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Abstract 

The generalized linear model (GLIM) represents a versatile class of models suitable 

for several types of dependent variables. GLIMs are popular models and are often 

an appropriate choice for modelling fisheries data. However , fishery data and corre­

sponding models tend to be complex, because of the compl xity of the populations 

the data are sampled from. In this practicum we use generalized linear mixed effects 

models (GLMMs), which are GLIMs in which some parameters are random effects to 

model two different fi heries data sets. The fir t involves a time s ries of biological 

samples used to determine fish maturity, and the second involves paired-trawl catch 

da ta to det rmine if there is a difference in catch rates between two fishing vessels. 

In this re earch we find that GLMMs improve stimates of maturities in a selected 

fish stock and can be used to model differences in catch rates between fishing vessels 

effectiv ly. This re earch also suggests that prediction and forecast accuraci s ar 

improved by using GLMMs. Weal o provide some simulation results and found that, 

overall , GLMMs appear to perform better than GLIMs in terms of bias, coverage 

errors, and power tests. 
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estimates for FEP1 MEP1c, and MEP1m model . Random effect 

arc normally eli tribu ted with 0 mean and variance CJ2 = 0.9. The 

solid line re1 rc ents lower coverage lTors, the dotted line rcpre ents 

upper coverage errors, the dash-dotted line represents total coverage 

errors (lower+ upper) , and the horizontal dotted line rcpres nt ritical 

valu a: = 0.05 and % = 0.025. Rows ar for pecics, with odes 

indicated at the right hand-side: A - At lantic cod· DR - deepwater 

redfi h ; GH - Greenland halibu t. . . . . . . . . . . . . . . . . . . . . . 106 
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4.10 95% coverage errors of the confidence intervals from the parameter 

estimates for FEPl , MEP1c, and MEP1m models. Random ffects 
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mean E( 6) = 0 and varianc V ar( 6) = 0.1. The solid line r presents 
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the dash-dotted line represents total coverage errors (lower + upper), 
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estimates for FEP1, MEP1c, and MEP1m models. Random effects 

are a difference of two log-gamma distributed random variables with 

mean E(6) = 0 and variance Var(6) = 0.5. The solid line repr scnts 
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4.12 95% coverage errors of the confidence intervals from the parameter 

estima tes for FEP1, MEP1c, and MEP1m models. Ra ndom effects 

are a d ifference of two log-gamma distributed random varia bles with 

mean E(8) = 0 and varia nce V ar(8) = 0.9. The solid line represents 

lower coverage errors, the clotted line represents upper coverage errors, 

the dash-dotted line represents total coverage errors (lower + upper), 

and the horizontal clot ted lines represent critical values a = 0.05 and 

~ = 0.025. Rows are for species, with codes indicated at the right 

hand-side: AC - Atlantic cod ; DR- de pwater redfish; GH - Greenland 

halibut. 

4. 13 95% confidence width of t he parameter estima tes for FEP1 (solid line), 

MEP1c (dotted line), and MEP1m models (dash-dot ted line) . Random 

effects are a. difference of two log-gamma distributed random variables 

with 0 mean and variances CJ
2 = 0.1, 0.5, 0.9, respectively. Rows are 

for species, with codes indicated at the right hand-side: AC - Atlant ic 

112 

cod; DR - deepwater redfish ; GH - Gr enlancl halibut. . . . . . . . . . 113 
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(dash-dotted ). Random effects are a. difference of two log-gamma dis­

tributed random variables. Rows are for species, with codes indicated 
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Chapter 1 

Introduction 

1.1 Motivation 

The generaliz d linear model (GLIM; McCullagh and Neider , 1989) represents aver­

satile class of models suitable for several types of dependent variables such as ont inu­

ous, dichotomous, and count (see Neider and Wedderburn, 1972). GLIMs arc popular 

models that have been used in many research areas such as biological science , health 

ciencies, engineering and econometrics. StatSci.org (accessed May 16, 2007) present 

a selected bibliography of technical work related to this subject . 

The GLIM is often an appropriate choice for modelling fisheries data. For ex­

ample, Jiao and Chen (2004) fi t t d a GLIM for a production model and sequential 

population analysis (SPA) to assess a stock of Atlantic cod. T hey illu trat d the prob-

1 m associated with normality assumpt ions and conclud d that t he GLIM hould b 

used to i lentify appropriate error structures in modelling fish population dynamics. 

Another example of the application of GLIM's to fi sheries data is Ye et . al. (2001 ). 

In this report we use similar GLIM's, or exten ·ions that are described shortly, to 

model two very different fisheries data sets. The first involves a times ries of biological 

1 
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samples used to determine fish maturity. This important information is us d in fish 

stock assessments. The second data set involves paired-trawl catch data to determin 

if t here is a differ nee in catch rates between two fishing vessels. Thi information is 

important when interpreting fishery survey result from different vcs el , and fishery 

surveys are a fundamental component of most stock as essments. Although these 

data sets are different in nature, it t urns out that similar statistical models can be 

used to estimate important parameters from these data. 

However, fishery data and corresponding models tend to be complex, b cause of 

the complexity of t he populations th data are sampled from. Realistic models usually 

have a much larger number of parameter t han can be reliably estimated. Fortunately 

many of these parameters can b realistically viewed as random variables that can b 

described and al o predicted by a much smaller number of variance param ters. This 

makes the complex fishery models more t ractable to estimate. Hence, in our two 

fishery da ta sets, we find an advantage in u ing Generalized Linear Mixed Models 

(GLMM's), which are GLIM's in which ome parameters are actually random effect . 

The main purpose of our report i to show how to use GLM 1's to model two complex 

fishery data sets. We also provide some simulation results to assess the reliability of 

t he GLMM estimates. 

1. 2 The Generalized Linear Mixed Effects Model 

In this section we first describe the GLIM , followed by the GLMM. A GLIM consists 

of the following components: 

First , the r sponse variable vector Y = (~, .... , Y;1 ) is denoted as an n x 1 random 

vector whose distribution is from the exponential family (s Dobson, 2002). In this 

case the variance of the response depends on the mean (p, = E[Y ]) through a varianc 

function V : 



3 

( 1.1) 

where <I? i a diagonal dispersion matrix which is either known or must be estimated, 

w is a diagonal matrix of known weights for each observation, and V (J.L) is a matrix 

of the variance function. 

Secondly, a monotonic differentiable link function g(-) is specified which describes 

how the expected value J.L of t he response vector Y is related to a linear predictor 17 

g(J.L ) = 7] . ( 1. 2) 

The linear predictor incorporates information about the covariate into the model, 

77 = X '{3 , (1.3) 

where X is an n x p matrix of covariates of rank(X ) = p such that X'X is non- ingular 

and {3 is a p x 1 vector of unknown parameters which we also refer to as fixed eff cts. 

Common GLIMs include linear regression , logistic regression and Poisson regres­

sion with the corresponding identity, logit, and log link functions respectively. 

Fixed effects GLIMs are usually based on the assumption that all observations 

are independent of each other and ar not appropriate for analysis of correlated data, 

in particular , cluster d and/or longitudinal data (e.g. Zeger et. a l. 19 ). 

A generalized linear mixed effects model (GLMM) is more appropriate for t he 

analysis of correlated data. A GLMM is a natural ext n ion to the GLIM whereby 

a random effect is added to the linear predictor to accou nt for the correlation of 

the data. Many references on the method are available (e.g. Breslow and layton 

1993; Lee and Neider , 1996; Sutradhar, 2003). GLMMs ar well suited for biological 
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and medical data which normally display heterogeneous re pon cs to treatment . 

GLMM are u d extensively for d ata tha t are not normally eli t ribu ted. For example 

Gilmour et a!. (19 5) analyzed binomial data using GLMMs, and Agresti et al. 

(2000) described a variety of social science applications of GLMMs when responses 

were categori al. Another advantage of the GLMM is the ability to combine data by 

introducing multilevel random effects (see Goldstein , 1995). Xiao ct. al. (2004) cite 

numerous appli a tions of GLMMs in fisheries sciences. 

Suppose that Y is an n x 1 random vector for the observed data and o i an r x 1 

vector of random effects. The GLMM i based on t he asumption that 

1.1. = E [Yjo] = 9- 1(X {3 + Zo) (1.4) 

where g- 1 (-) i th inverse of the monotonic link function , X and {3 are defin ed a 

in ( 1.-~ ) and the m atrix Z is an n x r matrix for the random ffect . The random 

effects are u ually as umed to be norma lly eli t ributed with m an 0 and unknown 

variance-covariance matrix G. 

The GLMNI contains a linear mixed model inside the inver c li nk function, this is 

referred to as the linear predictor , 

TJ = X {J + Zo. ( 1.5) 

The varia nce of t he ob ervations conditioned on the random cffc Ls, is 

( 1.6) 

Here A
1
" is a diagonal matrix containing evaluations at 1.1. of a linear variance function 

for the GLMM and R is a variance-covarian e matrix of unknown (Wolfinger and 

O'Connell , 1993). 
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1.3 Estimation Methods for Generalized Linear Mixed 

Effects Models 

The primary interest for GLMMs is in the estimation of fixed effects; however, Liang 

and Zeger (1986) and Zeger et . a!. (1988) discuss the interpretation of their esti­

mates in terms of subject-specific (SS) and population-averaged (PA) models. A SS 

approach focu es on the estimation of the fixed effects parameters {3, the random 

effects o, and the variance of the random effect . The PA approach i primarily in­

terested in the estima tion of {3 and the marginal variance of Y which is related to 

the variance of the random effects. The random effects themselves are treated a nui­

sance parameters. An examJle of SS modelling is the best linear unbiased prediction 

(BLUP; Robinson , 1991) , a.nd an example of PA approach (applied t o count dat a.) is 

given by Thall and Vail (1990). 

Fi tting a. linear mixed model using a. likelihood approach consists of specify ing a 

distribution for the random effects and then estimating the unknown parameters using 

maximum lik lihood (ML) or restricted maximum likelihood (REML). The REML 

approach produce unbiased estimates of variance parameters in some problems (e.g. 

Harville, 1977; McGilichrist , 1994). These methods are usually r ferrcd to a.s marginal 

approaches and typically involve numerical integrations over the random effects. Th 

ML approach is also a PA approach becaus th random effects arc not e t ima.ted . 

Suppose tha t Yi is a. vect or of observed data for each of i subjects, i = 1, .. . , k. 

Yi is assumed to be independent across i, but within subject covariance is likely to 

exist because each of the elements of Yi is measured on the same subject. Assume 

t hat a random effects vector oi exists tha t is also independent across i. A suming 

an appropria te model linking Y i and oi exists (i .e. a. GLIM) and this model involves 

covariates Xi that are related to the mean ofYi condit ional on Oi, the joint probablili ty 

density function is 
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( 1. 7) 

wher p(-) i the conditional probability density function of Yi , q(-) is the probabili ty 

density function of bi, Xi is a matrix of observed explanatory variable , {3 is a vector 

of unknown parameters, R is a vector of unknown unique elements of R (the variance­

covarianc matrix of the observations), and g is a vector of unknown unique elements 

of G (the variance-covariance ma trix of the random effects) . Let {) = ({3, R , Q)' , 

likelihood inferences based about {) are based on the marginal likelihood function 

k 

M({)) =II J ... J p(YiiXi ,{3, R , bi)q(6il9 )dbj. 
t= l 

( 1. ) 

In particular , the function 

f ({) ) =- log M({)) ( 1.9) 

is minimized over {) numerically in order to estimate {), and the inverse Hessian 

(second-or ler deriva tive) matrix provides an approximate variance-covariance ma trix 

for the estimates of{) . The function f( {) ) is referred to as the negative log-likelihood 

function or the objective function for optimization. 

There are limita tions to the marginal method. Likelihood equations tend to be 

omplex and d ifficult to derive. Rarely will closed form expressions exist for the 

marginal likelihood. In some instances th data may contain a large number of random 

effects which lead to a high dimensional integra l for the ma rginal likelihood equation. 

umerical integra tion techniques have b en used such as guassian quadrature (e.g. 

Anderson and Ai tkin , 19 5; Davidian and Gallant, 1993) and Gibb sampling (Zeger 

and Karim , 1991) . High dimensional integrals can be very compu tationally intensive 

to solve numerically, and in some cases are not feasable (Stiratelli ct . al, 19 4). 
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Another approach for estimating (3, 6, G and R is the pseudo- likelihood (PL) 

and restricted pseudo-likelihood (REPL) procedure (Wolfinger and O 'Connell, 1993). 

Implementation of the PL and REPL procedure first involves lin arizing the data 

using a first order Taylor 's series approximation expanding about initial estimates of 

the fixed regression parameters and random effects. Then normal linear model theory 

is used to estimate variance param ters. The variance parameters are then used to 

estimate fixed regression parameters and predict random effects which, in turn, are 

used to linearize the data again to estimate new variance parameters. This process is 

repeated until a specific tolerance level is obtained (i.e. convergence). This procedure 

is described in more detail later in this chapter. 

Several other estimation techniques for GLMMs have appeared in the li terature. 

Breslow and Clayton (1993) pre ented two est imation procedures referred to as pe­

nalized quasi-likelihood (PQL) and marginal quasi-likelihood (MQL) , although, these 

two methods correspond to the SS and PA models of Zeger et . al. (1988) r spectively. 

As well , the implementation of PQL and MQL can be achieved using PL (Wolfinger 

and O'Connell , 1993). 

Waclawiw and Liang (1992) predicted random effects of a GLMM by iteratively 

olving a set of Stein-type estimating equations. This SS approach is similar to th 

PL in its itera tive nature, although they replace the mixed model and ML/ REML 

equations with optimal estimating equations for fixed eff cts, random effects, and 

varianc parameters. 

Sutradhar and Rao (2001) considered an exact MQL approach , however, this PA 

approach was only developed for mall values of the variance of the random effects. 

Sutrad har (2004) since improved on t he exact iQL approach by proposing an exact 

quasi-likelihood or generaliz d quasi-likelihood (GQL) method whereby the covariance 

matrix needed to construct the e timating equation has been computed for small or 

large values of the variance of th random effects. 

Lee and Neider (1996) used a hierarchical likelihood (HL) approach to e timate 



fixed parameters and random effects. In this SS approach , the random ffects were 

treated as fixed effects and then were used to obtain estimate of t he variance com­

ponents. This approach was similar to the PQL method proposed by Breslow and 

Clayton (1993). 

The PL/ REPL approach appears to be an appropriate choice and i useful for 

modelling GLMMs sine it provides a. unified framework for both SS and PA inference 

and includes PQL and MQL as special cases. As well, PL/ REPL algorithms can be 

implemented using mixed model software packages (see Section 1.3; SAS/ STAT® 

PROC GLIMMIX). 

We provide more details about the PL/ REPL approaches below, summarized from 

Wolfinger and O'Connell (1993). 

Let P and J be known estimate · of (3 and 8 and r call that 

(1.10) 

which is a vector consisting of eva lua tions of g- 1 at each component of 7] . Now let 

(1.11) 

where 

(1.12) 

is a diagonal matrix with elements consisting of the first derivative of g- 1
. ote that 

( I I I ) is a first-order Taylor series approximation of p, expanding about P and J. Re­

arranging the terms yields the expres ion 

(1.13) 
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The left-hand side is the expected value, conditional on 8 and ~ ' of 

(1.14) 

and 

(1.15) 

Thus we can consider the model 

P = X (J + ZfJ + c: (1.16) 

as a linear mixed model with pseudo-response (i.e. linear mixed pseudo-model) P 

fixed effects (3 , random effects 6, and V a1·[c:] = Var[PI6]. 

Now defin 

(1.17) 

as the marginal variance in the lin ar mixed pseudo-model, where () i a q x 1 pa rameter 

vector containing all unknown parameters in R and G and Z' is the t ran posed matrix 

for the random effects. Based on this linearized model, an obj ctive function can 

be defined , assuming the distribution of P is normal. Th maximum Jog pseudo­

likelihood for P is 

e(e, p) =-~log IV( f) ) I - ~r'V (e) - 1 r - % log(27T ) (1.18) 

and the restricted maximum log pseudo-likelihood i 
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fn(B, p) - ~log IV (B)I- ~r'V(e)- 1 r 
2 2 
1 n- k 

-- log IX 'V (e)- 1X I- - - log(21r) 
2 2 

(1.19) 

where r = p - X (X 'V (e)- 1X )- 1X'V(e) - 1p , pis a realization of the random vector 

P , n denotes the number of observation and 1.: is the rank of X . Num rica) method~ 

(i.e. Newton-Raph on quasi- ewton) arc genera lly required to maximiz e and f a 

over t he param ter e. After obtaining estimates for e, e t imatcs for {3 a nd 6 arc 

computed as 

(X 'V (B) - 1X )- 1X'V(B)- 1p 

cz'v(et 1r. 

( 1.20) 

(1.21) 

With {3 and 6 et to t he estimates the linearizat ion is re-computed ( I I') and ( I I ) 

are maximized to obtain updated e t imatc of R and G . This is iLcratcd un t il con­

vergence. This involves two levels of iteration: one for the lineariza tion and one fo r 

the estimation of the variance pa rameter in the linearized model. 

In some cas s, the conditional distribut ion may contain a calc pa ram ter (¢ =/:. 1). 

The variance function becomes 

(1.22) 

where ()* is the ovariance parameter v ctor with q - 1 elements. The matrices R * 

and G * arc re-parameterized versions of R and G in terms of¢. T h maximum log 

pseudo-likelihood for the linear mixed pseudo-model ( I .~ ) i 

e(B*' p ) =-~ log IV (B*)I - %{r'V (B*) - 1r}- %(1 + log{27r/n}) ( 1.23) 
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and the restricted maximum log pseudo-likelihood is 

-~log IV(B*)I - n; k {r'V(11*)-1r} 

1 n- k - 2log IX'V(11*)-1X I - -
2
-(1 + log{27r /(n- k)} ). (1.24) 

The solutions for ~' 8 and ¢ are 

{3 

8 

(X'V({J*)-1X )-1X'V(B*)-1p 

GZV(B*t1r 

r'V(B*) - 1r /n* 

where n* equals n for PL and n- k for REPL. 

1.4 Statistical Software Packages 

(1.25) 

(1.26) 

( 1. 27) 

A key feature of the PL/REPL method is its ability to be implemented using standard 

statistical software packages. In this practicum, we use three software procedures 

developed by the SAS Institute for estimating parameters in GLIMs and GLMMs: 

PROC GENMOD (generalized linear models), PROC NLMIXED (non-linear mixed 

effects models), and PROC GLIMMIX (generalized linear mixed effects models). Each 

method will be compared in terms of the accuracy of parameter estimates and model 

(i.e. response) predictions. 
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1.4.1 The GENMOD Procedure 

The GENMOD procedure fits a GLIM to the data by maximum likelihood estimation 

over the vector of unknown coefficients ({3). In general, there is no closed form 

solution for the maximum likelihood estimates. GE MOD e timates the parameters 

of the model using an iterative fi t ting process. The dispersion paramet r ( ¢) is also 

estimated by either maximum likelihood, by the residual deviance, or by Pearson ' 

chi-squared divided by the degrees of freedom. Covariances, standard rrors, and p­

values for the param ter estimates are computed bas d on the asymptotic normality 

of maximum likelihood estimators. 

A number of link functions and probabili ty distribution are available for the 

GENMOD procedure. The link functions include the identity, logit , probit, log, and 

complementary log-log. The distribut ions include normal, binomial, Pois on, gamma, 

inverse Gau ian, negative binomial, and multinomial. 

The GE MOD procedure has the abilility to fi t correlated response data by the 

generalized estimating equation (GEE) method (Liang and Zeger, 1986) , although we 

do not utilize this feature of the software in our analyses. 

1.4.2 The NLMIXED Procedure 

PROC TLMIXED allows you to specify, conditional on the random effects, a eli tri­

bution for the response variable that has either a standard form (normal, binomial, 

Poisson) or a general distribut ion defined by the user. PROC NLMIXED fits nonlin­

ear mixed models by maximizing an approximation to the likelihood integrated over 

the random effects. Such marginal methods are commonly used with mixed models. 

Different integral approximations are available. These includ Gaussian quadrature 

(Pinh iro and Bates , 1995) and fi rst-order Taylor series approximation (Beil and 

Sheiner , 19 ) . Successful convergence of th optimization procedure resul ts in pa­

ram eter estimates along with their standard errors based on the Hessian matr ix of 
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the likelihood function. 

The LMIXED procedure only implements maximum likelihood. This is because 

the analog to the restricted maximum likelihood method in PROC LMIXED soft­

ware would involve a high dimensional integral over all of the fixed-effects parameters, 

and this integral is typically not available in clos d form. 

1.4 .3 The GLIMMIX Procedure 

The GLIMMIX procedure fits GLMMS based on linearizations (see Section 1.3). A 

Taylor s ries expansion is used to approximate the GLMM as a linear mixed model. 

Th advantage of the linearization is that only t he variance parameters have to be 

estimated numerically because closed form expr ssions exist for the regres ion pa­

rameter estimates. The linearization method is doubly iterative. The approximate 

linear mixed mo lei is fit which is itself an iterative process, then the new parameter 

estimates are used to upda te the linearization, which results in a new linear mixed 

model. The process stops when parameter estimate betwe n sucessiv linear mixed 

model fits change within a specified tolerance. The default estimation method in 

PR.OC GLIMMIX software for models containing random effects is restricted p eudo­

likelihood (REPL). Maximum likelihood estimates of variance parameters tend to 

be biased for small sample sizes. The REPL may provide less bias d estimation of 

random effect variance parameters. 

An advantage of linearization based method is that they can u e a. relatively 

imple form of the linearized model that typically can be fit based on only the mean 

and variance in the linearized form. Models for which the marginal distribution is 

difficult , or impossible, to compute can be fit with linearization. This approach is 

well sui ted for models with correlated errors and a large number of random ef!:'ects. 

A disadvantage of this approach is t he absence of a t rue objective function and 

potentially biased estimates of covariance parameters, especially for binary data. In a 
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GLMM is not always possible to derive the exact log-likelihood of th data, therefor 

likelihood based tests and statistics are often hard to derive. PROC GLIMMIX 

produces Wald-typ t st statistics (e.g. Bu e, 19 2) and confiden intervals. 

PROC GLIMMIX software provides marginal and condit ional re iduals. Condi­

tional residual ar based on predictors of the random effects and estimate of the fixed 

effects rcgres ion parameters. The pr eli tors of the random effects arc the estimated 

best linear unbiased predictors (BLUPs) in the approximated linear mod l. 

1.5 Scope of the Practicum 

The following is an outline for the remainder of the practicum. In ha.pter 2 we 

apply the GLMM to maturity data. for a selected fish stock off the southern coast of 

Newfoundland. In Chapter 3 we apply the GLMM to fishery urvey cali bration data 

from two res arch v el fishing in the orthern Gulf of St. Lawcren c. In Chapter 

4 a simulation tudy i presented on the properties of estimators based on fishery 

calibration data. This practicum conta ins variou acroynms (i .. GLIM , GLMM), a 

table of a ronyms along with their corr sponcling descriptions is given in Appendix 

B. 



Chapter 2 

Application of GLMM: Fish Stock 

Maturities Data 

2.1 Introduction 

Generalized linear mixed models have b come an in reasingly important m thocl for 

fi sheries resear h in recent years (Xiao et al. , 2004) . These models ar uitabl for 

analyzing complex count data. Models for such data often have a large number of 

parameters to estimat , many of which an usefully b considered a random variabl s 

to improve estimation (or prediction). In thi chapter we examine the appli ati n of 

mixed model to improve estimation and infer nee for fish stock maturation rate . 

This is an important probl m in fi heri cien es. Maturation rate are fundamental 

to understanding the lynamics and productivi ty of fish stocks. Good c timates of 

maturation rat are r quired for sue e sfu l management of comm r ia.lly xploited 

fish tocks ( 0 !sen t . al. , 2005). 

The mature component of a fish to k is usually referred to as th pawning stock 

bioma s (SSB). It can b defined as th product of biomass-at-ag and proportion 

mature-at-age (maturitie ), summed ov r all ages in the tock. Good timate of 

15 
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maturities are required for good estimates of SSB. Poor estimates of maturi t ies can 

have d leterious impacts on estimation of the potential yi ld of a fi hery, population 

growth and the health of stocks (Welch and Foucher , 19 ). Maturi ties can chang 

over time because of many factors (eg. Beacham, 1983; Pitt, 1975; Templeman 

et a! , 197 ; Shelton and Armstrong, 19 3; Morgan and Colbourne, 1999) . Annual 

estimates are required ; however , the most appropriate way to produce such estimat s 

is by cohort (see Morgan, 2000). A cohort is a group of animals (or more generally 

individuals) with the same birth year. 

Biological sampling programs for fish tocks provide counts of the number matur . 

Each year such sampling produces data on the number of fish examined , th ir age, 

and the number found to be mature. The probability of maturing is an increasing 

function of age within a cohort. A common model us d to estimate maturi t ies i 

logistic regression , wh re age is the covariat . This is a fixed effects generalized linear 

model (GLIM) with a logit link fun ction (McCullagh and elder , 19 9). T his model 

is fitted to each cohort when maturity d ata for sufficient ages h ave been collected. 

However , there are problems with this ap proach . Data are updated annually for 

unfinished ( eg. r cent) cohorts and this can result in substantia l changes from year 

to year in the estimated maturi ties for tha t cohor t. For example, the maturi ty at age 

5 in 2003 estimated using cohort da ta up to 2004 can be quite different than the 2003 

est imate using da t a up to 2003. 

Often the annual trends in cohort maturit i s are fa irly smooth (see Needle et. 

al. , 2003). The purpos of this chapter to investigate if a generalized linear mix d 

effects model (GLMM) can be used to improve estimates of maturi t ies, par ticularly 

for unfini heel cohorts, by utilizing the autocorrela tion structure in cohort maturitie . 

We examine an important comm rcial species in the orthwest Atlantic, the Atlant ic 

cod (Gadus m orhua). Also, fisheries managers oft en consider changes in SSB in 

stock projections for different future management scenarios and they require that 

maturi t i s be forecasted in the next severa l years (or more) to compu te SSB 's. We 

also investigate if mixed models can improve forecasted maturit ies. 
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2.2 Materials and Methods 

2.2.1 Data 

orth Atlant ic cod data were collected during annual research vessel trawl survey 

by Fisheries and Oceans Canada. (DFO). Th trawl survey we consider involved 

towing a. scientifically-standardized fishing trawl for a fixed distance and at a fix d 

speed. Tow sites (or sets) were elected at random using a. d pth-area based tratified 

sampling design. More det ails about the surveys a re given in Chapter 3. We xamined 

da ta for cod in Northwest Atlantic Fisheries Organization ( AFO) sub-division 3Ps 

collected during 1960-2005. AFO fisheries management divisions are hown in Fig . 

.2. I . The maturity data were also collected using a length stratified sampling cheme 

(Doubleday, 1981). 

Some of the variables recorded for fish in each catch were year, cohort (year­

age), sex, age, number per catch and proportion mature per catch. Due to sex­

specific differences in maturation , females and males were treated separately (Barot 

et a.l. , 2005; Swain and Poirer , 1997). Each fish was classifi d as matur or immature 

based on the criteria of Templeman et al. (1978). The 3P cod data contained 

25810 observations in total, of which 12275 were males and 13535 were females . The 

number-per-set sampled for maturities for different years and ag s ranged from 1 to 

186. Zero atches were discarded since they provided no information on maturity. 

Observed proportions mature at age, Pa. , were calculated by taking into account the 

length frequency of the population and the length stratified sampling (Morgan and 

Hoenig, 1997) . 

2.2.2 Fixed Effects Model 

Define Pc(a) to be the probability that a fish i mature at ag a in cohort c. If fi ·h 

are sampled at random from the stock then the binomial model is appropriate to use 
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(see Cox and Snell , 1989). The binomial probability of observing Yac mat ure fish at 

age a in cohort c from a random sample of nac fish is 

The mean and variance of the binomial distribution are E (Yac) 

Var(Yac ) = nacPc(a){ (1 - Pc(a)}. 

nacPc(a) and 

It is reasonable to assume that Pc(a) is a smooth monoton increasing function of 

age within cohorts. A common model used in this situation is the fixed effects (FE) 

logistic regression mod I 

Pc(a) = exp(f3oc + fJ1c X a) 
1 + exp(f3oc + fJ1c X a) ' 

(2.2) 

which is the canonica l link function for the Binomial distribution (McCullagh and 

Neider , 1989) . This model is used in other areas of fisheries research such as fishing 

gear-selectivity studies (Millar , 1992). We used the maximum likelihood estimation 

method and SAS/STAT® PROC GENMOD (SAS Inst., 2005) to estimate the lo­

gistic regression parameters. 

Define A50 to be the age a t 50% maturity, Pc(A50 ) = 0.5. From (:..!.:..! ) this value is 

A50 = -f3f3oc and can be estimated as 
l c 

(2.3) 

where !Joe and {J1c are the estimates of the logistic regre sion parameters. The maturity 

range (M R) is d fine to be the difference between the age at 75% maturity and the 

age at 25% maturity, which is M R = A75 - A25 = Iof3g(
9

) . It can be estimated as 
l c 

-- ~ ~ log(9) 
MR = A15- A 25 = -~-· 

fJ1c 
(2.4) 
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In some instance over-dispersion may arise. Over-dispersion occur when data 

have more variability than accounted for in our modelling assumption . It can b 

caused by many factor such as population spatial heterogeneity. An approach to 

leal with over-dispersion is to use quasi-likelihood estimation (McCullagh and Neider, 

1989) with Var(Yac) = ¢nacPc(a){ 1 - Pc(a)} , where¢ is an over-dispersion 1 arameter. 

This is the approa h used in PROC GENMOD to account for over-di p rsion. 

There were in ufficient data for om cohorts to estimate model parameters. For 

example, the maturitie for the 2001 3Ps cod cohort were only ob rved at age 1 

to 4 in y a rs 2002 to 2005. This covers only the lower portion of the maturity ogive 

and doe not cover a sufficient range of age to estimate the regre sion parameters. 

Similarly, some of th earlier cohorts ar only observed at older ag · that also do 

not cover a large enough age range to est imat the model parameter . Therefore, we 

e timated param ter only for the 1954-2000 cohorts. 

2.2.3 Mix d Effects Model 

In the pr vious se t ion we con idered th parameters f3oc and f3 tc as fixed effects; 

that is, fix d I ut unknown parameters to estimate. However, th maturities tend to 

change smoothly over time and f3ocs and f3 1cs appear to be autocorr !at dover cohorts 

(i.e. time) . To account for this autocorrelation structure we us a mix d fleets (ME) 

model. Recall that data are collected each year for unfinished cohorts and additional 

data collected ach y ar can cause ub tantial changes in th param ter e timates 

from year to y ar. Accounting for the autocorrelation structur in f3oc and f31c may 

help reduce this problem . This is our main rationale for investigating a ME model 

approach. We used SAS/ STAT® PROC GLIMMIX to compute estimates for ME 

models with and without over-dispersion. We ompared both e timate in terms of 

their variability (smoothness) and pr dictive capability (described b low). 
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Autocorrelated Cohort Effects 

A model we investigate for the proportion mature-at-age is 

Pc( a) = exp{ (f3o + 8oc) + ({31 + b1c) x a} 
1 + e.~p{(f3o + 8oc) + ({31 + 8Ic) X a} ' 

(2.5) 

where 80c and 81c arc the random cohort effects for the inter pt and age coefficients 

respectively, while {30 and {31 are fixed effects representing the average intercept and 

age effects for a ll cohorts. \i\e as ume that the 8's are random variables from a nor­

mal distribution with mean zero, but a rc autocorrelated over cohort ; 8oc"' (0,0"g0 ), 

81 c "' N(O ,t7gJ, Corr·(ooj,Ook) = -yg- kl and Corr(ou,61m) = 1\L- ml . These arc AR(l) 

correlation with 'Yo and -y1 autocorrelations respectively. Diagnostics for this assump­

t ion are present d in the next section. A normal distribution is commonly used to 

model random effects. 

Thee timate of {30 and {31 are adde I to the BLUP 's of 80c and 01c (sec Chapter 1), 

respectively, to predict the logistic regression model's random slope and intercepts 

for each cohort , 

~Oc ~0 +Joe, 

fJ1c = ~~ + Jlc· 

(2.6) 

(2.7) 

These prediction arc used to predict A50 and AIR using(~ 'I) and (2 l). The notation 

• is used inter ha.ngeably between estimate and prediction. The difference wil l depend 

on whether the estimate of the effect is fixed (estimate) or random (prediction). 

Autocorrelated Cohort and Random Year Effects 

There is a great deal of spatial and temporal variation in maturity at age and size 

and maturation can be heterogeneou across the range of a population (I orsbrekke, 
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1999; Bromley, 2000; Armstrong eta!. , 2003; Gerritsen eta!. , 2003). If sampling does 

not cover the fu ll range of a popula tion 's range or if there is annual variation in t he 

distribution of samples across the population range then t he calculated proportion 

mature may not be representat ive of the population. In addition , environmental 

condition (food , temperature, etc) may be particularly good or bad in a giv n year, 

leading to more or less individuals making the decision to become adult. Sampling 

and environmental fa tors lead to year effect , apparent or real, when modelling t he 

data . 

A model that accommodates year effects for the probability that a fish from cohort 

c is mature at age a in year y , Pcv(a), is 

Pcy (a) = exp{( ,Go + 8oc + TJoy) + (,61 + c51c) X a} . 
' 1 + exp{(,Go + 8oc + TJov) + (,61 + c5Ic) X a } 

(2. ) 

In this model the random slope effects (c51cs) for age are auto-correlated , similar to 

( ~ .. -. ). However, the random intercept effects a re composed of two separate effects, an 

autocorrelated cohort effect (c5oc) and a simple uncorrelated year effect TJov· The TJoy 

are i.i .d. N(O, O"~). Note that for this model we do not investigate additional over­

dispersion. The year effects are assumed to account for any addit ional over-dispersion 

beyond the correlated random slope and intercept cohort effects. 

2 .2.4 Autocorrelation Diagnostics 

The logistic regression intercepts and slopes (,Goc and ,61c) appear to be autocorrelated 

over cohorts; however , there are many types of autocorrelation structur s. It is im­

portant to identify the basic type of autocorrelation structures to improve estimation 

of ,60c and ,61c . Two common models are the autoregressive process with order p, 

AR(p) , and the moving average process with order q, MA(q). The AR(p) proces 

uses the idea that the present observation of some arbitrary seri s Zt an be explained 

as a function of the p past observations, Zt _ 1 ,Zt - 2 o··· ,Zt - p o wh rep determines the 
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number of steps (lags) in the pa t needed to forecast the current value and is defined 

as 

(2.9) 

where ¢ 1, ¢2 , ... , ¢11 ar constants and et rv N(O, CJ;). The MA(q) process assumes that 

the observed value Zt can be explained as a function of t he pa t q error terms , that is 

t he errors are combined linearly to form the observed data. In uch cases, we write 

(2. 10) 

where e,' e2' ... ' eq are parameter. that determine the overall pattern of the process. 

Identification of autocorrelation is necessarily inexact because many models that 

occur in practice depend on properties of the "real world" which cannot be deter­

mined purely by mathematics alone (Box and Jenkins , 1976). Graphical method ar 

employed to aid in id ntifying autocorrelation , particularly, plots of the autocorre­

lation function (ACF) and partial autocorrelat ion function (PACF). The ACF and 

PACF is given, for example, in Shumway and Stoffer (2000). 

Table 2. 1: Behavior of the ACF an 1 PACF plots for AR(p) and MA(q) models. These 
are common characteristics found in both the ACF and PACF plots and are used to 
indentifiy autocorrelation structur . 

ACF 
PACF 

AR(p) 
Tails off 

Cuts off after lag p 

tiA(q) 
Cuts off after lag q 

Tails off 

Analysis of the ACF and PACF for FE stimates of f3oc and f31c was conducted 

to determine a rea onable type of autocorrelation structure to use in the ME model . 

Some of the FE estimates were occasionally very large (negative or positive) , a lthough 
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poorly determined with large standard errors. More typical estimates would also fi t 

the da ta well. This is not uncommon and often results from the correlation between 

lope and intercept parameter estimators; howev r , although such estimates do not 

result in anomalous e timates of maturities, they can have undue influence on the 

shapes of the ACF and PACF functions. A solution we propose for this problem is to 

use ME predictions of the slope and intercept random cohort effects assuming simple 

uncorrela.ted random errors to use in the ACF and PACF plots. These simple variance 

component (VC) estimates are reduced to the mean for all cohort , wit h t he amount 

of shrinka.g depending on the estimated variance of the random effect . Anoma­

lous estimates are much less likely compared to FE estimates, unless they explain a. 

substantial amount of variance. We speculate tha t these VC predictions provide for 

more accurate diagnostics of the autocorrelat ion structure. However , validating thi 

pecula tion is beyond the scope of our research. 

2.2.5 Prediction and Forecast Accuracy 

A cross-valida tion procedure was p rformed t o m asure pr diction precision. A case 

(i.e. data for an age and cohort ) was removed and then the number matur was pre­

dicted from the remaining dat a.. This is classified as a. leave-one-out cro s-va.lidation 

(Efron , 1983). The prediction accuracy was measured using Pearson s x2 cro s­

validation statistic 

X 2 = """' (Yac -!lac(- !}) 

2 

ac( - 1} ~ J • 
a ,c Vac(-1} 

(2.11) 

This was compared for different models and also with the Pearson 's x2 goodness-of-fi t 

statistic 

x~c = L (Yac ~!lac ) 
2 

a,c ~ 
(2. 12) 
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We denote E(Yac) = !-Lac, Var(Yac) = Vac, P,ac = nacPc(a), and Vac = nacPc(a) 1 - Pc(a) 

as the estimate obtained using all of the data. The prediction of !-Lac and Vac obtained 

when that case was deleted is denoted as P,ac(- 1) and Vac(- 1), respectively. These 

statistics were computed for al l ages and cohorts. 

We used a retrospective analysis to determine how accurately each model fore­

casted maturities. In the retrospective analysis, recent data were excluded from 

estimation , then maturities were predicted three years ahead and compared to the 

estimated logistic maturities obtain d using a ll of th data. For example, if t he retro 

year was 1997, maturities were predicted for 199 , 1999, and 2000; that is, data for 

199 -2000 were not used to obtain the predictions. Each prediction was then com­

pared to the corresponding estimated maturities using the data for 1998, 1999, and 

2000. In the FE approach , predicted maturit ies were computed by averaging the 

three closest cohorts (Brattey et a l. , 2004). An averaging procedur was al o used for 

recent unfinished cohorts that had insufficient data to estimate the maturity ogive. 

In the !IE model approach, the correlation structure in th data was uti lized to pre­

dict maturities. We examined retrospective performance for each year since 1995. A 

retrospective metric was used to quantify the retrospective error at each age: 

y 

P = L IPa,y+3,y- Pa ,y+3,YI, 
y= I995 

(2.13) 

where Pa,y+J,y is the predicted proportion mature at age a in year y + 3 obtained using 

data up to retrospective year y ~ Y and Y is the last year in the full data set. Thi 

metric was computed for both the FE and ME models to measure their prediction 

accuracy. 
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2.2.6 Mod I Checking 

It is important Lo check the validity of the linear binomial logistic model ( ee Mc­

Cullagh and Telder, 19 9) . Mis-specified a umptions, especially for the mean and 

variance, can r ult in poor estimates and pr dictions. GLMMs may be more sensitive 

to varian e assumptions than GLIMs. Heagerty and Kurland (2001 ) d mon trated 

that large biase in regression parameter estimates can occur when random effects 

are misspecificd. They recommended that careful attention be given to the random 

effects model assumptions when using GLMM for regression inferenc with longitu­

dinal data uch as our maturity data. 

Residual plots are widely used as a way of checking systematic departures from 

assumptions in GLIMs. Lee and Neider (199 ) recommend d using deviance residuals 

for ch eking model assumptions. To check the validity of the m an model, E(Yac) = 
nacPc(a), we plot and xa.mine standard d viance residuals ver us ag for each cohort 

to see if th r arc any patterns of variabili ty not accounted for by our model. The 

binomial standard deviance residuals are defined as 

(2 .14) 

where di is the ontribution to the total deviance from observation i, sign(yi- f..Li ) is 

1 if Yi- f..Li i po titve and -1 if Yi- f..Li i negative, and hi is the ith diagonal element 

of the hat matrix H (s e Dobson , 2002· ection 6.2.6). 

We augment thi by plotting observed and predicted proportion matur for each 

cohort to see if th r are any large di cr pancies. To check the validi ty of the varian 

model, absolute tandard deviance residual were plotted against fit ted values. An 

incorrect variance function will often rc ·ult in a trend in terms of the mean. Since 

PROC GLIMMIX use a. pseudo-likelihood approach it docs not produ e deviance 

residuals (whi h a rc based on maximum lik lihood), therefore, for ME models we 

examined the mean and variance as umption using x2 residuals. 
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Over-dispersion is a naturally occurring phenomenon in binomial data (McCul­

lagh and elder, 1989). Due to such factors as population spatial heterogeneity in 

maturities and the use of trawls to collect samples (i. e. cluster samples), it is impor­

tant to test for over-dispersion. We used PROC GENMOD to fit a logistic model 

using separate slopes and intercepts for each cohort to estimate the over-dispersion 

parameter (¢) . We used PROC GLIMMIX to compute estimates for ME models 

with and without over-dispersion , and we compared both estimates in terms of their 

variabili ty and predictive capability. 

2.3 Results 

2.3.1 Fixed Effects (FE) Model 

The estimates ~oc and ~lc varied widely across cohorts (Fig. l ..! ; Table '.2 :!) with little 

trend , but A50 was much less variable and declined over the 1954 to 2000 cohorts. 

MR showed no long term trend but decreased for the 1963 cohort and increased for 

the 1980 cohort. The Pa-v for a = 4, ... , 8 (top panel, Fig. '2.:~ ) increased over time, 

especially since 1990. Note that the flat lines at the beginning and end of th time 

series in the top panel of Fig. ~ :{ represent the average of estimates for adjacent 

cohorts used to hindcast and forecast maturities for cohorts with insufficient data for 

direct estimation. 

The x2 and x~ 1 residuals (Fig. 2. 1) are based on the terms inside of the squares 

in equations '.2. I I and l.. I '.2 . We focused on ages 4-8 because these were the ages that 

covered most of the dynamic range in the maturi ties. Outside this range, fish are 

usually either all immature (ages ~ 3) or all mature (ages 2:: 9), and estimation is 

not controversial. The x~1 residuals were very large for some ages and years; for 

example, age 6 in 1963. The total x2 and x~ 1 statistics (Table L~) suggest that the 

predictive fit (x~ 1 ) was much worse than the fit to all observations (x2
), although 
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this was mostly due to poor predictions for a small number of cases (Fig. ·> l; bottom 

panel). 

Retrospective analyses (Fig. _? ~· ) showed a high degree of variabili ty between 

forecasted and subsequently estimated maturities for ages 4-6. The variability was 

lower for older ages because the maturities at these ages have been close to one sin 

1995 and there is less scope for retrospective differences. We observed little to no 

retrospective error for a ;::=: 10 because e sentially all fish in all cohort were mature at 

these ages. Similarly, very few fish mature for a ::::; 4 and consequently there is li ttle 

scope for retrosp ctive error at these ages. An extreme example of retrospective error 

was age 5 in 2005. In 2004, this maturity value was predicted (using the average value 

from the three previous years) to be 0.71. In 2005 this value was estimated to be 0.2 

This substantial difference causes problems when estimating SSB (see Discussion). 

Chi-square residuals (Fig. '.! ti ) exhibited greater variability for ome cohorts (e.g. 

the 1967 and 1973 cohorts). Also, some minor trends in residuals were apparent at 

younger ages for orne cohorts (e.g. 1983). Large residuals occured when Pc(a) wa 

close to one but a small number of immature fish were observed (Table '.! -1 ), However , 

Pc( a) were relatively close to t he observed proportions for most cohorts (Fig. '.!. I) . 

In some years the deviance residuals mostly had the same sign (Fig . .! ·"), similar 

to the x2 residuals (Fig. '.!. 1). In six years 95% CI's for the mean residual did not 

cover zero which suggests some real year effects in the data. Howev r , the evid n 

in not substantial because the CI's for t hese six years almost covered one, and no 

attempt was made to control the overall error rat of the multiple omparisons made 

in Fig. ·>., . A Bonferonni or similar adjustment would result in fewer significant year 

effects. 

Absolute deviance residuals versus nand P, = n x p (Fig. '.!~ I ) showed an increas­

ing trend. We expected that the average absolute residual would be approximately 

one, independ nt of n or J..l , if the assumed mean and variance models were appropri­

ate; however, 95% CI's for the trend in the residuals from a lo ss smoother did not 



2 

cover on for substantial ranges of n or fl. ormally this would indicate the poten­

tial of model mis-specification; however , some preliminary simulations we conducted 

suggested this may not be the case. This point is considered further in the Di cussion. 

2.3.2 Autocorrelation Diagnostics 

ACF and PACF plots for variance component (VC) model predictions of the random 

cohort effects for slope and intercepts (Fig. l.. l 0) strongly suggested that the slopes 

and intercepts follow an AR(1) corr lation structure. VC model estimates (Fig. ·.: 12) 

were less variable than the corresponding FE estimates, although the resul ts for A50 

were very similar. ACF and PACF plots based on the FE model (Fig. ' I I) did not 

s em reliable because th y were heavily influenced by some anomalous estimates (sec 

Fig. 2.12). 

2.3.3 Mixed Effects (ME) Autoregressive (AR) Model 

The fJocS (Fig. :2 1) from ME AR models with or without overdispersion (OD) wer 

much smoother than the FE estimates. The ME f3ocs did not vary much between 

cohorts (Table :2. 1), especially for the AR OD model. For this model aL (Table :.!. I) 

was constrain d at a. lower bound we used for estimation. The f31cs increased over 

time, especially for the 1980 to 1990 cohorts. However, both ME model A5o were 

similar to the FE model estimates (Fig. :.! :! ). The main diff rences betw en ME and 

FE models was in MRs, although the ME model estimate were similar with and 

without OD and showed a slight declining trend. 

The ME model Pays for a = 4, .. . , 8 (Fig. 1 .I) varied more smoothly over time 

compared to t he FE model stimates, and the AR OD model Pays were smooth r than 

those from the AR OD model. However , the basic long-term trend in maturities 

from the ME AR and FE models were the same, showing an increase over t ime, 

especially since 1990. 
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The total x2 fit statistic (Table 2 .. !) was higher (i. e. worse fit) for the AR OD 

model compared to the AR NOD model, and the x2 statistics for both ME model 

were higher than the FE model. In the ME models the variabilities of the cohort 

effects are constrained , and t he amount of constraint depends on al and c7l
1

• The 

FE model parameters are not constrained , and this is why a better fit was obtained 

with this model. If ol and (JJ
1 

in the ME models were set at large valu s then these 

models would fit the data as well as the FE model. The AR NOD model fit better 

because al and c7l
1 
were larger than the AR OD model estimates (Table .2. 1). The AR 

OD model used the over-dispersion parameter ¢ to account for this extra lack-of-fit . 

Fitting the data b tter does not mean a. model predicts better. The rever 

occurs for 3Ps cod (Table ·2 .. ~ ) . The AR OD model had a smaller x~1 predictive fi t 

statistic than the AR NOD modeL The FE model had substantially poorer predictive 

performance than both ME models. This was also apparent in the x~ 1 r sidua.ls. For 

most ages and years th ME mod 1 (Figs. '2 1:1 and 2 I l) predicted maturities better 

than t he FE model (Fig. :.!. 1). 

Similar to the FE model fit , there is evidence of year effects in Figs. 2. 1:: and 2 I I . 

In some years (i. e. follow diagonals in the figures) the residuals mo t ly had the arne 

sign, especially for ages where maturities were not close to zero or one. This suggests 

som systematic va riation exists in sampled maturi t ies that cannot be a. counted for 

by cohort effects. This is investigated more in the next section . 

Retrospective results for the ME models (Fig. 2.~. ) varied mor smoothly over 

years compared to the FE results. Generally the forecast error , p, from the r trospec­

tive analysis for the AR OD model was smaller than the error for the AR OD model, 

and both ME models had smaller forecast errors than the FE modeL The relative per­

forman e of these mod I in terms of forecast error measured by p was simila r to the 

relative p rformance in terms of x~1 . However , substantial retrospective cliff rene s 

still oc urred in some years. 

The forecasts (and hind casts) of mat uri t ie tend toward the overall average at 
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a rate that depends on the autocorrelation. If the autocorrelation is higher then 

the forecasted maturiti s change more smoothly. The AR OD forecasted maturities 

changed more slowly than the AR NOD resul ts (Fig. :2.:)) b cause 'Yo and 11 for the 

AR OD model were great r than th estimates for the AR OD mo lei (Table :.! 1). 

2.3.4 Mixed Effects Model with Random Year Effects (YE) 

The ME model with autocorrelated logistic regression cohort ffects (Doc and D1c) and 

simple random year effects ("loy) defined in quation :2. " , abbreviated as AR YE, fit 

the data better for ages 4-8 (Table ~. {) and also had better predictiv fit . This model 

had more potential parameters (i.e. 7]oys) than the FE model which explains why it 

could fit the data better. 8-~ was much greater than 8-~o and 8-~1 (Table :!. 1). The A50s 

from the AR YE model (Fig. :!.1.-,) were more different than the AR NOD , AR 00, 

or FE model estimates. These latter A50 's were usually very similar. 

The AR YE model A50s and MRs in Fig. :.>.!.) did not directly include iJoys. The 

autoregressive year effects model parameters were treat d like nuisance parameters 

that did not reflect real changes in popula tion maturities, but rather sampling arti­

facts. The A50s and MRs were based only on ~oc and ~lc · We do not argue t hat 'T]oys 

are nuisance parameters; however, if they are not then a single A50 and MR cannot 

be identified for each cohort. We did not include them in Fig. "2.1 :t to implify the 

figure and make it directly comparable with Fig. 2.2 . 

The 6oc were all close to zero (Fig. :!.. I ti), which suggested that th se effects were 

not significant. The small value and large standard error for 8-g
0 

in Table :.! I also 

indicated that Socs were not significant. The Socs from the AR OD model al o did not 

seem significant. The 'Yos were not significantly diff rent from zero for both models 

(Table :!.I ). The S1cs w re similar for the AR YE and AR 00 models (Fig. :.! !h). 

Their 8-l
1
s (Table .!. I) were not significantly different from zero; however, unlike 'Yo 

'Y1s for the AR 00 and AR YE models were significant. The smooth t ren I in S1c 

in Fig. :.! . I fi also suggested the trend was real. AR YE model iJoys were significantly 
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different from zero in many years. The significant 8-~ (Table 2. I) demonstrated the 

significant magnitude of YEs in th data . 

The AR YE model Pays (Fig. :!. . 17) were very different depending on whether 

the YEs were treated as nuisance parameters (AR YE-) or not (AR YE+ ). In th 

latter case th estimates were more variable and similar to the AR NOD or FE 

model estimates, wher as in the first case the estimates were more similar to the 

AR OD estimates (Fig. :!. :) . The similarity between PayS from the AR YE and FE 

models was also evident in the similari ty of the residuals (Fig. :!. h) and cohort ogive 

comparisons (Fig. L l), although the AR YE model fitt d the data better. Some 

of the improvement in fit was apparent in the x2 at ages 4- (top panel, Fig. :!. I·'-' ) 

compared to the FE results (Fig. ~. J). The improvement in predictive fit (bottom 

panels) was quite clear . 

The improvement in fit is better illustrated in Fig. :!.. I !1 , which contain residual 

for all observed maturities and not just ages 4-8. The AR YE model produced smaller 

residuals in 254 of 492 cases. More importantly, th AR YE model produced smaller 

residua ls in 17 of 23 cases for which the FE model residuals were larger than two in 

absolute value. However , the total fit for the AR YE model, x2 = 841.48, was worse 

than the FE model, x2 = 722.61. This was due to a small number of obs rvations. 

The p r observation average x2 was 1.71 and 1.47 for the AR YE and FE models, but 

the 1% trimmed means were 0.61 and 0.78. This indicates that for the large majority 

of t he ob ervations the AR YE model fit better than the FE model. 

Confidence intervals for the average annual x2 residuals all covered z ro (Fig. 

~ . :!.0 ). This was not the case for the FE model (Fig. 1.'-' ). Note that there are five 

large residuals, 5 ±5, in Fig. 2.20 but only four in Fig. :!..1() and in Table "2 .. -~. This 

was because Fig. 2.:!.0 was based on observations for all cohorts whereas Fig. :2.1 !J and 

Table 2 ~~ were base only on t he 1954-2000 cohorts. Recall that other cohor ts cou ld 

not be reliably estimated with the FE model. Also, for seven other cases SAS PROC 

GENMOD software did not produce x2 residuals for the FE model when the estimated 
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maturities were too close to 100% and not a ll fi h were mature. This problem did 

not occur in the AR YE model. The e cases were not includ d in Fig . .! I !l but they 

were in Fig. :.! :.!0. The additional cases in Fig. '' :!!l contributed one additional large 

residua l which was truncated to display in this figure. Th total AR YE model x2 

statistics reported in the previous paragraph did not include these seven cases or the 

cohorts prior to 1954 of after 2000. 

The retrospective results varied more smoothly for the AR YE model when YEs 

were treated as nuisance parameter (AR YE-) than for the other ME models or the 

FE model (Fig. :.!.~• ). When YEs were included as predicted parameters (AR YE+) 

the retrospective results were more variable, but till usually better than the FE and 

AR OD models. 

2.4 Discussion 

The overall results suggest that the GLMM is a. more appropriate choice for modelling 

maturation rates in Atlantic cod tacks compared to the GLIM. The GLMM improved 

estimates of maturiti s, produced smaller residuals, and fi t the data better for a large 

majority of observations (e.g. AR YE model). Furthermor , smaller retrospective 

metrics a.nd cross-val idation ta.ti tics suggests that prediction and forecast accuracies 

were also improved by th GLMM. 

The usual approach of fitting maturity ogives seperately for each cohort using lo­

gistic regre sian can lead to large discrepancies in short term predictions of unfinish d 

cohorts. For example, in 2004 the prediction of th timate of the proportion matur 

at age 5 in 2005 was 0. 70. In 2005 the revised estimate of this proportion matur was 

0.30 (see Fig. :!.-\ panel 2). This is a very large reduction . This age sub ta.ntially 

contributes to the total biomass in 2004 (Bra ttey et. a!. , 2004). H nee, the change 

in estimated maturities caused by adding one more year of data is a major sourc 

of retrospective differences in SSB estimates betwe n stock asses ments in 2004 and 
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2005. Another source is retrospective difference in estimates of abundance produced 

by the stock assessment model. A description of this problem is beyond the scop 

of our work , but a recent reference dealing with this problem is Cadigan and Farr II 

(2004). 

We also examined variability in terms of the binomial sample sizes. Th rationale 

for this is that th sampling scheme used to collect the maturity data. is complex and 

involves length-stra tified cluster sampling, wi th post-sampling adjustments to account 

for the length distribution of the populations amp! d. Explicitly dealing with this 

complex sampling cheme is beyond the scope of this paper; however , fish are not 

sampled completely a t random and the effective ample size (see Kish, 1995) will be 

smaller than the total number sampled , at least for ages and cohorts that had large 

sample siz s. The smaller samples sizes will tend to reprcs nt clust ers of s ize one, 

in which case the effective sample size is the arne as the total number sampled . If 

the nature of the sampling scheme is important then we expect the binomial vari ance 

assumption to be incorrect for larger values of n , and r suit in deviance residuals with 

different variability than expected. 

We use nonparametric regression methods , in particular local linear regression, to 

help identify trends in residuals. Alternatively, for variance diagnostics we also binned 

residuals and computed the average of the absolute sta.nda.rdiz d deviance residuals 

in each bin. Each bin had approximately 30 residual (see Fig. :!.:! I). How ver, some 

trends may be consistent with the binomial variance model because the distribution 

of the deviance residuals is not always approximately normal (Pierce and Schafer , 

1986). We use a parametric bootstrap procedure (see Davidson and Hinkley, 1997) 

to examine if trends in residuals are inconsistent with the binomial varian e model 

(Fig. ·2:2 I ). We notice that an increasing trend does exist which is con is tent with 

the binned re idual analy is (Fig. 2.:1 J) 

W pr fer PROC GLIMMIX for modeling more complicated random effects such 

as those with autocorrelation , compared to marginal approaches (i.e. PROC LMIXED). 
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This is because that in a marginal approach, random effects are integrated out of the 

likelihood function , and this typically involves numerical integration. If complicated 

and/or numerous random effects exist, the numerical integrations may become com­

plicated or computationally prohibi tive. 
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Table 2.2: Summary statistics (over cohorts) of fixed effects model estimates and 
mixed autoregressive (AR) effects model predictions of interc pts, slope , A50 's and 
Jl.i R 's for 3Ps female cod. 

Model Parameters Summary 
Min Max Mean Variance 

Fixed effects Intercept -135.21 -6.50 -13.85 333.49 
(FE) Slope 1.03 22.57 2.33 9.33 

A 5o 4.6 7.36 6.01 0.45 
MR 0.09 2.12 1.21 0.12 

Mixed AR effects Intercept -11.30 -9.87 -10.56 0.13 
without overdispersion Slope 1.42 2.08 1.77 0.03 

(AR NOD) A 5o 4.76 7.42 6.02 0.45 
MR 1.06 1.54 1.23 0.02 

Mixed AR effects Intercept -10.44 -10.38 -10.40 < 0.01 
with overdispersion Slope 1.44 2.11 1.75 0.04 

(AR OD) A 5o 4.93 7.23 6.03 0.42 
MR 1.04 1.53 1.27 0.02 

Mixed variance Intercept -11.54 -9.02 -10.57 0.39 
components effects Slope 1.41 2.09 1.77 0.03 

(VC) A 5o 4.71 7.52 6.03 0.44 
MR 1.05 1.56 1.25 0.01 

Mixed AR effects Intercept -12.31 -9.80 -10.89 0.23 
with year effects Slope 1.44 2.18 1.77 0.04 

(AR YE) A 5o 4.52 8.21 6.24 0.63 
MR 1.00 1.52 1.26 0.02 

Table 2.3: Pearsons total x2 statistic for 3Ps female cod , ages 4-8. Models described 

in Table '2.'> . 

Atlantic cod 
Model X2 X~ 1 

Fixed Effects 401.97 61341.44 
Mixed effects AR model (no overdispersion) 41 .73 767.21 

Mixed effects AR model (overdispersion) 465.1 662.40 
Mixed effects AR model with year effects 274.09 642.96 
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Table 2.4: Mixed effects covariance parameter estimates (Est ) wi th standard errors 
(S.E .) , for 3Ps female cod maturities. Models d scribed in Table '2 '2 . 

Parameter ARNOD AROD AR YE 
Est . S.E Est. S.E Est. S.E 

ago 0.2730 0.2009 0.0100 - 0.0265 0.0741 
• 2 

0"01 0.0695 0.0745 0.0670 0.0746 0.0986 0.128 

'Yo 0.7936 0. 1396 0.8187 0.7773 0.4541 1.068 

'Yl 0.9659 0.03904 0.9702 0.0348 0.9846 0.0211 
¢ - - 3.0216 0.1915 - -
• 2 0.3834 0.1188 0"1) - - - -

Table 2.5: Large (~ ± 5) x2 residuals (Res) from the fixed eff cts model (FE) and the 
au tocorrela ted model with year effects ( AR YE) for 3Ps cod . p is the estimated (or 
predicted) proportion mature. 

FE AR YE 
Cohort Age Res p Cohort Age Res p 

1967 9 -6.41 > 0.99 1966 9 -4. 19 0.99 
1970 9 -5.00 0.99 1967 9 -6.40 > 0.99 
1973 10 -4.44 0.99 1970 9 -4.56 0.99 
1976 12 -14.35 > 0.99 1973 10 -13.88 > 0.99 
1987 8 -6.02 > 0.99 1976 12 -16.45 > 0.99 
1992 8 -7.86 > 0.99 1996 8 -6.41 > 0.99 
1998 7 -4.96 > 0.99 
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Figure 2. 1: Northwest Atlantic Fisheries Organization ( AFO) fisheries management 
divisions. 
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Figure 2.3: 3Ps cod proport ions mature at ages 4-8 vs. year. Ages 5-8 are listed at t he 
left-hand side. Top panel: Fixed-effects (FE) model. Middle panel: autoregressive 
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Figure 2.5: Retrospective analysis for 3Ps cod , ages 4-8 (listed in left margin). The 
retrospective p metric is shown in the top left-hand corner of each panel. Column 1: 
Fixed-effects (FE) model. Column 2: autoregressive (AR) mixed-effects model with 
no overdispersion (NOD). Column 3: AR model with overdispersion (OD). Column 4. 
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year-effects as predictive parameters (YE+ ). The maturity at age 5 predicted from 
the FE model using data up to 2004 is shown as a square, and the value estimated 
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Figure 2.15: Estimates for 3Ps cod . Panel 1: intercepts. Panel 2: slopes. Panel 3: 
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Figure 2. 16: Predictions of random effe ts for 3Ps cod, with 95% confi I nee intervals 
(vertical lines). Triangles and solid lines are for the autoregre ive mixed ffects model 
with overdispersion (AR OD). Circle and dashed lines are for the AR model with 
year effe ts (AR YE). 
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Figure 2.17: 3Ps cod proportions mature at ages 4- vs. year. Ages 5- arc liste I 
at the left-hand side. Top panel: Autoregressive (AR) mixed effects model with 
year eff cts as nuisance parameters (YE-). Second panel: AR with y ar ffects as 
predictive parameter (YE+ ). Third panel: a utoregressiv (AR) mixed-effects model 
with no overdispersion (NOD). Bottom panel: lnd pendent fixed effects (FE) model. 
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Figure 2. 18: Residuals from the a utoregr ssive mixed-effects model with year effects 
(AR YE) for 3Ps cod, + values are positive and x values are negative. Size is 
proportional to the absolute residual. Top panel: Chi-square (x2 ) residuals. Bottom 
panel: Cross-validation chi-square (x:. 1) re iduals. 
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Figure 2.19: Square root of absolute values of th x2 residuals from the autoregressiv 
mixed-effects model with year -ffccts (AR YE) and the fixed effe ts (FE) model for 
3Ps cod. The 1:1 line is shown (solid) and the dotted line delin a t s FE residuals 
greater than V2. The number of point abov and below the 1:1 line arc shown, and 
beneath the e value ar the corresponding number of points who e FE r siduals are 
greater than 2. 
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F igure 2.20: Absolu te values of the x2 residuals from the autoregressive mixed-effects 
model wi th year eff ct (AR YE) and the fix d effects (FE) model for 3Ps cod. T he 
1:1 line is shown (solid ) and the dotted lin delineates F E re id uals greater t han 2. 
The number of points above and 2below the 1:1 line are shown , and beneath t hese 
values ar the corresponding number of points whose FE residuals a re greater t han 
2. 
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Figure 2.21: Log of absolute standardized deviance residuals.( o's) for 3Ps cod from 
the fixed eff cts (FE) model vs. log(n). Th x 's are average absolute log deviance 
residual in each bin. The • 's are the averag log absolute deviance residuals in each 
bin using the parametric bootstrap prcodeure. Vert ical lines repre ent the 95% CI 
limits for each averaged log absolute deviance residual in each bin using the para­
metric bootstrap. The solid line is the fit from a. loess smooher, and the dashed lines 
represents the 95% confidence limits for the mooth r. The dotted line is a reference 
line at log( l ) = 0, and represents the approximate expected value of the absolute 
standardized residuals. 



Chapter 3 

Application of GLMM: Fishery 
Survey Calibration Data 

3.1 Introduction 

Surveys arc an important part of fisheries science. They are often mult i-species 

bottom-trawl surveys and they are used extensively in stock assessments. The in­

format ion collected is used to provide forecasts of t ock status and for many other 

purposes u h a.s determining speci sat risk (e.g. Smedbol et al. , 2002). T he sam­

pling unit in a. bottom t rawl survey is defined as the a.r a. over the bottom covered 

by a t rawl towed at a. fixed speed for a fixed distance. A trawl sample is commonly 

referred to as a. set , or a. tow. A variety of information from each tow is collected for 

many species. In this chapter we focus on the total number caught for a. species. A 

fu ll review of bottom trawl surveys is given in Gunderson (1993) . 

M ul t i-spccies surv ys are generally standardized in their urvey protocols from 

year to year. These standardized protocols inc! ude the type of net used for the surv y, 

t he mesh size, the distance travell d per tow and the peed of the vessel. Typically 

a. surv y t rawl does not catch all the fish in t he a.mpled (i.e. swept) area.. Some fish 

avoid t h net and some fish escape through t he m sh . The fraction of fi h a ught is 

commonly referred to as the t rawl catcha.bili ty. If the same protocols are used a.ch 
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year then the trawl catchability should remain constant and the information collected 

(i .e. catch numbers, catch weight) should primarily reflect tock size. Annual change 

in survey catches should reflect annual changes in stock size. 

Sometimes it is neces ary to introduce a new vessel, gear type, or some oth r 

asp ct of the fishing plan which may affect catchability and impact the continuity of 

the survey time series (Lewy et a!. , 2004). In t his case, it is important to compare the 

catchabilities between the two vessels, or more generally the two survey protocols, and 

derive estimates that will correct potential changes in catchabili ty. In this chapter 

we examine if a change in survey vessels and trawl gear has an impact on catch rates 

from bottom trawl surveys. 

The two research vessels used for the comparative fishing tudy are th Canadian 

Coast Guard Alfred Needler (AN) and the Canadian Coast Guard Teleost (TEL). Both 

ves els have many different characteristics. The AN is a 50m trawler and the TEL is 

a 63m trawler equipped with a more powerful engine. The AN has been used to con­

duct multi-sp cies trawls in the northern Gulf of St. Lawrence (NAFO Divisions 4R 

and 4S, and SubDivision 3Pn ; Figure :1 I ) since 1990 and had always been equipped 

with a Uri 81'/114' shrimp trawl (Bourdages et a!. , 2007). However , since 2004 the 

TEL has been used for surveys in this region. The TEL is equipped with a Campe­

len 1800 shrimp trawl and has been used to conduct multi-species trawl surveys off 

t he At lantic coast since the mid-1990s (McCallum and Walsh, 2002). Differences in 

vessel characteristics are listed in Ta ble :l.J . We examine paired-trawl experiments 

to estimate the relativ difference between A and TEL catch rates. Cadigan t a!. 

(2006) conducted similar research wher by paired trawl catch rates b tween two "sis­

ter" vessels, t he Alfr d Needler and Wilfred Templemen, were xamined to estimate 

differences in catchabilities (see Discussion in S ction 5). 

In pair d-trawl experiments two v s els are fi hed as close together as possible to 

mm1m1z patial heterogeneity between stock densities fished by each vessel; there­

fore any differences in catches should ref! ct differ nces in catchabilities. In t he past, 
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a common approach for parameter estimation was to log transform th catches and 

use normal linear model analysis. This approach does not properly account for the 

stochasti nature of the data since it involv s arbitrary choices for dealing with zero 

catch s . A better approach is to treat the catches from both vessels as Poisson 

or over-dispersed Poisson random variables, which are appropriate distributions for 

count data . This approach was used by Benoit and Swain (2003) , but the analysis is 

complex ince many fish density parameters for each tow have to be estimated (see 

Section 3.3). Pelletier (1998) assumed that catches followed a egative Binomial dis­

tribution. P 11 tier (1998) sugge t ed that the number of parameters to be estimated 

could b reduced if fish densities were assumed to be constant between paired tow , 

or that the densities were random with the same mean between tows. However, these 

assumptions will not be appropriate in a large-scale comparat ive fishing survey since 

it is not possible to ensure tha t the conditions hold t rue. Cadigan et. a l. (2006) also 

assumed catches to be Poisson random variable and used an associated conditional 

distribution whereby the total catch-at-length from both vessels was treated as fixed. 

This approach elimina tes from the analysis the large number of fish density parame­

ters. The conditional approach has been used in other areas of fisheries cience such 

as fishing gear (net) size-selectivity studies (e.g. Millar , 1992) . 

A problem with the Poisson approach is that spatial variation and complex sam­

pling can lead to Pois on over-dispersion and inaccurate estimates of standard rrors. 

Benoit and Swain (2003) and Lewy et al. (2004) used an over-dispersion parameter 

to account for extra variation in the data. Cadigan ct . al. (2006) addressed complex 

sampling and local spatial variability in stock densities fished betw n each trawler 

u ing a generalized linear mixed model (GL tiM) which provides a flexible approach 

for parameter estimation with clustered data. In this chapter , we use the conditional 

distribution approach and GLMM to analyze catch rates for paired t rawl calibra­

tion studies. A comprehensive discu sion of GLMM's can be found in, for example, 

D midenko (2004) . 
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3.2 Methods 

The objective of t he comparative fishing exercise was to determine if differ nces in 

catches exist between two vessels when the AN used a Uri 81'/114' survey trawl and 

the TEL used a Campelen 1800 survey t rawl (Parson et. al, MS 1997). Data from 

paired tows were collected to quant ify potential differences. Ranges in atch sizes, 

fish sizes per catch and swept area were collected . The location of th comparativ 

fish ing was NAFO Divisons 4RS and Subdivision 3Pn (see Fig. :l I ). Tow stations 

were selected randomly a a part of the urvey protocol (Fig. :u). 

3.2.1 Paired-trawl fishing protocols 

For each fishing tow made by the AN , a parallel tow in the same direction was 

onducted by t he TEL. Both v ss I operated at a distance of about 0.5 nautical mile 

apart. In order to avoid any bias based on the positioning of one vessel compared to 

the other, TEL would change side (port, starboard) with the A at each fishing tow 

(Bourdages et al. , 2007). If t he vessels could not fish on next to the other due to 

the narrowness of the stratum, they would then fi h simultaneously one behind the 

other (about 0.5 nautical miles behind) . If this situation occurred more t han once, 

the vessels alternated between tows. During the ent ire comparative fishing activi ties, 

the operations of one vessel had to remain visible from the other ve sel 's wh -elhouse. 

In ord r to ma ke sure that fishing operations were conducted simultaneously, fishing 

operations on board the AN began at the same t ime as on the TEL. 

Fishing op rations on board the AN were conducted in the same manner as during 

previous surveys, including t he duration of tows (24 minutes), the towing speed (3 

knots) and the ratio of trawl warp length on fishing depth (from a predefined chart 

used by the A ). The duration of a tow was calculated between the tim th trawl r 

winches stopped because the t rawl was down and the time they started again to bring 

the trawl back in . The data from the Scanmar probes (depth, vertical opening of the 
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trawl and distance between doors) were also recorded for each tow. 

Fishing operations on board the TEL were conducted according to standard proce­

dures established by the Newfoundland Region scientists for urveys using the Campe­

len t rawl. The duration of a fishing tow was 15 minutes, calculated from the t ime 

the Scanmar probe signa lled that the trawl had hi t bottom. Tow sp eel was 3 knots. 

The ra tio of t rawl warp length on fishing depth was based on the chart usually used 

for similar depths. As with the A , data from the Scanmar probes (d pt h, vertical 

opening of the trawl , door-spread and wing-spread) were recorded fo r each tow. 

3.3 Statistical Models 

The following section uses sta tistical models and terminology imilar to Cadigan et 

al. (2006) . Let Nilk be the number of fish at length l caught at tow station i by vessel 

k. 'vVe refer to each vessel as either the test or control vessel. We assume the control 

vessel (k = c) is the AN and the test vessel (k = t) is the TEL, although the resul ts 

could be easily adjusted if t he vessels were reversed. Let A ilk denote the density of 

length l fi sh encountered by vessel k at tow station i. 

Let Qlk denote the probability that a fish is captured , which is assumed to be the 

arne a t each site i but may differ for each vessel, k, and length, l . We expect Qlk to 

vary smoothly in terms of l. The relative efficiency of the A compared to t he T EL 

is defined as 

(3. 1) 
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3.3.1 Fixed effects model 

With this model we assume that each vessel encounters the same local fish densities; 

i.e. Ailt = Aile = Ail for all lengths l. If fi h are captured independ ntly from a larg 

population then the catch by the test vessel is a Poisson random variable with mean 

(3.2) 

Likewise, t he catch by the control vessel is also a Poisson random variable with mean 

(3.3) 

If fish enter the trawl as a Poisson process and are caught independently with prob­

ability q then this is a Poisson thinning process (e.g. Grimmett and Stirzaker , 

1992) , and the catch is also a Poisson random variable. For the Poisson distribu­

tion , Var(N) = E(N) . 

Each p1 can be estimated using a Poisson generalized linear model (GLIM; e.g. Mc­

Cullagh and Neider , 1989) or p1 can be modelled as a function of l and the functional 

parameters estimated using a GLIM. Thi approach was used by Benoit and Swain 

(2003) , in which they adjusted for extra Poisson variability, Var(N) = ¢E(N). Th 

Poisson GLIM approach is complicated since many tow stations and length classes 

are sampled , which means there will be many f.L i tt nuisance parameters to estimate. 

If trawl catches are Poisson distributed then a better approach for inferences about 

p1's is to use the conditional d istribution of Nilk given Nil (Cox and Snell , 19 9; R id , 

1995), where Nil is the total number caught at length for both ves els. Let nil be the 

observed value of Nil · The condi t ional distribution of Nilt given Nil =nil is 

(3.4) 
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This is a binomial distribution where p1 = pL/(1 +p1) is the probability that a captured 

fish is caught by the A (control vessel). The only unknown parameters in thi 

distribution are the Pt's . 

The mean and variance of the binomial distribution ar E(Nilt) = nilPt and 

Var(Nw) = nilPt(1- Pt), respectively. In some instances over-dispersion may arise. 

Over-dispersion occurs when data have more va riability t han accounted for in our 

modelling assumptions. It can be caused by factors such as population spatial h t­

erogen ity and/or complex sampling. In paired-fishing experiments it is impossible to 

insure that exactly the same densities (i .e. ,\ 's) are fished by each vessel, and we think 

this is a major ·ource of over-dispersion in our data.. An approach to deal with over­

dispersion is to use quasi-likelihood estimation (McCullagh and Neider , 19 9) with 

V ar(Nilt) = ¢nilPt(1 - Pt), where¢ is an over-dispersion pa rameter. ote that t he 

over-eli persed Pois on approach may give different inferences (e.g. standard errors) 

compared to the over-dispersed binomial approach. The binomial approach seem 

perfera ble for reasons outlined in Cox and Snell (1989) and Reid (1995). 

Assume that p1 is a. smooth non-negative function of length . A sui table parametric 

model for p1 is p(l) = exp({30 + {31l ). This leads to the logistic regression mo lei 

(3.5) 

which i the canonical link function for th binomial d istribution (McCullagh and 

Neider , 1989). This mod 1 is used in other areas of fi sheries research such as fishing 

gear size-selectivi ty studies (Millar , 1992). 

The logistic regression model is referred to as t he FE2 model since there are two 

fixed effects parameters to be est imated . We also examine a model in which {31 is fixed 

at zero, which is referred to as the FE1 model. In this case we can also pool data over 

lengths because p1 is constant for all l. We refer to this as the FEP1 model. Pooling 
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is commonly used to avoid complications that arise when within-set catches are corre­

lated. We use th maximum likelihood e timation method and SAS/STAT@PROC 

GE MOD oftwar to e timate the logistic regre sion parameters. 

Further adj ustments are required du to variations in tow distance by ea h vessel 

at each tow site. Eq . (:l :2) and ('U ) can be multiplied by Aik, the swe1 t area of 

vessel kat tow station i and the A parameters can b thought of a· a density p r uni t 

of wept area. It i th n ea y to show that 

log ( 1 ~ilPil ) = (30 + (31l +log ( ~:: ) . (3.6) 

The last term in the logi t ic regression model is treated as an off et (Me ullagh and 

Neider , 19 9). The adjustments are presented for the FE2 model, but the resul ts can 

be used the same way with mixed effects mod 1 pres nted in the n xt ection . 

3.3.2 Mixed effects model 

In this approach we do not assume that Aile = Aw. Let Oil = log( Aile/ Aw) and let Zil 

be the offset term as defined in (:t(i). The model for the AN proportion of atch is 

( 
Pil ) Jog -

1
-- = fJo + fJ 1l + Zil +Oil· 
- Pil 

(3.7) 

If the length eli tributions of fish encountered by both vessels are exactly the arne 

then oi1 = 0. In practice this does not normally happen since the length distributions 

can be different, and the differences may vary systematically with I ngth. This is 

illustrated in F ig. 'l .'>. In this hypothetical example the TEL caught larg r fish 

than the AN and oi1 lecreased with length. We uggest that in general Ou will vary 

moothly with I ngth. However, we exp ct that for each length l the variations in Oil 

will be indep ndent between site (i.e. uncorrelat d across tow sites). 
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A mixed effects model is used to account for this error structure. A mixed model 

contains both fixed parameters and random effects. We assume that the 8's are 

random variables from a normal distribution with mean zero, but are autocorrelated 

over lengths; that i., 8u rv N(O , a~) and Corr(8im, 8in) = /lm-nl. This is an AR(l ) 

correlation structure with 1 as the autocorrelation parameter . Th 8il are assumed 

to be uncorrelated between sites; that i , Corr(5im, 8jn) = 0 for tow ites i =/=- j and 

for all lengths m , n. We use SAS/ STAT@ PROC GLIMMIX software for estimation. 

Similar to the fixed effects models, we denote the mixed effects models with only 

aves el effect (e.g. {31 = 0) as MEl and the mixed effects model with both ves el and 

length effect as ME2. If we pool t he data, we denote the method as fEPl. 

3.4 Results 

During the 2004 and 2005 mul ti-species urvey in Divisions 4RS and Subdivision 

3Pn, a total of 154 successful paired tows (sets) were completed involving the A 

and TEL. The ets were located in the offshore portions of 4RS and 3Pn (Fig. '1.:1). 

The distance between paired tows was 0.5 nautical miles. Average tow depths ranged 

from 42m in set 74 to 396m in set 223. 

Four species of fish (Table :L:!) were s lected to assess the relative ffi iency of t he 

AN. More fi h were measured on the TEL than on the AN. Sp ci s of crab and shrimp 

were also measured but are not considered here. Th largest difference in catch totals 

between vessels occur d for American plaice. Catch totals for Witch flou nder were 

less for both vessels as compared to t he other species. 

3.4.1 Fixed effects model (FEl) 

In th is model the length parameter in ( . ~ ll ) is fixed at zero and the intercept (fJo) is 

treated as an unknown fixed quantity to estimate. In the first analysis catches were 

pooled over length classes within each set. E timates were signficantly different from 
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zero (Table :u) for each stock. Each estimate was negative indicating that the AN 

had an overall lower relative effici ncy than the TEL. Consistent with Table :U, all 

estimates were significantly different than zero for the un-pooled analysis (Tables :u 
and :;. 1). The standard errors were smaller in the un-pooled analysis. If observations 

are correlated within sets, as we xpect, then these standard errors will be too small. 

In this situation the pooled analysis may give more reliable results than the un-pooled 

analysis, but a mixed-model should do even better. Note that {30 was identical for 

the pooled and un-pooled catches since there was no differential subsampling among 

lengths (see Cadigan et. a!., 2006). 

Pooled catches from each vessel arc shown in Fig. :1 I. The estimated relative 

efficiency from the FEP 1 model is shown (dashed lin ) as a line through the origin 

with slope p = exp({30 ) . Catch totals were divided by the area swept in each tow 

(scaled catch) . The scaled catches (for all sets) by the TEL were gr ater than the A 

for all species. The p for the four species were substantially different from one (slope 

of the dotted line). 

3.4.2 Mixed effects model (MEl) 

In the first analysis catches were pooled within sets, which we refer to as the MEPl 

model. The random effects bi = '2:1 bil were assumed to be indep ndent and identi­

cally distributed (iid) N(O ,a-2 ), i = 1, 2, ... The /30 estimates were negative (Table ;{:-,) 

for each species indicating again that the AN had a lower relative efficiency than the 

TEL and the effects were significant for all species. Note that ~0s (Table :\ :l; Fig . 

. ;, l) tended to be similar to the FEPl resul ts but standard error wer more dift'erent 

(Table :Ll). Th predicted random eft'ects (Fig . . L I) were smaller for Greenland hal­

ibut and \N'itch flounder than for Atlantic cod or American plaice. This corresponds 

to the smaller estimates of CJ
2 for Greenland halibut and Witch flounder (Table ;:,:-, ). 

We also investigated an MEl (not pooled over lengths) model that assumed the 

bils were constant across all length for each set and equal to bi which were iid N(O,a-2
) 
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for i= 1, 2, ... This MEl model was comparable to the MEPl model. The un-pooled 

results (Table :1 h) were identical to the pooled results for estimates, standard errors, 

and confid nee intervals. 

3.4.3 Outliers I 

Outliers are common in comparative fishing experiments and are difficult to deal with 

in practice, especially when one has to examin hundreds of data sets for different 

species and areas. 

The FEPl and MEPl models were re-estimated after potential outl iers were re­

moved (Fig. :1 . 1; black solid circles) . The purpose of this i to simply explore the 

sensitivity of the various methods to outliers. Two sets (i. e. trawl pairs) were re­

moved for ach speci . MEPl estimates of (30 appea r to be more stable for Atlantic 

cod and American plaice (Fig. :L~1 ), t hey did not change as much when out liers were 

removed compared to FEPl result . 

The vessel effect was significan t for both the FEPl and MEPl models when two 

potential outliers were r moved (Tables T I and :\:-, ), similar to the results based on 

all of the data. 

3.4.4 Fixed effects model (FE2) 

In this model, both parameters in Eq. ( :~ . i> ) are tr ated as as unknown fixed quantit ies 

to estimate, based on the un-pooled data. Parameter estimates, standard rrors , and 

confidence intervals are shown in Table .L<l. Significant differences in the relative 

efficiency were found in all four species. Fig. ::,() presents the estimated p1' and th 

proportion of the total catch-at-length taken by the AN. The estimated Pt's were less 

than one, except for larg r 1 ngths of American plaice, and increased with length for 

three of the four stocks. This suggests that the AN had a lower catchability than the 

TEL but the differences in catchabilit ies decreased for larger ized fish. The ob erved 
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proportion of catch for the A were close to the model predictions except for small 

and large lengths. The sample sizes are not reflected in the proportions and would 

tend to be much smaller for small and large lengths. 

The l ngth distributions of total catches and residuals are presented in Fig . •)-
. J. I -

:~.I 0. The differences in length frequencies are large. The largest difference occured 

for American plaice (Fig. :l. 7). AN total catches per sw pt area arc much more 

compa rable to the TEL total catches per swept area. when adjusted by the relative ef­

ficiency (p1) , for all sp cics. Some potential outliers are appar nt (i. e. American pla.ic 

and Greenland halibut) , although the residual -at-length do not deviate substantially 

from zero. 

3.4.5 Mixed effects model (ME2) 

In the ME2 model the (Eq. :'> I) random effects were modelled as autocorrela.ted 

random variables. There wa a. significant length effect for American plaice and 

Atlantic cod (Table :t I 0). The estimated p1's w r similar to the F E2 model for 

American plaice, Atlantic cod, and Witch flounder but differed for Greenland halibut 

(see Fig. Tri). 

T he autocorrelation stimates (Table :~ I 0) for o were gr ater than 0.9 and th 

error variance IJ
2 > > 0 which indicates that there was a. substantial length dep n­

dency between the within-set proportion of total catch by the A , beyond what was 

accounted for by the fixed length efl:'ect {31 . The length distributions of total catches 

and residuals are presented in Figs. ·~ . 11 -:t I I. AN total catches per swept area are 

more comparable to the TEL total catches per swept area when adjusted by the rel­

a tive efficiency (p1), for all speci . The adj usted AN catches deviate slightly more 

from t he TEL catches compared to the FE2 model. The predicted random effects 

deviated substantially from zero wh ich indicat s th ratio of catch densities for some 

lengths and sets were quite difl:'erent from the overall average p1. o larg set outlier 
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were apparent from the conditional chi-squared re iduals, except for perhap Ameri­

can pla ice (Fig. :L I I ). Outliers in t he FE2 analyses appear to have been accounted 

for by the random effects. Standardized residuals versus length are similar to tho e 

from the fixed effects model. 

3.4.6 Outliers II 

The FE2 and ME2 models were re-estimated after two potential outliers were removed 

from the data (Fig. T !.-,). These were the same sets removed for t he FEPl and MEPl 

mod Is (Fig :~ 1; solid black circles) . Estimates of (30 and (31 apear to be equally 

s nsitive for both model . 

3.5 Discussion 

The resul ts overall suggest that there was a significant difference in catch rates be­

tween th A and TEL. The A and TEL total! ngth frequencie were substantially 

different. The sign of the vessel effects for all species examined was negative which 

provides evidence that the catchabili ty of the A was lower than the TEL. 

The results from the pooled (over lengths) fixed effects GLIM suggested that 

differ nces betwe n v s els were significant. However , this model was based on th 

erroneous assumption that differences in stock densities fished by each ves el were 

the same. We also analyzed the pooled data using a mixed effects model with an 

iid random normal intercept eff ct for ach set. The parameter estimates from this 

model were similar to the estima tes from the fixed effects model, bu t the tandard 

errors were la rger from the mixed effects model, even though in t he GLIM model 

the binomial variabili ty was adju ted for over-disp rsion. Benoit and Swain (2003) 

suggested tha t standard errors for comparat ive fishing data were too small. T hey 

used a randomization approach to get more reasonable standard errors; however , the 

mixed-model we use appears to be an easier approach. We will study the -fficacy of 
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the fixed and mixed models for estimating relativ efficiency from comparative fishing 

data in the Chapter 4. 

The magnitude of the differences in catchabilities appear to overwhelm any differ­

ences du to methodology, although , this was not the case in Cadigan et al. (2006). 

These authors found that the fixed effects model incorrectly indicated ignificant dif­

ferences in catchabilities when these differences w re small or nonexistent. The mixed 

effects did not, although it is possible that the mix d effects model may simply have 

very low pow r. The analyses we presented here demonstrate that when differences 

in catchabilities are large then the mixed effects approach detects these differences as 

significant. 

W also showed with the mixed effects approach that exactly t he same estimates 

and inferences can be obtained with pooled and un-pooled data provided the random 

effects a sumptions used with the un-pooled data were consistent with the pooled 

data. 

We sugg steel that differences in stock densities will not be completely random but 

will vary smoothly as a function of length. When this random structur is accounted 

for using a length au to correlated random component in the logistic model for the 

un-pooled , the relativ efficacy was found to b significantly different from one for 

the four stocks we examined. We suggest these mixed effects results are more reliable 

because the basis for statistical inference is more reliable. However, the efficacy of the 

mixed model approach for estimating relative effici ncy and determining statistical 

significance requires further evaluation. Simulations would be useful for this purpose 

(see Chapter 4). 

We presented evidence that mixed effects models can accomodate paired trawl 

outliers as well as fixed effects models. Cadigan et. al. (2006) found evid nee that 

the ME approach was more robust to some large outliers as compared to the FE 

approach. This implies that the mixed effects model may be more advantageous for 

analyzing data when outliers are present. 
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Pooling catches within each set may be appropriate for fixed ffects mod Is when 

catches are correlated between sets. This correlation ca.n b a.ccomodated for th 

mixed effects model a.nd pooling is not necessary with this a.pproa.ch as seen in Table 

;L,-, a.nd :ui. This is advantageous since pooling ca.n be probl ma.tic when catch s a.re 

subsampled differ ntly (see Section 2.2.2 of Cadigan et a.l., 2006). Th re is a.lso some 

loss in the precision of estima tors based on pooled da.ta, although this depends on 

the amount of within-set correlation. 

Cadigan et a.!. (2006) estimated relative efficiency between two "sister" vessels, 

the Alfred Needler a.nd Wilfred Templeman. These vessels a.re i ter vess Is since 

they were similar in terms of structure (i.e. hull geometry a.nd horsepower) and used 

identical fishing gea.r (Ca.mpelen 1800 survey t rawl). The results show d overall tha.t 

the mixed effects model performed better than the fixed effects model for similar 

reasons noted in this chapter. 



73 

Table 3.1: Differences in vessel characteristics of the Canadian Coast Guard ve sels 
Alfred Ne dler (A ) and Teleost (TEL). 

Parameter 
Length (m) 

Breadth (m) 
Draft (m) 

Displacement (t) 
Power (hp) 

Winch System 
Warp Diameter (mm) 

AN 
50.3 
11 .0 
4.9 
958 
2600 

fixed brake 
2 .6 

Warp Weight (kg/m) unassigned 

TEL 
63.0 
14.2 
7.2 

2215 
4000 

autotrawl 
25.4 
3.0 

Table 3.2: Catch summaries. Nc and Nt are the AN and TEL measured catches. n 
is the total number of obsevations (lengths and tows) where Nt + Nc > 0. 

Species n Nc Nt Nt + Nc NtfNc 
American plaice 1768 2918.6 10441.58 13360.18 3.5 

Atlantic cod 1749 911.86 35 0.44 4492.3 3.92 
Greenland halibut 2523 10987.12 14079.31 25066.43 1.2 

Witch flounder 1272 471.00 19 4.00 2455.00 4.21 

Table 3.3: FEP1 model results. SE - standard error. L,U- profile likelihood confidence 
intervals. pv - x2 p-value. Significant estimates in bold. 

Species ¢ {30 SE 95% L 95 % U 
American plaice 3.73 - 1.51 0.0781 -1.6654 -1.3590 

Atlantic cod 2.73 - 1.59 0.1014 -1.7913 -1.3935 
Greenland halibut 3.62 - 0 .498 0.0461 -0.5 7 -0.40 1 

Witch flounder 1.08 - 1.69 0.0554 -1.7954 -1.57 3 

373.46 < 0.0001 
245.46 < 0.0001 
116.99 < 0.0001 
926.71 < 0.0001 

Table 3.4: FE1 model results. SE- standard error. L,U- profile likelihood confidenc 
intervals. pv - x2 p-value. Significant estimates in bold. 

Species ¢ {30 SE 95% L 95 % U x2 pv 
American plaice 1.58 - 1.51 0.0331 -1.5753 -1.4455 2801.01 < 0.0001 

Atlantic cod 1.16 - 1.59 0.0430 -1.6735 -1.5049 1364.29 < 0.0001 
Greenland halibut 1.45 - 0 .498 0.0185 -0.5350 -0.4625 726.88 < 0.0001 

Witch flounder 1.59 - 1.69 0.0818 -1.8484 -1.5274 424.4.2 < 0.0001 
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Table 3.5: MEPl model results. SE- standard error. L,U - profile likelihood confi­
dence intervals. pv is the t-statistic p-val ue. Significant estimates in bold. 

Species &2 (30 SE 95% L 95 % U t pv 
American plaice 1.08 - 1.355 0.1078 -1.5682 -1. 1417 -12.56 < 0.0001 

Atlantic cod 1.02 - 1.686 0.1320 -1.9480 -1.4232 -12.77 < 0.0001 
Greenland halibut 0.2721 - 0 .639 0.0588 -0.7554 -0.5224 -10. 7 < 0.0001 

Witch flounder 0.457 - 1.682 0.0896 -1.8597 -1.5051 -18.78 < 0.0001 

Table 3.6: MEl model results. SE- standard error. L,U- profile likelihood confidence 
intervals. pv is the t-statistic p-va lue. Significant estimates in bold. 

Species &2 (30 SE 95% L 95 % U t pv 
American plaice 1.0 - 1.355 0.1078 -1.56 2 -1.1417 -12.56 < 0.0001 

Atlantic cod 1.02 - 1.686 0.1320 -1.94 0 -1.4232 -12.77 < 0.0001 
Greenland halibut 0.2721 - 0 .639 0.0588 -0.7554 -0.5224 -10.87 < 0.0001 

Witch flounder 0.457 - 1.682 0.0896 -1.8597 -1.5051 -1 .7 < 0.0001 

Table 3.7: FEPl model result when two potential outlier (i. e trawl pairs) wer 
removed. SE - standard error. L,U - profit likelihood confiden e intervals. pv - x2 

p-value. Significant estimates in bold . 
Species ¢ /30 SE 95% L 95 % U 

American plaice 3.13 - 1.60 0.0702 -1.7405 -1.4651 
Atlantic cod 2.53 - 1.73 0.1014 -1.9441 -1.5358 

Greenland halibut 3.40 - 0.469 0.0440 -0.5557 -0.3833 
Witch flounder 1.55 - 1.66 0.0795 -1.8152 -1.5034 

519.58 
27 .17 
113.95 
434.20 

pv 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 

Table 3.8: MEP l model results when two potential outliers (i. trawl pairs) wer 
removed. SE- tandard error. L,U- profile likelihood confidence interval . pv is th 
t-statistic p-value. Significant estimates in bold. 

Species 0'2 (30 SE 95% L 95 % U t pv 
American plai e - 1.346 0.1052 -1.5541 -1. 1381 -12. 0 < 0.0001 

Atlantic cod - 1.72 0.1345 -1.9885 -1.4536 -12.80 < 0.0001 
Greenland halibut - 0 .634 0.0578 -0.7478 -0.5195 -10.97 < 0.0001 

vVitch flounder 1.55 - 1.66 0.0795 -1. 152 -1.5034 -20.8 < 0.0001 
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Table 3.9: FE2 model results. SE- standard rTor. L,U- profile likeli hood confiden 
intervals. pv- x2 p-value. Significant estimates in bold. 

Species ¢ Estimate SE 95% L 95 % u t pv 

American plaice 1.53 f3o - 2 .7552 0.1307 -3.0128 -2.5001 444.05 < 0.0001 
{3] 0 .0524 0.0052 0.0421 0.0626 100.60 < 0.0001 

At lantic cod 1.13 f3o - 2 .7558 0.1523 -3.0576 -2.4605 327.55 < 0.0001 

f3l 0.0267 0.0032 0.0204 0.0331 67.71 < 0.0001 
Greenland halibut 1.45 f3o - 0 .2348 0.0536 -0.3399 -0.1297 19.17 < 0.0001 

~] - 0 .0089 0.0017 -0.0122 -0.0056 27.36 < 0.0001 
Witch flounder 1.07 f3o - 2 .1178 0.1669 -2.4498 -1.7951 160.96 < 0.0001 

{3] 0 .0171 0.0061 0.0051 0.0292 7.79 0.0053 

Table 3.10: 1E2 model results. SE - standard error. L, U - profile likelihood confi-
dence intervals. pv is the t-statistic p-value. Significant estimates in bold. 

Species &'2 /i Estimate SE 95% L 95 % u t pv 

American plaice 1.296 f3o - 2 .5031 0.2369 -2.9714 -2.034 -10.57 < 0.0001 
0.959 f3r 0 .0448 0.0080 0.0292 0.0605 5.62 < 0.0001 

Atlanti cod 0.986 f3o - 2 .6597 0.2249 -3.1069 -2.2125 -11 . 2 < 0.0001 
0.995 f3r 0 .0224 0.0042 0.0104 0.0307 5.28 < 0.0001 

Greenland halibut 0.374 f3o - 0 .5635 0.1273 -0.8159 -0.3110 -4.42 < 0.0001 
0.929 f3r -0.0014 0.0035 -0.00 3 0.0054 -0.420 0.676 

Witch fl ound r 0.697 f3o - 2 .0847 0.2216 -2.5233 -1.6461 < 0.0001 
0.933 f3r 0.01497 0.0079 -0.0005 0.0304 0.059 
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Figure 3.1: Northwest Atlantic Fisheries Organization (NAFO) north rn Gulf fisheries 
management Divisions 4RS and Subdivision 3Pn. 
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Figure 3.7: FE2 model results for American plaice. Total scaled catches per swept 
area for both vessels and AN catches per swept area adjusted by relative efficiency 
(Pt) are given at the top. Top panel: Total length frequencies for TEL (dashed-dotted 
line) , AN (dashed line) and A adjusted by relative efficiency (solid line), over all 
sets. Middle panel: Standardized (by standard deviation) total chi-square residuals 
for each set. Bottom panel: A local linear smoother versus length (solid line) of the 
standardized chi-square residuals. The dashed lin s are 95% confidence intervals for 
the average residuals. 
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Figure 3.8: FE2 model results for Atlantic cod. Total scaled catch s per sw pt area 
for both vessels and A catches per swept a rea adjusted by relative efficiency (PL) 
are given a t t he top. Top panel: Total length fr quenci s for TEL (dashed-dotted 
line), AN (dashed line) and A adjusted by relative effi ciency (solid line), over a ll 
sets. t! iddle panel: Standardiz d (by standard deviation ) total chi-square re idual 
for each set . Bottom panel: A local linear smooth r versus length ( olid line) of the 
standardized chi-squa re residuals. The dashed lines are 95% confidence int rvals for 
the average residuals . 



0.25 
.... 
jg 0.20 

E 
::J 0.15 
z 
t 0.10 
r:::r 

(/) 0.05 

0.00 

10 

5 
ui 
Q) 

a: 
0 

"0 
(j) 

-5 

1.0 

0.5 
(/) 
Q) 

a: 0.0 
"0 
(j) 

-0.5 

-1.0 

0 10 

0 

AN= 0.3635 , TEL= 0.5984 , AN Adj .= 0.5988 

20 

50 

30 

Length (em) 

0 

100 

Set Number 

40 

0 

150 

50 60 

200 

- ~ ---: ~:' ~:-:: :.':: ~c::::-:: ~.':: :.-:o ~c:o c::::::::: :; ;:~: ~:~-

10 20 30 40 

Length (em) 
50 60 70 

84 

Figure 3.9: FE2 model results for Greenland halibut. Total scaled catch s per wept 
ar a for both vessels and AN catches per swept area adjusted by r lativ efficiency 
(Pt) are given at the top. Top panel: Total length frequencies for TEL (dashed-dotted 
line), AN (dashed line) and A adjusted by relative efficiency (solid line), over all 
sets. Middle panel: Standardized (by standard deviation) total chi-square residual 
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standardized chi-squar residuals. The dashed lines are 95% confidence intervals for 
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Figure 3.10: FE2 model results for ·w itch flounder. Total scaled catch per swept 
area for both vessels and AN catches per swept area adjusted by rela tive fficiency 
(Pt) are given a t the top. Top panel: Total length frequencies for TEL (dashed-dotted 
line), AN (dashed line) and AN adjusted by relative efficiency (solid line), over all 
sets. Middle panel: Standardized (by standa rd deviation) total chi-square residual 
for each set . Bottom panel: A local linear smoother versus length (solid line) of the 
standardized chi-squa re residuals . The dashed lines are 95% confidence intervals for 
the average residuals. 
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Figure 3.11 : ME2 model results for American plaice. Total caled atch s per swept 
area for both vess ls and A catches per sw pt area adjusted by relative efficiency (Pt) 
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line), AN (dashed line) and A adjusted by rela tive effi ciency (solid line), over all 
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set . Bottom right panel: A local linear smoother versus length (solid line) of the 
standardized chi-square residuals. The dashed lines are 95o/c confidence int rval for 
the average residuals. 
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Figure 3.12: ME2 model results for Atlantic cod. Total scaled catches per swept area 
for both vessels and A catches per swept area adj usted by relative effici ncy (Pt) are 
given at the top. Top left panel: Total length frequencies for TEL (dashed-dotted 
line), AN (dashed line) and AN adjusted by relative efficiency (solid line), over all 
sets. Top right panel: Predict d random effects, Ji1, vs length for each set. Bottom 
left panel: Standardiz d (by standard deviation) total chi-square residuals for each 
set. Bottom right panel: A local linear smooth r versus length (solid line} of the 
standardized chi-square residuals. The dashed lines are 95% confidence intervals for 
the average residuals. 



0.30 

0.25 .._ 
Q) 
.0 0.20 
E 
::J z 0.15 

t 
0" 0.10 

(f) 

0.05 

0.00 

- 2 -

AN= 0.3635 I TEL= 0.5984 I AN Adj .= 0.6665 

0 1 0 20 30 40 50 60 

Length (em) 

0 
I I I I I 

0 50 100 150 200 

Set number 

1.5 

Cf) 

t5 1.0 
Q) 

::::: 
Q) 0.5 

E 0 0.0 
"'0 
@ -0.5 

a: 
- 1.0 

1.0 

0.5 
Cf) 
Q) 

a: 
0.0 

"'0 ....... 
(f) 

-0.5 

- 1.0 

10 20 30 40 50 60 70 

Length (em) 

10 20 30 40 50 60 70 

Length (em) 

Figure 3.13: ME2 model resul ts for Greenland halibut. Total scaled catches per swept 
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Chapter 4 

Simulation Study 

4 .1 Introduction 

Simulation studies were conducted to evaluate the reliabili ty of parameter estimate 

and associated confidence intervals for the log relative efficiency parameter ({30 ) in t he 

fixed effects and mixed effects models. Our simulations were based on pooled models 

(FEP1 and MEP1) from Chapter 3 on comparative fishing. 

Estimation of the MEP1 model using the conditional pseudo-likelihood approach 

(Wolfinger and O 'Connell , 1993; PROC GLIMMIX) , is denoted as MEPlc . In many 

cases marginal e timation methods are commonly used with mixed effects models 

(Zeger and Liang, 1986). T hes models stimat parameter by maximizing the true 

likelihood integrated over t he random effects which is different from the conditional 

approach. We implement the marginal approach using PRO NLMIXED. Estimation 

of the MEP l mod I using the marginal approach is denoted as MEPlm. In this 

chapter we compare the sensitivity and robustness of its parameter estimate to t he 

FEPl and MEPlc estimates. 
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4.2 Simulation Set-up 

We considered three fish stocks, Atlantic cod, deepwater redfish and Greenland hal­

ibut on which to base our simulations; that is, the sample size (number of sets and 

total catch per set) was t he same as from real comparative fishing data. between the 

two research vessels, Alfred Needler (AN) and Wilfred Templeman (WT). This data 

was collected from the 2005 DFO Spring and Fall bottom-trawl surveys in NAFO 

Divisions 3LN and Subdivison 3Ps (Fig. "..! .I, Chapter 2) . We used the total number 

of catches per tow, N, and randomly generated catches for the control vessel (i.e. 

WT) , Nc . The control vessel catch is conditionally a binomially distributed random 

variable. The probability that a captured fish is taken by the control vessel is 

ef3o+8 

Pc = 1 + ef3o+6 . 
( 4.1) 

In the simulation, (30 , the true fixed effect log relative efficiency parameter, rang d 

from 0 to 2 in steps of 0.25 and 8, the random effect , was normally distributed with 

a constant variance, 0"2 . We chose 0"
2 = 0.1 , 0.5. , and 0.9 which represented typical 

values of the random effect variances (see Cadigan et a.!. , 2006). We also chos 0"
2 = 0 

to check how well the mixed effects model performed when random effects did not 

exist (i.e. fixed effects model). The simulation had 36 factors p er species in total, 

nine levels for (30 times four levels for 0"
2

. 

For each simulation, we generated }( = 2000 sets of data. for each speci s, esti­

mated the parameters under the various models, and computed the bias for (30 for 

each factor combination ((30s and 0"
2s) and for each model. The b ias is computed as 

A 1 }( A 

Bias( f3o) = J{ _I) f3ok- f3o), 
k= l 

(4.2) 

where (30 is the true paramet er value and Ook is the parameter estimate of f3o from 
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the k1h simulation iteration for each model. We examined the coverage error for 95% 

nominal confidence intervals provided by PROC GENMOD and PRO GLIMMIX. 

We used th profil likelihood confidence intervals (e.g. Venzon and Moolgavkar, 

198 ) for the GLIM parameters provided by PROC GE MOD. Suppo e {3 = ({31 , ... , {Jp) 

is a p x 1 vector of fixed parameters. A profil - likelihood confidence interval for {Ji is 

as follows. Let 

(4.3) 

where iJ is th vector {3 with the i 1h clement fixed at {Ji and e is the log-likelihood 

function. If e(/3) is the log-likelihood evaluated at the maximum likelihood e tima.te 

/3, then 2(e(/3) - e*({Ji)) has a limiting x2 distribution with one dcgr c of fr celom if 

{Ji is the true parameter. A ( 1 - a) x 100% confidence interval for f3i is 

(4.4) 

PROC GENMOD finds the endpoints of t he confidence int rvals num rically. This 

is achiev d by starting at the maximum likelihood estimate of {3 and approximating 

the log-likelihoo l with a quadratic surface, for which an exact olu t ion is possible. 

The process is iterated unt il convergence to an endpoint is attained . The pro es is 

repeated for Lhe other nclpoint. 

PROC GLIMMIX produces Wald- typ confidence intervals for th parameter es­

t imates of a GLMM. The (1 - a) x 100% Wald-typc confidence interval for parameter 

f3i is defined as 

(4.5) 

where Z(J - a/2) i the 100(1- a/2)th percentil from a standard normal el i tribution, /:Ji 
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is a fixed parameter estimate, and SE(~i) is the estima te of its standard rror . PROC 

GLIM HX produces parameter estimates for GLMMs using p eudo-lik lihood or re­

stricted pseudo-likelihood estimation (detail given in Chapter 1). It doe not provid 

profile likelihood confid nee intervals becau e it does not u e t he exact likelihood for 

most mixed models (recall that the likelihood can be computationally pro hi bi tive for 

many mixed models). 

Since we know the true {30 values in ea h simulation, we would XJ ct about 95% 

of t he confidence intervals (CI) we construct to contain t he t ru parameter value. 

We also inve tigated the power of t he te t 

Ho : f3o = 0 

Ha : f3o =/= 0. (4. 6) 

We did t his a follows: for each simulated data et , we constru ted a 95% CI for {30 . 

If this CI did not include 0, we rej cted H0 . We counted how many t ime we rejected 

H0 among our 2000 datasets within a particular factor combination (i.e. {30 and 0'
2

) 

and computed the power of the test (i.e. power curve) 

P = _E_ 
2000 ' 

(4.7) 

where D i t h number of t imes H0 is reject d . We did this for each f the 36 factor 

in t he simula tion study. 

We also investigated the robustness of our model with respe t to the assumption 

of the distri but ion of th random effects (<5). It i reasonable to as ume that densit ies 

ampled from both th test and cont rol ves els are independent and each follows a 

gamma distribu tion with mean p. and variance ¢p.2 : 
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Ai "' Gamma ( ~ , ¢p,) , i = 1, 2. (4.8) 

It then follows that wi = log[(¢p,) - 1>.i] is log-gamma (e.g. Lawless, 1980) with density 

f( ) 1 (Wi w·) 
Wi = fO;) exp ¢- e ' , i = 1, 2. (4.9) 

An appropriate probabilistic model for 8 is the difl'erence of two log-gamma densities 

(8 = w 1 - w2 ) which has a mean and variance that depends only on ¢. In Appendix 

A we derive the distribution of Wi and present th mean and variance of 15. Tab! 

I. I presents the values of ¢ that give us means and variances corresponding to the 

normal case. Histograms and probabili ty plots of 15 display distributions that are only 

slightly skewed (see Fig. 1.1 ). 

W repeated the simulation study using the cliff' renee of two log-gamma dis­

tributed random variables for 8 with choices of ¢ given in Table I. I . We then esti­

mated (30 and CJ2 under the (incorrect) assumption that 15 was normally distributed. 

4.3 Results 

Tables l :2 and U present summary statistics (pooled over lengths) of total catch per 

s t for the control and fo r the totals from the control and test vessels , respectively. The 

mean catch p r tow was largest for deepwater redfish compared to Atlantic cod and 

Greenland halibut for both the control and total vessels. The between tow variance 

of catches for each species were quite large for both vessels. 

4.3.1 Analy sis with Normal Distributed Random Effects 

In this analysis catches were pooled over lengths within sets. The bias of Oo is given 

in Fig. I.'! , plotted against the nine fixed (30 values used to generate the simulation 
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data. The bias was extremely clo e to zero for all model and species when random 

effects were non-existent ( CT2 = 0). When random effects existed , the bias for the 

FEP1 model (solid line) was negative for most values of (30 but was zero when (30 = 0. 

This indicated tha t the FEP1 model underestimated most va lues of (30 . The bias for 

each of the three species was worse as each level of CT2 and (30 increased. The bias 

for the MEP1c (dotted line) was negative for most values of (30 and got worse as the 

range of (30 and CT
2 values increas d for each species. The MEP1c model appeared 

to underestimate (30 , although the bias was smaller compared to the FEPl model. 

The bias for the MEP1m (dash-dotted line) was very small in magnitude and in some 

cases equal to zero (i.e. Atlantic cod when CT
2 = 0.5). The MEP1m model had !it t! 

to no t rend over all values (30 and CT
2

. This showed tha t the MEP1m model estimated 

f3o quite accura tely. 

The 95o/c coverage errors of confidence intervals for (30 are presen ted in Figs. I ·:-

1 ll. The solid line represents the lower 95% simulated coverag error, t he dotted 

line represents the upper 95% simulated coverage error , and the dash-dotted line 

represents the total (upper + lower) simulated coverage errors. Coverage errors wer 

reasonably close to the xpected levels for all models and sp cies when random effects 

were non-exi tant (s e Fig. J.:l ) , although the confidence intervals obtained from 

PROC GLIMMIX performed somewhat worse. Total coverage errors produced by 

the FEP 1 model were large ( > > 0. 05) for each pecies and incr ased for larger values 

of CT2 (Figs. I. 1- 1 It ). The total coverage errors for the MEP1c model were closer 

to the expected critical value of 0.05, especia lly for deepwater redfish. Atlantic cod 

and Greenland halibut produced somewhat larger coverage errors for larger va lues of 

(30 . Coverage error for the MEP 1m model were close to the expected I v Is for mo t 

species and values of CT2 with the only exc ptions being Atlantic cod (Fig. l I; row 

1, column 3) and Greenland halibut (Fig. I. I; row 3, column 3) when CT
2 = 0.1. In 

these cases, t he coverage errors for species increased as valu s of f3o increased. 

Fig. I 7 displays 95% confidence interval (CI) widths of (30 for each model. The 

CI widt hs were approximately equal for all models and species when random effects 
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did not exist. FEP1 CI widths (solid line) were smaller over the range of (30 values as 

compared to the MEP1c (dotted line) and MEP1m (dash-dotted line) for all species 

when random eff cts existed. CI width for the MEP1c and MEP1m models were 

very similar for all species and rJ
2

. The largest differences in CI widths occured for 

Atlantic cod and Greenland halibut when rJ2 = 0.9 (Fig. 1.7; row 1 column 4, and 

row 3 column 4, respectively). 

Power curves are presented in Fig. I " · The power of th t st (Eq. I t) was 

equivalent for each model when random effects did not exist (Fig. I ; column 1). 

For the FEP1 model (solid line), the power approached 100% when the true value of 

(30 ~ 0.5. Power curves for all three models w re similar when rJ2 = 0.1. The power of 

the test tended to be weaker for FEP 1 as rJ2 increased. This is fa! e power however , 

because at the (3 = 0 ca. ·e, the FEP1 model con luded (30 i= 0 up to 40% of the t ime 

depending on the species and rJ2 (i.e. Atlantic cod when rJ
2 = 0.9). This should only 

happen 5% of the time, and this indicates that it is not fair to compare the type II 

error rates because the type I error rate of the FEP1 test is quite different than the 

ME tests. 

4 .3 .2 Analysis When Random Effect s Follow a Difference of 
Two Log-Gamma Random Variables 

Results for bias (Fig. I 'l), 95% cov rage error (Figs. I 111- l.ll), 95% CI widths (Fig. 

I 1.\) and power curves (Fig. 1 I I) are presented when the random effects are t h 

difference of two log-gamma random variables (sec Section 1.2). The results for all 

models were v ry similar to the pr vious case when the random effects were normally 

distributed . 
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4.4 Discussion 

Resul ts from the simulation study suggest d that, overall , mixed eff cts models ap­

peared to p rform better than fixed effects models in terms of bias, coverage error , 

and power of t he test for rejecting {30 = 0, both when random effe t · were normally 

eli tributed and when the random effects were a difference of two log-gamma random 

variables. When random effects were present , and their variance was not small , the 

fixed effects GLIM model performed poorly, with substantial bias in estimates of log 

relative efficiency and poor confidence intervals for this parameter. /[ixed effects 

models perform d equally as well when random effects did not exist . 

Maximum likelihood estimation based on the marginal likelihood for mixed models 

(e.g. PROC NLMIXED) yielded results that were less biased than the conditional 

estimation methods of PROC GLIMMIX. However , for some models we are interested 

in (see previous chapters) marginal method are not feasible and it would 1 e desirable 

to reduce the bias in conditional estimators. Kuk (1995) and Lin and Breslow (1996) , 

among others, provided asymptotic bias corrections for r gression parameters and 

variance component estimates in GLMMs. Other possible bias redu t ion t chniques 

could incl ude re-sampling techniques such as the jackknife and bootstrap (see Efron 

1982; Wu , 1986, Efron and Tibshirani , 1993), or Taylor series expansion (see Box, 

1971; Cook eta!. 1986; Cordeiro and McCullagh, 1991 ). Each technique is useful for 

reducing bias in parameter estimates but there are limitations. An investigation of 

bias reduction techniques is worthwhile, but beyond the scope of thi practicum. 

The fixed , conditional, and marginal approaches for un-pooled simulations were 

also examined. In this set-up, lengths for ach species were not pooled over each set. 

Random effects were the same for each length within a set, but differed b tween sets. 

Random effects were both normally distributed and a difference of two log-gamma ran­

dom variables. We examined purely fixed effects models (FE2) , mixed effects models 
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with random intercepts (ME2RI) and mixed effe ts models with random autocorre­

lated length effects within ach set (ME2AR). Conditional pseudo-likelihood meth­

ods were u ed for both the random intercept model and the autocorrelated random 

length eff cts model, denoted as ME2Ric and ME2ARc, respectively. The marginal 

approach was applied only to the random intercept model (ME2Rim) since PROC 

NLMIXED does not have an option to specify autocorrelation structures. This type 

of random effect is computationally too difficult for numerical integration and t he 

marginal approach. Estimates for both the fixed intercept (fJo) and the fixed length 

({31 ) parameters were computed, but bias of t he parameter estimates and coverage 

errors of confidence intervals were only considered for {30 . The results were similar to 

those of the pooled analysis excep t for ME2ARc, although, further analysis is needed 

to clarify this result. 

Simulations were conducted to test the efficacy of the mixed model approach for 

estimating relative efficiency, although, simulations on the variances of the estimates 

would also be useful to fully understand the performance of these estimates. One 

method for reporting the performance of variance estimates is to compute the mean 

square errors (MSE; see Gunst and Mason, 1977). However, t his was beyond t he 

scope of this practicum. 

Simulation studies to examine the robustness and sensitivity of the various meth­

ods to outliers in the data would also be useful. One uch technique is to simulate 

datasets with and without outlier and compar parameter estimates from both sim­

ulations in terms of senstivity (magnitude of deviation) due to outliers. However, this 

was beyond the scope of this practicum. 
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Table 4.1: Values of the scale parameter (</>) and the corresponding valu s for t he 
m an (E[o]) and variance (Var[o]) of o. 

-'--'-'-<1>-,---------=-E (..,..-::6..,.--) --:v=--=-a-r -;-::( o.,--) 

0.049 0 0.1 
0.223 0 0.5 
0.372 0 0.9 

Table 4.2: Catch summaries for the control vessel (WT) pooled over lengths. n c is 
the total number of tows per species, fie is the mean catch per tow and V ar·( nc) is 
the between-tow variance of catch for each species. N c is the total number of catches 
ov r all tows. 

Species 
Atlantic cod 

Deepwater R dfish 
Greenland halibut 

Scientific Name 
Gadus morhua 

Sebastes mentella 
Reinhardtius hippoglossoides 

91 
63 
56 

20.86 
6.81 

10.82 

3125.45 
9631.35 
180.22 

1 99 
5496 
606 

Table 4.3: Catch summaries for the both control and test vessels (WT + A ) pooled 
over lengths. nc+t is the total number of tows per species, i'ic+t is the mean catch per 
tow and V ar( n c+t) is the between-tow variance of catch for ach species. N c+t is t he 
total number of catches over all tows. 

Species Scientific ame 
Atlantic cod Gad'us morhua 

Deepwater Redfish Sebastes mentella 
Greenland bali but Reinhardtius hippoglossoides 

91 
63 
56 

43.14 
191.57 
24.27 

276.36 
39934.93 

44.23 

3926 
12069 
1359 
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Figure 4.5: 95% coverage errors of the confidence intervals from the parameter es­
timates for FEPl , MEPlc, and MEPlm models. Random effects are normally dis­
tributed with 0 mean and variance a 2 = 0.5. The solid line represents lower coverage 
errors, the dotted line represents upper coverage errors, the dash-dotted line repre­
sents total coverage errors (lower + upper), and the horizontal dotted lines represent 
critical values a = 0.05 and % = 0.025. Rows are for sp ci s, with codes indicated 
a t the right hand-side: AC - Atlant ic cod ; DR - deepwater redfish; GH - Greenland 
halibut. 
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Figure 4.6: 95% coverage errors of the confidence intervals from the parameter es­
t imates for FEPl , MEPlc, and MEPlm models. Random effects are normally dis­
t ribu ted with 0 mean and variance 0"

2 = 0.9. The solid line represents lower coverage 
errors, the dotted line represents upper coverage errors, the dash-dotted line repre­
sents total coverage errors (lower + upper) , and the horizontal dotted lines represent 
critical values a = 0.05 and % = 0.025. Rows arc for species, with codes indicated 
at the right hand-side: AC - Atlantic cod; DR- deepwater redfish ; GH - Greenland 
halibut. 
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Figure 4.11: 95% coverage error of the confidence intervals from the parameter es­
timates for FEPl , MEPlc, and MEPlm model . Random effects are a difference 
of two log-gamma distributed random variables with mean E(o) = 0 and varianc 
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Appendix A 

Derivation of a Log-Gamma 
Distribution 

It is sufficient to as ume that fish den itie fi shed by two separate vessels follow a 

gamma distribution such that 

(A.l) 

where ,\ 1 , ,\2 arc iid random variable , ¢ is an overdisper ion param ter , and !-" and 

¢J-L2 are the respe t iv means and varianc s of both populations. The probability 

density functions of ,\ 1 and ,\2 are 

Now we examine the difference of the log of the two densities, denoted as 

(A.3) 
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where w1 and w2 are iid random variables. Examining LUi ( i = 1, 2), we can derive their 

corresponding distribution functions. The Jacobians of the transformed variables are 

(A.4) 

Using a transformation of variables, the corresponding distributions for LVI and w2 

are computed as 

(A.5) 

which are Jog-gamma density functions . The mean and variance of wi are defined as 

(A.6) 

(A.7) 

where 1jJ(~) and 'ljl'(~) are the digamma and trigamma functions , respectively (see 

Lawless 19 2; Appendix B). 

It then follows that the expected value of 6 

log-gamma random variables) is 

WI - w2 (the difference of two 
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E(wi )- E(w2) 

~ (~) - ~ (~) 
0 (A.8) 

and the variance is 

VaT(8) VaT(w1- w2) 

Var( WI)+ V ar( w2) - 2Cov( WI , w2) 

~I(~) + ~I (~) 
2~1 (~) (A.9) 

where Cov(wi , w2 ) = 0 since w1 and w2 are iid random variables. 



Appendix B 

Table of Acronyms 
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Acronym 

A 5o 

AC 
ACF 
AM 
AN 

ARNOD 

AROD 

AR YE 

AR YE-

AR YE+ 

AR(p) 
BLUP 

CI 
DFO 
DR 
FE 
FEl 

FE2 

FEPl 

GEE 
GH 

GLIM 
GLMM 

HL 
MA (q) 
MEl 
ME2 

ME2ARc 

Description 

Age at 50% maturity 
Atlantic cod 

Autocorrelation function 
American Plaice 

Canadian Coast Guard research vessel 
Alfred eedler 

Autoregressive mixed effects model 
without over dispersion parameter 
Autoregressive mixed effects model 

with over disperison parameter 
Autoregressive mixed effects mod 1 

wit h year effects 
Autoregressive mixed effects model with 

year effects as nuisance parameters 
Autoregressive mixed effects model wi th 

year effects as predictive parameters 
Autoregressive process with order p 

Best linear unbiased predictor 
Confidence interval 

Depart ment of Fisheries and Oceans 
Deepwater redfish 

Fixed effects model 
Fixed effects model with vessel effect 

param eter 
Fixed effects model with vessel and 

length effect parameter 
Fixed effects model with vessel effect 

parameter (pooled over lengths) 
Generaliz d e t imating equation 

Gr enland halibut 
Generalized linear model 

Generalized linear mixed effects model 
Hierarchical likelihood 

Moving average process with order q 
Mixed eff cts model wi th vessel effect parameter 

Mixed eff cts model with vessel and I ngth 
effect parameters 

Condi t ional mixed effects model wi t h autocorrela ted 
random lengths within sets 

l 
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Acronym 

ME2Ric 

ME2Rlm 

MEPl 

MEPlc 
MEPlm 

ML 
MQL 
MR 
AFO 
PA 

PACF 
PL 

PQL 
REML 
REPL 

SE 
ss 

SSB 
TEL 
vc 
WF 
WT 

Description 

Conditional mixed effects model with 
random intercepts 

Conditional mixed effects model with 
random intercepts 

Mixed effect· model with ves e] effect 
parameter (pooled over lengths) 

Conditional mixed effect model pooled over lengths 
Marginal mixed effects model pooled over lengths 

Maximum likelihood 
Marginal quasi-likelihood 

Maturity range 
orthwest Atlantic Fisheries Organization 

Population-averaged 
Partial au tocorrclation function 

Pseudo-likelihood 
Penalized quasi- likelihood 

Restricted maximum likelihood 
Restricted p eudo-likelihood 

Standard error 
Subject-specific 

Spawning stock biomass 
Canadian Coast Guard research vessel Teleost 

Variance components 
Witch flounder 

Canadian Coast Guard research vessel 
Wilfred Templeman 
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