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Abstract

This study looks at the non-linear behaviour of cylinder arrays subjected to fluid
cross-flow. The emphasis is on the hysteresis phenomena, associated with fluidelas-
tic excitation, which prove essential in the stability analysis in a low mass-damping
parameter range typical for multi-tube marine 1.sers. Since an array generates a high
level of turbulence, this forcing mechanism is also included. The present work rep-
resents a significant departure from previous studies where attention was primarily
focused on linearized fluid mechanics.

A detailed experimental program, conducted in an attempt to reduce the number

of degrees-of-freedom needed to model post-stable behaviour of a fully flexible cylin-

der array, provides a clear explanation for the underlyi itati hanism. It
shows that the fluid-damping force, associated with the to-flow motion
of a single flexible cylinder, can induce b is-type post-stable behaviour. That

is, the underlying fluidelastic mechanism requires only one degree-of-freedom to op-
erate. With this observation as a guide, a theoretical model is formulated. The

proposed model is a modified time-domain version of an earlier linearized steady-

state f jon for fluidelastic instability, developed by Lever and Weaver, which
is based on one-dimensional flow and a phase lag between cylinder motion and flow
adjustment. First, the fuidelastic equation of motion is solved analytically to third
order using the first approximation method of Kryloff and Bogoliuboff. The ef-
fect of turbulence is examined via ition of both excitati jsms (the

random field of turbulence is represented by a flat power spectrum). Next, a fully
non-linear solution is found using a direct numerical integration of the equation of
motion. The essential features of the stability behaviour are discussed with the aid
of bifurcation theory by analogy with corresponding static systems.

The fluidelastic analysis predicts a stable limit cycle which becomes unstable as

the mass-damping parameter is increased. Physical arguments, however, suggest

iv



that an opposite behaviour should occur, pointing to a weakness in the model for-

mulated here. A signifi i leading also to prediction of h
effects, is derived from an assumption that the phase lag is governed by cylinder

motion and d with i ing oscillatory litude. The bined analysis

shows that the fluidelastic stability boundary, when characterized by an unstable
bifurcation, may be reduced by turbulence (the rate of reduction is directly pro-
portional to turbulence strength and inversely proportional to unstable limit cycle).
For a stable bifurcation, the fluidelastic stability boundary is virtually unaffected

and the effect of turbulence is only apparent (interpretation of response curves).
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Chapter 1

Introduction

In a world faced with an energy supply problem, especially a tremendous demand for
the mobile energy provided by hydrocarbons, the sea bottom attracts much atten-
tion. Offshore hydrocarbons are associated primarily with the continental margins
which contain 99 % of the ocean’s potentially recoverable resources. It has been
estimated that 65 % of these hydrocarbons will be discovered at water depths below
200 m (continental shelf), 30 % at 200 to 2500 m (continental slope) and only 5

% at greater water depths (continental rise and oceanic basin), [1]. Consequently,

and

the industry is at present developing the for expl
on the continental shelves and slopes. Technical difficulties in design of offshore
structures are considerable because of the need for operation in increasing depths

and ever more hostile envi diti ially near the East Coast of

Canada and in the North Sea.
The offshore activities are presently carried out with a large variety of mobile
and fixed structures. The mobile structures, mainly used in the exploration phase,

Tud ible and jackup and floating units (semisubmersible, ship,

barge) to increase drilling capability and to provide greater mobility. Once a com-

mercially ive hyd bon field has been di the production phase
starts primarily with the use of fixed platforms. These include pile-founded framed

structures (made of welded tubular members) and heavy gravity structures suitable



for activities in y severe conditions, and also jant guyed tower plat-

forms and tension leg platforms for application in greater depths. However, due to
the diminishing number and size of hydrocarbon discoveries, the trend in offshore
developments is very much towards floating production units combined with mobile
subsea systems. In a subsea system, the wellheads and associated equipment are
mounted on a seafloor template or frame. The maximum operational depth is about

1500 m.

1.1 Marine riser

The interest in floating production facilities has led to the development of complex
multi-tube riser systems, an important link between the floating structure and the
subsea system. The production riser, schematically shown in Figure 1.1, has to be
flexible in order to resist the hydrodynamic load. It consists of a cluster of pipes:
typically, an export riser and a number of flowline and auxiliary risers intercon-
nected along their length by spacers (spreader bars) suspended in a main structural

system on a number of cables (the distance between the spacers is designed to meet

for and mai ). The deep-water riser is
additionally provided with buoyancy devices to reduce tensile stresses. The flowline
risers convey the crude oil from the wells to the production facility on the surface.
The export riser conducts the processed crude to the pipeline on the ocean floor.
The auxiliary risers, used for various purposes, include gas lift pipes and mainte-
nance pipes for guiding tools. Typically, the cross-sectional configuration of this
multi-tube riser systems has a form of a circular array (a central export pipe is
surrounded by one or two arrays of smaller satellite pipes), a linear array or, mainly
in connection with tension leg platform, a dense rectangular array (highly regular
square or staggered, appearing solid when viewed from any direction other than

along a row or column).



Production facility

Still water

i i
Section A-A

(i) Circulor

Flexible risers

(i) Linear

(iii) Rectangular
Flaxible joint

Riser base
(manifold to
subsea system)
Sea bottom

Figure 1.1: Sch: of multi-tube production riser.

The production riser, extending over large depths, is exposed to a variety of
hydrodynamic loads (see Figure 1.2). In the upper stratum of the sea, these loads
are caused by waves, surf; ts (mainly wind-driven and tidal) and

of the production platform. In the lower stratum, the loads are reduced to current

forces resulting from large scale and of heavy
density water masses. As a result, an intimate knowledge of the wave, current
and wind climate in the vicinity of the offshore platform is necessary for the riser
analysis. Based on these data the hydrodynamic loads may be determined in the

following basic steps:

o f ing the h ical description, either d inistic or h

of the water particle kinematics in the absence of the structure (selecting a



suitable wave theory or a wave spectrum)

o computing the hydrodynamic loading from the fluid motion using Morison’s
equation (a combination of acceleration and drag forces in the upper part of
the riser, and drag forces only in the lower part) and based on a rigid prism

representation for the marine riser

o formulating an adequate model of interaction between the motion of the fluid

and the flexibly mounted pipes (hydroelastic oscillations).

Wave forces
linertia and drag)

Still water level
Current force

(drag)

|y

il Rigid body motion
.—Neutral position due to wave

of riser

}—Response 1o wave
and current

Elevation Section Plan

Hydroelastic response

due to wave and current

Flexible joint

Riser base Sea bottom
S S

e\

Figure 1.2: Multi-tube production riser exposed to environmental load.

The production riser is structurally a cluster of slender members with a very
small moment of inertia. Thus, the riser is very sensitive to these loads which may

cause the large amplitude oscillations of two types (see Figure 1.2):

4



o in a combined longitudinal andl 1o

o rigid pipe motion;
tational motion with the period close to the period of wave cyclic load

divid

o relative motion between the i 1 pipes;
perimposed on a rigid pipe motion and amplified by the hydroelastic excitation

mechanisms

1.2 Problem formulation

The production riser, which has an expected lifetime of several decades, must be

carefully designed in order to preserve its integrity. An operational failure may

and, more i ly, may foul the

reduce or even curtail

Asa an intimate ing of the d

riser response to
the environmental loads is necessary. Over the years a large amount of experience
has been collected. However, hydroelastic oscillations, arising in dense arrays of
pipes, were typically disregarded in common offshore platform design practice (a
rigid prism model was a priori assumed). Recently, they have started to attract
attention recognized already as a major problem affecting the operation of a variety

of heat exch and overhead ission lines. Hydroel may

cause catastrophic damage of risers (e.g. splitting at mid-span) in a very short period
of time as a result of pipe-to-pipe clashing. Alternatively, mechanical failure may
occur due to fatigue and fretting wear at the supports (spacers), after several years
of service, resulting from smaller amplitude oscillations which are always present.
Both types of oscillations, and the effect of their mutual interaction, are of inter-
est in the present study. However, only current-induced forces are analysed since it
is unlikely that excessive vibration develops in the wave active zone during each half
period. Also, the wave zone is typically a small percentage of the total riser length.
By the direct analogy to heat exchanger tube bundle, the multi-tube riser is consid-
ered in the form of an infinite rectangular pipe cluster (Figure 1.3 defines the various

5



array patterns; normal square, rotated square, normal triangle and parallel triangle).
This allows the present study to be based on extensive research conducted in recent
years in the field of power generation (this research has successfully attempted to

identify and to develop a better und: ding of the excitati hanisms in pipe

arrays subjected to the fluid cross-flow).

Normal square (90°)

)

/ &
)

Rotated square (45°) Normal triangle (30°)

T

Flow
—

Figure 1.3: Standard pipe array patterns.

While some uncertainties still exist, it is generally accepted that hydroelastic
oscillations in water flow are excited by turbulence buffeting, Strouhal periodicity
(vortex shedding) and fluidelastic instability. Figure 1.4 shows schematically the

vibration of a pipe array (the production riser) which may be caused by these

itat hani (note that is loop results from non-linear effects of

fluidelastic instability).
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Figure 1.4: Hydroelastic oscillations of pipe array in fluid cross-flow.

Turbulence buffeting is due to the random pressure fluctuations existing in up-

stream flow ( in the / active zone) and also gener-
ated by an array itself. The excitation is normally broad-band and the pipe response
is that of randomly forced oscillations with a small amplitude related to the 1-2
power of flow velocity. These vibrations are capable of producing pipe failure in the
form of fretting wear at the supports and this may occur only after several years
of service. Since the production riser has a longer amortization period, turbulence
buffeting cannot be neglected in design consideration.

Strouhal periodicity is a periodic excitation mechanism existing in pipe arrays
which is similar to conventional vortex shedding, e.g. there is a constant Strouhal
number associated with it. However, while the source of the periodicity is generally

there

accepted to be boundary layer ion due to a free-shear layer i
is normally insufficient spacing between pipes in an array to permit a conventional

vortex street to form. Oscillations are excited when the frequency of flow periodicity



coincides with the one of natural frequencies of pipe. In this case, the pipe response
is essentially that of a narrow banded linear system at resonance. Thus, Strouhal
periodicity can cause very large amplitude vibrations and short term damage, espe-
cially in the upstream pipe rows, unless the bundle is tuned to operate out of the
critical frequency range by suitable pretensioning.

Fluidelastic instability is not associated with flow periodicity but rather with
the motion of the pipe which, at sufficiently high flow velocity, couples with the
flow such that energy is transferred to the pipe, amplifying its motion. The mech-

anism of fluidelastic instability, de facto strongly non-linear, is neither fully rec-

ognized nor und d. One ion gaining general is that this

violent self-excited phenomenon is due to a phase lag, resulting from fluid inertia,

between cylinder motion and flow adj Large litude vib induced

by fluidelastic instability, have the greatest potential for catastrophic damage of the
production riser. The flow velocity at which the pipe cluster becomes unstable is
called the critical flow velocity. This cannot be exceeded under any circumstance in
real environmental conditions. In principle, the essential design requirement is to
predict this critical flow velocity. k

Two of these mechanisms are the focus of present research; fluidelastic instability,
as a most severe problem, and turbulence buffeting which is always present and can
interact with other mechanisms.

1.2.1 Research objective

While substantial progress has been made in und ding fluidelastic instabili

the most reliable tools used in its prediction are still empirical. Moreover, the
basic practical question still remains unanswered. Namely, what is the critical flow
velocity from an operational point of view? Fluidelastic instability, as a strongly non-

linear ph can lead to is-type behaviour of a pipe cluster: a rapid




response jump to unstable oscillations, at the critical flow velocity, which persist
even for significant reduction in flow velocity below its critical value. Interestingly,
unstable osillations may be excited by a sufficiently large disturbance within the
hysteresis region. Therefore, in our opinion the critical hysteresis velocity, the lower
limit of this region, is the practical stability boundary for a pipe cluster. With
this rationale behind, the present study focuses on non-linear phenomena due to

fluidelastic instability and attempts to answer some fundamental questions:

o What is the mechanism causing the | is-type, post-stable behaviour of

a pipe cluster?

® What is the role of neighbouring pipes motion and array geometry in inducing

this behaviour?

© What is the role of other excitati hanisms in triggering the i ility?

This work differs in several aspects from previous studies where attention was
primarily focused on linear effects. It is hoped that it will lead to a more quantitative

guidance in marine riser design against current-induced hydroelastic vibration.

1.2.2 Research scope

A th ical Ii model for flow-induced vibration in pipe arrays is devel-
oped including the combined effects of fluidelastic instability and turbul buf-
feting. An earlier steady-state th ical model for fluidelastic instability in heat

exchanger tube bundles is adopted, modified and then extended to include random

and non-line: forcing terms. Array stability is examined

1 AR IR T

using theory and a
In an attempt to verify the proposed model, an experimental research program
with pipe arrays in air-flow was undertaken and a comparison was done with the

induced vibration.

tensi i data previously reported on fl



Chapter 2

Previous work

Most of the work on hydroelastic behaviour of marine riser has concentrated on

vortex shedding, since large amplitude oscill often describ

d in the open lit-

erature (as in Refe (2,3], for le), were exclusi iated with this

excitation mechanism. Collapse of slender circular members in steady current, [4],
and fatigue failure in waves, [5], attributed to vortex shedding, are known to have
occurred. Although oscillations of the single-pipe riser are presently well analysed

(e.g. wake oscillator model, istical model and ical dure based on

discrete vortex, [6,7]), the flow i effects in the multi-tube riser are neither

fully recognized nor understood.

Experiments on the tandem configuration of pipes showed that the drag and
lift forces are functions of pipe separation and their orientation with respect to the
flow, (8]. However, all the vortex shedding phenomena, characteristic for single pipe,

modified by flow i at small gap i imp. for cylinder in a

lee of upstream cylinder), can also occur, [9,10]. For multiple pipe systems, the
situation is more complex since the wake interference arises from more than one

pipe. Therefore, a number of Strouhal numbers may be detected, dependent on

array ion and flow orit ion, as a recent i | study on a five-
pipe cluster suggested, [11]. The dominant response occurred at the lowest Strouhal

number, Su = 0.20, which is typical for vortex shedding from a single pipe in the

10



/

for some flow ori i large litud

oscillations persisted even for flow velocities well above critical (thus, outside the
"lock-in" region). Another work, on many multi-tube riser configurations, showed
that the "lock-in” amplitude of transverse oscillations may be 3-4 times higher from

flow regime of interest.

that for the single pipe, [12]. In view of these experimental studies, [11,12], it
can be suggested that the multi-tube riser may suffer also from another excitation
mechanism, which is obscured by vortex shedding and can be easily mistaken for it,

especially in the complex ocean environment.

Therefore, it would seem iate to it Iti-tube riser vibration

problems in the light of the i in power where much

progress has been made since the time when it was believed that vortex shedding
was the only excitation that could cause large amplitude vibrations. Substantial
literature, which has appeared on various aspects of flow-induced vibration, is sum-
marized in several informative reviews and design guidelines (as in References [13-
17, for example). Experimental studies on pipe arrays in water flow indicate that
both phenomena, fluidelastic instability and vortex shedding, were (for some array
cor ations) very difficult to separate, [11,18-20]. Characteristic of fluidelastic in-
stability, especially in water flow, is its ability to display hysteresis-type behaviour,
[21-23]. Therefore, fluidelastic instability can be excited by vortex shedding since
both mechanisms nearly coincide, leading to considerable confusion in their inter-
pretation even under controlled laboratory conditions. In fact, failures routinely
attributed to vortex shedding were mainly caused by fluidelastic instability, [24,25].
Additional confusion may result from turbulence buffeting since the observed peri-

odicity in the flow may be iated with the domi f of turbul

[26]. It happened that two different hypotheses, turbulence buffeting and vortex

shedding, were used to describe and predict the same resonance mechanism, [24,26].

1



2.1 Fluidelastic instability

2.1.1 Heat exchanger: an infinite array in water and gas
flows

Analytical models

The large amplitude whirling motions, ch i of fluidelastic instability, were

first observed by Roberts in the 1960s. His analytical model, [27], was based on
the existence of bistable jets which he observed experimentally in the separated
flow behind a single row of cylinders. The predicted stability boundary and limit

cycle oscillations correlated well with his own experimental data. It is worth noting

that this 1i model dicted the h is-type post-stable vibration which
was observed experimentally 20 years later. Since the existence of the jet-switching
mechanism was considered to be limited and the model was not extended to deal
with multi-row arrays, this work was unfortunately largely ignored.

Since the first analytical approach by Roberts to understand and predict the

hani: derlying fluidelastic instability, several models have been proposed.
Most widely used is the semi empirical quasi-static model for a single row of cylin-
ders originally developed by Connors, [28], in the early 1970s. Connors found that

{he Huidelastic instak

h d d

is position dep and that for certain

patterns of intercylinder displacements, energy may be extracted from the flow.
The stability curve, found by Connors, is expressed by a simple relation between
two nondimensional parameters, the reduced flow velocity, %, and the cylinder
mass-damping parameter, Z£:

U _ g(™yos
7= KCR)

(2.1)
where the proportionality constant for his cylinder row was found empirically to
be, K=9.9. This equation gained general acceptance due to its simplicity and close
agreement with experimental data. However, this model only recognized and did

12



not explain the ism of fluidelastic instability. All of the underlying fluid

mechanics was absorbed into the empirical factor, K.

In the mid 1970s, Blevins, (29,30}, turned the analysis, in a more formal math-
ematical way, to multi-row arrays for which he retained the form of equation (2.1).
The proportionality constant, K, was obtained based on the fluid force coefficients
measured for each type of array. In an attempt to bring some insight into this
constant, Blevins extended the analysis to the quasi-steady fow theory including
the forces associated with fluid drag: (i) the jet-switch force, [30], and (i) the flow-
velocity dependent damping force, [1] For the sake of simplicity, the fluid force

coefficients were replaced with equival i lytical ions which
were functions of the array pitch ratio, £ (see Figure 1.3).

Ever since then, many efforts have been made to empirically determine the value
of K and to modify existing semi-empirical models. Careful experiments resulted
in various refinements of equation (2.1), such as separating the two dimensionless
parameters, § and ;9;, and adjusting the exponents on each. For example, the
stability equation proposed by Weaver and El-Kashlan, [31], takes the form:

R » @2)
while Paidoussis, [32], suggested the formula:
, 3 = Kal PJ,)NJ“(— -1 (23)

where the constants, Ky and Ky, were obtained experimentally. The parameter, £,
defines the array pitch ratio similarly as in the Blevins’ model, [7].

Chen initiated a different line of development from that which was based on
the Connors’ quasi-static hypothesis. He first proposed a semi-empirical dynamic
model based on the cylinder-to-cylinder i i -hani [33,34]. In this

study, Chen formulated expressions for coupled unsteady fluid force coefficients (in-

ertial, damping and stiffness). Tanaka and Takahara, [35], pursued this development

13



and obtained a very good agreement between their own experimental and theoret-
ical stability results which were generated using measured unsteady displacement-,

velocity- and

fluid force i However, this analysis,
which required measurement to be made over the entire range of upstream flow
velocity, U, was from a practical point of view both lengthy and costly.

The outcome of the various research efforts was only partially successful in serv-
ing as design guidelines. All of these models had to be restricted to the analysis of
systems sufficiently similar (array pattern and pitch) to those for which the empirical
force coefficients had been obtained. Furthermore, these semi-empirical studies of-

fered little insight into the und; ding of the fluidelastic i ility ph

Therefore, in the 1980s, research attention was once again focused on the fluid me-
chanics of the problem, leading to a new series of studies.
An extension of the quasi-static theories was a quasi-steady model, based on

the mechani: ible for d ds

ping-i d galloping of iced transmission lines,
developed by Price and Paidoussis, [36]. This model, requiring less empirical input in

the form of fluid-dynamic stiffness terms d quasi-statically, was lated

for double row arrays. An attempt was made to generalize the stability expression
to account for most array geometries. A modified form of the stability equation was

then derived:
LS
fd

where the constants, B; and B,, were obtained from quasi-static force coefficients.

=BG - D+ 0+ B (24)

Thus, they depended on array geometry. This work was further refined and modified
by incorporating phase-lag cylinder motion and motion-induced fluid forces, [37,38],
and by prescribing a specific inter-cylinder modal pattern, {39]. These refinements

allowed the authors to study the behaviour of a single flexible cylinder in the middle

of a rigid array and the beh of a fully flexibl i

In general, the

comparison of the analytical results with the available experimental data was found

14



to be reasonable. In a very recent work, Price and Valerio, [40], extended the quasi-
steady theory to account for non-linear fluid forces. This aualysis was restricted to a
single flexible cylinder constrained to move in the transverse-to-flow direction only.
The resulting non-lincar equations were solved using the first approximation method
of Kryloff and Bogoliuboff. This model predicted stable limit cycle oscillations in
2 whole range of the mass-damping parameter. The rate of increase of predicted
amplitudes with flow velocity was, however, muc greater than that experimentally
observed.

Chen continued the development of his unsteady model, following the work of
Tanaka and Takahara, {35]. In this remarkable « dy, [41,42], the author under-
took an analytical formulation of unsteady fluid forces. Unfortunately, some of
those forces, strongly dependent on array geometry, could not be obtained in the
theoretical way. Using quantities measured by Tanaka and Takahara, (35], Chen
found excellent agreement with existing stability data. It is worth noting that

he first ized two different i ible for

a damping: lied (single degree-of-freedom velocity meck

) which is pre-

dominant in a lower range of the mass-damping parameter, typical for liquid and
gas flows, and a stiffness-controlled (Connors/Blevins instability, multi degree-of-

freedom displ hanism) which is predomi in a higher range of the

mass-damping parameter, that is in gas flows.

In the first attempt to account for non-linear unsteady fluid forces, Gasteiger,
[43), formulated a semi-empirical model for a single flexible cylinder in an otherwise
rigid array. The damping and stiffness coefficients were modelled as a sum of first and
third order terms in both the z- and y-directions, including cross-coupling effects.
The author obtained these coefficients from decay curves, recorded in quiescent fluid
and in fluid flow, based on an equivalent linearization technique. Since this study

required separate measurements at each flow velocity and for each array geometry,
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it was limited to the first row of cylinders. Interestingly, for a square array, the
model predicted the existence of both stable and unstable limit cycles at low values
of the mmdmpm; parameter. In a recent study, Andjelic et al., [44], proposed

dure to ize the fluid force i in Gasteiger's non-linear
equation. The authors adopted a numerical code for solving the non-linear differ-
ential equations of oscillatory systems. In this way, the stability boundary and the
post-stable cylinder mid-point motion could be calculated, for various sets of the

fluid force

ffici and then d with i | results. This numerical
procedure was further modified by Ducci, [45], using centre manifold theory. This
complex analysis allowed the autkor to compute the unknown fluid force coefficients
directly from experimental data; the net damping as a function of flow velocity.

At the opposite extreme from these largely empirical models are the analytical
models based either on a steady-state solution or a potential flow theory. Lever and
‘Weaver, [£6], recognized fluidelastic instability as a unique mechanism resulting from
2 pha’ 2 lag between cylinder motion and flow redistribution. Their theoretical model
was based on some experimental observations whic!. led to reasonable simplifying
assumptions. The fluid mechanics was modelled using the one-dimensional unsteady
Bernoulli equation. They considered the to-flow b ic motion of just
one cylinder ded by rigid neigh This th ical model was further

developed by the authors to include the effects of streamwise dynamic and static
instability, [47, 48] In spite of the simplicity of the model, the agreement between

ly and i 1 data was kabl ially for parallel

triangle and rotated square arrays. These predictions correlated very well with the
precise predictions of Chen, [41,42], and Tanaka et al., [35], without the need for
experimentally obtained fluid force coefficients. However, in contrast to remaining
theories, the stability condition was a linear function between reduced flow velocity

and mass-damping parameter for high values of these parameters. In follow up
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studies, the original model of Lever and Weaver, [46], was further extended and
modified. Yetisir and Weaver, [49)], used curvelinear coordinates for the flow and
two degree-of-freedom for the cylinder, while Lever and Rzentkowski included a
random field of turbulence to examine linear response curves, [50].

Another interesting group of theoretical models is based on the potential flow

Sormulation. First studies - presented by Balsa, [52], and Chen, [34] - although

helpful in und ding the underlying fluid mechanics, found very limited appli-
cations due to their poor analytical predictions. Therefore, this formulation was
again carefully rederived by Paidoussis et al., [51], to explore the capabilities and
limitations of the potential flow theory for flow-induced vibration in cylinder arrays.
This modified study also incorporated a phase lag between cylinder displacement
and the resulting fluid force, following the work by Lever and Weaver, [46]. Although

1

the authors found better between analyti and 1

data, the formulation of the stability problem in terms of ideal flow theory must be

considered as rather unsuccessful.

Summa n; extensive research on fi in cylinder ar-

rays, ing power i hnol has resulted in a variety of theoretical

models which can be categorized in two different ways: (i) according to the applied

fluid mechanics (quasi-static, quasi-steady, unsteady) and (i) according to practical

lication (semi PRTY lytical).

The quasi-static models, [28-32), are based on the assumption that the fluid

forces depend on the static cylinder deviation from its reference configuration. All

of ytical solutions and exper-

the models, developed so far, are

imental data. The resulting fluidelastic instability is the fluid-stiff lled
mechanism.
The quasi-steady models, [7,36-40], also need Juasi-static measurements of fluid

forces which are then assumed to additionally depend on cylinder motion. The

17



cylinder velocity is assumned to be constant at any given instant of time. The vector
addition of the cylinder velocity and the flow velocity yields an angle of attack
effect which changes with tube motion. The resulting fluidelastic instability is the
fluid-stiffness and fluid-damping controlled mechanism.

The unsteady models, [27,33-35,41-43,46-52], are based on experimental data
and empirical correlations which express fluid forces as a function of cylinder dis-
placement, velocity, and acceleration. The general expressions for fluid force are
non-linear. However, the fluid mechanics are linearized in most studies to permit
suitable analytical solutions. The resulting fluidelastic instability, as for quasi-steady
flow theory, is generally the fluid-stiffness and fluid-damping controlled mechanism
(except the single-degree of freedom models, [46-50]).

The semi-empirical models require experimental input in the form of fully un-
steady, [27,33-35,40-43], or steady time-averaged data, [7,28-32,36-39]. It follows
that practical application is strongly limited by dependence on the measurement
and its quality.

The analytical models, [34,46-52], require very little or no empirical input and,
with improvement, may have the greatest potential to serve as dgip guidelines.
Unfortunately, this research, except for the models based on the original theory of
Lever and Weaver, [46-50], has not been very successful.

Hysteresis effects

‘While many models for fluidelastic instability have been proposed, most are based
on linearized fluid mechanics (except Refe [27,40,43]). Thus, the response of

the modelled cylinder array becomes infinite at the point of instability unless non-
linear structural mechanics are included. However, in real experimental situations,
the system response at this point may be controlled by non-linear fluidelastic effects,

43 recent experimental studies suggest.



In an investigation into the post-stable behaviour of a parallel triangular array,
Lever and Rzentkowski, [53], found that a single flexible cylinder, which was posi-

b

tioned in the fourth row of an
from stable to unstable oscillations as flow velocity was increased beyond its critical

rigid array, i d a gradual

value, while a fully flexible array experienced a rapid response jump. In the latter
case, the unstable oscillations persisted for small reduction in flow velocity below
critical. The width of the observed hysteresis region was 5-23 % of the critical flow
velocity, Uz, decreasing with increasing damping. Hara, [21], reported qualitatively
similar results for single cylinder rows in water cross-flow. He observed relatively
broad hysteresis (30 % Uc) at low values of the mass-damping parameter which
disappeared at high values. Chen and Jendrzejczyk, [22], also examined a tube row
in water cross-flow, but with only three flexible cylinders. The reported width of
the hysteresis region was 30 % Uc, identical as that found by Hara at low values of
the mass-damping parameter.

Andjelic and Popp, [54], observed ph logically different behaviour; the
hysteresis of a single flexible cylinder. In this case, the cylinder was located in

the second row in a normal triangular array and the width of the hysteresis region
was 20 % Uc. More extensive experimental studies of this array were reported in
another work by Andjelic, [55]. The author found, in agreement with References
[21,53], that the hysteresis effect becomes less pronounced, following an increase in
the mass-damping parameter.

Hysteresis behaviour has also been observed to occur in fairly realistic heat
exchanger test rigs by Godon, [56], who investigated 1.33-1.42 normal tnmgulu
arrays, and by Halle et al., [23], who investigated 15 cylinder-in-shell confi

in four standard patterns. Godon reported hysteresis regions of 3-39 % of the critical
flow rate, while Halle et al. reported regions of 12-49 % of the critical dynamic head
().



Interestingly, it has been found experimentally that instability in a cylinder array
may be excited by a sufficiently large disturbance whenever the system is operating
within the hysteresis region. Chen and Jendrzejczyk, (22, first performed such
excitation studies on a 1.75 pitch ratio cylinder row. The authors called the state
defined by the lower limit of the hysteresis region the "excited instability” and the

state defined by the higher limit the "intrinsic i ility”. In a more hensi

study, performed on a 1.375 pitch ratio triangular array, Lever and Rzentkowski,
(53], found that only a fully flexible array can display the hysteresis behaviour. The
instability was excited by two types of transient disturbance; cylinder displacement
and flow velocity.

The existence of hysteresis effects in cylinder rows was first analytically rec-
ognized by Roberts, [27). However, the author did not explore in detail the phe-
nomenon, probably, due to the lack of experimental evidence supporting it. There-
fore, the recent works by Price and Valerio, [40], and Gasteiger, [43], are the only
attempts to analytically describe " post-stable behaviour of pipe arrays due to
fluidelastic excitation. Both of these models are semi-empirical. The first requires
the measured variations of the lift and drag coefficients as the cylinder is displaced
in the transverse-to-flow direction, while the second is based on an experimental
identification technique for the unsteady fluid force coefficients (see also Reference
[44,45]). Thus, these models are strongly dependent on the measured data and their
quality.

2.1.2 Marine riser: a finite array in water flow

To the author’s knowled idelastic instability of a multi-tube riser, subjected to
a steady current, was first observed and explicitly recognized by Moe aad Overvik,

[57). A rigid pipe cluster (relative motion between the pipes was not allowed) under-

went a violent self-excited oscillati dominantly in the to the flow
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direction, which resulted from negative damping (velocity mechanism). This study
suggested that an instability excited on one of the members can trigger an unstable
mode of the multi-tube system.

Fluidelastic instability in a steady current was also observed by Panicker and
Yancey, [58], in model studies of Mobil’s deepwater production riser which consisted
of a linear array of flexible flow lines. In this case, the pipes violently oscillated
in pairs of two in modes perpendicular to each other (phenomenon often referred
as galloping). The observed vibration modes and critical velocities for instability

proved that the underlying excitati ism is ility and not

vortex shedding. In an attempt to study this phenomenon, Ottesen Hansen and
Panicker, [59], adopted the Blevins' model (for a densely spaced infinite linear array
of pipes with pitch to diameter ratio, & < 1.7), [7], in which the flow velocity was
assumed to be uniformly distributed between pipes. Since this assumption cannot
be valid for a system with large spacing to diameter ratio (typically, 2 < & <
4 for this riser type), the authors defined empirically the flow velocity distribution
function and modelled the flow field between pipes using the two-dimensional steady
Bernoulli equation. In this way, the spacing parameter, £, enters into the stability
conditions. The inner solution of the problem (§ < 1.7), the modified Blevins'

formula, takes the form:

_U_ - mb o5, f -8 _ f —5)=0.25
2 = (e - By @)
while the outer solution (£>4) is:
U _ k(™ ysBys
7= (3) (2.6)

where the coefficients, K3 and Kjy, are stability constants (K is inversely propor-
tional to the steady drag coefficient, Cp). The authors found very good agreement
with experimental data of Ishigai at al., [60], for the outer solution, and that of

Blevins, 7], for the inner solution.

21



Fluidelastic instability in steady flow was also observed in the recent laboratory
tests on the model of the Buchan production riser (five-pipe circular cluster) per-
formed in a wind tunnel by Paidoussis et al, [61] and in a water tunnel by Price
et al, [11]. In these tests, all pipes were rigidly mounted, except the monitored

one. I ingly, unstable oscillations of individual pipes were first excited by

vortex shedding but, unlike this excitation phenomenon, they persisted for all flow
velocities above the critical value. This proved that, in addition to vortex shedding,
fluidelastic instability had been ing. The observed critical flow velocities were

equivalent to current velocities of the order of 1 2 (2 knots) or less which are very
common, especially, in costal regions.

Also, i ing to note is the lytical study d by Ottesen Hansen et

al, [62), although it is beyond the scope of this research. The authors examined the

of fluidelastic instability in waves of a rectangular array of risers used
in connection with tension leg platforms. The hydrodynamic load, arising from the
wake interaction between the pipes, was approximated by the quasi-steady model
for instability of twin power conductors in strong winds, [63]. They identified both
types of instability (that is the instability of a rigid pipe array and the wake galloping
of the spans between spacers of the downstream pipe) either as unstable oscillations
excited only in one half period of a wave or a continuous growth of vibration from
half period to half period. The authors reduced this analysis to individual pairs
of pipes with spacers, assuming that instability of any one of the pairs is sufficient
to cause instability of the total system. They found that fluidelastic instability
depends primarily on the Keulegan-Carpenter number, the pipe spacing and the
ratio between water depth and wave length. However, the size of the unstable
region was very limited, indicati:g that instability in current is a far more severe

problem.



2.2 Turbulence buffeting

The nature of turbulence-induced vibration or buffeting in cylinder arrays and its

relation to Strouhal periodicity was also first ized in the field of power gen-

eration. All of the early studies, before the 1960s, considered ”vortex shedding” to
be the main mechanism causing vibration. However, in 1964, Owen, [26], identified
the periodic excitation mechanism as two separate phenomena. He suggested that
the relatively broad band turbulence is operative at all flow velocities but its peak
broadens and shifts to higher frequencies when the flow velocity increases. Thus,
turbulence :an also cause resonance, at a specific flow rate, similar to vortex shed-
ding. This study, however, was rejected by Chen in an experimental work on vortex
shedding, [24]. It started a period of confusion in which two different hypotheses

gained for the same excitati hanism. Worth noting is the fact that

were in close

Owen and Chen

Whatever the true mechanism underlying flow periodicity in cylinder arrays was,
it was necessary to develop design guidelines to prevent cylinder failures. Two
resonance models, essentially the same, have been proposed for a lightly damped
linear system subjected to random excitation. Thus, these models eliminated the
influence of an off-resonant Strouhal peak in the turbulence spectrum on cylinder
response.

The first model, developed by Pettigrew and Gorman, [64], gave a remarkably
simple formula for predicting the mid-span RMS amplitude, Agps, of cylinder re-

sponse:
S°5(f)
@ Poma)s

where the power spectral density of the random force field per unit length, S(f), was

Arms = @7

assumed, based on experimental evidence, o be proportional to the flow dynamic



head. That is:

%(9) = 3C Npat? @9
with the effective random excitation coefficient, C,(f), obtained experimentally for
various cylinder array geometries. The random force field was assumed to be ho-
mogenous and fully correlated along the cylinder length.

The second, equally simple, response design expression was developed by Blevins
et al., [65], in the form: ”

Apms = (—:;_:—(‘/f._‘)g)% (2.9)
where the joint acceptance, J, would be equal to one if the force field was perfectly
correlated. The power spectral density function, S(f), was proposed in a similar

form to equation (2.7), except for the nondimensionalizing factor, ¥, that is:
(S5 = 3Cur? @10

- where the lift coefficient, Cy, replaced the random excitation coefficient, C,(f).
The agreement between both methods is remarkably close, considering that Pet-
tigrew and Gorman obtained their excitati flicient from i in wa-

ter flow, showing U? dependence for RMS cylinder response, while Blevins et al.
obtained their coefficient from experiments in air flow, showing U™ dependence.
U ly, a later experi ] study, aimed at a more precise prediction of

the turbulence response in terms of flow velocity, showed higher discrepancy. The
Pettigrew and Gorman model was supported by the Sandifer and Bailey experi-
ments, (66], performed in water flow with parallel triangular array, suggesting that
the cylinder turbulence response varies proportionately with U2. These results were
contradicted by Taylor et al., [67), who showed U'*® dependence, very similar to
Blevins theoretical prediction, for a cylinder in a single row. Price et al., [68], found
that the response amplitude varied approximately linearly with flow velocity for a

single flexible cylinder in a rotated square array. A follow up study by these au-
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thors, [69], using the same array but with smaller pitch ratio, indicated U and
U?? dependence for a flexible cylinder in the second and fifth row, respectively. It

can be

ded, based on these i 1 observations, that the cylinder tur-

bulence response is approximately bracketed by U and U?2, Tt is difficult to explain

this signi di except to say that the turbulent cylinder
response is dependent on both the array geometry and the cylinder position, and
may be dependent on Reynolds number (flow velocity).

As a design guideline, the approach proposed by Pettigrew and Gorman, [64],

has the advantage of being simpler. Di can be elimi: d by

introducing the power spectral density function of the random force field, S(f), in
the form proposed by Blevins, equation (2.10), as outlined in the theoretical study
on turbulence buffeting by Lever and Rzentkowski, (50].

2.3 Fluidelastic inst=bility and turbulence buf-
feting interaction

research on fluidelastic i ility and turbulence buffeting in cylinder

arrays, subjected to fluid flow, has also d to identify the i

effect between both excitation mechanisms. This has been a subject of major exper-

imental in the practical estimation of stability boundary.

All of the early studies, [70-72], showed that turbulence may increase or decrease the

idelastic instability. dependi bl h
on

critical flow velocity for fl
istics which was stimulated by generators upstream of the tested arrays. To resolve
this dilemma, Price et al., [68,69], recently performed a detailed experimental inves-
tigation and found that the presence of turbulence generators has little or no effect
on the onset of fluidelastic instability. The authors concluded that the interstitial
flow characteristics, beyond the first few rows, are governed by the array itself, inde-

pendent of diti idently, this signifi ly hinders i Y|
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investigations of the problem. Thus, to the author's knowledge, no experimental

evidence exists regarding the actual coupling (true interaction mechanism) between

bull and fluidelastic instability in cylinder arrays and an alternative method
of stimulati t istics within an array is needed.

The apparent influence of turbulence on fluidelastic instability (i ion of
response curves) was i hy ically by Lever and i, [50]. Since

their study was based on a linearized analysis, the two mechanisms superimpose
and the actual effect of the interaction is suppressed. Nevertheless, it showed that
increasing turbulence reduced the apparent stability boundary based on amplitude
response curves; the size of the reduction depended on the practical threshold defi-
nition used. This, to a certain extent, explains the contradictory results from early

experimental studies of this problem, [70-72].
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Chapter 3

Fundamental concept of marine
riser stability

‘The concept of dynamic stability is extremely important in wide variety of engi-
neering applications. Unfortunately, in the majority of practical cases, there is no
universal definition which can globally described the stability of the system at hand.
The state of motion is rather complex and it may be stable in one respect and un-
stable in another. Therefore, the question of instability should be investigated from

various points of view. However, the system under consideration and not its practi-

cal applications must dictate the choice of ition. C 1 izing the
nature of the system is the most important step to adopt the appropriate definition
of stability.

Therefore, this chapter first defines the marineriser as a physical system and then

discusses various aspects of its stability using the standard definitions of Lyapunov.

3.1 Marine riser as a physical system

‘The multi-tube production riser, exposed to environmental load, is shown schemat-

ically in Figure 1.2. As pointed out in the I two types of
may be observed: (i) a rigid body motion due to wave cyclic load and (ii) relative
motions between the pipes in a cluster due to hydroelastic excitation (turbulence

buffeting, Strouhal periodicity and fluidelasti bility). However, it is very in-
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structive at this point to consider some classifications based strictly on the theory
of vibration. Depending on the source of excitation and its physical properties, the

riser response may be categorized as:
o forced stochastic
o periodic: forced and self-excited
o self-excited: decoupled and coupled.

The marine riser "rigid body” response due to wave load, depending on its rep-
resentation, would be either stochastic or periodic (no self-excited "rigid body”
oscillations). Relative pipe motions would be stochastic, periodic and self-excited.
Turbulence buffeting would give rise to a forced stochastic response. Strouhal peri-
odicity would represent a periodic process, either self-excited (inside the "lock-in”

region) or forced (otherwise). Fl

would generate self-excited
oscillations, either decoupled (a rigid cluster - single degree-of-freedom representa-
tion) or coupled (a flexible cluster - multi degree-of-freedom representation) when

relative pipe motions affect the flow ck istics. All of these oscillations cannot

exist in their pure form, since the riser response is very complex due to the inter-
action of different excitation mechanisms. Thus, the nature of this system may be
exactly represented only by a complex self-excited oscillator subjected to periodic

and stochastic disturbances. Thus, in a more general context, the marine riser must

be idered as a ative and system. N vative;
since the riser may have an unlimited energy source in the form of fluid cross-flow
(thus, the fluid force are not derivable as a gradient of a total energy function).
Non-autonomous; since the riser response is directly time dependent due to waves
and turbulence. Moreover, the marine riser subjected to fluid flow, as a self-excited

oscillator, represents a non-linear system. Theretore, the stability definition must

consider the 1i effects - the exi of limit cycle
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3.2 Fundamental concept of stability

A unified view of the stability of motion may be given by Lyapunov’s definitions,
(73], which stipulate that a state is stable whenever in the motion, following a suf-
ficiently small initial disturbance, in terms of initial displacements and velocities,
the displacements and velocities remain as small as desired for all positive time (e.g.
when a system is disturbed from an equilibrium state, transient oscillations decay
with time). Since this concept of stability is very important for subsequent devel-
opment of present work, it will be treated in detail based mainly on the Lyapunov’s

definitions presented by Andjelic, [55].
3.2.1 Lyapunov’s definitions

Consider a non-autonomous system described by a set of first order differential

equations, derivable in the solution space. This set of equations may be expressed
. in vector notation as:

F=f(z,1) (3.1)

where £ = (21,22, 28)Ts f = (fus fasoes fa)T and # % €. The initial conditions

and the characteristic solutions are given by zp = Z(20, to; to) and 7 = #(z0, to; t),

respectively.

Definition 3.1:
The particular solution Z(&,to;t) is stable if it is possible to find a positive 5(2, to)
for any sufficiently small €0 such that

| £o = @ |< 8(E to) =>| #(20, to; t) — Z(@, toj t) |< & (3.2)

Jor all positive time, t 2 to. Otherwise the particular solution #(d,ts;t) is unstable.
The particular solution #(d,to;t) is said to be asymptotically stable if it is stable



and, in addition, one has:
Jim | #(zb, toi£) ~ E(@ i) |= 0. (33)

Figure 3.1 displays graphically Lyapunov's concept of stability; (¢, to;t) is the
perturbed motion and (@ to; ¢) is the equilibrium state of the motion whose stability
is being investigated. The motion space consists of the phase plain (7, ) and time,

1, as the independent, coordinate.

Asymptotically
stable —— —

Stable

Unstable ———

Figure 3.1: Solution vector in motion-domain.

If the particular solution is stable or ically stable, the

state,

without loss of generality, may be taken to be trivial. Referring to Definition 3.1,

this ion requires a ion of i in the following form:

@ = & — &(d, to; t). (3.4)

Thus, the differential equation (3.1) becomes:
& = G, t). (3.5)
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The trivial equilibrium solution of this equation, & = 0 (that is, §(J,t) = 0) is now
equivalent to the particular solution of equation (3.1), (@, to;?). Figure 3.2 defines

the concept of stability of a system in

W04 WWo,toit)

W

Figure 3.2: Solution vector in transformed motion-domain.

Definition 8.2:
The trivial equilibrium state, (o, to,t) = 0, is stable, if at any time, to, it is
possible to find a positive 8(2, to) for any sufficiently small €0 such that following
the initial disturbance, wp = (o, to; to),
| % |< 8(2,t0) (36)
only one perturbed state of motion ezists, (i, to; ), and the inequality:
| (o, o3 t) |< & 3.7)
is satisfied for all positive time, t > to. Otheruise the state, W(v, to; t), is unstable.

The state, 6(, to; ), is said to be asymptotically stable if it is stable and, in addi-

tion, one has:

Jim | (e, t;) |= 0. @8)
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In other words, the equilibrium state represented by the origin of the motion
space, W(t, to, t) = 0, is stable if the pertubed state of motion, (o, to; ), remains
within a cylinder of arbitrarily small radius, &, provided that, following the initial
disturbance, the vector wo = (t,%0;to) is within a circle of sufficiently small

radius, 5(, to).
3.2.2 Non-linear effects

It is inferred from equation (3.1) that Lyapunov’s definition of stability can be
applied to linear and non-linear systems, although, in the latter case, it is related

to local properties. This section outlines the resulting limitations, considering a

simple non-li illator, whose equation of motion is given by:
& + cai + kot + D(a? + 3% = Fei(t) (39)

where z is the displacement and ¢, and k, denote the net damping and stiffness co-
efficients, respectively. These coefficients can, in general, be expressed as a function

of the control parameter, A, which contains positive (structural) and negative (s.g.

flow-induced) ibuti Disa 1i operator (e.g. flow-induced, as the

control ) and Fsi(t) hastic forcing.

Autonomous system

First, consider an autonomous self-excited oscillator, [74]. In this system, the in-
dependent variable ¢ does not enter explicitly, thus Fse(t) = 0 (its state of motion
can be represented on a phase plane). When D = 0, the system becomes a damped

linear oscillator with a characteristic equation given by:
A tcad+ky =0. (3.10)

Oscillatory motion exists only if the discriminant of the characteristic equation is

negative, A < 0. This condition yields a complex conjugate pair of roots which
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define the state of motion on the phase plane; either a stable focus, neutral centre
or unstable focus if the pair acquire, respectively, either a negative, zero or positive
real part. Consequently, depending on the control parameter, A (e.g. flow velocity),
which governs local properties, the system is either asymptotically stable (A < Ac),
stable (A = Ag) or unstable (A > Ac), as shown in Figure 3.3a (solid and dashed
lines denote stable and unstable equilibrium states, respectively). Since only one
state of motion exists cn the phase plane for a given A, Definition 3.2 may be
considered as a global definition of dynamic stability.

When D # 0, the stability analysis must consider a dynamic bifurcation problem.

It can be shown, [74], that the bifurcation formula for equation (3.9) is given by:
Da®+cra=0 (3.11)

where a is an oscillation amplitude. In this case, the response curve (defined by a and

A) has two branches: a = 0 (trivial equilibrium state) and a® = —% (limit cycle).
These branches intersect each other at a point of bifurcation, ¢, = 0 (A = Ac);
stable for D > 0 and unstable for D < 0. The bifurcations are of the Hopf-type
since they are symmetric and dynamic.

The stable bifurcation shows up on the phase plane as a stable focus for A <
Ac and as an unstable focus and a stable limit cycle for A >Ac (see Figure 3.3(b)).
Thus, the system is asymptot, cally stable and stable, respectively. Although in the
latter case the stability may be only locally defined, since the size of an unstable
domain increases with A from zero at Ac. It follows that this system is globally
stable only if is asymptotically stable, A < Ac. At this point, it is very instructive
to introduce the concept of degree of stability by defining the size of perturbation
needed to trigger instability, [76]. Evidently, the degree of stability is infinite for

A <Ac for both linear and non-linear systems. Therefore, the linearized stability

analysis may only quantitatively differ from the non-linear one.

The unstable bifurcation is characterized on the phase plane by a stable focus
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and an unstable limit cycle for A < Ac, and by an unstable focus for A > Ag (see
Figure 3.3(c)). Thus, the system is globally unstable, although may be considered
as locally stable for A < Ac due to the existence of a stable domain which decreases
with A to zero at Ag. It follows that this system has only a finite degree of stability
in this region and this becomes infinite if the system is linearized, leading to a

litative di in the i ion of the state of motion.

Figure 3.3: Posssible states of motion of a self-excited autonomous oscillator; (a)
linear, (b) stable bif: ion, (c) unstable bi i
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Non-autonomous system

The motion of a non-autonomous oscillator is described by equation (3.9) in its full
form, e.g. Fs:(t) # 0. Note that the stability of a damped linear oscillator (D = 0)
is not affected by stochastic forcing and is given by the characterisitic equation
(3.10). Its non-linear effect, however, cannot be treated analytically. This gives
motivation to a heuristic study; superposition of linear forced oscillations with non-
linear self-excited limit cycles of the autonomous system, [74]. Thus, their coupling
is conceptually ignored.

Figure 3.4(a) and Figure 3.4(b) show schematically the separate linear combined

oscillations and the self-excited limit cycles for a stable and an unstable bifurcation,

pectively. The linear oscillations to combined excitation are exactly defined also
via superposition; their amplitude rises asymptotically to infinity as the net damp-
ing, in equation (3.9), tends to zero for the critical value of the control parameter,
A = Ag. Because coupling is ignored, the self-excited limit cycles are not affected
by the forcing term, Fs¢(¢). However, the large amplitude linear oscillations clearly
interact with the unstable limit cycle (Figure 3.4(b)), modifying the state of stabil-
ity. This indicates that, even without non-linear coupling between the mechanisms,
the system may lose stability fuur A <Ac if the forced linear oscillations exceed the
unstable limit cycle. Thus, the critical control parameter for a non-autonomous
self-excited oscillator, A¢;, may be defined by the intersection of the linear combined
response surface with the unstable limit cycle.

This analytical description of possible states of motions and their stabilities of
a forced self-excited non-linear oscillator leads to the final conclusion that only
asymptotic stability, or infinite degree of stability, defined by non-linear a.
can globally guarantee stability of the system.
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Figure 3.4: Possible states of motion of a self-excited non-autonomous oscillator
(superposition of linear forced oscillations with 1i limit cycles);
(a) stable bi ion, (b) unstable bifurcati

3.3 Stability of marine riser

A direct analogy between the dynamic system, presented in Figure 3.2, and the
marine riser may be drawn by letting the trivial equilibrium state, (o, to; t) = 0,

a rigid cluster confi ion due to wave load (its stability was assumed

by the condition of transformation, equation (3.4)), and letting the perturbed state,
W(y, to; t), represent relative pipe motions due to current (hydroelastic oscillations:

fodicity and fluidelastic instability). It follows that

turbulence buffeting, Strouhal
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the flexible riser is stable if relative motion between the pipes in a cluster remains
as small as desired (within &limit). Since this study is concerned with fluidelastic

instability and turbulence buffeting, the latter dictates the size of initial disturbance,

8(%,to), and the &limit. Thus, a knowledge of the flow turbul b istics is

essential for stability analysis.
3.3.1 Response curve

The state of motion, illustrated in Figure 3.2, may be greatly simplified by aver-
aging the perturbed motion, (i, to;t), over an infinitely long time. Thus, its
Peak- or RMS-amplitude becomes a function of initial disturbance only which, in
turn, depends on local properties of the system defined by the control parameter,
A. Eviden*1-, practical application requires a finite time and this is usually taken
to be 10 min. In this way, the initial state of motion creates the response curve

and is expressed much as in an experimental investigation; the response amplitude

disol.

velocity, acceleration or strait.) versus control parameter (fluid load)
usually referred to as the reduced flow velocity. Note that based on experimen-
tal response curves, two types of post-stable oscillations of pipe arrays have been
identified: without and with hysteresis. By analogy with a third ém‘ler non-linear
oscillator, these two cases correspond to stable and unstable bifurcations, respec-

tively.

Practical stability boundary

The stable and unstable bifurcation may also be referred to as soft- and hard-excited
system ,[76]. These concepts, indicating the strength of initial disturbance needed
to induce instability, are very important for the practical utilization of Lyapunov’s
definitions. Below, they are applied to ideal (fluidelastic excitation only) and real

(combined fluidelastic and turbulence excitation) response curves of pipe arrays in



fluid cross-flow.

The response curves may be idealized by i bul from fluidel

excitation. Thus, an average response due to turbulence becomes an equilibrium
state for fluidelastic instability. To allow a direct analogy with a third order non-
linear oscillator, the effect of turbulence buffeting may be removed by subtracting

it from overall response (in this way, the state for fluidelastic instabili

becomes trivial). Figures 3.5(al) and 3.5(b1) show these idealized response curves,
while Figures 3.5(a2) and 3.5(b2) show the corresponding dynamic bifurcations for a
third order non-linear oscillator. The stable bifurcation (Figures 3.5(al) and 3.5(a2))
becomes unstable for an infinitesimal (de nomni soft) disturbance whenever A >
Ac. The non-linear response is limited by the stable limit cycle whose size increases
with A from zero at Ag. Since the rate of increase may vary, depending on system
parameters, the point of dynamic bifurcation, Ac, defines the practical stability
threshold, Here, a linear model is capable of predicting the stability boundary
) of the non-linear system but cannot predict its finite post-stable oscillations. The
unstable bifurcation (Figures 3.5(b1) and 3.5(b2)) may display hysteresis behaviour;
the response jumps at A = Ac during the increase of the control parameter and at

A = Ay during its decrease (the coalescence of limit cy:les at Ay, secondary point

of bi ion, cannot be displayed by a simple third-ord ill unless A is not

litude-d dent). Inside the I is region, the system has a finite domain
of attraction bounded by the unstable limit cycle, which is represented by the dashed
line in Figure 3.5(b1). Therefore, unlike the soft-excited system, only a finite (de
nomni hard) disturbance carrying the linearly stable system beyond this cycle would
cause instability. In the absence of detailed information on the expected size of these
disturbances in real situations, the lower limit of the hysteresis region, Ay, must
be treated as the practical stability boundary for the cylinder array (it guarantees

asymptotic stability). Therefore, the application of a linear theory (which predicts
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only Ac) may be ive, ially when the h is region is relatively
broad.

Cylinder orray Third order oscillator

STABLE
a2) LT
CYCLE

Ac

A
of T—
REPELLER

ATTRACTOR

POINT OF
BIFURCATION

bl) b2) - UNSTABLE
SQ LM
\CYCLE

\

0) ————
ATTRACTOR / REPELLER

Amplitude of limit cycle osci

7 pomr oF
.~ BiFuRCaTION

Control parameter, A
Control parameter, A

Figure 3.5: Idealized representation of possible fluidelastic oscillations in cylinder
arrays and dynamic bifurcations of a third order oscillator; () soft- and (b) hard-
excited systems.

The critical control parameter, either Ac or Ay, may be clearly obtained from

idealized response curves. In practice, however, it may be difficult to determine,

especially, if turbulence strongly ib to sub-stable oscillations and its effect
cannot be easily d out of 1 Therefore, the com-
mon h is to d ine Ac from i 1 response curves generated by
fluidelastic i jon with turbul. itation. In this way, the actual interaction

mechanism is absorbed by standard threshold definitions (which are purely empiri-
cal). Consequcntly, the coupled system and its stability remain phenomenologcally
not defined.
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The possible nature of fluidelastic i ion with turbul station may

be explored by drawing an analogy between the dynamic response of pipe arrays
and the buckling (or static instability) of corresponding static systems, where two

distinct bifi ions (stable and ble) are also ized. Additionally, severe

imperfection sensitivities, which can round-off or even destroy the perfect bifurca-
tion, have been observed, (74]. As we shall see, some insight may be gained into the

influence of turbulence on fluidelastic instability by treating turbul response as

an imperfection parameter in a coupled system.
The stable bifurcation (soft-excited system) and its imperfection sensitivity may

be di d b; idering load-deflection curves for a d Euler column,
y )

(74], as presented in Figure 3.6. If the column is axially loaded (¢ = 0, perfect sys-
tem), the system remains in the trivial equilibrium state as the load slowly increases
from zero. At critical load, Ps = Psc, the column undergoes a static instability,
and for further increases in Ps, its deflection, v, follows a stable equilibrium path.
A direct analogy between this load-deflection curve and the stable Hopf bifurcation
of the fluidelastic instability may be drawn by al)ow{ing the load, Ps, to represent
the control parameter, A, and the static deflection, v, to represent the amplitude

of the limit cycle oscillations, a. However, if an offset of the load is introduced,

resulting in an initial out-of-straigh of the column (imperfecti o),
the column experiences small stable deflections as the load slowly increases from
zero, tending asymptotically to the post-stable equilibrium path. By drawing the
analogy further, we can allow the imperfection parameter to represenx the strength

of the turbulence field. Thus, the load-deflection curve becomes the response curve

of the pipe array under combined excitation. The imperfecti itivity diagram
indicates that the actual value of Ag, resulted from fluidelastic excitation only, may
be delayed by turbulence. However, for a gradual increase in the control parameter

from zero, the response curve tends asymptotically to the stable limit cycle and
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di 1d definiti

on the

delays in Ac cannot be realized. However, d
used, such a response curve might be assigned a practical threshold below Ac, and

this value would reduce with increasing turbulence (e).

a)

€ - Initial i i v Imperfection par, €

Fign}'f 3.6: A compresed Euler column; (a) load: ion curve, (b) i
sensitivity.

Similarly, the unstable bifurcation (hard-excited system) and its imperfection
sensitivity may be discussed by considering load-deflection curves for a deep fixed
arch, [74], as shown in Figure 3.7. If the arch is centrally loaded, it represents a
perfect system which undergoes a static instability at Ps = Psc. However, the
system at this point shows non-linear softening and an unstable equilibrium path.
Uulike the column discussed above, the arch shows severe imperfection sensitivity,
resulting in a reduction in the actual critical load with increasing e. Thus, by analogy

bul

with the unstable Hopf bi ion of a fluidelastic system, buffeting may

reduce the actual fluidelastic stability boundary, Ac, due to non-linear coupling of
both excitation mechanisms. In this case, prediction of the combined response

becomes very important.



Pac
Deflection, v Imperfection par, €
Figure 3.7: A deep fixed arch under load; (a) load-deflection curve, (b) i fe

sensit;

Standard stability definitions

It follows, from the above discussion, that the practical determination of the sta-

bility of pipe arrays in fluid cross-flow requires a deep understanding of post-stable

illations and the underlying excitati hani Otherwise, the
tally used concept of stability may depend on systems application and not on its
physical properties.

Due to a lack of a universal stability definition, different criteria have gained

acceptance over the years (summarized graphically in Figure 3.8).
© An abrupt change in slope of the response curve (first defined by Weaver and
El-Kashlan, [31]). This is acceptable if the change of slope is very sudden,
otherwise it allows only limits of instability, Ac and Ag3, to be specified (see
Figure 3.8(a)).
o Intersection of the steepest tangent to the post-stable response curve with
the flow velocity (A) axis (introduced by Franklin and Soper, [71]). This
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underestimates Ac, especially if a limit cycle increases very gradually as it

may happen in the case of soft-excited oscillations (see Figure 3.8(b)).

The response curve exceeds a permissible value, typically 1-3 % of pipe diam-
eter (first used by Pettigrew and Gorman, [64]). While this is consistent, it is

phenomenologically incorrect (see Figure 3.8(c)).

o intersection of the steepest tangent to the-post stable curve with the response
induced by turbulence (recently proposed by Chen, [77]). This gives the exact
location of the critical control parameter, Ac, in tern., of Lyapunov’s defi-
nition, assuming that the response due to turbulence is known (see Figure

3.8(d)).
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Figure 3.8: Graphic ion of standard threshold definitions; (a) an abrupt

change in slope. (b) intersection point of steepest tangent with A-axis, (c) amplitude
limits, (d) intersection point of steepest tangent with turbulence response.
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As a result, the determination of the critical control parameter may be affected,

to various degrees, by turbul d ding on the definition used. This has lead

to significant discrepancies in the reporting of experimental data, discussed in Ref-
erences [14,50,55,77), for example. Lever and Rzentkowski, [50], investigated ana-
Iytically the effect of turbulence on the apparent critical flow velocity of a linearized
Auidelastic system. They found that the greater the response due to turbulence the
lower the stability point assigned on the basis of the first 3 standard definitions.
Even a factor as simple as the plotting scale may affect the results of these methods.
Their study suggested that representing the response curve on a logarithmic scale,
which apparently reduces the effect of turbulence buffeting, may give more consis-
tent results, [78,79). However, this method only corrects the size of the problem and
does not recognize its nature.

On the basis of this discussion, it follows that the latter criterion of stability
(suggested by Chen, [77]) which may be considered as a universal definition in the
Lyapunov sense, has the greatest potential for unified presentation of experimental
data. The difficulty of this method is in defining the response due to turbulence
which, in most practical cases, requires separate measurements. However, turbu-
lence buffeting may be approximated by the tangent to sub-critical curve passing
through the origin, assuming that its increasing curvature (as the critical control
parameter, Ac, is approached) is caused by the fluidelastic excitation which inter-
acts with turbulence. Obviously, this effect becomes increasingly important with
the control parameter, A. In this way, the presented concept reaches the point of

practical application and will be used throughout i.. this study.
3.3.2 Stability map

The response curve displays the behaviour of the system governed by only one con-

trol parameter. However, routine dimensional analysis and energy considerations for



the equation of damped harmonically excited oscillator lead to a Connors-type sta-

bility criterion, equation (1.1), as demonstrated by Heinecke, [80]. This equation is

expressed in terms of two di ional ing very in
aeroelasticity; the aforementioned reduced flow velocity, %, and the mass-damping
parameter, méo (where m %! -2 denotes the mass parameter and & is the logarith-
mic decrement of damping defined in quiescent air). In this way, a response surface
may be constructed, (74], and the stability concept becomes three dimensional.
For a pipe array, this surface is folded and may appear as shown in Figure 3.9.
When projected on to the control plane (stability map), it forms a cusp. Within the
cusp, the system response is a double valued function and either small changes in

control or finite disturb,

may excite i bility (hard-excited system).
Indeed, the shape of the cusp defines the size of the hysteresis region as a function

of the mass-damping parameter.

Unstable

Response
surface
Stable
T
1
i
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%
Moss—damping parameter A,

Figure 3.9: Schematic 3-dimensional response of cylinder arrays.
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Note that the response surface in Figure 3.9 reflects the experimental observa-

tions, discussed earlier, that the h is region di at high mass-d

ping
parameters. Clearly, such a response surface may be generated only from a non-

linear theory.

Stability maps are ly used by hers to ize experimental

results and may serve as a design guideline against flow-induced vibration in pipe
arrays (such as the multi-tube marine riser). In this way, Weaver and Fitzpatrick,
[16], defined the stability criteria for four standard array configurations shown in
functional form in Table 3.1 (Up, & U5). These are based on lower bound curves
from most of the experimental data reported in the open literature. The inflection
point in the curves for all geometries was taken at the same value of mass-damping

parameter, o = 0.3, for simplicity.

Table 3.1: Experimental stability criteria for four standard array configurations.
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Chapter 4

Experimental program

It is now generally believed that the underlying mechanisms responsible for flow-

induced instabilit- of pipe arrays in cross-flow are fluid-damping and fluid-stiffness

ntrolled. The first mechanism is the single d f-freedom velocity
resulting from negative damping, while the second is the multi degree-of-freedom
displacement mechanism resulting from fluid coupling effects, thus requiring relative
pipe motion. This hypothesis was established by Chen, [41,42], on the basis of un-
steady fluid theory. However, a clearer physical explanation was given by Paidoussis
and Price, [81], who, in the framework of quasi-steady fluid theory, showed that there

were fundamental similarities between classical galloping and the fluid-damping con-

trolled instability, and between wake-flutter and the fluid-stiffr lled insta-

bility. Both studies suggested that these distinct mechanisms generally coexist, but
each is predominant over different ranges of system parameters, [81}; fluid-damping
controlled instability over mfp < 300 and fluid-stiffness controlled instability over
méo > 300 (approximately). However, this conclusion followed from linearized anal-
ysis and identified only the mechanisms which initially produce the instability -
Hopf bifurcation of trivial equilibrium state. A physical explanation of the various
elements of fluid forces, taking part in the generation of limit cycles, was missing,
There are also little data which can shed some light into this problem and may

be a priori used to establish foundations for 1i delling of post-stable
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behaviour. The present state of knowledge may be summarized as follows:

o Stable limit cycles exist over the entire range of system parameters; their size
decrease with 76, as noted in Reference [31,82], for example. The location
of the associated points of bifurcation is array and row dependent; generally,

the pipe in the third or fourth row yields the lowest critical flow velocity, [32].

© Unstable limit cycles exist only for 8, < 30, [21,43,55]. They are responsible
for a hysteresis-type behaviour which was observed for a single flexible pipe in
the first or second row, [22,54,55], and in a fully flexible array, [23,53,56]; the
size and the width of the hysteresis region decreases with mé,. The effect of

array geometry is generally unknown.

Moreover, the work on heat exchangers and the recent model studies on marine
risers, [11,61], indicate that the fundamental behaviour of cylinder arrays in liquid

and gas flows is phenomenologically very similar. This means that the mechanism

of fluidelastic i ility is independent of Reynolds number as an effect of fully

separated fluid flow. Therefore, by varying ind dently the two nondi ional

parameters, & and 7, and their product, the experimental results obtained in liquid

could be interpreted as the results in gas and vice versa.

4.1 Objectives

This i I study is d with the multi-tube marine riser d
by a rectangular array of closely spaced pipes. Two standard array configurations
were investigated: parallel triangular and square. The principle motivation for
choosing these configurations was to examine the physical behaviour of staggered
and in-line arrays (see Figure 1.3). The tested arrays were modelled as infinite in
transverse to the flow direction, providing a practical simplification for subsequent

theoretical analysis. Thus, only one orientation of the arrays, with respect to the
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steady flow direction, was examined.

The major objective of this experimental program was to explore the mechanisms
underlying fluidelastic instabilities of pipe arrays in fluid cross-flow with special
emphasis on the coexistence of stable and unstable bifurcations (soft- and hard-
excited systems). In particular, this study sought to provide usefull insight into the

following elements of post-stable oscillations:
o the role of relative pipe motion (fluid coupling)
® the behaviour of a single flexible pipe; two versus one degree-of-freedom
o the hysteresis effect
o the excited instability within the hysteresis region
o the velocity- and amplitude-dependant damping

‘The sequence of tests was designed to gradually eliminate the number of degrees-of-
freedom needed to capture the physical essence of an array behaviour in the simplest
way possible. Special attention was paid to points of dynamic bifurcation (actual
stability threshold), the magnitude of the limit cycle and the width of the hysteresis
region (if present). In this way, the foundations for later non-linear modelling were
developed via facti. These experiments were performed in a wind tunnel, to allow
for a clear separation between Strouhal periodicity and fluidelastic instability.

4.2 Fucility
4.2.1 Wind tunnel

A newly constructed low speed wind tunnel, which facilitates both atmospheric
boundary layer simulation in a main tunnel section and flow-induced vibration
studies in an auxiliary flow duct, is located in the Fluids Laboratory at Memo-

rial University. The main tunnel consists of a centrifugal blower with variable angle
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inlet vanes driven by a 19 kW motor, a flow conditioning chamber and a 1 m by 20
m roughed floor boundary layer test sectien. The auxiliary duct facilities consist of
2430 mm by 610 mm test section constructed of plexiglas, several high-loss screens
to achieve uniform flow profiles upstream of the tested array, and a flexible coupling

to isolate the test section from the main wind tunnel.
4.2.2 Test section

The test section is made of plexiglass plate on all four sides to provide a clear
observable testing environment. For ease in installing cylinders and for changing
array pattern, the top and bottom plates of the test section are removable. These
plates have the same pattern of 10 mm holes, either parallel triangular or square, to
allow anchor bolts to fix the cylinders in proper positions. The only difference is in
the size of the holes in the bottom plate, at the location of flexible cylinders, which
were drilled to a diameter of 35 mm to allow free movement of these cylinders. In
order to adjust their damping, the oil-filled cups could be attached to the bottom
plate. Additionally, fourteen holes were drilled upstream of the tested array, eight
in the side and six in the top plate, so that the hot-wire probe support could be
inserted at various positions (Figure 4.1 shows some views of the test section).

In the first stage, experiments were conducted with a 1.375 pitch ratio parallel

to permit ison with the ive air flow data re-
ported in the literature, (31,82,83]. Since it has been found that only the monitored
cylinder, positioned in the third or fourth row, and its immediate neighbours need to
be flexible to simulate the behaviour of a fully flexible array, [82], the experimental
array consisted of 7 flexible cylinders with the central one in the fourth row. Rigid
cylinders and half-cylinders along the side walls were used to complete an, initially,

8 row deep array, as presented in Figure 4.2.
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Figure 4.2: A tested patallel triangular array (linear dimensions in mm) and cylin-
ders numbering.

In the second stage, the tested array was replaced with a 1.433 square con-
figuration. As with Reference (77,82}, a flexible kernel, within a rigid array, was
constructed of 9 flexible cylinders, the central one being in the fourth row. Here,

the experimental array was initially 6 rows deep (see Figure 4.3).
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Figure 4.3: A tested square array (linear dimensions in mm) and cylinders number-
ing.
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All rigid cylinders and half-cylinders were 610 mm long and made out of 60 mm
outside diameter PVC pipe. The rigid cylinders were bolted to both the top and
bottom plates, while the half-cylinders were attached to the side plates introduced
to simulate flow conditions of the surrounding cylinders. Each flexible cylinder was
ulso 60 mm in an outside diameter but only 600 mm long to provide roughly 5
mm clearance at each end. Each was mounted as a cantilever on a 365 mm long
steel rod which in turn was threaded into a steel template (alternatively, a damping
paddle, which was free to move within an oil-filled cup, could be attached to the
free end of the steel rod). The 50 mm thick template was fixed to a welded steel
frame anchored to the floor. This stand was made very stiff, with bending natural
frequency in excess of 85 Hz, to minimize mechanical coupling between the cylinders
through the base.

Figure 4.4 presents sch ically some ional details of this experi \

set-up.

Plexigloss
test section

Conditioning

Wooden duct Probe
/' locations.

A

il-filled
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teraplate

Support stand
anchored to floor

Figure 4.4: Test section layout showing some constructional details.
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4.2.3 Flexible cylinder

For si ification of analytical modelling, the flexible cylinder should ideally be a
simple spring-dashpot system, such as that shown in Figure 4.5. In this case, it can
be seen that only planar motion is allowed which, additionally, is fully correlated
along the pipe span. Moreover, the damping and stiffness properties are linear and

equal in all directions (later simplified to a single deg f-freedom system which

can vibrate in a transverse-to-flow direction only).

Figure 4.5: An idealized model of a single flexible cylinder in an rigid array.

In practice, it is very difficult and expensive to construct such an ideal system
because it generally requires a complex electro-magnetic suspension, such as that

described in Refé [55]. The il which was impl d

in this study, may be i a ise since a routine modal
analysis shows that the mode shape effect is almost negligible. However, linear
damping requires special precautions to be taken to ensure perfect alignment of the

cantilever rod and the cylinder. While this was not always realizable in practice,
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the effects of non-linearity and yin the cylinder | were made as

small as possible.

The mass-damping parameter, i, of the flexible cylinder was varied by chang:
ing the mass, m, and the damping, 8o, separately. The cylinder mass was changed
by unscrewing it and replacing it with one made of a different material. Three sets
of cylinders were used; made from PVC pipe (m=1.04 %), steel pipe (m=6.16 &)
and steel rod covered with PVC pipe (m=12.93 &). The cylinder damping could
be varied by attaching a paddle to the free end of the cantilever support rod and
then by changing the oil level or, alternatively, the oil density in a cup (however,
the application of this method was found to be limited for investigation of post-
stable oscillations since the oil-damper showed strongly non-linear characteristics).
Table 4.1 summarizes the cylinder data for various bundles used throughout this
experimental study.

As noted earlier, the cantilever rod, which projected the flexible cylinder into
the test section, was 365 mm long. For symmetric stiffness tests, two different rods
were used, depending on the cylinder mass: for the low mass PVC pipe case the
rod diameter was 9.5 mm while for the higher mass steel pipe and steel rod/PVC
cases it was 15 mm. For asymmetric stiffness tests, 30 mm diameter rods with a
20 mm long plate near the base were used to force the flexible cylinder to move in
transverse-to-flow direction only (for frequency separation, see Table 4.1). For the
low mass case, the plates were 2.5 mm thick and 30 mm wide. For the higher mass
cases, they were 5.0 mm by 30 mm. Figure 4.6 shows schematics of this cantilever

supporting rod.
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Table 4.1: A summary of experimental data for tested arrays (parallel triangular and square).

Array | Cylinder |[Set| m & mby fo A }: Remarks
geometry | material | # | (-) | -) - (Hz) (Hz) O]
Parallel | PVC pipe | I | 237 [ 0.009 + 10% | 2.13 & 10% | 5.10 & 1% | 5.10 £ 1% | 1.0 | Prelinunary lests
triangular | PVC pipe | 2 | 250 | 0.009 £ 10% | 2.25 & 10% | 5.00 £ 1% | 5.00 £ 1% | 1.0 | Varied damping
3| 250 [ 0.020 & 10% | 5.00 * 10% | 4.95 + 1% [4.95 £ 1% | 1.0
|4 | 250 | 0.030 & 10% | 7.50 = 10% | 4.90 & 1% | 4.90 + 1% | 1.0
PVC pipe | 5 | 237 | 0.008 £ 10% | 1.90 & 10% | 5.10 :k 1% | 5.10 £ 1% | 1.0 | Varied number of
237 | 0.010 £ 1% | 2.37 £1% | 615 5.5 119 | degree-of-freedom
Steel pipe | 6 | 1401 | 0.008 £ 10% | 11.2 & 10% | 5.70 & 2% | 5.1" = 2% | 1.0 | (varied mass)
1401 | 0.006 £ 1% | 841 £ 1% | 425 295 | 71
Steelrod & [ 7 | 2042 [ 0.008 & 10% | 23.5 = 10% | 3.85 % 2% | 3.85 &+ 2% | 1.0
PVC pipe 2042 [ 0.0075 = 1% | 221 £ 1% 29.0 4.00 73
== 2
Square | PVCpipe | 8 | 237 [0.008 + 10% [ 1.90 + 10% [ 5.15 4 1% [ 5.15 + 1% | 1.0 | Varied number of
237 [ 0.012 1% | 2.84 £ 1% 61.0 5.10 12.0 | d.gree-of-freedom
teel pipe | © | 1401 | 0.008 & 10% | 11.2 £ 10% | 6.00 = 2% | 6.00 2% | 1.0 | (varied mass)
1401 | 0.007 £1% | 980 £ 1% | 425 595 | 71
Steel rod & | 10 | 2042 | 0.008 £ 10% | 23.5 & 10% | 4.15 2% | 4.15 * 2% | 1.0
PVC pipe 2042 [0.0075 £ 1% | 22.1 = 1% 29.5 4.10 72
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Figure 4.6: A schematic view of an ic cantilever rod (all dimensions in
mm).

4.3 Instrumentation

Figure 4.7 shows a view of an instrumentation system which, in general, consisted
of flow velocity (hot-wire anemometer) and pipe motion (strain gauge) measuring

devices.
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Figure 4.7: A photograph of an instrumentation system

4.3.1 Flow velocity

The flow velocity was measured upstream of the experimental array using a cal-

ibrated DISA constant temperature hot-wire anemometer connected to the DISA

55M system. This system consisted of a 55M01 unit, a 55M10 constant temperature
anemometer standard bridge, a 55M05 power pack and a DISA 90 deg sensor (type
55P13) parallel to axis probe. The voltage reading during the experiments was per-
formed using a 55D31 digital voltmeter with a 10 sec time constant. The hot-wire
sensor was installed on the probe support at a fixed position.

Before any test, the instruments were warmed-up and the hot-wire sensor was
heated for at least 30 min to avoid drift in voltage reading during the experiment
To account for room temperature variation from one day to the next, actual readings

in still air were converted to values recorded during calibration runs

o
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4.3.2 Pipe motion

Vibration response of the cylinder due to air flow was monitored using the follow-
ing set-up: strz” - gauges, Wheatstone bridge, filter, oscilloscope, chart recorder and
RMS voltmeter. Two VISHAY EA-06-125BT-120 open faced general purpose metal-
lic foil strain gauges were mounted near the base of each cantilever steei rod in both

and to-fl irecti: The strain gauges were connected to

the Wheatstone bridges, MICRO-MEASUREMENTS BA-4, giving readings in mA
or micro — strain. The electric signal from the bridge was transferred through the
dual HI/LO filter (cut off frequency was set twice the natural frequency of the cylin-
der), model Rockland 1022F, to the storage oscilloscope giving a wave pattern which
represented the vibration response of the monitored cylinder (hard copy could be
obtained using a chart recorder). Its RMS displacement was recorded by a DISA
55D35 RMS digital voltmeter with a 100 sec time constant.

For final analysis of the cylinder physical properties (natural frequency and
damping) the response pattern was digitized using a KEITHLEY SYSTEM 570
data aquisition instrument, displayed on the monitor screen for control and stored

on a floppy disc for further processing on a VAX/VMS mainframe computer.

4.4 Procedure

Prior to the actual testing, a calibration of the instrumiuts and a series of pre-
liminaty tests were performed which included close tuning of all flexible cylinders
(natural frequencies and dampings) and, because the facility was new, an assesment
of its quality in terms of upstream flow conditions (velocity and turbulence intensity

profiles) and cylinder mechanical properties.
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4.4.1 Instrument calibration
Hot-wire anemometer

During calibration, the hot-wire probe was mounted in air flow, of known variable
velocity, over a relevant velocity range, U = 0.0 —4.0 2. For U =0.0-1.0 )
the hot-wire sensor was placed at the inlet to the water-filled container and the
velocity of in-flowing air was calculated, via the ™ ‘rnoulli’s equation, from the rate
of change of water column level (for details, see tteference [84]). The velocity range
could be changed by varying the orifice size in the bottom of the cylinder. For
U =10-40 2, a Pitot tube and the hot-wire probe were mounted in the main
wind tunnel. Thus, the velocity of air flow was regulated by varying the degree of
fan opening and calculated from the measured stagnation pressure. In both cases,
the probe operation temperature was set at 200 deg.C and decade resistance was
calculated from the equation stated on the probe test card. Figure 4.8 shows a
typical calibration curve.

Voitage v* v

i
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Figure 4.8: Calibration curve for hot-wire probe DISA 55P13.



For calibration, the squares of voltages were plotted against the square roots of
velocities to yicld a linear characteristic for U > 0.75 Z-. Over this range, the flow

velocity was directly calculated using the equation for this line. However, over the

lower range, the experi I data had to be with the calibration curve to

obtain the actual flow velocity. It can be seen that all experimental points correlate
very well; the water cylinder readings being a non-linear extension of the Pitot tube

readings.

Strain gauges

The strain gauges were calibrated for tip deflections up to one half a cylinder diam-
eter (30 mm), which is more than that needed to cause inter-cylinder clashing, in

both ise and to-flow directi The output from the

Wheatstone bridge was found to be a linear function of cylinder static displacement,
equal in both directions. Thus, the calibration factor was directly obtained from
the calibration curve which is shown in Figure 4.9.

e voltage, V (v)
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Figure 4.9: Calibration curve for strain gauge VISHAY EA-06-125BT-120.

61



4.4.2 Preliminary tests
Upstream flow conditions

This measurement was done over the range of critical flow velocities for the tested
arrays. The flow velocity and the turbulence intensity were recorded in a cross-
sectional plane, 70 mm upstream of the test section (measured to the symmetry
axis of the first row of cylinders), at 48 uniformly spaced points. It was found
that velocity profile showed mean variations between test points less than 17 % and
turbulence intensities variations less than 6-10 %. These values, comparable with
those reported for other tests rigs (see Reference [55], for example), were felt to be
acceptable, given the predominant effect of the pipe bundle geometry on the flow
field within the bundle. Figure 4.10 shows typical measured velocity and turbulence

intensity profiles (for these, the mean upstream flow velocity was Jy = 0.78 ).

(@)

Figure 4.10: Upstream flow conditions for Uy = 0.78 2; (a) velocity profile, (b)
turbulence intensity profile.
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Mechanical versus fluid coupling

Although the support stand for the flexible cylinders was intentionally made very

stiff, tests were conducted to investigate the relativei of versus
aerodynamic coupling between adjacent PVC flexible cylinders. When a neighbour-

ing cylinder was plucked in still air at a relatively large amplitude (15 % d), the
monitored cylinder’s vibration amplitude was roughly 40 times smaller, suggesting
small coupling, in general. The monitored cylinder was then replaced on its can-
tilever rod with an equivalent solid steel lumped mass of a diameter 60 mm and
130 mm long which was tuned to the same frequency. The damping for this system
dropped by a factor of three from the value for the full PVC cylinder, reflecting
the lower aerodynamic damping of the smaller Jumped mass. When the neighbour-
ing cylinder was then plucked at large amplitude, the monitored system vibration
amplitude was roughly 120 times smaller. That is, the same factor of three reduc-
. tion was seen for both the damping and the induced vibration of the lump mass in
comparison with the full PVC cylinder.
These tests suggested that virtually all the coupling between adjacent fiexible

cylinders was aerodynamic, with lly negligible mechanical coupling. Thus,

it is very unlikely that heavier cylinders, used in subsequent experiments, could
introduce significant mechanical coupling. This, in turn, confirmed the effectiveness
of the stiff base plate and support stand.

Natural frequency and damping

The natural frequency, fo, and the logarithmic decrement of damping, 6, of the
flexible cylinder were determined using a simple pluck test. Initially, they were ob-
tained from a 20 sec recording on the oscilloscope. The number of cycles over this
time period was counted and the peak-to-peak cylinder response at the beginning

and at the end was determined from the square root of the sum of the squares of
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the measured responses in the z- and y-directions. In this way, both the natural

and the I ithmic d of damping could be calculated and subse-
quently tuned, by adjusting slightly the length of the cantilever steel rod, to better
than 2 % (4 % for an asymmetric rod) for frequency and 20 % for damping.

The final analysis, after the bundle was tuned, was performed by means of a

digitizer and a specially developed computer code (it will be described in detail

in Section 4.3). The natural fi and the logarithmic d of damping

were computed as a function of oscillation amplitude to verify their linear proper-

ties ( ly, in both ise and to-flow directions). The natural

frequency was virtually constant and equal in both directions, while the logarith-
mic decrement of damping slightly increased over the tested response range (typical

plots are shown in Figure 4.11).
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Figure 4.11: Logarithmic decrement of damping in quiescent fluid, &, as a function
of amplitude (mby = 2.25).
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4.4.3 Response curves

The fluidelastic behaviour of each array was investigated based on response curves;

the i ional RMS. litude of oscillati A‘j“, plotted against the reduced
pitch velocity, Up, & Y2, which defined the flow velocity inside the array. The pitch
velocity, Up, was expressed in terms of the upstream flow velocity, as Up & 22Uy,
The coefficient P defines the array pitch (see Figure 1.3).

Each experiment was commenced at some low flow velocity which was then

increased in small steps. The RMS amplitude measuremerts were made in both the

i to-flow directions (Arws was as the square
root of the sum of the squares of these), with a minimum 10 min settling time
elapsing at each velocity (to achieve steady state). The flow velocity was increased
until the non-linear response plateau was observed or cylinder-to-cylinder clashing
accurred. The flow was then decreased in small steps, again allowing a minimum 10
min settling time to elapse before response readings were taken, until the vibration
amplitudes dropped to their stable levels. In this way, both soft- and hard-excited

(b is-type) oscillations were identified. The effecti of this | dure was

examined in a series of preliminary tests (set 1 in Table 4.1).

Initially, the effect of varied damping on the response curves was investigated.
These tests were started at the structural damping level, 6 = 0.01 and were per-
formed only for a parallel triangular array at the lowest mass, since it was observed
that an oil-filled damper caused the damping to be non-linear. A total of six re-
sponse curves were recorded; one for a "fully flexible” array and one for a single
flexible cylinder, which was positioned in the fourth row (see Figure 4.2), at three
different damping levels (set 2, 3 and 4 in Table 4.1).

Next, the detailed studies of a minimum number of degrees-of-freedom, needed
to capture the essence of array behaviour, were conducted. These tests werc first

performed on "fully flexible” arrays; flexible kernel of seven (parallel triangular ar-
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ray) or nine (square array) cylinders surrounded by rigid neighbours. The cylinder
at the center of each kernel was monitored. In this way, the basic response pattern
was established and the next tests were intended to reproduce this pattern with
a fewer number of degrees-of-freedom. Thus, the flexible kernel was reduced to a
tandem cylinder arrangements; the central one and one of the adjacent cylinders.
All possible configurations were tested to find those which matched closely the pre-
viously recorded response pattern. During these tests, both of the flexible cylinders
were monitored to explore the effect of neighbouring cylinder motion and the physi-
cal role of fluid coupling. This procedure gradually eliminated some of the cylinders
and identified the critical zone within the flexible kernel. Subsequently, a single flex-
ible cylinder in an otherwise rigid array was investigated. This required recording
a total of twenty (parallel triangular array) or twenty five (square array) response
curves. Finally, the symmetric cantilever rods of the cylinders were replaced with
asymmetric ones, allowing oscillations in the transverse-to-flow direction only, thus
further reducing the number of degrees-of-freedom. As before, first the tandem flex-
ible cylinder configurations and then the single flexible cylinders were investigated

for their behaviour within a rigid array.

Summa ; in this dure the multi degree-of-fre ‘dom "flexible ar-
ray” was gradually reduced to the single degree-of-freedom flexible cylinder.

‘When one sequence of i was leted, two cylinder rows

in a parallel triangular array were step by step inserted (see Figure 4.2) and onein a
square array (see Figure 4.3), and the whole process repeated. Then, the array was

bled to its initial

and the effect of varied mass was investigated
by replacing the flexible cylinders. Thus, a total of nine such experiments were run
for a parallel triangular array (upto thirty response curves each); three different
cylinder masses (set 5, 6 and 7 in Table 4.1) for each of three different array geome-

tries depending on a number of upstream rows. Since in a square array only one
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upstream cylinder row was additionally inserted to study the row dependence ef-
fect, a total of six such experiments were performed (upto forty one response curves
each); three different cylinder masses (set 8, 9 and 10 in Table 4.1) for two different

array geometries.
4.4.4 Transient excitation

The transition of an array from stable to post-stable states at the same flow velocity

(hard-excited oscillations) was ined using both transient displacement and ve-

locity excitation. These tests were conducted in order to determine the itud
of the excitation needed to trigger instability of a stable array operating within the

hysteresis region.

Displacemvnt excitation

With an array oscillating at steady, stable amplitude near the lower limit of the
hysteresis region, the monitored cylinder was plucked. The transient displacement
of the cylinder was recorded on a chart recorder to determine the peak amplitude
which was converted to an equivalent RMS by dividing by the square root of two.
To allow the system to reach steady-state, a minimum of 10 min was permitted to
elapse before RMS readings were taken. The test was terminated after an elapsed
tirne of more than 30 min. At the same flow velocity, the process was then repeated
with larger peak displacement excitation until the array went unstable. In this
way, the minimum peak (RMS) transient displacement needed to cause transition
from stable to post-stable oscillations was determined. The flow velocity was then
incremer*cd in steps and the whole procedure repeated until the upper hysteresis
limit was reached.

These excitation experiments were performed for parallel triangular and square

arrays (set 1 and 8 in Table 4.1), at the lowest cylinder mass where the observed
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width of the hysteresis region was the largest.

Velocity excitation

These tests were conducted by starting at a stable vibration level at initial velocity,
Uy, near the lowest region of the hysteresis region, increasing the velocity by Al
for a time period of At, then returning to velocity Us. The time interval was varied
over the values 10, 15, 20, 30, 45 and 60 sec, and for each AU, the minimum A¢
needed to trigger instability was determined. After the surge, at least 10 min of
settling time was permitted to elapse before the cylinder amplitude readings were
taken and 30 min before the test was terminated. A time series trace of the velocity
surge, U(t), was obtained from the hot-wire anemometer for each test (a typical
trace is shown in Figure 4.12). Note that the steady flow results (response curves)
correspond essentially to A¢ > 10 min and AUpin = Uc— U (the minimum velocity
increment needed to raise the system to the stability threshold under steady state
conditions). Thus, a At of longer than 1 min was not used, since it was felt that

this would tend to approach the steady flow test conditions.

At =30 sec

:# AU=0.59 m/sec

Figure 4.12: Typical trace of velocity surge, U(t), obtained from hot-wire anemome-
ter.

As with displacement excitation, the velocity Uz was incremented in steps to-
wards the upper hysteresis limit. The product of velocity and time increments ,
AU - At, was taken to be a measure of the overall array excitation. These tests

were of practical importance, showing how the velocity surge may trigger instability
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within vhe hysteresis region. However, they gave very little additional insight and
were only conducted for a parallel triangular array at the lowest cylinder mass (set
1 in Table 4.1).

4.4.5 Velocity-dependent damping

This experimental study looked at the nature of velocity-dependent damping of
cylinders oscillating in both rigid and flexible arrays. The tests were conducted for
a parallel triangular and a square array with the monitored cylinder (m=1.04 &2,

positioned in the fourth row.

Analysis of decay curve

Decay curves were used as a common method of assessing the damping in flow-

induced vibrati The itored cylinder, subjected to steady flow velocities

from zero to Ug, was plucked upto a tip peak deflection of A = 20 % d in the
and to-flow directi In each case (below the

hysteresis limits), the cylinder oscillations, induced by plucking, decayed to the
turbulent buffeting level at a given flow velocity.

The amplitude decay curves were digitized with a sampling rate &;f approximately
40 points per cycle (200 Hz for f = 5.00 Hz). To reduce the ”noise” caused by
random turbulence fluctuation in the mean flow, the data files were smoothed using

the five-point marching polynomial of Longuet-Higgins and Cokelet, [85]. Addi-

tionally, the "mean drift” of the equilibrium state (A = 0) was removed to obtain
comparable results from the negative and the positive peaks. Figure 4.13 shows a
typical experimental decay curve which was obtained, using this procedure, in the

presence of fluid flow.

69



L

3

8

i

8

E

£

s

2

g

&

I

&8

EE T T s e
TIME (sec)

Figure 4.13: Typical decay curve in transverse-to-flow direction (Uy & 0.5Uc).

The damping factor, ¢(A), was computed as a function of the peak amplitude, 4,
over portions of the decay curve in small amplitude intervals, (An, Anyn), which were
2 % d. The damping, at each flow velocity, was then obtained by extrapolation of
¢(A) to the amplitude level induced by turbulence (typically, less than 1 % d). This

method was iall, jent within the b

is region, where the damping

showed a strong d d on the oscillati litude due to the i of

stable and unstable domains. The final values of damping were an average of three
different pluck tests.
The associated frequency of oscillations which follows from the number of cycles,

N, in the equivalent time intetval, (£n, tnsn), is:

N

(4.1)

which yields fo in the still fluid.
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Experimental decay data were initially analyzed using three different techniques:
(1) a standard logarithmic decrement method, (2) a modified logarithmic decrement

method and (%) a ical identification tect

The method of logarithmic d which is most ly used in practice,

allows the linear damping to be estimated from the raw decay data via equation:
1, 4
6=~ 4.2
v (4.2)
which yields & in the still fluid. The amplitude Ay at ty and Any at toyy are

calculated as average values from the positive and negative peaks, [43]:

2 A, = A n.
A A +2 net o g o Auel +2A 4N+ (43)

The logarithmic decrement of damping, 8, was converted to the damping factor (ex-

pressed in percentage of actual over critical), ¢, using the approximate relationship:

1
= 56 *100%. (44)

In this method, only one value of damping was obtained in a given amplitude range,
(Any Antn). However, this value varied with the number of cycles, N, posing an
important experimental problem.

The modified logarithmic decrement method, [86), is an alternative procedure,

independent of the number of cycles in equation (4.2). The expotential decay curve:

A = Coe™¢/t (4.5)
is fitted through the peak points (separately, through positive and negative) of the
experimental decay curve. The constant Co defines the intersection point (¢ = 0)

with the amplitude axis. After taking the logarithm of both sides and substituting

for f (equation (4.1)), this expression becomes:
InA =inCo — 2r¢N. (4.8)
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The function, which is given by equation (4.6) (plotted against time measured in
units of N), represents a straight line on a log-linear basis with equally spaced
points, at AN = 1, for approximately constant frequency of oscillations. Thus,
the departure of the experimental peak points, InA, from this line is entirely due

to non-linearity in the damping. As before, equation (4.6) was applied in ampli-

tude intervals of 2 % d, using a best-fit straight-li ion of experimental
data, yielding the actual value of the damping factor. This method was especially

convenient if the decay curve was perturbed by flow turbulence.

The i ificati i originally developed by Bass and Had-
dara, [87], for finding the roll damping of ships, allows a direct assessment of damp-
ing non-linearities. This method can be applied to the complete portion of the
decay curve, assuming equation of decay motion, induced by plucking, to be of the

following non-linear form:

§(t) + 201+ | 9() | +nad(19(0) + (14 py(@Vlyt) =0 (47)

where the constants 71, 72 and g, reflect the fluid-damping and fluid-stiffness non-

N ively. The identification of these is performed through

a best-fit of equation (4.7) to experimental decay data, either all recorded points or
the peak values. This numerical routine requires as an input the initial conditions
at the peak point (3o = An, io = 0), the estimated linear parameters (w, ), and the
"guessed” non-linear parameters (71, 2, #1). The difference between the predicted
and the observed values of the decay amplitude is minimized with respect to the
parameters to be identified. Some details of this complex numerical procedure can
be found in Reference [87).

To test the validity of the proposed methods, the pluck experiments were first
performed in still air and then in fluid flow (Uy = 0.5Ug). Table 4.2 shows the
variation of the damping, with the amplitude of oscillations, derived from numerical

analysis of the decay curves. The numerical results, which were obtained from
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application of the different techniques (1,2,3), were found to be generally in very
close ~greement. In view of these results, it could be concluded that each method
gave accurate estimates of the damping in a given amplitude interval (2 % of d).
However, the logarithmic decrement method (1) and the parameter identification
technique (3) showed a sensitivity to flow turbulence "noise” which obscured the
true value at the response peaks. Moreover, the parameter identification technique
was strongly dependent on its linear inputs; w and {. Thus, on the basis on these
observations, the modified decrement method (2) was chosen for the present work
since it gave more consistent estimates of damping and was relatively sin.ply to
apply.

Table 4.2: Numerical values of damping factor (% of critical); comparison of different
techniques.

A Uy = 0.0
%d[@ TC) [G)
15-13 |.142 | .140 | .141
13-11 | .136 | .134 | .134
11-9 | .128 | 130 | .130
97 | .127 | 127 | 129
75 | .119 | .120 122
5-3 | .121 |.120 | .129
31 [.120 | 121 | 124
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Chapter 5

Experimental results and
discussion

The experimental program, undertaken within this study, was very extensive; ap-
proximately five hundred response curves were recorded. Therefore, only those re-
sults which were found essential for further model development are reported and
discussed in this Chapter. However, viewed in this condensed form, they may ap-
peu‘- difficult to interpret. For this reason, the majority of the recorded response
curves are presented in the Appendix A, while the detailed damping curves are
included in the Appendix B.

To ensure that the trends observed are not distinct phenomena associated with

an array g 'y, two different ions were tested; parallel triangular and

square.
5.1 Parallel triangular array

The tested cylinder configuration is displayed in Figure 4.2. The monitored cylinder,
No.7, is positioned in the fourth row for the basic geometry or, alternatively, in the

fifth and sixth rows with additional cylinders installed upstream.
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5.1.1 Post-stable behaviour
Preliminary tests

These experiments, which included both steady flow and transient excitation tests,
were aimed to recognize the nature of post-stable oscillations.

Figure 5.1(a) shows the initially obtained RMS response curves as a function of
reduced pitch velocity, Upy, for the steady flow tests conducted on both 7 flexible
and 1 flexible cylinder arrays (set 1 in Table 4.1), with the monitored cylinder in the
fourth row. Notice that the 7 flexible cylinder configuration shows clear hysteresis
behaviour, while the single flexible cylinder system does not. For the 7 flexible
cylinder array, a stability threshold, Uc, of Up, = 13.66 may be clearly assigned,
since the curve is essentially vertical at this point (it should be vertical, in principle,
but it is shown here as connections between data points as actually obtained). The

t-stable vibration litud

d at ~ 11.5 % d. Higher flow velocities
were found to initiate cylinder ciashing, leading to slightly lower RMS amplitudes.
As the flow velocity was reduced, the array remained unstable until the velocity
dropped below Up, & 10.80. The lowest velocity point on the hysteresis curve, Uy,
may be taken as Up, = 10.42. For the single flexible cylinder array, the stability
threshold may be defined as Up, = 14.75 using the criterion suggested in Section
3.3.1 (intersection of steepest tangent to the post-stable response curve with the
response induced by turbulence). The post-stable vibration amplitudes appear to
be self-limiting, reaching a plateau of Apams ~ 6.7 % d. It is worth noting that these
tests were subsequently repeated and gave virtually identical results.

With the basic post-stable behavi ized, the transient excitation tests

were conducted. The 7 flexible cylinder array was excited at initial velocities, Ur:

Upr = 9.95,10.80,11.87,12.95. For U < Uy (Up, = 10.42), the array always

returned to its original state ( dless of exci h istics), while for Uy

< Ur < Ug (Up, = 13.66) these transients could trigger a transition to post-stabl
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oscillations with all 7 flexible cylinders vibrating at large amplitudes. The final post-
stable RMS amplitudes were found to be very close to those levels recorded during
the steady flow tests (it should be noted that once unstable, the array showed no
tendency to return to its original lower vibration level). Figure 5.1(b) presents these
data together with the mini peak displ itation levels to

lent RMS litudes (; lly, larger excitations than these minima would

also cruse transition). As expected, smaller minimum excitations were required to
cause transition as Uc was approached. However, these excitation amplitudes all lie
above the expected location of the unstable limit cycle which should be positioned
within hysteresis region (see Figure 3.5). This is not surprising since additional
energy must be put into the system via fluid coupling to trigger instability of the
neighbouring cylinders (the single flexible cylinder array would always return to its

original vibration litude after any excitation). It is thus ble to expect

that the unstable limit cycle would show up at lower excitation levels if all flexible

cylinders were :xcited at the same time.

Th: 1l excitation was ished with the velocity i however the
size of velocity surg 1d not by d to an equi displ.
Interestingly, the product needed to trigger ition, AU - At, is i 1

constant, at a given Uy, and decreases as Us approaches Uc (AU - At ~24,15,8 at
respective velocities Up, = 10.80,11.87,12.95). This suggests that the threshold for
transition by surge, at a given Uy, is related to the increased energy in the surge flow
as compared with the steady flow. As one would expect, the larger the magnitude
of the surge, the less it would need to persist to trigger the transition to post-stable

vibration.
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Figure 5.1: RMS response curves for the 7 and 1 flexible cylinder parallel triangular
array; (a) steady flow and (b) excitation tests.



Effect of damping

Figure 5.2 presents the effect of damping on the array behaviour (to allow damping
variations, paddles were fitted to the top of each cantilever support rod). Steady
flow tests were run for & = 0.010,0.021,0.030 (set 2, 3, and 4 in Table 4.1). Notice
that the response curve for the 7 flexible cylinder array with 6 = 0.010 agrees
well qualitatively with that obtained previously for this case which, for easy of
comparison, is also presented in Figure 5.2. For some reason, the stability threshold
has dropped slightly from Up, = 13.66 to 12.96 while the width of the hysteresis
region has decreased from 24 % Ug to 16 % Uc. The most noticeable change,
however, is the reduction in the post-stable amplitude plateau from ~ 11.5 % d to
~ 6.3 % d. Since this latter vibration level did not produce cylinder clashing, data
were obtained at several velocity points higher than Ug. As can b}a seen in Figure
5.2, this lower post-stable plateau was observed at all damping values. However,
the further increase of damping to § = 0.021 and 0.030 increased the stability
threshold to Up, = 14.21 and 15.35, and reduced the width of the hysteresis region
to 10 % Uc and 6 % U, respectively. Also, the single flexible cylinder cases all
showed slightly higher stability thresholds, less dramatic transition from stable to
post-stable behaviour and no hysteresis.

In addition, for each damping value, transient displacement and velocity excita-
tion tests were conducted on the 7 flexible cylinder array at steady velocities, Uy,
just below Uy and approximately half way between Uy and Uc. As with the pre-

vious test series, iti d by either displ. or velocity
gave final RMS amplitudes virtually identical with the corresponding steady flow
results which are presented in Figure 5.2. Also, the single flexible cylinder array

always returned to its initial litude levels, dless of the itude of the

transient.
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Before proceeding further with the experimental investigation, it was necessary to

find an explanation for the signi di in the observed RMS amplitudes

of post-stable oscillations for 8o = 0.010 (see Figure 5.2(a) and 5.2(b)). For this, the
damping paddles were removed and the steady flow test for the 7 flexible cylinder
array (set 5 in Table 4.1) was run again. Figure 5.3 shows the new response curve
which is drawn without markers (solid for increasing and dashed for decreasing flow
velocity) and is denoted as “ideal”. Interestingly, this response curve agrees well
qualitatively with the previous steady flow tests for § = 0.010 (set 1 in Table
4.1), yielding the stability threshold Up, = 13.75 and the width of the hysteresis
region 20 % Uc. The post-stable amplitude plateau is even higher from observed

earlier, reaching ~ 15.4 % d. This suggests that an oil-filled damper introduces non-

dditi ; Litud 1

linear damping, causing | energy dissi at large

Because of this, damping paddles were not used in subsequent work.

Imperfection sensi*: /ity

As noted earlier, the mass-damping parameter was varied by changing the mass
of the flexible cylinders. Unfortunately, this required the reassembly of the array
each time, leading to inevitable changes in relative cylinder positions. As shown
by Andjelic, [54,55], these changes, although very small, may affect the critical
flow velocity. Therefore, before proceeding to actual experiments on a number of

degrees-of-freedom, a limited study was performed, showing sensitivity of the post-

stable array behaviour to the slight i fections in the ¢ylind Li To
measure the extreme imperfection effect possible, the "dominant” cylinder (e.g. the

cylinder which was observed to have the lowest stability threshold and the largest

t-stable oscillati litude) was slightly displaced, ~ 10 % of the gap between

cylinders, from its "ideal” position.
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Figure 5.3 shows the response curves for the 7 flexible cylinder array with the
dominant cylinder, No.1, displaced (a) downstream, (b) upstream, (c) left and (d)
right (together with the "ideal” which is presented for easy of comparison). Notice
that, unlike the previous tests, the response curves display significant qualitative
discrepancy. However, the post-stable amplitude plateaux, all in the range ~ 15.8-
16.8 % d, are essentially unaffected. The stability threshold, Uc, has varied between
Up, = 10.61 (Figure 5.3(d)) and Up, = 15.22 (Figure 5.3(c)), while the lowest
point on the hysteresis curve, Uy, has varied only between Up, = 10.81 (Figure
5.3(b)) and Up, = 11.99 (Figure 5.3(c)). The widths of the hysteresis region are
in the range 14-21 % Ug. Evidently, the most noticeable change in the array be-
haviour is the disappearance of hysteresis in Figure 5.3(d). However, the stability
threshold,Up, = 10.61, falls close to the Uy range (Up, = 10.81 — 11.99). These
results explicitly show that, indeed, even slight imperfection in cylinder alignment
may influence the post-stable array behaviour. However, for the limited cases stud-
ied, Uy is approximately constant. This suggests that, in the extreme situation of

the di of is, Uc may be i d as Uc = Un.

Effect of number of degrees-of-freedom

‘The detailed experimental studies, to reduce a number of degrees-of-freedom needed
to model the post-stable behaviour of a fully flexible array, were conducted in the
mass-damping parameter range (Mo ~ 1.9 — 23.5 (set 5, 6 and 7 in Table 4.1).
Figures 5.4-5.6 give the essence of these experiments. To provide a clear description
of the tested arrays, a code is employed (indicating the monitored cylinder and the
total number of degrees-of-freedom); No.! : m x n, where { identifies the monitored
cylinder (1-7), m denotes the number of flexible cylinders (1-7) and n is the number
of degrees-of-freedom for the flexible cylinder (1,2). For a given geometry, each

Figure contains four response curves; the central cylinder in tLe 7 flexible cylinder
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array (No.7: 7 x 2), the central cylinder in the 2 flexible cylinder array (No.T:
2 x 2) whose strong coupled motion approximately replicated No.7: 7 x 2, and the
single flexible cylinder (1 x 2 and 1 x 1) whose motion dominated the behaviour of
the 2 flexible cylinder array previously recorded. In this way, the examined array
was gradually reduced from 14 to 1 degrees-of-freedom. Viewed in this condensed
form, Figures 5.4-5.6 may appear difficult to interpret. Thus, additional results are
presented in Appendix A (Figures A1-A21). Below, some observations are noted,
regarding the stability behaviour of cylinder arrays (enclosed in brackets are the
supplementary observations from examination of Figures A1-A21).

Figure 5.4 shows the results obtained at még & 1.9~ 2.4 (set 5, Table 4.1). Note
that (see also Figures A1-A9), although almost all 2 x 2 configurations tested show
coupled motion (e.g. both cylinders move in a well defined mode induced by the
"dominant” cylinder), only one closely replicates 7 x 2 response (fluid coupling in
2 x 1 was not observed). It appears that there is one cylinder in the bundle which,
via fluid coupling, dominates 2 x 2 and 7 x 2 behaviour; it initiates instability and

governs post-stable oscillations.
o Figure 5.4(a) - the central cylinder in 4-th row:
— No.T: 7 x 2 displays hysteresis (No.7: 1 x 2 does not)

— No.7: 2 x 2 closely replicates No.7: 7 x 2 behaviour, showing strong
coupled motion (only one 2 x 2 configuration, No.7 and No.1, behaves
similarly to No.7: 7 x 2, coupled motion for 2 x 1 is not present)

— No.l: 1x2and No.l: 1 x1 also show hysteresis, however differ from
No.7: 7 x 2 in exact details (both 3-rd row flexible cylinders, No.1 and

No.5, display nearly same 1 x 2 and 1 x 1 behaviour)
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o Figure 5.4(b) - the central cylinder in 5-th row:

— No.T: 7x 2 displays hysteresis (No.7: 1x 2 is stable in the tested velocity
rangé)

- No.T: 2 x 2 closely replicates No.7: 7 x 2 post-stable behaviour, however
becomes unstable eatlier (only one 2 x 2 configuration, No.7 and No.6,
shows coupled motion which is not present for 2 x 1)

— No.6: 1 x2 and No.6: 1 x 1 show qualitatively similar behaviour to No.7:
7 % 2, post-stable response is sigaificantly higher (cylinders No.1 and No.5

are almost stable)
o Figure 5.4(c) - the central cylinder in 6-th row:

— No.7: 7 x 2 does not display hysteresis (No.7: 1x 2 is stable in the tested
velocity range)

~ No.7: 2 x 2 repli No.7: 7 x 2 behavi (no h is), although

shows clean response jump at the stability threshold (only one 2 x 2
configuration, No.7 and No.6, show coupled motion which is not present
for 2 x 1)

— No.6: 1 x 2 and No.6: 1 x 1 behave similarly to No.7: 7 x 2, No.6:
1x 2 shows steeper post-stable response (No.6 is the only clearly unstable

cylinder)

Figure 5.5 presents the corresponding results for tests conducted at méy = 8.4 —
11.2 (set 6, Table 4.1). The most noticeable difference is the weaker coupling in all
tested 2 x 2 configurations (see also Figures A10-A15). However, the role of the

dominant cylinder is clearly established.
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o Figure 5.5(a) - the central cylinder in 4-th row:

— No.T: 7 x 2 displays very narrow hysteresis (No.7: 1 x 2 does not)

— No.7: 2x2 repli No.7: 7x2 post-stable behaviour, however initiation

of instability is delayed (only one 2x2 configuration, No.7 and No.1, show
coupled motion which is not present for 2 x 1)

— No.l: 1 x 2 and No.1: 1 x 1 closely reflects No.7: 2 x 2 behaviour, thus
initiation of instability is delayed with respect to No.7: 7x 2 (No.5: 1x2
shows better qualitative agreement with No.7: 7 x 2 behaviour, however

No.5 and No.7 do not show coupling in 2 x 2 configuration)
e Figure 5.5(b) - the central cylinder in 5-th row:
— No.7: 7x2 displays wide hysteresis, post-stable plateau is very low (No.7:
1 x 2 is stable in the tested velocity range)

— No7: 2 x 2 closely replicates No.7: 7 x 2 behaviour (only one 2 x 2
configuration, No.7 and No.6, show coupled motion which is not present

for2x 1)

— No6: 1 x 2 displays qualitatively similar k is behaviour to No.7:
72 and No.7: 2x2, higher post-stable response (No.6 is the only clearly
unstable cylinder)

— No.6: 1 x 1 displays significantly narrower hysteresis than No.6: 1 x 2

and becomes unstable earlier

The results for the central cylinder in 6-th row are not discussed since all configu-

rations (including No.7: 7 x 2) were found stable in the tested velocity range.
Figure 5.6 shows results obtained at méo ~ 22.1 — 23.5 (set 7, Table 4.1). The

recorded response curves are more difficult to interpret due to general lack of cou-

pling in 2 x 2 configurations (Figures A16-A21 indicate that the case presented in
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Figure 5.6(b1) is the only exception). Thus, the dominant cylinder, whose role in an
array was so pronounced (as a source of post-stable behaviour) in the lower ranges
of the mass-damping parameter, cannot be clearly identified. Here, it appears that
the least stable single flexible cylinder (1 x 2), whose response is presented for com-
parison, may initiate instability of a flexible array (7 x 2). However, the post-stable
behaviour of this initially dominant cylinder results from coupling between all {ree-

to-move cylinders.
o Figure 5.6(a) - the central cylinder in 4-th row:
— No.T: 7 x 2 displays wide hysteresis (No.7: 1 x 2 does not)
— No.7: 2 x 2 is stable in the tested velocity range (No.1: 2 x 2 replicates
qualitatively No.7: 7 x 2 behaviour)
— No.l: 1x2 and No.l: 1 x 1 show essentially identical behaviour as No.1:

2 x 2, however No.l: 1 x 1 becomes unstable later (3-rd row flexible

cylinders, No.1 and No.5, display similar 1 x 2 and 1 x 1 behaviour)
o Figure 5.6(b) - the central cylinder in 5-th row:

— No.T: 7x2 displays wide hysteresis, post-stable plateau is very low (No.7:
1 x 2 is stable in the tested velocity range)

~ No.T: 22 also shows hysteresis, however it is narrow and induced earlier
(only one 2x2 configuration, No.7 and No.6, shows coupled motion which
is not present for 2 x 1)

1

- No: 1 x 2 displays g

ly similar b is behaviour to No.7:
2 x 2, post-stable response is substantially higher (No.6 is the only clearly
unstable cylinder)

— No.6: 1 x 1 does not display hysteresis, however post-stable response

replicates closely that of No.6: 1 x 2 for decreasing flow velocity
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As before, for the central cylinder in 6-th row, all tested configurations (including
No.T: 7 x 2) were found stable.
When studied together, the presented Figures indicate that only cylinders in

the second and third row display hysteresis (first row was not investigated). These

cylinders tend to dominate the 7x2 ion and their post-stable behaviour is
only slightly modified by the motion of flexible neighbours (especially, at a low mass-
damping parameter range). Thus, it appears that the observed hysteresis in a 7 x 2

array is due to the cascade effect, which is caused by fluid coupling, and has its actual

source in the behaviour of the dominant cylinder (q well i by
a1x1 system). Fluid coupling, however, becomes less significant with increasing

mass-damping parameter and clearly coupled modes between cylinders do not occur.

Ui 1 itati ison between the domi cylinder and a 7x 2
array is hindered by shifts in the location of the stability threshold. This could be

to

resulting from nnavoidable modifications
to change the number of degrees-of-freedom. Note, however, that the lowest point
on the hysteresis curve, which should be chosen as the practical stability threshold,

is significantly less affected.

Effect of mass

In view of Figures 5.4-5.6, the overall effect of increasing the mass parameter, m,
is to increase the critical flow velocity and to lower the non-linear plateau of the
post-stable amplitudes. Also, fluid coupling becomes less important. The stability
threshold is always well defined due to existence of a response jump, characterizing

a hysteresis loop. In general, the width of the is region d

that hysteresis behaviour may disappear at mé &~ 30.0. This observation agrees
with the experimental results presented by Hara, [21] and Andjelic, [55].

Table 5.1 gives a summary of the experimental data for the monitored cylinder

91



in the fourth row of the 7 flexible cylinder array (No.7: 7 x 2 - these results are
most commonly reported in the open literature) and for the single flexible dominant
cylinder in an otherwise rigid array (1 x 2 and 1 x 1). For completeness, the varied-

damping data are also presented.

Table 5.1: A summary of experimental results for a parallel triangular array; varied
damping and mass.

Set | méy Tx2 1x2 Tx1
Uc | Un | %552 Uc | Un | %52 | Uc | Un | 552 |

T | 2.1 [13.66 [ 1042 | 24 %
2 | 2.3 | 12.06 | 10.89 | 14 %
3 | 5.0 |14.21 [1281 | 10 %
4 | 75 | 1535 1447 6% ]
5 | 10 [13.75 [ 11.04 | 20 % |18.15 [ 13.93 | 23 %

24 18.15 | 1687 | 7%
6 |11.2|19.91 [19.65 | 2% |19.66 |18.30 | 7%

8.4 2592 | 2255 | 13%
7 | 235 27.43 | 23.03 | 16 % | 22.26 | 21.30 | 4%

22.1 2548 2475 | 3%

The critical flow velocities, Uz, and the hysteresis velocities, U, are plotted in
Figure 5.7 together with the stability threshold limits observed by other researchers
(based on Reference [16], the direct comparison with data for a 1.375 pitch ratio
parallel triangular array is presented in Section 7.2.1). It can be seen that, while
the hysteresis velocities all lie well within these limits, the critical flow velocities are
concentrated mainly near the upper stability boundary, in some cases exceeding it.
It should be remembered, however, that the stability criterion used in this study
is, in general, unconservative (see discussion in Section 3.3.1). Moreover, since the
concept of excited instability within the hysteresis region is not clarified in the
literature, it is believed that some experimental data reported are in fact within the

hysteresis region. Notice that the general trend with respect to the mass-damping

92



parameter is similar with that suggested by the limits of all experimental data.
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5.1.2 Velocity-dependent damping

The velocity-dependent damping was determined for the cylinder positioned in the
fourth row of the 7 and 1 flexible cylinder arrays in streamwise and transverse-to-
flow directions, separately. Only one cylinder was monitored, since the experimental
data reported by Weaver and El-Kashlan, [31], indicate that the damping is virtually
independent on the cylinder location within an array. At a given flow velocity,
the velocity-dependent damping as a function of amplitude was estimated from
pluck-generated decay curves. By subtracting the value of damping in quiescent
fluid, the fluidelastic damping factor, ¢, was derived. Figures Bl and B2, which

are included in Appendix B, show that the fluidelastic component of damping is

on the

except in the i range close to
the steady turbulence response level where a significant scatter in measured data
was observed (especially, near the stability threshold). It was thus felt that in this
range a larger number of tests would be required to obtain reliable estimates of
damping. Notice that, within the hysteresis limits, the experiment could not, be
fully completed due to the existence of an unstable limit cycle which manifested
itself in very low damping values at higher response levels.

Figure 5.8 shows the results as a function of reduced pitch velocity, together with
the response curves for easy of interpretation. Figure 5.8(a) shows that the fluide-
lastic component of damping for the 7 flexible cylinder array, after an initial drop,
increases linearly with flow velocity upto ~ 60 % Uc and is essentially identical

in both the streamwise and transverse-to-flow directions. For higher flow veloci-

-

ties, the damping in the to-flow direction (y) d zero
(quiescent fluid damping) towards the stability threshold, Ug, while the damping
in the streamwise direction (z) continues to increase linearly upto the lowest limit
of hysteresis region, Uy ~ 80 % Uc. Thus, as it was already observed experimen-

tally, the cylinder loses stability in the transverse-to-flow direction. These trends
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were compared with those of Weaver and El-Kashlan, [31], who reported the only
experimental data for this array available in the literature. They used essentially

an identical technique of damping estimation. The however, was per-

formed :lose to the actual response level to avoid the effect of eventual non-linearity
(the average value of three pluck tests was reported). It can be seen that the trends
from both experiments are quite consistent; initially, both curves increase linearly
with reduced pitch velocity (proportionality constant ~ 0.015), reaching a peak at

~ 50~ 60 % Uc and then decreasing gradually towards the stability threshold. The

results

from the lower stability threshold observed
by Weaver and El-Kashlan; Up, = 8.66 in comparison to Up, = 13.75 obtained in
this study.

Figure 5.8(b) presents the corresponding results for the single flexible cylinder
in an otherwise rigid array. It can be seen that, in the velocity range upto ~ 50 %
Uc, the fluidelastic component is virtually identical to that of the 7 flexible cylinder
array. However, for higher flow velocities, the damping further increases in the
transverse-to-flow direction (y), reaching a maximum value at a velocity ~ 90 %
Ug where it starts to decrease sharply, approaching zero at the threshold, while the
damping in the streamwise direction (<) is approximately constant. Ks with the'7
flexible cylinder array, the system has only the structural component of damping
to overcome to become unstable. Unfortunately, there are no another experimental
data in the open literature to compare with.

From comparison of Figures 5.8(a) and 5.8(b), the role of fluid coupling in the
sub-critical region becomes apparent. At a velocity ~ 50 % Uc, the damping in
the transverse-to-flow direction starts to decrease towards threshold in the 7 flexible
cylinder array, while in the 1 flexible cylinder array it continues to grow linearly
with flow upto a velocity ~ 90 % Ug. It is felt that this difference can be completely

attributed to coupling between flexible cylinders.
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Interestingly, the damping in the 1 flexible cylinder array shows good qualita-

tive with theoretical prediction of Blevins, [7). He found that the fluid
damping factor for the single structure, oscillating in the fundamental mode, may

be expressed as:

= -C‘o( )(—) (6.1)

m wad

b= CD( )( 3 (5.2)
where ¢, and ¢, are the damping factors in the streamwise and transverse-to-flow
directions, respectively, Cp denotes the steady fluid drag, and U is the flow velocity
in the vicinity of the structure (in the case of cylinder arrays, U = Uy, the actual
velocity in the gap between the cylinders). These equations are linearized, for the
small amplitude oscillations with respect to the flow velocity, since it was found
that velocity-dependent damping in cylinder arrays is essentially independent of
the oscillatory amplitude (see Figures Bl and B2) and the non-linear terms may
be neglected. By fitting the single-flexible-cylinder experimental data to equation
(5.2), the value of drag coefficient Cp ~ 2.20 was obtained.

It follows from equation (5.1) and (5.2) that the streamwise damping component
should be twice higher than that in the transverse-to-flow direction. This is not
reflected in the experimental data, perhaps, due to the existence of an upstream
wake region, in front of the cylinder oscillating within an array, which reduces steady
drag. For comparison, the experimental data for the 7 flexible cylinder array were
also fitted to equation (5.2), yielding Cp ~ 1.90 and Cp ~ 1.60 for the present test
and that of Weaver and El-Kashlan, respectively.
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5.2 Square array

The tested cylinder array, which consisted of 9 flexible cylinders surrounded by
rigid neighbours, is illustrated in Figure 4.3. The monitored cylinder, No.9, was
positioned either in the third row, for a basic geometry, or in the fourth row with

additional upstream cylinders installed.
5.2.1 Post-stable behaviour

Preliminary tests

As with the parallel triangular array, the nature of post-stable oscillations was first
sought, based on both steady flow and transient excitation tests, for the 9 and 1
flexible cylinder arrays. The monitored cylinder was in the third row to ensure flex-
ibility of all cylinders within the critical zone (second Lo fourth row). Figure 5.9(a)
shows results from steady flow tests which are essentially similar to those reported
for the parallel triangular array; the 9 flexible cylinder configuration displays hys-
teresis behaviour, while the single flexible cylinder in an otherwise rigid array does
not. The most noticeable difference is the low stability threshold in the latter case,
Up, = 17.28, which is within the hysteresis region of the 9 flexible cylinder array
(Up, = 6.42 — 7.84). Thus, the lack of *vsteresis for the 1 flcxible cylinder array

must be interpreted with caution since the observed U could be Uy (indeed, in

b tests, h is bek was observed). For the 9 flexible cylinder ar-

ray, a stability threshold of Up, = 7.84 can be clearly assigned since the monitored
cylinder experiences a vertical response jump at this point, reaching a post-stable
amplitude of Apas ~ 26.0. The non-linear plateau was not clearly observed, since
higher flow velocities resulled in a further increase of post-stable oscillations and,
finally, cylinder clashing. The lowest point on the hysteresis curve may be taken
as Up, = 6.42, yielding a width of 18 % Uc. For the 1 flexible cylinder array, the
stability threshold is also clearly defined. Similarly, the response curve is close to
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vertical at this point and does not saturate for slightly higher velocities.

Figure 5.9(b) shows displacement excitation results for the 9 flexible cylinder
array; the final RMS amplitudes after transients together with the minimum RMS
excitation levels, As with the parallel triangular array, the final post-stable RMS
amplitudes (each showing no tendency to return to its original stable vibration level)
were very close to those levels recorded during the steady flow tests. Again, for flow
velocities less then Uy (Up, = 6.42), the flexible cylinders always remained stable,

regardless of the excitation level. For flow velocities between Uy and Ug, minimum

excitation levels were found which caused a ition to post-stabl ill

with all 9 flexible cylinders vibrating at large amplitudes. It can be seen that, unlike

the parallel tri; lar array, these excitati litudes all lie within the I

region and indicate the actual position of the unstable limit cycle. This suggests that

the observed hysteresis results not from coupling with the flexible neighbours, as in

the case of the parallel array where a i cylinder was excited,
but rather from the single flexible dominant cylinder characteristics. However, this
observation was not confirmed by the experiments on the 1 flexible cylinder array
since the single flexible cylinder always returned to its original vibration amplitude
after any excitation (this is as expected since, in steady flow tests, no hysteresis was
observed).

Notice that the unstable limit cycle for the 9 flexible cylinder array yields the
RMS amplitudes (Apys = 2.5,2.0,1.75 % d for Up, = 6.75,7.18,7.71, respec-
tively) which are only slightly higher than the stable response levels (Arms =
0.63,0.76,1.20 % d, respectively). In this case, a transition from stable to post-
stable behaviour is very easy within the hysteresis region. Thus, severe imperfection
sensitivity, perhaps already observed in the response of the single flexible cylinder,

may be expected.
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Imperfection sensitivity

‘The next series of tests were conducted with the motivation to confirm the hypothesis
that imperfection sensitivity, associated with cylinder alignment, could cause qual-
itative difference in the observed behaviour of the 9 and 1 flexible cylinder arrays.
The position of the monitored cylinder was almost identical in both configurations
(the steady blow-back for the 1 flexible cylinder array was less than ~ 1 % of the gap
between the cylinders and, therefore, was not corrected). However, the surround-
ing flexible cylinders could be slightly displaced due to inevitable change between
free-to-vibrate (9 flexible) and fixed (1 flexible) positions. Therefore, steady flow
tests were repeated on the 1 flexible cylinder array with the upstream one (No.8)
displaced by ~ 10 % of the gap between the cylinders.

Figures 5.10(a)-5.10(d) show the response curves with the cylinder No.8 dis-

placed d left and right, respectively. Notice that unlike the
previously obtained response curve, which is also presented in Figure 5.10 (denoted
as "ideal”), all display hysteresis. Interestingly, the post-stable behaviour shown
in Figure 5.10(d) is virtually identical to that obtained for the 9 flexible cylinder
array. Although the response curves shown in Figures 5.10(a), 5.10(b) and 5.10(d)
are qualitatively similar, the strongly delayed stability threshold in Figure 5.10(c)
is difficult to explain.

This test suggests that, indeed, slight imperfections in cylinder alignment can not
only modify (as in the case of parallel triangular array) but drastically change the

post-stable behaviour. Thus, this ic imperfecti itivity may account

for why the subsequent tests, on a number of degrees-of-freedom needed to model
the post-stable behaviour of cylinder arrays, were somewhat confusing and difficult

to interpret.
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Effect of number of degrees-of freedom

An experimental program, virtually identical to that conducted previously for the
parallel triangular array, was undertaken to reduce a number of degrees-of-freedom
needed to model the post-stable behaviour of a fully flexible array. Figures 5.11-5.13
show the essential results obtained with the mass-damping parameter in the range
of Mo ~ 1.9~23.5 (set 8, 9 and 10 in Table 4.1). For a given geometry, each Figure
contains four response curves (reflecting the process of gradual reduction from 18 to 1
degree-of-freedom); the central cylinder in the 9 flexible cylinder array (No.9: 9% 2),
the central cylinder in the 2 flexible cylinder array (No.9: 2 x 2) and the dominant
single flexible cylinder (1 x 2 and 1x 1). For completeness, additional results for the

upstream (No.8) and the downstream (No.4) cylinders, which show coupled motion

in No.9: 2 x 2 configurations, are d in Appendix A (Figures A22-A33).
Below, some observations are noted following from examination of Figures 5.11-5.13
and Figures A21-33 (in brackets).

Figure 5.11 shows the results of experiments conducted at mé, ~ 1.9—2.8 (set 8,
Table 4.1). Again, it appears that there is one cylinder in the bundle (No.9: 1 x 2)
which, via fluid coupling, dominates 2 x 2 and 9 x 2 behaviour. Its role, however,
is difficult to establish based on Figure 5.11 alone since all 2 x 2 configurations
tested show strong coupled motion (this requires careful analysis of Figures A22-
A25). Unfortunately, 1 x 2 and 1 x 1 behaviour of the dominant cylinder, although
phenomenologically similar, cannot be directly compared due to a strongly delayed
initiation of instability in the 1 x 1 system (in some cases, Ug is twice higher, as

in Figure 5.11(b2), for example). This may be either due to geometric imperfection

or ion of mass-damping (mbo = 1.9 for 1 x 2 in com-
parison to méy = 2.8 for 1 x 1) which causes instability in the higher region (see

Section 7.2.1, for details).
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« Figure 5.11(a) - the central cylinder in 3-rd row:

— No.9: 9 x 2 displays hysteresis

— No.9: 2 x 2 closely reflects No.9: 9 x 2 behaviour, however it shows
narrower hysteresis (all 2 x 2 configurations behave similarly to No.9:
9 x 2, very weak coupling for 2 x 1 configurations)

— No.9: 1 x 2 does not display hysteresis, however its post-stable response
replicates well No.9: 2 x 2 behaviour for decreasing flow (No.8: 2 x 1
displays hysteresis)

— No.9: 1 x 1 shows h is, however initiation of i ility is strongly

delayed (No.4: 1 x 1 and No.8: 1 x 1 behaviour is qualitatively similar
to that of No.9: 1 x 1)
o Figure 5.11(b) - the central cylinder in 4-th row:

— No.9: 9 x 2 does not display hysteresis

— No.9: 2 x 2 shows very narrow hysteresis, its post-stable response for
decreasing flow velocity is similar to that of No.9: 9 x 2 (all 2 x 2 con-
figurations behave similarly to No.9: 9 x 2, very weak coupling for 2 x 1
configurations)

— No.9: 1 x 2 replicates closely No.9: 9 x 2 behaviour for decreasing flow
(No.8: 2 x 1 displays clear hysteresis)

— No.9: 1 x 1 shows wide is, however initiation of i ility is

strongly delayed (No.4: 1 x 1 and No.8: 1 x 1 do not display hysteresis,
however they show good agreement with No.9: 1 1 post-stable response

for decreasing flow velocity)
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Figure 5.12 shows the next series of results obtained at méo &~ 9.8 — 11.2 (set
9, Table 4.1). These response curves, showing good agreement in exact details of
fluidelastic instability, are easier to interpret. The most noticeable difference to the
lower 7y is the weaker coupling in the tested 2 x 2 configurations which is present
mostly between cylinders in the same row (see Figures A26-A29).

® Figure 5.12(a) - the central cylinder in 3-rd row:

— No.9: 9 x 2 displays clear hysteresis (No.9: 1 x 2 does not, however its
post-stable response shows good agreement with No.9: 2 x 2 behaviour
for decreasing flow)

— No.9: 2 x 2 closely replicates No.9: 9 x 2 behaviour (only one 2 x 2
configuration, No.9 and No.8, behaves similarly to No.9: 9 x 2, weak
coupling for 2 x 1 configurations)

— No.8: 1 x 2 displays qualitatively similar hysteresis, however it becomes
unstable earlier

— No.8: 1 x 1 does not show hysteresis, however its post-stable response is
qualitatively similar to No.9: 2 x 2 behaviour for decreasing flow velocity
(good agreement with No.4: 1 x 1 and No.8: 1 x 1 behaviour)

o Figure 5.12(b) - the central cylinder in 4-th row:

— No.9: 9 x 2 displays clear hysteresis (No.9: 1 x 2 does not)

— No.9: 2 x 2 closely replicates No.9: 9 x 2 behaviour (only one 2 x 2
configuration, No.9 and No.8, behaves similarly to No.9: 9 x 2, weak
coupling for 2 X 1 configurations)

— No.8: 1x 2 shows good qualitative agreement with No.9: 9 x 2 behaviour

— No.8: 1 x 1 does not display hysteresis, it becomes unstable early (No.9:
1 x 1 displays hysteresis)
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Figure 5.13 shows the corresponding results obtained at mé ~ 22.1 — 23.5 (set
10, Table 4.1). As with the parallel triangular array, the role of the dominant cylin-
der does not manifest itself as clearly as it did at lower mass-damping parameters
due to a general lack of coupling in 2 x 2 configurations (Figures A30-A33 indi-
cate that the case presented in Figure 5.13(al) is the only exception). However,
fluid coupling is present in all 9 x 2 configurations, suggesting that more than two
flexible cylinders are needed to initiate coupled motions. It was observed that insta-
bility, once excited by one of the flexible cylinders, cascades through the array (the
post-stable behaviour results from coupling between all free-to-move cylinders). It
appears that the least stable single flexible cylinder (No.8: 1 x 2), whose response is
presented for comparison, initiates the instability in the fully flexible array (9 x 2)

at this mass-damping parameter.
o Figure 5.13(a) - the central cylinder in 3-rd row:

— No.9: 9 x 2 displays clear hysteresis (No.9: 1 x 2 does not, however its
post-stable response is essentially identical to that of No.9: 9 x 2 for
decreasing flow velocity)

— No.9: 2x 2 does not display hysteresis, however its post-stable response is
qualitatively similar to No.9: 9 x 2 behaviour for decreasing flow velocity
(only one 2 x 2 configuration, No.9 and No.8, shows coupled motion, not
present in 2 x 1)

— No.8: 1 x2 and No.8: 1x 1 replicate closely No.9: 9 x 2 (No.8 is the only
clearly unstable cylinder)

o Figure 5.13(b) - the central cylinder in 4-th row:

~ Nod: 9 x 2 displays clear hysteresis, however the post-stable response

plateau is low (No.9: 1 x 2 does not display hysteresis)
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- No.9: 22 is stable in the tested velocity range (no coupling in all tested
2 %2 and 2 x 1 configurations)
~ No.8: 1x2 does not display hysteresis, however its post-stable response s

qualitatively similar to No.9: 9 x 2 behaviour for decreasing flow velocity

— No.8: 1x1 shows good qualif with No.9: 9 x 2 behavi

(No.8 is the only clearly unstable cylinder)

Figures 5.11-5.13, together with Figures A21-A33, clearly indicate that only
flexible cylinders in the second, third and fourth rows of a square array can exhibit
hysteresis behaviour (first row was not examined). As with a parallel triangular

array, these cylinders tend to dominate 9 x 2 configurations (fluid coupling, however,

becomes less signi at higher mass-damping ). Again, it appears that
the observed hysteresis in a 9 x 2 array is due to the cascade effect, and has its actual
source in the behaviour of the dominant cylinder (well qualitatively represented by
a1x 1 system). As expected, the exact details of post-stable behaviour (e.g. critical

velocity, hysteresis effects, limit cycle amplitudes) depend strongly on geometrical

resulting from i ifications of the tested array, It is
worth noting that, again, the lowest point on the hysteresis curve is significantly

less affected.
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Effect of mass

It follows from Figures 5.11-5.13 that increasing the mass parameter, m, in the
square array generates trends which are similar to those seen in the parallel tri-
angular array. Specifically, it (i) increases the stability threshold, (ii) lowers the
non-linear plateau of the post-stable amplitudes, (iii) has less fluid coupling and
(iv) reduces the width of the hysteresis regior Table 5.2 summarizes the experi-
mental data for the monitored cylinder in the third row (stability thresholds of early
upstream rows are mainly reported in the open literature) of the 9 flexible cylinder
array (No.9: 9 x 2) and for the single flexible dominant cylinder in an otherwise

rigid array (1 x 2 and 1 x 1),

Table 5.2 A summary of experimental results for a square array, varied mass.

Set | mé 9x2 1x2 15k
Uo [ Un (%= U [ Un |55 Uo [ Un [ 5"
8 | 19490 | - - 563 503 [ 11%
2.8 1251 [10.26 | 18%
9 |11.2 [22.70 | 2145 | 6% |22.34 |21.45| 4%
98 1806 - -
|10 (235 [33.10 3145 | 5% |2747| - -
22.1 3068 2814| 8%

These data, compared with the results of others, ate plotted in Figure 5.14. As
before, the limits for an experimentally observed stability threshold are defined based
on Reference [16]. It can be seen that these limits bracket well all experimental data;
the critical and the hysteresis flow velocities. Notice that for cylinders in the fourth
row, although the critical flow velocities at the lowest mass-damping parameters are

~ 50 % higher, all results would also fall within the experimental limits.
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5.2.2 Velocity-dependent damping

Damping was estimated using the procedure developed earlier for the parallel trian-
gular array. Here, the monitored cylinder was positioned in the third row. Figures

B3 and B4, which are in A dix B, show ise and t

flow components of the Auidelastic damping factor, ((A), as a function of amplitude
at a given flow velocity. As before, the damping is essentially independent of the
oscillation amplitude.

Figure 5.15 shows the fluidelastic component of damping, obtained by project-
ing the measured data on the response level induced by turbulence, &5 a function of
reduced pitch velocity (for ease of interpretation, the corresponding response curves
are also presented). There are two noticeable changes with relative to the parallel tri-
angular array; (i) the damping is essentially identical for the 1 and 9 flexible cylinder
arrays, and (ii) the fluidelastic damping factor in transverse-to-flow direction (y) is,
in gencral, negative (flow does not cause an additional energy dissipation). The first
observation suggests that the monitored cylinder is de facto dominant in the tested
configuratiou (a similar conclusion may be drawn from an analysis of the response
curves presented in Figure 5.11(a)). It can be seen that the damping is initially
not affected by the flow but then, at a velocity ~ 50 % U, it shows a gradual re-
duction towards the stability threshold (the net damping approaches approximately
zero at this point) in the transverse-to-flow direction and a gradual increase in the

streamwise direction (based on equation (5.1), Cp ~ 0.80 and Cp = 1.10 for the

1 and 9 flexible cylinder arrays, respectively). The second ot ion is that the

stability threshold may vary si in this jon due to the very low

value of net damping over a large velocity range in the sub-stable region. This, in

gl

part, explains the result of the i

5.10.

study d in Figure

13
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5.3 Conclusions and recommendation for ana-
lytical modelling

A detailed i 1 study was d d with the objective to capture the
physical essence of the post-stable behaviour of a fully flexible array with a minimum
number of degrees-of-freedom. Although the results may appear inconsistent in
some aspects, analyzed globally they yield clear trends in the tested mass-damping
parameter range.
® The stability behaviour of a fully flexible array results from single flexible
cylinder characteristics due to strong coupled motion induced by the dominant

cylinder (the effect of coupling, however, decreases with increase of mass-

f-freed

dampin, . Only two deg; cylinders show coupled
g P!

motion.

A single flexible cylinder in an otherwise rigid array may display hysteresis

behaviour which appears to vanish at 7é ~ 30 (the underlying excitation

and

is, however, itself in the second and
third rows for a parallel triangular array, and in the second to fourth rows
for a square array). Thus, coupled motion between flexible cylinders is not

required for hysteresis effects.

The stability behaviour of a single flexible cylinder array may be qualitatively

d by a one degree-of-freedom system which also may display hys-
teresis. Thus, coupling between streamwise and transverse-to-flow cylinder

motions is not essential to the underlying instability mechanism.

The exact details of the stability behaviour (e.g. critical velocity, hysteresis ef-

fects, limit cycle amplitudes) depend strongly on geometric imperfection. Also,

bul i< beh

may affect

via random initiation of instability

within the hysteresis region. In the extreme case, Us = Up.
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o The velocity-dependent damping increases approximately linearly with the.
flow velocity in the sub-critical region (thus, the form suggested by Blevins,
[7], may be used to account for the fluid steady drag). The rate of increase,
however, depends of the number of flexible cylinders and the array configura-

tion.

o The velocity-d dent damping is of the cylinder
oscillatory amplitude. Thus, its linearized form, for the small amplitude oscil-

lations with respect to the flow velocity, yields a good approximation.

Briefly, it can be concluded that i ility and the post-stable behaviour of a fully
flexible array is governed by the dominant cylinder (the least stable) which may

be well d by a one degree-of-freedom system. The velocity-dependent

damping, due to the fluid steady drag only, may be modelled using the linearized

Blevins’ expression.
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Chapter 6

Non-linear model for fluidelastic
instability

This Chapter describes a theory which is capable of modelling the post-stable be-
haviour of a cylinder array. Since a complete theoretical analysis of a fully flexible
array, due to complexity this would involve, is beyond present capabilities, it was
decided to look for a practical alternative. The experimental results, reported and
discussed in the previous Chapter rovided evidence that fluid damping forces, as-

sociated with the motion of a single flexible cylinder within a critical zone in an

array, are ively operative at stability and i in the post-
stable region at the mass-damping parameter range governed by hysteresis-type
behaviour (M6 < 30). Because of this, the present theory for fluidelastic instability
is restricted to a single flexible cylinder in an otherwise rigid array. The flexible

cylinder is constrained to move in the transverse-to-flow direction only since it was

found from the i that this simplil ion is sufficient to cap-
ture the essence of its behaviour. The theory includes also the random buffeting due
to turbulence which in real situations is always present and can interact with flu-
idelastic instability. Particularly important is the influence of turbulence on system

behaviour near bifurcation points.
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6.1 Time-domain formulation
6.1.1 Fluidelastic excitation

The present theory is essentially a modified time-domain version of the linearized
steady-state model of Lever and Weaver, [46-48]. Here, the first, [46], more com-
pact version is chosen, to establish foundations for non-linear analysis, due to its
simplicity and relatively good agreement with experimental data. However, the
latter version, [47,48}, is more consistent in terms of physical parameters which de-
scribe the arrays of interest (see Figure 1.3); staggered (parallel triangular, normal
triangular, rotated square) and normal square. Thus, the geometrical parameters,

which define the cylinder-in-ch 1 ion, are taken from Refe [47,48].

Since References [46-48) contain the details of the development of this theory, only
the modifications necessary to permit a time-domain non-linear formulation will be
discussed here. Nevertheless, it is instructive to outline briefly the simplifying as-
sumption, underlying the original model of Lever and Weaver, including extensions

to account for the present experimental observations.

o The motion of the neighbouring cylinders is not essential to model the be-
haviour of the dominant cylinder, cither at the stability threshold or in the
post-stable region. Fluid coupling is important primarily in triggering insta-
bility of adjacent cylinders but its effect on the dominant cylinder may be

ignored.

o The mechanisms underlying stability behaviour, in either streamwise or trans-
verse directions, are independent of each other (coupling is not important).

Thus, it is legitimate to pursue them individually and to model the dominant

cylinder as a single d f-freedom system. Instability in the
8T

direction has, in general, a significantly lower threshold.

18



o The motion of a cylinder near its stability threshold is, essentially, periodic

at a simple As the excitati hanism is a self-excited one, any

unsteady flow perturbation, due to cylinder motion, may be assumed to have

periodic time d d at the cylinder fi

o The fluid-elastic excitation mechanism is assumed not to be dependent on wake

Thus, only bations in the free-stream flow along either side

of the cylinder are considered.

® A highly regular flow field is defined by each array. The main streamlines tend
to pass through an array without crossing from one flow channel to the next.
The streamtubes are narrow relative to their length, so that one-dimensional

flow assumption can be used.

Figure 6.1 shows the "unit cell” sufficient to describe fully the fluidelastic system
controlled by the velocity mechanism, A single flexible cylinder is symmetrically
located relative to the apparent position of neighbouring cylinders and undergoes
motion y(t) in the transverse-to-flow direction only. The steady streamlines through
the array define the boundaries of the "unit cell”. Assuming incompressible, one-
dimensional flow, the area, velocity and pressure variation along the two stream-
tubes passing on cither side of the cylinder may each be written as the sum of first
order functions of position only, plus second order perturbation functions (contain-
ing linear and non-linear terms) of both position and time. Employing symmetry

conditions, the area, velocity and pressure distribution may be thus written as:

Ai(s,t) = A(s) + (—1)*a(s,t) a(s,t) < A(s) (6.1)
Ui(s,t) = U(s) 4 (=1)*u(s,t)  u(s,t) < U(s) (6:2)
Ps,t) = P(s)+ (=1)*'p(s,t)  pls,t) < P(s) (6.3)
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where the subscript i = 1,2 refers to the left and right streamtubes, respectively
(see Figure 6.1). From geometry arguments, the area perturbations and, therefore,

the velocity and pressure perturbations are limited by the steady-state terms.

,/ \\
[ \
\ /
N 7
5 \A ,
8l pparent positions
| Fixed madel of neighbouring
E| boundories ‘Z o e
e
\_ a-o: unit cell
4 N inlet
5 N |- ) b unit cel
\ ) outlet
~_Z. »

Figure 6.1: "Unit cell” for fluidelastic model.

Whereas the model presented in References [46-48] assumed simple harmonic
cylinder motion, the present formulation requires that the time dependence of y(t)
and the perturbation functions remain unspecified. In keeping with the hydraulic
transient analog presented in Reference [46], it is assumed that the streamtube area
perturbation follows the cylinder motion but with a time lag due to fluid inertia.
Further, this time lag, 7, varies linearly from 7 = 0, at the cylinder centerline
(s=0),tor = i at the unit cell inlet (s = ~so), where [ is relevant fluid inertia
length for small cylinder motion. Thus, to a first approximation, the streamtube

perturbation function may be written as:
als,t) = y(t + 7o) (6.4)
So

Note that since s is negative in the direction of the inlet, this area perturbation lags

cylinder motion, as required.
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Expression (6.4) is here extended to include the effect of viscous flow on the

area jon, as d by Yetisir and Weaver, [49]. They pos-

tulated that the streamtube area perturbation must diminish at large distances from
the cylinder and introduced an area decaying function, f(s), to account for this. In

the present analysis, this function is taken to be:
fls)=e"% (65)

where o is a positive constant in the upstream region and negative in the downstream
region. Thus, there is no decay at the attachment points, f(0) = 1 (for simplicity,
positions of the flow attachment points are defined by the cylinder centerline, s = 0),
and no perturbation at large distances from the cylinder, lim,_.4e0 f(s) = 0, as
required. Combining equation (6.4) and (6.5), the streamtube perturbation function

can be finally written as:
a(s,t) = Byt + Tbéi)- (6.6)
o

‘With the streamtube perturbation function specified, the velocity and pressure

variations may be readily found using the di ional unsteady inuity and

Bernoulli equations, respectively:
. 9A
[, 50+ Als, U (s,) = Al=s0,0U(~20,) (67)

—P(a t)+v(’ nJ‘/-.,Wa”E/ s = MJr 2p(-sn.t) (69)

where h is the flow resi fici Here, the

plitying —_—
constant area streamtubes, A(s) = Ao, and no velocity and pressure fluctuatious
at the inlet (boundary conditions), u(—so,t) = p(—so,t) = 0, are applied. Thus,

solution of the continuity equation becomes:

u(sit) _ L+ $)ley(t = m) — Hy(t + 7)) + § [2,, Byt +7)0s
Uo Ao+ e Ty(t+7)

(6.9)
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where y(t + 1) = y(t + 70;%). To solve the Bernoulli equation, this solution was
expanded into a power series in e*% K47, Note that this series converges for | y(t) |
< Ao at s =0, as initially defined by equation (6.1). After expansion, the unsteady

bation functi ivel

velocity and pressure are,

U e ey ) Hate+ )+ 5 [ (e )2
=

~§(—1)‘(Aio)‘+‘e“#y"(z +7)(6.10)

p,(,a,l) = {1+ PSFe+ ) - eyt - )] - f' Byt + 05}
E( 1)"( )me Byt +T) +

+%((1 4 ’T")[a"’y(t — ) — Wyt 47 + 7/ e Hy(t +7)05)* -
.i(—l)“(i)"“ -Vodynet(y 4 1) 4

i sT“)“‘ e '7“)(/0 E( l)n(_)n+l/— "Byt + 7)0s +

ol (PP )

=§ B D+ )+ 51 [ Rk e

e ay Z( 1) (n 4 1)(— ).+n / / MO ym g 4 1) Dsds +

+£((1 " T) E(_l)n(z)nuli(l 4 ,_’_),l + 1]/;.. eIkt 4 2 4
ik ﬂ)g-"y(t —) fﬁ(-l)“(ﬁ)"“l“ 3 ‘_"),, "y 1)[ "Ryt +7)0s +
el (1 » ), a2 — o) Z( l)n(_)n+l /' (nnl)n',:,'yn-l(g+f)t96+
Z( W )M. (P 1] 1 e [ ehye+ mosos+
+5G7 Eq(—l)"(A—a)"“n/.,, Iy ([ eyl rosfos +

+(14+ eyt -m) -



~fj(~1)"(;:—n)"“n/' e "“*y""(t+r)/' Hy(t+ r)0s0s])
= 4 -
(6.11)

where the subscript, n, yields the desired order of solution; n = 0 for the linear and
n > 1 for the non-linear. It can be seen that the series arising from the expansion of
the velocity perturbation function converges faster than that arising from its square
(contain n coefficient). This indicates that from those two sources of non-linear
terms, which appear in the solution of the Bernoulli equation, the contribution from
the square of the velocity perturbation function becomes increasingly important
with increasing order of solution. This also suggests that, for adequate convergence
of pressure perturbation function, a high order solution may be required.
Equations (6.10) and (6.11) were carefully verified against the solutions for a = 0

(no decay of the ) which were derived. These

expressions are much simpler and yield a closed form solution of the unsteady con-

tinuity equation. In this case, the unsteady velocity (in the closed form and series

) and pressure ! become, respectively

Ml _ g soyplorloptet o)

Ao+ylt+7) (6:12)

oD 14 20y ) sl N SO ) 01

Ho = (0 30+ e 1) = =) B+ 1)+

A5+ Pl ) =g+ P SN e )
Udty(i—rn)z(-l)"(A—)"“/ V(t+7)0s) +
+£<§,“‘)"(AT.)““[E(‘ # g [ e nos+

(=) i(—l)"(Aiu)"“[(l + 3 41) [ 400+
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A+ ) S [ e el
(6.14)

As in Reference [46], the fluidelastic force acting on the cylinder, Fi(t), is approx-

imated as the pressure difference across its centerline, p(0,¢), times an equivalent
area factor, loDg:

Fg(t) = 2l0Dep(0,t) (6.15)
where lo denotes the cylinder length. Note that the fluidelastic force is assumed to
be fully correlated along the cylinder span. Thus, the equation of motion of the

cylinder, in the to-flow direction, may now be written as:

” 1 - .
moil(t) + [co + 5Copdloy/UF + i(D)i(t) + koy(2) = F(t) (6.16)
where mo, ¢o and ko are the structural mass, damping and stiffness coefficients, and
Cp denotes the steady drag coefficient. Note that the present analysis also includes
a non-linear velocity-dependent damping term, due to the fluid drag, which in the
linearized form was suggested by Blevins, [7]. As before, this term may be expanded

into a power series in 1,_’,7’,1 This yields:

o= Lot - i L3y LS80,y o

where | 1,%1 |<1 to ensure convergence.
6.1.2 Combined fluidelastic and turbulence excitation

The random field of turbulence, within a flexible array, is defined here by the spec-
trum formulated by Pettigrew and Gorman, (64]. They assumed that the power
spectral density of the turbulence force field per unit cylinder length, S(f), which

st and fully correlated, is ional to the square of flow dynamic

head (see Section 2.2 for details). That is:
1
§%%(f) = 3Cx(f)pdU} (6.18)
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where the effective random excitation coefficient, C,(f), defines the shape of the
spectrum and is obtained experimentally. Because random excitation coefficients
are nearly constant in the range of the cylinder fundamental frequencies typical
for a marine riser ot a heat exchanger, a flat power spectrum, C,(f) = C;, was

used to represent the random field of turbul The di ional i i in

equation (6.18) is elimi; d by i ducing a nondi ional

Ct = Co(&), as suggested by Blevins et al, [65], and Chen and Jendrzejcayk,
[88]. This nondimensionalization yields the final form of the power spectral density

function per unit cylinder length as:

505 = %c;p(dup)‘-‘ (6.19)

which is used, via Fourier jon, in the time-domain model to

the turbulence excitation force, Fr(t).

Now, the equation of motion takes the form:
i 1 = 5
mofi(t) + [co + 5Cppdloy/US + ()] (t) + koy(t) = Fe(t) + Fr(t)  (6:20)
where the sum of fluid forces consists of fluidelastic force, Fg(t), and turbulence
force, Fr(t).
6.2 Analytical solution

6.2.1 Limit cycle and dynamic bifurcation under fluidelas-
tic excitation

The non-linear equation of motion (6.16) is solved using the first approximation
method of Kryloff and Bogoliuboff, [89].
Initially, this equation is reduced to the basic differential form:
(t) +wy(t) + Fly()3(8)] =0 (6:21)
where, unlike the original theory of Lever and Weaver, Fly(t),i(t)] = uf[y(t), #(2)]
is a non-linear function of cylinder displacement ar 1 velocity which perturbs the
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simple linear system oscillating with the frequency w = \/% (this frequency differs
from wo due to fluidelastic stiffness terms). The constant, g, is a small positive
quantity which defines the size of the perturbation, g < w?. This means that the
contribution of non-linear terms to the final solution must be very small.

Then, the solution of equation (6.21) is assumed to be periodic:
¥(t) = a(t)coslwt + B(t)] (6.22)

where the amplitude, a(t), and the phase, &(¢), are slowly varying functions of the
time, t, in the state of equilibrium. It can be shown that they are given by the
following formulas (see Appendix C, for details) which satisfy equation (6.21) to
order p?;

3
i) = # [ Placoso, ~ausin0)sin0do (6.23)

and
O(t) = w(a) (6.24)
where ©(t) = wt + &(t) denotes the total phase. The frequency of oscillation w(a)

Sepeniiaronsamplitids orat
WH0) =} + 2 [ Flacosd, ~auwsin®)cos0d0 (6.25)
L maJo ¥ "

Note that the function F(acos®, —awsin®) enters into equations (6.23) and (6.25)
directly and not only through its non-linear part. Since the limit cycle of constant
amplitude is expected, its rate of change may be set equal to zero (a(t) = 0 in
equation (6.23)).

Unfortunately, the full form of the function F[y(¢), ()], which is given for a # 0,
does not yield analytical solutions. Thus, equation (6.21) was solved for « =0 (no

decay of the ! bation). For simplicity, the function Fly(t),(t)]

was reduced to third order (n = 2 in equation (6.14)), leading to the following

nondimensional forms of the limit cycle 1 and the jated fi of
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oscillation, respectively:

G ={mb+ %ﬂ'cn(é)(%)(%)l/ 22y lon )’( )’(1+’7")(ﬁ)~

A+ ﬂ)sfnl' o ﬂlm -+ h(un—— ¥ U.ms— U

l U,
{21( )(An)’(—)’(*) (l + —)(—)U.’(G"'EI; +32

zTr} u Hkains [2
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where U, denotes reduced velocity which is defined as:
1A
l

U= (6.28)

These expressions satisfy equation (6.21) to order u? for s < w?. This implies that:

ALy < (629)

An estimate for the range of applicability of the solution can be made using the
stability criterion of Connors (equation (2.1)). This yields:
4.7 o Ao d
b < FEFRUFD) (6:30)
where K = 9.9 is the stability constant found by Connors. Physically, for lightly

damped systems, condition (6.29) does not impose restrictions on the derived solu-

tion.
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As follows from equations (6.26) and (6.27), the trivial linear solution (a = 0),
which defines the dynamic point of bifurcation, takes the form:

0= mé—2x(ZE) )21 )’u+"—")(i)v’u1+"—“)s-'ni

-’—"im— + h(sm— +U, m— —u)- -:c,,( Ly W (631)

&y =1 a b B )’(1+—)( )u'tu+—>(1—m,,i>+

—TFsmU + h(Uram— - oos—)] (6.32)

In general, these equations represent the net mass-damping parameter m§, and
the frequency of oscillations, w, at a given flow velocity, U,. As can be seen, the net
mass-damping parameter, which at the point of bifurcation becomes zero, incorpo-
rates the positive structural parameter o and the negative fluidelastic parameter
(flow-dependent terms), mdy.. Similarly, the frequency, w, differs from wp due to
the the fluidelastic stiffness (note that for (42) = 1 equations (6.31) is identical to
that presented in Reference [46]).

For completeness, the trivial linear solutions were also derived for & # 0 (decay

of the ion). In nondi ional form these are:

0= rMn+-rCo(—)( )(—)U—h( )( )’(An)( )X( —)U’

{:"amu +2’TDUL: [« e+ e am—l-— (CE3 —al)e cas—]+
2 )2((/ )’( )’l(ml +ag)e™ '“"7 + 27u + ——(?n + m)e"’m—] +
-h——{[U,(u o)+ —(— —)]e“'smu% +
Hi-Pa+ 2 )Ie"‘m T 22 11)639)
(—) =y D (@0 - wL,l *

1 ik
(a+ Eu,)e"nm—”-:] +




S0z Lyl g (@2 oma L_L ~agin L
+(: T )X ( ) [Q‘ (ﬁr: a)e cosg- (1 + 2aa)e sing- 1+
+h— {u(U.M,U)+(1——a+’—“‘2)r°amb—+

~[Uh(e® +a) + E“ +24 ual)]e""cosi)) (6.34)
where oy = a? + ()2 and &z = a? — (&)

6.2.2 Linear response and dynamic bifurcation under com-
bined excitation

The non-linear equation of motion (6.20) cannot be solved analytically (its numerical
solution is presented in Section 6.4). Here, an approximate method is formulated;
superposition of the response for fluidelastic excitation only with that excited by
turbulence.

First, the combined response for linear fluidelastic excitation was found. As
follows from random vibration theory, the RMS response of a lightly damped, single

degree-of-freedom, linear system to broad band excitation is given by:

su.,)f.,ﬂ
T (6.35)

Apms =

where Io is the cylinder length, ko is the structural stiffness, & is the logarithmic
decrement of structural damping, and S(fo) denotes the power spectral density
function of the turbulence force at the cylinder’s natural frequency, as given by

equation (6.19). Because both excitati hani i the structural

terms in equation (6.35) are directly affected by the fluidelastic force. Thus, ko
becomes ky, the net system stiffness, and fo becomes f, the frequency at a given

velocity. After substitution of equation (6. 19) into (6.35), the RMS cylinder response

to bined turbul and linear fluidel itation takes the di ional
form:
Arms _ _C; 15, 0.5
£RrMS AU T 3
VAR L
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where the net mass-damping parameter, méo —éy., is given by the set of equations
(6.31) and (6.32) for a = 0, and (6.33) and (6.34) for @ # 0. Because the net system
damping decreases with flow velocity towards the dynamic point of bifurcation for
fluidelastic excitation (ép — 7dse = 0), the linear response excited by turbulence
rises asymptotically to infinity at this point. In actual fact, however, these large

P illations are lled by L fluidelastic effects: stable and

unstable bifurcations.

bined was found.

Next, the dynamic point of bi ion under
To predict its location correctly, a truly non-linear solution of the equation of mo-
tion (6.20) is needed. However, some insight may be gained by superimposing the
combined linear response with the non-linear limit cycle due to fluidelastic excita-
tion only, both of which are described analytically (see Figure 6.2). Thus, based on

this heuristic representation which conceptionally ignores coupling mechanism, the

point may i the dynamic point of bifurcation.
Approximate |
bifurcation i
o under combined | | Linear
© e asymptote
3| unstable limit cycle ymp!
2 3 I
~ l
s ~
c
g
s
& Linear combined
5 response
| Flow velocity
Figure 6.2: Heuristic ion of linear bined response and fluidel
unstable limit cycle.
This i ion point was d ined by bining equation (6.36) with ex-

pression for the unstable limit cycle, equations (6.26) and (6.27), which may be
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formulated as (§)? = —#$2. This yields:
0= Lo Lyose Lyuspus _pros
=mby = 5-Ci(3) (E) Up;(—D) (6.37)

where the non-linear operator, D, which arises from fluid load, is defined to third

order as:

= —on(2Ey L Lyaoy 4 2090y gin L3 4+ 20
D=-2x(~7 )(M)’(,o)'(d)’(H ,)(W)U.’(s'nl,'[(4+-l~)+

Lo ooy, dis - 1881 @ o 8 o M o Boes
—5(1 + T)cosa] + ITTT + h(smili = 5(1 + T)U,smE] +
1, % 1 1 so, d, w1
Hg+ TWeleosgr = D1 = grOo(THN )

(6.38)

with () given by equation (6.27).

Expression (6.38) requires the geometric conversion between the reduced pitch
velocity, Up,, and U,. This will be defined in the next Chapter, together with the
other parameters which enter in the model.

It follows from equation (6.37) that the dynamic point of bifurcation, under

bined excitation, can be i d using sup ition only for unstable

bifurcations, D < 0, where both curves intersect (see also Figure 6.2).
6.3 Stability analysis
6.3.1 Dynamic stability

The concept of dynamic stability was discussed in details in Chapter 3. Briefly, it

was shown that only asymptotic stability, which is defined by a stable bifurcation,

can stability of self-excited oscillati Thus, a dynamic bifurcation
formula is needed which can be obtained from non-linear solution of equation of
motion.

From the solution of the first approximation, it follows that the equation of
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motion (6.16) is satisfied by the cubic expression:
4o 46 (3 =
D(d) +m6,.(d) 0 (6.39)

where D is the non-linear coefficient arising from fluid load. This expression yields

the bifurcation formula, which is defined by its two solutions; first, (§)? = —%%a,
for the limit cycle amplitude which is given by the set of equations (6.26) and (6.27)
for a = 0, and second, (&) = 0, for the trivial equilibrium solution which is given by
the set of equations (6.31) and (6.32) for a = 0, and the set of equations (6.33) and
(6.34) for a # 0. Depending on the sign of the non-linear coefficient, this formula
gives possible dynamic bifurcation; stable for D > 0 and unstable for D < 0. It
can be seen that both bifurcations are symmetric of Hopf type. They are shown
schematically in Figure 3.3, together with the separate linear response curves due to
combined excitation (solid and dashed lines represent the stable and unstable states,

pectively). By ibing the net dampi as the sum of control

parameters, mé, = Ac — A, which incorporates the positive structural parameter

(stabilizing component), Ac, and negative flow-induced (destabilizi

component), A, a dynamic instability arises at the bifurcation point, A = Ac.

Stable bifurcation

The instability signalled by a stable bi ion can be qualitatively described by
the trivial equilibrium solution (($) = 0), since for A<Ac all local motions are
asymptotically stable. However, at the point of bifurcation, A = Ag, the non-linear
solution is bounded by a limit cycle, while the linear solution becomes infinite. Thus,

the linear solution to bined excitation tends to infinity at t**-

point. Because the curve does not intersect the stable limit cycle, the linear a.
tote becomes the lowest stability boundary for the combined system. Therefore, t..~
equations which specify the location of the dynamic point of bifurcation, (6.31) and

(6.32) for & = 0, and (6.33) and (6.34) for a # 0, are generally sufficient to establish
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the dynamic stability criterion for stable bifurcations subjected to turbulence. It
should be remembered, however, that turbulence does affect our interpretation of
response curves for stable bifurcation. Specifically, an increase in turbulence re-
sponse leads to an apparent decrease in the critical velocity assigned on the basis of

standard threshold definitions (see Section 3.3.1).

Unstable bifurcation

The instability signalled by an unstable bifurcation cannot be qualitatively described
by the trivial equilibrium solution, since it is not asymptotically stable for A < Ac,
It follows that, even without non-linear coupling between the turbulence and flu-
idelastic mechanisms, the linear response to combined excitation is sufficient to
initiate instability below the fluidelastic stability boundary (trivial equilibrium so-
lution A = Ac) when it exceeds the unstable limit cycle. Thus, it may be concluded

that the stability threshold for bined fluidelastic and turbul excitation may

be i ly defined by the i jon point of the linear combined response
curve with the unstable limit cycle, as given by equation (6.37).

Note, however, that any finite disturbance which carries the system beyond the
unstable limit ¢ycle may cause instability. Since this disturbance arises from turbu-
fence buffeting; the RMS response underestimates it and random vibration theory
must be applied to define its possible peak size (see Reference [7], for example). For
narrow-banded random cylinder motion excited by turbulence, the displacement
peak will be governed by the Rayleigh probability density distribution function:

ply) = Zed-¥” (6.40)
where p(y)dy is the probability of a peak falling within interval y + Ay and o is
the standard deviation. The average number of cycles before a peak displacement

Ymaz 2 Y is experienced may be shown to be:
N(Y) =t ¥P (6.41)
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Therefore, for a cylinder vibrating at frequency f, the average return period in
seconds is:
() = ;;N’-‘)’ (6.42)

In the present i 1 igation, f = 5.1 Hz (the fi of oscillati

and T(Y) = 10 min (the time during which the cylinder motion was allowed to sta-
bilize at a given flow velocity). It follows from equation (6.43) that the maximum
peak displacement expected, ¥naz, is four times higher than the average RMS re-
sponse for these conditions. Thus, to account for this effect, the random excitation
coefficient in equation (6.37) must be defined via expression (6.43) ‘o represent the

maximum displacement in the average return period, This gives:

Cr = J2In[fT(VY[C! (6.43)

where C] was obtained experimentally based on the RMS cylinder response. Thus,
the stability criterion for unstable bifurcations subjected to turbulence, still ignoring

fluid coupling, becomes:

0= 6, — L CHAYTON G LI VDR (640

Note, however that to ensure ic stability ind dent of turbul

the non-li fluidelastic analysis must be extended to defi

stable point of bifurcation which, in real situations, defines {he lower limit of the
hysteresis region. That is, Uy is the stability threshold independexrt of turbulence.
Because operation of the array within the h is region risks turbull induced

transitions to instability, Uy may also be taken as the practical stability boundary.
6.3.2 Static stability
It is interesting to note that, based on equation (6.34), the transition from dynamic

to static instability may be defined. Physically, this manifests itself in the frequency
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reduction towards zero at the stability threshold, yielding:

IR (645)

(a+ D}

Note that this expression is defined only for & ## 0. Thus, the present theory predicts
static instability only if the area perturbation function diminishes at large distances

from the cylinder (as already noted by Yetisir and Weaver, [49]).

6.4 Numerical procedure

With the approximate analytical solution behind, numerical time-domain procedure
was developed with two objectives. First, to perform a fully non-linear analysis since
the simplified analytical solution (a = 0), reduced to third order, might be insuf-
1

h

under

ficient to describe the cylinder b
Second, to quantify the influence of turbulence on fluidelastic instability based on
the true non-linear interaction mechanism.

The equations of motion (6.16) and (6.20) were integrated using a fourth order
corrector-predictor technique [90]. To verify the effectiveness of the numerical inte-
gration scheme and to specify certain parameters for its operation, such as the time
step and the number of corrector iterations, this technique was first applied to the
standard non-linear equations: Van der Pol’s and Rayleigh’s oscillators (the details
of this study are contained in the Appendix D). It was found that for a lightly
damped system, the chosen integration scheme gives accurate results for a time step
of At = I3 with three corrector iterations per step.

‘The numerical evaluation of the equation of motion requires, at each time step,
the time history of previous cylinder response, the fluidelastic force, which is cal-
culated from equation (6.15) after substitution of equation (6.11) for & # 0 and
(6.14) for & = 0, and the turhulence force which via inverse Fourier transformation

is obtained from the spectrum, equation (6.19). The integrals in equations (6.11)
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and (6.14) are solved in the time-domain after i ducing the i jon variable,

€ = t+7 or equivalently { = ¢ 4 Tog- Since calculation of the fluidelastic force
requires that an estimate of cylinder displacement be made at the same instant of
time, the integration procedure is iterated at each time step until the desired degree
of convergence is obtained. It was found that two iterations for the chosen time step

were sufficient for accurate and effective simulations.
6.4.1 Operation of the fluidelastic model

Figure 6.3 shows a flow chart for the operation of fluidelastic model, that is the

numerical evaluation of equation (6.16). This ical procedure may be described

as follows. First, the physical parameters are chosen which define the array and

the cylinder. Simul ly, the ical such as time and velocity

steps, initial disturbance, number of corrector iterations, and order of solution,
are defined. Next, the critical velocity is calculated from linear equations (6.31)
and (6.32) for « = 0, and equations (6.33) and (6.34) for « # 0. This velocity
specifies starting flow conditions such as streamtube velocity and time lag. Since
the time-domain simulation requires the time history of cylinder response, y(t) and

9(t), these are generated for 0 <t < 79 as h ic motion of small litud,

Yo. Then, the fluidelastic simulation proceeds until the state of equilibrium (stable
attracting limit cycle) is reached or instability occurs (unstable repelling limit cycle).
Note that the unstable limit cycle is defined by the amplitude of initial harmonic
disturbance, Yo, for which unstable growth occurs. During the simulations, the
RMS amplitude is computed and saved at each time step together with the segment
of displacement and velocity records which are required for further analysis (phase
plane, Fourier transform). If desired, the final amplitude response curve is obtained
by incrementing (stable limit cycle) or decrementing (unstable limit cycle) the flow

velocity.
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Figure 6.3: Flow chart of fluidelastic numerical simulation.

6.4.2 Operation of the coupled model

Figure 6.4 shows the operation of the coupled model, that is the numerical evalua-
tion of equation (6.20). As before, the physical parameters defining the array and
flow conditions are first chosen, together with the simulation parameters such as
time step and length of simulation. At each flow velocity, the turbulence force time

series is then d from the jon (6.19)) using an inverse Fourier

Next, the fluid i be velocity and time lag are calcu-

lated. The simulati.~ begins with zero initial cylinder displacement and velocity.
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The response to turbulence only is generated until ¢ = 7o, using the central difference
method as a starting procedure. At time 7o, it becomes possible to calculate the
fluidelastic excitation force as in the fluidelastic model. The simulation proceeds,
for the prechosen length of time, with the RMS cylinder displacement computed
and saved at each time step, together with a segment of y(t) itself. For a given flow
velocity, the results are examined and, if desired, the flow velocity is incremented
and the simulation repeated. In this way, a simulation is conducted much like an
experimental investigation, the final output being an amplitude versus flow velocity

response curve.

ARRAY:

CYLINDER:

LOW:

SIMULATION: 1. T,

STARTING WITH y(¢) = 0 AND y

COMPUTE i AN 31 BE 70 T8 ENce
BALY L < e

MPUTE y(2) AND §(0) DUE TO COMBINED
| T%%aut'znc’é‘lun FLyI DELASTIC EXCITATION ]

PLOT RMS RESPONSE VERSUS TIVE
SAVE PORTION OF y(0) AND (1) FOR FREQUENCY
AND PHAS|

PLARE ANALYSIS

Figure 6.4: Flow chart of coupled 1 and fluidelasti ical simul;
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The numerical time-domain model requires certain simulation parameters for its

operation. As before, it was found that a time step of At = 2 is sufficiently small for

accurate and effective si ion. The freq ion of the turbul force

spectrum, Af, was set based on a consideration of the bandwidth of the cylinder
transfer function in still fluid:
2
Af=5Ch (6.46)
where ( is the damping ratio. The constant, K, denote. the minimum number

of i in the bandwidth needed to assure accurate turbulence

response simulations. The resolution error can be calculated by comparing the

e of linear under k i itation with the

given
by equation (6.36). For X = 1 (harmonic excitaticn), this was found to be 25 %,
while K = 2 reduced this error below 10 %. Combined excitation, however, requires
practically infinitely small Af in the immediate vicinity of a stability threshold
(8x — 0). Thus, K = 10 was chosen for the lowest damping value, 8 = 0.01. The
resulting A f was used for all subsequent simulations.

Having selected the time and the fr steps, the in

the turbulence force spectrum is given by the Nyquist criterion:

1

Fras = 572 (6.47)

and the length of the corresponding time series of the turbulence force generated by
inverse Fourier transform is
1

ez = 57 (6.48)

For a cylinder frequency of fo = 5.1 Hz (as in the experimental study), this

yields Traz = 12.5 min. If required, simulations of arbitrary length can be con-

ducted, without the prohibiti ional effort iated with very long in-
verse Fourier Transform, by piecing together turbulence force time series of Tinaz =

12.5 min. This technique was checked against the use of one very long unique time
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series and was found to yield equivalent results.

The random nature of the turbulence force was expressed by assigning random
phases to each frequency component in the inverse Fourier transformation. Thus
each set of random phases produces a different turbulence force time series. How-
ever, it was found that the steady-state cylinder response is essentially independent
of this randomizing effect, especially if Af is small compared with the bandwith
of the transfer function. For example, the maximum discrepancy resulting from
random phase is within 5 % for K = 2 and 0.2 % for K = 80. Therefore, to re-
duce computational effort, one set of random phases Was used for all subsequent

simulations.
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Chapter 7

Theoretical results: comparison
and discussion

The objective of this Chapter is to compare the first principles non-linear model

for fluidelastic instability with experimental results. In this regard, the analytical

model is applied to the two array ies i igi + a parallel

triangular of 1.375 pitch ratio and a square of 1.433 pitch ratio. Comparison is made
on the basis of stability thresholds and response curves for the linear system, and
limit cycle of post-stable oscillations, with special emphasis on a turbulence effect
on unstable bifurcation, for the non-linear system.

First, the theoretical results from ions of the first imation are gen-

erated. These are then compared with the present experimental data to assess the

and to investigate their sensitivity to vari-

accuracy of the

ations in model Next, ical simulation is perf d to generate

fully non-linear theoretical results and to investigate the actual effect of turbulence

on the fluidelastic system. This ical dure is verified against analytical

of the first

7.1 Model parameters

To generate theoretical results, the array and cylinder parameters required by the

fluidelastic model must be defined. As with the i the cylinder
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are; d = 60mm, fo = 5.00 Hz and & = 0.01, while the fluid density is p = 1.221 4.,
Similarly, the array parameters are expressed in terms of the physical parameters,

the tested i which can be divided into two groups.

The first group includes those which directly follow from geometry considerations
of the flow pattern and the unit cell (see Figure 6.1) and were already specified in
References [47,48]. Thus, without further explanation, they are defined in Table 7.1
which also gives their numerical values. Note, however, that the steady streamtube

area, 4“, is expressed based on the minimum gap between the cylinders which for

staggered arrays (parallel triangular) i: mm(z ,, ‘ -1).
Table 7.1: The nondi ional i and their values for
the theoretical model.
Array geometry Streamtube shape T & o D=
Parallel triangular: Circular Feosao [F—1] Fao [ a0
a=1ir, £=1375 segment 1.191 [0.375 [ 0.720 | 0.381
 Savaze: Straight T 1E 1] £ [la
ap=37, £=1433 1.433 | 0.433 | 1.433 | 0.196

Also, a geometric conversion is required to compare the reduced pitch velocity,
Up, & hd' usually deployed in stability analyses to express flow dynamics, with the
reduced velocity relevant to the theoretical model, U, %' . For staggered arrays,

this conversion takes the form:
un =2sh b, 1)

wihille; for'a;aquare array; s
o =2r Ly, a2

The second group includes parameters which are measured or, in the absence

of appropriate experimental data, simply "guessed” based on common sense (they
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are summarized in Table 7.2). As with Reference (48], the relevant fluid stream
length is set | = 4so, reflecting the likehood that perturbations generated by a
flexible cylinder may persist upto two rows upstream and downstream, s = +2sg
(in staggered arrays, nearest neighbours are two rows away). From this assumption

it follows that & ~ 1. This means that further upstream and downstream from

the flexible cylinder, the effect of ion is negligible (86.5 % jon at
s = +2s). The pressure loss coefficient, h, depends on the array configuration,
and the values recommended in Reference [48] are shown in Table 7.2. The drag
coefficient, Cp, - vy be expressed in terms of h based on the following relation, [48];

4o

Co=2Z)h. (1.3)

For a parallel triangular array, this yields Cp = 0.225. Note that the value ob-

tained from Blevins’ formulae, for drag: damping i (5.1) and

(5.2)) which was d experimentally, is imately ten times higher. Nev-

ertheless, for the overall stability analysis, it was decided to use the value suggested
in Reference [48]. Also, the measured flow-velocity dependent damping, although
it increased linearly with flow as suggested by Blevins, represents the net and not
just the drag-dependent term. However, the effect of increase in Cp and k will be

also i igated. The random excitati fficient, C!, was obtained directly from

damping measurements at the RMS response level via expression (6.36). It is worth
noting that the values of C! are approximately constant in the sub-stable region and

are in close agreement with those reported by Pettigrew and Gorman, [64].

Table 7.2: The irical for the tk ical model.
Array geometry e[ h Cp Cr
Parallel triangular: | 4 | 1 | 0.30 | 0.225 | 0.065

wo=1ir, 2=1375
Square: % [1]0.350.300 | 0.200

a=1r, 2=1433
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It follows that, for a given array of specified geometry (angle, ao, pitch, &, and
pattern, Z), there are seven independent parameters required by the theoretical
model: 4, %, 27, L h, C, and a. Complete results of the sensitivity analysis, on
the linear stability equations, in which first five of those parameters were indepen-
dently varied +10 % and +50 % from the baseline values shown in Table 7.1 and 7.2,
are reported in Reference [48]. It was found that the model, although qualitatively
unaffected by those changes, is governed primarily by the parameters which describe
the relevant fluid streams on either side of the cylinder; the steady streamtube area,
48, and the relevant fluid stream length, L. Since the variations of streamtube area
are limited to 10 % by the minimum gap between cylinders, it may be concluded
that the model virtually depends on the assumed flow redistribution mechanism

which is described by the time lag, 7o = g
7.2 Analytical solution

The theoretical model predicts the linear and non-linear stability behaviour of cylin-
der arrays as a function of the mass-damping parameter and the reduced pitch ve-
locity. The predictions are greatly simplified if the relevant fluid inertia length is

expressed in terms of the streamtube length, I = 4so.
7.2.1 Linear stability boundary

The linear stability curves may be written as:

(a) Dynamic instability for a # 0

= 3om(PEy Ly 042 @y g magin L
by = 32r(EN P "sing +

111 06 el o Laeocos >
+2U,cql°+U,c sing- (a+2a|)e cosU']+

L lply ~agin-b 42t a4+ L o
+ig(gr V(G e + ea)e™singr + 27ma + gr(2a + an)ecos ] +
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—hFr;‘-{[U,(a+m)+—(—+—-)]e smy +

L ey L Lan w
+i = Ha+ Blercon + 12 - 13} - 200020, (10

()2 = 14 52028y L )(’“)’U’u — o+
l 11 R . 1 L

*2[/ a.[l/ —Ue ‘cuU (a+ a,)e smU']+
1 i 1

15(11.) (—) (82 - (52 - cgem™tcongy - a:(l+2cxa‘):"'smi] +
1 3 la; o ik

+hD:;{u(U,+a,7r)+(l-4a———)e ’"‘ZT,+

—[Un(e® + ) + Ui(f +aale et} (1)
where oy = o® +(g-)? and a2 = o® — (3-)?. The flow velocity U, is converted to the
reduced pitch velocity Up, via equations (7.1) and (7.2), yielding Up, = 20.891U,
iid Do == 96.0150, for's pasallel trisngilas aind & squase aeay, fespectively:

(b) Static instability for & # 0

Up = 2#(2—)Ur(—-)”(f) (7.6)
(c) Dynamic instability for a =0
mﬁ,._4ow(—)(—)(’—°)=(—)u’[—sm— %Ui;caa +
+h(ama + v,ma =~ Ul = 2 Co( )T (1.7)
(—) =1+40n( )( )( )’(—)U'( (1 m~) +
-———sm =4 h(v,m— - m-—)y (7.8)

4U,

Figure 7.1 shows these stability curves for a parallel triangular and a square
array in the form of a stability map. For direct comparison with experimental
results, the model parameters are selected as presented in Table 7.1 and 7.2 (the
damping values chosen, §o = 0.01 and & = 0.10, bracket nearly ./l data reported in
the open literature). The stability curves, presented in Figure 7.1, reflect a number

of interesting features of this model.
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o The existence of multiple stability boundaries at low mass-damping parame-
ters. This results from the time delay between cylinder motion and the as-
sociated fluid forces which, as follows from equations (7.4) and (7.5), varies
harmonically with flow velocity. It is unlikely, however, that these harmonic

pressure pe ions would be i d through a real fluid indefi-

nitely. Thus, it is probable that, in practice, only two or three upper stability

branches may exist. It is i ing to note that multiple bility regions were

observed experimentally by Andjelic, [55], and were also predicted by other

theoretical models which i the velocity hanism (see Ref

(41,42,81], for example).

e The ion in the two di ionll & and m, which results

from fluidelastic stiffness. This has also been predicted by Price et al., [38].

o The transition from fluid-damping lled to fluid-stiffs lled insta-
bilities via frequency reduction towards zero. This process takes place grad-
ually, over the low (7ado < 1) and high (o > 300-500) range of the mass-
damping parameter, where the dynamic and static stability boundaries start
to approach each other (clearly visible for & = 0.10). This is in agreement
with other theoretical models which, however, predict fluid-stiffness controlled
instability by including the effect of relative cylinder motion (see References

[37,39], for example).

o The exi f static stability boundary. The slope of this line is proportional
to (m6o)°%, limiting the increase of dynamic stability curve which is directly
proportional to mdp at high mby. While the predicted static instability has

not been observed experimentally for these arrays, its impact on dynamic

improves the with i lly obscrved

stability curves (see Table 3.2) and with other theoretical models [28,30,37,39).
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Figure 7.1: Theoretical stability curves, in comparison to experimental data, for a
parallel triangular array and a square array (varied &).
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Figure 7.1 shows that the stability curves are reasonably well predicted by the
model. While a very good agreement can be seen with the experimental data of
Weaver et al, [31,83], for a parallel triangular array (Figure 7.1(a)), the present
results exceed the theoretical prediction. However, they show the correct depen-
dance with respect to mfo. This indicates that the recommended values of the
Cp and h coefficients may be too low for this array (recall that an approximately
ten times higher Cp was obtained from Blevins’ expression for velocity-dependent
damping). Better overall agreement can be seen for a square array (Figure 7.1(b)).
Note that the scatter in critical flow velocities, observed experimentally in the range
of mp ~ 1.9 — 2.8, can be attributed to the existence of multiple stability regions.
This may explain the significant difference in critical flow velocity for the dominant
cylinder (1 x 2 and 1 x 1, see Table 5.2).

Figure 7.2 shows the effect of the decaying of the area perturbation function
on the stability curves. The strength of the decay term (a) was varied £100 %
from the baseline value suggested in Table 7.2. Since the decay term contributes to
energy dissipation in the fluidelastic system, it increases the stability boundary, as
expected. This effect is particularly important at high mbo. Note that at low by
the increase in decaying strength reduces the size of multiple stability regions, while
the upper stability boundary is virtually unaffected.

Figure 7.3(a) presents the stability curves for a parallel triangular array for

various values of the Cp and & i As d earlier, these

have virtually no influence on the predicted stability boundary if changed £100 %.
Thus, it was decided to increase the drag coefficient to Cp = 0.65 (value suggested
in Reference [46]) and to Cp = 2.20 (value found in this study). Respectively, the
flow resistance coefficient wa. "ncreased, based on equation (7.3), to k = 0.87 and
h = 2.93. It can be seen that this only slightly improves the agreement with the

experimental data. Thus, it does not account for the difference between the prosent
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results and those reported in References [31,83]. A similar analysis was performed
for a square array (see Figure 7.3(b)). As before, there is a little effect on the

stability curves.
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Figure 7.2: Theoretical stability curves, in comparison to experimental data, for a
parallel triangular array and a square array (varied a).
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7.2.2 Liear response curves

The linear response curve, under combined turbulence and fluidelastic excitation,

was formulated as:

Arms _ _C} 157715 1 05
U, o 7.9
] 8\/_1(/'0) B2l 5n—77151=)] (7.9)
where 7.6, denotes the fluidelasti dampi (the RHS of equation

(7.7)) which includes the drag-dependent term. This is the term which accounts for
the reduction in the net damping and, hence, the increase in turbulence response as

the stability threshold (7méy = m&y.) is approached. Note, however, that because in

a linear fc lation both excitati h i the predicted stability

hreshold location is by turbul Thus, only the effect of the variation

in 7bse on the shape of the linear response curve is investigated here (the random
excitation coefficient, C/, is set at the baseline value).

Figure 7.4 compares the experi obtained f

ic damping factor (ex-
pressed in percentage of critical as a function of reduced flow velocity) with that
predicted by the model. Since the Blevins’ velocity-dependent damping term is sub-
jected to some uncertainty, two sets of Cp and h were used for the model predictions;
first, the baseline values suggested in Table 7.2 (Figures 7.4(al) and 7.4(b1)) and
next, the values obtained from experiment (Figures 7.4(a2) and 7.4(b2)).
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It can be seen that unlike the measured damping curves, which smoothly vary
with flow velocity, the theoretical damping curves oscillate around the mean which
is defined by the Blevins' term. These oscillations produce the multiple instability
regions (as shown in Figures 7.1-7.3) and their magnitude increases with h. Some-
what more realistic modelling is achieved with the decaying of area perturbation
function (a) which strongly reduces the strength of the oscillatory term and delays
bilitv. R bl

the initiation of i good is seen between the ob-

served and predicted damping curves for a = 2 (Cpp and h as with the experiment).
Note that for a square array, the stability threshold is located at the lower branch

of instability.

Figure 7.5 shows the di i land th: ical response curves
which are computed from equation (7.9) (vertical scale is exagerated for easy of
comparison). For a parallel triangular array (Figures 7.5(al) and 7.5(a2)), all curves
show a smooth increase in RMS response towards an essentially vertical asymptote
at the critical flow velocity. The rate of increase is similar fo. all response curve.

However, the predicted critical flow velocities, except for & = 2 (h = 2.93), differ

from that experimentally observed. For a square array (Figures 7.5(a2)
and 7.5(b2)), a similarly smooth increase in predicted RMS amplitude, towards a
vertical asymptote, is seen for = 2 only (other curves show local response *bumps”

however, are

due to more severe damping oscillations). The
significantly higher, reflecting the observed lack of positive damping induced by flow.
Note that for @ = 0 only, does the system become unstable at the lower instability

branch, revealing good agreement with experiment.

153



“fease osenbs v puv Kvire senSuer [aizred © Joj saaInd asuodsal | pue (teaury) L gL 2ty
120 10114 RN ALI0TA 10114 GzonaH
[N A T T T o w T o e s sz
pon 8 = e 8
- o Ay
10N3937 u“ ﬂ“
2 4
5] 5]
1
° i °
i m i
o% H o0
22 ! H
|
I= | s
8 | 8
L 1
00°0=y ‘Aoam ewonbs (28 £6°2=4 tADuso vof nBuDI g} B
A1 10414 TN 10 Vo4 EEa
E S T R T E A T R T T
g H
e = e
8 0ouds thaeyy 4 3
M TON393 “
P t 4
21 23
o8 3
o 3
/
I3 g ge
I
{ e e
| 8 8
GE°0=u houm swombs (18 & 06°0=u thoum B




7.2.3 Limit cycle oscillations
For o= 0, t* ~ third order non-linear solution yields the following amplitude of limit
cycle oscillations:
= {méo+ ZWCD(%B)(”%)Ur - 40w( )( 0 ‘ 2y (—)U’[-m— +
’ZU_””V e h(szn——— + u,m— —-UNY
(40 ZEY PO sin 1 — Seosr] —
-} - —TC'D(

Su)(wn)U) (7.10)

(%)z=1+4o<i)<"5 PP )’U*« >’( FI30 - cos) +
1

am—] + —(1 — cos

+h(( )’(A—)’(U,sm——mu )+-U,m.—[_m P+ ]——m—})('ru

Figure 7.6 shows the amplitudes of limit cycle oscillations for the two arrays of
interest and the values of Cp and h which were suggested in the linear analysis. The
amplitudes are computed for a variety of mass-damping parameters; mé = 1 (two
branches), 10, 20, 30, 50, 100 with & = 0.01. For a parallel triangular array, stable
limit cycle oscillations are predicted below o = 5.10 for h = 0.30 (Figure 7.6(al))
and below mé, = 20.30 for h = 2.93 (Figure 7.6(a2)). Interestingly, these oscillations
show non-linear softening (i.e. a transition to unstable limit cycle oscillations) at
larger amplitudes, particularly explicit at the upper instability branch for by = 1.
This results from fluidelastic stiffness which reduces the natural frequency. In the
higher mass-damping parameter range, only the unstable limit cycle oscillations are
predicted. For a square array, the model yields essentially similar results; stable
limit cycle oscillations below iy = 8.95 for h = 0.35 (Figure 7.6(b1)) and below
6o = 44.10 for h = 3.42 (Figure 7.6(b2)), and unstable limit cycle oscillations in
the higher range.
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7.2.4 Non-linear stability b dary under
tation

da g s B

The non-linear stability curve under was ex-

pressed, using superposition of the linear response to combined excitation with the

non-linear limit cycle due to fluidelastic excitation only, as:

by = by + GO NEIUR-DP® (ra2)

fo

where &y, denotes the fluidelasti damping and D is the non-li
operator (denominator in equation (7.10)). Note that expression (7.12) gives the
effect of turbulence on the dynamic bifurcation which defines the stability threshold
for the fluidelastic excitation only (mfy = méy,). It follows that the threshold
duction is directly p ional to the litude of turbulence buffeting, Cy, and

inversely proportional to the amplitude of unstable limit cycle, vV=D.

Table 7.3 presents the solution of equation (7.12) for My = 50 where the fluide-
lastic system is governed by the unstable bifurcation (D < 0), as required. Results
were obtained for the baseline values of the random excitation coefficient (suggested
for both arrays in Table 7.2) and twice these values to show the effect of increasing
turbulent response on the stability threshold. The averag: return period was set
T(Y) = 10 min (the time at which cylinder was allowed to stabilize, at a given
flow velocity, during the experimental investigation) and T(Y) = 25 years (typical
in-service period for production platform). As expected, superposition of turbu-
lence lowers the fluidelastic stability threshold for the unstable bifurcation. Since,
in the practical range of C!, the rate of reductior was found to be very small for
8o = 0.01, the analysis was also performed for § = 0.10 where the reduction is more
pronounced due to the larger turbulence response (it is inversely proportional to
Vi)

The small effect of turbulence on the fluidelas*ic stability threshold results from
the extreme. steepness of the unstable limit cycle predicted by the model (see Fig-
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ures 7.6(al) and 7.6(b1)). It must be appreciated, however, that the experimentally
observed unstable limit cycle (within the hysteresis region, see Figure 5.9) is signif-

icantly lower. Thus, more severe turbulence sensitivity may be expected.

Table 7.3: Turbul itivity of the unstable bi ion for méy = 50 (coupling
ignored).

Array geometry | & | Cr T(Y) [ (Upc)er | Reduction (%)
Parallel 0.01 [ 0.000 0 16.622 0.00
tringular 0.065 | 10 min | 16.587 0.21

25 years | 16.564 0.35

0.130 | 10 min | 16.552 0.42

25 years | 16.306 0.70

0.10 | 0.000 0 16.585 0.00
0.065 [ 0 min [ 16.475 0.66

25 years | 16.404 1.09

0.130 | 10 min | 16.368 1.31

| 25 years | 16.230 2.14

Square; 0.01 | 0.000 0 20.056 0.00
0.200 | 10 min | 19.938 0.59

25 years | 19.869 0.93

0.400 | 10 min | 19.819 1.18

25 years | 19.685 1.85

0.10 | 0.000 0 19.988 0.00
0.200 | 10 min_| 19.626 1.81

25 years | 19.425 282

0.400 | 10 min | 19.297 3.46

25 years | 18.848 5.70

7.3 Numerical simulation

Physical arguments suggest that stronger non-linear hardening, leading to stable
limit cycles at large amplitudes, should be predicted by the single flexible cylinder
model used here. This non-linear hardening may arise from higher order terms or,

alternatively, decaying of streamtube area function (a # 0). To examine these effects

bul Auidel

and

and to model the actual coupling between

the numerical procedure, described in Section 6.4, is applied here.
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7.3.1 Fluidelastic excitation

Tucted

The initial series of si ions was to d ine the linear stability

threshold (n = 0 in equation (6.13)). The cylinder was harmonically excited in
the vicinity of the threshold (defined by the analytical solution, equations (7.3) and
(7.4)) and the response record (10 min) was carefully examined by checking for
exponential increase or decrease of the oscillation envelope. If desired, the flow ve-
locity was corrected and the procedure repeated until a constant amplitude sinewave
(neither decay nor growth) was observed. This was taken as the stability threshold.

Comparing the results to the analytical solution, the absolute simulation error in

the linear threshold estimation, for mass-damping of 1-100, was found to
be in the range 0.02-0.20 % ( = 0) and 0.05-0.40 % (c % 0) for a parallel triangular
array, and in the range 0.10-0.30 % (a = 0) and 0.20-0.60 % (a # 0) for a square

array. The simulation eror d at higher mass-damping due to the

shorter time lag, 7. This error can be significantly reduced by finer time stepping,

At. However, a di within 1 % is ble for this kind of numerical
simulation.
The next series of tests was ducted to d limit cycle oscillati

Initially, the third order solution was computed for a = 0 (n = 2 in equation

(6.13)) to compare directly with the analytical jons of the first
(equations (7.10) and (7.11)). These simulations were performed for mép = 1 (suble
limit cycle) and for mép = 50 ble limit cycle). Numerical determi of

the stable limit cycle was conducted on two upper stability branches. This could
be done only over a very limited velocity range due to the extreme steepness of
the equilibrium path. As shown in Figures 7.7, agreement between analytical and
numerical solutions was excellent. In all cases investigated, both solutions predicted

the same type of limit cycle (stable or unstable) at a given flow velocity, indicating

that the ical impl ion of the i fluidelastic model is correct.
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Next, the numerical simulation was extended to include higher order terms. To
recognize the nature of the limit cycle oscillations, the computation was performed
for mass-damping parameter in the range mf = 1 — 100. These simulation results
were found to be qualitatively identical to those of the third order (see Figure 7.7).
As an example, Table 7.4 presents the limit cycle amplitudes obtained for by = 50
at three different velocity levels (note that the even terms were found to be zero). It
can be seen that convergence to the limit cycle amplitude increases as the stability
threshold is approached (Up, = 16.62 for a parallel triangular array and Up, = 20.06
for a square array). A third order solution yields the correct qualitative assessment
(stable versus unstable limit cycles) and is very close to a fully non-linear solution
(within 10 %) in the vicinity of the stability threshold. Thus, it may be concluded
that the third order analytical solution of the first approximation is sufficient to

capture the essential features of the present model.

Table 7.4: Convergence test of numerical solution.

Array geometry | Upr Limit cyle litude, Arars (% d)
3-rd [ 5-th | 7-th [ O-th [1i-th [ 13-th
Parallel 11.98 [ 24.70 | 20.50 [ 19.55 | 19.25 [ 19.15 | 19.15
triangular 13.18 [ 19.75 [ 17.10 | 16.50 | 16.40 | 16.35 | 16.35
14.38 [ 14.90 [ 13.60 | 13.20 [ 13.15 | 13.10
Square 16.23 [ 26.98 | 22.45 | 21.70 | 21.60 | 21.50
17.31 | 20.90 | 18.45 | 18.05 00 [ 17.95

18.39 [ 14.95 [ 13.95 [ 13.75 [ 13.75 | 13.70

includ-

The last series of tests was cond d to ine limit cycl
ing the decaying effect of streamtube area function (a # 0). The simulations results
were found to be qualitatively identical to those already presented (a = 0), with

only the bifurcation point and limit cycle litudes changing. Unfc ly, the

simulations with a # 0 do not show non-linear hardening with increase of amplitude

and mass-damping parameter. That is, the decaying function does not reproduce
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the non-linear behaviour expected on physical grounds, pointing to a weakness in
the model formulated here.

7.3.2 Combined fluidelastic and turk

Initially, linear ical si ions were to d ine RMS cylinder

response for separate buffeting and combined excitation at méy = 50
over broad ranges of damping, 8o, and random excitation coefficient, C.

As an example, Figure 7.8 shows the simulated time series RMS cylinder response
to combined excitation for a parallel triangular array at the baseline value of C;
(the curves obtained for a square array were essentially identical). Two values of
damping were used, 6, = 0.01 and & = 0.10, which bracket all numerical tests.
Since the heavier damped cylinder shows larger turbulence response (3.16 times, as
follows from equation (7.9)), a 3 times higher scale in Figure 7.8(b) was used to
approximately compensate for this effect. According to equations (7.7) and (7.8),
the fluidelstic stability boundary is Up. = 16.62 for & = 0.01 and Up, = 16.59 for
8 = 0.10. As can be seen, the combined response achieves steady-state for each flow
velocity lower than critical before the end of Tinaz = 12.5min, except for Up, = 16.51
(Figure 7.8(a)) where a longer transient time was observed. Therefore, to perform
simulations near the stability threshold without the prohibitive computational effort,
the steady-state response value, given by equation (7.9), was used as a starting

parameter.
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Figure 7.8: Simulated RMS response to combined linear excitation for a parallel
triangular array (méo = 50; 6 = 0.01 and § = 0.10).
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Table 7.5 p the si ion resulis ined only in the steady-state)., in

part presented in Figure 7.8, with the corresponding analytical solution to

and combined excitation (equation (7.9)). As can be seen, the turbulence RMS
response agreed to better than 2.5 % for 6 = 0.01 and to bettcr than 1.0% for 6 =
0.10 at each velocity point. The combined RMS response agreed to better than 10 %,
except very near the stability threshold. In this region, the response was sensitive to
the randomizing effect of turbulence because of discretization errors associated with
the decreasing bandwith of the system (very small §,). It should be noted, however,
that some variations in the simulated response were expected since specific timeseries
of finite length were generated, whereas equation (7.9) applies, strictly speaking, to
infinitely long records. It is thus felt that the numerical implement: tion of the
combined turbulence/fluidelastic model (at least its linear part) yields accurate and

reliable results.

Table 7.5: Validation tests for linear system (Agars in % d).

Upr | 60 Analytical Numerical
Turbulent [ Combined | Turbulent | Combined
12.22 ] 0.01 | 0.0156 0.0253 0.0153 0.0272
13.44 1 0.01 [ 0.0180 0.0346 0.0176 0.0364
14.67 ] 0.01 | 0.0206 0.0507 0.0201 0.0517
15.89 | 0.01 [ 0.0232 0.0938 0.0227 0.0883
16.51 | 0.01 | 0.0246 0.2550 0.0240 0.1824
16.74 | 0.01 | 0.0251 unstable 0.0245

1222 0.1 0494 .0806_ | 0.0491
13.44 | 0.1 0570 1103_|0.0566
1467 | 0.1 0650 1619 | 0.0644
[15.90 [ 0.1 0733 | 0.3083_| 0.0727
[16.50 [ 0.1 0775 9155 | 0.0768
16.74 | 0.1 0792 | unstable | 0.0784 | unstable
Next, two separate sets of i i i were d d; at mp = 1

(86 = 0.01) for stable limit cycle (Figure 7.9(a)) and at mé, = 50 (6o = 0.10)
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for unstable limit cycle (Figure 7.9(b)). In each set, both non-linear and linear

and d to the analyti ions for

RMS amplitudes were

linear bined excitatil ion (7.9)) and li fluidel

only (limit cycle, equations (7.10) and (7.11)). Therefore, a 3-rd order non-linear
simulation was run to allow direct comparison with limit cycle predictions.

As seen in Figure 7.9, the overall effect of non-linearity on the simulated re-
sponse curves was very weak in both cases since the limit cycle oscillations were
nearly vertical at the practical response range (Apas = 0 — 20 % d). Nevertheless,
the non-linear simulated response curves show qualitatively correct behaviour. Far
stable bifurcations, the combined response tends asymptotically to the analytically
predicted limit cycle and remains stable for flow velocities greater than critical. For
unstable bifurcations, the non-linear response curve shows a lowering of the sta-
bility boundary (as predicted by the analytical solution) although this reduction
was quite small. Note that these numerical results confirmed a direct analogy, sug-
gested in Section 3.2.2, between a dynamic system under combined excitation and

an equivalent static system by

To exactly examine the effect of turbulence on unstable hifmtim, a separate
series of third order simulations was conducted (higher order terms were almost
negligeable in the immediate vicinity of the stability threshold). For a direct com-
parison with the analytical results d in Table 7.4 (equation (7.12)), the

running time, after reaching steady state response level, was set T(Y) = 10 min.
Table 7.6 gives a summary of this computations for a parallel triangular and a
square array. The numerically observed reduction in critical flow velocity was ~ 60
% of that predicted from equation (7.12) by ignoring coupling. This suggests that,
perhaps, for a randomly oscillating system more than one consecutive excursions,
exceeding the unstable limit cycle, are required to trigger instability. Note, that in

hoth cases the reduction was imatel jonal to turbulence strength.
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Table 7.6: Turbulence sensitivity of the unstable bifurcation (méo = 50, & = 0.10).

Array geometry | C! (Upr)er Reduction (%)
Numerical | Eq. {7.12) | Numerical | Eq. (7.12)

Parallel 0.000 16.565 16.585 0.00 0.00

i 1 0.065 16.500 16.475 0.39 0.66

0.130 16.368 0.76 1.31

Square 0.000 19.988 0.00 0.00

19.626 1.07 1.81

0.400 19.297 2.05 3.46

7.4 Conclusions

The theoretical model has been applied to perform the stability analysis of a single

flexible cylinder, in an array of rigid cylinders, subjected to the fluidclastic and
turbulence excitation.

The model proved successful in its prediction of linear stability boundaries and

) linear response curves. Interestingly, it reflects all essential features of the experi-

mentally observed behaviour of a fully flexible array: (i) the presence of dynamic and

static stability boundaries, (ii) the fon in the two

& and m, at the dynamic stability boundary and (iii) the transition from fluid-

damping led instability, which ifests itself by multiple stability bound-
aries in a low damping range, to fluid-stiffr lled i ili
which domi ina high damping range. Note that these features

are not critically dependent on model parameters.

The non-linear analysis gives only limited agreement with the observed post-

stable behaviour due to its lack of i dening in the high damping
parameter range. Nevertheless, it predicts stable and unstable points of bifurcation,
as experimentally observed. Through theoretical considerations, based on superpo-

sition of the linear combined response with the fluidelastic limit cycle, and a series
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of 1 cirnlati a direct d with equivalent static systems is

shown by considering turbulence response as an imperfection parameter. This al-

lows us to draw some general i ding the effect of on the

fluidelastic stability boundary.

o For stable bifurcations linear theory yields the lowest stability threshold; the
fluidelastic boundary cannot be reduced by interaction with turbulence. How-
ever, the response to turbulence below the threshold can lead to apparent
reductions in the practical stability boundary assigned on the basis of stan-
dard definitions.

o For unstable bifurcations a non-linear theory is required for stability analysis;

with turbul lowers the fluidelastic stability threshold. The rate

of reduction, which was found to be directly proportional to the amplitude
of the turbulence buffeting and inversely proportional to the amplitude of
the unstable limit cycle, can be i d based op the

principle. The numerical simulation, however, suggests that more than one

due to ding the unstable limit cycle,

may be required to trigger instability.



Chapter 8

Proposed modification of
theoretical model

The present theoretical model predicts reasonably well linear stability boundaries
and combined turbulence and fluidelastic response curves. However, it gives caly
limited agreement with the ohserved post-stable behaviour of cylinder arrays due
to, particularly, its lack of non-linear hardenig. This raises a fundamental ques-
tion; does the underlying "cylinder-in-channel” theory warrant non-linear analysis?

The detailed i 1i igati ducted here, d: that a sin-

gle degree-of-freedom cylinder displays similar non-linear behaviour as a fully flex-

ible array. It also showed that li hardening results from fi and

not | cylinder ch istics. These

suggest that the model

shortcomings result from failure of the one-dimensional fluid mechanics used here.

Indeed, at large litude unstable oscillati main lines may pass from
one flow channel to the next. Thus, the assumption that the flow field area changes
with cylinder motion, due to the presence of solid boundaries, may not be valid in
the post-stable region. In this case, variations in magnitude and direction in the

it based on

flow field have to be addressed by defining its iform
two-dimensional fluid mechanics.
The modification of underlying fluid mechanics requires formulation of an essen-

tially new theory. Thus, rather than consider the increasingly complex flow field, this

169



)
]
{

chapter looks into the possible improvement of the assumed one-dimensional flow
redistribution mechanism which accounts for most of the observed characteristics of

the fluidelastic instability.

8.1 Flow redistribution as amplitude-dependent
mechanism

The lated flow redi hani: lated from an anal tran-

sient problem (see Reference [46]), appears well founded for a small cylinder motion.
In this case, fluid inertia predominates viscous effects in a near wake region whose
size is strongly limited by the constrained streamlines, passing along both sides of
the flexible cylinder. Thus, the phase lag is a function of flow velocity only. How-

ever, for i i litude of unstable oscillations, perhaps all should be

made for an unsteady wake effect resulting in shifting of flow separation points. The
net force exerted on the cylinder becomes a combination of the perturbation in the
free-stream flow, due to the cylinder motion, and the perturbation in the near wake.
Without taking into consideration the magnitude of the near wake oscillations, it

is reasonable to assume that this force affects the flow/cylinder feedback mecha-

nism. For large cylinder oscillati this hanism may be self-limiting
due to the presence of the large-magnitude unsteady wake (a "peacemaker” for the
underlying instability).

Indeed, Hara, [92], suggests that the movement of flow separation points gov-
erns the phase relation between flow adjustment and the large amplitude cylinder
motion. In an interesting experimental study on a cylinder row, Hara found that
the phase between the fluidelastic force and cylinder motion is strongly displace-
ment dependent in the post-stable region. Initially, it increases with the amplitude
of oscillations and generates negative net damping. Then, approaching th limit

cycle, it decreases sharply and generates, in turn, positive net damping leading to
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1i hardening. In this i however, the adjacent cylinders were free
to move, affecting the measurement through fluid coupling effects. Nevertheless, the
results may be qualitatively correct also for a single flexible cylinder array. Note
that Hara’s observed damping variations clearly suggest hysteresis behaviour, as in
the single flexible cylinder case.

To simulate a possible amplitude dependent phase lag between the fluidelastic
force and cylinder motion, it was decided that the relevant fluid inertia length de-
creases linearly with the amplitude ratio, (%), from its initial value at the stable
equilibrium state, [, to ' = [1 — A(3)], at a given amplitude (B is a proportionality

constant). Thus, the be area perturbation, as d in equation (6.4),

follows the post-stable cylinder motion with a time lag, 7, which at the unit cell
inlet is formulated as:
1 a
=gl -AG) (O
At present, there is little justification for this expression, except that it has a proper

physical meaning, limiting the underlying fluidelastic feedback mechanism.

8.2 Modified limit cycle oscillations

Figure 8.1 shows the amplitude of the limit cycle oscillati btained from equati

(7.10) and (7.11) after substitution of equation (8.1) for the relevant fluid inertia
length (note that the linear stability boundaries are not affected). Typical sets
of results are given for 3 = 1 (1o = O at (§) = 100 % d) and f# = 2 (o = 0
at (§) = 50 % d). To allow for direct comparison with Figure 7.6 (4 = 0), the
amplitude is computed for the same values of mass-damping parameter; méy =
1, 10, 20, 30, 50, 100 (6 = 0.01). It can be seen that the assumed reduction of

the time delay results in a dramatic change and a significant improvement in the

dicted post-stable behavi It causes an i i i hardening with

increase in and damping Particularly i ing is the
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transition from unstable to stable limit cycle for /o ~ 30 — 50. This reflects the

observed & is behaviour which, for both arrays, disappears at

b = 30. For high values of mass-damping parameter, only stable limit cycles are
predicted. As with the experiment, the rate of increase of post-stable amplitude
becomes lower with increasing éo.

Note that the variations of # allow accurate adjustment of the predicted limit
cycle amplitude (for a square array, the value of 8 must be slightly higher), leading
to remarkable agreement with the observed stability behaviour of cylinder arrays.
At the present time, however, expression (8.1) is just a hypothesis. Nevertheless, it
suggests that the flow-adjustment phase lag may be both flow velocity and cylinder

amplitude dependent.
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Chapter 9

Summary and conclusions

The main objective of this work was to develop foundations for the design of multi-

tube marine risers against current-induccil vibration through establishing character-

istics of the underlying fluidelasti itati hani Despite research efforts,
undertaken in recent years, and the substantial progress made in understanding
fluidelastic instability in cylinder arrays, the basic practical question still remains
unanswered. Namely, what is the critical flow velocity from an operational point
of view? The experimental study, undertaken as a part of this research program,

suggests that prediction based on linear fluidelastic models may be unconservative,

icularly, in a low dampi; range, typical for marine risers, where
strongly 1i hy is ph can i Since stability of cylinder
arrays cannot be guaranteed within the k is region (unstable oscill may

be excited by a sufficiently large disturbance caused, for example, by turbulence),
reliability considerations dictate that its lower bound defines the critical flow veloc-
ity. This finding clearly emphasies the necessity for experimental investigations into

the post-stable behaviour of cylinder arrays subjected to fluid-cross flow or, alter-

natively, for devel of accurate non-linear models for fluidel

as initiated in this work.
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9.1 Summary

An experi | program was

d with the objective to investigate the post-
stable fluidelastic behaviour of cylinder arrays subjected to fluid cross-flow (the
arrays were modelled as infinite in transverse-to-flow direction). A wind tunnel

was used to allow a clear separation between Strouhal periodicity and fluidelas-

tic instability. This study was performed at the lamping range,

my ~ 1.9 — 23.5, where hysteresis-type behaviour has been observed. The se-

quence of tests was designed to g isolate the deg; f-freedom needed to
capture the physical essence of an array vibrational behaviour in the simplest way
possible. It was found that instability and post-stable behaviour of a fully flexible
array are governed by a dominant cylinder and may be well represented by a one
degree-of-freedom system constrained to move in the transverse-to-flow direction
only (noo-linear hardening resulted from fluidelastic and not from structural cylin-
der characteristics). Thus, coupled motion between flexible cylinders is not required
for hysteresis effects. Although the response curves were recorded for increasing and

decreasing steady flow velocity under ideal conditions possible, the effects of sys-

tem i fections (e.g. transient turbul array misali ) were

also considered. It was shown that the exact details of the stability behaviour (e.g.
critical flow velcity, hysteresis effects, limit cycle amplitudes) depend strongly on
these imperfections. To ensure that the trends observed are not distinct phenomena
associated with an array geometry, two different configuration were tested; parallel
triangular and square.

Based on this detailed i 1 study, the li h ical model for

fluidelastic instability in cylinder arrays was formulated. The present model is a
modified time-domain version of an earlier steady-state "cylinder-in-channel” for-
mulation (the experiments provide physical justification for the modelling of a single

flexible cylinder, constrained to move in the transverse-to-flow direction only). The
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underlying theory employs one-dimensional fluid dynamics and a phase lag between
cylinder motion and flow adjustment. It accounts for both fluid-damping and fluid-
stiffness forces acting on the flexible cylinder. Here, an area perturbation decay

function was included which exp the itude reduction of ions in

the free-stream flow away from the cylinder. The equation of motion was then devel-
oped with the non-linearity associated with the fluid forces only. This equation was
solved analytically to third order using the first approximation method of Kryloff
and Bogoliboff.

The third-order non-linear solution gives only limited agreement with the ob-
served post-stable behaviour of cylinder arrays due to, in particuiar, its lack of
non-linear hardening. Nevertheless, it predicts stable and unstable points of bifurca-

tion, allowing us qualitati of the effect of turbul on the fluidel

stability boundary. An approximate method was formulated using superposition
of both excitation mechanisms (a flat power spectrum was used to represent the
random field of turbulence within 2 cylinder array). This heuristic representation
suggests that turbulence affects the unstable point of bifurcation and lowers the ac-
tual stability threshold. The rate of reduction was found to be proportional to the
amplitude of turbulence buffeting and to the amplitude of the unstable limit cylce.

Physical arguments suggest that stronger non-linear hardening, leading to stable
limit cycles at large amplitudes, should be predicted by the single flexible cylinder
model used here. To check this, the fully non-linear solution was found using a di-
rect numerical integration of the equation of motion. Unfortunately, the analytical
and higher order numerical results were found to be qualitatively identical, point-
ing to a weakness in the fluidelastic model formulated here (worth noting is the

excellent agreement between the closed form solution and the third order numerical

lation). , the developed ical scheme was applied to simulate
bul itation based on the

bined fluidelastic and

array behaviour under
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true non-linear interaction mechanism. Again, the attention was restricted to stable

and unstable bifurcations, because both types of stability behaviour were observed

lly. Particularly imp: was the influence of turbulence on unsta-

ble bifurcations since it was shown, based on superposition, that the interaction
mechanism may lower the fluidelastic stability boundary. The numerical simulation
confirmed this hypothesis. However, it was found that more than one consecutive
excursions may be required to trigger instability. Little overall effect was noticed

due to the extreme steepness of the predicted unstable limit cycles near the stability

hreshold. A direct ison with equivalent static systems was made in which
bul response was idered as an i {e
The theoretical model can be significantly improved with the assumption that
the flow-adj phase lag is dependent on cylinder motion and decreases with

increasing oscillatory amplitude. This causes an increasing non-linear hardening

with increase in litude and the damping Particularly interest-

ing is the transition from unstable to stable limit cycles for méy ~ 30 — 50. This

reflects the lly observed is behavi

which, for both arrays,

disappears for /6y ~ 30. For high values of the mass-damping parameter, only

stable limit cycle are dicted. As with the i the rate of increase of
the post-stable amplitude becomes lower with increasing /. These resuts suggest
that the flow-adjustment phase lag may be hoth flow velocity and cylinder amplitude

dependent.

9.2 Conclusions

Several concluding remarks, regarding the details of experimental and theoretical
investigations, have been noted separately at the end of Chapter 5 and Chapter 7.

Here, the major lusi ding the fluidelastic instability in cylinder arrays

subjected to fluid cross-flow, are restated based on the presented work as a whole.
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o The non-linear effects, in the mass damping parameter range governed by the

areas i for the onset of i ility as array pitch

and pattern. In the absence of a reliable coupled turbulence and fluidelastic
model, the lower limit of the hysteresis region must be considered as a practical

threshold for fluidelastic instability.

© The fluidelastic instability mechanism of a single flexible cylinder is a row-
dependent phenomenon. The least stable (dominant) row reflects all essential
features of the stability behaviour of a fully flexible array including hystere-

sis effects. Within the mass-damping parameter range studied, the motion of

cylinders is not fund I to the fluidelastic instability. In-

stead, fluid coupling tends to cascade instability through the array.

o The 1i stability ch istics of an array (including h is effects)

may be qualitatively represented by a single flexible cylinder constrained to
move in the transverse-to-flow direction only. That is, the underlying fluide-

lastic mechanism requires only one degree-of-freedom to operate.

For unstable bifurcations, ch ized by b N

with turbul, reduces the ic stability threshold. The rate of reduc-

tion was found to be directly proportional to the amplitude of the turbulence
buffeting and inversely proportional to the amplitude of the unstable limit cy-
cle. For stable bifurcations, turbulence does not affect the fluidelastic stability

boundary, but its apparent value reduces with increasing turbulence.

o The "cylinder-in-channel” model lacks the non-linear hardening needed to
yield good prediction of cylinder behaviour. It appears that the phase lag,
between cylinder motion and flow adjustment, must be smaller at the final

limit cycle than that at the stable equilibrium state.
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o The numerical procedure appears to be a promising starting point for the
modelling of fluidelastic oscillations in cylinder arrays, partic' '~:ly the post-

stable behavi However, i

p to the underlying fluidelastic model

are needed.
9.3 Further development

This work, both experimentally and analytically, contributes to better understand-
ing of the fluidelastic instability in cylinder arrays. The attention was focused on
the simplest physical system, retaining the behaviour of full arrays. Many of the

assumptions, made in the formulation of the theortical model, require further ex-

| justificati C 1 iderable scope for sub research

exists.
o The lated flow redistributi hanism, which accounts for most of the
observed ct istics of the fluidelastic instability, requires experi |
lid Particularly i is the i 1 d i of the

velocity and amplitud- dependence of the assumed phase lag. Unfortunately,
these experiments are rather difficult to perform due to the high turbulence

levels generated by cylinder arrays.

The utilized one-dimensional fluid mechanics and the presence of "solid bound-
aries”, limiting the fluid field, must be verified experimentally for large ampli-
tude oscillations of the flexible cylinder. If required, work can then be directed
towards the application of two-dimensional flow. In view of the presented level

of effort, this is believed to be very challenging.

o Experimental studies on cylinder arvays in water flows indicate that Strouhal
periodicity and fluidelastic instability nearly coincide and, as shown by Price

et al., [11], cannot be separated in some cases. It follows that Strouhal pe-
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riodicity may excite fluidelastic i leading to si 1

stronger
reduction in the critical flow velocity than that predicted here for turbulence
buffeting. Thus, the interaction effect between Strouhal periodicity and flu-
idelastic'instability should recive fur.ner research attention.

d for ion in production marine risers, have a lim-

The arrays,
ited number of flowlines. Thus, the internal fluw field may differ from that in
an infinite array. However, as suggested by Blevins, [7], the change in the flow
field is very small for arrays consisting of more than four cylinders. Neverthe-
less, further experimental work, on a finite array in water flow, is recommended

to determine the applicability of theories based on infinite arrays,
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Appendix A

Response curves

This Appendix shows the post-stable response response curves, for increasing and
decreasing flow velocity, obtained for 6, & 1.9 — 23.5; Figures A1-A21 are for a
parallel triangular array of pitch ratio 1.375 and Figures A22-A33 are for a square
array of pitch ratio 1.433.
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Appendix B

Damping curves

This Appendix shows the fluidelasti of damping, at various flow ve-

locities below critical, as a function of amplitude. The results were obtained at
b = 2.25 for a parallel triangular array of pitch ratio 1.375 (Figures Bl and B2)

and at My = 1.90 for a square array of pitch ratio 1.433.
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Appendix C

Formulation of the first
approximation method

An oscillating cylinder in a state of equilibrium (limit cycle) can be described in the

form of the basic differential equation:
() +why(t) + pfly(t), §(8)] = 0 (1)

where f[y(t), j(¢)] is a non-linear function of cylinder displacement and velocity, and
4 is a small positive quantity.

Here, equation (C.1) is solved, using the first approximation method of Kryloff
and Bogoliuboff [89], by writing the solution as:

y(t) = a(t)cos[wt + &(t)] (C.2)
and imposing the condition that j(t) takes the form:
§(t) = —awsin(wt + @) (C3)

Evidently, equation (C.3) is correct only for 4 = 0. Physically, this implies that

contribution of non-liner terms to the final solution of equation (C.1) is very small,

4t € w?. Thus, the fluidelastic system under is treated as nearly linear.

From equations (C.2) and (C.3) it follows that:
a(t)cosfwt + B(t)] — B(t)a(t)sinfwt + B(¢)] = 0 (C.4)
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This means that the amplitude, a(t), and the phase, ®(t), are slowly varying func-
tions of time, t, in the state of equilibrium. It can be shown that they satisfy the
following formulas:

i) = f f(acos®, —awsin®)sin® (C35)

d(t) = ﬁ f(acos®, —awsin®)cos® (C6)
where © = O(t) denotes the total phase. This set of two first order equation corre-
sponds exactly to the initial second order differential equation (C.1). An important
step to finding their solution is an application of the averaging principle. First,
the right hand sides of equations (C.5) and (C.6) are expanded into Fourier series
as periodic functions with the period T' = 3;'- In this process, a(t) and ®(t) are
considered to be made up of slowly varying components, a(t) and &(t), and small
rapidly oscillating terms. Then, by integrating these expressions over each period
(assuming that a(t) = a(t) and ®(t) = 3(t) in the first approximation) all oscil-
lating terms are "averaged out” since the slowly varying process is not influenced
by small rapid oscillations. In other words, the instantaneous values of a(t) and
&(t) are replaced in this process by their averages whidl are calculated in the usual
way. Thus, the jons of the first imation, which satisfy equation (C.1)
to within the order of u?, may be finally written as:

=g ™ f(acos®, —awsin®)sin®dO ©n
and
(C8)
where the frequency of oscillation w(a) depends on amplitude via:
wla) =0+ 52 [ (02050, ~awsin®)cos©do (c9)
2nwa Jo

Note that the function f(acos©, —awsin®) may enter into equations (1.7) and (C.9)

directly and not only through its non-linear part. Thus, after squaring both sides
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of equation (C.9) and retaining only terms of the same order of smallness 0(4?) as

used in the fon of the first imation method, the expression for w(a)

takes the form:
=g+ L[ ™ facos®, —awsin®)cosOdO (c.10)
0. wa Jo ' :

These equations yield the dynamic bifurcation formulae; a linear solution and a
non-linear limit cycle. Since the limit cycle of constant amplitude is expected, its
rate of change may be set equal to zero (&(t) = 0 in equation (C.7)) and the linear
solution becomes trivial (a = 0).

Further, it is interesting to note that, based on equation (C.9) or equation (C.10),
the transition from an oscillatory to a static state can be defined. Physically, this

implies that:

limw(a)=0 (C.11)
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Appendix D

Verification of numerical
integration scheme

To verify the effecti of the ical i ion scheme and to specify certain

for its ion, a fourth order p: -corrector method is applied to
the Van der Pol’s oscillator, which is expressed in the form of the basic differential
equation:

maoi(t) + [By*(t) — Bali(t) + koy(t) = 0 (D.1)
where B and Bo are positive constants. First, this equation is examined in the
simplified version:

() + Cly*(t) — i) + 4(8) = 0 e (D.2)
for different values of the positive constant, C, which reflects the strength of non-
linear and dissipative terms. This test showed, in particular, the importance of
selecting the proper time step for accurate simulations. It was found that for small
values of C (C < 1), the time step At = Za is sufficient, by three corrector itera-

tions, to minimize the ical error and the ibility of ical instabili

These simulation results, which in part are presented in Table D.1, were in excellent

with ical data published by Urabe [91]. As can be seen, simulations

with C>1 required finer time stepping than initially defined, due to the increasing

of response trajectories. The first imation method yields a limit
cycle of 2 for all C.
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Table D.1: Prediction of limit cycle amplitude for Van der Pol’s equation.

C Time step First Reference
T./10 | T./20 | T./40 | T./80 | approximation [91]
05] 2115 2.007 2 —
1.0 | unstable | 2.028 2.009 | 2.0090 2 2.0090
3.0 | unstable | unstable | unstable | 2.0034 2 2.0035
5.0 | unstable | unstable | unstable | 2.0017 2 2.0016

Having spccified the time step, equation (D.1) was examined for a large variety
of system parameters. Table D.2 shows some numerical results, together with the
solution of the first approximation which yields a limit cycle amplitude of a = 2,/Z%.

Because equation (D.1) undergoes dynamic instability, one might expect its limit
cycle to be sensitive to the periodic forcing conditions. Thus, it was decided to

examine the Van der Pol’s oscillator under harmonic excitation:
maji(t) + [By*(t) - Boli(t) + koy(t) = Esinyt (D.3)

where E and 7 are the amplitude and the frequency of forcing term, respectively.

First, ical results were with the simpli solution of the first ap-

proximation (mg = ko = 1 and B = B, = 1) derived, for example, in Reference [89].
Next, equation (28) was solved, following Reference [89), and tested numerically for
a variety of parameters. Table D.2 presents some examples of these validation tests.

Also, Rayleigh’s oscillator was examined; another imp equation with re-
gards to non-linear systems. This equation is expressed in the form:

moii(t) + [By*(t) — Boli(t) + koy(t) = 0 (D4)

Its solution of the first approximation yields a limit cycle amplitude a = L\ /48

V38
(for details, see [89)). For some ical and yti

exampies are included in Table D.2. It can be seen .hat, in nearly all examined
cases, close with the i solutions of ions (D.1),(D.2) and
(D.3) was found.
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Table D.2: Predictions of limit cycle amplitudes for equations (D.1,D.3,D.4).

Eq [mo|k [B[ Bo | E ~y Limit cycle amplitude, a
Numerical | First approximation

DI[1J2]1] 2 2.86 2.83

2 [1]4]3 1.75 1.73

1 ]5]10] 1 0.65 0.63
D3[1]1]1 1 10.75 | 0.50 241 243

1 [1]17]0.25]0.75]0.50 1.00 1.02
D41 [1]1 1 1.25 116

2 (3[3 2 0.81 0.77

5115 1 118 1.16
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