

Hardware Implementation of the Salsa20 and Phelix

Stream Ciphers

by
@ Junjie Yan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERIN G
in
Faculty of Engineering and Applied Science
MEMORIAL UNIVERS] Y OF NEWFOUNDLAND

October 2007

St. John’s Newfoundland

Acknowledgements

First of all I would like to thank my supervisor Dr. Howard Heys for his constant
guidance and support. Without his supervision, this thesis would not exist.

I would also like to thank Dr. Cheng Li. His courses, especially LSI Design (I zr.
8863) and Digital Systems (Engr. 5865) not only made me familiar with the hardware
design flow but also the use of VHDL as design language and input for logic synthesis.
They are critical tools for my research.

I am very grateful to Canadian Microelectronic Corporation (CMC) as well as
Mentor Graphics for their help in providing design tools and e access to state-of-the-art
manufacturing technologies.

I thank Namin Yu for the useful literature she provided. With the literature as
guidance for chapter organization, grammars and format, [saved a lot of time in terms of
thesis writing.

Many thanks to Huiju Cheng for being a great lab partner, travel mate and my best
friend at MUN. Our cooperation resulted in more ideas in my research, which was truly
rewardil

I thank Peter Vandrish for his insightful comments an criticism and for careful
reading of my papers before publishing. I very much appreciated the pleasant and fruitful
time studying together with him.

Furthermore, I would like to express my gratitude to Avalon Microelectronics
Incorporation, who has provided me with a fabulous job as an FPGA desi ier, making it
possible for me to continue my work and study on hardware implementation in a broader

range of applications.

Junjie Yan

July 15, 2007

certain statistical tests, which are publicly available in the NIST (National Institute of
Standards and Technology) test suite to test various sequences prod :d by using the
Phelix and Salsa20 algorithms. Since the test suite has not considert 2 relationship
between key, 1V, internal state and the | ’stream, we also applied six novel tests to
examine the ciphr . Two strategies are employed to in pret the test results: the
examination of the proportion of sequences that pass a statistical test and the distribution
of P-values to check for uniformity. NIST ‘ves the definition of P-val : the probability
that a perfect random number generator would have produced a sequ ice less ranc m
than the sequence that was tested. The experimental results show that both Salsa20 1d
Phelix have passed the tests in NIST, considering that P-val :less th 0.0] indicate a
possible weakness. An easily understood deviation is observed in the correlation test for
the last internal state (the state after 9 double rounds) and the keystream in Salsa20.

However, how this could be exploited in an attack is an open question.

Table of Contents

ACKNOWIBAZEIMENTS ...cviiriiiieiiiciecit ettt s st e st be e ebee s et eeete s ebeseaeeenessebeesbeesasesseensnssesasesetees ii
ADSITACE ...ttt sttt et st e ba e s e e et e e n et e et e rs kb e st be b eeteeeenneereeheeneeteentan iit
Table Of CONLEMLSoiviiiitiisiic ettt ettt b ettt e e e st s e bt s e s e s e esserseteesasmanea sensanneseesons v
LSt OF FIGUIES ..o ittt st s sest i seee st e e s s ess e s assaesaesbesbesatesbseavesaeebeneseensentesseeseessenneseesnsan ix
LiSt Of TaBIES ..viviiire ittt et e ettt et et e st ae st sne e s se e enaeresean xi
List Of ABBreviations........cvueiecteciieie et ettt s e s et e s s sre s b st e e b bbb e ens xii
Chapter | An Introduction to Cryptographyc....cceeeeriiiiiiiiieieicere e e s s esee e 1
1.1 Brief HiStory of Cryptography ...ccccoiv i cceee et e e senae s s sne s ste s sresaesesseaeansaenns 1
1.2 INfOrMAtion SECUIILY .o.uvirtviieiiriteitierieeresie st e strtert e raraesesasaessaeseesse s seeseesaseessesseanseessasesseeassans 2
1.3 Background 0N FUNCHONSccovviiiivieniieiereieeesiiveresesimteeeeeveesesssesnessssssesesinnessesseesosnesesonns 3

1.3.1 One-way FUNCHOMN......cceeieiicieece ettt ettt seteeseteeeseesaneesaeaesenens 3

1.3.2 PEIMULALION.coueiiiit ettt et sttt sttt e e e nn e sr e e 3

1.3.3 SUDSHIEULION ...ttt st e s re e s ree s s e e smn e cneenrees 4

1.3.4 EXCIUSIVE OR ..oviiiiiiiiiiiinirccir et ettt e sttt sen e sae e sbesmbe s enn b coneennees 5

1.3.5 Modular Additioncoooveiioieiiiiciceneee e e e st 5

1.3.6 Modular MultipliCation.........ccvcciciremniiniiine i s 6

1.4 Syr etric-key/Private-Key Crypti aphy...ccoiciiciiiocmiii e ssiees e e 6
1.4.1 BIOCK CIPRErs....ccviiiiiiiiiiiiii e st e ns s s e e snaenss 7

1.4.2 Stream CIPREr .o.vucuvieimeiniieie s s s s saes s s esn s v nses srse e s 8

1.5 Asymmetric-key/Public-key cryptographycccoviiiuiinniiiiiiiii i e nieens 11
1.6 CryPlanalySiS....c.coiiieiieiii ittt ettt st s s er e s s s s aa s 12
1.7 SUIMMATY ..oiviieiiiiiiiiiien ittt et st s e s s ab et e e e seas b b beee e s eesnsrbrben e sebbnans 14
Chapter 2 Cipher Implementation..........c...covviieriieieointeriereeesesiieesesnreesesassesssmennessesosmnsssssesesessesessnne 15
2.1 Software ImMplementation..........cccocreiiiri i iirr e e srerere e s es st e ereeseer e eee e neeeee e e snnrrneenaes 15
2.2 Hardware Implementation..........co.cciiiiiiiiiiiiiiiiiiie ettt e emaee s e e e s 16
2.2.1 MethOdOIOZY ...cceiireiriiiiieiiieeeeeiirreiee e errrreee e e e esrsrre e e e e e st neeensmre s e s e smaneasseenasnaesns 17

2.2.1.1 Traditional Methodology Used for Non-feedback Cipher M es.................... 16

2.2.1.2 ASIC Design Flow & FPGA Design FIOWccccrvriienmmnerirneneenienneneninnnienee 18

2.2.2 Main Concerns in Hardware Implementationcccccvueecvinnieeninnnnonionenennanneenes 21

2.3 Software/Hardware COdeSINceiveiiriiirieiieiiitecetieeitee et st s tresre s seaesssaa s nessanesrnsssaeness 25
2.4 SUIMIMATY .ottt ettt et e e st et e e e s se e bt e e e s e e e sn seresasses e sassee s s esmbeesosnbneesemesaenmsessaane 27
Chapter 3 Hardware Implementation of the Phelix Stream Cipher........ccoovvuvveneiviveriieeonineniiieene 29
3.1 Introduction of Phelix Stream CIPher..... .o iieiiiieiiniie et e s e e 29
31 L AIGOTItRIM . cceireiiirieecieire s eeiiiee e e ssireeeesssbreeeeeessesasretres s e saseesasteaneesensnrereeeasonsrreesansnnns 29

312 S CUIILY cuviteeiee ettt e et e e e e e ree e st e e e s e er e e e eesssserenresessastnabanasaeesasessansansaeensonsrerersnanes 30

3.1.3 Previous Work on Hardware Implementation on PheliX........occovvcinninnnniniiinnne, 31

3.2 Compact ASIC Structure of PheliX......oocoiiiiiiiiiiiii e 33
3.2.1 TOP Level DESIZN cueiviieiiiiieiceeieniireciee ettt eesscs et e e en e e oo 33

3.2.2 32-Bit AAET ceverereeeieieeiee e s b 35

3.2.3 H Function BIOCKcoiviiiiiiiiiiiiiiiii ettt 35

3.24 Key Mixing BIoCKooi it e e 38

3.2.5 Nonce Expanding BlOCKc.cocceiiiiiiiiiiiiciiiii it 40

3.2.6 SUDKEY GENETALOTereeieerererirerreerieentersr e erneesreeeeneeesrnesttesssanessrasssbasssssonsnnereneas 41

3.3 High Speed ASIC Structure of PheliXcccoeiiiiiiniiiniiieii e, 42
3.3.1 H FUnction BOCKccceeiiiiiiiiciieicicerinii s et s s 43

3.3.2 Key MiIXing BIOCKceeivirierieeeiinecciiini ettt sttt ae s e 44

3.3.3 Nonce Expanding BIOCKccoiiiiiinininiiiiiiir e 45

3.3.4 Keystream Generation BIOCKcccovivieveiiiiniiiiiieniie e 45

3.3.5 The CONLIOIET ...vvvvrirririreeee ettt et s 46

3.4 Synthesis Results 0f PheliX.....cccoviviiiiiiiiiiiiii e e 47
Chapter 4 Hardware Implementation of the Salsa20 Stream Cipher..........cccooiiviiinne, 49
4.1 Introduction of Salsa20 Stream Cipher.........cccoviiiiiii e 49

vi

41T AIZOTItRM ..t e

4.1.2 SECUNLY c.eeeeirieeerreeecteecrererir e et sne st e s e samneess e st e snn e nseenesressnnnneses
4.1.3 Previous Work on Hardware Implementation on Salsa20.................
4.2 Analysis of Salsa20 Cipher Main Components...........ccoccoeevcernvernenecenessecscnenns
4.2.1 32-bit AddEr c.veeiiiiiiieiee et e
4.2.2 Quarterround Blockcoooiuiviiiiireiieieee e e e
4.2.3 Memory BlocKoooviviriirierieeiee v e e
4.2.4 Control Unit based on Various Datapath..........ccccooeervvririinennennincnnn.

4.2.4.1 Controller of the Compact ASIC Structure........cocevveeeenvennnnne

4.2.4.2 Controller of the Basic Iterative and High Speed ASIC Stru

4.2.4.3 Controller of the _umpact . . JA Structure.........ccccceereeerrernns

4.3 The Synthesis Results 0f Salsa20..........cccocveeiiiiiriiin e creaeee
4.4 SUMIMATY c.coiiiiiiie it st s s s e b saes s st
Chapter 5 Statistical Test of Salsa20 and PheliX.........cocooeriiiiiiiiiicninen e
5.1 INrOAUCHION ..ttt et e e s

5.2 General DiSCUSSIONcceiiiiiiiiiiiiiiiiniccien e sa e e s
5.2.1 RANAOMNESS ..c.eeeiverriiiineiiririrceene e et s et

5.2.2 Test Statistic and P-valueccccvniiiiiiniincnicnciinnin

5.3 Test MOl ...t e e s

5.4 Keystream TestS......ccuiiiiiiiiiie et e e
5.4.1 Frequency (Monobit) Test.......ccccvrvrevcivci it ccinees e

5.4.2 Frequency Test Within a Blockcvvivvvinnivninnn e

5.4.3 Discrete Fourier Transform Test........c.cecveniinmmiiininiiiiinin

5.4.4 Runs Test (Wald-Wolfowitz Test)......cccccrerininmeieiiriininicneininnn,

5.4.5 Experimental Results and Analysiscc.ocovcevcieninnniiinnciinnienne,

5.4.5.1 Proportion of Sequences Passing a Testcc.ccovvvinuinnnnnnn,

5.4.5.2 Uniform Distribution of P-valuescccccccviiiiiniiiininiinnnnns

vii

5.5 COTTEIAtION TS ..uuuvuueeeieieieieiiieieiiiiii e e et e e ee e e e etr sttt tbeteseabesesbtteneeees o eeeneeeeeeaeesesenesesanneans 78

5.5.1 Testing NeW SEQUENCESccccviiiiiiiiiiiiire s st sr e s sra s esrs s rrnnnas 79

5.5.1.1 Sequence Generation PrOCESScccevrrerrrierireirererieenie e s e re e 79

5.5.1.2 Experimental I ults and Analysis.........ccccovrvuieviiiiciirccninnre e e 81

5.5.2 Keystream/Internal States Correlation Test.......ccceoviervienirrcninceninccir e 82

5.5.2.1 AIZOTItRIN Loeiiiiieeriiiiereereirsiiee et ceesrete et eesnnee e srmneae s neasee s snaeaesasaeessnbnesanan 83

5.5.2.2 Experimental Results and Analysis.........cccceevreenmrenimerrecnenenrmresmecceee e 84

5.5.3 Internal States COrrelation. - SSt.........ccvieiviiierrriiinticrieires e e 86

5.5.3. T AlZOTIIM coeiiiiiiee e s 86

5.5.3.2 Experimental Results and Analysis.......ccvveivneiinniiienimnn o i 88

5.6 CONCIUSIONS ...eereceieiiete e et e et bt st s r e e st s s beensbe e be s bernnees 89
Chapter 6 Conclusions and FUtUre WOrK........cccvvveirieriienieincee e e e eie s sens s sne st snens 91
6.1 Summary 0f ReSEArCHcccuiiirmiiiiirireicccenr et s 91

LI R T I) O OO 95
REFEIENCE ... et e st e e e 97
Appendix A: Selected Simulations Results for Phelix ...)3
Appendix B: Selected Simulations Results for Salsa20 ..., 4
Appendix D: Selec 1 Source Cor for PheliX .o,)5
Appendix E: Selected Source Code for Salsa20cccvviieriiimeeniniiinnse s 0
Appendix F: Selected Codes for Statistical TestScccvviiiiiiiiimiiiiicn it e l..
Appendix G: A Test Example to Illustrate the Distribution of P-valuesccccocorininnicnniiiniene 148

viii

List ¢ Figures

Figure 1.1 A Taxonomy of Cryptographic Primitives [6]........ccovverueiieiveiieniireecreeeseeseeeeesseeena 6
Figure 1.2 Two-party Communi: ions Usi Symmetric Key Cryptographyccc.cocovrevemnene. 7
Figure 1.3 Encryption/Decryption Process or Block CIPRErscoveieiererieeeeereneeeresicveennnnen, 8
Figure 1.4 Encryption/Decryption Process of Stream Ciphers........cccccocvvivevniiicincine i 9
Figure 1.5 A Linear feedback shift registers (LFSR) ..ocovvveveriiiiiiece e eniese e e snennens 10
Figure 1.6 Encryption/Decryption Process for Public Key Ciphersc.ccoccoveevvecicnninicnnnnn 11
Figure 1.7 Sign/Verify Process for Digital Signature..........ccccooceiiveviiiieiiieiieeccceece e 12
Figure 2.1 Architectures Used for ! dl k Cipher Modes......ccooceininiiiienniecicn e 17
Figure 2.2 Comparison of ASIC & FPGA Design FIows [9]covvvvveieeniviinieesinineressreensesonns 19
Figure 2.3 Gated Clock for Ri Ster Bit.......coccociiiiiiiiiiri e e eese s s snere e essenne 20
Figure 2.4 Typical Flip FIop Cell in FPGAScccvvrriciieveinesconrinennsecrsnessiniessnsssesnsssssesssessenns 21
Figure 2.5 NAND Gate SYMDO]ociiiiiiiiecn et et rs e s ee v 23
Figure 2.6 Parallel Scheme for Power Reduction [4]ccccceeeviiiiiinieinieeviirrerecineescieeereneesnenes 24
Figure 2.7 Example Scenario for a Stream Cipher [60].....c....ccoiiioiiiiiiiiiiinieieceie e sreee e 26
Figure 2.8 Typical FPGA Logic BIOCKocorceiriiicrririie e esteciine e e s eee s 27
Figure 3.1 H FUNCHONoocoii ittt ettt et e e s mn e s ae e s be e e b eee 30
Figure 3.2 Block Diagram of Hardware Accelerator for PheliXccooovvincvimnorncrceonnenn. 32
Figure 3.3 Phelix Compact SITUCLUIE...........cecccrerreieriiirieenirten et e e eneeeseeesnee e seresaeeesseeeenenenne 33
Figure 3.4 State Diagram of the Top | ‘€l Controller.........c.cocceeinvivirniiiniiienienenieeeee e 34
Figure 3.5 A 4-bit RCA ..ottt st er st e b st e st s e e sbesbeeseeaeene 35
Figure 3.6 One block of Phelix Encryption [22]cccccivvevieiiiiiiereie s vere e s s 36
Figure 3.7 Simplified Datapath of the H Function BlOcKccccvcvviviviininies v 37
Figure 3.8 Complete Datapath of the H Function Block...........c.cccoccviinniininninnnn 39
Figure 3.9 Datapath of the Key Mixil = BlOCK c.eocvrririiiieiiiriieiieeeie et 40
Figure 3.10 Datapath of Nonce Expanuing BIOCKc.cccovriiiiiiiniiiicinniicnre et 40
Figure 3.11 Datapath of Subkey Generator...........coovvvereeneeeireniereee e e 42
Figure 3.12 Phelix High Speed Structure..........cocevivverieiiinienieceriees e ceeesinees et e e neeeene 43
Figure 3.13 H Function BIOCKccccimeiiiiiiniieimiimieine e ssnsinrismniessnssessisssssesissons 44
Figure 3.14 Block Diagram of Keystream Generator......c....coccvciieiiiiniiirnivieceenn e e, 46
Figure 4.1 Salsa20 Keystream Generationcceecverirenerieiieenines s e cereesenee e e semae e e 50
Figure 4.2 Block Diag of lware Accelerator for Salsa20.........cccooceerveeinininnninininenenne 51
Figure 4.3 Carry Logic DIiagram [74]cooviirrerierireneener e e e s e e et srasc s s 53
Figure 4.5 16-bit Ripple Carry Adder.........ccccvimvcimminc e s 55
Figure 4.6 16-bit K¢ e-Stone Paralle]l Prefix Adder............cccccooevniiininininniiniee 56
Figure 4.7 Block diagram of a 4-bit carry select adder..........ccccccovviniiininiiiiinii s 56
Figure 4.8 Datapath of Quarterround Block........cccoocvviiiicniiiiiiniii 57
Figure 4.9 Finite State Machine of the Sequential Quarterround Blockccccovvininnininnn. 58
Figure 4.10 A 32-bit Wide RAM ..coooriiiiiice et e s 59
Figure 4.11 Block Diagram of Memory Blocks in ASIC implemer ion.......ccccoovviiiininicnnn 60
Figure 4.12 Block Diagram of FSMcooiiiiiiiiiiiien et ee e ee e e 61
Figure 4.13 Datapath of Compact ASIC Structure for Salsa20...........ccccviiiiinciniiiiicinniecn 62
Figure 4.14 FSM of Compact ASIC Structure for Sals) ...ooooieciiiiiieinecncecree e 63
Figure 4.15 Sals 1 Basic lterative ASIC § CUMEccooiiiiiiiiieieiiieeee e 63
Figure 4.16 General Structure of Microprogramming Approachceccuuvvieniinniininnninn, 64
Figure 5.1 An Example of Statistica. _ st [18]...cccoiviiviiiiiiii 71
Figure 5.2 Model for § « 1l Hypothesis Test.......cccoviiiiiiieiiiiiiiiiie e 71
Figure 5.3 Frequency Test ALZOTIthImviiiriiieiniiieiiiiiene e eeer ettt e es e e e ee s e e 72
Figure 5.4 Block Frequency Test A FithIMcouvieiiiiiiiciie e e 73
Figure 5.5 Discrete Fourier Transform Test AIgorithm.........cccccccoiniminiinieiceccinneeern e 74

Figure 5.6 Runs Test AIZOTIthimcc.ociiiiiieiiiieci e e e 75

Figure 5.7 Frame Correlation Sequence Generation Algorithm..........ccccocvviiiiiinii e, 79
Figure 5.8 Diagram of Frame Correlation SEqUeNCecccveierriririenenictenrecneeeneensesseeesene 80
Figure 5.9 Diffusion Sequence Generation Algorithm........c...cccciiviiiiiciiinicneneee 80
Figure 5.10 Theoretical Distribution...........cccciiiiieiiriiiii e 83
Figure 5.11 keystream/Internal States Correlation Test Algorithm........ccccccveiiieniieiinnniciccnne 84
Figure 5.12 Salsa20 Internal StateS N FiX voeeeouerriieiiiriiieeitne e e e e e 87

List of Tables

Table 2.1 Area complexity of CMOS standard cells.............ccoveiiiiiininiinnnie e 22
Table 2.2 The Truth Table of NAND Gate...........cccceiiiiiiiiiiricreeer e 23
Table 2.3 Power Consumption of 0.18 pm CMOS Standard Cells [43]c..cccccervienrnennnn. 23
Table 3.1 FPGA Hardware performance of Phelix [68]................occooiviriiiiiininnnn i, 31
Table 3.2 Results of Phelix Co-design...........cccovvviieiiiiiiiiciierrrcre et e crerrrie e 32
Table 3.3 ASIC Implementation Results of Phelixc..c.ocoooiniicninninn, 47
Table 4.1 Results of Salsa20 Co-design [60]ccccoomiroriiiiiiiir i 51
Table 4.2 Comparison of Adder Implementationsccoccvviiiniiniii i, 53
Table 4.3 Synthesis Results for Different Memory Blocks...........ccoovoivviiiierivivinnienninniineenn, 60
Table 4.4 Implementation Results of Salsa20...............ccccvvviiiiiiiiiinnciinien e 65
Table 4.5 Cipher performance and area comparison [47]c...c.ccoeviiiriiniiiiininninnciienn 66
Table 5.1 the Result of Proportion of Sequences Passing a Testcccccovvvvriinnniinciinnnnn 76
Table 5.2 The Result of Uniform Distribution of P-values................ccccccvviviinninnnnniininn 78
Table 5.3 Proportion of Sequences Passing a Test............cccoococoinviinmininii 81
Table 5.4 The Result of Uniform Distribution of P-values.............c.ccccceiniiiniicininiinn, 82
Table 5.5 Test Results for Salsa20...........c.c.cooiviiiiiicc 85
Table 5.6 Test Results for Phelix...........c.cccco i 86
Table 5.7 Test Results for Salsa20.cccooviinriiiiiniimi e 89
Table 5.8 Test Results for PheliX..........cccoooociiiiiiiiiiiiiii e 89
Table 6.1 Comparison of FPGA Design and ASIC Designcocooovmiriiiininicnn 93

Xi

List of Abbreviations

AES
ASIC
CBC
CFB
ECB
FPGA
FSM
GB
Gbps
GF

IP

v
LFSR
MAC
Mbps
MUX
NIST
OFB

S-box
VPN
XOR

Advanced Encryption Standard
Application Specific Integrated Circuit
Cipher-block Chainii

Cipher Feedback

Electronic Codebook

Field Programmable Gate Array
Finite State Machine

Gigabyte

Gigabits per second

Galois Field

Intellectual Property

Initialization Vector

Linear Feedback Shift Register
Message Authentication Code
Megabits per second

Multiplexer

Institute of Standards and Technology
Output Feedback

Random Access Memory
Substitution Box (or vectorial Boolean funct)
Virtual Private Network

Exclusive OR

Xil

point [56]: in the substitution step, each byte in the process is replaced with its entry in a
fixed lookup table, known as an S-box; in the permutation step, bytc in each row are

shifted cyclically to the left.
1.3.4 Exclusive OR

Exclusive OR, also known as XOR, is a bitwise operator from binary n hematics. In
modern ciphers, XOR is often used to mix key bits into the cipher data. can be denoted
as:
C=P®K
where @ denotes XOR operation, C is ciphertext, P is plaintext and K key. Acco ng
to the principles of XOR, the decryption process is merely reapplying t| key as below:
P=C®K
If the key or keystream is as lot as the message, the system is simi - to the one-time
pad that is theoretically unbreakable. Besides, XOR is simple to plement and
computationally inexpensive. It is provable that the uncertainty in atten ing to guess the
keystream is equal to that of directly guessing the plaintext. The security of the one- ne
pad is based on this. Clearly, when the length of plaintext is very long, is impractical to
maintain and distribute the keystreams. As a result, stream ciphers ¢ introduced and
developed by the loose inspiration from the one-time pad. More details will be discussed

later.
1.3.5 Modular Addition

Many cryptographic primitives include modular addition because addition mod 2" is a
nonlinear transformation over GF(2) and the operation is fast in t h software d
hardware. GF(2) is the Galois Field of elements 0 and 1. Nonlinear transformation is of
great importance in cryptography as it makes functions hard to invert.

Keeping with the popularity of addition in ciphers, Klimov and 1amir proposed
T-function in 2002 [5]. T-function employs addition mixed with multiplication and or a
certain way to update every bit the internal state. The authors of [57] investigated the
probability distribution of the carry chain for integer addition. More literature that looked

into modular addition for various aspects can be found in [33], [32], [13] and [37].

public-key cryptography. Symmetric-key/Private-Key cryptography w: the o1 / kir of
encryption publicly known until 1976 [73]. In this method, both sides of information
communication share the same secret key, or different keys that are r ited in an easily

computable way. The scenario can be described by the block dii am of F* 1

File| —» 1 | _neryted| 1 ¥ — File
m file c m

E (mk)=c D (ck): 1
Bob Alice

Figure 1.2 Two-party Communications Using Symmetric Key Cryptography

It is assumed that both the sender Alice and the receiver Bob know the
encryption/decryption scheme. The ciphertext is transmitted through an insecure channel,
which is possibly eavesdropped by a third party Eve.

An encryption algorithm E is employed to encrypt the plaintext m v h the secret key
k; ¢ is the resulting output as the ciphertext. After Alice receives t ciphertext, the
corresponding decryption algorithm D is used with the same secret ki k to reveal e
original plaintext m.

Symmetric-key encryption can | divided into stream ciphers and block ciphers.

1.4.1 Block Ciphers

A block cipher is a symmetric-key cipher that operates on data in blocks. The it it
plaintext and the output ciphertext have fixed lengths, often ¢ 128 or 256 bits. Another

input is the secret key as shown below:

Public key ciphers are used to ensure confidentiality, since only the receiver’s secret
key can decrypt the message. To the contrary, in a digital signature, any ae that holds the
sender’s public key can verify a message signed with the sender’s secret key. This

method is used for message authenticity.

Bob’ s
public key
ring

AN TS

Mike Alice’ s public
key

Alice’ : ivate
key

— — Transmitted |
$500 | Verify | Sign | 4 $500
)) Decrypted algorithm Plaintext
Plaintext Encryption Algorithm (Reverse of encryption ouput
input {(e.g. RSA) algorithm)

Figure 1.7 Sign/Verify Process for Digital Signature

Normally, a symmetric-key algorithm runs much faster than a pul c-key algorithm
because of fewer computations, but public-key algorithms can facilitate key distribu n.
For example, if there is a communication group of n people, n(n-1)/2 secret keys are
required to ensure security in a symmetric-key system, and they s ild be char :d
regularly during distribution. It indicates that symmetric keys need to t distributed in an
authentic and confidential manner. But in a public-key system, only authenticity is
considered, thus, it simplifies key management. To ke advantage of both,
symmetric-key algorithms and public-key algorithms are not typically used alone. In

modern cryptographic algorithm implementations, they are often used as a combinatic

1.6 Cryptanalysis

Although breaking codes and ciphers hasa~ y : hist 7/ the systematic study of
cryptanalysis is relatively recent. In 1920, William . .iedman firstly proposed the word

“Cryptanalysis” for the methods and study to obtain the encrypted message, without

most important assumptions in modern cryptography is } rckhoffs’ Principle [1 : In
assessing the security of a cryptosystem, on should always isume the enemy knows the
details of the cipher being used. As a result, the security of a cryptosystem should be
based on the key instead of the encryption/decryption algorithm it us

1.7 Summary

This chapter introduces various aspects of cryptography. Emphasis s been placed on
the basic issues of block cipher and stream cipher. The discourse on the rudiments of
cryptography leads us gradually to move deeper into the implementation and
performance evaluation of ciphers. One of the major inspirations for working on
hardware implementation of specific ciphers is the rapidly increasing demar for
different hardware designs for various applications, some of which, such as cell phones,
take compactness as most important factor in real use while others, such as ' tual
private network (VPN) applications, prefer high speed.

The following chapter 1is about software implementation and hardware
implementation design and methodologies. Selected topics about ware/hardware

co-designs and considerations for trade-offs can be found too.

many blocks will not work in a computation even if they are supposed to. It is largely

because of improper routing, which is normally done by EDA tools instead of mam ly.

The problem of routing problem for real implementation is studied by Inuani and Saul in

[49].
g) Look | D——‘ output
L Up .
C [— Table I;IF lip I
D | — op
clock | ————

Figu 2.8 Typical FPGA Logic Block

One of the most attractive uses of FPGA in co-des s is the soft processors which
can be configured to suit different applications. For example, the Virtex iips from X nx
have 32-bit built-in soft processor known as MicroBlaze [52], which provides high speed
hardware/software interfaces. This technique allows t| designers to take an FPGA as a
simple cross-compiler. In [36], the authors investigated the impl ation of several
most typical cryptographic algorithms based on MicroB re. They found that the
flexibility offered by FPGAs can be used to notably ini :ase the throughput of a

software/hardware hybrid system.
2.4 Summary

This chapter addresses the methodologies 1d main concerns for softv e and hardware
implementations, respectively. In addition, it draws analogies between _ pical FPGA and
ASIC design processes.

Various trade-offs are very important. In software implementation, it is often
reasonable to generate ciphertext for block cipher or keystream for stream cipher in
blocks, whose size equals a multiple of the word size of the processor. As a result, the
available bandwidth in the system can get optimum use.

Software inherently has the ability for fine-granular control on the internal

configuration and behavior of a cryptographic algorithm by using particular instructions.

27

However, performing such operations would require extra memory ¢ | execution time
which decrease the speed of the implementation. In hardware implementation, the typical
trade-off concern is the speed-area tradeoff. Considerit the pipeline ucture in Figure
2.1, it is obvious that with more pipeline stages there is more speed g 1 but higher area
consumption.

The following two chapters illustrate the details of our hardware signs for Phelix
and Salsa20 stream ciphers. Both of the ciphers were claimed to be designed with the
special emphasis on their suitability for not only software implementations but [so

hardware implementations.

28

Chapter 3 Hardware Implementatic of the
Phelix Stream Cipher

3.1 Introduction of Phelix Stream Cipher

Phelix [22] is claimed to be a high-speed stream cipher. It is selected r both software
and hardware performance evaluation by the eSTREAM project. The « her supports an
8-bit to 256-bit length key and a 128-bit nonce to generate the keystream bits. The
plaintext is incorporated during the computation to produce a built-in Mes ze
Authentication Code (MAC).

Our goal in implementing Phelix is to find out a reason le synthesis result for two
extreme situations: the compactness it can achieve without considering the throughput;
the speed/throughput it can achieve without considering the ar¢ Since circuits
implemented in FPGAs are at least ten times larger and three times slower than the
custom implementations [67], we have chosen ASIC-based approach 1 implement the
two proposed designs for Phelix: compact Phelix implementation and h™ 1 speed
implementation. The basic features underlying FPGAs are explored in the next chapter
that introduces various structures for Salsa20 as the property of Salsa20 is more suitable
for a FPGA-based implementation, such as a relatively big requirement for memory
compared with some popular stream ciphers.

It should be noted that in block diagrams representing the desi; s, the input and
output are not real I/0s in a system. The des’ 1s are core based and tt input and o1 ut

could be internally interfaced with external circuits.

3.1.1 Algorithm

Phelix is targeted at 32-bit platforms. It is composed of simple o] -ations: addition
modulo 2%, exclusive or, and rotation by a fixed number of bits. Ther are 5 words 1at
are updated during each round, and 4 “old” words are stored in memory to be used in the
keystream output function.

One block that produces one word of keystream consists of two “half-block” func ns

29

Five Active States

T

Expanded y
Key and [
Nonce Half
Function
Block

OneNewState<_,—;’_¢ ¢ ‘ ¢_

'
I
I
: Half
One Old State <—|l— Function
: Block
I
i
| pS— SN S S RN S ——
FITTT

Figure 3.2 Block Diagram of Hardware Accelerator for Phelix

The hardware design of one student group shown in Figure 3.2 is of pure
combinational logic, which can accomplish one state updating proc s in a single clock
cycle, and leave the whole control complexity in software.

Another two teams are more aggressive since the one implement a half block as
the basic iterative H function circuit, and the other one implemente eight double H
function blocks as a parallel structure to relieve the communication b tleneck between
software and hardware. Obviously, the synthesis result for the eight-full-. block is quite
large. A careful trade-off decision should be made. Table 3.2 shows tk results for those

three structures. All of them are implemented targeted on Xilinx Spartan3e FPGAs.
Table 3.2 Results of Phelix Co-design

Version Area (slices) Frequency(MHz)
8x Full Block 4301 7.7
Full Block 1190 48.6
Half Block 439 o |
Unfo y provide

the frequency instead of the throughput.

32

done_km="1"'

and

expand_k_n

start="}’

initialize_begin

done_h="1'and done_h="1"

done_h='l' and

done_h="1" and

mac="0" and done_h="1"

compute_ MAC
counter<="10",

Figure 3.4 Sta Diag 1o0f the ..p Level Controller
The specifications of the states are given below:
expand_kn: Convert a input key/nonce to the fixed-length working key/nonce.
wait_kn: While stopping key_mix block and n_expand block, enable . key gen block,
putting the first old state intot FIFO.
initialize_begin: Set the initial five states of the H function, and enable the cou
which provides the block number.
wait_h_1%: Generate the keystream, and increase the block number.
H_1%: Do the function
(Yo", Y1 Y5P, v3® v,y :=H (2,7, 2,9, 2,9, 57, .0, 0, Xip), wh Y, X and Z are
32-bit words, and i represents the block number.
P *": Do the function
(Zo(m), Zl(m), Zz(m)’ Z3(i+l)’ Z4(i+l)) H(Yo(i), Yl(i), Yz(i), Y3(i), Y4(i), P, 1), where P is
the plaintext word.

wait_h_2"%: Store Z, in the FIFO after each round.

34

Compute_ MAC: Begin the MAC generation process.

Since this design objective is sensitive to area, each b-comp« 2nt is chosen to
simply minimize the area. For instance, the rotation is :alized by reordering the
interconnections between logic cells instead of using shift register The discussion
presented in this section concerns the structure of each main ¢ nponent that is
implemented for the Phelix cipher. These basic components incluc 32-bit adder, H

function block, key mixing block, nonce-expanding block and subkey ¢ 1erator.
3.2.2 32-bit Adder

Compared with other components, the 32-bit adder is the most expensive operation
because of the speed and the area it consumes. The most convenient way to perform this

operation is to use a ripple carry adder (RCA).

AQ() B@3) A(2) BQ) A(l) BQ) A(0) B(0)

R U U U IR

a a 8 a

Cout «——cout cin f[¢—— cout cin 4= cout cin ——— cout cin &—— Cin

sur S]ﬂ‘l T Tl
Sum(3; Sum(2) Sum(l) Sum(0)

Figure 3.5 A 4-bit RCA

RCA is a straightforward adder and the layout is quite simple, which facilitates fast
design. However, the speed of an adder mainly depends on 1e time taken by the « ry
chain. Since each full sit “e-bit adder has to wait for the carry bit to be | jpagated from
the previous adder, the delay is very significant, especially in 32-bit computation.

Our design was developed for low resource, so the simple 32-bit RCA is used by

sacrificing the throughput. The output is unregistered.
3.2.3 H Function Block

H function block and the adder are the basic function sharing components. Figure 3.6 is a

block diagram that consists of two H functions:

35

In the initialization phase, the input of the H function is set as:

ZY:=K;u3 @ N forj=0,1,2,3
Z4('8) =Ky

249 =0 fori=-12,-11, ..., -9
Pi=0 fori=-8,-7,...,-1

where i represents the block number, Zj(i)is the j" word of the i" bk, P; is the i"

word of the plaintext.
After the initialization, H function is employed as below:
(Yo(i), Y](i)’ Yz(i), Y3(i), Y4(i)) H (Zo(i), Zl(i), Zz(i), 23(0’ Z4(i), 0, Xio)
(Zo(i+|)’ Zl(i+l), Zz(i+1), Z3(i+l), Z4(i+1)) = H(Yo(i), Y](i)’ Yz(i), Y3(i), Y4(i), Pi, Xi1)
The ciphertext words are computed by C; .= P; @ S, where Si :== ©+ 2,0 and i
ranges from 0 to 2%%-1.
Just after the last word of the plaintext is encrypted, the internal «

be XORed with the constant value 0x912d94f1, and the modified state is a new tnput

e word Zo(i) will

for the H function block to start the post-mixing process, which computes the MAC.

The simplified block diagram of H function is shown below:

Wino Win, Winz Win; Win4 Ko Kl

N

32-bit Latch X 7

e

Rotations & exclusive or
operations & MUXes

Adder

32-bit Latch X 5

R

Wouty, Wout, Wout; Wout; Wout,

Figure 3.7 Simplified Datapath of the H Function Blo

The multiplexers (MUXes) connected to the input ports of the adder in the circuit are

37

of six input sources and a sit ‘e output for adder sharing. To increa: the speed of the
encryption, we could design additional logic to perform the H function. would require
more adders and 32-bit exclusive-or function blocks that can work in parallel. However,
it will dramatically increase the size of the H function circuit since the adder is the largest
component compared with other simple function blocks, such as a 32-t register.

The complete block function is illustrated in Figure 3.8. The fi* input words are
lathed when the H function block starts to work. Using a latch instead a register might
cause noisy inputs: if there is any glitch on the input of the latch, =n, it will be
propagated directly to the output. However, the area consumed by a latch is typically less
than that consumed by a register. Two six-to-one MUXes are used to select the input for
the single adder in the datapath of the H function block. The selection signals are given

by an FSM. The results from the adder are stored in six latches.
3.2.4 Key Mixing Block

The key mixing block maps a var »>le-length input key to eight worl igs keys. D¢ ne
function R as shown below:
Function R{wg, wy, wa, w3)
Begin
Local Variable wy := I(U) + 64;
(Wo, Wi, Wa, W3, Wa) := H(Wo, Wi, Wz, W3, Wy, 0, 0);
(Wo, W1, W2, W3, Wyg) := H(wo, wi, wa, w3, wa, wé, 0, 0);
Return(wg, Wi, wz, ws);
End
Then, the key mixing process is a recursion:
(Kai, Kginty - vy Kains) = R(Kaiva, Kains, .. Kainr) @ (K Kaivo, ..., Kajeny) for i =7,
6, ..., 0, where K; represents a 32-bit word. The words (Ko, K, ..., K7) forms the working
keys of the cipher.

38

L(U)+64 U low (127:0) U high (127:0)

32-bit Latch X 4 { - 32-bit Latch X 4
x
5
K low(27 0y af—————] g
a
B
\ ; &
Ll -
i :
-=
2
o
3
. 2
H function IS

| hagh (127 0)

Figure 3.9 Datapath of the Key Mixing Block

There are four latch blocks (32-bit x 4) in the circuit. Two of them record the result of

each recursion, including the final working keys; the othe

r two are for the temporary

variables. Although the H function block is shown in key mixing block’s datapath, it is

not exclusive but a basic public component in the top level st

3.2.5 Nonce Expanding Block

ructure.

The nonce-expanding block is to extend 128-bit nonce to the fixed 256-bit words by

defining Ny == (k mod 4) - Ny.4 (mod 232) fork=4,5,...,7.

Ning31:0] Niny[31:0) Ning[31:0] Nin[31:0]

: l : :

=] [=] [=

J‘ # Nouty[31:0]
> Nout,(31:0]
—» Nout;[31:0]
Nout;[31:0]
kmod 4
(k= 4,56.7) Y Y Vv ¥

MUX_4_TO_1

f_.'_lmch i

— Nout,[31:0]

———» Nouts[31:0}

L b

zero_pad

.

Figure 3.10 Datapath of Nonce Expand

——— Noute[31:0]

— = Nout,[3

ing Block

40

Subkey gen

> clk
Kcy_mix o workimgKeoys(2550y Ks_gen
clk 5 - cxpunle dnonee(255.0) clk
(310 - Xo(31:0F-X,(31:0)
L0 : R
Kout(255:0) Xet31:0) Plaintext(31:0)
X0
KED Kin(255:0) »{Zold(3
Zin0h{(31:0~
> Zind(31:0)
N 4 Zout0(** ")
_expan Zouidl D) Keystream(3 | :0
o Nin(127:0) HORIEONER 310 Zolgatoy Zou0I10x
Nouy(255:0) expndaionee(285 0) T T Zoutd(31:0)
clk
. Zin0(31:0)~
Y & P_in(31:0) Zind31.0) [*
oclk \
————f reset i31:0) i31:0) @
Block_#_caunter Ks_input_select

Figure 3.12 Phelix High Speed Structure

3.3.1 H Function Block

The H function block is the most important component that decides the speed of the
whole implementation. It is used in four different phases as we have itroduced in the
previous section. They are: key mixing phase, initialization phase, normal encryption
phase and MAC generation phase. To speed up H function block, we split the six add
operations into two groups: the group one includes ks_adder0, ks_adderl, ks_adder2,
ks_adder3 and the group two includes k 1der4 and k- ~dder5. Since the second
group’s inputs depend on the output of the first group, they can not wo in parallel. The
main cost from the input to the output is the time consumed by the two adders. In this
design, the combinational logic data path in front of the output registers can be divided
into two clock cycles. However, no internal registers are added. It is atrolled by a D
flip flop, whose output connects to the load enable signal of the output registers.
Therefore, the output is loaded every two clock cycles. TI alternative method is to
remove the D flip flop and make the whole function completed in a s gle clock cycle.
But it is not an efficient way as it may cause clock cycle waste when « ing other work,

such as XOR operation.

43

performs eight iterations; each one consists of an R function and an XOR function to
produce an array of four new words as shown below:
(K4jr K4j43) = R(K4j 44,2 K4ix7)®(Kajrg.-Kaig11) i=7, ...,0
R function block is composed of two H blocks and it takes for clock cycles to
accomplish one loop since each H function takes two. Consequently, 32 clock cycles (8 x
4) are required for the key mixing phase to produce eight working keys. There are eight R

function blocks in key mixing block in total.
3.3.3 Nonce Expanding Block

As shown in the top level block diagram, there is no c/k as an input for N_expand block.
It is pure combinational logic. Nonce expanding only happens in the initialization phase.
So, it is not a very critical module for high speed design, which is focused on quickly
producing keystream bits. The type of adder/subtractor in this block can be either ripple

carry or Kogge-Stone.
3.3.4 Keystream Generation Block

The subkey generator in our design works “on the fly”. That n ins the subkey
computation is performed during the time when the keystream generator core (ks_gen)
works on the previous plaintext word instead of pre-computed in the i ialization phase
and stored in a large memory. The structure of subkey generator is similar to the compact
design, except that the high speed des 1 uses Kogge-Stone adder.

The ks gen block requires four clock cycles to generate one keystream word. The
reason is the same as that in the R function block: there are two H function blocks
included. The data path of ks gen is illustrated in Figure 3.14. Two H blocks are
concatenated. The start signal for the second one is delayed by two clock cycles for signal
alignment.

The ks _gen block not only works in the normal keystrear generati 1ase but also
the initialization phase. So, its inputs are given by a ks _input sel block as shown in the
top level. The ks _input sel blc * is very similar to ini_dp block in the Phelix compact
design. It takes one clock cycle to make an input selection corresponding to the block
number which is given by a counter. When the block number is between zero to seven

and the start signal is asserted, it performs an initialization phase selection; when the

45

block number is larger than seven, it does nothing but pass the current >ut to the output
directly. The FIFO that is used to store the previous four old states is combined in the

ks _input_sel block.

Plai ©31:09
) rcri.«au— rcgi.«tur
start 1 din agour din qow
N
L1 hinal
rst & st rst
lstart $-{start
I X0(31:0) el x0(31:0)
Subkey0(31:0)- i |_ sty [XIGED)
X 20310~ Zo0(d 10 St Zin0(31:0)- Zo31:0)~ Zo0(3 1M~
;::g’:z:g;‘ {2431y Zod3eo) ["1Zind(30:0) Zod2 10y B 2d310)
clk
Subkey1(31:0)
register
Ding31:0) Doutd i)
- Keysiream(31.0)
Zoldi31:0)
Figure 3.14 Block Diagram of Keystream Generator
3.3.5 The Controller

One tricky task to design a controller is to define the states in the syste If we define the
states according to all control signals that the sub-components need, then any different
combination of the signals could result in a new state, and the state t 1sitions can cause a
fair degree of "spaghetti- factor" when trying to follow the line of exe tion. Finite state
machines are an adopted artificial intelligence technique, therefore, the representation of
the states could be more abstract instead of catering to any trivial needs of
sub-component, say, the selection signal of a MUX. With this in mind, we employed the
idea that is often seen in framer cores used in communication systems. A typical example
is in [54], which describe an ir ‘em ation to perform basic word alignment and
deframing for SONET/SDH system [23]. Usually, a frame has two indices, row and
column. In hardware implementation, they are global signals and sent to every functional

component, such as the error monitor. Those functional compor its perform the

46

we expected, the H function is a core part of the entire circuit, and it determines the
encryption speed. In our compact design, we only use a = gle add: in this function
block and divide the circuit into several layers of combinational logic separated by
latches. The high speed design removes all sharing components and al ates them to the
function blocks exclusively. Moreover, it has no separate cor oller, when the input reser
is low and start is asserted, all functional blocks cooperate according to the global clock
signal. After the initialization phase, when the first word of the plaintext has been
processed, the core sends out a keystream valid signal to notify the | -ipheral devices.
Table 3.3 shows that the high speed design consumes about two times more of area than
the compact one does, but it comes with a four times higher throughp . Sample VHDL
code for the Phelix cipher implementation is contained in Appendix A.

The following chapter will investigate various hardware implementations for

Salsa20.

48

Thus,
ig+ q:j

Ci = G,,:O. (G,p):J = (G,P)Ir—l . .G’P)Ir—l

where k is the level within the hierarchic structure and i, j define the range of the sub
block. For example, in a 16-bit Ripple Carry Adder, which is represented graphically in
Figure 4.5, The black circle is the specific carry operator A. To graphically illustrate

how to generate (G, P) pair by using A\, one of the black circles shown in Figure 4.5 is
marked by ** and shown below:

G.PYy (G.P)o

(G, P)3g

Figure 4.4 An Example of the carry operator A

Input bits (15:0)
Most significant bit € Least signifi. t bit

stage\ '‘ e 2 1 h

SIS 5

Output bits (15:0)

Figure 4.5 16-bit Ripple Carry Adder
The more black circle _ e A) there a the > a t adc - structure
requires. From our FPGA synthesis results, we find that the fastest parallel prefix adder is
the Kogge-Stone adder, which has minimum logic depth (the number of stages shown in

Figure 4.6) and full binary tree with minimum fan-out, result g in a fast adder but with a

55

Yo
Y
Y2
Y3

L —» 2

(a) Combinational design

drlk=add_out(24 DOWNTO 0)add_out(31 DOWNTO 25),
drl<=add_out(22 DOWNTO O)kadd_out(31 DOWNTO 23),
d dr2<=add_out(18 DOWNTO O)add_out(3} DOWNTO 19),
dr3<=add_out({13 DOWNTO O)kadd_out(31 DOWNTO 14);

E
e

XOR

(b) Sequential design
Figure 4.8 Data. h of Quarterround Block
The combinational ¢ ign shown above does not illustrate the main registers to store
the final results (zo, z;, z,, z3). If those registers are counted, it takes 2,900 2-input NAND

gates and the critical path cost 20.72 ns, while the sequential version takes 2,050 2-input

57

NAND gates and the critical path is 7.47 ns. Although the seq al design of
quarterround function block works at a higher clock frequency, it spen 10 clock cycles
to finish the four modifications for the input words at a time (Figure 4.8). In terms of
those results, it is reasonable to choose the faster combinational quarterround function as
the basic block for the fast ASIC structure of Salsa20 and the sequential version for the

compact structure.

Figure 4.9 Finite State Machir f the Sequential Quarterround Block

The finite state machine in Figure 4.9 shows how the sequential quarterround block
works. When the start signal is asserted, the controller transits from id state to load _all
state, in which the selection signals for the four MUXes in front of the registers are
asserted (Figure 4.8.b). At the next positive edge of clock signal, the puts selected by
the MUXes have been held co _cific period, called tl up tin s, the
registers load all of them without metastability. In the quarterround blc <, there are only
four registers requiring clock trigger. The states load Z; (i = 1, 2, 3, 4) perform data
loading, as the name implies. In calculate Z; (i = 1, 2, 3, 4) states, the selection signals
for all MUXes in the datapath are provided and kept stable during t se clock cycles.
Quarterround block works in a seqi 1tial manner as the cal lation of Z; (i = 1, 2, 3, 4)

depends on the previous one.

4.2.3 Memory Block

Salsa20 encryption performs 320 invertible mod... ations for its 64-b° - input data. The

resulting words are added to the original ones to produce a 64-byte keystream.

58

Obviously, it requires memory to store the original input as well as the temporary data
after each quarterround function.

Memory is usually a significant expense in most app ‘ations. >day’s advanced
FPGAs provide rich on-chip memories, which are maturely designed for compactness
and speed. If properly employed, it can lead to a significant improver nt in the latency
of the overall design.

The Xilinx Virtex FPGA provides synchronous rea write block RAM in its
primitive library. Each port of tI block ram can be independently configured as a
read/write port. In our FPGA design, four block rams are used. Each o :is configured to
16-bit data width. The concatenation is shown in Figure 4.10:

16 X 32-bit RAM

Y

DIN[15:0]
{ADDR][0:1]
l-» WR DOUT][15:0] |

—» EN
CLK l CLK

» DOUT[31:0]

DIN[31:0; DIN[31:16]
ADDR([3:0

Y

ADDR([3:2]
WR DOUT[31:16] |

EN
LN rLK

WR
EN

Y

A

Figure 4.10 A 32-bit Wide RAM
The memories for Salsa20 ASIC cc pact structure are more complicated. Unlike
FPGA design, we do not use the . ne structure for all mem y blocks, since the control
logic for the memory that only works as a buffer to store the orig 1l input without
modifying during the keystream generation is much simpler than the other one, which

will update the contents from the quarterrc ad function block.

59

4.2.4 Control Unit based on Various Datapath

4.2.4.1 Controller of the Compact ASIC Structure

In a traditional controller consisting of a Finite State Machine (FSM) d combinational
output logic, a large number of states can dramatically impact the logic equations,
number of gates, and clock rate. A state consists of the condition (it its trigger), state
transition and outputs (control signals). There are two ma methoc of FSM design,
focusing on handling where to generate the outputs. They are Moore Machine, whose
outputs are associated with the current state of the device, and Mealy Machine, whose
outputs are associated with not only the current state but also the input signals.

—————————————— if meaty hing ====—ececem—e—————

state register >® “» control signals

Figure 4.12 Block Diagram of FSM

condition

next_state logic

Due to their simple structure and predictability, FSMs are easy to implement. An
FSM can be implemented by different encoding methods. In our design, we used the most
popular encoding scheme called one-hot encoding. One-hot encoding requires a D flip
flop for each state, while another encoding method called binary encc ng only requires
[10g;N1D flip flops for N states. It seems like that the latter is more « icient. However,
decodii 1encoded bir 'y FSM | to incre :d lc ¢ levels betw: 1 states, while in
a one-hot encoded FSM, the states are already in the decoded format d, consequently,
only simple combinational logic is needed as a part of FSM.

The design of controllers significantly depends on the structu of datapath. In
compact ASIC design of Salsa20, the datapath consists of two 32-bit x16 memory blocks

and one quarterround function block.

61

MUX2TO1(128-bit) Mem0 (modify) QMQFMMM
dun(127:0} douy(127.0)
dn(1270) o] seTial dout(127.0)
loud all dout_single(31.0}——
b din(127:0)
stort sddr(2:0) done

1

start
done
MO_stant ggdr(2:0) Mem_do
senal quarter_rd_start
o

quaricr_done

- = o
M1 stan dun: e

serial Keystrenm
jlnuj all
. 270) dout{31:0)

Figure 4.13 Datapath of Compact ASIC Structure for Sa 20

The specifications of the main blocks are given below:

® Quarterround: performs quarterround function.

® MemO(modify): stores the 16 original 32-bit words, and its contents will be modified
after each quarterround function.

® Meml(no modify): stores the 16 original 32-bit words, which will not be touched
until the quarterround function block has been used for twenty tim

Based on the datapath of the f re abo' it is easy to define five states at output
different control signals.

In idle state, nothing happens; arbitrary control signals for the datapath are sent to the
datapath. The controller is transited to load rows state if the start sig 1l is asserted. At
this state, one row (128 bits) of the 512-bit data block is »aded ir the registers in
parallel. The quarterround block starts to work at quarter en state. e output of the
quarterround block is fed back to the memory at load z state. The cor Hller goes to add
state if twenty rounds have been accomplished. After add state, in which the modified
data is added with the original one to produce the keystream, a new p cess for the next

input data block can begin.

62

addi20j<=n "~

e

mn_moe=yY

) ey
o

o,

'.

<=y,

’

quanter_rd_stan<=(,
roud|{7)
done<={),

start='1" and (start="]" al

round=87) stan="1" and { mem_done="1"
Tound<#7) and
memn_dons=’ '

[RS
o~ Ay,

‘ A,
quarier_ra_start<=(),
round<=round+,
done<="0’;

Figure 4.14 FSM of Compact ASIC Structure for Salsa20

4.2.4.2 Controller of the Basic Iterative and High Spe | ASIC ructure

The datapath of an iterative structure consists of four quarterround func n blocks, since
the four rows or the four columns are encrypted independently. The control unit is simply

a combination of a counter and a comparator.

gl

. <
Counter 0 E

o slart

Ready Kes slream

Figure 4.15 Salsa20 Basic Iterative ASIC Structure

63

that it is reasonable to provide more comparisons for this cipher in terms of hardware

performance.

67

5.2 General Discussion

In this section, we shall see how to utilize probability distributic to carry out a

statistical test. Also, some basic concepts in statistical testing will be introduced.
5.2.1 Randomness

For a real random generator, the properties of the output sequences | /e to meet some
standards. A variety of statistical test algorithms can be applied to a keystream to evaluate
whether it meets those randomness requirements. A . adom bit sequence could be
interpreted as that the probability of ‘0’ or ‘1’ happens in the sequence should be exactly
0.5. Furthermore, the bits are independent. Randomness is a probab stic property. In
other words, it is the property of a random sequence can be character :d and described
in terms of probability. There is no “complete” set of tests for judging whether a sequence
is random or not, because each test only assesses the presence or abse e of a particular
“pattern”, sometimes called test statistic, which, if detected, would indicate that the
sequence is random based on a certain hypothesis. To understand test atistic, we must
look into the concepts of null and alternative hypothesis first. A null h; >thesis, which is
denoted as Hy supposes that the sequence being tested is random. Any other hypothesis is
called the alternative hypothesis. For each applied test, a decision or conclusion is

derived that accepts or rejects the null hypothesis.

5.2.21 t Statisticand P

Having null and alternativ nypotl t| it step is to find out a sta tic which shows
up any departure from Hy There is not only one type of statistic that can be chosen. For

example, some tests, such as T test [18] chooses a statistic noted as T,
X
-5

where X is the sample mean, p is the expected mean, » is the size of 3 sample and

Yv

2 1 &y, 2
S-n- == ;’L—:—lg (A, — .,,)

b

which is the sample variance.
Some tests choose different statistics. In chi-square goodness-of-fit test [1{ the test

statistic is often written as

69

where O; is an observed frequency; E; is an expected (theoretical) frequency, asserted by
the null hypothesis.

The computed test tistic should be compared with a critical val determined by a
theoretical reference distribution of this statistic under the null hypothesis. If the test
statistic value exceeds the critical value, the null hypothesis for rand: iness is rejected.
Otherwise, the null hypothesis (the randomness hypothes is not jected (i.e., the
hypothesis is accepted). A result which is unlikely to occur if Hy true is called a
significant result. Consequently, the significance level of a test the maximum
probability, assuming the null hypothesis, that the statistic would be observed. The
P-value is the probability that the null hypothesis will be rejected in er - when it is true.
It can be described as P (reject Hy | Hg is true) mathematically. In practice, a significance
level a is set prior to a test. If P-value > a, then the null hypothesis is a zpted. If P-value
< a, then the alternative hypothesis is accepted. The parameter a is typically chosen in the
range [0.001, 0.01]. In the NIST test suite [8], a has been set » 0.01. It indicates that one
would expect | sequence in 100 sequences to be rejected by the test 'the sequence is
random.

An example including the related concepts is given below:

Assume there is a random sample of e n, taken from a normal ¢ ribution with an
unknown mean p. The observed mean is x. Then what we are interes in is whether x
differs significantly from a particular vali g for p. Thus the null hypothesis is given by
Hop: p =pe. If the standard deviation is known, and the value is o, then we have the test
statistic:

X = Hy

cr/\/—r_t‘

If Hy is true, then z is a standard normal variable. The observed va : of z is denoted

Z =

as zo. The probability P (]z| > z,) is represented by the shaded area in Fig e 5.1. It is the
P-value. Given an a of value 0.01, we can get a value ¢ from P (Jz] c¢) a. If |z)]is

greater than |c|, then Ho will be rejected.

70

5.4 Keystream Tests

In this section, randomness properties of the output keystream are exan ied. We generate
a large amount of keystream and apply certain statistici tests. [ails of the test

algorithms are introduced in each sub-section.

5.4.1 Frequency (Monobit) Test

The frequency test is one of the most basic tests, which focuses on the | portion of zeros
and ones in a sample sequence. The number of ones and zeroes are expected to n/2; n is

the length of the input sequence. The test algorithm is described below:

Input sequences;
for i — Oton1do //nis the length ofs
if s[i]= 0 then x[i} =-1;

if s[i]= | thenx[i] +1;

n-1

Sn_ Z x[i];

=0

Soss = |Sal/~/n ; //Compute the test statistic.

P-value = erfc(S,s,/ J2 }; //erfc is thecomplementary error funct

Figure 5.3 Frequency Test Algorithm
This test makes use of De Moivre-Laplace theorem, which is defined as the fact that
for a sufficiently la :number, say of independent Bernoulli trials [42], * e distribution
of S5 (the binomial sum) is approximately a standard normal distributi

According to the Central Limit Theorem,

2
<z 12y

obs

lim P(S $(z) ﬁ [e

where ¢(z) is the cumulative probability function of the stanc d nc al distribution. The
complementary error function of z is defined as

L _1 o2

er

Then the correspondit P-value ec s erfc(Sy/ V<), since the P-value is

21401 S, D]

72

5.4.3 Discrete Fourier Transform Test

The discrete Fourier transform (DFT) is often used for Fourier analys of finite-domain
discrete-time signals. It is widely employed to analyze the frequencies in a sampled
signal. The DFT statistical test focuses on the peak hei; ts in the discrete Fourier
transform obtained from the sample sequence.

If the sequence is random, tl 1 the proportion of peaks that exceed the 95%

threshold should not be significantly different than 5%.

Input sequence s;

fori«— Oton1do //nis the length ofs

if s[i]= 0 then x[i] = -1;

if s[i]= 1 then x[i] = +1;

S = DFT(x); // A sequence of complex variables is produced.

/ S’ is the first n/2 elements in S. Since the complex conjugate of s[i] equ ; s[n-i],
/ the other half of S is ignored.

M = modulus(S’);

T \3n ; the 95 % peak height threshold value

No = 0.95n/2; the expected theoretical (95 %) number of peaks that are le than

IN1 = the observed number of peaks that are less than T

N,-N. .
d=——— , test statistic
nx0.95x0.05/2

IP-value = erfc (|d|/2); //erfc is the complementary error function

Figure 5.5 Discrete Fourier Transform Test Algorithm
According to the central limit theorem, the distribution of the e of the test
statistic d can be considered as standard normal distribution N (0, 1) v en n is large

enough.
Though the report [8] claims that the default threshold value of the [T test, which

is+3n , is not correct, the correct value of the variance of the test atistic remains

74

unsolved. Therefore, we still use the default value in our tests.
5.4.4 Runs Test (Wald-Wolfowitz Test)

In this test, a run is defined as an uninterrupted sequence of identical bits. For instance,
“111100011100” is divided in four runs, two of which consist of “1” and the others of “0”.
If there are too many runs, the data is likely to alternate in a nonrandom order.

Runs test can be used to test the randomness of a sequence, by measuring whether the

number of runs of various lengths is as expected.

Input sequence s;

m= (number of ones in s)/n; //n is the sequence length

t=2/n;

if (| - 1/2| >1) then break; // the test should not be run under this circumstance
//because of a failure to pass the Frequercy test.
else

-l

V (obs):= z r(k)+1; // where r(k)=0 if s(k)=s(k+1), and r(k)=1 otherwise.

k=1

|V,, (0obs)-2nn(1— 7r)|
2\2n7(1 - 71)

P-value = erfc(] // erfc is the complementary error function

Figure 5.6 Runs Test Algorithm
Considering an oscillation as a change from a one to zero or vice versa, a large value
for V,(obs) would indicate an oscillation between substrings is too fast; a small value

would indicate that the oscillation is too slow.
5.4.5 Experimental Results and Analysis

NIST has adopted two approaches to interpret the test results: the examination of the

proportion of sequences that pass a statistical test and the uniform distribution of P-values

[8].
5.4.5.1 Proportion of Sequences Passing a Test

A P-values pass proportion is directly related to o, the significance level. For example,

75

5.5.1 Testing New Sequences

5.5.1.1 Sequence Generation Process

In this section, we describe the process to generate the sequences to be tested for the first
few tests mentioned in [50]. To evaluate various correlations for st m ciphers, new
sample sequences representing particular properties of the stream ¢ _ 1er are required.
According to [50], the first two types of sequences are obtained by the operation

keystream[0 to i-1] @ s[0to i-1]
where keystream[0 ... i-1] are the first i bits of the keystream, and s[0 ... i-1] represents

i-bit key for key’keystream correlation sequence tests and i-bit IV for [V/keystream
correlation sequence tests, respectively.

The algorithm to generate the frame correlation sequence is shown :low:

Randomly choose key, IV,
fori« ItoN //N=1024
do
/1 L=512, encryption could be Salsa20 or Phelix keystream generator
Ks[i] = first L bit of encryption (1V, key);
Increment I'V;
fori— 1toL
do
forje— 1to N
do
sequence[i] = sequencefi] & ks[j][i]; // & is concatenation

returr\ canman,ra

Figure 5.7 Frame Correlation Sequence Generation Algorithm

In Figure 5.7, L is an arbitrary length of the keystream and N the number of
repetitions to produce a keystream with fixed 256-bit key and incremented values of IV. L
sequences are initialized to empty before operation. The sequence seq nce[i] indicates
the i™ bit of the sequence, ks[j][i] indicates the i" bit of the j™ keys :am segment (j

ranges from 1 to N d i ranges from 1 to L). It is illustrated in Figure 5.8.

79

sequence|1]

Figure 5.8 Diagram of Frame Correlation Sequence

The last type of sequence generated ai s at the diffusion roperty of each bit of key

and IV. That is, each bit of IV . [probability.
M is a (K+V)x L zero mati E
M[I]
_ M(2]
M[K+V]
forie— 1toN /MN=1024
do

Randomly choose key and 1V
Keystream[i] = encryption(1V, key);
forj—1toK
do
key’ := change one bit of the o1 nal key;
d[j] = Keystream[i] @ encryption (IV, key);
M(j] = M(j] + d[i];
forje—1t0V
do
IV’ == change one bit of the original 1V,
d[j] = Keystream[i] ® encryption (1V’, key);

M[K+] Ml 1l

Return M;

Figure 5.9 Diffusion Sequence Generation Algorithm

80

— R — ——

Fix IV;
Initialize weights w to zero;
for i« 1tom
do
randomly generate a key;
keystream encryption(1V, key);
forj—1ton
do
internal_state[i][j] = encryption_round(current_state);
// iis the index for i" keystream; j is the index for j" state
k_xor_s[i][j] = nternal_state[i]{j] XOR keystream;
w[i][j] = number of « s ink xor s;
// group the weights into the selected categories
fori« 1to C //C is the number of categories
ifw[i][j] is incat ry[k]
W[k] = W[k]+ 1,

Chi-square of Goodness-of-fit test on W,

—

Figure 5.11 keysti n/Internal States Correlation Test Algorithm
In the algorithm above, the function encryption round is defined a double round

function [20] for Salsa20 or two half functions [22] for Phelix.
5.5.2.2 Experimental Results and Analysis

Table 5.5 shows the test result for Salsa20. 2'° keystreams are generated according to the
different input keys of 256-bit length. ~ « is related to ten internal states. One internal
state consists of 512 bits. IV is the concatenation of the input nonce and the « e
number. In our test, it is chosen as {57, -121, 9, -62, -105, 60, I, -10} & {0, 0,0, 0,0, 0, 0,
0}, where & indicates concatenation and each number separated by conr a is a byte. The

values of the test statistic and the P-values are shown below.

84

are calculated. Then, the chi-square goodness-of-fit ;ts are applied. T : process of the
sequence generation is very similar to frame correlation sequence generation.

Taking Salsa20 as an example, it has 10 internal states and each is 2 bits. Starting
with an IV of value 0 and repeating the keystream generation by incrementing IV by one
at each time for (2'°-1) times, we obtain the matrix shown in Figure 5.12. The column

weights are calculated for the chi-square goodness-of-fit test.

1] 2 3| . -1512

. Em
ISUJ['J

L l]’ Eli’-"’][N

Figure 5.12 Salsa20 Internal States Matrix

87

Fix IV,
Nonce =0;
/ for Salsa20, nonce is a part of I'V; for Phelix, nonce equals IV
Initialize weights w to zero;
fori« ltom//m=1024
ifi>1
IV=IV+1;
for j«= 1ton//nis thenur er of the states
do
internal_state[i][j] = encryption_round(current_state);
// iis the index for i" keystream; j is the index for j‘h state
forj«— lton
for k «— 1to L// Lis the size of one internal state
fori«— ltom
if internal_state[i][j][k] = |
w[Lx (j-1) + k] =w[Lx (~1) + k] + 1;
// group the weights into the selected categories

Chi-square of Goodness-of-fit test on w;

Figure 5.13 Int« States Correlation Test Algorithm

5.5.3.2 Experimental Results and Analysis

For the internal states correlation test, m = 2'° keystream are generated
the internal states are stored and form a matrix. Salsa20 has ten int

Phelix has nine. Table 5.7 and 5.8 shows tl test results.

t ignored. Only

1al states while

88

test and this may indicate that Salsa20 and Phelix does not satisi the necessary
properties as the frames generated using consecutive Vs are correlated. However, how

this could be exploited in an attack is an o question.

90

® High speed structure based on full-pipelining

Advantages: This structure has the highest throughput.

Disadvantages: The overall latency of a pipelined structure is slightly lower than in a
non-pipelined equivalent. This is due to the fact that extra registers mi be added to the
data path of a pipelined structure. However, in our design, the result of ch stage, which
is a basic iterative structure has already been registered. T refore, :re are no extra
registers added.

® Compact structure based on module reuse

Advantages: It decreases the area required, especially when the reused module is a
significant cost in terms of area consumption in the whole design.

Disadvantages: extra multiplexers and other control logics | e to be implemented, and
this could decrease the clock frequency.

® Compact structure based on the employment of FPGA’s generic module (e.g. RAM)
Advantages: The rich on-FPGA block RAMs can store more than sevi | lookup table’s
worth of memory elements and they are typically have higher densities and faster access
times compared with lookup-table-configured memories. Besides, their timing
characteristics are more predictable.

Disadvantages: In FPGAs with the block RAMs of very big size, it ¢ d be a waste to
configure a block RAM for a pure 64 bytes data block.

It is hard to conclude the advantages d disadvantages for the high speed structure
based on faster major functional module (e.g. parallel adder) in a system. But problems
may occur due to the module itself. For example, high speed carry look-ahead adders
may have fan-in and fan-out difficulties, which indicate that the design could have
difficulties to drive a large number of inputs or outputs. For more details of fan-in/fan-out,
refer to [85].

Although stre: ciphers are inspired by the one-time pad (OTP) theory, which was
proved to be perfectly secure, stream ciphers make deviation »m OTP, since they do not
meet t| requirement that the | / visatl tthe ne length as the plaintext, and
generated completely at random. The keystreams from a stream cipher algorithm are
produced by deterministic generators. Thus, an attacker may be able to recover a part of

secret key or internal state by using the improved distinguishing attack.

94

for a chosen cipher is undoub Ily necessary since the ultimate goal is wide spread
adoption.

Another potential future work is the cipher co-design based on FPGAs. As we know,
FPGAs provide a very flexible platform for cipher implementations. T igh speed 1/0
interface, embedded IP cores, block RAMSs, and especially ¢ configurable
microprocessor like Xilinx’s MicroBlaze form a suitable environment for
hardware/software co-designs of cryptographic systems. Unlike sheer software
implementation or hardware implementation, co-design is a relatively new area. Since
traditional design methodologies are not adequate to address the co-design challenges,
people often fall into pitfalls when they try to gain the advantages of both while
neglecting the communication between them and a pro; ' mapping process to vide the
cryptographic system into software part and hardware pa To implement a cipher
efficiently by using co-design methodology, the bottlenecks of bi 1 software and
hardware should be taken into account. Moreover, additional analysis n programming
techniques may be helpful for the overall performance.

The randomness of pseudorandom sequences could be evaluated by using statistical
tests. The NIST suite provides a relatively comprehensive collection of ~zneric tests. We
only used four of them. It typically spans more properties that a gc | cryptographic
algorithm should satisfy by applying the whole suite. These properties include any
detectable correlation between plaintext/ciphertext pairs, any « ectable due to single
bit changes to either a plaintext or a 128-bit key, in addition to many others. The NIST
suite has ignored the internal structures of stream ciphers. Statistical tests taking the
internal structure, key or IV loadir phases into account are =y limited compared with
sole keystream tests. The correlations between key, IV, internal state and eystream are
important factors in the design of a stream cipher since availability of t keystream and
IV should not leak any information about the internal state or secret key. More attention

could be paid in this area.

96

Reference

(1]

(2]

(3]

[4]
[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

44 U.S.C § 3542 (b)(1) (2006), available at
http://www.law.cornell.edw/uscode/html/uscode44/usc_sec_44 00003542- 00-.html

A. Beaumont-Smith and C. Lim. Parallel prefix adder design. Proc. 15th :E Symposium on
Computer Arithmetic, pages 218-225, 20(

A. Booth, A signed binary multiplication technique, Quarterly Journal of Mechanics and
Applied Mathematics (1951), pp. 236-240.

A. Chandrakasan and R. Brodersen. Low-Power CMOS design. IEEE Press, 1998.

A. Klimov, A. Shamir (2003). "Cryptographic Applications of T-functions", Selected Areas in
Cryptography, SAC 2003, LNCS 3006: 248-261, Springer-Verlag.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied C itography, pp.3~S5,
CRC Press, 1996.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, pp.43~45,
CRC Press, 1996.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Leve >, M. Vangel, D.
Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for random and pseudorandom
number generators for cryptt aphic applications. 2001. http://www.nist.gov.

ALTERA, ASIC to FPGA Design Methodology & Guidelines, July 2003, ver.1.0

Abraham Sinkov, Elementary Cryptanalysis : A Mathematical Approach, The Mathematical
Association of America, 1966. ISBN 0-88385-622-0.

Auguste Kerckhoffs, La cryptographie militaire, Journal des sciences mi. ires, vol. IX, pp.
538, Janvier 1883, pp. 161-191, Février 1883.

B. Parhami, "Computer Arithmetic: Algorithms and Hardware Designs", ¢ ord niversity
Press, 2000.

B. Schneier, J. Kelsey, D. Whitit D. W er, C.Hall, N. Ferguson, The Twofish Encryption
Algorithm: A 128-Bit Block Cipher," John Wiley & Sons, April 1999, ISBN: 0471353817.

B.W. Bomar, “Implementation of Microprogrammed Control in FPGAs”, [E I Transactions on
Industrial Electronics, vol. 49, pp. 5-422, April, 2002.

C. Rechberger. Side channel analysis of stream ciphers. Master’s thesis, Institute for Applied
Information Processing and Communications (IAIK), Graz University of Technol -
Inffeld e 16a, A-8010 Graz, Austria, 20

C.D. Walter, Systolic modular multiplication, IEEE Transactions on C 42 (1993) (3),
pp. 376-378

Chen, Y., Hai Li, Roy, K., Chena-Kok Koh, Cascaded carry-select adder (C/sup 2/SA): a new

97

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]
[72]

(73]

(74]

[75]

[76]
[77]

(78]

Quist, Arvin S. (2002). Security Classification of Information, Volume 1. Introduction, History,
and Adverse Impacts. Oak Ridge Classification Associates, LLC. Retrieved on 2007-01-11.

R. Hashemian, "A New Des for High Speed and High-Density Carry. S ct Adders", 43. rd.
Midwest Symposium on Circuits and Systems,. Lansing, Michigan, August 11, 2000.

Ruby B. Lee, Xiao Yang, and Zhijie Shi, Validating Word-Oriented Processors for Bit-level
Permutations and Multi-word Operations in Pervasive Secure Computing Paradigms, Princeton
University Department of Electrical Engineering Technical Report CE-L. 12-004, November
2002.

S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications, IEEE Press,
New York, 1994.

Satoh, A., Morioka, S., Takano, K., and Munetoh, S., A Compact Rijndael Hardware
Architecture with S-Box optimization," Asiacrypt 2001, LNCS 2248, pp.239-254, 2001

Simon Fischer, Willi Meier, C?me Berbain, Jean-Francois Biasse, Matt Robshaw,
Non-Randomness in eSTREAM Candidates Salsa20 and TSC-4, Indocrypt)6

Steven Brown, Rovert Francis, Johnathan Rose, and Zvonko Vranesic. Field Programmable
Gate Arrays. Kluwer Academic Publishers, 1992

T. Good, W. Chelton, M. Benaissa, Review of stream cipher candidates /m a low resource
hardware perspective, available at www.ecrypt.eu.org/stream/papersdir/2006/016.pdf

VLSI Computer Architecture, Arithmetic, and CAD Research Group — Dej ent of Electrical
Engineering, 1IT, Chicago, IL. IIT Standard Cells for AMI 0.5um and T¢ C 0.25um/0.18um
(Version 1.6.0), 2003.

W. Stallings, Cryptography and Network Security Principles and Practices, Prentice Hall press,
third edition, 2003.

W. Stallii , Dataand Compt Con nications, 8th Edition, Prentice He 2007.

W. Stallings, “The Advanced Encryption Standard”, CRYPTOLOGIA, V¢ ne XXVI, NO. 3,
July 2002.

Whitfield Diffie and Martin Hellman, New Directions in Cryptography, [E Transactions on
Information Theory, vol. IT-22, Nov. 1976, pp: 644-654.

Xilinx Inc., San Jose, Calif., “Des 1 Tips for HDL Implementation of A: metic Functions,”
2000, www.xilinx.com.

Xilinx Inc., San Jose, Calif.,, “Virtex, 2.5 V Field Programmable Gate Arrays,” 2003,
www.xilinx.com.

Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-Gorre Verlag, 1992.

Y. Kim and L-S Kim, .64-bit carry-select adder with reduced area,. Electrc :s Letters, vol. 37,
pp. 614-615, May 2001

Yukiyasu Tsunoo, Teruo Saito, Hiro. 1 Kubo, Tomoyasu St i and Hiroki Nakashima,

101

[79]

(80]

(81]

(82]

(83]

(84]

[85]

"Differential Cryptanalysis of Salsa20/8". Available at

http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

Z. Navabi, VHDL analysis and modeling of digital systems, McGraw-Hill ss, second edition,
1998.

Thomas Beth and Fred Piper, The Stop-and-Go Generator. EUROCRYPT 1984, p88-92.

http://en.wikipedia.org/wiki/Padding (cryptography)

S. Vanstone , A. Menezes, P. van Oorschot, Handbook of Applied Crypto phy, pp.425, CRC
Press, 1996.

Adam Osborne, An Introduction to Microcomputers Volume | Basic Concepts,2nd Edition,
Osborne-McGraw Hill, Berkely California, 1980, ISBN 0-931988-34-9 pgl-1

A.Th. Schwarzbacher and J.P. Silvennoinen and P.A. Comiskey, Benchm :ing CMOS Adder
Structures, Irish Systems and Signals Conference, Cork, Ireland). 231-234, June 2002.

E. Andrew Parr, The Logic Designer’s Guidebook, NY: McGraw-Hill 1984 . 21.

102

return result;
end;
end mypackage;

library IEEE;
use IEEE.STD_LOGIC _1164.All;

entity KSadder is

generic (size : natural :=32);

port (A, B :in Std_Logic_Vector (size -1 downto 0) ;
sum : out Std_Logic_Vector (size -1 downto 0) ;
Cout : out Std_Logic) ;

end KSadder ;

architecture structural of KSadder is

-- G(1)(j), P(1)(j) : "group Generate", "group Propagate". i group left position, j = group
right position

type Tr is array (size -1 downto 0) of Std_Logic Vector (size -1 downto 0) ;

signal G P: Tr;

procedure half adder
(signal G P : out Std_Logic; signal A, B : in Std_Logic) is
begin G <= A and B; P <= A xor B; end hal® ~dder;

procedure BK
(signal GO, PO : out Std_Logic; signal GI1, PI1, GI2, PI2 : in Std_Logic) is
begin GO <= GI1 or (PI1 and GI2); PO <= PI1 and PI2; end BK;

function koggestone (i, j : integer) return integer is
1 p:in :

b

p=2;

while p <=1 - j loop

P pPtp;

end loop ;
ifj=0ori-j+1=pthen
returni+ 1-p/2;

else

return 0 ;

end if ;

end koggestone ;

begin

-- "half_adder" cells row
half adders : foriin size -1 downto O generate

106

half _adder(G(i)(i) , P(i)(1),
end generate half adder row ;

-- operator

for_i : for i in size -1 downto 1 generate

for j:forjini-1 downto O generate
if_kg : if koggestone (i, j) > 0 generate

BK(G()(), P(i)(j), G(i)(koggestone(i, j)), P(i)(koggestone(i, j)), G(ko;

P(koggestone(i, j) -1)(j)) ;

end generate if_kg ;
end generate for j ;
end generate for_i ;

Cout <= G(size -1)(0) ;

-- "XOR" gates row
XOR row :foriin size -1 downto 1 generate

Sum(i) <= P(i)(i) xor G(i-1)(0) ;
end generate XOR_row ;
Sum(0) <= P(0)(0) ;

end structural ;

A(), B());

sstone(i, §) ~1)(),

-- H block for high speed

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std logic unsigned.all;

entity h_block

port { clk,rst, start
zinQ : i

nl :

zin2 :

zind :

zind :

xinQ :

xinl :

zo0 :
zol
202
zod :
zo4
)
end h_block;

is

in
in
in
in
in
in
in
out
out
out
out

: out

ogi ector(3l

ogic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector (31
std_logic_vector(31

architecture rtl of h_block is

signal zi0, z_10, z_20, z_30, z_40,

zil, z_11, z_21, z_31, z_A4l,

: in std_logic;

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0
0);
0):
0):
0)

107

z2i2, z_12, z_22, z_ 32, z_42,
zi3, z_13, z_23, z_33, z_43, z_53, z_63
zid, z_14, z_ 24, z_34, z_44,
x0, x1
: std_logic_vector (31 downto 0);
-~ six adders, six useless cout
signal coutO, coutl, cout2, cout3, coutd, coutbh
. std_logic;
signal flag : integer := 0;
component Ksadder

generic (size : natural :=32) ; ——si : Number of bits
port (A, B : in Std_Logic_Vector (size -1 downto 0) ; -— A,B: addends

S : out Std_Logic _Vector (size -1 downto 0) ; -— S: Sum;

Cout : out Std_Logic) ; -— carry out

end component ;

-— left rotation
function lrotate(din : std_logic_vector(31 downto 0);
n : integer)
return std_logic_vector is
variable dout: std_logic vector (31 downto 0);
begin
dout := din((31-n) downto 0) & din(31 downto (32-n));
return dout;
end lrotate;

begin

210 <= zin0 when flag
zil <= zinl when flag
zi2 <= zin2 when flag
zi3 <= zin3 when flag
zi4 <= zin4 when flag
x0 <= xin0 when flag = 0;
x1 <= xinl when f =

z_13 <= zi3 xor x0;

add_z_10: KSadder port map (zi0, z_13, z_10, cout();

z_23 <= lrotate (zi3, 15);

add_z_11: KSadder port map (zil, zi4, z_l1, coutl);

z_14 <= lrotate (zid, 25);

z_12 <= zi2 xor z_10;

z_20 <= lrotate (z_10, 9);

z_ 33 <= z_23 xor z_11;

z 21 <= lrotate (z_ 11, 10);

add 24: KSadder port map (z_14, 12, 24, cout2);

z_22 <= lrotate (z_12, 17):

I}
OO O OO

|
[we]

add_z_43: KSadder port map (z_33, x1, z_43, coutd);
z_30 <= z_20 xor z_43;
z_53 <= lrotate (z_33, 30);

108

z_31 <= z_21 xor z_24;
z_31 <= lrotate (z 24, 13):
add z_32: KSadder port map (z_22, z 30, z 32, coutd);
z_10 <= lrotate (z 30, 20);
add_z_63: KSadder port map (z_53, z_31, z_63, cout5);
z_41 <= lrotate (z_31, 11):
z_44 <= z_34 xor z_32;
z_42 <= lrotate (z_32, 5);
syn_in: process(rst, clk, start)
begin
if (rst = '1")then
flag <= 0;
elsif (clk="1" and clk’ event) then
if (flag = 0 and start = ’'1") then

flag <= 1;
else

flag <= 0;
end if;

end if;
end process syn_in;
syn_out: process (clk, flag)
begin
if (clk =’1 and clk’event) then
if (flag = 1)then
-— output registers
zo0 <= z_40;
zol <= z_A11;
zo2 <= z_12;
203 <= z_63;
zod <= z_41;
end if;
end if;
end process syn_out;

end rtl;

-- H block for compactness
library ieee;
use ieee.std logic_1164. ALL;

entity H func dp is

port (kO : in std_logic_vector (31 downto 0);
kl :in std_logic_vector (31 downto 0);
1s0 ©in L e
Isl :in std_logic;
1s2 : in std_logic;
1s3 : in std_logic;
1s4 . in std_logic;

109

1s5
1s6
mux_sel :
w00
w01
w02
w03
w01
w10
wdl
wA2
wi3
w4l

end H_func_dp;

: in
: in

in

: in
:in
1 in
;in
. in
: out
; out
:oout
© out
: out

std_logic;

std_logic;

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std _logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

std_logic_vector

architecture BEHAVIORAL of H func dp is
. std_logic_vector
. std_logic_vector

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

ain0
ainl
aout
kO_in
w00_in
w0l _in
w02_in
w03_in

w01_in
w10
wll
wl2
wl3
wl4
w20
w2l
w22
w23

w24
w30
w3l
w32
w33
w31
w40_in
w4l _in
w42_in
wA' 'n
XLXN_21

component latch
port (gate :

: std_logic_vector
: std_logic_vector
. std_logic_vector

. std_logic_vector
. std_logic_vector
. std_logic_vector
w03_xor_kO :

std_logic_vector

: std_logic_vector
. std_logic_vector
. std_logic_vector

. std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
. std_logic_vector
: std_logic_vector
w23_add_kl :
: std_logic_vector
. std_logic_vector
. std_logic_vector
: std_logic_vector
. std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vec

. std_logic_ve

std_logic_vector

: std_logic_ve
. std_lie c_vector

in

std_logic;

(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31
(31

(2 downto 0);

(31 downto
(31 downto
(31 downto
(31 downto
(31 downto
(31 downto
(31 downto
(31 downto
(31 downto
(31 downto

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
dc 0
downto
downto
downto

0);
0);
0);
0);
0);
0) .
0);
0);
0) ;
0):
0);
0);
0);
0);
0);
0);
0);
0):
0);
0);
0);
0);
0);
0);
0):
0);
0);
0):
0);
0):
0);

0):
0);
0);
0);
0);
0);
0);
0):
0);
0));

110

din : in std_logic_vector (31 downto 0);
dout : out std logic vector (31 downto 0));
end component;

component mux_6tol
port (i0 : in std_logic_vector (31 downto 0);

il : in std_logic_vector (31 downto 0);
i2 ¢ in std _logic_vector (31 downto 0);
i3 : in std_logic_vector (31 downto 0);
i1 : in std logic vector (31 downto 0);
i5 : in std_logic_vector (31 downto 0);
s : in std_logic_vector (2 downto 0);
q : inout std_logic_vector (31 downto 0));

end component;

component rotlb
port (din : in std_logic_vector (31 downto 0);
dout : out std logic vector (31 downto 0));
end component:

component rot2b
port (din : in std_logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));
end component;

component adder_predefined
port (A : in std logic_vector (31 downto 0);
B : in std_logic_vector (31 downto 0);
S : out std logic vector (31 downto 0));
end component;

component rot9
port (din : in std_logic_vector (31 downto 0);
dout : out std_logi ector (31 downto 0));

end component;

component rotlQ
port (din : in std_logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));
end component;

component rotl7?
port (din : in std_logic_vector (31 downto 0);
dout : out std logic_vector (31 downto 0));
end component;

component rot30
port (din : in std_logic_vector (31 downto 0);
dout : out std logic vector (31 downto 0));

11

end component;

component rotl3
port (din : in std_logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));
end component;

component rot20
port (din : in std_logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));
end component;

component rotll
port (din : in std_logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));
end component;

component rotb
port (din : in std logic_vector (31 downto 0);
dout : out std_logic_vector (31 downto 0));

end component;

component xor_array
port (a : in std_logic_vector downto 0);
b : in std_logic_vector (31 downto 0);
¢ : out std logic vector (31 downto 0));
end component;

begin
latch_wl0 : latch
port map (din(31 downto 0)=>aout (31 downto 0),
gate=>1s0,
dout (31 downto 0)=>wl10(31 downto 0)) ;

latch_wll : latch
port map (din(31 downto 0)=>aout (31 downto 0),
gate=>1sl,
dout (31 downto 0)=>w11(31 downto 0));

latch_w23K1 : latch
port map (din(31 downto 0)=>aout (31 downto 0),
gate=>1s3,
dout (31 downto 0)=>w23 add_k1(31 downto 0));

latch_w32 : latch
port map (din(31 downto 0)=>aout (31 downto 0),
gate=>1s4,
dout (31 downto 0)=>w32(31 downto 0));

mux_ain0 : mux_6tol

port map (i0(31 downto 0)=>w00_in(31 downto 0),
i1(31 downto 0)=>w01_in(31 downto 0),
i2(31 downto 0 wl4(31 downto 0),
i3(31 downto 0)=>w23(31 downto 0),
i4(31 downto 0)=>w22(31 downto 0),
i5(31 downto 0)=>w33(31 downto 0),
s(2 downto 0)=>mux_sel (2 downto 0},
q(31 downto 0)=>ain0(31 downto 0));

mux_ainl : mux_6tol
port map (i0(31 downto 0)=>w03 xor k0(31 downto 0),

i1(31 downto 0)=>w04_in(31 downto 0),
i2(31 downto 0)=>w12(31 downto 0),
i3(31 downto 0)=>XLXN_21(31 downto 0),
i4(31 downto 0)=>w30(31 downto 0),
i5(31 downto 0)=>w31(31 downto 0),
s(2 downto 0)=>mux_sel(2 downto 0},
q (31 downto 0)=>ainl (31 downto 0)):

XLXI_83 : rotlb
port map (din(31 downto 0)=>w03_in(31 downto 0),
dout (31 downto 0)=>wl13(31 downto 0)):

XLXI_84 : rot2h
port map (din(31 downto 0}=>w04_in(31 downto 0),
dout (31 downto 0)=>wl4(31 downto 0));

XLXI_86 : adder_predefined
port map (A(31 downto 0)=>ainl(31 downto 0),
B(31 downto 0)=>ain0(31 downto 0),
S(31 downto 0)=>aout (31 downto 0));

XLXI_115 : rot9
port map (din(31 downto 0}=>wl10(31 downto 0),
dout (31 downto 0 w20(31 downto 0));

XLXI_117 : rotl0
port map (din(31 downto 0)=>wl11(31 downto 0},
dout (31 downto 0)=>w21(31 downto 0)) ;

XLXI_130 : latch
port map (din(31 downto 0)}=>aout (31 downto 0),
ga’ 1s2,
dout (31 downto 0 w24 (31 downto 0));

XLXI_131 : rotl7
port map (din(31 downto 0)=>w12(31 downto 0),
dout (31 downto 0)=>w22(31 downto 0)) ;

113

XLXI_134 : rot30
port map (din(31 downto 0)=>w23(31 downto 0),
dout (31 downto 0)=>w33(31 downto 0));

XLXI_136 : rotl3
port map (din(31 downto 0)=>w24(31 downto 0),
dout (31 downto 0)=>w34(31 downto 0));

XLXI_138 : rot20
port map (din(31 downto 0)=>w30(31 downto 0),
dout (31 downto 0)=>w40_in(31 downto 0));

XLXI_142 : rotll
port map (din{(31 downto 0)=>w31(31 downto 0),
dout (31 downto 0)=>w4l _in(31 downto 0));

XLXI_144 : rotbd
port map (din(31 downto 0)=>w32(31 downto 0),
dout (31 downto 0)=>w42_in(31 downto 0));

latch_win0 : latch
port map (din(31 downto 0)=>w00(31 downto 0),
gate=>1s5,
dout (31 downto 0)=>w00 in(31 downto 0));

latch_winl : latch
port map (din(31 downto 0)=>w01 (31 downto 0),
gate=>1s5,
dout (31 downto 0)=>w01_in(31 downto 0));

latch_win2 : latch
port map (din(31 downto 0)=>w02(31 downto 0),
gate=>1s5,
dout (31 downto 0)=>w02_in(31 downto 0));

latch_win3 : latch
port map (din(31 downto 0)=>w03(31 downto 0),
gate=>1sb,
dout (31 downto 0)=>w03_in(31 downto 0));

latch_wind : latch
port map (din(31 downto 0)=>w04(31 downto 0),
gate=>1s5
dout (31 downto 0)=>w04_in(31 downto 0));

latch_kO : latch
port map (din(31 downto 0)=>k0(31 downto 0),
gate=>1s5,

114

dout (31 downto 0)=>k0_in (31 downto 0));

latch_kl : latch
port map (din(31 downto 0)=>k1(31 downto 0),
gate=>1s5

dout (31 downto 0)=>XLXN_21(31 downto 0));

XLXI_157 : latch
port map (din(31 downto 0)=>aout{(31 downto 0),
gate=>1s6
dout (31 downto 0)=>w43(31 downto 0));

XLXI_158 : latch
port map (din(31 downto 0)=>w42_in(31 downto 0),
gate=>1s6
dout (31 downto 0)=>w42(31 downto 0));

XLXI_159 : latch
port map (din(31 downto 0)=>w44_in(31 downto 0),
gate=>1s6,
dout (31 downto 0)=>w44(31 downto 0));

XLXI_160 : latch
port map (din(31 downto 0)=>w4l_in(31 downto 0),
gate=>1s6,
dout (31 downto 0)=>w41(31 downto 0));

XLXI_161 : latch
port map (din(31 downto 0)=>w40_in (31 downto 0),
gate=>1s6,
dout (31 downto 0)=>w40(31 downto 0}) ;

xor_wl0 : xor_array

port map (a(31 downto
b(31 downto
c (31 downto

xor_wl2 : xor_array
port map (a(31 downto
B (31 downto
c (31 downto

xor_w30 : xor_array
port map (a(31 downto
b(31 dc o
c(31 d)

xor_w3l : xor_array
port map (a(31 downto

0Y=>k0_in (31 downto 0),
0)=>w03_in(31 downto 0},

0) =>w03_xor_k0(31 downto 0));

0)=>w10(31 downto 0),
0)=>w02_in(31 downto 0),
0)=>w12(31 downto 0));

0)=>w20(31 downto 0),
0 3 1d_k1(31 downto 0),
0)=>w30(31 downto 0));

0)=>w21(31 downto 0),

115

b(31 downto
¢ (31 downto

xor_w44 : xor_array
port map (a(31 downto
b(31 downto
¢ (31 downto

xor_23 : xor_array
port map (a(31 downto
b(31 downto
c (31 downto

end BEHAVIORAL;

LIBRARY ieee;

USE ieee. std logic 1164, all;

ENTITY SHELL_H_CTR IS

0)=>w24 (31 downto 0),
0)=>w31 (31 downto 0));

0)=>w34 (31 downto 0),
0)=>w32 (31 downto 0),

0)=>w44_in (31 downto 0));

0)=>wl1l (31 downto 0),
0)=>w13(31 downto 0),
0)=>w23 (31 downto 0));

PORT (CLK, RESET, start: IN std_logic;

done, 150, 1s1, 1s2, 1s3, 1s4, 1s5, 156, mux_sel0, mux_sell, mux_sel2 :

)

END;

ARCHITECTURE BEHAVIOR OF SHELL_H_CTR IS

TYPE type_sreg 1S (H_done, idle, wl0_gen, wl0_load, wl1l_gen, wll_load, w23K1_gen,
w23K1_load, w24_gen, w21_load, w32_gen, w32_load, wi4_gen) ;
SIGNAL sreg, next_sreg :

type_sreg,

SIGNAL 1s : std_logic vector (6 DOWNTO 0);
SIGNAL mux_sel : std_logic_vector (2 DOWNTO 0);

BEGIN

PROCESS (CLK, RESET, next_sreg)

BEGIN

IF (RESET="1") THEN

sreg <= idle;

ELSIF CLK="1" AND CLK’ event THEN
sreg <= next_sreg;

END IF;
END PROCESS;

PROCESS (sreg, start)
BEGIN

CASE sreg IS
WHEN H done =>
done<="1";

mux_sel <= (std_logic_vector’ ("1017));

OUT std_logic

116

ls <= (std_logic_vector’ (”1000000")):
next_sreg<=idle;

WHEN idle =>
done<="0" ;

mux_sel <= (std_logic_vector’ (“0007));

ls <= (std_logic_vector’ ("01000007));

IF (start="1") THEN
next_sreg<=wl0_gen;

ELSE
next_sreg<=idle;

END IF;

WHEN w10_gen =>

done<="0’" ;

mux_sel <= (std_logic_vector’ ("0007));

Is <= (std_logic_vector’ ("00000017));

IF (start="1") THEN
next_sreg<=wl0_load;

ELSE
next_sreg{=wl0_gen;
END IF;
WHEN w10_load =>
done<="0’" ;

mux_sel <= (std_logic_vector’ ("0007));

Is <= (std logic_vector’ (700000017)) ;

IF (start="1") T.._.
next_sreg<=wll gen;

ELSE
next_sreg<=wl0_load;
END IF;
WHEN wll_gen =>
done<="0";
mux_sel <= (std_logic_vector’' ("0017));
1s <= (std_l¢ vector' (700000107));

IF (start="1") THEN
next_sreg{=wll load;

ELSE
next_sreg<=wll_gen;
END IF;
WHEN wll_load =>
done<="0";

mux_sel <= (std logic_vector’ ("0017));

ls <= (std_logic_vector’ (“0000010"));

IF (start="1") THEN
next_sreg<=w24_gen,

ELSE
next_sreg<=wll_load;

END IF;

WHEN w23K1 gen =>
done<="0";

117

mux_sel <= (std_logic_vector’ ("0117));
ls <= (std_logic_vector’ ("00010007));
IF (start="1") THEN
next_sreg<=w23K1 load;
ELSE
next_sreg<=w23Kl_gen:
END IF;
WHEN w23K1_load =>
done<="0";
mux_sel <= (std_logic_vector’ ("0117));
1s <= (std_logic_vector’ (700010007));
IF (start="1") THEN
next sreg<=w32 _gen;
ELSE
next_sreg<=w23Kl_load;
END IF;
WHEN w24_gen =>
done<="0";
mux_sel <= (std_logic_vector’ ("0107));
ls <= (std_logic_vector’ (“00001007));
IF (start="1") THEN
next sreg<=w24_load;

ELSE
next_sreg<=w24_gen;
END IF;
WHEN w24_load =>
done<="0";

mux_sel <= (std logic_vector’ (70107));

1s <= (std_logic_vector’ {("00001007));

IF (start="1") THEN
next_sreg<=w23K1l_gen;

ELSE
- oad;
L. IF;
W 12,
done<="0";

mux_sel <= (std_logic_vector’ ("1007));

ls <= (std_logic_vector’ (700100007)) ;

IF (start="1") THEN
next_sreg<=w32_load;

ELSE
next_sreg<=w32_gen;
END IF;
WHEN w32_load =>
done 0"

mux_sel <= (std_logic_vector’ (71007));

1s <= (std_logic_vector’ (00100007));

IF (start="1") THEN
next_sreg<=w44_gen;

118

ELSE
next_sreg<=w32_load;
END IF;
WHEN w44_gen =>
done<="0" ;
mux_sel <= (std_logic_vector’ ("1017));
Is <= (std_logic_vector’ (“10000007));
IF (start="1") THEN
next_sreg<=H_done;
ELSE
next_sreg<=wi4_gen;
END IF;
WHEN OTHERS =>
END CASE;

END PROCESS;

1s6 <= 1s(6);
1s5 <= 1s(5);
1s1 <= 1s(1);
1s3 <= 1s(3);
1s2 <= 1s(2);
Isl <= 1s(1);
1s0 <= 1s(0);
mux_sel2 <= mux_sel(2);
mux_sell <= mux_sel(l);
mux_sel0 <= mux_sel(0);
END BEHAVIOR;

LIBRARY ieee;
USE ieee.std_logic_l1164.all;

ENTITY ' °TR IS
PORT (ls : OUT std_1 ¢ vector (6 DOWNTO 0);
mux_sel : OUT std logic vector (2 DOWNTO 0):
CLK, RESET, start: IN std_logic;
done : OUT std_logic);
END;

ARCHITECTURE BEHAVIOR OF H_CTR IS
COMPONENT SHELL_H_CTR
PORT (CLK, RESET, start: IN std_logic;
done, 1s0, 1sl, 1s2, 1s3, 1s4, 1s5, 1s6, mux_sel0, mux_sell, mux_se
std_logic);
END COMPONENT;
BEGIN

SHELL1_H_CTR : SHELL_H_CTR PORT MAP (CLK=>CLK, RESET=>RESET, start=

=>done, 150=>1s(0), 1s1=>1s(1), 1s2=>1s(2), 1s3=>1s(3), 1s4=>1s(4)

. OUT

art, done
5=>1s(5), 1s6

119

=>1s(6), mux_selO0=>mux_sel (0), mux_sell=>mux_sel (1), mux_sel2=>mux_sel (2));
END BEHAVIOR;

Appendix E: €elected Source C de for
Salsa20

---- ASIC_Compact

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY icee;
USE ieee.std_logic unsigned.all;

ENTITY SHELL_CONTRO IS
PORT (CLK,mem_done,quarter_done,RESET,start: IN std_logic;
done,load all,mux mO,m0 start,m1 start,quarter rd start,round0,roundl,rc d2,
round3,round4,round5,round6,serial : QUT std_logic);
END;

ARCHITECTURE BEHAVIOR OF SHELL_CON OIS
TYPE type _sreg IS (add,idle,load rows,load z,quarter_en);
SIGNAL sreg, next_sreg : type_sreg;

SIGNAL round : std_logic_vector (6 DOWNTO 0);

BEGIN
PROCESS (CLK, RESET)
BEGIN
IF (RESET='1"') THEN
sreg <= id
~" SIF CLK="I' AND CLK'event THEN
sr = next_sreg;
END IF,
ENL . ROCESS;

PROCESS (sreg, mem_done,quarter_done,start,round)
BEGIN

next_sreg<=add;

CASE sreg IS
WHEN add =>
IF (start="1' AND mer- 1o1 ") THEN
next_sreg<=load_rows;
ELSE
nex* -r =add;
END IF;
WHEN idle =>
IF (start="1') THEN

120

next_sreg<=load_rows;
ELSE
next_sreg<=idle;
END IF;
WHEN load_rows =>
IF (start="I"AND mem_dor 1') THEN
next_sreg<=quarter_en,
ELSE
next_sreg<=load rows;
END IF;
WHEN load_z =>
IF (start="0") THEN
next_sreg oad z;
ELSIF (round=87 and mem_done="1'y THEN
next_sreg<=add;
ELSIF (round<87 and mem_done='1') THEN
next_sreg<=quarter_en;
END IF;
WHEN quarter_en =>
IF (start="1' AND quarter_done="1") THEN
next_sreg<=load z;
ELSE
next_sreg<=quarter_en;
END IF;
WHEN OTHERS =>
END CASE;

END PROCESS;

PROCESS(sreg)
BEGIN

CASE sreg IS
WHEN add =>
mux_m0<="l";
m0_start<='1";
ml_start<="1l";
load_all<='0";
serial<='l";
quarter_rd_start<='0";
done<='I";
round <= (std_li :_vector'("0000111"));
WHEN idle =>
mux_m0<='0";
m0_start<='0";
ml_start<='0';
load_.)
serial'
quarter_rd_start<="0",
done<='0";
round <= (std_logic_vector'("0000111"));
WHEN load rows =>
mux_r),
moO_st [
ml_start<='1";
load_all<="1";

121

serial<='0";
quarter_rd_start<="0";
done<='0";
round <= (std_logic vector'("0000111"));
WHEN load z=>
mux_m0<='l";
m0_start<='1;
ml_start<='0";
load_all<='0";
serial<="0";
quarter_rd_start<='0";
done<='0";
IF (round<87, _____.
round <= round + std_logic_vector'("0000001");
ELSE
round <= round;
END IF;
WHEN quarter_en =>
mux_m0<='1";
m0_start<='0";
ml_start<='0";
load_all<='0";
serial<="'0";
quarter_rd_start<="'1"
done<='0";
round <= round;
WHEN OTHERS =>
END CASE;
END PROCESS;

PROCESS (round)

BEGIN
round0 <= round(0);
round! <= round(1);
round2 <= round(2),
round3 <= round(3);
round4 <= round(4);
round5 <= round(5);
round6 <= round(6);

END PROCESS;

END BEHAVIOR;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY ieee;
USE ieee.std_logic_unsigned.all;

ENTITY CONTRO IS
POI1.. laddr: _ _ _ 5td_logic_vector N 0);
CLK,mem_done,quarter_done,RESET,s N std_logic;

doneloa’ 1l,mux_mO,m0_start,ml_start,quarter_rd_start,serial : OUT std_logic);

END;

ARCHITECTURE BEHAVIOR OF CONTRO IS
SIGNAL round : std_logic_vector (6 DOWNTO 0),

122

COMPONENT SHELL_CONTRO

PORT (CLK,mem_done,quarter_done,RESET,start: IN std_logic;
done,load_all,mux_mO0,m0_start,ml_s ,quarter rd start,round0,roundl,round2,
round3,round4,roundsS roundé6,serial : OUT std_logic);

END COMPONENT;
BEGIN
addr<=round(2 DOWNTO 0);

SHELL1_CONTRO : SHELL CONTRO PORT MAP (CLK=>CLK,mem_don 'mem_done,
quarter_done=>quarter_done, RESET=>RESET,start=>start,done=>done,l _all=>
load_all,mux_mO0=>mux_mO,m0_start=>m0_start,m1_start=>m1_start,quarter_rd_start=>
quarter_rd_start,round0=>round(0),round 1=>round(1),round2=>round(2), nd3=>
round(3),round4=>round(4),round5=>round(5),round6=>round(6),serial=>serial);

END BEHAVIOR;

library ieee;
use ieee.std logic_1164.ALL;
use ieee.numeric_std.ALL;

entity quarterround is

port (CLK :in std_logic;

do tin std_logic_vector (31 downto 0);
dl :in std logic_vector (31 downto 0);
d2 tin std_logic vector (31 downto 0);
d3 tin std_logic_vector (31 downto 0);

RST :in std_logic;

start : in std_logic;

done :out std_logic;

z0 : inout std_logic_vector (31 downto 0);
zl : inout std_logic_vector (31 downto 0);
2 . inout std_logic_vector (31 downto 0);
23 : inout std_logic vector (31 downto 0));

end quarterround;

architecture BEHAVIORAL of quarterround is

signal mux2 :std_logic;

s “mnux4 :std_logic_vector (1 dov 0);
signai reg_ld : std_logic_vector (3 downto 0);

component quarter

std_logic;

std_logic;
std_logic vector (31 downto |
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector (I downto 0);
std_logic_vector (1 downto 0);
std_logi ector (1 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
st 'agic_vector (31 downto 0);
stu_10gic;

:inout std_logic vector (31 downto 0);
:inout std_logic_vector (31 downto 0);

port (clock in

clear :in
d2 tin
reg_sel0 s in
reg_sell in
reg_sel2 tin
reg_sel3 :in
mux4_sel_xorinl : in
mux4_sel_xorin0 : in
mux4_sel_ainl :in
d3 tin
dl1 tin
do tin
mux2_sel tin
z0

72

z3

: inout std_logic_vector (31 downto 0);

123

zl : inout std_logic_vector (31 downto 0);

mux4_sel_ain0 :in std_logic_vector (1 downto 0));
end component;
component FSM_QUA
port (CLK tin std_logic;
RESET :in std_logic;
start tin std_logic;
done :out std logic;
mux2_input :out std_l 3;
mux4 :out std_logic_vector (1 downto 0);
reg_ld :out std logic vector (3 downto 0));

end component;

begin

XLXI_1 : quarter
port map (clear=>RST,

clock=>CLK,
d0(31 downto 0)=>d0(31 downto 0),
d1(31 downto 0)=>d1(31 downto 0),
d2(31 downto 0)=>d2(31 downto 0),
d3(31 downto 0)=>d3(31 downto 0),
mux2_sel=>mux2,
mux4_sel_ain0(1 downto 0)=>mux4(1 downto 0),
mux4_sel_ainl(1 downto 0)=>mux4(1 downto 0),
mux4_sel xorin0(1 downto 0)=>mux4(1 downto 0),
mux4_sel xorinl(1 downto 0)=>mux4(1 downto 0),
reg_sel0=>reg_1d(0),
reg_sell=>reg_ld(1),
reg_sel2=>reg_1d(2),
reg_sel3=>reg_1d(3),
z0(31 downto 0)=>z0(31 downto 0),
z1(31 downto 0)=>z1(31 downto 0),
z2(31 downto 0)= 31 downto 0),
z3(31 downto 0)=>z3(31 downto 0));

XLX1 2: FSM_QUA
port map (CLK=>CLK,
RESET=>RST,
start=>start,
done=>done,
mux2_input=>mux2,
mux4(1 downto 0)=>mux4(1 downto 0),

reg_ld(3 downto 0)=>r 1d(3 downto 0));
end BEHAVIORAL;
library iece;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;
entity quarter is
port (clear tin std_logic;
clock tin std_logic;
do :in std 1 : vector (31 downto 0);

124

di

signal ain0
signal ainl
signal reg0_in
signal regl_in
signal reg2_in
signal reg3 in
signal r7
signal r9
signal r13
signal r18
signal sum
signal xor_in0
signal xor_inl
signal zi

tin std_logic_vector (31 downto 0);

d2 ;in std_logic_vector (31 downto 0);

d3 :in std_logic_vector (31 downto 0);

mux2_sel :in std_logic;

mux4_sel_ain0 :in std_logic_vector (1 downto 0);

mux4_sel_ainl :in std_logic_vector (1 downto 0);

mux4_sel xorin0 : in std_logic_vector (1 downto 0);

mux4_sel xorinl : in std_logic_vector (1 downto 0);

reg_sel0 tin std_logic;

reg_sell sin std_logic;

reg_sel2 :in std_logic;

reg_sel3 tin std_logic;

z0 s inout std_logic_vector (31 downto 0);

zl : inout std_logic_vector (31 downto 0);

2 - inout std_logic_vector (31 downto 0);

z3 : inout std_logic_vector (31 downto 0));
end quarter;

architecture BEHAVIORAL of quarter is

:std_logic_vector (31 downto 0);
:std_li :_vector (31 downto 0);
: std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);
:std I+ _vector (31 downto 0);
:std_ c_vector (31 downto 0);
: std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);
: std_logic vector (31 downto 0);
cstd_ I o r (31 downto 0);
: std_logic_vector (31 downto 0);
:std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);

component adder_predefined

port (A:in
B:

std_logic_vector (31 downto 0);
in std_logic_vector (31 downto 0);

S:out std logic vector (31 downto 0));

end component;

component rotation?

port (din

:in std_logic_vector (31 downto 0);

dout : out std_logic_vector (31 downto 0));

end component;

component rotation9

port (din

tin std_logi- --ector (31 downto 0);

dout : out std_logic_vector (31 downto 0));

end component;

component rotation13

port (din

tin std_logic_vector (31 downto 0);

dout : out std_logic_vector (31 downto 0));

end component;

component rotation1§

port (din

tin std_logic vector (31 downto 0);

125

dout : out std_logic_vector (31 downto 0));
end component;

component mux_2to1
port(s :in std_logic;
i0:in std_logic_vector (31 downto 0);
il :in std_logic_vector (31 downto 0);
q :inoutstd logic_vector (31 downto 0));
end component;

component mux_4tol
port (i0 : in std_logic_vector (31 downto 0);

il:in std_logic_vector (31 downto 0);
i2:1in std_logic_vector (31 downto 0);
i3:in std logic vector (31 downto 0);
s :in std_logic_vector (1 downto 0);
q :inoutstd logic vector (31 downto 0));

end component;

component reg
port (clk : in std_logic;

clr:in std_logic;

s in std_logic;

d :in std logic vector (31 wnto 0);
q :inout std logic vector (31 downto 0));

end component;

component Xor_array
port (a:in std_logic_vector (31 downto 0);
b:in std_logic vector (31 downto 0);
c:out std_logic_vector (31 0));
end component;

begin
adder : adder_predefined
port map (A(31 downto 0)=>ain0(3 | downto 0),
B(31 downto 0)=>ain1(31 downto 0),
S(31 downto 0)=>sum(31 downto 0));

dr7 : rotation7
port map (din(31 downto 0)=>sum(31 downto 0),
dout(31 downto 0)=>r7(31 downto 0));

dr9 : rotation9
port map (din(31 downto 0)=>sum(31 downto 0),
dout(31 downto 0)=>r9(31 downto 0));

dr13 : rotation13
port map (din(31 downto 0)=>sum(31 dowr),
dout(31 downto 0)=>r13(31do 0 0));

dr18 ation18
port map (din(31 downto 0)=>sum(31 downto 0),
dout(31 downto 0)=>r18(31 downto 0));

mux0 : mux_2tol

126

port map (i0(31 downto 0)=>d0(31 downto 0),
il(31 downto 0)=>zi(3 1 downto 0),
s=>mux2_sel,
q(31 downto 0)=>reg0 _in(31 downto 0));

muxl : mux_2tol
port map (i0(31 downto 0)=>d1(31 downto 0),
il(31 downto(-zi(31 downto 0),
s=>mux2_sel,
q(31 downto (regl_in(31 downto 0));

mux2 : mux_2tol
port map (1031 downto 0)=>d2(31 downto 0),
i1(31 downto 0)=>zi(31 downto 0),
s=>mux2_sel,
q(31 downto 0)=>reg2 _in(31 downto 0));

mux3 : mux_2tol
port map (10(31 downto 0)=>d3(31 downto 0),
i1(31 downto 0)=>zi(31 downto 0),
s=>mux2_sel,
q(31 downto 0)=>reg3_in(31 downto 0));

mux4_ain0 : mux_4tol
port map (i0(31 downto 0)=>z0(31 downto 0),
il(31 downto 0)=>z1(31 downto 0),
i2(31 downto 0)=>z2(3 1 downto 0),
13(31 downto 0)=>23(31 downto 0),
s(1 downto 0)=>mux4_sel ain0(1 downto 0),
q(31 downto 0)=>ain0(31 dow 0));

mux4_ainl : mux_4tol
port map (i0(31 downto 0)=>z3(31 downto 0),
i1(31 downto 0)=>z0(3 1 downto 0),
i2(31 downto 0)=>z1(31 downto 0),
i3(31 downto 0)=>z2(31 downto 0),
s{1 downto 0)=>mux4_sel 1(1 downto 0),
q(31 downto 0)=>ainl(31 downto 0));

mux4_xor_in0 : mux_4tol
port map (i0(31 downto 0)=>z1(31 downto 0),
i1(31 downto 0)=>z2(31 downto 0),
i2(31 downto 0 -23(31 downto 0),
i3(31 downto 0)=>z0(3 1 downto 0),
s(1 downto 0)=>mux4_sel_xorin0(1 downto 0),
q(31 downto 0)=>xor_in0(31 downto 0));

mux4_xor_inl : mux_4tol
port map (i0(31 downto 0)=>r7(31 downto 0),
i1(31 downto 0): 9(31do 00),
i2(31 downto 0)=>rl: downto 0),
i3(31 downto 0)=>r18(31 downto 0),
s(1 downto x4_sel xorinl(1 downto 0),
q(31 downto r_in1(31 downto 0));

registerQ : reg

127

port map (clk=>clock,
clr=>clear,
d(31 downto 0)=>r 1 _in(31 downto 0),
s=>reg_sel0,
q(31 downto 0)=>z0(31 downto 0));

registerl : reg
port map (clk=>clock,
clr=>clear,
d(31 downto 0)=>regl _in(31 downto 0),
s=>reg_sell,
q(31 downto 0)=>zi(31 downto 0));

register2 : reg
port map (clk=>clock,
clr=>clear,
d(31 downto 0)=>reg2_in(31 downto 0),
s=>reg_sel2,
q(31 downto 0)=>z2(3 1 downto 0));

register3 : reg
port map (ctk=>clock,
clr=>clear,
d(31 downto 0)=>reg3_in(31 downto 0),
s=>reg_sel3,
q(31 downto 0)=>z3(31 downto 0));

XOr_gate_array : XOr_array
port map (a(31 downto 0)=>xor_in1(31 downto 0),
b(31 downto 0)=>xor_in0(31 downto 0),
¢(31 downto 0)=>z1(31 downto 0));

end BEHAVIORAL;

----ASIC_basic_iterative
library ieee;

use ieee.std_logic_1164.all;

use IEEE.std logic_arith.all;
use ieee.std_logic_unsigned.all;

entity quarterround is
port(rst, start, clk: in std_logic;
mux_sel, regs_sel: in std_logic_vector(3 downto 0);
y0, yl, y2, y3:in std logic_vector(31 downto 0);
20, z1, 22, 23: out std_logic_vector(31 downto 0)
)

end entity;

architecture rtl of quarterround is
component Xor_array
PORT (a:in STD LOGIC * = downto 0);
b: in STD_LOGIC_VECTOR (31 downto 0);
c:out STD_LOGIC_VECTOR (31 downto 0));
end component;

component mux_2tol

128

GENERIC (N: INTEGER :=32);
PORT(i0, i1: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
s: IN STD_LOGIC;
q: INOUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
end component;

component reg
GENERIC (N: INTEGER :=32);
PORT(clk,clr,s: IN STD_LOGIC;
d: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);
q: INOUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));
end component;

type regcolumn is array(0 to 3) of std_logic_vector(31 downto 0);
signal reg_in, reg_out,
add_out, dr, z: regcolumn;

begin
MUXO0: mux_2tol port map (y0, z(0), mux_sel(0), reg_in(0));
MUX1: mux_2tol port map (yl, z(1), mux_sel(1), reg_in(1));
MUX2: mux_2tol port map (y2, z(2), mux_sel(2), reg_in(2));
MUX3: mux_2tol port map (y3, z(3), mux_sel(3), reg_in(3));

REGS: for i in 0 to 3 generate

REGI: reg port map (clk, rst, regs_sel(i),
reg_in(i),reg_out(i));

end generate;
add out(0)<=reg_out(0)+reg_out(3);
add_out(1)<=reg_out(l)treg out(0);
add_out(2)<=reg_out(2)+reg_out(l);
add_out(3)<=reg_out(3)+treg_out(2);
dr(0)<=add_out(0)(24 DOWNTO 0)&: _out(0)(31 DOWNTO 25);
dr(1)<=add_out(1)(22 DOWNTO 0)&add_out(1)(31 DOWNTO 23),
dr(2)<=add_out(2)(18 DOWNTO 0)&add_out(2)(31 DOWNTO 19);
dr(3)<=add_out(3)(13 DOWNTO 0)&add_out(3)(31 DOWNTO 14);

z1G: xor_array port map (reg_out(1), dr(0), z(1));
z2G: xor_array port map (reg_out(2), dr(1), z(2));
z3G: xor_array port map (reg_out(3), dr(2), z(3));
z0G: xor_array port map (reg_out(0), dr(3), z(0));

z0<=reg_out(0); zl <=reg_out(1);
z2<=reg_out(2); z3<=reg_out(3);
end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity fsm is
port (clk, rst, start: in std_logic;
round: in std_logic_vector(4 downto 0);
s: out std_logic_vector(6 downto 0);
ready: out std_logic);
end entity;

129

architecture rtl of fsm is
type state is (idle, paral_load, z1, z2, z3, 20, done);
signal ps, ns: state;
begin
state_reg: process (rst, clk)
begin

if (rst ='1") then
ps <= idle;
elsif (clk ='1" and clk'event) then
ps <=ns;
end if;
end process;

state_transaction: process (start, ps, round)
begin
if start ="'1" then
case ps is
when idle =>
ready<="0";
ns <= paral_load,
when paral_load => ns <= z1;
when zl => ns <= z2;
when z2 => ns <= z3;
when z3 => ns <= z0;
when z0 =>
if (round = "10100") then ns <= done;
else ns <= paral_load;
end if;
when done => ready <="1";
end case;
end if;
end process;

--output_decode

with ps select

s <= "0000001" when idle,
"0000010" when paral_load,
"0000100" when zl,
"0001000" when z2,
"0010000" when 23,
"0100000" when z0,
"1000000" when done;

end rtl;

---- FPGA_compact

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE ieee.std_logic_unsigned.ALL;

El...TY controller IS
PORT (clk,clkfast, rst, start: IN STD_LOGIC;
cddr: INOUT STD_LOGIC_VECTOR(1 DOWNTO 0);
sm: INOUT STD_LOGIC_VECTOR(5 DOWNTO 0);

130

addr: INOUT STD_LOGIC_VE _ _ JR(7 DOWNTO 0);
wren: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_reg: INOUT STD_LOGIC_VECTOR(3 DOWNTO 0);
ready: INOUT STD_LOGIC);

END ENTITY;

ARCHITECTURE rtl OF controller IS
COMPONENT fsm
--ready is the signal indicating 20 quarterround funtions are done for the input
PORT (clk, rst, start, ready, en: IN STD_LOGIC;
s: OUT STD_LOGIC_VECTOR(10 DOWNTO 0));
END COMPONENT;

COMPONENT pulse_gen
PORT (clk,rst, trigger: IN STD_LOGIC;
pulse: OUT STD_LOGIC);
END COMPONENT;

COMPONENT counter
PORT (clk, cIr: IN STD_LOGIC;

q: INOUT STD_LOGIC_VECTOR(S DOWNTO 0));
END COMPONENT;

COMPONENT table

PORT (addr: IN STD_LOGIC VECTOR(5 DOWNTO 0);
output: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END COMPONENT;

COMPONENT output
PORT (start, clk: IN STD_I.OGIC;
s : IN STD_LOGIC_VE. _ JR(10 DOW? . _ D 0);
count: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
addr_ram: IN STD_LOGIC_VECTOR(3 DOWNTO 0),

change_s: OUT STD_LOGIC;
cddr: INOUT STD_LOGIC_VECTC 1 DOWNTO 0);
sm: INOUT STD_LOGIC_VECTOR(S DOWNTO 0);
addr: INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);
wren: OUT STD_LOGIC _VECTOR(1 DOWNTO 0);
s_reg: INOUT STD_LOGIC_VECTOR(3 DOWNTO 0);
ready,key ready : OUT STD_LOGIC);

END COMPONENT;

SIGNAL s: STD _LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL addr ram:{ D> LOGIC VECTOR(3 DOWNTO 0);
SIGNAL count: STD_LOGIC_VECTOR(S DOWNTO 0);
SIGNAL change_state, trigger,

pulse0, pulsel, pulse,change to_add: STD_LOGIC;

BEGIN
pulse<=pulse0 OR pulsel;
state_machine: fsm PORT MAP(clk, rst, start, change to_add, change_state,s);
pulseGen0: pulse_gen PORT MAP(clkfast, rst, s(1), pulse0);
pulseGenl: pulse_gen PORT MAP(clkfast, rst, s(2), pulsel);
countr: counter PORT MAP (clk, pulse, count);
truth_table: table PORT MAP (count, addr_ram);

131

output_logic: output PORT MAP (start, clkfast, s, count,
addr_ram, change_state, cddr,
sm, addr, wren, s_reg,
change_to_add, ready);

END rtl;

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY fsm IS
--ready is the signal indicating 20 quarterround funtions are done for the input
PORT (clk, rst, start, ready, en: IN STD_LOGIC;
s: OUT STD_LOGIC_VECTOR(10 DOWNTO 0));
END ENTITY;

ARCHITECTURE rtl OF fsm IS
TYPE state IS (idle, initialize, zc0, zcl, zc2, zc3, zr0, zrl, zr2, zr3, ac
SIGNAL ps, ns: state;
BEGIN
state_reg: PROCESS (rst, clk, en, ns)
BEGIN

IF (rst ="'1") THEN
ps <= idle;

ELSIF (en="1") THEN
IF (clk ='1' AND clk'event) THEN
ps <= ns;

END IF;
END IF;
END PROCESS;

state_transaction: PROCESS (start, ready, ps)
BEGIN
IF start ='1' THEN
CASE ps IS
WHEN idle => ns <= initialize;
WHEN initialize => ns <= zc0;
WHEN zc0 => ns <= zcl;
WHEN zc1 => ns <= zc2;
WHEN zc¢2 => ns <= zc3;
WHEN zc3 => ns <= zr0;
WHEN zr0 => ns <= zrl;
WHEN zrl => ns <= zr2;
WHEN zr2 => ns <= zr3;
WHEN zr3 =>
IF (ready='1") THEN ns <= add,
ELSE ns <= zc0;
END IF;
WHEN adc ns nitial
FEND CASE;

ns <= ps,
END IF;
END PROCESS;

132

--output_decode
WITH ps SELECT
s <="00000000001" WHEN idle,
"00000000010" WHEN initialize,
"00000000100" WHEN zc0,
"00000001000" WHEN zcl,
"00000010000" WHEN zc2,
"00000100000" WHEN zc3,
"00001000000" WHEN zr0,
"00010000000" WHEN zrl,
"00100000000" WHEN zr2,
"01000000000" WHEN zr3,
"10000000000" WHEN add;
END rtl;
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY pulse_gen IS
PORT (clk,rst, trigger: IN STD_LOGIC;
pulse: OUT STD_LOGIC);
END ENTITY;

ARCHITECTURE rtl OF pulse _gen IS
SIGNAL q0, gb1: STD_LOGIC;
BEGIN

DFF0:PROCESS(clk, rst,trigger)
BEGIN
IF rst='l' THEN
q0<='0’;
ELSIF(clk'event AND clk="1"YTHEN
q0- -igger;
END IF;
END PROCESS;

DFF1: PROCESS(clk,rst,q0)
BEGIN
IF rst="1' THEN
gbl<="1"%
ELSIF(clk'event AND clk="1""THEN
gb1<=NOT q0;
END IF;
END PROCESS;

pulse <= q0 AND gbl;
END rtl;
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE ieee.std_logic_unsigned.ALL;

ENTITY table IS

PORT (addr: IN STD_LOGIC_VECTOR(S DOWNTO 0); -6
output: OUT STD_LOGIC “’ECTOR(3 DOWNTO 0))

END ENTITY;

ARCHITECTURE rtl OF table IS
SUBTYPE WORD IS STD_LOGIC_VECTOI

i DOWNTO 0);

ries
6*8 bits

133

TYPE ROM IS ARRAY (0 TO 63) OF WORD;

CONSTANT content: ROM := ("0000", "0011", "0001", "0001",
"0001", "0000", "0010", "0010",
"0010", "0001", "0011", "0011",
"0011", "0010", "0000", "0000",

"o101","0100", "0110", "0110",
"o110","0101", "0111","0111",
"0111","0110", "0100", "0100",
"0100","0111", "0101", "0101™,

"1010", "1001", "1011", "1011",
"1011", "1010", "1000", "1000",
"1000", "1011", "1001", "1001",
"1001", "1000", "1010", "1010",

"Mt 1o, "1100n, 11007,
"1100", "1111", "1101", "1101",
"11o1", "1100", "1110", "1110",
"Tirot, ot et It

BEGIN
output <= content(conv_integer(addr));
END rt];
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE ieee.std_lc ~: unsigned. ALL;

ENTITY output IS
PORT (start, clk: IN STD_LOGIC;
s :IN STD_LOGIC_VECTOR(10 DOWNTO 0);
count: IN STD LOGIC _VECTOR(5 DOWNTO 0);
addr_ram: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

change s: OUT STD_LOGIC;
cddr: INOUT STD_LOGIC_VECTOR(1 DOWNTO 0);
sm: INOUT STD_LOGIC_VECTOR(5 DOWNTO 0);
addr: INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);
wren: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_reg: INOUT STD_LOGIC_VECTOR(3 DOWNTO 0);
key stream_en: OUT STD_LOGIC;
ready,key ready : OUT STD_LOGIC);

END ENTITY;

ARCHITECTURE rtl OF output IS
SIGNAL round:STD_LOGIC VECTOR(3 DOWNTO 0);
SI_..AL round_no_en, dff: L. ' LOGIC;

BEGIN
change_s <= (count(3)AND count(2)AND count(1)AND count(0))OR
(s(0) AND start) ;
-- OR ((s(2) or s(3)OR s(4)or s(5)OR s(6) or s(7)OR s(8) OR s(9)) AND count(1)AND
count(0));

134

control_signals: PROCESS (dff, s, count, addr_ram, round)--sm, cddr, ad wren, s_reg, done

VARIABLE addr_half: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
CASE s IS
WHEN "00000000001"=> --idle
cddr <="00";
sm <= (OTHERS=>'0"),
addr <="00000000";
wren <= "00";
ready <="'0";
WHEN "00000000010"=> --initialize
wren <="11";
addr_half:= count(3 DOWNTO 0);
addr <= addr_half & addr_half;
CASE count IS
WHEN "000000"=> --constant0 from the ROM
cddr <="00";
sm (1 DOWNTO 0)- '00";
WHEN "000001 - -- key
sm (1 DOWNTO 0) <="01";
WHEN "000101"=> -- constan
cddr <="01";
sm (1 DOWNTO 0) <="00";
WHEN "000110"=> -- nonce
sm (1 DOWNTO¢)- '01";
WHEN "001010"=> -- constant2

cddr <="10""

sm (1 DOWI1..) 0) <="00";
WHEN "001011 - :

sm (1 DOW... D 0)<="01";
WHEN "001111 - -- constant3

cddr<="11";

sm (1 DOWNTO 0) <="00",
WHEN OTHERS=> NULL;
END CASE;
WHEN "10000000000"=> --add

sm(2) <='1"; --the operands nfthe ad are from RAMO and RAM1

sm(3) <='1"; --short cut from AMO
addr <= count(3 DOWNTO 0) & count(3 DOWNTO 0);
wren <= "00";
--key ready is asserted when round= 10 double quarterround)
key ready<="'l";
WHEN OTHERS=> --hash function
-- input of ram0 is from tl latapath
-- operands of the adder are from ram0
ready <= round(3)AND (NOT round(2)) AND
round(1)AND (NOT round(0));
sm(3 DOWNTO 0) <="0010";
wren(1) <='0"; --ram1 cannot be wri
IF (count(1 downto 0)="11")THEN
wren(0) <="'1"; --write k atapath
ELSE wren(0) <="'0";
END IF;

IF ((s(2)OR s(3)OR s(4)0OR s(5))='1' 1EN --column
CASE addr_ram IS

135

WHEN"0000" => addr(3 DOWNTO 0) <= "0000";
WHEN"0001" => addr(3 DOWNTO 0) <="0100";
WHEN"0010" => addr(3 DOWNTO 0) <= "1000";
WHEN"0011" => addr(3 DOWNTO 0) <= "1100";
WHEN"0100" => addr(3 DOWNTO 0) <="0001";
WHEN"0101" => addr(3 DOWNTO 0) <="0101";
WHEN"0110" => addr(3 DOWNTO 0) <="1001";
WHEN"0111" => addr(3 DOWNTO 0) <="1101";
WHEN"1000" => addr(3 DOWNTO 0) <= "0010";
WHEN"1001" => addr(3 DOWNTO 0) <="0110";
WHEN"1010" => addr(3 DOWNTO 0) <= "1010";
WHEN"1011" => addr(3 DOWNTO 0) <= "1110";
WHEN"1100" => addr(3 DOWNTO 0) <= "0011";
WHEN"1101" => addr(3 DOWNTO 0) <= "0111";
WHEN"1110" => addr(3 DOWNTO 0) <="1011";
WHEN"1111" => addr(3 DOWNTO 0) <="1111";
WHEN OTHERS => addr(3 DOWNTO 0) <= "0000";
END CASE;
ELSE --row
addr(3 DOWNTO 0)<= addr_ram;
END IF;

CASE count(3 downto 0) IS
WHEN "0011"=> sm(5 downto 4)<="00";
WHEN "0111"=> sm(5 downto 4)<="01";
WHEN "1011"=> sm(5 downto 4)<="10";
WHEN "1111"=> sm(5 downto 4)<="11";
WHEN OTHERS=> NULL;

END CASE;

END CASE;
END PROCESS;

s_regs: PROCESS(s, dff)
BEGIN
CASEs IS
WHEN "00000000001"=> --idle
s_reg<=(OTHERS=>0");
WI ~ " "00000000010"=> --init
s_reg <= "0000"; -- hold the regs
WHEN "10000000000"=> --add
s reg<="0110";
key stream_en<= dff;

WHEN OTHERS => --hash function
s_reg(3) <='I';
CASE count(1 downto 0) IS
WHEN "00"=>

IF dff ='0' THEN
s_reg(2 downto 0) <="000";
ELSIF dff ='1' THEN
s_reg(2 downto 0) ‘001" ;
D IF,;
W___. '01"=>
IF dff ='0' THEN
s_reg(2 downto 0) <="000" ;
ELSIF dff ="'1' THEN

136

s_reg(2 downto 0) <="010";

END IF;
WHEN "10"=>

IF dff ='0' THEN

s_reg(2 downto 0) <="000";
ELSIF dff='1' THEN

s_reg(2 downto 0) <="100";
END IF;

WHEN OTHERS=> NULL;
END CASE;
END CASE;
END PROCESS;

-- increase round no when count=63
round_no_en<=s(9) AND count(0) AND count(1) AND count(2) AND
count(3) AND count(4)AND count(5);
round number: PROCESS (s(1), round_no_en) --clear, increase
BEGIN
IF s(1)="1' THEN
round<=(OTHERS=>'0");
ELSIF(round no_en'event AND round_no_en='1') THEN
round ound + 1;
END IF;
END PROCESS;
flipflop: PROCESS (s(1), clk)--dff begins to work when initialization begins
BEGIN
IFs(t |'THEN
dff <="'1%
ELSIF (clk' event AND clk='1") THEN
dff <= not dff;
END IF;
END PROCESS;

END rtl;

Appendix r: Selected “odes for & atistical

Tests

package tests;

import generators.Ks_multiple;
) generators.PhelixException;
import tests_algorithms.BlockFrequency;
import tests_algorithms.DiscreteFourierTransform;
import tests_algorithms.Frequency;
import tests_algorithms.Runs;
import util. MyMath;
import util. Utility;

137

public class TestAll {
/** It generate m data sequences.
* The resulting sequence is tested by the four methods from the test suite

public static void main(String[] args) throws PhelixException {

/*Etype: 0-Salsa20
* 1-Phelix
*/

int Etype = 0;

/*Stype: 0-Key/Keystream Correlation Sequences
* 1-1V/K eystream Correlation Sequences
* 2-Frame Correlation Sequences
* 3-Diffusion Sequences
* 4-Keystream Sequences
*/

int Stype=2;

/*Ttype: 0-Frequency Test
* 1-Block 1 juency Test
* 2-DiscreteFourierTransform Test
* 3-Runs Test
*/

int Ttype=2;

int pow = 10; // # of the generated sequences=Math.pow(2, pow)

double[] p_value;

double newP_value;

double[] = new double[81];

intpass No);

double pass_Frequency = 0;

for(int i=0; i<10; i++){
f[i]1=0.0;

}

String[] sequence = null;
Ks_multiple ks_gen = null;

switch (Etype){
case 0: System.out.printin("Test Sal '0");break;
case 1: System.out.printin("" t Phelix");break;

}
if (Stype<4)
ks_gen = new Ks_multiple(pow, Etype, Stype);
else
ks 1ew Ks_multiple(pow, Etype, 0);
switch (Stype){
case 0:

System.out.println("test key/Keystream Correlatic Sequence
sequence = ks_gen.ks_k;
break;

case 1:

138

System.out.printin("test IV/Keystream Correlation Sequences");
sequence = ks_gen.ks_IV;
break;
case 2:
System.out.printin("test Frame Correlation Sequences");
sequence = ks_gen.frame;
break;
case 3:
System.out.println("test Diffusion Correlation S¢ ences");
sequence = ks_gen.diffusion;
break;
case 4:
System.out.printIn("test Keystream Sequences");
sequence = ks_gen.ks_str;
break;
}
int sL = sequence.length;
p_value = new double[sL];

switch (Ttype){
case 0:
System.out.printin("Frequency Test: ");
for(int i=0; i<sL; i++){
p_value[i] = new Frequency(sequence[i]).pvalue;

Utility.group(p_valuefi], f);
pass_No = Utility.pass(p_value[i], pass_No);
}
break;
case 1:
System.out.printin("BlockFrequency Test: ");
for(int i=0; i<sequence.length; i++){
p_value[i] = new BlockFrequency(20, sequence[i]).pvalue;
Utility oup(p_value[i], f);
pass_Ino = Utility.pass(p_value[i], pass_No);
}
break;
case 2:
System.out.printin("DFT Test: ");
for(int i=0; i<sequence.length; i++){

p_value[i] = new DiscreteFourierTransform(sequence[i]).pvalue;

Utility.group(p_value[i], f);
pass_Nc¢ Jtility.pass(p_value[i], pass_No);
}
break;
case 3:
System.out.println("Runs Test: ");
for(int i=0; i<sequence.length; i++){
p_value[i] = new Ru sequence[i]).pvalue;
Utility.group(p_valuel[i], f);
pass_No = Utility.pass(p_value[i], pass_No);
}
break;

}

double x;

139

double chi=0;
for (int i=0; i<10; i++){

fli] = fli)/sL;
x = f[i] - 0.1;
chi+=x%*x/0.1;
}
newP_value = MyMath.igamc(4.5, chi/2);
java.text.DecimalFormat df5 = new java.text.DecimalFormat("##0.00000");
java.text.DecimalFormat df6 = new java.text.DecimalFormat("##0.000000");

System.out.println("chi = "+df5.format(chi));
System.out.printin("newp_value = "+df5.format(newP_value));
pass_Frequency = (double)pass_No/sL;
System.out.println("proportion = "+df6.format(pass_Frequency));

}

ackage tests algorithms;
import util. MyMath;
public class DiscreteFourierTransform {
public double pvalue;
public DiscreteFourierTransform(String str){

int n = str.length();

int count = 0;

double upperBound = MyMath.sqrt(3*n);
double percentile, N_I,N o, d;

double[] X_real = new double[n];

double[] X_imag = new double[n];

double[] S = new double[n]; //signifi ce

for(int i=0; i<n; i++)
X real[i] = (double) MyMath.checkStrii ~ finus(str)[i];
MyMath.dfi(X_real);
for(int i=0; i<n/2; i++){
X_real[i] = MyMath.gr[i];
/ System.out.println("gr"+i+":"+X_real[i]);
X _imag[i] = MyMath.gi[i];
S[i] = Math.sqrt(Math.pow(X_real[i],2) + Math.pow(X_imag[i],2));
1 System.out.printIn("S"+i+":"+S[i]);
}
i System.out.printin("upperBound"+":"+upperBound);
for(int i=0; i<n/2; i++)
if (S[i] <upperBound)

count++;
percentilc ‘double)count/(n/2)* 100;
/" System.out.printin("percentile"+": ercentile);
N_1=(double) count; /* number of peaks less than h = sqrt(3*n) */
/" System.out.println("N1"+":"+N_1);

N_o = (double) 0.95*n/2.;
/ld =(N_l - N_o0)/sqrt(n/2.¥0.95*0.05),

140

d = (N_I - N_o)/Math.sqrt(n/4.0%0.95%0.05),
// System.out.printin("d"+":"+d);
pvalue = MyMath.erfc(Math.abs(d)/Math.sqrt(2.));

}

package generators;

import java.math.BigInteger;
import java.util. Arrays;

import util. Utility;

public class Ks_multiple {
public int[][] key;
public int[][] 1V;
public int[][] ks;
public String[] ks_str;
public String[] ks_k;
public String[] ks _1V;
public String[] frame;
public String[] diffusion;
public int ksLen_Salsa=16; //in words(32 bit)
public int ksLen_Phelix = 16; //in words(32 bit)

public void encryptPhelix(byte[JREF_KEY, byte[]JREF 1V, byte[JREF_PTXT, byte[]ctxt, int[][Jks, int
i) throws PhelixException{
Phelix phx;
phx = new Phelix();
phx.init();
phx.setupKey(REF_KEY, 0, REF_KEY.length * 8, Phelix PHELIX_MAC_§ E);
phx.setupNonce(REF _1V, 0);
ctxt = makeOutputBufferlfRFF PTXT.length, 0);
phx.encryptBytes(REF . .._.,0,ctxt, 0, _PTXT.le ;
ks[i] = phx.ks;
}

public void encryptSalsa(byte[]REF_KEY, byte[JREF_IV, int[][]ks, int i){
Salsa20 salsa = new Salsa20(REF_KEY, REF_IV);
key[i]= salsa.kW;
salsa.keystream_gen();
ks[i] = salsa.ks;

}

public String tonbitString(int[] data){

String temp = null;
String str = null;
for (int <data.length; {
te ‘nteger.toBinaryString(data, _,,,
while(temp.length()<32)
t O ="0".concat(temp);
if (i==0)
str = temp;
else

141

str = str.concat(temp);

}

return str;

}

public void to32bitStrings(int[][] data, String[] str){
for (int i=0; i<data.length; i++){
str(i] = tonbitString(d: i]);
}

}

public static byte[] makeOutputBuffer(int nLen, int nExtralLen)

byte[] result = new byte[nLen + nExtraLen];
Arrays.fill(result, (byte)0xcc);
return result;

}

[
*
* @param pow: the power of 2
* @param generator: 0 indicates Salsa20, 1 indicates Phelix
* @param type: 0-keystream or Key/Keystream Correlation Sequence.
1-1V/Keystream Correlation Sequence.

* 2-Frame Correlation Sequences.
* 3-Diffusion Sequence

* @throws PhelixException

*/

public Ks_multiple(int pow, int generator, int type) throws PhelixException{
int[][] temp = null;
int m = (int) Math.pow(2, pow); //#of gen ed sequences

if (generator == 1){ //Phelix

this.ks= new int{m][ksLen_Phelix];

ks_str = new String[m];

byte[] REF_KEY = new byte[60]; //256-bit key

byte[] REF 1V = new byte[44]; //128-bit [V

byte[] REF_PTX1 new byte| Phelix*4] ;

byte[] ctxt = null;

this.key = new int[m][10];

java.util. Random rKey = new java.util.Random(),
rIV=new java.util. Random(),
rPTXT ew java.util.Random();

rPTXT.nextBytes(REF_PTXT); //plaintext fixed

if (type == 0){
ks_k = new String[m];
temp = new int[m][key[0].length]:
rIV.nextBytes(REF _IV); /IV ed
for (int 1=0; i<m; i++){
rKey.nextBytes(REF_KEY);

int j=0;

for (int k=0;k<8;k-++){
j=k*4;
this.key[i][k]=

142

Utility.byteToInt(REF_KEY[j+3], =~ REF_KEY[j+2], REF_KEY[j+1],
REF_KEYI[j]);

encryptPhelix(REF_KEY, REF 1V, REF _PTXT, ctxt, this.ks, i);

for(j=0; j<key[i].length; j++)
temp[i][j] =ks[i][j1"key[i][j]; //keystream XOR key

to32bitStri1 (this.ks, this.ks_str);
to32bitStrings(temp, this.ks_k);
System.out.printIn("Number of Sequences = "+ks_k.length+", " +
"Sequence Length = "+ks_k[0].length());
}
if (type == 1){
ks_IV = new String[m];
IV = new int[m][6];
temp = new int[m][IV[0].length];
rKey.nextBytes(REF_KEY); //key fixed
for (int i=0; i<m; i++){
rIV. Jytes(REF_IV);

int j=0;
for (int k=0;k<4;k++){
j=k*4;
this.IV[i][k]=
Utility.byteToInt(REF_IV[j+3], REF_IV[j+2], REF_IV 1], REF_IV[j]);

encryptPhelix(REF_KEY, REF_IV, REF_PTXT, ctxt, this.ks, i);
for(j=0; j<IV[i].length; j++)
temp[i][j] = ks[iJ[j1V[il[j]; //keystream XOR IV

}
to32bitStrings(this.ks, this.ks_str);
to32bitStrings(temp, this.ks_IV);
System.out.printIn("Number of Sequences = "+ks_IV.length+", " +
"Sequence Lengtl '+ks_IV[0].length());
}
if (type == 2){
ks_IV = new String[m];
IV = new int[m][6];
frame = new String[512]; //the arbi y length of the frame is 512
rKey.nextBytes(REF_KEY); //key fixed
/I This procedure is ref ed pow(2,10) times with incremented vall of IV.
for (int i=0; i<m; i++){
if (i<256){
REF_IV[0] = (byte}i;
REF_IV[73 b 0

}
else {
REF_IV[73] byte)i;
REF_IV[0] = (byte)0;
}

for (int iv_index=2; iv_index<REF_IV.length; iv_index++){
REF_IVJ[iv_index]=0;

143

encryptPhelix{REF_KEY, REF_IV, REF_PTXT, ctxt, this.ks

}
to32bitStrings(this.ks, this.ks_str);

for(int fi=0; fi<512; fi++){ //the arbitrary length of the frame is 512
for (int mi=0; mi<m; mi++){

if (m)
frame[fi] = String.v eOf(ks_str[mi].charAt(0));
else
frame(fi] = frame[fi].concat(String.valueOf(ks_str[mi].charAt(fi)));
}
}
}

if (type == 3){
byte[] newKey, newlV;
int sLen = 256 + 128; //k+v sequences
diffusion = new String[sLen];
byte ei = 1;
intei_p=0; //the position of the bit that will change
int byte_p=0; //the position of the byte that will change
int[] ks_old = new int[44],
ks_new = new int[44];

String ks_old_str = null;
String ks _new_str = null;
BigInteger b1, b2;
int[][] diff_int = new int[s]][44];
for (int i=0; i<sLen; i++){

for(int j=0; j<16; j++)

diff int[i][j] = 0;
}
for (int i=0; i<m; i++){

/#
* Random key and IV val are chosen.

* Using this key and . ., akeystream ofle h L=ks. 1_Phelix bits is generated

*/
rKey.nextBytes(REF_KEY); /32 bytes
rIV.nextBytes(RE™ "V); //16 bytes
encryptPhelix(REr_KEY, REF IV, REF_PTXT, ctxt, sks,i);
ks_old= ks[i];
ks_old_str = tonbitString(ks_old);

/lll
* By changing each bit of key and IV, new keystreams are generated.
* These keystreams are XORed with the original keystream.
* Each obtained value is added with the value of diffusion[j]
*/
for (int j=0; j<256; j++){
ei_p=j%8§;
byte p =j/8;
newKey = REF_KEY;
newKey[byte p] ~= (int) Math.pow(2, ei_p);

encryptPhelix(newKey, REF IV, REF_PTXT, ctxt, this.ks, i
ks_new = ks[i];
ks_new_str = tonbitString(ks_new);

bl = new BigInt r(ks_old_str, 2);
b2 = new Biglnteger(ks_new_str, 2);

diffusion[j] = bl.add(b2).toString(2);
while (diffusion[j].length()<512)
diffusion[j] = "0".concat(diffusion[j]);

}
for (int j=0; j<128; {

ei_ p=j%§;

byte_p = j/8;

newlV = REF_1V;

newlV[byte p] *= (int) Math.pow(2, ei_p);

encryptPhelix(REF_KEY, newlV, REF _PTXT, ctxt, this.ks, i);

ks_new= ks[i];

ks_new_str = tonbitString(ks_new);

bl = new Biglnt r(ks_old_str, 2);

b2 = new Biglnteger(ks_new_str, 2);

diffusion[256+j] = bl.add(b2).toString(2);
while (diffusion[256+j].le1 1()<512)
diffusion[256+j] = "0".concat(diffusion[256+j]);

}

if (generatol)){ //Salsa20

this.ks= new int[m][ksLen_Salsa];

ks_stt 1ew String[m];

byte[] REF_KEY = new byte[60]; //256-bit key
byte[] REF_IV = new byte[44]; /128bit IV
java.util.Random rKey = new java.util.Random(),

rIV = new java.util.Random();

rKey.nextBytes(REF_KEY); //fixed
rIV.nextBytes(REF_1V); //fixed

this.key = new int[m][10];

if (type I
ks_k = new String[m];
temp = new int[m][key[0].le: 1];
rlV.nextBytes(REF_1V); //1V fixed
for (int i=0; i<m; i++){

145

rKey.nextBytes(REF_KEY);

int j=0;
for (int k=0;k<8;k++){
j=k*4;
this.key[i][k]=
Utility.byteToInt(REF_KEY[j+3], REF_KEY[j+2], REF KEY[j+1],
REF_KEY[j]),

encryptSalsa(REF_KEY, REF_1V, thisks, i);

for(j=0; j<key[i].length; j++)
temp[i][j] =ks[i][}1"key[i][i]; //keystream XOR key

to32bitStrings(this.ks, this.ks_str);
to32bitStrings(temp, this.ks_kJ;
}

if (type == 1){

ks_IV = new String[m];

[V = new int[m][6];

temp = new int[m][IV[0].length];

rKey.nextBytes(REF_KEY); //key fixed
for (int i=0; i<m; i++){
rIV.nextBytes(REF 1V);

int j=0;
for (int k=0;k<4;k++){
j:k*4;
this.IV[i][k]=
Utility.byteTolnt(I ~~_IV[j+3], REF_IV[j+2], REF_IV[j+1], REF_IV[j]);

encryptSalsa(REF_KEY, REF 1V, thisks, i);
for(j=0; j<IV[il.length; j++)
temp[i][i] = ks[i]JG]MV[i][j]; //keystream XOR IV
}

to32bitStrings(this.ks, this.ks_str);
t032bitStrings(temp, this.ks_[V);
}
if (type == 2){
int I=ksLen_Salsa*32;
ks_IV = new String[m];
IV = new int[m][6];
frame = new String[512];
rKey.nextBytes(REF KEY); //key fixed
// This procedure it ated pow(2,10) times with incremented ve s of IV.
for (int i=0; i<m; i++){
if (i<256)¢
REF_IV[0] = (byte)i;
REF_IV[73] = (byte)0;
}

else {
REF_IV[73] 'byte)i;

146

REF_IV[0] = (byte)0;

}

for (int iv_index=2; iv_index<REF_IV.length; iv_index++){
REF_IV[iv_index]=0;

}

encryptSalsa(REF_KEY, REF 1V, this.ks, i);
}
to32bitStrings(this.ks, this.ks_str);
for(int fi=0; fi<l; fi++){ //the arbitrary length of the frame is |
for (int mi=0; mi<m; mi++){
if (mi==0)
frame[fi] = String.valueOf(ks_str[mi].charAt(0));
else
frame[fi] = frame[fi].concat(String.valueOf(ks_str[mi].charAt(fi)));

}
}
if (type == 3){
byte[] newKey, newlV;
int sLen = 256 + 128; //k+v uences
diffusion = new String[sLen]|;
byteei = 1I;
intei_ p=0; //the position of the bit that will change
int byte_p=0; //the position of the byte that will change
int[] ks_old = new int[44],
ks new=newint[;
String ks_old _str = null;
String ks_new_str = null;
Biginteger b1, b2;
int[][] diff_int = new int[sLen][44];
for (int i=0; i<sLen; i++){
for(int j=0; j<l6; j++)
diff int[i][j] = 0;
}

for (int i=0; i<m; {

/*
* Random key and IV values are chosen.
* Using this key and 1V, a keystream of length L=ksLen_Salsa *4 bits is generated
*/

rKey.nextBytes(REF_KEYY); //32 bytes

rIV.nextBytes(REF_IV); //16 bytes

encryptSalsa(REF_KEY, REF 1V, this.ks, i);

ks_old=ks[i];

ks_old_str = tonbitString(ks_old);

/*
* By changing each bit of key and IV, new keys are gene ed.
* These keystreams are XORed with the original keystream.
* Each obtained valueis ad with the value of diffusion[j]
*/
for (int j=0; j<256; {
ei p=j%§,;
byte_p = j/8;

147

}

newKey = REF_KEY;
newKey[byte p] "= (int
encryptSalsa(newKey, REF 1V, this.ks,i);
ks_new = ks[i];

ks_new_str = tonbitString(ks_new),
bl = new Biglnteger(ks_old_str, 2);

[ath.pow(2, ei_p);

b2 = new Biglnt r(ks_new_str, 2);

diffusion[j] =bl.add(b2’ String(2),

while (diffusion[j].length()<512)
diffusion[j] = "0".concat(diffusion[j]);

for (int j=0; j<128; j++){

ei p=]%38;

byte_p = j/8;

newlV = REF_l1V;

newlV[byte p] ”= (int) Math.pow(2, ei_p),

encryptSalsa(REF_KEY, newlV, this.ks, i);
ks _new= ks[i];

ks_new_str = tonbitString(ks_new);

bl = new Biglnteger(ks_old_str, 2);

b2 = new Biglnteger(ks_new_str, 2);
diffusion[256+j] = bl.add(b2).toString(2);
while (diffusion[256+j].length()<512)

diffusion[256+j] = "0".concat(diffusion[256+j]);

Appendix G: A Test Example to Illu trate the

Distribution of F values

Test Salsaz0
Frequency Test:
1024 independent sequences (1024 keys and 1024 nonce

each is of 512 bits,

.53197
.31731
.31731
.31731
.61708
.53197
. 90052
.80259
.26059
.10416

[eoNeReNoNoNoNoNeRoRN]

OO OO OO OO OO0

.90052
.61708
.10416
.31731
.06079
.90052
.90052
.70766
.70766
.31731

[eNoNeoNeoNoNoNoNoNoN®]

generate 1024 P-values:

.31731 0.70766 0.70766 0.90052
.31731 0.80259 0.70766 0.90052
.10416 0.31731 0.61708 1.00000
.26059 0.31" . 0.61708 0.90052
.90052 0.80259 0.31731 0.26059
.80259 0 57 0.90052 0.26059
.53197 0 30 0.10416 0.31731
.90052 0.90052 0.21130 0.38157
.21130 0.31731 0.45325 0.38157
.10416 0.31731 0.70766 0.26059

QOO OFrOOOoOOoO

‘e genel

.80259
.26059
.06079
.21130
.00000
.53197
.00000
.61708
.90052
.61708

OO OO OO OO0

:ed randomly),

.45325
.21130
.53197
L8562
.53197
.21130
.61708
.31731
.90052
.53197

148

OO OO0 OO HOOODODODOUOOODODOOODOODOODODODODODODODOOODODOODODODOODODOODOOOODODOOOHHOODOOOO

.70766
.53197
.70766
.61708
.04550
.13361
.00000
.00000
.80259
.38157
.13361
.38157
.26059
.61708
.31731
.90052
.26059
.80259%9
.53197
.26059
.61708
.53197
.31731
.08012
.31731
.31731
.21130
.10416
.10416
.38157
. 45325
.21130
.90052
.13361
.38157
.70766
.53197
.06079
.13361
.61708
.80259
.16913
.21130
.80259
. 90052
.61708
.70766
.00000
.10416
.31731
.61708
.26059
.53187
.31731
.90052
.13361
.70766

1.00000
0.31731
.70766
.53197
.70766
.16913
.21130
.26059
.31731
.80259
.45325
.53197
.10416
.90052
.45325
.45325
.26059
.38157
.70766
.80259
.53197
.38157
.45325

0

OO OO OO0OO0OOFRPR OO0 OOQOOODO0ODODODODODOODODODO0ODODODODOODOODOOODODOODODOOOODODODOOOOOOO

45325

.53197
.31731
.90052
.90052
.31731
.53197
.21130
.16913
.90052
.38157
.90052
.70766
.03359
.53197
.26059
.06079
.00596
.16913
.08012
.00000
.70766
.16913
.45325
.00000
.80259
.45325
.61708
.03359
.21130
.61708
.10416
.45325
.45325

OO OO0 O0OOHFHOOOOODODOOOODODODO0ODOHOODODODODODOODODOODODODOHODODOLODODLDODOLOLDLLOLODLODOLODOLHRLRODODOOO

.13361
.70766
.53197
.80259
.31731
.00000
.70766
.31731
.10416
.53197
.08012
.70766
.26059
.53197

45325

.80259
.80259
.08012
.26059
. 00000
.80259
.31731
.70766
.45325
.53197
.13361
.08012
.26059
.21130
.21130
.80259
.21130
.26059
.70766
.00000
.31731
.06079
.61708
.45325
.70766
.10416
.13361
.70766
.61708
.45325
.70766
.90052
.53197
.70766
.00000
.90052
.80259
.80259
.31731
.06079
.53197
.10416

QOO OH OO O0OO0ODORFRR OODO0ODO0ODO0OODODODODOODOFFOOFFOOOFROODODODDODODODOOFOOOOODODODODOOODOOCOO

.45325
.21130
.70766
.80259
.53197
.31731
.90052
.61708
.61708
. 90052
.53197
.45325
.70766
. 90052
. 61708
.00000
.80259
.80259
.31731
.80259
.90052
.90052
.61708
.61708
.26059
.90052
.00000
.90052
.61708
.26059
.00000
.80259
.26059
.00000
.70766
.21130
.80259
.31731
.90052
.38157
.04550
.26059
.38157
.61708
.45325
.26059
.00000
.53197
.45325
.45325

3197

.017!

.00000
.45325
.26059
.70766
.61708

OO QOO OO0 OODO0OOODODO0ODO0ODODODODODOOHOFOODOOODODODODODODOOHHFOODOODODODODOODOHOHOOOOOR

.00000
.26059
.80259
.70766
.70766
.61708
.00000
.53197
.00000
.45325
.70766
.90052

31731

.26059
.26059
.26059
.70766
.08012
.06079
.00000
.00115
.31731
.53197
.70766
.70766
.02445
.38157
. 90052
.70766
.70766
.13361
.90052

00000

.61708
.00000
.80259
.70766

16913
80259

.70766
.08012
.31731
.80259
.61708
.53197
.13361
.61708
.53197
.45325
.04550

3197

.00000
.45325

1059

.80259
.61708
.53197

OO OO0 O0OO0ODO0OOOFR OO0 OO0OO0OOODO0OOOFFOOOOFHFFH,FOOFREFHOOODOOOODODOOOOOOOODODODOOLOOOO

. 06079
.61708
.26059
.10416
.80259
.13361
.61708
.70766
.70766
.70766
.31731
.70766
.31731
.21130
.16913
.61708
.80259
. 38157
.10416
.26059
. 61708
.04550
.70766
. 00000
. 00000
.90052
.06079

00000

.00000
.70766
. 90052
.13361
.08012
.00000
.38157
.70766
.38157
.80259
.04550
.38157
.45325
.70766
.70766
.45325
. 02445
.61708
.00000
.53197
.53197
_260K”9

.80259
.21130
.70766
.53197
.90052
.80259

[eNeoNaeleloleleleleeleooloolooBoloNooNoloNeoNooNeoNeoRoNoNoNoNoR NoloNoloNoNeNeoNeoloNoNoNoNolNoNeoNoNolololoNallelNe

.00866
.13361
.53197
.26059
.53197
.53197
.70766
.70766
.80259
.45325
.90052
.45325
.53197
.21130
. 53197
.70766
.38157
.00866
.61708
.45325
.03359
.38157
.45325
.00000
.10416
.10416
.53197
.13361
.16913
.16913
.38157
.90052
.26059
.45325
.10416
.53197
.08012
.70766
.16913
.21130
.21130
.06079
.21130
.21130
.38157
.90052
.61708
.90052
.02445
.70766
.31731
.08012
.90052
.38157
.26059
.90052
.80259

O OO0 O OO0 O0OO0ODODO0ODOO0ODOHOFOODODODODODODOODODODOOOHOOFOODOODODODODODODODODOOOODODODOOOOO

.16913
.13361

5059

. 70766
-80259

J259
1708
1708

.70766

10766
3197
L708

.70766
.53197

1708
)259

.61708

4550

.70766
.45325

1708
2052

.00000
.53197
.38157
.00000
.21130
.31731
.03359
.01755
.38157

70766

.26059
.61708
.45325
.13361
.61708
.16913
.38157
.70766
.00000
.80259
.00000
.38157
.70766
.31731
.90052
.31731
.38157
.61708
.26059
.90052
.70766
.38157
.26059
.90052
.31731

149

C OO OO OO OO OOOOOOOC O OO0, OOFPROOHPF OOOOODODOOODODOOOOO0OOOO0DO0OO0ODOO0O0O0O0O0O0O0O0OO0O

.13361
.16913
.53197
.80259
.53197
.90052
.45325
.53197
.31731
.70766
.61708
.90052
.61708
.90052
.38157
.38157
.80259
.13361

21130

.00596
.61708
.70766
.00404
.80259
.70766
.03359
.45325
.53197
.00000
.00000
.90052
.80259
.00000
.61708
.80259
.00000
.70766
.70766
.80259
.00000
.13361
.13361
.45325
.53197
.38157
.45325
. 38157
.80259
.80259
.90052
.104:

.45325
.45325
.26059
.90052
.13361
.53197

QOO O OO OO OO OCOO0OO0ODO0OO OO0 OO0 O0OOOOHOHOODODODODODOOOODODODOODOOOOOOOOHOOOO

.80259
.70766
.61708
.53197
.00000
.31731
.01755
.38157
.01755
.02445
.00404
.38157
.53197
.70766
.90052
.26059
.90052
.38157
.38157
.06079
.53197
.26059
.70766
.61708
.53197
.10416
.00000
.53197
.00000
.31731
.08012

61708

.80259
.26059
.61708
.21130
.31731
.45325
.21130
.26059
.80259
.53197
.06079
.53197
.26059
.61708
.04550
.70766

53197
.130

.104:

.08012
.70766
.90052
.21130
.61708
.31731

eNeloBoNoBoNeoRBoBoBoNoNoRoNoRoRoleNeoNe NoloNeol SloNeoN S loNoNoNoRoNoBoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe NoNeoNoNoNoReoNe Ne)

.06079
.26059
.01755
.80259
.80259
.08012
.90052
.90052

.90052

.10416
.61708
.31731
.13361
.90052
. 53197
.90052
.90052
.70766
. 90052
.70766
.13361
.38157
.70766
.26059
.61708
.31731
.61708
.21130
.61708
.10416
.38157
.00000
.31731
.70766
.00000
.80259
.61708
.61708
.90052
.10416
.26059
.90052
.31731
.61708
.53197
.31731
.00404
.10416

10416

.53197
LL97
.90052
.38157
.13361
.31731
.61708
.26059

[eleoleolololNoNoRBoNoBoNoNeol eleNeoReoNoBoeRBeloBoNeNoBoReoNoNoNoNoNoNeoNoNoNeoNeol JeolNoNeoNeoNoNoNeoNoNeoNoNeoNeo NoloNoNoeNe o o No

.90052
.90052
.26059
.26059
.80259
.16913
.70766
.13361
.53197
.61708
.80259
.80259
.80259
.80259
.38157
.70766
.21130
.61708
.06079
.26059
.00000
.80259
.10416
.45325
.45325
.08012
.16913
.70766
.45325
.70766
.90052
.31731
.45325
.80259
.13361
.01755
.90052
.31731
.70766
.90052
.38157
.45325
.08012
.38157

00000

.26059
.38157
.53197
.38157
.61708
.31731
.08012
.61708
.38157
.31731
.70766
.01755

QOO OO OO OO OO OO0 OOOCOOHOOOOOODOODODODODODOODODOOOFHFOODO0ODOODO0ODO0OOOOOHOOOOOO

.90052
.21130
.61708
.21130
.70766
.80259
.00000
.31731
.90052
.13361
.70766
.26059
.16913
.61708
.38157
.26059
.16913
.61708
.00000
.38157
.45325
.31731
.13361
.38157
.38157
.53197
.26059
.45325
.90052
.45325
.53197
.21130
.38157
.04550
.90052
.04550
.61708
.00000
.01755
.61708
.10416
.04550
.10416
.16913
.21130
.53197
.53197
.06079
.38157
.16913
.45325
.31731
.70766
.26059
.45325
.45325
.45325

e NeoRecBeRNeRololNoNoRoNeoNoNeRoNoNol NeloNeloNoBeoNoNoNolNoNoNoNoNeoNoNoNeoNoNoNoNeoNeoNoNoNeoNoNeoN CNeNoNoNoNoNeNoNoll o o

.70766
.21130
.80259
.45325
.04550
. 53197
.10416
.80259
.02445
.01242
.00000
.80259
.26059
.80259
.26059
.31731
.61708
.80259
.16913
.45325
.10416
.61708
.13361
.61708
.90052
.70766
.45325
.53197
.31731
.26059
.10416
.70766
.70766
.70766
.31731
.90052
.53197
.38157
.00000
.10416
.08012
.31731
.53197
.31731
.80259
.90052
.45325
.31731
.45325
.45325
.53197
.61708
.13361
.26059
.08012
.80259
.00000

OO0 O0OFHF OO FOOOOOOOOOOOHOOFRFOFFOOFOOOODOOODOO0OO0OO0OO00O0O0OO0OD0DLODO0ODLODOOHOODODOO

.70766
.80259
.38157
.53197
.53197
.00000
.45325
.16913
.70766
.80259
.16913
.31731
.16913
.61708
.21130
.80259
.90052
. 90052
.16913
.26059
.80259
.04550
.70766
.53197
.90052
.26059
.13361
.53197
.00000
.61708
.80259
.00000
.16913
.00000
.16913
.38157
.00000
.00596
.61708
.70766
.16913
.31731
.80259
.31731
.13361
.61708
.90052
.31731
.00000
.00000
.61708
.70766
.00000
.16913
.31731
.70766
.01242

SO OO C OO OO OO0 O0ODO0ODODODOOODODODOOODODOODODOCOOO0ODOOOHOOOOHOOOOOOOOODOOOOOOOOO

.16913
.45325
.38157
.61708
.38157

70766
0259

.26059
.90052
.31731
.45325
.16913
.61708
.10416
. 38157
.61708
.31731
.61708
.00000
.00178
.80259
.61708
.13361
.00000
.45325
.61708
.45325
.53197
.53197
.38157
.61708
.45325
.53197
.70766
.80259
.61708
.26059
.80259
.70766
.90052
.21130
.21130
.90052
.13361
.13361
.90052
.90052
.90052
.53197
.06079
.13361
.13361
.80259
.21130
.80259
.10416
.08012

150

0.70766 0.08012
1.00000 0.16913
1.00000 0.61708
0.80259 1.00000

0.00866 0.26059
0.61708 0.90052
0.06079 0.38157
0.61708 0.21130

1.00000 O.
0.16913 0.
0.31731 0.
0.90052 0.

45325 0.13361
31731 0.707¢66
70766 0.61708
02445 0.70766

0.80259
0.26059
0.31731
0.53197

151

