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Abstract 

Energy-density values of prey species are essential inputs for bioenergetic models 

of consumption. Diets of marine \'ertebrate predators in the northwestern Atlantic 

are reasonably \.veil described, but the proximate composition (PC) and energy 

density (EO) of these prey species, and the factors affecting them, are poorly kno\vn, 

particularly tor those prey sizes commonly eaten. The purpose oi this study was to 

estimate PC and ED of important prey species, and investigate important sources of 

variation. 

Twelve species ~yvere collected in waters near Newfoundland and L1brador: 

Atlantic cod (Gadu::; morlzua), American plaice (Hippoglossoides platc~~oidt.'~), sand 

lance (Amnwd.utc~ dul,ius), Arctic cod (Boreogadus saida), northern shrimp (Pal!dalus 

hm·alis), redfish (Sc!Jastt's spp.), Greenland halibut (Rci11hardtius hippoglo~soidt's), 

squid (1/lt.'x illc£.:cbro~us and Gtllwtus fil!Jricii), capelin (iv1allotus <.•il/osus), Atlantic 

herring (Clupca lwrel!gus) and daubed shanny (Lumpellrts nzaculatus) . ED was 

estimated from replicates of all samples by determining moisture, lipid, protein and 

inorganic content. ED differed among species and was intluenced by body size, 

season, geography, and year of collecting. Herring, capelin and Golltlflls squid h,1d 

the highest ED; Atlantic cod, American plaice, sand lance, Arctic cod and northern 

shrimp had the lowest. ED increased greatly with size (age) in capelin, and also in 

Greenland halibut and fllex squid. Other species showed no strong relationships of 

ED to body size. ED was greater in male than female northern shrimp. ED in capelin 

was highest in winter. Arctic cod had higher ED offshore than nearshore in eastern 

Newfoundland. Interannual variation in ED was found in Greenland halibut and 

Atlantic herring. Levels and variation in ED are discussed in relation to predator 

physiology, ecology, and life history. 
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Chapter One: Introduction 

Estimating total prey consumption by marine predators is an essential step 

towards modeling trophic interactions with prey stocks, as well as providing one 

source of information necessary in estimating the impacts of this predation. 

Bioenergetic models of prey consumption (e.g., tvL1jkowski and Waiwood 19tH; 

Markussen et al. 11:;1!.)2; Olesiuk l YY3; Ylohn and bowen l99tJ; Stenson d c~l. 19971 

require information about energy density (ED) ~~r prey, 1 which is commonly derin~d 

from ,malyses of proximate composition (PC) . PC has been determined for many 

marine fish and invertebrate species of commncial importance (Stansby and Hall 

1965; Stoddard 1968; Anonymous 1Y69 : Sidwell et al. 197-l; Holdway and Beamish 

198-l; Steimle and Terranova 1985; Krzyno\vek and Murphy 1987) . \!evertheless, 

most determinations of rc are ecologi..:ally uninformative, because they have not 

been made for the size or species of prey e,-,ten by marine predators (such as sand 

lance and Arctic cod; Hislop et al. 1991 ; Lawson and Stenson llJ95; Lawson et 'al. 

1995). Furthermore, most published PC es timates refer to composition of selected 

body components, such as muscle or gonads, rather than entire prey items (e.g ., 

Sidwell et al. 197-l) . Commercial samples are also rarely representative of the 

important areas or seasons of feeding by predators (Bowen et al. 1993), and do not 

consider important annual events in the prey's life cycle that may int1uence PC, such 

I Most bioenergetic models of consumption by marine predators cUe multiplicative. A 

predator's consumption of a prey species is estimated by dividing the predator 

population's total energy requirement (which is the product of predator population, 

individual predator's biomass and mass-specific estimates of energy requirement) by the 

proportion of the predator's diet accounted for by the prey item, and the energy density of 

that prey item (e.g., Nordey et al. 1995). 



as spawning (Woyewoda et al. 1986) . Finally, most analyses concern commercially 

important species, rather than those species that are ecologically important in 

trophic interactions. 

The weaknesses just noted apply to estimates of food consumption by marine 

mammals in the northern Atlantic (Markussen and 0ritsland 1991; ~tarkussen et al. 

1GQ2; Stenson et ,1!. 199~ : 1\:tohn and 80\ven 1996). These estimates ha\·e not 

considered seasonal \·ariation in prey ED because data for key species ,1re lacking 

(e.g., Martensson et al. 1996) . 

The purpose of this study was to provide PC and ED estimates for a variety of 

species that are common constituents of the diets of marine predators such as 

cetaceans, pinnipeds and seabirds, so that understanding of trophic-energetic 

relationships between marine predators and their prey could be improved . 

In addition to ib importance for bioenergetic moddling, inform,1tion on ED also 

permits in\'estigations into many important relc1ted topics. For example, differences 

in ED among prey species should be retlected in dietary preferences of predators: all 

else being equal, predators should sdect prey that yield the greatest amount of 

energy per unit mass (Krebs and Davies 1978; Lawson et al. 1998). Such preferences, 

coupled with predator mobility, longevity, and (particularly for seabirds, cetaceans 

and pinnipeds) learning ability, likely int1uence where and when predators feed . 

I assessed and quantified factors (season, location, size, sex) that may affect PC 

and ED of prey of marine predators in the northwestern Atlantic. Levels of and 

·:ariation in PC and ED were interpreted in light of current knowledge of the 

digestive efficiency and food preferences of northwestern Atlantic vertebrate 

predators. Finally, I summarize current information on life history, abundance and 

distribution of the prey species analysed in this study. 



Chapter Two: Materials and Methods 

1) Specimen Collection and Storage 

Specimens of 12 important prey were collected opportunistically during 

groundfish surveys by the Department of Fisheries and Oceans (DFO), and by 

DFO's Sentinel fisheries program, in areas near Newfoundland and Labrador 

(Table 1; Figure l). Daubed shanny were collected c1t the Gannet Islands, Labr<H.:or 

(530 57 N 56° 31 W) . Where possible, samples were collected from more than one 

location, season and year. ~lost samples (8-l' \,) were collected in 1995 and 1996, 

and about half were collected from locations more than 30 km from shore 

(designated as (~tj~lwre; other samples are considered as 1/t'ar~/wre) . Other samples 

\vere collected during the years 1991 to 199-t 

Specimens were frozen fresh at sea (in -10°C sample freezers), stored in sealed 

plastic bags, and on return to shore, were stored at -20°C ur.til processing. The lllex 

squid and Atlantic herring were commercial samples thclt were tlc1sh-frozen at sea 

and stored at -20°C in plastic-lined cardboard boxes. 

2) Specimen Preparation and Measurement 

Prey samples were sorted by location, season, sex (where possible), and siztl 

(body length and mass). Frozen specimens were thawed at room temperature for c1 

maximum of 2 hr to reduce evaporative water loss, after which they were measured 

for mass (to the nearest 0.1 g) and straight-line lengths (to the nearest 0.1 em). I 

measured standard length (tip of snout to caudal peduncle) for American plaice, 

fork length for other fish species (tip of snout to fork of tail), carapace length for 

shrimp (dorsal carapace length, from anterior tip of rostrum to posterior margin of 

carapace, on the dorsal midline) and mantle length for squid (posterior tip of mantle 

3 



to anterior margin of mantle). Sex was determined by examination of the gonads of 

each of my specimens; I was assisted by trained DFO laboratory staff with extensive 

experience in performing this task as part of regular scientific trips for DFO. In some 

cases specimens were too small to determine sex, and these were not used in 

analyses of sexual differences. Some specimens of Greenland halibut, Gollatus squid 

and daubed sh~mny cont:1ined !,uge me<\ I boli in their stomachs. As this would 

int1uence PC and ED analysis results (creating in an additional, unquantified source 

of variation), stomachs were emptied before these specimens were dried and ground. 

Specimens were cut into small pieces and dried to constant mass in a convection 

oven (Precision Scientific Inc., 3737 West Cortland Street, Chicago, ll) at l05°C 

overnight for small samples, or until a constant mass was rnched for large samples 

(AOAC 1990). CarapclCes were removed from half of the northern shrimp 

specimens, but ED of shelled (x = -1:.9 kJ •g-1 wet mass, SO = 0.6-!) and whole 

(x = -!.7 kJ•g-1, SO= 0.33) shrimp were not significantly different (one-way 

ANOV A F[ 1.311 = 0.-!9, p = 0.-!89), so these data 1.vere combined for analyses. 

Otoliths .md squid beaks were removed prior to analysis as part of other studies. 

Dried samples from large specimens were ground in an electric grinder (Retsch, Rl\tiO 

model, GmbH & Co. KG, 657 Hanni, Germany) to a uniform consistency. Small 

specimens, or those with high lipid content, were ground manually in a ceramic 

mortar. Homogenized samples were stored in sealed 25 ml plastic vials. The grinder, 

mortar and pestle were cleaned with acetone and dried thoroughly between samples. 
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3) Analyses of Proximate Composition 

Proximate composition (water, lipid, protein and inorganic content) of the 

species used in this study was determined using the methodology of the Canadian 

Food Inspection Agency, St. John's, Newfoundland, which are based on 

recommendations of the AOAC (1990). 

a) Water content 

Homogenized specimens were weighed(± 0.0001 g; Mettler AE160) on a ClH"ered 

digital scale, placed in 13 em aluminum pans, and dried to constant mass overnight 

at 105°C in a convection oven (Precision Scientific [nc., 3737 West Cortland Street, 

Chicago, IU. Per cent moisture content was calculated using the difference between 

homogenized and dried sample masses. I reduced water loss from the specimens by 

limiting thawing time prior to homogenization, and being careful to process samples 

over the drying pan such that free water \NelS collected in the pan and included in the 

pre-drying mass measurement. 

b) Lipid content 

Lipid content was determined for two replicates of 1 to 3 g, dried subsamples of 

each species by diethyl ether extraction in a water-cooled fat extractor ( Labconco 

Corporation, Kansas City, Missouri USA 6-!132). Lipid extraction's were run for at 

least 16 hr, after which the collection tlask was dried at 100°C for 30 min, then 

placed in a sealed desiccator for at least 1 hr, to remove any remaining diethyl ether 

residue and water. The mass of the lipid remaining in the flask was divided by the 
' 

original sample mass to derive the per cent lipid content of the replicate samples. 



c) Protein content 

Per cent protein content was determined as% protein= 100- ('\,moisture -r ''·;, 

lipid + u~, inorganic} . In these calculations I assumed that carbohydrates were a 

negligible component as has been done in similar studies (e.g. , Sidwell et al. 197-l; 

Percy and Fife 1981). 

To verify calculated protein values, I assayed the protein content directly for 

random, replicate subsamples of all species using the Kjeldahl method (Gorsuch, 

1976; Chen et al. 1988}. 

The protein assay was subdivided into three stages: digestion, distillation and 

titration. The maxim,1l number of samples prepared using the titrator was 20 

(-!0 tests, with two replicates per sample). :\ Mettler electronic balance was used to 

record sample mass; 0.250 to lJ.300 g of each sample was analysed . Samples were 

transferred to digestion tubes located in the test tube r;;Kk. While samples wen~ 

weighed and the data entered into the titrator program, the digestion unit was pre­

heated to -!20°C. 

At the beginning of the digestion phase, Kjeltabs (Thompson and Capper Ltd ., 

11 Hardwick Road, Astmoor Industrial Estate, Runcorn, Cheshire, England} were 

added to each test tube, then 15 ml of sulfuric acid were added and mixed with the 

sample in the test tube. The test tube rack was then placed on the digestion unit for 

55 min (Digestion System 20, Tecator AB, Box 70, S-263 01 Hogan;is, Sweden} with 

an exhaust system (ES} placed above. After this period, the test tube rack was 

removed with the ES and cooled for 25 min. The ES was then remo\'ed from the top 

of the test tube rack and digested samples were diluted in 85 ml of distilled water. 

The contents of each test tube were then mixed thoroughly. 
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To initiate the distillation phase, 2.5 ml of boric acid were added to each of 20 

sample cups. Each cup was placed in the upper position on the platform of the 

distilling unit (Kjeltec System 1028 Distilling Unit, Tecator AB, Box 70, S-263 01 

Hoganas, Sweden). The distillation was completed after 3 min, then the contents of 

each digestion tube were distilled into a second sample cup. 

The ;;,1mplc .:hanger (~v1cttler ST 20 / 5<1mrle Ch;:mger . i'vfettler lnstrumente . CH 

8606 Greinfensee, Zurich, Switzerland) ·was calibrated using standard buffer 

solutions (pH -tO and pH 7.0) . The second sample cups \vere placed on the changer 

turn table, and the titrator {Mettler DL 20 / Compact Titrator, \11ettler Instrumente, 

CH 8606 Greinfensee, Zurich, Switzerland) started. The percentage of protein in the 

samples was calculated automatically by the titrator. Calculated and Kjeldahl­

derived protein values were not significantly different (paired t test. t = 1.-t7, p = 

0.14:9, df = 4-l), so combined values Me cited throughout. 

d) Inorganic content 

Per cent inorganic content was estimated by combusting 0.300 g samples in ,1 

muftle furnace (model FA1850; Thermolyne Corporation, Dubuque, lA) at 550°C for 

16 hr. After 24: hr the cooled samples \Vere re-weighed to determine the ash content. 

e) Energy density 

l analysed two replicates for every lipid and protein assay. The average of these 

replicates were used as the value for each specimen. ED was calculated assuming 

20.0 kJ •g-1 for protein and 38.0 kJ • g·l for lipid (Ricklefs and Schew 199-l). In a 

comparative study, when ED was calculated from proximate analysis using 

("indirect") conversion factors of 39.5-l kJ•g-lfor lipid and 23.64 kJ•g-1 for protein, 

results were 4.4 percent higher than those obtained from bomb calorimetry (Craig et 
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al. 1978). This discrepancy was eliminated when Craig et al. used a lower, directly­

determined energy density for the extracted lipid fraction (35.52 kJ • g·l ). Since I used 

conversion factors less than the greater, ''indirect" values of Craig et al. (see 

Materials and Methods) results of this study are likely to be more similar to those 

that might have been obtained using bomb calorimetry. 

Tht:rt2 are ,1 \'Jrkty of other energy \o'quiv,11ent v<~lues for lipid (and protein) in the 

literature: 39.5 kJ•g-1 (Paine 1971), 39.356 kJ•g-1 (Pike and Brown 1975), 

39.33 kJ•g-1 (Schmidt-Nielsen 1990) and 39 . ~ ,35.5 or 33.0 kJ•g-1 (Luc,1s 1993). 

Given this variety of energy equive:1lents, it would be desirable that published ED 

results be accompanied by both the PC and energy density equi\·alents (if ED values 

are nL)t obtained with direct methods such ,15 bomb calorimetry) to facilitak 

interpretation and conversion by readers who might employ other energy equivalents. 

ED values are expressed per unit \Vet mass, Lmless stated otherwise. In addition 

to my samples, I included unpublished data on other capelin and red fish from 

B. Nakashima and K. Kennedy (Department of Fisheries and Oceans, St. John's, 

Newfoundland) . The latter samples were ,1nalysed using idt:>ntical methods to those 

of this study, although each capelin d,1ta point represents the mean value for a 

homogenate of 10 fish. 

f) Statistical analyses 

One-way ANOV A, simple linear regression and descriptive statistics were 

computed using the Statview programme (Abacus Concepts, 1918 Bonita Avenue, 
' 

Berkeley, California 94704-1014:) on a Macintosh microcomputer. Data were 

examined for normality, homogeneity of variance, and independence. 
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Coefficients of variation for moisture (2.9"{,), lipid (0 .2% of dry replicate), 

protein (0 .3''.1o of dry replicate) and ash (0 .-l:%) obtained using these analytical 

techniques are low (Anonymous 1966; 1976; Hanson 1973). Per cent lipid, protein 

and inorganic estimates were converted to percentages of the original wet sample 

mass and arcsine-transformed [q =arcsine (p0.5), where pis a proportion] for all 

s tati::.tiLal c~nalyscs (Gl.lss ct .1l. l!:l/2; H~1 y:-; lllHH ) Thi..; tr;-m..;form<ttion normalized 

residuals successfully. 

Analyses were restricted to univariate statistics, since sampling was 

opportunistic and appropriate sample designs for other statistics (e.g ., multiway 

A NOVA) were not possible (e .g ., Keppel 1982; Keppel and Zt•deck L 989). Post -/r oc 

tests were used for assessing effects of season, gender and body size, as data 

permitted (Wilcox 1987; Keppel and Zedeck 1989; Neter et al. 1990) . 



Chapter Three: Results 

1) Interspecific Differences in Prey Composition 

There were significant differences in ED, per cent protein, and per cent ash 

among species (per cent lipid and moisture were not tested, because they are so 

highly correlated with one another and with ED; Tables 2 to 5; Figure 2). ED ranged 

between -t.2 and 8.7 kJ • g- 1, being highest in Atlantic herring and cape! in- more th<m 

double the estimate tor Atlantic cod. Gonatu~ squid also had high ED levels. Protein 

content varied significantly among species, with an overall range of 12 to 20 percent. 

It was highest in daubed shanny and lowest in Greenland halibut. The range of ash 

content was 1.3 to -t.6' ~\ 1; it was highest in northern shrimp and lowest in Atlantic 

herring. PC data for all specimens assayed in this study are presented in 

Appendix B. 

2) Size and Sex-related Differences in Prey Quality 

The relationship of ED to body mass \-vas investigated in prey species with 

.1dequate sample sizes. ED was positively correlated with body size in samples of 

seven species, with steepest slopes for capdin (0.-t·t 0.-4:8), Go11atu~ squid (0.29), 

and Greenland halibut (0 .13; Table 6 and Figure 3) . Other significantly positive 

slopes ranged from 0.03 to 0.08. ED declined strongly with body length in Atlantic 

herring (slope = -0.39); other significantly negative slopes were -0.08 (an Arctic cod 

sample) and -0.02 [an Atlantic cod sample; Figure 3; in this figure I have also shown 

the size range of Greenland halibut and Atlantic cod most commonly recovered from 

the stomachs of harp seals in the Northwest Atlantic (Lawson et al. 1995; Lawson 

and Stenson 1997)].0verall, regression analyses revealed significant variation in the 

relationship of ED to body length both within and across species. 
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Sexual differences were tested for within samples from both the same locality 

and season. In these analyses, only northern shrimp (Pmrdalus) exhibited a significant 

sexual difference in ED (Table 7). 

3) Seasonal Differences in Energy Density in Capelin 

Significant effects of season on ED was found for capelin, which \Vas the only 

species tested(Table 8). Capelin had much higher ED in 'vvinter than summer from 

eastern Newfoundland, offshore. ED of the summer sample of sand lance was 

insignificantly higher than the winter sample (these samples were from different 

areas, however, which confounds interpretation}. 

4) Geographic Differences in Prey Quality 

ED varied geographically in several species (Table 8). In Arctic cod, ED was 

significantly higher in an offshore than a netlrshore sample from eastern 

Newfoundland in winter. A similar trend was found for another comparison of 

offshore and inshore samples, but these were from different geographic regions. 

Samples of Atlantic cod from eastern Newfoundland and labrador did not differ 

significantly from one another (both were sampled from nearshore, in summer}. 

5) Interannual Differences in Prey Quality 

11 

There were significant interannual differences in ED of two species that were 

collected in the same season in different years (Table 8). ED in the 1q92 sample of 

Greenland halibut was about 25% higher than the estimate for fall 1995. ED of .;\tlantic 

herring samples from the 1992 and 1993 also differed significantly, by about 10%. 



Chapter Four: Discussion 

This study revealed large interspecific, seasonal, geographic and size differences 

in energy density of fish prey, which must be important for prey choice, feeding 

intensity, and movements of vertebrate predators. My results also point to 

discrepancies between PC and ED values obtained using analyses of particular body 

components (rather than the entire animal as in this study; see T,1ble 9 for other 

published values) . 

Capelin are a key species for vertebrate predators in the northwestern Atlantic. 

ln this study, capelin caught in the fall had the highest lipid and ED of any of the 

species I analysed, or that have been reported tor the northwestern Atlantic 

(Anonymous 1969; Steimle and Terranm·a 1985; Brekke and Gabrielsen 1994; 

Martensson et al. 1996; Table 9). Capelin feeding behaviour \'aries seasonally, with 

greater feeding intensity before and after the spawning season (Appendix A) . The 

proportion of lipid (and ED) of fish is influenced by diet (e.g., Lnve 1970), and the 

high ED values in the winter probably reflect the int1uence of feeding lm PC. Capel in 

had significantly lower ED during the June spawning period, when they do not 

normally feed (Winters 1970). Jangaard (1974) similarly reported that the fat content 

of capelin from the Barents Sea declined by c1s much as 80% during spring spawning, 

with a return to high levels in the fall. 

The Atlantic herring is also a significant pelagic prey item in the northwestern 

Atlantic. The herring [analysed had high energy content, as in earlier studies (Steimle 

and Terranova 1985; Martensson et al. 1996; Table 9). Seasonal variation in ED has 

been reported for herring in the Barents Sea, with high levels in the fall (Stoddard 

1968). 
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The abundance, schooling behaviour (Jangaard 197-l). high ED, and high 

digestibility (Martensson et al. 199-l; Lawson et al. 1997) of both capelin and 

Atlantic herring may explain why they are predominant items in the diet of AtlC\ntic 

cod (e.g., Fahrig et al. 1993), seabirds (e.g., 1vlontevecchi and Piatt 198-l; Cairns et al. 

1990; 1991 ), cetaceans (e.g., Whitehead and Carscadden 1985; Fontaine et al. 199-l), 

and harp sc.1ls in ccrt.:1in parts of the nnrthwe-.tern At\,1ntic (fisher and McKkenzie 

1955; Sergeant 1973; Murie and Lavigne 1Y91; Becket al. 1993; Lawson et al. 1Y95) . 

The relatively high ED for capelin and herring (Hodder et al. 1973, this study) in the 

fall coincides with a period when harp seals are feeding heavily and gaining mass 

prior to breeding. Harp seals must satisfy an increased energy demand during this 

time, so it is understandable that capelin are ,1 preferred prey offshore, when these 

seals have prey choices (lawson d al. 1998) . 

An important factor that could not be considered in this study is prey 

availability. Even if predators prefer high-energy prey, locally or seasonally 

abundant prey of low ED may be more economical to prey on. For example, the diet 

of harp seals from nearshore northeastern Newfoundland since 1986 has been 

dominated by Arctic cod (Lawson and Stenson 1995). Lilly et al. (lYY-l) reported an 

increase in abundance and biomass of Arctic cod bycatch in groundfish bottom 

trawls off southern Labrador and eastern Newfoundland from the mid 1980s to the 

early 1990s. If there was a significant increase in Arctic cod biomass relative to 

capelin in the nearshore areas where harp seals have been collected, the seals' 

increased reliance on Arctic cod since 1986 may represent a shift in diet in response. 

However, although harp seals digest Arctic cod less efficiently than capelin (lawson 

et al. 1997), a dietary shift in nearshore areas may not necessarily entail a significant 

reduction in diet quality because capelin and Arctic cod have similar ED there. A 
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similar dietary change in response to prey availability may have occurred when 

common murres (llria mzlgt') breeding in labrador switched from capelin in the early 

1980's (Birkhead and Nettleship 1987), to a diet dominated by daubed shanny in 

the late 1990's (R. Bryant, unpublished data). 

Other species in this study are less important prey for mammalian and avian 

predators than ~apdin c~nd ht:rring, but ne·.-crthckss sho'l.vcd important trend~ in 

energy density. Northern shrimp showed J significant sexual difference with males 

having higher energy density than females. There was an increase of ED with body 

size in several species, notably capelin, Greenland halibut and ll/ex squid . Ho~;vever, 

the data in this thesis that showed that ED did not increase for most species tested 

may explain why predators like harp seals eat small prey, or smaller individuals of 

certain prey species (Beck et al. 1993; lawson et al. 1995; lawson and Stenson 

1997): there may be no energetic advantage to searching for rare, large prey that are 

difficult to handle if the energy return from this strategy is not commensurately 

greater as well . For instance, the digesti\·e efficiency of harp seals is greater when fed 

small than large Atlantic cod (lawson et al. 1997), even though the ED of cod is not 

correlated with its body size (and the ED of cod is relatively similar across 

locations; Table 9). It is therefore not surprising that most Atlantic cod recovered 

from harp seal stomachs are smaller individuals. On the other hand, there is greater 

energy per gram of Greenland halibut as the fish grow larger, yet harp seals eat 

halibut up to a fork length only slightly larger than the largest Atlantic cod they eat 

(Figure 3). In this case, studies of feeding behaviour of captive harp seals have . 

shown that prey handling time and effort increases significantly with body size in 

haibut U. lawson, Ocean Sciences Centre, Memorial University, St. John 's, 

Newfoundland; unpublished data). 
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ED of squid in this study, particularly Gvuatus. was higher than reported 

previously (but see Perez 1994), because the entire animal was analyzed, rather than 

just the muscular, low-fat mantle (e.g., Croxall and Prince 1982). This suggests that 

more analyses of cephalopods <md other invertebrate prey are warranted by 

ecologists studying predators which consume these prey types. 

Intt:rcHU1U<11 differenLCS in ED of prey may be gre,1t (e.g , \.tf<uttmssnn et al. 1996) . 

For example, Nilssen et al. ( 1994) reported significant changes in the liver index·of 

prespawning cod in Lofoten during 1947 to l988. In additi•Jn to the interannual 

changes in ED reported for herring and halibut in this study, several other studies of 

fish in the Atlantic have shown long-term changes in body condition (Shelton et .1l. 

1996; Lambert and Dutil 1997) or size-at-age (Hansen 1987). This will have 

significant impacts on the consumption rates, and perhaps prey choice, of many 

predators, and should be examined more closely, particularly for import,mt prey 

species such as herring and capelin. Seasonal variation in PC has been linked to 

changes in primary production (Martensson et al. 1996). The water content of fish 

changes with season and reproductive state: groundfish contain a higher percentage 

of water after spawning (Woyewoda et al. 1986) 

Failure to account for the apparent variation in the ED of the prey of marine, 

predators will have significant implications for estimates of total consumption based 

on energy demand models. For instance, a recent consumption model for harp seals 

did not consider seasonal or annual changes in ED for most of the species 

considered (Stenson et al. 1995). Given the apparent seasonal variability in ED for 

prey such as capelin and herring, which can be more profound than interspecific 

differences, models which do not account for this may be too simplistic to 

adequately estimate predator consumption of prey stocks (e.g., Nordoy et al. 1995). 
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Measures of prey quality are critical inputs to bioenergetic models of predator 

consumption. Some species that are important components of northwestern Atlantic 

predator diets undergo significant seasonal and geographic \'ariation in ED. Th4s, 

the accuracy of consumption estimates based on energy requirement models will be 

reduced if these changes in prey quality are not considered, as is the case for most 

published models. Since the totJ! energy req,Jiremt>nts nf large predator populations 

such as certain seabirds and cetaceans, or harp seals are large, relatively small 

changes in prey quality may have substantial affects on consumption estimates. In 

addition, it is clear from comparisons of the results of this study .md published 

descriptions of predator diets that predators may not be choosing prey strictly on 

the basis of their energy yield . Temporal and spatial dissimilarity in abundance for 

different prey species may be of equal importance to prey quality . Also, while 

difficult to obtain, particularly in the field, observational data on the behaviour of 

fish and the handling mechanics of predators should be considered. Harp seals eat 

small Greenland halibut (lawson et al. t9()5), although this study sho·wed that larger 

fish have significantly higher ED. Perhaps harp seals do not eat the larger fish <lS 

they are more difficult to capture (usually living in deeper waters than the juveniles; 

Appendix A), or to consume (greater handling time to render the large fish into 

pieces that can be swallowed) . 

Information on diets of vertebrate predators in the northwestern Atlantic and the 

results of this study indicate that predators are not necessarily choosing prey based 

on their energy requirement. Long-term information about changes of ED in different 

prey items would be helpful, but the present study suggests that future work should 

be carried out on other prey species, particularly juvenile age classes. 
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Table 1. Number of prey collected from nearshore and offshore wakrs of Newfoundl.md and Labr,H.ior in IYY1 to IY%, subdivided by 

collection area . Mean prey length ± 1 SD for each sample block is shown in parentheses. Lengths are standard length for 

- plaice, fork length for all other fish, carapace length for shrimp, and mantle length for squid . Sum.: summer; Win. : winter. -
NE E s 

Labrador Newfoundland Ncwtoundland New found land Sum. a Win. b Total 

Species Nearshore Offshore Offshore Nearshore Ofbhore Nearshore 

Atlantic cod (Gadus morlwa) 82 2-1 106 106 
(18.1±4.Y-l} (27.H± Ill . H) 

American plaice 2-1 D 
2-l 13 37 (Hippoglossuidt•s platessuides) (27 .. 1:t4.5H) (lH.A± .::: .H-1) 

Sand lance (Ammodytes 16 2H 28 16 -14 
dubius) (18 . 1 ± U~lJ) (17.Y± l.61) 

Arctic cod (Boreogadus saida) 11 5 17 IIi 10 I I ()~ 79 
( 1-1..1± 1.41) ( 1 LH 1.07) (1H.IH . l7) ( IH.5!2.1l7) ( l-t .h±2.12) 

Northern shrimp (Ptlllda/u s .l l :n 33 
borealis) (2 .2LJ ! Il.lJh) 

Redfish (Selmstes spp.) 5 -llJ :1-t 5-l 
(21 3 :.!. 2.21) (2J.lJ±!o .'J'J) 

Greenland halibut .JH 
-lH -18 (Reinlwrdtius hippoglossoides) (22.5itl .h7) 

Daubed shanny (Lumpenus 16 J(l 16 maculatus) ( 1-l. 2±0.Y4) 

Squid (lllex illescebrvsus) 32 32 32 
(l4 .0±.:tlJ3) 

Squid (Gmwtus Jabricii) 47 -17 47 
(8.-to± 1.%) 

Capelin (Mallotus villosus) 2 H2 33 51 84 
(14.8±0.21) ( 14.0.! l .OlJ) 

Atlantic herring (Ciupea -10 5 35 40 
harengus) (:~H.-1 ± 1 . 11) 

Total 111 52 t16 141 l8X (12 291 329 620 

a April to September b October to March 



Table 2. Proximate composition of prey species. Mean {SD) moisture, lipid, protein, inorganic ilnd energy density (ED) for the 11 

species studied. Values are expressed for wet mass 

Standard 'X. Moisture 'X. Lipid %Protein %Inorganic Energy densil) 

Species Mass (g) Length (em)" content content content content (kJ g-1) 

Atlantic cod 131 (184.5) 20.2 (7.85) 78.5 (2 .17) 2.6 (1 .1Y) 16.1 (1.6H) 2.Y (0.-17) 4.2 (0.60) 

American plaice 153 (104.3) 24.2 (5.57) 7H.2 (l.Y6) 3.0 (1.14) 15.6 (1.61) 3.1 (0.56) 4.3 (0.46) 

Sand lance 15.1 (3.30) 17.'1 (1.70) 77.Y (2 .6Y) 2.Y (l .HH) 16.7 ( 1.52) 2.5 (0.51) 4.4 (O.H2) 

Arctic cod 36.6 (20.44) 15.9 (3.36) 7H.lJ (2.47) 3.7 (1.60) 15.0 (l.H4) 2.3 (0.39) 4.4 (0.77) b 

Northern shrimp 115 (2.04) 2.3 (0. 1 0) 74 .6 ( 1.'10) 3.6 (O.H5) 17.2 (1.26) -U1 (0.41) -t .H (0.51) 

Red fish 204 ( 143.~) 2l.lJ (6.6H) 74 .4 ( l.YlJ) n.O ( I .Y3) I o.O ( I. 77) 3.H (0.76) 5.4 (O.Hl) b 

Greenland halibut 84.4 (55.Y8) 22 .6 (6.71) 7H .1 (:2.40) 7.5 (2 .25) 12.2 (1.06) 2.2 (0.40) 5.5 (1.13) h 

Daubed shanny 11.6 (1 .9Y) 14.3 ( 1.01) 72 .2 (6. 14) 5.0 ( 1.67) llJ .Y (4 .33) 2.Y (0.65) 5.9 (1 .38) 

Squid (11/ex) 136 {35.6) 34.0 (3.Y3) 75.1 (1.45) 6.6 { 1.55) 17.0 (0.65) 1.-t ((1.14) 5.Y (0.56) 

Squid (Gonatus) 22.0 (13.81) 8.5 (0.20) 73.5 (5.Y5) IO.Y (3.80) 13.7 (2 .70) I .Y (0.56) 6.Y (1.76) 

Cape lin 19.4 (4.92) 1-1.0 ( 1.09) 6H.2 ( 10.06) 13.7 (7.87) 16.1 (4.1)7) 2.1 (0.44) 8.4 (3.28) b 

Atlantic herring 280 (85.7) 28.2 (3.13) 65.0 (3.43) 13.7 (3.90) 20.1 (1.2~} 0.8 (0.07) 9.-! (1.40) 

a Fork length for fish (except standard length for American plaice), carapace length for shrimp, and mantle length for squid 

b Value is an average of 2 samples of significantly different energy density 

:t 



Table 3. Summary of significant differences in ED among species, as determined by Scheffe's tests following one-way ANOVAs. ED 

irtcreases from left to right (and bottom to top). (•P < 0.05, **P <lUll, ,...,./' < 0.001 ).a 

Atlantic America 

cod n plaice 

Atlantic cod 

American plaice 

a F(l1,608] = 61.8, P < 0.0001. 

Sand Arctic Northern Redfish Greenland Daubed Squid Squid 

lance cod shrimp halibut shanny (11/ex) (Colla/us) 

* ** * * *** 

*** 

*** 

Arctic cod * *** 

Northem shrimp * * * 
Red fish * 

0,1Ubed shanny 

Squid (JJ/ex) 

Squid (Conalus) 

Capelin Atlantic 

herring 

*** *** 

*** *** 

*** *** 

*** *** 

*** *** 

*** *** 

*** *** 

*** *** 

*** *** 

* * ** 

Capelin 

w 
Ul 



Table 4. Summary of significant differences in per cent protein (arcsine-transformed) among species, as determined by Schdfe's tests 
- -

following one-way ANOY A. Protein values increase from left to right (and bottom to top). (•P < 0.05, "'*P < 0.01, ,...,..p < O.OOl).a 

Squid Arctic Redfish American Atlantic Capelin Sand Squid Northern Atlantic Daubed 

(Gouatus) cod plaice cod lance (I /lex) shrimp herring shanny 

Greenland halibut *** *** *** *** *** *** *** *** *** *** 

Squid (Gouat11s) * * *** *** *** *** *** *** *** 

Arctic cod * *** *** 

Red fish *** * * 

American pl<1ice *** *** 

Atlantic cod *** *** 

C1pelin *** * * 

Sand Iann• * * 

Squid (1//ex) 

Northern shrimp 

Atlantic herring 

a F(11,608] = 25.9, P < 0.0001. 



Table 5. Summary of stgnificant differences in per cent ash (arcsine-transformed) among species, as determined by Scheffe's tests 

following one-way ANOVAs. Ash values increase from left to right (and bottom to top).(*/'< 0.05, **P < 0.01, ***P < O.OOl).a 

Squid Squid Capelin Greenland Arctic Sand Daubed Atlantk American Red fish Northern 

(Ill ex) ( Gouat 11:->) halibut cud lance shc11my C<ld plaice shrimp 

Atlantic herring *** *** *** *** *** *** *** *** 

Squid (11/ex) * * *** *** *** *** *** *** *** *** 

Squid (Gouatus) * * * * * *** *** *** 

C<lpt..•lin * * * *** *** *** 

Greenland h,1libut * * *** *** *** 

Arctic cod *** *** 

Sand lance *** *** 

Daubed shanny * * *** 

Atlantic cod *** *** 

Amencan plaice 

Red fish 

a 
Ff11,608] = 129.8, P < 0.0001 . 



Table 6. Summary of results from simple linear regressions of ED on blKiy length, for species with N> 15. 

Species Locality /Season Season Slope (Y5% Cl) Intercept (YS' ~ . C l) 
! 

d.f. p r 

Atlantic herring E Nfld., nearshore winter -0.3Y ( -0.67, -0.10) IY.7 (11.6, 27 .Y) 0.18 1, 33 0.01 

Cape lin E Nfld., offshore sununer 0.-l-1 (O. lY, 0.70) -l.Y7 (-5.72, 1.77) 0.31 1, 29 () .0()1 

Capelin E Nfld ., offshore winter 0.48 (0.11, 0.85) ·!.07 (-O.Yo, Y. IO) 0.12 I, 48 ().()1 

Squid (Gonatus) Lab., offshore summer 0.29 (0.13, 0.45) -1 .2-l (2 .H-l, 5.h-l) 0.23 I, 44 0 .001 

Squid (/llt'x) E Nfld ., nearshore summer 0.08 (tl.ll-l, 0. D) 3.05 ( 1.58, -!51) 0.35 I, 30 <0.001 

Daubed shanny Lab., nearshore summer -0.20 (-1.0-l, 0.63) H.7Y (-3.06, 20 63) 0. 02 I, I4 0.6 

Greenland halibut E Nfld ., offshore winter 0.13 (ll.IO, O. lh) 2.SY ( l.X-l, 3.:l-l) 0.{)0 I, 46 <0.00 I 

Red fish S Ntld., nearshore winter 0.03 ((J.I)l) , (l.Oh) 4.7Y ( ·l.ll7. 5 .~ I) () . (}9 1, 47 <(1.()5 

Northern shrimp NE Nfld ., offshore winter -0.02 (- I.Y:;, l.lJ 1 ) -l.l{6 (0.43, Y.:;. ':J) -0 I , 31 1.0 

Arctic cod E Nfld ., nt.·Mshore winter -ll.!)7 (-0.15, ll.ll2) -t .-t 1 (:U-\4, ::i.tJH) 0. 17 I , 1-t 0 .1 

Arctic cod E Nfld., offshore winter 0.0 (-II.OX, O.OH) -t .xs (J.o7, 6.03) -0 1, 28 1.0 

Arctic cod NE Nfld., offshore winter -ll.tl8 (-0.14, lUll) 6.1h (-t .Y6, 7 .~)5) 0.31 I I 15 0.02 

Sand lance NE Nfld., offshore winter -(}.()3 ( -0.26, 0.31) 3.6Y (-1.-!7, tUi6) -0 11 1-t 0.8 

Sand lance E Nfld., offshore summer -0.07 ( -0.25, 0.11) 5.85 (2.60, 9.UY) 0.02 1, 26 0.4 

American plaice E Nfld., nearshore summer 0.05 (0.02, 0.07) 2 . 9~ (2.31, 3.66) 0.43 1, 22 <0.001 

Atlantic cod E Ntld., nearshore sunm1er 0.05 (lUll , 0.08) 3.12 (2.07, -t . l~) 0.24 1, 22 0.01 

Atlantic cod Lab., nearshore summer -0.02 (-0.04, 0.00) 4.4Y (·!.15, -l.h3) 0.05 1, 80 <ll.ll5 

w 
00 



Table 7. Summary of results from ANOVAs to test for sex difierences in ED (in kJ•g-
1
), for species with N>lO for each sex. 

Species Locality Season Mdle mean.!. SO (N) Female mean i SD (N) p 

Capel in E Nfld ., nffshore summer ·L60 ± 0.732 (12) -l.fi5 .t O. Ho~ ( 10) O.Y 

Capelin E Ntld ., offshore winter 11.0 l 1.71 (30) llU .t LoO (19) 0.3 

Squid (/1/L'.r) E Nfld ., nearshore summer h.06 :t O.h-!6 ( 15) :i .7l i 0.-!2~ ( 17) ()- 1 

Red fish S Nfld ., nearshore winter ~...t:') !_ 0.721 (35) 5.HH ! ll .Ht) ( 10) 0.2 

Northern shrimp NE Nfld ., offshore winter 5. 16 1: 0.526 ( 1 I) -l.hS .t ll.-11 ~ (22) 11 < 0.0 1 

Arctic cod E Nfld., offshore winter -!.77 ± O...l-!9 (10) -l.HY .± 0.-ll~' (211) 0.5 

Sand lance E Nfld., l)ffshore summer -!.57 1 o.7o3 ( 16) -!.56 t 0.61-lt-i (12) 1.0 

Atlantic cod E Nfld ., near:;hore summer -!.35 ± 1.120 (12) -l.-l-! .t 0. '107 (12) 0./:l 

Atlantic cod Lab., nearshore summer -1 .22 ± 0.383 (2-l) ·!. l-l ± 0.-!25 (23) 0.7 



Table 8. Summary of results from ANOVAs on seasonal, geographic, and interannual variation in ED (in kJ •g- 1
), for species with N> 15. 

Species Comparison A Mean.± SO (N) B Mean± SO (N) 

Seasonal comparison 

Cape lin A (summer) vs . B (winter) (all E Nfld., offshore) 4.62 ± 0.771 (31) 10.7 ± 1.66 (51) 

Geographic comparisons 

Arctic cod A (offshorl') vs. B (nearshore) (ail E Nfld ., winter) -l.K5 ± O.·BH r.10) 3. t l) ± 0.332 (16) 

Arctic cod A (E Nfld .) vs. B (NE Nfld.) (all offshore vvinter) -! .H5 ± 0.-!3H l 10) -! .7-! ± 0.5H-! (17) 

Atlantic cod A (E Nfld.) vs. B (l.db.) (all l1L'<1rshore summL·r) -!.-10 ± ll.lJLJH 12-l) -L 16 ± 0.-113 (H2) 

Mixed seasonal/geographic comparison 

Arctic cod A (E Nfld., nearshore) \ ' S . B (NE Nfld., oHshllre) (<111 winter) 3.1Y .± ll.332 1 Ill) -!.7-! ± 0.5~-! (17) 

Sand lance A (E Nfld., summer) vs. B (NE Nfld ., winter) (all oft'shore) -1.56 ± 0.731 12H) -L20 i 0.93H (16) 

Interannual comparisons 

Greenland halibut A (January 1992) vs. B (October 1995) (all E Ntld ., offshore) 6.56 ± 1.-tH-t dO) 5.28 ± 0.865 (38) 

Atlantic herring A (November 1992) vs . B (September & October IYY3) 

(all E Nfld ., nearshore) 'J.06 ± 0.723 (10) 

a These probability estimates are from Scheffe's test, from one ANOVA on all the Arctic cod samptes 

10.1 ± 0.66 (14) 

p 

<0.001 

<IJ.001 a 

0.7-ta 

ll.OY 

<0.00 I a 

0.16 

<0.001 

<().()1 



Table 1.) : Summary of published proximate composition and e1wrgy den~ity (kJ•g-1 wet mas~, unk·~s nolt'd) vt~lut.·, tor sctme specie~ as those in this study. 

Species Notes Year Season Location N ~ ~ ;. w ' j~. I' ".;,I. •:;.A ED Source 

Atlant. Gonad; 78-79 Mar Bay hmdy :11 81.76 13.15 1..tH 1.60 71-t (-!1) Holdway & Beamish 8-t 

cod lmmat. (0.86) (0 .77) (0.2-t) ( 0. 1.::\) cell 

Carcass; 78-79 Mar Bc1y Fundy 78.tN lo.:n UN 2.11 lJ30 ( 1.1) Holdwt~y & Beamish H-! 

Immat. (0 .22) (0.35) (O . lH) (O .OH) C.1l 

Muscle; 78-79 Mcu Bay Fundy 7':J.77 17.:n ! .HI 1 ... 11 ~)l)-t ( 15) Holdway & BL'dmi.sh 8-t 

lmmat. (0.2ll) (0.24) (O.IX) (0 .02) C<ll 

'J3 Jan-Dec NE Atl. 16 .1.lJ- h. I Milrtensson l'l al . % 

8Y Feb Norway -t . IH WiigiN 

Amer. 5.1 Mackinnon 72 

plaice Fillet 0 . ()(, KrL)'JW\\'ek & Murphy H7 

Sand Nfld . hl.S 19.5 H.tJ 7 .. 1 7.3 Monlt.'\'l'l"l·hi el ,tl . H-t 

lance 

6.1-H.Ocm So July Scotland 011 7lJ. c; 77.511 il 1-t . l s ,, Hislop d .If . lJ I 

Ho July- Aug L1br,1dor n.7 Birklw.td 

& Ndtl~ship H7 d 

Arctic 13.2+ 1.3 85 Feb S\'cllbMd 7~ .!. ().() 15.!. 0.1 111 1 0.1 7.-t ± 0.1 BrdJ,l• & ( ;,,bril'lsen lJ-l -

cod an 

Y3 J<~n-Dec Nf: All. h -t..t - 11..1 Martenssnn % 

Adult High 7ll0 6.5 (SE Hop lJ-l (combined carcass, 

An: tic =I<Ul) liver, intestine, gonad) 

lmmat. High 315 5.6 (SE Hop 9-l (whole animals) 

Arctic = 10.0) 

Adult 83 Aug High 5.-t finley & Cibb H3 

Arctic 

13.2 ± 1.2 ~N Fl'b Norway 7.-t ± 0.1 Wiig H~ 

9.9 ± 2.2 89 }lU1t' Nonvc1~ -l.lJ ± 0.0 Wiig t>SI 

~ ,....... 



Table Y: Summary of publi:-.lwd pruximate composition .wd t.'Ill'rgy dt.'n.-.ity ( kJ • g·l \\'l'l m.~ . .,..,, unit'.-. ... noll'd othl'nv hL'} (nHllimtL'd ). 

Species Notes Year Season Location N ·~;. w 4 .~ II J) ·:; , I. ·: ;,A HJ Source 

Red fish 7K.l I H.-t 2.7 Frimodt95 (10tig tissue) b 

Winter a ... h-{ree dry wt 2.1.1 Steimle & Terranova 85 

Spring .1.-.h-frel' dry wt 20.1 Steimle & Terr.mova 85 

Summer .bh-lrt.•e dry wt 25.H Steimle & Tt.•rranova 85 

93 Apr NE Atl. 6.7 M,1rll'n.-.son et al. 96 

93 Oct NE Atl. 7.1.J Marll'nsson et al. LJ6 

Conal us Mature N At I. 75.0 I 2.5 1.0 I .K h.27 Kri ... ll'nsen H-! 

II lex 78-71) Nfld . 7H .2 15.lJ 3.0 I.H -! .. 1 MonlL'Vl'L'Chi et at H-1 d 

Mantle, tent. 76-H7 NW At I. 1.05 -I .H5 n .. 1 ~ I.H Krzynowl'k & Murphy 87 

WintL•r .t.-.h-fn·t.· dry wt 2-!.6 S!L•imlt..· & Tt.•rr,wova H5 

Summer .t.-.h -ln'l' dry wt 22.h 

Cape lin 1.0-2.10 em oH Feb-May Nfld . no nlJ.7-H 1 .. 1 O.K- 1-U Winlt'r.-. 70 

12.5- 17.5 em 75 M.u-July Nfld. 77.1-H.1.7 0.2-H.J Lllon l'l ,d 75 

7X-71J Ntld. 7K.-t 1-1 .') .1 .. 1 2.0 ·L2 Monlt.'\ l'll·hi c1 .11 H-1 d 

10.4 ± 0.7 em H5 M.1y Barenh SL'.l 7')+-0.1 15 .t O.=l 1 ; 0. I -L I ..t 0.2 Brekkl' & ( ;abrielsL~n Y-! 

n5.h Lln 17.5 Frinwd tlJ5 ( IOOg tissw:) b 

Ovid female -l .h Montewcchi & Piatt H7 

Spent female .1.lJ Monkverl·hi & Piatt 87 

Adult male J .H Montcvecchi & Piatt l:l7 

Immature J .H Montcvecchi & Piatt 87 

91 Jan-Mar Ban.·nts Sed 5 H.6 Martent>son et al . 9-t 

jan-MM NE At!. sc ~' . H ± l.l Martensson et al. 96 

93 Apr-June NE All. t)L' S3 ± 0.5 Martcnsson et al. 96 

')3 Aug-St.~p NE At!. he ~·.7 i 1.-l Martensson et at. 96 

89 Feb Norway o.J- Wiig H'J 
10.0 

""" N 



Table 9: Summary of publislwd pro.\imatl' composition and ~·twrgy dl'n:-.ity (kj•g-1 wl't m.b:-., unle:-.s nuted otlwrwisL') (l·ontinued). 

Species Notes Year Season Location N ·:.;.w · ;~ , p ' ;.~. I. ·~ .. ~ . ,\ ED Source 

Shrimp NE Pac. HO. l li'U O.lJ5 1.25 Krzynowek & Murphy H7 

71 All ye.u NW At I. 5..1 Cummins & Wuycheck 71 

in Lavigne ct al. 1985 

Green. 70.3 J.j .-l 1:\.H hinwd t 95 (I OOg tissue) b 
hal. 

A tl. Mature lJ3 Mar NF All. 10 7.2 M;)rtensson et al. lJ6 (est.) 

herring 

Mature l):i May-Sep NE All. 11.:! M.'trh•nsson l'l al. I.Jh 

HlJ }lUll' Nonv<~y H..J - llUl Wiig HlJ 

H7 Jan-lJec Scotland .j . 2 - II .0(?) llislop l'l al91 

N. S. - N . 57.0 K.tl Sh'imk & Terranova H5 
CM(•lin.l 

Note: When' ElJ \'dlm:s wen· not presented in tlw urigin.ll P·IJWr (.llld then• \\'l'fl' l'lltnpkll' 1'<.. . d.llol on lipid , prl•IL'in, \\'olkr .Hid olsh l 'llllklll) I r.llCLdatl·d 
ED values based on the s.mw energy equiv<llents as in thi:-. :-.tudy. 

a Composition values of protein and I at were cakula!l'd I rom n·porh:d wl.'lcumpu:-.itHHl \',llue:-.; dry v.lhll' = ( 100 :.; wet v.llue)/( 100- weller content). 

b Estimates trom Frimudt (lYlJ5) may be under- ur o\'L'f6timc~tes tor whole body as they de:-.ntbe the analyzed body components as "edib lt! weight". 

c Each of these are subsamples of homogenate:; crec1tcd by grinding from 5 to 25 fish. 

d These were prey obtained from seabirds returning to their nestin~ .1rcas. 
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Figure 1: The general locations, subdivided by NAFO fishing areas, where 

prey samples were collected for this study. Daubed shannies were collected 

in area 2G (immediately north of this map area). 
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Figure 2: Energy densities (kJ•g-l wet mass) for prey species in this study. 
Error bars represent the 95% confidence intervals around the mean. 
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weight) was weakly negative for Atlantic cod, but strongly positive for 

Greenland halibut. Size ranges of fish consumed commonly by harp seals 

are delineated by grey rectangles. 
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This distribution represents the area in 
which Atlantic cod have been found; 
most have a patchy distribution in bays 
along the NE coast of Newfoundland. 
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Figure 4: Current geographic distributions of Atlantic cod (A), American 

plaice (B), sand lance (C) and Arctic cod (D) in the northwest Atlantic. 
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Figure 5: Current geographic distributions of northern shrimp (A), redfish 

(B), Greenland halibut (C) and Illex squid (D) in the northwest Atlantic. 
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Figure 6: Current geographic distributions of Gonatus squid (A), capelin 

(B), Atlantic herring (C) and daubed shanny (D) in the northwest Atlantic. 
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Appendix A: Prey Life Histories 

1) Atlantic cod (Gadus morltua) 

Atlantic cod (Figure 4A) 2 \Vere distributed throughout the coastal shelf areas of 

the northwestern Atlantic from ~laine to subarctic areas before the mid 1980s 

(Pinhorn 1976; Scott <md Scott 1988). Since the late 1980s six Canadian stocks, from 

southern Labrador to the continental shelf of \Jova Scotia, have collapsed 

(Hutchings and Myers 199-t; Myers et al. 1996a; 1996b; ~vlyers 1997). The collapse 

has been documented mainly for fish of commercial size and age (greater than two 

years old; see Atkinson et a!. 1997). 

Data on the standing biomass of jm·enile Atl,mtic cod (the size usu,1lly found in 

the stomachs of predators such as harp seals; Lawson and Stenson 1995; 1997; 

Lawson et al. 1995) is less clear. Whether the availability of these young fish to 

predators has decreased in parallel with the decline of the spawning biomass is 

unknown (Myers eta!. 1996b). Young fish have been found very close to shore and 

hence are difficult to survey using traditional methods employed by DFO. Rodway 

and Montevecchi (1996), indicated that lan·al and 1-yr-old cod are usually found in 

the nearshore waters (less than 30 km from shore) of the northwestern Atlantic, 

while large spawning fish are more likely to be found in offshore areas (greater than 

2 The current distributions of species described in this Appendix cUe defined <lS the aroas 

where they are most commonly found in the northwestern Atlantic. However, in some 

cases, specimens have been collected outside these areas. The range maps (Figures -l, 5 and 

6) are a synthesis of published studies and the technical advice of fisheries scientists 

from DFO, St. John's, Newfoundland (J. Anderson, J. Brattey, J. Carscadden, E. Dalley, E. 

Dawe, G. Lilly, D. Miller, M. Morgan, and D. Power) and Memorial University of 

Newfoundland (J. Brown, J. Lawson, and B. Montevecchi). 
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30 km from shore). At present, most small cod live in nearshore areas around 

Newfoundland (Dalley and Anderson 1997). 

Atlantic cod are opportunistic predators; when young they feed mostly on small 

crustaceans (Scott and Scott 1988). As adults they prey on young cod and a variety 

of other fish species such as capdin, sand lance, short-finned squid and northern 

::.hrimp (t:.g., Lilly 1YS-l:; LiHy ,md Osborne t9S-l; Lilly ,md P.1rsons t0ll1) 

Atlantic cod, particularly juvenile fish, are prey for marine mammals and birds in 

the northwestern Atlantic. They are the second most common prey of grey seals 

(Halic:hvaus ~rypus) near Sable lsland, Nova Scotia (Bowen and Harrison 1'19-l). 

However, Atlantic cod represent a small fraction of the diet of harp seals (lawson 

and Stenson 1995; Lawson et .1l. 1995). Further, most Atlantic cod. Atlantic herring 

and capelin consumed by harp seals <1re smaller than those taken by commercial 

fisheries (between 10 and 20 em). Hooded seals (Cystoplwra aistata) consume larger 

cod than harp seals (Lnvson and Stenson. unpublished data; Ross 19Y3). Atlantic 

cod is also consumed by Atlantic puffins (Fratercula arctica). common murres, and 

gannets (Sula bassmws) in the northwestern Atlantic (Piatt ,md Ncttleship 1985; 

Montevecchi and Myers 1996). 

2) American plaice (Hippoglossoides platessoides) 

In the late 1970s, American plaice (Figure -lB) was one of the most important and 

abundant flatfish of the northwestern Atlantic fishery, formerly occurring from 

western Greenland to the Gulf of Maine (Pinhom 1976). However, the commercial 

stocks around Newfoundland and Labrador (NAFO divisions 2HJ, 3Kl and 3Ps) 

have declined since the late 1980s and expectations for the recovery of commercial 

stocks are not optimistic (Cairns et al. 1990). 
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Walsh (1991) reported that juvenile and adult American plaice are found in the 

shelf edges of the Grand Banks, with a group of predominantly juvenile fish in the 

southern extend of their range. Walsh (199l) suggested that this concentration of 

juvenile plaice is evidence of a nursery area . Since juvenile fish are found in the same 

area as adults, this also suggests thclt the American plaice is not a migratory species. 

Americ.:m plaice inh,1bit d t'pth~ nf 41) h1 :?_::;() m r.Rnwt•ring and Brodie 1991) and 

are common at depths of less than 250 min the north\vestern Atlantic (Anonymous 

1995a) . During winter they migrate to deeper waters, then return to shallow waters 

the following spring, when spawning occurs (Powles 1965; Scott and Scott 1'188) . 

American plaice feed on benthic organisms. Powles (1965), studying the ecology 

of this species in the Magdalen Island shallows (NAFO division -lT), found that 

juvenile and adult plaice have different dietary preferences: juvenile diet was mainly 

polychaetes and small crustaceans, and adults fed on molluscs and echinoderms. 
I 

Pitt (1973) reported similar result for American plaice on the Grand Banks. Other 

studies indicate that ,1dults feed mainly on fish, including s,md lance and capelin 

(Winters 1983; Zamarro l992) . 

Plaice are prey for groundfish such as Atlantic cod and Greenland halibut tScott 

and Scott 1988), and pinnipeds such as grey (Bowen et al. 1993) and harp seals 

(Lawson and Stenson 1995; Lawson et al. 1995; Wallace and Lawson 1997). 

3) Sand lance (Ammodytes dubitts) 

Sand lance is an important prey species in northern seas (Frimodt 1995). In the 

northwestern Atlantic it occurs from Greenland to the Scotian Shelf (Scott and Scott 

1988), although it is not commercially exploited in Newfoundland and Labrador 

waters (Pinhom 1976; Dalley and Winters 1987). Sand lance is a semi-demersaL 
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species in sandy-bottomed and shallow water, usually less than 90 m deep 

(Figure -lC; Scott 1985; Nelson and Ross 1991). 

Two species of sand lance are found in the northwestern Atlantic: A. dubius is 

considered the offshore species and A. tllltericm111s the nearshore {Winters 1983; 

Dalley and Winters 1987; Brethes et al. 1 Y92). The presence of hvo species is 

probably the rcJson for the two main spawning are<l~ in the nt1rthwt:>-.it·rn Atlclntic: 

the banks (Grand Bank, St. Pierre Bank), and inshore bc1ys. Dalley and Winters 

(1987), reported the presence of sand lance lclr\'ae in Fortune Bay, Newfoundland 

from February until July and August. Rodway and Monkvecchi (1996) also found 

significant numbers of larval sand lance in the diet of Atlantic puffin (Fmtacula 

arctica) chicks on Great Island, Newfoundland in the summers of 1992 to 199-l. 

Sand lance is an important item in the diet of many fish, sea birds and marine 

mammals. For instance, Atlantic cod, Atlantic herring, American plaice (Lilly 1982; 

Winters 1983; Dalley and Winters 1987; Nelson and Ross 1991 ), short-finned squid 

(Dawe and Beck 1997); common murres and Atlantic puffins (Birkhead and 

Nettleship 1987; Rodway and Monte\'ecchi 1996); humpback whale (Mt:gaptem 

IIV'i..'llt?clllgliat') and fin whales (Balclt'IWf~lt!ril pllysalll; Overholtz c1!1d Nicolas 1979; 

Piatt et al. 1989); harbour seal (Phvca i..ritulilla), harp and grey seals (Pierce et al. 

1990; Bowen et al. 1993; Bowen and Harrison 1994; Lavvson et al. 1995;) are known 

to eat sand lance. 

4) Arctic cod (Boreogadus saida) 

The Arctic cod is a pelagic species distributed from the Arctic, including Hudson 

Bay, to Labrador and Newfoundland (Figure 4D; Pinhom 1976; Scott and Scott 
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1988). They are an important trophic link between zooplankton and marine 

mammals, seabirds and fish in Arctic waters (Welch d al. 1993). 

According to (Lilly et al. 1994), there have been changes in Arctic cod abundance 

in southern Labrador and northeastern Newfoundland waters in the last decade. 

Lilly et al. (1994) hypothesized that the changes may be related to changes in the 
. 

Jistribution and c.1bundLmcc of prcdJtors (c.;;., A.tbntic cod .1nd harr ~eal~), <md 

competitors (e.g., capelin). 

The spawning period of Arctic cod is not known for the northwestern Atlantic, 

nevertheless, Craig et al. (1982) collected "probable spawners'' in early winter on 

Beaufort Sea coastal waters. Similarly, Scott and Scott ( 1988) suggested that Arctic 

Eurasian populations spawn fwm December to March. 

The vertical distribution of this species \'ilries, although it is considered as a 

pelagic species rather than a demersal one (J . Anderson, Department of Fisheries and 

Oceans, St. John's, Newfoundland personal communication) . It is presumed that 

younger fish (less than 3 years old) are found in shc1llower waters (Finley et al. l990). 

Arctic cod is an abundant and energetically rich prey item in the high Arctic 

(Finley et al. 1990). It is considered to be a key species in the Arctic ecosystem due 

to its significant contribution in the diet of other fish, marine mammals and seabirds 

(Craig et al. 1982). Arctic cod form large aggregations in nearshore waters, where 

they are fed on by seabirds such as black-legged kittiwakes (Rissa tridactyla), thick-

billed Murres (Uria lomvia), northern fulmars (Birkhead and Nettleship 1987; Welch 

et al. 1993), as well as bearded (Erig11atlws barbat11s), harp, hooded and ringed seals 

(P11sa hispida; Finley and Evans 1983; Finley et al. 1990; Ross 1993) and narwhals 

(Monodon monoceros) and beluga (Delphillaptt!rltS leums; Bradstreet and Cross 1982; 

Welch et al. 1993). In recent years seals have been seen feeding on schools of Arctic 
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cod during winter around bays of the A\·alon Peninsula, Newfoundland (J. lawson, 

Ocean Sciences Centre, Memorial University, St. John's, Newfoundland, personal 

communication). Arctic cod was the most important prey item in the diet of harp 

seals from 1986 to 1995 in the north\vestern Atlantic (lawson and Stenson 1995; 

Lawson et al. 1995). 

5) Northern shrimp (Pandalzts borealis) 

The northern shrimp is widely distributed in the northwestern Atlantic from the 

Davis Strait to the Gulf of Maine (Figure SA; Squires 1990). Commercial landings 

suggest that Panda/us is abundant in NAFO divisions OB, 2G and 3K (Parsons and 

Veitch 1996) . Moreover, catches have increased in the estuary and Gulf of St. 

Lawrence in 1994 and 1995 (Savard 1996 ). Since the abundance of predators L)f 

northern shrimp such as Atl<mtic cod, redfish <md Greenland halibut have declined, 

the abundance of Pm~tiallls in some areas of the northwestern Atlantic may have 

increased. 

Pcmdal;ts is hermaphroditic; it spends the first stage of its life as a male, then 

changes sex to reproduce. Parsons et al. (1991) reported Pcmdal11s in depths over 350 

m off labrador and northeastern Newfoundland. However, this distribution varies 

with age and size. For example, young shrimp are found in shallower water, while 

adults (usually females) are in the deeper waters off the continental shelf. At the end 

of the fall and beginning of winter, ovigerous females migrate to shallower waters. 

They release the larvae in the spring before returning to deep waters. 

Atlantic cod stomachs collected in the NAFO divisions 2H, 2J and 3K have 

contained Paudalus, with young shrimp in the same areas and depths as larger 

shrimp (Lilly and Parsons 1991). The northern shrimp is also an important prey' in 

55 



the diet of other fish, including Greenland halibut off the Labrador coast (Bowering 

et al. 1984:), redfish on the Flemish Cap (Albikovskaya and Gerasimova 1989) and 

herring on the Scotian Shelf (Anonymous 1996c). lawson et al. (1995) showed the 

prevalence of Pandal11s in the diet of harp seals, particularly in 1992, is due to a 

relative decline in their consumption of Arctic cod. 

6) Redfish (Sebastes spp.) 

Redfish, also called ocean perch, has a wide distribution in the northern Atlantic. 

In the northwestern Atlantic the distribution extends from the southern coast of the 

Baffin Island to New Jersey (Figure 58). Three of the four species of redfish Me in the 

northwestern Atlantic. However, the similarity of their morphological characteristics 

make the process of identification difficult (Ni and Templeman 1985; Frimodt 1995). 

The abundance of redfish in Newfoundland waters has decreased since the early 

1970s (Pinhorn 1976). Recently, Power (1995) reported that the commercial stock, in 

the same area reported by Pinhorn in the late 1970s, is now at an extremely low 

level. Since this species has a slow growth rate and reaches maturity at eight years of 

age, continued fishing may threaten the remaining populations. 

Redfish are pelagic, occurring in cold and deep waters and living as long as 80 

years (Power 1995). Bainbridge (1971) observed the distribution of redfish larvae in 

different areas of the northwestern Atlantic, characterizing the occurrence of 

different spawning areas. In April, larvae were found around the Flemish Cap, ih 

June off labrador and northeast coast of Newfoundland, and in July off Nova Scotia 

and the Gulf of Maine. Similarly, Ni and Templeman (1985), found that most 

spawning of redfish in southern Newfoundland waters took place from April to July. 
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Redfish feed on pelagic crustaceans such as amphipods, copepods and 

euphausiids (Lilly 1987; Scott and Scott 1988). They are themselves prey for Atlantic 

cod and Greenland halibut (Bowering and Lilly 1992), short-finned squid (E. Dawe, 

Department of Fisheries and Oceans, St. John's, Newfoundland, personal 

communication), and harp and hooded seals (Ross 1993; Lawson et al. 1995), c:nd 

harbour P'-)rpoise (rf<u~.."<ic"i<.z p!wcam;;) in the northern Gulf of St. L1wrcncc (FontJ.ine 

et al. 199-+). 

7) Greenland halibut (Reinlzardtius lzippoglossoides) 

Greenland halibut, also known as turbot, is found through the northwestern 

Atlantic from Davis Strait to the south of the Scotian Shelf (Figure 5C). Individuals 

from this area form a single biological stock, spawning during winter or early spring 

in the deep waters of Davis Strait (Bowering and Brodie 1991). Eggs and larvae are 

carried by currents to the south, where juveniles remain to grow until near maturity, 

when they migrate back to the north (Scott and Scott 1988). For this reason, most of 

the Greenland halibut found in Labrador (Hawke Channel) and northeastern 

Newfoundland waters (Funk bland Bank) can be considered to be young (M.J . · 

!>·<'lorgan, Department of Fisheries and Oceans, St. John's, Newfoundland personal 

communication). 

The other commercial stock of Greenland halibut is concentrated in the Gulf of St. 

Lawrence, where individu,1ls are found in depths of 200 to 500 m. This population 

also spawns between the winter and early spring in the deep waters of the 

Laurentian Channel, and young Greenland halibut (greater than 45 em) are found 

close to the Scotian shelf (Anonvmous 1996b; Morin 1996). 
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Pinhorn (1976) reported the onset of commercial stock depletion in the late 

1960s, as well as high exploitation rates in the deep bays of nearshore 

Newfoundland (Notre Dame and Trinity Bay). Bowering et al. (1996) noted a 

decline in abundance of commercial stocks in divisions 2J and 3K since the middle 

1980s. However, young Greenland halibut (age 1 to 5) were more frequent in catches 

uf 1995 ,md 1996 in the :;,1mc area. Fcv.: ... iat~ .:uc .1v~ibblc regarding fish under 

20 ern in length (see !\·Iorin 1996). 

The Greenland halibut is an opportunist predator, consuming a variety of 

cephalopods, crustaceans and fishes. Juvenile diet is comprised of shrimp, 

cephalopods and small fish, while adults prey on juvenile Greenland halibut, 

Atlantic cod, capelin, redfish and other demersal fishes (Scott and Scott 1988; 

Bowering and Lilly 1992). 

Greenland halibut are prey for a number of fish, pinnipeds and cetaceans. Atlantic 

cod and salmon eat Greenland halibut larvae ,md young fish (\V.R. Bowering 

unpublished data). Lawson et al. ( 1995) noted that Greenland l1c1libut is an important 

item in the diet of harp seals in nearshore labrador. According to Ross (1993), 

Greenland halibut is one of the main spedes in the diet of hooded seals in nearshore 

Newfoundland. Sergeant (1966) reported the occurrence of Greenland halibut in the 

diet of sperm whales (Piryscter catvdo11) in Newfoundland and Labrador. 

8) Short-finned squid (Illex illecebrosus) 

Illex (short-finned squid) is a pelagic cephalopod species, distributed in the 

northwestern Atlantic from coast of Labrador and Newfoundland to Florida (Black 

and Rowelll987). From spring to fall they occur along the Newfoundland coast, 
I 

when the temperature of the ocean starts to increase (Amaratunga 1981). In the 



winter, their distribution is unknown, but it is hypothesized that they either migrate 

to deeper waters to spawn or move south to the warmer waters ot the Gulf Stream 

(Oawe and Beck 1985). 

The short-finned squid is thought to be a migratory species (e.g ., Black and 

Rowelll987; Dawe and Beck 1997). Spawning may occur from January-February in 

the south, then eggs m~sscs .uc tr.1nsrorted by the Gulf Stream tt"' the Ct""~a~t 1.""~f 

Nevvfoundland and Labrador, \Vhere young individuals concentrate during summer 

(Dawe and Beck 1985). Finally, at the end of fall, adults again migrate south to 

spawn, completing their life cycle. 

Dawe and Beck ( 1997) reported different types ot prey in the diet of Ill ex 

collected in nearshore areas of Newfoundland . The diet changed according to 

locality, year and season of collection. Atlantic cod, sand l,mce, Arctic cod and 

capelin were the main prey. Adult short-finned squid appear to be active predators 

with their diet varying according to the availability of prey in the area . For instance. 

C. Myers (unpublished data) identified herring and mackerel (Sco111ber ~nmzbrus) as 

the main prey of lllt!x in Nova Scotia and !\Jew Brunswick nearshore waters. 

Additionally, Boyle (1983) reported that !!lex are a cannibalistic species. 

lllex are important prey for Atlantic cod, mackerel, redfish, witch tlounder 

(GlyptocepJwlus cylloglossus), long-finned pilot whales (Globiceplzala llldaetza), white­

sited dolphin (Lagetzorhyllclllls acutzcs), greater and sooty shearwaters (Pztfji"IIIIS grauis 

and P. griseus), fulmars and northern gannets (Boyle 1983; Montevecchi 1993). Short­

finned squid are consumed by harp seals, particularly during summer in Divisions 21 

and 3KL (Lawson et al. 1995). Bowen et al. (1993) also report lllex in the stomachs 

of grey seals on the Scotian Shelf. 
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9) Arctic squid (Gonatus fabricii) 

Gomztus jizbricii is the most common squid species in offshore waters of the Arctic 

and subarctic. They occur especially in west Greenland, where they are important as 

prey for fish, marine mammals and seabirds (Figure 6A; Boyle 1983). 

Two populations of G.matus in west Greenland show different breeding peripds. 

The population ot Disko Bugt spawns in the fall and earlv winter, while the 

population of Davis Strait spawns in the spring and early summer. Larvae and 

juveniles were frequently found in 70 to 80 m, while adults inhabit depths of :wn to 

600 m. Spawning is presumed to occur in the deep offshore waters of west 

Greenland (Kristensen 198-1) . 

Gmwt11s appear to feed mainly on crustaceans, fish and other cephalopods 

(Kristensen 198-1). Juveniles and adults seem to have different diet preferences. 

Juveniles consume smaller species such JS euphausiids, whereas a common prey 

found in adult stomachs was capelin. This supported Kristensen's opinion that this 

species of squid feeds pelagically . 

Gc.mat11s occur in the diets Atlantic cod, American plaice, herring, Atlantic salmon 

(Salmv salar) and redfish (Dawe and Beck 1997). It is a significant item in the diet of 

toothed whales !e.g., bottlenose (Hypaodo11 at11p111latus), narwhal, sperm and mink 

whales (Ba/ae11vptera acutorvstrata) (Kristensen 1984)1. Gaston and Noble (198-1) 

reported Go11atus in the diet of thick-billed murres in western Hudson Strait and 

northeastern Hudson Bay. Northern fulmars also preyed mainly on Gv11atlls 

(Lydersen et al. 1989). Gonat11s has also been found as part of the diet of harp and 

hooded seals in the northwestern Atlantic {Northridge 198-l; Ross 1993 ). 
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10) Capelin (Mallotus villosus) 

Capelin show a circumpolar distribution: in northwestern Atlantic they occur 

from Hudson Bay to Nova Scotia, with the highest abundance around 

Newfoundland and Labrador (Fig.6B; Jangaard 197-l; Scott and Scott 1988) . In 

1993, results from acoustic surveys for offshore abundance of capelin in 

Newfoundland waters (NAFO divisions 2J3K) shmved a decline in the size of the 

offshore stock. In NAFO division 3l the population estimates were very low, 

especially in 1991 .:md 1992. This was probably related to particularly low water 

temperature in Newfoundland waters (Anonymous L9Y-t; Carscadden 199-l). 

However, in 1993, capelin were found in the bycatch of a shrimp fishery on 

Flemish Cap, an area where the species \vas not found before. Moreover, capelin 

have also increased on the Scotian shelf since the late 1':l80s, while in Newfoundland 

stocks from nearshore areas have decreased considerably (Frank and Simon 199-l). 

Although capelin are not a commonly found in Nova Scotia, their abundance has 

changed, with distribution ranging in depths of -10 to 150 m in the Scotian Shelf 

(Anonymous 1996a). Spc1Wning occurs on beaches of Newfoundland and labrador 

from June to July and also offshore (on the Grand Banks) at depths of 30 to 125m 

(Anonymous 1996a). Capelin are planktivores, feeding mainly on euphausiids, 

copepods, amphipods and a variety of planktonic specimens (Jangaard 197-l) . 

Capelin are probably the most important trophic link between zooplankton and 

different Sfecies of fish, marine mammals and seabirds in northern Atlantic waters 

(lilly 1991). In the past, capelin was the main prey in the diet of Atlantic cod, while 

juvenile capelin were prey for Atlantic herring. ln Holyrood Bay, Newfoundland, 

adult capelin is the main item in the diet of short-finned squid during the summ~r 

(Dawe and Beck 1997). The occurrence of different species of cetaceans in 
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Newfoundland waters is associated with the annual increased local abundance of 

capelin (Piatt et al. 1989) . Capelin are the main prey species for harp seals in 

offshore areas of Newfoundland (lawson and Stenson 1995), and are important in 

nearshore areas as well (Lawson et al. 1995). Seabirds in the central and northern 

parts of the Gulf of St. Lawrence have capelin as the most important prey in their 

diet (Cairns eta!. 1901). Mcrecver, carelin i-: the rrinciral ~,rey f._,r the diet Clf many 

seabirds species in the northwestern Atlantic (Birkhead and Nettleship 1987; 

Smedbol and Wroblewski 1997). 

11) Atlantic herring (Clupea lzarengus) 

Atlantic herring is a widely-distributed, pelagic species in the northwestern 

Atlantic. It occurs in inshore and offshore areas from Labrador to Cape Hatteras, 

United States (Figure 6C; Anonymous 1995b; 1YY6c). The commercial stocks of 

herring in Newfoundland waters were abundant until the 1970s, when they started 

to decline (Pinhom 1976) likely a result of overfishing. 

The spawning time for Atlantic herring differs among population and localities 

(Scott and Scott 1988). Tagging studies indicates that herring populations from 

eastern and southeast Newfoundland are spring spawners (Anonymous 199-1:), 

whereas herring in the southern Gulf of St. Lawrence are spring and fall spawners. 

Spring spawning in the Gulf of St. Lawrence occurs at depths of less than 10 m,' and 

fall spawning take place in depths of 5 to 20m (Tyler 197lb). 

Huse and Toresen (1996) reported selective feeding for herring: older fish fed on 

bigger species of copepod in deeper waters, while juveniles ate smaller copepods in 

superficial waters. This type of behaviour may facilitate predation by baleen whales, 

seals and seabirds, which feed on small juvenile herring (10 to 25 em). 
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Atlantic herring is an important pelagic prey item for other species of fish, marine 

mammals and seabirds. Northern gannets and Atlantic puffins exploit juvenile 

Atlantic herring as a significant prey for their chicks (Montevecchi and Myers, 1996; 

Rodway and Montevecchi, 1996}. Herring are also present in the nearshore diet of 

pinnipeds in the northwestern Atlantic: herring are consumed by grey seals on the 

Scotian Shelf (BO\vcn ct al. 1993), hooded seal:; (\'·:ith m,);;t .... 1f Atlanti..: hcrring 

consumed during summer; Ross 1993) and harp seals off the 'vVest coast of 

Newfoundland (lawson et al. 1995). 

12) Daubed shanny (Lumpenus maculatus) 

The daubed shanny is a widely distributed benthic fish species in the 

northwestern Atlantic, occurring from the Arctic to the Gulf of Maine (Figure 60; 

Scott and Scott 1988). The species is of no commercial interest, and for this reason, 

little is known about its biology and behaviour. According to Scott and Scott ( 1988), 

these fish spawn in shallow waters during \Vinter. However, samples collected on 

Gannet lsland, nearshore coast of Labrador, contained gravid females in August 

Tyler (197la), studying first communities in Passamaquoddy Bay, found daubed 

shannys distributed irregularly in this area. This maybe a function of the shanny's 

benthic life style, as this species could be present in any area, yet be inaccessible to 

research trawls. Cruise Reports from DFO vessels from 1995 and 1996 (J. Brattey, 

Department of Fisheries and Oceans, St. John's, Newfoundland, personal 

communication) indicated that daubed shanny are found in considerable numbers in 

bycatches of NAFO divisions 2 and 3. They were found throughout the year in 

depths ranging from 10 to 600 m. 
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Daubed shanny are important prey for seabirds. For instance, Birkhead and 

Nettleship (1987) found that the diet of thick-billed murre chicks in Gannet Island, 

labrador consisted mainly of daubed shanny in 1982 and 1983. However, new 

studies revealed that daubed shannys have been the main prey of common and 

thick-billed murre chicks since the early 1990s in Gannet Island as 1.vell (in 1997 they 

estimated that 75 percent 0f these bird;;' dicb -.:ontain..:d ;;h,mny;:;; R. I3ryant, 

unpublished data). Lawson et al. (1995) also reported daubed shanny in harp seal 

diets, but not commonly. 
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Appendix B: Proximate Composition of Prey 
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Appendix B: Proximate Composition of Prey (cont.) 
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79.77 

79.64 

73.71 

78.45 

78.5 

79.34 

78.38 

76.96 

76.19 

76 .72 

79.4 

785 

775 

75.74 

7788 

7789 

78.57 

78.95 

7633 

83.17 

79.24 

76.69 

83.09 

8381 

77-UJ 

78 .08 

7538 

84.75 

7824 

78.18 

80.97 

81.68 

78.5 

77.39 

76.62 

82.67 

83.39 

74.52 

78.02 

76.09 

79.52 

82.98 

81 .68 

82.99 

81 .95 

83.63 

76.81 

77.51 

10.46 

12.89 

15.07 

15.82 

16.68 

16.12 

16.28 

14.89 

162 

16.68 

16.14 

14.64 

14.98 

14.53 

16.58 

15.93 

14.71 

16.9 

14.86 

14.14 

15.02 

11.17 

14.73 

16.84 

12.06 

14.31 

14.33 

15.61 

16.16 

11 .78 

15.18 

15.79 

13.56 

13.31 

16.84 

16.11 

15.99 

12.67 

12.34 

17.33 

1526 

17.45 

14.41 

12.14 

13.84 

13.25 

13.21 

12.17 

15.32 

16.5 

5.79 

5.52 

2.74 

2.32 

7.5 

327 

2.58 

3.67 

3.3 

4.25 

5.56 

6.41 

3.4 

498 ' 

3.42 

6.09 

523 

2.81 

3.97 

4.68 

6.48 

2.96 

3.35 

4.28 

1.85 

0.83 

5.56 

4.07 

6.47 

0 .64 

4.49 

3.44 

3.24 

2.47 
2.25 I 

4.33 

4.99 

2.05 

1.75 

5.92 

4.56 

422 

3.52 

2.Zl 

1.31 

0.97 

2.34 

0.97 

5.99 

3.79 

2.77 

1.59 

2.42 

2.22 

2.1 

2.15 

2.65 

2.1 

2.11 

2.1 1 

2. 11 

2.23 

2.22 

1.99 

2.5 

224 

2.18 

2.39 

2.6 

2.24 

2.17 

2.7 

2.68 

22 

3.0 

1.05 

2.65 

2.24 

1.98 

2.83 

2.09 

2.59 

2.23 

2.54 

2.4 

2.16 

2.4 

2.61 

2.52 

224 

2.16 

224 

2.55 

2.61 

3.17 

2.79 

2.5 

3.23 

1.88 

221 

4.29 

4.23 

4.06 

4.04 

6.19 

~.47 

4.23 

4.37 

4.5 

4.95 

5.34 

5.36 

429 

48 

4.62 

55 

-t93 

4.45 

4.48 

4.6 

5.47 

3.36 

4.22. 

499 

3.11 

3.18 

498 

4.67 

5.69 

2.6 

4.74 

4.47 

3.94 

3.6 

4.23 

4.87 

5.09 

3.31 

3.13 

5.71 

4.78 

5.09 

4.22 

3.29 

327 

3.02 

3.53 

2.8 

5.34 

4.74 

66 



Appendix B: Proximate Composition of Prey (cont.) 
Arctic 51 .9 

cod 52.3 

52.4 

53.3 

53.4 

54.4 

55.9 

56.3 

615 

63.4 

72.0 

86.9 

106.0 

136.7 

Atlantic 16.0 

COd 16.5 

16.8 

17.8 

18.0 

182 

19.1 

19.9 

19.9 

20.7 

20.7 

21 .1 

21 .3 

23.0 

24.1 

25.7 

25.7 

26.5 

26.9 

27.0 

27.3 

29.0 

30.6 

31 .0 

33.4 

34.5 

35.0 

37.0 

37.9 

43.0 

432 

48.8 

49.4 

49.6 

50.7 

177.0 

189.0 

177.0 

180.0 

186.0 

207.0 

185.0 

183.0 

170.0 

207.0 

199.0 

219.0 

232.0 

293.0 

96.0 

126.0 

114.0 

98.0 

112.0 

117.0 

121 .0 

119.0 

125.0 

125.0 

128.0 

125.0 

120.0 

112.0 

131 .0 

126.0 

128.0 

144.0 

122.0 

143.0 

130.0 

142.0 

143.0 

154.0 

152.0 

158.0 

151 .0 

167.0 

154.0 

166.0 

167.0 

173.0 

179.0 

184.0 

178.0 

Female 

Female 

Female 

Female 

Female 

Female 

Male 

Male 

Male 

Female 

Male 

Female 

Female 

Female 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Female 

Unk 

Unk 

Unk 

Unk 

Female 

Male 

Unk 

Unk 

Unk 

Unk 

Male 

Unk 

Unk 

Unk 

Unk 

Male 

Unk 

Unk 

Male 

Male 

Female 

Male 

Unk 

Female 

Male 

Unk 

Unk 

E Nfld 

NENfld 

ENfld 

E Nfld 

NE Nfld 

ENfld 

E Nfld 

E Nfld 

E Nfld 

NE Nfld 

NE Nfld 

NE Nfld 

NE Nfld 

NE Nlld 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

E NHd 

Labrador 

Labrador 

Labrador 

Labrador 

ENfld 

Labrador 

Labrador 

Offshore 1995 

Offshore 1994 

Offshore 1995 

Offshore 1995 

Offshore 1994 

Nearshore 1996 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1994 

Offshore 1994 

Offshore 1994 

Offshore 1 994 

Offshore 1 994 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nov 

Dec 

Nov 

Nov 

Dec 

Feb 

Nov 

Nov 

Nov 

Dec 

Dec 

Dec 

Dec 

Dec 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

July 

.AuJ 
July 

July 

July 

July 

.AuJ 
July 

July 

78.44 

78.5 

76.76 

77.66 

77.19 

83.51 

7792 

7752 

79.15 

78.42 

78.77 

7629 

76.32 

81.09 

79.67 

77.88 

78.63 

78.17 

78.87 

78.32 

78.72 

7799 

80.25 

78.36 

77.71 

78.49 

76.16 

75.71 

7839 

78.87 

80.57 

77.58 

75.14 

192 

80.6 

78.11 

80.0 

80.37 

78.66 

79.8 

76.85 

79.4 

78.9 

76.85 

78.15 

80.99 

78.84 

78.38 

78.8 

15.77 

14.56 

17.82 

15.64 

17.67 

12.4 

16.86 

1727 

15.09 

15.96 

15.61 

16.64 

20.48 

14.71 

16.23 

15.62 

15.7 

16.31 

15.24 

16.03 

16.64 

15.41 

14.87 

16.01 

16.64 

14.99 

16.92 

17.6 

15.96 

14.77 

13.71 

16.17 

18.01 

14.52 

14.82 

16.76 

14.82 

15.06 

15.69 

16.02 

15.94 

16.44 

14.76 

17.82 

16.07 

14.63 

15.8 

16.53 

15.97 

3.69 

4.95 

3.08 

4.49 

3.08 

1.12 

3.12 

2.96 

3.52 

3.15 

3.34 

4.72 

0.95 

1.34 

1.05 

2.35 

3.42 

2.61 

3.63 

3.3 

1.55 

3.58 

2.66 

2.82 

2.55 

4.18 

3.6 

3.67 

2.69 
4.13 

2.56 

3.56 

3.48 

2.68 

2.31 

2.12 

2.78 

1.72 

2.73 

1.85 

427 

0.89 

3.16 

1.81 

2.84 

1.4 

2.38 

2.18 

2.85 

2.1 

2.0 

2.34 

2.21 

2.05 

2.97 

2.09 

2.25 

2.24 

2.47 

2.28 

2.35 

2.25 

2.66 

3.05 

4.1 5 

2.25 

2.91 

2.26 

2.34 

3.09 

3.00 

2.23 

2.81 

3.1 

2.34 

3.31 

3.02 

2.97 

2.23 

3.16 

2.69 

3.37 

3.6 

2.27 

3.01 

2.4 

2.85 

2.72 

2.33 

2.95 

3.27 

3.16 

3.52 

2.93 

2.99 

2.97 

2.~1 

2.38 

4.56 

4.79 

4.74 

4.84 

4.71 

2.9 

4.56 

4.58 

4.36 

4.39 

4.39 

5.12 

4.46 

3.45 

3.64 

4.02 

4.44 

4.25 

4.-lJ 

4 .46 

3.92 

4.44 

3.98 

4.27 

1.3 

459 

4.75 

491 

4.21 

4 .52 

3.72 

4.59 

4.92 

3.92 

3.84 

4.16 

4.02 

3.67 

4.18 

3.91 

4.81 

3.63 

4.16 

425 
429 

3.46 

4.07 

4.13 

4.28 
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Appendix B: Proximate Composition of Prey (cont.) 
Atlantic 

Cod 

542 

54.6 

55.5 

55.9 

57.1 

57.9 

58.4 

58.7 

59.7 

60.0 

60.7 

61 .5 

63.7 

64.5 

64.6 

65.5 

66.6 

66.8 

68.7 

69.4 

702 

71 .7 

73.0 

73.0 

732 

74.1 

742 

76.0 

76.8 

76.8 

80.4 

80.8 

81.8 

84.9 

85.1 

85.8 

86.9 

87.5 

882 

91 .6 

92.4 

94.9 

96.4 

98.1 

98.4 

106.3 

113.6 

114.1 

155.5 

1792 

182.0 

173.0 

1132.0 

164.0 

187.0 

192.0 

189.0 

183.0 

168.0 

185.0 

191 .0 

189.0 

190.0 

193.0 

168.0 

190.0 

195.0 

170.0 

179.0 

200.0 

195.0 

198.0 

176.0 

199.0 

197.0 

196.0 

180.0 

198.0 

191 .0 

201 .0 

203.0 

213.0 

194.0 

208.0 

217.0 

199.0 

208.0 

216.0 

198.0 

202.0 

189.0 

208.0 

222.0 

210.0 

200.0 

217.0 

229.0 

212.0 

232.0 

245.0 

Unk 

Female 

Unk 

Male 

Male 

Unk 

Female 

Male 

Male 

Unk 

Male 

Male 

Male 

Female 

Male 

Unk 

Female 

Female 

Male 

Male 

Male 

Female 

Male 

Female 

Female 

Female 

Male 

Male 

Unk 

Unk 

Female 

Unk 

Unk 

Female 

Female 

Female 

Male 

Male 

Unk 

Female 

Female 

Unk 

Female 

Male 

Male 

Female 

Female 

Female 

Female 

Male 

Labrador 

Labrador 

Labrador 

Labrador 

ENftd 

Labrador 

E Nfld 

ENftd 

labrador 

Labrador 

E Nfld 

Labrador 

labrador 

labrador 

Labrador 

labrador 

Labrador 

labrador 

Labrador 

ENfld 

labrador 

E Nfld 

Labrador 

Labrador 

labrador 

labrador 

labrador 

labrador 

labrador 

Labrador 

E Nfld 

Labrador 

labrador 

Labrador 

Labrador 

ENHd 

Labrador 

ENfld 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

ENfld 

Labrador 

Labrador 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

July 

July 

July 

July 

Au;! 

July 

Au;! 

Au;! 

July 

July 

.Au] 

July 

July 

July 

July 

July 

July 

July 

July 

Aug 

July 

Aug 

July 

July 

July 

July 

July 

July 

July 

July 

Au;! 

July 

July 

July 

July 

Aug 

July 

Aug 

July 

July 

July 

July 

July 

July 

July 

July 

July 

Aug 

July 

July 

77.45 

79.56 

81 35 

78.04 

78.76 

79.7 

65.98 

80.04 

81 .01 

80.79 

80.Q7 

79.63 

79.36 

805 

7715 

80.23 

78.77 

77.84 

7654 

78.97 

7964 

79.76 

7722 

79.17 

80.72 

79.03 

7827 

78.47 

79.94 

78.68 

80.51 

79.19 

71 .1 

78.88 

79.45 

8724 

77.73 

79.9 

81.53 

76.14 

77.85 

78.76 

78.19 

77.12 

78.89 

79.56 

79.39 

79.12 

78.18 

77.54 

17.74 

15.43 

14.81 

16.19 

15.31 

15.38 

26.92 

15.69 

14.05 

15.14 

15.45 

15.25 

15.41 

15.3 

16.57 

14.88 

15.18 

16.13 

17.6 

16.69 

14.85 

15.81 

1625 

16.39 

14.43 

16.44 

16.93 

15.34 

15.55 

15.53 

14.45 

15.29 

21.24 

15.41 

16.25 

9.33 

16.63 

15.8 

13.9 

17.71 

15.7 

16.19 

16.09 

17.29 

15.66 

15.79 

16.15 

15.69 

16.6 

18.33 

2.52 
2.44 

0.72 

2.29 

3.13 

2.17 

1.77 

1.52 

2.17 

1.77 

1.49 

2.44 

2.51 

1.76 

3.34 

1.67 

3.42 

3.17 

2.99 

1.38 

2.74 

1.5 

3.56 

1.34 

1.86 

1.47 

1.92 

3.48 

1.75 

2.76 

1.92 

2.74 

4.07 

2.79 

1.55 

2.21 

2.27 

1.4 

2.09 ' 
3.33 

3.92 

2.25 

2.96 

2.71 

2.5 

1.33 

1.71 

2.41 

2.39 

0.46 

2.3 

2.57 

3.12 

3.48 

2.79 

2.75 

5.32 

2.75 

277 

2.31 

2.99 

2.68 

2.72 

2.44 

2.94 

3.~ 

2.63 

2.86 

2.87 

2.96 

2.77 

2.93 

2.96 

3.1 

2.99 

306 

2.87 

2.7 

2.76 

3.CX3 

3.12 

2.78 

3.59 

2.92 

2.75 

1 .~ 

3.36 

2.9 

2.49 

2.82 

2.53 

2.8 

2.76 

2.87 

2.95 

3.32 

2.75 

2.78 

2.63 

3.67 

4.5 

-tOt 

3.Z3 

4.11 

4.25 

3.9 

6.06 

3.71 

3.63 

3.7 

3.66 

396 

4.04 

373 

4.58 

3.61 

4.34 

4.43 

4.66 

3.86 

4.01 

3.73 

4.6 

3.79 

3.59 

385 

4.12 

4.39 

3.77 

4.16 

3.62 

4.1 

5.79 

4.14 

3.84 

2.71 

4.19 

3.69 

3.57 

4.81 

4.63 

4.09 

4.34 

4.49 

4.08 

3.66 

3.88 

4.05 

4.23 

3.84 
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Appendix B: Proximate Composition of Prey (cont.) 
Atlantic 

Cod 

Atlantic 

Herring 

251 .0 

313.0 

3172 

437.5 

439.7 

450.0 

514.0 

530.6 

585.1 

607.3 

671 .0 

6912 

703.8 

m .3 

868.1 

153.0 

170.0 

200.0 

204.0 

209.0 

216.0 

217.0 

220.0 

228.3 

233.0 

242.0 

242.0 

248.0 

248.0 

252.0 

253.0 

254.0 

259.0 

262.0 

263.0 

264.0 

268.0 

272.9 

280.0 

280.0 

283.0 

2832 

289.0 

293.0 

294.6 

296.0 

2962 

311 .0 

314.0 

263.0 

279.0 

328.0 

315.0 

310.0 

359.0 

385.0 

3n.o 
389.0 

365.0 

425.0 

416.0 

386.0 

432.0 

473.0 

252.0 

260.0 

276.0 

2670 

264.0 

270.0 

269.0 

258.0 

299.0 

274.0 

254.0 

278.0 

264.0 

282.0 

256.0 

292.0 

278.0 

270.0 

292.0 

301 .0 

268.0 

300.0 

300.0 

276.0 

282.0 

290.0 

302.0 

310.0 

296.0 

300.0 

290.0 

308.0 

274.0 

280.0 

Female 

Male 

Male 

Female 

Male 

Female 

Female 

Female 

Male 

Female 

Male 

Female 

Male 

Male 

Female 

Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Female 

Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Female 

Unk 
Unk 
Unk 
Female 

IJnk 
Unk 
Female 

Unk 
Female 

Unk 
Unk 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

ENfld 

E Nfld 

E Nfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

E Nfld 

ENfld 

ENfld 

ENfld 

E Nfld 

ENfld 

ENild 

ENfld 

E Nfld 

ENild 

ENfld 

ENfld 

ENfld 

E Nlld 

ENfld 

E Nfld 

ENfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

E Nfld 

E Nlld 

E Nlld 

E Nfld 

ENHd 

E Nfld 

E Nftd 

ENfld 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1992 

Nearshore 1995 

Nearshore 1992 

Nearshore 1994 

Nearshore 1992 

Nearshore 1992 

Nearshore 1994 

Nearshore 1993 

Nearshore 1 996 

Nearshore 1993 

Nearshore 1992 

Nearshore 1992 

Nearshore 1993 

Nearshore 1992 

Nearshore 1993 

Nearshore 1992 

Nearshore 1992 

Nearshore 1993 

Nearshore 1992 

Nearshore 1994 

Nearshore 1993 

Nearshore 1993 

Nearshore 1996 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1995 

Nearshore 1994 

Nearshore 1994 

Nearshore 1995 

Nearshore 1995 

Nearshore 1995 

Nearshore 1993 

Nearshore 1993 

July 

July 

July 

July 

July 

Aug 

Aug 

Aug 

Aug 

July 

Aug 

Aug 

Aug 

Aug 

Aug 

Nov 

Mar 

Nov 

Sept 

Nov 

Nov 

Sept 

Oct 

Oct 
Oct 
Nov 

Nov 

Oct 
Nov 

Oct 
Nov 

Nov 

Oct 
Nov 

Feb 

Oct 
Oct 
Oct 

Oct 

Oct 

Oct 

Oct 

Feb 

Sept 

Oct 

Mar 

Oct 

Oct 

Oct 

772 

78.52 

77.73 

80.63 

79.77 

76.07 

79.11 

74.94 

75.8 

75.77 

77.61 

75.94 

76.67 

79.11 

78.17 

61.4 

73.95 

65.9 

7028 

66.4 

66.6 

66.59 

61 .6 

732 

62.0 

65.1 

64.0 

63.9 

66.9 

612 

652 

67.1 

62.1 

65.3 

73.5 

67.3 

62.6 

73.22 

62.0 

632 

63.5 

70.47 

75.9 

69.18 

66.85 

70.35 

64.99 

64.0 

63.6 

16.06 

15.52 

17.29 

14.92 

15.99 

16.46 

16.93 

17.08 

17.83 

15.82 

19.97 

16.47 

15.35 

15.18 

15.28 

19.48 

18.83 

20.79 

16.41 

21 .39 

21 .43 

18.26 

19.46 

18.39 

1927 

24.73 

20.79 

19.62 

20.14 

18.84 

19.76 

20.02 

18.97 

21 .31 

20.5 

20.07 

19.56 

17.78 

18.73 

18.85 

20.76 

17.49 

21.43 

16.53 

1s.n 
17.3 

18.96 

19.06 

19.41 

3.75 

2.72 

2.25 

1.75 

1.65 

5.13 

1.34 

4.65 

4.39 

4.98 

9.25 

427 

4.86 

1.87 

3.45 

18.16 

4.75 

12.62 

11 .8 

11.38 

11 .1 

13.04 

18.02 

5.94 

17 .83 

9.28 

14.32 

1556 

12.07 

19.0 ' 

1427 

12.06 

17.95 

12.6 

524 

11.75 

16.9 

6.4 

18.38 

17.13 

14.88 

9.81 

1.96 

12.16 

11.29 

10.13 

1421 

16.14 

16.15 

2.99 

324 

2.74 

2.7 

2.68 

2.34 

2.62 

3.33 

1.98 

3.43 

2.42 

3.32 

3.12 

3.84 

3.1 

0.96 

2.48 

0.68 

1.51 

0.83 

0.87 

2.1 

0.92 

2.47 

0.9 

0.99 

0.89 

0.92 

0.89 

0.96 

0.77 

0.81 

0.97 

0.79 

0.76 

0.88 

o.ro 
2.6 

0.89 

0.82 

0.86 

2.23 

0.71 

2.12 

2.08 

2..22 

1.84 

0.8 

0.84 

4.64 

4.14 

4.31 

3.65 

3.81 

5.24 

3.89 

5.18 

5.23 

5.06 

7.51 

4.92 

4.92 

3.75 

4.37 

10.8 

5.57 

896 

7.77 

8.6 

8.51 

8.61 

10.74 

5.94 

1063 

8.47 

9.6 

9.84 

8.62 

10.99 

9.38 

8.59 

10.62 

9.05 

6.09 

8.48 

10.34 

5.99 

10.73 

10.28 

9.81 

723 

5.CG 

7.93 

824 

7.31 

9.19 

9.94 

10.02 
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Appendix B: Proximate Composition of Prey (cont.) 
Atlantic 394.0 

Herring 395.0 

Capel in 

416.0 

112 

116 

12.1 

12.6 

12.6 

13.0 

132 

13.6 

13.8 

142 

142 

14.3 

14.9 

14.9 

15.9 

15.9 

16.4 

16.7 

16.7 

16.7 

16.8 

16.9 

16.9 

16.9 

17.0 

172 

172 

17.3 

17.5 

17.6 

17.6 

17.9 

18.0 

18.0 

182 

18.4 

18.4 

18.5 

18.5 

18.7 

18.9 

19.0 

19.0 

19.1 

19.1 

19.1 

300.0 

300.0 

325.0 

114.0 

119.0 

124.0 

121 .0 

126.0 

124.0 

127.0 

125.0 

125.0 

124.0 

125.0 

122.0 

130.0 

149.0 

135.0 

138.0 

130.0 

130.0 

136.0 

137.0 

139.0 

135.0 

135.0 

135.0 

139.0 

138.0 

139.0 

136.0 

138.0 

135.0 

154.0 

138.0 

135.0 

135.0 

141 .0 

140.0 

143.0 

130.0 

144.0 

140.0 

139.0 

138.0 

140.0 

140.0 

140.0 

143.0 

Unk 
Unk 
Unk 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Female 

Female 

Female 

Female 

Female 

Male 

Male 

Female 

Male 

Female 

Female 

Female 

Female 

Unk 
Female 

Male 

Unk 
Female 

Female 

Male 

Female 

Male 

Female 

Male 

Male 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Female 

Male 

Male 

Male 

Male 

Male 

Male 

EN!ld 

EN!ld 

EN!ld 

EN!ld 

E Nfld 

E Nlld 

ENfld 

E Nfld 

E Nfld 

E Nlld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

ENHd 

EN!ld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

E Nfld 

E Nfld 

ENfld 

ENfld 

EN!ld 

ENfld 

ENfld 

ENfld 

ENfk:l 

ENfld 

ENfld 

ENfld 

ENfld 

ENfld 

Nearshore 1993 

Nearshore 1995 

Nearshore 1995 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1996 

1995 

1995 

1995 

1995 

1996 

1995 

1995 

1995 

1995 

1995 

1996 

1996 

1995 

1995 

1995 

1996 

1995 

1996 

1995 

1996 

1996 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1996 

1995 

Oct 

Mar 

Mar 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

June 
Oct 

Oct 

Oct 

Oct 

June 
Oct 

Oct 

Oct 

Oct 

Oct 

June 

June 
Oct 

Oct 

Oct 
June 
Oct 

June 

Oct 

June 

June 
Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 
Oct 

June 

Oct 

65.5 

7021 

68.71 

76.64 

64.0 

5926 

63.1 

66.67 

63.44 

64.58 

64.07 

62.63 

6226 

66.35 

65.42 

63.4 

62.5 

78.86 

66.39 

64.57 

59.84 

59Z3 

80.3 

62.8 

68.89 

60.16 

63.78 

66.92 

81 .62 

80.15 

57.14 

61 .76 

54.41 

82.61 

64.49 

80.0 

62.23 

75.68 

80.14 

642 

65.33 

61.64 

61 .84 

60.26 

62.34 

59.35 

61.49 

79.87 

60.76 

19.05 

19.83 

16.8 

7.79 

14.22 

11.81 

12.32 

17.8 

18.95 

16.62 

15.48 

16.48 

16.16 

15.86 

19.03 

16.78 

16.38 

15.84 

15.91 

15.73 

1763 

20.81 

15.51 

15.91 

14.93 

13.59 

16.12 

15.0 

14.54 

15.57 

24.91 

15.56 

1424 

13.67 

15.84 

14.76 

15.7 

15.54 

15.59 

16.62 

1528 

16.n 

17Z3 

19.05 

16.01 

14.96 

16.59 

14.99 

15.65 

14.64 0.81 

7.55 ' 2.41 

11.82 2.67 

14.4 1.17 

19.78 2.0 

26.94 1.99 

22.64 1.95 

13.26 2.2:7 

15.29 2.32 

16.48 2.32 

18.5 195 

18.88 2.01 

19.53 2.05 

15.89 1.9 

13.5 2.05 

17.42 2.4 

18.84 2.28 

3.42 1.88 

15.93 1.n 

17.72 198 

20.71 1.82 

17.85' 2.11 

2.24 1.95 

18.81 2.48 

14.06 2.12 

24.59 1.67 

17.59 2.52 

15.87 221 

1.98 1.86 

2.25 2.02 

1621 1.74 

2027 2.4 

30.55 0.8 

1.1 2.61 

17.21 2.46 

3.49 1.75 

20.0 2.07 

7.CX3 1.75 

2.32 1.95 

16.96 2.21 

17.49 1.9 

18.82 2.n 

18.88' 2.05 

18.45 2.24 

19.71 1.94 

23.3 2.39 

20.17 

3.04 

21.53 

1.76 

2.1 

2.00 

9.37 

6.84 

785 

7.03 

10.36 

12.6 

11.07 

8.6 

9.6 

959 

10.13 

10.47 

10.65 

9.21 

8.94 

9.98 

1043 

4.47 

924 

988 

11.4 

10.95 

3.95 

10.33 

8.33 

12.06 

9.91 

9.03 

3.66 

3.97 

11 .14 

10.82 

14.46 

3.15 

9.71 

4.28 

10.74 

5.78 

4.0 

9.n 

9.7 

10.5 

10.62 

10.82 

10.69 

11 .85 

10.98 

4.15 

, 1.31 
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Appendix B: Proximate Composition of Prey (cont.) 
Capelin 19.5 

19.5 

19.6 

19.6 

19.7 

19.7 

19.7 

19.7 

20.9 

21 .3 

21 .6 

21 .6 

22.0 

22.0 

22.4 

22.5 

22.5 

22.5 

22.6 

22.6 

22.9 

22.9 

23.3 

242 

24.4 

25.7 

262 

26.6 

26.7 

282 

30.6 

312 

31.5 

35.1 

36.4 

Daubed 8.7 

Shamey 8.8 

9.8 

102 

10.3 

10.9 

10.9 

11 .1 

11 .1 

12.0 

12.1 

132 

13.5 

14.0 

140.0 

145.0 

143.0 

1440 

143.0 

143.0 

143.0 

147.0 

138.0 

148.0 

140.0 

141 .0 

145.0 

149.0 

147.0 

148.0 

148.0 

150.0 

146.0 

148.0 

151.0 

152.0 

150.0 

149.0 

153.0 

147.0 

140.0 

153.0 

150.0 

157.0 

166.0 

159.0 

160.0 

168.0 

172.0 

127.0 

137.0 

131 .0 

130.0 

135.0 

139.0 

153.0 

139.0 

141.0 

140.0 

145.0 

153.0 

158.0 

155.0 

Female 

Male 

Female 

Male 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Female 

Male 

Ma!e 

Female 

Male 

Male 

Male 

Male 

Male 

Male 

Unk 

Female 

Unk 

Female 

Unk 

Female 

Unk 

Unk 

Male 

Male 

Unk 

Unk 

Unk 

Female 

ENfld 

ENfld 

ENfld 

E Nfld 

ENfld 

ENIId 

ENfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

E Nfld 

ENfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nffd 

ENfld 

E Nfld 

Labrador 

E Nftd 

E Nfld 

Labrador 

E Nfld 

E Nfld 

E Nlld 

E Nfld 

E Nfld 

E Nfld 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1996 

1996 

1996 

1996 

1995 

1995 

1996 

1995 

Offshore 1995 

Offshore 1996 

Offshore 1996 

Offshore 1995 

Offshore 1995 

Offshore 1996 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1996 

0!1shore 1995 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Nearshore 1996 

Offshore 1995 

Offshore 1995 

Nearshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Offshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

June 
June 
June 
June 
Oct 

Oct 
June 
Oct 

Oct 

June 

June 

Oct 
Oct 
June 
0<.'1 

Oct 
Oct 
June 

0<.'1 

June 
June 
June 
June 
June 

June 
Aug 

Oct 
Oct 

Aug 

June 
June 

June 
June 
June 

June 

805 

7826 

8025 

80.0 

60.49 

61 .25 

81 .99 

64.9 

61 .76 

7989 

80.66 

61 .33 

60.96 

73.n 

60.96 

18.6 

64.13 

7937 

61 .17 

79.06 

7824 

76.68 

80.0 

78.74 

n.gg 

73.12 

56.88 

60.35 

73.06 

78.51 

n29 

7626 

76.7 

76.92 

75.69 

70.83 

72.55 

70.49 

71 .43 

57.81 

71 .01 

69.44 

7123 

73.91 

8824 

73.08 

69.32 

7021 

79.79 

15.03 

15.56 

14.82 

15.06 

15.61 

16.24 

14.56 

9.75 

17.1 

14.7 

14.83 

14.55 

16.27 

15.64 

16.78 

56.65 

15.n 

14.73 

16.21 

13.83 

15.36 

14.87 

14.5 

15.0 

14.61 

20.67 

17.27 

16.42 

19.49 

14.74 

14.33 

15.28 

14.35 

13.5 

15.34 

2023 

20.81 

20.61 

22.58 

29.56 

20.73 

21 .16 

20.13 

18.98 

823 

20.31 

21 .84 

20.12 

14.57 

2.67 

4.12 

2.99 

2.76 

21 .6 

20.27 

1.58 

23.01 

18.57 

3.11 

2.41 

22.33 

20.01 

8.65 

2025' 

19.84 

18.03 

3.9 

21 .07 

5.46 

4.31 

6.39 

3.7 

4.53 

5.45 

4.21 

24.01 

21.42 

5.52 

4.73 

6.46 

6.49 

7.0 

7.49 

6.96 

6.02 

3.15 

5.76 

3<X3 

9.02 

5.42 

5.97 

5.57 

4.51 

2.52 

3.12 

6.1 

6.53 

3.69 

1.79 

2.05 

1.94 

2.18 

2.3 

2.23 

1.87 

2.34 

2.57 

2.3 

2.1 

1.79 

2.76 

1.94 

2.01 

4.91 

2.07 

2.01 

1.55 

1.65 

2.08 

2.06 

1.8 

1.73 

1.96 

2.0 

1.84 

1.8 

1.93 

2.02 

1.92 

1.97 

1.95 

2.09 

2.01 

2.92 

3.49 

3.14 

2.97 

3.61 

2.83 

3.43 

3.07 

2.59 

1.01 

3.49 

2.74 

3.14 

1.96 

4.02 

4.68 

4.1 

4.06 

11 .33 

10.95 

3.51 

10.69 

10.48 

4.12 

3.88 

11 .4 

10.86 

6.42 

11.05 

18.87 

10.01 

4.43 

11 .25 

4.84 

4.71 

5.4 

4.31 

4.72 

4.99 

5.73 

12.58 

11 .43 

6.0 

4.75 

5.32 

5.52 

5.53 

5.55 

5.71 

6.33 

5.36 

6.31 

5.67 

9.34 

6.21 

6.5 

6.14 

5.51 

2.6 

5.25 

6.69 

6.5 

4.32 



Appendix B: Proximate Composition of Prey (cont.) 
Greenland 19.8 

Halibut 24.0 

322 

33.9 

35.1 

35.6 

362 

36.4 

40.4 

42.1 

422 

42.9 

442 

48.1 

48.8 

49.3 

49.7 

64.5 

64.7 

68.7 

71.4 

73.5 

77.3 

78.0 

80.3 

88.4 

88.8 

88.8 

89.3 

99.9 

113.0 

119.5 

122.7 

129.0 

132.5 

137.8 

140.0 

154.1 

181 .1 

1862 

188.4 

284.0 

310.8 

316.3 

386.1 

427.6 

484.8 

562.1 

Panda/us 7.8 

138.0 

143.5 

162.0 

159.0 

159.0 

163.0 

165.0 

169.0 

173.0 

170.0 

161.0 

183.0 

169.0 

184.0 

168.0 

173.0 

177.0 

193.0 

207.5 

205.0 

201 .0 

209.0 

201 .0 

200.0 

222.0 

209.0 

211 .0 

216.0 

215.0 

205.0 

239.0 

Z36.0 

235.0 

249.0 

274.5 

250.0 

235.0 

269.5 

275.0 

268.0 

279.0 

305.0 

333.5 

338.5 

368.5 

368.5 

388.5 

398.5 

20.0 

Unk 

Unk 

Unk 

Male 

Unk 

Unk 

Unk 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Unk 

Male 

Male 

Female 

Female 

Male 

Female 

Male 

Mare 

Male 

Male 

Male 

Male 

Male 

Female 

Male 

Unk 

Female 

Male 

Unk 

Male 

Male 

Female 

Female 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Male 

ENfld 

ENfld 

E Nfld 

ENfld 

ENftd 

E Nfld 

E Nfld 

ENfld 

ENfld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

ENftd 

ENfld 

ENfld 

ENftd 

E Nfld 

ENfld 

E Nfld 

E Nftd 

E Nftd 

E Nftd 

E Nfld 

ENfld 

E Nfld 

NENfld 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1995 

1992 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1992 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1995 

1992 

1995 

1995 

1992 

1995 

1995 

1995 

1995 

1992 

1992 

199'2 

1992 

1992 

1992 

1995 

Oct 

Jan 
Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Jan 
Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Jan 

Oct 

Oct 

Jan 

Oct 

Oct 

Oct 

Oct 

Jan 

Jan 
Jan 

Jan 
Jan 

Jan 

Oct 

78.77 

78.03 

81.47 

76.89 

82.55 

78.86 

78.93 

79.36 

75.15 

79.05 

79.2 

78.42 

7921 

78.62 

76.91 

79.49 

75.81 

81 .16 

7821 

80.15 

76.49 

78 .5 

78.85 

78.93 

73.89 

73.74 

75.61 

81.1 

80.33 

78.51 

78.59 

75.89 

79.05 

81 .89 

76.3 

76.73 

78.63 

75.73 

78.61 

74.18 

77.04 

71 .62 

74.9 

72.6 

69.4 

68.87 

69.4 

69.9 

72.73 

13.52 

13.27 

12.51 

12.15 

11 .71 

12.38 

12.27 

11 .61 

12.92 

12.27 

11.15 

11 .54 

13.33 

12.21 

11 .74 

13.95 

11.83 

tl55 

10.55 

11 .84 

14.38 

9.1 

12.13 

12.02 

12.59 

13.29 

14.97 

11.79 

11.49 

10.84 

12.74 

13.08 

11 .68 

10.98 

12.78 

11 .88 

11 .0 

12.78 

12.37 

11 .44 

12.93 

12.65 

12.7 

11 .8 

12.9 

17.97 

12.9 

11 .9 

18.34 

4.74 

6.13 

3.62 

8.61 

3.67 

6.59 

6.4 

6.07 

9.34 

6.11 

6.77 

7.33 

5.87 

7.44 

8.82 

45 

9.65 

5.17 

6.91 

5.92 

6.53 

10.33 

6.79 

7.07 

1123 

10.91 

8.43 

5.15 

5.72 

8.13 

6.79 

8.91 

7.33 

5.32 

9.27 

9.54 

8.39 

9.78 

7.08 

11.88 

8.0 

13.54 

10.6 

13.7 

16.1 

11 .63 

16.0 

16.6 

3.12 

2.97 

1.76 

2.41 

2.34 

2.08 

2.17 

2.39 

2.96 

2.59 

2.58 

2.88 

2.72 

158 

1.73 

2.54 

2.05 

2.72 

2.12 

1.37 

2.09 

2.6 

2.08 

2.23 

1.98 

2.29 

2.06 

0.99 

1.96 

2.45 

2.52 

1.88 

2.12 

1.94 

1.81 

1.65 

1.86 

1.98 

1.63 

1.95 

2.5 

2.02 

2.19 

1.8 

1.9 

1.7 

1.53 

1.7 

1.6 

5.81 

4.51 

4.52 

3.88 

5.7 

3.74 

4.98 

4.89 

4.63 

6.13 

4.77 

4.8 

5.09 

4.9 

527 

5.7 

4.5 

6.03 

4.28 

436 

4.62 

5.36 

5.74 

5.01 

5.09 

6.79 

6.8 

62 
4.31 

4.47 

5.26 

5.13 

6.0 

5.12 

4.22 

5.62 

6.0 

5.39 

5.82 

5.16 

6.8 

5.63 

7.07 

6.1 

7.13 

8.21 

7.38 

8.18 

824 

4.85 



Appendix B: Proximate Composition of Prey .<cont..) 
PancJaJus 1 0.3 

borealis 1 0.5 

Northem 10.8 

Shrimp 112 

Redfish 

112 

11 .4 

11 .4 

11 .5 

11 .7 

11.7 

11 .7 

11 .9 

12.0 

12.0 

12.1 

12.3 

12.4 

12.4 

12.5 

12.5 

12.5 

12.6 

12.8 

12.8 

12.9 

13.1 

132 

13.3 

14.8 

28.4 

31 .9 

33.0 

33.4 

342 

36.4 

37.1 

41.5 

41 .8 

43.1 

58.5 

60.7 

61.5 

66.8 

71 .7 

21.5 

22.0 

23.5 

22.0 

23.0 

23.0 

23.0 

23.0 

22.0 

23.0 

24.0 

23.0 

22.5 

23.0 

23.0 

23.0 

23.5 

23.5 

23.0 

23.5 

24.0 

23.0 

23.0 

23.0 

23.5 

23.5 

24.5 

23.5 

25.0 

18.1 

20.0 

22.0 

22.6 

23.7 

114.0 

117.0 

127.0 

119.0 

121 .0 

126.0 

124.0 

132.0 

134.0 

142.0 

152.0 

146.0 

154.0 

160.0 

163.0 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Male 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Female 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Male 

Male 

Male 

Unk 

Male 

Male 

Female 

Unk 

Male 

Male 

Male 

Male 

Male 

NENftd 

NENfld 

NE Nfld 

NENIId 

NE Nfld 

NENHd 

NE Nlld 

NE Nlld 

NENIId 

NE Nlld 

NE Nfld 

NE Nfld 

NE Nlld 

NE Nfld 

NE Nlld 

NE Nfld 

NE Nfld 

NE Nlld 

NE Nlld 

NE Nfld 

NE Nlld 

NE Nfld 

NE Nfld 

NE Nftd 

NE Nfld 

NE Nfld 

NENfld 

NE Nfld 

NE NHd 

E Nfld 

ENfld 

ENfld 

ENfld 

ENIId 

SNfld 

S Nfld 

SNtld 

S Ntld 

SNfld 

S NHd 

SNfld 

S Nfld 

SNfld 

SNfld 

SNfld 

S Nfld 

SN!Id 

SNtld 

SNfld 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1995 

Offshore 1991 

Offshore 1991 

Offshore 1991 

Offshore 1991 

Offshore 1991 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Nearshore 1996 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Oct 

Jan 

Jan 

Jan 

Jan 

Jan 

Jan 

Jan 

Jan 
Jan 

Jan 

Jan 

Jan 

Jan 

Jan 

Jan 

7727 

73.91 

7027 

75.0 

71 .62 

71 .79 

75.0 

74.07 

76.19 

7529 

74.68 

77.91 

73.86 

77.01 

750 

76.4 

73.33 

77.17 

72.53 

78.02 

71.91 

74.19 

73.68 

75.53 

75.0 

7629 

73.0 

74.75 

76.32 

76.74 

722 

75.38 

75.43 

77.94 

76.84 

77.57 

76.7 

7822 

75.97 

74.61 

75.0 

n2 

75.91 

73.42 

74.47 

74.0 

76.68 

72.86 

75.45 

14.67 

17.21 

19.5 

17.06 

18.79 

19.01 

16.05 

17.88 

16.15 

15.85 

17.1 7 

14.75 

1758 

15.4 

16.81 

16.16 

17.95 

15.8 

19.1 

16.3 

19.22 

17.26 

18.27 

17.18 

16.59 

16.51 

18.12 

17.38 

16.82 

12.09 

16.58 

12.34 

14.58 

12.25 

14.96 

15.83 

1522 

15.66 

19.55 

15.91 

16.17 

10.68 

18.92 

21 .07 

13.1 

15.73 

18.85 

16.06 

1522 

3.14 4.92 

4.18 4.7 

5.71 4.52 

2.79 5.15 

4.66 4.93 

4.54 4.66 

4.07 4.88 

3.74 4.31 

3.63 4.03 

4.31 4.55 

3.1 5.05 

2.79 4.55 

4.14 4.42 

321 4.38 

42 3.99 

3.35 4.09 

3.96 4.76 

2.64 4.39 

3.95 4.42 

1.43 ' 425 

·US 4.12 

3.96 4.59 

3.44 4.61 

2.74 4.55 

4. 11 4.29 

2.38 4.82 

4.24 4.64 

2.87 5.0 

2.39 4.47 

4.55 3.61 

7.87 3.82 

5.21 4.0 

4.99 3.81 

7.1 2.98 

4.46 3.73 

2.91 3.69 

2.92 5.16 

2.51 3.61 

4.48 3.79 

5.55 ' 3.00 

5.13 3.7 

7.81 4.31 

5.17 3.69 

5.51 4.59 

8.03 4.4 

6.46 3.8 

4.46 2.94 

7.48 3.6 

5.38 3.95 

4.13 

5.03 

6.07 

4.47 

5.53 

5.53 

4.76 

5.0 

4.61 

4.81 

4.61 

-l.01 

509 

-l.3 

-l.96 

-l.5 

5.1 

4.16 

5.32 

3.8 

5.65 

496 

496 

4.48 

4.88 

4.21 

5.24 

4.57 

4.27 

3.73 

5.73 

4.02 

4.31 

4.72 

4.69 

4.27 

4.15 

4.09 

5.61 

5.29 

5.18 

5.1 

5.75 

6.31 

5.67 

5.6 

5.47 

6.05 

5.09 

73 



Appendix B: Proximate Composition of Prey (cont.) 
Red fish 81 .1 

91 .8 

93.9 

115.3 

135.7 

142.3 

191 .5 

250.7 

290.4 

291 .8 

297.1 

312.4 

320.3 

321.8 

327.7 

337.4 

338.5 

340.7 

348.9 

351 .6 

356.5 

358.8 

362..1 

366.6 

367.3 

373.7 

373.9 

377.0 

381 .1 

382.2 

428.7 

10.0 

11 .0 

11.2 

11 .5 

11 .7 

12.0 

122 

122 

12.6 

12.9 

12.9 

12.9 

12.9 

13.0 

13.4 

13.8 

13.9 

14.3 

164.0 

186.0 

175.0 

197.0 

215.0 

219.0 

243.0 

264.0 

264.0 

290.0 

261 .0 

290.0 

278.0 

284.0 

288.0 

268.0 

289.0 

273.0 

280.0 

288.0 

295.0 

290.0 

290.0 

294.0 

278.0 

295.0 

289.0 

294.0 

n1.0 

293.0 

299.0 

159.0 

162.0 

168.0 

172.0 

166.0 

158.0 

165.0 

171 .0 

172.0 

170.0 

174.0 

179.0 

181 .0 

169.0 

167.0 

176.0 

169.0 

172.0 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Female 

Male 

Male 

Male 

Male 

Male 

Male 

Male 

S Nfld 

SNild 

S Nf!d 

SNfld 

SNIId 

S Nfld 

SNfld 

SNIId 

SNfld 

S Nfld 

s Nfld 

s Nfld 

S Nfld 

S Nfld 

S Nftd 

SNfld 

s Nfld 

S Nfld 

S Nfld 

S Nfld 

S Nfld 

S Nftd 

s Nfld 

s Nfld 

SNfld 

S Nfld 

SNfld 

S Nfld 

SNfld 

S Nfld 

SNild 

NE Nfld 

NE Nfld 

NENfld 

NENfld 

NENfld 

E Nfld 

E Nfld 

NENfld 

E Nfld 

NE Nfld 

E Nfld 

E Nfld 

NENfld 

NENftd 

ENfld 

ENfld 

ENfld 

ENfld 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Nearshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1995 

1995 

1995 

1995 

1995 

1996 

1996 

1995 

1996 

1995 

1996 

1996 

1996 

1995 

1996 

1996 

1996 

1996 

Jan 
Jan 
Jan 
Jan 
Jan 

Jan 
Jan 

Jan 
Jan 

Jan 
Jan 

Jan 

Jan 

Jan 
.Jan 
Jan 
Jan 
Jan 
Jan 

Jan 
Jan 
Jan 

Jan 

Jan 

Jan 
Jan 

Jan 
Jan 

Jan 
Jan 

Jan 

Dec 
Dec 

Dec 
Dec 
Dec 

June 
June 
Dec 
June 

Dec 

June 

June 
Dec 
Dec 
June 

June 

June 
June 

71 .04 

78.88 

74.19 

76.57 

73.44 

73.85 

75.03 

72.49 

73.1 

76.9 

73.57 

72.58 

74.65 

71 .09 

73.7 

73.17 

74.96 

70.96 

72.35 

75.04 

74.64 

75.34 

71 .38 

73.55 

75.98 

73.4 

73.62 

71 .12 

72.53 

75.41 

70.89 

n.61 

82.89 

83.33 

82.05 

79.52 

74.39 

78.57 

79.76 

74.16 

79.35 

73.63 

64.44 

79.17 

n:R. 
7629 

75.0 

76.n 

78.1 

17.41 

15.37 

16.05 

15.0 

16.56 

15.93 

16.03 

15.39 

16.44 

16.12 

17.16 

16.07 

15.81 

16.44 

17.04 

17.88 

16.31 

15.33 

15.27 

1575 

16.26 

15.9 

172 

15.31 

16.1 

15.36 

18.21 

15.66 

16.58 

17.86 

17.0 

15.6 

15.09 

13.82 

14.84 

16.16 

17.28 

17.14 

15.99 

19.98 

14.72 

16.36 

11 .8 

16.13 

16.45 

17.7 

18.38 

16.97 

17.66 

9.98 

1.9 

4.97 ' 

3.67 

6.17 

5.46 

5.13 

7.62 

6.12 

2.91 

5.72 

7.4 

4.97 

8.58 

6.31 

5.25 

4.86 

11 .39 

8.72 

5.26 

5.13 

4.94 

7.71 

5.98 

4.13 

7.21 

6.03 

9.71 

7.41 

4.63 

8.4 

3.87 

0.95 

o.n 
0.82 

13 

5.78 

183 

2.07 

3.1 

3.09 

7.39 

1.62 

1.58 

325 

35 

4.16 

3.85 

1.67 

1.57 

3.64 

4.79 

4.75 

3.82 

4.76 

3.81 

4.5 

4.33 

4.07 

3.54 

3.95 

4.57 

3.89 

2.94 

3.7 

3.88 

2.32 

3.66 

3.96 

3.97 

3.82 

3.71 

5.16 

3.79 

4.02 

2.14 

3.51 

3.48 

2.1 

3.71 

2.92 

1.07 

2.~ 

229 

3.02 

2.55 

2.46 

2.18 

2.76 

2.83 

2.62 

2.14 

3.12 

2.98 

2.51 

2.46 

2.41 

2.57 

7.?J 

3.8 

5.1 

4.4 

5.66 

5.26 

5.15 

5.97 

562 

4.33 

5.61 

6.03 

5.05 

655 

5.81 

5.57 

5.11 

7.39 

6.37 

5.15 

52 

5.06 

6.37 

5.33 

479 

5.81 

593 

6.82 

6. ~3 

5.33 

6.59 

4.59 

3.38 

3.06 

3.28 

3.73 

5.65 

4.12 

3.98 

5.17 

4.12 

6.08 

2.97 

3.83 

4.52 

4.87 

526 

4.86 

4.17 



Appendix B: Proximate Composition of Prey (cont.) 
Sard 

Lance 

14.5 

14.5 

14.8 

14.8 

15.1 

15.1 

15.1 

15.5 

15.8 

16.0 

162 

16 .4 

16.4 

17.1 

17.3 

17.3 

17.6 

18.7 

19.0 

19.3 

20.9 

23.7 

27.0 

Squid 7.7 

( Gonatus) 8.2 

8.5 

11.4 

11 .5 

12.0 

12.6 

12.6 

12.8 

13.0 

13.1 

13.5 

13.9 

14.5 

15.4 

15.5 

15.8 

16.0 

17.1 

17.5 

18.3 

18.5 

18.8 

19.0 

19.0 

192 

172.0 

179.0 

175.0 

186.0 

126.0 

174.0 

183.0 

rn.o 
180.0 

175.0 

211 .0 

191 .0 

204.0 

195.0 

184.0 

190.0 

190.0 

190.0 

183.0 

200.0 

195.0 

220.0 

225.0 

47.0 

62.0 

76.0 

66.0 

65.0 

70.0 

65.0 

75.0 

67.0 

70.0 

72.0 

74.0 

76.0 

79.0 

76.0 

75.0 

79.0 

79.0 

n.o 
60.0 

69.0 

78.0 

75.0 

75.0 

87.0 

60.0 

Male NE Nfld 

Female E Nfld 

Female E Nfld 

Female NE Nfld 

Female 

Female 

Male 

Male 

F"'male 

Male 

Male 

Female 

Female 

Male 

Female 

Male 

Female 

Male 

Male 

Male 

Female 

Female 

Female 

Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 
Unk 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

NE Nfld 

E Nfld 

NE Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

NE Nfld 

E Nfld 

NE Nfld 

E Nf!d 

NE Nfld 

Labrador 

labrador 

Labrador 

labrador 

labrador 

labrador 

labrador 

Labrador 

Labrador 

Labrador 

labrador 

Labrador 

Labrador 

labrador 

labrador 

Labrador 

labrador 

Labrador 

Labrador 

labrador 

Labrador 

Labrador 

Labrador 

labrador 

Labrador 

Labrador 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1995 

1996 

1996 

1995 

1996 

1996 

1996 

1996 

1996 

1996 

1995 

1996 

1995 

1996 

1996 

1996 

1996 

1996 

1995 

1996 

1995 

1996 

1995 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

Dec 

June 

June 

Dec 

June 
June 
June 

June 

June 

June 

Dec 

June 

Dec 

June 

June 

June 

June 
June 

Dec 

June 

Dec 

June 

Dec 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

73.64 

75.7 

77.48 

79.82 

78.76 

77.48 

79.46 

76.07 

78.69 

7521 

808 

79.37 

81.89 

76.52 

74.81 

78.36 

75.36 

77.55 

73.86 

76.47 

75.6 

78.46 

77.06 

76.47 

76.74 

7826 

73.33 

81.08 

75.64 

77.65 

78.82 

73.81 

75.58 

69.89 

79.12 

7526 

7822 

7168 

74.34 

77.68 

71 .31 

72.87 

63.53 

7329 

72.34 

76.55 

76.09 

74.34 

72.73 

16.4 

17.79 

17.1 9 

16.05 

16.03 

17.7 

17.21 

18.59 

18.02 

15.71 

16.07 

16.76 

14.47 

17.26 

18.58 

17 27 

18.07 

19.54 

16.48 

16.95 

16.03 

16.48 

16.0 

12.23 

14.63 

15.09 

14.06 

1166 

14.38 

14.63 

13.17 

13.1 

13.13 

14.74 

12.25 

11.62 

11.43 

14.03 

13.0 

13.53 

14.07 

13.15 

21 .33 

11.53 

14.38 

13.68 

13.98 

11.92 

13.05 

7.04 

3.79 

2.81 

2.08 

2.63 

2.37 

0.77 

3.31 

0.92 

6.09 

0.65 

0.8 

0.7 

3.9 

4 .07 

156 

4.02 

1.64 

7.09 

4.47 

5.84 

1.92 

3.88 

9.67 

6.6 

4.22 

10.59 

5.92 

7.55 

5.85 

6.28 

11 .5 

9.38 

13.32 

6.78 

1029 

9.36 

12.05 

10.92 

727 

12.66 

12.09 

11.28 

1324 

11.1 

7.89 

8.38 

12.32 

11 .91 

2.92 

2.72 

2.52 

2.04 

2.58 

2.45 

2.56 

2.03 

2.37 

2.99 

2.48 

3.07 

2.94 

2.32 

2.54 

2.81 

2.55 

1.27 

2.57 

2.11 

2.53 

3.14 

3.00 

1.63 

2.03 

2.43 

2.02 

1.34 

2.43 

1.87 

1.73 

1.59 

1.91 

2.05 

1.85 

2.83 

0.99 

2.24 

1.74 

1.52 

1.96 

1.89 

3.86 

1.94 

2.18 

1.88 

1.55 

1.42 

2.31 

5.96 

5.0 

4.51 

4.0 

42 

4.44 

3.73 

4.97 

3.95 

5.-16 

3.46 

3.66 

3.16 

4.93 

5.26 

4 05 

5.14 

4.53 

5.99 

509 

5.43 

4.02 

4.67 

6.12 

5.43 

4 .62 

6.84 

4.58 

5.75 

5.15 

5.02 

6.99 

6.19 

8.01 

5.03 

6.Z3 

5.84 

7.38 

6.75 

5.47 

7.62 

722 

8.55 

7.34 

7.00 

5.73 

5.98 

7.07 

7.14 

75 
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Appendix B: Proximate Composition of Prey (cont.) 
Squid 21 .3 

(Gonatus) 21 .4 

21 .6 

21 .6 

222 

22.7 

232 

23.7 

24.7 

273 

32.6 

33.1 

332 

36.0 

45.8 

40.8 

51 .5 

87.9 

Squid 

(///ex) 

582 

662 

70.4 

83.4 

972 

99.8 

102.5 

1202 

123.1 

124.9 

128.4 

133.4 

135.8 

136.8 

145.3 

140.0 

146.3 

147.0 

147.9 

1502 

151.6 

151 .9 

152.6 

153.5 

155.0 

155.7 

159.6 

166.7 

1692 

171 .3 

181.3 

86.0 

91 .0 

82.0 

90.0 

91 .0 

86.0 

86.0 

88.0 

87.0 

93.0 

94.0 

96.0 

102.0 

102.0 

163.0 

117.0 

135.0 

125.0 

255.0 

264.0 

2B7.0 

265.0 

311 .0 

312.0 

305.0 

323.0 

266.0 

350.0 

342.0 

324.0 

356.0 

343.0 

334.0 

354.0 

374.0 

366.0 

340.0 

375.0 

359.0 

376.0 

358.0 

357.0 

383.0 

357.0 

356.0 
370.0 

359.0 

389.0 

382.0 

Unk 

Unk 

Unk 

Unk 

Male 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Unk 

Male 

Male 

Unk 

Unk 

Female 

Male 

Male 

Female 

Female 

Male 

Female 

Mate 

Female 

Male 

Female 

Male 

Male 

Female 

Female 

Male 

Male 

Male 

Female 

Female 

Female 

Female 

Female 

Male 

Female 

Male 

Female 

Female 

Male 

Female 

Male 

Male 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

labrador 

labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

Labrador 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nftd 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nftd 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nftd 

E Nftd 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

E Nfld 

ENfld 

ENfld 

E Nfld 

E Nfld 

ENfld 

E Nfld 

ENfld 

ENfld 

ENfld 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

Offshore 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1 993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Nearshor~ 1993 

Nearshore 1993 

Nearshore 1900 

Nearshore 1900 

Nearshore 1993 

Nearshore 1993 

Nearshore 1993 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

Sept 

74.71 

73.53 

74.1 

69.59 

75.57 

73.37 

71 .05 

72.08 

72.86 

76.99 

7133 

7123 

41.13 

76 .87 

70.22 

75.92 

71.97 

64.n 

78.28 

76.91 

7827 

76.62 

76.48 

76.08 

75.72 

74.86 

74.16 

73.6 

75.79 

742 

75.02 

75.64 

73.79 

72.49 

73.7 

75.41 

76.41 

73.71 

75.18 

75.46 

73.61 

75.85 

7425 

73.53 

75.34 

73.38 

74.95 

74.51 

73.04 

13.22 

1421 

13.84 

14.28 

13.92 

12.71 

13.54 

13.67 

13.68 

12.51 

12.62 

13.67 

28.38 

10.58 

11 .81 

13.89 

11.41 

14.45 

16.33 

17.82 

16.66 

16.82 

16.84 

17.26 

17.5 

1768 

18.13 

17.74 

17.13 

16.61 

17.35 

17.11 

16.71 

17.81 

15.78 

17.53 

16.91 

17.64 

17.13 

1629 

17.06 

15.72 

16.26 

17.25 

15.8 

16.36 

17.69 

1627 

16.39 

10.41 

10.79 

9.95 

13.61 

8.98 ' 

12.11 

13.5 

12.59 

11.n 

8.74 

14.58 

13.14 

2628 

10.8 

15.99 

8.1 

15.0 

19.36 

1.66 

1.47 

2.11 

2.52 

1.53 

1.81 

1.91 

166 

169 
1.76 

1.47 

196 

421 

1.74 

198 

2.09 

1.62 

143 

4.12 1.28 

3.73 1.54 

3.79 1.27 

5.18 1.38 

5.17 1.5 

5.22 1.44 

5.33 ' 1.46 

6.05 1.4 

6.39 1.32 

7.00 1.64 

5.75 1.34 

7.87 1.32 

6.17 1.45 

5.78 1.48 

8.37 1.13 

8.21 1.49 

9.17 135 

5.66 1.4 

5.25 1.42 

7.08 1.57 

6.32 1.37 

6.94 1.31 

7.9 1.43 

7.06 1.37 

823 1.26 

7.82 1.39 

7.96 0.89 

8.75 I 1.51 

5.95 1.42 

7.94 1.28 

9.35 122 

6 .6 

6 .94 

6.55 

8.00 

62 

7.14 

7.84 

7.52 

721 

5.82 

8.00 

7.73 

1566 

622 

8.44 

5.86 

7.98 

10.24 

4.83 

4.98 

4.n 

5.:!3 

5.34 

5.44 

5.52 

5.84 

6.05 

6.22 

5.61 

6.31 

5.82 

5.62 

6.52 

6.68 

6.64 

5.66 

5.38 

622 

5.83 

5.9 

6.42 

5.83 

6.38 

6.42 

6.19 

6.6 

5.8 

6Zl 

6.83 










