]: in the substitution step, each byte in the process is replaced with its entry in a

fixed lookup table, known as an S-box; in the permutation step, bytes in each row are

shifted cyclically to the left.

1.3.4 Exclusive OR

Exclusive OR, also known as XOR, is a bitwise operator from binary mathematics. In

modern ciphers, XOR is often used to mix key bits into the cipher data. It can be denoted

as:

C=PEBK

where EB denotes XOR operation, C is ciphertext, P is plaintext and K is key. According

to the principles ofXOR, the decryption process is merely reapplying the key as below:

P = CEBK

If the key or keystream is as long as the message, the system is similar to the one-time

pad that is theoretically unbreakable. Besides, XOR is simple to implement and

computationally inexpensive. It is provable that the uncertainty in attempting to guess the

keystream is equal to that of directly guessing the plaintext. The security of the one-time

pad is based on this. Clearly, when the length of plaintext is very long, it is impractical to

maintain and distribute the keystreams. As a result, stream ciphers are introduced and

developed by the loose inspiration from the one-time pad. More details will be discussed

later.

1.3.5 Modular Addition

Many cryptographic primitives include modular addition because addition mod 2" is a

nonlinear transformation over GF(2) and the operation is fast in both software and

hardware. GF(2) is the Galois Field of elements 0 and l. Nonlinear transformation is of

great importance in cryptography as it makes functions hard to invert.

Keeping with the popularity of addition in ciphers, Klimov and Shamir proposed

T-function in 2002 [5]. T-function employs addition mixed with multiplication and or in a

certain way to update every bit the internal state. The authors of [57] investigated the

probability distribution of the carry chain for integer addition. More literature that looked

into modular addition for various aspects can be found in [33], [32], (13] and [37] .

5

1.3.6 Modular Multiplication

Modular multiplication is widely used in cryptography as it has good diffusion properties

[76]. It is a multiplication performed over a finite field. The most straightforward method

for performing modular multiplication is to compute the remainder on division by the

modulus. This is referred to as the classical modular multiplication algorithm.

Since most applications are based on the binary representation system, the modulus

is often a power of two (as in RC6). Therefore, some efficient algorithms without

explicitly carrying out the classical modular reduction step are widely exploited. For

example, in [76] a technique is proposed, which efficiently implements 2n+ I pnme

modulus operation by using only two additional additions and one multiplication.

1.4 Symmetric-key/Private-Key Cryptography

There are many ways to divide cryptographic primitives. Figure 1.1 provides a schematic

listing of the primitives considered.

Security
Ptimitives

Unkeyed
Primitives

Symmetric
-key

Primitives

Public-key
Primitives

Symmetric-key dphers

Figure 1.1 A Taxonomy of Cryptographic Primitives)6)

Among the list shown above, our main concern is symmetric-key cryptography and

6

public-key cryptography. Symmetric-key/Private-Key cryptography was the only kind of

encryption publicly known until 1976 [73]. In this method, both sides of information

communication share the same secret key, or different keys that are related in an easily

computable way. The scenario can be described by the block diagram of Figure 1.2.

E (m,k)= c

Bob

encryted
file c

D (c.k)= m

Alice

Figure 1.2 Two-party Communications Using Symmetric Key Cryptography

It is assumed that both the sender Alice and the receiver Bob know the

encryption/decryption scheme. The ciphertext is transmitted through an insecure channel,

which is possibly eavesdropped by a third party Eve.

An encryption algorithm E is employed to encrypt the plaintext m with the secret key

k; c is the resulting output as the ciphertext. After Alice receives the ciphertext, the

corresponding decryption algorithm D is used with the same secret key k to reveal the

original plaintext m.

Symmetric-key encryption can be divided into stream ciphers and block ciphers.

1.4.1 Block Ciphers

A block cipher is a symmetric-key cipher that operates on data in blocks. The input

plaintext and the output ciphertext have fixed lengths, often 64, 128 or 256 bits. Another

input is the secret key as shown below:

7

N-bit plaintext/
N-bit ciphertext-----~

M-bit secret key

Encryption/
Decryption
Algorithm

N-bit ciphertext/
N-bit plaintext

Figure 1.3 Encryption/Decryption Process of Block Ciphers

The size of key is closely related to the security of the cipher. Typically, the key size

relates to the effort and time needed to decrypt it by brute force. It is widely accepted that

a key should be large enough to prevent a brute force attack. Different cryptographic

systems may have different key sizes but with the same level of security in relation to

other non-brute force attacks.

For a specific block cipher, the length of a data block is fixed. When the message is

longer than one block size, a mode of operation is required. Some modes of operation

allow block ciphers to operate on a message of arbitrary length. The earliest modes

described in the literature include Electronic Codebook mode (ECB), Cipher Block

Chaining mode (CBC), Cipher Feedback mode (CFB), and Output Feedback mode

(OFB). Another aspect to consider for messages coming in a variety of lengths is padding,

which pads the final block before encryption. The simplest padding is to add null bytes or

bits to the plaintext to make it a multiple of the block size. More padding methods can be

found in [81].

Block ciphers are widely used in many applications and cryptosystems. An old and

prevailing block cipher was the Data Encryption Standard (DES) with a block size of 64

bits and a key size of 56 bits. In October 2000, the National Institute of Standard and

Technology (NIST) selected Rijndael algorithm for a standard known as the Advanced

Encryption Standard (AES) [72] with the objective to replace DES. The result is a block

cipher that is capable of supporting a block size of 128 bits and key sizes of 128, 192, and

256 bits.

1.4.2 Stream Cipher

Stream ciphers treat the plaintext bit by bit or byte by byte continuously and generate one

8

bit/byte of ciphertext at a time. Much of the popularity of stream ciphers is due to the

theory of one-time pad; originally known as the Vernam cipher [28] .

Typically a stream cipher has a key setup phase and a pseudorandom bit generation

phase (keystream generation). In the key setup phase, a secret key and a known initial

vector IV are fed into the keystream generator to generate the initial internal state of the

cipher and expand the original key when needed. In the pseudorandom bit generation

phase, the keystream generator creates pseudo-random sequences to XOR with the

plaintext bits. The encryption and decryption processes are shown in Figure 1.4.

Key IV Key IV

Stream Cipher Stream Cipher

Keystrcam Keystrcmn

Plaintext f ['\
\.. L/

Ciphe.rtext Ciphertext r ' \.. ../
Plaintext

Figure 1.4 Encryption/Decryption Process of Stream Ciphers

As shown above, the sender and the receiver must be exactly synchronous. If digits

are altered or removed from the message during transmission, it might cause decryption

failure. However, several schemes can be used to rebuild synchronization. For example,

regular points in the output can be selected and added with tags, which functions like a

marker to inform the receiving side.

Many stream cipher designs are based on linear feedback shift registers (LFSRs) [80]

as shown in Figure 1.5. LFSRs by themselves are trivially breakable but non-linear

functions such as the use of clock-controlled generators [80] can be added to increase

security. LFRS based stream ciphers are very popular since it is easy for them to be

implemented in hardware, and their properties are well-understood.

9

..------- --- --

ou-tput sequeru:e

Figure 1.5 A Linear feedback shift registers (LFSR)

Sometimes, a stream cipher can be derived from a block cipher. For example, a block

cipher in the output feedback (OFB) mode generates keystream blocks, which are then

XORed with the plaintext to produce the ciphertext. Counter mode is another method to

turn a block cipher into a stream cipher. It has similar characterist ics to OFB; the

difference is that it allows a random access within the keystream during decryption

because each encryption block operates on independent input, contrary to OFB, in which

every output feedback block cipher operation depends on all previous ones. An example

for counter mode is Salsa20 [20], a new stream cipher that will be introduced in Chapter

4. It generates the next block of keystream by making use of successive values of a

counter.

Even when derived from a block cipher, most stream ciphers in practical use are still

generated independently from the plaintext. It is error propagation free, but also has a

drawback of requirement for synchronization. However, some stream ciphers violate the

model : the keystream depends on the plaintext. An example is Phelix [22]. The authors

claim that the basic reason for this violation is to incorporate message authentication "for

free".

The security of a stream cipher significantly depends on the period of the keystream,

that is, the size of the keystream before it starts to repeat itself. It is a very practical

concern and tradeoff between the security and the size of the keystream should be made

based on the requirement of the targeted application.

Compared with block ciphers, stream ciphers are more suitable for applications

where plaintext comes in bursts, since the former works on blocks of fixed length,

leading to a choice between transmission efficiency or implementation complexity.

10

Although it is impossible to conclude which one is more superior, block ciphers have

received more attention when comparing the proceedings of the major cryptography

conferences. This imbalance may due to the preoccupation of the block cipher Data

Encryption Standard (DES) [70], which had mastered the area of symmetric key

cryptography for many years.

In October 2004, the state of stream cipher design and analysis were highlighted by

the ECRYPT Network of Excellence in Cryptology, which initiated a workshop to

develop a project called the ECRYPT Stream Cipher Project [34], with the goal to

identify new stream ciphers that might become suitable for widespread adoption.

1.5 Asymmetric-key/Public-key cryptography

Public-key cryptography is also known as asymmetric cryptography. It uses a pair of keys

(a secret key and a public key) instead of one secret key during the encryption and

decryption process. The public key, as the name indicates, may be widely distributed,

while the secret key is kept private. Only with the corresponding secret key, the plaintext

encrypted with the public key can be decrypted.

Public key cryptography is often divided into two categories based on their

applications: public key ciphers and digital signatures, which are shown in Figure 1.6 and

Figure 1.7, respectively. Only one transmission direction is shown in the figures since the

other one is exactly the same except that the names "Bob" and "Alice" exchange.

Plaintext

input

Bob ' s
public key

ring

Peter

Mike

~
Alice ' s public

key

E

Encryption Algorithm
(e.g. RSA)

Transmitted
Ciphertext

Alice ' s private
key

r
t
E

Decrypted algonthm Plamtext

(Reverse of encryption ouput
algorithm)

Figure 1.6 Encryption/Decryption Process for Public Key Ciphers

II

Public key ciphers are used to ensure confidentiality, since only the receiver 's secret

key can decrypt the message. To the contrary, in a digital signature, any one that holds the

sender's public key can verify a message signed with the sender 's secret key. This

method is used for message authenticity.

Bob' s
public key

ring

,.rtrt~ Peter

Mike Alice' s public

$500

Plaintext
input

key

Verify

Encryption Algorithm
(e.g. RSA)

Transmitted

Alice' s private
key

r
Sign $500

Decrypted algonthm Plaintext
(Reverse of encryption ouput

algorithm)

Figure 1.7 SignNerify Process for Digital Signature

Normally, a symmetric-key algorithm runs much faster than a public-key algorithm

because of fewer computations, but public-key algorithms can facilitate key distribution.

For example, if there is a communication group of n people, n(n-1)12 secret keys are

required to ensure security in a symmetric-key system, and they should be changed

regularly during distribution. It indicates that symmetric keys need to be distributed in an

authentic and confidential manner. But in a public-key system, only authenticity is

considered, thus, it simplifies key management. To take advantage of both,

symmetric-key algorithms and public-key algorithms are not typically used alone. In

modern cryptographic algorithm implementations, they are often used as a combination.

1.6 Cryptanalysis

Although breaking codes and ciphers has a very long history, the systematic study of

cryptanalysis is relatively recent. In 1920, William Friedman firstly proposed the word

"Cryptanalysis" for the methods and study to obtain the encrypted message, without

12

knowing the secret information, such as a secret key. The development of computers

allows more complex encryption schemes related to binary format information. However,

it has also facilitated cryptanalysis.

During many years, the main concern in cryptography is to propose and implement

good ciphers that stay ahead of cryptanalysis. Normally, a "good" cipher does not

indicate absolute security, but is based on the standard that breaking it requires an effort

that makes cryptanalysis too inefficient and impractical.

Nowadays, many types of attacks on cryptographic systems have been invented.

Most of them can be categorized into two branches:

• A passive attack: threatens message confidentiality since the adversary can monitor

the communication channel.

• An active attack: not only threatens message confidentiality but also data integrity

since the adversary might add, delete, or alter the original message that is

transmitted through the communication channel.

The objective of cryptanalysis can be recovering plaintext from ciphertext, or even

deducing the decryption key. Based on the assumptions about how much information

could be obtained by the adversary, cryptanalysis can be performed under the attacks

below:

• Ciphertext-only attack: the cryptanalyst only observes a collection of ciphertexts,

and tries to deduce the decryption key.

• Known-plaintext attack: the cryptanalyst has a group of ciphertexts and their

corresponding plaintext.

• Chosen-plaintext (chosen-ciphertext) attack: the cryptanalyst can access the

ciphertext (plaintext) for an arbitrary chosen plaintext (ciphertext).

• Adaptive chosen-ciphertext attack: improved version of chosen-ciphertext attack

since the cryptanalyst chooses ciphertext based on information learned from

previous requests.

Practically, determining whether an attack is successful depends on the amount of

resources it requires, or more specific, time complexity and space complexity. The

former could be from a measurement on the number of basic computer instructions; the

latter often indicates the amount of storage required to perform the attack. One of the

13

- ----·- -------------- ----------------

most important assumptions in modem cryptography is Kerckhoffs' Principle [11]: In

assessing the security of a cryptosystem, on should always assume the enemy knows the

details of the cipher being used. As a result, the security of a cryptosystem should be

based on the key instead of the encryption/decryption algorithm it uses.

1.7 Summary

This chapter introduces various aspects of cryptography. Emphasis has been placed on

the basic issues of block cipher and stream cipher. The discourse on the rudiments of

cryptography leads us gradually to move deeper into the implementation and

performance evaluation of ciphers. One of the major inspirations for working on

hardware implementation of specific ciphers is the rapidly increasing demand for

different hardware designs for various applications, some of which, such as cell phones,

take compactness as most important factor in real use while others, such as virtual

private network (VPN) applications, prefer high speed.

The following chapter is about software implementation and hardware

implementation design and methodologies. Selected topics about software/hardware

co-designs and considerations for trade-offs can be found too.

14

------·- - --

Chapter 2 Cipher Implementation

A cryptosystem can be developed by implementing one or several cryptographic

algorithms either on general-purpose microprocessor [45] or on ASICs/FPGAs. Typically,

the former is called software implementation, and the latter is known as hardware

implementation.

Also, to match the challenges of modem applications that have different

requirements about speed and area efficiency, hardware/software codesign for

cryptographic systems as a standard design technique has attracted much attention in

recent years.

2.1 Software Implementation

Software implementation is a very flexible method to realize encryption/decryption

algorithms. Most software implementations are based on a general-purpose processor and

its corresponding instruction set. The algorithm is translated into a group of instructions,

which will be accessed one by one, decoded into machine language and executed to

fulfill encryption/decryption tasks.

One important factor that decides the efficiency of software implementation is the

basic underlying architectures, such as the word size of the processor. This is evident if

one looks into the performance of AES on different platforms [29]. In the eSTREAM

project, most stream ciphers are simple designs composed of a series of simple operations.

Thus, when their corresponding codes run on a general processor, the hits or misses on

Ll cache that is a typical component of today's RISC processors can have a significant

impact on the performance.

Another factor is the software language used. In most of the cases, ciphers

implemented by assembly language generally produce better performance compared with

interpreted language [39]. That is why most benchmarks to measure the performance of

algorithms tend to choose low-level language for implementation. However, it does not

mean giving up high-level language implementations. Some languages like Java have

priority in flexibility with an interpreter, and they are very suitable for a wide range of

cross-platform software implementations. In our hardware implementation, we also use a

15

Java software implementation to verify the generated keystreams.

Sometimes, bad coding style may have a significant impact on the performance. For

example, executing the code "c = 8 x a" can be much slower than executing an equivalent

code "c = a<< 3", where "<<" means shift left.

Nowadays, a majority of software implementations for symmetric-key cryptographic

algorithms have a speed level of several hundred Mbps for the throughput.

2.2 Hardware Implementation

For the last decade, high-speed applications such as virtual private network (VPN)

applications and secure e-commerce web servers have gained increasing acceptance in

the industry. To sustain the high throughput, the demand for high-speed encryption is also

rapidly increasing. A hardware implementation typically runs faster than its software

counterpart. The main reason is that an application specific chip contains none of the

baggage necessary to execute non-cryptographic workloads. Hence, many block ciphers

implemented in hardware achieve throughput in Gbps by taking advantage of parallelism.

For example, a full pipelined AES-128 hardware implementation that runs at 200 MHz

has a throughput of 128 bits x 200 MHz = 25.6 GB/s.

However, some ciphers are sequential in nature, such as LFSRs based stream ciphers.

Hence, they can not be pipelined. Thus, the throughput is directly decided by the clock

frequency. In general, the throughput can be defined as below [44]:

Throughput = N x clock frequency

where N is the width of the output processed per clock cycle.

The clock frequency typically depends on the critical path, that is, the longest path

between registers. When the critical path is relatively long, higher N can compensate to

improve throughput.

Except the advantage in speed, hardware implementation provides a suitable level of

security related to side-channel attacks [15], which are based on considerable technical

knowledge of the physical system, rather than the weakness of the algorithm itself. For

instance, the timing information or the power leaks could provide the information for

cryptanalysis. Thus, the well-studied underlying structure of a general processor saves

much effort for cryptanalyst. Alternatively, a hardware implementation can be designed to

16

be explicitly resistant to side channel attacks.

2.2.1 Methodology

2.2.1.1 Traditional Methodology Used for Non-feedback Cipher Modes

The traditional methodology for efficient implementations of secret key block ciphers is

shown in Figure 2.1.

Canbimt:i.anal
Lot:ic

Round 2 (.----,..-_,.....;....,._-.,-__,
One pipelining stage

•
•

a) one round, no pipelining b) K round pipe lining

Figure 2.1 Architectures Used for Non-feedback Cipher Modes

Figure 2.1.(a) is known as a basic iterative structure. Based on the basic iterative

architecture, a reasonable estimation for speed and area for a single round can be

estimated. From these estimations, the pipeline stages can be decided without exceeding

the available hardware resources. Usually, a single stage is the implementation for a basic

round. Figure 2.l.(b) is a partial outer-round pipelined structure applied for limited

resources. Extra registers are inserted between any two stages. In this way, with a K-stage

pipeline, K blocks of data can be processed by the circuit at the same time. At the end of

17

..------------------~----- --------------

a clock cycle, the output of each block will be stored in those registers. The throughput as

well as the area increase proportionally to the number of stages, while the latency for

encryption and decryption remains the same as in a basic iterative structure.

Although pipelining increases the speed of the implementation significantly,

equalizing data and control path latency are very important issues to guarantee the overall

efficiency. Moreover, it cannot be used with the standard feedback modes such as OFB

and CFB since the output of one iteration of the encryption/decryption process must be

available before the next iteration can start. In our design, both iterative structure and

pipelined structure are investigated for comparison on speed and area.

2.2.1.2 ASIC Design Flow & FPGA Design Flow

From a physical technology perspective, hardware implementation methodology

consists of ASIC design and FPGA design. The cost of designing application specific

integrated circuits (ASICs) is increasing every year. Issues such as non-recumng

engineering (NRE) cost, clock tree synthesis, and time-to-market delays can have

significant impact on ASIC design.

In hardware implementations, major parts such as CPU and memories need to be

connected by extra custom electronic circuitry. Glue logic is designed to do this job.

Since the first programmable device with glue logic, both the speed and the density have

increased dramatically. Hence, today's field programmable gate arrays (FPGAs) play a

central role in digital hardware implementations. With the support for numerous EDA

tools, designers tend to choose FPGA when the volume of the product is less than

millions of chips. Typical ASIC and FPGA design flows are shown in Figure 2.2.

18

Tasks

RTL
{VerilogHDL
IP lnstantiator)

f4-

Timing and
Area -Optimization

Place&Route
Ro-synthesis, JJO, ~
Timing Analysis

FPGA
Design Flow

Design
Specification

~
Design

Development

~
Functional
Simulation

1
Synthesis
(Area and
Timing)

Clock Tree
Synthesis

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

ASIC
Design Flow

Design
Specification

Design
Development/
Physical and

Power Planning

Functional
Simulation

Synthesis
(Area, power

Timing)

Test Synthesis
(Scan Insertion,
BIST Synthesis)

Placement and
Physical

Optimization

Clock Tree
Synthesis

Routing

Signal
Integrity

' Sign off

Tasks

RTL
{Verilog HDL
IP lnstaotiator)

f----.

Timing and
f-..--~ Power

Optimization

1
Formal - Verification and

Timing Analysis

Formal
Verification and

Post-layout
Timing Analysis

Skew and
Timing
Analysis

Figure 2.2 Comparison of ASIC & FPGA Design Flows [9)

The ASIC back-end design involves more tasks than FPGA design. In both of them,

19

an initial design idea has to go through several steps before it is completely implemented

in hardware or chips. In our design, we followed the guidelines shown in Figure 2.2,

because formalized flows can improve design debugging capabilities.

In the design specification step, we used a divide-and-conquer strategy called

top-down methodology, while in more concrete design development stage we chose the

modular design approach bottom-up methodology. More technical details can be found in

[79].

Normally, for a design with sequential logic, we have two choices before RTL

coding: synchronous design or asynchronous design. In synchronous design, there is a

global clock to control all registers. Asynchronous design is widely used in

communication system, where two or more different clock frequencies result in different

clock domains, which require extra logic for synchronization. The main disadvantage is

the existence of race conditions. In ASIC libraries, registers with asynchronous built-in

"reset" pin consume more area and appear slower, therefore, all of our ASIC designs use

registers with an external gate on the data path for a reset. That is, the reset is routed

through the data pin. The clock must be running when the reset signal is asserted.

However, it is not a problem for our FPGA design as there is already a reset tree in place.

All registers have a built-in reset, so no extra care is needed.

Clock gating is used in our ASIC designs for power optimization as memories have

been used and data can be accessed only when the Write/Read enable signal is asserted.

Read enable signal and write enable signal could be either separate or a same signal.

Figure 2.3 shows an example for gated clock. Glitches may appear in such a design.

However, the simulation results show that the period of the clock is long enough to

ignore the glitches. FPGA designs have no such potential dangers since they have a clock

enable pin that can be used to avoid the gate clocking.

D
Q

QB l------1~
system cloc

Figure 2.3 Gated Clock for Register Bit

20

r----------------------,
I
I
I
I

D I

CE

CLK

Q I
I

Q B l--------!1.,..
I
I
I

~ --- --- -- ----- - - --- ----~
Figure 2.4 Typical Flip Flop Cell in FPGAs

2.2.2 Main Concerns in Hardware Implementation

Before mid 1990s, the limits in VLSI technology and clock rate made the pursuit for

speed in a hardware implementation become a general goal. However, with the fast

development of VLSI design, the achievement of sheer speed occurs much easier than

before. As a result, the considerations for cost and security of cryptographic

implementation start to play a more important role in many applications.

• Speed

The most well-known and universal techniques used to speed up the hardware

implementation are pipelining and parallel processing, which allow multiple blocks of

data processed simultaneously. However, neither of them is suitable for the cipher

feedback modes (e.g. CBC and CFB mode), as one iteration ofthe encryption/decryption

process needs the results ofthe previous one.

Moreover, different schemes are often applied based on the concrete arithmetic

operations required in a cryptographic algorithm. For example, modular exponential

operation is key part in public-key cryptography as the operands are usually very large.

For the sake of speed, the number of time-consuming modular multiplications should be

reduced as many as possible. A systolic array for modular multiplication is presented

using the algorithm of P. L. Montgomery in [16]. Some other speed-up methods include

Barret-Booth's method and [3] and Brickell's algorithm [25].

In some ciphers, such as Salsa20 and Phelix, which we implemented in hardware, the

dominant cost operation is addition. Therefore, the subject of various adder structures is

introduced and investigated in Chapter 4.

Many ciphers take advantage of S-boxes, an array lookup table usmg an

21

input-dependent index. A case in point is the AES algorithm. The contents of an S-box is

the multiplicative inverse in Galois Field (28
) , combined with an affine transformation

over GF(2). Unfortunately, GF arithmetic approach yields up to 15 XOR gate delays [65]

though it is area efficient. In most Gbps applications, a single look-up table is constructed.

Till now, a twisted binary decision diagrams (TBDD) approach is the fastest reported so

far [53], where the fanout of signals is distributed in all of the S-boxes.

Obviously numerous speed improvement methods may be done considering the

properties of a specific algorithm.

• Cost (area and power consumption)

"Cost" can mean different things in real life. However, when it comes to hardware

implementation, it typically indicates chip area and power consumption. Sometimes,

when subtle aspects are considered, "cost" may include the actual cost financially.

The first step to evaluate the area cost of a cipher is to define a metric for comparing

digital logic. Traditionally, transistors are the atomic device in digital design. Table 2.1

provides the area complexity in terms of transistors for a standard cell library from [69] .

Table 2.1 Area complexity of CMOS standard cells

Components Transistors

2-input NAND 4

2-inputAND 6

2-input XOR 12

D Flip Flop 26

2:1 MUX 12

However, the popular metnc nowadays IS a count of the number of a standard

two-input NAND gates that would be equivalent to the area of the design, since

cell-based methodology makes it possible for hardware designers to focus on the

high-level (logical function) aspect of digital-design. Table 2.2 is the truth table for

NAND gate 's behavior; Figure 2.5 is the NAND gate symbol that is in common use.

22

----------------------------------- ------- ----------· ---

Table 2.2 The Truth Table of NAND Gate

INPUTS OUTPUT

A B ANANDB

0 0 1

0 1 1

I 0 I

I 1 0

! A ---f""'h_ I ls~out
!ooOOOo .. oO ooo oooOOOOoOOOOOOOOoOOoOoOOo .. oOoOOoOoO o oOOOOOHOOOOO

Figure 2.5 NAND Gate Symbol

For most portable devices such as mobile phones, which run on battery, power

consumption is a major concern, even more important than compactness requirement,

because the development of the techniques for energy storage is far behind that for cell

technology [43]. Another concern related to power consumption is the cooling system of

the chip. For some futuristic applications like smart card, the chip runs at ultra-low power.

Sequential logic is carefully employed since flip flops require a clock to drive them,

which consumes extra power. The relative power consumption for various CMOS

components is illustrated in Table 2.3.

Table 2.3 Power Consumption of0.18 Jlm CMOS Standard Cells 1431

Components Normalized Power

2-input NAND I

2-inputAND 2.14

2-inputXOR 3.36

D Flip Flop 22.55

2:1 MUX 2.77

The methods used to reduce power can be divided into two categories:

technology-based approaches and architecture-based approaches. Technology-based

approaches focus on reducing the voltage. It is well known that for a CMOS circuit, the

23

power dissipation is due to three aspects: dynamic power, short-circuit power and leakage

power. Among them, dynamic power is the largest. It is given by the equation shown

below:

Pdyamic = N (j x C L X V2
dd)

where f is the clock rate, CL is the switched capacitance, V dd is the supply voltage and N

is the number of gate switches. Thus, power reduction can be achieved by voltage

decrease.

However, Kakumu and Kinugawa's critical voltage provides an lower bound on the

supply voltage [48]. Therefore, it is more attractive to make efforts on architectural

improvement. Moreover, architecture-based approaches often make compensation for the

reduced circuit speed that is due to the lower operating voltage (CMOS gate delay

increases according to the voltage decrease).

The authors of [4] illustrate several architectural methods. One of them is a parallel

structure, which makes sacrifice in area. This can be seen from Figure 2.6.

a) Original Circuit b) Parallel Structure

Figure 2.6 Parallel Scheme for Power Reduction (41

The circuit shown in Figure 2.6.b runs at half of the original frequency with the same

throughput. It should be note that the power consumption is not doubled though it looks

like that with a doubled circuit structure. Assuming the original power consumption is Pt

24

= N (fi x CLI x V2
dd 1), then the new power assumption is P2 = 2.15N (fi/2 xCLI x

(0.58V dd 1)
2

) :::::::: 0.36PJ.

• Security/ Implementation Attacks

In addition to implementation efficiency (i.e. speed and area), security is very important.

Implementation or side channel attacks are targeted on the possible weaknesses in

specific implementation platforms instead of in the algorithm. These attacks include

power analysis [59] and fault attacks [38].

In 1996 Kocher et al. introduced the concept of a timing attack, which is one of the

general classes in side-channel attacks, by measuring how much time different

computations take to perform to reveal sensitive information. For example, with detailed

knowledge of a cryptographic algorithm, it is sometimes possible to determine the length

of the key by watching data transmission with the CPU. Two years later Kocher et al. [59]

proved that the power consumption in a cryptographic circuit could reveal the secret

information too. In [38], a comprehensive study at fault attacks is provided. In a fault

attack, errors are injected to the cryptographic core, while the resulting outputs reflect the

faults. Current methods to avoid fault attacks, especially on symmetric ciphers, include

linear error-detecting codes, such as Reed-Solomon code [64]. Rather than focusing on

the overall possible faults, they concentrate on a certain group of possible faults for

practical reason.

However, side-channel attacks do not threaten stream ciphers as much as they do to

block ciphers. This is because, in a stream cipher, the keystream process is typically

independent of externally known data. In [15] , the authors pointed out that side-channel

attack related publications on stream ciphers have only aimed at RC4 stream cipher.

Attacks on other stream ciphers, especially LFSRs based ones are not available in the

public literature yet.

2.3 Software/Hardware Codesign

Considering the advantages and disadvantages of software and hardware implementations,

it is believed that some hybrid co-designs can provide excellent performance while

maintaining the flexibility. Smart cards that are used in secure financial applications and

e-commerce is an example of software/hardware codesign. In a smart card, the most

25

computationally intensive blocks run in targeted circuit to provide the speed and more

physical security, and other blocks run on a general processor for flexibility.

The main concern of co-designs is which parts of the cipher are mapped into

hardware and software. There are two trends. One aims at adding hardware resources to a

general purpose processor [45]. For example, a new instruction set is also added to the

processor to facilitate cryptographic implementation. The other trend is to divide

cryptographic algorithms into two stand-alone components; one runs on general

processor and the other one runs on additional core. In [60], a stream cipher is modeled

abstractly, as shown in Figure 2.7. It indicates that the stream cipher kernel and the

iterated state variables are mapped into hardware (HW) while software (SW) provides the

initial key and the nonce, which is often a pseudo-random number used only once. The

keystream and the plaintext stream processing are also handled by software.
r-------------------------,

State Feedback Plaintext s tream

f--

Key Key stream r \
Generator __ _.)

Nonce

Ciphertext stream

sw HW sw

Figure 2.7 Example Scenario for a Stream Cipher [60)

FPGAs are practically attractive to use in co-designs. The overwhelming problem to

resolve before implementing a software/hardware codesign is how to split the work

between the general processor and the application specific circuit. This problem includes

many aspects, some of which can be very subtle. However, the decisions on the work

which is allocated to FPGAs are relatively simpler to make because of FPGAs' inherent

flexibility. FPGAs are very suitable to process large amounts of data, which indicates that

a complex computational component or a bus interface can be implemented in them.

A key factor in deciding how much computational task to assign to an FPGA is the

"logic gate equivalence". It is the total number of logic gates that can work at the same

time. Figure 2.8 shows a typical structure of FPGA logic block. However, in practice

26

many blocks will not work in a computation even if they are supposed to. It is largely

because of improper routing, which is normally done by EDA tools instead of manually.

The problem of routing problem for real implementation is studied by Inuani and Saul in

[49].

A
B
c
D

clock

Look
Up

Table

~ I v DFlip

output

Flop
· ~

Figure 2.8 Typical FPGA Logic Block

One of the most attractive uses of FPGA in co-designs is the soft processors which

can be configured to suit different applications. For example, the Virtex chips from Xilinx

have 32-bit built-in soft processor known as MicroBlaze [52], which provides high speed

hardware/software interfaces. This technique allows the designers to take an FPGA as a

simple cross-compiler. In [36], the authors investigated the implementation of several

most typical cryptographic algorithms based on MicroBlaze. They found that the

flexibility offered by FPGAs can be used to notably increase the throughput of a

software/hardware hybrid system.

2.4 Summary

This chapter addresses the methodologies and main concerns for software and hardware

implementations, respectively. In addition, it draws analogies between typical FPGA and

ASIC design processes.

Various trade-offs are very important. In software implementation, it is often

reasonable to generate ciphertext for block cipher or keystream for stream cipher in

blocks, whose size equals a multiple of the word size of the processor. As a result, the

available bandwidth in the system can get optimum use.

Software inherently has the ability for fine-granular control on the internal

configuration and behavior of a cryptographic algorithm by using particular instructions.

27

However, performing such operations would require extra memory and execution time

which decrease the speed ofthe implementation. In hardware implementation, the typical

trade-off concern is the speed-area tradeoff. Considering the pipeline structure in Figure

2.1, it is obvious that with more pipeline stages there is more speed gain but higher area

consumption.

The following two chapters illustrate the details of our hardware designs for Phelix

and Salsa20 stream ciphers. Both of the ciphers were claimed to be designed with the

special emphasis on their suitability for not only software implementations but also

hardware implementations.

28

Chapter 3 Hardware Implementation of the

Phelix Stream Cipher

3.1 Introduction of Phelix Stream Cipher

Phelix [22] is claimed to be a high-speed stream cipher. It is selected for both software

and hardware performance evaluation by the eSTREAM project. The cipher supports an

8-bit to 256-bit length key and a 128-bit nonce to generate the keystream bits. The

plaintext is incorporated during the computation to produce a built-in Message

Authentication Code (MAC).

Our goal in implementing Phelix is to find out a reasonable synthesis result for two

extreme situations: the compactness it can achieve without considering the throughput;

the speed/throughput it can achieve without considering the area. Since circuits

implemented in FPGAs are at least ten times larger and three times slower than the

custom implementations [67], we have chosen ASIC-based approach to implement the

two proposed designs for Phelix: compact Phelix implementation and high speed

implementation. The basic features underlying FPGAs are explored in the next chapter

that introduces various structures for Salsa20 as the property of Salsa20 is more suitable

for a FPGA-based implementation, such as a relatively big requirement for memory

compared with some popular stream ciphers.

It should be noted that in block diagrams representing the designs, the input and

output are not real 1/0s in a system. The designs are core based and the input and output

could be internally interfaced with external circuits.

3.1.1 Algorithm

Phelix is targeted at 32-bit platforms. It is composed of simple operations: addition

modulo 232
, exclusive or, and rotation by a fixed number of bits. There are 5 words that

are updated during each round, and 4 "old" words are stored in memory to be used in the

keystream output function.

One block that produces one word of keystream consists of two "half-block" functions

29

H, which is defined as:

FUnction H (w0 , w 1, w~. w3 , w4 , K 0 , KL)
Begin

End.

wo := wo ffi (wa ~ Ko); wa := w3 <#: 15;
W t := W t ffi tv4;

w!l := w~ e 'I!();
Wa := Wa Gl IVt;
w4 := W 4 ffi IV;!;

w4 := w4 <#: 25;
Wo := U'o <#: 9;
Wt := Wt <#: 10;
w~ := u~ <#: 17;

wa := Wo Gl (wa 83 K L); wa := u3 <#: 30;
W t := W t Gl V4; W4 := W4 <#: 13;
W 2 := W 2 ffi tt.'o; Wo := U'o <#: 20;
wa:=wa ffi v s; Wt := Wt <#: 11;
W 4 := W 4 G) tt.'J; W~ := U'J <#: 5;
Return (wa , w t , W!J,Wa , w 4);

Figure 3.1 H Function

The bitwise exclusive-or of two words, denoted as "e ", is the sum of the words with

carries suppressed. The symbol "<<<" represents left rotation, and " m" represents

addition modulo 232
.

During the encryption, defining one step as a complete step for Phelix to update five

active state words (w0, w" w2, w3, w4), at ith step, two 32-bit secret subkeys (Xi,o, Xi, 1)

and one plaintext word Pi are applied to executions of the H function. The generation of

the subkeys is introduced in Section 3.3.5.

Selected details of the algorithm will be discussed in the analysis of Phelix cipher main

components. For more insight of those components, refer to the initial paper [22).

3.1.2 Security

The authors of Phelix claimed that there is no attack against Phelix with less than 2 128

operations. Actually, Phelix is a strengthened version of an earlier cipher, Helix [55],

which was targeted by two attacks in 2004. One is an adaptive chosen-plaintext attack

created by Muller [26). The other one was also published by Muller, which is a

distinguishing attack [26] . The Phelix primitive was largely motivated to increase the

security against the distinguishing attack. It expands Helix's 160-bit internal state to 288

bits.

However, in November 2006, Hongjun Wu and Bart Preneel published a paper titled

"Differential Attacks against Phelix" [35]. This paper was largely derived from the

differential attack against Helix stream cipher to recover the key. Their work mainly aims

30

at weak nonces and keys. They concluded that Phelix fails to strengthen Helix since the

computational complexity of the attack is much less than that of the attack against Helix.

However, a good cipher does not imply absolute security, and the confidence level in the

amount of security is not merely dependent on several results of attacks. Selecting a

potential prevalent cipher is even more complicated, and security is only one

consideration among a large pool.

3.1.3 Previous Work on Hardware Implementation on Phelix

Until now there has been insufficient work on the hardware implementations of the

candidate stream ciphers proposed for eSTREAM project. Most discussion and

comparison focus on cryptanalysis. However, the authors of [68] demonstrated the FPGA

performance of Phelix. The results are shown in Table 3.1. In order to avoid specific

metric for individual devices, the authors of [68] chose the number of equivalent gates to

measure area, where one gate is a two-input NAND gate (6 transistors).

Table 3.1 FPGA Hardware performance ofPhelix [68[

Throughput Gate Implementation

Xilinx Chip Slices Mbit/s Equiv Description

Estimate

XC2S100-5 1198 960.0 20404 (A) full-round 160-bit design, as per

developers paper

XC2S100-5 1077 750.0 18080 (B) half-round 160-bit design

XC2S30-5 264 3.2 12314 (C) 32-bit data path

The software/hardware codesign of Phelix has been studied in an undergraduate

course at Virginia Tech called "Introduction to Codesign" [60]. They implement two

identical half function blocks as the hardware component.

31

Expanded
Key and
Nonce

r----
1
I

.. I
I
I
I
I
I
I
I
I

One New State ..,..f-....,._1
---t

One Old State

Five Active States

Half
Function

Block

Half
Function

Block

Figure 3.2 Block Diagram of Hardware Accelerator for Phelix

The hardware design of one student group shown in Figure 3.2 1s of pure

combinational logic, which can accomplish one state updating process in a single clock

cycle, and leave the whole control complexity in software.

Another two teams are more aggressive since the one implemented a half block as

the basic iterative H function circuit, and the other one implemented eight double H

function blocks as a parallel structure to relieve the communication bottleneck between

software and hardware. Obviously, the synthesis result for the eight-fuii-H-block is quite

large. A careful trade-off decision should be made. Table 3.2 shows the results for those

three structures. All of them are implemented targeted on Xilinx Spartan3e FPGAs.

Table 3.2 Results of Phelix Co-design

Version Area (slices) Frequency(MHz)

8x Full Block 4301 7.7

Full Block 1190 48.6

Half Block 459 76

Unfortunately, the results are not good for comparison since the authors only provide

the frequency instead of the throughput.

32

3.2 Compact ASIC Structure of Phelix

3.2.1 Top Level Design

The Phelix stream cipher can be implemented in many ways. The proposed compact

structure focuses on function sharing to optimize the area. Figure 3.3 illustrates a

minimal ASIC implementation consisting of one round of encryption and a memory

recording the four old states. The specifications of the main blocks are given below:

n_expand: converts a 128-bit input nonce to the 256-bit working nonce.

key _mix: converts a variable-length input key to the fixed-length working key.

sub key _gen: generates subkeys Xi,o, Xi, I for each block.

ini_dp: decides the input of H_func. For the first eight blocks (initialization phase) , the

generated keystream is discarded.

H block: performs function H (w0,w1,w2,wJ,W4, Ko,Kt).

FIFO: the "first in, first out" memory that stores the old states.

n_cxpund

elk

key_mix

subkcy...J!<n

elk

N(255:0) XO(J I :O)

K(255:0) Xl() I:O)

Lu4(J I:O)

i(63:0)

ini_dp

init(127:0)

win(l 59:0)
wout(159:0)

H bloc~

"''
·tout

XI(JI :O)

XO(li :O)

elk

z.DI) I.0)­
Zb4(3 1.0)

Figure 3.3 Phelix Compact Structure

Kcy.;trcun~) I :O)

The top level controller can be presented by a finite state machine shown in Figure 3.4.

When the system is turned on with the power plugged in or the Reset signal is triggered,

the controller transfers to Idle state. When the start signal is asserted, the encryption

circuit starts to work.

33

done_ h- ' I 'and

Figure 3.4 State Diagram of the Top Level Controller

The specifications of the states are given below:

expand_kn: Convert a input key/nonce to the fixed-length working key/nonce.

wait_kn: While stopping key_mix block and n_expand block, enable subkey_gen block,

putting the first old state into the FIFO.

initialize_begin: Set the initial five states of the H function, and enable the counter,

which provides the block number.

wait_h_l51
: Generate the keystream, and increase the block number.

H 151
: Do the function

(Yo<i), Y1(i)' Y 2(i)' Y 3(i)' Y4(i)) := H (Zo(i), zl <i), Z 2(i)' Z 3(i)' Z4(i)' 0, Xi,o), where Y , X and Z are

32-bit words, and i represents the block number.

H 2"d: Do the function

(z (i+ l) z (i+ l) z (i+ l) z (i+ l) z (i+l)) ·= H(Y (i) y (i) y (i) y (i) y (i) P· X ·) where P· ·Is
0 , I , 2 , 3 , 4 · 0 , I , 2 , 3 , 4 , 1> I, I , I

the plaintext word.

wait_h_2"d: Store Z4 in the FIFO after each round .

34

Compute_MAC: Begin the MAC generation process.

Since this design objective is sensitive to area, each sub-component is chosen to

simply minimize the area. For instance, the rotation is realized by reordering the

interconnections between logic cells instead of using shift registers. The discussion

presented in this section concerns the structure of each main component that is

implemented for the Phelix cipher. These basic components include 32-bit adder, H

function block, key mixing block, nonce-expanding block and subkey generator.

3.2.2 32-bit Adder

Compared with other components, the 32-bit adder is the most expensive operation

because of the speed and the area it consumes. The most convenient way to perform this

operation is to use a ripple carry adder (RCA).

A(J) 8(3) A(2) 8(2) A(l) 8(1) A(O) 8(0)

Cout oout cin oout cin oout cin oout cin Cin

um um

Sum(J! Sum(2) Sum (I) Sum(O)

Figure 3.5 A 4-bit RCA

RCA is a straightforward adder and the layout is quite simple, which facilitates fast

design. However, the speed of an adder mainly depends on the time taken by the carry

chain. Since each full single-bit adder has to wait for the carry bit to be propagated from

the previous adder, the delay is very significant, especially in 32-bit computation.

Our design was developed for low resource, so the simple 32-bit RCA is used by

sacrificing the throughput. The output is unregistered.

3.2.3 H Function Block

H function block and the adder are the basic function sharing components. Figure 3.6 is a

block diagram that consists of two H functions:

35

key Xa,o

plaintext Pt

lcey x,,J

zJ•)

r
L

r'l
L.J

I <« 91
I «< !OJ

I «< 111
~ ;
L.J..J

rh
"l...J-l

I <« 201
I «< 111

I «<5 1

"*'
r
L .J "!/

rh
Lf.J

I «< 91
I «< 101

I «< 111 rh. ('
L.J..J"

r
-L.J

I «< 201
I «< 111

l
I «< 5 1

l

I ~ 151

I «< :101

.r'l
L

I «< 1 ~ 1

I ~ 30 1

,
L.J

I <« 251
r'l

.J

I <« 131
z <'-4)

4 c
y (o) "W

4

eystream S,

I <« 25 1
.r'l
-L .J

I <« 131

'-

Figure 3.6 One block of Phelix Encryption (221

Based on the sources of the input data, the H function block is used in four phases.

• In the key mixing process, the H function is used to create an R function that

generates eight 32-bit working keys.

Function R(wo,w,,w2,w3)

Begin

Local Variable w4 := l(U) + 64; II l(U) is the number of words in the input key.

(wo,WI ,W2,W3,w4) := H(wo,WI ,w2,w3,w4,0,0);

(wo,WI,w2,w3,w4) := H(wo,WJ ,W2,w3,w4,0,0);

Return (wo,w, ,w2,w3);

End.

36

• In the initialization phase, the input ofthe H function is set as:

Z{ 8> := Kj+3 ED Nj for j = 0, 1, 2, 3

z/ 8
) := K1

for i = -1 2, -11 , . . . , -9

Pi := O fori = -8, -7, ... , -1

where i represents the block number, z l) is the / h word of the ith block, Pi is the ith

word of the plaintext.

• After the initialization, H function is employed as below:

(Yo(i), Y1(i)' Y2(i), Y3(i), Y4(i)) := H (ZoCi>. zl<i), Z2(i>, Z3(i>, zl>, o, x i.o)

(z (i+l) z (i+ l) z (i+l) z (i+l) z (i+l)) ·= H(Y (i) y (i) y (i) y (i) y (i) p. X·)
0 , I , 2 , 3 , 4 • 0 , I , 2 , 3 , 4 , to 1, 1

The ciphertext words are computed by Ci := Pi ED Si, where Si := Y4(i) + Z4(i-4) and i

ranges from 0 to 264-1 .

• Just after the last word of the plaintext is encrypted, the internal state word Zo(i) will

be XORed with the constant value Ox912d94fl , and the modified state is a new input

for the H function block to start the post-mixing process, which computes the MAC.

The simplified block diagram ofH function is shown below:

32-bit Latch X 7

Rotations & exclusive or
operations & MUXes

32-bit Latch X 5

Figure 3.7 Simplified Datapath of the H Function Block

The multiplexers (MUXes) connected to the input ports of the adder in the circuit are

37

of six input sources and a single output for adder sharing. To increase the speed of the

encryption, we could design additional logic to perform the H function. It would require

more adders and 32-bit exclusive-or function blocks that can work in parallel. However,

it will dramatically increase the size of the H function circuit since the adder is the largest

component compared with other simple function blocks, such as a 32-bit register.

The complete block function is illustrated in Figure 3.8. The five input words are

lathed when the H function block starts to work. Using a latch instead of a register might

cause noisy inputs: if there is any glitch on the input of the latch, then, it will be

propagated directly to the output. However, the area consumed by a latch is typically less

than that consumed by a register. Two six-to-one MUXes are used to select the input for

the single adder in the datapath of the H function block. The selection signals are given

by an FSM. The results from the adder are stored in six latches.

3.2.4 Key Mixing Block

The key mixing block maps a variable-length input key to eight workings keys. Define

function R as shown below:

Function R(wo, WI, w2, w3)

Begin

End

Local Variable W4 := I(U) + 64;

(w0, WI, w2, w3, w4) := H(w0, WI, w2, w3, w4, 0, 0);

(wo, WI, w2, w3, w4) := H(wo, WI, w2, w3, W4, w4, 0, 0);

Return(wo, WI, w2, w3);

Then, the key mixing process is a recursion:

(~i, ~i+I, .. . , ~i+3) := R(~i+4, ~i+s, ... , ~i+7) EB (~i+S, ~i+9, ... , ~i+II) fori= 7,

6, . .. , 0, where Ki represents a 32-bit word. The words (Ko, KI, ... , K7) forms the working

keys ofthe cipher.

38

Wo Wz Ko

• • • • • • latch I latch I I latch I latch I latch I latch I

' rot25l n ~
r-+------1----l I ~

+
latch I

' I rot15

I

rllatch t-"­
rot9 ~

'-----+--..--+---+-+----i ~I
L___j..-----+---1-_J

I rot10].----

4----~--+---+--1---+--+-----l rot17 14-------l

lr

I latch I
+

~~
xor

rot30 1-­
L-1-r---~.fJ

._-----l~~-~~~~~

I rot13 f---1-

L.j latch I

I rot5 I lxorj I rot11 rot20

+ T + +
I latch II latch II latch latch

+ + + +
wz wo

Figure 3.8 Complete Data path of the H Function Block

39

L(U)•64 U_low(ll7:0) u _hiah {117:0)

H function

Figure 3.9 Data path of the Key Mixing Block

There are four latch blocks (32-bit x 4) in the circuit. Two ofthem record the result of

each recursion, including the final working keys; the other two are for the temporary

variables. Although the H function block is shown in key mixing block's datapath, it is

not exclusive but a basic public component in the top level structure.

3.2.5 Nonce Expanding Block

The nonce-expanding block is to extend a 128-bit nonce to the fixed 256-bit words by

defining Nk := (k mod 4)- Nk_4 (mod 232
) fork= 4, 5, ... , 7.

Nino(31 :0) Nin,[31 :0) Nin2[31 :0) Nin3[31 :0)

,------"-- • Nou1o(31 :0)

.-----"'--+------.,.. Nout1[31 :0)

'-------1~+---+------- Nout2[31 :0)

'-------+--!---+----+------- Nout,[31 :0)

kmod4
(k = 4.5,6,7)

Nout.(31 :0)

Nout.(31 :0)

Noulo(31 :0)

Nout7[31 :0)

Figure 3.10 Datapath of Nonce Expanding Block

40

The eight outputs of the block diagram are the expanded nonce N0, N 1, ... , N7. Usually,

the modulo operation is implemented such that division with remainder is calculated each

time. In this way, it can be slower and a waste of area. But for the case in Phelix nonce

expanding, (k mod 4) equals (k and 3) in a bitwise operation. Thus we simply use an

AND gate array instead of divider and comparator for efficiency.

When k ranges from 4 to 7, (k mod 4) is of exactly 3 bits. So, it requires a zero _yad

block to extend it to a 32-bit word for the 32-bit subtracter. The result of (k mod 4) can be

used to notify one output latch to load the data at each clock cycle by using a block called

"decoder Is".

3.2.6 Subkey Generator

The computation of subkeys can be done either on-chip or off-chip. If it is realized

off-chip, in which subkey generation is performed outside and then is downloaded into

the circuit memory, it requires only a memory. However, it may affect the security of the

device. Thus, we implement the subkey generator block on-chip and provide additional

block of hardware for this operation.

According to [22], the subkey words for block i are defined by

X;,o := K; mod 8

Xu := K(; + 4)mod 8+ N; mod 8 +X;'+ i + 8

, ll(i +S)/232 J if(imod4)=3
X; = 4 x I(U) if(i mod 4) = I

0 others

Only when the working keys and the expanded nonce are ready to be used, the system

controller can send a start signal to the subkey generator.

It is easy to notice that all indices such as (i mod 8) and ((i+4) mod 8) are decided by

the three least significant bits of the block number i. It indicates that we can take use of

these three bits as the select signals for the three MUXes, whose outputs are Ki mods, xi·

and N mod 8, respectively. The details are shown below:

41

,--

Q(31 0)

i(2:0)

1:==>--E::I~)l 0)

c:==>-~nln7(l1 0)

Figure 3.11 Data path of Sub key Generator

The block number starts from -8 in [22]. However, we start the block number from 0 in

the initialization phase. Therefore, there is no need for adder to operate on the counter

output i and the constant 8.

3.3 High Speed ASIC Structure of Phelix

The high speed implementation of Phelix stream cipher is not an overall change of the

compact design; it only removes the features that will achieve compactness with the

sacrifice of speed. For example, in the compact version, only a single carry ripple adder is

used in H function block, while in the high speed version, six Kogge-Stone adders [46]

are implemented for each addition. Various adder structures will be introduced in the

following chapter since the structures of Salsa20 have chosen more adders to cater to the

corresponding features.

The figure below illustrates the top level of high speed Phelix implementation. To

make it easy for understanding, we ignore some obvious I/0, such as the input reset. It is

a synchronous design. Thus, all elk signals shown on each sub-block are driven by a

global clock signal. In Sections 3 .3 . 1 ~3 .3 .4 , we will give the details of each sub-block

shown in the top level block diagram in a bottom-up way.

42

Subkcv •en

I> elk

Kcy_mix

~
woR.iuw,Kf:IY'4,2S!i.O) K.s_gcn

dk c:~piWJcdnuocc(255:01 I> elk

lu(31 :0) tj
Xo(3 1 :0)-X 1(3 1 :0)

kO Xo(3 1 :0)
Kout(255:0) Plaintcxr(J I :0)

X 1(31 :0)
LO Kin(255:0) ,- Zold(31:0)

Zin0(31 :0)-,---. Zin4(3 1 :0)

.----
twut0(3 1 :0)-

N_cxpand

I
Zout4(3 1 :0) Kcystreum(J I :0

I
[iQ> • Ninf 127:0) worktn&KC')")(2SS:OI Zout0(31 :0)-

Nout(255:0) r-• e.<!"'ndo.Jnono:<(1!S:OI p _ OUI()! :0) Zold(3 1 :0)
Zout4(31 :0)

elk

ZinO(J I :0)-
00 P _ in(3 1:0) Zin4(JI:O)

elk

i(31:0) ~
1.>0 """''

i(3 1:0) @J

lllock _#_counter K.s_ input_sclect

Figure 3.12 Phelix High Speed Structure

3.3.1 H Function Block

The H function block is the most important component that decides the speed of the

whole implementation. It is used in four different phases as we have introduced in the

previous section. They are: key mixing phase, initialization phase, normal encryption

phase and MAC generation phase. To speed up H function block, we split the six add

operations into two groups: the group one includes ks_adderO, ks_adderl, ks_adder2,

ks_adder3 and the group two includes ks_adder4 and ks_adder5. Since the second

group's inputs depend on the output of the first group, they can not work in parallel. The

main cost from the input to the output is the time consumed by the two adders. In this

design, the combinational logic data path in front of the output registers can be divided

into two clock cycles. However, no internal registers are added. It is controlled by a D

flip flop, whose output connects to the load enable signal of the output registers.

Therefore, the output is loaded every two clock cycles. The alternative method is to

remove the D flip flop and make the whole H function completed in a single clock cycle.

But it is not an efficient way as it may cause clock cycle waste when doing other work,

such as XOR operation.

43

,----------------------------- --------

K0(31 :0)

Zin0(31 :0) Zin I (31:0) Zin2(31 :0) Zin3(3 1:0) Zin4(31 :0)

K I (31 :0)-----t------,

Figure 3.13 H Function Block

3.3.2 Key Mixing Block

Key mixing block converts a variable-length input key to the fixed-length working keys.

Each working key is a 32-bit word. The main components in key mixing block is called R

function block, which is introduced in section 3.2.4.

Firstly, it expands the input key into eight 32-bit words by padding with zeros to the

most significant bits, if the length of the input key is smaller than 256 bits. Then, it

44

performs eight iterations; each one consists of an R function and an XOR function to

produce an array of four new words as shown below:

(K4;, ... , K4i+3) = R(K4i+4····· K4i+7)ffi(K4i+8 • .. .K4i+ll) i = 7, 6, ... , 0

R function block is composed of two H blocks and it takes four clock cycles to

accomplish one loop since each H function takes two. Consequently, 32 clock cycles (8 x

4) are required for the key mixing phase to produce eight working keys. There are eight R

function blocks in key mixing block in total.

3.3.3 Nonce Expanding Block

As shown in the top level block diagram, there is no elk as an input for N_expand block.

It is pure combinational logic. Nonce expanding only happens in the initialization phase.

So, it is not a very critical module for high speed design, which is focused on quickly

producing keystream bits. The type of adder/subtracter in this block can be either ripple

carry or Kogge-Stone.

3.3.4 Keystream Generation Block

The subkey generator in our design works "on the fly". That means the subkey

computation is performed during the time when the keystream generator core (ks_gen)

works on the previous plaintext word instead of pre-computed in the initialization phase

and stored in a large memory. The structure of subkey generator is similar to the compact

design, except that the high speed design uses Kogge-Stone adder.

The ks_gen block requires four clock cycles to generate one keystream word. The

reason is the same as that in the R function block: there are two H function blocks

included. The data path of ks_gen is illustrated in Figure 3.14. Two H blocks are

concatenated. The start signal for the second one is delayed by two clock cycles for signal

alignment.

The ks _gen block not only works in the normal keystream generation phase but also

the initialization phase. So, its inputs are given by a ks_input_sel block as shown in the

top level. The ks_input_sel block is very similar to ini_dp block in the Phelix compact

design. It takes one clock cycle to make an input selection corresponding to the block

number which is given by a counter. When the block number is between zero to seven

and the start signal is asserted, it performs an initialization phase selection; when the

45

,--------------- ------

block number is larger than seven, it does nothing but pass the current input to the output

directly. The FIFO that is used to store the previous four old states is combined in the

ks _input _sel block.

Plaintext() 1:"'

sta n

rs I

~
Subkey0(3 1:0

Zin0(3 1 :O
Zin4(3 1 :0

)-

)

Subkey 1(3 1:0

Zold(3 1:0

register register

- ~in dour din dout~

H block H block

rst ~ rst

~ Is tan f-- Slar1

X0i31 :0) 4 X0(3 1:0 1

X I(J I:O) ZoO(.ll :0)- Xl (J I:O)

Zin0(3 1 :0}- Zo0(3 1:0)- Zo4(3 1 :0) Z ln0(3 1 :0}- Zo0(3 1 :0)-
Zin4(31:0) Z<>4(3 1 :0) Zin4(3 1:0) Zo4(3 1 :0)

I> elk I> elk

>1 register

H in(3 1 :0) Dout(3 1 :0) 1--

Figure 3.14 Block Diagram of Keystream Generator

3.3.5 The Controller

-

Zo0(3 1:0)­
Zo4(3 1 :0)

Kcyotream(J I :0)

One tricky task to design a controller is to define the states in the system. If we define the

states according to all control signals that the sub-components need, then any different

combination of the signals could result in a new state, and the state transitions can cause a

fair degree of "spaghetti- factor" when trying to follow the line of execution. Finite state

machines are an adopted artificial intelligence technique, therefore, the representation of

the states could be more abstract instead of catering to any trivial needs of

sub-component, say, the selection signal of a MUX. With this in mind, we employed the

idea that is often seen in framer cores used in communication systems. A typical example

is in [54], which describe an implementation to perform basic word alignment and

deframing for SONET/SDH system [23]. Usually, a frame has two indices, row and

column. In hardware implementation, they are global signals and sent to every functional

component, such as the error monitor. Those functional components perform the

46

corresponding tasks depending on the current row and column indices. Since in an ideal

synchronous circuit the behavior of the whole circuit can be predicted exactly, they can

cooperate well. In our design, we change the row and column indices to block number.

With a correct block number, at a specific time, the key_ mix block knows whether it

needs to generate the working keys; the subkey generator knows how to produce the

subkeys; the core knows whether to send keystream _valid signal. The counter that

generates the block number does not increment at every clock cycle but every four cycles

as the encryption/decryption core requires four cycles to process one plaintext word.

This method is greatly simplified to make the design more readable and easier for

maintenance. There is no explicit central controller. To some extent, it can be considered

as an FSM decomposition scheme. For the modules in the system, the input condition is

the block number, the decisions they could make are the state machine related behavior.

However, it might consume more resources since the sub-components have their own

decision making system and are more independent.

3.4 Synthesis Results of Phelix

To our knowledge, there are no published ASIC implementations results for the Phelix,

but a rough estimation from the authors of [22], is that the cipher can achieve speed of at

least 200 MBps with 20,000 gates for the area. The targeted technology is not specified.

Synthesis results of our design for Phelix are illustrated in Table 3.3. It consumes about

12,000 two-input NAND gates in the compact design and achieves more than one Gbps

throughput in the high speed design.

Table 3.3 ASIC Implementation Results ofPhelix

ASIC Device Throughput (Mbps) # of 2-input Nand gates

0.18 Jl CMOS Compact High Speed Compact High Speed

Design Design Design Design

260.0 1,440.0 12,400 64,200

3.5 Summary

In this chapter, we implement two structures for Phelix stream cipher: compact design

and high speed design. Both of them are targeted for 0.18 micron CMOS technology. As

47

we expected, the H function is a core part of the entire circuit, and it determines the

encryption speed. In our compact design, we only use a single adder in this function

block and divide the circuit into several layers of combinational logic separated by

latches. The high speed design removes all sharing components and allocates them to the

function blocks exclusively. Moreover, it has no separate controller, when the input reset

is low and start is asserted, all functional blocks cooperate according to the global clock

signal. After the initialization phase, when the first word of the plaintext has been

processed, the core sends out a keystream_valid signal to notify the peripheral devices.

Table 3.3 shows that the high speed design consumes about two times more of area than

the compact one does, but it comes with a four times higher throughput. Sample VHDL

code for the Phelix cipher implementation is contained in Appendix A.

The following chapter will investigate various hardware implementations for

Salsa20.

48

Chapter 4 Hardware Implementation of the

Salsa20 Stream Cipher

4.1 Introduction of Salsa20 Stream Cipher

Salsa20 stream cipher is another candidate of the eSTREAM project. It is claimed to

provide high security, and is composed of several simple operations that are similar to

Phelix. The core of Salsa20 is a hash function, encrypting a 512-bit block of plaintext by

hashing the key (128-bit), nonce (64-bit), and a sequence number (64-bit) to a 512-bit

output used as the keystream.

In hardware implementations, FPGA designs typically consume more resources and

run slower than their ASIC counterparts. However, development in the features of FPGA,

such as intellectual property (IP) integration and high-speed 1/0 interconnects, has

allowed FPGAs to play an important role in digital designs. Therefore, we have designed

a compact FPGA hardware implementation for Salsa20, whose requirement for memory

is relatively larger compared with other candidates. To find out two extreme situations in

compactness and speed, we also designed the corresponding ASIC structures for Salsa20.

In addition, for comparison we implement a basic iterative design, which incorporates

trade-offs between area and speed.

4.1.1 Algorithm

The main function in the Salsa20 core is called the quarterround function. Defining y

as a 4-word sequence then quarterround(y) is a 4-word sequence. If y = (yo;YI ;y2;y3), then

quarterround(y) = (:zo;z1;z2;z3), where Yi and Zi are 32-bit words, i E {0,1,2,3}, and

z1 = YI Ell ((yo+ YJ) <<< 7)

z2 = Y2 Ell ((z1 +Yo) <<< 9)

Z3 = Y3 Ell ((z2 + ZI) <<< 13)

Zo =Yo Ell ((z3 + z2) <<< 18)

The exclusive-or (XOR) of two words, denoted as "Ell", is the sum of the words with

carries suppressed. The symbol "<<<" represents left rotation by the indicated number of

49

bits, and"+" represents addition modulo 232
.

If we consider the 64-byte input block x = (x[O], x[1], ... , x[15]) as a 4x4 matrix of

32-bit words, the four elements in each row and each column will be modified by the

quarterround function ten times, respectively. After that, the output is added with the

original values, producing a 16-word keystream.

In short, the keystream generation process can be shown as the flow in Figure 4.1:

word

Quarterround (x [OJ. x [1]. x [2]. x [3])

{
Quarterround (x [5] , x[6] , x[7] , x[4])

rowround (x) = Quarterround (x[10] , x[ll] , x[8] , x [9])
Quarterround (x [15] , x[12]. x[13]. x [14])

l
Quarterround (x [0] , x [4] , x [8]. x [12])

1
d() Quarter round (x[5] , x[9], x[13] , x[l])

co umnroun x = Quarterround (x[l O], x[14] , x[2] , x[6])
Quart erround (x [15] , x[3]. x[7] , x[ll])

Figure 4.1 Salsa20 Keystream Generation

4.1.2 Security

In 2006, Crowley Paul Crowley reported a differential cryptanalysis of the 5-round

Salsa20 model [58] and won Bernstein's US$1000 prize for "most interesting Salsa20

cryptanalysis". Later, Fisher et al. reported a 6-round Salsa20 model in [66]. The most

recent cryptanalysis of Salsa20 is in [78], which found a significant bias in the

differential probability for Salsa20's 4th round internal state, yielded by assigning single

bit differences to the initial vector which may be freely chosen by an attacker. However,

the attack in [78] was only targeted on Salsa20/r (5~ r~ 8) instead of the full round

Salsa20/20, where r is the number of rounds.

4.1.3 Previous Work on Hardware Implementation on Salsa20

Salsa20 was selected as one of the focus eSTREAM candidates for both Profile I

(software) and Profile 2 (hardware) in Phase 2, and it received the highest voting score at

the end of Phase 2 [66]. However, it was not selected for Profile 2 in Phase 2 since it

50

was not considered to be suitable for very resource-constrained hardware

implementations. This also coincides with our conclusion in Section 4.3 though we have

not been aware of any other pure hardware implementation results except rough

estimation.

The Salsa20 co-design was studied in an undergraduate course at Virginia Tech

called "Introduction to Codesign" [60]. Through the reference C code, it can be found

that in those co-designs, a component, which is a hardware accelerator is implemented

targeted on Xilinx Spartan3e FPGA.

Expanded Key&Non
(64 byte)

~,.
_I

I

I

Quarter

/ Round

Column

Quarter

Row /1
Round

Figure 4.2 Block Diagram of Hardware Accelerator for Salsa20

It is clear that the co-design splits the double round function into two isolated blocks

(column block and row block) to speed up the circuit. Table 4.1 shows that the speed up

is limited. The reason is that during the execution, the output of the rowround function

must be moved in and out for each iteration. It is a bottleneck for the overall

performance.

Table 4.1 Results of Salsa20 Co-design [60[

Cipher c GEZEL Area Speedup

lines lines slices

Salsa20 220 533 568 1.2

Of particular interest is the last column in the table that illustrates the resulting

performance improvement after introducing the hardware accelerator to the pure software

design. However, neither the throughput of the software design nor that of the co-design

is available in the literature.

51

,---------------

4.2 Analysis of Salsa20 Cipher Main Components

Considering the simple operations like addition modulo 232
, exclusive or, and rotation by

a fixed number of bits from the bottom level of the structure of Salsa20 circuit, the

speed-and-area tradeoff in the ASIC design have been discussed in the previous chapter.

However, we have not only looked into ASIC structures (fast structure, basic iterative

structure and compact structure) for Salsa20, but also a compact structure in context of

FPGA design.

Basically, FPGA is reconfigurable and more flexible compared with ASIC design. It

has distinct properties such as rich sequential logic resources on-chip and fast carry chain

in the configurable logic blocks. As a result, we present the performance of various adder

structures and their effects on the cipher performance in this section. Also, the main

second level components like quarterround block, memory block are discussed for both

ASIC and FPGA implementation.

4.2.1 32-bit Adder

In the literature, there exist plenty of stream ciphers whose internal states or output

keystreams are based on modular additions. This is partly due to the fact that, when

implemented in software, they are able to produce outputs at a very high speed. However,

adder structures are of great concern in hardware implementation, especially in those

where addition is the most responsible factor to decide the overall speed.

As discussed in the previous chapter, a ripple carry adder (RCA) consumes least area

compared with other adder structures in ASIC design. Therefore, we still use RCA for

compact ASIC implementation for Salsa20. However, it is very important to consider the

actual targeted FPGA device to achieve the highest levels of performance in both speed

and area. For example, the number of rows and columns of configurable logic blocks

(CLBs) can affect the partitioning of the implemented adders. Nowadays, most

commercial FPGAs have provided specific arithmetic hardware resources. Figure 4.3 is a

carry logic diagram integrated in Xilinx Virtex 2.5 V FPGA.

52

Function
General()(

COVT

XORCY

Figure 4.3 Carry Logic Diagram [74)

The carry chain contains a 2-input multiplexer (MUXCY) and an XOR (XORCY) gate.

The function generator is a simple look up table (LUT). In a single CLB, there are two

LUTs and each LUT can be implemented as a partial adder.

It is obvious that the predefined adder targeted in Yirtex 2.5 V FPGA is a carry skip

adder [74]. Table 4.2 shows the results of our implementations for various 32-bit adders

in terms of speed and area. It can be seen from the table that in hardware designs, the

growth in area consumption might not be linear to the increase of the speed.

Table 4.2 Comparison of Adder Implementations

on a Xilinx Virtex-IITM 2V250FG256 Board
Primitive Component Critical Path Area (CLBs)

Delay (ns)

carry ripple adder 31.89 31

carry skip adder 6.87 16

(using the dedicated carry logic)

carry look-ahead adder 23.68 82

CSA with add-one circuit 23.31 40

Sklansky parallel prefix adder 15.77 78

Brent-Kung parallel prefix adder 15.77 79

Kogge-Stone parallel prefix adder 7.72 110

All of the adder structures listed above are applicable to general purpose designs,

though some of them might not look like to be. For example, in our FPGA

implementation of carry ripple adder structure, the speed is more than four times slower

than the fastest parallel structure. It looks very unlikely to be actually implemented in

53

industry. However, a different target technology can result in a significant difference. In

[84], the authors also give a comparison of various adder structures, such as carry ripple

adder and carry look-ahead adder. Instead of FPGA, they chose the 0.7Jlm CMOS

technology to implement all of the designs. Based on their implementation results, the

carry ripple adder is not the slowest one. Besides, the carry skip adder has larger area

requirements than others for all bit sizes.

The proposed adder implementations targeted on FPGA demonstrate the importance of

taking advantage of the dedicated carry logic. In the FPGA, in which the dedicated

resources are so much faster than the general purpose routing, it is very hard, impossible

in many cases, to build an adder that is faster than the built in adder structure with the

same area consumption. Moreover, without the use ofthe built-in carry chain logic, even

if we implement a carry-skip adder of the same structure, we need two LUTs per full

adder instead of one and speed degradation will appear too because of the irregular

routing. Based on the results, we choose the Xilinx vendor predefined adder for the

compact FPGA design of Salsa20.

When it comes to fast implementation, the parallel prefix adder is used. To illustrate

parallel prefix adders, we should understand the prefix graph first. The basic idea is

looking for cases in which carry out of a set of bits is the same as carry in. The carry

produced at the ith stage is given as follows:

ci+l = XiYi +(xi ffiyi)Ci

where x; and y; are the inputs of the ith stage. The equation can be interpreted as stating

that a carry is asserted if both operand bits are 1, and the carry from the previous stage is

propagated if one of x; andy; is 0. Therefore, we have Gi and Pi denoting the generation

and propagation at the ith stage:

Define an associative binary operator 6 as:

Yo= Xo

Y; = X;~Yi-l

We can get the most important property:

X1~(x2~(x3~4)) = Cx1~2)~(x3~4)

54

Thus,

C,. =G,.:O· ,

where k is the level within the hierarchical structure and i, j define the range of the sub

block. For example, in a 16-bit Ripple Carry Adder, which is represented graphically in

Figure 4.5, The black circle is the specific carry operator L.. To graphically illustrate

how to generate (G, P) pair by using !:::,, one of the black circles shown in Figure 4.5 is

marked by** and shown below:

(G, P)~ (G,P)Jo

(G,P)~o

Figure 4.4 An Example of the carry operator 6.

Input bits (15:0)

Most significant bit f. Least significant bit

stage I4 2 I

0

2

3

I5

••

Output bits (I 5 :0)

I
I
I
I

g g g
Figure 4.5 16-bit Ripple Carry Adder

The more black circle (operator L.) there are, the more area the adder structure

requires. From our FPGA synthesis results, we find that the fastest parallel prefix adder is

the Kogge-Stone adder, which has minimum logic depth (the number of stages shown in

Figure 4.6) and full binary tree with minimum fan-out, resulting in a fast adder but with a

55

large area.

15 14 13 12 I I 10 9 8 7 6 5 4 3 2 I 0

Stage I

Stage 2

Stage 3

Stnge 4

I I I I I I I I

Figure 4.6 16-bit Kogge-Stone Parallel Prefix Adder

For the moderate basic iterative structure, more attention is paid to the tradeoff

between speed and area. Therefore, carry select adder (CSA) is more suitable since it can

be considered as a tradeoff between the adders shown above. There are many

improvements focusing on increasing the efficiency of CSA [68-72]. In [41], the authors

use the first zero finding circuit and MUX to reduce the area without speed penalty.

The carry select scheme divides the adder into three blocks as shown below. Sum and

carry values are generated for possible carry values. Those values are fed into a

multiplexer, who selects the correct sum and carry-out for the next stage.

a[3 OJ

b[3:0J

a]3:01 rn]3:01 f--t--.
b]3:0] n]3:0]

0]3"0]

partial_ adder_ slice_ 4

c]3:0]

,,...__m]3·0] s]3 OJ ~--.

'----1---1>-----"Lnl'---3 0--'-1 _ _J

sum_block_ 4

Figure 4. 7 Block diagram of a 4-bit carry select adder

4.2.2 Quarterround Block

cout

s[3:0J

A single quarterround function regards its 16-byte input as an array of 4 words. We can

choose between implementing the function using purely combinational design and using

sequential logic with registers to divide the combinational circuit into small but faster

sub-components. Both designs are illustrated in Figure 4.8.

56

.--

yO

yl

y2

y3

(a) Combinational design

dri><=add _ out(24 OOWNTO O)&add _ oo~l I OOWNTO 25);
dr I <=add_ out(22 OOWNTO O)&add _ oo~l I OOWNTO 23);
dr2<=add_out(l8 OOWNTOO)&add_oo~ll OOWNTO 19);
drl<=add_out(IJ OOWNTOO)&add_ou~ll OOWNTO 14);

(b) Sequential design

Figure 4.8 Data path of Quarterround Block

The combinational design shown above does not illustrate the main registers to store

the final results (Zo, z1, z2, z3). If those registers are counted, it takes 2,900 2-input NAND

gates and the critical path cost 20.72 ns, while the sequential version takes 2,050 2-input

57

NAND gates and the critical path is 7.4 7 ns. Although the sequential design of

quarterround function block works at a higher clock frequency, it spends 10 clock cycles

to finish the four modifications for the input words at a time (Figure 4.8.b). In terms of

those results, it is reasonable to choose the faster combinational quarterround function as

the basic block for the fast ASIC structure of Salsa20 and the sequential version for the

compact structure.

Figure 4.9 Finite State Machine of the Sequential Quarterround Block

The finite state machine in Figure 4.9 shows how the sequential quarterround block

works. When the start signal is asserted, the controller transits from idle state to load_ all

state, in which the selection signals for the four MUXes in front of the registers are

asserted (Figure 4.8.b). At the next positive edge of clock signal, the inputs selected by

the MUXes have been held constant for specific period, called the setup time. Thus, the

registers load all of them without metastability. In the quarterround block, there are only

four registers requiring clock trigger. The states load_Z; (i = 1, 2, 3, 4) perform data

loading, as the name implies. In calculate_Z; (i = 1, 2, 3, 4) states, the selection signals

for all MUXes in the datapath are provided and kept stable during those clock cycles.

Quarterround block works in a sequential manner as the calculation of Z; (i = 1, 2, 3, 4)

depends on the previous one.

4.2.3 Memory Block

Salsa20 encryption performs 320 invertible modifications for its 64-byte input data. The

resulting words are added to the original ones to produce a 64-byte keystream.

58

Obviously, it requires memory to store the original input as well as the temporary data

after each quarterround function.

Memory is usually a significant expense in most applications. Today's advanced

FPGAs provide rich on-chip memories, which are maturely designed for compactness

and speed. If properly employed, it can lead to a significant improvement in the latency

ofthe overall design.

The Xilinx Virtex FPGA provides synchronous read/write block RAM in its

primitive library. Each port of the block ram can be independently configured as a

read/write port. In our FPGA design, four block rams are used. Each one is configured to

16-bit data width. The concatenation is shown in Figure 4.10:

CLK

DIN[31 :0]

ADDR[3:0]

WR

EN

16 X 32-bit RAM

,--- DlN[15:0] - ADDR[O: l] - WR DOUT[IS:O] - EN

[) CLK

_. DOUT[31 :0]

DIN[31 :16]

ADDR[3:2]

WR DOUT[31 : 16)

EN

- [) CLK

Figure 4.10 A 32-bit Wide RAM

The memories for Salsa20 ASIC compact structure are more complicated. Unlike

FPGA design, we do not use the same structure for all memory blocks, since the control

logic for the memory that only works as a buffer to store the original input without

modifying during the keystream generation is much simpler than the other one, which

will update the contents from the quarterround function block.

59

BeRister liB1rix
Regjste r matrix

din(l27:0)
----+l din(l27:0)

n:goutO rcgout i .S

(a) MemO (b) Meml

Figure 4.11 Block Diagram of Memory Blocks in ASIC implementation

The two types of memories are shown in Figure 4.11 , named MemO and Mem I,

respectively. The capacity for both memories is I 6 x 32-bit. But the controller of MemO

has a row/column select signal to tell the register matrix which data array to update. This

is decided by the property of quarterround function : row modification and column

modification are interleaved. The 32-bit width output ports are only used at the end of ten

double rounds. Each 32-bit sum is a word of keystream.

The synthesis result in Table 4.3 illustrates the assumed difference. MemO consumes

more area and runs slower because of the more complicated control logic. MemO stores .

the 16 original 32-bit words, and its contents will be modified after each quarterround

function. Mem1 stores the 16 original 32-bit words, which will not be touched until the

quarterround function block has been used for twenty times.

Table 4.3 Synthesis Results for Different Memory Blocks

AREA CRITICAL PATH

COMPONENTS (# ofNAND CRITICAL PATH PASSING TIME

gates) (ns)

MemO (modify) 5,820 FSM-output_sel- 2.22

dout_dingle

Mem 1 (no_ modify) 4,662 FSM-output_sel- dout 2.09

60

4.2.4 Control Unit based on Various Datapath

4.2.4.1 Controller of the Compact ASIC Structure

In a traditional controller consisting of a Finite State Machine (FSM) and combinational

output logic, a large number of states can dramatically impact the logic equations,

number of gates, and clock rate. A state consists of the condition (inputs trigger), state

transition and outputs (control signals). There are two main methods of FSM design,

focusing on handling where to generate the outputs. They are Moore Machine, whose

outputs are associated with the current state of the device, and Mealy Machine, whose

outputs are associated with not only the current state but also the input signals.

condition

1-------------- if mealy machine ----------------1
I
I
I

state register output logic

Figure 4.12 Block Diagram of FSM

control signals

Due to their simple structure and predictability, FSMs are easy to implement. An

FSM can be implemented by different encoding methods. In our design, we used the most

popular encoding scheme called one-hot encoding. One-hot encoding requires a D flip

flop for each state, while another encoding method called binary encoding only requires

llog2N l D flip flops for N states. It seems like that the latter is more efficient. However,

decoding an encoded binary FSM leads to increased logic levels between states, while in

a one-hot encoded FSM, the states are already in the decoded format and, consequently,

only simple combinational logic is needed as a part of FSM.

The design of controllers significantly depends on the structure of datapath. In

compact ASIC design of Salsa20, the datapath consists of two 32-bit x 16 memory blocks

and one quarterround function block.

61

Figure 4.13 Data path of Compact ASIC Structure for Salsa20

The specifications of the main blocks are given below:

• Quarterround: performs quarterround function .

• MemO(modify): stores the 16 original 32-bit words, and its contents will be modified

after each quarterround function.

• Meml(no modify): stores the 16 original 32-bit words, which will not be touched

until the quarterround function block has been used for twenty times.

Based on the datapath of the figure above, it is easy to define five states that output

different control signals.

In idle state, nothing happens; arbitrary control signals for the datapath are sent to the

datapath. The controller is transited to load _rows state if the start signal is asserted. At

this state, one row (128 bits) of the 512-bit data block is loaded into the registers in

parallel. The quarterround block starts to work at quarter _en state. The output of the

quarterround block is fed back to the memory at load_ z state. The controller goes to add

state if twenty rounds have been accomplished. After add state, in which the modified

data is added with the original one to produce the keystream, a new process for the next

input data block can begin.

62

--< tOUOOj6:\JI I

add

llV<__rr()<"'<1,
nilswt<>-'1'·
ml- start<-'1':
Iced ai<>'O'.'
.~r:'

ql.llr1ef_rd_SIIUI<-'();
rOUldJ7J

d..-I';

load_z

rruc niJ<W I'·
nil_-,.,.,..1':

:tO!~;
seriiil<-'<r: '

ql.lll1er rd SIIUI<-'<Y;
roo.n:i<-rou-d+ I,

donc<"'C1;

ITU'(ni)<W(1
nil ;i.n<-'(1:
ml-slllll<-'<1,
bad oll<>'<r·
..riil<-'a:'

ql.llr1ef_rd_sllllt<-'():
IOU'di1J

done<"'():

ttar1 .. 1' and (
round<87) .00
mcm_dono-'1'

nu< niJ<W I·
nil ;;..,ora'.
mi- SIIl1<"'<r:
loed_lll<-'<r;'
senol<>-'0'·

JTU(_rr0<:-'<1;
nilstan<"'l'
ml--1':
bad 111<-'1':'
.~,

qlDI'Ier _rd _start<W<Y;
ro<nli1J

donc<"'<Y:

ql.llr1ef_rd_SIIUI<-'I':
rOllld<-rou-d:

dCR¢"'<1;

Figure 4.14 FSM of Compact ASIC Structure for Salsa20

4.2.4.2 Controller of the Basic Iterative and High Speed ASIC Structure

The datapath of an iterative structure consists of four quarterround function blocks, since

the four rows or the four columns are encrypted independently. The control unit is simply

a combination of a counter and a comparator.

a .. d y Ke y tlr .. •

Figure 4.15 Salsa20 Basic Iterative ASIC Structure

63

After the start signal is asserted, the quarterround function begins to work on the 4x4

data matrix during the odd clock cycles. The data matrix performs a transpose function

during every even clock cycle. It takes 40 clock cycles to finish the whole data

modification (encryption).

The controller of the high speed ASIC structure is exactly the same as the basic

iterative structure as the former can be seen as a concatenation of the latter.

4.2.4.3 Controller of the Compact FPGA Structure

Since our compact design implemented in FPGA employs two 32x 16 bits predefined

memory and reuses the adder for compactness, the number of states required to produce

different control signals for the datapath is largely increased. It is composed of ten row

functions, ten column functions, and an addition for one data block, and each row or

column function requires four states for a row or column (since each modification for an

element in a row or column needs different control signals).

To decrease the number of states and simplify the controller structure, the proposed

design uses a partial microprogramming controller. A complete microprogramming

controller [14] consists of address generator, address register, ROM, instruction register

as the figure below:

Condition

ROM Instruction register Control
Signals

Figure 4.16 General Structure of Microprogramming Approach

In our design, we keep FSM, whose output is not the control signals but the states. A

6-bit counter is used to generate the address. The control information is loaded into the

memory in the initialization phase, and the controller sends out a microinstruction to the

datapath every clock cycle. Here, the microinstruction for Salsa20 are the read/write

enable signal, memory address, selection signals for the MUXs, and a ready signal to

notify other functional blocks to receive the keystream. It is a flexible method, especially

64

for further improvement, because program changes only cause slight difference in the

memory, which contains control information. The controller also eases the pressure on

the designer when the design needs flexibility.

Start
Rst

Control
Signals

-
-

-
•
I

Address Generator

.I

~ FSM Counter

~
Instruction
Register ROM -(Control

Information)

Figure 4.17 Controller ofSalsa20 (FPGA implementation)

4.3 The Synthesis Results of Salsa20

All designs are simulated by using Modelsim and synthesized by using

LeonardoSpectrum evaluation edition. Synthesis results for Salsa20 are illustrated in

Table 4.4. Table 4.5 shows a comparison between ciphers from the previous work done in

[47]; the device that was employed was Xilinx FPGA 2V250fg256 [75], which is used by

us too.

Table 4.4 Implementation Results of Salsa20

Compact Basic Iterative Fast Compact

Structure (ASIC) (ASIC) (ASIC) (FPGA)

0.18~ CMOS 0.18~ CMOS 0. 18~ CMOS Xilinx FPGA 2V250fg256 [7 1)

Device

Throughput 71 .2 Mbps 255 4.8 38

Mbps Gbps Mbps

14,100 23,408 470,000 194

Area 2-input Nand gates 2-input Nand gates 2-input Nand gates CLB slices

+

4 Block RAMs

Throughput/ 5.05 10.90 10.21 0.20

Area Mbpslkgates Mbps/kgates Mbps/ kgates Mbps/s lices

65

Table 4.5 Cipher performance and area comparison 147)

Cipher Area Frequency Throughput Throughput I

(slices) (MHz) (Mb/s) Area

AS/I 32 188.3 188.3 5.88

W7 608 96.0 768.0 1.26

EO 895 189.0 189.0 0.21

Helix 418 32.0 1024.0 2.45

RC4 140 60.8 120.8 0.86

Salsa20* 194 96.0 38.0 0.20

The implementation result of Salsa20* in Table 4.5 is obtained from our design. It is

unsurprising that Salsa20 based on a compact context is slower and consumes more area

than other popular stream ciphers, since it performs a large number of invertible

modifications, each of which changes one word of the matrix in a sequential manner.

However, the high speed ASIC design achieves a more acceptable throughput to area

ratio. The best throughput to area ratio comes from the basic iterative design as it has

considered the trade-off between speed and area.

4.4 Summary

In this chapter, we implement Salsa20 in various structures. Both ASIC and FPGA

implementations are considered. The proposed VLSI implementations achieve a data

throughput up to 4.8Gbps targeted for 0.18 micron CMOS technology, and a compact

FPGA design uses 194 slices and 4 memory blocks in a Xilinx device. The FPGA results

are compared with other stream ciphers, considering two major quality metrics: area and

speed.

Salsa20 has now been removed from the focus list in terms of hardware performance.

However, the document of eSTREAM project shows that they only compare the

selected candidates for extremely resource constrained hardware environments. It is

apparent that Salsa20 can be implemented for very high speeds in digital hardware.

Moreover, it is hard to predict the influence of the FPGA design tools and the HDL

design entry method on the synthesis results. Considering that Salsa20 has received the

highest weighted voting score of any Profile I algorithm at the end of Phase 2, we believe

66

,---·-----

that it is reasonable to provide more comparisons for this cipher in terms of hardware

performance.

67

-- --------- --- ------ -----------------

Chapter 5 Statistical Test of Salsa20 and

Phelix

5.1 Introduction

Statistical testing is one of the topics in the theory of statistics, which is based on the idea

that a sample from the set of all possible outcomes of the experiment will be 'typical' to

analyze the whole set. In this chapter, we will focus on one particular field of statistical

testing: randomness testing. Such testing is important because common cryptosystems

require key/keystream to be generated in a random fashion. We have employed a test

suite provided by the National Institute of Standards and Technology (NIST) [8]

specifically for the tests of cryptographic sequences. NIST is a non-regulatory US agency,

whose mission is to promote measurement science, standards, and technology. It provides

an empirical statistical test suite discussing particular standards of testing random and

pseudorandom number generators. In this test suite, sixteen recommended statistical tests

are provided namely; frequency, block frequency, runs, longest run of ones in a block,

matrix rank, discrete Fourier transform, non-overlapping template matchings,

overlapping template matchings, universal test, Lempel-Ziv compression, linear

complexity, serial, cumulative sums, approximate entropy, random excursions, random

excursions and variants. We have chosen four of them to apply to the sample sequences

generated by Salsa20 and Phelix. The corresponding algorithms and the test results will

be discussed later.

Considering that the tests from NIST are not particularly designed for testing the

security of stream ciphers, in other words, they do not consider the internal states, input

key, or IV of the ciphers; we have divided our study into two phases. In the first phase,

keystreams are generated from each cipher and tested by using the selected tests from the

NIST test suite. In the second phase, several structural tests that consider the properties of

stream ciphers are applied to both Phelix and Salsa20.

68

5.2 General Discussion

In this section, we shall see how to utilize probability distributions to carry out a

statistical test. Also, some basic concepts in statistical testing will be introduced.

5.2.1 Randomness

For a real random generator, the properties of the output sequences have to meet some

standards. A variety of statistical test algorithms can be applied to a keystream to evaluate

whether it meets those randomness requirements. A random bit sequence could be

interpreted as that the probability of '0' or '1 ' happens in the sequence should be exactly

0.5. Furthermore, the bits are independent. Randomness is a probabilistic property. In

other words, it is the property of a random sequence can be characterized and described

in terms of probability. There is no "complete" set of tests for judging whether a sequence

is random or not, because each test only assesses the presence or absence of a particular

"pattern", sometimes called test statistic, which, if detected, would indicate that the

sequence is random based on a certain hypothesis. To understand test statistic, we must

look into the concepts of null and alternative hypothesis first. A null hypothesis, which is

denoted as H0 supposes that the sequence being tested is random. Any other hypothesis is

called the alternative hypothesis. For each applied test, a decision or conclusion is

derived that accepts or rejects the null hypothesis.

5.2.2 Test Statistic and P-value

Having null and alternative hypotheses, the next step is to find out a statistic which shows

up any departure from Ho. There is not only one type of statistic that can be chosen. For

example, some tests, such as T test [18] chooses a statistic noted as T,

T = X n - IJ
Sn /Vn.

where x.~ is the sample mean, ll is the expected mean, n is the size of the sample and
1 n ?

Sn2
= - L (xi- Xnr n - 1 . 1

1 = '

which is the sample variance.

Some tests choose different statistics. In chi-square goodness-of-fit test [18], the test

statistic is often written as

69

where Oi is an observed frequency; Ei is an expected (theoretical) frequency, asserted by

the null hypothesis.

The computed test statistic should be compared with a critical value determined by a

theoretical reference distribution of this statistic under the null hypothesis. If the test

statistic value exceeds the critical value, the null hypothesis for randomness is rejected.

Otherwise, the null hypothesis (the randomness hypothesis) is not rejected (i.e., the

hypothesis is accepted). A result which is unlikely to occur if H0 is true is called a

significant result. Consequently, the significance level of a test is the maximum

probability, assuming the null hypothesis, that the statistic would be observed. The

P-value is the probability that the null hypothesis will be rejected in error when it is true.

It can be described as P (reject H0 I H0 is true) mathematically. In practice, a significance

level a is set prior to a test. If P-value 2: a , then the null hypothesis is accepted. If P-value

< a , then the alternative hypothesis is accepted. The parameter a is typically chosen in the

range [0.00 1, 0.01]. In the NIST test suite [8], a has been set to 0.0 1. It indicates that one

would expect 1 sequence in 100 sequences to be rejected by the test if the sequence is

random.

An example including the related concepts is given below:

Assume there is a random sample of size n, taken from a normal distribution with an

unknown mean 1-l· The observed mean is x. Then what we are interested in is whether x

differs significantly from a particular value 1-lD for 1-l· Thus the null hypothesis is given by

H0 : 1-1 =!J.D. If the standard deviation is known, and the value is cr, then we have the test

statistic:

X- j.J
z = 0

CT I .j;

If Ho is true, then z is a standard normal variable. The observed value of z is denoted

as ZQ. The probability P (lzl 2: Zo) is represented by the shaded area in Figure 5.1. It is the

P-value. Given an a of value 0.01 , we can get a value c from P (lzl > c) = a. If IZol is

greater than lei , then Ho will be rejected.

70

Zo positive Zo negative

1~ positive 7-(J negative

Figure 5.1 An Example of Statistical Test [18[

5.3 Test Model

Figure 5.2 shows the model for statistical test. The sample generator could be Salsa20 or

Phelix keystream generator or other derived generator, because the data sequences we

have tested are not only the keystream, but also some new sequences that would represent

certain properties or correlations between key, lV, internal states and a part of keystream.

A large amount of sequences produced by the generator are used as the input of the

selected test algorithm, which will calculate the test static and the corresponding P-value.

Based on the P-value, we can decide whether the sequences have passed the test. The

decision does not indicate weak keys or internal states recovery, but can be used for

distinguishing the sequence being tested from a truly random one.

Theoretical
Distribution t---

Statistics

-----.
P-value

Statistical
Test Decision

Sample
1--

Test Statistics -----.
Generator Generator

s1gmficance level

Figure 5.2 Model for Statistical Hypothesis Test

71

5.4 Keystream Tests

In this section, randomness properties of the output keystream are examined. We generate

a large amount of keystream and apply certain statistical tests. Details of the test

algorithms are introduced in each sub-section.

5.4.1 Frequency (Monobit) Test

The frequency test is one ofthe most basic tests, which focuses on the proportion of zeros

and ones in a sample sequence. The number of ones and zeroes are expected to n/2; n is

the length of the input sequence. The test algorithm is described below:

Input sequences;

for i - 0 to n-1 do /In is the length of s

ifs[i]= 0 thenx[i] := -1;

ifs[i]= I thenx[i] :=+ I;

Sn = ~~ x[i];
1• 0

Sobs := IS nil Fn; //Compute the test statistic.

P-value := erfc(Sobsl ..fi); //erfc is the complementary error function

Figure 5.3 Frequency Test Algorithm

This test makes use of De Moivre-Laplace theorem, which is defined as the fact that

for a sufficiently large number, say n, of independent Bernoulli trials [42], the distribution

of Sobs (the binomial sum) is approximately a standard normal distribution.

According to the Central Limit Theorem,

lim P(Sobs 5, z) = ¢>(z) = ,;._ l e-u
212

du
n-+oo v2n co

where 1/'(z) is the cumulative probability function of the standard normal distribution. The

complementary error function of z is defined as

erfc(z) = }z; [e-u
2

du

Then the corresponding P-value equals erfc(Sob/ ..fi), since the P-value IS

2[1-f/J(ISobs I)]

72

5.4.2 Frequency Test Within a Block

The focus of this test is similar to the frequency test, but it divides the whole sequence

into M sub-blocks. The frequency test (monobit) can be seen as a special case, where

M= I, of block frequency test. The test algorithm is described below:

Input sequence s;

I Partition s into M non-overlapping blocks, n is the length ofthe sequence.

I N is the length of the sub-block.

M=Ln / N J;
for i +--- 0 to M-1 do /In is the length of s

N - 1

L: s[j]

p[i] = J=O ; II calculate the proportion of ones in each N-bit block
N

M - 1
2

(obs) = 4N L (p[i]- 0.5) 2
;

1=0

P-value = igamc (M/2, x\oruy2); II igamc is the incomplete gamma function

Figure 5.4 Block Frequency Test Algorithm

It is recommended that the length of each sequence to be tested should be at least

100. The block size N is selected such that N ~ 20, N > O.Oln and M < 100. In our test,

n=512, N=20 and M=25. lfn is not a multiple of the selected N, M is the floor of(n/N),

the largest integer that is not greater than (n/N).

The function noted as igamc() in Figure 5.4 is called incomplete Gamma function,

which is derived from Gamma function. They are based on an approximation formula [8].

(5.1)

. () I I r -t, a-ld = __ 1_ [e-'ta-ldt rgamc a ,x = --- e t
i(a) i(a) (5 .2)

The formula (5.1) is Gamma function and (5.2) is incomplete Gamma function . More

details can be found in the Handbook of Applied Mathematical Functions [46] . The

statistic x2
(obs) is referred to chi-square distribution with M degrees of freedom.

73

5.4.3 Discrete Fourier Transform Test

The discrete Fourier transform (OFT) is often used for Fourier analysis of finite-domain

discrete-time signals. It is widely employed to analyze the frequencies in a sampled

signal. The OFT statistical test focuses on the peak heights in the discrete Fourier

transform obtained from the sample sequence.

If the sequence is random, then the proportion of peaks that exceed the 95%

threshold should not be significantly different than 5%.

Input sequences;

for i +- 0 to n-1 do lin is the length of s

if s[i]= 0 then x[i] := -I;

ifs[i]= I thenx[i] :=+1;

S = DFf(x); II A sequence of complex variables is produced

I S' is the ftrst nl2 elements inS. Since the complex conjugate ofs[i] equals s[n-i],

I the other half of S is ignored.

= modulus(S');

T = Fn; the 95 % peak height threshold value

0 = 0.95n/2; the expected theoretical (95 %) number of peaks that are less than T.

I = the observed number of peaks that are less than T

N-N
d = 1 0

; test statistic
.J n x 0.95 x 0.05 I 2

P-value = erfc (ldll2); llerfc is the complementary error function

Figure 5.5 Discrete Fourier Transform Test Algorithm

According to the central limit theorem, the distribution of the value of the test

statistic d can be considered as standard normal distribution N (0, l) when n is large

enough.

Though the report [8] claims that the default threshold value of the OFT test, which

is Fn , is not correct, the correct value of the variance of the test statistic remains

74

unsolved. Therefore, we still use the default value in our tests.

5.4.4 Runs Test (Wald-Wolfowitz Test)

In this test, a run is defined as an uninterrupted sequence of identical bits. For instance,

"1111 000111 00" is divided in four runs, two of which consist of" 1" and the others of "0".

If there are too many runs, the data is likely to alternate in a nonrandom order.

Runs test can be used to test the randomness of a sequence, by measuring whether the

number of runs of various lengths is as expected.

nput sequences;

:= (number of ones in s)/n; //n is the sequence length

:= 21 .J;;;

(l7t- 1121 >-r) then break; II the test should not be run under this circumstance

//because of a failure to pass the Frequency test.

n-1

V, (obs) := L r(k) + 1; II where r(k)=O if s(k)=s(k+ 1), and r(k)=1 otherwise.
k;l

-value := erfc " II erfc IS the complementary error function (IV (obs)-2nn-(l-n-)1) . .

25n-(l-n-)

Figure 5.6 Runs Test Algorithm

Considering an oscillation as a change from a one to zero or vice versa, a large value

for Vn(obs) would indicate an oscillation between substrings is too fast; a small value

would indicate that the oscillation is too slow.

5.4.5 Experimental Results and Analysis

NIST has adopted two approaches to interpret the test results: the examination of the

proportion of sequences that pass a statistical test and the uniform distribution of P-values

[8].

5.4.5.1 Proportion of Sequences Passing a Test

A P-values pass proportion is directly related to a, the significance level. For example,

75

given an a = 0.01, if 1000 sequences are tested, and 998 of them have P-values :=:: 0.0 I ,

then the pass proportion is 0.998. The low and high bounds can be computed using the

formula:

1-a±3~a(1-a)
m , where m is the number of tested sequences.

If the proportion falls in this interval, Ho is accepted.

For m = 1024, and a = 0.01 , the lower bound of the P-values pass proportion is

0.980672, and the higher bound is 0.999328. The results for each test applied to I 024

keystream sequences are given in Table 5.1.

Table 5.1 the Result of Proportion of Sequences Passing a Test

Cipher Test

Frequency Block Frequency Discrete Fourier Runs

Salsa20 Transform

Proportion Proportion Proportion Proportion

0.972656 0.992187 0.985351 0.994328

Frequency Block Frequency discrete Fourier Longest Run

Phelix transform

Proportion Proportion Proportion Proportion

0.982359 0.993342 0.980963 0.998799

There is one P-value corresponding to the application of a statistical test on a single

sequence, and in our tests, 1024 (210
) keystream sequences of length 512 (29

) bits are

generated from both Salsa20 and Phelix respectively. Therefore, there are 1024 P-values

for each test. Table 5.1 shows that only the proportion of Salsa20's keystream sequences

passing the frequency test is out of the acceptable interval.

5.4.5.2 Uniform Distribution of P-values

To examine the uniformity of the distribution of a set of P-values, we have to learn about

the chi-square goodness-of-fit test (also know as the x2 goodness-of-fit test). It is one of

the most widely used statistical tests when one wants to see if the observed frequencies of

multiple mutually exclusive categories are significantly different from those which could

76

be expected as random.

Suppose that YI , y2, .. . , Yk and PI , p2, ... , Pk are the observed and expected

frequencies for the ones that have appeared in the k different n-bit keystreams. Then, the

chi-square statistic for the test is:

k

LPs =1
s=l

If the observed value ofx2 is x2_o, then the P-value equals the probability P(x2 2: x2_o).

More details of the x2 goodness-of-fit test could be found in [18].

One of the common misunderstandings about P-value is that it is the probability that

the null hypothesis is true. In fact, it does not attach probabilities to hypotheses, but the

probability that a perfect random number generator would have produced a sequence less

random than the sequence that is tested. In those tests that we have chosen from the NIST

suite, the computed test statistics could be anywhere on the x-coordinate of a standard

distribution. The distribution of P-values is supposed to have the property of uniformity.

Appendix G gives an example of how those P-values distribute. The idea of evaluating

the uniformity of the obtained P-values is to divide the interval between 0 and I into 10

equal sub-intervals, and the P-values that lie within each sub-interval are counted and

tested via an application of the x2 goodness-of-fit test. In this way, the P-values' P-value

is obtained. The test statistic is

where F; is the frequency of P-values in sub-interval i, and m is the number of the tested

sequences. A new P-value is calculated by the function igamc (9/2, l 12). Not like the

previous P-values, the new P-value tends to be close to one as (Fi - 1/1 0) is very small

based on the test results. For a good random sequence, the new P-value should be close to

I. Table 5.2 illustrates all test statistics we have observed and their corresponding

P-values. All new P-values obtained are very close to 1. The values shown in the table are

not the accurate ones, but the rounded numbers, as they are enough to illustrate the

uniform distribution.

77

Table 5.2 The Result of Uniform Distribution ofP-values

Cipher Test

Frequency Block Frequency Discrete Fourier Runs

Salsa20
Transform

xz New xz New l New x" New

P·value P-value P-value P-value

0.14427 0.99998 0.12797 0.99999 0.02583 0.99999 0.13556 0.99999

Frequency Block Frequency discrete Fourier Longest Run

Phelix
transform

xl New xl New xl New x" New

P-value P-value P-value P-value

0.10589 0.99999 0.01785 0.99999 0.00509 0.99999 0.14339 0.99999

5.5 Correlation Tests

The tests from NIST are not particularly designed for testing the security of stream

ciphers. They simply focus on testing the randomness look of the keystream sequence. In

other words, they do not consider the cipher structure including the internal states, input

key, and IV of the ciphers. The authors of [50] applied four structural randomness tests to

the stream ciphers of eSTREAM, including Phelix and Salsa20. They are Key/Keystream

Correlation Test that considers the correlation between key and the corresponding

keystream using a fixed IV, IV/Keystream Correlation Test that considers the correlation

between IV and the corresponding keystream using a fixed key, Frame Correlation Test

that considers the correlation between keystreams using different IV values, and Diffusion

Test that examines the diffusion property of each bit of key and IV. They also introduced

another two tests, which are not applied but left as a future study: Internal State

Correlation test and Internal State/Keystream Correlation Test. Each of the six tests

produces new sequences of data to which randomness tests can be applied. In [50], the

randomness of the sequences was tested by considering the appropriateness of the fit to

the binomial distribution, using the x2 goodness of fit test.

In this section, we apply the four randomness test algorithms introduced in 5.4 to the

new sequences to extend the result. Only the chi-square goodness-of-fit test is employed

in [50] for evaluation. Additionally, we apply the last two statistical tests of [50], which

were not investigated for Phelix and Salsa20.

78

5.5.1 Testing New Sequences

5.5.1.1 Sequence Generation Process

In this section, we describe the process to generate the sequences to be tested for the first

few tests mentioned in [50]. To evaluate various correlations for stream ciphers, new

sample sequences representing particular properties of the stream cipher are required.

According to [50], the first two types of sequences are obtained by the operation

keystream[O to i-1] e s[O to i-1]
where keystream[O ... i-1] are the first i bits of the keystream, and s[O . .. i-1] represents

i-bit key for key/keystream correlation sequence tests and i-bit IV for JV/keystream

correlation sequence tests, respectively.

The algorithm to generate the frame correlation sequence is shown below:

Randomly choose key, IV;

fori+- I toN II N=L024

do

I I L=512, encryption could be Salsa20 or Phelix key stream generator

Ks[i] = first L bit of encryption (IV, key);

Increment IV;

fori+- I to L

do

for j +- I toN

do

sequence[i] = sequence[i] & ks[j][i]; II & is concatenation

etum sequence

Figure 5.7 Frame Correlation Sequence Generation Algorithm

In Figure 5.7, L is an arbitrary length of the keystream and N is the number of

repetitions to produce a keystream with fixed 256-bit key and incremented values of IV. L

sequences are initialized to empty before operation. The sequence sequence[i] indicates

the ith bit of the sequence, ks[j][i] indicates the ith bit of the jth keystream segment U

ranges from 1 toN and i ranges from 1 to L). It is illustrated in Figure 5.8.

79

~cqucth.·c(I J

Figure 5.8 Diagram of Frame Correlation Sequence

The last type of sequence generated aims at the diffusion property of each bit of key

and IV. That is, each bit of IV and key should affect the keystream with equal probability.

M is a (K + V)x L zero matrix; I I k is the length of the key; V is the length of the IV

M[l]

M[2]

M[K +V]

fori +-- I toN I/N= I024

do

Randomly choose key and IV

Keystream[i] := encryption(IV, key);

for j +-- l to K

do

key' := change one bit of the original key;

d[j] := Keystream[i] ED encryption (IV, key);

M[j] := M[j] + d[j];

for j +-- I to V

do

IV' := change one bit of the originallY;

d[j] := Keystream[i] ED encryption (IV', key);

M[K+j] := M[K+j] + d[j];

Return M;

Figure 5.9 Diffusion Sequence Generation Algorithm

80

5.5.1.2 Experimental Results and Analysis

The evaluation strategies used for new sequences are the same as that used in previous

section 5.3: the proportion of sequences passing a test and the distribution of P-values

which should be uniform between 0 and 1. The results are summarized in Table 5.3 and

5.4.

Table 5.3 Proportion of Sequences Passing a Test

acceptable range [0.980672, 0.999328]

Discrete Fourier
Tests Frequency Block Frequency Transform RlUlS

... "' ~
e)

E. g proportion proportion proportion proportion
ll)

u ;::) I

~
0 S1 0.996094 0.997070 0.984375 0.991210
<;:A

S2 0.985352 0.991211 p .979492j 0.988281 V)

co
S3 ~.92382~ P.953t2~ P.I1328tl ~.8632811 ("./)

S4 0.989583 0.992188 0.981771 0.989583
S1 0.979492 0.993164 0.985352 0.989258

.~ S2 0.992188 0.993164 0.990234 0.988281
~

S3 ~.89062~ b .94921q 10.1237821 ~.8906251 ;_
S4 0.994792 0.989583 k>.973958j 0.984375

+ S I : Key/Keystream Correlation Sequence (Number of Sequences = I 024, Sequence Length = 256)

+ S2: IV /Keystream Correlation Sequence (Number of Sequences = I 024, Sequence Length = 128)

+ S3: Frame Correlation Sequence (Number of Sequences = 512, Sequence Length = 1024)

+ S4: Diffusion Sequence (Number of Sequences = 384, Sequence Length= 512, Repeat 1024 times)

As the results in Table 5.3 indicate, we obtained some deviations from the acceptable

range of the proportions that pass the tests, and those deviation values are circled in the

table. The Frame Correlation Sequence of both Salsa20 and Phelix fails all the four tests

and is particularly poor for the OFT test. This may indicate that Salsa20 and Phelix do not

satisfy the necessary property as the frames generated using consecutive IVs are

correlated. Whether this can be exploited particularly in a cryptanalysis is not clear and

merits further study, particularly in relation to the OFT test. For further investigation, we

have provided the source code that is related to frame correlation sequence generation

81

and testing process in the Appendix F.

Table 5.4 The Result of Uniform Distribution of P-values

Tests

discrete Fouriel'
Frequency Block Frequeucy transfom1 Runs

Cipher ~noe "!! New P-value ·l New P-value 1.1 New P-value 1.1 New ?-value

0 Sl 0.07397 1.00000 o.oim 1.00000 0.1.6953 1.00000 p.oi236J

~ S2 0.16499 1.00000 0.01313 1.00000 118315 0..99846 0.04609
c; S3 o.432n 0..99998 0.13541 1.00000 8.61479 0.47356 0.58081 (I)

S4 0.03461 1.00000 0.02770 1.00000 0.21745 1.00000 0.03706

Sl 0.04198 1.00000 0.01.142 1.00000 0.14113 1.00000 0.01063
.~ S2 0.15280 1.00000 0.00397 1.00000 1.34-W<S 0..99815 0.01900
"iJ
...c S3 0.4947:5 0.99997 0.12:518 1.00000 8.76799 0.4:5896 0.43684
0..

S4 0.03339 1.00000 0.0512:5 1.00000 026139 1.00000 o.040n

+ S I : Key/Keystream Correlation Sequence (Number of Sequences = I 024, Sequence Length= 256)

+ S2: IV /Keystream Correlation Sequence (Number of Sequences = I 024, Sequence Length = I 28)

+ S3: Frame Correlation Sequence (Number of Sequences = 512, Sequence Length = 1024)

+ S4: Diffusion Sequence (Number of Sequences = 384, Sequence Length = 512, Repeat 1024 times)

1.00000

1.00000

0.99994

1.00000

1.00000

1.00000

0.99998

1.00000

The same situation has happened in the proportion results: deviation is obtained only

when the discrete Fourier transform test is applied to the frame correlation sequences.

However, it is hard to conclude that whether there are structural weakness in Salsa20 and

Phelix or in the test itself, since the frame correlation sequences from both Salsa20 and

Phelix have passed the frequency test, the block frequency test and the runs test, while

the other three different sequences have passed the discrete Fourier transform test as well.

5.5.2 Keystreamllnternal States Correlation Test

The purpose of the test in this section is to evaluate the correlation between the internal

states and the first k bits of the keystream [50]. The main idea is that at any time if the

internal states have a distinguishing property such as low/high weight, the resulted

keystream should behave randomly in terms of its weight. Both Salsa20 and Phelix

support various key and IV lengths. We used key size of 256 bits and IV size of 128 bits.

For further analysis, other key and IV sizes may be considered.

82

5.5.2.1 Algorithm

In this test, k represents the size of an internal state memory and m k-bit keystreams are

generated from m randomly generated keys and a fixed IV. During the encryption, each

state (a k-bit data block) is stored to XOR with the keystream. The obtained results are

calculated for their weights, and the m weights are grouped into categories. Then, the

observed frequencies are calculated and the chi-square goodness-of-fit test is applied to

calculate P-values.

Figure 5.10 shows the theoretical distributions for k=512 (the length of Salsa20's

internal state) and for k=288 (the length of Phelix's internal state) based on binomial

distribution.

0 .03 0 .04

0.03

0 .02

0 .02

0 .01

0.01

0.00
~ ~ 0 .00 .l'!""llllli.J.J.41JUJ.LL.lJUJ.I.Ij-UWJ.lllW¥J.W.W..W.J.j.ULLllll.LI..J4!I- ~ ~

221 234 247 260 273 286 118 12B 134 142 150 158 1BB

a. k=512, p=0.5 b. k=288, p=0.5

Figure 5.10 Theoretical Distribution

The category limits for Phelix are chosen as { 0 - 118, 119 - 126, 127 - 134, 135 - 142,

143 - 150, 151 - 158, 159- 166, 167- 287}. In general, if the random variable follows

the binomial distribution with size k and variance p, we write Binomial (k, p). If the

encryption algorithm is secure, the distribution of the weights is Binomial (k, 0.5).

Cumulative probabilities are calculated depending on the categories. They are observed

frequencies, which will be compared to the expected ones in the chi-square test.

83

IFix IV;

Initialize weights w to zero;

fori- I tom

do

randomly generate a key;

keystream := encryption(IV, key);

for j- I ton

do

internal_ state[i] [j] := encryption _round(current_ state);

II i is the index for r keystream; j is the index for j1
h state

k_xor_s[i][j] := internal_state[i][j] XOR keystream;

w[i][j] := number of ones in k_xor_s;

II group the weights into the selected categories

fori- I to C II Cis the number of categories

if w [i][j] is in category[k]

W[k] := W[k] + I;

Chi-square of Goodness-of-fit test on W;

Figure 5.11 keystream/lnternal States Correlation Test Algorithm

In the algorithm above, the function encryption round is defined as a double round

function [20] for Salsa20 or two half functions [22] for Phelix.

5.5.2.2 Experimental Results and Analysis

Table 5.5 shows the test result for Salsa20. 215 keystreams are generated according to the

different input keys of 256-bit length. Each is related to ten internal states. One internal

state consists of 512 bits. IV is the concatenation of the input nonce and the sequence

number. In our test, it is chosen as {57, -121 , 9, -62,-105, 60, 1, -10} & {0, 0, 0, 0, 0, 0, 0,

0}, where & indicates concatenation and each number separated by comma is a byte. The

values of the test statistic and the P-values are shown below.

84

Table 5.5 Test Results for Salsa20

Internal

State Number xz P-value

1 0.008030 0 .928598

2 0.008700 0.925686

3 0 .008364 0.927129

4 0 .005190 0.942567

5 0.008252 0.927618

6 0.008017 0.928654

7 0.007110 0.932803

8 0.006595 0.935277

9 0.006992 0 .933361

10 19 .16823 1 .196899E-5

It can be seen from the above that the P-value for the correlation of the last internal

state and the keystream is far less than the significance level, which is 0.0 l in the NIST

test suite. It is not surprising when we look back into the process of keystream

generation.

The four constants in [20] are Co, C 1, Cz, and C3, where Co= (101, 120, 112, 97), Ct =

(110, 100,32, 51), C2 =(50, 45, 98, 121), and C3 = (116, 101,32, 107). If each ofko, kt

and IV is a 16-byte sequence, then

X = (Co, ko, Ct. IV, Cz, kt , C3);

keystream = Salsa20(X)

= X + (final internal state)

Therefore, the correlation between the keystream and the final internal state

significantly depends on X. If IV starts from 0 or other small number, a segment of

continuous zeros will appear in X, resulting a small P-value. If IV is changed to { -84, 38,

-7, -99, 112, 73, -116, 102, -50,-75, 18, 10, 84, -55, 93, -15}, then the last x2 value equals

0.17045 and the corresponding P-value is 0.679709.

Table 5.6 shows the test result for Phelix. 2 15 keystreams are generated according to

85

the different input keys of 256-bit length. There are nine internal states for each

keystream generation process. One internal state consists of288 bits.

Table 5.6 Test Results for Phelix

Internal

State Number x2 P-value

1 0.013279 0.908200

2 0.013104 0.908864

3 0.011896 0.913147

4 0.013117 0.908816

5 0.014341 0.904678

6 0.013360 0.907982

7 0.011528 0.914497

8 0.012151 0.912226

9 0.013619 0.907097

Phelix has 9 states for a keystream: 5 "active" states and 4 "old" states that are only

used in the keystream output function. Therefore, keystreams of 288 (32X9) bits are

generated using a fixed randomly chosen IV for each key.

According to the test result, we did not obtain deviations from the expected values as

all of them are much higher than the significance level 0.0 1.

5.5.3 Internal States Correlation Test

5.5.3.1 Algorithm

The purpose of this test is to evaluate the correlation between internal states generated

from similar IVs. Firstly, key and nonce (for Salsa20, nonce is a part of IV, and for Phelix,

nonce equals IV) are chosen randomly and at each round the internal state is stored. Each

state is of n bits. With incremented values of nonce this procedure is repeated M-1 times .

Therefore, a matrix of size M x n is obtained at the end; each element in this matrix is an

internal state vector. The column weights (number of ones in each column) of the matrix

86

are calculated. Then, the chi-square goodness-of-fit tests are applied. The process of the

sequence generation is very similar to frame correlation sequence generation.

Taking Salsa20 as an example, it has 10 internal states and each is 512 bits. Starting

with an IV of value 0 and repeating the keystream generation by incrementing IV by one

at each time for (2 10 -1) times, we obtain the matrix shown in Figure 5 .12. The column

weights are calculated for the chi-square goodness-of-fit test.

15121

IS[1][10] 1

Figure 5.12 Salsa20 Internal States Matrix

87

Fix IV;

Nonce = 0;

I for Salsa20, nonce is a part of IV; for Phelix, nonce equals IV

Initialize weights w to zero;

for i +- I to m I I m = I 024

if i > 1

IV = IV + 1;

for j +- I ton II n is the number of the states

do

internal_state[i]U] := encryption _round(current_state);

II i is the index for i1h keystream; j is the index for fh state

for j +- I ton

for k +- 1 to L II Lis the size of one internal state

fori+- 1 tom

if internal_state[i]U][k] = 1

w[Lx U-1) + k] := w[Lx U-1) + k] + I;

II group the weights into the selected categories

Chi-square ofGoodness-of-frt test on w ;

Figure 5.13 Internal States Correlation Test Algorithm

5.5.3.2 Experimental Results and Analysis

For the internal states correlation test, m = 210 keystream are generated but ignored. Only

the internal states are stored and form a matrix. Salsa20 has ten internal states while

Phelix has nine. Table 5.7 and 5.8 shows the test results.

88

Table 5.7 Test Results for Salsa20

Internal Table 5.8 Test Results for Phelix

State Number x2 P-value Internal

1 0 .008037 0.9286 State Number x2 P-value

2 0.008920 0.9248 1 0.015103 0.9022

3 0 .008359 0.9272 2 0 .013360 0.9080

4 0.008193 0.9279 3 0.012151 0.9122

5 0.007252 0.9321 4 0.013340 0.9080

6 0 .008030 0.9286 5 0.013465 0.9076

7 0.006932 0.9336 6 0 .010523 0.9183

8 0.006893 0.9338 7 0.012350 0.9115

9 0.006542 0 .9355 8 0 .013514 0.9109

10 0.006992 0.9334 9 0.012380 0.9114

According to the test results, no significant weaknesses are found for either Salsa20

or Phelix as all of them are much higher than the significance level 0.01.

5.6 Conclusions

In this study, we use four of the empirical statistical tests given in the NIST suite

to analyze the randomness of the Salsa20 and Phelix keystreams. Since the test suite did

not consider the relationship between key, IV, internal state and the keystream, we also

applied two novel tests, which are proposed in [50] to examine the ciphers. In addition,

we provide the results of uniform distribution of P-values as well as the proportion of

sequences passing a test.

The experimental results shows that both Salsa20 and Phelix have passed the tests in

NIST, considering that P value less than 0.01 indicate a possible weakness. Significant

deviation is observed in the correlation test for the last internal state (the state after 9

double rounds) and the keystream in Salsa20, but this is easily explained when

considering the cipher structure and it remains to be seen whether this can be exploited

on cryptanalysis. Also, both Salsa20 and Phelix failed the frame correlation test for OFT

test and this may indicate that Salsa20 and Phelix does not satisfy the necessary

properties as the frames generated using consecutive IVs are correlated. However, how

this could be exploited in an attack is an open question.

90

Chapter 6 Conclusions and Future Work

6.1 Summary of Research

In this thesis, we deal with hardware implementations for two stream ciphers proposed

for the eSTREAM project: Salsa20 and Phelix. Both of them are claimed to be suitable

for software and hardware implementation since they are built on a series of simple

operations: 32-bit addition, bitwise addition (XOR) and rotation operations. No S-box is

needed.

Generally speaking, Salsa20 is a hash function in counter mode. The hash function

performs 320 invertible word modifications. Each modification is an XOR operation on

two 32-bit words, or a rotated sum of two 32-bit words. The resulting data block is added

to the original input as the last step to accomplish one keystream generation process for

512 bits. Each data block representing the internal state is of 512 bits. In our design, it is

a 4x4 register or RAM matrix, with 32-bit size for each entry. There is no correlation

between any two 512-bit keystreams.

Considering that the needs of different applications in communication systems

demand different structures for cryptographic algorithms in hardware, we investigated

four different structures for Salsa20: compact ASIC structure, basic iterative ASIC

structure, fast ASIC structure and a compact FPGA structure. An ASIC implementation is

typically faster and more compact compared with an FPGA implementation. However,

FPGA provides flexibility with its configurable logic. In terms of choosing one targeted

device for hardware implementation of a protocol or algorithm or a whole

System-on-Chip (SoC), many factors should be considered, such as time-to-market, chip

area, time to working silicon, cost considerations, etc. In our study, we choose Xilinx

Vertex FPGA for the proposed Salsa20 compact structure because Salsa20 requires

memory to store the original input data as well as the temporary data after each

quarterround function, while FPGAs provide rich on-chip memories, which are designed

for compactness and speed. If properly employed, it can lead to a significant

improvement in the latency of the overall design. A micro-programming controller is

used to replace the traditional finite state machine in the controller. This method

91

translates physical design into programming. Further improvement can be done by simply

adding or modifying the microinstructions. Here, the microinstruction for Salsa20 is of

fixed-length binary digits, which include the read/write enable signal, memory address,

selection signals for the MUXes, and a ready signal to notify other functional blocks to

receive the keystream. They can be mapped to higher programming language easily.

However, since it is a small design, it is unnecessary to do the mapping specification.

The other three structures are designed and synthesized by using 0.18 micron CMOS

technology. Several schemes are used for speed increase or area decrease. For example,

in Salsa20 fast ASIC structure, full pipeline structure has been implemented and each

stage out of twenty consists of one round of Salsa20's encryption process. Each stage is

exactly the same as the Salsa20 basic iterative structure, and controlled by a single central

controller. In the basic iterative structure, parallelism is applied: four quarterround

function blocks in the datapath operate on the four rows or columns of the data matrix

simultaneously and independently. A common reused module in the designs is the adder,

more details could be found in the section 4.2.2, Figure 4.8. The throughput of Salsa20

ranges from 38 Mbps implemented in FPGA requiring 194 CLB slices to 4.8 Gbps

implemented in ASIC requiring the equivalence of 468,160 2-input NAND gates.

The synthesis results illustrate that the throughput to area ratio for Salsa20 compact

FPGA structure is only 0.20. It is an unsurprising small value compared with other

popular stream cipher implementation results. Recalling the original encryption algorithm

and the compact FPGA design of Salsa20, it is obvious that it performs a large number of

invertible modifications, each of which changes one word of the matrix in a sequential

manner. This is the main reason for the lower throughput of the compact structure.

Phelix is a high-speed stream cipher with built-in message authentication code (MAC)

functionality. The same as Salsa20, it is composed of a series of simple operations:

addition modulo 232
, exclusive or, and rotation by a fixed number of bits. There are 5

words that are updated during each round, and 4 "old" words are stored in memory to be

used in the keystream output function. One block that produces one word of keystream

consists oftwo "half-block" functions H.

The H function block is very critical in terms of performance as it is used in four

phases. Since the proposed compact implementation for Phelix aims at compactness, we

92

use a single 32-bit carry ripple adder in the H block and divide the circuit into several

layers of combinational logic separated by latches or registers. The high speed

implementation removes the features that facilitate compactness with the sacrifice of

throughput. Also, it employs the fastest adder we have evaluated.

The other components included in the top level hierarchy are key mixing block,

nonce-expanding block, subkey generator and a buffer to store four old states. Vendor

supported libraries are employed since it is an efficient way to do the implementation by

using the primitives. The throughput of the compact ASIC design for Phelix is 260 Mbps

targeted for 0.18 micron CMOS technology, and the corresponding area is equivalent to

12,366 2-input NAND gates. The high speed implementation achieves a throughput of

1,440.0 Mbps with an equivalent area of 64,200 2-input NAND gates.

To sum up, the proposed designs can be divided by two methods; the first one is

based on the different technologies (FPGA design and ASIC design) and the second one

is based on the implementation schemes, either for compactness or for high speed. The

table below is the comparison of FPGA design's advantages and ASIC design 's

advantages. One's advantage implies the other 's corresponding shortcoming.

Table 6.1 Comparison of FPGA Design and ASIC Design

FPGA Design Advantages ASIC Design Advantages

• No NRE (non recurring expenses) • Less power consumption

• Use of embedded processors, which is • Less area requirement

very difficult to implement in an ASIC • Lower per-unit cost

• Flexibility m the design process • Higher internal clock frequency

(reprogramability)

The advantages and disadvantages of the different schemes are listed below:

• Basic iterative structure

Advantages: The required hardware resources are decremented as only one round of the

cipher. Considered as a basic stage, basic iterative structure is easy to be expanded.

Disadvantages: This architecture has higher register-to-register delay because of the

MUX added in front of the input registers and so we have to either split one clock cycle

into 2 or decrease the frequency.

93

• High speed structure based on full-pipelining

Advantages: This structure has the highest throughput.

Disadvantages: The overall latency of a pipelined structure is slightly lower than in a

non-pipelined equivalent. This is due to the fact that extra registers must be added to the

data path of a pipelined structure. However, in our design, the result of each stage, which

is a basic iterative structure has already been registered. Therefore, there are no extra

registers added.

• Compact structure based on module reuse

Advantages: It decreases the area required, especially when the reused module is a

significant cost in terms of area consumption in the whole design.

Disadvantages: extra multiplexers and other control logics have to be implemented, and

this could decrease the clock frequency.

• Compact structure based on the employment ofFPGA's generic module (e.g. RAM)

Advantages: The rich on-FPGA block RAMs can store more than several lookup table's

worth of memory elements and they are typically have higher densities and faster access

times compared with lookup-table-configured memories. Besides, their timing

characteristics are more predictable.

Disadvantages: In FPGAs with the block RAMs of very big size, it could be a waste to

configure a block RAM for a pure 64 bytes data block.

It is hard to conclude the advantages and disadvantages for the high speed structure

based on faster major functional module (e.g. parallel adder) in a system. But problems

may occur due to the module itself. For example, high speed carry look-ahead adders

may have fan-in and fan-out difficulties, which indicate that the design could have

difficulties to drive a large number of inputs or outputs. For more details of fan-in/fan-out,

refer to [85].

Although stream ciphers are inspired by the one-time pad (OTP) theory, which was

proved to be perfectly secure, stream ciphers make deviation from OTP, since they do not

meet the requirement that the key stream is at least the same length as the plaintext, and

generated completely at random. The keystreams from a stream cipher algorithm are

produced by deterministic generators. Thus, an attacker may be able to recover a part of

secret key or internal state by using the improved distinguishing attack.

94

In our study, we use various statistical tests given in the NIST suite to analyze the

randomness of the Salsa20 and Phelix stream ciphers. They are the frequency test, the

frequency test within a block, the discrete Fourier transform test and the runs test. It is

assumed that the keystreams should be indistinguishable from a random sequence and

secure enough to keep the key and the internal states secret.

Since the test suite did not consider the relationship between key, IV, internal state

and the keystream, we applied two novel tests presented in [50]: keystream/internal states

correlation test and internal states correlation test to examine the ciphers. We also

generate four new types of sequence to look into more possible correlations. They are

key/keystream correlation sequence, IV/keystream correlation sequence, frame

correlation sequence and diffusion sequence.

The experimental results show that both Salsa20 and Phelix keystreams have passed

the tests in NIST. For each experiment, the significance level was fixed at 0.01 , which

implies that, ideally, no more than one binary sequence should be rejected for each

sample of 100 binary sequences evaluated by a statistical test. Deviation is observed in

the correlation test for the last internal state (the state after 9 double rounds) and the

keystream in Salsa20. It is explained in Section 5.4.2. In Section 5.5.1 , the frame

correlation sequences from either Salsa20 or Phelix do not pass the discrete Fourier

transform test. It is not because of the sample size as we have applied multiple lengths

ranging from 2 10 to 220 for this single test. More study is needed in this case to explain the

phenomenon.

6.2 Future Work

Hardware implementation and analysis for new stream ciphers are interesting research

areas and there are many aspects that should be taken into account. Basically, there are

two most important factors to consider: (1) hardware complexity, in FPGA designs,

measured by the number of configurable slices, and in ASIC designs, measured by the

number of standard cell NAND gates; (2) speed or throughput. Although in the

eSTREAM project, the hardware implementations are dedicated for the low end

environment, which indicates that the compactness is the most important consideration,

more studies on the trade-offs between area and speed of the hardware implementation

95

for a chosen cipher is undoubtedly necessary since the ultimate goal is wide spread

adoption.

Another potential future work is the cipher co-design based on FPGAs. As we know,

FPGAs provide a very flexible platform for cipher implementations. The high speed 110

interface, embedded IP cores, block RAMs, and especially the configurable

microprocessor like Xilinx's MicroBiaze form a suitable environment for

hardware/software co-designs of cryptographic systems. Unlike sheer software

implementation or hardware implementation, co-design is a relatively new area. Since

traditional design methodologies are not adequate to address the co-design challenges,

people often fall into pitfalls when they try to gain the advantages of both while

neglecting the communication between them and a proper mapping process to divide the

cryptographic system into software part and hardware part. To implement a cipher

efficiently by using co-design methodology, the bottlenecks of both software and

hardware should be taken into account. Moreover, additional analysis on programming

techniques may be helpful for the overall performance.

The randomness of pseudorandom sequences could be evaluated by using statistical

tests. The NIST suite provides a relatively comprehensive collection of generic tests. We

only used four of them. It typically spans more properties that a good cryptographic

algorithm should satisfy by applying the whole suite. These properties include any

detectable correlation between plaintext/ciphertext pairs, any detectable bias due to single

bit changes to either a plaintext or a 128-bit key, in addition to many others. The NIST

suite has ignored the internal structures of stream ciphers. Statistical tests taking the

internal structure, key or IV loading phases into account are very limited compared with

sole keystream tests. The correlations between key, IV, internal state and keystream are

important factors in the design of a stream cipher since availability of the keystream and

IV should not leak any information about the internal state or secret key. More attention

could be paid in this area.

96

- -··--

Reference

[I] 44 U.S.C § 3542 (b)(!) (2006), available at

http:/ /www.law.cornell.edu/uscode/html/uscode44/usc _sec_ 44 _ 00003 542----000-.html

[2) A. Beaumont-Smith and C. Lim. Parallel prefix adder design. Proc. 15th IEEE Symposium on

Computer Arithmetic, pages 218- 225, 200 I.

[3] A. Booth, A signed binary multiplication technique, Quarterly Journal of Mechanics and

Applied Mathematics (1951), pp. 236-240.

[4] A. Chandrakasan and R. Brodersen. Low-Power CMOS design. IEEE Press, 1998.

[5] A. Klimov, A. Shamir (2003). "Cryptographic Applications ofT-functions", Selected Areas in

Cryptography, SAC 2003, LNCS 3006: 248-261, Springer-Verlag.

[6] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, pp.3- 5,

CRC Press, 1996.

[7] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, pp.43- 45,

CRC Press, 1996.

[8] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D.

Banks, A. Heckert, J. Dray, and S. Yo. A statistical test suite for random and pseudorandom

number generators for cryptographic applications. 200 I. http://www.nist.gov.

[9] ALTERA, ASIC to FPGA Design Methodology & Guidelines, July 2003, ver. 1.0

[10) Abraham Sinkov, Elementary Cryptanalysis : A Mathematical Approach, The Mathematical

Association of America, 1966. ISBN 0-88385-622-0.

[II] Auguste Kerckhoffs, La cryptographie militaire, Journal des sciences militaires, vol. IX, pp.

5- 38, Janvier 1883, pp. 161-191, Fevrier 1883.

[12] B. Parhami, "Computer Arithmetic: Algorithms and Hardware Designs", Oxford University

Press, 2000.

[13] B. Schneier, J . Kelsey, D. Whiting, D. Wagner, C.Hall, N. Ferguson, The Twofish Encryption

Algorithm: A 128-Bit Block Cipher," John Wiley & Sons, April 1999, ISBN: 0471353817.

[14] B. W. Bomar, "Implementation of Microprogrammed Control in FPGAs", IEEE Transactions on

Industrial Electronics, vol. 49, pp. 415-422, April, 2002.

[15] C. Rechberger. Side channel analysis of stream ciphers. Master 's thesis, Institute for Applied

Information Processing and Communications (IAIK), Graz University of Technology,

Inffeldgasse 16a, A-801 0 Graz, Austria, 2004.

[16] C.D. Walter, Systolic modular multiplication, IEEE Transactions on Computers 42 (1993) (3),

pp.376-378

[17] Chen, Y., Hai Li, Roy, K., Chena-Kok Koh, Cascaded carry-select adder (C/sup 2/SA): a new

97

structure for low-power CSA design, Low Power Electronics and Design, 2005. ISLPED

apos;05. Proceedings of the 2005 International Symposium on Volume , Issue , 8-10 Aug. 2005

Pages 115 - 118

[18] Chris Chatfield, Statistics for Technology: A Course in Applied Statistics, Second Edition,

Chapman & HaiVCRC publishers, 1978.

[19] Claude E. Shannon and Warren Weaver: The Mathematical Theory of Communication. The

University of Illinois Press, Urbana, Illinois, 1949. ISBN 0-252-72548-4

[20] D. Bernstein, "The Salsa20 Stream Cipher", presented at Symmetric Key Encryption Workshop,

Aarhus, Denmark, May, 2005. Also available at www.ecrypt.eu.org/strearnlsalsa20.html.

[21] D. Coppersmith, S. Halevi, and C. S. Jutla. Cryptanalysis of stream ciphers with linear masking.

In CRYPTO, pages 515- 532, 2002.

[22] D. Whiting, B. Schneier, and S. Lucks , "Phelix- Fast Encryption and Authentication in a Single

Cryptographic Primitive", presented at Symmetric Key Encryption Workshop, Aarhus, Denmark,

May, 2005. Also available at www.ecrypt.eu.org/stream/phelixp2.html.

[23] David R. Smith, Digital Transmission Systems, Third Edition, Kluwer Academic Publishers,

2004.

[24] Donald Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, Third

Edition. Addison-Wesley, 1997. ISBN 0-201-89683-4. Section 1.2.11: Asymptotic

Representations, pp.l 07-123.

[25] E. F. Brickell, A survey of hardware implementation of RSA. In: G. Brassard, Editor, Advances

in Cryptology, Proceedings of CRYPT0'98, Lecture Notes in Computer Science vol. 435,

Springer-Verlag (1989), pp. 368-370.

[26] Frederic Muller, Differential Attacks against the Helix Stream Cipher, FSE 2004, pp94-108

[27] G.J. Simmons, editor. Contemporary Cryptology, The Science of Information Integrity. IEEE,

New York, 1992.

[28] G.S. Vemam. Cipher printing telegraph systems for secret wire and radio telegraphic

communications. J. Am. lnst. Elec. Eng., 55: I 09-115, 1926.

[29] Guido Bertoni!, Luca Breveglieril, Pasqualina Fragneto, Marco Macchetti,and Stefano

Marchesin, "Efficient Software Implementation of AES on 32-Bit Platforms," in Cryptographic

Hardware and Embedded Systems- CHES 2002, pp. 159-171, B.S. Kaliski Jr., .K. Ko, C. Paar.

[30] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, "The Sorcerer's Apprentice

Guide to Fault Attacks," Cryptology ePrint Archive, Report 2004/10, 2004.

[31] H. Englund and T. Johansson. A new simple technique to attack filter generators and related

ciphers. In Selected Areas in Cryptography, pages 39-53, 2004.

[32] H. Lipmaa, J. Wallen, P. Dumas, On the Additive Differential Probability of Exclusive-Or," Fast

Software Encryption 2004 (B. Roy, W. Meier, eds.), vol. 3017 of LNCS, pp. 317-331,

98

---------------------------- ------

Springer-Verlag, 2004.

[33] H. Lipmaa, S. Moriai, Efficient Algorithms for Computing Differential Properties of Addition,"

FSE 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 336-350, Springer-Verlag, 2002.

[34] Homepage for the eSTREAM project: www.ecrypt.eu.org/stream

[35] Hongjun Wu and Bart Preneel, "Differential-Linear Attacks against the Stream Cipher Phelix",

available at http://www.ecrypt.eu.org/stream/phelixp2.html

[36] 1. Gonzalez! , F.J. Gomez-Arribas, Ciphering algorithms in MicroBiaze-based embedded

systems, lEE Proceedings - Computers and Digital Techniques -- March 2006 -- Volume 153,

Issue 2, p. 87-92

[37] J. Wallen, Linear Approximations of Addition modulo 2n, Fast Software Encryption 2003 (T.

Johansson, ed.), vol. 2887 ofLNCS, pp. 261-273, Springer-Verlag, 2003.

[38] J.J. Hoch and A. Shamir, Fault analysis of stream ciphers, In Marc Joye and Jean-Jacques

Quisquater, editors, Chryptographic Hardware and Embedded Systems -CHES 2004, volume

3156 of LNCS, pages 240- 253. Springer-Verlag, 2004.

[39] John Waldron, Introduction to RISC Assembly Language Programming, Addison Wesley, 1998.

ISBN 0-201-39828-1

[40] K. Hamano, F. Satoh, and M. Ishikawa, "Randomness test using discrete Fourier transform,"

Technical Report 6841 , Technical Research and Development Institute, Japan Defense Agency,

Sept. 2003.

[41] K. Rawwat, T. Darwish, and M. Bayoumi, A low power carry select adder with reduces area,

Proc. Of Midwest Symposium on Circuits and Systems, pp. 2 18-221 , 2001.

[42] Kai Lai Chung, Elementary Probability Theory with Stochastic Processes.New York:

Springer-Verlag, 1979.

[43] Kumar S., Lemke K., Paar C. , Some thoughts about Implementation properties of stream

ciphers, SASC2004, 14-15.10.2004

[44] L. Batina, J. Lano, N. Mentens, B. Preneel, I. Verbauwhede, "Energy, Performance, Area versus

Security Trade-offs for Stream Ciphers," In ECRYPT Workshop, SASC- The State of the Art of

Stream Ciphers, pp. 302-310, 2004

[45] L. Wu, C. Weaver, T. Austin, " CryptoManiac: A Fast Flexible Architecture for Secure

Communication", Proceedings of 28th Annual International Symposium on Computer

Architecture, 2001.

[46] M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions, Applied Mathematics

Series. Vol. 55, Washington: National Bureau of Standards, 1964; reprinted 1968 by Dover

Publications, New York.

[47] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, 0. Koufopavlou, and C.E. Goutis

"Comparison of The Hardware Architectures and FPGA Implementations of Stream Ciphers ",

99

In proceeding of 11th IEEE International Conference on Electronics, Circuits and Systems,

(ICECS 2004), Tel-Aviv, Israel, December 13-15, 2004.

[48] M. Kakumu and M. Kinugawa, "Power-supply voltage impact on circuit performance for half

and lower submicrometer CMOS LSI," IEEE Trans. Electron Devices, vol. 37, no. 8, pp.

1902-1908, Aug. 1990.

[49) Maurice Kilavuka Inuani and Jonathan Saul, Technology mapping of heterogeneous LUT-based

FPGAs, In Luk et al. [LCG97], pages 223- 234.

[50] Meltem Sonmez Turan, Ali Doganaksoy, Cagdas Calik, Statistical Analysis of Synchronous

Stream Ciphers, eSTREAM, ECRYPT Stream Cipher Project, 2005.

www.ecrypt.eu.org/stream/papersdir/2006/0 12. pdf

[51] Michael Garey, and David S. Johnson: Computers and Intractability: A Guide to the Theory of

NP-Completeness. New York: W. H. Freeman & Co., 1979.

[52] MicroBlaze Hardware Reference Guide, Xilinx User Guide, available from the Xilinx website

support.xilinx.com, March 2002.

[53) Morioka, S. and Satoh, A., A IOGbps Full-AES Crypto Design With a Twisted BDD S-Box

Architecture, IEEE Tran. on VLSI Systems, Vol. 12, No.7, July 2004, pp 686-691.

(54) Nick Sawyer, Word Alignment and SONET/SDH Deframing, Xilinx applicat ion notes, available

at http://direct.xilinx.com/bvdocs/appnotes/xapp652.pdf

[55] Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks and Tadayoshi

Kohno, Helix: Fast Encryption and Authentication in a Single Cryptographic Primitive, Fast

Software Encryption- FSE 2003, pp330-346

[56) Niels Ferguson, Richard Schroeppel, Doug Whiting (2001). "A simple algebraic representation

of Rijndael". Proceedings of Selected Areas in Cryptography, 200 I, Lecture Notes in Computer

Science: pp. 103- 111, Springer-Verlag. Retrieved on 2006-10-06.

[57] 0. Staffelbach, W. Meier, Cryptographic Significance of the Carry for Ciphers Based on Integer

Addition," Crypto '90 (A. Menezes, S. A. Vanstone, eds.), vol. 537 of LNCS, pp. 601-614,

Springer-Verlag, 1991.

[58] P. Crowley: "Truncated Differential Cryptanalysis of Five Rounds of Salsa20," SASC 2006 -

Stream Ciphers Revisited, Workshop Record, pp. l98-202, 2006. Available at

http://www.ecrypt.eu.org/stvl/sasc2006/

[59] P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis," technical report, 1998; later published

in Advances in Cryptology - Crypto 99 Proceedings, Lecture Notes In Computer Science Vol.

1666, M. Wiener, ed., Springer-Verlag, 1999.

[60] Patrick Schaurnont and Ingrid Verbauwhede, "Hardware/software codesign for stream ciphers",

presented at Symmetric Key Encryption Workshop, January, 2007. Also available at

http://www.ecrypt.eu.org/stream/hw.htrnl

100

[61] Quist, Arvin S. (2002). Security Classification of Information, Volume I. Introduction, History,

and Adverse Impacts. Oak Ridge Classification Associates, LLC. Retrieved on 2007-01-11.

[62] R. Hashemian, "A New Design for High Speed and High-Density Carry. Select Adders", 43. rd.

Midwest Symposium on Circuits and Systems,. Lansing, Michigan, August 8-11, 2000.

[63] Ruby B. Lee, Xiao Yang, and Zhijie Shi, Validating Word-Oriented Processors for Bit-level

Permutations and Multi-word Operations in Pervasive Secure Computing Paradigms, Princeton

University Department of Electrical Engineering Technical Report CE-L2002-004, November

2002.

[64] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications, IEEE Press,

New York, 1994.

[65] Satoh, A., Morioka, S., Takano, K., and Munetoh, S., A Compact Rijndael Hardware

Architecture with S-Box optimization," Asiacrypt 200 I, LNCS 2248, pp.239- 254, 200 I

[66] Simon Fischer, Willi Meier, C?me Berbain, Jean-Francois Biasse, Matt Robshaw,

Non-Randomness in eSTREAM Candidates Salsa20 and TSC-4, lndocrypt 2006

[67] Steven Brown, Rovert Francis, Johnathan Rose, and Zvonko Vranesic. Field Programmable

Gate Arrays. Kluwer Academic Publishers, 1992

[68] T. Good, W. Chelton, M. Benaissa, Review of stream cipher candidates from a low resource

hardware perspective, available at www.ecrypt.eu.org/stream/papersdir/2006/0 16.pdf

[69] VLSI Computer Architecture, Arithmetic, and CAD Research Group - Department of Electrical

Engineering, liT, Chicago, IL. liT Standard Cells for AMI 0.5um and TSMC 0.25um/0.18urn

(Version 1.6.0), 2003.

[70] W. Stallings, Cryptography and Network Security Principles and Practices, Prentice Hall press,

third edition, 2003.

[71] W. Stallings, Data and Computer Communications, 8th Edition, Prentice Hall, 2007.

[72] W. Stallings, "The Advanced Encryption Standard", CRYPTOLOGIA, Volume XXVI, NO. 3,

July 2002.

[73] Whitfield Diffie and Martin Hellman, New Directions in Cryptography, IEEE Transactions on

Information Theory, vol. IT-22, Nov. 1976, pp: 644-654.

[74] Xilinx Inc., San Jose, Calif., "Design Tips for HDL Implementation of Arithmetic Functions,"

2000, www.xilinx.com.

[75] Xilinx Inc., San Jose, Calif., "Virtex, 2.5 V Field Programmable Gate Arrays," 2003,

www.xilinx.com.

[76] Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-Gorre Verlag, 1992.

[77] Y. Kim and L-S Kim, .64-bit carry-select adder with reduced area,. Electronics Letters, vol. 37,

pp. 614-615, May 2001

[78] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki and Hiroki Nakashima,

101

"Differential Cryptanalysis of Salsa20/8". Available at

http:/ /www.ecrypt.eu.org/strearn/papersdir/2007 /01 0. pdf

[79] Z. Navabi, VHDL analysis and modeling of digital systems, McGraw-Hill press, second edition,

1998.

[80] Thomas Beth and Fred Piper, The Stop-and-Go Generator. EUROCRYPT 1984, p88-92.

[81] http://en.wikipedia.org/wiki/Padding (cryptography)

[82] S. Vanstone , A. Menezes, P. van Oorschot, Handbook of Applied Cryptography, pp.425, CRC

Press, 1996.

[83] Adam Osborne, An Introduction to Microcomputers Volume 1 Basic Concepts,2nd Edition,

Osborne-McGraw Hill, Berkely California, 1980, ISBN 0-931988-34-9 pgl-1

[84] A.Th. Schwarzbacher and J.P. Silvennoinen and P.A. Comiskey, Benchmarking CMOS Adder

Structures, Irish Systems and Signals Conference, Cork, Ireland, pp. 231-234, June 2002.

[85] E. Andrew Parr, The Logic Designer's Guidebook, NY: McGraw-Hill 1984, pp. 21.

102

.----------------------------- ------ --- ----

Appendix A: Selected Simulations Results for

Phelix

The simulation results were obtained from both fast and compact structures. The values
of the parameters for them are chosen differently, but the input length is the same. That is,
64 bytes of the plaintext, 32 bytes of the inputkey and 16 bytes of the nonce.

Phelix fast
plaintext :
30379186 a409778e alf4al93 adcbc457 8064el17 611ef4db 89764619 7e06d964
a530c522 fa9ea710 12461967 d023bde7 9c28d69b 6579d4d1 160ce27 13d46583
inputkey:
eb840c37 e6b27430 550ca430 789b6a0e 7e498f2f 68dcd5fc cce57a89 a5ea440f
nonce :
f9d2067f c9022dad cabd09cd e00f8d36
workingKey :
c6a2c00d f4 7a93b7 a2b77454 43db9eb0 7cccd425 6934d90d 38c5b13f 2ac7d22e
keys t ream :
edd8c447 a8232241 445483d 0 33be954d 6884f7 6b 9534e74c 4c3528b3 f39835af
6d1ae1dc 9bb a4759 1af428dc 7f56fbd6 8b9b9044 c7a8a9e 54a8092c 566e2940

' pheb)•~'~" - 10 ~-~ - --- ------- --- -- -- -·-·-·-
' phelix_l•~/c~ n I I 111 1, , I I I Ill 111 Ill I I I' I

ID- ph~-~~~l..'tc)':.tle~ (.384F7GE • :.

1

. 1 ~~ :~ .l) 1 ~ ~ • 1 • J ~ '1) •· • 1 •) , ~ 1 1 ~ f ~ • • • ; .. ~ 1.1

9-/ pheli>i_fo-.fll 1J 1 ___ ~11_,, _ __j_I'--~J ___ I~____)~I· ___ jJL_____;l __ "~'--

Phelix_compact
plain text :
5007fc86 1a0ea26b dc20138 1bbe0e0d 45dc22b5 bcfa2acf a1b16166 dca89b47
3ad67e03 5d1b9ad6 7b689ee9 b68f8426 828097b7 a8f3d351 b663478a bb5ea400
input key :
4dc4ee80 b9b95ddb e9605b1f 717bdb6b 28302ad6 25bff123 3ce75d00 5eb17d3
nonce:
19a2717f 3f07588b 368a6972 4e01d6ec
worki ngKey :
df9d8059 3b f6d9d6 ee1 964bd 4a63c4d8 d 173df6 2f531cad 7accd1 4d ad571d89
keystream :
32lfc2fd f8e20829 f da9a5f0 36a34711 862 73386 f46f35ff 696e2c7d a709c98
e3cb5475 86809de0 6339d67f 491852f4 810f728 d9c5ee3b 1d6b4a64 83f0f5ca

103

--

Appendix B: Selected Simulations Results for

Salsa20

Simulation results obtained from various structures are given. Either the nonce or the
sequence number consists of 8 bytes. The keystream shown in the waveform is the result
of one encryption process, which generates a 64-byte data block.

Salsa20_asic_compact
Nonce & SequenceNumber: 4 d1 ed 1c 79 71 4e 44 ae e9 32 6a 3b 10 51 87
Key : ac Be 29 92 Sb 73 Be 2c 58 9c ca 83 ed 42 69 81 fd 10 82 fc ff 22 Sa
d3 b8 45 bd d2 ff 77 4f 7f
Keystream: c2e0f0ca 24531958 5918e6b6 79538b0 2d285da 6240c8dc 39dba208
889ce2f2 d465d35c ea22076 f2c45a64 f90421fa a6b445fe a57a8b70 fe9eeffe
d640cae8

Salsa20 asic fast
Nonce & SequenceNumber : f7 f aS 2e 39 56 29 d9 4f 4c 69 1b 96 f6 f2 a7
Key : Sa 85 56 52 bd d9 69 dO 62 6 44 e6 fe 65 62 cd b7 66 7a b7 a6 c2 af a4
b4 f7 86 38 ed e3 66 81
Keystream : c2e0f0ca a4ad0ab4 a0d3b37a cc880cc4 9ac4cbfc 6240c8dc 5d501fee
b252ac72 36d2989e 4fe5ed2c f2c45a64 6ef4cd6e 495f854c 710def68 2cdc7da
d640cae8

Salsa20 asic basic iterative - - -
Nonce & SequenceNumber : ab 86 3a 41 6e a9 aO 84 d7 40 44 f7 23 bb 5 5 2
Key : 7b ed 4b 3 77 48 fd 7f Sb e fO fO 15 7d dB a6 e6 ac 57 29 55 cf fa 2b
9b 1e 22 0 8c db 96 58
Keystream : c2e0f0ca 697daf6 fffa90ee ele01cb6 4db0fa2a 6240c8dc 82750d56
94152dc ee888 1ae a40b7646 f2c45a64 52af59cc 57f59eaa 443d36 b12db718 d640cae8

104

Salsa20_FPGA_compact

Nonce & SequenceNumber: a9 d5 6f 23 93 bb 6f 7b 5d 7d bO 89 c7 4a 4b 4
Key: d1 ab 62 aO 57 11 d5 3 ba 13 4b 82 11 9 dB ed ba 11 23 lb 70 66 2 9 41
51 b9 b8 ee c8 e4 a1 56
Keystream : c2e0f0ca 40c557a2 7aa22ae 4962774 dbb01222 6240c8dc 46dfab52
f6df7726 1360faba 896958e f2c45a64 36462374 8252cce0 dd71 7 2a2 ad43c 99 0
d640cae8

Appendix D: Selected Source Code for Phelix

library IEEE;
use IEEE. std_logic_1164.all;

package mypackage is

type byte_vector is array (natural range <>) of bit_vector(7 downto 0) ;
type word_vector is array (natural range <>) of bit_vector(31 downto 0) ;
type word_vector_std is array (natural range <>) of std_logic_vector(31 downto 0)

function bv2slv (b:bit_vector) return std_logic_vector;

end mypackage;

package body mypackage is

function bv2slv (b:bit_vector) return std_logic_vector is
variable result : std_logic_vector(31 downto 0);

begin
for i in 0 to 31 loop

case b (i) is
when '0' => result (i) := '0';
when ' 1' => result(i) : = '1' ;

end case;
end loop;

105

return result;
end;

end mypackage;

library IEEE;
use IEEE.STD_LOGIC_ll64.All;

entity KSadder is
generic (size : natural := 32) ;
port (A, B : in Std _Logic_ Vector (size -1 down to 0) ;
sum : out Std _Logic_ Vector (size -1 down to 0) ;
Cout : out Std _Logic) ;
end KSadder ;

architecture structural of KSadder is
-- G(i)U), P(i)U) : "group Generate", "group Propagate". i =group left position, j =group
right position
type Tr is array (size -1 downto 0) ofStd_Logic_ Vector (size -1 downto 0) ;
signal G, P : Tr ;

procedure half_adder
(signal G, P: out Std_Logic; signal A, B: in Std_Logic) is
begin G <=A and B; P <=A xor B; end half_ adder;

procedure BK
(signal GO, PO: out Std_Logic; signal Gil, Pll , GI2, PI2: in Std_Logic) is
begin GO <=Gil or (Pll and GI2); PO <= Pll and PI2; end BK;

function koggestone (i , j : integer) return integer is
variable p : integer ;
begin
p :=2;
while p <= i - j loop
p := p + p;
end loop;
if j = 0 or i - j + 1 = p then
return i + 1 - p/2 ;
else
return 0;
end if ;
end koggestone ;

begin

-- "half adder" cells row
half adders : for i in size -1 downto 0 generate

106

half_adder(G(i)(i), P(i)(i), A(i) , B(i)) ;
end generate half_ adder _row ;

--operator
for_ i : fori in size -1 downto 1 generate
for j : for j in i -1 downto 0 generate
if_ kg : if koggestone (i, j) > 0 generate
BK(G(i)G), P(i)(j), G(i)(koggestone(i, j)), P(i)(koggestone(i, j)), G(koggestone(i, j) -1)(j),
P(koggestone(i, j) -1)(j)) ;
end generate if_kg;
end generate for j ;
end generate for_ i ;

Cout <= G(size -1)(0) ;
-- "XOR" gates row
XOR row : for i in size -1 downto I generate
Sum(i) <= P(i)(i) xor G(i -1)(0) ;
end generate XOR_row;
Sum(O) <= P(O)(O) ;

end structural ;

-- H block for high speed

library IEEE;
use IEEE. std_logic_ll64.all;
use IEEE. std_logic_unsigned.all;

entity h_block is
port (elk, rst, start in std_logic;

zi nO in std_logic_vector(31 downto 0);
zinl in std_logic_vector(31 downto 0);
zi n2 in std_logic_vector(31 downto 0);
zin3 in std_logic_vector(31 downto 0);
zin4 in std_logic_vector(31 downto 0);
xi nO in std_logic_vector(31 downto 0);
xinl in std_logic_vector(31 downto 0);
zoO out std_logic_vector(31 downto 0) ;
zol out std_logic_vector(31 downto 0) ;
zo2 out std_logic_vector(31 downto 0) ;
zo3 out std_logic_vector(31 downto 0) ;
zo4 out std_logic_vector(31 downto 0)

) ;

end h_block;

architecture rtl of h_block is
signal ziO, z_lO, z_20, z_30, z_40,

zi l, z_ll, z_21, z_31, z_4 1,

107

zi2, z_12, z_22, z_32, z_42,
zi3, z_13, z_23, z_33, z_43, z_53, z_63,
zi4, z_14, z_24, z_34, z_44,
xO, x1

std_logic_vector(31 downto 0) ;
- - six adders, six useless cout
signal coutO, coutl, cout2, cout3, cout4, cout5
: std_logic;
signal flag : integer := 0;
component Ksadder

generic (size: natural:= 32) --size: Number of bits
port (A, B: in Std_Logic_Vector size -1 downto 0) ; -- A,B: addends
S : out Std_Logic_Vector (size - 1 downto 0) ; -- S: Sum;
Cout : out Std_Logic) ; - - carry out

end component ;

-- left rotation
function lrotate(din : std_logic_vector(31 downto 0);

n : integer)
return std_logic_vector is
variable dout: std_logic_vector(31 downto 0);
begin

dout := din((31 - n) downto 0) & din(31 downto (32-n));
return dout;

end lrotate;

begin
ziO <= zinO when flag = 0;
zi1 <= zin1 when flag = 0;
zi2 <= zin2 when flag = 0;
zi3 <= zin3 when flag = 0;
zi4 <= zin4 when flag = 0;
xO <= xinO when flag = 0;
x1 <= xinl when flag = 0;

z_13 <= zi3 xor xO;
add_z_lO: KSadder port map (ziO, z_13, z_10, coutO);
z_23 <= lrotate (zi3, 15);
add_z_ll: KSadder port map (zi1, zi4, z_ll, coutl) ;
z_14 <= lrotate (zi4, 25);
z_12 <= zi2 xor z_lO;
z_20 <= lrotate (z_lO, 9) ;
z_33 <= z_23 xor z_11 ;
z_21 <= lrotate (z_11, 10);
add_z_24: KSadder port map (z_14, z_12, z_24, cout2);
z_22 <= lrotate (z_12, 17);

add_z_13: KSadder port map (z_33, x1, z_13, cout3) ;
z_30 <= z_20 xor z_43;
z_53 <= lrotate (z_33, 30) ;

108

z_31 <= z_21 xor z_24;
z_34 <= lrotate (z_24, 13);
add_z_32: KSadder port map (z_22, z_30, z_32, cout4);
z_40 <= lrotate (z_30, 20);
add_z_63: KSadder port map (z_53, z_31, z_63, cout5);
z_41 <= lrotate (z_31, 11);
z_44 <= z_34 xor z_32;
z_ 42 <= lrota te (z_32, 5) ;

syn_in: process (rst, elk, start)
begin

if (rst = ' 1') then
flag <= 0;

elsif (elk=' 1' and elk' event) then
if (flag= 0 and start=' 1') then

flag <= 1;
else

flag <= 0;
end if;

end if;
end process syn_in;

syn_out: process (elk, flag)
begin

if (elk = ' 1' and elk' event) then
if (flag= 1)then

output registers
zoO <= z_40;
zo1 <= z_41;
zo2 <= z_42;
zo3 <= z_63;
zo4 <= z_44;

end if ;
end if;

end process syn_out ;

end rtl;

-- H block for compactness
library ieee;
use ieee. std_logic_l164.ALL;

entity H_func_dp is
port (kO in std _logic_ vector

k1 in std_logic_vector
lsO in std_logic;
ls1 in std_logic ;
ls2 in std_logic;
ls3 in std_logic;
ls4 in std_logic;

(31
(31

down to 0) ;
down to 0) ;

109

ls5 in std_logic;
ls6 in std_logic;
mux - sel in std_logic_vector (2 downto 0) ;
wOO in std_logic_vector (31 down to 0) ;
w01 in std_logic_vector (31 down to 0) ;
w02 in std_logic_vector (31 down to 0) ;
w03 in std_logic_vector (31 down to 0) ;
w04 in std_logic_vector (31 down to 0) ;
w40 out std_logic_vector (31 down to 0) ;
w41 out std_logic_vector (31 down to 0) ;
w42 out std_logic_vector (31 down to 0) ;
w43 out std_logic_vector (31 down to 0) ;
w44 out std_logic_vector (31 down to 0)) ;

end H_func_dp;

architecture BEHAVIORAL of H_func_dp is
signal ainO std_logic_vector (31 down to 0) ;
signal ain1 std_logic_vector (31 down to 0) ;
signal aout std_logic_vector (31 down to 0) ;
signal kO_in std_logic_vector (31 down to 0) ;
signal wOO_in std_logic_vector (31 down to 0) ;
signal w01 in std_logic_vector (31 down to 0) ;
signal w02_in std_logic_vector (31 down to 0) ;
signal w03_in std_logic_vector (31 down to 0) ;
signal w03 xor_kO std_logic_vector (31 down to 0) ;
signal w04 in std_logic_vector (31 down to 0) ;
signal w10 std_logic_vector (31 down to 0) ;
signal wll std_logic_vector (31 down to 0) ;
signal w12 std_logic_vector (31 down to 0) ;
signal w13 std_logic_vector (31 down to 0) ;
signal w14 std_logic_vector (31 down to 0) ;
signal w20 std_logic_vector (31 down to 0) ;
signal w21 std_logic_vector (31 down to 0) ;
signal w22 std_logic_vector (31 down to 0) ;
signal w23 std_logic_vector (31 down to 0) ;
signal w23 - add_k1 std_logic_vector (31 down to 0) ;
signal w24 std_logic_vector (31 down to 0) ;
signal w30 std_logic_vector (31 down to 0) ;
signal w31 std_logic_vector (31 down to 0) ;
signal w32 std_logic_vector (31 down to 0) ;
signal w33 std_logic_vector (31 down to 0) ;
signal w34 std_logic_vector (31 down to 0) ;
signal w40 - in std_logic_vector (31 down to 0) ;
signal w41 in std_logic_vector (31 down to 0) ;
signal w42_in std_logic_vector (31 down to 0) ;
signal w44_in std_logic_vector (31 down to 0) ;
signal XLXN_21 std_logic_vector (31 down to 0) ;
component latch

port (gate in std_logic;

110

din in std_logic_vector (3 1 down to 0) ;
dout out std_logic_vector (31 down to 0)) ;

end component;

component mux_6to1
port (iO in std_logic_vector (31 down to 0) ;

i 1 in std_logic_vector (31 down to 0) ;
i2 in std_logic_vector (31 down to 0) :
i3 in std_logic_vector (31 down to 0) ;
i4 in std_logic_vector (31 down to 0) :
i5 in std_logic_vector (31 down to 0) :
s in std_logic_vector (2 downto 0) ;
q inout std_logic_vector (31 downto 0)) ;

end component;

component rot15
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) :
end component:

component rot25
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component adder_predefined
port (A in std_logic_vector (31 down to 0) ;

B in std_logic_vector (31 down to 0) ;
s out std_logic_vector (31 down to 0)) :

end component;

component rot9
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component rot10
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component rot17
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) :
end component;

component rot30
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;

Ill

end component;

component rot13
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component rot20
port (din in std_logic_vector (31 downto 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component rot11
port (din in std_logic_vector (31 down to 0) ;

dout out std_logic_vector (31 down to 0)) ;
end component;

component rot5
port (din in std_logic_vector (31 downto 0) ;

dout out std_logic_vector (31 downto 0));
end component;

component xor_array
port (a in std_logic_vector (31 down to 0) ;

b in std_logic_vector (31 down to 0) ;
c out std_logic_vector (31 down to 0)) ;

end component;

begin
l atch_w10 latch

port map (din(31 downto O) =>aout(31 downto 0) ,
gate=>lsO,
dout (31 downto O) =>wl0 (31 downto 0)) ;

latch_wll : latch
port map (din(31 downto O) =>aout(31 downto 0),

gate=>ls1,
dout(31 downto O) =>w11(31 downto 0));

latch_w23K1 : latch
port map (din(31 downto O)=>aout(31 downto 0) ,

gate=>ls3,
dout(31 downto O)=>w23_add_kl(31 downto 0)) ;

latch_w32 : latch
port map (din(31 downto O) =>aout(31 downto 0),

gate=>ls4,
dout (31 downto O)=>w32(31 downto 0));

112

mux_ainO : mux_6tol
port map (i0(31 downto O) =>wOO_in(31 downto 0),

il(31 downto O) =>w0l_in(31 downto 0),
i2(31 downto O)=>wl4(31 downto 0),
i3(31 downto O)=>w23(31 downto 0),
i4(31 downto O)=>w22(31 downto 0),
i5(31 downto O) =>w33(31 downto 0),
s(2 downto O) =>mux_sel(2 downto 0),
q(31 downto O)=>ain0(31 downto 0));

mux_ainl : mux_6tol
port map (i0(31 downto O)=>w03_xor_k0(31 downto 0),

il(31 downto O)=>w04_in(31 downto 0),
i2(31 downto O)=>w12(31 downto 0),
i3(31 downto O)=>XLXN_21(31 downto 0),
i4(31 downto O)=>w30(31 downto 0),
i5(31 downto O)=>w31(31 downto 0),
s(2 downto O)=>mux_sel(2 downto 0),
q(31 downto O)=>ainl(31 downto 0));

XLXI_83 : rotl5
port map (din(31 downto O)=>w03_in(31 downto 0),

dout(31 downto O) =>wl3(31 downto 0));

XLXI_84 rot25
port map (din(31 downto O)=>w04_in(31 downto 0),

dout(31 downto O)=>wl4(31 downto 0));

XLXI_86 : adder_predefined
port map (A(31 downto O)=>ainl(31 downto 0),

8(31 downto O) =>ain0(31 downto 0),
S(31 downto O)=>aout(31 downto 0));

XLXI_ll5 : rot9
port map (din(31 downto O)=>wl0(31 downto 0),

dout(31 downto O)=>w20(31 downto 0));

XLXI_ll7 : rotlO
port map (din(31 downto O) =>wll(31 downto 0),

dout(31 downto O) =>w21(31 downto 0));

XLXI_l30 : latch
port map (din(31 downto O)=>aout(31 downto 0),

gate=>ls2,
dout(31 downto O) =>w24(31 downto 0));

XLXI_l31 : rotl7
port map (din(31 downto O)=>wl2(31 downto 0),

dout(31 downto O)=>w22(31 downto 0));

113

XLXI_134 : rot30
port map (din(31 downto O)=>w23(31 downto 0),

dout(31 downto O)=>w33(31 downto 0));

XLXI_136 : rot13
port map (din(31 downto O)=>w24(31 downto 0),

dout(31 downto O) =>w34(31 downto 0));

XLXI_138 : rot20
port map (din(31 downto O)=>w30(31 downto 0),

dout(31 downto O)=>w40_in(31 downto 0));

XLXI_142 : rotll
port map (din(31 downto O)=>w31(31 downto 0),

dout(31 downto O)=>w41_in(31 downto 0));

XLXI_l44 : rot5
port map (din(31 downto O)=>w32(31 downto 0),

dout(31 downto O)=>w42_in(31 downto 0));

latch_winO : latch
port map (din(31 downto O)=>w00(31 downto 0),

gate=> ls5,
dout(31 downto O)=>wOO_in(31 downto 0));

latch_winl : latch
port map (din(31 downto O) =>w01(31 downto 0),

gate=> ls5,
dout(31 downto O) =>wOl_in(31 downto 0)) ;

latch_win2 : latch
port map (din(31 downto O) =>w02(31 downto 0),

gate=> ls5,
dout(31 downto O) =>w02_in(31 downto 0)) ;

latch_win3 : latch
port map (din(31 downto O) =>w03(31 downto 0),

gate=> ls5,
dout(31 downto O) =>w03_in(31 downto 0)) ;

latch_win4 : latch
port map (din(31 downto O) =>w04(31 downto 0),

gate=> ls5,
dout(31 downto O) =>w04_in(31 downto 0));

latch_kO : l atch
port map (din(31 downto O) =>k0(31 downto 0),

gate=>ls5,

114

dout(31 downto O)=>kO_in(31 downto 0));

latch_kl : latch
port map (din(31 downto O)=>kl(31 downto 0),

gate=>ls5,
dout(31 downto O)=>XLXN_21(31 downto 0));

XLXI_l57 : latch
port map (din(31 downto O)=>aout(31 downto 0),

gate=>ls6,
dout(31 downto O) =>w43(31 downto 0));

XLXI_l58 : latch
port map (din(31 downto O)=>w42_in(31 downto 0),

gate=>ls6,
dout(31 downto O) =>w42(31 downto 0));

XLXI_l59 : latch
port map (din(31 downto O) =>w44_in(31 downto 0),

gate=>ls6,
dout(31 downto O)=>w44(31 downto 0));

XLXI_l60 : latch
port map (din(31 downto O) =>w4l_in(31 downto 0),

gate=> ls6,
dout(31 downto O)=>w41(31 downto 0));

XLXI_l61 : latch
port map (din(31 downto O)=>w40_in(31 downto 0),

gate=>ls6,
dout(31 downto O) =>w40(31 downto 0));

xor_wlO : xor_array
port map (a(31 downto O) =>kO_in(31 downto 0),

b(31 downto O)=>w03_in(31 downto 0),
c(31 downto O)=>w03_xor_k0(31 downto 0));

xor_wl2 : xor_array
port map (a(31 downto O) =>wl0(31 downto 0),

b(31 downto O)=>w02_in(31 downto 0),
c(31 downto O)=>wl2(31 downto 0));

xor_w30 : xor_array
port map (a(31 downto O)=>w20(31 downto 0),

b(31 downto O)=>w23_add_kl(31 downto 0),
c(31 downto O)=>w30(31 downto 0));

xor_w31 : xor_array
port map (a(31 downto O) =>w21(31 downto 0),

115

b(31 downto O)=>w24(31 downto 0),
c(31 downto O)=>w31(31 downto 0));

xor_w44 : xor_array
port map (a(31 downto O)=>w34(31 downto 0),

b(31 downto O)=>w32(31 downto 0),
c(31 downto O)=>w44_in (31 downto 0));

xor_23 : xor_array
port map (a(31 downto O)=>wl1 (31 downto 0),

b(31 downto O) =>w13(31 downto 0) ,
c(31 downto O)=>w23(31 downto 0));

end BEHAVIORAL;

LIBRARY ieee;
USE ieee. std_logic_1164.all;

ENTITY SHELL_H_CTR IS

END;

PORT (CLK,RESET,start: IN std_logic;
done, lsO, lsl, ls2, ls3, ls4, ls5, ls6,mux_sel0,mux_sell,mux_sel2 OUT st d_l ogic

) ;

ARCHITECTURE BEHAVIOR OF SHELL_H_CTR IS
TYPE type_sreg IS (H_done, idle,wlO_gen,wlO_load,wll_gen,wll_load,w23Kl_gen,

w23Kl_load,w24_gen,w24_load,w32_gen,w32_l oad, w44_gen);
SIGNAL sreg, next_sreg : type_sreg;
SIGNAL ls : std_logic_vector (6 DOWNTO 0);
SIGNAL mux_se l : std_logic_vector (2 DOWNTO 0) ;

BEGIN
PROCESS (CLK, RESET, next_sreg)
BEGIN

IF (RESET=' 1') THEN
sreg <= idle;

ELSIF CLK=' 1' AND CLK'event THEN
sreg <= next_sreg;

END IF;
END PROCESS;

PROCESS (sreg,start)
BEG IN

CASE sreg IS
WHEN H_done =>

done<=' 1' ;
mux_se l <= (std_logic_vector' (H lOlH));

116

ls <= (std_logic_vector' ("1000000"));
next_sreg<=idle;

WHEN idle =>
done<=' 0' ;
mux_sel <= (std_logic_vector' ("000"));
ls <= (std_logic_vector' ("0100000"));
IF (start=' 1') THEN

next_sreg<=w10_gen;
ELSE

next_sreg<=idle;
END IF ;

WHEN wlO_gen =>
done<=' 0' ;
mux_sel <= (std_logic_vector' ("000"));
ls <= (std_logic_vector' ("0000001 "));
IF (start=' 1') THEN

next_sreg<=w10_load;
ELSE

next_sreg<=w10_gen;
END IF;

WHEN w10_load =>
done<=' 0' ;
mux_sel <= (std_logic_vector' ("000"));
ls <= (std_logic_vector' ("0000001"));
IF (start=' 1') THEN

next_sreg<=w11_gen;
ELSE

next_sreg<=w10_load;
END IF;

WHEN w11_gen =>
done<=' 0' ;
mux_sel <= (std_logic_vector' ("001"));
ls <= (std_logic_vector' ("0000010"));
IF (start=' 1') THEN

next_sreg<=w11_load ;
ELSE

next_sreg<=w11_gen;
END IF;

WHEN w11_load =>
done <=' 0' ;
mux_sel <= (std_logic_vector' ("001"));
ls <= (std_logic_vector' ("0000010"));
IF (start=' 1') THEN

next_sreg<=w24_gen;
ELSE

next_sreg<=w11_load;
END IF;

WHEN w23K1_gen =>
done<=' 0' ;

117

mux_sel <= (std_ logic_vector' ("011 ")) ;

ls <= (std_logic_vector' ("0001000"));

IF (start=' 1') THEN

next_sreg<=w23K1_load;

ELSE
next_sreg<=w23K1_gen;

END IF;

WHEN w23K1_load =>
done<=' 0' ;

mux_sel <= (std_logic_vector' ("011"));

ls <= (std_logic_vector' ("0001000"));

IF (start=' 1') THEN

next_sreg<=w32_gen;

ELSE

next_sreg<=w23K1_load;
END IF;

WHEN w24_gen =>
done<=' 0' ;

mux_sel <= (std_logic_vector' ("010")) ;

ls <= (std_ logic_vector' ("0000100"));

IF (start=' 1') THEN

next_sreg<=w24_ load;

ELSE

next_sreg<=w24_gen;
END IF ;

WHEN w24_ load =>
done<=' 0' ;
mux_sel <= (std_logic_vector' ("010")) ;

ls <= (std_logic_vector' ("0000100"));

IF (start=' 1') THEN

next_sreg<=w23K1_gen;

ELSE
next_sreg<=w21_ load;

END IF ;

WHEN w32_gen =>
done<=' o· ;
mux_sel <= (std_ logic_vector' ("100"));

ls <= (std_ logic_vector' ("0010000"));

IF (start=' 1') THEN
next_sreg<=w32_load;

ELSE
next_sreg<=w32_gen;

END IF;
WHEN w32_ load =>

done<=' o· ;
mux_sel <= (std_ logic_vector' ("100")) ;

ls <= (std_ logic_vector' ("0010000"));

IF (start=' 1') THEN

next_sreg<=w44_gen;

11 8

ELSE
next_sreg<=w32_load;

END IF;
WHEN w44_gen =>

done<=' 0' ;
mux_sel <= (std_logic_vector' ("101"));
ls <= (std_logic_vector' ("1000000"));
IF (start=' 1') THEN

next_sreg<=H_done;
ELSE

next_sreg<=w41_gen;
END IF;

WHEN OTHERS =>
END CASE;

END PROCESS;

ls6 <= ls (6) ;
ls5 <= ls (5);
ls4 <= 1s(4);
ls3 <= ls(3);
ls2 <= ls(2);
ls1 <= ls(1);
lsO <= ls (0) ;
mux_sel2 <= mux_sel(2);
mux_sell <= mux_sel(1);
mux_selO <= mux_sel(O);

END BEHAVIOR;

LIBRARY ieee;
USE ieee. std_logi c_l164. all;

ENTITY H_CTR IS

END;

PORT (ls : OUT std_logic_vector (6 DOWNTO 0) ;
mux_sel : OUT std_logic_vector (2 DOWNTO 0);
CLK,RESET,start: IN std_logic;
done : OUT std_1ogic);

ARCHITECTURE BEHAVIOR OF H_CTR IS
COMPONENT SHELL_H_CTR

PORT (CLK,RESET,start: IN std_logic;
done, lsO, ls1, ls2, ls3, ls4, ls5, ls6,mux_sel0,mux_sel1,mux_sel2 OUT

std_logic);
END COMPONENT;

BEGIN
SHELL1_H_CTR : SHELL_H_CTR PORT MAP (CLK=>CLK,RESET=>RESET, start=>start,done

=>done, lsO=>ls(O), ls1=>ls(l), ls2=>ls(2), ls3=>ls(3), ls4=>ls(4), ls5=>ls(5), ls6

119

r---

=>ls(6), mux_selO=>mux_sel(O) ,mux_sel l=>mux_sel(l), mux_sel2=>mux_sel(2));
END BEHAVIOR;

Appendix E: Selected Source Code

Salsa20

----ASIC_ Compact

LIBRARY ieee;
USE ieee.std_logic_ II64.all;

LIBRARY ieee;
USE ieee.std_ logic_unsigned.all;

ENTITY SHELL CONTRO IS
PORT (CLK,mem _ done,quarter _ done,RESET,start: IN std _logic;

done,load _ all,mux _ mO,mO _start,m I_start,quarter _rd _start,roundO,round I ,round2,
round3,round4,round5,round6,serial :OUT std_logic);

END;

ARCHITECTURE BEHAVIOR OF SHELL CONTRO IS
TYPE type_sreg IS (add,idle,load_rows,load_z,quarter_en);
SIGNAL sreg, next_sreg: type_sreg;
SIGNAL round : std_logic_ vector (6 DOWNTO 0);

BEGIN
PROCESS (CLK, RESET)
BEGIN

IF (RESET=' I') THEN
sreg <= idle;

ELSIF CLK ='I' AND CLK'event THEN
sreg <= next_sreg;

END IF;
END PROCESS;

PROCESS (sreg, mem _ done,quarter _ done,start,round)
BEGIN

next_sreg<=add;

CASE sreg IS
WHEN add =>

IF (start=' I' AND mem _done=' 1') THEN
next_sreg<=load _rows;

ELSE
next_sreg<=add;

END IF;
WHEN idle =>

IF (start=']') THEN

for

120

next_sreg<=load_rows;
ELSE

next_sreg<=idle;
END LF;

WHEN load rows =>
IF (start=' I' AND mem_done='l') THEN

next_sreg<=quarter _en;
ELSE

next_sreg<=load _rows;
END IF ;

WHEN load z =>
IF (start='O') THEN

next_ sreg<=load _ z;
ELSIF (round=87 and mem_done='J') THEN

next_sreg<=add;
ELSIF (round<87 and mem_done='l') THEN

next_sreg<=quarter _en;
END IF;

WHEN quarter_en =>
IF (start=' I' AND quarter_ done='!') THEN

next _sreg<=load _ z;
ELSE

next_ sreg<=quarter _en;
END IF;

WHEN OTHERS =>
END CASE;

END PROCESS;

PROCESS(sreg)
BEGIN

CASE sreg IS
WHEN add =>

mux_ mO<='l';
mO_start<=' l ';
m I_ start<=' I';
load_ all <='0';
serial<=' I';
quarter _ rd _ start<='O';
done<=' I';
round <= (std _ logic_ vector'("OOOO Ill"));

WHEN idle =>
mux_mO<='O';
mO _start<='O';
m I_ start<='O';
load_ all <='0';
serial<= 'O';
quarter _ rd _start<='O';
done<='O';
round <= (std _ logic_ vector'("OOOO Ill"));

WHEN load_ rows =>
mux_mO<='O';
mO _start<=' I';
m I_ start<=' I';
load_all<='l ';

121

serial<='O';
quarter _rd_ start<='O';
done<='O';
round <= (std_logic_ vector'("OOOO Ill"));

WHEN load z =>
mux_mO<='l';

mO_start<='l';
m l_start<='O';
load_all<='O';
seriai<='O';

ELSE

quarter _ rd _ start<='O';
done<='O';
IF (round<87) THEN

round <= round + std _logic_ vector'("OOOOOO I");

round <= round;
END IF;

WHEN quarter_en =>
mux mO<='I'·

- '
mO start<='O'· - '
m I_ start<='O';
load all<='O'· - '
serial<='O';
quarter_ rd_start<='l ';
done<='O';
round <= round;

WHEN OTHERS =>
END CASE;

END PROCESS;

PROCESS (round)
BEGIN

roundO <= round(O);
round I <= round(I);
round2 <= round(2);
round3 <= round(3);
round4 <= round(4);
roundS <= round(5);
round6 <= round(6);

END PROCESS;
END BEHAVIOR;

LIBRARY ieee;
USE ieee.std_logic_ II64.all;

LIBRARY ieee;
USE ieee.std_logic_unsigned.all;

ENTITY CONTRO IS
PORT (addr : OUT std_ logic_vector (2 DOWNTO 0);

END;

CLK,mem_ done, quarter_ done,RESET,start: IN std _logic;
done,load_all ,mux_mO,mO_start,m I_start,quarter_rd_start,serial : OUT std_ logic);

ARCHITECTURE BEHAVIOR OF CONTRO IS
SIGNAL round: std_logic_vector (6 DOWNTO 0);

122

COMPONENTSHELL_CONTRO
PORT (CLK,mem _ done,quarter _ done,RESET,start: IN std _logic;

done,load_all,mux_ mO,mO _start,m l_start,quarter _rd _start,roundO,round I ,round2,
round3,round4,round5,round6,serial : OUT std_logic);

END COMPONENT;
BEGIN

addr<=round(2 DOWNTO 0);
SHELL I_ CONTRO : SHELL_ CONTRO PORT MAP (CLK =>CLK,mem _ done=>mem _done,

quarter_ done=>quarter _ done,RESET=>RESET,start=>start,done=>done,load _all=>
load _all,mux_ mO=>mux _mO,mO _ start=>mO _start,m l_start=>m l_start,quarter _ rd _start=>
quarter _ rd_start,roundO=>round(O),round I =>round(I),round2=>round(2),round3=>
round(3),round4=>round(4),roundS=> round(5),roun d6=>round(6),seri a I =>serial);

END BEHAVIOR;

library ieee;
use ieee.std_logic_ li64.ALL;
use ieee.numeric_std.ALL;

entity quarterround is
port (CLK : m std_ logic;

dO : in std_ logic_ vector (31 downto 0);
d I : in std _ logic_ vector (31 down to 0);
d2 : m std _ logic_ vector (31 down to 0);
d3 : in std _ logic_ vector (31 down to 0);
RST : m std_logic;
start: in std_logic;
done : out std_ logic;
zO : inout std _ logic_ vector (31 downto 0);
zl : inout std_ logic_ vector (31 down to 0);
z2 : inout std_ logic_vector (31 downto 0);
z3 : inout std_ logic_ vector (31 downto 0));

end quarterround;

architecture BEHAVIORAL of quarterround is
signal mux2 : std_ logic;
signal mux4 : std_ logic_ vector (I downto 0);
signal reg_ld : std_ logic_ vector (3 downto 0);
component quarter

port (clock : in std _ logic;
clear : m std_logic;
d2 : m std _logic_ vector (31 down to 0);
reg_selO : in std_logic;
reg_sell : in std_logic;
reg_se12 : in std_logic;
reg_se13 : in std_logic;
mux4 sel xorinl : in std_logic_ vector(l downtoO);
mux4 sel xorinO : in std_logic_vector (I downto 0);
mux4_sel_ainl : m std_ logic_vector (I downto 0);
d3 : m std _logic_ vector (31 down to 0);
d I : in std _logic_ vector (31 down to 0);
dO : in std _logic_ vector (31 down to 0);
mux2 sel : in std_logic;
zO : in out std _ logic_ vector (31 downto 0);
z2 : in out std _ logic_ vector (31 down to 0);
z3 : in out std_ logic_ vector (31 down to 0);

123

zl : inout std_ logic_ vector (31 downto 0);
mux4 sel ainO :in std_ logic_ vector (I downto 0));

end component;

component FSM_QUA
port (CLK : m

RESET : in
start : m
done : out
mux2_input: out
mux4 :out
reg_ ld : out

std_logic;
std_ logic;

std_logic;
std_logic;

std_ logic;
std_logic_vector (I downto 0);

std_ logic_vector (3 downto 0));
end component;

begin
XLXI_ l :quarter

port map (clear=>RST,
clock=>CLK,
d0(31 downto O)=>d0(31 downto 0),
d I (31 down to O)=>d I (31 down to 0),
d2(31 downto O)=>d2(31 downto 0),
d3(31 downto O)=>d3(31 downto 0),
mux2_sel=>mux2,
mux4_sel_ain0(1 downto O)=>mux4(1 downto 0),
mux4_sel_ainl(l downto O)=>mux4(1 downto 0),
mux4_sel_xorin0(1 downto O)=>mux4(1 downto 0),
mux4 _ sel_xorin I (I down to O)=>mux4(I downto 0),
reg_selO=>reg_ld(O),
reg_ sell =>reg_ ld(I),
reg_sel2=>reg_ ld(2),
reg_ sel3=>reg_ ld(3),
z0(31 downto O)=>z0(31 downto 0),
zl(31 downto O)=>zl(31 downto 0),
z2(31 downto O)=>z2(31 downto 0),
z3(31 downto O)=>z3(31 downto 0));

XLXI_2 : FSM_QUA
port map (CLK=>CLK,

RESET=>RST,
start=>start,
done=>done,
mux2 _input=>mux2,
mux4(1 downto O)=>mux4(1 downto 0),
reg_ ld(3 downto O)=>reg_ld(3 downto 0));

end BEHAVIORAL;

library ieee;
use ieee.std_logic_ II64.ALL;
use ieee.numeric_std.ALL;

entity quarter is
port (clear

clock
dO

: in std_logic;
:in std_ logic;
: m std _ logic_ vector (3 1 down to 0);

124

d I : m std _logic_ vector (31 down to 0);
d2 : m std_logic_vector (31 downto 0);
d3 : m std _logic_ vector (31 down to 0);
mux2 sel : in std_logic;
mux4 sel ainO : m std_ logic_vector (I downto 0);
mux4 sel ainl :in std_ logic_vector (I downto 0);
mux4 sel xorinO: in std_ logic_vector (I downto 0);
mux4 sel xorin I : in std _ logic_ vector (I down to 0);
reg_selO : in std_ logic;
reg_sell : in std_ logic;
reg_se12 : in std_ logic;
reg_se13 : in std_ logic;
zO : in out std_ logic_ vector (31 downto 0);
zl : inout std_ logic_ vector (31 downto 0);
z2 : inout std_ logic_ vector (31 downto 0);
z3 : inout std_ logic_ vector (31 downto 0));

end quarter;

architecture BEHAVIORAL of quarter is
signal ainO : std _logic_ vector (31 down to 0);
signal ain 1 : std _logic_ vector (31 down to 0);
signal regO_in : std_logic_vector (31 downto 0);
signal reg l_in : std _logic_ vector (31 down to 0);
signal reg2_in : std_ logic_ vector (31 downto 0);
signal reg3 _in : std _ logic_ vector (31 down to 0);
signal r7 : std _ logic_ vector (31 down to 0);
signal r9 : std _logic_ vector (31 down to 0);
signal r13 : std _ logic_ vector (31 downto 0);
signal r 18 : std _logic_ vector (31 downto 0);
signal sum : std_ logic_ vector (31 downto 0);
signal xor_inO : std_logic_ vector (31 down to 0);
signal xor_ inl : std_logic_ vector (31 downto 0);
signal zi : std_ logic_ vector (31 downto 0);
component adder _predefined

port (A : in std _logic_ vector (31 downto 0);
B : in std _logic_ vector (31 down to 0);
S : out std _logic_ vector (31 down to 0));

end component;

component rotation7
port (din : in

dout: out
end component;

component rotation9
port (din : in

dout : out
end component;

component rotation 13
port (din : in

dout: out
end component;

component rotation 18

std _ logic_ vector (31 down to 0);
std_logic_ vector (31 downto 0));

std_ logic_ vector (31 downto 0);
std_logic_ vector (31 downto 0));

std _ logic_ vector (31 down to 0);
std _logic_ vector (31 down to 0));

port (din : in std_ logic_ vector (31 downto 0);

125

dout : out std _logic_ vector (31 down to 0));
end component;

component mux _ 2to 1
port (s : in std_logic;

iO : in std _logic_ vector (31 down to 0);
i 1 : in std _logic_ vector (31 down to 0);
q : inout std_logic_ vector (31 downto 0));

end component;

component mux_ 4tol
port (iO : in std _ logic_ vector (31 down to 0);

i 1 : in std _logic_ vector (31 down to 0);
i2: in std_logic_ vector (31 downto 0);
i3 : in std _logic_ vector (31 down to 0);
s : in std_ logic_vector (1 downto 0);
q : inoutstd_logic_vector(31 downtoO));

end component;

component reg
port (elk: in std_logic;

clr : in std_ logic;
s : in std_logic;
d : in std _logic_ vector (31 down to 0);
q : inout std _ logic_ vector (31 downto 0));

end component;

component xor_array
port (a : in std _logic_ vector (31 down to 0);

b :in std_logic_ vector (31 downto 0);
c : out std_logic _vector (31 down to 0));

end component;

begin
adder : adder _predefined

port map (A(31 downto O)=>ain0(3 1 downto 0),
8(31 downto O)=>ainl(31 downto 0),
S(31 downto O)=>sum(31 downto 0));

dr7 : rotation?
port map (din(31 downto O)=>sum(31 downto 0),

dout(31 downto O)=>r7(31 downto 0));

dr9 : rotation9
port map (din(31 downto O)=>sum(31 downto 0),

dout(31 downto O)=>r9(31 downto 0));

dr 13 : rotation 13
port map (din(31 downto O)=>sum(31 downto 0),

dout(31 down to O)=>r 13(31 downto 0));

dr 18 : rotation 18
port map (din(31 downto O)=>sum(31 downto 0),

dout(31 downto O)=>rl8(31 downto 0));

muxO : mux 2to1

126

port map (i0(31 downto O)=>d0(31 downto 0),
i 1 (31 down to O)=>zi(31 down to 0),
s=>mux2_sel,
q(31 down to O)=>regO _ in(31 down to 0));

muxl : mux 2tol
port map (i0(31 down to O)=>d I (31 down to 0),

i I (31 down to O)=>zi(31 down to 0),
s=>mux2_sel,
q(31 downto O)=>regl _ in(31 downto 0));

mux2: mux 2tol
port map (i0(31 downto O)=>d2(31 downto 0),

i 1 (31 down to O)=>zi(31 down to 0),
s=>mux2_sel,
q(31 downto O)=>reg2_ in(31 downto 0));

mux3 : mux 2to I
port map (i0(31 downto O)=>d3(31 downto 0),

i I (31 down to O)=>zi(31 down to 0),
s=>mux2_sel,
q(31 down to O)=>reg3 _in(31 down to 0));

mux4 ainO: mux 4tol - -
port map (i0(31 downto O)=>z0(31 downto 0),

i I (3 I down to O)=>zl (31 down to 0),
i2(3 I downto O)=>z2(31 downto 0),
i3(31 downto O)=>z3(31 downto 0),
s(l downto O)=>mux4_ sel_ain0(1 downto 0),
q(31 downto O)=>ain0(31 downto 0));

mux4 ainl: mux 4tol - -
port map (i0(31 downto O)=>z3(31 downto 0),

i I (3 I down to O)=>z0(31 down to 0),
i2(31 downto O)=>zl(31 downto 0),
i3(31 downto O)=>z2(31 downto 0),
s(l downto O)=>mux4_sel_ainl{l downto 0),
q(31 downto O)=>ain1(31 downto 0));

mux4 xor inO: mux 4tol - - -
port map (i0(31 downto O)=>zl(31 downto 0),

i I (31 down to O)=>z2{31 down to 0),
i2(31 downto O)=>z3{31 downto 0),
i3(31 downto O)=>z0(31 downto 0),
s{l downto O)=>mux4_ sel_xorin0(1 downto 0),
q(31 downto O)=>xor_ in0(31 downto 0));

mux4 xor in I : mux 4to I - - -
port map (i0(31 downto O)=>r7{31 downto 0),

registerO : reg

i I (31 down to O)=>r9(31 down to 0),
i2(3 I down to O)=>r 13(31 down to 0),
i3(3 I down to O)=>r 18(31 down to 0),
s(l downto O)=>mux4_sel_xorinl(l downto 0),
q(31 down to O)=>xor _ in I (31 down to 0));

127

port map (clk=>clock,
clr=>clear,
d(31 down to O)=>regO _ in(31 down to 0),
s=>reg_seiO,
q(31 downto O)=>z0(3 I downto 0));

register] : reg
port map (clk=>clock,

clr=>clear,
d(31 down to O)=>reg l_ in(31 down to 0),
s=>reg_sell ,
q(31 down to O)=>zl (31 down to 0));

register2 : reg
port map (elk=> clock,

clr=>clear,
d(31 downto O)=>reg2_in(31 downto 0),
s=>reg_sel2,
q(31 downto O)=>z2(31 downto 0));

register3 : reg
port map (clk=>clock,

clr=>clear,
d(31 down to O)=>reg3 _ in(31 down to 0),
s=>reg_sel3,
q(31 downto O)=>z3(31 downto 0));

xor _gate_ array : xor _array
port map (a(31 down to O)=>xor _ in 1(31 down to 0),

b(31 downto O)=>xor_in0(31 downto 0),
c(31 downto O)=>zi(31 downto 0));

end BEHAVIORAL;

----ASIC basic iterative
library ieee;
use ieee.std_ logic _ 1164.all;
use IEEE.std _ logic _arith.all ;
use ieee.std _ logic_ unsigned .all;

entity quarterround is
port(rst, start, elk: in std_ logic;

end entity;

mux_sel, regs_sel: in std_logic_ vector(3 downto 0);
yO, yl , y2, y3 : in std_logic_ vector(31 downto 0);
zO, zl , z2, z3 : out std_logic_ vector(31 downto 0)
);

architecture rtl of quarterround is
component xor_array
PORT(a: in STD_LOGIC_VECTOR(3 1 downto 0);

b: in STD_LOGIC_ VECTOR (31 downto 0);
c: out STD_LOGIC_ VECTOR (3 1 downto 0));

end component;

component mux _ 2to I

128

GENERIC (N: INTEGER :=32);
PORT(iO, il: IN STD_LOGIC_ VECTOR(n-1 DOWNTO 0);

s: IN STD_LOGIC;
q: INOUT STD_LOGIC_ VECTOR(n-1 DOWNTO 0));

end component;

component reg
GENERIC (N: INTEGER :=32);
PORT(clk,clr,s: IN STD _LOGIC;

d: IN STD_LOGIC_ VECTOR(N-1 DOWNTO 0);
q: INOUT STD_LOGIC_ VECTOR(N-1 DOWNTO 0));

end component;

type regcolumn is array(O to 3) of std_ logic_ vector(31 downto 0);
signal reg_in, reg_out,

add_out, dr, z: regcolumn;

begin
MUXO: mux_2tol port map (yO, z(O), mux_sel(O), reg_in(O));
MUXI : mux_2tol port map (yl, z(l), mux_sel(l), reg_ in(!));
MUX2: mux_2tol port map (y2, z(2), mux_se1(2), reg_ in(2));
MUX3 : mux_2tol port map (y3, z(3), mux_sel(3), reg_in(3));

REGS: fori in 0 to 3 generate
REGI: reg port map (elk, rst, regs_sel(i),

reg_ in(i),reg_ out(i));
end generate;
add_ out(O)<=reg_ out(O)+reg_ out(3);
add_ out(I)<=reg_ out(I)+reg_ out(O);
add_ out(2)<=reg_ out(2)+reg_ out(I);
add_ out(3)<=reg_ out(3)+reg_ out(2);
dr(O)<=add_out(0)(24 DOWNTO O)&add_out(0)(31 DOWNTO 25);
dr(l)<=add_out(1)(22 DOWNTO O)&add_out(l)(31 DOWNTO 23);
dr(2)<=add_out(2)(18 DOWNTO O)&add_out(2)(31 DOWNTO 19);
dr(3)<=add_out(3)(13 DOWNTO O)&add_out(3)(31 DOWNTO 14);

ziG: xor_array port map (reg_ out(!), dr(O), z(J));
z2G: xor_array port map (reg_out(2), dr(l), z(2));
z3G: xor_array port map (reg_out(3), dr(2), z(3));
zOG: xor_array port map (reg_out(O), dr(3), z(O));

zO<=reg_ out(O); z I <=reg_ out(I);
z2<=reg_ out(2); z3<=reg_ out(3);

end rtl;

library ieee;
use ieee.std_logic_ ll64.all;

entity fsm is
port (elk, rst, start: in std_ logic;

end entity;

round: in std _logic_ vector(4 down to 0);
s: out std_logic_vector(6 downto 0);
ready: out std_ logic);

129

architecture rtf of fsm is
type state is (idle, paral_load, zl , z2, z3, zO, done);
signal ps, ns: state;

begin
state _reg: process (rst, elk)
begin

if(rst = 'I') then
ps <= idle;

elsi f (elk = 'I' and clk'event) then
ps <= ns;

end if;
end process;

state_transaction: process (start, ps, round)
begin

end rtf;

if start = 'I' then
case psis

when idle =>
ready<='O';
ns <= paral_load;

when paral_ load => ns <= zl ;
when zl => ns <= z2;
when z2 => ns <= z3;
when z3 => ns <= zO;
when zO =>

if (round = II I 0 I 0011
) then ns <= done;

else ns <= paral_load;
end if;

when done => ready <= 'I';
end case;

end if;
end process;

--output_ decode
with ps select
s <= 11000000 I 11 when idle,

11000001011 when paral_load,
110000 I 0011 when zl ,
11000 I 00011 when z2,
1100 I 000011 when z3,
110 I 0000011 when zO,
II I 00000011 when done;

---- FPGA _compact

LIBRARY IEEE;
USE IEEE.std_logic_ l164.all;
USE ieee.std_logic_unsigned.ALL;

ENTITY controller IS
PORT (clk,clkfast, rst, start: IN STD _LOGIC;

cddr: INOUT STD_LOGIC_ VECTOR(! DOWNTO 0);
sm: INOUT STD_LOGIC_ VECTOR(5 DOWNTO 0);

130

addr: INOUT STD_LOGIC_ VECTOR(7 DOWNTO 0);
wren: OUT STD_LOGIC_ VECTOR(! DOWNTO 0);
s_reg: INOUT STD_LOGIC_ VECTOR(3 DOWNTO 0);
ready: INOUT STD_LOGIC);

END ENTITY;

ARCHITECTURE rtl OF controller IS
COMPONENT fsm
--ready is the signal indicating 20 quarterround funtions are done for the input
PORT (elk, rst, start, ready, en: IN STD _LOGIC;

s: OUT STD_LOGIC_ VECTOR(IO DOWNTO 0));
END COMPONENT;

COMPONENT pulse_gen
PORT (clk,rst, trigger: IN STD_LOGIC;

pulse: OUT STD_LOGIC);
END COMPONENT;

COMPONENT counter
PORT (elk, clr: IN STD_LOGIC;

q: INOUT STD_LOGIC_ VECTOR(S DOWNTO 0));
END COMPONENT;

COMPONENT table
PORT (addr: IN STD _LOGIC_ VECTOR(S DOWNTO 0);

output: OUT STD_LOGIC_ VECTOR(3 DOWNTO 0));
END COMPONENT;

COMPONENT output
PORT (start, elk: IN STD_LOGIC;

s: IN STD_LOGIC_ VECTOR(IO DOWNTO 0);
count: IN STD_LOGIC_ VECTOR(S DOWNTO 0);
addr_ram: IN STD_LOGIC_ VECTOR(3 DOWNTO 0);

change_s: OUT STD_LOGIC;
cddr: INOUT STD_LOGIC_ VECTOR(! DOWNTO 0);
sm: INOUT STD_LOGIC_ VECTOR(S DOWNTO 0);
addr: INOUT STD_LOGIC_ VECTOR(7 DOWNTO 0);
wren: OUT STD_LOGIC_ VECTOR(! DOWNTO 0);
s_reg: INOUT STD_LOGIC_ VECTOR(3 DOWNTO 0);
ready,key_ready: OUT STD_LOGIC);

END COMPONENT;

SIGNALs: STD_LOGIC_ VECTOR(lO DOWNTO 0);
SIGNAL addr_ram: STD_LOGIC_ VECTOR(3 DOWNTO 0);
SIGNAL count: STD_LOGIC_ VECTOR(S DOWNTO 0);
SIGNAL change_state, trigger,

pulseO, pulse!, pulse,change_to_add: STD_LOGIC;

BEGIN
pulse<=pulseO OR pulse I;
state_machine: fsm PORT MAP(elk, rst, start, change_to_add, change_state,s);
pulseGenO: pulse_gen PORT MAP(clkfast, rst, s(l), pulseO);
pulseGenl : pulse_gen PORT MAP(clkfast, rst, s(2), pulse!);
countr: counter PORT MAP (elk, pulse, count);
truth_table: table PORT MAP (count, addr_ram);

131

output_logic: output PORT MAP (start, elkfast, s, count,
addr_ram, change_state, cddr,
sm, addr, wren, s_reg,
change_to_add, ready);

END rtl;

LIBRARY IEEE;
USE IEEE.std_logic_ll64.all;

ENTITY fsm IS
--ready is the signal indicating 20 quarterround funtions are done for the input
PORT (elk, rst, start, ready, en: IN STD _LOGIC;

s: OUT STD_LOGIC_ YECTOR(IO DOWNTO 0));
END ENTITY;

ARCHITECTURE rtl OF fsm IS
TYPE state IS (idle, initialize, zcO, zcl, zc2, zc3, zrO, zrl, zr2, zr3, add);
SIGNAL ps, ns: state;

BEGIN
state_reg: PROCESS (rst, elk, en, ns)
BEGIN

IF (rst = '1') THEN
ps <= idle;

ELSIF (en='1 ')THEN
IF (elk = 'I' AND elk'event) THEN
ps <= ns;
END fF;

END IF;
END PROCESS;

state_transaction: PROCESS (start, ready, ps)
BEGIN

IF start = ' 1' THEN
CASE psIS

WHEN idle => ns <= initialize;
WHEN initialize => ns <= zcO;
WHEN zcO => ns <= zc I ;
WHEN zcl => ns <= zc2;
WHEN zc2 => ns <= zc3;
WHEN zc3 => ns <= zrO;
WHEN zrO => ns <= zr I;
WHEN zr I => ns <= zr2;
WHEN zr2 => ns <= zr3;
WHEN zr3 =>

IF (ready=' I') THEN ns <= add;
ELSE ns <= zcO;
END lF;

WHEN add => ns <= initialize;
END CASE;

ELSE
ns <= ps;

END IF;
END PROCESS;

132

--output_ decode
WITH ps SELECT
s <= "00000000001" WHEN idle,

"000000000 1 0" WHEN initialize,
"00000000 1 00" WHEN zcO,
"0000000 I 000" WHEN zc I,
"000000 1 0000" WHEN zc2,
"00000 1 00000" WHEN zc3,
"00001000000" WHEN zrO,
"00010000000" WHEN zr1,
"00100000000" WHEN zr2,
"01000000000" WHEN zr3,
"1 0000000000" WHEN add;

END rtl;
LIBRARY IEEE;
USE IEEE.std_logic_ 1164.all;

ENTITY pulse_gen IS
PORT (clk,rst, trigger: IN STD _LOGIC;

pulse: OUT STD_LOGIC);
END ENTITY;

ARCHITECTURE rtl OF pulse_gen IS
SIGNAL qO, qb 1: STD _LOGIC;
BEGIN

DFFO:PROCESS(clk, rst,trigger)
BEGIN

IF rst='1' THEN
qO<='O';

ELSIF(clk'event AND clk='I')THEN
qO<=trigger;

END IF;
END PROCESS;

DFF1: PROCESS(clk,rst,qO)
BEGIN

IF rst='1' THEN
qb1 <='1';

ELSIF(clk'event AND clk='I')THEN
qb 1 <= NOT qO;

END IF;
END PROCESS;

pulse <= qO AND qbl;
END rtl;

LIBRARY IEEE;
USE IEEE.std _logic _ I164.all;
USE ieee.std _ logic_ unsigned.ALL;

ENTITY table IS
PORT (addr: IN STD_LOGIC_ VECTOR(S DOWNTO 0); --64 entries

output: OUT STD_LOGIC_ VECTOR(3 DOWNTO 0)); --16*8 bits
END ENTITY;

ARCHITECTURE rtl OF table IS
SUBTYPE WORD IS STD_LOGIC_ VECTOR(3 DOWNTO 0);

133

);

TYPE ROM IS ARRAY (0 TO 63) OF WORD;

CONSTANT content: ROM := ("0000", "0011", "0001", "0001",
"0001", "0000", "0010", "0010",
"0010", "0001 ", "0011 ", "0011 ",
"0011", "0010", "0000", "0000",

BEGIN

"0101 ", "0100", "0110", "0110",
"0110", "0101", "0111", "0111",
"0111 ", "0110", "0100", "0100",
"0100", "0111", "0101", "0101",

"1010", "1001 ","lOll", "lOll",
"1011", "1010", "1000", "1000",
"1000", "10 11", "1001", "1001",
"1001 ", "1000", "1010", "1010",

"III I", "1110", "1100", "1100",
"1100", "III I", "1 101", "1101",
"1101", "1100", "1110", "1110",
"1110", "1101", "1111 "," I III II

output <= content(conv _ integer(addr));
END rtl;

LIBRARY IEEE;
USE IEEE.std _logic _ 1164.all;
USE ieee.std_logic_unsigned.ALL;

ENTITY output IS
PORT (start, elk: IN STD_LOGIC;

s : IN STD_LOGIC_ VECTOR(IO DOWNTO 0);
count: IN STD_LOGIC_ VECTOR(5 DOWNTO 0);
addr_ram: IN STD_LOGIC_ VECTOR(3 DOWNTO 0);

change_s: OUT STD_LOGIC;
cddr: INOUT STD_LOGIC_ VECTOR(I DOWNTO 0);
sm: INOUT STD_LOGIC_ VECTOR(5 DOWNTO 0);
addr: INOUT STD_LOGIC_ VECTOR(7 DOWNTO 0);
wren: OUT STD_LOGIC_ VECTOR(! DOWNTO 0);
s_reg: INOUT STD_LOGIC_ VECTOR(3 DOWNTO 0);
key_stream_en: OUT STD_LOGIC;
ready,key_ready : OUT STD_LOGIC);

END ENTITY;

ARCHITECTURE rtl OF output IS
SIGNAL round:STD_LOGIC_ VECTOR(3 DOWNTO 0);
SIGNAL round_no_en, dff: STD_LOGIC;

BEGIN
change_s <= (count(3)AND count(2)AND count(I)AND count(O))OR

(s(O) AND start) ;
-- OR ((s(2) or s(3)0R s(4)or s(5)0R s(6) or s(7)0R s(8) OR s(9)) AND count(I)AND

count(O));

134

control_signals: PROCESS (dff, s, count, addr_ram, round)--sm, cddr, addr, wren, s_reg, done
VARIABLE addr_half: STD_ LOGIC_ VECTOR(3 DOWNTO 0);
BEGIN

CASEs IS
WHEN "0000000000 I"=> --idle

cddr <= "00";
sm <= (OTHERS=>'O');
addr <= "00000000";
wren <= "00";
ready <= '0';

WHEN "000000000 I 0"=> --initialize
wren <= "II";
addr_half:= count(3 DOWNTO 0);
addr <= addr_half & addr_half;
CASE count IS

WHEN "000000"=> --constantO from the ROM
cddr <= "00";
sm (I DOWNTO 0) <= "00";

WHEN "000001 "=> --key
sm (1 DOWNTO 0) <= "OJ";

WHEN "000 I 0 I"=> -- constant 1
cddr <= "0 I";
sm (1 DOWNTO 0) <= "00";

WHEN "000 11 0"=> -- nonce
sm (I DOWNTO 0) <= "OJ";

WHEN "00 I 0 I 0"=> -- constant2
cddr <= "I 0";
sm (I DOWNTO 0) <= "00";

WHEN "00 10 II"=> -- key
sm (I DOWN TO 0) <= "0 I";

WHEN "00 1111 "=> -- constant3
cddr <= "II";
sm (I DOWNTO 0) <= "00";

WHEN OTHERS=> NULL;
END CASE;

WHEN "1 0000000000"=> --add
sm(2) <= '1'; --the operands of the adder are from RAMO and RAM I
sm(3) <= 'I'; --short cut from RAMO
addr <= count(3 DOWNTO 0) & count(3 DOWNTO 0);
wren <= "00";
--key _ready is asserted when round= 10 (1 0 double quarterround)

key _ready<= 'I';
WHEN OTHERS=> --hash function

-- input of ramO is from the data path
--operands of the adder are from ramO

ready <= round(3)AND (NOT round(2)) AND
round(I)AND (NOT round(O));

sm(3 DOWNTO 0) <= "0010";
wren(I) <= '0'; --ram I cannot be written
IF (count(I downto 0)=" 11 ")THEN

wren(O) <= 'I'; --write back from datapath
ELSE wren(O) <= '0';
END IF;

IF ((s(2)0R s(3)0R s(4)0R s(S))='J')THEN --column
CASE addr ram IS

135

WHEN"OOOO" => addr(3 DOWNTO 0) <= "0000";
WHEN"OOOI" => addr(3 DOWNTO 0) <= "0100";
WHEN"OOIO" => addr(3 DOWNTO 0) <= "1000";
WHEN"OOII" => addr(3 DOWNTO 0) <= "II 00";
WHEN"O I 00" => addr(3 DOWN TO 0) <= "000 I";
WHEN"OIOI" => addr(3 DOWNTO 0) <= "0101 ";
WHEN"OIIO" => addr(3 DOWNTO 0) <= "IOOI";
WHEN"O Ill" => addr(3 DOWN TO 0) <= "II 0 I";
WHEN"IOOO" => addr(3 DOWNTO 0) <= "0010";
WHEN"IOOI" => addr(3 DOWNTO 0) <= "OliO";
WHEN"IOIO" => addr(3 DOWNTO 0) <= "1010";
WHEN" lOll" => addr(3 DOWNTO 0) <= "IIIO";
WHEN" II 00" => addr(3 DOWNTO 0) <= "00 II";
WHEN"IIOI" => addr(3 DOWNTO 0) <= "OIII ";
WHEN" Ill 0" => addr(3 DOWN TO 0) <= "I 0 11 ";
WHEN"IIII" => addr(3 DOWNTO 0) <= "I III";
WHEN OTHERS => addr(3 DOWNTO 0) <= "0000";
END CASE;

ELSE --row
addr(3 DOWNTO 0)<= addr_ram;

END IF;

CASE count(3 downto 0) IS
WHEN "OOII "=> sm(5 downto 4)<= "00";
WHEN "OIII "=> sm(5 downto 4)<= "01 ";
WHEN "1011 "=> sm(5 downto 4)<= "10";
WHEN "1111 "=> sm(5 down to 4)<= "II";
WHEN OTHERS=> NULL;

END CASE;

END CASE;
END PROCESS;

s_regs: PROCESS(s, dft)
BEGIN

CASEs IS
WHEN "0000000000 1 "=> --idle

s _reg<=(OTHERS=>'O');
WHEN "000000000 1 0"=> --initialize

s_reg <= "0000"; --hold the regs
WHEN "10000000000"=> --add

s_reg<="OIIO";
key_stream_en<= dff;

WHEN OTHERS => --hash function
s_reg(3) <= 'I' ;

CASE count(I downto 0) IS
WHEN "00"=>

IF dff = '0' THEN
s_reg(2 downto 0) <= "000" ;

ELSIF dff= 'I' THEN
s_reg(2 downto 0) <= "001";

END IF;
WHEN"OI"=>

IF dff = '0' THEN
s_reg(2 downto 0) <= "000";

ELSIF dff = 'I' THEN

136

s _reg(2 downto 0) <= "0 I 0" ;
END IF;

WHEN "10"=>
IF dff = '0' THEN

s_reg(2 downto 0) <= "000";
ELSIF dff = 'I' THEN

s_reg(2 downto 0) <= "100" ;
END IF;

WHEN OTHERS=> NULL;
END CASE;

END CASE;
END PROCESS;

--increase round_no when count=63
round_ no_ en<=s(9) AND count(O) AND count(I) AND count(2) AND

count(3) AND count(4)AND count(5);
round_number: PROCESS (s(l), round_no_en) --clear, increase

BEGIN
IF s(l)='l' THEN

round<=(OTHERS=>'O');
ELSLF(round_no_en'event AND round_no_en='l ')THEN

round <= round + I;
END IF;

END PROCESS;
flipflop: PROCESS (s(I), clk)--dff begins to work when initialization begins

BEGIN

END rtf;

IF s(l)='I' THEN
dff <= '1';

ELSIF (elk' event AND elk=' 1 ') THEN
dff <= not dff;

END IF;
END PROCESS;

Appendix F: Selected Codes for Statistical

Tests

package tests;

import generators.Ks_multiple;
import generators.PhelixException;
import tests_algorithms.BlockFrequency;
import tests_algorithms.DiscreteFourierTransform;
import tests_algorithms.Frequency;
import tests_algorithms.Runs;
import utii.MyMath;
import utii.Utility;

137

public class TestAII {
/* • It generate m data sequences.

• The resulting sequence is tested by the four methods from the test suite
*I

public static void main(String[] args) throws PhelixException {
/*Etype: O-Salsa20
•
*I

int Etype = 0;

/*Stype:
•
•
•
•
*I

int Stype=2;

/*Ttype:
•
•
•
*I

int Ttype=2;

1-Phelix

0-Key/Keystream Correlation Sequences
I-IV /Keystream Correlation Sequences
2-Frame Correlation Sequences
3-Diffusion Sequences
4-Keystream Sequences

0-Frequency Test
!-Block Frequency Test
2-DiscreteFourierTransform Test
3-Runs Test

int pow= 10; // #of the generated sequences=Math.pow(2, pow)

double[] p_value;
double newP _value;
double[] f = new double[81];
int pass_No = 0;
double pass_Frequency = 0;
for(int i=O; i< IO; i++){

f[i]=O.O;

String[] sequence = null;
Ks_multiple ks_gen = null;

switch (Etype){
case 0: System.out.println("Test Salsa20");break;
case I: System.out.println("Test Phelix");break;
}

if (Stype<4)
ks_gen = new Ks_multiple(pow, Etype, Stype);

else
ks_gen = new Ks_multiple(pow, Etype, 0);

switch (Stype){
case 0:

System.out.println("test key/Keystream Correlation Sequences");
sequence = ks_gen.ks_k;
break;

case 1:

138

----- ---

System.out.println("test IV /Keystream Correlation Sequences");
sequence = ks_gen.ks_IV;
break;

case 2:
System.out.println("test Frame Correlation Sequences");
sequence= ks_gen.frame;
break;

case 3:
System.out.println("test Diffusion Correlation Sequences");
sequence = ks_gen.diffusion;
break;

case 4:
System.out.println("test Keystream Sequences");
sequence = ks_gen.ks_str;
break;

int sL = sequence.length;
p_value = new double[sL];

switch (Ttype){
case 0:

System.out.println("Frequency Test: ");
for(int i=O; i<sL; i++){

p_ value[i] = new Frequency(sequence[i]).pvalue;

Utility.group(p _ value[i], f);
pass_No = Utility.pass(p_value[i], pass_No);

break;
case I:

System.out.println("BlockFrequency Test: ");
for(int i=O; i<sequence.length; i++){

p_ value[i] = new BlockFrequency(20, sequence[i]).pvalue;
Utility.group(p _ value[i], f);
pass_No = Utility.pass(p_value[i], pass_No);

break;
case 2:

System.out.println("DFT Test: ");
for(int i=O; i<sequence.length; i++){

p_ value[i] = new DiscreteFourierTransform(sequence[i]).pvalue;
Utility.group(p_ value[i], f);
pass_No = Utility.pass(p_value[i], pass_No);

break;
case 3:

System.out.println("Runs Test: ");
for(int i=O; i<sequence.Iength; i++){

p_ value[i] = new Runs(sequence[i]).pvalue;
Uti I ity.group(p _ value[i], f);
pass_No = Utility.pass(p_value[i], pass_No);

break;

double x;

139

double chi=O;
for (int i=O; i< lO; i++){

f[i] = f[i]/sL;
x = f[i)-0 .1;
chi += x*x / 0.1;

}
newP _value = MyMath.igamc(4.5, chi/2);

java.text.DecimalFormat df5 new java.text.DecimalFormat("##O.OOOOO");
java.text.DecimalFormat df6 new java.text.DecimalFormat("##O.OOOOOO");
System.out.println("chi = "+df5 .format(chi));
System.out.println("newp_ value = "+df5 .format(newP _value));
pass_Frequency = (double)pass_No/sL;
System.out.println("proportion = "+df6.format(pass_Frequency));

ackage tests_algorithms;

import util.MyMath;

public class DiscreteFourierTransform {

public double pvalue;

public DiscreteFourierTransform(String str){

int n = str.length();
int count = 0;
double upperBound = MyMath.sqrt(3*n);
double percentile, N_l, N_o, d;
double[] X_ real = new double[n] ;
double[] X_imag = new double[n];
double[] S = new double(n]; //significance

for(int i=O; i<n; i++)
X_real[i] = (double) MyMath.checkStringMinus(str)[i];

MyMath.dft(X _real);
for(int i=O; i<n/2; i++){

X_real[i] = MyMath.gr[i];
II System.out.println("gr"+i+":"+ X _real[i]);

X_ imag[i] = MyMath.gi[i];
S(i] = Math.sqrt(Math.pow(X_real[i] ,2) + Math.pow(X_imag[i],2));

II System.out.println("S"+i+":"+S[i]);

II System.out.println("upperBound"+":"+upperBound);
for(int i=O; i<n/2; i++)

if (S[i] < upperBound)
count++;

percentile = (double)count/(n/2)* I 00;
II System.out.println("percentile"+":"+percentile);

N_l = (double) count; /*number of peaks less than h = sqrt(3*n) *I
II System.out.println("Nl "+":"+N_ l);

N_o = (double) 0.95*n/2.;
lid = (N_l- N_o)/sqrt(n/2.*0.95*0.05);

140

d = (N_I- N_o)/Math.sqrt(n/4.o•o.9s•o.05);
II System.out.println("d"+":"+d);

pvalue = MyMath.erfc(Math.abs(d)/Math.sqrt(2.));

package generators;

importjava.math.Biglnteger;
import java.utii.Arrays;

import utii.Utility;

public class Ks_multiple {
public int[][] key;
public int[][] IV;
public int[][] ks;
public String[] ks_str;
public String[] ks_k;
public String[] ks_ IV;
public String[] frame;
public String[] diffusion;
public int ksLen_Salsa = 16; //in words(32 bit)
public int ksLen_ Phelix = 16; //in words(32 bit)

public void encryptPhelix(byte[]REF _ KEY, byte[]REF _IV, byte[]REF _ PTXT, byte[]ctxt, int[][)ks, int
i) throws PhelixException{

Phelix phx;
phx = new Phelix();

phx.init();
phx.setupKey(REF _KEY, 0, REF _ KEY. length • 8, Phelix.PHELIX_MAC_SIZE);
phx.setupNonce(REF _IV, 0);
ctxt = makeOutputBuffer(REF _PTXT.Iength, 0);
phx.encryptBytes(REF _PTXT, 0, ctxt, 0, REF _PTXT.Iength);
ks[i] = phx.ks;

public void encryptSalsa(byte[)REF _KEY, byte[]REF _IV, int[)[]ks, inti){
Salsa20 salsa = new Salsa20(REF _KEY, REF _IV);
key[i)= salsa.kW;
salsa.keystream _gen();
ks[i] = salsa.ks;

}
public String tonbitString(int[] data){

String temp = null;
String str = null;
for (int i=O; i<data.length; i++){

temp = lnteger.toBinaryString(data[i]);
while(temp.length()<32)
temp = "O".concat(temp);
if (i==O)

str = temp;
else

141

str = str.concat(temp);
}
return str;

}

public void to32bitStrings(int[][] data, String[] str){
for (int i=O; i<data.length; i++){

str[i] = tonbitString(data[i]);
}

public static byte[] makeOutputBuffer{int nLen, int nExtraLen)
{

/**

*

byte[] result = new byte[nLen + nExtraLen];
Arrays.fill(result, {byte)Oxcc);
return result;

* @param pow: the power of 2
* @param generator: 0 indicates Salsa20, I indicates Phelix
* @param type: 0-keystream or Key/Keystream Correlation Sequence.
* I-IV /Keystream Correlation Sequence.
* 2-Frame Correlation Sequences.
* 3-Diffusion Sequence
• @throws PhelixException
*I

public Ks_multiple(int pow, int generator, int type) throws PhelixException{
int[][] temp = null;
int m = (int) Math.pow(2, pow); //#of the generated sequences

if (generator == I){ //Phelix
this.ks= new int[m][ksLen_ Phelix] ;
ks_str = new String[m];
byte[] REF _KEY = new byte[60]; //256-bit key
byte[] REF _IV = new byte[44]; //128-bit IV
byte[] REF _PTXT = new byte[ksLen_Phelix*4] ;
byte[] ctxt = null;
this.key =new int[m][IO];
java.util.Random rKey = new java.util.Random(),

riV=new java.util.Random(),
rPTXT =new java.util.Random();

rPTXT.nextBytes(REF _PTXT); //plaintext fixed

if (type == 0){
ks_k = new String[m];
temp = new int[m][key[O].length];

riV.nextBytes(REF _ IV); //IV fixed
for (int i=O; i<m; i++){

rKey.nextBytes(REF _KEY);

intj=O;
for (int k=O;k<8;k++){
j=k*4;
this.key[i][k]=

142

REF_ KEY[j]);
Utility.byteTolnt(REF _KEY[j+3], REF _KEY[j+2], REF _KEY[j+ 1],

}

encryptPhelix(REF _KEY, REF _IV, REF _PTXT, ctxt, this.ks, i);

forQ =O; j<key[i] .length; j ++)
temp[i][j] =ks[i][j]"key[i][j]; //keystream XOR key

}
to32bitStrings(this.ks, this.ks _ str);
to32bitStrings(temp, this.ks_ k);
System.out.println("Number of Sequences = "+ks_k.length+", " +

"Sequence Length = "+ks_k[O].length());

if (type == I){
ks_IV = new String[m];
IV = new int[m][6];
temp = new int[m][IV[O].length];

rKey.nextBytes(REF _KEY); //key fixed
for (int i=O; i<m; i++){

riV.nextBytes(REF _IV);

intj=O;
for (int k=O;k<4;k++){
j=k*4;
this.IV[i][k]=

Utility.byteToint(REF _IV[j+ 3], REF _IV[j+2], REF _IV[j+ 1], REF _IV[j]);

}

}

}

encryptPhelix(REF _KEY, REF _IV, REF _PTXT, ctxt, this.ks, i);
forQ=O; j<IV[i].length; j++)
temp[i][j] = ks[i][j]" IV[i][j]; /lkeystream XOR IV

to32bitStrings(this.ks, this.ks _str);
to32bitStrings(temp, this.ks_IV);

System.out.println("Number of Sequences = "+ks_IV.length+", " +
"Sequence Length = "+ks_IV[O].Iength());

if (type == 2){
ks_IV = new String[m];
IV = new int[m][6];
frame = new String[5 I 2] ; //the arbitrary length of the frame is 512

rKey.nextBytes(REF _KEY); //key fixed
II This procedure is repeated pow(2, I 0) times with incremented values of IV.

for (int i=O; i<m; i++){
if(i<256){

REF _IV[O] = (byte)i;
REF _IV[73] = (byte)O;

else {

}

REF _IV[73] = (byte)i;
REF _IV[O] = (byte)O;

for (int iv_index=2; iv_ index<REF _IV.length; iv_index++){
REF _ IV[iv _ index]=O;

143

encryptPhelix(REF _KEY, REF _IV, REF _PTXT, ctxt, this.ks, i);
}

to32bitStrings(this.ks, this.ks _str);

for(int fi=O; fi<512; fi++){ //the arbitrary length ofthe frame is 512
for (int mi=O; mi<m; mi++){

if(mi==O)
frame[fi] = String.valueOf(ks_str[mi).charAt(O));

else
frame[fi] frame[fi) .concat(Stri ng. val ueOf(ks _ str[m i] .char At(fi)));

}
}

if (type == 3){
byte[] newKey, newlY;
int sLen = 256 + 128; //k+v sequences
diffusion = new String[sLen];
byte ei = 1;
int ei_p = 0; //the position of the bit that will change
int byte_p=O; //the position of the byte that will change
int[] ks_old = new int[44],

ks_new =new int[44];
String ks_old_str = null;
String ks_new_str = null;
Biglnteger b I, b2;
int[][) diff_int =new int[sLen)[44];
for (int i=O; i<sLen; i++){

for(int j=O; j<l6; j++)
diff_int[i][j] = 0;

for (int i=O; i<m; i++){
/*

• Random key and IV values are chosen.
• Using this key and IV, a keystream of length L=ksLen_Phelix *4 bits is generated
*I

rKey.nextBytes(REF _KEY); //32 bytes
riV.nextBytes(REF _IV); //16 bytes
encryptPhelix(REF _KEY, REF _IV, REF _PTXT, ctxt, this.ks, i);
ks_old= ks[i];
ks_old_str = tonbitString(ks_old);

I*
• By changing each bit of key and IV, new keystreams are generated.
• These keystreams are XORed with the original keystream.
• Each obtained value is added with the value of diffusion[j]
*I

for (int j =O; j<256; j++){
ei_p = j% 8;
byte_p = j/8;
newKey = REF _KEY;
newKey[byte_p] "= (int) Math.pow(2, ei_p);

144

}

encryptPhelix(newKey, REF _IV, REF _PTXT, ctxt, this .ks, i);
ks_new = ks[i];

ks_new_str = tonbitString(ks_new);

bl = new Biglnteger(ks_old_str, 2);
b2 = new Biglnteger(ks_new_str, 2);

diffusion[j] = b l.add(b2).toString(2);
while (diffusion[j].length()<512)

diffusion[j] = "0" .co neat(diffusion[j]);

for (intj=O; j< I28; j++){
ei_p = j% 8;
byte_p = j/8;
newlY = REF _IV;
new!V(byte_p] "= (int) Math.pow(2, ei_p);

encryptPhelix(REF _KEY, newlY, REF _PTXT, ctxt, this.ks, i);

ks_new= ks[i];
ks_new_str = tonbitString(ks_new);
b I = new Biglnteger(ks_old_str, 2);
b2 = new Biglnteger(ks_new_str, 2);

diffusion[256+j] = b l.add(b2).toString(2);
while (diffusion[256+j].length()<512)

diffusion[256+j] = "O".concat(diffusion[256+j]);

if (generator == 0){ //Salsa20
this.ks= new int[m][ksLen_Salsa];
ks_str = new String[m];
byte[] REF _KEY = new byte[60]; //256-bit key

byte[] REF _IV = new byte[44]; //128bit IV
java.utii.Random rKey = new java.utii.Random(),

riV = new java.utii.Random();
rKey.nextBytes(REF _KEY); //fixed
riV.nextBytes(REF _IV); //fixed

this.key = new int[m][lO];

if (type == 0){
ks_k = new String[m];
temp = new int[m][key[O].Iength];

riV.nextBytes(REF _IV); //IV fixed
for (int i=O; i<m; i++){

145

REF _KEY[j]);

rKey.nextBytes(REF _KEY);

intj=O;
for (int k=O;k<8;k++){
j =k*4;
this.key[i][k]=

Utility.byteToint(REF _KEY[j+ 3], REF _KEY[j+2], REF _KEY[j+ I],

}

encryptSalsa(REF _KEY, REF _ IV, this.ks, i) ;

forQ =O; j <key[i] .length; j ++)
temp[i][j] =ks[i][j]"key[i][j]; //keystream XOR key

}
to32bitStrings(this.ks, this.ks _ str);
to32bitStrings(temp, this .ks_k);

if(type == I){
ks_IV = new String[m];
IV = new int[m][6];
temp = new int[m][IV[O].Iength];

rKey.nextBytes(REF _KEY); //key fixed
for (int i=O; i<m; i++){

riV.nextBytes(REF _IV);

intj=O;
for (int k=O;k<4;k++){
j =k*4;
this.IV[i][k]=

Utility.byteTolnt(REF _IV[j+ 3], REF _IV[j+2], REF _IV[j+ I], REF _IV[j]);

}

encryptSalsa(REF _KEY, REF _ IV, this.ks, i);
forG=O; j <JV[i].length; j++)
temp[i][j] = ks[i][j]" IV[i][j] ; //keystream XOR IV

to32bitStrings(this.ks, this.ks _ str);
to32bitStrings(temp, this.ks_ IV);

if (type == 2){
int l=ksLen_Salsa*32;
ks_IV = new String[m];
IV = new int[m][6];
frame = new String[512];

rKey.nextBytes(REF _KEY); //key fixed
II This procedure is repeated pow(2, I 0) times with incremented values of IV.
for (int i=O; i<m; i++){

if(i<256){
REF _IV[O] = (byte)i;
REF _ IV[73] = (byte)O;

else {
REF _ IV[73] = (byte)i;

146

REF _IV[O] = (byte)O;
}
for (int iv _ index=2; iv _ index<REF _IV. length; iv _index++){

REF _ IV[iv _ index]=O;

encryptSalsa(REF _KEY, REF _IV, this.ks, i);
}

to32bitStrings(this.ks, this.ks _ str);
for(int fi=O; fi<l; fi++){ //the arbitrary length of the frame is I
for (int mi=O; mi<m; mi++){

if(mi==O)
frame[fi] = String. valueOf(ks _ str[mi] .charAt(O));

else
frame[fi] = frame[fi].concat(String.valueOf(ks_str[mi] .charAt(fi)));

}
}

if(type == 3){
byte[] newKey, newlY;
int sLen = 256 + 128; //k+v sequences
diffusion = new String[sLen];
byte ei = I;
int ei_p = 0; //the position of the bit that will change
int byte_p=O; //the position of the byte that will change
int[] ks _old = new int[44],

ks_new = new int[44];
String ks_old_str = null;
String ks_new_str = null;
Biginteger b I, b2;
int[][] diff_ int = new int[sLen][44];
for (int i=O; i<sLen; i++){

for(int j =O; j < 16; j ++)
diff_ int[i][j] = 0;

for (int i=O; i<m; i++){
/*

* Random key and IV values are chosen.
*Using this key and IV, a keystream of length L=ksLen_Salsa *4 bits is generated
*I

rKey.nextBytes(REF _KEY); //32 bytes
riV.nextBytes(REF _IV); /116 bytes
encryptSalsa(REF _KEY, REF _IV, this.ks, i);
ks_old= ks[i];
ks_old_str = tonbitString(ks_old);

/*
* By changing each bit of key and IV, new keystreams are generated.
* These keystreams are XORed with the original keystream.
* Each obtained value is added with the value of diffusion[j]
*I

for (intj=O; j <256; j ++){
ei_p = j % 8;
byte_p = j /8;

147

}
}

}

newKey = REF _KEY;
newKey[byte_p] /\= (int) Math.pow(2, ei_p);
encryptSalsa(newKey, REF _ IV, this.ks, i);
ks_new = ks[i];

ks _new_ str = tonbitString(ks _new);
bi = new Biginteger(ks_old_str, 2);
b2 = new Biginteger(ks_new_str, 2);

diffusion[j] = bl.add(b2).toString(2);
while (diffusion[j].length()<512)

diffusion[j] = "O".concat(diffusion[j]);

for (int j=O; j<128; j++){
ei_p = j % 8;
byte_p = j /8;
new IV = REF _IV;
newiV[byte_p] /\= (int) Math.pow(2, ei_p);

encryptSalsa(REF _KEY, newlY, this.ks, i);
ks_new= ks[i];
ks_new_str = tonbitString(ks_new);
b I = new Biglnteger(ks_old_str, 2);
b2 = new Biglnteger(ks_new_str, 2);
diffusion[256+j] = b l.add(b2).toString(2);
while (diffusion[256+j].length{)<5I 2)

diffusion[256+j] = "0" .co neat(diffusion[256+j]);

Appendix G: A Test Example to Illustrate the

Distribution of P-values

Test Salsa20
Frequency Test :
1024 independent sequ ences (1024 keys and 1024 nonce are generated randomly),
each is of 512 bits , generate 1024 P- values :

0 . 531 97 0 . 90052 0 . 31731 0.70766 0 . 70766 0 . 90052 0 . 80259 0.45325
0 . 3173 1 0 . 61 708 0.31731 0 . 80259 0 . 70766 0 . 90052 0 . 26059 0.21130
0 . 31731 0 . 10416 0 . 10416 0 . 31731 0 . 61708 1. 00000 0 . 06079 0 . 53197
0 . 31731 0 . 31731 0.26059 0 . 31731 0 . 61708 0.90052 0.21130 0 . 90052
0 . 61708 0 . 06079 0.90052 0.80259 0 . 31731 0 . 26059 1 .00000 0 . 53197
0.53197 0 . 90052 0.80259 0 . 38157 0 . 90052 0 . 26059 0 . 53197 0 . 21130
0 . 90052 0 . 90052 0 . 53 197 0 . 21130 0 . 104 1 6 0.31731 1. 00000 0 . 61708
0 . 80259 0 . 70766 0 . 90052 0 . 90052 0 . 21 130 0.38157 0.61708 0 . 31731
0.26059 0 . 70766 0 . 21130 0 . 31731 0 . 45325 0 . 38157 0 . 90052 0 . 90052
0 . 10416 0 . 31731 0 . 10416 0 . 31731 0 . 70766 0 . 26059 0.61708 0 . 53197

148

.----------------------------------- --------

0 . 70766 1.00000 0 . 13361 0 . 45325 1.00000 0.06079 0.00866 0.16913
0 . 53197 0 . 31731 0 . 70766 0 . 21130 0 . 26059 0.61708 0 .13361 0.13361
0 . 70766 0 . 70766 0 . 53197 0 .7 0766 0.80259 0.26059 0 . 53197 0 . 26059
0 . 61708 0 . 53197 0.80259 0.80259 0.70766 0 . 10416 0 . 26059 0.70766
0.04550 0 . 70766 0 . 31731 0 . 53197 0.70766 0.80259 0.53197 0.80259
0.13361 0.16913 1.00000 0 . 31731 0 . 61708 0.13361 0 . 53197 0 . 80259
1. 00000 0 . 21130 0.70766 0.90052 1.00000 0.61708 0 . 70766 0.61708
1. 00000 0.26059 0 . 31731 0.61708 0.53197 0.70766 0.70766 0.61708
0.80259 0 . 31731 0.10416 0 . 61708 1. 00000 0.70766 0 . 80259 0.70766
0 . 38157 0.80259 0.53197 0 . 90052 0 . 45325 0 . 70766 0 . 45325 0.70766
0 . 13361 0.45325 0 . 08012 0 . 53197 0 . 70766 0 . 31731 0 . 90052 0 . 53197
0 . 38157 0 . 53197 0.70766 0 . 45325 0 . 90052 0 . 70766 0 .4 5325 0.61708
0.26059 0 . 10416 0.26059 0 . 70766 0.31731 0 . 31731 0.53197 0.70766
0.61708 0.90052 0 . 53197 0 . 90052 0.26059 0 . 21130 0 . 21130 0.53197
0 . 31731 0.45325 0.45325 0 . 61708 0.26059 0 . 16913 0.53197 0.61708
0 . 90052 0.45325 0 . 80259 1.00000 0.26059 0.61708 0.70766 0.80259
0.26059 0.26059 0.80259 0.80259 0.70766 0.80259 0.38157 0.61708
0.80259 0 . 38157 0 . 08012 0.80259 0.08012 0.38157 0 . 00866 0 . 04550
0 . 53197 0 . 70766 0 . 26059 0 . 31731 0.06079 0 .10416 0.61708 0.70766
0.26059 0 . 80259 1 . 00000 0 . 80259 1.00000 0 . 26059 0.45325 0.45325
0 . 61708 0 . 53197 0 . 80259 0 . 90052 0. 00115 0.61708 0.03359 0 . 61708
0 . 53197 0 . 38157 0.31731 0 . 90052 0.31731 0.04550 0.38157 0.90052
0 . 31731 0 . 45325 0 . 70766 0 . 61708 0 . 53197 0 . 70766 0.45325 1 . 00000
0.08012 0.45325 0.45325 0 . 61708 0.70766 1.00000 1. 00000 0 . 53197
0.31731 0 . 53197 0 . 53197 0.26059 0 . 70766 1.00000 0 .1 0416 0 . 38157
0.31731 0 . 31731 0 .13361 0.90052 0.02445 0 . 90052 0 .1 0416 1 . 00000
0 . 21130 0 . 90052 0 . 08012 1.00000 0.38157 0.06079 0.53197 0.21130
0 .1 0416 0 . 90052 0 . 26059 0 . 90052 0.90052 1.00000 0 .1 3361 0.31731
0 .1 0416 0 . 31731 0 . 21130 0.61708 0 . 70766 1.00000 0.16913 0 . 03359
0.38157 0 . 53197 0 . 21130 0 . 26059 0.70766 0 . 70766 0 .1 6913 0 . 01755
0 . 45325 0 . 21130 0 . 80259 1 . 00000 0 .1 3361 0 . 90052 0.38157 0.38157
0.21130 0 .1 6913 0 . 21130 0 . 80259 0 . 90052 0 .1 3361 0.90052 0.70766
0 . 90052 0 . 90052 0 . 26059 0 . 26059 1. 00000 0 . 08012 0 . 26059 0.26059
0 . 13361 0 . 38157 0.70766 1.00000 0 . 61708 1.00000 0 .4 5325 0 . 61708
0.38157 0 . 90052 1.00000 0 . 70766 1.00000 0.38157 0.10416 0.45325
0 . 70766 0 . 70766 0 . 31731 0 . 21130 0.80259 0 . 70766 0.53197 0 . 13361
0 . 53197 0 . 03359 0 . 06079 0.80259 0.70766 0 . 38157 0 . 08012 0.61708
0 . 06079 0.53197 0 . 61708 0 . 31731 0 .1 6913 0 . 80259 0 . 70766 0 . 16913
0 . 13361 0.26059 0 . 45325 0 . 90052 0.80259 0.04550 0.16913 0.38157
0 . 61708 0.06079 0 .7 0766 0 . 38157 0.70766 0 . 38157 0. 21130 0 . 70766
0.80259 0.00596 0 .10416 0 . 04550 0 . 08012 0 . 45325 0.21130 1. 00000
0 . 16913 0.16913 0 . 13361 0.26059 0 . 31731 0.70766 0 . 06079 0.80259
0 . 21130 0.08012 0 . 70766 0 . 38157 0 . 80259 0 . 70766 0 . 21130 1. 00000
0 . 80259 1.00000 0.61708 0.61708 0 . 61708 0 . 45325 0 . 21130 0.38157
0.90052 0 . 70766 0.45325 0.45325 0 . 53197 0.02445 0 . 38157 0.70766
0.61708 0.16913 0.70766 0 . 26059 0.13361 0 . 61708 0 . 90052 0 . 31731
0.70766 0.45325 0.90052 1.00000 0.61708 1.00000 0 . 61708 0.90052
1.00000 1. 00000 0 . 53197 0.53197 0.53197 0 . 53197 0 . 90052 0.31731
0.10416 0 . 80259 0.70766 0.45325 0.45325 0.53197 0.02445 0.38157
0.31731 0.45325 1.00000 0.45325 0.04550 0.26059 0. 70766 0.61708
0 . 61708 0 . 61708 0 . 90052 0.53197 0.53197 0 . 70766 0 . 31731 0.26059
0 . 26059 0.03359 0 . 80259 0 . 01755 1.00000 0 . 80259 0.08012 0.90052
0 . 53197 0. 21130 0.80259 1.00000 0 . 45325 0. 21130 0.90052 0 . 70766
0 . 31731 0 . 61708 0.31731 0.45325 0.26059 0.70766 0.38157 0.38157
0 . 90052 0.10416 0 .06079 0 . 26059 0.80259 0 . 53197 0 . 26059 0.26059
0.13361 0.45325 0 . 53197 0.70766 0 . 61708 0.90052 0.90052 0.90052
0.70766 0.45325 0.10416 0.61708 0.53197 0.80259 0 . 80259 0 . 31731

149

------------- --- --- ---- ----------

0 .1 3361 0 . 80259 0 . 06079 0 . 90052 0 . 90052 0 . 70766 0 . 70766 0 . 16913
0 .1 6913 0 . 70766 0 . 26059 0 . 90052 0 . 21130 0 . 21130 0.80259 0 . 45325
0 . 53197 0 . 61708 0 . 01755 0 . 26059 0.61708 0 . 80259 0 . 38157 0 . 38157
0 . 80259 0 . 53197 0 . 80259 0 . 26059 0 . 21130 0.45325 0.53197 0 . 61708
0 . 53197 1.00000 0 . 80259 0 . 80259 0 . 70766 0 . 04550 0.53197 0 . 38157
0.90052 0.31731 0 . 08012 0 . 16913 0.80259 0 . 53197 1 . 00000 0 . 70766
0 . 45325 0 .01 755 0 . 90052 0 . 70766 1.00000 0 . 10416 0.45325 0 . 80259
0.531 97 0.38157 0 . 90052 0 .1 3361 0 . 31731 0 . 80259 0.16913 0.26059
0.31731 0 . 01755 0.90052 0.53197 0 . 90052 0 . 02445 0 . 70766 0 . 90052
0. 70766 0.02445 0.10416 0 . 61708 0.13361 0 . 01242 0 . 80259 0 . 31731
0 . 61708 0.00404 0 . 61708 0 . 80259 0.70766 1.00000 0 . 16913 0 . 45325
0 . 90052 0.38 157 0 . 31731 0.80259 0 . 26059 0 . 80259 0 . 31731 0 . 16913
0.61708 0 . 53197 0.13361 0.80259 0 . 16913 0 . 26059 0 . 16913 0 . 61708
0.90052 0.70766 0 . 90052 0 . 80259 0 . 61708 0 . 80259 0 . 61708 0 .1 0416
0.38157 0 . 90052 0 . 53197 0 . 38157 0 . 38157 0 . 26059 0 . 21130 0.38157
0.38157 0 . 26059 0 . 90052 0. 70766 0 . 26059 0 . 31731 0 . 80259 0.61708
0.80259 0.90052 0 . 90052 0 . 21130 0.16913 0 . 61708 0 . 90052 0 . 31731
0 . 13361 0 . 38157 0 . 70766 0.61708 0 . 61708 0 . 80259 0 . 90052 0 . 61708
0 . 21130 0.38157 0 . 90052 0.06079 1. 00000 0.16913 0 . 16913 1 . 00000
0.00596 0.06079 0 . 70766 0 . 26059 0 . 38157 0 . 45325 0 . 26059 0.00178
0. 61708 0 . 53197 0 .13361 1 . 00000 0 . 45325 0.10416 0.80259 0 . 80259
0.70766 0 . 26059 0 . 38157 0 . 80259 0.31731 0.61708 0 . 04550 0.61708
0.00404 0.70766 0 . 70766 0 . 10416 0 . 13361 0 .13361 0.70766 0 . 13361
0.80259 0 . 61708 0 . 26059 0 . 45325 0 . 38157 0.61708 0 . 53197 1. 00000
0 . 70766 0 . 53197 0 . 61708 0 . 45325 0 . 38157 0 . 90052 0 . 90052 0 . 45325
0 . 03359 0 . 10416 0 . 31731 0.08012 0 . 53197 0 . 70766 0.26059 0.61708
0 . 45325 1 . 00000 0 . 61708 0 . 16913 0 . 26059 0.45325 0 . 13361 0 . 45325
0 . 53197 0 . 53197 0 . 21130 0 . 70766 0 . 45325 0.53197 0 . 53197 0.53197
1.00000 1. 00000 0 . 61708 0.45325 0 . 90052 0 . 31731 1.00000 0 . 53197
1.00000 0 . 31731 0 . 10416 0 . 70766 0 . 45325 0 . 26059 0 . 61708 0.38157
0 . 90052 0.08012 0 . 38157 0.90052 0 . 53197 0 . 10416 0 . 80259 0 . 61708
0 . 80259 0.61708 1. 00000 0 . 31731 0 . 21130 0 . 70766 1.00000 0 . 45325
1. 00000 0 . 80259 0 . 31731 0.45325 0 . 38157 0 . 70766 0.16913 0 . 53197
0 . 61708 0 . 26059 0 . 70766 0 . 80259 0 . 04550 0 . 70766 1.00000 0 . 70766
0.80259 0.61708 1 . 00000 0.13361 0 . 90052 0 . 31731 0 . 16913 0 . 80259
1 . 00000 0.21130 0 . 80259 0.01755 0 . 04550 0 . 90052 0 . 38157 0 . 61708
0.70766 0 . 31731 0.61708 0 . 90052 0 . 61708 0 . 53197 1. 00000 0 . 26059
0 . 70766 0 . 45325 0 . 61708 0 . 31731 1.00000 0.38157 0 . 00596 0 . 80259
0 . 80259 0 . 21130 0 . 90052 0. 70766 0.01755 1 . 00000 0 . 61708 0.70766
1. 00000 0 . 26059 0 .1 0416 0 . 90052 0 . 61708 0 . 10416 0 . 70766 0.90052
0 . 13361 0 . 80259 0 . 26059 0 . 38157 0.10416 0.08012 0 . 16913 0 . 21130
0 . 13361 0 . 53197 0 . 90052 0 . 45325 0 . 04550 0 . 31731 0 . 31731 0.21130
0 . 45325 0 . 06079 0 . 31731 0 . 08012 0 . 10416 0 . 53197 0 . 80259 0.90052
0.53197 0.53197 0 . 61708 0 . 38157 0 . 16913 0 . 31731 0 . 31731 0 . 13361
0 . 38157 0 . 26059 0.53197 1.00000 0 . 21130 0 . 80259 0.13361 0.13361
0.45325 0 . 61708 0 . 31731 0 . 26059 0 . 53197 0 . 90052 0 . 61708 0.90052
0.38157 0 . 04550 0 . 00404 0 . 38157 0 . 53197 0 . 45325 0 . 90052 0.90052
0 . 80259 0 . 70766 0.10416 0.53197 0 . 06079 0 . 31731 0 . 31731 0.90052
0 . 80259 0.53197 0.10416 0 . 38157 0 . 38157 0 . 45325 1.00000 0 . 53197
0 . 90052 0 . 21130 0 . 53197 0 . 61708 0.16913 0 . 45325 1.00000 0.06079
0 . 10416 0.10416 0 . 531 97 0.31731 0 . 45325 0 . 53197 0 . 61708 0.13361
0 . 45325 0.08012 0 . 90052 0 . 08012 0.31731 0.61708 0.70766 0.13361
0.45325 0.70766 0 . 38157 0.61708 0 . 70766 0 . 13361 1.00000 0.80259
0.26059 0 . 90052 0 . 13361 0.38157 0.26059 0.26059 0 . 16913 0.21130
0 . 90052 0 . 21130 0 . 31731 0 . 31731 0.45325 0.08012 0.31731 0.80259
0 . 13361 0 . 61708 0 . 61708 0 . 70766 0 . 45325 0 . 80259 0 . 70766 0.10416
0 . 53197 0 . 31731 0 . 26059 0 . 01755 0 . 45325 1.00000 0 . 01242 0.08012

150

------ ---------

0.70766 0.08012 0.00866 0 . 26059 1.00000 0.45325 0.13361 0 . 80259
1.00000 0.16913 0.61708 0 . 90052 0 . 16913 0 . 31731 0.70766 0.26059
1.00000 0.61708 0 . 06079 0.38157 0 . 31731 0 . 70766 0.61708 0 . 31731
0.80259 1.00000 0 . 61708 0 . 21130 0 . 90052 0 . 02445 0.70766 0 . 53197

151

