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Abstract

The positions and widths of the singlet S-wave doubly excited state resonances 'S
of Li' at cnergy below the N=2 tl shold of Li*" are determined, employing a numerical
procedure developed carlier for clectron collisions with hydrogenlike ions within the
Harris-Nesbet variational method.  Altogether, twenty of these singlet S-wave doubly
excited states arc located below is threshold with their widths determined. Some of
these doubly excited states are d  :rmined for the first time by ¢ present calculation.
Our results arc compared, with discussion, to those obtained by various oth  rescarch
groups using ditferent numerical methods of approach for their calculations. Graphical

presentation of all ¢ twenty dc 1y excited states 1s given.
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Chapter 1

Introduction

1.1 Introduction

Beside the singly excited states which have been well understood nowadays, a multi-
clectron atom when receiving appropriate energy from an external source can ¢ doubly
cxci  to higher cnergy states wi : two electrons of the atom are simultancously
excited. Throughout the years, doubly-excited states of two-electron (neutral or 1onic)
atoms have been studied intensively by various experimental as well as theoretical
research groups. In particular, the study of doubly excited states of Li" has been a subject
of intercst for many rescarchers. On the experimental side, several experiments have
been performed to detect these doubly-excited resonances of Li’. Onc may cite for
cxample an earlier experiment by Bruch et al/ (1975) [1], using the so-called beam-foil
interaction mechanism. This group succeeded in determining the positions of the lowest
13p® doubly-excited states in Li*. The ene / spectrum of the emitted electrons was

recorded and analyzed while the foil was moved along the beam axis. Due to the time



delay in the autoionization process, resonances were detected. Ziem et al (1975) [2] also
determined the positions of the lowest 'S and '*P resonances in Li" by colliding H" and
He" with Li'. Carroll and Kennedy (1977) [3] performed a photo-absorption cxperiment
for Li" and were able to determine the three lowest members of the doubly-cxcited-state
resonances 'P°. By looking at the ejected-electron spectra of h' ‘ily-excited
autoionization levels of Li" in their single collisions with neutral atoms and 10lecules
such as He and CH4 and with the 1idance of the values obtained by theorctical
calculations, Rodbro et al [4] were able to determine the positions of these doul r-excited

states of Li'

On the theoretical side, various research groups or indivi 1als have carried out
calculations, using different numerical methods, to determine these scries of doubly-
excited-state resonances of Li' in an attempt to verify their existence in this two-electron
ionic atom as was predicted by theory (Cooper ¢t a/, 1963 [5]). One may cite for example
the work by Bhatia (1977) [6] who employed the Feshbach projec n-operator :chnique
to detcrmine the positions and widths of the three lowest-lying resonances of the various
series below the N=2 cxcitation threshold of the h' * »genlike ion Li*". Ho (1981) [7]
also determined a few lowest-lyit doubly-excited resonances of Li' below the N=2
threshold, employing the complex coordinate rotation method (CCR) with the
consideration of the Hylleraas-type wave functions. His results of position and width
obtained for these resonances are in reasonable agreement with those by Bhatia, although
the widths obtainc by Hoa at to © " ‘enot’ 'y from thosc by Bhatia.

Both these researchers determined a few lowest-lying resonances of these series only.



Bruch et al (1975) [1] was the research group who performed the calculations of the
positions of higher-lying doubly-excited states, using the tn cated diagonalization
method (TDM) (1965, 1966) [8, 9]. For example, the positions of up to 11 resonances
below the N=2 threshold were obtained by this group for the series of sing  S-wave
resonances ('S°). However, the widths of only three lowest-lyi : doubly-e ited-state
resonances were calculated by Conneely and Lipsky (1978) [1(  with the TDM. The
widths obtained by them were found, in general, to differ c siderably from those
obtained by Bhatia and by Ho. More recently, Chung and Lin (1998) [11] carried out an
extensive calculation of positior and widths for the doubly-excited-state  sonances
formed below the N=2, 3t/ 10ldsin Li',1  zthe ci )lex-rotation methc  For the
singlet S-wave resonances of even parity below the N=2 threshold, they located
altogether 16 of these resonances. Comparing the positions and widths of the low-lying
S-wave resonances determined by this group to those by others, one finds that they agree
rcasonably well with those determined by Ho and also those by I atia, but their widths,
in general, disagree with those obtained by Conneely and Lipsky consider ly. The
widths of the higher-lying resonances (especially those closer to the threshold) are usually
considerably smaller than those of the lower-lying ones and should, thereby, be more
difficult to be determined with accuracy. Unfortunately, as at present, Chung and Lin, to
our knowledge, has been the only research group who determined the widths for these
higher-lying resonances in Li". It would, therefore, be interesting to try to determine these
resonances using, owever, a completely different (and reliable) numerical method for
comparison with their results and also to resolve the discrepancy existing among the

widths of the low-lying resonances calculated by these various research  oups or



individuals. It is also interesting to try to determine the doubly-excited states lying even
higher (and closcr to the N=2 threshold of Li**) than those located by Chung and Lin, that

nobody has yet attempted to.

This thesis presents the results of our investigation of S-wave doubly-excited
states of Li* below the N=2 excitation threshold of Li*", employing a completely different
numerical method developed earlier by Gien (1995 [12, 13]) within the Harris-Nesbet
variational calculation (1980 [14]) of electron and positron collisions with H and with
hydrogenlike ions. As will be seen in subsequent discussions of the thesis, this method 1s

quite reliable for this task. We focus our attention to the singlet S-wave only, however.

1.2 Outline of the thesis.

The content of the thesis is o follows. In Chapter 2, we make a review on the
Harris-Nesbet me od for electron (positron) collisions with atomic targets. We also
show how the met Hd is applied to the case of electron scattering from a hydrogenlike 1on
target. In chapter 3, we present our results with discussion and compare them to those
obtained by other resecarch  -oups. We also discuss in this chapter the details of the
Harris-Nesbet calculation carried out for electron-Li*' scattering and the numerical
procedure through which the positions and widths of the doubly-excited-state resonances
below the N=2 excitation threshold of Li** in Li* are determinc ~ We summarize the

results of the res:  :h work of the thesis in chapter



Chapter 2

Harris-Nesbet Variational method

In order to improve the stability of the Kohn-Hulthe’n variation mecthod (1944, 1948,
1948) [15-17] when applied to a collision process (Schwartz, 1961) [18], Harris (1967)
[19] proposed a method of expansion of the trial wave function, which, latcr on, has been
known as the Harris variational method. The detail of this method will be described in
section 2.1 below. As will be ¢ 11n 2.1, the Harris  :thod can provide the variational
phase shifts of the collision process at a specific set of scattering energies only. They are
eigenenergies of { : set of basis functions selected in advance for the bound part of the
trial wave function. Nesbet (1968, 1969, 1973) [20-22] subsequently pre osed an
extension of the Harris method which enables the calculation of hase shifts ad cross
sections at any arbitrary scattering energies. This method has been, later on, known as the
Harris-Nesbet variational method in collision theory. In section 2. we shall describe, in
some detail, the Harris-Nesbet variational method in the case of single-channel collision
as well as multi 1 I collis Finally, i section 2.3, we discuss " : Harris-Nesbet

variational method for electron-hydrogenlike-ion collisions.



2.1 Harris variational method

The Schrodinger equation which governs the dynamics of'a co  sion process is

(H- Ww=0 (2.1
Thus the functional of the collision process should be, as usual, defined as (Hi 5 (1967)
[19]):

E=(y|H - Ely) (2.2)

According to Harris [19], the form of the trial function ¥ in the va tional method should

be selected to be an expansion as follows,
Y=0+a,5+aC (2.3)

where @ is the bound part of the trial wave function which represents the collision system
at short distancc while S and C are the sin and cos functions which form the free part of
the trial function. The free part, together with oy and a;, describes the collision system in

the asymptotic region.

A set of numerable bound-state functions n; are then  osen. They can be
canonically transformed into the basis tunctions ¢; which diagonalize H. In practice, o

are obtained by solving the finite matrix equation below




(H-ES)X 0 (2.4)

where /I, :<17,. |H’17j> and overlap matrix S has clements Si/ :<I7,.~I7j>. X 1s an

unknown column matrix, with its jth element representing the component of the state

vector |X> on ‘ij>.
The bound part ® can then be expanded in terms of this ba : set of ;
®= Z C.o. (2.5)
Thus, the bound-part function @ is normalizable and does not affect the asymptotic

behavior of V.

The well-known variational conditions imposed on the functional (2.2) th C i* as
variational variables are equivalent to requiring that the state function on the left-hand

side of (2.1) has no component in the subspace spanned by the basis of ¢;, i.e.,
(p|H-Ely, ) 1+ 12.n (2.6)
or equivalently,

>{e |H - E|,)C, = (¢, |H - E| &, S + ,C) (2.7)

J

At an eigen-energy E=E; , the left-hand side of (2.7) vanishes and Eq. (2.7) reduces to

a(p,| - 7S)+a{p|H-"C)=0 (2.8)



By solving Eqg. (2.8), one obtains the ratio % which is, as usual, nothing ¢ but the
0
tangent of the phase shift at scattering energy E=E;.

In practice, the following four steps should be carried out in order to obtain the

Harris variational phase shift at a scattering energy E=E,;.

1. Choose a set of 7; and diagonalize H to obtain the basis tunctions
and their energy eigenvalues.

il Select an eigen energy E; at which one wants to calculate the
scatterit  p.  :shift

1il. Define S and C at this eigenenergy.

v. Solve Eq (2.8) for % to deduce the scattering phase s ft.

0

2.2 Harris-Nesbet variational method.

In the following we shall discuss in some detail the Harris-Nesbet variational method in

atomic collision theory.
2.2.1 Single-channel scattering

For convenience, ® is split into two parts, @g and @, which correspond to the function S

and the function C respectively. H e, equation (2.3) x  es in this case,



Y=a (P, +S)+a,(P, +C) (2.9)

where ®g and O¢ are again expanded in terms of the set of ¢;,

O = iCiS ;i
"j}‘ (2.10)
(I)( = Z C/(¢:
i=1l
The variational conditions equivalent to (2.6) in this case are
> (¢ |H - Elayg,)C) =(p,|H - E|@,S) (2.11a)
J
> (o |H - Elaip, )C; = (¢, |H - E|e; C) (2.11b)

J

They are used to determine C,.S and C,.C. Eqgs (2.11a) and (2 |b) above cnable the

reduction of the functional = (Eq(2.2)) to

S = mya] +(my, +m, ), +m,a (2.12)
where

my, S|H—E|ds+S) (2.13a)

my (S|H-E =~ .+C) (2.13b)

my, =(C|H — E|® +S) (2.13¢)

m,, =(C|H - E|®. +C) (2.13d)



Now ¢, and ¢, act as variational parameters. Thus, the variational of the functional Z is

& = 2my, @, 00, +2m, @, 0, +(m, +m, e, da, + a,dc,) (2.14)

In the Kohn variational method (Nesbet, 1980) [14], o 1s chosen to be /. Then a;
1s nothing else but the one-dimensional R matrix [14] (note that R used here 1s to denote

the collision reactance matrix which is also referred to as the K matrix),

a, =1 @ =R (2.15)

Substituting into (2.12) and (2.14), one has,

[1]

=my, +(m0l +mm)R+m”R2 (2.17)
6= =2m, ROR + (m, + m,, )OR (2.18)

One can prove the following relation between m,o and mg,:

1
mm—m%=§1 (2.19)

. . . . +
where 1 is an one-by-one unit matrix. In the single channel scatt ng case, n1, =m,,.

Using these two relations, (2.18) becomes

Therefore,
oo, =0 oo, = OR (2.16)
4 2(my, +m”R)éR+%éR (2.20)

10



By choosing Ry which satisfies the relation
my, +m, R, =0 (2.21)
or R, = mwml_ll (2.22)

as a trial function for R, (2.20) will be reduced to
1 _ 1 .
£=50R0 or :_ER() =0 (2.23)

Eq. (2.23) indicates that the functional [R] defined for the one-dimensional R-matrix as

[R]= R, —2Z(R,)1s stationary. Thus, [R] should be the one-dimensional var tional R-

matrix of the collision process, namely the tangent of the scattering phase shift. [R] can

be expressed in terms of the m-matrices as,
. + -1
[R. _2(”70() —m,my, mlo) (2.24)

Equation (2.24) has been known to be the Kohn formula of the R-matrix in ¢ Harris-
Nesbet variational method. By evaluating the appropriate m-matrices, one can :duce the

Kohn variational value of the tar  nt of the scatterii  ohase shift throv 1 Eq. (2.24).

In a similar fashion, one chooses in the inverse Kohn method (Nesbet,1980)[14],
a,=R" =1 (2.25)
Thus b, =R dor, =0 (2.26)
Substitute (2.25) and (2.26) into (2.14) one obtains the variational as

11



& =2(my, +myu,R"YR™ + %&el (2.27)

. . -1 -1 -
One can also choose a trial function R,'  —mg,m,, for R™', so that
-1
my, +my, R =0 (2.28)

With this choice, one can  mnediately see, through (2.19), that the functional [R"]

defined by
[R']=R,"+ "R (2.29)

is stationary. By substituting the expression of the trial function of R, (2.28) into

cquation (2.29) above, one obtains an explicit formula for the inverse reactance matrix in
the inverse Kohn variational method which, by the way, is also the cotangent of the

scattering phase shift in the elastic scatteri;  case,

[R_l]z 2(m,, —mJl'"JJmm) (2.30)

2.2.2 Multi-channel scattering

Let V* be the wave function of the collision system in the channel s, while ' that of the
collision system in the channel t. Hence, the functional =" in the 1 lti-channel scattering

casc, that involves the s and t channels, is:

12



5t

E, W I|H-EVY) (2.31)

For a certain cnergy E, if the system has n¢ open scattering channels, the wave  nction of

the system 1in the s channel can be written as:

N

v Yo, +ars, +er,C (2.32)

rel Ip
14

p stands for a specific channel. 2 1in, as in the case of single scattering channcel, one can
split the bound part @, into two, s, and O, , . sponding to the S and C functions

respectively,

Ne

Y= z {a(;p ((DS;I + Sl' )+ alxl? ((D(Y’ + Cl’ )} (233)
)

(DS[) = 3 Cj,i(pp.i (2.34a)
il

o, Yo,0, (2.34b)

Substituting (2.33) into (2.31), one obtains

(1]

_ s pq
st = ZZ%'"U & (2.35)

ip Jjgq

In this cquation,pandq | i ¢ chi els.iy  ,l e spondto

13



the free functions S, C. The explicit form for m;™ is

i i uv T

mr =M, - S ), MY

M

q.(2.36) can also be written as

il

mi =M Y MPME-E,) MY
k

(2.36)

(2.37)

by diagonalizing the bound-bound matrix M. Note that if ¥ is the exact solution,

P
Zmij a,iq =0

Jq

In equation (2.36) the M matrices are either a bound-bound matrix with its

clement connecting a bound state to a bound state

H-E|®,)

v

M, =(®,

(2.38)

or a bound-free matrix with its element connecting a bound state to a free state which is

either an S or a C function

My A-E®,)

M lc

\ P

H - E|®,)

M=, 1 E

g)

VA

Mﬁ:%¢AH—EKw

14

(2.39)

(2.40)

(2.41)

(2.42)



or a free-free matrix with its element connection a free state to a free state,:

M =(s,|H-E|Ss,) (2.43)
Mg =(s,|H-E|C,) (2.44)
My =(C,|H-ES,) (2.45)
My =(C,|H - E|c,) (2.46)

In matrix notation, define a 2n. x 2n. m-matrix as.

my my

m= [m(’(’ m‘”) (2.47)

From equation (2.37), the explicit forms for the elements of the m  ‘ices m;; are

miy =M - V MIE-E)' M (2.48)
my M~ §M§"(E—Ek ) M (2.49)
miy M- %Mf" (E-E) Mg (2.50)
mbt =M - ngf" (E-E)'MF (2.51)

An o matrix is defined as

15



Thus, the functional —g becomes

=, =ama

[1]

o = Qg (myoy + my )+ o (my,a, +my o))
One then deduces the variational of = as
E, =oa"ma+ moéo+o ' mdox—a m' oo
& =oa ma+(ma) sa+a (m—m' oo

Note that there exist among the m-matrices the following relations,

whereas, mgo and m;, arc Hermitian matrices. Therefore,

16

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58a)

(2.58b)



+ v
n,, —m m,, —m
- 00 00 ) (
a (m —m" oo = (ao+ o { o

_ + _ +
hyy —mgy, my, —mp,

(a+a+013
COM =T o)\ de

= ‘12‘ (CXJ 5“1 7( e )

N | —

Eq. (2.57) becomes

& =0a' ma+(ma) dor+ % (et 6ct, — o0, Sr, )

In the Kohn variational method og and «a; are chosen as follows

o, =1 a, =R

Hence,

oa, =0 oo, = OR

Substituting (2.61) and (2.62) into (2.59), one obtains

hamy + + 1
1 =R (m, +m, R (my,+m,R) 6R+;(57€

ol

Then, one chooses a trial function Rq for R such that
my, +m, R, =0

_ -1

or Ry =m,my,

Eq. (2.63) becomces
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(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)



1
‘E.u(Ro)z—éRo
2
or
5[R0 - r(Ru): 0

This equation indicates that the functional [R] should be defined as

[R] = Ro - ;""‘x/ ( R())

(2.66)

(2.67)

(2.68)

and it is stationary. By substituting (2.65) into (2.66), onc obtains the formula of [R] in

terms of the m-matrices,

/

- + -1
[R, -2 Jo_mmmnmm)

(2.69)

which should be the variational v ue for the exact R matrix in the Harris-Nesbet Kohn

variational method.

Similarly, in the inverse Kohn variational method, one chc  cs

a, =R o, =1

Thus

o, =R ' o, =0

Substitute (2.70) into (2.60) one obtains the variational of =, as follows,

st

4 N 1
o, =O0R " (m(,, +m(,0R‘l)+(m0I +m00R’I) OR™ —EbR“

RY}
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(2.70)

2.71)



Thus, one can also choose a trial expression Ry for Ro"], RO_I = —m(;()l m,, such that
my +m,R™ ) (2.73)
With this choice, the functional [R™'] of the inverse reactance matrix R should be
[R']=R,"+25(R;") (2.74)

and it is stationary. By substituting the expression of RO_l into equation (2.74), onc

obtains the formula for the inverse reactance matrix in the Harris-Nesbet inverse Kohn

variational method as

[R_I 1=2(m,, _m(:lm(;(;mm) (2.75)

2.3 Harris-Nesbet method for eletron-hydrogenlike ion collisions

In this section, we shall present the formalism for electron-hydrogenlike-atom
scattering within the context of the Hi  s-Nesbet variational m¢ od (Gien, . 02) [23].

The Hamiltonian of the collision system is

- 1 . 1 2
7 o2 2, 1 (2.76)
2 7 n n |r|—~r2|
where
g9 20 L (2.77)
or ror r°
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= 1A ) 107
L = (sm j S (2.78)
r-sing d¢ 06 ) sin“ 6 de

Here, the atomic1 tsareus ,hencch=1,m=1.

In clectron scattering from atomic ta :ts, the L-S coupling scheme is usually
considered for the collision system. Within the L-S coupling scheme, to total orbital
angular momentum L and the total spin S of the system are good quantum numbers. Thus,
triplet states of the two-clectron system correspond to S=1 while sii et states to S=0.
The total wave function of this collision system with a definite value for L a for S is,

therefore, given by (Gien, 2007 "77].

Y,y (F, e } «/_ ( )Z’ ,.,/, n,l I3 ’- )YL;TIII (’:1 , ’2:) (2.79)

miil,

where n, is the principal quantum number of the hydrogenlike 1on, (,,(, arc 1c orbital
angular momentum of the bound electron and scattered electron respective  Here, a
scattering channel is specified by a set of (n,,¢,,7,)denoted by p. u,, () is the radial
wave function of the hydrc nlike ion. Y,f,l',’z (7,7) is a bipolar spherical armonics
representing the total orbital angular momentum state of the col  ion system. The total
orbital angular momentum wave function Y,j‘,",‘: (£,7,) are obtained by coupling the two

orbital angular momenta of tl  individual elcctrons,

YI,AIIII’J (FI ) ":2 ) = ~ \L [l ’[7 ° 'nl ’ "17 i M )Yllml ( )Yl,m (’:2 ) (280)

iy .y
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where C(L,/,,l,,m,,m,,M,) are the relevant Clebsch-Gordan coefficients. E’III/‘ (1‘2) is
the wave function of the scattered electron in the channel p(n,,(,,¢,). The trial form for

Fnlh/: (”:) is composed of two parts, a bound part and a free part,
F(n)=®, (n)+a,S,(n)+a,C,(r) (2.81)

The bound part @, can be e: _ inded in t¢ ;5 of a set of basis functions which are usually

chosen to be of a Slater-type function. Thus,

(D/’ () = L C!M’¢p.i Z p.i(’”'2 pon (2.82)

For the case of clectron scattering from hydrogenlike ion, the free wave function S; 1s
given by

S,(r,) k,8.(k,r) (2.83)

2

where 3, (k,r,) is the Coulom 3essel function [ . k,” 2E-E,). E;istheenergy

of the bound electron. The free function C, in this case is a Coulomb-Neumann

functionN, (k,r,) {24] weighted by the factor (l —e )ZI2+I

C () =k, (l-e™ "N, (k,r) (2.84)

This weighting is to provide ¢ ct behaviours of the C,, function near the coordinate
origin (r;=0). Another form, which is the so-called Armstead-type form [25, 26], can also

be chosen to represent the free function C,,,
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5

C,(r)=k, {K ”+1JSII(A'I];-3)+\/1+[() T’+J 3 alk,n) (2.85)

and can also provide correct behaviours of C,, ncar the coordinate origin (r.=0) as well as

at large .

In order to improve the accuracy of the results of calculation, on¢ may add a sct of
the correlation functions to the expansion of ¥, (7, ) . This is, to some extent,
equivalent to incrcasing the number of basis functions employed to expand the bound part

of the trial function En/'A (r2 ) With the addition of these correlation terms,

. ]
lPL,S(rl’}E):T(l-l_P )vunll( )E:,/,/z(’z) 1/;,’/2 Rty +ZC ("1”‘) i, (V,,f‘)
Mty

(2.86)

The correlation functions ¥,(r,,#,) can be chosen to be in the form of a proi ct of two

Slater-type functions.

As was scen in the previous sections, the R matrix (or in the casc of clastic
scattering, the scattering phase shift) can be calculated by using the formulas ot (2.24)
and (2.69) in thc Kohn variational method or the formulas of (2.30) and (2.75) in the
inverse Kohn variational method. This, in turn, requires the ey iations of the bound-
bound, bound-free, and free-fr  matrix elements. In the casc of clectron scattering from a

hydrogenlike-ion ta :t, elen ts of bound-bound matrix M, are given by
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M,n/ = BiZBj? X

<”Ix,1l,| ("|)’.3nl:eial’ LA/’I/ (’|’ ”) (H EX1+PI71 ’1 I (’ )’—," T Y'”ll ( |’ )>

where Bj; and Bj> are normalization constants.
Elements of bound-free matrices are given by

M . =B,k,X

pS 202

H, =X 7 ~ (288)
<[In/ (r)ry2e ZzYLAIII/ (P, 1)

-l 2, u, ,, 008, Gam¥)y Goi)

(A= ENi B, fu, , 0, 0V Goi)) (289)

_ M, (n on
Mp(‘_Bm< w,, (1 Jrye e 1‘/,,’/,2("1"'2)

while elements of free-free matrices, by

Mg = k,k <”n.' (V)S (/‘ rz) Lhohs (A:7)

WA - £+ f)n]u””,” (D, (k)Y (i) (2.90)

Mg ki2<”nl|/,]("I)SI,:(kiZ’ )YM'/ ('Al”ﬂ)(H EXI+P°1“n 1 (NG, )Y, I i (’w’ )> (2.91)

M(‘S :k/'2<“n,|/,1(r|)CF(’ )YIAI’II ("I”A'Z) ([:IFE liplzlun,lln(’i)gi,g (/‘ ’ )Yv[A/II/ (’l )> (292)

Mee =, DC, 0005 i = ENUE By Ju,  6C, )Y Gl %)

At energies, below the first excitation threshold, only one elastic scattering
channel exists for each p al wave L. Therefore, the matrix Ry obtaincd in the
calculation is nothing else but : tangent of the phase shift 8. in the Kohn variational

method

5 = 1'(R,) (2.94)
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(2.87)



or in the inverse Kohn method,

d, =cotan '(R;") (2.95)
Partial wave cross-sections ci then be calculated, using the well known formula,

47

o, (k)= e

(2L +1)sin* 8, (k) (2.96)

where k* =2F.
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Chapter 3

Determination of the singlet S-wave Doubly Excited

States of Li" below the N=2 Excitation Threshold

3.1 Method of calculation

When an clectron collides with a hydrogenlike ion such as Li*', it could clastic .y scatter
from the i1on, exc : the ion to an excited state or even ionize the ion, depenc 1g on the
cnergy that the incident elc ron can supply to the ion. In a purely elastic scattering
process of electrons from Li*" in its ground state for example, the incident clectron can
either just scatter off Li*" or, at a suitable energy, be temporarily captured y Li*" to form
a two-electron atom Li" with both electrons staying in their cxcited states. Onc of the
electrons of the atom is excited to the N=2 level while the other, to an nth cxcited statc
(with n> N) before being auto-ionized to a free electron, lecaving behind the other
clectron de-excited to its ground state. Thus, the short-lived doubly excited states
temporarily i 1ed in an elastic scattering of electron from Li*' are nothii clsc but

doubly-excited auto-ionization t of Li' below the N=2 excitation thresh« | of Li*".



These doubly-cxcited-state resonances can, thercfore, be located by simply looking at the
region of energies where the | al wave phase shift of elastic electron-Li*" scattering
changes abruptly by = radian as the scattering energy crosses is energy position or
equivalently where the relevant partial wave cross sections exhibit a peak. The positions
of these resonances and their widths can, therefore, be determined with high accuracy by
a numerical scattering method which can provide h™ “illy accu ¢ partial wave phase

shifts for electron scatt  1g from Li*.

The calculz ns of phase shift and cross section at low encrgy using the Harris-
Nesbet variational method [14] have been known to provide very accurate results for
clectron and positron collisions with (neutral) hydrogen atoms (see for example Gien and
Gien ct al [27-34]). Makit  use of the high accuracy that the method can | H>vide for
these scattering phase shifts at low energy, Gien (1995, 1996, 1998) [12, 13, 35-37] also
cmployed this method to determine the positions and widths of the Feshbach  sonances
formed below the N=2 excitation threshold of H in both electron and positron ollisions.
Gien has indeed succeeded in determining the positions and widths for these  ‘onances
including those lying extremely close to the N=2 threshold of H. Recently, Gien [23, 36-
40] also considercd the Harris-Nesbet method for the calculatic s of phase shifts and
cross sections for electron and positron collisions with hydrogenlike ions and succeeded
in obtaining very accurate pha shifts for thesc ionic targets as well. Very recently,
Gicn, [41-45] also used the Harris-Nesbet method to determine with great success the

doubly-excited-state reson  ses of He below the N=2 ionization tI :shold He".
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We, therefore, consider here again the Harris-Nesbet method for the determination
of the singlet S-wave doubly excited states formed below the N=2 threshold of i*" in the
two-electron ionic atom Li*. In the present calculation, the Harris-Nesbet variational
mcthod was first employed to obtain accurate values of S (L=0) singlet (S=0) partial
wave phase shifts for electrons elastically scattered from Li*" at energies below the N=2
excitation threshold of Li*". The detailed description of this method when applied to
clectron scattering from hydrogenlike ions had been given by Gien clsewherc [23, 40].
The so-called extended four-state (E4S) scheme, used in Gien’s previous Harris-Nesbet
calculations (Gien, 2002, 2003) [23, 40], has proved to provide very accurate results of
phase shift for the scattering process and is again considered for the present calculation.
The E4S scheme, as was discussed by Gien (2002, 2003) [23, 40], can represent well the
long-ranged polarization potential effect of the electron-Li*" collision system. A great
number of correlation terms were added to the scheme to improve the accuracy of the
long-ranged polarization potential effect as well as the short-ranged static potential cffcct
of the electron-Li*" collision system. In practice, the number of correlation terms added
to the scheme was increased gradually until the phase shifts obtained no lor r change
significantly, i.e., when they already approach their convergent values. For the present
calculation of singlet S-wave scattering, up to 108 correlation terms [44] were added to
the scheme. Thus, the phase shifts obtained in the calculation are expected to be rather
accurate. Furthermore, to obtain accurate results for the phase shifts at en  zics very
close to the threshold where the highly-lying doubly-excited-state resonances arc formed,
we had to use a fairly la : basis set of functions cov g a wide spatial range that

enables an adequate representation of the h' “i-lying nth & “ed states of ¢ sccond
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clectron [44]. A basis set of up to 33 Slater-type functions was considered for the present
calculation. A very versatile and reliable computer code developed earlier by Gien [23]
for the calculation of phase shifts and cross sections in electron (and positron) collisions

with hydrogenlike ions within the Harris-Nesbet method was used for this calculation.

To determine the positions and widths of these doubly-excited-state resonances, we
used a procedure which is fairly time consuming but has been proved in the ast to be
able to determine very accurately the positions and widths of the threshold resonances
below the N=2 threshold in electron-H scattering (Gien 1996) [37], includit  those of
cxtremely small width lying very close to the threshold that other numerical methods do
not seem to be ablc to do. This procedure has also been used with great success in the
determination of doubly excited states of He below the N=2 excitation threshold of He"
mentioned above (Gien, 2005, 206, 2007, 2008) [41-45]). We carefully swept through
the energy regions where we  1se the existence of a doubly-excited resonance with
calculations of phase shifts at scattering energies slowly increased by a very small step
and then gradually focused to the energy region around the pos on of that resonance.
Finally, a great number of phase shifts at energies around the position of this resonance
were calculated and these accurate phase shifts obtained were then fitted the Breit-Wigner
formula,

I rm
|E-E,

o

5=05, +tan” 3.1)



to determine the position E, of the resonance and its width I". In Equation (3.1) above,

o, is the partial wave phase shift of the background (non-resonant) scattering.

[2]

3.2 Results and discussion

As was well known, there are different classification schemes for the series of doubly
cxcited states below the N=2 th hold and the correspondence among these ditferent
classification schemes have been discussed in the literature (see for cxample, + :a (1986)
[46]). For easc of reference to these doubly excited states, we use the symbols of the
classification scheme by Conncely and Lipsky [10] to label them. Thus, for the singlet S-
wave doubly excited states 'S¢ below the excitation threshold N=2, there are two scries of
doubly excited states denoted by a and 5. The a-series correspon  to the one which has
its quantum numbers K=1 and T 1 in the configuration-mixed “doubly-excited symmetry
basis” (DESB) classitication scheme by Herrick and Sinanoglu (1975) [47] while the b-
series, to the one which has its quantum numbers K=-1, T=0.  should be noted that it 1s
quite straightforward to translate the des’ iat’ s of the doubly-excited states shown in
Tables 3.1, 3.2, and 3.3 below within the classification scheme by Conneely and Lipsky
[10] to those of the DESB scheme. Indeed, the doubly excited state 'S¢(2, 3a) for instance
is just the second (n=3) lowest-lying of the series of doubly excited states ¢  quantum

numbers K=1 and T=0 in the DESB scheme.
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We succeeded in determining altogether 20 S-wave singlet doubly excited statcs
'S¢ of Li* below the N=2 excitation threshold of Li*", 10 belonging to the a-s: ¢s (K=1,
T=0) and another 10 belonging to the b-s: s (K=-1, T=0). This is the greatest number
of doubly excited states 'S® dete  ined below the N=2 excitation threshold for Li' so far.
In Table 3.1, we display the positions and widths of doubly-excited states that we

determined, t¢ 4 r with their effective quantum number n* and their reduced widths

y, =n* " [10]. The fraction parts of n* are indeed almost the same for all the doubly

excited states displayed [10]. In Tables 3.2 and 3.3, we tabulate, respectively, the
positions and the widths that we determined for these doubly excited states together with
those determined by other researchers employing diffcrent numerical methods for
comparison. The energics and widths of the doubly-excited-state resonances arc given in
the units of Rydberg. The resonance energies E; shown in this table arc referred to the
ground state of Li*". Because of the high accuracy of this method, we succeeded in
determining doubly excited states very close to the N=2 threshold of Li*". Four of them,
two belong to the a-series ('S%(2,10a) and 'S(2,11a)) and another two belongii  to the b-

series ('S¢(2,10b) and 'S%(2,11b)), were determined by us for the first time.

In general, the positions of the four lowest doubly excited states 'S¢ determined by
the present work agree rather well with those determined by >, who emr oyed the
complex-coordinate-rotation (CCR) method. They also agree very well ith thosc
determined by Chung and Lin who also used the complex-rotation method. Thc positions
of tI three lowest-lyit  ubly excited states of the present calculation 50  ec

reasonably well with those deter  “1ed by Bhatia who employed t|  Feshbach projcction-
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remain quite scarce. Ziem at al [2] reported the position and width measured by them for
the lowest-lying doubly-excited state 'S(2,2a), while Rodbro et al [4] only reported the
positions of the four lowest-lying 'S, With the experimental errors (crror bars) ven for
these data by these experimental groups, we see that the positions calculated by thesc
various theoretical groups for these four doubly-excited states and shown in Table 3.2
(including ours) can all be r.  irded as agreeing well with experimental data. The solc
cxperimental width provided by Ziem et al for the lowcst-lying doubly-exc :d states
'S(2,2a), considering its experimental errors iven, can be regarded as agrecing only
fairly with the theoretical widths calculated by various research groups. This is as
expected, since experiments performed to measure these widths should : quite difficult,
in view of the extreme smallness of the widths of most of these doubly-cxcited-state
resonances. In this sense, accurate results of a reliable theoretical calculation 10uld be

quite uscful in serving as benchmark values to guide these difficult experiments.

An advantage of the nun  :al mcthod that we used to determine the doubly
excited states presented in this thesis is that we can explicitly show them in graphical
forms in order to see how exactly the shapes of these resonances would be. The graphical
presentation of these doubly-excited-state resonances also, to some extent, © vides a
confirmation of their definite existence in the energy distribution of cross s¢ ons and
phase shifts of the scattering process. We calculated a significantly great 1 mber of
singlet S-wave elastic scattering phase shifts and cross sections around the positions of all
the twenty doubly-¢  “ed stat 'S¢ that we succeer  in locatit  and plottc  them in

Figures 3.1 — 3.40. These graphs indicate that these resonances should belong to the same



family as they all have the same shape. ...ey all start with a smooth increase of the cross
sections on the left side to reach their peak and then end with a quick fall-oft to nil on the

right.
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Figure 3.29. S-wave Cross-Sections of e-Li¢* Singlet Scattering at 18'3(2,9a)
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Figure 3.30. S-wave Phase Shifts of e -1i%" Singlet Scattering at 1Se(2,9a)
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Figure 3.31. S-wave Cross-Sections of R Singlet Scattering at 1Se(2,9b)
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Figure 3.32. S-wave Phase Shifts of e_—I_.iZ+ Singlet Scattering at 1Se(2,9b)
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Figure 3.34. S-wave Phase Shifts of e -Li’" Singlet Scattering at 1Se(2,10a)
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Figure 3.35. S-wave Cross-Sections of e’-Li%* Singlet Scattering at 18.6(2,10b)
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Figure 3.36. S-wave Phase Shifts of e -Li’" Singlet Scattering at lSe(2,10b)
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Figure 3.37. S-wave Cross-Sections of e -Li?* Singlet Scattering at 1Se(2,1 1a)
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Figure 3.39. S-wave Cross-Sections of e-Li%* Singlet Scattering at 1Se(2,1 1b)
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Chapter 4

Conclusion

In this thesis, we present the results ot our determination of the S-wave singlet doubly-
excited states 'S¢ of Li" below the N=2 excitation threshold of Li*" using a numerical
method developed earlier [12, 13] within the Harris-Nesbet variational cal lation of
clectron-hydrogenlike-ion collisions. Altogether, we succeeded in locating . doubly-
excited states 'S¢ of Li* below the N=2 threshold of Li*", 10 of them belonging to the a-
series (K=1, T=0) and another 10 belonging to b-series (K=-1, T=0). This is1 : grecatest
n 1ber of singlet S-wave doubly excited states that have been determined :low the
threshold N=2 for Li' so far. ™ :cause of the high accuracy of this method, we were able
to determine for the first time some of these doubly-excited states (lS"‘" 10a) and
'S%(2,11a) of the a-series and 'S%(2,10b) and 'S%(2,11b) of the b-series) whi lie very
¢ ¢ to the N=2 threshold. The results of the present calculation may also be used to
rc lve the discrepancy existing amo  the widths of a few lowest-lying doubly excited
statcs 'S® detc  ned by various other research groups employ g different numerical

methods. Our calculations also provide a large set of higher-lying 'S¢ resonances of Li'
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below the N=2 threshold for comparison with those determined by Chung and Lin. Our
calculations confirm the existence of all the 16 doubly-excited states 'S® determined by
this group and that the positions and widths determined by them seem to be also rather
accurate. We are also able to display explicitly in graphs all the twenty doubly excited
st s 'S that we determined, so that one can have a precise idea about the shapc of thesc
'S® doubly-excited-state resonances. This work, together with numerous other works
done in the past by Gien and Gien et al. [*~ 13, 23, 27-45], i in confirms that the
Harris-Nesbet calculation is a reliable numerical method that can provide not only very
accurate scattering phase shifts and cross sections for collisions ¢ electron and positron
with hydrogen atoms and hydrogenlike ions at low energy but also an accuratc umerical
pr edure to be used in the determination of doubly excited states of two-electron (neutral
or ionic) atoms. An interesting research work that could be donc immedia .y is the
determination of the triplet S-wave doubly excited states of Li' below the N=2 threshold

XS . . .
of 1" using this very same numerical procedure.
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