
CENTRE FOR NEWFOUNDLAND STUDIES

I- TOTAL OF 10 PAGES o m Y
MAY BE XEROXED

(W lou t Aumor r Pcrmuslon) I

b,.

Xiaomin Dong

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science
Memorial University of Newfoundland

St. John's Newfoundland

Abstract

In many applications such a~ computer-aided design (CAD). drafting. descriptive

geometry. geometric modeling, computer animation. and virtual reality. ere.. real-time

or rime-cntical rendering is required by three-dimensional interactloo and manipu-

lation to provide adequate information of complex objwts. Traditionall>-. rendering

techniques can be discussed in two major eategoriff- shaded mode and ~x.ireframe

mode. While shaded rendering algorithms create more realistic picture.. n-ireframe

technique are more efficient far generating linedrawing images that are often more

informative. In wireframe images. it is preferred to display the hidden-lines in a npe-

eial scyle to distinguish them from ordinary visible lines. Thus hidden-line algorithms

are needed. Though object-space hiddeo-line algorithms are widely dopced for shotv-

mg hiddeo-lines in distinctive styles. image-spa- algorithm haw the advantage. of

rendering speed and pm-able shape. for their simplicity. This thesis develops a

oew imagenpaee dgorithm based on the traditional Z-Buffer algorithm to m - r the

informat~on 10s caused b>- hidden-line removal. This D-Buffer algorithm improws the

Z-Buffer algorithm by drawing the hidden-line. in dotted or dashed style rather than

removing them, hence retrieving the mneealed information. Some image pmcess-

~ n g tshnique.. such as neighborhood operations. are used to generate the do r rd or

dashed lines. The D-ButTer algorithm is not only as efficient an ork r image-space

algorithms, but is also eapble of disclosing more inner structure incormation for a

,~ide range of three-dimensional objects.

Acknowledgments

I could complete the work presented here t h a n k to a lor of people who hawe helped

me in some warn. With sincere appreciation. I would Like to express m>- hishert

gratitude to my supervisors Profaror Xiaohu Yuan and Professor Hong Wenang for

their adrtce and enmuragement in pursuing this research. Their mntinuour support.

guidance. and efforts to uraoge adequate financial support made it possible for me

to be able to stud!- in Canada. Their valuable comments and suggestions have really

improved thir \ark.

I am dsa grateful to the Schoolof Graduate Studies. the Department ofCmnputer

Science and the Department of .\lathematin and Srar isr~e~ in Memorial University

of Sewfoundland for prowding me with the fellowhip and other financial support.

t~irhouc which it would haw been impossible far me ro finish this w c k .

T h m h are also due to the graduate students in the Department of Computer

Science and the Department of \.lathematier and Statistics for making my gradu-

ate student experience very pleasurable Our many rigorous and helpful dkuaions

scmd to clarify a number of b y points.

Finail?. a very rpeclal note of appreciation is extended to my rife and daughter

for their unlimited supporc and blesiogs.

Contents

Abstract

Acknowledgments

List of Tables

List of Figurer

I Introduction

. 1.1 Problem Statement

1.2 Reodexi"$ Modes

. 1.2.1 Shaded Mode

. 1.2.2 Wireframe >lode 4

1.3 Hiddeo-Line Elimination . 6

1.3.1 Objeet.Spaee.%lgorirhmr. 6

1.3.2 Image-Space Algorithms i

1.4 D-BuUerUgorithm . 8

. 1.5 Summary of the Thesis 8

2 H i d d e n - L i Eliroinatii

2 1 Introduction

. 2.2 Back-Face Culling

2.3 \!smack's Areasubdivision .a lgorirhm

. 2 4 Z-Buffer (Depth-BuUer) Algorithm

. . . . 2 5 List Priority (Depth Sorting) liwrithm

. ? 6 Scan Line Algorithms

2 6.1 Scan Lioe Z-BuUer Algorithm

2 6.2 Spanning Sean Line Algorithm 21

2.7 Yilble Surface Ray Tracing Algorithm 21

2.8 Comparison . 24

3 The D-Buffer Algorithm 27

3.1 lotraduetion . 2 i

3.2 P-Buffer Algorithm . 29

3.3 Xeighborhaad Operation . .3U

3.4 Dotted D-Buffer .&lgarirh m . 34

3.5 Dashed D-Buffer Algorithm . 40

1 Implementation and Discussion 44

4.1 Discussion . 44

4 2 Experiment uith Palyhpdmpdpd . 46

4.3 Experiment with C u m d Objffts 47

5 Conclusion and Future Research

Bibliography

A Pseud-code of the Dotted BB&r Algorithm

B Preud-code of the Dashed D-BuBer Algorithm

List of Tables

? 1 Cornplexit.rilu comparison

. . . . 2.2 Camparisom of some hiddeo-line algorithms

. . . 2 3 Cornpariaom of -me hiddeldde-I~n~ algorithms

3.1 Pmsible %'dues of the frame buffer entries 3 i

4.1 Experiment Results . 48

List of Figures

1 1 Shaded w. Wireframe

. 1.2 Xeed fox dntinctiw hiidede-linn

2.1 Seed for hidden-line elimination .

3.1 Dotted and Dashed Hidden-Line

. 4.1 Thin mesh: Wireframe vs. Z-Buffer

. 1 2 Thin mesh: Dotted a ~ l d Dashed DBuffer

. 1 3 Dense merh: Wireframe vs Z-Buffer

. 4.4 Den= mesh: Dotted and Dashed D-Buffer

1.5 Cun.ed: Shaded ,z. Wireframe 53

1.6 C u d : Z-BuKe. r ~ . Dotted D-BuKer 5%

4.7 C u m d Dashed vs. Longer Dashed Hidden-Line 56

Chapter 1

Introduction

1.1 Problem Statement

h man\- application. such a;i computer-aided design (CAD). drafting. dacripri\=

geometry. geometric modeling, computer animation. and vlnual realit?, erc.. three-

dimensional inlraetioo and manipulation are needed. often wuiring real-time or

trme-critical rendering that provides sufficient ~nformation olmmpler objects. The

goal of this thesis is to find a method that displa?~ ohjets with eomplieared shapes

qu,ck$ and without i m of inbrmatioo.

1.2 Rendering Modes

Rendering is the p m e e a of creating image from models. Reodering techniques can be

chaified into t w modes shaded and aireframe (121. In shaded mode. a rendering

progrm '2hadesS the interior pixels of risible portions oi facets. Hiddeo-ourfaces

must be removed for a picture to m a k sense In wireframe mode. objects are drawn

as though made of wires. with only their boundarie. rhowmg. Hidden-lines ma? or

ma? not be removed

1.2.1 Shaded Mode

Shaded mode algorithms usually generate more realistic images than do wireframe

mode ones The addition of shaded areas to the rendering process. h o n w ~ r , increaser

the complexit? significantly, bmause ~pat ia l ordering becomes importanr - portions

of objects that are hidden (because they are obscured b>- portions of -closer' objects)

must nor be d'splswd. Computational inefficieocy and incapability of visualizing

the rear and internal structure of objects are two major disadvantages of shaded

mode rendering algorithms. Furthermore. I mare realiitic picture is not oeceaarily

more desirable or useful (Figure l.l(s)). If the ultimate goal of a picture is to coove).

mfonnat~w, than s p~cture that IS free of the compl~catlons of ahadowe and reflections

may d he more sw&l than a phot~realIst~c Image

For example, ray trawng IS one of the most papulsr and powerful shaded rendemg

a t g o n t h [I, 141 The beauty of ray tracing IS rt. extreme sunplmty, lame one

of hts greatest challenges 1s d a e n t exenltlon It e often d d an b a g too

eomputat~onally exarb~taot to he useful To display the mtemal structure, obledn

can be made transparent, but that takes even longer rendering tune 1301

1.2.2 Wireframe Mode

Though shaded mode (surface-drawlog) usually p-as better perceptibility. the

concisen- of data representation and accuracy of boundav description make wire-

frame mode (Lindraning) p r e b r d io many circumstances. It has long bee!, k,,.,,'."

that information about surface shape is largely conveyed via the curring of bound-

ar? edges 1131. The discontinu~ty a t surface boundaries (edges). depicted ar lines

in txv-dimensional drawing, is often a prima^ source of information about object

structure that can be extracted bom am image 141. The line structure represents an

irreplaceable baris for any more sophisticated representations of objeetr.

The main advantage of a "ireframe picture is that it pmmdes sufficient informa-

tion of three-dimensional objects at a rignifieanrly ion. mmputariooal corr. It allos's

the user to "see through" objects and visualize the Internal structure and shape of

normally invisible surfam. Besides. when mnrtraint on rime is significant, rhe suc-

c m of a task depends heavily on how fast it displays objects. Therefore. ~vireframe

renderlog algorithms are better choice. than shaded ones to meet the rime-cntical r e

quests and to show the internal structure of objects. Howel-r. a new problem arises.

If the created picture contains all the boundary lines to show the whole mformarion

of the object, it may be hard to diaioguish fmnt from back. and the mmpiexitj- of

~i~~~ 1.2: Xeed for distinctive hidden-line

e.en relatively simple objects soon overwhelms the o b ~ e n e r , r ich insight into shape

being lost in the clutter at lines [Figure l.l(b)). On the other hand. if the picture

presumes opaque obp" surfaces and shows t h m b r m n d w liner or regments

that are visible in the uieu,. internal rrrvcture is concealed as in the shaded mode

(Figurn l.Z(a)). The ideal picture should ~oncain all the boundan. information. but

show the visible and invisible lines or segments in d~Kerent wa3-r (Figure 1.2(b)l.

The rssk ~w becomes Kodiog hidden-1~ne.s or -entr and displa?ing them in

distinctive stvle, such as dotted or dashed liner.

1.3 Hidden-Line Elimination

The hidden-line problem is one of the m a t difficult in mmpurer graphin. Hidden-

iine algorithms attempt to determine the Lines. edger. surfaces. or rolumes that arc

rlrable or tmirible to amohserver located a t a specific paint in space. There is no b a t

roiution of the hiddeo-lime problem. Sutherland et a1 [?6] cbaraeterize the hidden-line

algorithms as to whether they operate primarii? in object-apce or image-space and

the different uses of coherence that the algorithms employ. Coherence is a term used

to describe the pro- where g~omettieal units. such 2s are- or scan line segments.

instead of single points are operated on by the hiddeo-line remom1 algorithm.

1.3.1 Object-Space Algorithms

The earliest hidden-line algorithm (21 worked in objet-space. Object-spare a l p

rithms are perfomred a t the precisian with which each o b j m is defined. and determine

the ~~bibi l i ry of each abject. The?. are particularly useful in precise engineering a p

plieations. Howwer, Object-space algorithms can only handle objects with a t most

quadr~c surfaces so far [l i , Iq due to the complexity of ~ n r e m e t i n g fuo general

mrfacw. In addition to the limitation of abject shape, they are usuali? eomputb

tlonal ineffieienc because the>- have to perform object-object comparisons. sorting,

and difficult i n t e rn t i on finding. which are f>pieally very time-eonsumiog and hard

la implement. especlali? when objects exhibit complexly curved shape. Therefore.

the? are not suitable br our goal.

1.3.2 Image-Space Algorithms

Image-space algorithms are =)pically peifwmed at they-iutim or the dipla)- dexice

\nth which the objeetsare vicaed. and determ~oe the viribi l i tyat each pixel Becaure

of their simplie~tv, they have lower compvtatiooal mmpleritv and also are capable of

rendering pictures that motain objects with a r ider range of shapes. Consequently.

for rime-critical rendering of objects with complex rhaper. image-space algorithms are

supenor to object-space ones for the reason of effie~enc)- and no limitation of object

shape. .Among the tmage-spaee hidden-line algorithms. the Z-Buffer algorithmstands

out far its simplicity and efficiene?.

1.4 D-Buffer Algorithm

Though the %Buffer algorithm is wr\. Iart and can h d l e objects with complicated

shapes. it moceals the internal structure information of objects. This thesis presents

a o e r image-space algorithm b d an the ZBuffer algorithm, namely the D-Buffer

algorithm. B? using one more boundary buffer. the D-Buffer algorithm can generate

dotted or dashed h~dden-line segmenu ofany three-dimensional shape at a fairl>- low

computalional mt, hence meeting all the demands wt in Section 1 1.

1.5 Summary of the Thesis

The rent of this thesis is r t r u c t u d in the foilowiop manner. Cl~aprer 2 Sves a brief

description of the methods for determiningviribie lines and disc- their adranrages

and disadvantage. Chapter 3 prerents the new D-Buffer algorithm in detail. Finally

Chapter 1 contains concluding remarks. including the advantage. and shortmmiogs

of the D-Buffer algorithm and the dimtioms for future s\vrk. Appendix .4 and B

provides the pseudrreode of the D-Buffer algonrhm.

Chapter 2

Hidden-Line Elimination

4 fundamental problem to mmputcr graphics h to determine the visibility of a scene

from a ~ ~ x i f i c newpoint. This problem is known as visible ltne or w t b l e xurfoce de-

termmolion. ar hldden-hne or krddesavrfoce elimmolron. Here aurfeces are asurnad

to be opaque. They may obscure other surface farcher fmm the vieuer. In rr-irelrame

mode. l ine are used to present the boundary edges or silhouette lines of surfaces.

Hzdden-hne elrrninotton will be used to refer to thii problem

(a) lb) (el

Figure 2.1: I j e d for hidden-lme elimination

2.1 Introduction

The meed for eliminating hidden-lines is illurtraced in Figure 2.1. Figure 2.l(a) shows

a t)-pica1 wireframe drawng of a cube. I t =an be interpreted either es a vier%, of rhe

cube from a b w e and to the left or from below and to the right. The alternate views

can be seen by blinklng and refocusing thee-. This ambigulg can be eliminated b?-

removing the hnes that are invisible from the c%w alternate me\r.points. Thc results

arc shon.o in Figure Z.l(b) and (c).

The complexity of rhe hidden-lme problem has resulted ~n a large number of di-

wrre solutions. Manv of these are for spsialized applications. There is no best

solution to the hidden-line problem. Fast algorithms that can provide solutions at

video frame rates (30 k s m a per second) are required for real-time simularions. e.g. in

aircraft simulation. Algorithms rhat can provide detailed realistic solutions including

shado~vs. transparency and tenure erects, with reflections and refraction in a mul-

titude of subtle s h a d e of mlor, are also required. e.g. in computer animation. These

aigorifhms are slower, often requiring sewral m i n u t e or even hours olcomputacion.

Techntcallr transparency texture. retlecrion. etc.. are not pnrt of the hidden-line

problem. They are more appropriately prt of picture rendering. However. many of

lhese erects are incorporated into hidden-line algorithms. There is a tradeor bet>wn

speed and detail. No single algorithm can pmvide both with current hardware. As

imfer algorithms are developed, more rendering derail can be incorporated. Hoaemr.

inevitably more detail %ill be required.

Hidden-line algorithms can be ela~sified into tno groups based on the coordinate

system or space in which they operate. namely object-space and ~mage-space alga-

rithmr. respectively [26] Obj~t-space algorithms m r k in the ph~sical coordinate

Frrem in wKzeh the objec~s are derribed. They compare objecrs dzrectly with each

other, eliminating entire objects or porlrons of them rhat are invisible. Very precise

results. generally to the precisian of the machine. are available. These results can

he satisfactorily enlarged many t ime. Objectspace algorithms are particularly use-

ful in preei~e engineering applications. Image-space algorithms are implemented in

the screen coordinate system lo which the objects are viewed. They determine rhich

11

object is vlsihle st each pixel i n the image Calculations are performed only to the pre-

cision of the screen representation. Sccnea ealculaced in imagcspaee aod sigoifieanrly

enlarged do not give acceptable results. In effect. object-space algorithms generate

an analytic description of a graphier scene rhiie image-space algorithms generate a

mere bitmap or raster i-ge of a graphicr scene [lo]. As a special case. iirf priority

algorithms operate in both ohject- and image-spaces. (Refer to Section 1.5 far more

details.)

To find the hidden-lines or segment.. the mmt straightforward method is to find

their endpoints and line equatloos i n object-space. Theoretically. the computation

for an object-space algorithm that compares evor). object i n a scene with ever). other

object in the scene grows as the number of objects squared (n2). Similarly. the

work for an imageapace algorithm which compare. every object in the scene with

e7-r? pixel location in screen coordinates theorerically grors as niV. Here. n is the

number of objects (volumes, planes. or edges) in che scene. and .V is the number of

pixels. In addillon, abject-space algorithms require fewer mmparisons than image-

space algorithms for n < iV. Since N is over 1 million for a high-r-luilon display.

most algorithms should thwrerieally he implemented i n ohject-space.

In practice. this Is not the case. Ohject-space algorithms involve a gear deal of

intersection computation. lnte-tions between straight lines and planar surfaces

are easy to obtain [22]. but k m e more complex when the objects contain curved

surfaces 116. 181. It is herd to iote-t c a o general surfaces [l j l . Object-space

algorithms can only handle objects with at most quadric surfaces so far (17. 191.

1mage;spaee algorithms. on the other hand, are eapabieof rendering picture5 that

contain objects with a richer rangeofshapes and uauallyfaster s i n e they do nor have

to perform object-object comparisons, sorting. and difficult intersection finding. u.hich

are typically v e p timemnsurningand difficult to implement. especially r h e n objects

exhlb~c complicated and curved shapes. It is clear that for timecritical rendering. or

rhen the scene eonrains objects wlth very mmplex shapes, imagespace algar~thmr

are superior to abjet-space counterparts for the reason of simplieit?

The folimmg senions examine and compare several major ob~ecr- and image-

space h~dden-line elimination aigorirhms.

2.2 Back-Face Culling

The basic concept in back-face culling involws plottingonly surfaces "facing the eam-

erd since the back side of objects are invisible. This technique is an object-space

approach. I t can remow approximately 50% of the surfaces i n a seem v iead in

parallel projection and somewhat g m t e r than of mrfaees i n perspectiw projec-

tions. The closer the objects are to che center of projection (COP) in pespetive

projection. the bigher percentage of surfacer that the back-face algorithm removes.

It an object is convex theo all the hidden-liner are removed.

The back-&e culling technique is the simplest hidden-line algorithm far single

con~ex polygonal volumes. Hovewr. i t applies only t o objets considered indi~+didually.

11 does not take into consideration the "interactionq hetneeo objects. i.e.. many

surfaces surviving the hack-face eullingalgorithm (Tmoc-facer") may still be obscured

by front-race e w n closer to the viewer.

Further. in a scene motaining highly resecriw ~ b j e t s . the surface of an objet.

XI-hich could be haek-hces i f the object is isolated. may be reflected in the front-facer

of an adjacent object Culling or depth mrtmg tehniques cannot he used for such

scenes. I n other case. they can be used to elimlnaee the back-ker from a wene

before applying maat of the hidden-line algorithms to be discused 10 the remaining

sections of this chapter.

2.3 Warnock's Area Subdivision Algorithm

The basic i d e s behind the W a m d algorithm 127. 281 are wry general. The? are by

anatogy. based om an h y p o l h t ot how the human w79,Tain combination proceser

information contained in a scene. The hyporhesis is that very Little time or effort is

expended on areas char contain little information. The majorit? of time and effort is

spent on areas of high informatiomcontent. The CYamock algorithm and its deri%=tire

attempt to r&e advantage of the fact that large areas of a displa? are nmiiar. This

charactenstie is knoam as area mhereoce: 2.e.. adjacent areas (pkek) in both z and

B dlrecfionn tend t o be similar.

Since the Wa'arnock algorithm is concerned with what is displayed. it unrkr in

imagespace. It consider. s aindoa in i m a g ~ r p a c e and reeks to determine if the

window is empty or if the contents of the rind- are simple enough to display If

not. the window is subdivided until either the contents of a subwindor are simple

enough to display or the subwindonv size is at the Limit of deired reaolutioo. In

the latter case. the remaining information in the window. is evaluated and the result

displayed at a single intensity or mlor. Anti-aliasing can be incamorated by carrying

the subdivision pmcess to less than display pixel resolution and areraging the sub

pixel attributes to determine the display pixel attributes

2.4 Z-Buffer (Depth-Buffer) Algorithm

The ZBuffer algorithm is one of the rimplest hidden-line algorithms to implemenr in

either sofccae or hardware. The technique was originally proposed by Catmull [9]

and rr an ~mage-space algorithm. The : buffer is r simple extension of the frame

buffer idea. A frame buffer is used to store the atrrihvtes (intensity) o f each phel in

imageijpaee The i buffer is aseparate depth buffer. a i t h the same number of entries

as the frame buffer. used to store the i coordinate or depth of ever). visible pixel in

imageapace In use, the depth or i d u e of a oem pixel to be wntteo to the frame

buffer is c o m p a d to the depth of that p i ~ e l stored in the i buffer rrhich is rnitialired

to I distant due. If the comparison indicates that the n e r pixel is i n front of the

pixel stored i n the frame buffer, then the nexv pixel is ntitren to the frame huRer and

the ; buffer updated c i r h the o e r r value. I f nor. no action is taken. Concepruall.

the algorithm is a search over r and y for the largest value of ilr. y).

The simplicity of the algorithm is its greatest admnrage. I n addition. i t handla

the hidden-line problem and the display of compler surface intersations triria(1p.

Scenes can be of any complexity-. As imagespace is of fired size. the increase in

computational work mth rheeompledaof thescene is at mast linear. Sineeelements

of a scene or pinure can be xlirren to the frame or z buffer i n arbitrap- order. they

do not have to be sorted into depth prioncy order. Hence. the computation time

associated with the object-object comparisons and depth pra-sort which are often

X Y r r compier is eliminated.

The amount of storage r e q u i d is the principal disadvantage of this algorithm.

The size of rhe i buffer depends on the accuracy to which the depth ralue of each

point (z, y) is to be stored. which is a function of scene complex~t~. If the scene is

transformed and clipped la s Fued rmge of z coordinates. then a r buffer of &xed

precision can be used. ~ e p t h information must be maintained to a higher ~ r e ~ i r i o n

than lateral z. y information; 20-32 bits is usually rufficieot. A 512 x 512 x 24 hit

frame buffer. in combination wlth a 512 x 612 x 20 hit I buffer. requires almost 1.:

megabytes of storage. If the requirement taxes the computing resources available.

the algorithm may be decomposed into individual scan line .ma!- and performed one

scan line at a time. This approach is called scan line Z-Buffer algorithm. (Refer to

Section 2 6.1 for more derails.) Havextr. the current decreare in mrmop costs is

making dedicated z buffer memop and asmiaced hard\are practical.

.A funher diradrantage of the r butTer is the difficulty and expense of implement-

ing ant,-aiiasing. transparency. and t r a n s i u c e n c ~ e f f ~ ~ . Because the algorithm writes

pixeis to the frame buffer in arbitrary order. the necessary information for prefiltering

anri-alissing tehniquer is not easily available. For transparency and tranrluceocr ef-

fects. pixels may be written to the frame buKer in incorrect order. leading to local

errors. The A-BuKer (anri-aliased, area-averaged, aeeumvlator huKer) algorithm [8]

addresser thir prnblem by using a discrete approximation to ""weighted area sam-

pling. The significant advantage of this approach is that floating paint geomerr?-

calculat~onr are avoided.

2.5 List Priority (Depth Sorting) Algorithm

The implementation of all the hidden-line algorithms discussed ahow imol\,es estab-

lishing the priority, i.e.. the depth or distance hom the riewpoint. of objects in a

scene. The list priority algorithms attempt to capitalize on thir bp performing the

depth or priority sort first The objective of the sorting is to obtain a definitlr~ list

o l ~cene elements in depth priority order bared on distance from the viewpomr. If

the list is definicir~, then no two elements overlap ~n depth. Starting with the scene

element farchest from the viewpoint, each element is written to a frame huUer in

turn. Closer elements on the list ovenvrire the contents of the frame buKer. Thus.

the hidden-lme problem is trivially solved. Transparency eKeets can be incorporated

~ n t o the algorithm by only parrially overwriting the contents of the frame buffer %nth

18

the attributes of the transparent element 1211. This technique is sometimes called

the painter's algorithm because i t is analogous to that used by ao artist i n creating a

paintmg.

The list pnarity algorithms involve an o b j e r pre-sorting which may be r e v =om-

plieated when objects orerlap i n i direction. or cyclically overlap eaeh ocher. or pen-

etrate eaeh other. In these ease. i t mill be necessary to split one or more objects to

make a Linear order posible.

The List priority algorithms operate i n both object and image-spa=. In particular.

the priority list calculations are carried out i n object-space aod the result %%mitten to

an image-space frame buffer. The use d a frame buffer C critical t o this aigorirhm.

2.6 Scan Line Algorithms

The llrac'arno&. %Buffer. and l ist priority algorithms pmcens scene elements in arbi-

tno order with respect to the display The r a n line algorithms 131, 5. 6. 291 procea

the r e n e in scan line order. Scam line algorithms operate in image-space. The?

procesr the image ooe r a n line at a rime rather than one pixel at a time. By using

area coherence of the polygon, the processing efficiency is improved over the pixel

oriented method

Using an active edge table. the rcan line algorithm keep track of where the prc-

jection beam is at. aqu @en rime during the scan line suwp. When it enters the

projection of e polygon. the beam smtehes from the background color to the mlor

of the pol?gon. After the beam leaves the pol~gon's edge, the mlar switches back

to background color. To this point, no depth information need he calculated at all.

However. when the scan line beam finds itrelf in two or more polygons. it become

necssar?. to perform a r-depth sort a d s l e e t the color of the heahst polygoo o che

painting color.

2.6.1 Scan Line Z-Buffer Algorithm

One of the simplest scan line algorithms that sol%pr the hidden-line problem is a

special ease of the ZBuUer algorithm d~reusred in Section 2.4. It is called scan line

Z-Buffer algorithm [ZO]. In this algorithm the displa)- window is one scan line high

by the horizontal rerolution of the dirpla? wide. Therefore both the frame buffer and

the ; buffer need only to be 1 bit high h? the horizontal resolution of the display wide

by the requisite pmkion deep. The required depth precision depends an the rangeof

r. Its main advantage lies in the small amount of memo? it requires 8n cornparisan

to a full-hlaan Z-BuUer. Both pre- and port-fibenng anti-aliasing ~eehniques can be

used with the scan line Z-BuUer algorithm.

2.6.2 Spanning Scan Line Algorithm

Rather than rol%ing the hiddeo-hoe pmblem on a pixel-by-p~xel baris using ineremen-

taI i calculation, the rpnningacao line algorithm uses spans along the scan line arer

which there is no depth eaaflict [291. The hidde-Liw mmoval process us* mhemnee

in r and deals in units of many pixels. The proeessingimplicarionis that a son in z is

required for each scan line and the spans have to be evaluated. The major drawback

is the increase in complexity of the algorithm iraelf.

2.7 Visible Surface Ray Tracing Algorithm

I i the hidden-line algorithms d~scusred in the previous mtions dcpeod on some c*

herenee characteristic of the rene to Rod the risible portions of a scene. In eompsr-

isan. ray tracing Is a brute force mhnsque. The basic idea underlying the technique

is that an observer viers an objwt by meam of light from a source that strikes the

object and then somehow reacher the observer. The light may reach the observer

h? reflection from the surface or by refraction or transmission through the object. If

light 1.y~ from the source are traced, we- few +I1 reach the viewer. Conrequenrly.

the process would he eomputacionally inefficient. Appel [I] originally suggested that

rays should he traced in the opposite direction. i.e.. from the ohserwr to the objmr.

The most importanr element of a ray cracing algartrhm is the interretion routine.

Any object lor which an intersmtiao routine can be witten may be included in a

xene. Determining the interspetions of an arbitrary Line in spa= (a ray) with a

particular ohj-t may be computationally expensiw. Since a ray tracing algorithm

spends up to 95% of its effort in determining intersections [30]. the efficiency of the

intersection routine significantly affects the efficiency of the algorithm.

for mvltiple tntersectionr of the ra?- being t w e d and objects io the xeoe. Ir is

necessary to determine the visible intersection. For the simple opaque risible surface

algorithms, the intersection with the marimurn ; modinate is the risible surface.

For more complex algorithms with refletion and refraction. the intersetions musr he

ordered r l t h m p m t to the distance from the point oforignof the ray. .4 transformed

coordinate system allows this to be accomplished with s simple I son.

It should be clear that the normal haek-face culling operation commonly used

b:- hidden-line cannot he used with a ray tracing algorithm. Further, an

initial prioriw mrr to determine vkible &aces also cannot be wed. For example. an

objmt totally obscured bp another ohj-t may be visible ar a reflection in a third

object. Since s ray tracimg algorithm is a brute force taehniqw. the opaque risible

surfacealgorithm discussed in previau mtioos are moreefficient and should be used.

Roth [Zs] points out chat a ray- tracing algorithm can also be wed to generate

the hidden-line r e m o d wireframe line-draaings for solid objects. The procedure

assumes a scan-lineoriented generation of the rays. i.e.. top to bottom and left to

right. The procedure is

If the visible surface at Piel(z. y) is the background or is different from

the visible surface at Pixel(= -1, y) or at Pirel(r. y -I). display the pixel.

Othenvise. do not dbplay the pixel.

Because of the roherenrly parallel nature of ray tractng (the process for each ray

is the same and independent of the ~ u l t r for any other ray) the algorithm could be

implemented in v e p large a l e integrated (VLSI) hardware using parallel processing

techniques.

Table 2.1: Compiexiqv comparison

Object-space

2.8 Comparison

I t has long been known that there is a fundamental relationship betweo sorting and

the hidden-line problem 1261. However. the hidden-line problem for geometrically

complex rceoer h a a greater computational complexity thao wrying. since a large

number o f %isibieohjects may- be pmdueed with r e w t to a Qven set ofinpuf ohjsts.

Thecampiexityof the hidden-line problem thus dependson both the inpvt andoutput

size of the problem instance. Table 2.1 ahom that image-space algorithms are more

efficient than object-space ones [I l l .

Implementation 01 the algorithm as described i n cbe previous rfflions in the same

language on the m e computer system for the same sene Helds performance ratim

of tabie 2.2 [23l. Another io lomal estimate is shorn i n tabie 2.3 P6].

Table 2.2: Comparison of some bidden-line algorithms

(Spanning Scan ~ i o e (2.1 I / scan Line Z - B U K ~ ~ (1.9 1

Table 2.3: Comparison of some hidden-line algorithms

((Number of Pdpgond I

Scan Line

1 1 the formal aoalyses and the informal ntimater of the computarianal com-

plexity show that from rhe efficiency and ease of implementation points of r i e r the

Z-Buffer algorithm is the b e t . It has significant memoti requirements. particularly

far high resolution frame buffers. However. a places no upnanls limit on the com-

piexit)- of scenes. an advantage that is becoming inc-ingiy important.

An important mtrietian i t places on the type o foh j s t that can he rendered by

the Z-Buffer algorithm is that i t cannot deal rich transparent a h j ~ t s without costly

modification. h ides , anti-aliaring solutions. particularly hardware implementationr.

are also difficult.

I f memop quizemems are too prodigious then the scan line Z-Buffer algorlrhm

a rhe nest best solution. Unless a rendering is to work efficientlr-on simple scenes. it

1s doubtful vhaher a is worth contemplating the large increase m eompleury that a

spanning scan line algorithm demands

Chapter 3

The D-Buffer Algorithm

3.1 Introduction

The purpose of this thesis is to spek a fast umy to display hidden-lane segments in a

different style. s e h as dotted m dashed. instead of suppressing them. Lniortunateiy.

,lone of the algorithms discussed in Iht chapter can be used directly for this goal.

All object-space hidden-line algorithms can be e-dy adapted to show hidden-lines

as dotted, as dashed. of k intensity, or with rome other modering style supported

by the display device. after they obtain the endpoints and equartoor of ail hidden-line

segments. hppel, Rohlf, and Stein 121 describe anorher algorithm for rendering haloed

lines. Eaeh line is sulraunded on both sider by a halo that obscures t h a e pacts of

lines passing behind it. Liner that pass behind others are obscured only amund their

~nteaeetion on the vier plane. The algorithm intersects each line nith rhme passing

in froor of it. keeps track of those sectionr that are obscured bv halos. and drarrs

tho visible sections of each line after the intersections have been calculated. Though

chis algorithm can partially fulfill our reguest, it inwlves a great deal of i n t e r n i o n

computation. Beside, as all ocher object-space hidden-line algorithms. I t Is also

difficult for this algorithm to handle complicated surfaces with curved boundar). edge.

and silhouerte Inner.

An image-space hidden-line aigorirhm has to be dewloped for the reasom of ef-

ficiene?- and the capability of rendering pictures that contain complicated objects.

Though the Z-BuEer algorithm is the fastest approach and has no limiration on

the shape of objects. it is designed for hidden-line or hidden-surface elimination. It

discards all the information except the "cl-t" surface. therefore eaonor provide

sufficient structure information of the d i a p i a d objects as required in applications.

A new algorithm is needed to reveal the concealed information.

3.2 P-Buffer Algorithm

In order to reveal the concealed information. Yuan aod Sun dewlop a madifled Z-

Buffer algmithm named the P-Buffer algorithm 1321 I t is ako an mag-space al-

gonthm. using an additional pattern buffer whrch defines a grid of filtering partern.

This buUer has the same size i n z and y directions as the depth and f m e buffer. in

the Z-Buffer algorithm. The %due of each element i n the pattern buffer is either --1"

or "0". Hidden-lina are dirplaved with the "1's while broken into dasha and dow

n-lfh the -0's. By urnng this pattern buffer. the algorithm is rapahleaf distinguishing

dashed hidden-lines from the s l i d viable ria.

The result Imageof the P-Buffer algorithm heavilydepends oo the selection of the

filtering pattern. This pattern must be able to handle all l jnds of houndav l i n e of

complicated obi%- that may be almost any shape. Cnfortunatell: i n an). given rn x n

arrar of 0 and 1, bp the means of &neighbors mnneccdnar. rhere is a1n.a~~ at least

one path that consists of either all "Wa or all -1-a wh- l ewh is at l e s t mio(rn.n).

(See next section for the exact definitions of Coeighhom. path. and length.) That

means, no matter how v,ell a filtertng pattern is generated. rhere are al=.ays chance

to create a "dash- (wheo the path is formed all hy ''1.r) andfor '%pace- (when all

'0's) not shorter than min(m,n). where m and n are the helghc and a i d t h of the

~mage, respectively. Such a da;ih or space is roo long to be acceptable. In additlo".

che algorithm cannot guarant~e the even dashes and spars . Therefore. no birmap

can be used in the P-Buffer algorithm as a univeml filtering pattern.

The fatal problem of the ?-Buffer algorirhm is char i t tried to use a stot~c filtering

pactem todeal with ~r iousshapes. This pmved imporsible. In contrast wirh its fixed

pattern. a dvnomie pattern is needed to generate thedotred and dashed hidden-lines.

Here dynamic means a ~ t o - ~ d ~ p t i n g to object shapes. Seighborhood operation. an

~mage processing approach. is a powerful tool to perform lea l adaptation in a digital

image.

3.3 Neighborhood Operation

etuall>-. the name of -image" space algorithm ruggmts that some image processing

concepts and techniqus may contribute to finding the required ner. algorithm. Im-

;rge pro-ing is umallg associated wirh pattern recognition and is rather treated

as a subject outside of the mmputer graphics interest. Basically computer graphics

algorirhms are ured Lr the visualization 01 s e w or models described using some

abstract notation. while image ~ roees ing is used in the opposite way. i.e . when find-

ing an abstract deneriprion of an analyzed pattern. How=-r. some image processing

methods can be used a a computer graphic. roo1 1241. Se ighbo rh~~d operation is

one of the most important and most useful image pmcessiog approaches that can be

used in computer graphia algorithms.

Before discussing the neighborhood operation. some definitions of rhe bade con-

cepe of adjacency, mmnneccednes. and components have to be giwn fiat.

Let (2, y) be a point of a given digital image. Then (r. y) ha.; four hanzootal and

vertical neighborn, namely the points

These points are called the 4-nrrghbrs of (z.y), and are said to be 4-adjacent to

(T. y). 10 addition. (1.. ha8 four diagonal neighbors. namely

Both the diagonal neighbors and the Cneighborr are called 8-neighbra of (r . y). If

(z. y) is on the border of che image. some of there neighbor. r i l l be outride the image.

\lore generally, if S and T are image s u k t s . we say that S Ir C or badjaeenc to T

~f some point of S is 4 or %adjacent to some point of T

h the illustration of the 3 x 3 oeighborhood of a point. Canesian coordinates

(r. y) are wed. with r increasing to the nght and y inereariog upuard. There are

other possibilities: for example, one muid use matrix coordinates (m. n). in which

rn iocreaaer don,oward and n to the right. Sate that the diagonal neighbors am Ji

units away from (r.~), while the horizontal and vertical neighbors are onl)- one unit

avav If a pixel is treated ar a unit square. the hotizootai and ventcal neighbors of

(I.Y) share a ride with (r . y) , u,h~le its diagonal neighbors only touch it ar a corner.

A poffi from (i. j) to (h. k) is a sequence of d~stinct points

such that (z,.~,) is adjacent to (r,.,.y,.,). 1 5 m 5 n. Xore that there are

two ** r s io~ of this. Cpath or %path. depending on whether -adjacentM means "b

adjacent" or "%adjacent7. Here n is called the length of the path.

I f p = (i,,) and q = (h , k) are points of a image subset S, ue =a)- that p is

connected to q (in S) i f there is a path from p to p consisting entirely o f poiots of S

 or any (z. V) of S, the ser of points of S that are connected to (r, yJ is called

s connected componenl of S If 5 haa only m e component. ic is called m n n v t e d .

Neighborhood opemttons are rhme that in same farm or fashion combine a small

areaof pixels. or to generate an output pixel. Such an operation is thus

defined aa hein% Spatially dependeot" sim it dependson the pixel val- at positiom

other than the pire1 under immediate coorideration. This is different fmm point

opemltonr. which rely only on a single pixel or single p ~ e l r from mulrlple image to

perform a function. me uses and coosqueoce~ of neighborhood operations are wide-

ranping. The most important oeighbarhood operations are mnvolut8on and somphng

The applleations of neighborhood operations are divene. ranging from digital filters

to techniques for smoothing, sharpening. transforming, and warping [3. i].

The neighborhood is .,iten taken to mean the &neighbors or &neighbors defined

above. since a neighborhood of 3 x 3 pixels is very commonly eonridered. Hoxer'er.

any neighborhood size is tbearecieally allo.vable up to the maximum spatial resolution

of the system. but the mmputariooal expenre of processing incresses dramac~cally as

rhesize of the oeighbarhood i n e r a . badjarrot connectedness is used i n this thesis.

Seielghharhood thus m a r the boeighboa.

3.4 Dotted D-Buffer Algorithm

The neighborhood operations can be applied to the -dynamic" pattern designing.

Object-space algorithms ean easily draw hiddeo-linps m sariour styles because they

know the endpoints and the quationr of ewry hiddeo-line segment. Image-sp-

algorithms, though having no such endpoint and equacioo information. can 'trace"

tile hidden-lines in the image plane by using neighborhood operations.

Consider the dotted style first. h static chess board pattern can generate ideal

horizonral and wrtieal dotted lines. Bur it cannot properly handle lines with other

angles. Especially when artralght line runs cross thed~agonalsof the parfern. this line

,rill he either completely eliminared or totally untouched depending on rhat kind of

pattern grids it runs through. In compansoo. a dvnamic pattern. which is generated

along the lines while the image itself is being generated, will perfectly fit arbifraq-

lines or curve. This thesis fiat dewlops a new algorithm. called Dotted &Buffer.

using the concept of neighborhood operatiom to dynamtcally genecate the dacted

hlddenlines. Append* .A shows the algorithm in pseudo-code. Its modified \-ion.

namely Dashed D-Buffer. that can generate dashed hidden-lines is to be p r e m e d in

the nest sectloo.

Here D-Buffer refers m Dynam~col-Buffer. It IS a mew imag~rpace algorithm

based on the Z-Buffer algorithm. borrowing some ideas from the P-Buffer algorithm.

The main point d the D-Buffer algorithm s to generate a dynamic or autrradaprix,e

filter~ng partem by "t racing the hidden-lines. tisiring this dynamic pattern. the D-

Buffer algorithm can generate perfect dotted or dashed hidden-lines.

In addition of a frame buffer and a depth buffer used by the traditional Z-Buffer

algorithm. the Dotted D-Buffer algorithm uses an additional b a u t l d s ~ buffer. All

r h m buffers have the same sire as the im*. The depth buffer h a the same meanmrrg

and usage a s in the Z-Buffer algorithm. maintaining the cl-t deprh value of ever?-

phei of the ~mage. The final content of the Game buffer is the created picture. though

each of i e entrie. has one of three pmsible stat- before the final result a mitten.

The nerv boundan buffer contains all the boundaries information together with their

depth values. i.e.. non-bound- phels haw the baekgmund value. while the others

(on boundaries) have various closer d u e s .

The D-Buffer algorithm mntains tur, major steps. mllmt enough depth informa-

Lion and break the hidden-limes accordingly.

In the fim step, the algorithm proeessR e w v point an every object to find the

depth and boundsv infamation needed in the reeond nep. The pseudc-code in

lppendh A shows that after initializing the three bvi?era. the algorithm erecute* a

pair of nested uhile loops. The outer u h i l e Loop proeeues one by one all the objecrs

in the scene. Function D b j e c r x e r r i e v e (O B m * , OBJECT*) rerums TRUE I T an

object is retrieved or FALSE when the o b j e t list is finished. Then the inner uhi le loop

processes one by om ev-ry pixel in the projfftioo of the retriwed object. Function

Pire l4efem~ne(OBJECr, intr, int*, i n r r . boolean.) returns TRUE if a pael

is cairulated or FALSE if all pixels are processed. In addition to the projected posltlon

(r, y) and the depth value r. this function also indicates b) its last parameter

whether this pixel is on a boundary line.

The D-Buffer algorithm does two things inside the nested loops. First. as the same

aa ~n the 2-Buffer algorithm, it updates the depth buffer d t h e depth balue af the neu-

determined pixel is closer than what 'he depth buffer has at this p i~el . The semnd

thing, however, is different from that in the Z-Buffer algorithm. Instead of updating

the frame buffer directl~. the D-Buffer algorithm records the boundary information

in the extra bound- buffer. The bouodav buffer has the same size and data type

as the depth buffer. It "torrs depth \ d u e s as ndl. but only for boundary pixels. All

the other entries of the boundary buffer have a distant value indicating background.

36

Table 3.1: Passible d u e s of the frame buffer entries

E\xr). boundary point, if i t is not bloelied by any other boundary points, has its depth

value recorded in the boundary buffer.

After setting the depth buffer to the elorest surfaces of all the objects in the

scene and the boundary buffer with the information of all bound- lines. the Dotted

D-Buffer aigorlrhm begins to dot the biddealiner.

In this reeond step, the algorithm generates the image by rriting to the frame

buffer A pixel in the frame buffer can be either white Inon-boundary) or black

(boundary]. Besides. the value ofeach entry ofthe frame buffer c a either be change-

able or have to keep its cunent value. TK-O bits are used accordingly in the algorithm

ro indicate the status. The four porrible eombiaatiaos are s b d in table 3.1.

The initial status is UNDECIDW (Oxlo), so a t the beBnning the frame buffer is

pure white and e v e y pixel can be changed to black. For each pixel. the algorithm

determines whether it is on a houodap line and then ~ b e r h c r it is in the front by

cheek~ng its ~ l u e r in the boundap and depth buffem. If it is nor on any boundap-

line. I r is left unchanged. If it is on a haundap in front. i u d u e in the frame bufer

is changed vncondrtronolly to BUCK (0x01). which means chis pixel is hlsckened and

can nor he changed any more. This is a point operation in term. of i m w pmcessiig.

When n pixel is on a h o u n d q in behind. i.e.. a hidden-line. the algorithm mast then

check if it ischangeable. If the answer is no. nothing is done: orher*s,ise. it changes this

pkci to BUCK (0x01) as adot and the pixels *around- it to WHITE (0x00) to make

the line dotted since the 6rsr hit in mITE (0x00) implies an uoehaogeable pixel. The

term "around" means the "underneath and right" neighbor. (PS.~ in the foiiouing

figure) of the pixel being procersed (PO) since rhe -above and lefr nelghbor~ (PI-,)

haw already been processed. This is a neighborhood operation in the sense that the

values of Ps. Ps, R. and Pa are determined by the value of Po. In this way. the Dotted

D-Buffer algorithm produces very evenly dotted hidden-line. (Figure 3.l(a)).

Figure 3.1: Dotted and Dashed Hidden-Line

Sote that the algorithm 'unmnditionall>" blackens a pixel when it is in the front

and on a baundav line no matter what the first bit of its frame value is. It is mare

precee to say that the first part of a value in the frame buffer indicates rllecher or

not this piye1 can be a f f ~ r e d by a hldden-line.

After a pixel has been processed, the first bit of irr frame value is no longer uwful.

The second bit alone d e s c r i b ~ completely the final created image. Therefore. the

last statement in the Dotted D-Buffer algorithm rimply eliminates the first part and

reducer the frame buffer to the normal one-bit image.

Some image processing operalions are intrinsically pmrllel in the sense that the

same rule mvst be applied to m a w data and the order in which the data are pm-ed

does not matter. Examples are single pixel operations such as eonrrasc manipulat~ao

or threshold and neighborhood operations such ar conwlunon, emsionfdilation and

non-linear filtering. On the other hand, wme other image proeessiog operations

are intrinsically s e n d in the sense that the order in which data are processed s

importaoc. Examples are ~earching. meagurement and ciassifieatian. The Dotted

D-Buffer algorithm is a herial image procedng operation.

3.5 Dashed D-Buffer Algorithm

The Dotted D-Buffer algorithm generates perfect dotted hidden-lines bur it can still

be lmpmwd for other applications. For instance. on today's high resolution display

derice, such as mooitom or printers. a single pixel is too small to easiil- distinguish

from i e neighbors with n a k d That s r h ? the hidden-line in Figure 3.I(a).

when riexved from a distance. seem to be grey solid lines rarher rhan black dotted

lic~es. It is because the Dotted D-Buffer aigaithm has no flexibilib d generating

dots and spaces of rariable m e . lo m w t c-. p~ople prefer dashed hidden-lines

over dotted hidden-hoes, especially when the lengths of the dashes and spaces are

adjustable.

A Dashed D-Buffer algorithm to he presented in this reetion can fulfill this re-

qurrement. It is an improwment of the Dotted D-Buffer algorithm. lnsread of sct-

ring spaces around every dot on the hidden-line to generate dotted hidden-line.

the Dashed D-Buffer algorithm really "tracer' the hidden-liner to make them ewnly

dashed. Append- B shows irs pseudocode

The Dashed D-Buffer algorithm also cantaiors two major step.. same as the Docted

D-Buffer. collect depth information and break the hidden-lines.

The first step of the fm algorithms are exactly the same. They both use the rame

three buffers: lrame bufier, depth buffer, and boundary buffer; and they both use the

same 2-bit value (Table 3 1) in the frame b u f k rhtch is initialized t o UUDCCIUED

(0x10) at the heginning of the algorithms In addition. they both obtain the same

deprh information of the surfaces (in depth buffer) and boundaries (in bound&?

buffer) by using the rame pair of nested while loops. Hoxvewr. the semnd step of

the two aigorithmsare different io the loops loiere? pixel. Rather than setting dots

and spaces directly. the Dashed D-Buffer algorithm u s a recursive fnnetion to make

the hrddeo-liner dashed.

When giwo an initial p m l on a boundap- line, function dash(,=, int, inf.

m t , int**. double*t, douhla+-1 t- the line and determines if the I i i i ihhuld

he solid or dashed. The first tun parameter. present the phel in question. The fourth

parameter ind~eates whether a dash or a space is being drawn if the line is invaihle.

and the third parameter sham hou. long i t ha+ already been drawn. The rest three

parameter. are the three buffers. This funetioo is e a l M for every pixel o n boundaries.

It check whether che pixel is in front by comparing the ralues in boundar). buffer

and depth buffer. If it IS in front, it8 value io the frame buffer is changed to BLACK

(0x01) aifhour question. If it is in behind. it is see to the current dash line color.

elther BLACK (for dash) orYRITE (far space). After deciding thecolor. functiondash0

checks the length of dash or rpace. If it is long enough. the color is re>=ned (from

BUCK to YHITE, or from WHITE to BLACK) and the length reret. The algorithm uses

DASH.THRESHOLD to eontmi the length of the dashes and the sp- in bet%.een. It

can produce different effects by simply adjusting this threshold ralue. The single

threshold make the length of the dashes and spaces the same. Another threshold.

suitably named SPACE-THRESHOLD, can also he introduced to control the length of the

dashes and spacer reparsteip In this var: the algorithm can create long dashes with

short spaces or the revem.

After the current pkel is p r m d and the color for the ne*t pixel prepared.

function d a s h 0 reeursivel~ calls itself to the &neighbors of the current p~xel Some

criteria are i o d v e d to make sure that the neighbor is actually part of a line and lvas

42

not processed hefom. This ensures that the algorithm does mot trace to a p r e \~ou ip

pmeesred pixel to amid pmcesring that pixel more than once. B? using the mur s iw

calls. the algorithm travels through every boundary lime, making visible ones solid

and ,"risible ones dashed. All the moo-boundary p i ~ i r are never touched. sa the:-

remain d u e UUDFXIDLD in the frame buffer. The last action in rhe Dashed D-Buffer

algorithm simply ellminates the first bit and reduces the frame buffer to the normal

a n ~ b i f image, i.e., changes UUOECIDPD t o WHITE. A rervlt is shorred in Figure 3.lIb)).

The Dashed D-Buffer algorithm is ailso a serial image pmceaing operation

Chapter 4

Implementation and Discussion

Both Doted and Dashed D-Buffer algorithms are implemented in C on USlX

4.1 Discussion

Z-Buffer a an image-spm algorithm. Table 2.1 on page 21 shows that irs a m -

putariooal mmpleXity is O(n). where n is the number of objects. It calculates the

depth value of every p i ~ e l of ever? ohje-zt's projwtion. and ampares this value to

that stored in the depth buffer to determine the visibility. The ealculsr~on may be

rometlrnes complicated when the object has a eample~ shape.

I n comparison to the Z-BuUer algorithm, the D-BuUer algorithm vser one more

boundaq buffer and perfa- one more operation. i.e.. checking ewry boundary phei

to generate dotted or dashed hidden-hns and rolld hootal lznes. This operation is

only related to the number of boundary phelr which are far fever than the total

pueb proc-d by the Z-Buffer algorithm, p r ha. nothing to do a i t h the complex-

~ t y of the scene such as tho number, shape. size. and pmition of the objects. For

each boundan- pixel. there is only a couple of moditional and assignment statements

within the loop. In the Dashed D-BuUer algorithm. chough most boundary pkeb

can be reached by diUerenr neighbors from different direetionr or diuerenr boundary

lines, each boundan. pixel i r proceed only on- since the algorirhm alrraya c h d s

whether i t is UnDECIDED before calling dash0 function to trace i t. For non-baundaq

pirclr. they are nemr pme-d because the algorithm also alwa?~ cheek whether

the pixel is on a boundary line. In short, the dditional operation does nor increase

the computational mmple~ity level because i t performs slmpier pma-ing oo fewr

pieis Therefore. the D-Buffer algorithm is in the same computational complexity

le\ei as the &Buffer algorithm

4.2 Experiment with Polyhedrons

To represent ob~ectr in three-dimensional spa-, polyhedmru are widely used i n com-

purer gxaphim systems. Evrrv poly+edron mruirtr of a set of rmoarhly joined p o l p

pons. By appropriately selering poi!-wns' shape and number. pol!-hedrons are a-

pablc of modeling any three-dimensional o b j m to che desired degree of accurac~

Same objects. e.g. tetrahedra and cubes. ma? be modeled precis&y by a set of four

equilateral triangles or six squares. respectively Others. such ax spheres and cylin-

den. may be approximated by combinstxolu of trapezoids. triangle. rectangles. and

n-sided polygons. Far certain applleat~oos a coarse polygon grid may- be adequate.

For applications requiilog greater accurap. more polygons with smaller grid spacing

m y be requid.

The polyhedra-based representation of scenes has the advantages of ~ i m p l i ~ i t y .

generality. and computatxonal efficiency Objects may be manipulated and mans

formed by operating an the points mmpming the polygons. Polygon surfaces haw?

well-defined orientations which simplify i ts computarioo of visibility and shading. The

major weaknea of polyhedral represencarioos is their poor appmimafion to smooth

cuned surfaces, complex shapes, and life-like fa-. Simply ineresing the number of

pol!-gons to achieve visually realistic reprerentations of complex ro les tvill not onb

orerrhelm the storage and computing capacity of even Large computers. bur a h

intmduee many unwelcome lines when the objects are rendered in wireframe mode.

Sin- the popuiariti-of the mesh modeling fmhnique in computer graphics

is undoubtedly due to its inherent rimpiicrty and the d e ~ ~ l o p m e n t of ine.xpensi\~

shading algorithms char uork with such models, the 0-Buffer algorithm har been

lafed on pol?hedroas first. The 2-Buffer algorithm is also executed With the same

set of tested objects to mmpare the performance of the 0-Buffer algorithm. Table 4.1

$haws the experiment mults. which clearly indicate tbat the D-Buffer algorithm h a

the same mmpufationalmmplex~ly level as the 2-Bufler algorithm. Flgure 1 to 4.4

sllo\~ the rendered images.

4.3 Experiment with Curved Objects

Other than the polyhedral reprerentation of chree-dimen~ional~bjects. more abtracr

representation is available through parametric curved surfaces. The paramerric r p p

resentation of miids and eu- L now an established tool in mmputer graphics.

particularly in CAD. With a relatlwiy small set of paramelem. significant portions

of ohjc t surfacer mas be accurately modeled. The whole object ma?. in turn. be

I I pin / pin I ~ h e e i I !\.heel I

Sumber of venlcer k-- Thin mesh Dense m e h Thin merh Dense mesh

Table 1.1: Experiment Results

Dashed D-Buffer

Time unit: second

2.4 2.5 / 4.2 1 4.7 I

W M Dense mesh Dotted and Dashed D-Bufler

ccpresented by smoothly joining a set of parametric patches.

The adrantages of chis representarion are efficient storage and a high degree of

accuracr The main disad\=ntages of parametric curred surface representations stem

fmm the difficulties in determining thecorrect set of eu r rd patches which model real

objects. lnorher problem arise^ in wireframe represcoraclon of objects nirh c u r r d

surfaces: ir 1s the ambiguity of the interpretation of lines and surfacer nith rrrpecr

to their origins of chree-dimensional objects 1331. Edges that are formed from intec

sections of two surfacer are intrinsle to the object. and are explicitly represenred in

three-dimensional solid model. The existence of these -1 edgw is vien-in=-direction

independent. Some other edges are formed due to the variation of surface normal

with respect LO pmlection direction These virtual edges or silhouette lmes only

appear in the pm- of projecting the rhree-dimensional cuned surfaces to no-

d~mennonal drawings. thus thw are rie%\-r-lng-direcrion dependent. There lacks one-

to-one eorrespondeoce betvwo the liner in cw-dimensional drawing and the edger

in three-dimensional objects. especially for thme with cum-ed surfaces. The D-Buffer

algorithm ~ o r l i i \ell with curved o b j a u,irh pro~ided boundary information. Fig-

ures 4.5-4.7 show some results.

Figure 4.5: Curved: Shaded w. Wireframe

F~gure 4 7 Clwed Dashed w Longer Dashed Hdden-Lme

Chapter 5

Conclusion and Future Research

To display object. with complicated shapes fast and informari>~lv a hidden-line ai-

gorithm is needed to create the line-drar\+ng images that show risible and ~nririhle

lines ~n different styles. .After a brief ovemier of the major hidden-line elimination al-

gonthms. although none of them realizes the purpose. the Z-Buffer algorithm shoas

its advantages of extreme aimplielty, efficienq-. and unlimited range of pmcessahle

shapes. ?hi* thesis chen presents a new image-wee algorithm bared on the Z-Buffer

algorithm. namely the D-Buffer algonrhm. BY using one mom boundar~ buffer. the

D-Buffer algorithm can generate dotted or deshed (",ith adjustable length ofdashes

and spaces) hidden-line segments of any threedimensional rhapes at a fairly lo\.mm-

purational cost. hence revealing the information 1- caused b\- hiddeo-line removal.

while the D-Buffer algoriihm ean quickly display sufficient infomation of o b j e t s

with complicated shapes. there are still several impro%*mcnts t~hich can be made ro

enhance the funetionalrw

Currently. all the bound*? lines are I-pixel aide. but thicker outline or visible

lines ma? be desired. This may be done b? carefully writing some mare BLACKS

to the frame buffer to make some lines thicker but not longer.

The D-Buffer algorithm can only generate black and r h i t e (1 bit) imager nor.

The porsible valuer in the frame buffer may be extended to handle mlors.

. The Z-Buffer a1:orithm is widely implemented in graphics hardware. bur it may

be more difficult to do the same thing for the D-Buffer algorithm (though s

ir based on the Z-Buffer algorithm) since it is a serial neighborhood operation

instead of a parallel point operation l i b the Z-Buffer algorithm.

~ h e s e ~ ~ g g e r t the direction of the future research.

Bibliography

[I] .a. .Apaei. Some techniques for shading machine rrnder~ngsolralid+. In Pmcecd-

zngs o f f h e Sprig Joint Computer Conference. pages 3i-45. 1968.

[?I A. Appei. F. J. Roblf. and -1. J. Stein. The haloed line effect for hidden line dim-

inafioo. In Pmcndsngs SIGCRAPH '79 in Computer Cmphics. voiolume i3(2).

pager 151-lji. 1979.

(31 G . 1. hwcock and R. Thomas. Appitcd Imoge Pm-ang. >lacmillan. London.

1995.

[dl H G. Barrotv and J. Y. Tenehaum. Interpreting line drawing as three-

dimensional surfacer. A~lifictol Intelligence li(1-3):ij-116. 1981.

[5] W. I. Boutmight. .a procedure for generation of three-dimensional haiCroned

computer paphia presencationr. Carnmvnlenttoru of the ACM. 13(9):52i-536.

161 !Y J. Bouknigbt and K. C. Kellv .An algorithm for pprodueing half-tone computer

graphics presematioor with Padowr and mo>able light slur-. In Pmceedznge

d lhe Spring Joznl Compvter Conference. p a p 1-10. 1970.

[i] H. E. Burdick. Dlgitol Imogmg: T h u ~ and Apphmlzons. Computing LlcCra$-

Hill. Sew Ymk, 1997.

18) L. C. Carpenter. The a-buffer, an antialiased hidden surface method. In Pm-

ceedrngs SIGGRAPH '84 in Computer Gmphte.. volume 18(3), pages 103-108.

1984.

[9] E. Catmull. A Subdiuision Algorilhm for Computer Dtsploy of Cvrvsd Spltncs.

PhD thesis. Computer Seienee Deparrment. Unlvenity of L-tah. Salt Lake Cir?.

UT. 1974.

[lo] n'. H. Chieng Polygon-to-object boandav clipping in object space for hid-

den surface removal in mmpurer-aided-design. Journal of Mechonicol Destgn.

117(3):374-389. 1993.

(111 E L. Fiume. The Malhemalicol Slruclue of h e r Graphics. Academic Pr-.

San Diego. CA, 1989.

[I?] J. D Foley. .A. ,ao Dam, S. K. Feiner. and J. F. Hugha. Computer Gmphre~:

Pmctplw end Pmehrc. Second edition in C Addixm-\Vdey. Reading. 1I.A.

1996.

1131 H. Freeman. Computer pm-iog of line-draving ~ m w . ACM Computtny

Somqs. G(1):67-97. 1974.

1141 A. S. Glarsner, editor. An Intmductson to Roy Tmmny. .Academic P-. London.

1989.

[I61 W. Hru and J. L. Hock. An algorithm for the general solution of hidden lime

remoxii for intersecting solids. Computers 8 Gmphta. l5(l) 07-86. 1991.

1161 A. Limaiem. Geometrtc algorithms for the interrection of cum=. and surfaces.

Computers t4 Gmphrcs. 19(3):391403. 1995

1171 Y. Liu and P Zsombormurrqv lnte-cion curves between quadric rurfaces of

mmiucion. Tmnsoctions of the Conadtan S m s t y for Mechontcol Eng~nrenng.

1914) 136483, 1998.

118) D. \lanoeha. Algebraic pruning - a 1 s t tehnique for cumr and surface inters=-

tion. Computer Aided Geometric Destp, 14(9):823-815. 199i.

1191 J . R. Lliller and R X. Goldman. Geometric algorithms for detffflng and cal-

culating all mnie sections in the intersection of any 2 natural quadric surbces.

Cmphzcai Models end Image Pmesnng. 37(1) 5546. 1995.

[?OI A. J. \I.mn. An efficient visible surface program. Report to the Sarional Sci-

ence foundatian. Compurer Graphin Research Group Ohio State Coi,xrsif?..

Columbm. OH. July 1975.

[211 Ji. E. Se%vell, R G. Yenell. and T. L. Saneha. I solution to the hrddeo surface

problem. In P m e d i i g s oflke ACM Nalxonal Conference. pages 443-450. 19i2

1221 L. G Robenr. Yachine perception of three dimeosional solid. In J. T. T~pper

er al.. editors, Opttml end Electm-Optics1 Infarmahon Pmesang. page 159-

197. YIT Press. Cambridge. 4th. 1964.

P31 D. F Rogers. P m d u m l Elsmenlsfor Computer Cmphlcs. JlcGratv-Hill Sex\-

York. 1985.

[?A1 I? Rokita Application of image p m s i n g techniques in computer graphin

algorithms. Compuler Nelworks and ISDNSystems. 29(11):1TO5-lil-I. 199i.

[25] S. D. Roth. Ray carting for modeling solids. Computer Cmphzes and Imope

Pmcessmg, 18(2]:109-144. 1982.

[16] 1. E Sutherland. R. F. Sproul. and R. A. Sehumacker. . charanerizar~on of ten

hidden-surfme algorithms. ACM Computmg Surueys. 6(1):l-55. 1974

[?i j J. E. IVamoek. A hidden line algorithm lor halftone pieture representation.

Technical Report TR 4-5. STIS AD i 6 l 995. Computer Science Depanmenr.

L.ni%xrslty of Utah. Salt Lake City. UT. Ma! 1968.

I281 .I. E. \Va'arnock. .X hidden-rurfaee algorithm for computer generated half-tone

pictures. Technical Report TR 415. STIS AD 753 6 i l . Computer Science De

partment. University of Utah. Salt Lake Citr: LT. June 1969

I291 G. S. Watkios. A Reol Tzma Vzslble Surface Abonthm. PhD therir. Computer

Science Department. Cni*rsify of Utah. Salt Lake Cit?. CT. 1973

1301 T IVhicted. An improved illuminatioo model for shaded display. Conmuntul.

tzona of the ACM, 23(6)-345-319. 1980.

1311 C IVylie, G. ST. Romne?: D. C. Evans, and A. C. Erdahl. Halftone perspective

drawings by computer. I n Pmcdings of the Fall Joint Computer Conference.

pager d M 8 . 196i.

[32j 3 Yuan and H. Sun. P-buffer: A hidden-line algorithm in imagespm. Com-

pute~$ 8 Graphics. 21(3):319-366. 1997.

[33] Q. Zhu. Virtual edges, viewing faces, and boundan- traversal in line drawing rep

reentation of objects with curved surlace. Computers 6 Gmphics. 15(2):161-

173. 1991

Appendix A

Pseudo-code of the Dotted

D-Buffer Algorithm

rdefine UNDECIDED Oxlo

tdeflne B U C K Ox01

*define YA1m 0x00

Dotted-D-Buffer(lilt image-height, ~ b t image-vldth.

inr rrfr2.me.bnffar. OBJECT *obj.ce~lisf)

<

~ n t x, y , boundary:

dovble r, depth-bnfferclnage-height1 [image-uldtkl,

boundw-bnffer[i.age-height1 [image-width1 ;

OBJECT o b ~ e c t ;

for (y = 0; y < image-heighf; y +*)

for (r = 0: x < unage-uidfh; x ++) C I / init ialrre

frame-bufferCyl [XI - WDEIDED: I1 changeable

depth.bufferCy1 [xl = 0.0; 11 background

boundary-buffer[yl W = 0.0; / I bnc*ground

>

~ h l l s (Object-Refrieve (object- l ist . kobject)) / I each abject

whlle (Plxe1Detenm.e (object. Ly. L x , tz, &boundary)) <
I / each pixel in projectlo.

i f (z >= depth-boffer[yl Crl) I1 closer pomt

depth-bufferCy1 [XI = 2 ; I / update depth buffer

~f (boundary M z >= boundary-bnfferryl [XI)

I1 closer bowl- point

boundary_b~ffer[yI[~I = r : I / update boundary buffer

>

fo r (y = 0: y < -=_height; y ++)

f o r (x = 0; x. < image-uldrb; I ++) C

i f (boundary.bufferCy1 [XI > 0.0) 11 boundary p lxe l

~f (boundary-buffer[yICxl >= depth.buffer[ylCxl)

/ / i n front

frame-buffer[yl [XI - BUCK; I / sol id

e l s e 11 behind

~f (frams.buffer[yl [XI == UllDECIDW I { / I changeable

frame-bufferCy1 hl = BLACK: I1 dot

i f (i < iaage-ridth - 1)

frame-bufferlyl [xrll - WIm; I / apace

i f (y < image-heighr - 1) { 11 ...
framepuffer [y+ll [XI = WIm; I / around

l f (1 > 0) I / ...

frame-buffer[y+llCl-11 = WISE: I / the

i f c r < image-uidtb - 1) 11 . .-

frame.bnfferCy+ll k+ll = UHITE. I / dot

>
>

frame-bufferCyl [XI k- BUCK; I / normalize

>

Appendix B

Pseudo-code of the Dashed

D-Buffer Algorithm

Xdef ine UNDECIDED Ox10

Xdsflne B U C K 0x01

Xdef lne URITE 0.00

int DASH-THRESHOLD; / I dash length

i n t trframe.buffer. OBJECT r o b j e c t _ l ~ r f)

i a t r , y , boundary;

double r . depth-bufferCinage_heightl Cimage.ridth1,

boundary-b~fer[imageehhzghtl [%.age-width1 .
OBJECT object;

for c y - 0 ; y < image-height; y +*)

for (= 0 : r < m y - w i d t h ; I r*) t 11 l n l t i a l i r e

frsme_bvffer[yl [=I - UUDECIDW; I / changeable

depth_buffer[yl [XI = 0.0; 11 background

houndary-bvffer[~l [d = 0.0; 11 background

>

uhrle (ObjeccRerneve (object- l is t . kobjecf) I1 each object

uai le (P i r e l D a t e n i n e (object. ky, k x . k z , &boundary) t

I1 each pixel in projection

if (z >- depth.buffer[yl [XI) / I closez point

depth-buffer Cyl Cxl - r ; I1 update depth bvffer

i f (bundary t k r >= boundary-bufferCyl [d)

I / closer boundary point

boundary-bufferCy1 Cxl = r : / I vpdare boundary buffer

>

f o r (y = 0 ; y < image-heighr; y ++

for (x = 0 ; r < image-width; x ++) <
if (boundary-buffsr[yl[d . 0 . 0 t k /I boundary plxel

frame.bufferCy1 Cxl == UHDECIDU)) I / unprocessed

dash (y, r . 0 . BLACK, frame-buffsr. /I trace the 11n.e

boundary-buffer. depth-buffer);

frame.buffer[yl Cxl r- B U C K ; I / nomalire

>
>

dash (ln t y , int i, int distance. int color.

~ n r *+d.butfer, double **b-buffer, double **=.buffer)

<

i f (b-buffertyl Crl >= z-butferCyllx1 11 in f r o n t

d-buffercy] M = BUCK: I I s o i i a

e l s e I / behind

d-buffercyl [XI = c o l o r ; I/ dash line color

xf (+*stance >= DASA.HRESH0L.D) f // long enough

distance -0: I / reset comer

s o l o r = (color == BLACK) 7 YAIIE : BUCK; / I dash <=> space

%

I / recursive c a l l s t o 8-neighbors of t he c-nf p i r e l .

~f (b.buff.rCy1 Cx*ll > 0 . 0 u I / boundary p i x e l

d-bufferCyl k + l l =- WDECIDED) 11 unprocessed

dash (y. r f 1, dlacance, color. / I tram the line

d-buffer, b-buffer. .-buffer) ;

i f (b-buffar[ylCr-11 > 0 . 0 k t

d-buffertyl [x-11 -= UNDECIDED

dash (y, r - 1 , d i s c m e , color.

11 boundary p i x e l

/ I u n p r a c e a s d

I1 trace the l i n e

~f (b.buffer[y-11W > 0 . 0 Lk

d-bufferCy-11 [XI == UNDECIDED)

daSb (y - 1. r , d l a t a c e , color.

d-buffer, b-buffer. .-buffer);

If (b.bufferly+ll [**I1 > 0 . 0 kk

d.buffer[y+ll [r*ll == UNDECIDED

dash (y + 1, r r I , disf&r,cs, color.

d-buffer, b-buffer. z-bnffer) ;

/I boundary pixel

/I unprocessed

I / trace rho line

/I borndilly pixel

I/ unprocessed

/ I *race the 1-e

/I b0"ndary plrel

/I unprocessed

/ I trace the lxne

/I boundary plrel

I/ unprocessed

d s h (y + 1, x - 1, distance, color. I / trace tae l i n e

d-buffer, b-buffer. z-buffer):

i f (b - b u f f e r l y - l l l + l I > 0.0 kt I1 boundary pixel

d-burferry-11 h + l l =- UHDECIOED / I unprocessd

dash (y - 1 , x + 1, distance. color. I 1 trace the l i n e

d-buffer, b-buffer, ..buffer) ;

l f (b-bufferry-111~-11 > 0 .0 k t I / boundary plxel

d-beferry-11 [x-11 UHDECIDW) I1 unprocessed

dash (y - 1 . L - 1, distance. color, I/ trace the l i n e

d-buffex. b-buffer. =-buffer) ;

	01_Cover.jpg
	02_Inside Cover.jpg
	03_Blank Page.jpg
	04_Blank Page.jpg
	05_Title Page.jpg
	06_Abstract.jpg
	07_Abstract ii.jpg
	08_Acknowledgements.jpg
	09_Acknowledgements iv.jpg
	10_Table of Contents.jpg
	11_Table of Contents vi.jpg
	12_Table of Contents vii.jpg
	13_Table of Contents viii.jpg
	14_List of Tables.jpg
	15_List of Figures.jpg
	16_List of Figures xi.jpg
	17_Chapter 1 - Page 1.jpg
	18_Page 2.jpg
	19_Page 3.jpg
	20_Page 4.jpg
	21_Page 5.jpg
	22_Page 6.jpg
	23_Page 7.jpg
	24_Page 8.jpg
	25_Chapter 2 - Page 9.jpg
	26_Page 10.jpg
	27_Page 11.jpg
	28_Page 12.jpg
	29_Page 13.jpg
	30_Page 14.jpg
	31_Page 15.jpg
	32_Page 16.jpg
	33_Page 17.jpg
	34_Page 18.jpg
	35_Page 19.jpg
	36_Page 20.jpg
	37_Page 21.jpg
	38_Page 22.jpg
	39_Page 23.jpg
	40_Page 24.jpg
	41_Page 25.jpg
	42_Page 26.jpg
	43_Chapter 3 - Page 27.jpg
	44_Page 28.jpg
	45_Page 29.jpg
	46_Page 30.jpg
	47_Page 31.jpg
	48_Page 32.jpg
	49_Page 33.jpg
	50_Page 34.jpg
	51_Page 35.jpg
	52_Page 36.jpg
	53_Page 37.jpg
	54_Page 38.jpg
	55_Page 39.jpg
	56_Page 40.jpg
	57_Page 41.jpg
	58_Page 42.jpg
	59_Page 43.jpg
	60_Chapter 4 - Page 44.jpg
	61_Page 45.jpg
	62_Page 46.jpg
	63_Page 47.jpg
	64_Page 48.jpg
	65_Page 49.jpg
	66_Page 50.jpg
	67_Page 51.jpg
	68_Page 52.jpg
	69_Page 53.jpg
	70_Page 54.jpg
	71_Page 55.jpg
	72_Page 56.jpg
	73_Chapter 5 - Page 57.jpg
	74_Page 58.jpg
	75_Bibliography.jpg
	76_Page 60.jpg
	77_Page 61.jpg
	78_Page 62.jpg
	79_Page 63.jpg
	80_Page 64.jpg
	81_Appendix A.jpg
	82_Page 66.jpg
	83_Page 67.jpg
	84_Page 68.jpg
	85_Appendix B.jpg
	86_Page 70.jpg
	87_Page 71.jpg
	88_Page 72.jpg
	89_Page 73.jpg
	90_Page 74.jpg
	91_Blank Page.jpg
	92_Blank Page.jpg
	93_Inside Back Cover.jpg
	94_Back Cover.jpg

