TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

D-BuUrFER: A NEw HIDDEN-LINE
ALGORITHM IN IMAGE-SPACE

by

Xiaomin Dong

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science
Memorial University of Newfoundland

1999

St. John’s Newfoundland

Abstract

In many applications such as ided design (CAD). drafting, descriptive

geometry. geometric modeling, computer animation. and virtual reality. etc.. real-time

or time-critical rendering is required by three-dimensional interaction and manipu-
lation to provide adequate information of complex objects. Traditionally. rendering
techniques can be discussed in two major categories: shaded mode and wireframe
mode. While shaded rendering algorithms create more realistic pictures. wireframe
techniques are more efficient for generating line-drawing images that are often more

informative. In wireframe images, it is preferred to display the hidden-lines in a spe-

cial style to distinguish them from ordinary visible lines. Thus hidden-line algorithms

are needed. Though object-space hidden-line algorithms are widely adopted for show-

ing hidden-lines in distinctive styles, image-space algorithms have the advantages of

rendering speed and processable shapes for their simplicity. This thesis develops a

new image-space algorithm based on the traditional Z-Buffer algorithm to recover the
information loss caused by hidden-line removal. This D-Buffer algorithm improves the
Z-Buffer algorithm by drawing the hidden-lines in dotted or dashed style rather than

removing them, hence retrieving the concealed information. Some image process-

ing i such as are used to generate the dotted or
dashed lines. The D-Buffer algorithm is not only as efficient as other image-space

algorithms, but is also capable of disclosing more inner structure information for a

wide range of three-dimensional objects.

Acknowledgments

I could complete the work presented here thanks to a lot of people who have helped
me in some ways. With sincere appreciation. I would like to express my highest
gratitude to my supervisors Professor Xiaobu Yuan and Professor Hong Wang for
their advice and encouragement in pursuing this research. Their continuous support.
guidance. and efforts to arrange adequate financial support made it possible for me
to be able to study in Canada. Their valuable comments and suggestions have really
improved this work.

Tam also grateful to the School of Graduate Studies, the Department of Computer

Science. and the D of ics and istics in M ial University

of N d for iding me with the fell

p and other financial support.

without which it would have been impossible for me to finish this work.

iii

Thanks are also due to the graduate students in the Department of Computer
Science and the Department of Mathematics and Statistics for making my gradu-
ate student experience very pleasurable. Our many vigorous and helpful discussions

a number of key points.

served to clari

Finally. a very special note of appreciation is extended to my wife and daughter

for their unlimited support and blessings.

Contents

Abstract
Acknowledgments
List of Tables
List of Figures

1 Introduction
1.1 Problem Statement
1.2 Rendering Modes .

121 Shaded Mode

i

~”

©

122 Wireframe Mode

1.3 Hidden-Line Elimination
1.3.1 Object-Space Algorithms
132 Image-Space Algorithms
1.4 D-Buffer Algorithm
1.5 Summary of the Thesis ovvnot

Hidden-Line Elimination

21

Tt SAUCETON, & svmsticnsnc 5 5 5 # 58 € o 5 & 5 5 o EEFOTEE AT = B

Back-Face Culling . . .

2.3 Warnock’s Area Subdivision Algorithm
2.4 2Z-Buffer (Depth-Buffer) Algorithm
2.5 List Priority (Depth Sorting) Algorithm
2.6 Scan Line Algorithms Gu s N mEs

2.6.1 Scan Line Z-Buffer Algorithm

vi

w

2.6.2 Spanning Scan Line Algorithm

27 Visible Surface Ray Tracing Algorithm

2.8 Comparison .ivu s s s s 8565 445 H U EREEEE v ¥ E P 53

The D-Buffer Algorithm

3.1 Introduction

32 P-Buffer Algorithm oo oo
3.3 Neighborhood Operation
3.4 Dotted D-Buffer Algorithm
85 Dashed D:Buffér-Algorithin = < v ¢ s camsmun s ww s w535
I ion and Di i

k. DR e n ks AU e b e e e e
4.2 Experiment with Polyhedrons
4.3 Experiment with Curved Objects

29

30

34

10

44

H

16

5 Conclusion and Future Research

Bibliography

A Pseudo-code of the Dotted D-Buffer Algorithm

B Pseudo-code of the Dashed D-Buffer Algorithm

viii

57

59

65

69

List of Tables

2.1 Complexity comparison T

2.2 Ce i of some hidden-li NS, o s p s 5 2o

23 C i of some hidden-li itk i s R

3.1 Possible values of the frame buffer entries

11 Experiment Resultso

24

List of Figures

1.1 ‘Shaded vs:. Wireffame « . « & w vowmwsmmmaesics v 6 o 5 o @ %

1.2 Need for distinctive hiddenline
2.1 Need for hidden-line elimination

3.1 Dotted and Dashed Hidden-Line,

4.1 Thin mesh: Wireframe vs. Z-Buffer_ ...

4.2 Thin mesh: Dotted and Dashed D-Buffer

9

4.3 Dense mesh: Wireframe vs. Z-Buffer

414 Dense mesh: Dotted and Dashed D-Buffer

o

39

30

51

52

4.3 Curved: Shaded vs. Wireframe

4.6 Curved: Z-Buffer vs. Dotted D-Buffer

4.7 Curved: Dashed vs. Longer Dashed Hidden-Line

Chapter 1

Introduction

1.1 Problem Statement

In many applications such as ided design (CAD). drafting. descriptive

geometry. geometric modeling, computer animation. and virtual reality. etc.. three-
dimensional interaction and manipulation are needed, often requiring real-time or
time-critical rendering that provides sufficient information of complex objects. The
goal of this thesis is to find a method that displays objects with complicated shapes

quickly and without loss of information.

1.2 Rendering Modes

Rendering is the process of creating images from models. Rendering techniques can be
classified into two mades: shaded and wireframe [12]. In shaded mode. a rendering
program “shades” the interior pixels of visible portions of facets. Hidden-surfaces
must be removed for a picture to make sense. In wireframe mode. objects are drawn
as though made of wires, with only their boundaries showing. Hidden-lines may or

may not be removed.

1.2.1 Shaded Mode

Shaded mode algorithms usually generate more realistic images than do wireframe
mode ones. The addition of shaded areas to the rendering process. however. increases
the complexity significantly. because spatial ordering becomes important — portions
of objects that are hidden (because they are obscured by portions of “closer” objects)

must not be displaved. C ional i iency and i ility of

the rear and internal structure of objects are two major disadvantages of shaded
mode rendering algorithms. Furthermore, a more realistic picture is nat necessarily

more desirable or useful (Figure 1.1(a)). If the ultimate goal of a picture is to convey

(b)
Figure 1.1: Shaded vs. Wireframe
information, then a picture that is free of the complications of shadows and reflections

may well be more successful than a photo-realistic image.

For example, ray tracing is one of the most popular and powerful shaded rendering
algorithms [1, 14]. The beauty of ray tracing is its extreme simplicity, while one
of its greatest challenges is efficient execution. It is often dismissed as being too
computationally exorbitant to be useful. To display the internal structure, objects

can be made transparent, but that takes even longer rendering time [30].

1.2.2 Wireframe Mode

Though shaded mode (surface-drawing) usually better ibility. the

conciseness of data representation and accuracy of boundary description make wire-
frame mode (line-drawing) preferred in many circumstances. It has long been known
that information about surface shape is largely conveyed via the curving of bound-

ary edges [13]. The di inuity at surface boundaries (edges). depicted as lines

in two-dimensional drawing, is often a primary source of information about object
structure that can be extracted from an image [4]. The line structure represents an

irreplaceable basis for any more sophisticated representations of objects.

The main advantage of a wireframe picture is that it provides sufficient informa-
tion of three-dimensional objects at a significantly low computational cost. It allows
the user to “see through” objects and visualize the internal structure and shape of
normally invisible surfaces. Besides, when constraint on time is significant. the suc-
cess of a task depends heavily on how fast it displays objects. Therefore. wireframe
rendering algorithms are better choices than shaded ones to meet the time-critical re-
quests and to show the internal structure of objects. However, a new problem arises.
If the created picture contains all the boundary lines to show the whole information

of the object, it may be hard to distinguish front from back. and the complexity of

(a)
Figure 1.

. Need for distinctive hidden-line

even relatively simple objects soon overwhelms the observer. with insight into shape
being lost in the clutter of lines (Figure 1.1(b)). On the other hand. if the picture
presumes opagque object surfaces and shows only those boundary lines or segments
that are visible in the view, internal structute is concealed as in the shaded mode
(Figure 1.2(a)). The ideal picture should contain all the boundary information. but

show the visible and invisible lines or segments in different ways (Figure 1.2(b)).

The task now becomes finding hidden-lines or seg and displaying them in

distinctive style, such as dotted or dashed lines.

1.3 Hidden-Line Elimination

The hidden-line problem is one of the most difficult in computer graphics. Hidden-
line algorithms attempt to determine the lines, edges, surfaces. or volumes that are
visible or invisible to an observer located at a specific point in space. There is no best
solution of the hidden-line problem. Sutherland et al [26] characterize the hidden-line

algorithms as to whether they operate primarily in object-space or image-space and

the different uses of coh that the employ. Ce is a term used

to describe the process where geometrical units, such as areas or scan line segments.

instead of single points are operated on by the hidden-line removal algorithm.

1.3.1 Object-Space Algorithms

The earliest hidden-line algorithm [22] worked in object-space. Object-space algo-
rithms are performed at the precision with which each object is defined. and determine
the visibility of each object. They are particularly useful in precise engineering ap-
plications. However, Object-space algorithms can only handle objects with at most
quadric surfaces so far [17, 19] due to the complexity of intersecting two general

surfaces. In addition to the limitation of object shape, they are usually computa-

tional inefficient because they have to perform object-object comparisons. sorting,
and difficult intersection finding, which are typically very time-consuming and hard
to implement, especially when objects exhibit complexly curved shapes. Therefore.

they are not suitable for our goal.

1.3.2 Image-Space Algorithms

It D3 i are typically pf at the ion of the display device

with which the objects are viewed, and determine the visibility at each pixel. Because
of their simplicity, they have lower computational complexity and also are capable of
rendering pictures that contain objects with a wider range of shapes. Consequently.
for time-critical rendering of objects with complex shapes, image-space algorithms are
superior to object-space ones for the reason of efficiency and no limitation of object
shapes. Among the image-space hidden-line algorithms. the Z-Buffer algorithm stands

out for its simplicity and efficiency.

1.4 D-Buffer Algorithm

Though the Z-Buffer algorithm is very fast and can handle objects with complicated
shapes. it conceals the internal structure information of objects. This thesis presents
a new image-space algorithm based on the Z-Buffer algorithm, namely the D-Buffer
algorithm. By using one more boundary buffer. the D-Buffer algorithm can generate
dotted or dashed hidden-line segments of any three-dimensional shapes at a fairly low

computational cost, hence meeting all the demands set in Section 1.1

1.5 Summary of the Thesis

The rest of this thesis is structured in the following manuer. Chapter 2 gives a brief
description of the methods for determining visible lines and discusses their advantages

and disadvantages. Chapter 3 presents the new D-Buffer algorithm in detail. Finally.

Chapter 4 contains ing remarks, i ing the ad and sh
of the D-Buffer algorithm and the directions for future work. Appendix A and B

provides the pseudo-code of the D-Buffer algorithm.

Chapter 2

Hidden-Line Elimination

A fundamental problem to computer graphics is to determine the visibility of a scene
from a specific viewpoint. This problem is known as visible line or vsible surface de-

or hidden-line or hidden-surface el ion. Here surfaces are assumed

to be opaque. They may obscure other surfaces farther from the viewer. In wireframe
mode. lines are used to present the boundary edges or silhouette lines of surfaces.

Hidden-line elimination will be used to refer to this problem.

e -

(b) (c)

Figure 2.1: Need for hidden-line elimination

2.1 Introduction

The need for eliminating hidden-li isi in Figure 2.1. Figure 2.1(a) shows

a typical wireframe drawing of a cube. It can be interpreted either as a view of the
cube from above and to the left or from below and to the right. The alternate views

can be seen by blinking and refocusing the eyes. This iguity can be elimi by

removing the lines that are invisible from the two alternate viewpoints. The results
are shown in Figure 2.1(b) and (c).

The complexity of the hidden-line problem has resulted in a large number of di-
verse solutions. Many of these are for specialized applications. There is no best
solution to the hidden-line problem. Fast algorithms that can provide solutions at

video frame rates (30 frames per second) are required for real-time simulations, e.g. in

10

aircraft simulation. Algorithms that can provide detailed realistic solutions including
shadows, transparency, and texture effects, with reflections and refraction in a mul-
titude of subtle shades of color, are also required, e.g. in computer animation. These
algorithms are slower, often requiring several minutes or even hours of computation.

Tech 11; Y. texture. etc.. are not part of the hidden-line

problem. They are more appropriately part of picture rendering. However, many of
these effects are incorporated into hidden-line algorithms. There is a tradeoff between
speed and detail. No single algorithm can provide both with current hardware. As
faster algorithms are developed, more rendering detail can be incorporated. However.

inevitably more detail will be required.

Hidden-line algorithms can be classified into two groups based on the coordinate
system or space in which they operate. namely object-space and image-space algo-
rithms, respectively [26]. Object-space algorithms work in the physical coordinate
system in which the objects are described. They compare objects directly with each
other. eliminating entire objects or portions of them that are invisible. Very precise
results. generally to the precision of the machine. are available. These results can

be satisfactorily enlarged many times. Object-space algorithms are particularly use-

ful in precise engineering applications. Image-sp: ithms are i in

the screen coordinate system in which the objects are viewed. They determine which

11

object is visible at each pixel in the image. Calculations are performed only to the pre-

leulated i

cision of the screen ion. Scenes in image-space and si

enlarged do not give acceptable results. In effect. object-space algorithms generate
an analytic description of a graphics scene while image-space algorithms generate a
mere bitmap or raster image of a graphics scene [10]. As a special case, list priority

algorithms operate in both object- and image-spaces. (Refer to Section 2.5 for more

details.)
To find the hidden-lines or the most straightforward method is to find
their endpoints and line ions in object-space. TI ically, the ion

for an object-space algorithm that compares every object in a scene with every other
object in the scene grows as the number of objects squared (n?). Similarly. the
work for an image-space algorithm which compares every object in the scene with
every pixel location in screen coordinates theoretically grows as nN. Here, n is the

number of objects (volumes, planes, or edges) in the scene. and N is the number of

ixels. In addition, obji P i require fewer i than image-
P) q 3

space algorithms for n < V. Since N is over 1 million for a high-resolution display.

most algorithms should i be i in object-sp

In practice, this is not the case. Object-space algorithms involve a great deal of

intersection computation. Intersections between straight lines and planar surfaces
are easy to obtain [22], but become more complex when the objects contain curved
surfaces [16, 18]. It is hard to intersect two general surfaces [15]. Object-space

algorithms can only handle objects with at most quadric surfaces so far [17. 19].

Image-space algorithms. on the other hand, are capable of rendering pictures that
contain objects with a richer range of shapes and usually faster since they do not have
to perform object-object comparisons, sorting, and difficult intersection finding. which
are typically very time-consuming and difficult to implement, especially when objects
exhibit complicated and curved shapes. It is clear that for time-critical rendering. or
when the scene contains objects with very complex shapes, image-space algorithms

are superior to object-space counterparts for the reason of simplicity.

The following sections examine and compare several major object- and image-

space hidden-line elimination algorithms.

2.2 Back-Face Culling

The basic concept in back-face culling involves plotting only surfaces “facing the cam-

era” since the back side of objects are invisible. This technique is an object-space

13

approach. It can remove approximately 50% of the surfaces in a scene viewed in
parallel projection and somewhat greater than 50% of surfaces in perspective projec-
tions. The closer the objects are to the center of projection (COP) in perspective
projection. the higher percentage of surfaces that the back-face algorithm removes.

If an object is convex then all the hidden-lines are removed.

The back-face culling technique is the simplest hidden-line algorithm for single
convex polygonal volumes. However. it applies only to objects considered individually.
It does not take into consideration the “interaction” between objects. i.e.. many
surfaces surviving the back-face culling algorithm (“front-faces”) may still be obscured

by front-face even closer to the viewer.

Further. in a scene containing highly reflective objects. the surface of an object.
which could be back-faces if the object is isolated. may be reflected in the front-faces
of an adjacent object. Culling or depth sorting techniques cannot be used for such
scenes. In other cases, they can be used to eliminate the back-faces from a scene
before applying most of the hidden-line algorithms to be discussed in the remaining

sections of this chapter.

2.3 Warnock’s Area Subdivision Algorithm

The basic ideas behind the Warnock algorithm [27. 28] are very general. They are. by
analogy, based on an hypothesis of how the human eye-brain combination processes
information contained in a scene. The hypothesis is that very little time or effort is
expended on areas that contain little information. The majority of time and effort is
spent on areas of high information content. The Warnock algorithm and its derivatives

attempt to take advantage of the fact that large areas of a display are similar. This

characteristic is known as area coherence; i.e.. adjacent areas (pixels) in both z and

y directions tend to be similar.

Since the Warnock algorithm is concerned with what is displaved. it works in

image-space. It considers a window in image-space and seeks to ine if the

window is empty or if the contents of the window are simple enough to display. If
not. the window is subdivided until either the contents of a sub-window are simple
enough to display or the sub-window size is at the limit of desired resolution. In
the latter case, the remaining information in the window is evaluated and the result
displayed at a single intensity or color. Anti-aliasing can be incorporated by carrying
the subdivision process to less than display pixel resolution and averaging the sub-

pixel attributes to determine the display pixel attributes.

15

2.4 Z-Buffer (Depth-Buffer) Algorithm

The Z-Buffer algorithm is one of the simplest hidden-line algorithms to i in

cither software or h . The technique was originally d by Catmull [9]

and is an image-space algorithm. The z buffer is a simple extension of the frame
buffer idea. A frame buffer is used to store the attributes (intensity) of each pixel in

image-space. The z buffer is a separate depth buffer. with the same number of entries

as the frame buffer, used to store the z coordinate or depth of every visible pixel in
image-space. In use, the depth or z value of a new pixel to be written to the frame
buffer is compared to the depth of that pixel stored in the z buffer which is initialized
to a distant value. If the comparison indicates that the new pixel is in front of the
pixel stored in the frame buffer, then the new pixel is written to the frame buffer and

the = buffer updated with the new z value. If not. no action is taken. Conceptually.

the algorithm is a search over z and y for the largest value of z(z.y).

The simplicity of the algorithm is its greatest advantage. In addition, it handles
the hidden-line problem and the display of complex surface intersections trivially.
Scenes can be of any complexity. As image-space is of fixed size. the increase in
computational work with the complexity of the scene is at most linear. Since elements

of a scene or picture can be written to the frame or z buffer in arbitrary order. they

16

do not have to be sorted into depth priority order. Hence. the computation time
associated with the object-object comparisons and depth pre-sort which are often

very complex is eliminated.

The amount of storage required is the principal disadvantage of this algorithm.
The size of the z buffer depends on the accuracy to which the depth value of each
point (z,y) is to be stored, which is a function of scene complexity. If the scene is
transformed and clipped to a fixed range of z coordinates, then a = buffer of fixed
precision can be used. Depth information must be maintained to a higher precision
than lateral z,y information; 20-32 bits is usually sufficient. A 512 x 512 x 24 bit
frame buffer. in combination with a 512 x 512 x 20 bit z buffer. requires almost 1.5
megabytes of storage. If the requirement taxes the computing resources available.
the algorithm may be decomposed into individual scan line arrays and performed one
scan line at a time. This approach is called scan line Z-Buffer algorithm. (Refer to
Section 2.6.1 for more details.) However. the current decrease in memory costs is

making dedicated z buffer memory and associated hardware practical.

A further disadvantage of the z buffer is the difficulty and expense of implement-
ing anti-aliasing, transparency, and translucency effects. Because the algorithm writes

pixels to the frame buffer in arbitrary order, the necessary information for pre-filtering

anti-aliasing techniques is not easily available. For transparency and translucency ef-
fects. pixels may be written to the frame buffer in incorrect order. leading to local
errors. The A-Buffer (anti-aliased, area-averaged, accumulator buffer) algorithm (8]
addresses this problem by using a discrete approximation to unweighted area sam-

pling. The signi d of this h is that floating point geometry

calculations are avoided.

2.5 List Priority (Depth Sorting) Algorithm

The i ion of all the hidden-li i i d above involves estab-
lishing the priority. i.e.. the depth or distance from the viewpoint. of objects in a
scene. The list priority algorithms attempt to capitalize on this by performing the
depth or priority sort first. The objective of the sorting is to obtain a definitive list
of scene elements in depth priority order based on distance from the viewpoint. If
the list is definitive, then no two elements overlap in depth. Starting with the scene
element farthest from the viewpoint, each element is written to a frame buffer in
turn. Closer elements on the list overwrite the contents of the frame buffer. Thus.
the hidden-line problem is trivially solved. Transparency effects can be incorporated

into the algorithm by only partially overwriting the contents of the frame buffer with

18

the attributes of the transparent element [21]. This technique is sometimes called
the painter’s algorithm because it is analogous to that used by an artist in creating a
painting.

The list priority algorithms involve an object pre-sorting which may be very com-
plicated when objects overlap in = direction, or cyclically overlap each other. or pen-
etrate each other. In these cases. it will be necessary to split one or more objects to

make a linear order possible.

The list priority algorithms operate in both object and image-space. In particular.
the priority list calculations are carried out in object-space and the result written to

an image-space frame buffer. The use of a frame buffer is critical to this algorithm.

2.6 Scan Line Algorithms

The Warnock, Z-Buffer, and list priority algorithms process scene elements in arbi-
trary order with respect to the display. The scan line algorithms [31, 5. 6. 29] process

the scene in scan line order. Scan line i operate in image-space. They

process the image one scan line at a time rather than one pixel at a time. By using

area coherence of the polygon, the processing efficiency is improved over the pixel

19

oriented method.

Using an active edge table, the scan line algorithm keeps track of where the pro-
jection beam is at any given time during the scan line sweep. When it enters the
projection of a polygon, the beam switches from the background color to the color
of the polygon. After the beam leaves the polygon’s edge. the color switches back
to background color. To this point, no depth information need be calculated at all.
However. when the scan line beam finds itself in two or more polygons. it becomes
necessary to perform a z-depth sort and select the calar of the nearest polygon as the

painting color.

2.6.1 Scan Line Z-Buffer Algorithm

One of the simplest scan line algorithms that solves the hidden-line problem is a
special case of the Z-Buffer algorithm discussed in Section 2.4. It is called scan line
Z-Buffer algorithm [20]. In this algorithm the display window is one scan line high
by the horizontal resolution of the display wide. Therefore both the frame buffer and
the = buffer need only to be 1 bit high by the horizontal resolution of the display wide
by the requisite precision deep. The required depth precision depends on the range of

z. Its main advantage lies in the small amount of memory it requires in comparison

20

to a full-blown Z-Buffer. Both pre- and post-filtering anti-aliasing i can be

used with the scan line Z-Buffer algorithm.

2.6.2 Spanning Scan Line Algorithm

Rather than solving the hidden-line problem on a pixel-by-pixel basis using incremen-
tal = calculation, the spanning scan line algorithm uses spans along the scan line over
which there is no depth conflict (2]. The hidden-line removal process uses coherence
in z and deals in units of many pixels. The processing implication is that a sort in z is
required for each scan line and the spans have to be evaluated. The major drawback

is the increase in complexity of the algorithm itself.

2.7 Visible Surface Ray Tracing Algorithm

All the hidden-line algorithms discussed in the previous sections depend on some co-
herence characteristic of the scene to find the visible portions of a scene. In compar-
ison, ray tracing is a brute force technique. The basic idea underlying the technique
is that an observer views an object by means of light from a source that strikes the

object and then somehow reaches the observer. The light may reach the observer

21

by reflection from the surface or by refraction or transmission through the object. If
light rays from the source are traced, very few will reach the viewer. Consequently,
the process would be computationally inefficient. Appel [1] originally suggested that

rays should be traced in the opposite direction, i.e.. from the observer to the object.

The most important element of a ray tracing algorithm is the intersection routine.
Any object for which an intersection routine can be written may be included in a
scene. Determining the intersections of an arbitrary line in space (a ray) with a
particular object may be computationally expensive. Since a ray tracing algorithm
spends up to 95% of its effort in determining intersections [30], the efficiency of the

intersection routine significantly affects the efficiency of the algorithm.

For multiple intersections of the ray being traced and objects in the scene. it is

necessary to determine the visible intersection. For the simple opaque ble surface
Igori the i ion with the i z i is the visible surface.
For more complex algori with ion and refraction. the i ions must be

ordered with respect to the distance from the point of origin of the ray. A transformed

coordinate system allows this to be accomplished with a simple z sort.

It should be clear that the normal back-face culling operation commonly used

by hidden-line algorithms cannot be used with a ray tracing algorithm. Further, an

22

initial priority sort to determine visible faces also cannot be used. For example, an
object totally obscured by another object may be visible as a reflection in a third
object. Since a ray tracing algorithm is a brute force technique. the opaque visible

surface algorithm discussed in previous sections are more efficient and should be used.

Roth [25] points out that a ray tracing algorithm can also be used to generate

the hidden-line removed wi li ings for solid objects. The procedure
assumes a scan-line-oriented generation of the rays, i.e., top to bottom and left to

right. The procedure is

If the visible surface at Pixel(z. y) is the background or is different from
the visible surface at Pixel(z — 1, y) or at Pixel(z.y — 1). display the pixel.

Otherwise, do not display the pixel.

Because of the inherently parallel nature of ray tracing (the process for each ray
is the same and independent of the results for any other ray) the algorithm could be
implemented in very large scale integrated (VLSI) hardware using parallel processing

techniques.

23

Table 2.1: Complexity comparison

Input | Output | Lower Upper

Size Size | Bound Bound

Image-space | n | image | Q(n) o(n)

Iﬂwject«space n | O(m?) | Qn?) | O(n?logn)

2.8 Comparison

It has long been known that there is a fundamental relationship between sorting and
the hidden-line problem [26]. However, the hidden-line problem for geometrically
complex scenes has a greater computational complexity than sorting, since a large
number of visible objects may be produced with respect to a given set of input objects.
The complexity of the hidden-line problem thus depends on both the input and output
size of the problem instance. Table 2.1 shows that image-space algorithms are more

efficient than object-space ones [11].

Impl ion of the i as di ibed in the previous sections in the same

language on the same computer system for the same scene yields performance ratios

of table 2.2 [23]. Another informal estimate is shown in table 2.3 [26].

24

Table 2.2: C i of some hidden-li lgorithm

Algorithm Performance ratio
Ray Tracing 9.2
Warnock 6.2
Spanning Scan Line 2.1
Scan Line Z-Buffer 1.9
Z-Buffer 1

Table 2.3: Comparison of some hidden-line algorithms

Number of Polygonal

Algorithm faces in scene

100 | 2.500 | 60.000

Depth Sort 10 507

Warnock 11 64 307

Scan Line 3 21 100
Z-Buffer 54 54 54

All the formal analyses and the informal estimates of the computational com-

plexity show that from the efficiency and ease of i ion points of view the
Z-Buffer algorithm is the best. It has significant memory requirements. particularly
for high resolution frame buffers. However. it places no upwards limit on the com-

plexity of scenes. an advantage that is becoming increasingly important.

An important restriction it places on the type of object that can be rendered by
the Z-Buffer algorithm is that it cannot deal with transparent objects without costly

Besides, anti-aliasing solutions, i v

are also difficult.

If memory requirements are 0o prodigious then the scan line Z-Buffer algorithm
is the next best solution. Unless a rendering is to work efficiently on simple scenes. it

ity that a

is doubtful whether it is worth contemplating the large increase in complex

spanning scan line algorithm demands.

Chapter 3

The D-Buffer Algorithm

3.1 Introduction

The purpose of this thesis is to seek a fast way to display hidden-line segments in a
different style. such as dotted or dashed, instead of suppressing them. Unfortunately.

none of the algorithms discussed in last chapter can be used directly for this goal.

All object-space hidden-line algorithms can be easily adapted to show hidden-lines

as dotted, as dashed, of lower intensity, or with some other rendering style supported

by the display device, after they obtain the endpoints and ions of all hidden-li

segments. Appel, Rohlf, and Stein (2] describe another algorithm for rendering halaed
lines. Each line is surrounded on both sides by a halo that obscures those parts of
lines passing behind it. Lines that pass behind others are obscured only around their
intersection on the view plane. The algorithm intersects each line with those passing
in front of it. keeps track of those sections that are obscured by halos. and draws
the visible sections of each line after the intersections have been calculated. Though
this algorithm can partially fulfill our request, it involves a great deal of intersection

hidden-line algori it is also

computation. Besides, as all other

difficult for this algorithm to handle complicated surfaces with curved boundary edges

and silhouette lines.

Ani pace hidden-line algorithm has to be developed for the reasons of ef-
ficiency and the capability of rendering pictures that contain complicated objects.
Though the Z-Buffer algorithm is the fastest approach and has no limitation on
the shape of objects, it is designed for hidden-line or hidden-surface elimination. It

discards all the information except the “closest” surface, therefore cannot provide

sufficient structure i; ion of the displayed objects as required in applications.

A new algorithm is needed to reveal the concealed information.

28

3.2 P-Buffer Algorithm

In order to reveal the concealed information, Yuan and Sun develop a modified Z-
Buffer algorithm named the P-Buffer algorithm [32]. It is also an image-space al-
gorithm, using an additional pattern buffer which defines a grid of filtering pattern.
This buffer has the same size in z and y directions as the depth and frame buffers in
the Z-Buffer algorithm. The value of each element in the pattern buffer is either 17
or “0". Hidden-lines are displayed with the “1"s while broken into dashes and dots

with the “0”s. By using this pattern buffer. the il is capable of

dashed hidden-lines from the solid visible lines.

The result image of the P-Buffer algorithm heavily depends on the selection of the
filtering pattern. This pattern must be able to handle all kinds of boundary lines of
complicated objects that may be almost any shape. Unfortunately. in any given m xn
array of 0 and 1, by the means of 8-neighbors connectedness. there is always at least
one path that consists of either all “0”s or all “1”s whose length is at least min(m.n),
(See next section for the exact definitions of 8-neighbors, path. and length.) That
means, no matter how well a filtering pattern is generated. there are always chances
to create a “dash” (when the path is formed all by “1”s) and/or “space” (when all

“0”s) not shorter than min(m,n), where m and n are the height and width of the

29

image, respectively. Such a dash or space is too long to be acceptable. In addition.
the algorithm cannot guarantee the even dashes and spaces. Therefore. no bitmap

can be used in the P-Buffer algorithm as a universal filtering pattern.

The fatal problem of the P-Buffer algorithm is that it tried to use a static filtering
pattern to deal with various shapes. This proved impossible. In contrast with its fixed
pattern, a dynamic pattern is needed to generate the dotted and dashed hidden-lines.
Here dynamic means auto-adapting to object shapes. Neighborhood operation. an
image processing approach, is a powerful tool to perform local adaptation in a digital

image.

3.3 Neighborhood Operation

Actually. the name of “image” space algorithm suggests that some image processing
concepts and techniques may contribute to finding the required new algorithm. Im-
age processing is usually associated with pattern recognition and is rather treated
as a subject outside of the computer graphics interest. Basically computer graphics
algorithms are used for the visualization of scenes or models described using some

.e., when find-

abstract notation, while image processing is used in the opposite way,

ing an abstract description of an analyzed pattern. However, some image processing
methods can be used as a computer graphics tool [24]. Neighborhood operation is
one of the most important and most useful image processing approaches that can be

used in computer graphics algorithms.

Before di: ing the neighborhood ion. some d ions of the basic con-

cepts of adj: d and have to be given first.

Let (z,y) be a point of a given digital image. Then (z.y) has four horizontal and

vertical neighbors, namely the points

(z-1.9), (z+1Ly), (z.y~1). (z.y+1)

These points are called the 4-neighbors of (z.y). and are said to be j-adjacent to

(z.y). In addition, (z, y) has four diagonal neighbors, namely
(z~Ly—1), @=Ly+1). (z+Ly—1). (z+Ly+1)

Both the diagonal nei and the 4 are called 8- hbors of (r.y). If

(z.y) is on the border of the image. some of these neighbors will be outside the image.

More generally, if S and T are image subsets, we say that S is 4- or 8-adjacent to T

31

if some point of S is 4- or 8-adjacent to some point of T.

(z—Ly+1) | (zy+1) | (z+Ly+1)

(z—19) (z.y) (z+1.y)

(z=1Ly-1) | (z.y=-1) (1+Ly—l)J

Tn the i ion of the 3 x 3 neighborhood of a point, Cartesian coordinates

(z.y) are used, with z increasing to the right and y increasing upward. There are
other possibilities; for example, one could use matrix coordinates (m.n). in which
m increases downward and n to the right. Note that the diagonal neighbors are /2
units away from (z.y), while the horizontal and vertical neighbors are only one unit
away. If a pixel is treated as a unit square. the horizontal and vertical neighbors of

(2.y) share a side with (z,y), while its diagonal neighbors only touch it at a corner.

A path from (i. 5) to (h.k) is a sequence of distinct points

(#,3) = (Zo.Yo)s (Tr. a1)s- -+ (T 4n) = (RE)

such that (z,,,ym) is adjacent to (Zm—i.ym-1). 1 < m < n. Note that there are
two versions of this. 4-path or 8-path, depending on whether “adjacent” means “4-

adjacent” or “8-adjacent”. Here n is called the length of the path.

32

If p = (i,j) and ¢ = (h,k) are points of a image subset S, we say that p is
connected to q (in S) if there is a path from p to g consisting entirely of points of S.
For any point (z,y) of S. the set of points of S that are connected to (z.y) is called

a connected component of S. If S has only one component. it is called connected.

Neighborhood operations are those that in some form or fashion combine a small
area of pixels. or neighborhood. to generate an output pixel. Such an operation is thus
defined as being “spatially dependent” since it depends on the pixel values at positions
other than the pixel under immediate consideration. This is different from point
operations, which rely only on a single pixel or single pixels from multiple images to
perform a function. The uses and consequences of neighborhood operations are wide-

ranging. The most important nei ions are and ti

The applications of neighborhood operations are diverse, ranging from digital filters

for hing, sharpening, ing, and warping [3.

The neighborhood is often taken to mean the 4-neighbors or 8-neighbors defined

above, since a neighborhood of 3 x 3 pixels is very commonly considered. However.

any neighborhood size is th lly allowable up to the i spatial resolution
of the system, but the ional expense of ing increases ically as
the size of the neighborhood i 8-adj is used in this thesis.

33

Neighborhood thus means the 8-neighbors.

3.4 Dotted D-Buffer Algorithm

The neighborhood operations can be applied to the “dynamic” pattern designing.
Object-space algorithms can easily draw hidden-lines in various styles because they

know the end

and the it of every hidden-line segment. Image-sp:
algorithms, though having no such endpoint and equation information, can “trace”

the hidden-lines in the image plane by using neighborhood operations.

Consider the dotted style first. A static chess board pattern can generate ideal
horizontal and vertical dotted lines. But it cannot properly handle lines with other

angles. Especially when a straight line runs cross the diagonals of the pattern. this line

will be either or totally hed ing on what kind of
pattern grids it runs through. In comparison, a dynamic pattern. which is generated
along the lines while the image itself is being generated, will perfectly fit arbitrary
lines or curves. This thesis first develops a new algorithm, called Dotted D-Buffer.

using the concept of neighborhood operations to dynamically generate the dotted

hidden-lines. Appendix A shows the algorithm in pseudo-code. Its modified version,

34

namely Dashed D-Buffer. that can generate dashed hidden-lines is to be presented in

the next section.

Here D-Buffer refers to Dynamical-Buffer. It is a new image-space algorithm
based on the Z-Buffer algorithm. borrowing some ideas from the P-Buffer algorithm.
The main point of the D-Buffer algorithm is to generate a dynamic or auto-adaptive
filtering pattern by “tracing” the hidden-lines. Using this dynamic pattern. the D-

Buffer algorithm can generate perfect dotted or dashed hidden-lines.

In addition of a frame buffer and a depth buffer used by the traditional Z-Buffer
algorithm. the Dotted D-Buffer algorithm uses an additional boundary buffer. All
three buffers have the same size as the image. The depth buffer has the same meauning
and usage as in the Z-Buffer algorithm. maintaining the closest depth value of every
pixel of the image. The final content of the frame buffer is the created picture. though
each of its entries has one of three possible states before the final result is written.
The new boundary buffer contains all the boundaries information together with their
depth values. i.e., non-boundary pixels have the background value, while the others

(on boundaries) have various closer values.

The D-Buffer algorithm contains two major steps. collect enough depth informa-

tion and break the hidden-lines accordingly.

35

In the first step, the algorithm processes every point on every object to find the
depth and boundary information needed in the second step. The pseudo-code in
Appendix A shows that after initializing the three buffers. the algorithm executes a
pair of nested while loops. The outer while loop processes one by one all the objects
in the scene. Function Object Retrieve(OBJECT*, OBJECT+) returns TRUE if an
object is retrieved or FALSE when the object list is finished. Then the inner while loop
processes one by one every pixel in the projection of the retrieved object. Function
Pixel Determine(OBJECT, int*, int*, int*, booleans) returns TRUE if a pixel
is calculated or FALSE if all pixels are processed. In addition to the projected position
(x, y) and the depth value z. this function also indicates by its last parameter

whether this pixel is on a boundary line.

The D-Buffer algorithm does two things inside the nested loops. First. as the same
as in the Z-Buffer algorithm, it updates the depth buffer if the depth value of the new
determined pixel is closer than what the depth buffer has at this pixel. The second
thing, however, is different from that in the Z-Buffer algorithm. Instead of updating
the frame buffer directly, the D-Buffer algorithm records the boundary information
in the extra boundary buffer. The boundary buffer bas the same size and data type
as the depth buffer. It stores depth values as well. but only for boundary pixels. All

the other entries of the boundary buffer have a distant value indicating background.

36

allow to NOT allow to

change (1) change (0)

white (0) || UNDECIDED (0x10) | WHITE (0x00)

black (1) | UNUSED (0x11) | BLACK (uxmq

Table 3.1: Possible values of the frame buffer entries

Every boundary point, if it is not blocked by any other boundary points, has its depth

value recorded in the boundary buffer.

After setting the depth buffer to the closest surfaces of all the objects in the
scene and the boundary buffer with the information of all boundary lines. the Dotted

D-Buffer algorithm begins to dot the hidden-lines.

In this second step, the algorithm generates the image by writing to the frame
buffer. A pixel in the frame buffer can be either white (non-boundary) or black
(boundary). Besides. the value of each entry of the frame buffer can either be change-
able or have to keep its current value. Two bits are used accordingly in the algorithm

to indicate the status. The four possible combinations are showed in table 3.1.

The initial status is UNDECIDED (0x10), so at the beginning the frame buffer is

37

pure white and every pixel can be changed to black. For each pixel, the algorithm
determines whether it is on a boundary line and then whether it is in the front by
checking its values in the boundary and depth buffers. If it is not on any boundary
line. it is left unchanged. If it is on a boundary in front. its value in the frame buffer
is changed unconditionally to BLACK (0x01), which means this pixel is blackened and
can not be changed any more. This is a point operation in terms of image processing.
When a pixel is on a boundary in behind. i.e.. 2 hidden-line, the algorithm must then
check if it is changeable. If the answer is no, nothing is done; otherwise. it changes this
pixel to BLACK (0x01) as a dot and the pixels “around™ it to WHITE (0x00) to make
the line dotted since the first bit in WHITE (0x00) implies an unchangeable pixel. The
term “around” means the “underneath and right” neighbors (Ps_s in the following
figure) of the pixel being processed (F,) since the “above and left” neighbors (P_,)
have already been processed. This is a neighborhood operation in the sense that the
values of P, Ps. Pr. and P are determined by the value of . In this way. the Dotted

D-Buffer algorithm produces very evenly dotted hidden-lines (Figure 3.1(a)).

P | PP
P PP
PP |Ps

38

(a)

Figure 3.1: Dotted and Dashed Hidden-Line
Note that the algorithm “unconditionally” blackens a pixel when it is in the front
and on a boundary line no matter what the first bit of its frame value is. It is more
precise to say that the first part of a value in the frame buffer indicates whether or

not this pixel can be affected by a hidden-line.

After a pixel has been processed, the first bit of its frame value is no longer useful.
The second bit alone describes completely the final created image. Therefore. the
last statement in the Dotted D-Buffer algorithm simply eliminates the first part and

reduces the frame buffer to the normal one-bit image.

Some image i ions are intrinsically parallel in the sense that the

same rule must be applied to many data and the order in which the data are processed

39

does not matter. Examples are single pixel operations such as contrast manipulation

or threshold and neighb d such as volution, erosion/dilation and

non-linear filtering. On the other hand, some other image processing operations
are intrinsically serial in the sense that the order in which data are processed is
important. Examples are searching, measurement and classification. The Dotted

D-Buffer algorithm is a serial image processing operation.

3.5 Dashed D-Buffer Algorithm

The Dotted D-Buffer algorithm generates perfect dotted hidden-lines but it can still
be improved for other applications. For instance, on today’s high resolution display
devices. such as monitors or printers, a single pixel is too small to easily distinguish
from its neighbors with naked eyes. That is why the hidden-lines in Figure 3.1(a).
when viewed from a distance, seem to be grey solid lines rather than black dotted

lines. It is because the Dotted D-Buffer ithm has no flexibility of

dots and spaces of variable size. In most cases, people prefer dashed hidden-lines
over dotted hidden-lines, especially when the lengths of the dashes and spaces are

adjustable.

40

A Dashed D-Buffer algorithm to be presented in this section can fulfill this re-
quirement. It is an improvement of the Dotted D-Buffer algorithm. Instead of set-
ting spaces around every dot on the hidden-lines to generate dotted hidden-lines.
the Dashed D-Buffer algorithm really “traces” the hidden-lines to make them evenly

dashed. Appendix B shows its pseudo-code.

The Dashed D-Buffer algorithm also containts two major steps, same as the Dotted

D-Buffer, collect depth information and break the hidden-lines.

The first step of the two algorithms are exactly the same. They both use the same
three buffers: frame buffer, depth buffer, and boundary buffer; and they both use the
same 2-bit values (Table 3.1) in the frame buffer which is initialized to UNDECIDED
(0x10) at the beginning of the algorithms. In addition. they both obtain the same
depth information of the surfaces (in depth buffer) and boundaries (in boundary
buffer) by using the same pair of nested while loops. However. the second step of
the two algorithms are different in the loops for every pixel. Rather than setting dots
and spaces directly, the Dashed D-Buffer algorithm uses a recursive function to make

the hidden-lines dashed.

When given an initial pixel on a boundary line, function dash(int, int, int,

int, int**, double*x, double*#) traces the line and determines if the line should

41

be solid or dashed. The first two parameters present the pixel in question. The fourth
parameter indicates whether a dash or a space is being drawn if the line is invisible.
and the third parameter shows how long it has already been drawn. The rest three
parameters are the three buffers. This function is called for every pixel on boundaries.
It checks whether the pixel is in front by comparing the values in boundary buffer
and depth buffer. If it is in front, its value in the frame buffer is changed to BLACK
(0x01) without question. If it is in behind, it is set to the current dash line color,
either BLACK (for dash) or WHITE (for space). After deciding the color. function dash()
checks the length of dash or space. If it is long enough. the color is reversed (from
BLACK to WHITE, or from WHITE to BLACK) and the length reset. The algorithm uses
DASH_THRESHOLD to control the length of the dashes and the spaces in between. It
can produce different effects by simply adjusting this threshold value. The single
threshold make the length of the dashes and spaces the same. Another threshold,
suitably named SPACE.THRESHOLD, can also be introduced to control the length of the
dashes and spaces separately. In this way, the algorithm can create long dashes with

short spaces or the reverse.

After the current pixel is processed and the color for the next pixel prepared,
function dash() recursively calls itself to the 8-neighbars of the current pixel. Some

criteria are involved to make sure that the neighbor is actually part of a line and was

42

not processed before. This ensures that the algorithm does not trace to a previously
processed pixel to avoid processing that pixel more than once. By using the recursive
calls, the algorithm travels through every boundary line, making visible ones solid
and invisible ones dashed. All the non-boundary pixels are never touched. so they
remain value UNDECIDED in the frame buffer. The last action in the Dashed D-Buffer
algorithm simply eliminates the first bit and reduces the frame buffer to the normal

one-bit image, i.e., changes UNDECIDED to WHITE. A result is showed in Figure 3.1(b)).

The Dashed D-Buffer algorithm is also a serial image processing operation.

43

Chapter 4

Implementation and Discussion

Both Doted and Dashed D-Buffer algorithms are implemented in C on UNIX.

4.1 Discussion

Z-Buffer is an image-space algorithm. Table 2.1 on page 24 shows that its com-
putational complexity is O(n). where n is the number of objects. It calculates the

depth value of every pixel of every object’s projection, and compares this value to

that stored in the depth buffer to determine the vi ty. The calculation may be

sometimes complicated when the object has a complex shape.

44

In comparison to the Z-Buffer algorithm. the D-Buffer algerithm uses one more

boundary buffer and performs one more operation. i.e.. checking every boundary pixel
1o generate dotted or dashed hidden-lines and solid frontal lines. This operation is
only related to the number of boundary pixels which are far fewer than the total
pixels processed by the Z-Buffer algorithm, yet has nothing to do with the complex-
ity of the scene such as the number, shape, size. and position of the objects. For

each boundary pixel, there is only a couple of and

within the loop. In the Dashed D-Buffer algorithm, though most boundary pixels
can be reached by different neighbors from different directions or different boundary
lines, each boundary pixel is processed only once since the algorithm always checks
whether it is UNDECIDED before calling dash() function to trace it. For non-boundary
pixels. they are never processed because the algorithm also always checks whether
the pixel is on a boundary line. In short, the additional operation does not increase

the computational complexity level because it performs simpler processing on fewer

pixels. Therefore, the D-Buffer is in the same ional

level as the Z-Buffer algorithm.

4.2 Experiment with Polyhedrons

To represent objects in three-dimensional space, polyhedrons are widely used in com-
puter graphics systems. Every polyhedron consists of a set of smoathly joined poly-
gons. By appropriately selecting polygons’ shape and number, polyhedrons are ca-
pable of modeling any three-dimensional object to the desired degree of accuracy.
Some objects, e.g. tetrahedra and cubes, may be modeled precisely by a set of four
cquilateral triangles or six squares. respectively. Others. such as spheres and cylin-

ders, may be i by inations of ids. triangles, and

n-sided polygons. For certain applications a coarse polygon grid may be adequate.
For applications requiring greater accuracy, more polygons with smaller grid spacing

may be required.

The polyhedra-based representation of scenes has the advantages of simplicity.

generality, and 1 effici Objects may be manipulated and trans-

formed by operating on the points compasing the polvgons. Polygon surfaces have
well-defined orientations which simplify its computation of visibility and shading. The

major weakness of

lyh: is their poor imation to smooth
curved surfaces, complex shapes, and life-like forms. Simply increasing the number of

polygons to achieve visually realistic representations of complex scenes will not only

46

overwhelm the storage and computing capacity of even large computers. but also

introduce many unwelcome lines when the objects are rendered in wireframe mode.

Since the popularity of the polygon mesh modeling technique in computer graphics

is undoubtedly due to its inherent simplicity and the devel of i

shading algorithms that work with such models, the D-Buffer algorithm has been
tested on polyhedrons first. The Z-Buffer algorithm is also executed with the same
set of tested objects to compare the performance of the D-Buffer algorithm. Table 4.1
shows the experiment results. which clearly indicate that the D-Buffer algorithm has
the same computational complexity level as the Z-Buffer algorithm. Figure 4.1 to 4.4

show the rendered images.

4.3 Experiment with Curved Objects

Other than the polyhedral ion of three-di i objects. more abstract
representation is available through parametric curved surfaces. The parametric rep-
resentation of solids and curves is now an established tool in computer graphics.
particularly in CAD. With a relatively small set of parameters. significant portions

of object surfaces may be accurately modeled. The whole object may, in turn, be

47

Pin Pin Wheel Wheel
Thin mesh | Dense mesh | Thin mesh | Dense mesh
Number of vertices 227 227 388 388
Number of polygons | 211 332 198 612
Wireframe 0.36 0.38 0.37 0.44
Z-Buffer 20 22 3.8 4.1
Dotted D-Buffer 2.1 23 39 4.2
Dashed D-Buffer 24 25 42 4.7

Time unit: second

Table 4.1: Experiment Results

48

Figure 4.1: Thin mesh: Wireframe vs. Z-Buffer

49

Figure 4.2: Thin mesh: Dotted and Dashed D-Buffer

50

Figure 4.3: Dense mesh: Wireframe vs. Z-Buffer

51

Figure 4.4: Dense mesh: Dotted and Dashed D-Buffer

52

represented by smoothly joining a set of parametric patches.

The advantages of this representation are efficient storage and a high degree of
accuracy. The main disadvantages of parametric curved surface representations stem
from the difficulties in determining the correct set of curved patches which model real
objects. Another problem arises in wireframe representation of objects with curved
surfaces: it is the ambiguity of the interpretation of lines and surfaces with respect
to their origins of three-dimensional objects [33]. Edges that are formed from inter-
sections of two surfaces are intrinsic to the object. and are explicitly represented in
three-dimensional solid model. The existence of these real edges is viewing-direction
independent. Some other edges are formed due to the variation of surface normal
with respect to projection direction. These virtual edges or silhouette lines only
appear in the process of projecting the three-dimensional curved surfaces to two-
dimensional drawings. thus they are viewing-direction dependent. There lacks one-
to-one correspondence between the lines in two-dimensional drawing and the edges

in three-di ional objects, ially for those with curved surfaces. The D-Buffer

algorithm works well with curved object with provided boundary information. Fig-

ures 4.5-4.7 show some results.

Figure 4.5: Curved: Shaded vs. Wireframe

Figure 4.6: Curved: Z-Buffer vs. Dotted D-Buffer

55

Chapter 5

Conclusion and Future Research

To display objects with complicated shapes fast and informatively. a hidden-line al-
gorithm is needed to create the line-drawing images that show visible and invisible
lines in different styles. After a brief overview of the major hidden-line elimination al-

gorithms. although none of them realizes the purpose. the Z-Buffer algorithm shows

its advantages of extreme and imi range of

shapes. This thesis then presents a new image-space algorithm based on the Z-Buffer
algorithm, namely the D-Buffer algorithm. By using one more boundary buffer. the
D-Buffer algorithm can generate dotted or dashed (with adjustable length of dashes

and spaces) hidden-li of any th shapes at a fairly low com-

o
N

putational cost. hence revealing the information loss caused by hidden-line removal.

While the D-Buffer algorithm can quickly display sufficient information of objects
with complicated shapes. there are still several improvements which can be made to

cnhance the functionality.

« Currently, all the boundary lines are 1-pixel wide, but thicker outline or visible
lines may be desired. This may be done by carefully writing some more BLACKs

to the frame buffer to make some lines thicker but not longer.

e The D-Buffer algorithm can only generate black and white (1 bit) images now.

The possible values in the frame buffer may be extended to handle colors.

The Z-Buffer algorithm is widely implemented in graphics hardware, but it may
be more difficult to do the same thing for the D-Buffer algorithm (though it
is based on the Z-Buffer algorithm) since it is a serial neighborhood operation

instead of a parallel point operation like the Z-Buffer algorithm.

These suggest the direction of the future research.

Bibliography

(1] A. Appel. Some techniques for shading machine renderings of solids. In Praceed-

ings of the Spring Joint Computer Conference, pages 37-45, 1968.

[2] A. Appel, F. J. Rohlf, and A. J. Stein. The haloed line effect for hidden line elim-
ination. In Proceedings SIGGRAPH ‘79 in Computer Graphics. volume 13(2).
pages 151-157, 1979.

[3] G. J. Awcock and R. Thomas. Applied fmage Processing. Macmillan. London.
1995.

{4] H. G. Barrow and J. M. Tenebaum. Interpreting line drawing as three-

dimensional surfaces. Artificial Intelligence. 17(1-3):75-116. 1981.

5] W. . ight. A dure for ion of three-dimensional half-toned

puter graphics fons. C of the ACM. 13(9):527-536.

1970.

[6] W. J. Bouknight and K. C. Kelly. An algorithm for producing half-tone computer
graphics presentations with shadows and movable light sources. In Proceedings

of the Spring Joint Computer Conference. pages 1-10. 1970.

[7] H. E. Burdick. Digital Imaging: Theory and Applications. Computing McGraw-

Hill, New York, 1997.

[8] L. C. Carpenter. The a-buffer, an antialiased hidden surface method. In Pro-
ceedings SIGGRAPH °8} in Computer Graphics, volume 18(3). pages 103-108.

1984.

[9] E. Catmull. A Subdivision Algorithm for Computer Display of Curved Splines.
PhD thesis, Computer Science Department. University of Utah. Salt Lake City.
UT. 1974.

[10] W. H. Chieng. Polygon-to-object boundary clipping in object space for hid-
den surface removal in computer-aided-design. Journal of Mechanical Design.

117(3):374-389, 1995.

(11] E. L. Fiume. The Mathematical Structure of Raster Graphics. Academic Press.

San Diego, CA, 1989.

60

[12]

(13]

(14

[13]

[16]

17

[18]

J. D. Foley, A. van Dam, S. K. Feiner. and J. F. Hughes. Computer Graphics:
Principles and Practice. Second edition in C. Addison-Wesley, Reading, MA.

1996.

H. Freeman. Computer processing of line-drawing images. ACM Computing

Surveys, 6(1):57-97. 1974.

A. S. Glassner, editor. An Introduction to Ray Tracing. Academic Press. London.

1989.

W. Hsu and J. L. Hock. An algorithm for the general solution of hidden line

removal for intersecting solids. Computers & Graphics. 15(1):67-86. 1991.

A. Limaiem. Geometric algorithms for the intersection of curves and surfaces.

Computers & Graphics. 19(3):391-403. 1995.

Y. Liu and P. Zsombormurray. Intersection curves between quadric surfaces of
revolution. Transactions of the Canadian Society for Mechanical Engineering.

19(4):435-453, 1995.

D. Manocha. Algebraic pruning - a fast technique for curve and surface intersec-

tion. Computer Aided Geometric Design, 14(9):823-845, 1997.

61

[19] J. R. Miller and R. N. Goldman. Geometric algorithms for detecting and cal-
culating all conic sections in the intersection of any 2 natural quadric surfaces.

Graphical Models and Image Processing. 57(1):55-66, 1995.

[20] A. J. Myers. An efficient visible surface program. Report to the National Sci-
ence Foundation, Computer Graphics Research Group, Ohio State University.

Columbus, OH. July 1975.

[21] M. E. Newell, R. G. Newell. and T. L. Sancha. A solution to the hidden surface

problem. In Proceedings of the ACM National Conference. pages 443-150. 1972.

[22] L. G. Roberts. Machine perception of three dimensional solid. In J. T. Tippet
et al.. editors, Optical and Electro-Optical Information Processing. pages 159~

197. MIT Press, Cambridge, MA, 1964.

[23] D. F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill. New

York. 1985.

[24] P. Rokita. Application of image i iques in graphics

algorithms. Computer Networks and ISDN Systems. 29(14):1705-1714, 1997.

[25] S. D. Roth. Ray casting for modeling solids. Computer Graphics and Image

Processing, 18(2):109-144, 1982.

62

[26]

[28]

[29]

30]

[31]

[32]

L. E. Sutherland. R. F. Sproul, and R. A. Schumacker. A characterization of ten

hidden-surface algorithms. ACM Computing Surveys. 6(1):1-35. 1974.

J. E. Warnock. A hidden line algorithm for halftone picture representation.
Technical Report TR 4-5. NTIS AD 761 995. Computer Science Department.

University of Utah. Salt Lake City. UT. May 1968.

J. E. Warnock. A hidden-surface algorithm for computer generated half-tone
pictures. Technical Report TR 4-15, NTIS AD 753 671. Computer Science De-

partment, University of Utah, Salt Lake City. UT. June 1969.

G.'S. Watkins. A Real Time Visible Surface Algorithm. PhD thesis, Computer
Science Department, University of Utah, Salt Lake City. UT. 1970.
T. Whitted. An improved illumination model for shaded display. Communica-

tions of the ACM. 23(6):343-349, 1980.

C. Wylie, G. W. Romney, D. C. Evans, and A. C. Erdahl. Halftone perspective
drawings by computer. In Proceedings of the Fall Joint Computer Conference.

pages 49-58, 1967.

X. Yuan and H. Sun. P-buffer: A hidden-line algorithm in image-space. Com-

puters & Graphics, 21(3):359-366, 1997.

63

[33] Q. Zhu. Virtual edges. viewing faces, and boundary traversal in line drawing rep-
resentation of objects with curved surfaces. Computers & Graphics. 15(2):161-

173, 1991.

64

Appendix A

Pseudo-code of the Dotted

D-Buffer Algorithm

#define UNDECIDED 0x10
#define BLACK 0x01

#define WHITE 0x00

Dotted_D_Buffer(int image_beight, int image_width,

int *»frame_buffer, OBJECT »object_list)

int x, y, boundary;
double z, depth_buffer[image_height] [image_width],
boundary_buffer [image_height] [image_width] ;

OBJECT object;

for (y = 0; y < image_height; y ++)

for (x = 0; x < image_width; x ++) { // initialize
frame_buffer[y} {x] = UNDECIDED; // changeable
depth_buffer[yl[x] = 0.0; // background
boundary_buffer [yl [x] = 0.0; // background
}

while (Object_Retrieve (object_list, &object)) // each object
while (Pixel Determine (object, ky, &x, &z, kboundary)) {
// each pixel in projection
if (z >= depth_buffer(y][x]) // closer point
depth_buffer[yl[x] = z; // update depth buffer
if (boundary && z >= boundary_buffer[y][x])

// closer boundary point

66

boundary_buffer(yl(x] = z; // update boundary buffer

for (y = 0; y < image_height; y ++)
for (x = 0; x < image_width; x ++) {
if (boundary_buffer[yl[x] > 0.0) // boundary pixel
if (boundary_buffer[y][x] >= depth_buffer[y]([x])
/7 in fromt
frame_buffer (y] [x] = BLACK; /1 solid
else // vehind
if (frame_buffer(y](x] == UNDECIDED) { // changeable
frame_buffer[y] [x] = BLACK; // dot

if (x < image_width - 1)

frame_buffer[y] [x+1] = WHITE; // space
if (y < image_height - 1) { LE v
frame_buffer[y+1] [x] = WHITE; // around
if (x>0) 2l
frame_buffer[y+1] [x-1] = WHITE; // the
if (x < image_width - 1) /"o

67

frame_buffer(y+1] [x+1] = WHITE; // dot

¥

frame_buffer([y] (x] &= BLACK; // normalize

68

Appendix B

Pseudo-code of the Dashed

D-Buffer Algorithm

#define UNDECIDED 0x10

#define BLACK 0x01
#define WHITE 0x00
int DASH_THRESHOLD; // dash length

Dashed_D_Buffer(int image_height, int image_width,

69

int ++frame_buffer, OBJECT *object_list)

1

int x, y, boundary;

double z, depth buffer(image_height] [image_width],
boundary_buffer[image_height] [image_width];

OBJECT object;

for (y = 0; y < image_height; y ++)
for (x = 0; X < image width; x ++) { // initialize

frame_buffer [y] [x] = UNDECIDED; // changeable
depth_buffer[yl[x] = 0.0; // background
boundary_buffer[y][x] = 0.0; // background

while (Object_Retrieve (object_list, &object)) // each object
while (Pixel Determine (object, &y, &x, &z, &boundary)) {
// each pixel in projection
if (z >= depth_buffer(yl[x]) // closer point

depth_buffer[y] [x] = z; // update depth buffer

if (boundary && z >= boundary_buffer([y] [x])
// closer boundary point

boundary_buffer(yl[x] = z; // update boundary buffer

for (y = 0; y < image_height; y ++)
for (x = 0; x < image_width; x ++) {
if (boundary_buffer(y][x] > 0.0 && // boundary pixel

frame_buffer [y] [x]

UNDECIDED) // unprocessed
dash (y, x, 0, BLACK, frame_buffer, // trace the line
boundary_buffer, depth_buffer);

frame_buffer[y] [x] &= BLACK; // normalize

dash (int y, int x, int distance, int color,

int **d_buffer, double **b_buffer, double **z_buffer)

if (b_buffer(yl[x] >= z_buffer[yl[x]) // in front

d_buffer[y] [x] = BLACK; // solid
else // behind
d_buffer[y] [x] = color; // dash line color
if (++distance >= DASH_THRESHOLD) { // long enough
distance = 0; // reset counter
color = (color == BLACK) 7 WHITE : BLACK; // dash <=> space

// recursive calls to 8-neighbors of the current pixel.

if (b_buffer[yllx+1] > 0.0 && // boundary pixel
d_buffer(y] [x+1] == UNDECIDED) // unprocessed
dash (y, x + 1, distance, color, // trace the line

d_buffer, b_buffer, z_buffer);

if (b_buffer[y][x-1] > 0.0 && // boundary pixel
d_buffer([y] [x-1] == UNDECIDED) // unprocessed
dash (y, x - 1, distance, color, // trace the line

T2

d_buffer, b_buffer, z_buffer);

if (b_buffer[y+11(x] > 0.0 &&
d_buffer[y+1] [x] == UNDECIDED)
dash (y + 1, x, distance, colar,

d_buffer, b_buffer, z_buffer);

if (b_bufferly-1]lx] > 0.0 &&

d_buffer(y-1][x] == UNDECIDED)

dash (y - 1, x, distance, color,

d_buffer, b_buffer, z_buffer);

if (b_buffer[y+1][x+1] > 0.0 &&

d_buffer [y+1] [x+1] UNDECIDED)

dasb (y + 1, x + 1, distance, color,

d_buffer, b_buffer, z_buffer);

if (b_buffer([y+1]1[x-1] > 0.0 &&

a_bufferfy+1)[x-1) == UNDECIDED)

73

boundary pixel
unprocessed

trace the line

boundary pixel
unprocessed

trace the line

boundary pixel
unprocessed

trace the line

boundary pixel

unprocessed

dash (y + 1, x - 1, distance, color,

d_buffer, b_buffer, z_buffer);

if (b_buffer[y-1][x+1] > 0.0 &&
d_buffer[y-1] [x+1] == UNDECIDED)
dash (y - 1, x + 1, distance, color,

d_buffer, b_buffer, z_buffer);

if (b_buffer(y-11[x-1] > 0.0 &&
d_buffer[y-11(x-1] == UNDECIDED)
dash (y - 1, x - 1, distance, color,

d_buffer, b_buffer, z_buffer);

// trace the line

~
<

boundary pixel

// unprocessed

~
<

trace the line

~
<

boundary pixel

// unprocessed

~
<

trace the line

	01_Cover.jpg
	02_Inside Cover.jpg
	03_Blank Page.jpg
	04_Blank Page.jpg
	05_Title Page.jpg
	06_Abstract.jpg
	07_Abstract ii.jpg
	08_Acknowledgements.jpg
	09_Acknowledgements iv.jpg
	10_Table of Contents.jpg
	11_Table of Contents vi.jpg
	12_Table of Contents vii.jpg
	13_Table of Contents viii.jpg
	14_List of Tables.jpg
	15_List of Figures.jpg
	16_List of Figures xi.jpg
	17_Chapter 1 - Page 1.jpg
	18_Page 2.jpg
	19_Page 3.jpg
	20_Page 4.jpg
	21_Page 5.jpg
	22_Page 6.jpg
	23_Page 7.jpg
	24_Page 8.jpg
	25_Chapter 2 - Page 9.jpg
	26_Page 10.jpg
	27_Page 11.jpg
	28_Page 12.jpg
	29_Page 13.jpg
	30_Page 14.jpg
	31_Page 15.jpg
	32_Page 16.jpg
	33_Page 17.jpg
	34_Page 18.jpg
	35_Page 19.jpg
	36_Page 20.jpg
	37_Page 21.jpg
	38_Page 22.jpg
	39_Page 23.jpg
	40_Page 24.jpg
	41_Page 25.jpg
	42_Page 26.jpg
	43_Chapter 3 - Page 27.jpg
	44_Page 28.jpg
	45_Page 29.jpg
	46_Page 30.jpg
	47_Page 31.jpg
	48_Page 32.jpg
	49_Page 33.jpg
	50_Page 34.jpg
	51_Page 35.jpg
	52_Page 36.jpg
	53_Page 37.jpg
	54_Page 38.jpg
	55_Page 39.jpg
	56_Page 40.jpg
	57_Page 41.jpg
	58_Page 42.jpg
	59_Page 43.jpg
	60_Chapter 4 - Page 44.jpg
	61_Page 45.jpg
	62_Page 46.jpg
	63_Page 47.jpg
	64_Page 48.jpg
	65_Page 49.jpg
	66_Page 50.jpg
	67_Page 51.jpg
	68_Page 52.jpg
	69_Page 53.jpg
	70_Page 54.jpg
	71_Page 55.jpg
	72_Page 56.jpg
	73_Chapter 5 - Page 57.jpg
	74_Page 58.jpg
	75_Bibliography.jpg
	76_Page 60.jpg
	77_Page 61.jpg
	78_Page 62.jpg
	79_Page 63.jpg
	80_Page 64.jpg
	81_Appendix A.jpg
	82_Page 66.jpg
	83_Page 67.jpg
	84_Page 68.jpg
	85_Appendix B.jpg
	86_Page 70.jpg
	87_Page 71.jpg
	88_Page 72.jpg
	89_Page 73.jpg
	90_Page 74.jpg
	91_Blank Page.jpg
	92_Blank Page.jpg
	93_Inside Back Cover.jpg
	94_Back Cover.jpg

