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Abstract 

The positions and widths of the singletS-wave doubly excited state resonances 1Sc 

of Li+ at energy below the N=2 threshold of Li2+ are determined, employing a nume1ical 

procedure developed earlier for electron collisions with hydrogenlike ions within the 

Harris-Nesbet variational method. Altogether, twenty of these singlet S-wave doubly 

excited states are located below this threshold with their widths determined. Some of 

these doubly excited states are determined for the first time by the present calculation. 

Our results are compared, with discussion, to those obtained by various other research 

groups using different numerical methods of approach for their calculations. Graphical 

presentation of all these twenty doubly excited states is given. 
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Chapter 1 

Introduction 

1.1 Introduction 

Beside the singly excited states which have been well understood nowadays, a multi­

electron atom when receiving appropriate energy from an external source can be doubly 

excited to higher energy states where two electrons of the atom are simultaneously 

excited. Throughout the years, doubly-excited states of two-electron (neutral or ionic) 

atoms have been studied intensively by various experimental as well as theoretical 

research groups. In particular, the study of doubly excited states of Li+ has been a subject 

of interest for many researchers. On the experimental side, several experiments have 

been performed to detect these doubly-excited resonances of Li+. One may cite for 

example an earlier experiment by Bruch et al (1975) [1 ], using the so-called beam-foil 

interaction mechanism. This group succeeded in detennining the positions of the lowest 

I,3p o doubly-excited states in Lt. The energy spectrum of the emitted electrons was 

recorded and analyzed while the foil was moved along the beam axis. Due to the time 



- --------- -------------- ----

delay in the autoionization process, resonances were detected. Ziem et al (1975) [2] also 

detennined the positions of the lowest 1S and 1
•
3P resonances in Lt by colliding H+ and 

He+ with Lt. Carroll and Kennedy (1977) [3] performed a photo-absorption expe1iment 

for Lt and were able to detennine the three lowest members of the doubly-excited-state 

resonances 1P0
. By looking at the ejected-electron spectra of highly-excited 

autoionization levels of Lt in their single collisions with neutral atoms and molecules 

such as He and CH4 and with the guidance of the values obtained by theoretical 

calculations, Rodbro et al [ 4] were able to determine the positions of these doubly-excited 

states of Li+ 

On the theoretical side, various research groups or individuals have carried out 

calculations, using different numerical methods, to determine these series of doubly­

excited-state resonances of Li+ in an attempt to verify their existence in this two-electron 

ionic atom as was predicted by theory (Cooper et al, 1963 [5]). One may cite for example 

the work by Bhatia (1977) [6] who employed the Feshbach projection-operator technique 

to determine the positions and widths of the three lowest-lying resonances of the various 

series below the N=2 excitation threshold of the hydrogenlike ion Li2+. Ho ( 1981) [7] 

also determined a few lowest-lying doubly-excited resonances of Li+ below the N=2 

threshold, employing the complex coordinate rotation method (CCR) with the 

consideration of the Hylleraas-type wave functions. His results of position and width 

obtained for these resonances are in reasonable agreement with those by Bhatia, although 

the widths obtained by Ho are, at times, seen to deviate noticeably from those by Bhatia. 

Both these researchers determined a few lowest-lying resonances of these se1ies only. 
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Bruch et al (1975) [1] was the research group who perfonued the calculations of the 

positions of higher-lying doubly-excited states, using the truncated diagonalization 

method (TDM) (1965, 1966) [8, 9]. For example, the positions of up to 11 resonances 

below the N=2 threshold were obtained by this group for the series of singlet S-wave 

resonances (1S}. However, the widths of only three lowest-lying doubly-excited-state 

resonances were calculated by Conneely and Lipsky (1978) [1 OJ with the TDM. The 

widths obtained by them were found, in general, to differ considerably from those 

obtained by Bhatia and by Ho. More recently, Chung and Lin (1998) [11] carried out an 

extensive calculation of positions and widths for the doubly-excited-state resonances 

formed below the N=2, 3 thresholds in Li+, using the complex-rotation method. For the 

singlet S-wave resonances of even parity below the N=2 threshold, they located 

altogether 16 of these resonances. Comparing the positions and widths of the low-lying 

S-wave resonances detenuined by this group to those by others, one finds that they agree 

reasonably well with those determined by Ho and also those by Bhatia, but their widths, 

in general, disagree with those obtained by Conneely and Lipsky considerably. The 

widths of the higher-lying resonances (especially those closer to the threshold) are usually 

considerably smaller than those of the lower-lying ones and should, thereby, be more 

difficult to be determined with accuracy. Unfortunately, as at present, Chung and Lin, to 

our knowledge, has been the only research group who determined the widths for these 

higher-lying resonances in Li+. It would, therefore, be interesting to try to detenuine these 

resonances using, however, a completely different (and reliable) numerical method for 

comparison with their results and also to resolve the discrepancy existing among the 

widths of the low-lying resonances calculated by these various research groups or 
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individuals. It is also interesting to try to determine the doubly-excited states lying even 

higher (and closer to the N=2 threshold of Li2+) than those located by Chung and Lin, that 

nobody has yet attempted to. 

This thesis presents the results of our investigation of S-wave doubly-excited 

states of Lt below the N=2 excitation threshold of Li2+, employing a completely different 

numerical method developed earlier by Gien (1995 (12, 13]) within the Harris-Nesbet 

variational calculation (1980 (14]) of electron and positron collisions with H and with 

hydrogenlike ions. As will be seen in subsequent discussions of the thesis, this method is 

quite reliable for this task. We focus our attention to the singletS-wave only, however. 

1.2 Outline of the thesis. 

The content of the thesis is organized as follows. In Chapter 2, we make a review on the 

Harris-Nesbet method for electron (positron) collisions with atomic targets. We also 

show how the method is applied to the case of electron scattering from a hydrogenlike ion 

target. In chapter 3, we present our results with discussion and compare them to those 

obtained by other research groups. We also discuss in this chapter the details of the 

Harris-Nesbet calculation carried out for electron-Li2+ scattering and the numerical 

procedure through which the positions and widths of the doubly-excited-state resonances 

below the N=2 excitation threshold of Li2+ in Li+ are determined. We summarize the 

results of the research work of the thesis in chapter 4. 
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Chapter 2 

Harris-Nesbet Variational method 

In order to improve the stability of the Kohn-Hulthe'n variational method (1944, 1948, 

1948) [15-17] when applied to a collision process (Schwartz, 1961) [18], Hanis (1967) 

[19] proposed a method of expansion of the trial wave function, which, later on, has been 

known as the HmTis variational method. The detail of this method will be described in 

section 2.1 below. As will be seen in 2.1, the Harris method can provide the variational 

phase shifts of the collision process at a specific set of scattering energies only. They are 

eigenenergies of the set of basis functions selected in advance for the bound part of the 

trial wave function . Nesbet (1968, 1969, 1973) [20-22] subsequently proposed an 

extension of the Harris method which enables the calculation of phase shifts and cross 

sections at any arbitrary scattering energies. This method has been, later on, known a the 

Harris-Nesbet variational method in collision theory. In section 2.2, we shall describe, in 

some detail , the Harris-Nesbet variational method in the case of single-channel collision 

as well as multi-charmel collision. Finally, in section 2.3, we discuss the Harris- esbet 

variational method for electron-hydrogenlike-ion collisions. 

5 



2.1 Harris variational method 

The Schrodinger equation which governs the dynamics of a collision proce s is 

(H -E)'P=O (2.1) 

Thus the functional of the collision process should be, as usual defined as (Harris (1967) 

[19]): 

(2 .2) 

According to Harris [ 19], the form of the trial function 'I' in the variational method should 

be selected to be an expansion as follows, 

(2 .3) 

where <D is the bound part of the trial wave function which represents the collision system 

at short distance while S and C are the sin and cos functions which form the free part of 

the trial function. The free part, together with a0 and a 1, describes the collision system in 

the asymptotic region. 

A set of numerable bound-state functions lli are then chosen. They can be 

canonically transfonned into the basis functions <pi which diagonalize H. In practice, <pi 

are obtained by solving the finite matrix equation below 

6 



(H -ES)X = 0 (2.4) 

unknown column matrix, with its jth element representing the component of the state 

vector IX) on 1771). 

The bound part <D can then be expanded in terms of this basis set of <pi 

(2.5) 

Thus, the bound-part function <D IS normalizable and does not affect the asymptotic 

behavior of'¥. 

The well-known variational conditions imposed on the functional (2.2) with ci* as 

variational variables are equivalent to requiring that the state function on the left-hand 

side of (2 .1) has no component in the subspace spanned by the basis of <pi, i.e., 

i = 1,2 .. n (2.6) 

or equivalently, 

I:(qy; IH- Elqy1 )c1 = -(qy; IH- Ela0S +a, c) (2.7) 
j 

At an eigen-energy E=Ei, the left-hand side of(2.7) vanishes and Eq. (2.7) reduces to 

(2.8) 
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By solving Eq. (2.8), one obtains the ratio al I which is, as usual, nothing else but the 
l ao 

tangent of the phase shift at scattering energy E=Ei. 

In practice, the following four steps should be carried out in order to obtain the 

Harris variational phase shift at a scattering energy E=Ei.: 

1. Choose a set of lli and diagonalize H to obtain the basis functions 

and their energy eigenvalues. 

11. Select an eigen energy Ei at which one wants to calculate the 

scattering phase shift 

111. Define S and C at this eigenenergy. 

tv. Solve Eq (2.8) for al I to deduce the scattering phase shift. 
l ao 

2.2 Harris-Nesbet variational method. 

In the following we shall discuss in some detail the Harris-Nesbet variational method in 

atomic collision theory. 

2.2.1 Single-channel scattering 

For convenience, <I> is split into two parts, <Ds and <De, which correspond to the function S 

and the function C respectively. Hence, equation (2.3) becomes in this case, 
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(2.9) 

where <Ds and <De are again expanded in terms of the set of <pi, 

i=l 

II 
(2 .1 0) 

ct> c = I cic cpi 
i =l 

The variational conditions equivalent to (2.6) in this case are 

I ( cp; IH-El a 0cpj )cf = -( cp; IH - El a 0S) (2.1 l a) 
j 

I(cp; IH -Ei a,cpj )c~ = -(cpi IH - Ela,c) (2.1 1b) 
j 

They are used to detennine C ;s and C;c . Eqs (2.11 a) and (2.11 b) above enable the 

reduction of the functional 3 (Eq(2.2)) to 

(2.12) 

where 

(2. 13a) 

(2.13b) 

(2.13c) 

(2.13d) 
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Now a0 and a 1 act as variational parameters. Thus, the variational of the functional 3 is 

(2.14) 

In the Kohn variational method (Nesbet, 1980) [14], a0 is chosen to be I. Then a 1 

is nothing else but the one-dimensional R matrix [14] (note that R used here is to denote 

the collision reactance matrix which is also referred to as the K matrix), 

Therefore, 

Substituting into (2.12) and (2.14), one has, 

One can prove the following relation between m 10 and mo1: 

+ 1 
mo, -m,o =-1 

2 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

+ 
where I is an one-by-one unit matrix. In the single channel scattering case, rn10 = rn10 . 

Using these two relations, (2.18) becomes 

(2 .20) 
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By choosing Ro which satisfies the relation 

(2.21) 

or (2.22) 

as a trial function for R, (2.20) will be reduced to 

(2.23) 

Eq. (2.23) indicates that the functional [R] defined for the one-dimensional R-matrix as 

[R] = R0 - 23(R0 ) is stationary. Thus, [R] should be the one-dimensional variational R-

matrix of the collision process, namely the tangent of the scattering phase shift. [R] can 

be expressed in tem1s of the m-matrices as, 

(2.24) 

Equation (2.24) has been known to be the Kohn formula of the R-matrix in the Hanis-

Nesbet variational method. By evaluating the appropriate m-matrices, one can deduce the 

Kohn variational value of the tangent of the scattering phase shift through Eq. (2.24). 

In a similar fashion, one chooses in the inverse Kohn method (Nesbet, 1980)[14], 

(2.25) 

Thus (2.26) 

Substitute (2.25) and (2.26) into (2 .14) one obtains the variational of 3 as 

11 



(2.27) 

One can also choose a trial function R~ 1 = -m~~m0 1 for R-1
, so that 

(2.28) 

With this choice, one can immediately see, through (2.19), that the functional [R-1
] 

defined by 

(2.29) 

IS stationary. By substituting the expression of the trial function of R~1 (2.28) into 

equation (2.29) above, one obtains an explicit fonnula for the inverse reactance matrix in 

the inverse Kohn variational method which, by the way, is also the cotangent of the 

scattering phase shift in the elastic scattering case, 

(2.30) 

2.2.2 Multi-channel scattering 

Let \f'5 be the wave function of the collision system in the chatmel s, while '1'1 that of the 

collision system in the channel t. Hence, the functional 3 51 in the multi-channel scatte1ing 

case, that involves the s and t charmels, is: 
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(2.31) 

For a certain energy E, if the system has nc open scattering channels, the wave function of 

the system in the s channel can be written as: 

"r 
\f' s = I{<t>P +a~PSP +atpcp} (2.32) 

p 

p stands for a specific channel. Again, as in the case of single scattering channel , one can 

split the bound part <Dp into two, <Dsp and <Dcp , corresponding to the S and C functions 

respectively, 

\f' s =I {a~P (<I> Sp + S P )+ atP (<I> cp + C P )} (2.33) 
p 

(2.34a) 

(2.34b) 

Substituting (2.33) into (2.31 ), one obtains 

2 sl = I I a(pm:: a~q (2.35) 
ip jq 

In this equation, p and q represent different scattering channels. iJ =0, 1 correspond to 
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the free functions S, C. The explicit form for mir is 

m pq = M pq - """" M P" (M -1
) M vq 

U U L....,L...., 1 pv 1 
(2.36) 

II v 

Eq.(2.36) can also be written as 

m /lq = Mpq - ""M pk (E- Ek )-1 M~q 
u u L...., l 1 

(2.37) 
k 

by diagonalizing the bound-bound matrix M. Note that if q1
1 ts the exact solution, 

j q 

In equation (2.36) the M matrices are either a bound-bound matrix with its 

element connecting a bound state to a bound state 

M flV = (<I> p IH- El <I>,, ) (2.38) 

or a bound-free matrix with its element cormecting a bound state to a free state which is 

either an S or a C function 

M r = ( s p IH-El <I> k) (2.39) 

M r = ( c p IH-El <I> k) (2.40) 

(2.41) 

(2.42) 
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or a free-free matrix with its element connection a free state to a free state,: 

M fj = (sp IH -Eisq) (2.43) 

(2.44) 

M ~i = ( c p IH-El s q) (2.45) 

(2.46) 

In matrix notation, define a 2nc x 2nc m-matrix as. 

(2.47) 

From equation (2 .37), the explicit fonns for the elements of the matrices mij are 

pq -M pq "Mpk(E E )-1M kq moo - ss - ~ s - k s (2.48) 
k 

pq -M pq-"M pk (E -E )-1M kq 
mol - sc ~ s k c (2.49) 

k 

m pq - M pq - '""'M pk (E- E )-1 M kq 
10 - cs ~ s k s (2.50) 

k 

m pq- M pq- '""'M pk (E - E )-1M kq 
II - CS ~ S k C 

(2.51) 
k 

An a matrix is defined as 
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a=(::J 
Hence, a is a 2nc x nc matrix and a+, its Hermitian conjuguate. a+ is given by 

Thus, the functional 2 51 becomes 

- + 
=- st =a rna 

One then deduces the variational of 3 51 as 

Note that there exist among them-matrices the following relations, 

+ 1 
mol -mlO =-f 

2 

+ 1 
m1o -mol=--! 

2 

whereas, rn00 and m 11 are Hennitian matrices. Therefore, 

16 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2 .58a) 

(2.58b) 



Eq. (2.57) becomes 

Hence, 

02s, = oa+ma+ (mat oa+_!_(a; oa1 - at oa0 ) 
2 

In the Kohn variational method ao and a 1 are chosen as follows 

a - R 1 -

Substituting (2.61) and (2.62) into (2.59), one obtains 

Then, one chooses a trial function R0 for R such that 

or 

Eq. (2.63) becomes 
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(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 



(2.66) 

or 

o[ Ro - 23 Sf ( Ro)] = 0 (2.67) 

This equation indicates that the functional [R] should be defined as 

(2.68) 

and it is stationary. By substituting (2.65) into (2.66), one obtains the fonnula of [R] in 

terms of the m-matrices, 

(2.69) 

which should be the variational value for the exact R matrix in the Hanis-Nesbet Kohn 

variational method. 

Similarly, in the inverse Kohn variational method, one chooses 

Thus 

R - 1 ao = a =1 I 

oa - o ,-

Substitute (2. 70) into (2.60) one obtains the variational of 3 sf as follows, 
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(2.70) 

(2.71) 

(2.72) 



Thus, one can also choose a trial expression Ro-' for Ro-1
, R~' = -m~~m0 1 such that 

(2.73) 

With this choice, the functional [R-1
] of the inverse reactance matrix K 1 should be 

[R -1
] = R~1 + 23(R~1 ) (2.74) 

and it is stationary. By substituting the expression of R~1 
into equation (2. 74), one 

obtains the formula for the inverse reactance matrix in the Harris-Nesbet inverse Kohn 

variational method as 

(2.75) 

2.3 Harris-Nesbet method for eletron-hydrogenlike ion collisions 

In this section, we shall present the formalism for electron-hydrogenlike-atom 

scattering within the context of the Harris-Nesbet variational method (Gien, 2002) [23]. 

The Hamiltonian of the collision system is 

(2 .76) 

where 

(2.77) 
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[} = 1 a (sine_i_)+-1-~ 
r 2 sinO ae ae sin 2 B a({i 

(2.78) 

Here, the atomic units are used, hence n = 1, m = 1. 

In electron scattering from atomic targets, the L-S coupling scheme is usually 

considered for the collision system. Within the L-S coupling scheme, to total orbital 

angular momentum L and the total spin S of the system are good quantum numbers. Thus, 

triplet states of the two-electron system correspond to S=1 while singlet states to S=O. 

The total wave function of this collision system with a definite value for L and for S is, 

therefore, given by (Gien, 2002) [23]. 

(2 .79) 

where n1 is the principal quantum number of the hydrogenlike ion, .e ".e 2 are the orbital 

angular momentum of the bound electron and scattered electron respectively. Here, a 

scattering channel is specified by a set of (n 1 , .e 1 , .e J denoted by p. u,,,, (r1) is the radial 

wave function of the hydrogenlike ion. Y:// (?,, r2 ) is a bipolar spherical harmonic 
I 2 

representing the total orbital angular momentum state of the collision system. The total 

orbital angular momentum wave function YL7l' (r
1 , r2 ) are obtained by coupling the two 

1 2 

orbital angular momenta of the individual electrons, 

(2.80) 
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where C(L, 11, / 2 , m1, m2 , M L) are the relevant Clebsch-Gordan coefficients. F,,
11112 

(r2 ) is 

the wave function of the scattered electron in the channel p( nt> e 1, .e 2 ) • The trial form for 

Fn
11112 

(r2 ) is composed of two parts, a bound part and a free part, 

(2.81) 

The bound part <Dp can be expanded in terms of a set of basis functions which are usually 

chosen to be of a Slater-type function. Thus, 

<I> (r ) = ""C .rp . ='I\' fJ .e "·z r -a,zrz 
p 2 ~ p ,l p ,l ~ p ,i 

(2.82) 

For the case of electron scattering from hydrogenlike ion, the free wave function Sp is 

given by 

(2.83) 

where g 
12 

(k "r2 ) is the Coulomb-Bessel function [24]. k / = 2(E - E" ) . Ep is the energy 

of the bound electron. The free function Cp in this case is a Coulomb-Neumann 

function N 
12 

(k / '2) [24] weighted by the factor (1 - e - fJrz Y'z+l 

(2.84) 

This weighting is to provide correct behaviours of the Cp function near the coordinate 

origin (r2=0). Another form, which is the so-called Armstead-type fonn [25, 26] , can also 

be chosen to represent the free function Cp, 
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(2.85) 

and can also provide correct behaviours of Cp near the coordinate origin (r2=0) as well as 

at large r2. 

In order to improve the accuracy of the results of calculation, one may add a set of 

the correlation functions to the expansion of «pLS (~ 'r2 ) . This is, to some extent, 

equivalent to increasing the number of basis functions employed to expand the bound part 

of the trial function Fn
11112 

(r2 ) . With the addition of these correlation terms, 

The correlation functions %; (fj , rJ can be chosen to be in the fonn of a product of two 

Slater-type functions. 

As was seen in the previous sections, the R matrix (or in the case of elastic 

scattering, the scattering phase shift) can be calculated by using the formulas of (2.24) 

and (2.69) in the Kolm variational method or the fonnulas of (2 .30) and (2.75) in the 

inverse Kohn variational method. This, in turn, requires the evaluations of the bound-

bound, bound-free, and free-free matrix elements. In the case of electron scattering from a 

hydrogenlike-ion target, elements ofbound-bound matrix Mpq are given by 
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(2.87) 

where Bi2 and Bj2 are normalization constants. 

Elements ofbound-free matrices are given by 

M s =B.? k .2 x p , _ J 

lu" I (r,)r;'i2 e-ai2r2 YL7.'i (r,,P2)1(ii - EXI±A21u" I (r,)31 (k;.2 r2)YLMI LI (F-,,?2 )\ 
\ ~~ ~~ 1112 ~ j l j l ; 2 , 1 ; 2 1 

(2.88) 

while elements of free- free matrices, by 

At energ1es, below the first excitation threshold, only one elastic scattering 

channel exists for each partial wave L. Therefore, the matrix RL obtained in the 

calculation is nothing else but the tangent of the phase shift 8L in the Kohn variational 

method 

(2.94) 
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or in the inverse Kolm method, 

(2.95) 

Partial wave cross-sections can then be calculated, using the well known fonnula, 

(2.96) 

where e = 2E. 
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Chapter 3 

Determination of the singlet S-wave Doubly Excited 

States of Li+ below the N=2 Excitation Threshold 

3.1 Method of calculation 

When an electron collides with a hydrogenlike ion such as Li2
+, it could elastically scatter 

from the ion, excite the ion to an excited state or even ionize the ion, depending on the 

energy that the incident electron can supply to the ion. In a purely elastic scattering 

process of electrons from Li2+ in its ground state for example, the incident electron can 

either just scatter off Li2+ or, at a suitable energy, be temponuily captured by Li2+ to form 

a two-electron atom Li+ with both electrons staying in their excited states. One of the 

electrons of the atom is excited to the N=2 level while the other, to an nth excited state 

(with n ~ N) before being auto-ionized to a free electron, leaving behind the other 

electron de-excited to its ground state. Thus, the short-lived doubly excited states 

temporarily formed in an elastic scattering of electron from Li2+ are nothing else but 

doubly-excited auto-ionization states of Li+ below the N=2 excitation threshold of Li2+. 
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These doubly-excited-state resonances can, therefore, be located by simply looking at the 

region of energies where the partial wave phase shift of elastic electron-Li2+ scattering 

changes abruptly by n radian as the scattering energy crosses this energy position or 

equivalently where the relevant partial wave cross sections exhibit a peak. The positions 

of these resonances and their widths can, therefore, be determined with high accuracy by 

a numerical scattering method which can provide highly accurate partial wave phase 

shifts for electron scattering from Li2+. 

The calculations of phase shift and cross section at low energy using the Harris­

Nesbet variational method [14] have been known to provide very accurate results for 

electron and positron collisions with (neutral) hydrogen atoms (see for example Gien and 

Gien et al [27-34]). Making use of the high accuracy that the method can provide for 

these scattering phase shifts at low energy, Gien (1995, 1996, 1998) [ 12, 13, 35-37) also 

employed this method to determine the positions and widths of the Feshbach resonances 

fonned below the N=2 excitation threshold of H in both electron and positron collisions. 

Gien has indeed succeeded in determining the positions and widths for these resonances 

including those lying extremely close to the N=2 threshold of H. Recently, Gien [23, 36-

40] also considered the Harris-Nesbet method for the calculations of phase shifts and 

cross sections for electron and positron collisions with hydrogenlike ions and succeeded 

in obtaining very accurate phase shifts for these ionic targets as well. Very recently, 

Gien, [ 41-45) also used the Harris-Nesbet method to determine with great success the 

doubly-excited-state resonances of He below the N=2 ionization threshold He+. 
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We, therefore, consider here again the HaiTis-Nesbet method for the detetmination 

of the singlet S-wave doubly excited states formed below the N=2 threshold of Li2
+ in the 

two-electron ionic atom Lt. In the present calculation, the Harris-Nesbet variational 

method was first employed to obtain accurate values of S (L=O) singlet (S=O) partial 

wave phase shifts for electrons elastically scattered from Li2
+ at energies below the N=2 

excitation threshold of Li2
+. The detailed description of this method when applied to 

electron scattering from hydrogenlike ions had been given by Gien elsewhere [23, 40]. 

The so-called extended four-state (E4S) scheme, used in Gien's previous Harris-Nesbet 

calculations (Gien, 2002, 2003) [23, 40], has proved to provide very accurate results of 

phase shift for the scattering process and is again considered for the present calculation. 

The E4S scheme, as was discussed by Gien (2002, 2003) [23, 40] , can represent well the 

long-ranged polarization potential effect of the electron-Li2
+ collision system. A great 

number of correlation terms were added to the scheme to improve the accuracy of the 

long-ranged polarization potential effect as well as the short-ranged static potential effect 

of the electron-Li2
+ collision system. In practice, the number of correlation tenns added 

to the scheme was increased gradually until the phase shifts obtained no longer change 

significantly, i.e., when they already approach their convergent values. For the present 

calculation of singlet S-wave scattering, up to 108 correlation terms [ 44] were added to 

the scheme. Thus, the phase shifts obtained in the calculation are expected to be rather 

accurate. Furthermore, to obtain accurate results for the phase shifts at energies very 

close to the threshold where the highly-lying doubly-excited-state resonances are fonned, 

we had to use a fairly large basis set of functions covering a wide spatial range that 

enables an adequate representation of the high-lying nth excited states of the second 
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electron [44]. A basis set ofup to 33 Slater-type functions was considered for the present 

calculation. A very versatile and reliable computer code developed earlier by Gien [23] 

for the calculation of phase shifts and cross sections in electron (and positron) collisions 

with hydrogenlike ions within the Harris-Nesbet method was used for this calculation. 

To determine the positions and widths of these doubly-excited-state resonances, we 

used a procedure which is fairly time consuming but has been proved in the past to be 

able to determine very accurately the positions and widths of the threshold resonances 

below the N=2 threshold in electron-H scattering (Gien 1996) [37] , including those of 

extremely small width lying very close to the threshold that other numerical methods do 

not seem to be able to do. This procedure has also been used with great success in the 

detennination of doubly excited states of He below the N=2 excitation threshold of He+ 

mentioned above (Gien, 2005, 2006, 2007, 2008) [41-45]). We carefully swept through 

the energy regions where we sense the existence of a doubly-excited resonance with 

calculations of phase shifts at scattering energies slowly increased by a very small step 

and then gradually focused to the energy region around the position of that resonance. 

Finally, a great number of phase shifts at energies around the position of this resonance 

were calculated and these accurate phase shifts obtained were then fitted the Breit-Wigner 

formula, 

J =5
0
+ tan -1 [ r/2] 

E-£
0 

(3 .1) 
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to determine the position Eo of the resonance and its width r. In Equation (3 .1) above, 

0
0 

is the partial wave phase shift of the background (non-resonant) scattering. 

3.2 Results and discussion 

As was well known, there are different classification schemes for the series of doubly 

excited states below the N=2 threshold and the correspondence among these different 

classification schemes have been discussed in the literature (see for example, Oza ( 1986) 

[ 46]). For ease of reference to these doubly excited states, we use the symbols of the 

classification scheme by Conneely and Lipsky [1 OJ to label them. Thus, for the singletS­

wave doubly excited states 1Se below the excitation threshold N=2, there are two series of 

doubly excited states denoted by a and b. The a-series corresponds to the one which has 

its quantum numbers K= l and T=O in the configuration-mixed "doubly-excited symmetry 

basis" (DESB) classification scheme by Herrick and Sinanoglu (1975) [ 47] while the b­

series, to the one which has its quantum numbers K=-1, T=O. It should be noted that it is 

quite straightforward to translate the designations of the doubly-excited states shown in 

Tables 3.1 , 3.2, and 3.3 below within the classification scheme by Conneely and Lipsky 

[10] to those of the DESB scheme. Indeed, the doubly excited state 1Se(2, 3a) for instance 

is just the second (n=3) lowest-lying of the series of doubly excited states of quantum 

numbers K= l and T=O in the DESB scheme. 
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Table 3.1 Doubly-excited-state resonances 1 Se of the a, b series of Li+ below the =2 Li2+ threshold 

Classification a Energy 

K=l T=O 
1Se(2,2a) 5.18843889 
1Se(2,3a) 6.16906240 
1Se(2,4a) 6.44282802 
1Se(2,5a) 6.56109543 
1Se(2,6a) 6.62234956 
1Se(2,7a) 6.65804942 
1 Se(2,8a) 6.68064229 
1Se(2,9a) 6.69584038 
1Se(2,10a) 6.70658186 
1Se(2,11a) 6.71456199 
K=-1 T=O 
1Se(2,2b) 5.74890126 
1Se(2,3b) 6.35331224 
1Se(2,4b) 6.52201848 
1Se(2,5b) 6.60159475 
1 Se(2,6b) 6.64569400 
1
S\2,7b) 6.67269012 

1Se(2,8b) 6.69041569 
1Se(2,9b) 6.70268936 
1Se(2,10b) 6.71158154 
1Se(2,11b) 6.71835949 

a Energy in Ryd and referred to the ground state of Li2
+ 

b Width in Ryd 
c Conneely and Lipsky [10] 

b Width c Effective quantum 
number n* 

0.119(-1) 1.600 
0.454(-2) 2.624 
0.181(-2) 3.609 
0.876(-3) 4.602 
0.486(-3) 5.598 
0.296(-3) 6.596 
0.194(-3) 7.594 
0.134(-3) 8.594 
0.960(-4) 9.598 
0.725(-4) 10.624 

0.552(-3) 1.999 
0.134(-3) 3.175 
0.640(-4) 4.189 
0.348(-4) 5.192 
0.208(-4) 6.193 
0.134(-4) 7.193 
0.907(-5) 8.193 
0.615(-5) 9.195 
0.387(-5) 10.204 
0.302(-5) 11 .244 

c Reduced width 

n·31 

0.488(-1) 
0.820(-1) 
0.852(-1) 
0.854(-1) 
0.852(-1) 
0.851(-1) 
0.849(-1) 
0.848(-1) 
0.849(-1 ) 
0.869(-1 ) 

0.441 ( -2) 
0.430(-2) 
0.470(-2) 
0.486(-2) 
0.495(-2) 
0.500(-2) 
0.499(-2) 
0.478(-2) 
0.411(-2) 
0.429(-2) 



We succeeded in determining altogether 20 S-wave singlet doubly excited states 

1Se of Li+ below the N=2 excitation threshold of Li2+, 10 belonging to the a-series (K=1, 

T=O) and another 10 belonging to the b-series (K=-1 , T=O). This is the greatest number 

of doubly excited states 1Se determined below the N=2 excitation threshold for Lt so far. 

In Table 3.1 , we display the positions and widths of doubly-excited states that we 

determined, together with their effective quantum number n* and their reduced widths 

y" = n *3 1 [1 OJ. The fraction parts of n* are indeed almost the same for all the doubly 

excited states displayed [10]. In Tables 3.2 and 3.3, we tabulate, respectively, the 

positions and the widths that we determined for these doubly excited states together with 

those determined by other researchers employing different numerical methods for 

comparison. The energies and widths of the doubly-excited-state resonances are given in 

the units of Rydberg. The resonance energies Er shown in this table are refened to the 

ground state of Li2+. Because of the high accuracy of this method, we succeeded in 

determining doubly excited states very close to the N=2 threshold of Li2+. Four of them, 

two belong to the a-series ( 1 Se(2, 1 Oa) and 1 Se(2, 11 a)) and another two belonging to the b­

series (1Se(2,10b) and 1Se(2,11b)), were detennined by us for the first time. 

In general, the positions of the four lowest doubly excited states 1Se determined by 

the present work agree rather well with those detennined by Ho, who employed the 

complex-coordinate-rotation (CCR) method. They also agree very well with those 

determined by Chung and Lin who also used the complex-rotation method. The positions 

of the three lowest-lying doubly excited states of the present calculation also agree 

reasonably well with those determined by Bhatia who employed the Feshbach projection-
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Table 3.2 Energies (referred to the ground state ofLi2+) in Ryd ofthe doubly-excited-state resonances 1Se ofthe a, b series ofLt 
below the =2 Li2

+ threshold 

Classification This work 

K=1 T=O 
1Se(2,2a) 5.18843889 
'Se(2,3a) 6.16906240 
1Se(2,4a) 6.44282802 
1Se(2,5a) 6.56109543 
1Se(2,6a) 6.62234956 
1Se(2,7a) 6.65804942 
1Se(2,8a) 6.68064228 
1Se(2,9a) 6.69584038 
'Se(2,10a) 6.70658186 
1Se(2,11a) 6.71456198 

K=-1 T=O 
1Se(2,2b) 5.74890126 
1Se(2,3b) 6.35331224 
1Se(2,4b) 6.52201848 
'Se(2,5b) 6.60159475 
'Se(2,6b) 6.64569400 
1Se(2,7b) 6.67269012 
1Se(2,8b) 6.69041569 
1S\2,9b) 6.70268936 
1S\2,10b) 6.71158154 
1S\2,11b) 6.71835949 

a Chung and Lin (1998) [11] 
b Bruch et al. (1975) [1] 
c Ho (1981) [7] 
d Bhatia ( 1977) [ 6] 

aChung and Lin (1997) bBruch et al (197 5) cHo (1981) 0Bhatia (1977) 

5.18843601 5.195788 5.1883068 5.1877556 
6.16907430 6.176614 6.1688500 6.1694013 
6.44287785 6.447654 
6.56115046 6.564172 
6.62243420 6.624356 
6.65817062 6.659376 
6.68082426 
6.69614137 

5.73977893 5.772498 5.7391223 5.7390268 
6.35205096 6.360928 6.3517276 
6.52157322 6.525918 
6.60148396 6.603816 
6.64570198 6.647056 
6.67272794 
6.69042699 
6.70261761 



---------------

Table 3.3. Width rin Ryd ofthe doubly-excited-state resonances 1Se ofthe a, b series ofLt below the N=2 Li2
+ threshold 

Classification This work 

K= l T=O 
1Se(2,2a) 0.119(-1) 
1Se(2,3a) 0.454(-2) 
1Se(2,4a) 0.181(-2) 
1Se(2,5a) 0.876(-3) 
1Se(2,6a) 0.486(-3) 
1Se(2,7a) 0.296(-3) 
1Se(2,8a) 0.194(-3) 
1Se(2,9a) 0.134(-3) 
•se(2,10a) 0.960(-4) 
1Se(2,11a) 0.725(-4) 

K=-1 T=O 
•se(2,2b) 0.552(-3) 
•se(2,3b) 0.134(-3) 
•s e(2,4b) 0.640(-4) 
1Se(2,5b) 0.348(-4) 
1Se(2,6b) 0.208(-4) 
1Se(2,7b) 0.134(-4) 
1Se(2,8b) 0.907(-5) 
1Se(2,9b) 0.615(-5) 
1Se(2,10b) 0.387(-5) 
1Se(2, 11b) 0.302(-5) 

a Chung and Lin (1998) [11] 
b Bruch eta!. (1975) [1] 
c Ho (1981) [7] 
d Bhatia (1977) [6] 

a Chung and Lin ° Conneely and cHo (1981) 0 Bhatia ( 1977) 
(1997) Lipsky (1978) 

0.114(-1) 0.290( -1) 0.113 (-1) 0.115(-1) 
0.436(-2) 0.638(-2) 0.430( -2) 0.570(-2) 
0.174(-2) 
0.845(-3) 
0.472(-3) 
0.290(-3) 
0.195(-3) 
0.137(-3) 

0.486(-3) 0.380(-3) 0.486( -3) 0.816( -3) 
0.122(-3) 0.120( -3) 
0.590(-4) 
0.326(-4) 
0.195( -4) 
0. 122(-4) 
0.780(-5) 
0.598(-5) 



operator formalism for his calculation. We believe that the positions determined by 

Bhatia for these doubly excited states are also fairly accurate, at least for these few low­

lying ones. The positions of the three lowest-lying doubly excited states detetmined by 

Conneely and Lipsky [1 0] employing the truncated diagonalization method (TDM) are in 

reasonable agreement with those determined by the present calculation as well as with 

those by other research groups, but they tend the stay a bit higher than those detennined 

by us as well as by other research groups (Ho [7], Bhatia [6], and Chung and Lin [11]). 

For higher-lying doubly excited states, the positions of the doubly excited states 

detennined by us also seem to agree better with those detetmined by Chung and Lin than 

with those detennined by Conneely and Lipsky. 

The widths of the four lowest-lying resonances determined by us are found to 

agree reasonably well with those detem1ined by Ho and by Chung and Lin. We believe 

that the widths determined by us are rather accurate. Indeed, we have double-checked 

these values by carrying out calculations with a smaller set of basis functions and found 

that the values of these widths do not vary significantly from one calculation to another. 

This fact indicates that the widths of these lowest-lying resonances that we obtained 

appear to have approached their convergent values and should, thereby, be rather 

accurate. The good agreement of the results of Ho with ours, obtained with a completely 

different numerical method, indicates that the CCR method can provide fairly accurate 

results for these resonance widths, at least for these low-lying doubly excited states. The 

widths obtained by Bhatia employing the Feshbach projection-operator fom1alism for his 

calculation can also be regarded as agreeing reasonably well with ours, although the 

34 



deviation of their values from ours is more noticeable. The widths obtained by Conneely 

and Lipsky, who employed the truncated diagonalization method with the static-exchange 

approximation for the continuum wave function, even for these lowest-lying resonances 

are found to disagree considerably with ours as well as with those detem1ined by all other 

groups. This may be due to the fact that these researchers used the truncated 

diagonalization method (TDM) with a finite basis set of product of hydrogenlike wave 

functions for the Q space, excluding the effect of the continuum. The basis set of the Q 

space cannot, therefore, represent well all the interactions of the two-electron system 

including the long-ranged polarization potential effects, to which the accuracy of the 

resonance widths they calculated seems to be rather sensitive. Thus, the widths obtained 

by this group do not seem to be very accurate. Comparing the widths of the higher-lying 

doubly excited states obtained by Chung and Lin to those obtained by us, we found that 

their values agree rather well with ours (see Table 3.3). The widths of their resonances 

belonging to the a-series seem to agree somewhat better with ours than those of the 

resonances belonging to the b-series. This is as expected, since the widths of the 

resonances belonging to the b-series are at least one-order-of-smallness smaller than those 

of the a-series, and the accuracy of the calculations is, therefore, more difficult to achieve. 

On this basis, the widths of the higher-lying resonances of the b-series determined by 

Chung and Lin still can be regarded as agreeing with ours rather well and are, thereby, 

also rather accurate. 

In Table 3.4, we show experimental data obtained for the positions and widths of 

the doubly-excited states I se of Lt below the N=2 threshold of Li2
+. These data still 
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Table 3.4 Experimental data for positions and widths in Ryd of the doubly-excited states 1Se ofLi+ below the N=2 excitation 
threshold of Li2+ 

Classification aRodbro et al 

K=1 T=O Position 
1Se(2,2a) 5.19303538±0.00735 
1Se(2,3a) 6.17577965±0.00735 

K=-1 T=O 
1Se(2,2b) 5.74284295±0.00735 
1Se(2,3b) 6.35512865±0.01470 

a Experimental data by Rodbro et al (1 979) [4] 
b Experimental data by Ziem et al (1975) [2] 

0Ziem et al Present calculation 

Position Width Position Width 
5.19083027±0.0022051 0.0073504±0.0022051 5.18843889 0.0119 

6.16906240 0.00454 

5.74890126 0.000552 
6.35331224 0.000134 



remain quite scarce. Ziem at a] [2] reported the position and width measured by them for 

the lowest-lying doubly-excited state 1S(2,2a), while Rodbro et al [4] only reported the 

positions of the four lowest-lying 1Se. With the experimental errors (error bars) given for 

these data by these experimental groups, we see that the positions calculated by these 

various theoretical groups for these four doubly-excited states and shown in Table 3.2 

(including ours) can all be regarded as agreeing well with experimental data. The sole 

experimental width provided by Ziem et al for the lowest-lying doubly-excited states 

1 Se(2,2a), considering its experimental etTors given, can be regarded as agreeing only 

fairly with the theoretical widths calculated by various research groups. This is as 

expected, since experiments performed to measure these widths should be quite difficult, 

in view of the extreme smallness of the widths of most of these doubly-excited-state 

resonances. In this sense, accurate results of a reliable theoretical calculation should be 

quite useful in serving as benchmark values to guide these difficult experiments. 

An advantage of the numerical method that we used to detennine the doubly 

excited states presented in this thesis is that we can explicitly show them in graphical 

forms in order to see how exactly the shapes of these resonances would be. The graphical 

presentation of these doubly-excited-state resonances also, to some extent, provides a 

confirmation of their definite existence in the energy distribution of cross sections and 

phase shifts of the scattering process. We calculated a significantly great number of 

singlet S-wave elastic scattering phase shifts and cross sections around the positions of all 

the twenty doubly-excited states 1Se that we succeeded in locating, and plotted them in 

Figures 3.1 - 3.40. These graphs indicate that these resonances should belong to the same 
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family as they all have the same shape. They all start with a smooth increase of the cross 

sections on the left side to reach their peak and then end with a quick fall-off to nil on the 

right. 
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Chapter 4 

Conclusion 

In this thesis, we present the results of our determination of the S-wave singlet doubly­

excited states 1 Se of Lt below the N=2 excitation threshold of Li2+ using a numerical 

method developed earlier [12, 13] within the Harris-Nesbet variational calculation of 

electron-hydrogenlike-ion collisions. Altogether, we succeeded in locating 20 doubly­

excited states I se of Lt below the N=2 threshold of Li2+, 10 of them belonging to the a­

series (K= l, T=O) and another 10 belonging to b-series (K=-1, T=O). This is the greatest 

number of singlet S-wave doubly excited states that have been determined below the 

threshold N=2 for Lt so far. Because of the high accuracy of this method, we were able 

to detennine for the first time some of these doubly-excited states (1Se(2, I Oa) and 

1Se(2,11a) of the a-series and 1Se(2,10b) and 1Se(2,11b) of the b-series) which lie very 

close to the N=2 threshold. The results of the present calculation may also be used to 

resolve the discrepancy existing among the widths of a few lowest-lying doubly excited 

states 1Se detennined by various other research groups employing different numerical 

methods. Our calculations also provide a large set of higher-lying 1 Se resonances of Li+ 
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below the N=2 threshold for comparison with those detennined by Chung and Lin. Our 

calculations confirm the existence of all the 16 doubly-excited states 1 Se determined by 

this group and that the positions and widths determined by them seem to be also rather 

accurate. We are also able to display explicitly in graphs all the twenty doubly excited 

states 1Se that we detennined, so that one can have a precise idea about the shape of these 

1Se doubly-excited-state resonances. This work, together with numerous other works 

done in the past by Gien and Gien et al. [12, 13, 23, 27-45], again confirms that the 

Harris-Nesbet calculation is a reliable numerical method that can provide not only very 

accurate scattering phase shifts and cross sections for collisions of electron and positron 

with hydrogen atoms and hydrogenlike ions at low energy but also an accurate numerical 

procedure to be used in the detennination of doubly excited states of two-electron (neutral 

or ionic) atoms. An interesting research work that could be done immediately is the 

determination of the triplet S-wave doubly excited states of Lt below the N=2 threshold 

of Li2+ using this very same numerical procedure. 
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