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Abstract

Large ( ~ 0.3 cm’®) high quality single crystal samples of H,O ice HI, Ice V, and Ice VI
have been produced in a high pressure cell. The cell was pressurized by means of
hydraulic fluid and specifically designed so that the samples could be rotated about the
vertical without having to reduce the pressure. Liquid water was initially placed inside the
sample containment cell and the pressure increased at room temperature. The temperature
was then reduced to approximately -35°C. After several hours the supercooled water
sample froze directly into the desired phase, depending on the pressure. The frozen
sample was then partially melted until only a small seed comprised of a few grains
remained. After a controlled refreeze large grained polycrystals were produced; successive
iterations of this process eventually yielded small single crystal seeds, from which large
high quality single crystals were grown. Once produced, samples were kept under pressure
at constant temperature and acoustic data collected using Brillouin spectroscopy at several
crystallographic orientations. In all, measurements were collected from three single
crystals of ice III (tetragonal), three single crystals of Ice V (monoclinic) and four single

crystals of Ice VI (tetragonal).

The elastic constants were fitted to the acoustic data by making use of the Christofell
determinant and the Brillouin equation. Six independent elastic constants of ice Il were
determined between 2.2 and 3.0 Kbar. At -20°C, and 2.2 Kbar the values were found to
be C,;=15.37, C;=9.95, C;;=6.51, C,;=11.55, C,=4.46, C;c=5.68 (x 10* bar). Thirteen

independant elastic constants of ice V were determined at 3.0 kbar and -35°C, and were



found to be C;;=21.4, C5=19.3, C;;=21.1, C=7.5, Cs=3.7, C=7.5, C,=12.2, C;;=9.5,
Cs=0.17, Cy=11.8, Cy=-0.1, C;;=-0.3, C,;=2.1 (x 10* bar). Six independent elastic
constants of ice VI were determined between 6.2 and 8.2 kbar at -2°C, the values at 7.2
kbar were found to be C,;=26.84, C,,=14.52, C,;=12.82, C;;=26.21, C,;=6.31, C.=10.38

(x 10* bar).

The isotropic elastic properties of polycrystalline aggregates of ice II, V and VI were
also calculated. The elastic constants were used to calculate the acoustic velocity in many
crystallographic directions covering 4% steradians, the average longitudinal acoustic
velocity was then found by performing a weighted average over all crystallographic
directions. The bulk modulus was calculated using either elastic constant values or the
compliance constant values. The average longitudinal acoustic velocity and the bulk
Modulus enabled the calculation of Young’s modulus, Lamé constants, average transverse
acoustic velocity and Poisson’s ratio. These are easily compared with similar vaiues
calculated from the acoustic velocity and bulk modulus as measured directly from

polycrystalline samples. In all cases the agreement is excellent.
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CHAPTER 1
Introduction to Water and Ice

1.1 INTRODUCTION

Throughout the universe water is thought to be an abundant substance. In addition to
liquid and gas there are 13 known solid phases of water; ice [h is the phase naturally
occuring on Earth. Here the oceans contain approximately 1.4x10* kg and the rock
making up the crust contains another 8.0x10% kg of liquid water. Water existed on Earth
long before any form of living organism and it is widely accepted that early life evolved
from the oceans. Water has, therefore, become an essential component of all living
organisms. The human body, for instance, is approximately 65% water with some tissue
such as the brain containing as high as 80%.! Water is the only naturally occuring
chemical compound which occurs on earth in all three physical states: solid, liquid and
gas.? Despite its natural abundance and biologic significance water is one of the simplest
molecules, consisting merely of one oxygen atom and two hydogen atoms. Yet water in
condensed form exhibits many unique physical and chemical properties. For example, (i)
liquid water is an excellent solvent of many componds, (ii) it has an unusually high heat
capacity’ (C, at 100°C is 8.6 cal mole* deg™ which is nearly constant between 0 to 100°C
with a slight minimum near 35°C), (iii) as water is cooled below 4°C its density
decreases, and (iv) upon freezing into ice [h the density* drops from 0.99987 g cm™ to
0.9167g cm” (at 0°C) causing ice to float in its melt. (Solids that exhibit such a negative
AV upon melting exist as relatively open structures with low coordination numbers:

melting increases the coordination number and hence the density.) The fact that water has

1



greater density than ice [h causes lakes and oceans to freeze from the surface; this
profoundly affected primitive organisms by forming a protective layer which trapped heat

and sustained life.

Water, in the form of ices and clathrate hydrates,® is found to be a component of many
bodies throughout the solar system.® Many geologic processes on extraterrestrial bodies
are thought to depend on the rheology of the ice phases involved. Based on the predicted
low density of the six inner satellites of Saturn it has been proposed that the moons of
Saturn contain a high percentage of water ice.” Later it was shown by infrared photometry
and infrared reflection spectroscopy that ice does exists on the satellites of Saturn and
Jupiter.**° In fact, many of the geological features of Mars appear to have formed by the
release of ground water from beneath the surface and ice is the principal lithospheric
component of most of the moons of the outer solar system.'" In addition, the polar ice
caps of Mars are made up of a combination of water and CO, ice.'*"* Amorphous forms
of ice and clathrates are thought to condense in interstellar molecular clouds and to
constitute the bulk matter of comets.'*"” It has been proposed that phase transitions in the
ice making up comets cause larger amounts of gas production with respect to perihelions

exhibited by some comets.'*!?

H,0O (water) molecules condense by forming clusters resulting in either liquid water or
a crystal lattice through a process known as hydrogen bonding. In such a bonding process

the hydrogen atom sits between two electronegative oxygen atoms.” The hydrogen bond



has been found in many organic materials and plays a large role in bonding water to other
materials. The structure of proteins is largely due to hydrogen bonds formed between two
nearby amino acids in the polypeptide chain which cause the chain to twist into a helix.
In fact, the bonding between the two strands of double helix DNA is due to the formation

of hydrogen bonds between bases.?!

Advances in the techniques of molecular dynamics computer simulation and ab initio
techniques®® require, or lead to, interaction pair potentials which may be used to
calculate the physical properties of water and ice.*** Reviews of several water-water
interaction potentials have been carried out in which gas, liquid and solid state properties
of water are calculated and compared with experimental resuits. It was found that no one
pair potential gives satisfactory account of all three phases.”** Despite the apparent
simplicity of the hydrogen bond this important fundamental interaction is not well
understood. The elastic constants of ice [h have recently been calculated to test the
validity of the TIP4P potential (transferable intermolecular potential function)® in a
molecular dynamics calculation which suggests that the pressure induced phase
transformation from ice Ih to high density amorphous (hda) ice is driven by a mechanical
softening of the Cg elastic constant.® Through such studies, it has become evident that
detailed knowledge of the elastic properties of materials can provide extremely sensitive
benchmark tests of a potential function which describes the molecular or atomic bonding.
Until the present study, only the elastic constants of naturally occuring ice [h'' were

available to provide such a bench mark test of the water-water potential in ice. The



present work should, therefore lead to more detailed understanding of hydrogen bonding.

1.1.1 Water Molecule

The study of the physical properties of liquid water and ice begins with a brief discussion
of the general characteristics of the water molecule and includes the mechanisms of
molecular bonding. The electronic structure of the oxygen atom is 1s* 2s* 2p* while the
electronic structure of hydrogen is simply 1s'. The water molecule may be thought of as
being made up of three nuclei surrounded by ten electrons. Two of the electrons fill the
1s shell about the oxygen atomn and the others form pairs in four directed orbitals. Two
of the four electron orbitals are directed along the oxygen-hydrogen bond directions and
form bonding orbitals. The others, on the opposite side of the oxygen atom, form lone
pair orbitals. The resulting molecule is roughly tetrahedral with the oxygen nucleus at the
centre, the hydrogen atoms at two vertices, and the lone pair orbitals along opposite
vertices. Calculations based on the above idea have assumed a particular form of the
electronic wavefunction for which the energy is then minimized by letting the
wavefunction vary. Other calculations have been based on linear combinations of the
atomic orbitals.”** The results agree well with the experimental values of the bond angle,
104.523°, and equilibrium bond length, 0.95718 A*". The water molecule is therefore polar
with dipole moment contributions from the lone pair orbitals in addition to contributions
from the protons. The total dipole moment of the water molecule® is (6.1040.02) x 10

Cm.



Water molecules tend to hydrogen bond in a tetrahedral coordination geometry to four
other water molecules. In such an arrangement the OH group of one molecule is generally
along the direction of the lone pair of the neighbouring molecule. It has been shown by
x-ray diffraction that the water molecules in ice Th bond to form a hexagonal lattice,”
with unit cell dimensions a = 4.5190 A, ¢ = 7.3616 A at -10°C, and the lattice constants
have been shown to be almost constant® down to -260°C. The space group was found by
single crystal neutron diffraction to be P6,/mmc; the oxygen-oxygen distance is 2.74 A

and the angle formed by three oxygen molecules is 109+0.2°.*

The fact that the infrared spectra of liquid water, ice Th, and water vapour are essentiaily
the same indicates that the structures of the water molecules is the same in all three
phases.*? The symmetric and anti-symmetric vibrations of the water molecule (at ~ 3300
cm ) are slightly decreased in frequency and the bending vibration slighty increased in
frequency due to molecular bonding, however, it is clear that the water molecules have
not been destroyed. This is true for almost all high pressure phases of ice. One exception
is thought to be ice X, which forms at a pressure on the order of 50 GPa and in which
it is thought that the hydrogen atom lies at the midpoint between the oxygen atoms.*’ This
behaviour of ice [h led Bernal and Fowler* to postulate that the hydrogen atom must be
approximately along the line connecting the two oxygen atoms. The distance of the
hydrogen from one oxygen atom is approximately 1 A and therefore the distance to the
other oxygen atom is about 1.76 A. Such a bonding scheme indicates that the H-O-H

angle of the water molecule only deviates slightly from the vapour phase value of 105°.



Figure 1.1 Bernal-Fowler Ice Rules

The Bernal-Fowler ice rules * indicating the six possible
orientations of a water molecule tetrahedrally bonded to four
other water molecules. The oxygen and hydrogen atoms are
represented by open and solid circles respectively. Hydrogen
bonds are indicated by dotted lines.






Fig. 1.1 illustrates the six possible orientations of a water molecule bonding to four others
in a tetrahedral arrangement. It is evident that a large number of structures may be built
up from this bonding arrangement, most of which are disordered with respect to hydrogen
atomn positions. The Bernal-Fowler rules may be stated as: 1) Each oxygen atom has two
hydrogen atoms attached to form an intact water molecule. 2) Each water molecule is
oriented so that its two hydrogen atoms are directed approximately toward two of the four
oxygen atoms which surround it tetrahedrally. 3) The orientations of adjacent molecules
are such that only one hydrogen atom lies along each hydrogen bond. This has been
essentially confirmed for the case of D,0 using neutron diffraction by Peterson and

uvy.JS

1.2 HIGH PRESSURE PHASES

The above tetrahedral bonding geometry of naturally occurring ice Ih leads to a very open
structure formed by large hexagonal rings. Application of pressure causes the bond
geometries to change by bending the 0-O-O angle and changing the hydrogen bond
length. This eventually leads to phase transitions in which the packing of water molecules
lowers the lattice energy and results in higher density. The solid phases of water are
therefore diverse and complex. As pressure and temperature are varied, ice exhibits no
less then 13 distinct solid phases, the most of any known substance. The pressure-

temperature phase diagram showing 9 polymorphs of ice has been reproduced® in Fig.



Figure 1.2 Phase Diagram of Ice

The phase diagram indicating 9 high pressure phases of ice.
The solid lines indicate well defined phase transitions, the long
dashed lines indicate meta-stable phase boundaries and the
short dashed and dotted lines indicate extrapolated or
estimated phase boundaries. Reproduced from reference 46.
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1.2. All of the phases shown in the Figure follow the Bernal-Fowler ice rules discussed
above. The solid lines of the phase diagram indicate well established phase boundaries.
It is, however, well documented that neighboring phases of ice may be superheated or
cooled well into the stability field of another. Other phases of ice form at higher pressures
than shown in Fig 1.2. It has been shown by Raman**® and Brillouin® scattering, for
example, that ice may transform, at about 500 kbar, to what is thought to be a cuprite
structure (Pn3m) where the oxygen atoms form a cubic bee lattice. This structure has been
referred to as ice X which is predicted to be ionic in nature.*’ It should be noted that the
existence of this high pressure phase is still a matter of considerable debate.® The high
density amorphous (hda) phase of ice occurs when ice Ih is pressurized to 10 kbar at
liquid nitrogen temperatures. As the temperature of an hda sample is raised to
approximately 120K a transformation takes place to low density amorphous (lda).*'** The
transformation from hda to ida has been shown by calorimetry experiments to be
exothermic.™ Similar pressure induced phenomena have since been discovered in other
materials and are thought to be due to a mechanical softening of the lattice.* Amorphous
phases of ice are also formed by vapour deposition of water on a cold plate below 77K*
and by rapid temperature quenching of liquid water.*>*” Preliminary incoherent inelastic
neutron scattering experiments aimed at investigating excess low frequency excitations,
conducted at Atomic Energy of Canada Ltd., Chalk River Laboratories, are discussed in

Appendix B.

Early experiments to determine the stability fields of the various high pressure phases of

11



ice were carried out by Tammann™ who worked at pressures up to about 3.5 kbar and
was the first to report ice III and ice II. Between 1912 and 1937 Bridgman®™% undertook
an extensive investigation of the phase boundaries of the high pressure phases of both
H,0 and DO ice. Excellent reviews of the discovery of the phases may be found in
Hobbs.* Many of the high pressure phases are metastable at atmospheric pressure when
quenched to liquid nitrogen temperature. This property enabled much of the early work,
such as structural determination, to be carried out. The crystallographic structures of the
high pressure phases of ice are presented in Table 1.1. The physical properties of ice II,

V, and VI will be discussed in greater detail in the following section.

1.2.1 Ice III

The first attempt to determine the structure of ice Il was made in 1936 by R.L.
McFarlan® using x-ray diffraction. However, the crystallographic structure proposed by
McFarlan was in violation of the Bernal-Fowler ice rules and hence lead to the incorrect
conclusion that water molecules were disassociated and their tetrahedral character lost.
Later W. B. Kamb and S. K. Datta® conducted x-tay diffraction experiments in which
polycrystalline samples of ice I were quenched to liquid nitrogen temperatures and data
were collected from samples recovered at atmospheric pressure. It was shown that the
crystal structure of the quenched phase is symmetrically tetragonal and the space group
represented by P4,2,2 with 12 molecules per unit cell (see Table 1.1). No hydrogen bond
deviates by more than 17° from a tetrahedral direction while one of the 0-O-O angles has

the extraordinarily large value of about 143°, the largest deviation from perfect tetrahedral

12



Table 1.1
Structural Data on the Polymorphs of Ice*

Polymorph Crystal Cell 0-0 0-0-0
System Dimensions (A) Distance (A)  Angles (deg.)
Ice th Hexagonal (P6/mmc)  a,=4.50, ¢,=7.32 2.74 10910.2
Ice Ic Cubic (Fd3m) a,=635 2.75 109.5
Ice Rhombohedral (Rs ) a,=7.79, a=111.3° 2.75-2.84 80-128
Ice I Tetragonal (P4,2,2) a,=6.73, c,=6.83 2.76-2.80 87-141
Ice V Monoclinic (A2%/a) 2,=9.22, b,=7.54 2.76-2.87 84-128
c,=10.35, f=1092°

fce VI Tetragonal (P4,/omec)  2,=6.27, c,=5.79 2.80-2.82 76-128
Ice VI Cubic (Pn3m) 2,=3.43 295 1095
fce VIII Tetragonal (14,/amd) a,=4.80, c,=6.99 296 =109.5
lce IX Tetragonal (P4,2,2) 2,=6.73. ¢=6.83 2.76-2.80 87-140

13



coordination. Ice Il was shown to be fully hydrogen bonded®* but disordered with
respect to the positions of the hydrogen atoms.” It is quite likely that the samples
quenched to liquid nitrogen temperature by Kamb were in fact ice [X, which is an

antiferroelectrically ordered phase®® with the same crystal structure as ice III.

The elastic properties of polycrystalline samples of ice III have been studied previously
by G.H. Shaw”™ who investigated the compressional and shear wave velocities at -25°C
and various pressures in the ice III stability field. Polycrystalline aggregates were prepared
from pulverized ice made from distilled water. The technique involved collecting time-of-
flight data from S MHz sine wave pulses produced by either shear or compressional wave
transducers. Shaw reported that the longitudinal and transverse acoustic velocities of ice
[T are 3610 m s "' and 2040 m s ! respectively at a pressure of 2.1 kbar. The bulk
modulus decreases from 106 kbar to 85 kbar and the shear modulus increases from 33
kbar to 48 kbar in going from ice [h to ice I at 2.1 kbar and -25°C. Both increase,
however, with pressure within each phase. RE. Gagnon, er al.’! have investigated the
elastic properties of polycrystalline samples of ice I at - 27.2°C by Brillouin
spectroscopy. The longitudinal and transverse acoustic velocities at 2.1 kbar were found
to be 3640 m s "' and 1865 m s ', respectively, and are shown to increase with pressure
more rapidly then the acoustic velocity of ice Ih, ice II, ice V, and ice VI. The bulk
modulus B, at the same pressure was calculated to be 99.6 kbar at -27.2°C and 2.1 kbar.

These results will be further discussed with regard to the present results in chapter III.
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122 Ice V

The preliminary crystallographic determination of the structure of ice V was done by x-
ray powder diffraction’" and determined to be monoclinic, which is the lowest structural
symmetry of all the known polymorphs of ice. The space group is A2/a with 28
molecules per unit cell (see Table 1.1). The system, like ice [, is fully hydrogen bonded,
disordered with respect to the positions of the hydrogen atoms (complete proton ordering
is not possible for the A2/a space group), and four coordinated.***” The distortion from

the ideal tetragonal coordinations leads to O-Q-O angles between 84° and 128°.

The elastic properties of ice V have also been studied by Shaw™ and Gagnon er al.*'.
Shaw gave values of 4140 m s "' and 2210 m s " as the longitudinal and transverse
acoustic velocities respectively; the adiabatic bulk modulus B, was determined to be 132
kbar at P=3.4 kbar and T=-25°C. Gagnon et al.”*, gave 4177 ms ', 2200 m s "' as the
longitudinal and transverse acoustic velocities at the same pressure and -35°C. From this
velocity data the bulk modulus B, is calculated to be 137.5 kbar. Both authors report a
large jump in the compressional wave velocity in passing from ice III to ice V. The
agreement between values obtained by ultrasonic acoustic wave propagation and Brillouin
scattering is quite good. This data will be compared to values calculated from the elastic

constants found in the present study in chapter IV.

1.2.3 Ice VI

The structure of ice VI is quite different from the structure of any of the phases yet
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discussed. Kamb™ reported that the high density of ice V1 is achieved, while maintaining
the tetrahedral bonding structure, by two interpenetrating lattices in which the molecules
of one lattice fill the voids of the other. The molecules of each lattice form a hydrogen
bonded network but no such bonding exists between the two interpenetrating structures.
This has been called a self-clathrate by Kamb. The space group symmetry of ice VI is
P4,/nmc with a tetragonal unit cell containing ten water molecules (see Table 1.1).
Dielectric measurements made by G.J. Wilson, et al.¥ and infrared measurements”
indicate that ice V1, like ice III and ice V, is orientationally disordered with respect to the
hydrogen positions at high temperature. The tetrahedral arrangement of atoms is, however,
highly distorted with O-O-O angles between 76° and 128°. A phase transition to an
ordered antiferroelectric structure may occur as ice VI is slowly cooled through 123 K;

74.75

this ordering requires a degradation of the space group symmetry.

The elastic properties of ice VI have been studied by several authors including Shaw™ and
Gagnon." Shaw gives the compressional and shear acoustic velocity and bulk modulus
in ice VI at -25°C and 8.0 kbar as 4530 m s !, 2530 m s, and 160 kbar, respectively.
Gagnon et al. gives values, at the same temperature and pressure conditions, of 4558 m
s 1, 2357 ms ', and 182 kbar, respectively. Brillouin work has also been done by Polian
and Grimsditch’ to determine the elastic properties of polycrystalline ice VI grown in a
diamond anvil cell. Brillouin spectra were collected at room temperature between 0 and
5 kbar. Polian and Grimsditch conclude that ice VI is elastically isotropic and therefore

estimate the elastic constant C,, = 28 x 10* bar at P = 10 kbar. Very recently the elastic
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constants of ice VI have been determined by Brillouin spectroscopy at pressures above
10 kbar (the present study examines data collected from samples below 10 kbar). Crystals
were grown in a diamond anvil cell by H. Shimizu, et al.”, and the elastic constants
determined at 12.3 kbar were C;=32.8, C,=11.8, C;=14.7, C;;=27.8, Cy=6.3, and
Ce=5.9 ( x 10* bar). The results of the present study may be extrapolated to 12.3 kbar
and, in general, compare well with the results of Shimizu et al., with the exception of C,,
and Cg. It should be noted that samples produced in a diamond anvil cell are necessarily
very small and it is likely that surface effects due to the small sample size may affect
experimental data. In addition, Shimizu et ql. have only collected spectra from one
sample, whereas it was noted in the present study that at least two independent samples
were required to uniquely determine all elastic constant values. This will be discussed
further in chapter V. Before discussing the results from ice I, ice V, and ice VI, the
technique of Brillouin spectroscopy, experimental apparatus and elastic theory will be

introduced in the next chapter.
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CHAPTER II

Elastic Theory, Brillouin Spectroscopy

and Experimental Apparatus

2.1 ELASTIC THEORY

The manner in which solids behave when subject to forces may be described in terms of
two theories. A solid is said to behave plastically when it remains deformed after an
applied force is relieved. In contrast, a solid is said to behave elastically when it returns
to its original shape upon the release of the applied force. Since it is the goal of the thesis
to first find the acoustic velocity in various phases of ice, only elastic theory will be

treated in detail.

2.1.1 Stress and Strain

In relating the elastic properties of solids to their acoustic properties as determined by
Brillouin spectroscopy it is worth noting that acoustic wave lengths are long compared
with the crystallographic unit cell size, hence a continuum model may be used. Elastic
theory will be implemented in the linear, or Hooke’s Law, approximation. In order to

develop a theory of elasticity it is necessary to first define the applied force, or stress, and
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the resulting deformation, or strain. There have been several excellent reviews of the
elastic properties of solids.”* Consider an arbitrary length segment ds in the unstrained
solid. In Cartesian coordinates ds,’ = dx, dxd, In a strained solid the length of the
segment will change by Ugx). The first derivatives of Ufx) are continuous and the
length segment may now be written as

dsz-(dx,+—dr,) (dx haTa‘)

and

aU aU aU aU
di‘ dx dxls, +—+—1+ ] 2.1
l[ a:l a:( ax ar

Each element of the strain tensor can be found by considering the net length change of

the segment ds given by

au, v, au, 3U,

ds? -dsZ=dx x5, ,-dr 8, +(

ax, ax ax ax;
22
=2 e, dx, dx; .
The ¢; make up the strain tensor defined as
_1.9U, au au, au, 23

L) ax ax &x ax
where ij = 1,2,3 and the e, are the 9 elements of the rank 2 strain tensor. When an elastic
solid is strained due to an acoustic wave, the displacement of atoms or molecules from

their equilibrium positions is very small. The first derivatives of U, are therefore small
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and the product of derivatives in the above equation may be ignored so that

.13, %Y,
Y2 &

24

The forces acting on an elemental surface area within the solid are known as stresses and
are denoted by the elements of the second rank tensor &. The stress may be a force which
either compresses (£ ;) or shears (§ i the surface. In general, there are stresses associated
with each surface of an arbitrary elemental cube within a solid (see Section 2.1.3, Figure
2.1). The principal axes of the stress tensor are given by its eigenvectors and the
associated eigenvalues are the called the principal stresses of which there are no shear

components.

[t is necessary to develop a relation between the applied stress and the resulting strain.
Let ®(0) be the internal energy function of a unit mass of unstrained solid.*' Consider a
small deformation of the solid resulting from an external or internal stress. ©® may then

be expanded in a Taylor series about equilibrium as follows

oo 1, #0
=00 +[—1], ¢,+—T CLyt... . 25
ae,]° V2 aegae, 0 e

Since there are no forces present at zero displacement €(0) is a stable minimum in the
potential function and the second term is equal to zero. The work done in deforming the
solid must be positive and the change in energy may be truncated at the first order and

written as
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[
dey

1 o
Ad = - . 2.6
> ae,]° fu

This truncated equation is known as the harmonic approximation. Alternatively the total

work done by the applied stress is equally expressed as,
iy |
AW = Y Sy - 2.7

The factor of 1/2 is introduced to insure that the work done along each direction in the

above summation is considered only once. Equating 2.6 and 2.7 gives,

Fo

b e -
de, dey

2.8

g, = I

This is Hooke’s law generalized to 3 dimensions. The constants which relate the stress
to the resulting strain form a forth rank tensor with 81 elements and are known as the

elastic constants, i.e.

Fo

k- 2.9
3e, 2¢,

Cos = [

From the symmetry of the second derivative, the number of independent elastic constants
may be reduced ( i.e. Cipr=Cy; ) In addition, the number of elastic constants is further
reduced by noting that all the forces must appear in opposing pairs, i.e. Cy;= Cjp = G
= Cj. The number of elastic constants is thus reduced from 81 to 21 independent
elements for a completely elastically anisotropic solid, such as the triclinic system, and
further reductions are possible when considering crystals with higher symmetry. At this

point it is convenient to introduce a notation such that the remaining independent elastic
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constants form a 6x6 matrix, and likewise the stress and strain tensors are reduced to 6

element vectors. The subscripts of each element are contracted according to the following

scheme:™
m - 1 23, 32 > 4
22 - 2 31,13 - 5
33 - 3 12, 21 - 6,

hence the generalized Hooke’s law § ;= C 5, e ,, may be rewritten as € ;= C e ..

2.1.2 Equations of motion

The velocity of a propagating acoustic wave may be found by solving the equations of
motion of an elemental volume of solid undergoing harmonic oscillations. In order to
derive and solve the equations of motion consider all the forces acting on an arbitrary
volume element, including both compressional and shear stresses. Fig. 2.1 illustrates only
stresses in the x-direction and shearing forces acting on the two surfaces perpendicular
to the x-axis.** The stresses in the y and z directions are written in a similar manner.

Adding all the forces in the x-direction gives
-8 ey, + £ die dx, + € dixdix)]

+{ (511+511.1 hl)M! + (Eu"’Em mlhs
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Figure 2.1 Elemental Volume Illustrating Stress
Components

Volume element within a solid showing the stresses in the x
direction and the shearing forces acting on the face
perpendicular to the x-axis. The stress, strain and elastic
constant tensors are now defined with respect to the coordinate
system indicated. The relative orientation of this coordinate
system with respect to the crystallographic system follows the
Standards on piezoelectric crystals (see for example reference
78.
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+ €3+8yyy dr)drgde) + pXgxdxdr,

FU,
= .__l¢ 2.10
P v (dxdx,

where p is the density and the partial derivatives 9, / dx; are denoted as &;;. The last
term on the left hand side gives external forces, or body forces, applied to the system.
Unbalanced external forces result in translation or rotation of the crystal as a whole and
do not result in strain being introduced into the system. A complete development of
elastic theory only requires analysis of internal forces, therefore, the term p X;dx; dx;dx,
is set equal to zero. The term on the right hand side is the mass times the acceleration of

the strained volume and simplifying this gives

*U,
Ell,l + Em + EBJ = p___l . 2.11

a2

By rewriting this equation and introducing summation notation we get

EUJ = pl'f, . 2.12

Using the generalized Hooke’s law, Eq. 2.8, and noting that ¢ ,, = e , , the equation of

motion above can be expressed as,

pU, = Cy U, . 2.13
The solution to the equation of motion is assumed to be a plane acoustic wave of the

form
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U =4 ¥Er-vn 2.14
The subscript of the vector Uy, k = 1,2,3 indicates three polarizations of the displacement
vector, two predominantly orthogonal to the direction of wave propagation, forming quasi-
transverse acoustic waves, and the other predominantly parallel to the direction of wave
propagation, forming quasi-longitudinal acoustic waves.™ Differentiating these equations
and substituting them into the equation of motion leads to a set of secular equations given

by,

[Cukk, - p0?B,) U, = 0. 2.15
Near the Brillouin zone centre the acoustic dispersion relation is linear such that @ = V'
k, where V is the velocity of the acoustic wave. Substituting this into the secular equations

and setting the determinant equal to zero gives the eigenvectors pV 2 of the expression,

ICos £, - V' 78,]0 . 2.16
This is the well known Christoffel determinant which relates the acoustic velocity,
direction of wave propagation, and the elastic constants to each of the three eigenvalues
pV 2. The complexity of the resulting cubic equation for pV ? is greatly reduced when
acoustic waves travel in high symmetry crystal directions. In the present study, however,
there was no direct control over the orientation of the crystal during growth and thus it
was not possible to choose scattering wavevectors in high symmetry directions. However,
the determinant has been solved by Every® (for waves travelling in an arbitrary direction
in most crystal structures) resulting in closed form expressions for the sound velocity of

each acoustic polarization. It should be noted however that the closed form expressions

26



are not valid in regions where the acoustic velocity becomes degenerate or nearly
degenerate. More reliable acoustic wave velocities in arbitrary directions when the
transverse polarizations are degenerate may be found by performing numerical
diagonalization of the Christoffel determinant. Numerical methods are the only way to
calculate acoustic velocities for crystals with symmetries lower then orthorhombic. Once
the acoustic velocity is found it may be used with the Brillouin equation, discussed in
Section 2.2, to calculate the Brillouin frequency shifts and hence provide a function

whose elastic constant parameters can be fitted to experimental data.

2.1.3 Polycrystalline Elastic Properties

[t is evident from the above equations that the elastic properties and hence the acoustic
velocities of most single crystals are not isotropic. In contrast, the elastic properties of a
material made up of small randomly oriented crystallites may exhibit bulk elastic isotropy.
The bulk mechanical properties of polycrystalline aggregates can be determined once the
elastic properties of its individual crystallites are known. The theory for isotropic elastic
behavior has been work out by Voigt* assuming uniform strain, and by Reuss® using
uniform stress. A good estimate of the polycrystalline behavior may be found by
averaging single crystal elastic properties over all directions. [n doing so, two assumptions
must be made; (1) crystallites were assumed to be small and randomly oriented and, (2)
grain boundaries were assumed to have no effect on the average elastic properties. The
longitudinal acoustic velocity of the aggregate was first calculated from the elastic

constants by performing a weighted average over all crystallographic directions. The

27



integral has the form

-
v=5s [VACokeh) dO . 2.17

V_ is calculated by numerically diagonalizing the dynamical matrix given by Eq. 2.15.

The compliance constants §;; (or their reciprocals, the elastic constants C;) and the volume
change, A, due to a hydrostatic stress, P, were used to calculate the volume
compressibility (or its reciprocal, the bulk modulus) of a polycrystalline aggregate. The
general equation relating the bulk modulus to the compliance constants for any crystal

system was found to be®!
B = -[%l = 8,8y +85+2(S 1y + S+ 851 1 . 2.18

Symmetry conditions imposed by crystai structures considerably simplify this equation.
The average longitudinal acoustic velocity \-/L was used along with the adiabatic bulk

modulus B, to calculate the remaining polycrytalline elastic properties.

Once the average longitudinal acoustic velocity and the bulk modulus were determined,
many other elastic properties of polycrystalline materials were calculated. For a review
of the theory see Gould.* Included were the compressional and shearing constants, A and

i, relating the applied stress to a resulting strain in an isotropic solid through the equation
€ = AU”GU + 20U, . 2.19
This is the generalized Hooke’s law simplified such that the elastic constant parameters
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are no longer dependent on direction. The constant A relates a linear strain with the
corresponding linear stress, and p is the constant which relates a stress to a shearing strain
in an isotropic solid. Solving the equations of motion of an elemental volume of isotropic

solid gave the following expression for the average longitudinal acoustic velocity

pFL = A+2p . 2.20

The adiabatic bulk modulus B, was found to be
2
B’, = 1*’3'} . 2.21

Equations 2.20 and 2.21 when combined with the bulk modulus and average longitudinal
acoustic velocity were solved for the Lamé constants A and p. The average transverse

acoustic velocity V; was found to be related to the Lamé constant p through

o7 = . 2.22

The quotient of stress in one direction divided by the strain in the same direction, is

known as Young's modulus E, and was found to be of the form

E = (3:*2") , 2.23
B

Finally, the quotient of a strain resulting from an applied stress in one direction with

strain in a perpendicular direction, is known as Poisson’s Ratio G, and was found to be

0= —* 2.24
2(A+p)

The above elastic properties completely define the elastic behaviour of an isotropic solid
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and were calculated in subsequent chapters for ice I, V, and VL

2.2 BRILLOUIN SPECTROSCOFPY

Modem inelastic light scattering probes the properties of materials by scattering incident
monochromatic laser light from bulk or surface excitations. As incident monochromatic
light interacts with a material the scattered light is found to contain several spectral
components other then those present in the incident beam.¥” In the case of Brillouin
scattering the additional components are due to interactions with acoustic excitations, and
the spectral shifts of the "additional" components give direct measure of the acoustic
frequency, as proposed early in this century by Brillouin® and independently by

Mandelshtam.*®

2.2.1 Introduction

The theory of Brillouin scattering has been discussed by many authors.”* [n particular,
Brillouin scattering from cubic crystals has been discussed by Benedek and Fritsch® and
in crystals of lower symmetry by Nelson et al.”’ The first Brillouin spectra were observed
by Gross in a study of several liquids and solids.*® The importance of Brillouin
spectroscopy in determining the elastic constants of materials was first demonstrated by
Krishnan in 1955.° For an excellent review of modern Brillouin spectroscopy see
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Sandercock.” The Brillouin spectroscopic method of investigating materials requires no
physical contact with the sample which can be less than 1 mm’ in size. In fact, this
spectroscopic technique has been applied to materials under ultra high pressures created
in diamond anvil cells.”*® Brillouin spectroscopy therefore does not suffer the particular
disadvantages found in other methods of determining elastic properties such as, time-of-
flight ultrasonic experiments or inelastic neutron scattering. Time-of-flight measurement
of ultrasonic acoustic waves require that piezo-electric transducers be physically attached
to the sample.” Inelastic neutron scattering require large samples, ~ 1 cm’, and the
measured dispersion curves in the long wavelength region may differ from adiabatic and
isothermal (found using Brillouin spectroscopy) values. Brillouin spectroscopy does
however suffer several limitations which include, restriction to acoustic frequencies in the
GHz range, and studies are usually limited to optically transparent material, although,

recently there have been Brillouin studies of opaque materials.”

Vibrational normal modes may be used to describe the constant thermal motion of
molecules in materials. Brillouin spectroscopy specifically involves long wavelength
acoustic modes in which all atoms in a particular unit cell oscillate in phase. In long
wavelength acoustic modes the atomic displacements vary only sightly over several
hundred unit cells so that the elastic continuum model discussed in the last section may
be used. Such thermal modes cause local strain which in turn lead to spatial and temporal
fluctuations in the dielectric constant. This causes the scattering of incident light through

the elasto-optic effect. Strictly spatial fluctuations in the dielectric properties are called
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non-propagating modes and are created by processes such as heat diffusion. These non-
propagating modes give rise to elastically scattered components, known as Rayleigh lines,
centred on the incident laser frequency ®,.'® [|‘1~'contrast, acoustic modes propagate
through the crystal lattice giving rise to a Doppl; shift of the incident frequency and
hence inelastically scattered light. These Doppler shifted components appear as "Brillouin
doublets” about the central unshifted line in a typical Brillouin spectrum. Such inelastic

processes require that energy and momentum are conserved as follows,

ho,=he,the,

Wk =Nk thg 2.25

where k;, k, and q are the wavevectors of the incident and scattered light and acoustic
mode, respectively. In the case of anisotropic crystals there are generally three Brillouin
components about the central Rayleigh peak corresponding to two quasi-transverse
polarizations and one quasi-longitudinal polarization of the acoustic wave. Furthermore,
the half widths of these components indicate the damping, or attenuation, of acoustic
waves. [n most cases, however, the line widths are determined by instrumental broadening

and true line widths are difficult to obtain.

2.2.2 The Brillouin Equation
The acoustic mode is selected by satisfying the Bragg scattering condition shown in Fig.
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2.2. The optical path travelled by light reflected from successive planes must be an
integral multiple of the wavelength of the incident beam. The path difference travelled

by two consecutively reflected rays may be written

NR+N’R=2NR=2ndsin(12'-—0)=A,

Al=2 nd m(’) ’ 2.26

where n is the index of refraction within the medium and A, is the wavelength of the
incident laser beam (note that the acoustic wavefront separation d = kq is the wavelength

of sound in the medium), and
x-¢
2nl'cos(—-2 = A. 2.27

In the case of acoustic modes near the Brillouin zone centre the acoustic velocity is

related to the wavelength by, ® , = V_ /A , and the above equation may be written as

Vv
—4 cin(®y = 2.28
2u0'sm(2) A .

The scattering angle is given by a. The frequency of the sound wave and the frequency

shift Aw of the incident light due to the Doppler effect are given by

2nV a
= Ssin(— 2.29
- )

This is the well known Brillouin equation. [n most Brillouin experiments the refractive

Aw, =

index, incident wavelength and scattering angle are well defined, so that the velocity of
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Figure 2.2 Bragg’s Law

Miustration of the Bragg scattering condition. The heavy
horizontal lines indicate acoustic wave fronts within the
crystal, the diagonal lines indicate incoming and scattered
light, and the dashed line indicates one transmitted ray. The
spacing between wave fronts is the wavelength of the acoustic
mode selected by the Bragg condition.
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sound may be calculated using the measured frequency shift and the Brillouin equation.
The Brillouin equation shows that, (1) Aw,,, occurs in the backscattering geometry when
the scattering angle 8 = &, and, (2) A® — 0 as 8 —> 0. It should be noted that the
magnitude of k; is only ~ 10 * cm ™ so that the longest phonon wave vector as determined
by the Bragg condition is q ~ 2 x 10 ° cm "'. Hence only excitations of very long
wavelength, i.e. q vectors close to the Brillouin zone centre, are observed, and to a very
good approximation, k; ~ k ;. In the limit of ¢ — 0 no Brillouin doublets are observed,
since the frequency of acoustic waves near the zone centre behave as w=Vq. Therefore
at q=0 the acoustic wavelength is infinite and represents a translation of the crystal as a
whole. In addition, the frequency of the acoustic modes approach 0 as q — 0 resulting
in the Brillouin doublet being very close to the large central peak, this requires that

spectrometers have very high resolution typically greater then 0.5 GHz.

2.3 EXPERIMENTAL APPARATUS

A schematic representation of the experimental apparatus is shown in Fig. 2.3. The
components of the optical set-up have been discussed in detail by several authors.'*"'*
The laboratory frame of reference is given by the arrows indicated. The laboratory y-axis
is defined by the beam from a helium-neon laser directed along the axis of the Fabry-

Perot interferometer.
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Figure 2.3 Experimental Set-Up

Schematic of experimental set-up and geometry. The ice
sample is contained within the high pressure cell and cryostat;
lenses, apertures and filters are indicated by, L, A and, F,
respectively; the spatial filter is indicated by S; the mirror is
indicated by M. The coordinate system is shown in the lower
left.
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The pressure apparatus mainly consisted of a hydraulic system used to pressurize the
chamber containing the ice samples. The pressure transmitting fluid was Monoplex™
(dioctyl-sebacate) which is an optically transparent synthetic oil. In addition to being
optically transparent, the large molecular size of Monoplex reduced the probability of
forming high pressure clathrate hydrates. The freezing point of Monoplex is ~ -65°C at
atmospheric pressure. However, the oil often froze at -35°C at pressures higher than ~ 4.5
kbar. Therefore, when working at higher pressures, the freezing temperature was reduced
by mixing the oil with varying concentrations of isopentane, which has a freezing
temperature of ~ -153°C at atmospheric pressure. Despite an isopentane concentration

of nearly 75% the hydraulic fluid still froze at pressures above of 8.0 kbar at T ~ -5°C.

A 3 kbar hand pump supplied hydraulic oil to the low pressure side of a 20 kbar
intensifier. The pressure was measured using a Heise pressre gauge on the low pressure
side and it was determined that the intensifier then increased the pressure by a factor of
16 by calibrating using a calibrated maganin wire pressure gauge on the high pressure
side. The intensifier fed hydraulic oil into the high pressure cell as described in Section
2.3.1. The high pressure cell was placed inside a plexiglass cryostat which was evacuated
and cooled thermoelectrically. In the course of the experiment two different Brillonin set-
ups were used. In each, light was provided by one of two single mode argon ion lasers,
(1) a Coherent Innova 90 and (2) a Spectra Physics Series 2000. Both beams were of
better than 10 MHz bandwidth centred on 514.5 nm and the laser power was set at

between 30 mW and 50 mW throughout the experiment. As illustrated in Fig. 2.3, the
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laser beam was focused by a lens L (f = 30 cm), reflected by mirror M through the
bottom windows of the cryostat and high pressure cell then into the single crystal sample.
Light scattered at 90°40.2° was collected through a side window of the high pressure cell
and cryostat by lens L (f = 45 cm). The scattering cone was defined by aperture A (d =
0.2 cm), placed behind the collecting lens. The light was then spatially filtered at S by
lenses L, and L,, and the parallel light was then filtered through a narrow band-pass filter
of 10 nm bandwidth centred on the laser line. This prevented other spectral components
from entering a piezo-electrically scanned triple pass Fabry-Perot interferometer discussed
in greater detail in section 2.3.2. The spectral components were then focused by a lens
L, f = 80 cm, onto an aperture A, d = 600 pm. The signal was then detected by a cooled
[TT FW 120 photomultiplier tube PM set in photon counting mode. The signal from the
photomultiplier was fed into an amplifier-discriminator AD (Princeton Applied Research,
Model SSR 1120). The threshold of the discriminator was such that only peaks produced
by the photomultiplier tube above a predetermined value were passed. The signal was
amplified and sent to the Burleigh data acquisition system, (DAS -1), which counted the
photons as a function of channel number. The DAS also controlled the ramping voltage

to the piezo-electric transducers scanning the Fabry-Perot.

During crystal growth light from an incandescent bulb placed on the Fabry-Perot side of
the cryostat was used to illuminate the sample. A microscope was focused inside the
cryostat on the sample. A video camera and monitor were set up such that the sample

in the high pressure chamber could easily be viewed through the microscope. This



enabled the sample to be viewed during the crystal growth.

2.3.1 High Pressure Cell

The high pressure cell has been discussed in other reports'® and is illustrated
schematically in Fig. 2.4. The cell was designed and constructed at the National Research
Council of Canada in Ottawa and shipped to Memorial for completion. It essentially
consists of a 5x5x7 cm block of hardened 300 maraging steel in which two orthogonal
intersecting bores have been drilled. The bore parallel to the long axis formed the high
pressure chamber, G, and the bore parallel to one of the short axes formed the viewing
ports, L. The bottom of the long bore and the two ends of the short bore have been fitted
with windows, J. All three windows were made of glass and sat on optically flat mounts.
A conically shaped hole in the centre of the mount minimized the load supported by the
glass while under pressure and formed a viewing window 1.8 mm in diameter. Upon
pressurization, windows were forced against the optically flat mounts preventing oil leaks.
The windows were held in place by threaded, hardened beryllium copper caps which fit
over the window and fastened to the mount. An O-ring, K, formed a seal between the
mount and the inside of the bore. Backing rings were used to prevent the O-rings from
being forced out upon pressurization. The mounts were held in place by large hardened
300 maraging steel gland nuts. The bottom window allows the laser beam to enter the

high pressure chamber and was used for inserting and removing samples.

A specially designed rotation stem, A, allowed samples to be rotated through 360° about
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Figure 2.4 High Pressure Cell

Schematic of the high pressure cell; A, rotation stem; B,
bearing assembly; C inner rotation stem; D, brass rods
connecting the cell to the plexiglass thermal insulator; E,
Peltier cells; F, O-ring; G, high pressure chamber; H, glass
cell containing ice sample; I, port for collecting spectra and
viewing samples; J, quartz windows; K, O-ring; L, laser beam.
The scale is approximately 1:1.3.
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the laboratory z-axis while under pressures up to 10 kbar. The inner stem, C, contained
a head at one end which protruded into the high pressure chamber and was designed so
that the brass coupling and glass sample containment cell could be removed through the
bottom window. The bottom of the stem head contained a small dimple which was
painted black so that the laser beam, after passing through the sample would not be
reflected. An O-ring and backing rings, F, were used to seal the stem against the inside
of the bore, Sitting on the outer stem assembly was an annular ring with a concentric
track machined in its upper surface in which sat a set of stainless steel bearings, B. Above
the bearings was another annular ring with a similar bearing track machined on its lower
side. This entire assembly was held in place by another large heat treated gland nut. Upon
pressurization the inner stem would force the outer stem against the bearings and the
gland nut. The bearing assembly would permit the rotation of the stem under pressure.
Without the bearings the frictional force between the two metals would be so great that

rotation of the sample would be impaossible even under modest pressures.

Figure 2.5 illustrates the sample containment cell and coupling. A small sample cell, A,
made of a thick walled glass tube attached to the rotation stem, G, by a small machined
brass coupling, E. The cell was 1.3 cm long with an inner diameter of 4 mm. It was
friction fitted to the brass coupling by two prongs which partially extended into the glass
tubing. The friction between the glass and prongs was sufficient to prevent slippage
during rotation of the stem even at the highest pressures. This was confirmed for each

crystal by comparing Brillouin spectra collected before and after a complete 360° sample



Figure 2.5 Sample Containment Cell

Glass sample containment cell; A, glass tube; B, fire polished
glass plug; C, copper ring for gripping glass cell; D, silicone
disk; E, brass coupling; F, retaining pin; G, inner rotation
stem; H, set pin.

45






rotation. The bottom of the glass tube was fitted with a fire polished glass plug, B, held
in place with silicone sealant. The optically clear plug permitted the laser beam to be
readily transmitted into the sample. The position of the glass plug relative to the viewing
windows was critical. In order that the seed crystal be seen during sample growth, the
bottom of the cell had to be visible through the side windows with the aid of a
microscope and video camera. In addition, the plug could not cover so much of the
window that the laser beam could not be seen passing through the bulk ice sample. This
means that the plug could cover no more then the bottom 1/3 of the 1.8 mm diameter
window. This strict constraint meant that great care was necessary when inserting and

removing the glass plug.

The orientation of the brass coupling relative t0~the rotation stem was fixed by a small
set pin on the inner rotation stem assembly (see H, Figure 2.5). Once while trying to
rotate the samples under high pressure the load supported by the pin was sufficient to
cause failure. This required that the entire cryostat and high pressure cell be dismantled

and the pin replaced with harder stainless steel.

The high pressure cell was placed inside a cryostat formed by a plexiglass pipe of inner
diameter ~16 cm. The bottom of the cryostat was formed by a brass plate sealed against
the inside of the plexiglass mbing with an O-ring. A large quartz window in the centre
of the brass plate allowed entrance of the laser beam. One of the side windows consisted

of a 2.5 cm hole in the plexiglass pipe covered with a quartz disk held in place with
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silicone sealant. The scattered light was collected through this window. The opposite
window was a similar hole through which the microscope was inserted and focussed into

the high pressure chamber. This permitted viewing the sample during crystal growth.

The high pressure cell was fixed to a plexiglass plate by means of four brass rods. The
plexiglass plate was, in turn, bolted to the top brass plate of the cryostat. The plexiglass
plate served as a thermal barrier between the high pressure cell and the top brass plate.
The top brass plate was machined and fitted with the appropriate feed-through apparatus
for the rotation stem, high pressure tubing, and electrical connections. The inside of the

cryostat was evacuated to thermally insulate the high pressure cell from the room.

The cell was cooled using four Peltier thermoelectric modules with the cold side directly
fixed to the side of the pressure cell. The warm sides of the Peltier cells were placed in
thermal contact with copper plates which were cooled by a mixture of methanol and water
at -15°C circulating through attached coils. The temperature was measured to within
0.05°C by a calibrated Lakeshore cryogenics platinum resistance thermometer fixed
directly to the outside of the high pressure cell. The temperature was controlled, to
within 0.05°C, by adjustment of the input current supplied to the Peltier cells. It was
necessary at times to adjust the temperature of the cell by adjusting both the coolant
temperature and the current through the Peltier modules. However, the adjustment of the
current through the Peltier modules provided more sensitive control over the high pressure

cell temperature and this was the only adjustment made during the growth of single
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crystals.

2.3.2 Fabry-Perot Interferometer

The spectral separation between the elastically scattered Rayleigh peak and the
inelastically scattered acoustic peaks for the ice phases studied is of the order 10 GHz.
In general, the unshifted peaks were much more intense then the acoustic peaks; for
example, in the present study the typical unshifted peak was 2000 times more intense
then the longitudinal acoustic peak. In order to investigate the components of such a
spectrum requires an instrument of very high resolution, contrast and finesse. The modern
Fabry-Perot interferometer is well suited to make such measurements, therefore a brief

summary of the general features of the Fabry-Perot is given.'®

The Fabry-Perot consists of two parallel mirrors with reflectivity of typically more than
90% and flat to within A/200, and separated by a distance d. A beam of coherent
monochromatic laser light incident on the mirrors undergoes internal reflection and hence
interference. The intensity profile of emerging beam when projected onto a screen is

described by the well known Airy function'™ given as,

1
1+ 4—2_ sy
(1-R? 2

The phase difference between two transmitted beams in terms of n (refractive index of

_¢ T
Ke) = (l - R)z 2.30

medium separating the mirrors), d (distance between the mirrors), a (angle of the incident
ray from the optic axis), and A (wavelength of the incident light) is written as, 8 = (2r/A)
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2nd cos 0. The maximum intensity then occurs when the phase difference of the
transmitted beam is an integral multiple of A. For an extended source, the pattern
produced by an image projected on a screen forms a set of concentric rings described by

the equation,

2nd cos(x) = mA . 2.31

Considering the case in which air is the medium between the plates (n = 1) and the
incident light is collimated such that o = 0, this equation reduces to 2 d = m A, where m
is called the order of interference. Since there is no angular dependence only the central
spot is visible during constructive interference. In the spectrometer used in the present
study the plate separation is varied by applying a ramping voltage to piezo-electric
transducers. The Fabry-Perot thus acts as a frequency-varying narrow-bandpass filter, i.e.
only light with a wavelength satisfying the above equation constructively interferes in the

cavity and therefore emerges from the spectrometer.

If the distance between the two plates is held constant, the wavelength change required
to move the order of interference from m to m+l can be easily calculated. This
wavelength change is known as the free spectral range (FSR). The FSR may equally be
stated as the spectral separation between corresponding features in consecutive orders of
the Fabry-Perot. To illustrate this, suppose AA is the FSR in units of wavelength, this
means that the m - 1 order fringe for some wavelength A will be the order m for A+AA.
This may be written as (m-1)A = m(A+AA). Solving for AA, using equation 2.31 and

expressing the result in terms of frequency the FSR is given by Av = c¢/(2d). [n the
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present experiment the FSR was chosen so that there was no overlap of specural

components.

The ratio of the full width at half maximum of the unshifted peak and the FSR is called
the finesse. The finesse may be calculated by noting that the phase half-width of the
unshifted peak at half its maximum (I/2) may be found by setting 4R/(1-R)* sin ? (8/2) =
1 in Eq. 2.30 and solving for 8. The phase separation between two consecutive unshifted
peaks is 2%. The finesse is, therefore, F=t(R)*%/(1-R) where R is the reflectivity of the
plates. Note that the finesse is dependent on the reflectivity and increases rapidly as R
approaches unity. This is known as the reflectivity finesse and the precise value of the
finesse is always less then this value due to surface roughness of the mirrors and
misalignment. In fact as R approaches 1 the finesse approaches a limit dependent on the

surface roughness of the mirrors.

The ability of a spectrometer to distinguish between two very close peaks is called the
resolving power and can be expressed as A/AA, where the spectrometer can just resolve
lines of wavelengths A and AA. One commonly used definition of "just resolved” states
that, “two symmetrical profiles are just resolved when their maxima are separated by their
full width at half maximum".'” This can be written in terms of the finesse as, A/AA = m
F. Note that Eq. 2.31 states that "m" is directly proportional to the plate separation d, this
implies that the resolution may be increased by increasing the distance d. Increasing the

plate separation, however, decreases the FSR.
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The ability of the insaument to detect very weak signals in the presence of strong signals
is called the contrast, C. It may be defined from the Airy function as the ratio of the
maximum intensity to the minimum intensity, thus C = /I, =1 + 4 F/ 2 It is
important that the Fabry-Perot have a contrast as high as possible in order that the very
weak transverse acoustic peak be distinguished from the very strong unshifted peak. The
contrast of a Fabry-Perot may be significantly increased by passing the light through the
interferometer several times. In the present study the scattered light was reflected back
through the Fabry-Perot three times by displacing the successive passes laterally using
retro-reflectors. The Airy function for a multipass Fabry-Perot may be found by raising
the single pass Airy function to the power m, where m is the number of passes. The
contrast of a multipass Fabry-Perot is therefore C, = (C ,)™ and the multipass finesse may

be expressed as F , =F , (2™ - 1) "2,

In the following chapters the details of the present Brillouin spectroscopic experiments
on the phases II, V and VI will be given. Chapter [l and V presents the elastic
properties of ice III at -17 °C and ice VI at -2 °C, respectively, at various pressures.

Chapter IV presents the elastic properties of ice V at 3.0 kbar and -35 °C.
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CHAPTER III

Single Crystal Growth and The Elastic
Constants of Ice 111

3.1 DETERMINATION OF THE ELASTIC CONSTANTS

In all, three crystals of ice Il were studied in the present experiment. The first two were
studied at constant temperature and pressure, -20°C and 2.2 kbar respectively. The first
crystal was used to initially determine the 6 independent elastic constants, C,,, C;;, Cy,
Css» Ci2 and C,,. The second crystal was used to independently verify the elastic constants
found using crystal # 1. The third crystal was used to study the variation of the elastic
constants between 2.2 kbar and 3.0 kbar at -20°C. From the single crystal elastic constant
data, bulk polycrystalline elastic properties, such as Young’s modulus, E, the Lamé
constants, A and p, and Poisson’s ratio, 6, were calculated in a manner described in
Section 2.1.3. The calculated polycrystalline elastic properties are compared with
previously obtained values measured directly from polycrystalline samples. Agreement

was found to be exceptionally good.

The Brillouin equation, described earlier, is an expression which gives the frequency shift
associated with the interaction of light with sound waves propagating within the sample.
The refractive index, n, the wavelength of the incident light, A, the scattering geometry,

and the acoustic velocity are required as parameters of the Brillouin equation. The
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wavelength A is accurately fixed by setting the laser to single mode operation (in the
present study A=514.5 nm), n is calculated in the following section, spectra were collected
in 90°£0.2° scattering geometry and the acoustic velocity may be calculated by finding
the eigenvalues, pV? of the Christoffel determinant derived in section 2.1.2. The
calculated frequency shifts, v, corresponding to the observed experimental frequency
shifts, v*™, may be compared and used to measure the accuracy of the elastic constant
parameters. Through the appropriate adjustment of the elastic constant parameters the
difference between v™* and v™ may be minimized. This is the essence of the x* non-

linear least squares'® fitting procedure described in section 3.1.4.

3.1.1 Density and Refractive Index of Ice IIl

The pressure dependence of the density of ice th, II, I, V and VI were extensively
studied by Gagnon, et al.*! in a separate experiment on the apparatus used in the present
study. In that experiment the density was measured directly from changes in volume as
the pressure was varied from O to 10 kbar, the uncertainty was estimated to be 0.1%. The
density data, measured as a function of pressure within each phase, were fitted to either

linear or quadratic polynomials. The resulting linear equation for ice III is quoted below

PiemPlg s = 11321 + 12057x10 Py, . 3.1

The units of Eq. 3.1 are given by the subscripts. It should be noted that the density data
used to obtain the above equation were collected at T = -35°C. The densities calculated

by this expression are considered accurate at T = -20°C. The density difference estimated
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thermal expansion of ice Ih over the same temperature range is about 1 % and does not
change the best fit elastic constant values. The same is true for ice V and ice VI. At P

= 2.2 kbar the density is calculated to be 1.1586 gm cm™.

The refractive index of ice VI has been calculated by Polian et /.7 It was assumed that

the refractive index n(p) is related to the Eulerian strain e through the equation'®

npy) - np) = Ae , 32
where p, p,, n(p) and n(p,) are the density under pressure, the density at ambient
pressure, the refractive index under pressure and at ambient pressure, respectively. The
Eulerian strain e is given by

2
e =051 - (&)Y 33
Po

and

2 34
n = 1334 + 051(p*-1) .

A was determined by fitting Eq. 3.2 to well known values of the refractive index and
Eulerian strains of liquid water. These equations were then used to find the refractive
index of ice VL. The resulting experimental and calculated values of the refractive index

differed by less than 1% and are assumed accurate for the other phases and used in the
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present analysis. The refractive index of ice I at p = 1.1586 gm cm™ was thus calculated

to be 1.386.

3.1.2 Euler Angles

The eigenvalues, pV? of Eq. 2.16 may be found if the direction cosines of the
propagating acoustic wave with respect to the crystallographic axes (in the tetragonal
system) are known. The ice crystals grown in the present study have arbitrary orientation
with respect to the laboratory coordinates and hence there is no a priori knowledge of the
direction cosines. The scattering acoustic wavevector is, however, well defined by the 90°
scattering geometry as (0,1,1) in the laboratory frame. It is thus required that the
scattering acoustic wavevector be transformed from the laboratory reference frame into
the crystallographic reference frame. This may be done through a series of rotational
transformations, given by the Euler angles''®'"' 0, ¢ and x. Fig. 3.1 illustrates the Euler

angle relationship between the two coordinate systems. The transformation is given by,

' =Ax, 3.5

where in the present case, X and x° are scattering wavevectors in the laboratory and
crystallographic coordinate system respectively. A is an orthogonal matrix formed by the

combination of the three matrices representing the rotations illustrated in Fig. 3.1.

In the present experiment Brillouin spectra were collected at various orientations as the

crystal was rotated about the laboratory z-axis. A spectrum was usually collected in
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Figure 3.1 Euler Angles

The Euler angles 8, ¢ and Y illustrate the relationship between
the laboratory axes, x, y, and z and the crystallographic axes
ab, andc.
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increments of A¢ = 10°. Note that rotations about the laboratory z-axis change the Euler
angle ¢ to ¢ + A¢ while keeping the other Euler angles constant. The problem of
calculating the scattering acoustic wavevector is now reduced to finding the Euler angles
relating the crystal frame to the laboratory frame. This is complicated by the fact that it
is not possible to use the standard technique of Laue x-ray diffraction due to the small
size and thickness of the necessary quartz windows. The crystals were however partially
oriented optically by observing the polarization behaviour of light as it passes through the

crystal.

3.1.3 Determination of Sample Orientation

Crystalline substances which are optically anisotropic and exhibit two distinct indices of
refraction are said to be birefringent.!'*'" Crystals are uniaxial and birefringent if the
optical indicatrix is a biaxial ellipse of revolution, therefore the dielectric constant, or
refractive index, has two distinct values forming the major and minor axes of an ellipsoid.
Thus a light wave travelling in an arbitrary direction will encounter differing indices of
refraction for different polarization directions. The optic axis is defined as the direction
about which the atoms are arranged symmetrically, so that all polarizations of light
experience the same index of refraction. When propagating along the optic axis light
waves will experience the same index of refraction regardless of the polarization. In the
tetragonal system this corresponds to the crystallographic c-axis.!"* In general, upon
entering the crystal an unpolarized incident light beam is split into two orthogonal
polarizations travelling with different speeds. One of the components is normal to the c-
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axis and the other is mutually perpendicular or along the projection of the c-axis in the
plane perpendicular to the direction of propagation. Therefore, light which travels along
the y-axis and enters an arbitrarily oriented crystal will become polarized and have a
component parallel to the projection of the c-axis in the xz-plane (see Fig. 3.2). For a

L6

complete discussion of birefringent behaviour in crystals see Jenkins and White.

In the present experiment the entire cryostat containing a single crystal sample was placed
between mutually orthogonal polaroid filters such that light entering the sample was
polarized. The filter system was designed so that both filters may be rotated about the y-
axis with their relative orientation fixed. Light from an unpolarised HeNe laser, which
defined the laboratory y-axis, was passed through the polarizer and high pressure cell
containing the single crystal sample. Upon entering the arbitrarily oriented crystal the
polarized light was usually split into two mutually orthogonal components as discussed
above. Hence, light emerging from the crystal had a component which was able to pass
through the analyser and be projected onto a screen. As the crossed polaroid filters were
rotated about the y-axis the plane of polarization of the incident beam also rotates. At
some angle the plane of polarization becomes coincident with the projection of c-axis, and
as the beam emerged from the crystal there was no component of vibration along the easy
axis of the analyser and therefore little light was transmitted. This would be evidenced
by a near complete extinction of light projected on the screen. The angle between the
plane of polarization and the x-axis was then measured and called the "angle of

extinction” A.



Figure 3.2 Birefringent Extinction

Mustration of the relationship between the crystallographic c-
axis, the angles 6 and ¢°, and the extinction angle A, with
respect to the laboratory axes (the Euler angle ¢ = ¢~ + 90°).
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From the Fig. 3.2 it is easily seen that the relationship giving A, measured clockwise from
the positive x-axis, as a function of the angles ¢° and 0 is (note that the Euler angle ¢=¢"-

90%

oo () = 500 cos(d/+A4)
[cos*(8) + sin’(®) cos’('+Ad)]

1 36
2
where A¢ is the angle of rotation clockwise from the x-axis. Several extinction angle
measurements were averaged at each A¢ through a complete 360° rotation about the
laboratory z-axis. These data are presented in Table 3.1 for each of the three crystals.
Using this method it was possible to partially orient the crystal by fitting the Euler angles
6 and ¢ to the measured extinction angles using a least squares minimization routine. The
remaining Euler angle, %, was uniquely determined when the elastic constant parameters
were fitted to the measured acoustic frequency shifts, see Section 3.1.4. The crystal
orientation data are plotted in Fig. 3.3 (a), (b) and (c) along with the best fit curves for
each of the three crystals studied. The quoted Euler angles refer to the orientation of the

crystal at A = 0.0°.

3.1.4 Fitting the Elastic Constants

Once the crystals were oriented it was possible to calculate the acoustic velocity, and
frequency shifts, in crystallographic directions corresponding to each scattering vector of
the experimental data. Unique elastic constants are then found by adjusting the parameters

of the Christoffel determinant until the square of the difference between the observed and
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Table 3.1
Extinction Angle versus Crystal Orientation Data

Ice Il
Ad @gees) cos(extinction mgle)
| 1 50.0 -0.3697
2 60.0 -0.0384
[ 3 1200 0.8854
t 4 145.0 0.9018
f 5 190.0 0.8686
1 6 235.0 0.2639
7 260.0 -0.5210
ﬂf 8 280.0 -0.7570
Crystal #2
1 30.0 0.3404
2 50.0 0.5563
3 90.0 0.7147
4 110.0 0.7346
5 150.0 0.5030
6 180.0 0.1616
7 210.0 -0.3264
8 240.0 -0.6148
9 270.0 -0.6730
10 290.0 -0.6441 *I
Crystal #3
1 10.0 -0.2113 I
2 40.0 0.0680
3 70.0 0.2840
4 100.0 0.3859
5 130.0 0.4242
6 160.0 0.3469
7 190.0 0.1977 jl
8 220.0 -0.0732 It
9 250.0 -0.3007
10 280.0 -0.4051 ﬂ
11 310.0 -0.4399 I
12 340.0 -0.3173




Figure 3.3 Extinction angle vs. A}

Plots of the cosine of the extinction angle vs. rotation A¢
about the laboratory z-axis, the solid circles represent the
experimental data points and the smooth lines are the best fit
curves. (a) Ice III crystal #1; (b) Ice I crystal #2; (c) Ice III
crystal #3.
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the calculated frequency shift is minimized. In the non-linear least squares procedure the

quantity which is minimized is given as

1 viaskk) - vi¥
1@ = o= X . P, 3.7

where a; are the j independent elastic constants, the sum over i covers all M observed
frequency shifts, N is the number of parameters being fit and 7 is the standard deviation

of the observed frequency shifts.

The minimizing computations were done by using the IMSL and NAG math subroutine
libraries and the appropriate Fortran code was written. Systematic errors were primarily
due to uncertainty in the refractive index, density, and scattering angles. The systematic
errors in pV * may be calculated using the Brillouin equation and are found to be less
then 1%. Non-systematic errors were introduced due to uncertainties in the Brillouin
frequency shifts and the orientation of the crystals. Calculation of the non-systematic
errors requires the standard deviation of the individual frequency shifts, 1} ;. There was
no practical method of determining 7 ;, therefore, 1 ; is assumed to be constant for all
frequency shift measurements of the present experiments. The standard deviation, 1, was
estimated by requiring that ¥ * be equal to unity when 7 is equal to one standard

deviation.
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The non-systematic uncertainties in the elastic constants were calculated using the error

matrix defined as,

v avi*

% % o’ >
» n Ny

HYy =LY

where a .” are the best fit elastic constants. The uncertainties are given by the diagonal

elements,

N

39
AC, = (Hy? .

The errors were calculated by a separate computer program written for the purpose of
finding the derivatives of the Brillouin frequency shift with respect to the individual

elastic constants.

3.2 GROWTH OF SINGLE CRYSTAL SAMPLES

Sample production for each of the phases, ice Il, V, VI, was very similar. All ice
samples were produced from triply distilled, degassed and deionized water, produced at
National Research Council of Canada, Institute for Marine Dynamics in St. John's,
Newfoundland, Canada. In addition, the water was boiled for approximately 20 minutes
prior to use (o ensure that all gases had been driven out of solution. Each of the ice
phases studied shares a common phase boundary with liquid water. This allows single

crystals of each of these phases to be grown from the liquid without being forced through
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a solid-solid phase transition. Forcing crystals through a solid-solid phase transition by
increase of pressure always resulted in single crystal samples shattering and becoming
fine grained polycrystalline aggregates. Fig. 1.2, in chapter 1, illustrates the phase diagram

of the high pressure phases of ice.

It was noted throughout this experiment that the boundary lines separating the high
pressure phases of ice are not well defined. On several occasions samples of ice were
super-pressurized, or supercooled, well into the stability field of a neighbouring phase.
During the present experiment, early attempts to prepare single crystal samples of ice I
involved pressurization of single crystals of ice [h. Ice [h samples were pressurized to as
much as 3.5 kbar at T=-30°C before the phase transition occurred. This is well above the
stable pressure region of ice [h. Ice V and VI were also produced by pressurizing single
crystals of ice III and V respectively; again the pressure could be increased well into the

stability field of the neighbouring phase before the transition occurred.

Such phase transitions from a metastable to a stable crystal structure always proceeded
rapidly (i.e. complete transformation within 10s of nucleation). This rapid phase transition,
in addition to the large volume changes, always resulted in the crystal shattering and
producing a fine grained polycrystalline aggregate. It quickly became evident that single
crystals could not be retained through solid-solid phase transitions, and that an alternate
method of producing large single crystals would have to be developed. In addition, an
attempt was made to produce a single crystal of ice LI by slowly cooling a single crystal
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of ice I to approximately -70°C at pressures ranging from 2 - 3 kbar. Again ice [I is
metastable with respect to ice II at this temperature. The samples were left under these
conditions for 2 weeks with no sign of an imminent phase transition as determined by the

Brillouin frequency shift measurements. This was attempted at least 8 times.

It is quite likely that the lack of a suitable nucleation site in the single crystal lattice
played a role in the degree of supercooling required before a phase transition would
proceed. It was noted on several occasions that polycrystalline samples exhibited sharp
and well defined, repeatable phase transition pressures and temperatures which agree well
with those of the established phase diagram. Attempts were made to introduce a
nucleation site by placing a sharp piece of glass in the cell. By growing a single crystal
of ice I around the shard then slowly cooling the sample into the stability field of ice
II it was hoped that the shard would act as an ice II nucleation site. After several days
it appeared as though the shard of glass would not produce the required nucleation site.
After 3 frustrating attempts it was determined that the cell would need modifications to
successfully produce a large single crystal of ice II and the process was temporarily

abandoned.

3.2.1 Ice lll

Since it was impossible to retain single crystals through a solid-solid phase transition it
was necessary to produce single crystal samples from the liquid state. This required that
a seed be grown under very strict control of temperature and pressure into a high quality
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single crystal suitable for Brillouin experiments. Such seeds are generally produced in one
of two ways; (1) a seed crystal is produced from liquid at the bottom of the cell by
setting a temperature gradient, (2) a polycrystalline sample is melted until a single crystal
seed remains, and then a slow and controlled regrowth produces the desired single crystal.
The second method proved to be most practical and required only minor modifications

of the existing apparatus.

As mentioned above, polycrystalline samples of ice [II could be easily produced by
pressurizing readily available single crystals of ice h. This was the first method used to
obtain polycrystalline samples of ice III. Samples of ice Ih did not transform uniformly
throughout the bulk of the specimen but in a rather inhomogeneous manner allowing
excessive amounts of hydraulic oil to penetrate the cracks before the sample fully
annealed. Upon melting, large drops of oil adhered to the inside wall of the sample
containment cell thus obscuring the view of the crystal. Fine droplets remained in
suspension and resulted in a single crystal of very low quality and totally unsuitable for

Brillouin scattering.

To reduce the amount of oil intrusion a thin disk of dry silicone sealant was placed in the
cell on top of liquid water. The liquid water sample was then pressurized, at room
temperature, to approximately 3.3 kbar, directly over the phase boundary of ice HI (see
Fig. 1.2). The cryostat and sample were then cooled to approximately -35°C resulting in
supercooled water which, after several hours, froze directly into a polycrystalline sample
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of ice MI. Using this method very little oil penetrated into the sample and the resulting

grain size was on the order of 100 pm.

The temperature of polycrystalline sample was then raised at constant pressure to -17 °C.
The pressure was then carefully reduced until the sample began to slowly melt. Melting
continued until only a small ice seed remained, usually containing 3 or 4 crystallites. The
sample was monitored with the aid of a video camera and microscope during the entire
process until the seed size did not exceed 15 pm. Then the pressure was slightly increased
until the seed started to slowly grow. The light used to illuminate the sample produced
a thermal gradient across the cell. The seed crystal of all ice phases tended to be at the
cooler front of the glass containment cell and always grew toward the back. The light was
shielded as much as possible to reduce heating effects. This also reduced the thermal
fluctuations that could cause difficulty when trying to precisely control the temperature.
The approximately 17% reduction in volume during freezing caused the pressure to be
reduced as the sample grew and eventually caused the sample to start melting. The
temperature and pressure were therefore constantly monitored and adjusted during the

growth process. The entire freezing process typically took 6-8 hours.

Once the sample had completely frozen it was viewed between crossed polaroid filters
at several orientations about the laboratory z-axis. Grain boundaries were evidenced by
inhomogeneous extinction of light at the appropriate orientation of the polaroid filters.
The resulting ice samples, which were rarely single crystals, usually contained 3 or 4
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large grains. The growth process would, therefore, have to be repeated several times until
a large single crystal of sufficient quality was obtained. Once a single crystal was
successfully produced the pressure was increased to 2.2 kbar and the temperature
decreased to -20°C, just inside the ice III stability field. The entire process typically took
one full day. The sample was then left for several hours to anneal fully. The process of
crystal growth was recorded on video cassette. Fig. 3.4 illustrates the slow growth of a
crystal from a single crystal seed, the time between successive frames is ~ | min, the
bright region in the central portion of each frame is due to a lensing effect produced by
the cylindrical sample containment cell, the diameter of this region was approximately |

mm. The crystal faces are readily seen and give an indication of the crystal quality.

3.3 RESULTS OF ICE III STUDIES

Three samples of ice III suitable for Brillouin spectroscopy were successfully grown and
as much data as possible collected and analyzed. The elastic constants were initially
calculated using the first two crystals grown from which suitable spectra could be
collected at T = -20°C and P = 2.2 kbar. The third crystal was used to investigate the

pressure dependence of the elastic constants.

3.3.1 Frequency Shift Data and Elastic Constants of Ice III
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Figure 3.4 Growth of a Single Crystal of Ice III

Time lapse images of a single crystal of ice III growing from
liquid water. The images were produced by video taping the
samples through a microscope. The seed crystal sits on the
glass plug which forms the bottom of the cell and both are
visible at the top of each frame. The cylindrical sample
containment cell acts as a lens, thus the light entering is
focussed to the center axis and appears distorted. The diameter
of the bright central portion is ~1 mm. The time between
consecutive frames is ~1 min.
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For these initial studies a Coherent Innova 90 argon ion laser was used in single mode
operation as discussed in the section 2.3. The free spectral range (FSR) was set to 36.36
GHz such that spectra were measured without overlap of components. Fig. 3.5 illustrates
a typical Brillouin spectrum of crystal # 2 at A = 20°. Two complete orders of the Fabry-
Perot are shown. The L designates the frequency shift due to the quasi-longitudinal
acoustic polarization, and T, and T, represent the frequency shift due to the two quasi-
transverse polarizations. The longitudinal components were very sharp and give qualitative
evidence of the very high quality of the samples. The ratio of the longitudinal peak
intensity to that of the unshifted central peak was typically 1:100. The transverse acoustic
peaks were of very weak intensity relative to the longitudinal peak, typically ratios were

of the order 1:50. This resulted in the need to collect a single spectrum over 8-12 hours.

Brillouin spectra were usually collected in A¢ increments of 10° or 20° through a
complete 360° rotation. This resulted in a total of 149 frequency shift measurements from
crystal #1 and #2 at P=2.2 kbar and T=-20°C. Frequency shift data were collected from
crystal #3 at T=-20°C between 2.5 and 3.0 kbar. Table 3.2 (a), (b) and (c) give the change
in Euler angle ¢ and the corresponding observed frequency shifts for crystal # 1, # 2 and
#3. As a check of consistency, the elastic constants were fitted to the frequency shift data
of crystal #1 and #2 separately. The agreement between the two independent systems,
crystal #1 and #2, is remarkably good. The final elastic constant values were then found
by combining all frequency shift data from both crystals and running the least squares
routine. As a check of the Fortran code the elastic constants were determined from the
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Figure 3.5 Brillouin Spectrum of Ice IIl

Brillouin spectrum of ice I crystal #2, at A¢ = 20°, T = -
20°C, P = 2.2 Kbar, the FSR is 36.36 GHz. The longitudinal,
transverse and central unshifted components are indicated by
L, T ,, and U respectively. Two complete orders of the Fabry-
Perot are shown and lines indicated by T | and T , comrespond
to the central unshifted peak.
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Table 3.2 (a)

Brillouin Frequency Shifts (GHz) Ice III
Crystal # 1 (0=64.2°, 1=-19.2°, $=118.5")

1 0 14.94 - 628 |

2 10 14.99 - - |

3 20 15.02 - 6.05 1§

4 30 15.07 - -

5 40 14.88 7.34 6.21

6 50 14.61 - -

7 60 14.42 7.59 6.94

8 70 14.10 - -

9 80 13.87 - -

10 90 13.90 - -

11 100 13.96 8.26 -

12 110 14.18 7.91 -

13 120 14.33 7.41 -

14 130 14.61 - 6.98

15 140 14.70 - 6.77

16 150 14.70 7.38 6.60

17 160 14.56 7.39 6.47

18 170 14.24 7.40 6.28

19 180 14.14 - -

20 190 13.83 7.22 -

21 200 13.49 7.28 6.64

22 210 13.11 7.49 6.77

23 220 12.79 - 6.83

24 230 12.57 - 6.98

25 240 12.47 7.07

26 250 12.57 - 7.25
f 27 260 12.76 - -

28 270 13.01 - 6.83
[29 280 13.43 - - 1
30 290 13.56 7.59 6.55
'[ 31 300 13.80 7.72 6.60 J
i 32 310 14.06 7.77 673 |
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egrees 1 2
320 14.24 7.56 - |
330 14.62 - - ]
340 14.06 7.51 6.78
350 14.96 - -
Table 3.2 (b)

Brillouin Frequency Shifts (GHz) Ice IlI
Crystal # 2 (0=136.2°, x=45.4’, $=-8.7)

A¢ (degrees) L T, T,
1 0 15.16 - 592 |
2 10 15.12 - 5.83
3 20 15.12 - 6.08 1
4 30 14.86 - 6.51
5 40 14.66 - 7.09
6 50 14.27 7.6 - *
7 60 14.06 - -
8 70 13.89 - 7.18 ]‘
9 80 13.90 - 7.06 ]
10 90 13.84 8.11 6.75
11 100 13.90 7.98 6.82 |
12 110 13.78 7.84 6.60
13 120 13.72 7.58 6.58
14 130 13.52 7.51 6.57
15 140 13.19 - 6.81
16 150 12.90 - 7.04
17 170 12.24 - 7.41
18 180 12.10 - 7.46
19 190 12.03 - -
20 200 12.19 - 7.46
21 210 12.39 - 7.31
22 220 12.76 - 7.14
23 230 13.07 - 6.89
24 240 13.40 - 6.74
25 250 13.64 7.53 6.58
26 260 13.86 7.68 6.54
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27 270 13.90 7.85 6.64

28 280 13.92 7.96 6.88

29 290 13.94 - -

30 300 13.86 8.57 7.24

31 310 14.05 8.21 - 1

32 320 14.22 7.97 -

33 330 14.50 - 7.41

34 340 14.78 - 6.85

35 350 14.96 - 6.36
Table 3.2 (c)

Brillouin Frequency Shifts (GHz) Ice 111
Crystal # 3 (6=26.45°, 1=-55.93°, $=157.38°)

1 0 14.30 1.79 -
2 20 14.82 7.34 6.33
3 40 14.94 7.22 6.12
4 50 14.84 7.32 6.29
5 60 14.72 - 6.69
6 70 14.32 7.51 -
7 80 14.08 7.89 -
8 90 13.92 8.19 6.79
9 100 13.86 - 6.62
10 110 13.83 8.07 6.62
11 120 13.84 7.66 6.62
12 130 13.80 7.45 6.63
13 140 13.55 - -
14 160 13.19 7.16 -
F 15 180 12.83 - 7.01
16 200 12.64 7.27 -
l 17 220 12.76 7.03 -
18 240 13.03 - 6.78
19 260 13.59 7.30 -
L 20 280 14.07 7.01 -
21 300 14.21 7.43 6.59
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22 320 14.08 7.92 -
23 340 13.99 - -
2.8 kbar
1 0 14.40 7.76 -
2 20 14.88 7.49 6.41
3 40 14.99 7.36 6.05
4 60 14.64 7.42 6.69
5 80 14.16 7.97 -
6 100 13.90 - 6.80
7 120 13.87 7.80 6.50
8 140 13.72 - 7.07
9 160 13.32 7.24 -
10 180 12.97 - 7.06
11 200 12.78 7.36 -
12 220 12.89 7.10 -
13 240 13.17 - 6.76
14 260 13.66 7.45 -
15 280 14.14 7.06 -
16 300 14.28 7.41 6.66
17 320 14.02 7.98 6.93
18 340 13.99 - 7.03
3.0 kbar
1 0 14.45 7.85 7.00
2 20 14.95 7.42 6.43
3 40 15.06 7.46 6.18
4 60 14.68 7.48 6.61
5 80 14.29 7.84 -
6 100 14.02 - 6.82
7 120 14.08 7.78 6.62
8 140 13.86 - 7.09
9 160 13.45 7.25 -
10 180 13.09 - 7.11
11 200 12.93 7.34 -
12 220 13.00 7.22 -
13 240 13.28 - 6.84
14 260 13.68 7.43 -
15 280 14.19 7.05 -
16 300 14.35 7.47 6.67
17 320 14.24 8.00 6.90
18 340 14.06 - 6.96
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acoustic data using commercially available software called Elcon and the results were
found to be entirely consistent with that of the computer routine written for the present
study. It should be noted that Elcon requires the direction cosines for the scattering
acoustic wave be known a priori, this was not possible in the present study since the
crystals could only be partially oriented (Euler angles ¢ and 0) using the optical technique
discussed in section 3.1.3. The Euler angles quoted in Table 3.2 were therefore supplied

to the Elcon program.

The plots shown in Fig. 3.6 (a) and (b) graphically represent the frequency shift data
collected from crystals # 1 and # 2 as a function of the Euler angle given by ¢+A¢. The
solid circles are the experimentally determined points and the smooth lines were
calculated from Every's ciosed form expressions using the best fit elastic constants. The
large variation in the frequency shift as a function of crystallographic orientation suggests
that ice Il is, in fact, quite acoustically anisotropic. This is confirmed by the elastic
constants determined in this study. The large number and high quality of experimental

data points lead to an exceptionally good fit.

The experiment on crystal # 3 was conducted using a different Brillouin set-up. A Spectra
Physics 2000 argon ion laser was used for these studies (see experimental set-up). The
FSR of the Fabry-Perot interferometer was set to 39.19 Ghz, this allowed the collection
of spectra without overlap of spectral components. Data were coilected at various
pressures ranging from 2.5 to 3.0 kbar.
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Figure 3.6 Frequency Shift vs. Ap

Frequency shift plotted as a function of the angle of rotation
A¢ about the laboratory z-axis. The solid circles represent the
experimental data and the smooth curves are the frequency
shifts calculated using the best fit elastic constants. (a) Ice ITI
crystal #1, (b) Ice III crystal #2, T =-20°C and P = 2.2 kbars.
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The varations in frequency shift with pressure are best seen by plotting the calculated
frequency shift as a function of the sample orientation, see Fig. 3.7. The smooth curves
indicate the frequency shift values calculated from the best fit elastic constants and
numerical diagonalization of the Christoffel determinant. The fit to the experimental data

was again excellent.

The best fit values for the 6 independent elastic constants found for crystal # 1 and #2
at P = 2.2 kbar and T = -20°C are given in Table 3.3. The agrecment between the elastic
constants calculated independently for each crystal is excellent. As well, the elastic
constants found when all data were combined are presented with the calculated errors.
The errors given in Table 3.3 represent a standard deviation in the least squares fit and
are caused by uncertainties in the frequency shifts and crystallographic orientation and are
calculated using all data combined, as discussed in Section 3.1.4. There are additional
systematic errors caused by uncertainties in the refractive index, scattering angle and, to
a much lesser extent, the error in the laser frequency. This combination of errors can be

easily calculated from the Brillouin equation and is found to be approximately 1%.

The elastic constants calculated using data from crystal # 3 at 2.5, 2.8, and 3.0 kbar are
given in Table 3.4 along with the calculated density and refractive index. The elastic
constants were then plotted as a function of pressure, see Fig. 3.8 and fitted to either a
linear or a quadratic polynomial depending on the general shape of the plot. All but the
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Figure 3.7 Frequency Shift Curves

Frequency shift calculated from the best fit elastic constants
at 1) 2.5 kbar, 2) 2.8 kbar, and 3) 3.0 kbar as a function of
rotation angle A¢. The longitudinal shifts are shown in (a) and
the two transverse shifts are shown in (b).
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Table 3.3
Elastic Constants of Ice I
Elastic constants are given in units of
x 10 * bar at P = 2.2 kbar and T = -20 °C.

® All data combined and analysed together.
™ Elastic compliance constants (error aproximately 2.5%).
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Table 3.4
The Elastic Constants, Density and
Refractive Index of Ice III at Each Pressure Studied
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Figure 3.8 Elastic Constants of Ice III as a Function
of Pressure

Elastic constants of ice III as a function of pressure. The solid
squares and circles are elastic constants obtained from the
experimental frequency shift measurements and the smooth
curves illustrate the best fit polynomials.
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elastic constant Cg, was found to have a positive slope. The functional dependence of the

elastic constants with pressure is

C,(P) = 06197 P, + 1407
Ca(P) = 02789 P, + 9.34
C(P) = 06510 P, + 5.15

Cu(P) = 13374 P, + 8.68

CuP) = 126 P, - 663 P, + 1293

C(P) = - 00605 P, + 5.84 . 3.10

The units of the elastic constants in the above equations are, x 10 4 bar. The elastic

constant C;, has the greatest slope while that for Cg is almost zero.

Acoustic velocities can be calculated for an arbitrary propagation direction once the
elastic constants are known. Fig. 3.9 shows the acoustic symmetry of ice HI by plotting
the acoustic velocity, in polar coordinates, in several crystallographic planes. There is
variation in the longitudinal acoustic velocity in the (001) and the (010) planes. In the
(001) plane the velocity along the crystallographic [100] and [010] directions was found

1

to be 3574 m s ! and 3674 m s ! respectively while the maximum velocity, 3973 m s !,

is in the [110] direction. In the (010) plane the minimum velocity is 3223 m s * in the
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Figure 3.9 Acoustic Velocity in High Symmetry
Planes of Ice III

The calculated acoustic velocity of Ice III in high symmetry
crystal planes. L, longitudinal acoustic velocity, and T, and T,,
transverse acoustic velocities. (a) (001) plane, (b) (010) plane.
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[001] direction and the maximum is 3607 m s "' in the [101] direction. Due to anomalous
velocity behaviour of two transverse polarizations in regions where they become nearly
degenerate these calculations were done by diagonalizing the Christoffel matrix

numerically rather then using the closed form expressions of Every.

3.3.2 Derived Polycrystalline Elastic Properties

Bulk elastic properties such as, the adiabatic bulk modulus B,, Young’s modulus E, the
Lamé constants g and A, Poisson’s ratio g, and the average longitudinal and transverse
acoustic velocities ‘71. and \-IT of polycrystalline solids may be derived from the single
crystal elastic constants as described in section 3.4.1. These calculations were performed
for samples of ice I and are given below. The bulk modulus was found by substituting
the six independent, non-zero, elastic constants of ice III in equation 2.18. The resulting

general equation becomes

< CuCu - 2C} + CuCpy 311
* €y +20y -4Cy + Cyy

where the bulk modulus, as well as, the other polycrystalline elastic properties of ice III
at 2.2 kbar and -20°C are given in Table 3.5. The average acoustic velocity and bulk
modulus measured directly from polycrystalline samples by Gagnon, et al.** were used
to calculate the polycrystalline elastic properties under pressure and temperature

conditions similar to those of present experiment. They are presented in Table 3.5 for
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Table 3.5
Elastic Properties of Isotropic

Polycrystalline Ice Il
Ice NI Icell ™

P = 2.2 kbar P = 2.76 kbar
_ T=-20°C T=-212C
Y, (m/s) 3658 3648
V; (v/s) 2008 1882 ]
B, (kbar) 92.7 99.4
n (kbar) 46.7 41.0 “
2 (kbar) 61.5 72.1 |
E (kbar) 120.0 108.1

** Calculated from the results of R.E. Gagnon, et al.*!
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comparison. The polycrystalline elastic properties calculated from accurate values of the
elastic constants found in this work and those measured from previous experiments are

in good agreement.

The polycrystalline clastic properties were calculated at 2.2, 2.5, 2.8 and 3.9 kbar and
have been fitted to linear equations. The variation of these quantities with pressure is

given by the following equations.

bulk modulus:
B,(P)u = 8.127 Pm, + 75.50 3.12
Young’s modulus:
EP)pe = -10 Pp,, + 1216 3.13
average acoustic velocity:
V(P), ,+ = 58.74 P, + 353043 3.14
F,(P). o = 3422 P, + 20756 3.15

Poisson’s ratio:
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o(P) = 0.246 P, + 0018 3.16

Lamé constants:

WP, = -10578 P + 48.67 3.17

AP, = 8.80 Py, + 43.04 3.18

The units are given by subscripts in the above equations. The above experimental and
derived data fully describe the elastic properties of ice Il at T = - 20°C at pressures
ranging from the ice Ih-ice [ phase transition to the ice IIlI-ice V phase transition. It is
thought that under certain temperature conditions the high pressures created with a shock
wave by explosive loading of ice Th will result in ice II. If this is so, detailed
understanding of the elastic properties of ice III as a function of pressure are essential to
complete understanding of the mechanical processes involved. In chapter V the elastic
properties of ice VI, which has the same tetragonal crystal symmetry but different point
group (see Table 1.1) as ice I, will be discussed. The elastic constants of ice V are

presented in the next chapter.
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Chapter IV

Si Crystal Growth and The Elasti
ingle onstal:tsof%::lev © ¢

41 ICEV

Samples of ice V were very easily produced. In the initial stages of this experiment tests
were conducted to determine the best method by which single crystals of the high
pressure phases of ice could be produced. During this process polycrystalline samples
were initially frozen at pressures close to the phase boundary between ice III and ice V.
The distinction between the two was made evident by the melting pressure at -17°C. A
variety of growth procedures were tested starting with polycrystalline samples of ice Il
and ice V, whichever happened to form in the high pressure chamber. In the present
experiment, ice V was the first successfully grown large single crystal from which
Brillouin spectra were observed, of any of the high pressure phases of ice. The crystal,
however, was lost before sufficient Brillouin spectra could be collected. Fortuitously, the
first single crystal from which significant Brillouin data were collected was ice II. After
that, three independent single crystals of ice V were produced by a method similar to that
of ice [I, Brillouin spectra were collected and the results are reported in this chapter. No

pressure dependent studies of the elastic constants of ice V were performed.
4.1.1 Orientation Problems
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As mentioned in chapter I the crystal structure of ice V is monoclinic, which is the lowest
symmetry of all known crystalline polymorphs of ice. Low crystallographic symmetry
greatly complicates crystal orientation and analysis of Brillouin frequency shift data.
Crystals with monoclinic symmetry, for example, are optically biaxial. This leads to an
optical indicatrix which is described by a triaxial ellipsoid with two distinct optic axes
which are defined by two sets of polar angles 8 ,; and ¢ ,,. In contrast, tetragonal
crystals, such as ice Il and VI, have only one optic axis parallel to the crystallographic
c-axis. It may be possible to partially orient biaxial crystals by an optical technique
similar to that used for ice Il and VL. The extinction points, given by the Biot-Fresnel
law and the technique discussed in section 3.1.3, of a biaxial crystal are mathematically
more difficult to describe and many suitable combinations of the polar angles 6 |, and
¢ ., exist. Even if the optic axes and the axes of the triaxial ellipsoid are found and if one
assumes that one of the crystallographic axes is perpendicular to the plane containing the
two optic axes (the optic plane), it is not clear which crystallographic axes bisects the
acute and obtuse angle formed by the optic axes. Hence there is additional uncertainty in
the orientation of the optical indicatrix with respect to the crystallographic axes. The
problem is further complicated because the required Euler angles relate the orthogonal
laboratory system to the orthogonal coordinates in which the elastic constant tensor is
defined, not the monoclinic crystallographic axis which is a set of oblique coordinates

(recall B~109°, see Table 1.1).
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Since it may be possible to determine one of the crystallographic axes using an optical
technique, an attempt was made to partially orient the ice V samples. A set of extinction
angle measurements were collected from each of the three crystals studied. After fitting
the extinction angle data to the appropriate equation based on the Biot-Fresnel law and
using the results to calculate the polar coordinates of the indicatrix it was found that none
of these angles coincided with the polar an.gles of the crystallographic b-axis (given by
the Euler angles fitted to the acoustic data). As mentioned above, there are many
combinations which give adequate fits to extinction angle data for biaxial crystals and the
angles found in the above analysis were not correct. It is thought that a method may be
developed to at least partialy orient biaxial crystals optically using a technique similar to
that used for ice III and ice V1. Experiments would have to be conducted on samples of

known orientation in a specially designed containment cell to perfect such a technique.

All these optical orientation problems can be avoided if the Euler angles are found along
with the elastic constants when fitting the parameters of the Christoffel determinant, Eq.
2.16, to the experimental Brillouin frequency shifts. It is therefore, unnecessary to have
a priori knowledge of the Euler angles. In the present study the elastic constant tensor is
defined with respect to a coordinate system given by unit vectors X |, X ,, X ; whose X,

axis is parallel to the crystallographic b-axis.
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The monoclinic space group of ice V is denoted as A2/a which has 13 independent elastic
constants. Because there exist no closed form solutions of the Christoffel determinant, Eq.
2.16, the eigenvalues pV? were determined numerically. A separate computer
minimization program was written using the NAG math libraries which fitted the elastic
constants and Euler angles to the experimental data by minimizing ¥* (Eq. 3.7). The
computer routine was tested using two methods. (1) Previously determined elastic
constants of the monoclinic crystal'"’'*® C H,, were used with arbitrarily chosen Euler
angles 0, ¢ and Y to calculate frequency shift data in A¢ increments of 10°. The calculated
points served as experimental Brillouin data. The non-linear least squares computer
minimization routine was used to fit the elastic constants to the simulated Brillouin data.
The elastic constants were very accurately reproduced. (2) The program was modified
to fit the elastic constants of the tetragonal structure by redefining the relationships
between the elastic constants in the Christoffel determinant. The program was run on the
ice VI data and the elastic constant results of ch@m V were accurately reproduced. As
with the other phases, the elastic properties of polycrystalline ice V have been determined

by the manner described in Section 2.1.4.

4.1.2 Density and Refractive Index
The density and refractive index of ice V were calculated using previously determined

results in a manner similar to that of ice Il and ice V. Gagnon et al.*' experimentally
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determined a quadratic equation giving the pressure dependence of the density. The

equation is given as,

Picer(Plg om+=1-1974+19632x102 Py, -1.0982x10 Pp,, , 4.1

where the units of the above equation are indicated by the subscripts. The data used to
obtain the above equation were collected at -35°C, between 3 kbar and 6 kbar. The

density at 3.0 kbar is calculated to be 1.2572 g cm .

The refractive index as a function of density was calculated, using the Eulerian strain,
following the method of Polian and Grimsditch™ see Section 3.1.1. The results calculated
from these equations are assumed accurate for ice V and the refractive index at 3.0 kbar

was calculated to be 1.4181.

4.2 CRYSTAL GROWTH AND RESULTS

I[ce V shares a common phase boundary with liquid water and therefore the method of

crystal growth closely followed that described for ice III and ice VI.

4.2.1 Growth of Ice V single Crystals
Triply distilled deionized water produced at NRC/IMD was boiled for approximately 20

minutes to drive out any dissolved gasses. The water was placed in the glass cell and
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pressure chamber and pressurized to approximately 4.4 kbar. The temperature was then
reduced to -35°C and the liquid sample left in a supercooled state for several hours. Upon
nucleation the sample froze directly into ice V. The longitudinal Brillouin frequency shift
of ice V is approximately 2.5 GHz greater then the longitudinal Brillouin frequency shift
of ice ML>' This was used as a definitive test to confirm that ice V had been produced.
After raising the temperature to approximately -17°C the sample was slowly melted by
slightly decreasing the pressure to ~ 2.8 kbar. Again the sample was constantly monitored
during the melting process with the aid of a microscope and video equipment. It was
noticed that ice V generally melted much faster than ice [I. In fact, the entire sample was
melted to a tiny seed (~ 50 pm) within 45 minutes from the initial depressurization. The
pressure was then slightly increased until the sample slowly began to refreeze. As before,
the pressure and temperature were constantly monitored and adjusted to maintain optimum
crystal growth. Once the sample had fully grown it was viewed between crossed polaroid
filters to check for grain boundaries and to determine if a single crystal had been

successfully grown. If necessary the procedure was repeated.

Fig. 4.1 illustrates four video frames showing the growth of two single crystal seeds of
ice V. The top two video frames show the growth of one crystal, the time between images
is approximately 30 sec. The two images on the bottom of Fig. 4.1 show another crystal
which nicely illustrates the complex crystal morphology of ice V. The bright region is
caused by light refracting through the cylindrical sample cell and is approximately 1 mm
in diameter. The entire growth process typically took 5-6 hours. Once a sample had
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Figure 4.1 Growth of a Single Crystal of Ice V

Several video images illustrating the growth of a single crystal
of ice V. The top two images show the growth of one crystal.
Again, the brightest portion of the frame is due to the lensing
effect produced by the cylindrical sample containment cell, the
width is ~ Imm. The time between the two consecutive
frames is ~ 30 sec. The lower two images were taken from a
separate crystal and illustrate the complex morphology of
monoclinic ice V crystal symmetry.
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completely frozen the temperature was decreased to -20°C, the pressure set to 3.0 kbar
and the sample left overnight to fully anneal. The sample was again viewed between
crossed polaroids to check for grain boundaries. Birefringent orientation data were
collected from each of the three crystals but, as described earlier, were not used in the
final analysis and are therefore reported in Appendix A. However, it is worth noting that
the extinction points for ice V were sharp and found to be very well defined, in contrast

to ice VL

Preliminary Brillouin spectra were collected from the first two crystals at -20°C in several
crystallographic orientations. In an attempt to induce an ice V — ice II phase transition
the temperature of the sample was reduced to approximately -40°C. Brillouin spectra were
again taken and compared with the previously obtained spectra at the same orientation.
A phase transition would be indicated by a change in the Brillouin frequency shift. After
several days of observation no such phase transition occurred, perhaps because a single
crystal of ice V lacks the necessary nucleation site required to initiate such a phase
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