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Abstract

The generalized linear model (GLIM) represents a versatile class of models suitable
for several types of dependent variables. GLIMs are popular models and are often
an appropriate choice for modelling fisheries data. However, fishery data and corre-
sponding models tend to be complex, because of the complexity of the populations
the data are sampled from. In this practicum we use generalized lincar mixed effects
models (GLMNDMs), which are GLIMs in which some parameters are randonr effects to
model two different fisheries data sets. The first involves a time series of hiological
sampl  used to determine fish maturity, and the sccond involves paired-trawl ¢i h
data to determine if there is a difference in cateh rates between two fishing ve s,
In this rescarch we find that GLMMs haprove estimates of maturities in a selected
fish stock and can be used to model differences in cateh rates between tishing ver s
effectively. This rescarch also suggests that prediction and forecast accuracies are
improved by using GLMMs. We also provide some simulation results and found that,
overall, GLNNIs appear to perform better than GLIMs in terms of bias, coverage

errors, and power tests.
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Retrospective analvsis for 3Ps cod. ages -8 (listed i left margin).
The retrospective p metric 1s shown in the top left-hand corner of cach
panel. Column 1: Fixed-effeets (IFE) model. Column 2: autoregressive
(AR) mixed-effects model with no overdispersion (NOD). Column 3:
AR model with overdispersion (OD). Column 1. AR odel with vear-
effects as nusance parammeters (YE-). Column 5. AR model with
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3Ps cod proportions mature at age estimated from e fixed eflects
model (FE; solid lines)  d the autocorrelated model with year effects

(AR YE; dashed ™ s). Observations are plotted as circles (o).

Average annual deviance residuals (solid lines) from the fixed effects
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the top.

Absolute values of deviance residuals {(o's) for 3Ps cod from the fixed
offects (FE) model vs. n (panel 1) and o= n x p (panel = . The soli

line is the fit from a loess smoother. and the dotted lines represent 95%
confidence limits for the smoother. The dashed line is a reference line
at 1 and represents the approximate expected value of the absolute
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3Ps cod autocorrelation functions (ACF) and partial autocorrelation
functions (PACF) of the intercepts and slopes from the variance com-

ponents (VC) model.

3Ps cod autocorrelation functions (ACFE) and partial autocorrelation
functions (PACF) of the intercepts and slopes from the fixed-cffects

(FE) model.

Estimates for 3Ps cod. Panel 1: intercepts. Panel 2: slopes. Panel 3:
Age at 50% maturity, Age. Panel JJ: Maturity range. MR, VC is the
mixed-ctects variance components model and FE is the fixed-effects

model.

Residuals from the autoregressive mixed-effects model witl no overdis-
persion (AR NOD) for 3Ps cod, 4+ values are positive and x values are
negative.  Size is proportional to the absolute residual. Top panel:
Chi-square (y?) residuals. Bottom panel: Cross-validation chi-sqnare

(\%,) residuals.

Residuals from the autoregressive mixed-effects model with overdis-
persion (AR OD) for 3Ps cod, + values are positive and x values are
negative,  Size is proportional to the absolute residual. Top panel:
Chi-square (\*) v dua  Bottom paucl: Cr  -validation chi-square
(\?,) residuals.

Estimates for 3Ps cod. Panel 1: intercepts. Panel 20 slopes. Panel 3:
;’im). Pancel 4: A/R. AR NOD is the autoregressive (AR) mixed cffects
model with no overdispersion (NOD), and AR YE hasy  eflects. FE

is the fixed effects model. .

16

A7

19



2.16

2.17

2.18

2.20

Predictions of random effects for 3Ps cod, with 95% ¢ fidence intervals
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lines arc for the AR model with year effects (AR YE). .

3Ps cod proportions mature at ages 4-8 vs. year. Ages 5-8 are listed
at the left-hand side. Top pancl: Autoregressive (AR) mixed cffects
model with year effects as nuisance parameters (YE-). Second panel:
AR with year effects as predictive parameters (YE+). Third panel: au-
toregressive (AR) mixed-effects model with no overdispersion (NOD).

Bottom panel: Independent fixed effects (FE) model.

Residuals from the autoreg ive mixed-effects model with vear effects
(AR YE) for 3Ps cod, + values are positive and x values are negative.
Size 1s proportional to the absolute residual. Top panel: Chi-square
(\?) residuals. Bottom pancel: Cross-validation chi-square (\*,) resid-

uals.

Square root of absolute values of the v? residuals from the autoregres-
sive mixed-effects model with vear effects (AR YE) and the fixed effects
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line delineates FE residuna  greater than v 2. The number of points
above and below the 1:1 line are shown, and beneath these values are
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than v z. .

Absolute values of the 7 residuals from the autoregressive mixed-
effects model with year effects (AR Y ) and the fixed effects (FE)
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3.1

§

3.4

B

Log of absolute standardized deviance residuals.(o's) for 3Ps cod from
the fixed effects (FE) model vs. log(n). The x's are average abso-
lute {og deviance residual in cach bin. The e's are the average log
absolute deviance residuals in cach bin using the parametrie bootstrap
precodeure. Vertical lines represent the 95% CT limits for cach averaged
log absolute deviance residual in each bin using the parametric boot-
strap. The solid line 1s the fit from a loess smooher, and the dashed
lines represents the 95% confidence limits for the smoother. The dotted
line is a reference line at log(1) = 0, and represents the approximate

expected value of the absolute standardized residuals.

Northiwest Atlantic Fisheries Organization (NAFO) northern Gulf fish-

eries management Divisions ARS and Subdivision 3Pn.

Top pancl: Hypothetical length distributions sampled by cach trawl,
A the fish density encountered by the Alfred Needler and Ay the fish
density encountered by the Te st Bottom panel: log density ratio,

(S/ = IOg(/\I,.//\[,). .

Location of the comparative fishing for NAFO Divisons ARS and Sub-
division 3Pn in 2004 (o) and 2005 (e).

Left column: Total scaled catches from cach haul. AN vs. TEL. The
total per swept arca for all sets are listed at the top. The dotted
line has a slope of one.  .ue dashed line has a slope equal to the
relative efficieney (p) for the FEPT model and the solid line denotes
the mean relative efficiency for the NMEPIL model. Solid black cireles
represent. potential outliers.  Right e unn: The predicted random
effects histograms. The rows indicate cach species with codes given
in the right margin: A - American plaice: AC' - Atlantic cod: GH -

Greenland halibut; WF - Witeh flounder.
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3.0

3.7

3.8

Fstimates of /30 from the FEP1 and MEPI models, and models with
two potential outliers removed (FNO and MNQO). Spectes codes: AP
- American plaice; AC - Atlantic cod; GH - Greenland halibut; WE -
Witeh flounder.

Left colunm: Estimates of relative efficiency (pp). Solid line represents
the ME2 model estimate, dashed line represents FE2 model estimate.
Right column: Observed (0's) and estimated (lines) proportions of AN
scaled catehes. Rows are for cach species, with codes indicated in the
right margi: AP - American plaice; AC - Atlantic cod; GH - Greenland
haltbut: WF - Witch flounder.

FE2 model results for American plaice. Total scaled catches per swey

arca for both vessels and AN catches per swept area adjusted by relative
efficiency (py) are given at the top. Top panel: Total length frequencies
for TEL (dashed-dotted line), AN (dashed line) and AN adjusted by
relative efficiency (solid line), over all sets. Middle panel: Standardized
(by standard deviation) total chi-square residuals for cachiset. Bottom
pancl: A local lincar smoother versus  agth (solid line) of the stan-

(

dardized chi-square residuals. The dashed lines are 95% confidence

mtervals for the average residuals. .

FE2 model results for Atlantic cod. Total sce catches per swept area
for both vessels and AN catches per swept arca adjusted by relative
ctficiency (pp) are given at the top. Top panel: Total length frequencies
for TEL (dashed-dotted line), AN (dashed line) « d AN adjusted by
relative efficieniey (solid line), over all sets. Middle panel: Standardized
(by standard deviation) total chi-square residuals for cach set. Bottom
pancl: A local linear smoother versus length (solid I ) of the stan-
dardized chi-square residuals. The dashed lines are 95% confidence

intervals for the average residuals.
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3.10

3.11

FE2 model results for Greenland halibut.  Total scaled catches per
swept arca for both vessels and AN catches per swept arca adjusted
by relative cfficiency (p;) are given at the top. Top panel: Total length
frequencies for TEL (dashed-dotted line), AN (dashed line) and AN
adjusted by relative efficiency (solid line), over all sets. Middle panel:
Standardized (by standard deviation) total chi-square residuals for cach
set. Bottom panel: A local linear smoother versus length (solid line)
of the standardized chi-square residuals. The dashc  lines are 95%

confidence intervals for the average residuals. .

FE2 model results for Witch flounder. Total scaled ¢i hes per swept
arca for both vessels and AN catches per swept area adjusted by relative
efficienicy (p;) are given at the t¢ . Top pancl: Total length frequencies
for TEL (dashed-dotted line), AN (dashed line) and AN adjusted by
relative efficiency (solid line), over all sets. Niddle panel: Standardized
(by standard deviation) total chi-square residuals for cach set. Bottom
panel: A local lincar smoother versus length (solid line) of the stan-
dardized chi-square residuals. The dashed lines are 95% confidence

mtervals for the aver - residuals.

NME2 model results for American plaice. Total scaled catches per swept
arca for both vessels and AN catches per swept arca adjusted by rel-
ative efficiency (p;) are given at the top. Top left panel: Total length
frequencies for TEL (i ed-dotted line), AN (dashed line) and AN
adjusted by relative « iency (solid line), over all sets. Top right
panel: Predicted random cffects, 5,-1, vs length for cach set. Bottom
left panel: Standardized (hy standard deviation) total chi-square resid-
uals for cach set. Bottom r 1t panel: A local linear smoother versus
larh (solid line) of the standardized chi-square residuals. The dashed

lines are 95% confidence als for the average residuals.




3.12

3.13

ME2 model results for Atlantic cod. Total scaled catches per swept
arca for both vessels and AN catches per swept arca adjusted by rel-
ative efficiency (p;) are given at the top. Top left panel: Total length
frequencies for TEL (dashed-dotted line), AN (dashed line) a | AN
adjusted by relative efficiency (solid line), over all sets. Top right
pancl: Predicted random effects, 51-;, vs length for cach set. Bottom
left panel: Standardized (by standard deviation) total chi-square resid-
uals for each set. Bottom right panel: A local linear smoother versus
length (solid line) of the standardized chi-square residuals. The dashed

lines are 95% confidence intervals for the average residue . . . .. ..

ME2 model results for Greenland halibut. Total scaled catches per
swept area for both vessels and AN catches per swept arca adjusted
by relative efficiency (p) are given at the top. Top left panel: Total
length frequencies for TEL (dashed-dotted line), AN (dashed line) and
AN adjusted by relative efficiency (solid line), over all sets. Top right
panel: Predicted random effects, 51-,, vs length for each set. Bottom left
pancl: Standardized (by —andard deviation) total chi-square residuals
for cach set. Bottom right panel: A local lincar smoother versus length
(solid line) of the standard >d chi-square residuals. The dashed lines

arc 95% confidence inter s for the average residuals. .. .. . 0
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3.14 ME2 model results for Witch flounder. Total scaled ¢ ches per swept

3.1

4.1

arca for both vessels and AN catches per swept arca adjusted by rel-
ative efficiency (p;) are given at the top. Top left panel: Total length
frequencies for TEL (dashed-dotted line), AN (dashed line) and AN
adjusted by relative efliciency (solid line), over all sets. Top right
panel: Predicted random cffects, Oit. Vs length for cach set. Bottom
left. panel: Standardized (by standard deviation) total chi-square resid-
uals for cach set. Bottom 1 it panel: A local lincar smoother versus
length (solid line) of the standardized chi-square residuals. The dashed

lines are 95%: confidence intervals for the average residuals. © 0 0 0

Estimates of #y and 4y from the FE2 (F) and ME2 (M) models with two
potential outliers removed (FNO and MNQO). Species codes: American
plaice - ANM; Atlantic cod - AC; Greenland halibut - GH; WF - Witch

flounder. . . . . .

Right: histograms of the random effects, §, where § = log[(ud) 'A\] —
log[(11) T As). Both Ay 1d Ay are gamma random variables with mean
i and variance opu. Left: probability plots for the random eflects.
Rows idicate random cffects for corresponding ¢ values which are

given in the upper left corner of the probability plot. . ... ... ..

Bias of Jy for FEP1 (solid line), MEPIe¢ (dotted line), and MEPTm
(dash-dotted line) models. Random effects are normally distributed
with 0 mean and variances ¢ = 0.0.0.1,.0.5.0.9, respectively.  The
dashed line represents the horizontal line at 0. Rows are for species,
with codes indicated at the right hand-side: AC - Atlantic cod; DR -

decpwater redfish: GH - Greenland halibut. . o0 0000000000
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4.3

4.4

95% coverage errors of the confidence intervals from the parammeter
estimates for FEP1, MEP e, and MEP Im models when random effects
do not exist. The solid line represents lower coverage errors, the dotted
line represents upper coverage errors, the dash-dotted line represents
total coverage errors (lower 4+ upper), and the horizontal dotted lines
represent critical values v = 0.05 and § = 0.025. Rows are for species,
with codes indicated at the right hand-side: AC - Atlantic cod; DR -

deepwater redfish; GH - Greenland halibut. .

95% coverage errors of the confidence intervals from the parameter
estimates for FEP1, MEPIc. and MEPIm models. Random cffects
arc normally distributed with 0 mean and variance % = 0.1. The
solid line represents lower coverage ervors, the dotted line represents
upper coverage crrors, the dash-dotted line represents total coverage
crrors (lower + upper), and the horizontal dotted lines represent eritical
values a = 0.05 and § = 0.025. Rows are for species, with codes
indicated at the right hand-side: AC - Atlantic cod; DR - deepwater
redfish; GH - Greenland halibut. .

95%. coverage errors of the confidence intervals from the parameter
estimates for FEP1, MEPIe, and MEPIn models. Randon effects
are normally distributed with 0 mean and variance o2 = 0.5. The
solid line represents lower coverage errors, the dottc  line represents
upper coverage crrors, the dash-dotted line represents total coverage
crrors (lower + upper), and the horizontal dotted lines represent critical
values a = 0.05 and § 0.025. Rows are for species, with codes
indicated at the right hand-side: AC - Atlantic cod; DR - deepwater
redfish; GH - Greenland halibut. |
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1.6

1.7

1.9

95% coverage errors of the confidence intervals from the parameter
estimates for FEP1, MEPle, and MEPIm mod . Random effects
are normally distributed with 0 mean and variance ¢? = 0.9. The
solid line represents lower coverage errors, the dotted line represents
upper coverage crrors, the dash-dotted line represents total coverage
ervors (lower + upper). and the horizontal dotted lines represent eritical
values a = 0.05 and § = 0.025. Rows are for species. with codes
mdicated at the right hand-side: AC - Atlantic cod: DR - decpwater

redfish; GH - Greenland halibut, .. 000 00000000000

The 95% confidence widths of the paramneter estimates for FEPI (solid
line), MEPI1c (dotted line), and MEPLIn models (dash-dotted line).
Random effects are normally distributed with 0 mean and variances
o = 0.0.0.1.0.5,0.9, respectively. Rows are for species, with codes
indicated at the right hand-side: AC' - Atlantic cod; DR - deepwater
redfisliy GH - Greenland halibut. . . . . 0 000000

Power curves for FEP1 (solid line), N7 1c¢ (dashed line), and MEP 1
(dash-dotted) with normally distributed random - ccts. Rows are for
species, with codes indicated at the right hand-side: AC - Atlantic cod:

DR - deepwater redfish; GH - Greenland halibut. . . ... 0 000 ..

Bias of &y for FEP1 (solid line). MEP1e (dotted line), and MEP1m
(dash-dotted line) models. Random effects are a difference of two log-
o . : . )
gamma distributed random variables with 0 mean and variances 0° =
0.1,0.5,0.9. respectively. The dashed line represents the horizontal line
at 0. Rows are for species, with codes indica— at the right hand-side:

AC - Atlantic cod; DR - deepw — er redfish; GH - Greenland halibut. .
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4.10 95% coverage errors of the confidence intervals from the parameter

estimates for FEPI, MEPIc, and MEPIm models. Random cffects
arc a difference of two log-gamma distributed random variables with
mean £(8) = 0 and variance Var(d) = 0.1. The solid line represents
lower coverage errors, the dotted line represents upper coverage errors,
the dash-dotted line represents total coverage errors (lower + upper),

and the horizontal dotted lines represent critical values o = 0.05 and

R

* = 0.025. Rows arc for species, wit  codes indicated at the right

hand-side: AC - Atlantic cod; DR - deepwater redfish; GH - Greenland
halibut.

95% coverage errors of the contidence intervals from the parameter
estimates for FEP1, MEP1c, and MEPLIn models. Random cffects
arc a difference of two log-ganuna distributed random variables with
mean £(4) = 0 and variance Var(d) = 0.5. The solid line represents
lower coverage errors, the dotted line represents upper coverage errors,
the dash-dotted line represents total covere - errors (lower + upper).
and the horizontal dotted lines represent critical values a = 0.05 and
9 = 0.025. Rows arc for species, with codes indici »d at the right
hand-side: AC - Atlantic cod; DR - deepwater redfish; GH - Greenland

halibut.
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4.13

1.14

95% coverage crrors of the confidence intervals fro the parameter
estimates for FEP1, MEP1c, and MEP1m models. Random cffects
arce a difference of two log w1y distributed random variables with
mean E(§) = 0 and vartance Var(d)  0.9. The solid line represents
lower coverage erre | the dotted line represents upper coverage errors,
the dash-dotted line represents total coverage errors (lower + upper),
and the horizontal dotted lines represent critical values a = 0.05 and
0.025. Rows are for species, with codes indicated at the right

hand-side: AC - At atie cod; DR - deepwater redfish; GH - Greenland
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113




Chapter 1

Introduction

1.1 Motivation

The generalized linear model (C7 "™M; McCullagh and Nelder, 1989) represents a ver-
satile class of models suitable for several types of dependent variables such as continu-
ous, dichotomous, and count (sce Nelder and Wedderburn, 197 . GLINs are popular
models that have been used in many rescarch areas such as biological sciences, health
sciencies, engineering and cconometrics. StatSci.org (accessed Nay 16, 2007) presents

a selected bhibliography of technical work related to this subject.,

The GLIM is often an appropriate choice for modelling fisheries data. For ex-
ample, Jiao and Chen (2004) fitted a GLIM for a production model and sequential
population analysis (SPA) to assess a stock of Atlantic cod. They illustrated the prob-
lems associated with nornality assumptions and concluded that the GLIN should be
used to identify appropriate error structures in modelling  sh population dynamics.

Another example of the application of GLIM's to fishieries data is Ye et. al. (2001).

In this report we use similar GLIM s, or extensions that are described shortly, to

model two very different fisheries data sets. The first involves a time series of biological




samples nsed to determine fish maturity. This important information is used in- h
stock assessiments. The second data set involves paired-trawl catch data to determine
if there is a difference in cateh ra between two fishing vessels. This information is
important when interpreting fishery survey results from different vessels, and fishery
surveys arce a fundamental component of most stock assessments. Although these
data sets are different in nature, it turns out that similar statistical models can be

used to estimate important parameters {rom these data.

However, fishery data and corresponding models tend to be complex. hecause of
the complexity of thie populations the data are sampled from. Realistic models usually
lave a much larger number of parameters than ¢ be reliably estimated. Fortunately
many of these parameters can be vrealistically viewed as random variables that can be
described and also predicted by a much sinaller niunber of variance parameters. This
makes the complex fishery models more tractable to estimate. IHenee, in our two
fishery data scts, we find an advantage in using Generalized Linear NMixed Models
(GLNINs), which are GLIN's in which some parameters are actually random cffeets.
The main purpose of our report is t¢ 10w how tot  GLNMNM's ) model two complex
fishery data sets. We also provide some simulation results to assess the reliability of

the GLMNIN estimatoes.

1.2 1he G____:1.1___L___ar M__:_ Effects Mod

In this section we first. deseribe the GLIM, followed by the GLNIN. A GLIN consists

of the following components:

First, the response variable veetor' Y (Y).....,Y),) is denoted as an n x 1 random
vector whose distribution is from the exponentic  family (sce Dobson, 2002). In this
case the variance of the response depenc  on the mean (¢ = E[Y]) through a variance

furnrction V:
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Var(Y) = dw 2 V(u)w~

(1.1)

where @ is a diagonal dispersion matrix which is either known or must be estimated,
w is a diagonal matrix of known weights for cach observation, and V(;) is a matrix

of the variance function.

Secondly, a monotonic differentiable link function g(+) is specified which deseribes

how the expected value ji of the response vector Y is related to a linear predictor gy

gli) = 1. 2)

The lincar predictor incorporates information about the covariates into the model.

) =X'3. 3)

where X is an nx p matrix of covariates of rank(X) = p such that X'X 1s non-singular

and Fis a p x 1 vector of unknown parameters which we also refer to as fixed eff s,

Common GLIMs include linear regression, logistic regression and Poisson reg  s-
b

sion with the corresponding ic atity, logit, and log link functions respectively.

Fixed effects GLINMs are usually based on the assumption that all observations
are independent of cach other and are not appropriate for analysis of correlated data,

in particular. clustered and/or longitudinal data (c.g. Zeger et. al. 1933).

A generalized lincar mixed effects model (GLMNM) is more appropriate for the
analysis of correlated data. A GLMDM is a natural extension to the GLIN whereby
a random effect is added to the lincar predictor to account for the correlation of
the data. Many references on the method are available (e.g. Breslow and Clavton

1993; Lee and Nelder, 1996; Sutradhar, 2003). GLMNMs are well suited for biological




and medical data, which normally display heterogeneous responses to treatments.
GLMDMs are used extensively for data that are not normally distributed. For example.
Gilmour ot al. (1985) analyzed binomial data using GLNMMs. and Agresti et al.
(2000) described a variety of social science applications of GLNIMs when responses
were categorical. Another advantage of the GLNMM is the ability to combine data by
introducing multilevel random cffects (see Goldstein, 1995). Xiao ct. al. (2004) cite

numerous applications of GLMMs in fisheries sciences.

Suppose that Y is an n x 1 random veetor for the observed data and ¢ is an - x 1

vector of random effects. The GLNNM is based on the asumption that

= E[Y|d] =g (X3 + Zd) (1.4)

where ¢~!(+) is the inverse of the monotonic link function, X and 4 are defined as
in (). and the matrix Z is an n x r matrix for the random effects. The random
effects are usually assumed 1o be normally distributed with mean 0 and unknown

vartance-covariance matrix G.

The GLMNM contains a lincar mixed niodel inside the inverse link function, tl - 1s

referred to as the linear predictor,
n = X+ 7. (1.5)
The vartance of the observations, conditioned on the random effeets, is
Var[Y]0] = A)/*RA)?. [ 0)
Here A, is a diagonal mat ~ ¢c “aining evaluations at g of a lincar variance function

for the GLMM and R is a variance-covariance matrix of unknowns (Wolfinger and

O’Connell, 1993).




1.3 Estimation Methods or Generalized Linear Mixed

Effects Models

The primary interest for GLMMs is in the estimation of fixed cffects; however, Liang
and Zeger (1986) and Zeger et. al. (1988) discuss the interpretation of their esti-
mates in terms of subject-specific (SS) and population-averaged (PA) models. A SS
approach focuses on the estimation of the fixed effects parameters 4, the random
effects . and the variance of the random effeets. The PA approach is primarily in-
terested in the estimation of 8 and the marginal variance of 'Y which is related to
the variance of the random effects. The random effeets themselves are treated as nui-
sance parameters. An example of SS modelling is the best linear unbiased prediction
(BLUP; Robinson, 1991), and an example of PA approach (a) lied to count data) is
given by Thall and Vail (1990).

Fitting a lincar mixed model using a likelihood approach consists of specifving a
distribution for the random effects and then estimating the unknown parameters using
maxinnun likelihood (ML) or restricted maximum likelihood (RENL). The REML
approach produces unbiased estimates of variance parameters in some problems (e.g.
Harville, 1977; McGilichrist, 1994). These methods are usually referred to as marginal
approaches and typically involve numerical integrations over the random effeets. he

ML approach is also a PA approach because the random effects are not estimated.

Suppose that Y; is a vector of observed data for cach of ¢ subjects, v = 1, ... k.
Y; is assumed to be independent across i, but within subjeet covartance is likely to
exist because cach of the clements of Y5 is measured on the same subject. Assume
that a random effects veetor & exists that is also independent across /. Assuming
an appropriate model linking Y; and ¢; exists (i.e. a GLIM) 1 this model involves
covariates X that are related to the mean of Yj conditional on d;, the joint probablility

density function is



[)(Y;{Xi,,/f.R,d;)q(d;]Q) (17)

where p(+) is the conditional probability density function of Yy, ¢(+) is the probability
density function of ¢, X is a matrix of observed explanatory variables, 3 is a vector
of unknown parameters, R is a veetor of unknown uuique elements of R (the variance-
covariance matrix of the observations), and G is a vector of unknown unique elements
of G (the variance-covariance matrix of the random effects). Let o = (4, R.G).

likelihood inferences based about d are based on the marginal likelihood function

k

J\[(l}) = H/ ’ -/[)(Y;|Xi.zf,R.<5i)(1((5i|Q)(151. (18>

=1

In particular, the function

f(0) = —log M(0) (1.9)

is minimized over ¢ numerically in order to estimate o, and the inverse  ssian
(second-order derivative) matrix provides an approxiniate variance-covariance 1 rix
for the estimates of 9. The function f(9) is referred to as the negative log-likelihood

[unction or the objective fn on !« imization.

There are limitations to the marginal method. Likelihood equations tend to be
complex and difficult to derive. Rarely will closed form expressions exist for the
marginal likelihood. In some instances the data may contain a large number of random
cffects which leads to a high dimensional integral for the marginal likelihood equation.
Numerical integration techniques ha  been used such as guassian quadrature (e.g.
Anderson and Aitkin, 1985; Davidian and Gallant, 1993) and Gibbs sampling (Zeger
and Karim, 1991). High dimensional integrals can be very computationally intensive

to solve numerically, and in some cases are not feasable (Stiratelli et. al. 1981).
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Another approach for estimating 3, 4, G and R is the pscudo-likelihood (PL)
and restricted pseudo-likelihood (REPL) procedure (Wolfinger and O'Connell, 1993).
Implementation of the PL and REPL procedure first involves linearizing the data
using a first order Taylor’s series approxinmation expanding about initial estimates of
the fixed regression parameters and random effects. Then normal linear model theory
is used to estimate variance paramceters. The varian  parameters are then used to
estimate fixed regression parameters and predict random effects which, in turn, are
used to linearize the data again to estiniate new variance parameters. This process is
repeated until a specific tolera is obtained (i.e. convergence). This procedure

is described in more detail later in this chapter.

Several other estimation techniques for GLMMs have appeared in the literature.
Breslow and Clayton (1993) p mted two estimation procedures referred to as  e-
nalized quasi-likelihood (PQL) and marginal quasi-likelihood (MQL), although, these
two methods correspond to the SS and PA models of Zeger et. al. (1988) respectively.
As well, the implementation of P L and MQL can be achieved using PL (Wolfu v

and O Connell, 1993).

Waclawiw and Liang (1992) predicted rand = effects of a GLMNI by iteratively
solving a set of Stein-type estimating - 1ations. This SS approach is similar to 10
PL in its iterative nature, although they replace the mixed model and ML/RE L
cquations with optiinal estimating equatior  for { d effects, random effects,  d

variance paranmeters.

Sutradhar and Rao (2001) consic ed an exact MQL approach, however, —is PA
approach was only developed for sinall values of the variance of the randont effects.
Sutradhar (2001) since improved on the exact MQL approach by proposing an et
quasi-likelihood or generalized quasi-likelihood (GQL) method whereby the covari ce
matrix needed to construct the estimating equation has been computed for small or

large values of the variance of the random cffects.

Lee and Nelder (1996) used a hierarchical likelihood (HL) approach to estimate



fixed paramecters and random effects. In this SS approach, the random effects were
treated as fixed effects and then were used to obtain estimates of the variance co-
ponents. This approach was similar to the PC - method pre osed by Breslow and

Clayton (1993).

The PL/REPL approach appears to be an appropriate choice and is useful for
modelling GLMMs since it provides a unified framework for both SS and PA inference
and includes PQL and NQL as special cases. As well, PL/REPL algorithims can be
implemented using mixed model software packages (see Section 1.3; SAS/STAT®
PROC GLIMNMIX).

We provide more details about  : PL/REPL approaches below, summarized from

Wolfinger and O’Connell (1993).

Let 3 and & be kunown estimates of i and & and recall that
E[Y|0)=p=g "(X3+Zs)=g"'(n). (1.10)

1

which is a vector cousisting of evaluations of ¢7! at each component ¢ 7. Now let

o7 () = g7 () + T(Xp - X5) + T(26 - X9) (1)

where

. ;),,—1(,,))
T = : (1.12)
( M/

is a diagonal matrix with clements consisting of the first derivative of g ' Note that

(1) is afirst-order Taylor series approximation of i expanding about 3 and 4. Re-
arranging the terms yvields the o ni

T ¢ ')+ Xd+25 XI+ Zo. (1.13)
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The left-hand side is the expected value, conditional on 6 and . of
THY —¢ ' () + X3+ Z5=P (1.14)
and
Var[Pd] = T7'A,*RA, VT (1.15)
Thus we can consider the model
P=Xp+2Z+¢ (1.16)

as a lincar mixed model with pseudo-response (i.e. lincar mixed pseudo-model) P,
fixed effects 3. random effec 4, and Var[s] = Var[P|d].

Now define

V() =T 'A,/’RA,'T + 2GZ (1.17)

as the marginal variance in tl - lincar mixed pseudo-model, where 0is a gx 1 par. oter
vector containing all unknown parameters in R and G and Z' is the transposed m. - ix
for the random effects. Based on this lincarized model, an objective function can
be defined, assuming the distribution of P is normal. The maximum log pseu -

likelihood for P is

1 |
(0.p) = log|V(0)| - =r'V(#) 't - = log(27) (1.18)

and the restricted maximum Ic p - lo-likelihood 1s
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1 1
((0.p) = log|V(0) 3r’\/(())*lr
1 , : n—=r

—;l()g’X v 'X| - o2 (1.19)

t

where r = p = X(X'V(0) 'X) 'X'V(#) 'p. p is a realization of the random veetor
P. 1 denotes the number of observations. and A is the rank of X. Numernical methods
(i.c. Newton-Raphson, quasi-Newton) are generally required to maximize € and (4
over the parameters 6. After obtaining estimates for 8. estimates for .3 and 0 are

computed as

g o= (X'V(H)'X)'X'V0) p (1.20)
0 O (1.21)
With 4 and 4 set to the estimates the linearization is re-computed. ) and ( )

are maximized to obtain updated estimates of R and G. This is iterated until con-
vergence. This involves two levels of iteration: one for the lincarization, and one for
the estimation of the variance parameters in the hnearized model,

In some cases. the conditional distribution may contain a scale parameter (¢ 1),

The vartance funetion becom
V) =T 'APRA,VPT + 2GZ (1.22)

where % is the covariance parameter vector with ¢ — 1 elements. The matrices R”

and G* are re-paramceterized versions of R and G in terms of ¢, The maximum log

pseudo-likelihood for the linear mixed  udo-moc () is
1
(07.p) = —5 log V(") = S{r'V(0") 'r} - S(1 4+ log{2r/n}) (1.23)
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and the restricted maximum log pseudo-likelihood is

n—

V() )

1
(r(67,p) = —log|V(8)| -
9

—% log | X'V (6*)'X]| — nT_k(l +log{2n/(n — k)}). (1.24)

The solutions for B, $ and c;b are

8 = (X'V(E)'X)IX'V(6*)p (1.25)
§ = GzZV(e)'f (1.26)
6 = V() 't 0" (1.27)

where n* equals n for PL and n — & for REPL.

1.4 Statistical Software Packages

A key feature of the PL/REPL method is its ability to be implemented using standard
statistical software packages. In this practicum, we use three software procedures
developed by the SAS Institute for estimating parameters in GLIMs and GLMMs:
PROC GENMOD (generalized linear models), PROC NLMIXED (non-linear mixed
effects models), and PROC GLIMMIX (generalized linear mixed effects models). Each
method will be compared in terms of the accuracy of parameter estimates and model

(i.e. response) predictions.



1.4.1 The GENMOD Procedure

The CTNMOD procedure fits a GLIM to the data by maximum likelihood esti ation
over the vector of unknown coc.ucients (). In general, there is no closed form
solution for the maximum likelithood estimates. GENMOD estimates the parameters
of the model using an iterative fitting process. The dispersion parameter (¢) is also
estimated by either maximum likelihood, by the residual deviance, or by Pearson's
chi-squared divided by the degrees of freedom. Covariances, standard errors, and p-
values for the parameter estinmates are computed based on the asymptotic normality

of maxiimum likelihood estimators.

A number of link functions and probability distributions are available for the
GENMNOD procedure. The link functions include the identity, logit. probit, log, and
complementary log-log. The distributions include normal, binomial, Poisson, gam 1,

inverse Gaussian, negative binomial, an - multinomial.

The GENMOD procedure has the abilility to fit correlated response data by the
generalized estimating cquation (C775) me  od (Liang and Zeger, 1986), although we

do not utilize this feature of the ftware in our analyses.

1.4.2 The NLMIX™™ Procedure

PROC NLMIXED allows you to specify, conditional on the random effects, a distri-
bution for the response variable that has cither a standard form (normal, 1 1l
Poisson) or a general distribution defined by the user. PROC NLMIXED fits nonlin-
car mixed models by maximizing an approximation to the likelihood integrated over
the random effects. Such marginal methods are commonly used with mixed models.
Different integral approxiniations are available. These mmclude Gaussian quadrature
(Pinheiro and Bates, 19¢ | and first-order Taylor series approximation (Beil and
Sheiner, 1988). Successful conver nee of the optimization procedure results in pa-

raweter estimates along with their standard errors based on the Hessian matrix of
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the Likelihood function.

The NLMIXED procedure only implements maximum likel  ood. This is because
the analog to the restricted maximuim likelihood method in PROC NLMIXED soft-
ware would involve a high dimensional integral over all of the fixed-cffects parameters,

and this integral is typically not available in closed form.

1.4.3 The GLIMMIX . rocedure

The GLINMIX procedure fits GLNMAMS based on lincarizations (see Section 1.3). A
Taylor series expansion is used to appr  mate the C NDM as a linear mixed model,
The advantage of the linearization i1s that only the variance parameters have to he
estimated numerically because closed form expressions exist for the regression pa-
rameter estimates. The linearization method is doubly iterative. The approximate
linear mixed model s fit which is itself an iterative process, then the new parameter
estimates are used to update the lincarization, which results in a new lincar mixed
model. The process stops when parameter estimates between sucessive lincar mixed
model fits change within a specified tolerance. The default estimation method in
PROC GLIMMIX software for models containing random cffects is restricted pseudo-
likelihood (REPL). Maximum likelihood estimates of variance parameters tend to
be biased for small sample sizes. The RISPL may provide less biased estimation of

random cffect variance parameters.

An advantage of lincarization based methods is that they can use a relatively
simple form of the lincarized model that typically can be fit based on only the mean
and variance in the lincarized form. Models for which the marginal distribution is
difficult, or impossible, to compute can be fit with lincarization. This approach is

well suited for models with correla errors and a large number of random effects.

A disadvantage of this approach is the absence of a true objective function and

potentially biased estimates of covar  1ce p ameters, especially for binary data. In a
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GLMNM is not always possible to derive the exact log-likelihood of the data, therefore
likelihood based tests and statistics are often hard to derive.  PROC GLINNMNIX

produces Wald-type test statistics (e.g. Buse. 1982) and confidence intervals.

PROC GLIMMIX software provides marginal and conditional residuals. Condi-
tional residuals are based on predictors of the randonm effects and estimates of the tixed
effects regression parameters. The predictors of the random effects are the estimated

best linear unbiased predictors (BLUDPs) in the approximated lincar model.

1.5 Scope of the Practict™

The following is an outline for the remainder of the practicum. In C apter 2 we
apply the GLMM to maturity data for a selecte  fish stock off the southern coast of
Newfoundland. In Chapter 3 we apply the GLMAI to fishery survey calibration data
from two rescarch vessels fishing in the Northern Gulf of St. Lawerence. In Chapter
4 a simulation study is presented on the properties of estimators based on fishery
calibration data. This practicum contains various acroynins (i.c. GLIN, GLMNM), a
table of acronyms along with their corresponding descriptions is given in Appendix

B.
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2.2 Materials and Methods

2.2.1 Data

North Atlantic cod data were collected during  mual rescarch vessel trawl survevs
by Fisheries and Oceans Canada (DFO). The trawl surveys we consider involved
towing a scientifically-standardized fishing trawl for a fixed distance and at a xed
speed. Tow sites (or sets) were selected at randoni using a dep  -area based stratified
sampling design. More details about the surveys are given in Chapter 3. We examined
data for cod in Northwest Atlantic Fisheries Organization (NAFO) sub-division 3Ps
collected during 1960-2005. NAFO fislieries management divisions are shown in Fig,
© 1. The maturity data were also collected using a length stratified sampling schemne

(Doubleday, 1981).

Some of the variables recorded for fish in cacli cateh were year. cohort (year-
age), sex, age, number per catch aud proportion mature per cateh. Due to sex-
specific differences in maturation, females and males were treated separately (Barot
et al., 2005; Swain aud Poirer, 1997). Each fish was classificd as mature or immature
based on the criteria of Templeman et al. (1978). The 3Ps cod data contained
25810 observations in total, of which 12275 were males and 13535 were females. he
number-per-set sampled for mat  ies for different years and ages ranged from  to
186. Zevo catches were discarded since they provided no information on maturity.
Obscrved proportions mature at age, p,, were calculated by taking into account the
length frequency of the population and the length stratified sampling (Morgan and

Hoenig, 1997).

2.2.2 Fixed Effects Model

Define p.(a) to be the probability that a fish is mature at age « in cohort . If fish

are sampled at random from the stock then the binomial model 1s appropriate to use
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(sec Cox and Snell, 1989). The binomial probability of obscrving y,. mature fish at

age a in cohort ¢ from a random sample of ng,. fish is
T . .
Pr(Y, =)= ( ”F)p(.(a,)"'{l — pel@)} e =0, e (2.1)
X

The mean and variance of the binomial distribution are F(Y,.) = n.pe(a) and
Var(Yae) = neepe(a){(1 — p.(a)}.

It is reasonable to assume that p.(a) is a smooth monotone increasing function of
age within cohorts. A common model used in this situation is the fixed effects (FI)

logistic regression model

(«) cap(Bye + Bie X @)
p.(a) = : .
F 1 + cap(tor + 1o X a)

which is the canonical link function for the Binomial distribution (McCullagh
Nelder. 1989). This model is used in other arcas of fisheries rescarch such as fishing
gear-selectivity studies (Millar, 1992). We used the maximum likelihood estimation
method and SAS/STAT® PROC GENMOD (SAS Iunst., 2005) to estimate the lo-

gistic regression parameters.

Define Agy to be the age at 50% maturity, p.(Ase) = 0.5. From (* ) this valuc is
8 P

Agg = > and can be estimated as

e

/150 - _7/30(“ (2‘3)
/jl('

where By, and 5. are the estimates of the logistic regression parameters. The maturity

range (M R) is define to be the difference between the age at 75% maturity and the

: : : 1 9 .
age at 25% maturity, which is MR = Az; — Ay = - —) [t can be estimated as

e

— oY
MR = Asy — Aoy = %(—) (2.4)
,( 1e
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In some instances over-dispersion may arise.  Over-dispersion occurs when data
have more variability than accounted for in our modelling assumptions. It can be
caused by many factors such as population spatial heterogeneity.  An approach to
deal with over-dispersion 1s to use quasi-likelihood estimation (McCullagh and Nelder,
1989) with Var(Y,.) = ¢neepela){l — p.(a)}, where ¢ is an over-dispersion parameter.

This is the approach used in PROC GENMOD to account o over-dispersion.

There were insufficient data for some cohorts to estimate niodel parameters. For
example, the maturities for the 2001 3Ps cod cohort were o1 - observed at ages 1
to 4 in vears 2002 to 2005. This covers only the lower portion of the maturity ogive
and does not cover a sufficient range of ages to estimate the regression parameters.
Similarly, some of the carlier cohorts are ouly observed at older ages that also do
not cover a large enough age range to e mate the model parameters. Therefore, we

estimated parameters only for the 1954-2000 cohorts,

2.2.3 Mixed Effects Model

In the previous section we considered the parameters o and 3. as fixed effects;
that is, fixed but unknown parameters to estimate. However. the maturities ten to
change smoothly over time — 1dy  and Jy,s appear to be antocorrelated over cohorts
(i.c. time). To account for th  autocorrelation structure we use a mixed effects (I 9
model. Recall that data are collected cach year for unfinished cohorts and additional
data collected cach year can cause substantial changes in the parameter estimates
from year to year. Accounting for the autocorrelation structure in s and di. may
help reduce this problem. This is our main rationale for investigating a ME model
approach. We used SAS/STAT® PROC GLIMMIX to compute estimates for ME
models with and without over-dispersion. We compared both estimates in terms of

their variability (smoothness) 1 pre 7 tive capability (described below).



Autocorrelated Cohort Effects

A model we investigate for the proportion maturc-at-age is

( ) (’.I']){(’HO -+ Ao ) + (xfl + (5](‘) X (l}
e(0) = —————— - ,
! 1+ (,'.I.'[){(,U() + Oge) + (/31 + (51(.) X (l.}

where dge and 8. are the random cohort effects for the intercept and age coeflicients,
respectively, while iy and 3y are fixed effects representing the average intercept and
age offeets for all cohorts. We assume that the ¢'s are random variables from a nor-
mal distribution with mean zero, but are autocorrelated over cohorts: dy. ~ N (0,03 ).
O ™~ 1\"(0,0(';?1), Corr(do;. dor) = ",(l)jiu and Corr(0y.dm) = 7’1[ " These are AR(1)
correlations with 4o and 41 autocorrelations respectively. Diagnostics for this assump-
tion are presented in the next section. A normal distribution is commonly used to

model random cffects.
The estimates of gy and 3y are added to the BLUP's of 8y and d;,. (sce Chapter 1),
respectively, to predict the logistic regression model’s random slopes and intercepts

for each cohort,

Lo
(@)
—

/3()(- = /3'0 =+ 5()«‘ (
/;l(‘ = (;1 + (5‘1(.. (

=1
—

These predictions are used to predict Agg and MR using ()« 1 (). The notation
" is used interchangeably between  timate and prediction. The ditference will depend

on whether the estimate of the effect is fixed (estimate) or random (prediction).

Autocorrelated Cohort and indom Year Effects

There is a great deal of spatial and temporal variation in maturity at age. and size

and maturation can he heterogencous across the range of a population (Korsbrekke,




1999: Bromley, 2000; Armstrong ct al., 2003; Gerritsen et al., 2003). If sampling doces
not. cover the full range of a population’s range or if there is ¢ 1ual variation in the
distribution of samples across the population’s range. then the calculated proportion
mature may not be representative of the popr tion.  In addition, environmental
conditions (food, terperature, cte) may be particularly good or bad in a given vear,
leading to more or less individuals making the decision to become adult. Sanpling
and envirommnental factors lead to year effects, apparent or real, when modelling the
data.

A model that accommodates vear effects for the probability that a fish from cohort

¢ is mature at age a in year y, pey(a), is

erp{(Bo + doc + 1oy) + (31 + 010) X a}
L+ (’;7?[){([}0 + (S(]v + ’]()y) + (/Jl + 51(-) X (I}.

Pey ( a ) =

In this model the random slope effects (6,.8) for age are auto-correlated, similar to
(- ). However, the random inters st effects are composed of two separate effects, an
autocorrelated cohort effect (dg.) and a simple uncorrelated vear etfect 1y, The ng,s
arc 1.1.d. N((),(r?,). Note that for this model we do not investigate additional over-
dispersion. The year effects are assunmed to account, for any additional over-dispersion

beyond the correlated random slope and intercept cohort effects.

2.2.4 Autocorrelation Diagnostics

The logistic regression intercepts and slopes (3, and 8y.) appear to be autocorrelated
over cohorts; however, there are many types of autocorrelation structures. It is -
portant to identify the basic type of autocorrelation structures to improve estimation
of Hy. and 3. Two common models are the autoregressive process with order p,
AR(p). and the moving average proc  with order ¢, MA(g). The AR(p) process
uses the idea that the present observation of some arbitrary series z; can be expla ed

as a function of the p past observations, =, 1.z 2. ....2,. where p determines the



number of steps (lags) in the past 1« 1 to forecast the current value and is defined

as

=01t oot Oz, o (2.9)

2
where ¢1. do. ..., ¢, are constants and ¢; ~ N(0, 7). The MA(g) process assumes that
the obscrved value z; can be explained as a function of the past ¢ error terms, that is,

the errors are combined linearly to form the observed data. In such cases. we write

=€ + ()1(’/ 1+ ()2(’, 9+ ..+ ()q(’,_q, (2 ))

where 0, 0,, ..., 0, arc parameters that determine the overall | tern of the process.

Identification of autocorrelation is necessarily inexact because many models that
occur in practice depend on properties of the “real world™ which cannot be deter-
mined purely by mathematics alone (Box and Jenkins, 1976). Graphical methods are
cmploved to aid in identifying autocorrelation, particularly, plots of the autocorre-
lation function (ACF) and partial autocorrelation function (PACF). The ACF and

PACF is given, for example, in Shumway and Stoffer (2000).

Table 2.1: Behavior of the ACF and PACF plots for AR(p) and MA(g) models. These
are comnon characteristics found in both the AC. and PAC., plots and are used to
indentifiy autocorrelation vtrnetire

nu\/)) :\1A((1) L
ACF sadls off Cuts off after 1ag ¢
PAC., Cuts off after Ino n Taile off

Analysis of the ACF and PACYF for FE estimates of .. 1 J). was conducted
to determine a reasonable type of autocorrelation structure to use in the ME models.

Some of the FE estimates were oce: Hnally very large (negative or positive), although



poorly determined with large standard errors. More typical estimates would also fit
the data well. This is not uncommon and often results from the correlation between
slope and intercept parameter estimators; however, although such est  ates do not
result in anomalous estimates of maturities, they can have undue influence on the
shapes of the ACF and PACF functions. A solution we propose for this problem is to
use ME predictions of the slope and intercept random cohort effects assmming sin - le
uncorrelated random errors to use in the ACE and PACF plots. These simple variance
component (VC) estimates are reduced to the mean for all cohorts, with the amc
of shrinkage depending on the estimated variance of the random effeets. Anoma-
lous estimates are much less likely compared to FE estimates. unless they explain a
substantial amount of variance. We speculate that these VC predictions provide Hr
more accurate diagnostics of the autocorrelation structure. However, validating  1s

speculation is beyond the scope of our research.

2.2.5 Prediction and Forecast Accuracy

A cross-validation procedure was performc  to measure prediction precision. A case
(i.c. data for an age and cohort) was removed and then the number mature was pre-
dicted from the remaining data. This is classified as a leave-onc-out cross-validation
(Efvon, 1983). The prediction accuracy was measured using Pearson’s \? cross-

validation statistic

[3¥3

‘\r:(‘(ﬁ]) _ V‘ Yac _A Hac(-1) . (2 )
Uac( 1)

a.

This was compared for different models and also with the Pearson’s \* goodness-of-fit

statistic

- 2
X? :V‘("""”’ . (2 )

ac P VT
a.c ¢



We denote E(Yae) = flaey Var(Yoo)  Caes flae = taepe(@), and . = noepe(a)l = pela)
as the estimate obtained using all of the data. The prediction of je,. and v, obtained
when that case was deleted is denoted as fi,( 1y and G, 1y respectively. These

statistics were computed for all ages and cohorts.

We used a retrospective anal: s to determine how accurately cach model fore-
casted maturities.  In the retrospective analysis, recent data were excluded from
estimation, then maturities were predicted three yvears ahead and compared to the
estimated logistic maturities obtained using all of the data. For example, if the retro
yvear was 1997, maturities were predicted for 1998, 1999, and 2000; that is, data for
1993-2000 were not used to obtain the predictions. Each pre ction was then com-
pared to the corresponding estimated maturities using the data for 1998, 1999, and
2000, In the FE approach. predicted maturities were computed by averaging the
three closest cohorts (Brattey et al.. 2004). An averaging procedure was also used for
recent unfinished cohorts that had msuthcient data to estimate the maturity ogive.
In the ME model approach, tt - cor  ation structure in the data was utilized to pre-
dict maturities. We examined retrospective performance for cach vear since 1995, A

retrospective metric was used to quant  the retrospective error at each age:

v’

. 2 3)

= h Ipu,y+3,y — Pay+3.Y

)

where g, 13, 15 the predicted proportion mature at age a in yo  y+3 obtained using
data up to retrospective year y < Y and Y is the last vear in the full data set. This
metric was computed for both the FE and ME models to measure their predic

aceuracy.



2.2.6 Model Checking

It is important to check the validity of the lincar binomial logistic model (sce Mc-
Cullagh and Nelder, 1989). Mis-specified assumptions, especially for the mean and
variance, can result in poor estimates and predictions. GLNNMs may be more sensitive
to variance assumptions than GLIMs. Ileagerty and Kurland (2001) demonstrated
that large biases in regression parameter estimates can occur when random et ts
are misspecificd. They recommended that careful attention be given to the random
offects model assumptions when using GLMNMs for regression inference with longitu-

dinal data, such as our maturity data.

Residual plots are widely used as a way of checking systematic departures from
assumptions in GLIMs. Lee and Nelder (1998) recommended using deviance resic s
for checking model assumptions. .o check the validity of the mean model, £(yac) =
Naepe(a), we plot and examine standard deviance residuals versus age for cach cohort
to see if there are any patterns of variability not accounted for by our model. The

hinomial standard deviance residuals are defined as

siaqn{y; — nW/d;

D, =
Vol — )

(2.11)

where d, is the contribution to the total deviance fr - observation 7, sign{y, — ;) 15
1if y; — g1, is postitve and -1 if y; — gz is negative, and hy is the idh diagonal clement.

of the hat matrix H (sce Dobson, ~102; section 6.2.6).

We augment this by plotting observed and predicted proportions mature for cach
cohort to see if there are any la  diserepancies. To check the validity of the variance
model, absolute standard deviance residuals were plotted against fitted values. An
incorrect variance function will often result in a trend in terms of the mean. Since
PROC GLIMMIX uses a pseudo-likelihood approe it does not produce deviance
residuals (which are based on maximum likelihood). therefore, for ME models we

. . . D) .
examined the mean and var  ace asstmptions using \* residuals.



Over-dispersion is a naturally occurring phenomenon in binomial data (MeCul-
lagh and Nelder, 1989). Due to such factors as population spatial heterogeneity in
maturitics and the use of trawls to collect samples (i.e. cluster samples), it 1s impor-
tant to test for over-dispersion. We nsed PROC GENMOD to fit a logistic model
using separate slopes and intercepts for cach cohort to estimate the over-dispersion
paramcter (¢). We used PROC GLII  1IX to compute estimates for ME models
with and without over-dispersion, and we compared both estimates in terms of their

variability and predictive capability.

2.3 Results

2.3.1 Fixed Effects (FE) Model

The estimates ,/}0(. ancd ,Blc varied widely across cohorts (Fig. * ', Table * ) with little
trend, but fi,r,o was much less variable and declined over the 1954 to " 700 cohorts.
MR showed no long term trend but decrcased for the 1963 cohort and increased for
the 1980 cohort. The p,, for a = 4,....8 (top pancl, Fig. ) incrcased over t e,
especially since 1990. Note t1 . the flat lines at the beginning and end of the  ne
series in the top pancl of Fig. ' rep sent the average of estimates for adjacent
cohorts used to hindeast and forecast maturities for cohorts with insutficient data for

direct estimation.

The 2 and \?, residuals (Fig. . ) are based on the terms inside of the squares
in equations . 1. and .1 . We focused on ages 4-8 because these were the ages that
covered most of the dynamic range in the maturities. Outside this range, fish are
usually either all immature (ages < 3) or all mature (ages > 9), and estimation 1s
not. controversial.  The y?, residuals were very large for some ages and years; for

nple, age 6 in 1963. The total x* and x?%, statistics (woble " .1) suggest that the

predictive fit (\%,) was much worse than the fit to all observations (y*), although



(8%
=1

this was mostly due to poor predictions for a small number of cases (Fig. - bottom
pancl).
Retrospective analyses (Fig. ) showed a high degree of variability between

foreccasted and subsequently estimated maturities for ages J4-6. The variability s
lower for older ages because the maturities at these ages have been close to one since
1995 and there is less scope for retrospective differences. We observed little to no
retrospective error for a 2> 10 because essentially all fish in all cohorts were mature at
these ages. Similarly, very few fish mat ¢ for ¢« = 4 and consequently there is little
scope for retrospective error at these ages. An extreme example of retrospective error
was age D in 2005, In 2004, this maturity value was predicted (using the average value
from the three previous years) to he 0.71. I 2005 this value was estimated to he 0.28.

This substantial difference 11 7 Hlems when estimating SSB (see Discussion).

Chi-square residuals (Fig. ) exhibited greater variability for some cohorts (e.g.
the 1967 and 1973 cohorts). Also, some minor trends in residuals were apparent at.
vounger ages for some cohorts (« 1983). 7 rge residuals occured when p.(a) was
close to one but a small number of immature fish were observed (Table ), However,

De(a@) were relatively close to the observed proportions for mo  cohorts (Fig. ).

In some years the deviance  duals mostly had the same sign (Ifig. ), similar
to the \? residuals (Fig. ). In six years 95% CI's for the mean residual did ot
cover zero which suggests some y ceffee i the data. However, the evid  ce
in not substantial because the CI for the  six years almost covered one, and no

attempt was made to control the overall error rate of the multiple coniparisons made

in Fig. '~ A Bonferonni or similar adjustnient would result in fewer significant year
cffects.
Absolute deviance residuals versus noand o= n x p (Fig. ) showed an mercas-

ing trend. We ¢ | ccted that the aver > absol e residual would be approximately
one, independent of 1 or g, if the assumed mean and variance models were appropri-

ate; however, 95% CI's for the trend in the residuals from a loess smoother did not




cover one for substantial ranges of n or ji. Normally this would mdicate the poten-
tial of model mis-specification; however, some preliminary simulations we conducted

suggested this may not be the ¢ . This point is considered further in the Discussion.

2.3.2 Autocorrelation .iagnostics

ACF and PACF plots for variance component (VC') model pr¢  ctions of the random
cohort effects for slopes and intercepts (Fig. 1) strongly suggested that the slopes
and intercepts follow an AR(1) correlation structure. VC model estimates (Fig. © )
were less variable than the correspondit - FE estimates, although the results for :i;,u
were very similar. ACE and PACF plots based on the FE model (Fig. ) did not

scem reliable because they were heavily influenced by some anomalous estimates (see

Fig. 2.12).

2.3.3 Mixed Effects (ME) Autore¢ ressive (Aid) Model

The o8 (Fig. ) from ME AR models with or without overdispersion (OD) were
much smoother than the FE estimates. The ME 13’0(.5 did not vary much between
cohorts (Table ), especially for the £ OD model. For this model a5 (Table = )
was constrained at a lower bound we used for estimation. The z}l,.s increased over
time, cspecially for the 1980 to 1990 cohorts. However, both N el xi\.-,()s were
similar to the FE model estima. (Fig. ' ). The main differences betwe 11 < ad
FE models was in M Rs, although the ME model estimates were similar with an

without OD and showed a slight declining trend.

The ME model po,s for a 4,8 (Fig. ' ) varied more smoothly over time
compared to the FE model estimates, and the AR OD model p,,s were smoother than
those from the AR NOD model. However, the basie long-term trends in matur - es
from the ME AR and FE models were the sanme,  wowit an incerease over tine,

especially sinee 1990.
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The total \? fit statistic (soble . ) was higher (i.e. worse fit) for the AR OD
model compared to the AR NOD model, and the \? statisties for both ME models
were higher than the FE model. In the ME models the variabilities of the cohort
effects are constrained, and the amount of constraint depends on o3 and (}f!. The
FE model parameters are not constrained, and this i1s why a better fit was obtained
with this model. If o5 and of in the ME models were set at, large values then these
models would At the data as well as the FE model. The AR NOD model fit b er
because (};;?U and 6§lw(‘ro larger than the AR OD model estimates (Table ). The AR

OD model used the over-dispersion paranieter ¢ to account for this extra lack-of-fit.

Fitting the data better does not mean a model predicts better. The reverse
occurs for 3Ps cod (Table 7). The AR OD model ad a smaller \* | predictive fit
statistic than the AR NOD model. The FE model had substantially poorer predin ve
performance than both ME models. This was also apparent in the \? | residuals. For
most ages and vears the ME models (Figs. .~ " and ) predicted maturities b er

than the FE model (Fig. . 1).

Similar to the FE model fit, there is evidence of vear effects in Figs. 7t and -~ 0.
In some years (i.c. follow diagonals in the figures) the residuals mostly had the same
sign, especially  or ages where maturities were not close to zero or one. This suggests
some systematic variation exists in sampled maturities that caunot be accounted for
by cohort effects. This is investigated more in the next section.

v

Retrospective results for the ME models (Fig. ) vari  more smoothly over
years compared to the FE results. Gen  lly the forecast errvor. p, from the retrospec-
tive analysis for the AR OD model was smaller than the error for the AR NOD model.
and both ME models had smaller forecast ervors than the FE model. The e itive per-
formance of these models in terms of forecast error measured by p was similar to the

relative performance in terms of \?,. However, substantial retrospective differences

still occurred in some years.

The forecasts (and hindeasts) of maturities tend toward the overall average at



a rate that depends on the autocorrelation.  If the autocorrelation is higher then
the forecasted maturities change more smoothly. The AR OD forecasted maturities
changed more slowly than the AR NOD results (Fig. . ) because 4, and 4 for the
AR OD model were greater the  the estimates for the AR NOD model (Table 7).

2.3.4 Mixed Effects Model with Random Year Effects (Y )

The ME model with autocorrelated logistic regression cohort effects (dg,. and dy,.) and
simple random year effects (ng,) definc  in equation © ~, abbreviated as AR YL, fit
the data better for ages 4-8 (Table * ) and alsc  ad better predictive fit. This model
had more potential parameters (i.e. 7,s) than the FE model which explains why it
could fit the data better. (}3 was much greater than g3 and d§1 (Table ). The s
from the AR YE model (Fig. » ) were more different than the AR NOD, AR OD,

or FE model estimates. These latter Asy’s were usually very similar.

The AR YE model Agos and M Rs in Fig. . did not directly include ny,s.  he
autoregressive vear cffects model parameters were treated like nuisance parameters
that did not reflect real changes in population maturities, but rather sampling arti-
facts. The fir,()s and M RRs were based only on ,BU(. and /31(.. We do not argue that ng,s
are nuisance parameters; however, if they are not then a single Asy and MR cannot,
be identified for each cohort. We did not include them in Fig. . to simplify the

figure and make it directly comy able with Fig.

v

The 50(5 were all close to zero (Fig. 1), which suggested that these effects were
not significant. The small value and large standard errvor for (};;30 i Table also
imdicated that (§0CS were not significant. . .ae 50(.5 from the AR OD model also did not.
scem significant. The g8 were not significantly different from zero for both me s
(Table ). The 5.5 were similar for the AR YE and AR OD models (Fig. v
Therir (ir;;’ls (Table ) were not  gn cantly di ent from zero; hov  er. unlil - A,
A1s for the AR OD and AR YE models were significant. The smooth trends in 3y

in Fig. * + also suggested the trend was real. AR YE model 1j,s were significanthy




different from zero in many years. The significant (r;; (Table ? ) demonstrated the

significant magnitude of YEs in the data.

The AR YE model p,,s (Fig. 1) were very different depending on whether
the YEs were treated as nuisance parameters (AR YE-) or not (AR YD ). In the
latter case the estimates were more variable and similar to the AR NOD or FE
model estimates, whercas in the first © e the estimates were more similar to the
AR OD estimates (Fig. ). The similarity between pg,s from the AR YE and FE
models was also evident in the similarity of the residuals (Fig. ) and cohort ogive
comparisons (Fig. '), although the AR YE model fitted the data better. Some
of the improvement in fit was apparent in the y* at ages 4-8 (top panel, Fig. ')
compared to the FE results (Fig. . ). The improvement in predictive fit (bottom
pancls) was quite clear,

The improvement in fit is better illustrated i Fig. ! ) which contains residuals
for all observed maturities and not just ages 4-8. 1¢c AR YE model produced sma v
residuals in 251 of 192 cases. More importantly, the AR YE model produced sma
residuals in 17 of 23 cases for which the FE model residuals were larger than two in
absolute value. However, the total fit for the AR YE model, 2 = 841.48, was worse
than the FE model, y2  722.61. This was due to a small number of obscrvations.
The per observation average y? was 1.71 and 1.47 for the AR YE and FE models, but.
the 1% trimmed means were 0.61 and 0.78. This indicates that for the large majority

of the observations the AR YE model fit better than the FE model.

. . . B . .
Confidence intervals for the average annual = residuals all covered zero (Fig.

' 1), This was not the case for the FE model (Fig. ). Note that there are five

large residuals, £ £5, in Fig. ' but only four in Fig. * . and in Table © . This
was because Fig, v was based on observations for all cohorts whereas Fig., “and
Table ' were base only ou the 1954-20 0 eohorts. Recall that other cohorts cc

not be reliably estimated with the FE niodel. Also, for seven other cases SAS PROC

GENMOD softwarce did not produce \? residuals for the FE model when the estimated



maturities were too close to 100% and not all fish were mature. This problem did

not occur in the AR YE model. These cases were not included in Fig, "hut v
were in Fig. . The additional cases in Fig. " * contributed one additional large

residual which was truncated to display in this figure. The total AR YE model ?
statistics reported in the previous pare ol did not include these seven cases or the

cohorts prior to 1904 of after 2000.

The retrospective results varied more smoothly the AR YE model when Ylks
were treated as nuisance parameters (AR YE-) than for the other ME models or the
FE model (Fig. ). When YEs were included as predicted parameters (AR YE+)
the retrospective results were more variable, but still usually better than the FE and

AR NOD models.

2.4 Discussion

The overall results sugg:e  that the GLMN is a more appropriate choice for modelling
maturation rates in Atlantic cod stocks compared to the GLINL . ..e GLNMAM improved
estimates of maturities, produced smaller residuals, and fit the data better for a large
majority of observations (e.g. AR YE model). Furthermore, smaller retrospective
metries and cross-validation statistics suggests that prediction and forecast accuracies

were also unproved by the GLNAL

The usual approach of fitting maturity o os seperately for cach cohort using lo-
gistic regression can lead to large diserepancies in short term predictions of unfinished
cohorts. For example, in 2004 the prediction of the estunate of the proportion mat ¢

at age 5 in 2000 was 0.70. In 2005 the revised estimate of this proportion mature was

(.30 (sce Fig. ', pancl 2). This is a very large reduction. This age substantially
contributes to the total biomass in 2004 (Brattey et. al., 2001). H e, = " a
in estimated mat  es cause T by lit one more year of data is a major source

of retrospective differences in SSB estimates between stock assessments in 2004 and
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2005. Another source is retrospective difference in estimates of abundance produced
by the stock assessment. model. A description of this problem is beyond the scope
of our work, but a recent reference dealing with this problemn is Cadigan and Farrell

(2004).

We also examined variability in terms of the binomial sample sizes. The rationale
for this is that the sampling scheme usc  to colleet the maturity data is complex  d
involves length-stratified cluster sanmipling. with post-sampling adjustiments to account
for the length distribution of the populations sampled. Explicitly dealing with this
conmplex sampling scheme is beyond the scope of this paper; however, fish are not
sampled completely at random and the effective sample size (see Kish, 1995) will be
sialler than the total number :  apled, at least for ages and cohorts that had 1 e
sample sizes. The smaller samples sizes will tend to represent clusters of size one,
in which case the effective sample size 1s the same as the total munber sampled. 1f
the nature of the sampling schenie is iimportant — »n we expect the binomial variance
assumption to be incorrect for larger values of n, and result i deviance residuals with

different variability than expected.

We use nonparametric regression methods, in particular local linear regression, to
help identify trends in residuals. Alternatively, for variance diagnostics we also bin - d
residuals and computed the average of the absolute standardized deviance residuals
in cach bin. Each bin had approximately 30 residuals (see Fig. }. However, se e
trends may be consistent with the hinomial variance model because the distribution
of the deviance residuals is not a  ws approximately normal (Pierce and Schafer,
1986). We use a parametric bootstrap procedure (sce Davidson and Hinkley, 1997)
to examine if trends in residua  are inconsistent with the binomial varianee model
(Fig. ). We notice that an inercasing trend does exist which is consistent v h

the binned residual analysis (Fig. + 1)

We prefer PROC GLINNMIX for modeling more complicated random eftects such

as those with autocorrelation, compared to marginal approaches (i.e. PROC NLMIXED).
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This is because that in a marginal approach, random effects arc integrated out of the
likelihood function, and this typically involves numerical integration. If complicated
and/or numerous randoin effects exist, the num  cal integrations may hecome ¢ 1-

plicated or computationally prohibitive.







30

Table 2.4: Mixed cffects covariance parameter estin - es (Est) with standard errors

(S.E.), for 3Ps female cod maturit Models described in Table & .
Paramcter | An ivuw AN UL Al T )
Est. S.F Est. SE Est. S.E

7, 0.273u  0.2uud | 0.0100 - [0.0265 0.0741
3, 0.0695  0.0745 | 0.0670 0.0746 | 0.0986 0.1288
Yo 0.7936  0.1396 | 0.8187 0.7773 | 0.4541  1.068
of 0.9659 0.03904 ) 0.9702 0.0348 | 0.9846  0.0211
b - - 3.0216  0.1915 - -

o’ - - - - 0.3834  0.1188

Table 2.5: Large (S £5) v? residuals (Res) from the fixed effects model (FE) and e
autocorrelated model with year cffects (AR YE) for 3Ps cod. p is the estimated (or
predicted) proportion mature.

rr Ak YE
Cohort  Age  Ros N Cohort  Age  Res P
1967 9  -va1 Uy 1966 9 -1.19 0.99
1970 9  -5.00 0.99 1967 9 -640 >0.99

1973 10 -4.41 0.99 1970 9  -4.56 0.99
1976 12 -1 35 1.99 1973 10 -13.88 >0.99
1987 8 -6.02 >099 1976 12 -16.45 >0.99
1992 8 -641 >0.99
1998
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Figure 2.13: Residuals from the autoregressive mixed-cffects model with no overdis-
persion (AR NOD) for 3Ps cod, + values are positive and x values are negative.
Size is proportional to the absolute residual. Top panel: Chi-square (\?) residuals.
Bottom panel: Cross-validation chi-square (y? ) residuals.
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Figure 2.18: Residuals from the autoregressive mixed-cffects model with vear effects

(AR YE) for 3Ps co”’ » positive and x values are negative.  Size is
proportional to the al T . b Chissquare (\?) residuals. Bottom

panel: Cross-v 77 ¢ 21) I
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Figure 2.19: Square root of absolute values of the 12 residuals from the autoregressive
mixed-effects model with year effects (AR YE) and the fixed effects (FE) model for
3Ps cod. The 1-1 line is shown (solid) and the dotted line delincates FE residuals
greater than v oo ..1e number of points above and I ow the 1:1 line 1own, and
heneath these values are the corresponding number of points whose FE residuals are
greater than v z.
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Figure 2.21: Log of absolute standardized deviance residuals.(o’s) for 3Ps cod from
the fixed effects (FE) model vs. log(n). The x’s are average absolute log deviance
resicdual in cach bin. The e's are the average log absolute de wnee residuals n cach
bin using the parametric bootstrap preodeure. Vertical lines represent the 95% C1
limits for cach averaged log absolute deviance residual in each bin using the para-
metrie bootstrap. The solid line is the fit from a loess smooher, and the dashed lines
represents the 95% confidence hmits for the smoother. The dotted line is a reference
line at log(l) = 0, and rep ents the approximate expected value of the absolute
standardized residuals,



Chapter 3

Application of GLMM: Fishcry
Survey Calibration Data

3.1 Introduction

Surveys are an important part of fisheries sctence.  They are often multi-species
bottom-trawl surveys and they are used extensively i stock assessments. The in-
formation collected is used to provide fo  casts of stock status and for many other
purposes such as determining species at risk (e.g. Smedbol ot al., 2002). The samn-
pling unit in a bottom trawl survey is  fined as the arca over the bottom covered
by a trawl towed at a fixed speed for a ixed distance. A trawl sample is comunonly
referred to as a set, or a tow. A variety of information from ¢ 1 tow is collected for
many species. In this chapter we focus on the total number ¢ 1ght for a species. A

full review of bottom trawl surveys is given in Gunderson (1993).

Multi-species surveys are ger  ally standardized in their survey protocols from
year to year. These standardized protocols include the type of net used for the survey.
the mesh size, the distance travel | per tow and the speed of the vessel. Typically
a survey trawl does not catch all the fish in the sampled (i.e. swept) arca. Some fish
avoid the net and some fish escape through the mesh. The fraction of fish canght is

commonly referred to as the trawl catchability. If the same protocols are used ecach

<t
o0



vear then the trawl catchability should remain constant and the information ¢ ceted
(i.c. catch numbers, catch weight) should primarily reflect stock size. Annual changes

in survey catches should reflect 1 changes in stock size.

Sometimes 1t is necessary to introduce a new vessel, gear tyvpe, or some other
aspeet of the fishing plan which may affect catchability and impact the continuity of
the survey time series (Lewy et al., 2004). In this case, it is important to compare the
catchabilities between the two vessels, or more generally the two survey protocols, and
derive estimates that will correct potential changes in catchability. In this chapter
we examine if a change in survey © els and trawl gear has an impact on catch 1 es

from bottom trawl surveys.

The two rescarch vessels used for the comparative ” ung study are the Canadian
Coast Guard Alfred Needler (AN) and the Canadian Coast Guard Teleost (TEL). Both
vessels have many different el acteristies. The AN s a 50m trawler and the TEL is
a 63 trawler equipped with a mo  powerful engine. The AN has been used to con-
duct multi-species trawls in the northern Gulf of St. Lawrence (NAFO Divisions 4R
and 4S, and SubDivision 3Pn; Figure .0 ) since 1990 ad had always been equipped
with a Urt 81°/114° shrimp trawl (Bourdages et al.. 2007). However, since 2004 e
TEL has been used for surveys in this region. The TEL 15 equipped with a Campe-
len 1800 shrimp trawl and hi  been used to conduct multi-species trawl surveys off
the Atlantic coast since the mid-1990s (McCallum d W sh, 2002). Differences in
vessel characteristies are listed in Table " . We  amine paired-trawl experiments
to estimate the relative difference between AN and TEL cateh rates. Cadigan et al.
(2006) conducted similar rescarch whereby paired trawl cateh rates between two “sis-
ter” vessels, the Alfred Needler and Wi :«d Templemen. were examined to estunate
differences in catchabilities (see Discussion in Section 5).

In paired-trawl experiments two vessels are fished as close together as possible to
minimize spatial heterogeneity between stock densities fished by each vessel; there-

fore any differences in catches should refleet differences in catehabilities. In the past,
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a common approach for parameter estimation was to log trar  orm the catches and
use normal linecar model analy s, This approach does not properly account for the
stochastic nature of the data since it involves arbitrary choices for deal  with zero
catches. A better approach is to treat the catches from both vessels as Poisson
or over-dispersed Poisson randonm variables, which are appropriate distributions for
count data. This approach was used by enoit and Swain (2003), but the analysis is
complex since many fish density parameters for cach tow have to be estimated (sce
Section 3.3). Pelletier (1998) assumed that catches followed a Negative Binomial -
tribution. Pelletier (1998) suggested that the number of parameters to be estimated
could be reduced if fish densities were assunied to be constant between paired tows,
or that the densities were random with the same mean between tows. However, these
assumptions will not be appropriate in a large-scale comparative fishing survey since
it is not possible to ensure that the conditions hold true. Cadigan et. al. (2006) also
assunied catches to be Poisson random variables and used an associated conditin al
distribution whereby the total catch-at-length from both vessels was treated as fi 1
This approach climinates from the 1alysis the large number of fish density para  o-
ters. The conditional approach has been used in other arcas of fisheries science such

as fishing gear (net) size-selectivity studies (e.g. Millar, 1992).

A problem with the Poisson aj  oach is that spatial variation and complex sam-
pling can lead to Poisson o -disp  ion and inaccurate estimates of standard crrors.
Benoit and Swain (2003) and Lewy ot al. (2004) used an over-dispersion parameter
to account for extra variation in the data. Cadigan et. al. (2006) addressed complex
sampling and local spatial variability in stock densi s fished between cach trawler
using a generalized linear mixed model (GLNI) which provides a flexible approach
for parameter estimation with clustered data. In this chapter, we use the conditional
distribution approach and GLMDM to analyze catch rates for paired trawl calibra-
tion studies. A compreliensive discussion of GLNNDM's can be found i, for example,

Demidenko (2004).



3.2 Methods

The objective of the comparative fishing exercise was to determine if differences in
catches exist between two vessels when ¢ AN used a Uri 817/114" survey trawl and
the TEL used a Campelen 1800 survey trawl (Parson et. al, MS 1997). Data from
paired tows were collected to quantify potential differences. Ranges in cateh sizes.
fish sizes per cateh and swept arca were colleeted. The location of the comparative
fishing was NAFO Divisons 4RS and Subdivision 3Pn (sce Fig. @ ). Tow stations

were selected randomly as a part of the survey protocol (Fig. . ).

3.2.1 Paired-trawl fishir protocols

For each fishing tow made by the AN, a parallel tow in the same direction was
conducted by the TEL. Both vessels operated at a distance of about 0.5 nautical miles
apart. In order to avoid any bias based on the positioning of one vessel compared to
the other, TEL would char > sides (port, starboard) with the AN at cach fishing tow
(Bourdages et al., 2007). If the vessels could not fish one next to the other due to
the narrowness of the stratuny, they we Id then fish simultaneously one behind e
other (about 0.5 nautical miles behind). If this situation occurred more than once,
the vessels alternated between tows. During the entire comparative fishing activi s,
the operations of one vessel had to remain visible from the other vessel’s wheelhouse.
In order to make sure that fishin - operations were conducted simultancously, fishing

operations on board the AN began at the same time as on the TEL.

Fishing operations on board the AN were conducted in the same manner as during
previous surveys, including the duration of tows (21 minutes), the towing speed (3
knots) and the ratio of trawl warp leny 1 on fishing depth (from a predefined chart
used by the AN). The duration of a tow was calculated between the time the trawler
winches stopped because the tr 18 down and the time they started again to 1 g

the trawl back in. The data ™ »nu the Scanmar probes (depth, vertical opening of the




02

trawl and distance between doors) were also recorded for cach tow.

Fishing operations on board the TEL were conduct ed according to standard proce-
dures established by the Newfoundland Region scientists for surveys using the Can - »-
len trawl. The duration of a fishit  tow was 15 minutes, calculated from the time
the Scanmar probe signalled that the trawl had hit bottom. Tow speed was 3 knots.
The ratio of trawl warp length on fishing depth was based on the chart usually used
for similar depths. As with the AN, data from the Scanmar probes (depth, vertical

opening of the trawl, door-spread and wing-spread) were recorded for each tow.

3.3 Statistical Models

The following section uses statistical models and terminology similar to Cadigan et
al. (2006). Let Ny be the number of fish at length { caught at tow station 7 hy vessel
&. We refer to cach vessel as either the test or control vessel. We assume the control
vessel (A = ¢) is the AN and the test vessel (A = ) is the TEL, although the results
could be casily adjusted if the vessels were reversed. Let Ay denote the density of

length [ fish encountered by vessel A at tow station 1.

Let ¢ denote the probability that a fish is captured, which is assumed to be e
same at cach site 7 but mav differ for cach vessel. &, and length. {0 We expect gu to
vary smoothly in terms of . The relative efficieney of the AN compared to the TEL

1s defined as

=2 (3.1)
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3.3.1 Fixed effects model

With this model we assume that cach vessel encounters the same local fish densities;
1o A = Aye = Ay for all lengths {0 If fish are ptured independently from a large

population then the cateh by the test vessel is a Poisson randc 1 variable with mean

E(Niu) = GuAi = [t (3-2)

Likewise, the cateh by the control vessel is also a Poisson random variable with mean

E(Nizc) = (/[r/\il = Prii- (3-3)

I tish enter the trawl as a Poisson process and are caught independently with prob-
ability ¢ then this is a Poisson thinning process (e.g.  Grimmett and Stirzaker,
1992). and the catch is also a Poisson random variable.  or the Poisson distribu-

tion, Var(N) = E(N).

Each p; can be estimated using a Poisson generalized lincar model (GLIN: e.g. Me-
Cullagh and Nelder, 1989) or p; can be modelled as a function of 7 and the functional
parameters estimated using a GLIN. This approach was usced by Benoit and Swain
(2003), in which they adjusted for extra Poisson variability, Var(N) = oE(N). .ae
Poisson GLIN approach is complicated since many tow stations and ler I classes

are sampled, which means there will be many g, nuisance parameters to estimate.

If trawl catches are Poisson d - -ibuted then a better approach for inferences about
pi's is to use the conditional distribution of Ny given Ny (Cox and Snell, 1989; Reid,
1995), where Ny is the total number caught at length for both vessels. Let ny; be the

observed vahie of V. The conditional distribution of N given Ny = nyy s

PriNgy=uv

M 4N r Ty - .
Ny =ny) = < l})p’, (1 —pyre—. (3.-1)
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This is @ binomial distribution where py = p/(14p;) is the probability that a captured
fish is caught by the AN (control vessel). The only unknown parameters in this

distribution are the p’s.

The mean and vartance of the binomial distribution are F(Ny) = nup and
Var(Ny) = nypi(1 = pp), respectively. I sone instances over-dispersion may arise,
Over-dispersion occurs when data have more variability than accounted for in our
niodelling assumptions. It can be caused by factors such as population spatial hot-
erogeneity and/or complex sampling. In paired-fishing experiments it is impossible to
insure that exactly the same densities (i.e. A's) are fished by cach vessel, and we think
this is a major source of over-dispersion 1 our data. An approach to deal with over-
dispersion is to use quasi-likeliliood estimation (McCullagh and Nelder, 1989) with
Viar(Ny) = ongpi(1 = pp), where ¢ is an over-dispersion parameter. Note that the
over-dispersed Poisson approach may give different inferences (e.g. standard errors)
compared to the over-dispersed binoniial approach. The binomial approach seems

perferable for reasons outlined in Cox and Snell (1989) and Reid (1995).
Assume that p; is a smooth non-negative function of length. A suitable parametric

model for pyis p(l) = exp(3y + H11). This leads to the logistic regression model

(".I‘])(Aj() + ‘jl[)
cap(By + B1)’

pil) =1 (3.5)

which 15 the canomical link fhimetion for the binomial cistribution (MceCullagh and
Nelder, 1989). This model is used in other areas of fisheries research such as fishing

gear size-selectivity studies (Millar, 1992).

The logistie regression model is referred to as the FE2 me l since there are two
fixed effects parameters to be od. We also examine a model in which 4, © 7 «d
at zero, which is referred to as the FE1 model. In this case we can also pool data over

lengths because gy is constant for all 1. We refer to this as the FEP1 model. Poc g






A mixed effects model is used to account for this error structure. A mixed model
contains both fixed parameters and random effects. We assume that the d's are
random variables fromn a normal distribution with mean zero, but are autocorrelated
over lengths: that s, §; ~ N(0,0%) and Corr(§,,.6;,) = A=l This is an AR(1)
correlation structure with v as the autocorrelation parameter. The d; are assumed
to be uncorrelated between sites; that is. Corr(d;,,d;,) = 0 for tow sites ¢ # j and

for all lengths m, 7. We use SAS/STAT®PROC GLIMMIX software for estimation.

Similar to the fixed effects models, we denote the mixed effects models with only
a vessel effect (e.g. 4 = 0) as MEL and the mixed effects model with both vessel and

length effeet as ME2. If we pool the data, we denote the method as NEPL.

3.4 Results

During the 2004 and 2005 multi-species survey in Divisions -IRS and Subdivi m
3Pn, a total of 154 successful paired tows (sets) weve completed mvolving the AN
and TEL. The sets were located in the offshore portions of ARS and 3Pu (Fig. ).
The distance between paired tows was 0.5 nautical miles. Average tow depths rar »d

from 42m in sct 74 to 396m in set 223.

Four species of fish (Table ) ore selected to assess the relative efficiency of e
AN. More fish were measured on the . ou than on the AN, Species of erab and sln ap
were also measured but are not considered here. The largest difference in cateh totals
between vessels occured for £ erican plaice. Cateh totals for Witeh flounder were

less for both vessels as compared to > other species.

3.4.1 Fixed effects model (FE1)

In this model the length parameter in (1) is fixed at zero and the interceept () is
treated as an unkuown fixed quantity to estimate. In the first analys  catches were

pooled over length classes within cach set. Estimates were signficantly different from




zero (Table ) for cach stock. Each estimate was negative indicating that the AN
had an overall lower relative efficiency than the TEL. Consistent with Table & ., all
estimates were significantly different than zero for the un-pooled analysis (Tables
and 5 i), The standard errors were smaller in the un-pooled analysis. If observations
are correlated within sets, as we expect, then these standard errors will be too small.
In this situation the pooled analysis may give more reliable results than the un-pooled
analysis, but a mixed-nodel should do even better. Note that oy was identical for
the pooled and un-pooled catches since there was no differential subsampling among

lengths (see Cadigan et. al.. 2006).

Pooled catches from cach vessel are shown in Fig. . .. The estimated relative
cfficiency from the FEPT model is shown (dashed line) as a line through the origin
with slope p = (?;I:p(/%). Catch totals were divided by the arca swept in cach tow
(scaled cateh). The scaled catches (for all sets) by the TEL were greater than the AN
for all species. The p for the four species were substantially different from one (slope

of the dotted line).

3.4.2 Mixed effects model 1 1E1)

In the first analysis catches were pooled within sets, which we refer to as the MEI
model. The random ceffects §; = 0y were assumed to be independent and identi-
cally distributed (iid) N0, 7= 1,2,... The gy es  1ates were n ative (Table . )
for cach speeies indica ™ ¢ n that the AN had a lower relative cfliciency than the
TEL and the effects were significant for all species. Note tl s (Table +  1.g.

) tended to be similar to the FEPT results but standard errors were more different
(Table ). The predicted random effects (Fig. - ) were smaller for Greenland hal-
ibut and Witch Hounder tI for Atlantic cod or American plaice. This correspe 1

to the snialler estimates of o2 for Greenland halibut and Witeh flounder (Tal » & ).

We also investigated an ME1 (not pooled over ler hs) model that assut «d the

o~ . N . .. )
dys were constant across all lengths for cach set and equal to o; which were iid N(0,07)



for ¢ = 1,2, ... This ME1 model was comparable to the MI 1 model. The un-pooled
results (Table ) were identical to the pooled results for estimates, standard errors,

and confidence intervals.

3.4.3 OQutliers 1

Outliers are common in comparative fishing experiments and are difficult to deal with
m practice, especially when one has to examine hundreds of data sets for different.

species and arcas.

The FEP1 and MEPL mode  were re-estimated after potential outliers were re-
moved (Fig. 0 ; black solid circles). The purpose of this is to shuply explore the
sensitivity of the vartous methods to outliers. Two sets (1., trawl pairs) were re-
moved for cacli species. MEDPL estimates of 3y ¢ pear to bhe more stable for Atlantic
cod and American plaice (Fig. @ ). they did not change as n h when outliers were

removed compared to FEPT results.

The vessel effeet was significant for both the FEP1 and NP1 models when two
potential outliers were remo (Tables and ), similar to the results based on

all of the data.

~ 4.4 Fixed effects moc . (FE2)

In this model, both parameters in Eq. (@) are treated as as unknown fixed quant — es
to estimate, based on the wn-pooled data. Parameter estimates, standard errors, and
confidence intervals are shown in Table . Significant differences in the relative
efhiciency were found in all four speeies. Fig. o presents the estimated pp's and the
proportion of the total cateli-at-length taken by the AN. The estimated p’s were Jess
than one, except for larger lengths of © 1erican plaice, 1 inereased with length for
three of the four stocks. This st sts that the AN had a lower catchability t m the

TEL but the differences in catchabilities decreased for larger sized fish. The observed
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proportions of catch for the AN were close to the model predictions except for small
and large lengths. The sample @ are not reflected in the proportions and would

tend to be much smaller for small and large lengths.

The length distributions of total catches and residuals are presented in Figs. -
.1 The differences in length frequencies ave large. The argest difference occured
for American plaice (Fig. - ). AN total catches per swept arca are much more
comparable to the TEL total catches per swept arca when adjusted by the relative ef-
ficiencey (pr). for all species. Some potential outliers are apparent (i.c. American plaice
and Greenland halibut), although the residuals-at-length do not deviate substantially

from zero.

3.4.5 Mixed effects model (ME2)

In the ME2 model the (Eq. ) random effects were modelled as autocorrelated
random variables.  There was a significant length cffect for American plaice and
Atlantic cod (Table @ 1), The  imated p’s were similar to the FIE2 model o
American plaice, Atlantic cod, and Witch flounder but differed for Greenland halibut

(sce Fig. " ).

The autocorrelation estimates (Table . ) for § were greater than 0.9 and the
error variance o2 >> ( which indicates that there was a substantial length depen-
deney between the within-set proportion of total catch by the AN, beyond what was
accounted for by the fixed length cffect ). The ngth distributions of total catches
and residuals are presented in F p- 0 AN total catches per pta ware
more comparable to the TEL total catches per swept area wh adjusted by the rel-
ative efficiency (p), for all species. . ..c adjusted AN catches deviate slightly more
from the TEL catches compared to the FE2 model. The predicted random effects
deviated substantially from zero which indicates the ratio ¢ cateh densities for some

lengths and sets were quite different from the overall average p;. No la » set outliers
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were apparent from the conditional chi-squared residuals, except for perhaps Ameri-
an plaice (Fig. ' ). Outliers in the FE2 analyses appear to have been accounted
for by the random effects. Standardized residuals versus length are similar to those

from the fixed etfects model.

3.4.6 Outliers 11

The FE2 and ME2 models were re-estimated after two potential outliers were removed
from the data (Fig. 3 7). These were the same sets removed for the FEP T and MEP1
models (Fig @ ; solid black cireles).  Estimates of gy and ) apear to be equally

sensitive for both models.

3.5 Discussion

The results overall suggest that there was a significant difference i cateh rates he-
tween the AN and TEL. The AN and TEL total length frequencies were substantially
different. The sign of the vessel effects for all species examined was negative which

provides evidence that the catchability of the AN was lower than the TEL.

The results from the pooled (over lengths) fixed effects GLIM suggested that
differences between vessels were « aificant. However, this model was based on e
erroncous assumption that differences in stock densities fished by each vessel were
the same. We also analyzed the pooled data using a mixed effects model with an
iid random normal intercept effect for cach set. The parameter estimates {rom this
model were similar to the estimates from the hxed effects model, but the standard
errors were larger from the mixed effects model, even though in the GLIN model
the binomial variability was adjusted for over-dispersion. Benoit and Swain (2003)
suggested that standard crro  for comparative fishin  data re too small. They
used a randomization approach to get more reasonal - standard errors; however, the

mixed-model we use appears to be an easier approach. We w  study the eflicacy of
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the fixed and mixed models for estimating relative eficiency from comparative fishis

data in the Chapter 4.

The magnitude of the differences in catchabilities appear to overwhelm any differ-
ences due to methodology, althougl, this was not the case in Cadigan et al. (2006).
These authors found that the fixed effects model incorreetly indicated significant dif-
ferences in catchabilities when these differences were  nall or nonexistent. The mixed
effects did not, although it is possible that the mixed effects model may simply have
very low power. The analyses we presented here demonstrate that when differences
in catchabilitios are large then the mixed effects approach — tecets these differences as

significant.

We also showed with the iz effects approach that exactly the same estin es
and inferences can be obtained with pooled and un-pooled data provided the random
effeets assumptions used with the un-pooled data were consistent with the pooled

data.

We suggested that differences in stock densities will not be completely random but
will vary smoothly as a function of length. When this random structure is accounted
for using a length autocorrelated random component in the logistic model for the
un-pooled, the relative efficacy was found to be significantly different. from one for
the four stocks we examined. ¥ sugy bt th  mixed effects results ave more el Hle
because the basis for statistical inference is more reliable. Hov  er, the efficacy of the
mixed model approach for estimating relative efficiency and determining statistical
significance requires further evaluation. Simulations would be u - ul for this purpose

(sce Chapter ).

We presented evidence that mixed effects models can accomodate paired trawl
outliers as well as fixed effeets models. Cadigan ct. al. (2006) found evidence that
the ME approach was more robust to some | ¢ outliers as compared to the FE
approach. This implies that the mixed effects model may be  1ore advantageous for

analyzing data when outliers are p nt.



Pooling catches within cach set may be appropriate for fixed cffects models when
catches are correlated between sets. This correlation can be accomodated for the
mixed effects model and pooling is not necessary with this approach as seen in Tables

ovand o This s advantageous  nee pooling can be problematic when catches are
subsampled differently (sce Section 2.2.2 of C'adigan et al., 2006). There is also some
loss in the precision of estimators based on poc d data, although this depends on

the amonnt of within-set correlation.

Cadigan et al. (2006) estimated relative efliciency betwec  two “sister” vessels,
the Alfred Needler and Wiltred Templeman. These vessels are sister vessels since
they were similar in terms of structure (i.c. hull geometry and — orsepower) and used
identical fishing gear (Campelen 1800 survey trawl). The results showed overall that
the mixed effects model performed better than the fixed effects model for similar

rcasons noted in this chapter,
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Figure 3.2: Top pancl: Hypothetical length distributions sampled by each trawl,
A the fish density encountered by the Alfred Needler and Ay: the fish density
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Figure 3.15: Estimates of 3y and £ from the FE2 (Fy and ME2 (M) models w1 two
potential outliers removed (FNO and MNO). Species codes: American plaice - AM;
Atlantic cod - AC; Greenland halibut - GH; WF - Witch flounder.




Chapter 4

Simulation Study

4.1 Intro« uction

Simulation studies were conducted to evaluate the reliability of parameter estimates
and associated confidence intervals for the log relative efficiency parameter () in 10
fixed effects and mixed effects models. Our simulations were based on pooled mo s

(FEPT and MEPT) from Chapter 3 on comparative fishing.

Estimation of the MEP1 moc  using the conditional pseu  »likelihood approach
(Wolfinger and O'Connell, 1993; PROC GLIMNMIX), is denoted as MIEPTe . In many
cases marginal estimation methoc  are coumonly v d with mixed effects models
(Zeger and Liar - 1986). These models est ate par eters by maximizing the  1e
likehhood, integrated over the random effects, which s different from the conditional
approach. We implen @ the marginal approach using PROC NLMINED. Estimation
of the MIEPT model using the marginal approach is denoted as MEPTm.  In this
chapter we compare the sensitivity and robustness of its parameter estimates to the

FEPI and MEP1c¢ estimates.
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4.2 Simulation Set-up

We considered three fish stocks, Atlantic cod, decpwater redfish and Greenland hal-
ibut on which to basc our simulations; that is, the sample size (number of sets and
total catch per set) was the same  from real comparative fishing data between the
two research vessels, Alfred Needler (AN) and Wilfred Templeman (WT). This  ita
was collected from the 2005 DFO Spring and Fall bottom-trawl surveys in NAFO
Divisions 3LN and Subdivison 3Ps (Fig. ..!, Chapter 2). We used the total number
of catches per tow, N, and randomly generated catches for the control vessel (i.e.
WT), N.. The control vessel catch is conditionally a binomially distributed random
variable. The probability that a captured fish is taken by the control vessel is

6»’30+6

Pe = Tenms: .

In the simulation, &y, the true fixed effect log relative efficiency parameter, ranged
from 0 to 2 in steps of 0.25 and 4, the random effect, was normally distributed with
a constant variance, 2. We chose o2 = 0.1,0.5., and 0.9 which represented typical
values of the random effect varian  (see Cadigan et al., 2006). We also chose 0® =
to check how well the mixed effects model performed when random effects did not
exist (i.e. fixed effects model). The simulation had 36 factors p species in total,

nine levels for fJ; times four leve  for .
For cach simulation, we generated ' = 2000 sets of data for cach species, esti-
mated the parameters under the various models, and computed the bias for do tor

cach factor combination (Ggs and ¢2s) and for - h model. The bias is computed as

N (B — ). (1.2)

=1

. 1
Bias(th) N

K
K

where 3 is the true parameter value and Go is the paranicter estimate of gy from
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the A simulation iteration for cach model. We examined the coverage errors for 95%%

nominal confidence intervals provided by PROC GENMOD and PROC GLIMNMIIX.

We used the profile likelihood confidence intervals (e.g. Vo o on and Moolgavkar,
1988) for the GLIM parameters provided by PROC GENMOD. Suppose d = (3, ... 13,,)
is a p x 1 veetor of tixed parameters, A profile-likelihood confidence interval for /3, is

as {ollows. Let

((43,) = max ((J) (-1.3)
3

- clement fixed at 3 and € is the log-likelihood

where 3 is the vector 3 with the
function. Hf (J(,B) 15 the log-likelihood evaluated at the maximun likelihood estimate
43, then 2([’([3) — *(3;)) has a limiting \* distribution with one degree of freedom if

i 1s the true parameter. A (1 — a)x 100% confidence interval for 3, is

{3, 0(3) > (o = ((:3) = 0.5\3_ 1} (4.4)

PROC GENMOD finds the endpoints of the confidence intervals numerically. "~ is
is achieved by starting at the maximum likelihood estimate of F and approximating
the log-likelihood with a quadratic surface, for which an exact solution is possible.
The process is iterated until convergenee to an endpoint is attained. The process is

repeated for the other endpoint.

PROC GLIMNMIX produces Wald-type confidens  intervals for the parameter es-
timates of a GLNNM. The (1 — a)x 100% Wald-type confidence interval for parameter

3 1s delined as
J, 3(14./2)55(31') (4.5)

where 21y 0y 1s the 100(1 —a/2)th perc  ile from a standard normal distribution, 3,
(1-a/2) !
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is a fixed parameter estimate. and SE(A’},) is the estimate of its standard error. PROC
CGLIMMIX produces parameter estimates for GLNMMs using pscudo-likelihood or re-
stricted pseudo-likelihood estimation (di ils given in Chapter 1). It does not pro le
profile likelihood confidence intervals because it does not use the exact likelihood for
most mixed models (recall that the likelihood can be computationally prohibitive for

many mixed models).

Since we know the true 4y values in cach simulation, we would expect about Lo 4
of the coufidence intervals (CI) we construct to contain the true parameter value.
We also investigated the power of the test
HO . HU 0
H,: 8y #0. (1.0)

We did this as follows: for each mulated dataset, we constructed a 959 CI for 4.
If this CI did not include 0, we re. .ed Hy. We counted how many times we rejected
H, among our 2000 datascts within a particular factor combination (i.c. 8y and a?)

and computed the power of the test (1.c. power curve)

O
r=—, L7
2000 (1)

where © is the number of times Hg is 1 cted. We did this for cach of the 36 factors
in the simulation study.

We also investigated the robustness of our model with respect to the assumption
of the distribution of the random effects (8). It is reasonable to assie that dens s

sampled from both the test and control vessels are independent and each follows a

eamma distribution with mean g and variance ¢p’:




1
A ~ Gamma (5,4*)#) , =12 (4.8)
It then follows that w; = log[(@u) ™' A;] is log-gamma (e.g. Lawless, 1980) with density

1 wy , .
flw)) = —5exp|——¢" ). i=12 (1.9)
I3 ¢

An appropriate probabilistic model for 4 is the difference of two log-gamma densities
(§ = wy — wy) which has a mean and variance that depends only on . In Appendix
A we derive the distribution of w; and present the mean and variance of 3. Table

' presents the values of ¢ that give us means and variances corresponding to the
normal case. Histograms and probability plots of 4 display distributions that are only

slightly skewed (see Fig. 1.0).

We repeated the simulation study using the difference of two log-gamma dis-
tributed random variables for § with choices of ¢ given in Table * ', We then esti-

2 . . . .
mated By and o2 under the (incorrect) assumption that § was normally distributed.

4.3 Results

Tubles - and ' present sumir vy statistics (pooled over lengths) of total catch per
set for the control and for the to” * from the control and test vessels, re  ectively. The
mean catch per tow was largest for deepwater redfish compared to Atlantic cod and
Greenland halibut for both the control and total vessels. The between tow variance

of catehes for cach species were quite large for both vessels.

4.3.1 Analysis with Normal Distributed Random Effects

In this analysis catches were pooled over lengths within sets. The bias of gy is given

in [ig. ', plotted against the nine fixed g, values used to erate the siimulation
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data. The bias was extremely close to zero for all models and species when random
effects were non-existent (o2 0). When random cffects existed, the bias for the
FEP1 model (solid line) was negative for most values of &y but was zero when gy = 0.
This indicated that the FEP1 model underestimated most values of 4,. The bias for
cach of the three species was worse as cach level of o2 aud 3y increased. The bias
for the MEP1¢ (dotted line) was negative for most values of 4y and got worse as the
range of 4y and 2 values increased for cach species. The MEPTe model appeared
to underestiniate 4y, although the bias was smaller compared to the FEEP1 model,
The bias for the NIEP 1 (dash-dotted line) was very small in magnitude and in some
cases equal to zero (i.c. Atlantic cod when o2 = 0.5). The MEP T model had little

to no trend over all values (4, and 2. This showed that the NIEP1m mocdel estimated

3y quite accurately.

The 95% coverage errors of confidence intervals for ¢y are presented in Figs. -
The solid line represents the lower 95% simulated cov age error, the dotted

Y simulated coverage error, an the dash-dotted  ne

line represents the upper 95
represeuts the total (upper  lower) simulated cover e errors. Coverage errors were
reasonably close to the expected levels for all models and species when random effects
were non-existant (see Fig. 0 1), although the confidence intervals obtamed from
PROC GLIMMIX performed somewhat worse. Total coverage errors produced by
the FEP1 model were Targe (>> 0.05) ~ e: © species and increased for larger vahies
of o (Figs. - ). The total co age errors for the N...’le model were closer
to the expected eritical value of 0.05. especially for deepwater redfish. Atlantic cod
and Greenland halibut produced somewhat larger coverage errors for larger values of
Jy. Coverage errors for the MEP 1T model were close to the expected levels for most
species and values of 0% with the only exceptions being Atla  ic cod (Fig. « ; row
1, column 3) and Greenland halibut (I ;. | row 3, column 3) when 0% = 0.1. In

these cases, the coverage errors for species imereased as values of &y inereased.

Fig. . displays 95% confidence interval (CI) widths of iy for cachh model. The

Cl widths were approximately equal for all models and species when random effects
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did not exist. FEP1 CI widths (solid line) were smaller over the range of iy values

compared to the MEPIe (dotted line) and MEP I (dash-dotted line) for all species
when randonm effects existed. CI widths for the MEP1e and MEPIm models v ¢
very similar for all species and . The largest differences in CI widths occured
Atlantic cod and Greenland halibut when o2 = 0.9 (Fig. « ; row 1 column -1, and

row 3 column 4, respectivelv).

Power curves are presented in Fig. . The power of the test (Eq. ) was
equivalent for cach model when random effects did not exist (Fig. - colummn 1).
For the FEP1 model (solid line), the power approached 100% when the true value of
3y > 0.5. Power curves for all three models were similar when a? = 0.1, The power of
the test tended to be weaker for FEPL as ¢ increased. This is false power however,
because at the 3 = 0 case, the FEP1 model concluded By # 0 up to 10% of the time
depending on the species and a? (i.e. Atlantic cod when @ = 0.9). This should only
happen 5% of the time, and this indicates that it is not fair to compare the type 11
error rates bhecause the type I error rate of the FEP1 test 1s quite different than the

ME tests.

4.3.2 Analysis When :.andom Effects Follow a Difference of
Two Lc¢ -Gamma Rar om Variables

Results for bias (Fig. ). ¢ % coverage error (Figs. ~ o - ), 959 CT widtl  (Fig.
v and power curves (Fig. ) are presented when the random effeets are e

difference of two log-ganuna random variables (see Section 1.2). The results for all
models were very similar to the p ious case when the random effects were normally

distributed.
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4.4 Discussion

Results from the simulation study suggested that, overall, mixed effects models ap-
peared to perform better than fixed effects models in terms ¢ bias, coverage crrors,
and power of the test for rejecting iy = 0. both when random effects were normally
distributed and when the random effects were a difference of two log-gamma random
variables. When random effects were present, and their variance was not small, the
fixed effects GLIM model performed poorly, wi substantial bias in estimates of log
relative efficiency and poor confidence intervals tor this parameter. Mixed effects

models perfornied equally as well when random effeets did not exist.

Maximum likelihood estin  ion based on the marginal likeliliood for mixed models
(c.g. PROC NLMIXED) yicelded results that e less biased than the conditional
estimation methods of PROC GLINNMIX. However. for some models we are interested
in (sce previous chapters) marginal n- hods are not feasible and it would be desi Hle
to reduce the bias in conditional estimators. Kuk (1995) and Lin and Breslow (1996).
among others; provided asvmptotic b corrections for regression parameters and
variance component estimates in GLMMs. Other possible bias reduction techniques
could mclude re-sampling techniques such as the jackknife a1 hootstrap (sce Efron,
1982; Wu, 19806, Efron and Tibshirani, 1993). or Taylor series expansion (sce X,
1971; Cook et al., 1986; Cordeiro and McCullagh, 1991). Each technique is useful for
reducing bias in parameter estimat  but there are himitations. An investigation of

hias reduction techniques is worthwhile, but beyond the scope of this practicum.

The fixed, conditional, and marginal approaches for un-pooled simulations were
also examined. In this set-up. lengths for cach species were not pooled over cach set.
Random effects were the sanie for cach length within a set, but differed between  ts.
Random effects were both normie v distributed and a difference of two log-gaimma ran-

dom variables. We ned f cffects models (FE2), mixed effects models



99

with random intercepts (ME2RI), and mixed effects models with randonm autocorre-
lated length effects within cach set (ME2AR). Conc  ional pseudo-likelithood meth-
ods were used for both the random intercept model and the autocorrelated random
length effects model, denoted as NIE2RIe and ME2ARc, respectively. The marginal
approach was applied only to the random intercept model (ME2RIm) since PROC
NLMIXED does not have an option to specify autocorrelation structures. This type
of random cffect is computationally too difficult for numerical integration and the
marginal approach. Estimates for both the fixed intercept (44)) and the fixed length
(/7)) parameters were computed, but bias of the parameter estimates and cover e
errors of confidence intervals were only considered for ). The results were similar to
those of the pooled analysis except for NIE2ARe, although. further analysis is needed

to clarify this result.

Simulations were conducted to test the efficacy of the mixed model approach for
estimating relative efficiencey. although. simulations on the variances of the estimates
would also be useful to fully understand the performance of these estimates. One
method for reporting the performance of variance estimates is to compute the mean
square crrors (MSE; sce Gunst and Mason, 1977). However, this was beyond the

scope of this practicum.

St lation studies to examine the robustt s and  msitivity of the various meth-
ods to outliers in the data would also 1 v ful. One such technique is to simulate
datasets with and without outlic  and compare parameter estimates from both sim-
ulations in terms of senstivity (imagnitude of deviation) due to outliers. However, this

was beyond the scope of tlis practicun:.
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Figure 1.2: Bias of Fy for FEP1 (solid line), NEP1c (dotted line), and MEP1m
(dash-dotted line) models. Random  fects are nort ly distributed with 0 mean and
variances 0 = 0.0,0.1,0.5.0.9. respectively. The dashed line represents the horizontal
line at 0. Rows are for species, with codes indicated at the right hand-side: AC -
Atlantic cod; DR - deepwater redfish; GH - Greenland halibut.
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Figure -£.3: 95% coverage errors of the confidence intervals from the parameter esti-
mates for FEP1. MEPIle, and MEP L models when random effects do not exist. The
solid line represents lower coverage errors, the dotted line represents upper coverage
errors, the dash-dotted line rep: mts total coverage errors (lower + upper), and the
horizontal dotted lines represent critical values o = 0.05 and 5§ = 0.7 75, Rows are
for species, with codes indicated at the right hand-side: AC - Atlantic cod; DR -
deepwater redfish; GH - Greenland halibut.
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Figure L.4: 95% coverage errors of the confidence intervals from the parameter es-
timates for FEP1, MEPIlc, and MEP1Im models. Random ctfects are normally dis-
tributed with 0 mean and variance 0% 0.1. The solid line represents lower coverage
errors, the dotted line represents upper coverage crrors, the dash-dotted line repre-
sents total coverage errors (lower + upper), and the horizontal dotted lines represent
critical values a = 0.05 and § = 0.025. Rows are for species. with codes indicated
at the right hand-side: AC - Atlantic cod; DR - deepwater redfish; GH - Greenland
halibut.
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Figure 1.5: 95% coverage errors of the confidence intervals from the parameter es-
timates for FEP1, MEP1e, and MEP1m models. Random effects are norma - dis-
tributed with 0 mean and variance 62 = 0.5. The solid line represents lower coverage
errors, the dotted line represents upper coverage crrors, the dash-dotted line repre-
sents total coverage errors (lower + upper), and the horizontal dotted lines represent
critical values a0 = 0.05 and § = 0.025. Rows are for species, with codes indicated
at the right hand-side: AC - Atlantic cod; DR - deepwater redfish; GH - Greenland
halibut.
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Figure 4.8: Power curves for FEP1 (solid line), MEPIe (dashed line), and MEPIm
(dash-dotted) with normally distributed random effects. Rows are for species, with
codes indicated at the right hand-side: AC - Atlantic cod; DR - deepwater redhsh;
GH - Greenland halibut.
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Figure 1.9: Bias of gy for FEP1 (solid line). MEP1c¢ (dotted line), and MEPIm (¢ h-
dotted line) models. Random effects are a diflerence of two log-ganma distributed
random variables with 0 me 1 and v ances a2 = 0.1,0.5.0.9, respectively,  The
dashed line represents the horizontal line at 0. Rows are for species, with codes
indicated at the right hand-side: AC - Atlantic cod: DR - ¢ Hwater redfish: GH -
Greenland halibut.
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Figure 4.11: 95% coverage errors of the confidence intervals from the parameter es-
timates for FEP1, MEPIc¢, and MEP1m models. Random effects are a differ ce
of two log-gamma distributed random variables with mean £(J) = 0 and variance
Viar(d) = 0.5. The solid line represents lower coverage errors, the dotted line rep-
resents upper coverage errors, the dash-dotted line represents total coverage errors
(lower + upper), and the horizontal dotted lines represent « ical values o )5
and § = 0.025. Rows are for species, with codes indicated at the right hand-side: AC
- Atlantic cod; DR - decpwater redfish; GH - Greenland halibut.
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Figure 4. 14: Power curves for FEP1 (solid line), MEP1Ic (dashed line), and I <Plm
(dash-dotted). Random effects are a difference of two log-gamma distributed random
variables. Rows are for species, with codes indicated at the right hand-side: AC -
Atlantic cod; DR - deepwater redfish; G.. - Greenland halibut.
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Appendix A

Derivation of a I ag-Gamma
Distribution

It is sufficient to asswme that fish densities fished by two separate vessels follow a

gamma distribution such that

1
A1 Ay ~ Gamnmna (—.([)/1) (A1)
¢

where Ap, Ay are 1id random iables, ¢ is an overdispersion parameter, and g and
ép? are the respective means and variances of both populations. T e probability
density functions of Ay and A, are

1
TN = —Afl e Mol g< A <00, i =1 (A.2)

PG o= @

o=

Now we exaniine the differen  of the log of the two densities, denoted as

: | (((m/\l/\1>
0g
( "\low
= log[(op) "M\ —log[(op) 'A)
= w; — uy (A.3)




where wy and wy are iid randor - variables, Examining w; (i = 1, 2), we can derive their

corresponding distribution functions. The Jacobians of the transformed variables are

O,
B (9'11",‘

Ji = (o). (A)

Using a transformation of va b | the corresponding distributions for «y and w

arc computed as

glw) = flope™) x |J]
1 1
= ) e ys eap (—fbu,—“""> X (Gpe)e
T(3)(@n)e e
1 " )
= —erp ( - (J““) , —oo<w; <oo, (i=1,2) (A.D)
F(g) @

which are log-gamma density functions. The mean and variance of w; are defined as

where '(/f(é) and d’)’(é) arc tl digamma and trigamma functions, respectively (see

Lawless 1982; Appendix B).

It then follows that the expected value of § = wy — wy (the difference of - vo

log-gamma random variables) is

E(@) = 7w we)




and the variance 1s

Var(6)

125

= FBlwy) — E(uws)

()

= 0 (A.8)

Var(w, — ws)

Var(uw) + Var(ws) — 2Cov(wy, u)

,,<1>+ (1>
) L —_
’ ® g ¢

20 (%) (A)

where Cov(wy,wy) = 0 since w; and w, are iid random variables.
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Table of Acr nyms
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Acronvim

]

MEP1c
MEPTIn
NL
MQL
MR
NAFO
PA
PACF
PL
PQL
REML
REPL
SE
SS
SSB
TEL
\6
WF
WT

1)OQoerinrinn

nodel with

s

nodel with

s

essel ect
parameter (pooled over lengths)

Conditional mixed effect model pooled over lengths

Marginal mixed effects model pooled over lengths
Maximum likelihood
Marginal quasi-likelihood
Maturity range
Northwest Atlantic Fisheries Orgar  ation
Population-averaged
Partial antocorrelation function
Pseudo-likelihood
Penalized quasi-likelihood
Restricted maximum likelihood
Restricted pseudo-likelihood
Standard error
Subject-specific
Spawning stock biomass
Canadian Coast Guard rescarch vessel Teleost
Variauce components
Witeh flounder
Canadian Coast Guard research vessel
Wilfred Temnleman
















