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Abstract

When investigating the relationship between two or more variables. regression is a
cotnmonly used method of analysis. Linear regression, in particular, is used when the
expected value of the response is a lincar function of the explanatory vaviables. [ it
is not a linear function, generalized linear regression is used. Farthermore. when the
data is not independent, mixed models are used. There are varions wayvs to analyvze
linear mixed models and generalized linear mixed models. T this thesis. we focus
on the moment method of analysis. simmlated approaches and the quasi-likelihood
method of analysis.  Analysis is conducted on simulated data for a linear mixed
model, siimulated data for a generalized linear mixed model and on a real data set,
The real data set is a clustered data set of the nmuber of tinmes a person visits a

physician in a given vear.
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Chapter 1

Background

1.1 Introduction

Regression is o commonly used method of analvsis when investigating o relation-
ship between two or more variables in o nondeterministic fashion {Devore, 20000, Tt
demonstrates how the conditional distribution of the response g diflers across sub-
populations. which is determined by the predictor or predictors values (Cook and

Weisherg, 1999).

There ave situations in which one can assime that the relationship between the de-
pendent and the independent variables is a linear lunction ol the parameters, T these
situations, linear regression mav be used to evahate this relationship. Specitically.
lincar regression assumes that the expected value of the response yis a lincar function

of the predictor values . The simple linear regression model s defined iy (1 1):

! I T B T A A (1.1



In this model. yois the vesponse variable, o is the predictor variable, 3y and ) e
unknown fixed effects (Hixed Dot un wn parisneters). and ¢ is the error term, The
ervor termn is assted to be normally distvibuted with £y 0 and Vo) o7 The

error tertns are also asstwed to bhe independent across observations (Devore, 2000,

Stnple Tinear regression assesses the lincar relationship hetween the dependent vari-
able and one independent variable. However, there are situations in which one would
like to assess the relationship between the dependent variable and more than one
independent variable. i these situations. multiple Iinear regression mayv be used

{Ramsev and Schater, 1997). The multiple linear regression model is detined in (020

y - .7)” + 97y1.l'] * "{~_).I'-_) * s I ‘fl.'-l.l.‘ f . ( l l)
As with the linear reeression model. y s the response variable, o s e the
predictor variables, ). 4030 are unknown lixed effects. and ¢ ix the eiror term.

-y

The error term is assumed to be normally distributed with e} O and Vi) @
The error terms are also assumed to be independent across observations (Devare,

2000).

The lincar regression models assine that the dependent variable. g, s normally dis-
tributed.  There are many cases in which the dependent variable is not nonnally
distributed. In these sitnations the above models cannot be applied. Tonstead. we con-
sider generalized linear models (GLN. Generalized linear models may be used when
the ¢ variable comes from an exponential familv other than normal. Using hneay
regression, we assume that the expected value of g is a linear function of 0 When

using a generalized lnear model. we assume that <ome function of the expected value




of ¢ is a linear function of . The function utilized is ealled a link function. The pai-
ticular link function that is used will depeird on the dependent variable. The tvpe of
dependent variable and lnk function used in the generalized linear regression model
determines which tvpe of generalized linear model is appropriate. such as logistic or

log-linear (McCullagh and Nelder, 1989).

FFor example. alogistic generalized lincar model would need to be used if the dependent
variable is hinary. An example would be the person’s gender, which can only be either
male or female. For a logistic regression model. the link function emploved is called

the logit. The logit is detined i (1.3):

¢ Jn b b i Ay
T P (1.3)

{ (,..,,:il.ri FETRVIN

This ¢can be rewritten as a linear function of the parameters.

logit(n) = loy —L) =y bR b (r.n
b -

In this model, YN D] = 7 and VarY X D] = w1 = 7)) (Ramsey and
Schafer. 1997) where Yois binary with 2(Y - 1) — p.

[Furthermore. the regression models deseribed above assume that the data are inde-
pendent. However. there are many situations in which the data may not be inde-
pendent. For example. the data may exist in clusters, which occur when the data is
not distributed independently and identically but occur in homogenous ehisters. Ho-
mogenous clusters would be considered corvelated (Mendewhall, Ott. Scheatler. 1996).
For example. suppose we have data o a number of families. For each family. we know
the munber of times cacli member visits a physician ina given vear. In this case. the

data is clustered into groups of families. Another example would be data collected



from high school students on their opinions about a school issue. The opinions of

students in particular classrooms niay be correlated.

When data is correlated within clusters, the analvsis needs to account for this cor-
relation. Using a mixed-effeets model is the most common way to account for such
acorrelation (MeGilehrist, 1994). Nodels that have both fixed effects and random
clfeets are called mixed-cflects models (Fox. 2002). The Inear mixed-ctfects model s

defined as:

y— X1 2t (1.5)

In this model, y is a response variable, X is a matrix of predictor variables. 4 s a
vector of lixed effect cooflicients, Zis & known matrix. 5 is a veetor of random effect
cocflicients, and ¢ is a vector of error terms. The 5 vector and ¢ vector are distributed
independently with means 0. The covariance matrices of 5 and ¢ are D and 0?1,

respectively (Prasad and Rao. 1990).

Equivalently, we can define the linear mixed model as:

v, — aL3 b N I A D (1.6)

where g, is the response variable for the jth wmember i the dth fdlye g, -
(i)t s akx b vector of corresponding explanatory variables.  — (o0 AL
is a & x 1 vector of mknown parameters. and r, is the number of members in the ith

family.

The randonm effects ~; are assumed to be independent V(0. 02) and the error ternmns

. ’ Bl ry-~ .
¢,; are assined to be independent N0 7). The random effects and error terms are



independent of cach other.

Finallv. if the vespouse variable is binary and grouped i clusters that ave corre-
lated. we need to use another model called @ generalized Tinear mixed effects model

(Sutradhar and Rao, 2001). The generalized Tinear mixed effects model is defined as:

1,17 ~ Binomial (17,,). (1.7
where
X (r,I,.i T o, ‘ ‘
’Tl_i ]('lj,.lﬁll‘”)*l TN [ l[/ l"'”/-
freta o

In this model. ) and 3 are as defined previonslv. and the random effects s are

!

assutned to be independent N(0. 1),

When using a linear mixed effects model Tike (1.6), the estimation of the vaviance of
the random effects (07) may not be difliendt since the estimators ean often he written
in a closed form. These fornmlas become more complicated for a generalized linear

model.

1.2 Moment Method

A moment method for estimating the variance of random effects for a linear mixed
nodel was proposed by Prasad and Rao (1990), This method uses the general theory
of Henderson (1975) for o mixed hnear model. That s o two-stage estimator (ov
predictory of a simall-area mean under each model is obtained and then the variance

components in the estimator arve replaced with their estimators, The small area mean




is obtained by first deriving the best linear vnbiased estimator (or predictor) assum-
e, that the variance components that determine the variance-covarianee matrix are

known.

[For the linear mixed model (1.6), Prasad and Rao (1990) present unbiased quadratic

. o N .
estintators of a2 and o5 as the following;:

e 1o solve tor i1:
! ! i

3= Z.r;ZIf'.r, Z.r;_‘fl[!/; . (1.8)

i1 i1

where o and gy, are as defined previouslv, and

2, a2 2 o]
o tol 7l o’
a2 a? bl o’
Sﬂ~ 1 i . v
yh=
-2 ) 2 E
e a a” +a;
e To solve for o
1 n
1
-~ -
o7 = E g €7, (1.9)
nl —1 —{(p—1)1 X&=’ :
-1 5=
where p is the number of parameters in ;40 We use A 0 1 the model has
no intercept term and A — 1 otherwise. The ¢;;'s are the residuals from the
ordinary least squares regression of g, — i on {r — T o0y, 1) — T Ot
_ ROV - 3 v
where g = = and 1, — F=——.
e To solve for a2
| |' ;.
<0 A - -2
a; = \ N W, —=(nl—(p—1}o" {(1.10)



=1

where
4\1 'l
! -
. . 9 , A B I
ne —n—tr [(X'X) E nerr N — _ LT
izl :
\n | I_l.(]) I]J

and the 4;;'s are the residuals from the ordinary least squares regression of y,,

on i '.l',‘./(l, -

For cases in which datais non-Gaussian and correlated. it is computationally diflicult
to make inferences. Jiang (1998) discusses a method to find estimmators that are both
computationally feasible and consistent for a generalized linear mixed model. The

method is based on simulated nioments.

[or the model given in (1.7), Jiang (1998) presents the following joint monent equa-

tion to solve for 4 and o:

w — I(w) — 0. (L.11)

where w— (W 05)7 and 117 and Wy are defined as follows:

1t 1

Iy, = E E Ly illigs
[ |
nt

Wy = DO yue

b gk

We cannot solve (111 explicitly for 3 or o.. therefore we need to estimate these
parameters by solving (1.11) with Newton's method.  Initial estimates were chosen
and used to start a Newton-Raphson iteration. Suppose . a- g denote solutions

to the above equation. Then, at iteration (r 4+ 1):



) "
AVITTR DR N I AVITS

{ (l’j‘),, l(u‘ = L)),

T Miri]) T Mir

W I ere

ARWy) k(W)

[)'/' 3 ARL
IR A (W !
i, D,

wis defined as above, and E(w) — (V) BV

Ax some of these expectations are very difficult to find. they can be approximated.

1.3 Quasi-Likelihood Method

The quasi-likelihood method of estimation, unlike the maximum likelihood approach.
does not require specification of the distribution of the response variable (Ramsey

and Schaler, 1997).

The general quasi-likelibood equation that can be used for both the linear and general
£ { | ¢

ized linear model to estimate 4 and the variance components is as follows (Sutradhar.

2001):
INHAVART)
ST S AL 0. (1.12)
1 o
where S, (gl oalyowith g - (g o), = (el oy (o)
and 1o = e Yo 100 Also M0) — E(S)) and V(H) cor(S,) where

v (4o,




1.4 Other Approaches

Whien nsing the locistic rearession model. the estimation of J and a. is more diffienlt.
This is hecanse there are no closed mathematical forms for the estimates. There are

many approaches sugeested in the literature to conduet this estimation.

Schall (1991 disenssed the estimation of random effects ina generalized linear model.
He presented an algorithm for estimating in a generalized linear mixed model the fixed
effects. random effects and components of the dispersion. He discussed varions con-
ditions under which his method vielded approximate maximum or quasi maximum
likelihood estimates ol the ixed effects and dispersion components as well as approx-

miate cmpirical Baves estimates of the random effeets.

In the hierarchical model, Breslow and Clavton (1993) concluded that the POQL (pe-
nadized guasi-likeithood ) method of estimation for the parameters and random elfects
ix useful. The PQE method of estimation. when applicd to clustered binary data,
nnderestimates the variance components and fixed effects. The method does nprove

in sitnations in which the binomial observations have denominations greater than one.

Breslow and Lin (1995) derived formulas for the asvmptotie hiases of regression co-
efficients and variance components. for small variancee component values, using, three
estimators. These were estimated in generalized hnear mixed models with canoni
cal ik function and o eroup of random effects by using the first and second order
Laplace expansions o the integrated likelihood as well as using the PQL method of
estimation. The PQL and first order Laplace expansion produced biased estimates.
especially when used on data that are binary and correlated. A corrected PQILL andd
the second order Laplace expansi oduce good estimators for variance components

that are small and very good for those that are large.




t0

Kuk (1995) proposed a method of adjusting imitially defined estimates by an iterative
bias correction to produce estimates that are asvinptotically unbiased and consistent.
This method can he applied to any parametric model and the estiinates produced are

almost mmbiased with the standard errors onlv somewhat infated.

1.5 Outline of Thesis

In this thesis we have evaluated mixed models using o moment method, quasi-
likelihood and a simulation approach that will be discussed in Chapter 2. Chapter 2
deals with the evaluation of these approaches for a linear wixed model. In Chapter 3
we evaluate these methods of estitmation for the logistic model. Finally, in Chapter |
we apphy these methods to a clustered data set. This data set contains inforimation
on 180 people from I8 families. The information obtained includes the number of
tiines they visited a physician each vear over the vears 1985 - 1990, their age, their

eender. the number of chronie conditions they had. and their education level.



Chapter 2

Simulation Data Analysis - Linear

Mixed Model

2.1 Introduction

For this chapter. all analvses used a lincar mixed model with the aim of estimating 7,
ki *) - . . - . . .

o~ and a7 We do this first using the moment method. then with a simulation method

which treats random effects as Axed effects, and finally with the gnasi-likelihood

method.

As a reminder. the lincar mixed model that we are using for this chapter is the

following:

y— NI (2.1)

where all tertus are as previously delined m Chapter 1.

Al simulations used the following assumptions and parameters:



e/ —l..... { — 100.

o ; —l..... oo L

-1
1 =1
s — 1. .5k
1 1
i 1 -1
o \, — - _
1 2
[ 2
it — 51 100,
13
1 JEJ

The methods of estimation were studied with all 16 combinations of the following &*
and Uf valnes: 7% — (0.1 1.2, D and #2 (01012, 1), Five further simulations were

conducted under the following situations:

o 3 — 10,4 =01 0% =01 (Tf — 0.1

o 4 — LO.%H — 5.0, a7 =01 07 — 0.1
o 5 — 10,4 —50.07 =01 07— 10,

o 4 — 1.0, 4 —2.0.0° — 0.01. 0% - 0.01.

There were 500 <imulated datasets used in cach <imulation.



2.2 Moment Method Analysis

We begin with a disenssion of the moment estimates of 30 o2 and @2 This method

was discussed i Seetion 1.2,

Table 2.1 shows the estimated values for 3. 4. o2 and a2 for all of the simulations

condneted. Table 2.2 shows the variances of the estimated values tor a0 and o,

This moment method performed well as the estimates of . % o and a7 appear
unbiased. The evidence is that all of the estimated values are close to the true values
for all parameters i all simulations. which can bhe seen in Table 2000 Alsoo all of the
variances of these estimates are very small, which can he seen in Table 220 Graphical
evidenece of the skewness of the estiniates can bhe seen when they arve plotted. Refer to
IYigure 2.1 [or an example. This ficure shows the histograms of )’, )‘_, ot and a2 for
simulation 1. As we can see all of the estimates appear to follow a normal distribution
approximatelyv. Graphs of the estimates for the other simulations are not shown as

thev are similar to those for simulation 1.

2.3 Simulated Method Analysis

We wish to investigate if one can treat the random effects as fixed eflects (in some
. - . . "y . e .

sense) and use this assumption to estimate o and o2 in the <ame manner as . This

was implemented in four different ways. Each of these estimation procedures will be

deseribed inmore detail in the following {fowr sections.
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Table 2.1: NMoment Method Fstimates (LNN)

3
e

i

-
T~

Y

Sim ok 7 T Fa a’
1 1O 20 0.0 0.0 LOOISG  1O9858  0.09970  0.09800
2 Lo 20 01 1.0 1.00219 199789 0.09970  0.956:11
3 1O 20 0.1 2.0 100236 LO9TRT  0.09970  1.97322
1 1O 2.0 0.1 10 100215 199788 0.09970 391701
D Lo 2.0 1.0 0.1 L.O0TI0  1.99928  0.99697  0.09812
O .o 2.0 1.0 1.0 100588 1.99550  0.99697  0.9819¢6
T .o 2.0 1.0 2.0 1.00711 199D 0.99697 197113
& 1.0 2.0 1.0 J.00 LO0TTS 199371 0.99697  3.91102
Y Lo 2.0 2.0 0.1 1.O00OK  1.99982  1.99393  0.09796
10 (.0 2.0 2.0 1.0 100611 1.99500  1.99393 093111
I 1. 2.0 2.0 2.0 1.0O&32  1.99361 1.99393  1.96992
12 1.6 2.0 2.0 1.0 L.O1005  1.99209  1.99393  3.91225
13 1O 2.0 1.0 0.1 1.000IS  2.00000 398786 0.09781
It Lo 20 LO 1.0 L005TL 199613 398786 0.98307
5 1o 20 10 2.0 LOOS6s  1.99361 398786 1.96824
16 1.0 20 1.0 L0 LOLIT6G Lo9l0l  3.98786  3.93081
17 1.0 0.1 0.1 0.1  L.O0ISG  0.09858  0.09970  0.09:50
18 1O 0.1 0.1 1.0 1.00219  0.09789  0.09970  0.93611
19 1.0 5.0 0.1 0.1 LOOISG  L99shx 0.09970  0.09350
20 1.0 H.0 0.1 1O 1.00219 199789 0.00970  0.956:11
20 1.0 2.0 000 0.01 1.00059 1.99955 0.00097  0.00935

Simnulation Method

and y vector have the following forms:

For the first method. data was simulated using, the model deseribed by (F.o). This
method estimates g and g, by treating them the saue as 3.0 Therefore the o matrix

will be changed to include the o values along with the ~;and ¢ terms. The amatrix




Table 2.2: Moment Method Variances (LN

.

2
T

gl Var(d)

Viar(.s,)

Viar(a?)

Viar(a?)

16
17
13
19
2(0)
21

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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5.0
2N

0.1
(.1
0.1
0.1
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1
0.01

0.1 0.00169
1.0 0.01095
2.0 0.02111
1.0 0.01130
0.1 0.00603
1.0 0.01692
2.0 0.02770
1O 0010853
0.1 0.01051
1.0 0.02239
2.0 0.033x1
L.O 005510
0.1 0.00913
1.0 0.03235
2.0 UOLITN
1O 0.06768
0.1 0.0016Y
Lo 0.0109x
0.F  0.00169
EO 0.01098
0.01  0.000L7

0.00023%
0.000335

0.000060
).000060

0.000317  0.000060

(.000355
0.001:392
(1.002385
0.002765
0.003075
0.002551
0.003993
0.001770
0.005530
0.001860
0.006635
0.007935
0.009539
0.000238
0.0003:35
0.00023%
0.000335
{.000021

0.000060
0.0060-15
0.0060 15
0.006015
0.0060:15
0.02.1180
0.02:1180
0.021180
0.021180
0.096720
0.096720
0.096720
0.096720
0.000060
0.000060
(.000060
1.000060
0.000001

0.000:322
0.021750
(.035025
0.336 198
0.002912
0.032192
0101111
0.372068
0.00902-1
0.017177
0.1287649
0. 116157
0.031372
0.0375497
0. 188709
0.510H077
0.000322
0.021750
0.000322
0.021750
0).000003

Un

Uiz

Yin

and )

i

ot

where ~, is generated from N (0. 07) and o, is generated fron V(0. ).

To estimate o, 0, and 403 s defined as follows:

[

16

ro



We use (1.%) to estimate 37 which gives an estimate for 4.0 and o,

! P
- - ’ L /
3 2 NI \ I (2.3)
[ N
The previons simulations were repeated using, this procedure. Table 2.5 shows the
estimated values for . 4y, o7 and o2 Table 201 shows the variances of the estimated

values for Jp. oy, o and o2

This method perforuted well in giving unbiased estimates for ) and 4, as can be seen
in Table 2.3, Also. the varlances of all of these estimates ave all very smalll which can
he seen in Table 2010 Graphical evidenee of the skewness of the estiniates can be seen
when theyv are plotted. Refer to Fignre 2.2 for an example. The top two histogranms
in this hgure are of ,3’] and )’3 for sinmlation 1. As we can see. both of these plots
follow a normal distribution approximately, Graphs of all of the other o esthmates

are not shown as they are similar to those for simulation .

This method of estimation did not perforim well for o7 and a2, The estimates for these
parameters were all very close to zero and not close to the original valnes. which can
be seen in Table 230 Also. the variances were all small, which can he seenin Table
2 1. Graphical evidence of the skewness of the estimates can be seen when thev are
plotted.  Refer to Figare 2.2 for an example. The bottom two histograms i this
figure are of ¢ and @7 for simudation 1. \s we can see. both of these plots are skew
to the right. Graphs of adl of the other ¢ and o2 estimates ave not shown as they

are simlar to those for simulation 1.
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Table 2.3: Simulated Method 1 Estimates (LN
Sy A, To a? 7> 3 3o e o
1 tu 2.0 0.0 0.0 0909832 2000971 1.07000-06  3.95871e-06
2 LO 20 0.1 1.0 1.000122 2002091 1.1631e05 25119000
3 1O 2.0 0.1 2.0 1.000298 2.002773  2.3526e-05 - LGS27e-00
1 LO 20 0.1 10 1.000516 2003732  L71200-00  S.8K898¢-005
) 1O 20 1.0 0.1 0999178  2.001960  8.0055e-07  L.O3GGe-05H
6 1.0 20 1.0 LO  0.999168  2.003030  1.0700e-05  3.9871e-05
T 1.O 2.0 1.0 2.0 0999611 2003759 2.21900-05  6.6302¢-00
3 .o 20 1.0 1O 0.990893  2.001718  -L.5515-05  0.00011509
9 LO 2.0 20 0.1 0993782 2002557  6.5630c-07  1.667He-00
I 1.0 2.0 2.0 1.0 0999072 2.003677 1.0151e-05  5.01320-05
11 1.0 20 20 20 0999218 2.001356  2.1100e-05 797 {2-005
| 1.0 20 20 4.0 0999197 2.000315 L381e-00 (L0000 13260
| 1.0 2.0 1.0 0.1 0993218 2003102  L7673¢-07  2.7007¢-05
11 1.0 20 10 L0 0993512 2004522 9051606  G.7 18 1e-00
| 1.0 2.0 1.0 2.0 0993635  2.005200  2.0303c-05  0.00010026
] 1.0 2.0 10 1.0 0998936 2.006L60 1.2801c-05  0.000159 18
17 L0 0.1 0.1 0.1 0.999832 0.100971  1.0700c-06  3.9871¢-06
! 1.0 0.1 0.1 1.0 1000122 0.102001 1.1631c-05 251 Ixe-05
| L.O 5.0 0.1 0.1 0999832 5.000071  1.0700e-06 3987 1e-06
20 1.0 5.0 0.1 1.0 1.000122 5 002091 1.16311e-05  2.51 18¢-05
21 1.0 2.0 0.01 007 0099947 2.000308  1.07000-07  3.9R71e-07
2.3.2 Simulation Method 2
For t1 second method, data was simulated without any random effeets. "That is. the

following luear wodel was used:

where all terms are defined as in equation (1.6).
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Table 2.1 Simulated NMethod 1 Variances (LMD

Viart 340

Sim 3, o o Var(s)
1 1.0 20 0.1 0.1 0.002099
2 1.0 2.0 0.1 1.0 0.017033
3 1.0 2.0 0.1 2.0 0.033571
! 1.0 2.0 0.1 1.0 0066618
D 1.0 2.0 L0 0.1  0.005825
{] 1.0 2.0 1.0 1.0 0.020987
7 1.O 20 1.0 2.0 0.037665
h 1.0 20 1.0 1.0 0.070901
9 1.0 2.0 20 0.1 0.009913
10 1.0 20 2.0 1.0 0.025212
[l 1.0 2.0 2.0 2.0 0.075331
12 1.0 2.0 2.0 1.0 0 0.075331
13 1.0 2.0 1.0 0.1 0.018050
11 1.0 20 1.0 1.0 0.033511
15 1.0 20 1.0 20 0.000421
16 1.0 20 1.0 4.0 0.083918
17 1.0 0.1 0.1 0.1  0.002099
8 1.0 0.1 0.1 1.0 0.017033
19 1.0 50 0.1 0.1 0.002099
20 1.0 50 0.1 1.0 0.017033
21 1.0 2.0 0.01 001 0006210

0.00u100
0.00359:1
0.007033
0.011065
0.001111
0.00-1565
0.0080141
0.015012
0.002516
0.005656
0.016089
0.016089
0.001752
0.007318
0.011313
0.018260
0.000:157
0.00359.1
0.000-156
0.00359:1
A.H619¢-05

Vir(a?)

\"(ll’(r}f)

20

1.5255¢-07
1.3:158¢-00
1.9539¢-05
0.00019065
L AT90e-05
1.5250e-05
9.9913¢-05
0.0002759:1
5.15700-05
0.00010158
0.00039965
0.000399GH
0.0002097% 1
0.0002980-1
0.00011831
0.00072107

1.52565¢-07

3.7999-06
(0.0002H528
0.00099333
0.003912:12
3.0003¢-05
0.00037999
0.00123302
0.00-110020
0.00008693
0.00051755
0.0019:3209
0.00:193209
0.00028 132
0.00097835
0.00219022
0.006079K89
3.7999¢-06
0.00025523
3.7999¢-06
0.00025528
3.79090-08

Following, Snnulation Method T, we deline

where ¢, s generated from V(0

Y

Yi2

!/Ill

and a? —

e

y; and oy as:

£

Lint

L G

Lonp (i



To estimate a and 4. 97 was defined as follows:

We use (1.8) to estimate 37, which gives an estimate for /7 and o:

! !

!
'\-( — “‘/v ¥ -‘*, ¢ N
3 E ) E 7Ty ) (2.6)
(=1 =1
The previons simulations were redone (without any random effects) using this proce-
oL g o~ . . , 2 vy
dure. Table 2.5 shows the estimated values for ), J and o=, Table 2.6 shows the

. . : . 5
variances of the estimated values for 4, Jy and ¢”.

This method performed well in giving unbiased estimates for 4 and 3s, as can be
seen in Table 200 Also, the variances of all of these estimates are very smadll which
can be seen in Table 2.6, Graphical evidenee of the skewness of the estiinates can
be seen when they are plotted. Refer to Figure 2.3 for an example. The top two
histograms in this fignre are of 7’] and )’3 for simulation 1. As we can see. both of
these plots follow a normal distribution approximately. Graphs ot all of the other /4

estimates are not shown as they are similar to those for simulation 1.

This  thod of estimation did not perform well in estimating 2.

These estunates
were all very close to zero and not close to the original values. which can be seen in
Table 2.5 Also. the variances were all sinall. which can be seen in Table 2.6, Graphical
evidence of the skewness of the estimates can be seenn when they ave plotted. Refer to
Figure 2.3 for an example. The bottom histogram in this igure is o 2% for simulation
1. As we can see. both of these plots are skew to the right. Graphs of all of the other

a2 estimates are not shown as they are similar to those for sinmlation 1.
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Table 2.5 Simalated Method 2 Estimates (LN

[?im i s - e 3o ? I
LU U U couusty 199 07 Ihooe-ug
2 1O 2.0 1O 1002907 1.YI9S392 6,17 1533¢-006
3 O 20 20 100D 1997725 1.291907¢-05
| 1.0 2.0 O T.OOLSTE 1996733 2.080813¢-05
i) 1.0 041 0.1 1.000919  0.099191  G..171H33¢-07
6 1O 5.0 01 000919 1999191 6,17 1533¢-07
T Lo 2.0 0.00 1.000291  1.999839 6. 1715330-08

Table 2.6: Simubated NMethod 2 Vartances (LNND

Sy oF Viar(s) Viar(idy) Viarfa?)
| Lo 2.0 0.1 0.000 100538 G.00011 72187 L35 1H0e-07
2 1.O 20 1.0 0.00 100538 0.000172.197  L.351070e-05
{ Lo 26 20 0.00801076 0.002311991  5.106278¢-05
| 1.0 2.0 1.0 .01602152 0.00 1689987 0.0002162511
o 1o 01 0.1 0000100538 0.0001172197  L.301H70e-07
6 1.O 5.0 0.1 0.000 100538 0.0001172197 AH1IHT0e-07

n T 20 nin (y NODNINNRIN 1721076200 T AR TRTNA 00

2.3.3 Simulation Mecthod 3

Ior the third method. data was sitnulated using, the model deseribed by (1.6). This

metho  estimates g by treating it the same as 3.

FolHowing Shimulation NMethod Towe tind the g, and o) matrices as:



.I//II

S N “u\

Sant

aned 1t —

where =, is generated rom V(0. 07).

To estimate oo my and 5047

wis delined as follows:

We nse (1a) to estimate 47 which gives an estimate for ;7 and o,

I - !

™ ’ '
N *
2 g é N

[ ¢t

rea * R4 . - -
[hen. to estimate o=, we use the following equation:

o

where 5 is defined in (2.8,

(2.9)

The previous simulations were redone using this procedure. Table 2.7 shows the os-

. B 9 < . . N . . .
timated values for . . 0® and o7, Table 2.8 shows the variances of the estimated

values for 3. 5. o® and o?.



This method performed well iy giving unbiased estimates for 4 and 1 as can be seen
in Table 2.7 Also. the vavtances of all of these estimates ave all very small, which ¢an
bhe seen i Table 2.8 Graphical evidenee of the skewness of the estimates can be seen
when they are plotted. Refer to Figure 200 for an example. The top two histograins
in this figure are of O and & for simalation 1. As we can see. both of these plots

follow a normal distribution approximately. Graphs of all of the other J estimates

are not shown as they are similar to those for simulation 1.

This method of estimation did not perforn well for a7, but it did do hetter than the
previons two sinndation methods. NMost of the estimates are not ¢lose to their original

values, However, some simulations performed well,

The cases with hetter estinmtes of 77 are found to be the cases where o7 is large rela-
tive to a2 All variances of the simulated estimates can be see in Fable 2.~ Graphical
evidence of the skewness of the estimates can be seen when they arve plotted. Refer
to Figure 2.1 for an example. The bottom left histogram in this lignre is of a2 for
sinmlation 1. As we can see. this plot follows o normal distibution approximately
ancl thus is not skew. Graphs of all of the other o2 estimates are not shown. as they

are similar to those for sinmlation 1.

This method of estimation did not perfornn well for estimating o7, The estimates were
all very close to zero and not close to the original vatues. which can be seen in Table
2.7 Also. the variances were all small, which can be seen in Table 20 Graphical
evidenee of the skewness of the estimates can be scen with plots of the estimates. An
example of one such plot is in Figure 2 1L 'The hottom right histoerion in this figure
is of a2 for simulation 1. As we can see. this plot is skew to the right. Graphs of all

of the other a2 estimates are not shown. as they are similar to those for simulation 1.
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Table 2.7 Simmlated Method 3 Estimates (LMD

Sim 4, 3 a? a? A iy a? i
| Lo 20 0.1 v 0.992zun3 0 2.0009310  0.196695 LT HGH20-06
2 1.0 20 0.1 O 0999171 2001832 1073182 2.1 I8716e-05
3 Lo 2.0 01 2.0 0993901 2002377 2017069 LOISSEhe-05
| 1.0 2.0 0.1 LO 09983713 2003117 3991802 9.706G1e-0
i Lo 2.0 1.0 0.1 0997675  2.002053  1.090513  3.5305680-08
6 1.0 2.0 1.0 1.0 0997187 2.0029052  1.966919 1.1 HHG92e-050
T 1.0 20 1.0 2.0 0997373 2003196 2.910500  3.068778e-00
S .o 20 1.0 1O 0997212 2001266 L8335 11 738851 [7e-05
9 1O 2.0 20 0.0 0996718 20027315 2.0836HG  9.00997 1c-07
10 1O 2.0 20 1.0 0.996560  2.00306: 3( 2.960062  6.8352137¢ 06
11 Lo 20 20 2.0 0996116 2.00117 3.033899  2.2833550-00
12 1.0 20 20 1.O 0996235 2. (()1()1r HASIOIT  6UE3THNGe-00
13 1.0 2.0 1.0 )1 0995137 2.003691 - 1.069950  1.1035660-06
1 L0 2.0 Lo L0 0.095219 2001590 1916312 2375 116e-006
1H 1.0 2.0 1.0 20 0995135  2.00! )l 31 5920123 1370 I87e-05
16 1o 2.0 L0 10 0991971 2005901  7T.867798  LHGETHOe-05
I 1.0 01 0.1 0.1 0.999205  0.10 )‘ 31 0.196695 L. 1HOY20-06
I L 00 0.1 1.0 0999017  0.101832  1.OT3IR2 2 1 IS7TH6e-00
19 1.0 5.0 0.1 0.1 0,999 )l) y 5000931 0.196695 L1 HGY2e-006
20 1.0 5.0 0.1 1.0 0.99901 5001832 L.OT3182 2.1 1Ge 07
21 1.0 2.0 0.01 0.01 0999755 2.000295  0.019670  L.L11G92e-07

2.3.4 Simulation Mcthod 4

For the fourth method. data was simulated using the model desceribed by (1.6). This
mwethod estimates o, by treating it the same as o as does the third method. Therefore.

the g, and o7 matrices are:

I
LN o <l'1!p T
Yi2 N . .
U, . and o) — : : . {2.10)

inl T 'l.III[J ]

Yo






20

_ (2.11)
{T‘»
Let us define a new reduced J vector as the following:
* o -
g =4
Then, to estimate o2, we use the following equation:
7
Z[ ( R i; g
o o WU A i 0,
g = — : : (2.12)

nl

The ;;’,. vector used in (2.12) to estimate o does not include the estimate of o. obtained.
which is the sole difference between estimation method 3 and estimation method L
Esseutiallv we include o in 237 so that when we estimate 3 we are also estimating,
. As aresult, 37 i a vector of the 3 and o, estimates. We use, in (2.12), only the

T4

part of the J* vector that has the J estimates,

The previons sinmlations were redone using this procedure. Table 2.9 shows the esti-
mated vooaes for S e a2 and 020 Table 2010 shows the variances of the estimated

g ) R
values for . 4. o and o2,

This method performed well in giving unbiased estiimates for 4 and 20 as can be
seen in Table 2.9 Also. the variances of all of these esthimates are all very small,
which ¢ be seen i Table 2,10, Graplical evidence of the skewness of the estimates
can be seen when thev are plotted. Refer to Fignre 2.5 for an exaunple. The top two

histograms in this fignre are of 4, and 4y for simulation 1. As we can see. both of

these plots follow a nornal distribution approximately. Graphs of all of the other



estimates are not shown as they are similar to those for simulation |

This me  od of estimation did not perform well for o2 but. similar to method 3. it
did do better than methods 1 and 2. Most of the estimates are not elose to their

original values. However, some simulations performed well.

The estimates of o tend to be better when o2 is large relative to g, They are also
better when ¢ and o are small and equal. All variances of the simulation estimates
can be seen in Table 2. 10, Graphical evidence of the skewness of the estinates can
be seen when thev are plotted. Refer to Figure 2.5 for an example. The bottom left
histogram in this ligure is of ¢ for simulation 1. As we can see. this plot follows a
normal distribution approximately and thus is not skew. Graphs of all of the other

‘) . . . . . .
a7 estimates are not shown. as they are similar to those for simmlation |

This method of estimation did not —rform well for estimating o2, The estimates were
all very se to zero and not close to the original values. which can be seen in Table
2.9, Also. the variances were all small. which can be scen in Table 2010, Graphical
evidence of the skewness of the estimates can be seen when they are plotted. Refer
to Figure 2.5 for an example. The bottom right histogram in this figure is of o7 for
simulation 1. As we can see. this plot is skew to the right. Graphs of all of the other

‘) . . . - . .
a2 estimates are not shown. as they are similar to those for simulation 1.
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Table 2.9: Siimulated Method | Estimates (AN

S 4 % AP - A s - a
1 1.0 2.0 0.1 U 9992053 2.0000335 0198028 1L TT6920-06 |
2 L0 20 0.0 10 09990171 20018323 LOI3T30 2.0 ISTGe-05

3010 20 00 20 0.9989035  2.0023767  2.067802  LGISSTHe-00

I

g

1O 2.0 0.1 L0 099837125 20031167 LO3K916  9.7061200-05
» L0020 1.0 0.1 0997671 2.0020032  LO9LIOT  3.530065¢-08
O O 20 1.0 L0 099TISTOH 2.0029520  LYSO0282 11 HGH2e-00
T L0 20 0 10 2.0 0 099737300 20031960 2961163 3.063778e-00
S 1O 20 L0 10 09972120 2.0002660 1932730 73881 17e-00
9 O 20 2.0 0.1 09967177 20027315 2.090528  9.00997 le-07
[0 L0 20 2.0 L0 09965508 2.0036303 2976319 6.802 e 06
I Lo 20 20 20 09960160 20011750 3.960565  2.283385e-05
12 1.0 20 20 L0 0.9962850 20019150 5928925 G.137506e-00
3 10 20 L0 0.1 09951366 2.0036908 -LOS2151 1103366006
I 1.0 20 L0 1.0 09952187 2.0015896  1LH6S298 2375 e 06
IH 1.0 20 Lo 20 09951318 20011310 5952637 1370 I87e-00
16 1.0 20 10 LO 09919735 2.0059010 7921130  L56GGT6Ye-00
17 Lo 0.1 0.1 0.1 0.9992053  0.1009335  0.198028 1.1 HG692e-006
IR L0 0.1 0.0 1O 09990171 04018323 1083730 2 1 IRV I6e-05
19 10 50 01 0.1 09992053 5.0009335  0.198028 11T T692e-06
20 L0 5.0 0.l EO O 0.9990171 50008323 1.OS3T30 2.1 IST16e-05
20 1.0 2.0 000 0.01 09997187  2.0000652  0.019803 11 HED2e-07

2.4 Quasi-Likelihood Method Analys*-

The quasi-likelihood method discussed in Seetion 123 may also be nsed for the analysis

ol a linear nixed model.

From {1 12). we can solve explicithy for 1




Table 210

: Simulated Method -1 Vartances (LNIN

33

Var( )

Viar(.h)

Viar(a®)

Var(a?)

Simo 3, b o° o:
] 1.0 2.0 0.1 0.1
2 1.0 20 0.1 1.0
3 [.O 2.0 0.1 2.0
| 1.0 2.0 0.1 1.0
) 1O 2.0 1.0 0.1
6 1.0 2.0 [0 1.0
T 1.0 2.0 1.0 2.0
N | 20 1.0 1.0
4 1 2.0 2.0 0.1
10 1 2.0 2.0 1.0
11 | 2.0 2.0 2.0
|2 | 2.0 2.0 1.0
13 | 20 1.0 0.1
11 1.0 2.0 1.0 1.0
15 Lo 2.0 1.0 2.0
16 | 2.0 1.0 1.0
[ | 0.1 0.1 0.1
IS 1.O 0.1 0.1 1.0
19 Lo 5.0 0.1 0.1
20) 1O 5.0 0.1 1.0
21 | 2.0 0.00 0.01

0.001996702
0.01568793
03088211
0.06120772
0.006197615
0.01996702
0.035208H8
0.0656511 1
0.0108.1703
0.02166379
0.03993-10 1
0.07011717
0.0201:3:302
0.03101675
0.0.1932753
0.07936803
0.0019967(2
0.01563793
0.001996702
0.01563793

0.0001996702

0.0003967:23
(0.0030101229
0.00591 1388
0.01172273
0.0013-15603
0.003960723
(.00G36HG26
0.01267 188
0.002 100389
0.005016153
0.007921 117
0.01373125
0.00-1509786
0.007126 162
0.01003231
0.0158:1259
0.0003960723
0.003010129
0.0003960723
0.00301029
3.960723e-05

0.000370H01
0.02207376
0.0855-126
0.336-1 106
0.00H87H93
0.03705961
OISO
(1.3865209
0.0207 1139
(.0GIN266
0.1 182381
00172137
0.07826675
0.13830692
0.2 173061
0.0H929538
0.000370596 1
0.02207376
0.000370596]
0.02207376
3.70096 1e-06

3.026078¢-06
0.0001801H78
0.00070H808%
().()()"H()‘il'i()
:3.359520he-00
(0.000302607S
(0.0009 129322
0.0031 12028
0.000105 1068
0.000 1812267
0.001210131

0.003651729

0.0003680217
0.000967397

0.00 1936907

0001841725

3.026075e-06
0.0001801H7S
3.026078e-00
0.000 1801578
3.026078e-08

where ., and g; are as previonsly defined in Chapter 1, and

- <0
ag° t o] 7
a4 2 +
- _ a; a az
4 - .
~2 2
| a; (Tj

As we can see,

the cquation for 4 for the quasi-likelihood method is the same as

the moment method estimator.

v . ¥
therefore we need to estimate o= and

We cannot sobve (1.12) explicithy for o

— (rr"’.nf).

a? by solving (F12) numerically with Newton's




method. Initial estinrates were chosen and used to start a Newton-Raphson iteration.

Suppose ¢2* is a solution to (1. 12): then, at iteration (r + 1):
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The previous sinmlations were redone using this procedure. Table 2011 shows the es-
timatod values for )0 So. a7 and a7, Table 2012 shows the variances of the estimated

values for 3. 4, 0% and a2,



This method performed well in giving, unbiased estimates for ) and 40 as can be
seen n Table 2010 Also, the variances of all of these estimates are all very small,
which can be seen in Table 2.120 The onlv exception to this is simulation 9. which
has a higher variance for both 4 and 35 compared to the rest. If we look at the
estimates for these parameters for this simulation, we sce that they are the furthest

from the true parameters but the estimates are still not bad.

The quasi-likclihood method performed well for o7 and o2 though not as well as it
did for 3. Some estitates appear biascd. particularhy when o or a2 is large. The
varianees of all of these estimates are all very small when @ and @2 ave unbiascd.
which can be see in Table 212, However. the simulations that did not produce good

estitnates also seem to have an issue with ontliers.

The estimates do not appear to follow any trend of biasedness. That is. they do not

hecome unbiased or biased as a value of @ or a7 heconmes larger or smaller.

< 9. . . . 3
For a2 it appears that the variances are becoming larger as the values for of become
larger as well as for when the vatues of a7 become Taroer. In addition. the variances

: 5 . Y
for o2 appear to become larger as the values for o7 hecome Targer.

[t should also be noted that there are a couple of sinmlations in which the estitmated
value for o is negative. This is because there is nothing in the iterative estimation

o . .
scheme that prevents o2 from becoming negati



Table 2.1'1: Quasi-Likelihood Method Estimates (LNIND

Sim d b ot or 9 3o 7 -
I 1.0 20 0.1 0.1 1.000572 LC 60y 0. 1023606 0010817
2 1.0 20 0.1 1.0 1002572 [.ONIT 009716832 (.9960 §H6
3 1O 20 0.1 2.0 1002001 O 7hH8 010135 1h 1956 183
1 1. 2.0 0.1 1.0 1002212 1O N01 (L 1OO25H0N 39013108
D 1O 20 1.0 0.1 1.02 1620 1.OS07T0 1 0916112 -().88922:35
O o 2.0 1.0 1.0 1.00127 1 1O 789 (LOXSTHN 1.0 1008
T Lo 20 1.0 2.0 1.007519 1. 003 0.9 117hH3AN 2520065
N Lo 20 1.0 1.O 1.005565 1.¢ 76 0. 9165685 1318271
9 1.0 20 20 0.1 1094606 1.921918 2.001 136 2. 701138
10 1O 20 20 1O 0.9979647 2.0 388 2.020012 (.86G7 1288
11 .o 20 20 20 1.007250 1.¢ 191 1.93694 | 22062527
12 1.0 20 20 1.0 1.008259 1.6 523 [.SR9096 1IS901 T
13 1O 2.0 1.0 0.1 1.016196 1.OR7TO31 3.990002 0.05606642
|1 1.0 20 LO 1.0 L.OLOLHG 1.992072 LOTIHS 0.800599
5 1.0 20 10 2.0 1.01 [ (622 1991283 1.026259 FRSSSTT
16 1.0 20 10 1.0 1.O1LS 19T 151 2.0906083 1672387
17 1.0 0.1 0.1 0.1 1.00205 ()() 0.0981206  0.0N9 157N 0. 1001519
I 1.0 01 0.l 1.0 1.0025607  0.097825Y9  0.100 1505 09801 18]
1 1.0 5.0 0.1 0.1 1.008150 1.9935 16 01035311 0.0865H01
20 1.0 5.0 0.1 1.0 1.002308 LOO7TYRS 01001 121 LONT1GH06
21 1.0 2.0 001 0.01] 10008 1.900310  0.01067917  -0.001296529




Table 2.12: Quasi-Likelihood Method Variances (LNIND)

10

Sim 4 A o? ol Voorl g

I 1.0 20 0.1 01 0.0uiodenn
2 10 20 001 L0 001101198
310 20 0.0 20 002116191
110 20 0.1 10 001132562
5 10 20 1.0 0.1 0.1576310
G L0 20 10 1.0 00718851
710 20 1.0 20 0.02081281
S L0 20 1.0 L0 0.05181079
9 1.0 20 20 0.1 1629121

10 1.0 20 20 1.0 0.0179069
[T L0 20 20 20 003380361
12 1.0 20 20 1.0  0.05581598
13 1.0 20 L0 01  0.03257327
L1020 L0 10 0.03357319
15 L0 20 10 20  0.04530061
G 1.0 2.0 1.0 10 0.06801563
I7 1.0 0.1 0.1 0.1 0.001696515
IS 10 0.1 0.1 L0 0.01098391
19 L0 5.0 01 0.1 0.000231578
20 10 50 0.8 L0 0.01098202
20 1.0 2.0 0.01 0.00 0.00030851311

Vil 40

0000 ..o

0.0003389 12
).0003 [9HRS8]
0.0003H6GGNSH
0.006 1 1026
0.002723732
0.0039 13186
0.005376G 10
2.963211
0.02052137
(.005026768
0.0061 106G
0.01289022
0.007 137036
000851507
0.60951761
0.0002351026
0.000335668
0.00500337
0.0003355H2.12
0.000 1089212

Viar(a?)

Y(l:'lﬁfi)

0.000 12250 11
(.0008 130811
(1.003508799
0.0058739 1
9.698067
0.02118229
0. 1390198
0. ISO1387
0.5588191
01272192
0.57H67TH3
2. 162666
01201139
0.2216968
0.2022703
03159631
0.0001 105919
0.000173 1860
0.00 1253035
(0.00025687H6
0.0000909913

O.Uson2 ING
00802336 1
0. 1026076
1377193
IHG. 7990
().2806825
16.0289 11
1180 T
2065, 11620
2679107
LTINS
51730108
L.OS 13T
0.607 1359
0.7232518
201.834802
0.00065356222
0.0206 13172
5100101
0.05% 19066
0.08701333




Chapter 3

Simulation Data Analysis -

Generalized Linear - Tixed Model

3.1 Introduction

For thix chapter, all analyses are done using o logistic model with fixed and random

effeets. which is an example of a generalized linear mixed model (GLNIND.

For all analyses of the generalized linear model, we wish to estimate f and 7.0 \We
first do this using the moment method. then with the simulated method introduced

in the previous chapter, and finally with the gnasi-likelihood method,

As a reminder, the eeneralized linear mixed model that we are nsing, for this chapter
o O

15 the followinge:

U153, ~ Binomial -+ 7). (3.1




where
;= Py = ) ———— R B S

N
[ IRALERY

Al simulations used the following initial condit  ns and parameters:

_l Al_
L -1
s —1.--- .50
1 1
. 1 1
.‘\1-- = -4 -
1 2
1 2
if /= 51.- 100
1 3
13
\ L .

e y,;; are created from the model defined in (1.7).
The generalized linear methods of estimation were studied for the following situations.

First, for the /4 given carlier, we used o,—0.1, .3, 0.5. 0.7, 1.0, 2.0, -L.0. Then we

used (y,3s00,) = (1O, 001) and (1.5.0.1).

3.2 Moment Method Analy is

Jiane (1098) introduced a method ¢ estimating the fixed effects and variance conm-

ponents in a generalized linear mixed model that was hased on simulated moments.



This method was snggested for it's computational feasibility and the consisteney of

its estimators. The method. however, can prodhice ineflicient moment estintators,

To combat the problem of inefficient moment estimators. Jiang and Zhang (2001)
proposed robust methods for estimating the pavameters of interest in an extended
generalized Tinear mixed model. A first step esthmator s calenlated by solving
svstem of estimating equations. This estimator is consistent. Next. a second step
estimator is calenlated by solving a svsten of optimal estimating, eqnations. Fhis
second step estimator maintains the asviptotic optimality and produces mueh bet-

ter results than the first step estimiator,

We begin with discussion of the results using the monment method of Jiang (1998).

discussed in Section 1.2,

As mentioned in Chapter 1. sonme of the expectations used for this method are very
difficult to tind for the logistic model and they can be approximated. For example.

we need to evalnate expectations such as:

NALORT SRS
| ~/ Fid s,

B,
l ¢ L ' J

It is not possible to evaluate this integral explicitly, To overcome this probleni we
ecnerated 500 -, values from the standard normal distribution and approximated the

integral by caleulating:
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The value for w needs to be Taree. We used w0 500 1 our studies. We also used

w1000 in some cases. but found little diflerence from the results when o H00.




We [rther define F(w) using (1) and L)
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Table 3.1 shows the estimated values for 4, 4 and o, for all of the simulations

condueted. Table 3.2 shows the variances of the estimated values for 0 s and o




Included in Table 3.t is a column containing, the nmumber of sinmlations (out of 500)
that broke a Newton-Raphson iteration due to the o, valne being too large (lavger
than 5). The number of breaks is in the table nnder the column NA. This method

can produce a mumber of negative estimates. particnlarly when o7 is snuall,

This moment method performed well inestimating 7 and . giving unbiased vesults.
Evidence supporting this is that all of the estimates of 3p and 4y are close to their
original values. which can be scen in Table 3010 However, bias tends to inerease as
a, ncreases. The variability of the estimates also increases with inereasing, o . Also,

the vartances of all of these estimates are very small, which can be see in Table 5.2

Finallv. if we look at the medians. means and trinmmed means of all 4 and 3y esti-
mates alone with the histograms of these estimates. we see that there are some sets
of estimates that do not appear approximately normally distributed. To show an
example of the histograms in which 4, and 3, perform poorly. we can refer to the top
two histograms in Figure 3.2, For an example of the histograimms in which 3, and 3

perfornn well, we can sce the top two histograims in Fignre 3.1,

This moment method did not perform well in estimating o, in all cases. We see
high bias in d. for extreme values of g, (o, 0.1. 2. 1), Tor g,, it appears that the

variances are becoming larger as the values for o, become larger.

\We made one more change to our model assun tions before proceeding to the next

method of analvsis. For all of the sinulations condueted up to this point. the following



Iigure 3.1: Moment Method Histograms (GLNAL: Simulation |
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Figure 3.2: Moment Method Histograms (GLMNM): Simulation 9
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Table 3.t Moment Method Fstimates (GLNIND

St 9, Fo Tl 1 3 7., NA
| 1.0 2.0 0.1 [.O025081 2016216 0.390103 |
2 1O 2.0 0.3 1003611 2000111 0.36HI617 ] O
3 1O 2.0 0.5 LOI6GTY 2066009  O0L1I83LKT ] 0
|

1O 2.0 07 1032565 2008121 0.667H309 | |
) Lo 2.0 | 1028650 2.070387  0.9736601 1 0
6 1o 20 2 LOROTE 2 33516 2.090971 | 12
7 O 2.0 1 00657727 L7976 182 3531782 | 11
3 PO 0T 0.1 LOONGO G 00978195 0.1939328 | 0
Y FO S0 0.1 1205802 Hphnrnt o (g Invhag 1o1h

N omatrix was nsed:

N
] |
it —1 .OH0):
| |
] 1 |
AW L q -
1 2
|2
iy 5l 100,
13
1 3

We would like to sce il the method is sensitive  the choiee of the desien matrix N,

In particular. we evaluated the moment wethod using the following four X matrices:

o (‘use |t
N, ~ Uniformi(0.1)
N0~ Uniform(0.0.5)

o (Case 2




o (luse

Table 320 Moment Method Varances (GLNND

Sim 1 i Vol 10 Vet o, Viar(eo,) -
| Lo 20w ll.l;v).\-)(_i.)i)()_ (6 ().20230 11
2 1O 2.0 .3 005310002 0.073926H1 (L 1905228
3 FO 2.0 00 006318721 0.00208t 11 (0.236775H2
| O 2.0 0.7 0.0666329 0.099617-18 0.26:33809
i O 20 1.0 007231019 [165 150 03111103
O O 200 2.0 011283830 307HG2Y (.72:32923
T O 2.0 L0 0269333 1967317 0.5703712
S 1O 0.1 0. 002067371 U 6208123 0.0638522 1
) O 5.0 01 05198386 (0. 1659572 0.69:1 1932
- | -
| . .
e 1o 00
[
| . ) .
- _ (the saane N previously utilized)
)
2
il 5l - 100,
3
3 J
P }
,I'”
I'/ . - . .
! it/ Lo 0500 where sy, ~ Uniform(0.1):
'I./_I
I
£,
‘l./ P . - g -
! i 51 1000w e, ~ Unitform(-0.5.0).
Xy

19




n0

e ('ase I

by,
Loy, o _ o
‘ it Lo 0500 where oy~ Uniform(0,1):
I,
R
N, - L !
Loy,
l 'y L _ .,
it =51 100, where ar; ~ Uniform(0.1).
I, .
1oy,

Al four of these desien matrices were combined with the following four sets of pa-

rameter values. feaving us with 16 simulations to examine:

Table 3.3 shows the estimated values for . 3o and oy and Table 301 shows the vari-

ances of the estimated values for 0 4 and o,

Looking at Table 3.3 we can see that the choice of X has an elfeet on the estimation
of Jy. 4y and a.. Also. we can see that whether (s Targe or small has an efleet on

the resalts.

Looking, at Table 5.1, the Jowest variances of ) occur in case 2 and case 3. For ;.

the lowest vartances oceur in case 20 For oL the lowest variances ocour in case 3.



Overall. the program does give varied vesults depending on the N matvix chosen:

however, all programs perforined well in estimating 7. 4y and ..

Table 3.3: Moment Method Estimates: Effects of Changes in X (GLAN

Sim Case 9, 4 o 1, o a.,
| ] 0.1 0.2 020 Gaaaer 01609 02763
2 I 0.1 0.2 05 01066 01709 01707
3 | LO 2.0 025 09203 2.0301 (L3363
3! | 1O 2.0 05  LO132 v9761 0177
9 2 0.1 0.2 020 0.0870 0.2033  0.2361
4 2 0.1 0.2 0.5 00878 0.20260 0.1539
T 2 1O 2.0 025 LOH2 206710 10.3956
b 2 LO 2.0 05 LOI37T 20665 05118
Y 3 0.0 2 025 00991 018210 02115
10} 3 0.1 02 05 01027 02073 04518
11 3 1O 2.0 025 1.0025 1.9939 0.2171
12 } 1.0 2.0 0.5 L0o00S  2.016Y9 0.1350
13 1 Jd.1 02 020 01072 01912 02351
11 1 0.1 0.2 05 01062 020105 01566
15 H O 2.0 026 1.00510 20083 0.3012
16 1 LO 20 05 09978 2n0us 01596

3.3 Simulation Method Analysis

As utilized for the linear mixed model. the simulated approach to estimation was

applied. Tor the generalized linear mixed model we are only estimating 4y 3y and

a.. As such. we only used one of the four simu ion methods proposed for the linear

mixed model.

In particular. we emploved Simulation Method 3. 1or this method. data was sinmlated

using the model deseribed i (1.7). This metho  estiiates oo by treating it the same



Table 3.1 Moment Method Variancees: Eflects of Chaneses in N (GENIND

Sig Case 5005 o Vart ) Viart ) \'(:/'(n\v)T
Cr O 02 025 00822 02820 00720
% 0 02 05 00862 03099 0.0803
3 10 20 025 00071 01503 01280
| | Lo 20 05 0.129] N20a97 01083
h 2 0.1 Uz uv.zo 00165 v.uu Y (0.0020
6 20 0.0 02 05 00190 (.0053  0.0570
7 D L0 2.0 025 00098 0.097 02170
N 2010 2.0 05 00632 0.0926 0 02368
9 300 02 025 00108 00510 005612
10 3000 02 05 00127 00616 00586
1 3010 2.0 02%  0.0190 OUHIST 0065
[ 3010 2.0 05 0.0212 00017 0.0880
| 13 0.1 02 025 00371 01027 0.0192
| I 00 02 05 00370 01135 (L0582
15 L 10 20 020 00686 02581 0.00495
| 16 110 2.0 05 0071 02717 0103

as . Following, Simulation Method 1 for the limear mixed model, we fined the g, and

2 Malricees as:

Y
o T ~"r1p r
s . . .
Yoo 4 and o - : S (3.2)
Tni e -li/n[l o
You

where =, is generated from N (0. 07).

+

To estinate g, and S0 was delined as Tollows:




)4

We use logistic regression to estimate 5, which  ves an estimate for 4. and o, For
this estimation we are including o, o3 so th 1 when we estimate . we are also
estilatimg, a.. As aresult. S is a veetor of the 3 and o, estimates. Al simulations
were run and Table 305 shows the estimated values for o o and o Table 5o shows

the variances of the estimated values for 0 S and oo,

Results were reasonable for 4y and 4.0 s we can see in Table 3050 the program
performs better for small values of a. and for small values of S, The smmlations
that did not perform well had high values of oo (2 and 1) or a high value for 0, (9
Surprisingly, the variances. which can be seen in Table 3.60 do not et worse as o,

eets larger. Incontrast. the varianees for J) and 5, get smaller as a. becomes Lireer,

Finallv. if we look at the histograms of the estimates of Jy aud 5. we see that there
are a foew sinmdations that do not appear approximately normal, but this is dne to
outhers. For an example of the histogruns in aich 4 and 3 perform poorly. we
can refer to the top two histograms in Frenre 3 For o example of the histograms

in which 4, and ., part well, we can see the top two histograms in Figure 300

For the estimation of the . $'s. this inethod appears to he sensitive to the choiee of the
s sinee it performed very well for 3 1003, Ol and a, 0.0 but not very well

1’()1' A‘fl - I(], J"_) - r)(), illl(l (7»’ - ()I

The method did not perform well in estimating o, As we can see in Table 5050 none
of the estimates are close to the orieinal valne. However! the vartances for - which

can be seen tn Table 200 are not high, The ondy exception to this is the varianee fol




7, i simulation 9. which is quite high. However, the small vaviances do not iaply
that this method is performing well xince the estimates are poor. The histograms for
a, for all but simulation 9 appear approxitately normal, The histogram for simla-
tion 9 is skew right. The estimates appear to follow a treid of hiasedness: That s,

the estimation hecomes worse as the value of o hecomes larger,

Overall. it appears that this method performed  oorly in estimating all paranmeters.

Table 3.5: Sunulated NMethod Estimmates (GLNIND

St o ~ L i a.
| L0 20 1 Liiod ZoaZon 0.0110
2 1O 20 0.3 11209 21130 0.005 |
3 1.0 2.0 0.5 LOSEH  2.0180 0.0003
| 1O 2.0 0.7 101635 1.9 0.0107
) 1.0 20 1.0 0.9659 [.81506 0.0166
0 1.0 2.0 O 07209 13683 0.0160
T 1.0 2.0 1O 01021 08031 (.00 13
h 1.0 0.1 0.1 10071 01019  -0.006:32
9 1.0 5.0 01 5H.6511 L7000 01676

We did attempt the second modification performed on the moment method of analy-
sis. That is. we ran this program using different N atrices to see if different results

are produced. nuplving that the program is sen  ive to the X matrix chosen.

We evaluated the sinmlation method using the same X matrices used i the moment
method.  As belore, all of four of these new  oprams were conducted using the

following four simulations. leaving us with 16 simulations i total to compare:

[ ] ’1’1 l“ .)J~_) '— 2() J. — .25

o 4 L0 4 20.0. U5
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Table 3.6: Simulated Method

wiances (GLMND

Sime e
1 1.0 2u
2 1.0 2.0
3 1.0 2.0
! 1.0 2.0
5 1.0 2.0
6 Lo 2.0
7 1.0 2.0
8 1.0 0.1
9 1.0 5.0

laz

0.
0.
0.
1.0
2.0
1.0
0.1
0.1

-1 <1 Qe

Viarf 3N

.40l
0.1977
(0.30H08
0.2077
0.0620
0.0516
0.0-186
0.0205
27.7602

Vil 4. )

U.ovut
0. 1668
(.3311
0.1891
0.0 108
0.0230
0.0170
0.006 1
203.9522

Viar(o,)

0.0-111
0.0383
0.039 1
0.0107
0.0-1 13
0.0529
0.0-152
0.0156
13,7322

All simulations were run and Table 2.7 shows the estimated vatlues for 4. 4o and o,

Table 3.8 shows the variances of the estimated values for . 4 and a.. Also shown

in both of these tables are the ave

Overall. for all simulations. the estimates of ) and 2y were reasonable. Towever, as

w of only the positive values of 7.

i the original results, all simulations produced poor results for 4.,

because, when treating o, as a regression paranteter, it is not restricted to be non-
negative, In fact, all produced negative estimates. Since the average of the estimates
were neeative, we omitted the negative estimates and recaleulated the mean based

on the remaining positive estimates. This is shiown in the final columm of Table 3.7

Again, we can see that none of these produced good estimates.

) -

This s possible



Table 3.7 Simulated Method Estimates: Effects of Changes in X (GLAIND

Ssim Case ) 4@ 0 Fy a. a. -0
| l 0.1 0.2 0O.zn 01122 01879 -0.0091  0.0786
2 | 0.1 0.2 0.5 0.0936 0.2031 -0.0012 0.0891
3 1 1.0 2.0 0.25 1.0185 1.9670 -0.0067 0.0931
1 ' o0 nn o 0a7reh 1.9085 0 -0.0039 0 0.0961
D z Ul vz uazoo wudds 0.1989 0 -0.0050  0.0883
6 2 0.1 0.2 0.5 0.0926 0.1902 -0.0077  0.0890
T 2 LO 2.0 025 112h2 21229 0.0091  0.1559
Y 2 L.O 2.0 0.5 1.0818 20dx0 aonxt o 1Lh77
9 3 0.1 02 025 0.1035 0U.1000 -vovoy  w.us0T |
10 3 0.1 0.2 05 00991 0.0830 -0.0101  0.0316
11 3 1.O 2.0 0.20 10012 20266 -0.0077 0.1058
12 3 1.O 2.0 0.5 09668 106299 -(0.0051 0O.1111
13 | 1 0.2 025 00000 v -0.0051  0.0860
11 ! 0.1 0.2 05 00991 0.1870 -0.0095  0.052]
15 1 FO 2.0 0.25 L0008 20236 -0.0051  0.1236
16 | LLO 2.0 05 0901 1.9755 -0.0022 0.1273




Table 3.8: Simulated Method Variances: Effeets of Changes in X (GLNINID

Sim Case 4y Ay o, Var(d) Var(s) Var(e,) Var(e. = 0)
! l 0.1 02 025 0.0776 0.2505 0.0117 Olnriz |
2 1 0.1 0.2 05 0.0686 0.2 112 0.0131 0.0015
3 i Lo 2.0 025  0.1069 (.1071 0.0150 0.00:19
| ! .o 2.0 05 0.0953 0.3728 0.0153 () NORY
5 2 0.1 0.2 025 0.0178 0.0018 0.0131 Ol
6 2 0.1 0.2 05 0.0206 (.0051 0.0145 0.00-18
T 2 L.O 2.0 025 0.18806 01617 0.0389 (1.O153
b 2 0 20 06 .3508 0.3311 0.0391 0.0111
9 3 O vz uzo  0.0107 0.0528 0.0112 0.00-15
10 3 0.1 0.2 0.5  0.0113 0.0558 0.0128 0.00:1H
1l 3 Lo 2.0 025  0.0163 0.1121 0.0172 0.0062
12 3 1.0 2.0 0O A (ANAREAS] n1211 0.0187 (y.q07R
[3 | 0.1 0.2 020 uvwoio u. 112 0.0118 0.0u1n
[ 1 0.1 0.2 05 0.0397 0.1197 0.0125 0.0011
Ih l L 2.0 0.25  0.0037 0.3263 0.0257 (.0099
16 | 1L.O 20 05  0.0719 0.3332 0.0257 0.0102

3.4 Quasi-Likelihood Method Analysis

HY

As previously deseribed, the quasi-likeliliood method of estimation. unlike the max-

nnun Lhikelihood approach, does not require specification of the distribution of the

response variable. This method uses only the mean and vartance to try and estimate

1

Sutradhar and Rao (2001) proposed an approach to the estimation of parameters of

a generalized linear mixed model with two components of dispersion. This method

was sinnlar to two-way analysis of variance.

Irom (1.12). we canmot solve explicitly for 5 and a,. Therefore. we need to estinate
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these parameters by =olving (112) numerically with Newton's method. Initial esti-

mates were chosen and used to start a Newton aphson iteration. Suppose 3y, and

TR denote solations to (102 then. at iteration (4 1):

] " I 1 I

ATATEEY QL TR : !

QLo R I B S REVTY Y oOWSA s A
L [

Tty 1) T QLI » r

i Yl
{4, .
where s, where y, : TR
ty
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a4
an/ Ay
. IRL BRYR]
i, Y cand
AN cony,
AV
da,
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_ ) Y, QL
A Var(s,y Var - N .
o I:l’ ",

\We shall tuether deseribe N, W, and A, Let us define the following:

g .-
=" and p— o™

0 B

L

Fivst of all. we will further deseribe A, by defining I(y;) and E{y, 04, 25 a5 follows:

I 0k I
‘(.{/ij) 1yt I} ()

I)”,
I“‘(.'/l/,’//l.')/:k (),/(),k I ( —>
S ' (LU, pOLL A Ugep,)




Next. let us further define 13, by

Oy, ] , o )
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o BT o) A o
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4 020§ Bapn)? .

Finallv. we will hurther define .\, using ;. £, and H; as follows:

Wi Viar(y.) Covlyn-yi) - Covlyin. Yin)
. . Ye2 Coclym.oyn)  Var(ye) - Cor(ya. gin)
Q, Varly) —Var A — . ) .
o L Cot(eun) Covlyaeye) o Var(yw)

. . i 9 . Di :
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( ol ) (),‘,(),A 13 <(l | (),_,'[),) y (),'A-I),')>
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As with the mowent method. some of the expectations in this stady canmot be found

explicitlv. Thus. they are approximated in the same manner as discussed earher.

A few problems were occurring with the valne of g, becoming too large in random
simlations and thus resulting in errors. To overcome this problem we needed to add
a line of code to terminate the procednre it the value of . becae too large (larger

than H).

All simlations were run and Table 3.9 shows the estiimated values for 50 5 and o
|

Table 3010 shows the vaviances of the estimated values for 4,0 4 and o, Included in
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Table 3.9 0s a column containing the munber of sinmilations (out of H00) that hroke
a Newton Raphson iteration dine to the value of a. being too Lrge (Targer than H).

The number of hreaks s in the table under the column N AL

IYirst to note s that this program did not run { - two of the simulations (simulation
N =10 =20 o =1 simulation 10 - )~ 1 3=00 g, 00 1). Frrors were produced
for hoth of these shimulations that were results of the program attempting to take the

mverse of a singular matrix.

For all of the simulations that produced no ¢ s the method performed well in

estitmating ;3. as we can see in Table 590 We can see. both in the estimates and

the variances for 53 that the method appears to become more biased as the value of

., becomes targer. Especially we note that sio 0 Lation 7 has 71 estimates that are
broken due to a. becoming too large. 1 we look at the medians, means and trimmed
means of all 4 and s estimates along with the histograms of these estimates. there

are a few sets of estimates that do not appear approximately normaltly distributed.

The method alwavs gives a biased estimate for 4o as we can see in Table 5.00 Al
of the variances are small. which can be seen in Table 3 100 The values of  )’1 -
plv that the prograan produces poorer results a. becomes larger. If we look at
the medians, means and trimmied  cans of all ) and 4 estimates along with the
histograms of these estimates, there are a few sets of estimates that do not appear
approximately normally distributed but thisis e ontliers. For the estimation of .
this method appears to be very sensitive to the choice of  sinee it performed very well

for 5, 10,0 —0.l.and o, = 0.1, but not well for 4, 1.0 4 H.00and o, UL

This program did not perform well in estimating o.. There were only o few simn-

lations that did well, as we can see from Table 3.9 The program performed worse



when using smaller and larger values of o 1F we look at the number of breaks duoe
to ., being too laree. we can see that it becomes an issue for higher values of o,
The prograin conld not caleulate estimates for the hnghest value of o0 (o, 1L The

estimation becomes worse as the value of a. becomes Targer. 1 we Took at the me-

dians, means and trimnmed means of all oo estimates along with the histograms of

these estimates. there are a few sets of estimates that do not appear approximately

normally distributed.

lFor an example of the histograms in which . o0 and g, perform poorlve we can
‘)

refer to the histograms in Figure 3.6, For an example of the histograms in which ).

Sy and g perform well, vefer to the histograms in Figure 3.0

Table 3.9: Quasi-Likelihood Method Fstimates (GENIND

Sime oy oy 3 o a. NA
\ 1O 2.0 000 10013 876G 0.1506 0
20 1.0 20 0.1 1.0301 L1876 00868 ] 0
3 FO 2.0 0.3 10396 18669 02015 ] 0
1 1.0 20 05 L061H 1382 016311 0
5 1O 2.0 0.7 10706 121 061294 0
6 1.0 2.0 i LOIST L8313 0917E) 0
T 1O 20 2 0867Th La632 17926 71
S 10 20 1 LA ROR
9 LO 0.1 0.1 09115 0.0960  0.0861 0
10 1.0 50 0l ERROR

For all of the sinmlations conducted np to this point. the following .\ matris was
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Table 3.10: Quasi-Likelihood Method Vaviances (GLNIN)

Sim W 3 o Var() Varth) Varta)
1 v 20 0.01 006339 003195 00511y |
2 L0 2.0 0.1 007856 003678 0.03823
310 20 0.3 010135 0.01231  0.01123
110 20 05 015907 0.03556  0.03552
5 1.0 20 0.7 020530 0.03503  0.02587
6 1.0 2.0 1 000717 0.03133  0.00021
710 2.0 2035631 0.03103  0.0212]
S L0 20 1 ERROR

O L0 0.1 0.1 0.00353  0.00000  0.00162
100 1.0 50 ol ERROR

used: ) _
1 -1
1 -1
if I 5h0:
=1
i 1 -1
V=qob o
T2
12
i —=hto--- . 100.
3
1 3

As with the moment method. we would like to see if the method is sensitive to the
choice of X. We evaluated the method using the same four X matrices as before and
each using the same four sets of parameter values, leaving us with 16 simulations in
total to compare. Table 3,11 shows the esting o vatlues for 30 3 and a0 Table

312 shows the variances of the estimated values for 3. 3. and a..

Looking at Table 3,11, it is interesting to note that the quasi-likelihood perforned

mich better for the .\ matrix that we have been using all along for our programs.
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All other X matrices produced errors for at least one of the fowr sinmlations ran. It
is also interesting to note that for all four X matrices used. the simulations that had
smaller J values consistently gave hetter results, producing cither less biased results
or fewer computing problems. Ouly the X matrix that we have heen using alt along,
produced pood estimates for the laveer 3 (5 -1 5=2) values. All others either pro-
duced an error or had a significant munber of breaks dite to o becoming too targe,
which is indicated by the columm NA. Therefore, for A, 4 anud o0 we can see that

the chotce of X and J has an effect on the qual - of the esthimates.

Table 3.11: Quasi-Likelihood Method Estimates: Iftects of Changes in X (GENN)

s Case oy 4y o s F . NA
| 1 0.1 0.2 025 0.0015 0.1961 0222 | 0
2 | 0.1 0.2 0.5 00903 0.1931 0.1522 ()
3 | 1.0 2.0 0.2% 097 1.8321 0.10s0 | 51
l 1 L.O 2.0 05 FERROR
D 2 0.1 0 0.25  0.0% 01876 02235 | 0
6 2 0.1 0.2 0.5 0.0006 0.188E 001501 0
7 2 1O 2.0 025 10359 1.8713 02566 0
8 2 1O 2.0 05 1065 1RIN2 01631 0
9 3 0.1 0.2 wv.zo 0093~ wvased 0.2210 ()
10 3 0.1 0.2 05 0.0911 018331 0.1529 1 0
L1 3 1.0 2.0 0.25 ERROR
12 3 1.0 2.0 05 ERROR
13 1 0.1 0.2 025 0.0955 01821 02263 ] 0
1] l 0.4 0.2 05 00971 00817 01539 ] 0
1H 1 LO 2.0 0.25 FERROR
16 | Lo 20 05 FRROR
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Table 3.12: Quasi-Likelihood Method Variances: Etects of Changes in X (GLNIN

Sim Case Sy a0 Var(h) Vvar(h) YVar(o,)
| 1 I 01 02 025 0011 00165  0.0015
‘ 2 I 0.1 02 05 00 00519 0.0005

3 I 1.0 20 025 03571  1.0567  0.1257

1 I 1.0 20 o5 ERROR

5 2 0.1 0.2 0zo 0.0 m 0.00081  0.0017

6 2 0.0 02 0.5 0.00317  0.00091  0.00056
' 7 2 1.0 2.0 025 0.00 32 001385 0.01216

8 9 1.0 2.0 (.5 ().21520 REARIIARS O IWLRT
| 9 3 0.1 02 025 0.00las  vavror s e
| L() 3 0.1 0.2 0.5 0.00200  0.01176  0.00053

I 3 10 2.0 0.25 ERROR

19 3 1.0 20 05 FRROR

1 [ 01 02 025 00 1 00175  vwouvios |

[ [ 0.0 02 05 000651  0.0180  0.00051

15 I 10 20 025 ERROR

16 I 10 20 05 ERROR




Chapter 4

Real Data ".nalysis

4.1 Introduction

A longditudinal study was condneted on 180 people from 48 different fawmilies by St.
John's General Hospital to monitor how many ti s they visited a physician cach vear
over the vears 1985 - 1990. Other information was collected from these mdividuals at
the beginning of the study: their age, their gender, the nmuber of chronie conditions
they had. and their education lTevel. The purp se of this analysis is to detenuine.
when accounting for the correlation among fan v members, which variables. if any,

are related to whether a person visits a physician.

Ar stated above. our response variable is an indicator of whether o subject visited a
physician in a particiudar vear. The covariates o gender, age (in vears, ranging from
19.9 to 85.2). mnnber of chronic conditions at the start of the study. and education

level.
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4.2 Exploratory Analysis

Analvsis of the physician visit data consisted of looking at sunmimary statistics of all

of the data along with some plots,

4.2.1 Summary Statistics

First of all, we looked at some sunminary statistics of the data. We looked first at
the vartable of interest. the indicator variable of whether or not a subject visits a
plivsician in a given vear, for yvears 1985 or 1990, As we can see from Table 401, the
proportion of people that visit a physician is - nilar cach vear. Of the subjects in
this study, on average abont 131, %) visit a ysician and 16 (26%) do not visit a

phyvsician in a given vear.

Table -1.1: Annual Numnber of Visits to a Phyvsician

[ Veur n |
1700 11l 7R
1936 132 | 73
1937 1361 76
1988 139
1989 1301 .2
1990 126 70

Average | 130170

We next looked at the sutmnary statistios for all of the explanatory variables. We can
see from Table 1.2 that the voungest person in this study is 19 and the oldest person
ix 80, The average age is about 39, There are more vounger people i this study,
since the mean is closer to the vounger age than to the older. Also. this is indicated
by the median being smaller than the mean. suggesting that the age data is skewed

right. Almost half (16%) of the subjects in this study were under the age of 30, Very



few were over the age of 75 (2%). Over half (53%) of the subjects included in the

study were males,

Table 1.2: Age

Min.  Istwue Mearan Mean 3rd Qu. adax. Var,
19.90 22,98 A0 3860 HL2N %5200 275.3163

Table 13 shows the summary table of the education level variable. The education
level of the subjects inelnded in this study scem to be dispersed evenly. Most people
(324 have the lowest level of education. However. the second largest education level

group. which includes 26% of the subjects, is at the highest level of education.

Table 1.3: Edncation Level

_ “—~ ’

I — Lowest | h8 | 32
2 331 18

3 12123

I Ihighest | 17 26

Table T i shows the simary table of the nnnber of chronic conditions. The majority
of subjects (R0%) included n this study has cither none or only one chironie condition

in OS5,

The histograms of all of the above data will be discussed in the next section.



Table L Namber of Chrone Conditions

T
upss Y
1156 | 31
2116|649
3110 06
IS 101
Sopo2 | O

4.2.2  Graphs

The next step in the exploratory analvsis was 1o examine dilferent graphs of our
dependent and independent. vaviables. Figure 11 shows the physician visit indicator

variable for 1980, The other vears have siimilar  ofs and are not shown.

Wo exammed histoerams of cacli of the explanatory variables (Figure £2). The ma-
jority of people that are inchuded in this study are 20 to 30 vears of age. The ages of

the rest of the people included follow a normal distribution.

After Tooking at histograms of the explanatory variables. we looked at spineplots of
the explanatory variables by the physician visit indicator for each vear from 1985
to 1990, The plot of gender versus the phvsic 1 visit indicator variable for T985 is
in Fignre 130 The plots for the other vears are similar and are not shown. As we
can see. there appears to be a relationship between whether or not a person visits
a physician and the gender of that person. The shaded area for visiting a physician
(1) is larger for fomales (2) inall six of the plots, implving that females may visit a

physician more than males.

The spineplot of age versus the physician visit indicator variable for 1985 is displaved
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in Figure i 1. The plots for other vears are similar ad ave not shown. As we can
see. it appears that people betweenr the ages of 10 and D0 have more of a chanee of

visiting a physician at least oncee ina given vear for cach of the vears fron 19SS to 1990,

The spineplot of education level versus the physician visit indicator variable for TO8)
is displayved in Figure 150 The plots for other  us are similar and are not shown.
For all plots. people with edueation level 2 and 3 have a higher tendeney to visit a

phvsician at least once in a given vear for cach of the vears from 1985 to 1990,

Finally. the spineplot of the nmmber of chironic conditions that a person has in [ONG
versus the phvsician visit indicator vaviable for 1985 is displaved in Figure 1.6, The
plots for other years ave similar andd are not shown. The graphs imply that the more
chronie conditions a person has. the higher the tendeney for that person to visit a

plivsician i a given vear for the vears frony T9RG to 1990,












4.3 Data Analysis

For this study, we were interested in looking at w owr explanatory variables (gen-
der, age. education level, and number of chronic conditions in 1985) are related to

whether a person visits a physician ina given vear for the vears from 1985 to 1990,
! 8 A A

As this datais clustered data, there may be a correlation among faanily members with
respect 1o whether or not they visit a phvsician. Therefore, we wint to account for
the correlation that may be present among family members. As such. we need to use
a mixed-elfects model. We assumed that the correlation between the family members
is the same for all pairs of members. and is constant across families. We assume that

the families arce independent.

Also, as our response variable is an indicator var - ble, we needed to use a generalized
lincar model, since the response is binary (1 if o person visited a physician and 0
if the person did not visit a physician). Furtherr  we, since we have data for whether
or not a person visited a physician for six years in a row, we wanted to analyze cach

vear separately.

These data were analyzed using a neralized linear model for each of the six different
vears of data provided. Tt was analyzed using three methods for cach vear to see how

the results of these methods compare.
e Fixed-cffeets logistie regression.  This ignores any correlation among, family
members,
e Moment method desceribed in Chapter 3.

e Quasi-likelihood method deseribed in Chapter 3.
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Ior the fixed-cffects logistic regression analysis of this data. we assinned that whether
A person visits a physician in a given year follows a Binomial distribution and we fit

the following logistic model:
logit(ye) — Ay + Fp gen | Ay chivon + s educel + 3y edne2 bty edued |y age.
where pois the probability that the subject visit a physician. As the education level

variable is categorical. it s modelled with three indicator variables. For the monent

and quasi-likelihood method we analyzed the mixed model:

logit(s1) = 3y + 3y gen 3y chron 4y educl + 4y edue 3, edued g age 8,

4.3.1 Fixced-Effects Logistic Regression

The first analvsis that was conducted on the physician visit data was 1o perform

logistic regression for each year in which the data was collected.

Dependent Variable: Physician Visit Indicator for 1985

When looking at the results for the first wodel. it looked as though we may be able
to drop the group of education terms. To see if we could drop ternns, we used two
different tests. To drop an individual term, we wonld use a = test and to drop a group
ol terms, we would use a drop in deviance test. The = test and drop in deviance tests

are described below.



H,:3,—0
Hy: 3 #0
p-value = 2 x P(Z > |z4).
Tobs T f“ using the s

|

Drov in Deviance Test to Dre - Groups of Terms
H,: 83,00 =d40="—3,—0
H, : at least one 4 #£0
p-value — P(F > [F,.).

o (Devianedy Devianed )/ df i) _— SRR TRTITRE -
o= Pt Decioncer)/ (A 4 using the I distribution with
Devianecy /df <

dfp — i and df - degrees of freedom

The test to drop all of the education tenmns is as follows:

]{U: 17’;; - /ﬂ = =)
H,: at least one of 3y — 4, = 45 #0
Fae = R = 281N

p-value = P(F > Fu) — 0.829 with 3 and 176 df.

There is little evidence against Hy since 0.829 > .05, so we should drop all of the

proposed terms.

With this new model, we obtain o z-valne of -0.277 and a p-value of 0780 which is
greater than 0.05. for the variable age. Therefore. we can also drop this terin from

our model.

We now have a reduced model that containsg only the gender and nnber of chronie

conditions variables. The reduced model has an AIC of 177.22 and is as follows:



logit(pr) 2810 1 0.8 108 gen | 0.5992 chron

Therefore. in 1O8H. we can see that the odds of females visiting a physician is esti-

niated to be crp(0.8108) — 2.318 times as large as the odds males visiting a phyvsician.

Also, if the nnber of chronic conditions increases by one, the odds of visiting a

plivsician ave cep(0.5992) — L.821 times higher.

Dependent Variable: Physician Visit Indicator for 1986

Asin the analvsis of the T985 data. we pet the  Howing initial and final models,

Initial model:
logit(yo) — 10010 4 1.2702 gen + 0.1398 chron - 0.0260 cducl + 0.1772 edue +

0.9227 edued - LOOST age.

Final model:

logit(pr) — -1.0931 + 13178 gen -+ 0.3336 chron.
Therelore, i 1986, females were more likely to see a physician than males. Having
nore chronic conditions at the beeinning of the study iy also related to being more

likelv to visit a physician,

Dependent. Variable: Physician Visit Indicator for 1987

As in the analvsis of the 1985 data. we get the following initial and final models.

[nitial mocel:



logit (1) 06839 1 LO7H9 aen £ OUTTO28 chron - 0.8032 educl 1 0.3038 edue2

0.3700 edued 1 0.0073 age.

[Final model: loeit(;)  -0.5993 + 1.2159 gen.
i)

Therefore, in 1987, females were more likely to see a physician than males.

Dependent Variable: Physician Visit Indicator for 1988

Axin the analvsis of the 1985 data, we get the following initial and final models.

Initial model:
logit(;r) — -1 4037 + 11078 gen 1 03901 chron - 0.8270 educl + 0.0279 educ2

0.1030 educd 1 0.0188 ape.

Final model: logit(y0) — -0.9580 1+ 1.60.47 gen.

Therefore. in 198K, females were more likely to see a physician than males.

Dependent Variable: Physician Visit Ind  ator for 1989

Asin the analvsis of the 1985 data. we get the Dllowing initial and final models.

Initial model:

logit(yr) ~ ~LAT60 4 02191 gen | 05556 ¢l - 01086 eduel 1 13285 educ?
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0.5962 edue3 1 00071 age.

Final model: logit(;0) = 0.5062 1 0.6 161 chron.

Therefore, in 1989, having more chronie conditions at the beginning, of the study

related to heing more likely to visit a phvsician.

Dependent Variable: Physician Visit Indicator for 1990
As in the analvsis of the 1980 data. we get the following initial and final models.
Initial model:

logit(yr)  -2.0361 1+ 0.6725 cen + 0,198 chron 01170 educl 4 19507 educ? |

F.ORTH edued 1 00210 age.

Final model: logit(ze) -0/ 878 1 05682 chron  0.8052 educel 1 2.0609 educ?

[.7389 ednes.

Therefore, in 1990, having more chronie conditions at the beginning of the study re-
Jated to Deing more likely to visit a physician, Also, in 1990, having a lower education

fevel is related to being more likely to visit a physician.

Overall

Overall, i most vears, gender and/or the munber of chronie conditions is related to

the probability of secing o physician.
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4.3.2  Moment Method Analysis

After conducting the fixed-ellects Togistic reoression analvsis onall sixovears of data
separatelv, we implemented the moment method of analvsis for a generalized Tmear
mixed model that was discussed in Chapter 3. This method takes into account the
correlation that exists among family members, The results for all six reeressions are

inchaded m Table 15,

Based on the 5 estimates, in TOSH. females were more likely to visit a physician than
males, having more chironie conditions is related to o hicher Tikelihood of visiting a
physician. having a higher edueation level is ve ed to a higher likelihood of visiting
a physician, and older people are more likely to visit a physician. Also. since the o,

value is Jarge. the correlation among family mc ers is important.

In 19836, females were more likely 1o visit o physictan thao males, having more chronie
conditions is related to a higher likelihood of visiting a physician. having a higher ed-
neation level is related to a higher ikelihood of visiting a physician, and older people

are less likelv to visit a physician, Also. sinee the oy valne is large the cornelation

among, iy members is hinportant.

In FONT. ferades were more likely to visit aphyvsician than males, having more chronie
conditions is related to a higher likelihood of viing a phesician. having, a higher ed-
neation level is related 1o a hieher likeliliood of  siting a phygician. and older people
are more likelv to visit o phvsician, Alsoo sinee the oo value is Targes the correlation

atmong, family members is important.

In 1OSS. females were more likelv to visit a phyve an than males. having more chronie
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Table 1.5 NMoment Method Analvsis: Binary dependent variable: Physician Visit
Indicator for 1935 to 1990

Coctlicients:

vear Xint xgen xchron xeduel  xeduc?  xeduced age o

1985 -0.0130 08051 0.7303  -0.9512  0.0855  0.9970  0.0125  0.9050
OG- -1.0332  L3151F  0.1559  -0.0270  0.1990  0.9601  -0.0087  0.1550
1987 -0.7162 0 12006 01671 -0.9096  -0.3368  0.1205  0.0083  0.8110
1988 -13 185 13618 03232 -0.6819  -0.01&1 -0.0693  0.0151  0.0100
RO -LHs 03215 04121 00616 L1152 02259  0.0039  0.0100
1990 -2.0699  0.6831 01261 0.4201s  LIUSIH 16170 0.0201  0.3062

conditions is related to a higher likeliliood of visiting a physician. having a higher ed-
ucation level is related to a higher likelihood of visiting o physician, and older people
arc more lkely to visit a physician. Also. sinee the oo value 1s sualdll the correlation

among family members is not important.

[ 1989, females were more likely to visit a physician than males, having more chronice
conditions is related to a higher likelihood of visiting o physiciai, having a lower ed-
ucation level is related to a higher likelihood of visiting a physician. and older people
arc more likely to visit a physician. Also, since the o, value s small. the corvelation

among family members is not important.

[n 1990, females were move likely to visit a physician thawnales, having more clironie
conditions is related to a higher likelihood of visiting a physician, having, a lower ed-
ueation level is related to a higher likelihood of visiting a physician. and older people
are more likelv to visit a plivsician. Also. since the oo value is larger, the correlation

atong family members may bhe nnportant.
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4.3.3  Quasi-Likclihood Mcthod Analysis

As o comparison to the fixed-cffects logistic regression and the moment wethod of
analvsis, we also used the quasi-likelihood method of anadyvsis that was discussed in
2

Chapter 3. This method also takes into acconnt the corvelation that exists among,

fannly members, The vesults for all six regressions are included i Table 1o,

The data for T985 did not produce any results since the estimates beeame too large

in the iterations and thus. produced crrors.

In 1956, females were more likely to visit a physician than males, Taving move chronie
conditions is related Lo a higher likelihood of vioing a physician, having a higher ed
ueation level s related to a higher likelihood of visiting a phyvsician. and older people
are Jess likely to visit a phyvsician. Alsoo sinee t g vabue is smallers the correlation

atong, fumily members is not important.

In TOR7. females were less Tikely o visit a physician than males. baving more clnonice
conditions is velated to a hivher likelihood of visiting a physician, and oldor people
are more likely to visit a plivsician, Also. since the g value is large, the correlation

among family mcembers is important.

In 1988, females were more fikely to visit a physician than males. having more chronic
conditions is related to a higher likelihood of visiting a physician, and older people
are more likely to visit a physician. Also. sinee the oo value is Large. the correlation

among, familv menmbers is mportant.

In 1989, femades were more likely to visit a plvsician than mades, having more chronic

conditions i~ related toa higher likelihood of visiting a physician. and older people
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Table L6: Quasi Likelihood Method Analyvsiss T uy dependent variable: Phvsician
Visit Tndicator for 1985 to 1990

Coetheients:
vear i xegen o xehiron xeducl  xedue?2  xedaed age "
19sh NA NA NA NA NA NA NA NA
198G 19102 05120 131910 -0.5921 0.1699  0.7361  -0.1221 0.2760
TOST L1670 11905 01116 -0.8163  -0.7008  -0.9301  0.0516 0. 1960
LOSS 23,0826 30376 0.678E -1.2921  0.093] LOUST 00611 1.6031
LORG 03610 1.IH82 07825 02776 0,732 -0.1953 -0.0172  1L.0193
1990 -2 1138 ON212 0 03353 00697 L H6x  T7013 0.0291 0 (OUINTS

are less likelv to visit a phvsician, Also. since the o, value is Tavee, the correlation

among Family members is important.

In 1990, females were more likely ta visit a physician than males. having, move chivonic
conditions is related to a higher likelihood of visiting, a physician, having a higher ed-
ucation level is related to a higher likelihood of visiting a physiciaon, and older people
are more likely to visit o physician. Also. since the o, value is simadl the correlation

amonyg, family members is not important.

Moment and Quasi-Likelihood Compariso

The moment method produced resalts for all vears, whereas the quasi likelibiood

niethod did not produce results for 19S5,

The monent method produced all positive results for gender. which is similar to the
quasi-liketihood wethod that only produced one negative gender estimate for vear
1987, For the nimber of chironic conditions and tor a.. both methods produced
positive results for all vears. The results for ¢ eation Tevel and age are ditferent

among, the two methods.
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