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LC-NE modulation of MPP and LPP in vivo 

Abstract 

Norepinephrine (NE) induces long-lasting potentiation of the medial perforant path (PP) 

and depression of the lateral PP input to dentate gyrus (DG) in vitro. In vivo, nucleus 

paragigantocellularis stimulation transiently potentiates the medial PP evoked population 

spike and depresses a lateral PP mediated synaptic potential in DG following locus 

coeruleus (LC) activation. In contrast, using glutamatergic activation of LC, this study in 

one experiment observed the expected potentiation of medial PP input to DG, but no 

depression of the lateral PP evoked potential (LOT stimulation, 60 s lSI) in DG post 

activation. A second experiment (1 0 s lSI) demonstrated significant potentiation of the 

lateral PP input to DG for 30 min immediately following LC activation, but no 

potentiation of the medial PP input. These results contrast with previous NE-induced in 

vitro and in vivo modulation of the lateral and medial PP, but resemble the long-term 

heterosynaptic interactions observed with tetanic stimulation of the medial and lateral PP, 

suggesting a competitive relationship between the medial and lateral PP inputs to DG in 

which the input paired most strongly and consistently with elevated LC-NE levels in the 

hippocampus controls the network. 
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Chapter 1: Introduction 

1.1 Overview 

LC-NE modulation of MPP and LPP in vivo 

The existence of long-lasting and reversible modifications in synaptic strength is essential 

to the encoding of new information in the brain, and underlies models of the cellular basis 

for learning and memory. Enhancement or depression of synaptic transmission can take 

the form of activity dependent long-term potentiation (LTP) or long-term depression 

(LTD) of synaptic efficacy in neural networks. The processes underlying learning and 

memory are thought to be initiated through persistent changes of neuronal responses 

(Hebb, 1949). 

The effect of locus coeruleus (LC)-produced norepinephrine (NE) upon the dentate gyrus 

(DG) ofthe hippocampus may play a role in the acquisition and storage of memory and in 

attentional processes (Woodward et al., 1979). Many of the connections in the 

hippocampus proceed unidirectionally, and the DG is the first hippocampal region to 

receive cortical sensory input from the entorhinal cortex (EC), making it the first step in 

the processing of sensory information in the hippocampus. Because the DG receives input 

from different sensory modalities, it possibly uses that sensory information to mark 

spatial locations and thus more efficiently represent spatial information, reducing 

redundancy and orthogonalizing output (Kesner, Lee, & Gilbert, 2004). The medial and 

lateral perforant paths (PP), composed of axons whose cell bodies are located in the 

medial and lateral EC, provide the main input to the DG (McNaughton & Barnes, 1977). 

Differential effects of NE upon the responses of the medial and lateral PP may be 
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functionally important as different input is relayed through the medial and lateral PP. The 

lateral PP contains projections from the lateral EC which terminate in the outer third of 

the granule cell dendrites, after receiving input from central olfactory and subcortical 

structures (Steward, 1976; McNaughton & Barnes, 1977; Colino & Malenka, 1993). Non­

olfactory cortical sensory areas project to the medial EC, which in tum projects to the 

middle third of granule cell dendrites (Steward, 1976), indicating a division in function 

between the two pathways. 

The DG receives noradrenergic projections from the LC (Moore & Bloom, 1979), and an 

association has been shown between noradrenergic activation and LTP of the DG evoked 

potential (Neuman & Harley, 1983). The LC, the primary source of noradrenergic 

projections to the hippocampus, is stimulated by novelty in the environment, and 

enhances detection and fidelity of sensory events (Segal & Bloom, 1976). These qualities 

support a role for the LC and NE involvement in facilitation of responses to sensory input 

and in memory and attention (Harley, 1991 ). 

Following the initial report ofNE-induced potentiation ofPP input to the DG, later studies 

in vitro and in vivo found evidence that potentiation effects were selective and seen only 

with pairing ofNE and medial PP input while depression occurred when NE was paired 

with lateral PP input (Dahl & Sarvey, 1989; Babstock & Harley, 1993). Babstock and 

Harley (1993) used electrical stimulation of the nucleus paragigantocellularis (PGi) to 

provide excitatory input to the LC, the source, as noted, of NE innervation to the DG. 

Their study aimed to observe NE modulatory selectivity in vivo by examining medial and 
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lateral PP responses following PGi stimulation. Stimulation of the lateral olfactory tract 

(LOT) was used to selectively elicit lateral PP responses. LOT-evoked fEPSPs were found 

to be depressed immediately (with a prime conditioning latency of 40 ms) following 

stimulation of the PGi, while the medial PP evoked population spike was enhanced at the 

same time point. Steward (1976) had demonstrated earlier that the LOT EPSP in DG 

depended on the integrity of the lateral EC. 

These in vivo findings were consistent with in vitro studies such as that of Dahl and 

Sarvey ( 1989), in which a long-lasting (more than 45 min) depression of lateral PP and 

enhancement of medial PP evoked DG potentials was seen following a 30 min perfusion 

of NE. There were, however, differences, besides time course, in the effects seen in vivo 

and in vitro. In vivo only the medial PP population spike was potentiated and the 

associated EPSP did not change, while in vitro both EPSP and population spike 

potentiated. This difference was explained as possibly a combination of lateral EPSP 

depression and medial EPSP enhancement in stimulation of the combined pathway in 

vivo. The explanation was consistent with the LOT depression observed in vivo. While the 

brief time-restricted pairing of LC activation and PP stimulation, such as that used by 

Babstock and Harley ( 1993), has some physiological relevance it did not yield long-term 

effects which are more critical for our understanding of learning and memory. In other 

studies, anatomically selective, burst activation of the LC with glutamate has produced 

immediate and enduring potentiation of the medial PP (Harley & Milway, 1986; Harley, 

Milway, & Lacaille, 1989; Klukowski & Harley, 1994; Walling & Harley, 2004). Thus, it 

is of interest to investigate the hypothesized selective effects of NE release on PP inputs 
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to the DG in vivo with glutamatergic activation of LC. 

The following introduction reviews the anatomy of the hippocampus proper and the DG, 

the hippocampal inputs originating in the EC, and the features of noradrenergic 

innervation of the DG from the LC, focusing on evidence for its role in synaptic plasticity 

ofthe DG. 

1.2 Hippocampus and dentate gyrus 

Memorial processes are considered to be initiated as persistent modifications of neuronal 

responses, and the hippocampus plays a well-documented role in acquisition and storage 

of spatial memories (Kesner, Lee, & Gilbert, 2004). Although object recognition is 

processed by the perirhinal cortex, the hippocampus is key in the recognition of the 

spatial configuration of objects, by comparing incoming stimuli to stored information and 

functioning as a novelty detector (Kemp & Manahan-Vaughan, 2006). The three main 

subregions of the hippocampus (DG, CA3, and CA 1) cooperate extensively, but also 

demonstrate individual specificity of function (Kesner, Lee, & Gilbert, 2004). 

In the rat, the hippocampal formation forms a banana-shaped structure that extends from 

the septal nuclei to the temporal cortex. In general, the hippocampus consists of a tri­

synaptic loop, with inputs passing from DG to CA3 to CA 1. The fields CA I, CA2, and 

CA3 make up the hippocampus proper, while the DG consists of the fascia dentata and 

the hilus. The DG is the first stage of the hippocampal circuit, with the PP providing its 

primary input from the EC to the DG, and granule cells of the DG project through the 
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mossy fibers to the hilus and CA3 . From CA3 the Schaffer collaterals project to area 

CAl. Projections from the lateral EC also terminate in the distal part of CAl and 

proximal part of the subiculum, while fibers from the medial EC terminate in proximal 

CA I and distal subiculum. Area CA3 also receives projections from the lateral EC 

(Sewards & Sewards, 2003). Because many of the connections in the hippocampus are 

unidirectional, and the EC is a source of cortical sensory information, the DG becomes 

the first step in the processing of sensory information in the hippocampus (Amaral, 

Scharfman, & Lavenex, 2007). 

The DG is composed of three layers: the molecular layer, the granule cell layer, and the 

polymorphic layer. In the rat, closest to the hippocampal fissure is the relatively cell-free 

molecular layer, which is about 250 flm in depth and contains the granule cells' dendrites, 

along with fibers of the PP. Below the molecular layer is the granule cell layer, which 

mostly consists of closely packed granule cells, in a layer approximately 60 flm in depth. 

Together these two layers form a V- or U-shaped structure that encloses the polymorphic 

cell layer (or hilus). Along the boundary of the granule cell layer and the polymorphic 

layer are the cell bodies of dentate pyramidal basket cells and within the polymorphic cell 

layer are mossy cells and other cell types (Amaral, Scharfman, & Lavenex, 2007). 

The granule cell is the principal cell type of the DG, characterized by its cone-shaped 

dendritic arborization, with branches oriented toward the superficial part of the molecular 

layer, and distal dendritic tips ending at the hippocampal fissure or ventricular surface. 

The distinctive unmyelinated axons of the granule cells are known as the mossy fibers , 
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synapsing on mossy cells in the polymorphic layer and pyramidal cells in region CA3 of 

the hippocampus. DG cells are suggested to act as a competitive learning network to 

reduce redundancy of and orthogonalize outputs, working in conjunction with CA3 to 

support spatial pattern separation (distinguishing partially overlapping activation patterns 

to facilitate retrieval of one pattern separate from others); the low probability of any pair 

of CA3 neurons receiving mossy fiber input from a similar set of DG cells is theorized to 

accomplish the separation of patterns, with DG cells working as a competitive learning 

network to produce sparse, orthogonal outputs and reduce redundancy (Kesner, Lee, & 

Gilbert, 2004). The pyramidal cells of CA3 project mainly to fields CA 1 and CA2 along 

the Schaffer collaterals, but some projections return to the hilus. Region CA 1 sends 

output to layer V of the EC and the subiculum; the subiculum also outputs to layer V of 

the EC, as well as other structures. 

The pontine nucleus LC sends a prominent noradrenergic input to the DG, and the 

noradrenergic fibers terminate primarily in the polymorphic layer, but also in the 

molecular layer. Serotonergic projections from the raphe nuclei also terminate in the 

polymorphic layer, on interneurons that influence the distal dendrites of granule cells 

(Amaral & Witter, 1995). 

When recording in the granule cell layer of the DG, population spike amplitude in 

response to PP stimulation is an index of granule cell excitability (or loss of interneuron 

inhibition), while fEPSP slope demonstrates synaptic strength. Sustained increases in the 

amplitude of granule cell EPSPs and population spikes evoked by PP stimulation that are 
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modulated by NE depend upon ,8-adrenoceptor activation (Harley, 1991 ). The phenomena 

of high frequency stimulation-induced LTP and NE-induced long-lasting potentiation are 

seen as changes in the amplitude of granule cell EPSPs and population spikes (see Figure 

1.1) evoked by PP stimulation (Bliss & L0mo, 1973; Neuman & Harley, 1983), although 

in vivo PP-evoked population spikes are potentiated by NE more reliably than EPSPs 

(Neuman & Harley, 1983). 
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~L 
4ms 

Figure 1.1 Example PP-evoked waveform 

Example PP-evoked waveform recorded in DG from animal with 

glutamatergic activation ofLC, recorded 1 min post-activation. 

A: Population spike amplitude. B: EPSP slope. C: Latency to peak, 

measured from stimulus artifact to the deepest point of the 

population spike. 
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1.3 Entorhinal cortex 

The EC consists of six layers, and is subdivided into two general areas, the medial and 

lateral entorhinal areas. Cortical inputs to the EC form two groups, those terminating in 

the superficial layers, and those terminating in the deeper layers. The inputs to superficial 

layers I-III reach entorhinal neurons that project to the DG, hippocampus, and subiculum 

(Steward & Scoville, 1976). The deeper layers IV-VI receive information returning from 

the hippocampal fields and project back to other cortical regions. Olfactory projections 

input substantially to the superficial layers, while limbic and paralimbic cortices project 

to the deeper layers IV-VI of EC (Amaral & Witter, 1995). 

The fibers forming the PP arise mainly from the stellate cells in Layer II and the 

pyramidal cells in layer III, as well as other projections, including GABA-ergic neurons, 

to various hippocampal subfields from the EC (Amaral & Witter, 1995). The projection of 

PP to the DG primarily originates in layer II, although a minor component arises from the 

deeper layers (IV-VI) (Steward & Scoville, 1976). 

The EC is involved in the pre-processing and selection of information directed to the 

hippocampus, and evidence suggests that the medial and lateral EC have distinct 

functions in the pre-processing of EC output to the hippocampus (Kerr et al., 2007). 

Functional studies indicate that the medial EC contributes spatial information, while the 

neurons of the latera l EC demonstrate less spatial specificity (Fyhn et al., 2004). These 

functional differences are consistent with the neuroanatomy of projections to the EC (see 

Figure 1.2). 
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Figure 1.2 Inputs and outputs of entorhinal cortex and hippocampal formation 

Olfactory regions output to superficial regions of EC through LOT. Limbic and 

paralimbic cortices output to deep layers ofEC. Superficial EC outputs to DG 

(through PP), CA3, and subiculum. DG outputs to CA3 through mossy fibers. 

CA outputs to CAl through Schaffer collaterals. CAl outputs to subiculum and 

deep layers of EC. Positions of stimulating electrodes and recording 

micropipette indicated. 
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The medial EC receives its primary projections from visual association cortex, posterior 

parietal cortex, cingulate cortex, and dorsal thalamus, all of which are implicated in 

spatial learning and memory (Kerr et al., 2007). The lateral EC receives heavier cortical 

projections than the medial EC, which originate primarily in the piriform and insular 

cortices, and lesser inputs from the visual, posterior parietal, and retrosplenial cortices 

(Burwell & Amaral, 1998; Kerr et al., 2007). The medial EC receives a larger proportion 

of cingulate, parietal, and occipital input, including visual and visuospatial areas, than the 

lateral EC (Burwell & Amaral, 1998). 

Place cells in the hippocampus and grid cells in the medial EC form parts of the brain 

circuit that represents self-location. Most of the medial EC displays spatially confined 

grid-like firing, and grid cells are topographically organized so that the scale of the grid 

increases with anatomical distance from the dorsal border of the medial EC. Principal 

cells of layer II are grid-like, and deeper layers also contain grid cells (Brun et al., 2008). 

The heavy influence of posterior parietal and visual association areas on the dorsocaudal 

medial EC may account for the distinctive spatial firing pattern of the cells here (Kerr et 

al., 2007). 

For successful place learning, input from the medial EC, but not the lateral EC, is 

required. Following medial PP lesioning in a discriminative fear conditioning to context 

task an amygdala-like low fear effect (absence of fear response to either chamber in the 

task, indicating lack of association between chamber and shock) was observed, whereas 

lesioning of the lateral PP led to enhanced conditioning to context and discriminative 
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freezing (Ferbinteanu, Holsinger, & McDonald, 1999). The lateral EC receives 

projections from the perirhinal and postrhinal cortices, which receive uni- and polymodal 

associational input, representing highly-processed sensory information. The medial EC 

receives mainly non-sensory, non-specific information from the pre- and parasubiculum, 

amygdala, cingulate cortex, and retrosplenial cortex (Ferbinteanu, Holsinger, & 

McDonald, 1999). Because anatomical data does not support a total selectivity of 

projections, the segregation of sensory input of the lateral and medial EC is considered 

relative, not absolute (Ferbinteanu, Holsinger, & McDonald, 1999). 

1.4 Perforant path 

1.4.1 Projections 

The PP consists of projections from the EC to the hippocampal formation. It mainly arises 

from entorhinal layers II and III, and proceeds in a laminar fashion, with cells in layer II 

projecting to the DG and area CA3, while cells in layer III project to CA 1 and the 

subiculum (Steward & Scoville, 1976; Sewards & Sewards, 2003). In rats, the 

glutamatergic fibers projecting from the pyramidal and stellate cells of layer II form 

physiologically and pharmacologically distinct medial and lateral pathways. Cells in 

lateral and caudal locations of the EC project to septal levels of DG, while medially and 

rostrally located EC cells project more temporally (Dolorfo & Amaral, 1998). 

1.4.2 Distinctions between medial and lateral perforant pathways 

On the basis of degeneration studies, Hjorth-Simonsen and Jeune (1972) and Hjorth­

Simonsen ( 1972) suggested that the rat PP is composed of two distinct fiber systems 
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(McNaughton & Barnes, 1977). Again as noted earlier, the terminals of the medial and 

lateral PP are topologically separated in the molecular layer (McNaughton, 1980; Hjorth­

Simonsen, 1973). Fibers of the medial PP form synapses onto the middle one-third of the 

molecular layer of the DG, while fibers of the lateral PP synapse onto the outer one-third 

(Steward, 1976; McNaughton & Barnes, 1977; Colino & Malenka, 1993). The lateral EC 

receives projections primarily from piriform and insular cortex, while non-olfactory 

sensory areas project to the medial EC (Burwell & Amaral, 1998; Kerr et al., 2007) (see 

Figure 1.3). 
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McNaughton (1980) observed that at the midpoint of the medial to lateral range of input 

in vitro, a distinct transition in response properties happened, and this transition exactly 

corresponds to the border of the medial and lateral termination zones in the outer two­

thirds of the molecular layer, indicating that the PP consists of two physiologically 

distinct subdivisions. 

McNaughton and Barnes (1977) found that stimulating the dorsomedial or ventrolateral 

aspects of the PP resulted in quantitatively different extracellular EPSPs in the DG of the 

rat. When recording with an extracellular electrode in the hilus of the DG, the evoked 

population EPSP varies in waveform depending on the location of the stimulus along the 

medic-lateral axis ofthe PP (Abraham & McNaughton, 1984). 

Responses elicited from lateral stimulation sites, involving synaptic activation in the outer 

third of the molecular layer, demonstrate greater latency to peak and width at half­

amplitude (the width of the EPSP at one half its height above baseline; McNaughton & 

Barnes, 1977) than responses from medial stimulation, which involves synaptic activation 

of the middle third of the molecular layer (McNaughton, 1980). Responses to medial fiber 

stimulation reached maximum negativity about I 00 to 180 ,urn deeper in the molecular 

layer than responses to lateral stimulation. When stimulating intermediate locations, 

double spikes were frequently elicited from the granule cell population (McNaughton & 

Barnes, 1977). 

Pharmacological differences between the medial and lateral aspects of the PP have also 
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been observed. Bramham, Errington, and Bliss (1988) used electrically-induced LTP to 

demonstrate a difference in lateral and medial PP responses. Naloxone, an opioid receptor 

antagonist, blocked the induction, but not the maintenance, of LTP in the lateral PP, while 

production of LTP in the medial PP was unaffected. In vitro, LTP in both pathways is N­

methyl-D-aspartate (NMDA) receptor-dependent, but in vivo, only LTP of the medial PP 

is completely NMDA receptor-dependent (Bramham, Milgram, and Srebro, 1991 ). 

However, application of propranolol (a /3-noradrenergic antagonist) blocks the induction 

of LTP in both the medial and lateral PP inputs to the DG (Bramham, Bacher-Svendsen, 

& Sarvey, 1 997). Rush, Rowan, & Anwyl (200 1) also demonstrated that plasticity evoked 

by in vivo application ofNMDA is pathway specific, inducing LTP of the medial PP and 

LTD ofthe lateral PP. 

1.4.3 Stimulation of the LOT elicits lateral PP responses 

The LOT arises from the olfactory bulbs and projects to the piriform cortex and the rostral 

portion of the EC; LOT fibers and associative fibers originating in the piriform cortex 

primarily terminate in the superficial layers of the lateral EC. Because the lateral and 

medial EC are not interconnected, olfactory afferents cannot be transmitted to the medial 

EC via the lateral EC (Biella & de Curtis, 2000). No associative response is seen in the 

medial EC following LOT stimulation, demonstrating that the projections arising from the 

piriform cortex do not project to the medial EC, and that there is a complete separation 

between the medial and lateral EC regarding olfactory input (Biella & de Curtis, 2000). 

Electrical stimulation of the lateral EC or of the olfactory tract evokes EPSPs limited to 
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the terminal area of the lateral PP (the apical one-third of the molecular layer), while 

auditory-evoked potentials are recorded only in the terminal area of the medial PP (the 

middle one-third of the molecular layer) (Dahl & Sarvey, 1989). Thus stimulation of the 

LOT can be used to selectively elicit lateral PP responses; electrical stimulation of the 

olfactory tract or lateral EC evokes EPSPs in the apical one-third of the molecular layer, 

where the lateral PP terminates (Steward & Scoville, 1976; Dahl & Sarvey, 1989). 

Stimulation of LOT fibers results in long latency ( 14-20 ms) evoked responses in the 

ipsilateral DG (see Figure 1.4). Lesions of the lateral EC eliminate this DG response, 

indicating that LOT stimulation activates DG through a multisynaptic pathway relaying in 

the lateral EC (Wilson & Steward, 1978). LOT stimulation induces short-latency 

responses in the lateral EC, but not the medial EC. However, the medial EC can be 

polysynaptically activated after hippocampal activation; with strong or repetitive LOT 

stimulation, an efferent signal re-enters the deep medial EC from the hippocampal loop 

(Biella & de Curtis, 2000). 
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Figure 1.4 Example LOT -evoked waveform 

Stimulation of LOT fibers results in long latency (14-20 ms) evoked 

potentials in DG. Example LOT-evoked waveform from animal with 

glutamatergic activation of LC, recorded 1 min post LC activation. 

A: EPSP slope. B: EPSP amplitude. C: Latency to peak. 
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1.5 Locus coeruleus 

1.5.1 Anatomy 

LC-NE modulation of MPP and LPP in vivo 

The LC nucleus is the source of the forebrain's major noradrenergic system. In the 

mammalian brain NE originates from several nuclei, including the LC, and the lateral 

tegmental NE system, whose nuclei of origin include the dorsal motor nucleus of the 

vagus, nucleus tractus solitarius and adjacent tegmentum, and lateral tegmentum (Moore 

& Bloom, 1979). NE was traditionally assumed to affect the signal-to-noise ratio, 

enhancing the signal it is paired with, while depressing the noise (Segal & Bloom, 1976). 

The activity of neurons of the LC varies in response to sensory stimuli, increasing 

especially to novelty, and with the sleep-wake cycle, being more active during waking. 

The properties of LC-NE neurons have led to hypotheses of roles in sleep, attention, 

memory, and vigilance (Aston-Jones et al., 1995). 

The name "locus coeruleus", meaning "blue spot", is taken from the nucleus's appearance 

in unstained primate tissue. However, unlike the LC of humans and monkeys, the neurons 

of the rat LC are unpigmented. In Nissl-stained sections the rat LC is identified as a 

cluster of darkly-stained cells in the rostral rhombencephalic tegmentum (Aston-Jones et 

al., 1995). The LC extends for 1.2 mm along the ventrolateral border of the fourth 

ventricle, and meets the trigeminal nerve at the medial side of its mesencephalic nucleus. 

The number of neurons in the rat LC is estimated to range between 1400 and 1800 

unilaterally, depending on the staining method used (Aston-Jones et al., 1995). 

Several cell types are located within the LC, which differ not only in size and shape but 
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also in dendritic orientation. Medium-sized fusiform cells, larger multipolar neurons, and 

a third class of ovoid-shaped cells have been distinguished in the rat LC. The arborization 

of small fusiform cells is primarily in the sagittal and horizontal planes, while multipolar 

LC neurons have dendritic arborizations mainly in the frontal plane. Despite their 

morphological differences, most neurons in the rat LC contain NE (Aston-Jones et al., 

1995). 

1.5.2 Afferent projections to LC 

Neuropharmacological studies have indicated that LC neurons are strongly influenced by 

a range of neurotransmitters, including inhibition by a 2-adrenergic agonists, GABA, and 

,u-opiate agonists, and excitation from glutamate, substance P, ACTH, vasopressin, and 

CRF, while neurotensin and serotonin have more complex effects. Because these studies 

indicate that the LC receives a variety of inputs, and the LC projects extensively 

throughout the brain, it is likely that multiple levels of the CNS provide regulation of the 

LC (Aston-Jones et al., 1995). 

Two rostral medullary areas provide the major afferents to the LC nucleus, the lateral 

paragigantocellularis (PGi) and the prepositus hypoglossi, with the PGi being the most 

prominent afferent. Other minor afferents come from the paraventricular hypothalamic 

nucleus, the intermediate zone of the spinal grey, and the central nucleus of the amygdala 

(Aston-Jones et al., 1995). 
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1.5.3 Efferent projections from LC 

Neurons of the LC send ascending efferent projections to olfactory structures, 

hippocampus, neocortex, thalamus, basal forebrain, preoptic area, hypothalamus, and the 

midbrain. Descending projections from the LC reach the cerebellum, pons and medulla, 

and spinal cord. At least 40% of LC neurons send their projections to the olfactory bulb, 

of which the LC provides the sole adrenergic input, and the primary olfactory cortex is 

also heavily innervated by LC projections. The rat LC projects substantially to all areas 

and layers of the neocortex, and the projections are almost exclusively ipsilateral (Aston­

Jones et al., 1995). 

The entire NE input to the hippocampal formation comes from the LC, and the 

projections primarily originate in the dorsal third of the LC. The DG receives a substantial 

projection from the LC (Swanson and Hartman, 1975; Jones and Moore, 1977). The 

noradrenergic LC projection to the hippocampal formation is 75-90% ipsilateral (Loy et 

al., 1980). LC axons follow three routes to the hippocampal formation: the ventral 

amygdaloid pathway (which innervates the entire hippocampal gyrus and 

midseptotemporal and ventral regions of the DG), and more bilateral projections from the 

fornix (innervating the septal pole of the DG) and cingulum bundle, which innervates the 

ventral DG (Loy et al., 1980; Aston-Jones et al., 1995). 

1.6 Norepinephrine and adrenergic receptor localization 

Adrenergic receptors are divided into two classes, a and fJ receptors. The a-adrenergic 

receptors are divided into two subtypes, a 1 and a2. Autoradiographic studies found a-
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adrenergic receptors throughout the brain, with higher levels in olfactory regions, parts of 

the cerebral cortex and DG, the LC and nucleus tractus solitarii, medial parts of the 

hypothalamus and thalamus and portions of the spinal cord, with the distribution of a 1 

and a2 receptors differing in certain areas. For example, higher densities of a2 receptors 

were observed in the LC, while a )-receptor densities there were low (Young & Kuhar, 

1980). In the hippocampal formation a-adrenergic binding sites are relatively 

concentrated in the DG, correlating with the distribution of NE innervation, while /3-

adrenergic receptors are more evenly distributed throughout the hippocampal gyrus 

(Crutcher & Davis, 1980). 

In the DG of the rat, NE acts primarily on /3-adrenergic receptors, which are located 

postsynaptically on the dendrites and spines of granule cells and on some astrocytes, as 

well as select intemeurons and presynaptic processes (Milner, Shah, & Pierce, 2000). 

Activation of these receptors is necessary for the induction of LTP at medial and lateral 

PP synapses, and physiological studies find that NE release sites are near /3-adrenergic 

receptors (Milner, Shah, & Pierce, 2000). 

1.7 Noradrenergic modulation of hippocampal activity 

In 1970 Seymour Kety proposed that NE and the aroused state induced by novel stimuli 

facilitate the processing of novel or significant stimuli while suppressing non-significant 

stimuli, and that this state initiates persistent facilitation of active synapses. Foote, 

Freedman, and Oliver (1975) tested the effect of NE on auditory cortex neurons of 

squirrel monkeys, finding that a dose ofNE reduced spontaneous activity (non-significant 
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stimuli) more than activity evoked by species-specific vocalizations (significant stimuli). 

Segal and Bloom (1976) proposed that LC-NE acted to screen stimuli by enhancing 

responses to significant stimuli and reducing excitatory responses to non-significant 

stimuli, in effect increasing the signal-to-noise ratio in hippocampus. They found that 

electrical stimulation near the LC had reinforcing properties and inhibited spontaneous 

activity of hippocampal cells. The authors also demonstrated an inhibitory response of 

some hippocampal pyramidal cells to loud auditory stimuli, suggesting that those 

responses were mediated by NE, and possibly by LC activation. They suggested that 

arousing stimuli could cause the inhibitory response, and that this arousal is accompanied 

by the generation of hippocampal theta rhythm, which is observed with LC stimulation. 

Because the inhibitory hippocampal response became excitatory when the stimulus was 

significant (associated with a positive reinforcer), they proposed that LC-NE increased 

the signal-to-noise ratio in hippocampus ( 1976). 

As summarized, the noradrenergic innervation of the hippocampus arises primarily from 

cells of the LC. By injecting 6-hydroxydopamine into the LC, Bliss, Goddard, and Riives 

(1983) found that NE levels were depleted, and the magnitude of LTP of the fEPSP in the 

DG was reduced, although LTP of granule cell excitability (measured by population spike 

amplitude) was unaffected by NE depletion. Munro et al. (2001), using ,8-adrenergic 

receptor antagonists, also blocked LTP of the fEPSP while the population spike LTP 

remained unchanged. Because ,8-adrenergic receptors are linked to adenylate cyclase, NE 

likely acts through a mechanism similar to dopamine, leading to activation of PKA via an 
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increase in cAMP levels (Bliss, Collingridge, & Morris, 2007). 

Electrical stimulation of the LC enhances PP-evoked cell firing in the DG (Assaf, Mason, 

& Miller, 1979; Dahl & Winson, 1985), and activation of LC by glutamate (Harley & 

Milway, 1986), NE superfusion of hippocampal slices (Lacaille & Harley, 1985; Stanton 

& Sarvey, 1985), and iontophoresis of NE to the cell body layer (Neuman & Harley, 

1983) all lead to increases in DG population spike amplitude, a measure of granule cell 

excitability. 

Studies in the hippocampal slice have shown the NE enhancement of CA I, CA3, and DG 

evoked potentials to be dependent upon P-receptor activation, since effects are blocked by 

beta antagonists (Mueller, Hoffer, & Dunwiddie, 1981; Mueller, Kirk, Hoffer, & 

Dunwiddie, 1982; Lacaille & Harley, 1985; Stanton & Sarvey, 1985). As well, beta­

receptor antagonists block the effects of endogenous NE releasers and LC activation 

(Segal & Bloom, 1974; Harley & Milway, 1986) in vivo, indicating that the 

electrophysiological enhancement effects are again attributable primarily to beta receptor 

activation (Harley, 1987). 

However, Harley, Milway, and Lacaille (1989) used electrical stimulation of the LC 40 

ms prior to PP stimulation to cause a short-lasting potentiation of the DG population spike 

amplitude. With 50 LC-PP pairings using the same 333Hz, 15 ms pulse to the LC, a long­

lasting potentiation (over 30 min following LC stimulation) was observed in about half of 

experiments. While propranolol (a .8-adrenergic antagonist) suppressed the potentiating 
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effect of glutamatergic stimulation of LC, it failed to block the potentiating effect of LC 

electrical stimulation. This suggests that there is both a fi-NE-dependent and fi-NE­

independent system in or near the LC capable of acting on and inducing long-lasting 

potentiation of the PP-evoked DG potential. 

Dahl and Sarvey ( 1989) first demonstrated in vitro pathway-selective modifications of 

synaptic responses in the DG, with a low concentration of NE inducing potentiation of 

medial PP-evoked EPSPs and population spikes, and depression of those evoked by the 

lateral PP, with both responses blocked by the fi-adrenergic antagonist propranolol. This 

was the first indication that NE can have differential effects on the medial and lateral 

pathways projecting to the DG. Pelletier et al. ( 1994) later demonstrated that in vitro 

application of isoproterenol, a fi-noradrenergic receptor agonist, induces long-lasting 

potentiation of the medial PP and long-lasting depression of the lateral PP, confirming the 

selectivity of medial and lateral PP responses. 

Lacaille and Harley ( 1985) and Dah I and Sarvey ( 1990) conducted in vitro investigations 

of a pairing requirement for PP-evoked NE potentiation, and failed to see a requirement 

for stimulation of PP input to be paired with NE. Long-lasting effects occurred after NE 

application and washout although no PP stimulation was applied during NE. Reid and 

Harley (2009) tested the pairing requirement for LC activation and PP stimulation in vivo 

and found that PP stimulation paired with LC activation only induced long-lasting 

potentiation of both EPSP slope and population spike when they co-occurred. When PP 

stimulation was interrupted for I 0 minutes pre- and post-LC activation, potentiation of 
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the DO-evoked potential did not occur. The authors concluded that since delaying PP 

stimulation for 10 min prevented NE-LTP of PP input, pairing of NE and PP activation 

must occur within at least a I 0 min window. They suggested the negative results in vitro 

were due to prolonged activation of the cAMP system by bath applications ofNE. 

1.8 Glutamatergic modulation of LC activity 

Palamarchouk et al. (2000) (with in vivo voltammetry) demonstrated that glutamate 

infusion (I 00 nl of 0.1 M glutamate infused over 60 s) into the LC increased the NE-like 

oxidation current in the rat hippocampus with a delay of approximately 30 s and peaking 

within 90 s of glutamate application. This response to glutamate was augmented by pre­

treatment with an NE reuptake inhibitor (desmethylimipramine), suggesting that the 

changes in current were due to changes in NE. 

Harley and Sara ( 1992) investigated cellular changes in the LC produced by glutamate 

activation. DG population spike amplitude increased with LC glutamate ejections, and 

movement of the LC recording electrode in the region of the LC was, in some cases, 

sufficient to initiate potentiation of population spike amplitude. It took an average of 34 s 

following glutamate ejection for spikes to exceed the maximum control spike, with nearly 

all increases occurring within the first minute. EPSP slope increases occurred with 22/34 

ejections, while population spike latency was unaffected by glutamate ejection. The PP 

was stimulated Ill 0 sec. 

Increases m population spike amplitude were produced by glutamate ejections 
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accompanied by an audible increase in cell activity (with LC unit activity played through 

an audio monitor), but some increases in cell activity did not produce changes in spike 

amplitude (when volumes of < 50 nl glutamate were used), indicating that the number of 

LC cells activated was a factor in the initiation of hippocampal potentiation (Harley & 

Sara, 1992). This is consistent with a later study (Harley, Lalies, & Nutt, 1996) showing 

that the concentration of NE in the DG was a determining factor in whether or not long­

term spike potentiation occurred. Intravenous injections of clonidine (an az-agonist) 

silenced or depressed LC cell firing for 3 to 5 minutes; clonidine injections produced 

either no change or a mild depression ofEPSP slope and population spike amplitude. That 

LC inactivation was uncorrelated with DG potentiation indicates that the LC burst is 

critical in initiating spike potentiation (Harley & Sara, 1992). While glutamate 

ejections in the LC potentiated the PP potential in DG, potentiation was never produced 

by ejections outside the LC (Harley & Sara, 1992). 

1.9 Neural memory models: LTP and NE-LTP 

Hippocampal LTP has been the most widely studied model of neuronal plasticity. LTP, a 

lasting increase in cellular responses to specific inputs and an example of activity­

dependent plasticity, was first demonstrated in vivo (Bliss & L0mo, 1973; Bliss & 

Gardner-Medwin, 1973) and provides an attractive model of learning and memory as it 

can be induced by brief, relatively physiological stimuli, while lasting long enough to 

account for some types of memory (Sarvey, Burgard, & Decker, 1989). LTP is typically 

induced through application of high-frequency trains of electrical stimulation. 

Neurotransmitters and neuromodulators, including NE, can affect the threshold for 
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induction, magnitude, or duration of hippocampal LTP (Chaulk & Harley, 1998). 

Along with LTP, which is produced by high-frequency stimulation and manifests as a 

long-lasting increase in population spike amplitude and EPSP slope in the DG evoked 

potential, exposure to ,8-adrenergic agonists produces, as we have seen, a similar long­

lasting effect in the DG, termed NE-induced long-term potentiation (NE-LTP) (Neuman & 

Harley, 1983; Lacaille & Harley, 1985; Stanton & Sarvey, 1985b; Stanton & Sarvey, 

1987). NE-LTP is heterosynaptic, involving both glutamatergic and noradrenergic signals. 

Like LTP, NE-LTP is NMDA-dependent (Burgard, Decker, & Sarvey, 1989; Sarvey, 

Burgard, & Decker, 1989) and LTP in DG can be blocked by ,8-adrenergic antagonists and 

chronic depletion ofNE (Stanton & Sarvey, 1985b; Stanton & Sarvey, 1987). 

Bramham, Bacher-Svendsen, and Sarvey (1997) first demonstrated that NE is required for 

activity-dependent high frequency stimulation-induced LTP as well as for NE-LTP, 

finding that propranolol (a ,8-noradrenergic antagonist) blocks the induction of LTP in 

both the medial and lateral PP inputs to the DG. This indicated that NE has a dual function 

in regulating both activity-dependent depression and activity-independent LTP in the 

lateral PP. 

Walling and Harley (2004) assessed the effect of glutamatergic activation of the LC upon 

EPSP slope and population spike amplitude of PP-evoked DG potentials for 3 hours post­

activation and at 24 hours post-activation. During the 3 hour period immediately 

following LC activation, a long-lasting mcrease m population spike amplitude was 
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observed, while EPSP slope did not vary. This increase in population spike amplitude was 

prevented by application of propranolol (a P-receptor antagonist). At 24 hours, EPSP 

slope had increased in glutamate-activated animals, demonstrating a long-term change in 

plasticity (Walling & Harley, 2004). 

A second experiment comparing parameters at 24 hr post-LC activation to baseline mean 

demonstrated this long-term NE-induced change in plasticity to be dependent on protein 

synthesis. While animals with glutamate-activated LC alone demonstrated the significant 

increase in both EPSP slope and population spike amplitude, animals which had first 

received intraventricular anisomycin (a protein synthesis inhibitor) prior to LC activation 

demonstrated no change in EPSP slope or population spike amplitude. ICY application of 

anisomycin without LC activation had no effect on either parameter, indicating that 

baseline synaptic efficacy is not affected by inhibition of protein synthesis in the absence 

ofLC activation (Walling & Harley, 2004). 

Walling and Harley (2004) first demonstrated an LC activation-dependent persistent 

facilitation of synaptic strength in vivo, implicating the LC's role in a mechanism for 

memory. However, EPSP slope, the index of synaptic strength, remained unchanged in 

the 3 hours immediately post-LC activation, but increased at 24 hours, suggesting that LC 

activation supports a long-term, not short-term, synaptic memory mechanism. 

1.10 Objectives 

NE modulatory selectivity has been reported with both memory-like (in vitro) and 
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attention-like (in vivo) durations, with NE application eliciting LTP of the medial PP­

evoked potential and LTD of the lateral PP-evoked potential in the DG in vitro, and NE 

release via LC activation eliciting corresponding short-term medial PP potentiation and 

LOT depression in vivo. 

Whether NE enhances one hippocampal input over another (spatial v. olfactory) to 

produce long-term changes in DG responses in vivo has yet to be determined. The 

following experiments, using methods previously associated with long-lasting 

medial/mixed PP-evoked DG effects (e.g. Walling and Harley, 2004) and short-term NE 

modulatory selectivity effects (Babstock and Harley, 1993), investigates the effects ofNE 

on the modification of DG inputs by exploring long-term alterations in the LOT- and PP­

evoked DG potentials following LC-NE release. 

The present study uses glutamate burst activation of LC in vivo combined with both PP 

stimulation and LOT activation to ask whether LTP and LTD are seen when a robust LC 

stimulation mode is employed in vivo as has been reported with bath application ofNE in 

vitro. By examining the effects of NE release following glutamatergic activation of LC 

upon the medial and lateral PP inputs in the anaesthetized rat, this study aims to 

reproduce the original immediate and transient in vivo effects and to elicit longer-term 

DG responses in the 3 hours following LC activation. 

Two separate experiments investigate these modulatory effects ofNE on inputs to the DG, 

a region previously implicated in memory and the orthogonalization of sensory inputs 
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(Kesner, Lee, & Gilbert, 2004). The first explores modulation of the LOT- and PP-evoked 

potentials in the DG over several hours fo llowing endogenous release of NE evoked by 

application of glutamate in the LC. Failure to see the expected depression of the LOT­

evoked potential in the first experiment led to a second experiment to observe effects of 

more frequent pairings of NE and LOT inputs by increasing the rate of PP and LOT 

stimulation, a critical factor in long-term effects as described by Reid and Harley (2009). 
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Chapter 2: Experiment 1 

2.1 Introduction 

LC-NE modulation of MPP and LPP in vivo 

LC-NE is hypothesized to play a role in hippocampal memory and attentional processes 

by improving the signal-to-noise ratio through enhancement of the signal, suppression of 

noise, or both (Woodward et al., 1979). The medial and lateral PP provide the main input 

to the DG, the first hippocampal region to receive sensory input from the EC. Differential 

effects of LC-NE upon the medial and lateral PP, which relay primarily spatial and 

olfactory information, respectively, may be functionally important by selectively 

enhancing one input over the other. 

In vitro studies demonstrated long-term (> 30 min) potentiation of DG evoked potentials 

with pairing of medial PP stimulation and NE application, and long-term depression with 

pairing ofNE and lateral PP stimulation (Dahl & Sarvey, 1989), effects also seen with the 

application of isoproterenol, a ,8-noradrenergic agonist (Pelletier et al., 1994). These long­

term effects support a learning or memory-type change in processing. 

Using electrical stimulation of PGi to provide excitatory input to the LC, an in vivo study 

demonstrated an effect similar to that seen in vitro. Pairing of LOT stimulation (used to 

selectively elicit lateral PP responses) and PGi-LC-NE depressed DG evoked potentials, 

while medial PP stimulation paired with PGi (LC) activation enhanced medial PP evoked 

population spikes. Both effects were found immediately following a conditioning pulse 

with a 30-40 ms latency, and were no longer present after 70 ms unless again paired with 

a prior LC burst (Babstock & Harley, 1993). This short-term modulation supports an 
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attentional effect of NE as selectively enhancing spatial information and depressing 

olfactory information, consistent with the longer-term memory-like medial PP 

potentiation and lateral PP depression shown in vitro. 

While effects with memory-like (in vitro) or attentional-like (in vivo) durations have thus 

far been demonstrated, whether NE selectively enhances one hippocampal input over 

another (spatial v. olfactory) to produce long-term changes in DG responses in vivo has 

yet to be determined. The following experiment investigates the effects of NE on the 

modification of inputs to the DG by exploring alterations in LOT- and PP-evoked DG 

potentials over several hours following endogenous NE release evoked by glutamatergic 

activation of LC. 

Here LOT stimulation is used to selectively elicit lateral PP responses (Steward & 

Scoville, 1976), and is alternated with PP stimulation, which elicits a medial PP 

population spike as defined by latency (McNaughton & Barnes, 1977), at 60 s intervals. 

Along with the experimental group of animals receiving glutamatergic activation of LC, 

the responses of a control group receiving ACSF ejection to LC were also followed. In 

this group DG responses were recorded for an initial period of 4 hours (comparable to the 

total I hr pre- and 3 hr post-LC activation recording period of the experimental group) 

before ACSF ejection through the LC cannula, and responses were recorded for an 

additional 3 hr post-ACSF (comparable to the 3 hr post-LC activation recording period of 

the experimental group). The initial 4 hr recording period allowed for comparison of 

rising baseline and anesthetic drift effects with the experimental group, while the 
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additional 3 hr recording post-ACSF provided a comparison for mechanical stimulation 

of the LC region. 
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2.2 Methods 

2.2.1 Subjects and surgical preparation 

Thirteen male Sprague Dawley rats (Memorial University of Newfoundland Vivarium) 

weighing 250-350 g were used. Experimental procedures were conducted within the light 

phase of the animals' cycle, and in accordance with the Canadian Council of Animal Care 

guidelines following a protocol approved by the Institutional Animal Care Committee. 

Rats were anaesthetized with 15% urethane (1 0 ml/kg, i.p.), had their heads shaven, and 

were placed in a stereotaxic instrument in the skull-flat position. Local anaesthetic (0.25 

ml marcaine) was used on the scalp before making a midline incision, the scalp was 

retracted to expose the skull, and the plane between bregma and lambda leveled to 

horizontal. Holes were drilled for a glass recording micropipette (3.5 mm posterior to 

bregma and 2 .0 mm lateral, - 2.5 mm ventral from brain surface), PP bipolar stimulating 

electrode (7.2 mm posterior, and 4.1 mm lateral, - 3.0 mm ventral), LOT bipolar 

stimulating electrode (5.0 mm anterior, and 1.5-1.6 mm lateral, - 5.8-6.0 mm ventral from 

brain surface), and LC cannula (12.5 mm posterior to bregma, 1.0 mm lateral, - 4.5mm 

ventral). The LC cannula made of 22-gauge stainless steel (Plastics One) was angled 20° 

from the vertical to bypass the sagittal sinus and anchored to a jeweler's screw in the skull 

with dental acrylic. A second jeweler's screw on the anterior portion of the skull served as 

reference electrode. 

The recording pipette and PP stimulating electrode were lowered until the DG field EPSP 

and population spike were maximized, before positioning the LOT stimulating electrode. 
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The LOT stimulating electrode was first positioned 4.5 mm ventral to the brain surface, 

before lowering in 50 ,urn increments to a depth that produced the maximal stable EPSP 

(5.8 to 6.0 mm ventral from surface). Once electrodes were placed, LOT and PP were 

stimulated at I min intervals until evoked potentials appeared stable (approximately 30 to 

60 min) before beginning data recording. 

2.2.2 Recording and stimulation 

During baseline and test period recording, PP stimulation consisted of a single, 0.2 ms 

square wave pulse (lSI 60s) at the intensity that elicited a population spike approximately 

50% of maximum (400-800 ,uA) during the I-0 curve. Stimulation of LOT consisted of a 

800-1 000 ,uA pulse (intensity chosen to produce maximal stable EPSP) with duration of 

0.2 to 0.5 ms (duration chosen to maximize consistency between waveforms) and 60 s 

lSI. PP and LOT pulses were alternated with a 30 s lSI. The input-output current intensity 

relationship (l-0 curve) was determined at the beginning of each recording session. I-0 

stimulation consisted of increasing current intensities (I 00-1000 ,uA, I 0 s lSI, 100 pA 

increments). For PP stimulation, I-0 data was collected using paired-pulse stimuli at 

intervals of 30, 70, and 200 ms, collecting two samples at each interval at each current 

level; paired-pulse ratio data was used to assess the medial-lateral fiber composition of 

the PP. In the present study, only data from the 30 ms lSI were analyzed to assess PP fiber 

composition. For LOT stimulation, three samples were collected at each current level ; 

paired pulse stimuli were not used. Evoked potentials were amplified and stored by 

Datawave software for later analysis. 
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The final experimental group consisted of eight animals. After recording I-0 curves, 

responses to PP and LOT stimulation were recorded until I hr of stable baseline was 

obtained. 200 nl 0.5M glutamate was injected through the LC cannula (see below). After 

injection, an additional 3 hr of recording was followed by I-0 curves. 

The control group consisted of five animals. Following initial I-0 curves, 4 hours of 

baseline responses were obtained before 200 nl of ACSF were injected through the LC 

cannula. Responses were recorded for an additional three hours following injection, 

followed by I-0 curves. 

2.2.3 Drugs and injection procedure 

Monosodium-L-glutamate mixed in sterile saline (500 mM) was injected into the LC 

through a 28 gauge internal cannula attached to a 1 pi syringe by autoanalyzer tubing. The 

internal cannula was positioned in the LC 2 min prior to injection. Glutamate (200 nl) was 

injected over 30 s, and the internal cannula was left in place for 5 min before removal. 

The 30 s timing pairs one LOT stimulus and one PP stimulus with drug ejection in LC. 

The same procedure was used for injecting 200 nl ACSF (147mM NaCI, 3mM KCI, 1 mM 

MgCh, 1.3mM CaC12) in the control group. 

2.2.4 Jlistology 

Following post-injection I-0 curves, 200 nl of methylene blue (2%) were injected into the 

LC through the guide cannula to mark the injection site. A 0.5 rnA, 2 s lesion was made to 

mark the placement of the LOT stimulating electrode. Following lesioning, rats were 
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decapitated and brains frozen in chilled methylbutane and stored at -70°C. A cryostat­

microtome was used to take 30 ,urn sagittal sections through the region of LC. Alternate 

sections were stained with 1% cresyl violet and the others left unstained. To locate 

electrode tracks in LOT, DG, and PP, 30 ,urn coronal sections were taken and glycogen 

phosphorylase staining used. 

2.2.5 Data analysis 

Three parameters of PP evoked potentials (EPSP slope, population spike amplitude, and 

latency to pop spike peak) and three parameters of LOT evoked potentials (maximum 

amplitude, EPSP slope, and time to maximum) were measured. All parameters were 

reduced to 5-minute means for analysis. Parameters in glutamate-injected animals were 

normalized to the I hr pre-glut baseline mean. Parameters in ACSF animals were 

normalized to both 1-hr and 4-hr pre-ACSF baseline means. I-0 curves for individual 

animals were normalized to the largest mean EPSP slope or population spike of the pre­

LC activation I-0 curve of each individual. Two-way repeated measures ANOVAs were 

used to assess possible interactions of group and time for each parameter, and post-hoc 

LSD analyses were used to further investigate any interactions. 
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2.3 Results 

2.3.1 PP-evoked population spike amplitude 

LC activation initiated a long-term increase in the amplitude of the PP-evoked population 

spike in all animals. The average baseline amplitude of 2.4 m V (in the I hr pre-LC 

activation) increased to 4.0 m V (mean of the 3 hr post-activation period) with LC-PP 

stimulation (a 65% enhancement, ranging from 31% to 1 09%). ACSF control animals, 

starting from a baseline mean spike amplitude of 4.79 mV in the first I hr of recording, 

showed a non-significant 13% increase (ranging from -8% to 30%) from 6.6 to 7.5 mY 

from 1 hr pre-injection to 3 hr post-injection. 

To analyze possible changes in the period immediately around drug ejection, a two factor 

(group, time) mixed-effects ANOVA comparing all 1 min samples in the 30 min 

following LC activation to a 15 min pre-activation baseline revealed a significant group X 

time interaction (F( 44,396) = 1.88, p < .00 I). A post-hoc LSD analysis showed the 

population spike amplitude of glutamate-injected animals to differ significantly from 

baseline beginning immediately after LC activation (see Figure 2.1 ). 
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Figure 2.1 Initial increase in PP-evoked population spike amplitude. 

A. An increase in population spike amplitude immediately followed drug 

application in glutamate animals. Arrow indicates drug ejection. Group 

means of I min samples, standard error bars indicated. * indicates p < 0.05. 

B. Example PP-evoked waveforms recorded in DG from animal with 

g lutamatergic activation of LC. Dashed line is waveform recorded during pre-LC 

activation baseline. Solid line is waveform recorded 210 min post-LC activation. 
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To analyze the entire 4 hr recording period of the glutamate group and the corresponding 

4 hr period in the ACSF group, a two factor (group, time) mixed-effects A NOVA was also 

carried out to examine the effects of group and time on PP-evoked population spike 

amplitude over the I hr before and 3 hr after LC activation. A significant group X time 

interaction was present (F(47,470) = 4.48, p < .001), and post-hoc LSD analysis showed 

5-min means in test animals following LC glutamate injection to differ significantly both 

from equivalent time points in ACSF animals and from all points on glutamate baseline (p 

< 0.05; see Figure 2.2). 
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Figure 2.2 Long-term increase in PP-evoked population spike amplitude. 

An average increase of 65% in PP-evoked population spike amplitude was 

observed in the 3 hr following LC activation. Arrow indicates time of drug 

ejection in LC. In glutamate animals, a pop-up in spike amplitude is seen 

following cannula insertion. 5 min means, standard error bars indicated. 

* indicates p < 0.05. 
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2.3.2 PP-evoked EPSP Slope 

In the glutamate group the mean PP-evoked EPSP slope increased from 3.39 mV/ms at 

baseline to a mean of 3.5 mV/ms in the 3 hr after LC activation. PP-evoked EPSP slope 

increased in 6 glutamate-injected animals and decreased in 2, but did not reach 

significance. ACSF animals (with a mean EPSP slope of 5.6 mV/ms in the first 1 hr of 

recording) similarly showed no change, decreasing from 6.0 mV/ms in the hour before 

injection to 5.95 mV/ms in the 3 hr post-LC activation (see Figure 2.3). A between-groups 

ANOVA of 5 min means in the 3 hr post-injection period showed no significant difference 

between ACSF and glutamate animals (F(35 , 385) = 0.327, p = 1.0) for PP-evoked EPSP 

slope. 
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Figure 2.3 No change in PP-evoked EPSP slope. 

No significant change in PP-evoked EPSP slope was observed. Arrow 

indicates time of drug ejection in the LC. 5 min means, standard error indicated. 
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2.3.3 PP-evoked latency to peak and EPSP slope paired-pulse ratio 

A significant main effect for time (F( 47,517) = 6.05, p < 0.00 I) and group X time 

interaction (F( I , 4 7) = 1.51, p = 0.0 I 8) were found for latency to population spike peak in 

the PP-evoked potential. Latency to peak decreased over time, and a post-hoc LSD 

analysis found 5-min means in glutamate animals differed significantly from all baseline 

points beginning approximately I h post LC activation (see Figure 2.4). In the glutamate 

group, latency decreased from 4.05 ms in the I h pre LC activation to 3.93 ms in the 3 hr 

post activation (3.87 ms in the final 1 hr of recording, a 4.5% decrease from the I hr 

baseline mean). ln the ACSF group, latency decreased from 3.91 ms in the I hr before 

ACSF ejection to 3.87 in the 3 hr post activation (3.85 in the final I hr of recording, a 

1.5% decrease from the I hr baseline mean). In the first hour of the 7 hr ACSF recording, 

the latency to peak was 4.01 ms, simi Jar to the starting value of glutamate animals. 

To compare with initial PP-evoked population spike amplitude changes over the same 

time period, latency to peak in the 30 min following drug ejection was compared to the I 5 

minutes pre-ejection in both groups. No significant differences were found between 

groups or over time for that period (see Figure 2.5). 
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Figure 2.4 Decrease in PP-evoked latency to peak 

A mean decrease of 4.5% in PP-evoked latency to peak was observed 

from the first 1 hr to the final 1 hr of recording in g lutamate animals. 

ACSF animals decreased 1.5% over the same time period. 5 min means, 

standard error bars indicated. Solid arrow indicates time of drug ejection. 
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Figure 2.5 No initial change in PP-evoked latency to peak 

No initial change in PP-evoked latency to peak is observed following 

glutamate or ACSF ejection in comparison to 15 min pre-ejection 

baseline. l min intervals, standard error bars indicated. Solid arrow 

indicates ti me of drug ejection. 
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Animals in both the glutamate and ACSF groups had a slightly higher post-LC ejection 

EPSP slope paired pulse ratio compared to pre-ejection (see Figures 2.6 and 2.7), 

although this difference was not significant, and glutamate and ACSF groups did not 

differ significantly from each other. In both groups, the 30 ms paired-pulse ratio at low 

stimulation intensities (IOO to 300 flA) was above 1, and below I at higher stimulation 

intensities (500 to I 000 flA). The 30 ms paired pulse ratio is indicative of PP fiber 

composition, with ratios below I indicating more activation of medial PP fibers, as 

opposed to lateral PP (McNaughton, 1980). 
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Figure 2.6 PP-evoked EPSP slope paired-pulse ratio (glutamate) 

PP-evoked EPSP slope paired-pulse ratio (30ms lSI) taken I hr pre-

and 3 hr post-LC activation (n = 6). 
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Figure 2.7 PP-evoked EPSP slope paired-pulse ratio (ACSF) 

PP-evoked EPSP slope paired-pulse ratio (30ms lSI) taken 4 hr pre-

and 3 hr post-ACSF ejection (n = 5). 
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2.3.4 LOT-evoked EPSPs 

No significant group X time interaction was found for LOT-evoked EPSP amplitude 

(F(35, 385) = 0.588, p = 0.97; between-groups repeated measures ANOVA, 5-min means 

post-ejection). The average amplitude increased from a 1 hr baseline mean of 1.7 mY to a 

mean of 2.2 m V in the 3 hr following glutamatergic stimulation of LC, a non-significant 

enhancement of 27% (ranging from 3% to 82%). In ACSF control animals, with a 

baseline mean amplitude of 1.72 mV in the first I hr of recording, amplitude increased 

from 2.88 m V in the I hr prior to injection to 2.96 m V in the 3 hr after (amplitude 

increased in 3 and decreased in 2 animals, with an average non-significant increase of 

3%; see Figure 2.8). 
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Figure 2.8 No change in LOT -evoked EPSP amplitude. 

A. No signi ficant interaction between group and time was observed for 

LOT-evoked EPSP amplitude. 5 min means, standard error bars indicated. 

Arrow ind icates time of drug ejection in the LC. 

B. Example LOT-evoked waveforms from animal with glutamatergic 

activation ofLC. Dashed line is LOT-evoked potential recorded during 

pre-LC activation baseline. Sol id line is LOT-evoked potential recorded 

2 10 min post-LC activation. Amplitude measured from baseline at stimulus artifact. 
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A non-significant increase of LOT-evoked EPSP slope from a I hr baseline mean of 0.36 

mV/ms to 0.48 mV/ms (a 34% increase, ranging from 6% to 110%) in the 3 hr post-LC 

activation was observed. In ACSF control animals, starting with a baseline mean slope of 

0.33 m V/ms in the first I hr of recording, an average increase of 6% was observed (from 

0.59 mV/ms in the I hr prior to injection to 0.63 mV/ms in the 3 hr after, with individual 

changes in slope ranging from -6% to 22% (see Figure 2.9). However, these changes in 

LOT-evoked EPSP slope remained non-significant for both the ACSF and glutamate 

groups (F(35, 385) = 0.498, p = 0.99; between-groups repeated measures AN OVA, 5-min 

means post-ejection). 
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Figure 2.9 No change in LOT-evoked EPSP slope 

No significant group X time interaction in LOT-evoked EPSP slope was 

observed. 5 min means, standard error indicated. Arrow indicates 

time of drug ejection through LC cannula. 
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2.3.6 LOT-evoked latency to peak 

A between-groups ANOVA of 5 min means in the 3 hr post-injection found no significant 

effects for LOT time to peak (F(35, 385) = 0.923, I = 0.60). The average latency was 18.4 

ms in glutamate-injected animals before and after LC stimulation, and 18.7 ms in ACSF 

control animals (see Figure 2.1 0). 
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Figure 2.10 No change in LOT -evoked latency to peak. 

No significant effects for LOT-evoked latency to peak were found. 

Arrow indicates time of drug ejection in the LC. 5 min means, 

standard error bars indicated. 
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2.3. 7 Input-output analyses 

1-0 current intensity relationships for animals with glutamatergic stimulation of LC (n = 

8) showed an increase in population spike amplitude following LC activation (see Figure 

2.11 ). Post-recording I-0 measures of PP-evoked population spike (see Figure 2.12) and 

EPSP slope (Figures 2.13 and 2.14) were also greater than pre-recording I-0 curves in the 

ACSF group (n = 5). 

While both groups exhibited an increase in I-0 relationships from initial to final T-0 

curves, the PP-evoked population spike of LC-activated animals showed an increase to 

200-250% of initial 1-0 maximum at higher current levels (800-1 000 f.JA) over the 4 hr 

period between 1-0 curves, whereas the ACSF group demonstrated a smaller increase of 

125% over a longer (7 hr) period between initial and final 1-0 curves. This difference in 

elapsed time between collection of initial and final 1-0 data in the experimental ( 4 hr) and 

control groups (7 hr) prevents a direct statistical comparison. 
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Figure 2.11 PP population spike amplitude input-output analysis (glutam ate). 

I-0 curves I hr pre- and 3 hr post-LC activation (n = 6). The mean 

population spike amplitude for each current intensity was converted to 

a percentage of the largest mean spike amplitude obta ined during the 

pre-activation 1-0 curve for each animal. Data represent the group mean 

with SEM. 
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Figure 2.12 PP-evoked spike amplitude 1-0 analysis (ACSF control). 

1-0 curves taken 4 hr pre- and 3 hr post-LC ejection (n = 5). The 

mean population spike amplitude for each current intensity was 

converted to a percentage of the largest mean spike amplitude 

obtained during the pre-activation I-0 curve. Data represent the group 

mean with SEM. 
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Figure 2.13 PP-evoked EPSP slope input-output analysis (glutamate). 

I-0 curves taken I hr pre- and 3 hr post-LC activation (n = 6). The 

mean PP-evoked EPSP slope for each current intensity was converted 

to a percentage of the largest mean EPSP slope obtained during the 

pre-activation 1-0 curve. Data represent the group mean with SEM. 
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Figure 2.14 PP-evoked EPSP slope 1-0 analysis (ACSF control). 

I-0 curves taken 4 hr pre-ACSF ejection and 3 hr post-ACSF (n = 5). 

The mean PP-evoked EPSP slope for each current intensity was 

converted to a percentage of the largest mean EPSP slope obtained 

during the pre-activation l-0 curve. Data represent the group mean 

with SEM. 
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Analysis of I-0 data for LOT-evoked EPSP amplitude indicates an increase between pre­

and post-LC activation measurements at all current levels (group X current interaction: 

F(9,90) = 4.07, p < 0.001; see Figure 2.15). A 2-way ANOVA showed a significant 

interaction between group (ACSF-pre, ACSF-post, glutamate-pre, glutamate-post) and 

current level (F(27, 162) = 2.43, p < 0.001 ). Post-hoc LSD analyses showed that pre­

glutamate and pre-ACSF 1-0 curves were not significantly different between ACSF and 

glutamate groups (see Figure 2.16). However, for both ACSF and glutamate groups, all 

points on the pre-injection baseline were significantly different from points at current 

levels 600 to 1 000 11A post-injection, suggesting a non-specific increase in EPSP over 

time, unrelated to LC activation. 
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Figure 2.15 LOT-evoked EPSP amplitude input-output analysis (glutamate). 

£-0 curves taken 1 hr pre- and 3 hr post-LC activation (n = 6). The 

mean EPSP amplitude for each current intensity was converted to a 

percentage of the largest mean amplitude obtained during the 

pre-activation 1-0 curve. Data represent the group mean with SEM. 
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Figure 2.16 LOT -evoked EPSP amplitude 1-0 analysis (ACSF control). 

I-0 curves 4 hr pre- and 3 hr post-LC ejection (n = 5). The mean 

EPSP amplitude for each current intensity was converted to a 

percentage ofthe largest mean amplitude obtained during the 

pre-activation I-0 curve. Data represent the group mean with SEM. 
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2.3.8 E-S coupling ratio 

An increase in population spike amplitude unaccompanied by a change in EPSP slope led 

to a leftward shift in the PP-evoked EPSP slope/population spike ratio occurring 

following LC activation (see Figure 2.17), consistent with the change in baseline spike 

but not EPSP slope. A shift in the slope/spike ratio was also observed in the 7 hr ACSF 

control animals (see Figure 2.18), suggesting an additional non-specific excitability 

increase over time. 
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Figure 2.17 PP-evoked EPSP slope/population spike ratio (glutamate) 

E-S coupling ratio for g lutamate animals (n = 6). A leftward shift 

in E-S coupling occurs post-LC activation. 
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Figure 2.18 PP-evoked EPSP slope/population spike ratio (ACSF) 

E-S coupling ratio for ACSF control animals (n = 5). PRE and POST 

measures taken 4 hr pre- and 3 hr post-ACSF ejection, respectively. 

Same scale as Figure 2.15. 
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2.3.9 Oscillation of PP- and LOT-evoked parameters 

The 7 hr recordings of individual ACSF animals appeared to demonstrate an inverse 

relationship between PP-evoked population spike amplitude and LOT-evoked EPSP 

amplitude. Figure 2.19 shows an example of this relationship (n = I) in which a 

significant negative correlation between corresponding 5 min means of the two 

parameters was found (r = -.222, p = 0.04). The mean correlation of the group (n = 5) was 

r = -0.103, with two additional animals demonstrating significant negative correlations (r 

= -.236, p = 0.03; r = -.207, p = 0.05), and no significant relationship found between 

parameters of the remaining two animals (r = -0.004, p = 0.97; r = 0.157, p = 0.15). The 

parameters also seem to exhibit an oscillation in values with a period of I hr. These 

individual effects were masked in the group mean due to time differences in the onset of 

the oscillation between animals. 
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Figure 2.19 Example oscillations in PP-evoked population spike amplitude 

and LOT-evoked EPSP amplitude (n = 1) 

A negative correlation between PP-evoked population spike amplitude and 

LOT-evoked EPSP amplitude was observed in individual animals. Data from 

one ACSF animal recorded over 7 hr with ACSF injection at 4 hr. Dark points 

represent PP-evoked population spike amplitude 5 min means with standard 

error indicated; light points represent LOT -evoked EPSP amplitude 5 min 

means w ith standard error indicated. 
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2.3.10 Histology and electrode placements 

Animals were included in the study on the basis of proximity of dye injection to LC (see 

Figure 2.18). Based on previous experience cannula tips located within 300 11m of the 

Nissl-identified nucleus of the locus coeruleus were considered successful. Dye proximity 

to LC was measured in 30 J.l.ffi sagittal tissue sections and compared to adjacent cresyl 

violet-stained sections. In the glutamate group, cannula placements were within LC in 4 

animals, 200 J.l.ffi posterior in 1 animal, and 180 ,urn lateral in 2 animals (one of those 

placements was also 100 pm dorsal of LC). In the ACSF group, 2 cannula placements 

were within LC, 2 were 100 ,urn posterior, and one was 100 ,urn anterior of LC. LOT 

potentials were similar, although variable, in all animals, and lesions were present within 

LOT in all subjects. 

Electrophysiological data (positive-going waveform with negative-going population 

spike) indicated recording micropipette positions within the granule cell layer of the DG 

in all animals. Population spike latencies were indicative of PP stimulating electrode 

placements within the medial perforant path. 
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LC 

X = ACSF ejection site (n = 6) 

+ = Glutamate ejection site (n = 8) 

Figure 2.20 Experiment 1 LC cannula ejection sites 

Locations of dye marking cannula ejection sites near LC, 

determined with 30 micron sagittal sections through 

brainstem/cerebellum. 
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2.4 Discussion 

In Experiment 

LC-NE modulation of MPP and LPP in vivo 

activation of noradrenergic input to the DG in vivo initiated a 

potentiation of the medial PP population spike in glutamate animals immediately 

following LC activation and lasting the duration of recording (3 hr), while the LOT­

evoked EPSP at the same site did not differ significantly from baseline. 

The expected immediate and long-lasting (3 hr) increase in amplitude of the medial PP­

evoked population spike is consistent with the report of immediate increase seen by 

Babstock and Harley (1993), and similarly a decrease in PP-evoked latency to peak 

following LC activation was also observed. 

Similar to Walling and Harley (2004), whi le a long-lasting increase in the PP-evoked 

population spike amplitude was observed, the PP-evoked EPSP slope of Experiment I 

remained unchanged in the 3 hr post LC activation. The increase in PP-evoked population 

spike (an index of granule cell excitability) without a corresponding increase in EPSP 

slope (a measure of synaptic drive) suggests that NE alters the coupling between EPSP 

and spike generation (Neuman & Harley, 1983). This increase has been observed in past 

studies ofLTP (Bliss & L0mo, 1973) and NE-LTP (Neuman & Harley, 1983). 

Previous studies have similarly failed to observe a consistent potentiation of the EPSP 

slope, when using electrical (Assaf, Mason, & Miller, 1979) or g lutamatergic stimulation 

of the LC (Harley & Milway, 1986). The EPSP component of the PP-evoked DG response 

may contain a mix of medial and lateral inputs, so potentiation of the EPSP slope in the 
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medial PP could be masked by depression in the lateral PP (Reid & Harley, 2009). 

However, the properties of the PP-evoked waveform (peak latency, half-width, and rise 

time) indicated a primarily medial mix of fibers was stimulated in Experiment 1. 

The decrease observed in latency to peak of the PP-evoked population spike would seem 

to indicate a change in EPSP consistent with the masking hypothesis. However, this 

decrease was only observed when comparing the entire 3 hr post-recording period to the I 

hr baseline mean; when examining the latency measure within 30 min of LC ejection, no 

change in latency is apparent, arguing against a change in synaptic drive. Additionally, the 

1-0 current relationship measures of PP-evoked EPSP slope in both the glutamate and 

ACSF groups did not differ sign ificantly from initial to final 1-0 curves. The 30 ms 

paired-pulse ratio (less than I) observed in both experimental and control groups in 

Experiment I also did not differ significantly between pre- and post-recording I-0 

collection, as would be expected in the glutamate group if the medial PP input were 

stronger. Nor is there any suggestion of a depression at the lower current levels where the 

paired pulse ratio was more than I. 

Comparison between the 1-0 data of experimental and control groups is difficult because 

of the difference in duration of the recording period. Animals receiving glutamatergic 

activation of LC had 4 hr elapse between the recording of pre and post 1-0 curves, while 

7 hr elapsed between pre and post 1-0 data collection in the ACSF control group. 

While ACSF control animals are not typically used in studies involving LC activation due 
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to the possibility of activating LC through mechanical stimulation alone, changes in 

parameters following ACSF ejection in the LC were not observed. Increases in PP-evoked 

population spike amplitude seemed time-dependent (rising consistently over the 7 hr 

period) and were unaffected by ACSF ejection. The rising baseline measurements account 

for the differences in responses at initial and final 1-0 data collection and suggest an 

increase in excitability over time which would make some contribution to the overall 

increase in the experimental group, but which cannot account for the magnitude of the 

effects observed. 

A study on the stability of baseline recording in the DG of urethane-anaesthetized rats 

noted a consistent upward drift in both the population spike amplitude and EPSP slope 

over the duration of recording (Gi lbert & Mack, 1999). Over the first 2 to 4 hr of 

recording, large time-dependent increases in population spike amplitude (70-80%) are 

observed. Smaller increases in EPSP slope (20-30%) were also ob erved, stabilizing 

within I to 2 hr of recording. While in Experiment I the LOT and PP were stimulated for 

a period of 30-60 min prior to initial I-0 data collection to allow baseline to stabilize, any 

additional time-dependent increases in parameters following the start of recording would 

be exaggerated in the final 1-0 curve of the ACSF control group in comparison to the 

g lutamate animals because of the additional 3 hr of time elapsed. 

Babstock & Harley ( 1993) demonstrated an immediate and short-term depression of the 

LOT-evoked DG potential with a 40 ms latency conditioning pulse, and Dahl and Sarvey 

( 1989) and Pelletier et a!. (1994) demonstrated long-lasting depression of the lateral PP 
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input to DG following in vitro application of NE or isoproterenol (a ,8-noradrenergic 

agonist), respectively, with concurrent potentiation of medial PP-evoked responses. Both 

in vitro and in vivo results supported selectivity ofNE modulation of inputs to the DG. 

However, in Experiment I the amplitude and slope of the LOT-evoked EPSP following 

LC activation did not differ significantly from baseline or from ACSF controls, in contrast 

to the decreases in lateral PP-evoked potentials previously mentioned. While Experiment 

I did not provide further evidence for depression of the lateral PP, the potentiation of 

medial PP parameters with no accompanying change in lateral PP evoked potentials does 

partially support selectivity. 

This weaker selectivity of inputs (potentiation of the medial input, without accompanying 

depression of the lateral input) may be due to the features of temporal pairing of N E and 

PP or LOT stimulation used in this experiment. Reid and Harley (2009) demonstrated an 

associativity requirement for NE release and PP stimulation in vivo, finding that when PP 

stimulation was interrupted I 0 min before and after LC activation, LC-induced long-term 

potentiation of the PP-evoked population spike and EPSP slope failed to occur. Thus 

degree of input activation in association with LC activation is an important parameter in 

long-term effects of LC activation. 

The spacing of PP and LOT stimulation in Experiment I would have led to a weaker 

pairing of LC activation and consequent NE release with PP and LOT stimulation than 

that of Babstock and Harley's ( 1993) study using PGi stimulation. It was also a weaker 
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pairing than used in previous studies of glutamate LC activation and PP pairing, in which 

PP was normally stimulated every I 0-30 s instead of every 60 s. The failure to observe 

depression of the LOT evoked potential may also have resulted from the use of a weaker 

input (EPSP only) paired less frequently with elevated NE. NE levels decline rapidly over 

minutes with LC activation (Palamarchouk et al., 2000). 

Interestingly, the 7 hr recordings of the ACSF control group seem to demonstrate a 

spontaneous selectivity of responses, with the amplitude of PP- and LOT-evoked 

potentials varying in opposition. Statistical analysis of this oscillatory pattern revealed a 

significant negative correlation between the two parameters (PP-evoked population spike 

amplitude and LOT-evoked EPSP amplitude) over the duration of the 7 hr recording 

period. The PP-evoked population spike amplitude in the DG cycled from a lower to a 

higher level over the duration of recording, with a period of approximately 60-90 min. 

The LOT-evoked EPSP amplitude varied similarly, but attained its highest levels when PP 

spike amplitude was lowest, and vice versa. 

Sleep-like cycling of hippocampal EEG states under urethane anaesthesia in the rat has 

been demonstrated by Clement et al. (2004), who found the alternations were not 

reflective of fluctuations in anaesthetic level. However, the period of the fluctuations 

between active and deactivated EEG patterns was approximately 9 min, whereas the 

fluctuations in PP- and LOT-evoked potentials in Experiment I 's ACSF animals had a 

much longer period of approximately 60-90 min. 
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To further examine possible in vivo depression of the lateral PP input to DG, Experiment 2 

used a similar procedure to Experiment I with increased pairing of LOT stimulation and 

NE. 
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Chapter 3: Experiment 2 

3.1 Introduction 

LC-NE modulation of MPP and LPP in vivo 

NE has been shown to differentially modulate medial and lateral PP input to the DG of 

the hippocampus in vitro and in vivo. In vitro, long term (> 30 min) potentiation of the 

medial PP and depression of the lateral PP evoked potentials is observed with extended 

perfusion of NE or the ,8-agonist isoproterenol (Dahl & Sarvey, 1989; Pelletier et al., 

1994). In vivo, an immediate and transitory potentiation (< 70 ms) of the medial PP and 

depression of the LOT-evoked DG potential are observed following electrical stimulation 

of PGi, which provides the excitatory input to the LC, the source ofNE innervation to the 

DG (Babstock & Harley, I 993). 

In contrast, while Experiment I demonstrated the expected long-term (3 hr) potentiation 

of the medial PP population spike following LC activation, no change in the LOT-evoked 

DG potential was observed. This NE modulation of medial and lateral PP responses 

indicates a weaker modulatory selectivity than that seen immediately following PGi 

stimulation of LC in vivo. 

In Experiment I LOT stimulation was used to selectively activate the fibers of the lateral 

PP, and produced only an EPSP in DG, in contrast with the stronger medial PP input, 

producing a population spike. The failure to observe depression of the LOT-evoked DG 

potential in Experiment I may have resulted from the combination of a weaker input and 

less frequent pairing of LOT stimulation with the period of peak NE release. 
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Microdialysis data indicates that increased hippocampal NE is only present for minutes 

following LC activation (orexin or glutamate stimulation of LC raised hippocampal NE 

levels in first 20 min sample, but not in the following samples; Walling et al., 2004), 

while voltammetry has shown a decline of NE levels to baseline within 10 min of 

glutamatergic LC activation (Palamarchouk et al., 2000). Reid and Harley (2009) have 

shown failure to obtain medial PP long-term potentiation if LC is not stimulated during 

PP stimulation. With the longer interstimulus interval (60 s) of Experiment 1, LOT 

stimulation was paired with raised hippocampal NE levels relatively few times. 

Additionally, Experiment 1 did not pair LOT stimulation with peak NE release 

consistently, as presumably occurred with the 30-40 ms delay between PGi stimulation of 

LC and stimulation of the LOT in Babstock and Harley (1993). Babstock and Harley 

( 1991) demonstrated a 30-40 ms latency between electrical stimulation of PGi and 

modulation of PP and LOT inputs consistent with a likely temporal interval for peak NE 

release from terminals in the hippocampus. This putative NE modulation returned to 

baseline levels by 70 ms (Babstock & Harley, 1991 ). 

Potentiation of the PP evoked population spike is dependent upon a critical level of NE 

release, with the duration of changes related to the concentration of NE achieved in the 

DG (Harley, Lalies, & Nutt, 1996). As a threshold level ofNE is needed in DG to produce 

NE-LTP, again the less frequent stimulation of LOT during the period of NE release in 

hippocampus may have been responsible for the failure to observe depression of the LOT­

evoked potential in DG in Experiment 1. 

80 



LC-NE modulation of MPP and LPP in vivo 

Experiment 2 further examines possible in vivo depression of the lateral PP evoked DG 

potential by following a similar procedure to Experiment 1 but with increased pairing (I 0 

s lSI) of LOT stimulation with LC-evoked NE release. 
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3.2 Methods 

3.2.1 Subjects and surgical preparation 

Five male Sprague Dawley rats (Memorial University of Newfoundland Vivarium) 

weighing 240-300 g were used. Experimental procedures were conducted within the light 

phase of the animals' cycle, and in accordance with the Canadian Council of Animal Care 

guidelines following a protocol approved by the Institutional Animal Care Committee. 

Surgical preparation followed the same procedure as Experiment 1. Rats were 

anaesthetized with 15% urethane (1 0 ml/kg, i.p.), had their heads shaven, and were placed 

in a stereotaxic instrument in the skull-flat position. Local anaesthetic (0.25 ml marcaine) 

was used on the scalp before making a midline incision, the scalp was retracted to expose 

the skull, and the plane between bregma and lambda leveled to horizontal. Holes were 

drilled for a glass recording micropipette (3.5 mm posterior to bregma and 2.0 mm lateral, 

- 2.5 mm ventral from brain surface), PP bipolar stimulating electrode (7.2 mm posterior, 

and 4.1 mm lateral, - 3.0 mm ventral), LOT bipolar stimulating electrode (5.0 mm 

anterior, and 1.5-1.6 mm lateral, - 5.8-6.0 mm ventral from brain surface), and LC 

cannula ( 12.5 mm posterior to bregma, 1.0 mm lateral, - 4.5mm ventral). The LC cannula 

made of 22-gauge stainless steel (Plastics One) was angled 20° from the vertical to bypass 

the sagittal sinus and anchored to a jeweler's screw in the skull with dental acrylic. A 

second jeweler's screw on the anterior portion of the skull served as reference electrode. 

The recording pipette and PP stimulating electrode were lowered until DG field EPSP and 

population spike were maximized, before positioning the LOT stimulating electrode. The 
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LOT stimulating electrode was first positioned 4.5 mm ventral to the brain surface, before 

lowering in 50 ,urn increments to a depth that produced the maximal stable EPSP (5.8 to 

6.0 mm ventral from surface). Once electrodes were placed, LOT and PP were stimulated 

at I min intervals until evoked potentials appeared stable (approximately 30 to 60 min) 

before beginning recording. 

3.2.2 Procedures for recording, stimulation, and drug injection 

1-0 curves were determined using the same procedure as Experiment I. During baseline 

and test period recording, shorter PP and LOT stimulation ISis of I 0 s were used, so that 

PP and LOT stimuli alternated every 5 s. PP stimulation consisted of a single, 0.2 ms 

square wave pulse at the intensity that elicited a population spike approximately 50% of 

maximum during the 1-0 curve. Stimulation of LOT consisted of a 0.2 ms 800-1000 ,uA 

pulse, using the intensity that produced the maximal stable EPSP. Evoked potentials were 

amplified and stored by Datawave software for later analysis. 

Following the initial 1-0 curve, test period recording for all animals consisted of 

obtaining 1 hr of stable baseline, followed by a 200 nl injection of 0.5 M g lutamate 

through the LC guide cannula. The 30 s ejection paired 3 LOT stimuli and 3 PP stimuli 

with immediate drug ejection. After the injection, an additional 30 min of recording was 

obtained before determining 1-0 curves for PP and LOT evoked potentials. 

3.2.3 llistolo~ 

Histological analyses followed the procedure described in Experiment 1. Following post-
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injection I-0 curves, 200 nl of methylene blue (2%) was injected into the LC through the 

guide cannula to mark the injection site. A 0.5 rnA, 2 s lesion was made to mark the 

placement of the LOT stimulating electrode. Following lesioning, rats were decapitated 

and brains frozen in chilled methylbutane and stored at -70°C. A cryostat-microtome was 

used to take 30 ,urn sagittal sections through the region of LC. Alternate sections were 

stained with I% cresyl violet and the others left unstained. To locate electrode tracks in 

LOT, DG, and PP, 30 ,urn coronal sections were taken and glycogen phosphorylase 

staining used. 

3.2.4 Data analysis 

Three parameters of PP evoked potentials (EPSP slope, population spike amplitude, and 

latency to peak) and three parameters of LOT evoked potentials (maximum amplitude, 

EPSP slope, and latency to peak) were measured. All parameters were reduced to 1- and 

2-minute means for analysis, and normalized to 30 min pre-glut baseline mean. T-0 

curves for individual animals were normalized to the largest mean EPSP slope or 

population spike of the pre-LC activation T-0 curve of each individual. Data was analyzed 

using repeated-measures ANOVAs, and post-hoc LSD analyses were used to further 

investigate any significant differences. 
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3.3 Results 

3.3. 1 PP-evoked population spike amplitude 

The PP-evoked population spike amplitude of the group as a whole showed a non­

significant 3% increase from 2.60 m V pre-LC activation to 2.69 m V post-activation. A 

repeated-measures ANOVA was used to compare I min means for the time from 30 min 

prior to LC activation to 15 min post-activation. As a group (n = 5), PP-evoked 

population spike amplitude did not differ significantly from baseline (see Figure 3.1). 

However, among individual animals spike amplitude remained unchanged in two (3.75 

mY pre- to 4.42 mY post-activation, 18% non-significant increase; F(45 , 90) = 0.69, p 

=0.92) and decreased in the remaining three from 1.8 m V to 1.5 m V, a -17% change 

(F( 45,90) = 2.15, p = 0.001 ). Direction of change was unrelated to placement of LC 

cannula. 
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Figure 3.1 PP-evoked population spike amplitude (n = 5). 

A. PP-evoked population spike amplitude following LC activation did not differ 

significantly from baseline. A slight pop-up in spike amplitude is seen at cannula 

insertion. 1 min means, standard error bars indicated. 

B. Example PP-evoked waveforms recorded in DG from animal with 

glutamatergic activation of LC. Dashed line is waveform recorded during pre-LC 

baseline. Solid line is waveform recorded 25 min post-LC activation. 
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A second repeated-measures ANOVA compared 2 min means for the entire recording 

period (from 30 min pre-activation to 30 min post-activation), similarly finding a non­

significant positive change in two animals (see Figure 3.2) and a significant reduction in 

three animals (F(29,58) = 1.97, p = 0.01; see Figure 3.3) over the longer time period. 

Post-hoc LSD analysis showed the reduction in amplitude had returned to baseline levels 

in the latter subgroup by 20 min post-injection. 
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Figure 3.2 No change in PP-evoked population spike amplitude (n = 2). 

A non-significant increase in population spike amplitude (18% ofbaseline) 

was observed in two animals following LC activation. A slight pop-up in spike 

amp litude is seen at cannula insertion. 1 min means, standard error bars 

indicated. 
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Figure 3.3 Decrease in PP-evoked population spike amplitude (n = 3). 

A 17% decrease in population spike amplitude was observed in three animals 

compared to baseline. l min means, standard error indicated. 
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3.3.2 PP-evoked EPSP Slope 

PP-evoked EPSP slope post-LC activation did not differ significantly from baseline (see 

Figure 3.4), increasing slightly from 3.03 to 3.08 mV/ms with LC activation (a 1.7% non­

significant increase). A repeated-measures ANOVA was used to compare 1 min means for 

the time from 30 min prior to LC activation to 15 mi n post-activation (F( 45, 180) = 1.09, 

p = 0.35). A second repeated-measures ANOVA compared 2 min means from 30 min pre­

activation to 30 min post-activation (F(29, 116) = 1.15, p = 0.29). 
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Figure 3.4 No change in PP-evoked EPSP slope (n = 5). 

No significant change in PP-evoked EPSP slope was observed following LC 

activation. l min means, standard error indicated. 
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The paired-pulse ratio (30 ms lSI) of PP-evoked EPSP slope remained unchanged from 

the initial to the final 1-0 curve. At the lowest current level (100 pA) and highest levels 

(800 to 1000 pA) the ratio was less than 1; in the intermediate range (200 to 700 pA) the 

ratio exceeded l (see Figure 3.5). 
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Figure 3.5 PP-evoked EPSP slope paired-pulse ratio 

PP-evoked EPSP slope paired-pulse ratio (30ms lSI) taken 1 hr pre-

and 30 min post-LC activation (n = 5). 
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3.3.3 PP-evoked latency to peak 

No change in PP-evoked latency to peak was observed. A mean latency of 4 .19 ms was 

observed in the 30 min prior to LC activation, with a mean latency of 4.17 ms in the 30 

min post-activation, a non-significant decrease of0.4% (see Figure 3.6). 
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Figure 3.6 No change in PP-evoked latency to peak (n = 5). 

No change in PP-evoked latency to peak was observed in the 30 min 

fo llowing LC activation. I min means, standard error bars indicated 

(SE smaller than icon size). 
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3.3.4 LOT-evoked EPSP amplitude 

LOT-evoked EPSP amplitude (see Figure 3.7) increased in all animals, with the average 

amplitude of 1.6 mV increasing to 2.4 mV with LC activation (a 47% increase, ranging 

from 28% to 1 09%). A repeated-measures ANOVA was used to compare I min means for 

the time from 30 min prior to LC activation to 15 min post-activation. A second repeated­

measures ANOVA compared 2 min means from 30 min pre-activation to 30 min post­

activation. A significant time effect on amplitude was present when analyzing both I min 

means (F(45, 180) = 4.3i ,p < 0.01) and 2 min means (F(29,116) = 4.43,p < 0.01). Post­

hoc LSD analyses showed all points in the 30 min post-LC activation to differ 

significantly from all points within the 30 min baseline. 
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Figure 3.7 Increase in LOT-evoked EPSP amplitude (n = 5). 

A. A pop-up in LOT-evoked EPSP amplitude was observed fol lowing cannula 

insertion, and a significant increase of 47% above baseline fol lowed LC 

activation. I min means, standard error indicated. B. Example LOT-evoked 

waveforms from animal with glutamatergic activation ofLC. Dashed line is 

LOT-evoked potential recorded during baseline. Solid line is LOT-evoked 

potential recorded 30 min post-LC activation. Amplitude measured from 

baseline at stimulus artifact.. 
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3.3.5 LOT-evoked EPSP slope 

LOT-evoked EPSP slope increased in all animals from 0.31 mV/ms to 0.48 mV/ms, a 

56% increase (ranging from 20 to 132%). A repeated-measures ANOVA was used to 

compare I min means for the time from 30 min prior to LC activation to 15 min post­

activation. A second repeated-measures ANOVA compared 2 min means from 30 min pre­

activation to 30 min post-activation. Similar to EPSP amplitude, a significant time effect 

on LOT-evoked EPSP slope was present when analyzing both I min means (F( 45, 180) = 

4.19, p < 0.0 I) and 2 min means (F(29, 116) = 4.25, p < 0.0 I), and post-hoc LSD analyses 

showed all points in the 30 min post-LC activation to differ significantly from all points 

within the 30 min baseline (see Figure 3.8). 
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Figure 3.8 Increase in LOT-evoked EPSP slope (n = 5). 

A significant 56% increase in LOT -evoked EPSP slope was observed in all 

animals following LC activation. A pop-up in slope was observed at cannula 

insertion. 1 min means, standard error indicated. 
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3.3.6 LOT-evoked EPSP latency to peak 

LOT-evoked latency to peak also increased slightly in all animals (see Figure 3.9), from 

17.6 ms to 18.4 ms (a 4% increase, ranging from 1% to 9%). A repeated-measures 

ANOVA was used to compare I min means for the time from 30 min prior to LC 

activation to 15 min post-activation. A second repeated-measures ANOVA compared 2 

min means from 30 min pre-activation to 30 min post-activation. A significant time effect 

on latency was present when analyzing both I min means (F( 45, 180) = 1.68, p < 0.0 I) 

and 2 min means (F(29,116) = 2.20, p < 0.01). Post-hoc LSD analyses indicated that 

significant differences from baseline were present between 5 and 25 minutes post-LC 

activation. 
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Figure 3.9 LOT -evoked EPSP latency to peak (n = 5). 

A small but significant increase in LOT-evoked EPSP latency was observed 

following LC activation. 1 min means, standard error indicated. 
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3.3. 7 Input-output analyses 

PP-evoked EPSP slope and population spike amplitude did not differ significantly 

between pre and post J-0 curves (see Figures 3.10 and 3.11). LOT-evoked EPSP 

amplitude also remained unchanged between initial and final 1-0 curves (see Figure 

3.12). The difference between pre and post LOT-evoked EPSP amplitude 1-0 curves was 

not significant (F(I,7) = 1.49,p = 0.26). 

The ratio of PP-evoked EPSP slope to population spike remained unchanged between 

initial and final 1-0 curves (see Figure 3.13). 
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Figure 3.10 PP-evoked EPSP slope input-output analysis 

1-0 curves pre- and post-LC activation (n = 5). The mean PP-evoked 

EPSP slope for each current intensity was converted to 

a percentage of the largest mean EPSP slope obtained during the 

pre-activation 1-0 curve. Data represent the group mean with SEM. 
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Figure 3.11 PP-evoked population spike input-output analysis 

I-0 curves pre- and post-LC activation (n = 5). The mean PP-evoked 

population spike amplitude for each current intensity was converted to 

a percentage ofthe largest mean spike amplitude obtained during the 

pre-activation 1-0 curve. Data represent the group mean with SEM. 
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Figure 3.12 LOT-evoked EPSP amplitude input-output analysis 

1-0 curves pre- and post-LC activation (n = 5). Mean LOT-evoked 

EPSP amplitude, group means with SEM. 
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Figure 3.13 PP-evoked EPSP slope/population spike ratio 

E-S coupling ratio for glutamate animals (n = 5), PRE responses 

recorded 1 hr pre- and POST responses recorded 30 min post-LC 

activation. 
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3.3.8 Histology and electrode placements 

Animals were included in the study on the basis of proximity of dye injection to LC; 

based on previous experience cannula tips located within 300 ~m of the Nissl-identified 

nucleus of the locus coeruleus were considered successful. Dye proximity to LC was 

measured in 30 ,urn sagittal tissue sections and compared to adjacent cresyl violet-stained 

sections. Cannula placements were within the LC in three animals and approximately 200 

,urn posterior in the remaining two (see Figure 3.14). One of the animals with posterior 

cannula placement was in the negative-change population spike group, while the other 

was in the no-change group. 

LOT potentials were similar, although variable, in all animals, and lesions were present 

within LOT in all subjects. Electrophysiological data (positive-going waveform with 

negative-going population spike) obtained during 1-0 curves indicated recording 

micropipette positions within the granule cell layer of the DG in all animals. Population 

spike latencies were indicative of PP stimulating electrode placements within the medial 

perforant path. 
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X~ LC 

X = Glutamate ejection site (n = 5) 

Figure 3.14 Experiment 2 LC cannula ejection sites 

Locations of dye marking cannula ejection sites near LC, 

determined with 30 micron sagittal sections through 

brainstem/cerebellum. 
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3.4 Discussion 

Experiment 1 demonstrated a strong, long-term (3 hr) potentiation of the medial PP 

evoked potential, with no accompanying evidence of depression of the lateral (LOT) 

evoked DO potential. To investigate whether the lack of pairing between NE release and 

LOT stimulation may have been responsible for the failure to observe depression of the 

LOT evoked potential , more frequent LOT stimulation (I 0 s lSI) was used in Experiment 

2. 

In contrast to Experiment 1, Experiment 2 demonstrated an immediate and long-lasting 

(30 min) potentiation of the LOT evoked DO potential, while no potentiation of the 

medial PP evoked potential was observed. 

In the group (n = 5) as a whole, the amplitude of the PP-evoked population spike did not 

differ significantly from baseline in the 30 min following activation of LC. Histology 

indicated cannula placements w ithin or near LC in Experiment 2 similar to those seen in 

Experiment I; however, the expected increase in PP-evoked population spike amplitude 

following LC activation did not occur. The group results were composed of two distinct 

groups of animals, those exhibiting a decline in spike amplitude following LC activation, 

and those demonstrating a weakly increased or unchanged amplitude. 

In three animals, a significant decline in PP-evoked population spike was observed, while 

the remaining two animals did not differ significantly from baseline. In the 3 anima ls 

demonstrating a significant decline in spike amplitude, amplitude had returned to near-

109 



LC-NE modulation of MPP and LPP in vivo 

baseline levels approximately 20 min after LC activation. In the remaining two animals, 

while the increase in spike amplitude was non-significant, it similarly returned to baseline 

levels after approximately 20 min. The short duration of change from baseline indicates 

an effect that, while following a much longer time course than the immediate changes 

observed by Babstock and Harley ( 1993), is shorter in duration than that observed in vitro 

(Dahl & Sarvey, 1989; Pelletier et al., 1994), in addition to being opposite in direction 

from expected. 

Consistent with the failure of potentiation for the PP-evoked potential, the 1-0 curves for 

PP-evoked population spike amplitude did not differ significantly from initial to final data 

collection. Similar to Experiment I, no change in PP-evoked EPSP slope was observed 

over the duration of recording, and the paired-pulse ratio (30 ms TSI) remained unchanged 

from the initial to the final 1-0 curves. 

The LOT-evoked fEPSP amplitude and slope increased in all animals, in contrast with the 

expected depression predicted from prior in vivo and in vitro studies. This increase began 

in the minute immediately following glutamate activation of LC and remained potentiated 

for the duration of the recording period (30 min post LC activation). This effect contrasts 

with Babstock and Harley's (1993) findings and prior studies, which demonstrated an 

immediate depression of the LOT-evoked EPSP in vivo following PGi stimulation of LC, 

and a lasting depression in vitro following NE application (Dahl & Sarvey, 1989). While 

the I-0 curves of LOT-evoked EPSP amplitude taken pre- and post-recording were not 

sign ificantly different, this may have been due to the high variability of the LOT-evoked 
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potential and the small number of waveforms (3) collected at each current intensity. 

The stimulation-to-peak latency of the LOT-evoked potential also increased slightly in all 

animals, with latency changes in the same range as previously observed by Babstock and 

Harley ( 1993). This increase in latency could be accounted for by the accompanying 

increase in size of the LOT-evoked EPSP. 

While these results do not support sensory selectivity as suggested by Dahl, they are 

consistent with studies of tetanic LTP of the medial and lateral PP demonstrating 

competition for control of the hippocampal network (Doyere, Srebro & Laroche, 1997). 

The potentiation of the LOT-evoked EPSP amplitude and the failure to observe the 

expected increase in PP-evoked population spike amplitude could be due to 

heterosynaptic interactions between the two inputs, with the potentiation of one set of 

synapses depotentiating neighboring inputs. 

High-frequency stimulation of either the medial or lateral PP can produce LTP, but the 

induction of LTP in one pathway leads to a concurrent long-lasting depression of 

responses evoked by stimulation of the other pathway (Doyere, Srebro & Laroche, 1997). 

This heterosynaptic depression lasts at least 3 hours following tetanization of the other 

pathway, and is smaller than the magnitude of LTP. However, heterosynaptic LTD is not 

observed if the test pathway has been previously tetanized (Abraham & Goddard, 1983). 

A study of tetanic-induced heterosynaptic LTD and depotentiation of LTP in the awake rat 
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noted that heterosynaptic LTD and depotentiation were not symmetric on the two PP 

inputs: tetanic stimulation of the medial PP had only a small effect on the lateral PP, while 

induction of LTP on the lateral PP could induce a long-lasting and reversible 

heterosynaptic LTD at medial PP synapses, with the magnitude of medial PP 

depotentiation linearly correlated with the magnitude of lateral PP LTP (Doyere, Srebro & 

Laroche, 1997). 

If a similar effect were present in NE-induced LTP in the DG, the failure to observe 

potentiation of the PP-evoked population spike in this second experiment could be 

accounted for by the strong facilitation of the LOT-evoked potential. 

Additionally, in comparison to Experiment I (0.98 mean paired-pulse ratio in glutamate 

group at baseline levels of stimulation, 400-800 flA), the greater PP-evoked EPSP slope 

paired-pulse ratio (30 ms lSI) seen in Experiment 2 (1.05 at baseline) might indicate a 

greater proportion of lateral fibers stimulated by the PP electrode. If the activation of 

medial fibers was weaker in Experiment 2, the difference might contribute to the lateral 

input's dominance over medial input in the second experiment. The lateral PP would have 

been activated with both the PP and LOT stimulations. A more selective medial 

composition of fibers stimulated in the first experiment together with weaker pairing with 

NE could have led to the domination of medial input. 

The amplitude of the LOT-evoked potential was highly variable throughout recording in 

both experiments. In Experiment 1, facilitation of the PP-evoked DG potential was 
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observed while the LOT-evoked potential remained unchanged. In Experiment 2, 

facilitation of the LOT-evoked potential was observed while the PP-evoked potentials 

diminished or remained unchanged. 

This disparity and the negative correlation between amplitude of the LOT-evoked and PP­

evoked potentials found in the first experiment seem to support a competitive relationship 

between the lateral and medial inputs to the DG. This may indicate that the LC enhances 

the input it is paired with most strongly, consistent with the proposition that LC-NE 

screens input by enhancing responses to significant stimuli while reducing responses to 

non-significant stimuli, acting to increase the signal-to-noise ratio in hippocampus (Segal 

& Bloom, 1976), and indicating also a possible facilitation of competitive interactions in 

the central nervous system. 
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Chapter 4: Discussion 

4.1 Overview of new outcomes 

In Experiment I, in vivo glutamatergic activation of LC combined with the novel use of 

alternating medial and lateral PP-mediated evoked potentials in the same animals (see 

Figure 4.1 for recording and stimulation configuration) initiated an immediate LTP of the 

medial PP-evoked population spike in the DG without accompanying depression of the 

lateral PP-evoked potential. The failure to observe depression of the lateral-evoked 

potential contrasts with both short-term in vivo (Babstock & Harley, 1993) and long-term 

in vitro (Dahl & Sarvey, 1989; Pelletier et al., 1994) findings which had demonstrated 

potentiation of the medial PP-evoked population spike accompanied by depression of the 

lateral PP-evoked potential. Here, as reported in other in vivo studies, the PP-evoked 

EPSP slope remained unchanged in the 3 hr post-LC activation, despite the increase in 

PP-evoked population spike amplitude. 

However, Experiment 2, for the first time in an in vivo LC glutamate activation 

experiment, failed to observe potentiation of the medial PP-evoked potential, either of the 

EPSP or spike. Instead, a strong and immediate potentiation of the lateral PP-evoked 

potential (LOT-evoked EPSP in the DG) was seen. While the duration of post-LC 

activation recording was only 30 min, the robust increase in amplitude of the lateral PP­

mediated EPSP indicated a possible long-term effect. 
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Figure 4.1 Diagram of stimulation and recording configuration 

The LOT stimulating e lectrode is placed in the LOT. The PP 

stimulating electrode is placed in the medial PP (determined through 

electrophysiological properties of waveforms in I-0 curves). The 

glass recording micropipette is placed in the granule cell layer of the 

DG (determined through properties of waveforms in I-0 curves and 

histological analyses). 
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These results are novel in that previous in vitro and in vivo work has found both long- and 

short-term depression of the lateral PP, accompanied by potentiation of the medial PP 

input (either both the EPSP and population spike in vitro or population spike only in 

vivo). All studies of glutamate and electrical activation of LC or PGi have found medial 

PP spike potentiation. This is the first reported failure to observe potentiation of the 

medial population spike, and the first report of putative long-term potentiation of the 

lateral PP evoked potential via NE modulation. 

4.2 Theoretical implications 

4.2.1 Spatial v. olfactory selectivity 

A role for LC activity in the selection of spatial over olfactory input to the hippocampus 

had been hypothesized. Previous in vitro (Dahl & Sarvey, 1989; Pelletier et al., 1994) and 

in vivo (Babstock & Harley, 1991) work supported this hypothesis, demonstrating both 

long- and short-term enhancement of the medial (spatial) PP potential with concurrent 

depression of the lateral (olfactory) potential. 

The first demonstration of in vitro pathway-selective modifications of synaptic responses 

in the DG came from Dahl and Sarvey ( 1989), who induced potentiation of medial PP­

evoked EPSPs and population spikes, and depression of lateral PP-evoked potentials with 

a low concentration of NE. Dahl and Sarvey's differential effects, produced by extensive 

perfusion of NE in the hippocampal slice (30 min), were long-lasting (> 45 min), 

resembling a memory-like change in synaptic efficacy. Pelletier et al. (1994) later 

demonstrated that in vitro application of isoproterenol, a ,8-noradrenergic receptor agonist, 
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also induces long-lasting potentiation of the medial PP and long-lasting depression of the 

lateral PP, confirming the selectivity of medial and lateral PP responses. Similar to Dahl 

and Sarvey's ( 1989) and Pelletier eta!. 's ( 1994) in vitro selectivity effects, in vivo a short­

term(< 10 s), attention-like selective effect ofNE upon the medial and lateral PP inputs 

to DG was observed (Babstock & Harley, 1993). The depression of LOT-evoked 

potentials was seen 40 ms after PGi stimulation, the same latency at which potentiation of 

the PP-evoked potential was seen in DG. 

Taken together, these results had suggested that NE does not just enhance the incoming 

signal to the hippocampus with respect to noise, but instead selective ly enhanced medial 

(spatial) input and depressed lateral (olfactory) input. In Experiment I, the long-lasting 

potentiation of medial PP input accompanied by an unchanged LOT-evoked potential 

supported this hypothesis, demonstrating a long-term in vivo enhancement of medial 

(spatial) input over lateral (olfactory). 

However, contrary to Experiment I, in which LC-NE selectively enhanced putative 

spatial input over lateral o lfactory input, in Experiment 2 the lateral (olfactory) input to 

DG was potentiated while the medial (spatial) input was suppressed. Experiment 2 

provides the first observation of selectivity between the medial and lateral PP in which 

the lateral PP responses are potentiated and not the medial. This suggests that a modality 

biased selection of input by NE does occur consistently and disconfirms the spatial-over­

olfactory selectivity hypothesis. 
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4.2.2 Network resetting 

Network resetting is another hypothesis about the overall functional role of NE release. 

As discussed above, the present experiments were undertaken to test the hypothesis that 

NE promotes processing of spatial (medial) rather than olfactory (lateral) input by the 

hippocampal network, which is one form that network resetting might take. A general 

network reset or functional switch role for monoamine neuromodulators such as NE was 

first proposed based on invertebrate data (Nusbaum et al., 2001) and has recently been 

highlighted as the main role ofLC-NE release in vertebrates (Sara, 2009). 

In 2005 Bouret and Sara proposed network reset as an overarching theory to account for 

the effects of LC-NE on attention, sensory, and memory retrieval processes. By 

companson with the roles of neuromodulators in crustaceans, they suggested that 

neuromodulator release in response to environmental cues would interrupt existing neural 

network activity and encourage reorganization of networks to facilitate behavioral 

adaptation. Because LC cells fire to novel, salient stimuli, it is suggested that this 

"interrupt" signal is linked to attentional processes (Sara, 2009). 

Nusbaum et al. (200 I) reviewed invertebrate network switching studies and concluded 

that the neuromodulatory actions of amines and peptides demonstrate that networks are 

not hardwired, but instead are reconfigured by the modulatory environment, and that such 

modulatory substances released under appropriate behavioral conditions enable the 

disparate functions of neurons configured in different patterns to mediate multiple 

behaviors. 
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In an earlier mammalian study, Wiener, Paul, and Eichenbaum (1989) had recorded 

hippocampal unit activity while rats performed two different tasks relying on 

hippocampal function: a spatial navigation task and an odor-discrimination task. They 

found that the same hippocampal complex spike cells with place correlates in the spatial 

navigation task had highly selective behavioral correlates including odor information in 

the odor-discrimination task, a finding which supports the hypothesis that the 

hippocampus "remodels" itself to represent the salient task (Wiener, Paul, & Eichenbaum, 

1989). The present data are consistent with this overall framework of network resetting, 

but the reset rule is not simply modality driven and instead, as suggested by Sara, is likely 

to be related to adaptive behavioral requirements as originally suggested in the signal-to­

noise hypothesis. 

4.2.3 Signal-to-noise ratio 

As discussed in the introduction, in 1970 Kety proposed that NE and the aroused state 

induced by novel stimuli facilitate novel or significant stimuli while suppressing non­

significant stimuli, and that this state initiates the persistent facilitation of active synapses. 

Segal and Bloom ( 1976) then proposed that LC-NE acted to screen stimuli by enhancing 

responses to significant stimuli while reducing excitatory responses to non-significant 

stimuli, in effect increasing the signal-to-noise ratio in the hippocampus. 

Consistent with evidence of NE modulation of hippocampal input through enhancement 

of the signal or suppression of noise, the medial PP input to DG has been enhanced by 
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application of NE, an effect which can be short-term (Babstock & Harley, 1993), 

supporting an attention-like change in processing, or, with sufficiently strong NE input, 

can be long-term (Neuman & Harley, 1983), supporting a memory-l ike effect. 

These increases in DG granule cell excitability in response to PP input with the 

application of NE could represent enhanced responses to novelty, as the LC responds to 

sensory stimuli, especially novelty in the environment (Aston-Jones et al., 1995). 

However, a number of past studies of this effect did not distinguish between medial and 

lateral PP stimulation, instead using coordinates that would evoke a mixed or primarily 

medial response (DG population spike latency to peak is a distinguishing factor between 

medial and lateral). 

The selective enhancement of medial PP input and depression of lateral PP input to the 

DG seen in prior studies (e.g. Dahl & Sarvey, 1989; Babstock & Harley, 1993) seemed to 

support the idea of LC-NE functioning to enhance specific signals (with medial (spatial) 

inputs constituting the signal and lateral (olfactory) input constituting the noise). 

However, the overall results of the present thesis are consistent with enhancement of a 

"significant" signal as originally proposed, with significance being determined by the 

strength of pairing with LC input. Thus, theoretically, the present results are consistent 

with both the modern network resetting hypothesis and the earlier signal-to-noise 

enhancement hypothesis. Both the degree of LC pairing and winner-take-all competitive 

effects, to be considered in the next section, likely interact to determine the "signal" that 

is enhanced. 
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4.3 Other observations 

4.3.1 EPSP slope potentiation 

With the clear lateral EPSP potentiation of Experiment 2, it is surprising that no PP slope 

potentiation was detected. Ratio data indicated that the PP slope was likely a mixture of 

medial and lateral fibers, but the effect of LOT responsive lateral fibers must have been 

small enough to lose the signal change in the noise. For Experiment 1, since the LOT 

EPSP remained unchanged one might have predicted an EPSP slope increase to be 

observed if the medial PP EPSP had increased. Instead, it appeared that only the medial 

PP evoked population spike increased. Further studies are needed which isolate the 

medial and lateral PP fibers for pairing with LC-NE to clarify slope effects. 

The observation of enhanced medial PP-evoked population spike without a corresponding 

EPSP slope increase in Experiment I is similar to that in previous in vivo studies, which 

also failed to observe consistent potentiation of PP-evoked EPSP slope despite long­

lasting potentiation of population spike amplitude. This has been interpreted as an 

increase in cell excitability without an accompanying increase in synaptic drive (Harley & 

Neuman, 1983). The failure to see a decrease in latency with the increase in population 

spike amplitude argues against an underlying change in the driving EPSP slope for the 

medial spike. In the initial studies of tetanic LTP, EPSP potentiation was observed, but 

was also often not sufficient to account for the change in population spike (Bliss & L01no, 

1973). This argues that mechanisms which promote long-term increases in spiking, 

independent of slope increases, occur in both NE-LTP and tetanus-induced LTP. 
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It has been suggested earlier that the differential effects of lateral and medial PP 

stimulation could result in medial PP-evoked EPSP slope potentiation being masked by 

lateral PP-evoked depression of EPSP slope. However, in Experiment I no depression of 

the lateral evoked potential was observed, yet the mixed medial/lateral EPSP was not 

increased. Another in vivo study (Walling & Harley, 2004), while also demonstrating 

similar spike amplitude potentiation without an increase in EPSP slope in the 3 hr 

following glutamatergic activation of LC, later found both PP slope and spike potentiation 

24 hr post-LC activation, with the increase in slope accounting for the increase in spike. If 

competition between lateral and medial PP was responsible for the lack of EPSP slope 

potentiation one might expect this pattern to be consistent over time, whereas Walling and 

Harley observed it only in the 3 hr directly following LC activation, and not 24 hr later. 

4.3.2 ACSF controls 

In Experiment 1, a control group of animals received an ACSF ejection in the LC in place 

of glutamate. ACSF ejections in the LC have not typically been used in past studies 

utilizing LC activation due to the possibility of mechanical stimulation of LC alone 

leading to increased NE release. Harley and Sara (1992), while investigating the cellular 

changes in the LC produced by glutamate activation, noted that in addition to DG 

population spike amplitude increasing with glutamate ejection in the LC, movement of 

the LC recording electrode in the LC region alone was sufficient to initiate spike 

amplitude potentiation in some cases. However, while mechanical stimulation of the LC 

through brief insertion of a cannula has been shown to cause widespread and intense 
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activation of c-fos throughout the ipsilateral forebrain in most regions known to receive 

noradrenergic projections from the LC, no response was shown in the hippocampus, 

which also receives LC afferents (Stone, Zhang, & Carr, 1995). 

In Experiment I no changes in evoked potential parameters following ACSF ejection in 

the LC were observed. While the amplitude of PP-evoked population spike increased over 

time in the ACSF control group, the changes seemed time-dependent and unrelated to 

ACSF ejection, with amplitude rising consistently over the 7 hr recording period. The 

differences in parameters recorded in initial and final 1-0 curves would be consistent with 

the overall rising baseline, and suggest an increase in excitability over time. This would 

account for the magnitude of change observed in the ACSF control group, but not for the 

entirety of larger changes seen in the experimental group receiving glutamatergic 

activation of LC. 

The failure to observe changes in parameters consistent with mechanical stimulation of 

the LC in ACSF control group animals would suggest that this protocol can successfully 

be used as a control condition in comparison to conditions utilizing chemical activation of 

LC. 

4.3.3 Competition in the present experiments 

Several aspects of the current results seem to indicate a competitive interaction between 

the medial and lateral PP inputs to the DG. In Experiment I, the medial PP evoked 

potential was enhanced while the lateral potential remained unchanged, and in 
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Experiment 2, the lateral potential was enhanced while the medial PP evoked potential 

remained unchanged. Additionally, data from individual ACSF control animals in 

Experiment I demonstrated a spontaneous selectivity of responses over the duration of 

the 7 hr recording period, with the amplitude of PP- and LOT-evoked potentials varying 

in opposition, again suggesting competitive interactions. 

The methodology in Experiments 1 and 2 is novel in that the medial and lateral PP were 

stimulated alternately in the same animals, in combination with glutamatergic activation 

of LC, setting the stage for competitive interactions during NE release. While the paired­

pulse ratio in Experiment l indicated a predominantly medial mix of fibers was 

stimulated by the PP electrode, in Experiment 2, the proportion of medial and lateral 

fibers being stimulated by the PP electrode was less clearly defined by the paired-pulse 

ratio. 

The disparity in effects in Experiments 1 and 2 and the negative correlation between 

lateral and medial PP evoked potentials in the control animals of Experiment I support a 

competitive relationship between the medial and lateral DG inputs, one in which LC-NE 

enhances the input it is paired with most strongly, again consistent with the proposition 

that LC-NE screens input by enhancing responses to significant stimuli (signal) while 

reducing responses to non-significant stimuli (noise) in the hippocampus (Segal & 

Bloom, 1976). 
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4.3.4 Heterosynaptic tetanic LTP and LTD of PP 

The present results are also consistent with studies of heterosynaptic tetanic LTP and LTD 

of the medial and lateral PP demonstrating competition for control of the hippocampal 

network (Doyere, Srebro, & Laroche, 1997). While tetanic LTP can be produced through 

high-frequency stimulation of either the medial or the lateral PP, the induction of LTP in 

one pathway leads to a concurrent long-lasting depression of responses evoked by 

stimulation of the other pathway (Dahl & Sarvey, 1989). Both LTP and LTD have forms 

that are dependent upon NMDA receptor activation, and perfusion of NMDA on the 

hippocampal slice is sufficient to induce LTP of the medial PP and LTD of the lateral PP 

evoked potentials of the DG (Rush, Rowan, & Anwyl, 200 I). 

In 1983 Abraham and Goddard demonstrated that tetanic stimulation of either the medial 

or lateral PP (with electrode positions identified by the characteristic shape and latency of 

evoked potentials recorded in the hilus) reliably depressed synaptic transmission in the 

other pathway for at least 3 hr in anaesthetized rats. This LTD was present regardless of 

whether LTP was elicited in the tetanized pathway, and in all cases the magnitude of LTD 

was less than the magnitude of LTP. LTD was not observed when the test pathway had 

previously been tetanized. Christie and Abraham ( 1992), with the same method of medial­

lateral electrode positioning, used trains of high-frequency stimulation to induce LTP of 

the medial PP input to DG in anaesthetized rats, and found LTD of the lateral PP when 

test pulses were applied. Abraham, Bliss, and Goddard ( 1985) also noted that tetanization 

of the lateral PP induced LTP of the lateral PP and LTD of the un-tetanized medial PP, 

with medial and lateral electrode placements determined by analyzing the EPSP rise 
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times. 

Doyere, Srebro, and Laroche ( 1997) investigated the characteristics of heterosynaptic 

LTD and depotentiation of LTP in the medial and lateral PP of the awake rat, finding that 

while tetanic stimulation of the medial PP had only a small effect on lateral PP responses, 

induction of LTP of the lateral PP could induce a long-lasting and reversible 

heterosynaptic LTD at inactive medial PP synapses. This medial PP LTD was linearly 

correlated with the magnitude of LTP induced in lateral PP synapses, and these effects 

were long-term, remaining present over multiple days of recording (Doyere, Srebro & 

Laroche, 1997). 

If NE-induced LTP of the DG evoked potential functioned in a similar manner, the 

unexpected failure to observe potentiation of the PP-evoked population spike in 

Experiment 2 could be accounted for by the strong facilitation of the LOT-evoked 

potential. Conversely, in Experiment I, fac ilitation of the PP-evoked DG potential was 

observed while the LOT-evoked potential remained unchanged. Since the only change 

between Experiments I and 2 was frequency of stimulation and increased pairing with LC 

activation, and because an increased level of NE in the DG is required for NE-LTP to 

occur, it is reasonable to suggest that the strength of the medial PP evoked potential 

(population spike) dominated the potentiation mechanism and outcompeted the LOT 

input to DG in Experiment I. In Experiment 2, more frequent pai ring earlier in the NE 

release process led to the LOT input dominating the network and outcompeting the 

medial input. This is consistent with high-frequency LTP studies, in which lateral LTP has 
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a stronger effect on medial synapses than the reverse. 

This disparity could support a competitive relationship between the lateral and medial 

inputs to DO, in which the LC enhances the input it is paired w ith most strongly. While 

the inputs in Experiment l were weakly paired with LC-NE, paired-pulse data suggested 

the fibers stimulated by the "PP" electrode were more medial in origin. In Experiment 2, 

however, the paired-pulse data was less clear, and the increased pairing may have favored 

the lateral synapses in the fibers stimulated by the "PP" e lectrode as well as those 

stimulated by the LOT electrode. 

4.3.5 Pairing of LC-NE and PP stimulation 

The contrasting results of Experiments l and 2 are suggested to be due to the different 

pairing of LC-NE and LOT stimulation used in each. While the method of LC stimulation 

(200 nl 0.5M glutamate ejection through cannula over 30 s) remained the same for both 

experiments, the rate of PP and LOT stimulation was increased in Experiment 2 ( I 0 s 

lSI), from the 60s lSI used in Experiment I. 

A critical pairing of PP stimulation with the transient minutes-long increase in 

hippocampal NE levels may be necessary to produce long-term effects, and the longer 

ISis in Experiment I may have led to the failure to observe depression of the lateral PP­

evoked DG potential. 

Palamarchouk et al. (2000) used in vivo voltammetry to demonstrate that g lutamate 
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infusion (100 nl ofO.lM glutamate infused over 60s) into the LC increases the NE-like 

oxidation current in the rat hippocampus with a latency of about 30 s and a peak within 

90s of glutamate application. Similarly, Harley and Sara ( 1992) noted that with g lutamate 

activation of the LC (1 00 nl 0.5M glutamate) and PP stimulation Ill 0 s, DG population 

spike amplitude is increased, with it taking an average of 34 s following glutamate 

ejection for spikes to exceed the maximum control spike, and nearly all increases 

occurring within the first minute followi ng glutamate ejection. Together, these results 

suggest a latency of - 30 s for effective increase in NE release in the hippocampus. 

Microdialysis data indicates the presence of increased hippocampal NE over minutes 

following LC activation (orexin stimulation of LC raised hippocampal NE levels in the 

first 20 min sample, but not following samples; Walling et at., 2004), and Reid and 

Harley's (2009) data showed a failure to obtain medial PP LTP if LC is not activated 

during PP stimulation, with long-lasting potentiation of both EPSP slope and population 

spike amplitude occurring only when PP stimulation and LC activation co-occurred. 

Harley, Lalies, and Nutt (1996) demonstrated that the concentration ofNE in the DG was 

a determining factor in whether or not long-term spike potentiation would occur, with 

higher levels associated with NE-LTP and lower levels associated with only short 

duration potentiation. Simi larly, Harley and Sara ( 1992) had earlier demonstrated that the 

number of LC cells activated is a factor in the initiation of hippocampal potentiation, with 

smaller volumes of glutamate (< 50 nl) producing increases in LC cell activity but not 

changes in PP-evoked population spike amplitude. 
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The pairing effect, arguing for a necessary increase in NE level paired with input (Reid & 

Harley, 2009), is consistent with the present interpretation that NE-induced memory 

effects occur for those inputs most strongly and consistently related to elevated 

hippocampal NE levels. Thus the lesser pairing in Experiment 1 may have been 

responsible for the failure to observe depression of the lateral PP-evoked DG potential, 

while the greater pairing in Experiment 2 actually produced potentiation of the lateral 

input, which may be sufficiently dominant to suppress medial input as seen in 

asymmetrical tetanus-induced LTP effects. 

4.4 Conclusions 

Altogether, the present results seem consistent with an interpretation in which the 

dominant input signal resets the network, with the dominant signal being the input most 

strongly and consistently related to elevated hippocampal NE levels. This contrasts with 

the prior interpretation in which LC-NE selectively enhances the medial (spatial) input 

while depressing the lateral (olfactory) input, but is congruent with the hypothesis that NE 

enhances the incoming signal to the hippocampus with respect to noise. 

Experiment 2 provided the first observation of selectivity between the media l and lateral 

PP inputs to DG in which the lateral responses were enhanced, and not the medial. Again, 

this supports a competitive network reset model of medial and lateral PP interactions in 

which the signal paired most strongly with elevated LC-NE levels controls the network, 

similar to the interactions seen with high-frequency LTP of the medial and lateral PP. This 
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hypothesis is additionally supported by the negative correlation between medial and 

lateral PP evoked potentials seen spontaneously in the ACSF control animals of 

Experiment 1, where control of the network spontaneously cycled between medial and 

lateral dominance. 

Because the only change between the two experiments was the frequency of stimulation 

and increase in pairing with LC activation, and increased level of NE in the DG is a 

requirement for the induction of NE-LTP, it is reasonable to suggest that the strength of 

the medial input dominated the potentiation mechanism and outcompeted the lateral input 

to DG in the first experiment. In the second experiment, the more frequent pairing of PP 

and LOT stimulation during LC-NE release may have led to the lateral input dominating 

the network and outcompeting the medial input. This would be consistent with studies of 

tetanic LTP, in which induction of LTP on the lateral PP has a stronger effect on medial 

synapses than the reverse. 

Thus LC-NE does appear to promote resetting of the network, but as a function of signal 

selection based on the strength and pairing of inputs. Further experimentation will be 

required to investigate the proposed competitive selection mechanism, and its 

engagement by NE and possibly other neuromodulators. 
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