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Abstract

T his study looks at t he non-linear behaviour of cylinder arrays subjected to fluid

cross-flow. The emphasis is on the hysteresis phenomena, associated with fluidelas ­

tic excitation, which prove essential in the stabilit y analysis in a low mass-damping

parameter range typical for mult i-tube marine r.aers. Since an array generates a high

level of turbu lence, this forcing mechanism is also included. The present work rep­

resents a significant depar tu re from previous studies where attention was pelmerily

focused on linearized fluid mechanics.

A detailed experimenta l program , conducted in an attempt to reduce the number

of degrees-of-freedom needed to model post-stable behaviour of a fully flexible cylin­

der .n ray, provides a clear explanat ion for the underlying excita tion mechanism. It

shows that the fluid-dampin g force, associated wit h the trene veree-to-Bow motion

of a single flexible cylinder, can induce hysteresis-type post-stable behaviour. Th at

is, the underlying Buidelastic mechanism requires only one degree-of-freedom to op­

erate. Wit h th is observatio n lUI a guide, a theoretical model is formulated. The

proposed model ill a modified time-doma in version of an earlier linearized steady­

stat e formulation for fluidelastic insta bility, developed by Lever and Weaver, which

is based on one-dimensional flowand II. phase lag between cylinder motion and flow

adjustment. First , the f1uidelastic equation of motion is solved analytically to third

order using the first approximation method of Kryloff and Bogoliuboff. The ef-

feet of turbu lence is examined via superposition of both excitation mechanisms (the

random field of turbulence is represented by a flat power spectr um) . Next, a fully

non-linear solution is found using a dlrect numerica l integration of the equat ion of

motion . The essential features of the stabili ty behaviour are discussed with the aid

of bifurca t ion theory by analogy with corresponding stat ic systems.

The fluidelastic analysis predicts a stable limit cycle which becomes unstable as

the mess-damping parameter is increased. Physical arguments , however, suggest



that an opposite behaviour should occur, pointing to a weakness in the model for­

mulated here. A significant improvement , leading also to predict ion of hysteresis

effects, is derived from an assumpt ion that the phase lag is governed by cylinder

motion and decreases with increasing oscillatory amplitude. The combined analysis

shows that the fluidelastic stability boundary, when characterized by an unstable

bifurcation, may be reduced by turbulence (the rate of reduct ion is directly pro­

portional to turbulence streng th and inversely proportional to unstable limit cycle).

For a stable bifurcation, the fluidelastic stab ility boundary is virtually una.ffected

and the effect of turbulence is only apparent (interpretation of response curves).
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Chapter 1

Introduction

In a world faced with an energy supply problem . especi ally a tremendou s demand for

t he mobile energy provided by hydrocarbcne, th t' sea bott om at tracts much at ten­

tio n. Offshore hyd rocarbon s are associated primarily with t he cont inental margins

which cont ain 99 % of the ocean' , poten tial ly recovera ble resources. It has been

est ima.ted that 65 % of these hydrocarbons will he discovered at wat er dept hs below

200 m (conti nent al shelf), 30 % at 2QO to 2500 m (contin':!ntal slope ) and only 5

% at greater water dep ths (continent al rise and ocean ic basin) , [I], Consequent ly,

t he indust ry is at present developing the technolo gy for exploration and produc tion

, on the cont inental shelves and slopes. Technical difficulties in design of offshore

str uctures Me considerable because of the need for operation in incre asing dept hs

and ever mor e hostile environment al conditions , espe cially near the Eas t Coast of

Canada and in t he North Sea .

The offshore activi ties are presently carr ied out with a large variet y of mobile

a.nd fixed et ruetueee. The mobile st ructures, mainly used in the exploration phase ,

includ e submersible and jackup platfo rms, and floating units (semisubmersible, ship,

barg e) to increase drilling ca pability and to provide great er mobility. Once a com­

mer cially att ract ive hydrocarbon field has been discovered , the prod uction phase

st arts primarily with the use of fixed platforms. These include pile-founded framed

et-u ceoree (made of welded tubular members) and hea vy gravi ty stru ctures suitable



for activities in ext remely severe conditions, and also compliant guyed tower plat­

forms and ten sion leg platforms for ap plication in greater dept hs. However, due to

the diminishing number and size of hydrocarbon discoveries. the trend in offshore

developments is very much towards floating production units combined with mobile

subsea systems, In a subsea system, t he wellheads and associated equipment are

moun ted on a seafloor template or frame. The maximum operational depth is about

1500 m.

1.1 Marine ri ser

The interest in floating product ion facilities has led to t he development of complex

mult i-tube riser syst ems, an import ant link between the floating structu re and t he

subeee system. The production riser, schematically shewn in Figure 1.1, has to be

flexible in order to resist the hydrodynamic load . It consists of a du ster of pipes:

typically, an export riser and a number of flowline and auxiliary risen intercon­

nected along their length. by spacers (spreader ban) suspended in a main structu ral

system on a number of cables (the distance between the spacers is designed to meet

operat ional requirements for instal lat ion and maintenan ce), The deep-wat er riser is

addit ionally provided with buoyancy devices to reduce tensile stresses, The flowline

risers convey the crud e oil from the wens to the product ion facility on the surface.

The export riser conducts the processed crude to the pipeline on the ocean floor.

The auxiliary risers, used for various purposes. include gas lift pipes and mainte­

nance pipes for guiding tools. Typically, the cross-sect ional configuration of t his

multi -tube riser systems hall a form of a circular array (a cent ral export pipe i!

surrounded by one or two arrays of smaller sate llite pipes). a linear array or. mainly

in connection with te nsion leg platform, a dense rectangu lar array (highly regular

square or staggered , appear ing solid when viewed from any direction other th an

along a. row or column) .
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Figure 1.1: Schematical representation of multi -tube production riser.

The production riser, extendi ng over large depths , is exposed to a variety of

hydrodynamic loads (see Figure 1.2). In the upper stratum of the sea, these loads

are caused by waves, surface currents (mainly wind-driven and tidal) and movements

of the production platform . In the lower strat um, the loads are reduced to current

forces result ing from large scale oceanographic circulations and movements of heavy

density water masses. A. a resul t, an intimate knowledge of th e wave, current

and wind climate in the vicinity of the offshore pla tfonn is necessary for the riser

analysis. Based On these data the hydrodynamic loads may be det ermined in the

following basic steps:

• fonnu lating the mathemat ical descript ion, eithe r determinis tic or stochas tic,

of the water particl e kinema tics in the absence of the struct ure (selecting a



suitable wave theory or a wavespectrum)

• computing the hydrodynamic loading {rom the ftuid motion using Morison's

equation (a combination of acceleration and drag forces in the upper part of

the riser, and drag forces only in the lower part ) and based on a rigid prism

representation for the marine riser

• formulating an adequate model of interaction between the motion of the fluid

and the flexibly mounted pipes (hydroelast ic oscillations).

S till wClter le ye l

r Rillid bod~ molion
due to wa ve

Seo bottom

Figure 1.2: Multi-tube production riser exposed to environmental load .

The production riser is structurally a cluster of slender members with a very

small moment of inertia . Thus, the riser is very sensitive to these loads which may

cause the large amplitud e oscillations of two types (see Figure 1.2):



• rigid pipe motion; oscillations in a combined longitudinal, transverse and ro­

tational motion with the period close to th e period of wave cyclic load

• relative moti on between the individual pipes; superharmonic oscillation , su-

perimpo sed on a rigid pipe motion and amplified by the hydroelasti c excitation

mechanisms

1.2 Probl em formulation

The production riser, which has an expected lifet ime of several decades , must be

carefully designed in order to preserve its integrity. An opera tional failure may

reduce or even curta.il production and, more importantly, may foul the environme nt.

As a consequence, an in timate understanding of the production riser respo nse to

the environment al loads is necessary. Over the years a large amount of experien ce

has been collecte d. However, hydroelastl c oscillations, arising in dense arrays of

pipes , were typically disregarded in common offshore platform design practice (a

rigid prism model was a priori assumed] . Recently, they have sta rted to attract

at tent ion recognized alr eady as a major problem affecting the operation of a variety

of heat exchangers and overhead transmission lines. Hydrcelesd c oscillat ions may

cause catastrophic dam age of risers (e.g. splitting at mid-span ) in a very shor t period

of time as a result of pipe-to-pipe clashing . Alternatively, mechanical failure may

occur due to fatigue and fretting wear at the supports (spacer s), after several years

of service, resulti ng from smaller amplitude oscillations which are always present .

Both types of oscillations, and the effect of their mutual interaction , are of inter -

est in the present study . However , only current -ind uced forces are analysed since it

is unlikely that excessive vibrat ion develops in the wave active zone during each half

period. Also, t he wave zone is typically /tosmall pe rcentage of the total riser length.

Bythe direct analogy to heat exchanger tube bund le, the multi -tube riser is coneld­

ered in the form of an infinite rectangular pipe cluster (Figure 1.3 defines the various



array patterns; normal square, rotated square, normal triangle and parallel triangle),

This allows the present st udy to be based on extensive research conducted-lnrecent

years in the field of power generation (this research has successfully atte mpted 10

identify and to develop a bett er understanding of the excitat ion mechanismsin pipe

arrays subjected to the fluid cross-flow).

Figure 1.3: Stan dard pipe array patterns.

While some uncertainties still exist, it is generally accepted that hydroelastic

oscillations in water flow are excited by turbulence buffeting, Strouhal periodicity

(vortex shedding) and fluidelastic instability. Figure 1.4 shows schematically the

vibration of a pipe array (the production riser) which may be caused by these

excitation mechanisms (note that hysteresis loop results from non-linear effects of

fiuidelastic instability).
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Figure 1.4: Hydroelutic oscillatio ns of pipe array in fluid cross-flow.

Turbulence buffeting is due to the random pressure fluctua tions existing in up­

stream Bow(especially important in the wave/ curren t act ive zone) and also gener­

ated by an arra y itself. The excita tion is normally broad-band and the pipe response

is t hat of randomly forced oscillat ions with a small am plitude related to the 1-2

power of flow velocity. Th ese vibrations are capable of produci ng pipe failure in the

form of fretting wear At the supports and this may occur only after several years

of service. Since the product ion riser has a longer amortization period , turb ulence

buffeting cannot be neglected in design consideration.

Strouhal periodicity is a periodic excita tion mechanism exist ing in pipe arraY"

which is similar to conventional vortex shedding , e.g. there is a constant Strou hal

number associated with it . However, while the source of the periodicity is general ly

accep ted to be boundary layer separation due to a free-sheer layer instability, there

is normall y insufficient spacing between pipes in an array to permit a conventional

vortex street to form. Oscillation s are excited when the frequency of flowperiodicity



coincides with the one of natura l Irequencieaof pipe. In this case, the pipe response

is essentially that cf a narrow banded linear system at resonance. Thus, Strouhal

periodicity can UU!e very large &rnplitude vibrat ions and short. te rm damAge, espe­

cially in the upstream pipe rows, unless the bundle is tuned to operate out of the

critia! frequency n-nge by suitable pretensioning.

Fluidelastic instabitit y is not associated with ftow periodicity but rather with

the mot ion of the pipe which, a t sufficiently high flow velocity, couples with the

flowsuch that energy is tn-nsferred to th e pipe, amplifying itt mot ion. The mech­

anism of f1 uidelastic instability, de facto st rongly non-linear. is neither fully rec­

ognized nor understood, One explanation gaining general acceptanc e is that this

violent self-excited phenomenon is due to a phase lag, result ing from fluid inertia.

between cylinder mot ion and flow adjustment , Large amplitude vibrations, induced

by Buideleetic instability, have the greatest potent ial Cor catas t rophic damage of the

production riser. The Row velocity at which the pipe clust er becomes unstable is

called the crit ical ftow velocity, T his cannot be exceeded under any circumstance in

real environmeutal condit ion. . In principle, the essent ial design requirement is to

predict this critical80w velocity.

Two of these mechanisms are the focus of present research; lluidelutic instability,

loll a most severe problem, and turbulence buffd illg which is always present and can

interact with other mechanisms.

1.2 .1 Research objective

While substantial progreu has been made in unden tanding fluidelastic instab ility,

the most reliable tools used in its prediction are Itill empirical. Moreover. the

basic practical question still remains unanswered. Namely, what is the critical flow

velocityfrom an operational point of view? Fluldelaeue instability, as a strongly non­

linear phenomenon, can lead to hysteresis-type behaviour of a pipe du ster: a rapid



response jump to unstable oscillations, at the critical flow velocity, which persist

even for significant reduction in flow velocity below its critical value. Interestingly,

unstable osillations may be excited by a sufficiently large disturbance within the

hyetereeis region. Therefore, in our opinion the critical hyster esis velocity, the lower

limit of this region, is the practical stability boundary for a pipe cluster. With

th is rationale behind, the present study focuses on non-linear phenomena. due to

fiuidelast ic instability and attempt s to answer some fundamental questions:

e What is the mechanism causing the hysteresis-type, post-stable behaviour of

a pipe cluster?

• What is the role of neighbouring pipes motion and array geometry in inducing

this behaviour?

• What is the role of other excitati on mechanisms in triggering the instab ility?

This work differs in several aspects from previous stud ies where attention was

primarily focused on linear effects. It is hoped that it will lead to a more quantit ative

guidance in marine riser design against current-induced hydroeleatic vibration.

1.2 .2 Resear ch sco pe

A theoret ical, non-linear model for flow-induced vibrat ion in pipe arrays is devel­

oped including the combined effects of fluidelast ic instability and turbul ence buf­

feting. An earlier steady-state theoretical model for fluidelastic insta bility in heat

exchanger tube bundles is adopted, modified and then extended to include random

turbulence and non-linear fiuidelastic forcing terms . Array stabili ty is examined

using catutrophe theory and a numerical time-domain simulation.

In an at tempt to verify the proposed model, an experimental research program

with pipe arrays in air-flow was under taken and a comparison was done with the

exte nsive experimental dat a previously reported on flow-induced vibra tion.



Chapter 2

Previous work

Most of the work on hydroelastic behaviour of marine riser has concentra ted on

vortex shedd ing, since large amplitude oscillation s, often described in the open lit­

erat ure (as in Reference [2,3]. for example), were exclusively associated with this

excitation mechanism. Collapse of slender circular members in steady current , [4J.

and fatigue failure in waves, [5J. attribut ed to vortex shedding , are known to have

occurred. Although oscillations of the single-pipe riser are presently well analysed

(e.g, wake oscilla.tor model, statistical model and numerical procedure based 011

discre te vortex, 16,71), the flow inte rference effects in the multi-tube riser are neith er

fully recognized nor understood.

Experime nts on the tandem configuration of pipes showed that the drag and

lift forces are funct ions of pipe separation and their orientation with respect to the

flow, [81. However, all the vortex shedding phenomena, characte ristic for single pipe ,

modified by How interference at small gap (especially import ant for cylinder in a

lee of upstream cylinder), can also occur, [9,10]. For multip le pipe systems, the

sit uat ion is more complex since the wake interference arises from more than one

pipe . Therefore, a number of Strouha.l numbers may be detected, dependent on

array configuration and flow orientation , as a recent experimental study on a five­

pipe cluster suggested, [l1J. Th e dominant reaponee occurred at the lowest Strouhal

number , Su =0.20, which is typical for vortex shedding from a single pipe in the

10



How regime o( interest. Interestingly, for some How orientations, large amplitude

oscillations persisted even for ftow velocities well above critical (t hus, outside the

"lock-in" resion) . Another work, on many multi-tube riser configurations. showed

that the "Ioclt-in" amplitude oCtran sYene oscillations may be 3-4 times hi&ber from

that for the single pipe, [12]. In view of these experimental studies. (11,12], it

an be suggested that the mult i-tube riser may suffer also from anothe r excitat ion

mechanism, which is obscured by vortex shedding and an beeasi ly mistaken for it,

especially in the complex ocean environment.

Therefore, it would seem appropriate to reexamine mult i-tube riser vibration

problems in the light of the experience in power generation technology, where much

progress has been made since the time when it was believed that vortex shedding

was the only excitation that could cause large amplitude vibrations. Sublltantial

literatur e, which hu appeared on various upects o( flew-Induced vibration, is sum­

marized in several informative reviews and dcsisn guidelines (as in References [13­

171, (or example). Experimental st udies on pipe array. in wat er flow lndlcate that

both phenomena.,Huidelastic instability and vortex .hedding, were (for some arta y

configurat iOllll) very difficult to separate, [11,1g..20). Characteri st ic of fluidelastic in­

stab ility, especially in water How, i. its ability to display hysteresis-type behaviour,

(21-231. Therefore, 8uidelast ic iu tabUity can be excited by vortex shedding since

both mechanisms nearly coincide, leading to considerable confusion in their inter­

pretation even under controlled laboratory condition.. In fad , failures routinely

att ributed to vortex shedding were mainly caused by Huidelastic instability, [24,25).

Additional confusion may result from tu rbulence buffeting since the observed peri­

odicity in the ftow may be associated with the dominant frequency (ofturbule nce,

[26J. It happened that two different hypct beeee, turbulence buffeting and vortex

shedding, were used to describe and predict the same resonance mechanism, [24,26].

11



2.1 Fluidelastic instability

2.1.1 Heat exchanger: an infinite array in water and gas
flows

Anal yti cal mod els

T he large amp litude whirling mot ions, chereet..ri ~, l~ of fiuidelast ic inst ability, were

first observed by Roberts in the 19609. His analytical model, [27], Wall based on

the exi stence of bist able je ts which he observed exper imenta lly in the separated

flow behind a single row of cylinders. The predict ed stability boundary and limit

cycle oscillat ions correlated well with his own experimen tal data. II is worth noting

that thi s non-linear model predict ed t he hyste resis-type post-st able vibrat ion which

was observed exper imentally 20 years later. Since the existence or the jet-switch ing

mechanism was considered to be limit ed and th e model was not ext ended to deal

with mult i-row arrays , this work was unfortunately largely ignored.

Since the first anal ytical approach by Roberts to understand and predict the

mecha nism under lying Buidelastic ins tability, several models have been proposed.

Most widely used is th e semi empirical quasi-sta tic model for a single row of cylin­

ders originally developed by Connors , [28J. in the early 19708. Connors found that

t he fluidelaetic instability mechan ism is position depe ndent , and that for certai n

patterns of inter cylinder displacements, energy may be extracted from the flow.

The stab ility curve, found by Connors, is expressed by a simple relation between

two nond imensional parameters, t he red uced flow velocity, f.; , and t he cylinder

mass-dam ping parameter, ~:

(2.1)

where the propo rtionality constant for his cylinder row was found empir ically to

be, K =9 .9. This equa tion gained general accept ance due to its simplicity and close

agreement with experimental data. However , t his mode! only recognized and did

12



not explain the mechanlsm of ftuidelastic inst...bility. All of the underlying fluid

mecheaice Wall ...beorbed into the empirical f"Ctor, K .

In the mid 197Ot, Blevins, (29,301. turned the analysis, in a mere formal math­

ematical way, to multi-row arrays for which he nt&intd the form of equat ion (2.1).

The proport ionality CODstlUlt, K , wu obtained based.on the fluid force coefficient.

measured for each type of array. In an att empt to bring some insight into this

constant , Blevins extended the analysis to the quui-st.:ady t. )VI theory including

the forces associated with fluid drag: (i) the jet -switch force. [30]. and (ii) the flow­

velocity dependent damping force, (7J. For the sake of simplicity, the fluid force

coefficients were replaced with equivalent approximate analytical expressions which

were functions of the array pitch ratio , ~ (see Figur e 1.3).

Ever since th en, many efforts have been made to empirically dete rmine the value

of K and to modify existing semi-empirical models. Careful experiments resulted

in var ious refinements of equation (2.1), such as separating the t wo dimensionless

parame ters , 6 and ~, and adjust ing the exponents on each. For examp le, the

stability equat ion proposed by Weaver and El-Kuhlan, {311, takes th e form:

(2.2)

while Paidoussis, (32]. susgeated the formula:

(2.3)

where the constanh, Kl aDd K" were obtained experimentally. The param eter, ~,

defines the array pitch ratio similarly u in the Blevins' model, [7).

Chen initiated ...different line of development from tha.t which was based on

the Connon' quasi-static hypothesis . He first proposed a semi-empirical dynamic

model based on the cylinder-to-cylinder interaction mechanism, [33,34]. In tM,

st udy, Chen formulated expressions for coupled unsteady fluid force coefficients (in­

ertial , dam ping and stiffness) . Tanaka.and Takahara.,[3S1, punued this development

13



and obtained a very good agreement between the ir own experimental and theoret­

ical stability results which were generated using measured unsteady dleplecement-,

velocity- and accelera tion-dependent fluid force coefficients. However, this analysis,

which required measurement to be made over the ent ire range of upstream flow

velocity, U, was from a practical point of vi..w both lengthy and costly.

The outcome of th e VArious research efforts was only part ially successful in servo

ing as design guidelines. All of these models had to be restricted to the analysis of

systems sufficiently similar (array patt ern and pitch ) to those for which the empirical

force coefficients had been obtained . Furthermore, these semi-empirical studies of-

fered lit tle insight into the understand ing of the f1.uidelastic insta bility phenomenon.

The refore , in the 19809, research at tent ion was once again focused on t he fluid me-

chanics of the problem , lead ing to a new series of studies.

An extension of the quasi-static theories was a quasi-stead y model, based en

t he mechanism responsible for damping -induced galloping of iced transmis sion lines,

developed by Price and Peldoueeia, (36]. This model, requiring lessempirical input in

the form of fluid-dynamic stiffness terms measured quasi-statically, was formulated

for doub le row arrays. An at tempt was made to generalize t he stability expression

to account for moot arr ay geometries. A modified Iorm or the sta bility equation was

then derived:

(2.4)

where the constants , B1 and B2' were obtained Irom quasi-sta tic force coefficients.

Thus, they depended on array geometry. 'I'hie work WM further refined and modified

by incorporating phase-lag cylinder mot ion and motion-induced fluid forces, [3'1,38],

and by prescribing a specific inter-cylinder modal pattern, (39]. These refinement s

allowed the authors to ~tudy the behaviour of a single flexible cylinder in the middle

of l'Lrigid array and the behaviour or a fully flexible array, respect ively. In general, the

comparison of the analytical results with the available experiment al data was round

14



to be reasonable. Ina very recent work, Price and Valerio, (40J, extended the quasi­

steady theory to account for non-linear fluid forces. Thi s aaalysis was restricted to a

single flexible cylinder constrained to mov- in the transverse-to-flow direction only.

The result ing non-linear equations were solved using the first approximation meth od

of Krylolf and Bogoliubolf. This model predicte d stable limit cycle oscillations in

a whole range of the masa-damplag parameter, The rate of increase of predicted

amplitudes with flowvelocity was, however, mueh greater than that experim entally

observed.

Chen continued the development of his unsteady model, following the work of

Tanaka and Takahara, f35J. In this remarkable ~ rdy, [41,421, the aut hor under-

took an analytica l formulation of unsteady fluid forces. Unfortunately , some of

t hose forces, st rongly dependent on array geometry, could not be obtain ed in the

theoret ical way. Using quanti t ies measured by Tanaka. and Takahara , (35J, Chen

found excellent agreement with existing st ability da ta. It is worth noting that

he first recognized two different mechanisms responsible for f1.uidelastic instability;

a damping- contl'Qlled(single degree-of-freedom velocity mechanism) which is pre­

dominant in a lower range of the mass-damping paramete r , typical for liquid and

gas flows, and a. stiffness-controlled (Connofll/Bl evins instabili ty, multi degree-of­

freedom displacement mechanism) which is predominant in a higher range of the

mass-damping paramete r, that is in gas flows.

In the flrat attempt to account for non-linear unsteady fluid forces, Gasteiger,

(43J, formulated a semi-empirical model for a single flexible cylinder in an otherwise

rigid array. The damping and stiffness coefficient s were modelled as a sum of first and

third order terms in both the e. and y-direct ions, including cross-coupling effects.

The author obtained these coefficientsfrom decay curves , recorded in quiescent fluid

and in fluid flow, based on an equivalent linearization technique. Since this st udy

required separa te measurements at ea ch flow velocity and for each array geometry,

15



it was limited to the first row of cylinders . Interestingly, for a square array, the

model predicted the exietenee of both ,table and unstable limit cJ tles at.low values

of the ma.n-darnpina:parame ter. In a recent study, Andjelic et aI., [·4-11, proposed

numerical proced ure to recognize the fluid force coefficients in Gasteiger'e non-linear

equation. The authors adopted a numerical code for solvins the non-linear diller·

ent i&1 equations of oscillatory systems. In this way, the stability boundary and the

post-stable cylinder mid-point mot ion could be calculated, for various set, of the

fluid force coefficients, and then compared with exper imental results. This numerical

procedure was fur ther modified by Ducci, 14~1, using centre manifold theory. This

complex analysis allowed the auttor to compute the unknown fluid force coefficients

directly from exper imenta l data; the net damping &II a fund ion of flow velocity.

At the opposite ext reme from these largely empirical models are the analytical

models based eit her on a steady-state solut ion or a potential 80w theory. Lever and

Weaver ,1-<:6], recognized 8uidelutic iustability u a unique mechanism resulting from

a pha' '! lag between cylinder motion and flowffiii, t rihution. Their theoretical model

wu based on some experimental observations whicl, led to rea.sonable simplifying

MSumptions. T he fluid mechanics wu modelled usinS the one-dimensional unsteaJy

Bernoulli equatio n. They considered the t ransVfi5e-to-flowh&mlonicmotion of just

one cylinder surround ed by rigid neighbours. This theoretical model was furthe r

developed by t be authors to include the effect! of Itreamwae dynamic and sta tic

instab ility, 141,48]. In spite of the , implicity of the model, the agreement bet ween

analytical predict ion and experimental data wu remarkable, especially for parallel

trianglE and rot ated square arrays. These predictions correlated very well with the

precise predictions of Cben , [41,42], end Tanaka. et al.! {3Sj, without the need for

experimentally obtained fluid force coefficients. However, in contrast to remaining

theories, t he sta bility condit ion was a linear function between reduced flow velocity

and mass-damping parameter for high values of these parameters , In follow up
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studies, the original model of Lever and Weaver, 146], was further extended and

modified. Yetisir and Weaver, [49},used curvelinear coordinates for the flow and

two degree-of-freedom for the cylinder, while Lever and Rzentkowski included a

random field of turbu lence to examine linear response curves, [50].

Another interesting group of theoretical models is based on the potentia l flow

Iormulatlon. First studies - presented by Balsa, 1521, and Chen, (34] - although

helpful in understanding the underlying fluid mechanics , found very limited appli­

cations due to their poor analytical predictions. Therefore , thi s formulati on was

again carefully rederived by Paidoussis et al., (51), to explore the capabili ties and

limitations of the potential flow theory for flow-induced vibration in cylinder arrays.

This modified st udy also incorporated a phase lag between cylinder displacement

and the resulting fluid force, following the work by Lever and Weaver, [46). Although

the authors found better agreement between analytical prediction and experimental

data , the formulati on of the stability problem in terms of ideal flow theory must be

considered as rather unsuccessful.

Summa summarumj extensive research on fluidelastic instability in cylinder ar­

rays, concerning power generation technology, has resulted in a variety of theoretical

models which can be categorized in two different ways: (i) according to the applied

fluid mechanics (quasi-static, quasi-steady, unsteady) and (ii) according to practical

application [semi-empirical , analytical ).

The 9u/l.Si-sta tic models1 [28-321, are based on the assumption that the fluid

for"es depend on the static cylinder deviation from its reference configuration . All

the models, developed so far, are combinations of analytical solutions and exper­

imental data . The resu lting fluidelastic instability is the fluid-stiffness controlled

mechanism.

The Quasi-steady models, (7,36-40Jl also need -{uasi-static measurements of 6uid

forces which are then assumed to additional ly depend on cylinder motion. The

17



cylinder velocity is usum ed to be constant at any given inst ant of time. The vector

addition of the cylinde r velocity and th e Bow velocity yields an an gle of attack

effect which changes with tube motion. The resulting fluidelestic instabilit y is the

Buid-st iffness and Buid-d amping controlled meehani. m.

The Ull5le ad y models, 121,33-35,41·43 ,46-521, are based on experimental data

and empirical cor re1a.t.ionl which express fluid forces u a. function of cylinder dis-

placemen t , velocity, and aeeeleratlcn. T he lleneral expressions for fluid force are

non-linear . However, the fluid mechanics are linearized in most stud ies to permit

suit able analyt ical solutions. The resulting ftuidelutic instabili ty, lL5 for quasi-st eady

flow theory, is gen en .lly the Buid-stiffness and fluid-damp ing controlled mechanism

(except t he single-degree of freedo m mode ls, {46-50J).

The semi-em pirical mo dels require expe rimental input in the form of fully un­

steady, (21,33-35 ,40-43J. or steady time-averaged da.ta. (7.28-32,36-391. It follows

that pract ical a pplication is stro ngly limited by dependence on the meese rement

and it! qual ity.

T he analyt ical models, (34,46-52), require very little or DO empirical input and,

with improvement, may have the greatest poten tial to serve u design guidelines.

Unfortunately, this research , exce pt for th e models basedon the original theory of

Lever and Weaver , [46-~1 . hu not been very successful.

Hysteresis effects

While many models for 8u idelast ic instability have been proposed, most are ba...ed

on lineari zed ftuid mecha nics (except Reference {27,40,43J). Thus, th e response of

the modelled cyli nder arr ay becomes infinite at th e point of insta bility unless non­

linear stru ctural mecbenic e ere included . However , in real experimental situations.

the system respon se at t h is point may be contro lled by non-linear fluidelastic effects,

~ recent experimentallt ud ies suggest.
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In a.ninve3tigation into the post-stable behaviour of a parallel triang ular array,

Lever and Rzentkcwski, 1531. found that a .i ngle flexible cylinder. which 1V~ pcei­

tioned in the fourt h row of an otherwise rigid array, experien ced a gradual t ransition

from stab le to unstable oscillations as flow velocity was increased beyond its critical

value, while a fully flexible arn .y experienced a rap id response jump . In the lAtter

ease, the unstable oscillAtions persisted for small reduct ion in flow velocity below

critical. The width of t he observed hysteresis region was 5-23 %of t he critical flow

velocity. Uc,decreasing with increasing dam ping. H&fa, (211. reported qual itAtively

similar results for single cylinder rows in water crc ee-Ilow. He observed relatively

broad hysteresis (30 % Vc ) at low values of the mess-dam ping parameter which

disappeared at high values. Chen and Jendraejcayk, [221. also examined a tub e row

in water «088-f1ow, but with only three flexible cylinders. The report ed width of

the hysteresis region was 30 %Uo, identical as that found by Hara at low values of

the mass-damping parame ter.

Andjelic and Popp, [54J, observed phenomenologically different behaviour; the

hysteresis of a single flexible cylinder. In th is cue, the cylinder was located in

the second row in a normal trian~ar array and th e width of the hysteresis region

was 20 %Ve. More extensive experimental studies of th is ana y were reported in

another work by Andjelic, 155). The Author found , in agreement with References

[21,53]. that the hysteresis effect becomes less pronounced, following an increase in

the mass-damping param eter.

Hysteresis beh aviour bas also been observed to occur in fairly realistic beat

exchanger test rigs by Godon, 156]. who investigated 1.33-1.42 norma.! tri angular

arrays, and by Halle et al., [23], who investigated 15 cylinde r-in-shell configuratioDs

in four stan dard patterns. GOOon reported hysteresis regions of 3-39 %or the critical

ftow rate , whileHelle d 4/. reported regions or 12-49 %of t he critical dynamic bead

(V') .
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Interest ingly, it has been found experimentally that instability in a cylinder array

may be excited by a sufficiently large distur bance whenever the system is operating

withi n the hysteresis region. Chen and Jendrzejczyk, [22], first performed such

excitation studies on a 1.75 pitch ratio cylinder row. The authors called the state

defined by the lower limit of the hysteresis region the "excited instability" and the

state defined by the higher limit the "intrinsic instability". In a more comprehensive

study, performed on a 1.375 pitch rat io triangular array , Lever and Rzentkowski,

{53], found that only a fully flexible array can display the hysteresis behaviour. The

instabilit y was excited by two types of transient disturbanc e; cylinder displacement

and flow velocity.

The existence of hysteresis effects in cylinder rows was first analytically rec­

ognized by Robert s, [27]. However, the author did f!ot explore in detail the phe-

nomenon , probably, due to the lack of experimental evidence supporting it. There­

fore, the recent works by P rice and Valerio, (40], and Gasteiger , [43], are the only

attempts to analytically describe ',e post-stable behaviour of pipe arrays due to

fluidelastic excitatio n. Both of these models are semi-empirical. The first requires

the measured variations of the lift and drag coefficients as the cylinder is displaced

in the transveree-tc-How direction, while the second is based on an experimental

identification technique for the uns teady fluid force coefficients (see also Reference

[44,45]). Thus, these models are st rongly dependent on the measured data and their

qual ity,

2.1 .2 Marine riser: a finite ar ra y in wat er flow

To the author's knowledge, fluidelast ic instability of a multi-tube riser , subjected to

a steady current, was first observed and explicitly recognized by Moe au.d Overvik,

(57]. A rigid pipe cluster (relative mot ion between the pipes was not allowed) under­

went a violent self-excited oscillations, predominant ly in the tr ansverse to the flow
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direction, which resulted from negative damping (velocity mechanism). This study

suggested that an instab ility excited on one of the members can t rigger an unstable

mode of the multi-tube system.

Fluidclastic instabilit y in a. steady current WM also observed by Panieker and

Yancey, (58], in model st udies of Mobil's deepwater production riser which consist ed

of a linear array of flexible flow lines. In this case, the pipes violently oscillated

in pairs of two in modes perpendicular to each other (phenomenon often referred

as galloping). The observed vibration modes and critica l velocities for instabili ty

proved that the underlying excitation mechanism is f1.uidelastic instability and not

vortex shedding. In an att empt to study this phenomenon, Ot tesen Hansen and

Panicker, [591, adopted the Blevins' model (for a densely spaced infinite linear array

of pipes with pitch to diameter ratio, ~ < 1.7), 11J, in which the flow velocity was

assumed to be uniformly distributed between pipes. Since this assumpt ion cannot

be valid for a system with large spacing to diameter ratio (typically, 2 < lj <

4 (or this riser type), the authors defined empirically the flow velocity distribution

function and modelled the flowfield between pipes using the two-dimensional steady

Bernoulli equat ion. In this way, the spacing parameter , 7,enters into the stability

conditions. The inner solution of the problem (~ < 1.7), the modified Blevim '

formula, takes the form:

(2.5)

while the outer solution (~>4) is:

(2.6)

where the coefficients, K3 and K4, are stability constants (K4 is inversely propor­

tional to the steadj drag coefficient, CD). The author. found very good agreement

with experimental data of Ishigai at al., [60], (or the outer solut ion, and that of

Blevins, [7], for the inner solut ion.
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Fluidelastic iustability in steady flowwas also observed in the recent laboratory

tests on the model of the Buchu production riser (five-pipe circular du ster) per­

formed in a wind tunnel by Paidoussis et 0/., (61) and in a water tunnel by Price

et aI., [111. In these testa, all pipes were rigidly mounted , except the monitored

one. Intere!t ingly, unstable oscillations of individual pipe! were first excited by

vortex shedding but, unlike this excitation phenomenon, they persisted for all ftow

velocities above the crit ica.lvalue. This proved that, in addition to vortex shedding,

fluidelast ic instability had been occurring. The observed critical flow velocities were

equivalent to current velocities of the order of I ;; (2 kn ob ) or less which are very

common, especially, in costal regions.

Also, interesting to note is the analytical study presented by Ottesen Hansen et

aI, [62]. although it is beyond the scope of this research. Tbe authors examined the

occurrence of ftuidelastic instab ility in waves of a rectangular array of risere used

in connection with tension leg platforms. The hydrodynamic load, arising from the

wake interact ion between the pipes, wu approximated by the quui-steady model

for instability of twin power conducton in strong winds, [63]. They identified both

types ofi ll3ta.bility (that is the instabilityof a. rigid pipe array and the wake galloping

of the spans between spaun of the downstream pipe) either a.sunstab le oscillations

excited only in one half period of a wave or a continuous growth of vibration from

half period. to half period . The aut hors reduced this analysis to individual pain

of pipes with spacers, assuming that instab ility of anyone of the pairs is sufficient

to cause instability of the total system. Tbey found that fiuidelaJItic instability

depends primari ly on the Keulegen-Carpente r number, the pipe spacing and the

ratio between water depth and wave length. However, the size of the unstable

region was very limited, indicath g that instability in current is a rar more severe

problem.

22



2.2 Turbulence buffetin g

The nature of turbulence-induced vibration or buffeting in cylinder arra ys and its

relation to Stro uhal periodicity was also firet recognized in the field of power gen­

eration. All of the ear ly studie s, before the 19608, considered "vortex shedding " to

be t he main mechanism causing vibrat ion. However, in 1964, Owen, [26], identified

the periodic excitation mechanism as two separate phenomena. He suggested t hat

the relatively broad band tur bulence is operative at all flow velocitie s but its peak

broadens and shifts to higher frequencies w..- u the flow velocity increases . Thus ,

turbulenCf can also cause resonanc e, at a specific flow rat e, simila r to vort ex shed­

ding. T his study , however, was rejec ted by Chen in an experiment al work on vortex

shedding, [241. It started a period of confusion in which two different hypotheses

gained accep tance for the same excitation mechanism , Worth noting is the fact that

Owen and Cken predict ions were in reasonably close agreement.

Whatever the t rue mechanism underlying flowperiod icity in cylinder arrays was,

it was necessary to develop design guidelines to prevent cylinder failures . Two

resonance models , essent ially th e same, have been proposed for a lightl y damped

l;near system subjected to random excitation. Thus , t hese models eliminated t he

influence of an ofl'*resonant Strouhal peak in the turbulence spectr um on cylinder

response.

The first model, developed by Pettigrew and Gorman, 164], gave a remarkabl y

simple formula for predicting the mid-span RMS amplit ude, ARMS, of cylinder re-

sponse:
5" '(/)

ARMS = (4,,"sJ3m30 0.S
(2.7)

where t he power spectral density of the random force field per unit length, S(J), was

assumed, based on experimental evide nce, to be proportio nal to th e flow dynamic
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head . That is:

5".'(/) = ~c.(/)pdU' ('.')

with the effa:tive random excitation coefficient. Cr ( /}. obtained experimentally for

various cylinder array geometries. T he random force field wu assumed to be be­

mcgencua and (ully correlated Mong the cylinder length.

T he second, equally simple. response design expression W /LS developed by Blevins

et al., [65). in the form:

AIUIS = (:::3(~t;~ (' .O)

where th e joint accept ance, J , would be equal to one if the force field was perfedly

correlated . The power spect ral density funct ion, S(f ), wu proposed in a . imilar

form to equatio n (2.1), except (or the nondimeru ionalizing factor, ~. that is;

(' .!O)

. where t he lift coefficient, CL, replaced t he random excitati on coefficient, Crt/).

The agreement between botb methods is remar kably close, considering that Pet-

tigrew and Gorman obtained thei r excit&tion coefficient (rom experiment! in wa­

ter ftow, showing rP dependence for RMS cylinder response, wh lle Blevins d 41.

obtai ned their coefficient from experi mentl in air ftow, sbowing UU dependence.

Unfortunately, a late r experimental study, aimed at a more precise predictio n of

t he turbulence reepcaee in term s of flow velocity, .h owed higher discrepancy. T he

Pettigrew and Corman model was supported by the Sandifer and Bailey experi­

menta, {OOl, performed in water 80w with parallel triangular array, suggesting t hat

the cylinder tu rbulen ce response varies proportionately with U~ , These results were

contradicted by Taylor et al., [61], who showed UI.5 dependence, very similar to

Blevins theore tical prediction, for a cylinder in a single row. Price el al., (681, found

tha t the response amp litude variedapproximat ely linearly with flow velocity for a

single Bexible cylinder in a rot at ed square arr ay. A follow up st udy by these au-
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than, {69], using the same array but with smaller pit ch ratio, indicated UI.4 and

U2
•
2 dependence (or a flexible cylinder in the second and fifth row, respectively. It

can be concluded, based on these exper imental observations, tha t the cylin der tur­

bulence response is approximat ely bracketed by U and U2.2, It is difficult to explain

this significant experimental discrepancy , except to say tha t the turb ulent cylinder

response is dependent on both the array geometry and the cylinder posit ion, and

may be dependent on Reynolds number (Row velocity).

As a design guideline, the approach proposed by Pettigrew and Gorm an, (641,

has th e advantageof being simpler. Dimen sional inconsistency can be elimina ted by

introducing the power spectral density function of the random force field, S(J), in

the form proposed by Blevins, equation (2.10), at outlined in the theoretical . tudy

on turb ulence buffeting by Lever and Rzentkowski, (501,

2.3 Fluidelastic Inst-i b rllty and t urb u lence buf­
fet in g interaction

Exten sive research on ffuidelaet ic instabili ty and turbu lence buffeting in cylinder

arrays, subjected to fluid cross-flow,has also attempted to identify the interect ion

effect between both excitation mechanisms. Thi s has been a subject of major exper­

imenta l cont roversy, particula rly in the practica l estimat ion of stability bounda ry.

Allof the early studies, 17()'72), showed tha t turbul ence may increase or decrease th e

critical flow velocity for fluidelastic instability, depending on turbulence character­

istics which was stimulated by generators upst ream of the tested arrays, To resolve

this dilemma, Price et 1J1" [68,69], recently performed a detailed experimental inves­

tigat ion and found that the presence of tu rbulen ce generators has little or no effect

on the onset of fluidelastic instabil ity. The authors concluded that the inters titial

flow characteristics, beyond the first lew rows, are governed by the array its elf inde­

pendent of upstream conditions. Evidently, this significantly binders experimental
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investigations of tbe problem. Thus , to the author 's knowledge, no experimenta l

evidence exists regarding the actual coupling (true interact ion mechanism) between

turbulence and fluidelast ic instability in cylinder arrays and an alternativ e method

of stimulating tu rbulence characteristic s within an array is needed.

The appar ent influence of turbulence on fluideleetic insta bility (interpret at ion of

response curves) was examined theoreticall y by Leverand Rzentkowski, ISO]. Since

their st udy was based on a linearized analysis, the two mechanisms superimpose

and the actual effect of the interaction is suppressed. Nevertheless, it showed that

increasing tu rbulence reduced the appar ent stability boundary based on am plitude

response curves; the size of the reduction depended on the practical t hreshold defi­

nition used. This, to a certain extent , explains the contra dictory results from early

experimental st udies of this problem, [7(}'72].
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Chapter 3

Fundamental concept of marine
riser stability

The concept of dynamic: stability is extremely important in wide variety of engi­

neering appli cations . Unfortunately, in the maj ority of prac tical cases, there is no

univer sal defin ition which can globally described the st abilit y of the system at hand.

Th e state of motion is rather complex and it may be stable in one respect and un­

stabl e in another. T herefore, the question of instability should be investigated from

various points of view. However, the system under con sideration and not its pra.ct i-

cal appllcat.iona mus t dictate the choice of definition. Consequently, recognizing th e

nature of the system is the moet importan t step to adopt the appropria te definit ion

of stabilit y.

Therefore, this chapter first defines the mar ine riser &9 a physical system and then

discusses various aspects of its stability using the standard definitions of Lyapunov.

3.1 Marine ris er as a physical system

The multi-tube production riser, exposed to environmental load, is shown echemat-

ically in Figu re 1.2. As pointed out in the Introduction, two types of oscillations

may be observed : (i) a rigid body motion due to wave cyclic load and (ii) relative

motions betw een the pipes in a cluster due to hydroelastic excitation (turbulence

buffeting, Strouhal periodicity and fluidelastic Instabili ty). However, it is very in-
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st ructive at this point to consider some classifications based strictly on the theory

of vibrat ion . Depending on the source of excita tion and i ~s physical properties , the

riser response may be categorized as:

• forced stochastic

• periodic: forced and self-exclted

• self-excited: decoupled and coupled.

The marine riser "rigid body" response due to wave load, depending on its rep­

resentat ion, would be either stochastic or periodic (no self-excited "rigid body"

oscillations). Relative pipe motions would be stochast ic, periodic and self-exci ted.

Turbulence buffeting would give rise to a forced stochastic response. Strouhal peri.

odicity would repre sent a periodic process, either self-excited (inside the "lock-in"

region) or forced (otherwise). Fluidelastic instabilit y would generate self-excited

oscillat ions, either decoupled (a rigid cluster - single degree-of-freedom representa ­

t ion) or coupled (I'. flexible cluster - multi degree-of-freedom representation) when

relative pipe motions affect the flow characteristics. All of these oscillations cannot

exist in their pure form, since the riser response is very complex due to the inter ­

action of different excitation mechanisms. Thu s, the nature of this system may be

exactly represented only by a complex sell-excited oscillator subjected to periodic

and stochastic disturbances . Thus, in a more general context , the marine riser must

be considered iLS a. Don-conservative and DOD-autonomQUS system. Non-conservat ive;

since the riser may have an unlimited energy source in the form of fluid cross-flow

(thus, the fluid force are not derivable iLS a gradient of a total energy funct ion).

Non-autonomous; since t he riser response is directly time dependent due to waves

and turbulence. Moreover, the marine riser subjected to fluid flow,as a self-excited

oscillator , represents a~ system. Ther etore , the stability definition must

consider the non-linear effects - the existence of limit cycle oscillations.
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3 .2 Fundamental concept of st abili ty

A unified view of the sta bility of mo tion may be given by Lyapuecv 's definitions ,

(73], which stipu late tha t a state is sta ble whenever in the motio n, following a suf­

ficiently small initial distu rbance, in terms of initial displacements and velocities ,

t he displacemen t. and velocit ies remain all small as desi red for all positiv e time (e.g.

when a system is disturbed from an equilibrium state , tr&nsient oscillat ions decay

wit h time) . Since t his concept of stability is very im portant for subsequen t devel­

op ment of present work. it will be treat ed in de tail hued mainly on t he Lyapunov ',

de finitions presented by Andjelic, [55].

3 .2 .1 Ly apunov's d efinitions

Consider a non-autonomous system described by a le t of first order different ial

eq uations, derivable in the solution space. Th ill let of equat ions may be expressed

. in vector not atio n as:

i' =j(i.t ) (3.1)

where s = (%h %' • ••••z. )7'. r = (fhfJ, ...•f..)7' aDd i' Il;:f ~. T he initial conditions

and the chu act eris tic solutio ns are given by %"0= i (z"O.to;to) and i = i (z"O. to; t),

respect ively.

Definiti on 3 J .

The particular , ol,d ion i (ii. tait) U 11m if it u po, ,,i6Ie to find /I JU'"iti, e b(l. lo)

for any "ufficienll1l"mall ;,>0 "uch that

Iz"O - a1< O(l. to) * 1i( zo, to;t ) - £(a,t o;t ) 1< l (3.2)

for /Illpositive time, t 2:: to. Olhenmse the particular"ofution £(ii , to; t) i, JUU1J1bk.

The particular , olulion ;(ii.to ;t ) i, said to 6e 4I!f1!! ptotic/llly , table if it I' , ta6le
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and, ill additi on, one has:

(3.3)

Figure 3.1 displays graphically Lyapunov's concept of sta bili ty; i {.1'O,loi t) is the

pertu rbed mot ion and x(a, toi t) is the equilibrium state of t he motion whose stability

is being investigated. The motion space consists of the phase plain (i, i) and time,

t, as the independ en t coordinat e.

Sfob le---htl

Unslob le

'I

' 2

F igure 3.1: Solution vector in motion-domain.

If the par ticular solut ion is stable or asymptotically stable, the equilib rium slate,

without loss of generality, may be taken to be trivial. Referring to Definition 3.1,

this assumption requi res a transfo rmation of coordina tes in the following Corm:

w =i-i(ii,toi f ).

Thus, the differential equati on (3.1) becomes:

Ji== g(tii,t ).
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The ~rivi al equilibrium solution of this equation. w=0(tha~ is, mO, t) =0) is now

equivalent to the parti cular solut ion of equatio n (3.1), z(a', ta;~ ) . Figure 3.2 defines

the concept of sta bility of a Don·atonornous system in transformed coordinates.

,......-- Stab le,
rUnltObl1

I ~AlymPIOIiCOIlY
s loble

i:,; --"!1;,taI 7
"w,

Fis ure 3.2: Solut ion vector in t ransformed mct loa-dcmaia.

D efin it ion 3 2·

The trivial e~ilihri"m . tate, W{~, to, t) = 0, if I.t.A.ik. if at any time, to, it i8

possihle to find a po. d ive !( l , to) l or any n fficiently . mall l> On ch that /ollollJin9

the in itial Jirtur'knu, ~ = w(~, to; to) ,

IW', 1< 6(' ,10)

only one perturhed state a/motion em u, W(uio, tOi t ), and the ineq"ality:

ltii(uiil,t o;t ) 1< l

(3.6)

(3.7)

is sati3fied for all p06itive time, t i:: to. Otherwise the , tote, w(ui'o, ta;tl, is~.

The state, w(tiio, !a;t) , u ' aid to he a.symp!oticolly ,t ahle if it i3 stable and, in addi­

lion, one ha.s:

1~I Ui(~, tai t ) I= O.
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In other words, the equilibrium state represented by the origin of the motion

space, tii(wo, to,t ) = ii,is stable if the pertubed state of motion, w(wo,to:t ), remains

within a cylinder of arbitr arily small radius, l , provided that , followingthe initial

disturban ce, the vector tUiJ = w(tiio, to;tol is within a circle of sufficiently small

radius,5(l , to).

3.2.2 Non-linear effects

It is inferred from equati on (3.1) that Lyapunov's definition of stability can be

applied to linear and non-linear systems, although, in the latter case, it is related

to local properties. This section outline- the resulting limitations, considering a

part icularly simple non-linear csciiletcr, whose equation of motion ill given by:

(3.9)

where :r is the displacement and c", and k.. denote the net damping and stiffness co-

efficients, respectively. These coefficientscan, in general, be expressed as a function

of the control param eter , A, which contains positive (st ructural) and negative {e.g.

flow-induced) contributions . D is a non-linear operator (e.g. flow-induced, as the

control parameter) and FSI(t) represents stochastic forcing.

Autonomous system

First , consider an autonomous self-excited oscillator, [74J. In this system, the in­

dependent variable t does not enter explicitly, thus Fst(t) =0 (its state of motion

can be represented on a phase plane). When D =0, the system becomes a damped

linear oscillator with a characteristic equation given by:

(3.10)

Oscillatory motion exists only if the discriminant of the characteristic equation is

negat ive, .6. < O. This condition yields a complex conjugate pair of roots which
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define the state of motion on the phase plane; either a stable focus, neut ral centre

or uristable focus if the pair acquire, respectively, either a negative, :zeroor positive

real part . Consequently, depending on the control parameter, h (e.g. flow velocity),

which governs local properties , the system is either asympto tically stable (A < Ao),

stable (A = Ao) or unstable (A :'> Ao), as shown in Figure 3.3a (solid and dashed

lines denote stable and unstable equilibrium states, respectively). Since only one

state of motion exists CD the phase plane for a given A, Definition 3.2 may be

considered as a global definition of dynamic stability.

When D f:. 0, the stability analysis must consider a dynami c bifurcation problem.

It can be shown, [74J, tha t the bifurcat ion formula for equation (3.9) is given by:

Da3 +c..a=O (3.11)

where a is an oscillation amplitude . In this case, the response curve (defined by a and

A) has two branches: a = 0 (t rivial equilibrium sta te) and a~ = -1) (limit cycle).

These branches intersect each other at a point of bifurcation. c,.. = 0 (A = lI.e );

stable for D > 0 and unstabl e for D < O. The bifurcat ions are of the Hopf-type

since they are symmetric and dynamic.

The stable bifurcation shows up on the phase plane as a.st able focus for A <

he and as an unstable focus and a.stable limit cycle for A >hc (see Figure 3.3(b)) .

Thus, the system is asymptct .eallystable and stable, respectively. Although in the

latter case the stability may be only locally defined, since the size of an unstab le

domain increeaee with A from zero at he. It follows that this system is globally

stab le only if is asymptotical ly stable, A < Ae. At this point , it is very instruct ive

to introduce the concept of degree of stability by defining the size of pertu rbation

needed to trigger instability, (761. Evidently, the degree of stability is infinite for

A <Ae for both linear and non-linear systems. Therefore, the linearized stabilit y

analysis may only quantitatively differ from the non-linear one.

The unstable bifurcation is characterized on the phase plane by a stable focus
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and an unstable limit cycle for A < Ae. and by an unstab le focus for h. > sc (see

Figure 3.3(c». Thus, the system is globally unstab le, alt hough may be considered

as locally stable for A < he due to the existence of a sta hle domain which decreases

with h to zero at he . It follows that this system has only a finite degree of stability

in this region and this becomes infinite if the system is linearized, leading to a

qualitative discrepancy in the interpretatio n of the sta te of motion.

Figure 3.3: Poeaslble st ates of motion of a self-excited autono mous oscillator; (a)
linear , (b) sta ble bifurcation, (c) unstable bifurcat ion.
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Non-autonomous syst em

The motion of a non-auto nomous oscilla tor is described by equation (3.9) in its full

form, e.g. Fsl(t ) "I O. Note t hat the stability or a damped linear oscillator (D =0)

is not affected by stochastic for cing and is given by the chara.ct erisitic equation

(3.10). Its non-linear effect , however, cannot be treated analytically. Thi s gives

motivation to a heuristic study; superposit ion of linea.r forced oscill ations with non-

linear self-excited limit cycles of the autonomous system, (74]. Th us, their coupling

is conceptually ignored.

Figure 3.4(11.) and Figure 3.4(b) show schemat ically t he separate linear combined

oscillations and the self-excited limit cycles for a st able and an unst able bifurc ation,

respective ly. The linear oscillations to combined excitat ion are exac tly defined also

via superposition; their amplitud e rises asympto tica lly to infinity as the net damp-

ing, in equation (3.9), tends to zero for the critical value of the control parameter,

A = Ae . Because coupling is ignored, the self-excited limit cycles are not affected

by the forcing term, Fs,(t ). However, the large ampl itude linear oscilla tions clearly

interact with the unstabl e limit cycle (Fig ure 3.4(b)) , mod ifying t he state of stabil­

ity. This indicates tha t , even without non-linear coupling between t he mechani sms,

the system may lose stability r,;." A <Ae if the forced linear oscilla t ions exceed the

unstab le limit cycle. Thus, the critical control parame ter for a non-autonomou s

self-excited oscillator, A~ , may be defined by the intersect ion of the linear combined

response surface with the unstable limit cycle.

This analyti cal.description of possible states or motions and t heir stabilities or

a forced self-excited non-linear oscillato r leads to t he final conclusion that cnlv

asymptotic stability. or infinite degree of stability, defined by non -linear a.

can globally guarantee st ability or the system .
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Figure 3.4: Possible st ates oCmoti on of a self-excited non-autono mous oscillator
(superposition of linear forced oscillations with non-linear autonomous limit cycles);
(a) stable bifurcatio n, (b) unstable bifurcation.

3.3 Stability of marine riser

A direct analogy between the dynamic system, presented in Figure 3.2, and the

marine riser may be drawn by lettin g the trivial equilibrium state, w(Wo,!oit) =0,

represent a rigid cluster configuration due to wave load (its stability was assumed

by the condit ion oCtransformati on, equation (3.4», and letti ng the perturbed state,

w( Wo. to;t), represent relat ive pipe mot ions due to current [hydroeleerlc oscillatlcas:

t urbulence buffeti ng, Strouhal periodicity and f1uidelastic instability). It Collows that
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the flexible riser is stable if relat ive motion between the pipes in a cluster remains

as small as desired (within l-limit ). Since this study is concerned with fluidelastic

instability and turbulence buffeting, the latt er dictates the size of initial disturbance,

5(l , to), and the l-Iimit . Thus, a knowledge of the flow turbulence character istics is

essent ial for stability analysis.

3 .3 .1 R esp o nse curve

The stat e of motion, illust rated in Figure 3.2, may be greatly simplified by aver­

aging the pertu rbed motion, tii(W1i,to;t), over an infinitely long tim'~. Thus, its

Peek- or RMS·am plitude becomes a function of initial disturbance only which, in

turn, depends on local propert ies of the system defined by the cont rol parameter ,

A. Evide- -t-', practical application requires a finite time and this is usually taken

to be 10 mi n. In this way, the initial state of motion creates the response curve

and is expressed much as in an experimental investigat ion; the response amplitu de

(displacement, velocity, acceleration or strait ) Vl'.rsus control parameter (fiuid load)

usually referred to as the reduced flow velocity. Note that based on experimen­

tal response curves, two types of post-stable oscillat ions of pipe arrays have been

identified: without and with hysteresis. By analogy with a thi rd order non.linear

oscillator , these two cases correspond to stable and unstable bifurcat ions, respec-

tlvely.

P ractical stability bou ndary

The stable end unstable bifurca tion may also be referred to as soft- and hard-excited

system ,116]. These concepts, indicati ng the strength of initial distu rbance needed

to induce instability , are very important for the practical utilizatio n of Lyapunov's

definitions. Below. they are applied to ideal (fluidelastic excitat ion only) and real

(combined Ruidelastic and tu rbulence excitation) response curves of pipe arrays in
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fluid cross-flow.

The response curves may be idealized by separating turbulence from fluldelastic

excitation . Thus, an average response due to turbulence becomes an equilibrium

state for fiuidelast ic instab ility. To allow a direct analogy with a third order non­

linear oscillator, the effect of turbulence buffeting may be removed by subtrac ting

it from overall response (in this way, the equilibrium state for fluidelastic instability

becomes triv ial). Figures 3.5(al ) and 3.fi(bl ) show these idealized response curves,

while Figures 3.5(a2) and 3.5(b2) show the corresponding dynamic bifurcations for a

third order non-linear oscillator. The stable bifurcation (Figures 3.5(al) and 3.5(a2))

becomes unsta ble for an infinitesimal (de nomni soft ) disturbance whenever A >

Ac . The non-linear response is limited by the stable limit cycle whose size increases

with A from zero at 11.0. Since the rate of increase may vary, depending on system

parameter s, the point of dynamic bifurcation, Ae, defines the practical stability

th reshold. Here, a linear model is capable of predicting the stability boundary

of the non-linear system but cannot predict its finite post-stable oscillations. The

unstabl e bifurcation (Figures 3.5('01) and 3.5('02)) may display hysteres is behaviour;

the response jumps at A "" 11.0 during the increase of the control parameter and at

11.=AH during its decrease (the coalescenceof limit cycles at AH, secondary point

of bifurcation, cannot be displayed by a simple third-orde r oscillator, unless A is not

amplitude-dependent) . Inside the hysteres is region, the system haa a finite domain

of attraction bounded by the unstable limit cycle, which i~ represented by the dashed

line in Figure 3.5(bl). Therefore, unli ke the ecft-excitcd system, only a finite (de

nomni hard ) distu rbance carryi ng the linearly stable system beyond this cycle would

cause instabili ty. In the absence of detailed information on the expected size of these

disturbances in real situa tions, the lower limit of the hysteresis region, AN, must

be treated as the practical stability boundary for the cylinder array (it guarantees

asymptoti c stabili ty ). Therefore, the application of a. linear theory (which predicts
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only he) may be unconseevarive, especially when the h)'1teresis region is relat ively

brood.
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Figure 3.5: Idealized rep resentat ion of possible fiuidelasl k osciUa!ions in cylinder
artlLys and dynamic biCurcations of a third order oscillator; (a) 110ft· and (b) hard·
excited systems.

The cri tic&!contro l p&l'arneter, either he or AN. may be clearly obtai ned from

idealized respo nse curves. In practice , however. it may be difficult to determine,

especial ly, if tu rbu lence strongly contributes to lub-. table oscillations and it. effect

canner be easily separated out of experimental measurements. Ther efore, the com­

mon approach is to determine Ac from experimental response cur ves geneeeted by

fluidelast ic interaction with turbulence excit at ion. In this way, th e actual interaction

mechani sm is ebecrb ed by standar d th reshold definitio ns (which are purely empir l­

cal ). Consequent ly, the coupled sys tem and its stability rema in phenomenologically

not defined .
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The possible nature of ftuidelastk interaction with turbulence excitation may

be explored by drawing an analogy between the dynamic response of pipe arrays

and the buckling (or static instability) of corresponding static systems, where two

distinct bifurcatioDs (stable and unstab le) are also recognized. Additionally, severe

imperfection sensitivities, which can round-olf or even destroy the perfect bifurca­

tion, have been observed, (74]. As we shall see, some insight may be gained into the

influence of tu rbulence on fluidelastic instability by treating turbulence response as

an imperfection parameter in a coupled system.

The stable bifurcat ion (soft-excited system) and its imperfection sensitivity may

be discussed by considering load-deflection curves for a. compressed Euler column,

[74J, as presented in Figure 3.6. If the column is axially loaded [e = 0, perfect sys­

tem), the system remains in the trivial equilibrium state as the load slowly increases

from zero. At crltieal load, Ps = Pso,the column undergoes a static instability,

and for further increases in Ps, its dcflection, e, followsa stablc equilibrium path.

A direct analogy between this loed-detlection curve and the stable Hopf bifurcation

of the fluidelast ic instability may be drawn by allowing the load, Ps, to represent

the control parameter , A, and the static deflection, v, to represent the amplitude

of the limit cycle oscillations, a. However , if an offset of the load is introduced,

resulting in an initial out-of-straightness of the column (imperfection parameter f),

the column experiences small stable deflection!!as the load slowly increases from

zero, tending asymptotically to the poet-stable equilibrium path. By drawing the

analogy furthe r, wecan allow the imperfection parameter to repreeenvthe strength

of the turbulence field. Thus, the load-deflection curve becomes the response curve

of the pipe array under combined excita tion. The imperfection sensitivity diagram

indicates that t he actual value of ACt resulted from fluidelastic excitation only, may

he delayed by tur bulence. However, for a gradual increase in the control parameter

from zero, the response curve tends asymptotically to the stable limit cycle and
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delays in !I.e cannot be realized. However, depending on the threshold definition

used, such a response curve might be assigned a practical threshold below tvc, and

this value would reduce with increasing turbulence (e).

I

i
l!' -lnil ial oul - of - ,traiQhfneu Defl ect ion , If

Figure 3.6: A compresed Euler column; (a) load-deflection curve, (b) imperfection
sensitivity.

Similarly, the unstable bifurcation (hard-excited system) and its imperfection

sensitivity may be discussed by considering load-deflection curves for a deep fixed

arcb, [74], as shown in Figure 3.7. If the arch is centrally loaded, it represents a

perfect system which undergoes a static instability at Ps = Psc . However , the

system at this point shows non-linear softening and an unstable equilibrium path.

Unlike the column discussed above, the arch shows severe imperfection sensitivity,

resulting in a reduct ionin the actual critical load with increasing e. Thus, by analogy

with the unstab le Hopebifurcation of a ftuidelastic system, turbulence buffeting may

reduce the actual fluidelastic stability boundary, !I.e, due to non-linear coupling of

both excita tion mechanisms. In this case, prediction of the combined response

becomes very impor~&Dt.
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Figure 3.7: A deep fixed arch under load; (a) load-deflect ion curve , (b) imperf ection
sensitivity.

St andard stability definitions

It follows, from the above discussion, that the practical determination of the sta­

bility of pipe arrays in fluid cross-Bow requires a deep unde ratendlng or post-stab le

oscillations and the underlying excitat ion mechanisms. Otherwise, the experimen­

tally used concept of stability may depe nd on systems application and not on its

physical prop erties.

Due to a lack of a universal stability definit ion, different criteria have gained

accep ta nce over the years (summarized graphical ly in Figure 3.8).

• An abrupt change in slope of the response curve (first defined by Weaver and

El-Kashlaa, (31]). This is accepta.ble if the change of slope is very sudden,

otherwise it allowsonly limits of instabilit y, Aot and Ao2 , to be specified (see

Figure 3.8(a)) .

• Intersect ion of the steepest tangent to the post-stable reaponae curve with

the flow velocity (A) axis (introduce d by Franklin and Soper, [71]). This
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underestima tes Ac, especially if a limit cycle increases very gradually as it

may happen in the case of soft-excited oscillations (see Figure 3.8(b)).

• The response curve exceeds a permissible value, typically 1-3 %of pipe diam­

eter (first used by Pettigrew and Gorman, [64.]). While this is consistent, it is

phenomenologically incorrect (see Figure 3.8(c)).

• intersection of the steepest tangent to the-post stable curve with the response

induced by turbulence (recently proposed by Chen, [77]). This gives the exact

location of the critical control parameter, Ac, in tem. , of Lyapunov's defi­

nit ion, assuming that the response due to turbu lence is known (see Figure

3.BCd)).

(, I

101

Ibl

ACI AC2 AC

Figure 3.8: Graphic representation of standard threshold definitions; (a) an abrupt
change in slope. (b) intersection point of steepest tangent with A.axis, [c] amplitude
limits, (d) intersection point of steepest tangent with turbulence response.
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As a.res ult , th e determi nat ion of the crit ical cont ro l parame ter may be a.ffected .

to various degrees, by tll rb ulence , depending on the definition used. T his has lead

to significan t discrepancies in the reporti ns of experimental data. discussed in Ref·

ereuces {14,M,S5.77J, for exampl e. Lever and Runtkowski. (SO], investigated ana -

lytical.ly the effect of turbu lence on the apparent critical Bow velocity of a linearized

Iluidelasti c system. They found t hat t he greater the rn ponse d ue to t urbul ence the

lower the sta.bility point assigned on the basis of the first 3 standard definit ions.

Even a fact or as sim ple &S th e plot tin g scale m ay affect the res ults of these metho ds.

T heir study sugges ted that representing the response curve on a logarit hmic scale.

which apparently red uces the effect of turb ulence buffeting, m ay give mo re consis­

tent results, (78,79]. However , this me thod on ly correc t s the size of the problem and

does not recognize its nat ure.

On the basis of t his d iscussio n, it follows that t he lalter criterion of sta bility

(suggested by Chen, (711)which ma y be cons idered as a universal.definit ion in the

Lyapunov sense, has the greatest pot ential for unified presentation of expe rimenta l

data.. The difficulty of this method is in defining th e response due to t urbulence

which, in most practical cases, requ ires separ ate measurements. However, tu rbu ­

lence buffeting may be ap proximated by the tu gent to sub-critical cur ve passing

t hrough th e origin . usuming tha t its increas ing curvature (as the cri tical control

parameter , Ac, is approached) is caused by t he f1uidelast ic excitation which inte r-

acts wit h tu rbulence . Obviously, t his dl'ect becomes increa.singly important wit b

tbe cont rol paramet er , A. ]0 tbis way, the presented concept reaches t he point of

pract ical ap plicat ion and will be used throughout i,. t.his stud y.

3.3.2 St ab ili t y map

T he response curve displays the behav iour of the Iystem govern ed by only one con­

trol parame ter . Howe ver, rout ine dimensional a.nalYlis a nd ene rgy considera tion. for
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the equa tion of damped harmonically excited oscillator lead to a Connors-type sta­

bility criterion, equation (1.1), as demonstrated by Heinecke, (80]. This equation is

expressed in terms of two nondimensional paramet ers, appearing very commonly in

aeroeiasticitYi th e aforementioned reduced flowvelocity, f.l, and the mass-damping

parameter, mbo (where m ~ ~ denotes the mass parameter and Jois the logarith­

mic decrement of damping defined in quiescent air). In thi s way, a response surface

may be constructed , (74], and the stab ility concept becomes three dimensional.

For a pipe array, th is surface is folded and may appear as shown in Figure 3.9.

When projected on to the control plane (stability map), it forms a cusp. Within the

cusp, the system response is a double valued function and either small changes in

control parameters or finite disturbance may excite instability (hard-excited system).

Indeed. the shap e of the cusp defines the size of the hysteresis region as a function

of the mass-damping pa ramete r.
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Figure 3.9: Schematic 3·dimensional response of cylinder arrays.
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Note th at the response surface in Figur e 3.9 reflects t he experim ental observe­

tions , discu ssed earl ier , that the hysteresis region disappe ars at high mass-damp ing

param eter s. Clearly, such a respon se surface may be generated only from a non­

linear theory.

Sta bility maps are commonly used by researchers to summar ize experimental

results and uiay serve as a design guideline against flow-induced vibral ion in pipe

ar rays (such as the multi -tube marine riser). In th is way, Weaver and Fitzpatrick.

[16], defined the st ability criteria for four standard array configurations shown in

functio nal form in Table 3.1 (UP? ~f ~). These are based on lower bound curves

from most of t he experimental data reported in the open literature. T he inflec tion

point in t he curves for all geometries was taken at th e same value of mass-damping

param eter , m50 = 0.3, for simplicity.

Table 3.1: Experi mental stability crite ria for four st andard array configurations.

Arra y geometry

Square
Rotated square

mSo<0.3
Up?= 1.4 Up?
Up, = 2.2 Up,
Up, =2.' Up,
U =1.0 U
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Chapter 4

Experimental program

It is now generally believed that the underlyi ng mechanisms responsible for flow­

induc ed instabllit- of pipe arrays in cross-flow are fluid-damp ing and fluid-stiffness

cont rolled. Th e first mechanism is the single degree-of-freedom velocity mechanism

resulting from negative dam ping, while the second is th e multi degree-oC-freedom

disp lacement mechanism resulti ng from fluid coupling effects, thus requiri ng relative

pipe motion . This hypothesis was established by Chen, [41,42), on the basis of un­

steady lIuid theory . However, a. clearer physical explanation was given by Paidoussis

and Price, [81]. who, in the framework of quasi-steady Buid theor y, showed that th ere

were fundamental sim ilar ities between classical galloping and the Huid-demping con­

trolled instability, and between wake-flutter and the fluid-stiffness controlled insta-

bility . Both stu dies suggested that these distinct mechani sms generally coexist, but

each is predomi nant over different ranges of system peremetere, [81]; Iluld-demping

contro lled instability over mDo < 300 and fluid·stiffness controlled instability over

mDo > 300 (appro ximately) . However, this conclusion followed from linea.rized anal­

ysis and identified only the mechanisms which initial ly produce the instability -

Hopf bifurcation of tri vial equilibrium state . A physical explanation of the various

elem ents of fluid forces, taking part in the generation of limit cycles , was missing.

There are also little data which can shed some light into thie problem and may

be a priori used to establish foundations for non-linear modelling of post-stable
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beh aviour. The present state of knowledge may be summarized as follows:

• St able limit cycles exist over t he entire range of system peremeters : thdr size

decrease with mEo, as noted in Reference 131,82), for exam ple. The location

of the associated point s of bifurcation is arra.y and row dep endent; generally,

the pipe in the t hird or fourth row yields the lowest critica l flow velocity, [821.

• Unsta ble limit cycles exist only for moo< 30, {21,43,551. The y are responsible

for a hysteresis-ty pe beha viour which.was observed for a single flexible pipe in

the first or second row, [22,54,55], and in a fully flexible arr ay, [23,53,561: t he

size and the width of th e hysteresis region decreases with mEn. Th e effect of

array geometry is generally unknown.

Moreover, the work on heat exchangers and the recent model studies on marine

rise rs, [11,61], indica te that the fundament al behaviour of cylinder arra ys in liquid

and gas flows is phenomenologically very simila r. This means that the mechanism

of Buidelastic instability is independ ent of Reynolds number as an effect of fully

separ ated fluid flow. Therefo re, by varying independently the two nondimensional

para meters,60 and m , and th eir product, the experimental results obta ined in liquid

could be interpreted as the results in gas and vice versa.

4.1 Objectives

This experimental stud y is concerned with the multi-tube marine riser represented

by a rectangu lar array of closely space d pipes. Two standard a rray configuration s

were investigate d: pa rallel tri angular and square. Th e princip le mot ivation for

choosing these configurations was to examine the physical behaviou r of staggered

and in-line array s (see Figure ].3). The tested arrays were modelled as infinite in

transverse to t he flow direction , providing a practical simplification for subsequent

theore tical analysis. Thus, only one orientation of the arrays, with respect to the
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steady flow direction, was examined.

The major objective of this experimental program was to explore th e mechanisms

underlyins fiuidelastic instabilities of pipe ura.ys in lIuid ClO5S-lIow with special

em phasis on the coexistence of stable and unstable bifurutions (soft- and hud ­

exeited systems). In pu t icula.r, this st udy sought to provide ueefull insisht into the

following elements of post-stable oscillations:

• the role of relative pipe motion (lluid coupling)

• the behaviour of a single flexible pipe; two versus one degree-of-freedom

• the hysteresis effect

• the excited insta.bility within the hysteresis region

• the velocity. and amplitude-d ependant damping

The sequence of test s was designed to gradually eliminate the number of degrees-of­

freedom needed to capture the physical essence of~ array behaviour in the simplest

way pceaible. Special atte ntion was paid to points of dynamic hifurca tion (actual

st ability threshold), the magnitude of the limit cycle and the width of the hyste resis

region (if present], In this way, the founda.tions for later non-linear modelling "ere

de veloped wiG fGcti. These experiments were performed in a wind tunnel, to allow

for a clear separation between Strouhal periodicity and ftuidela.stic inst ability.

4 .2 Fucility

4 .2 .1 Wind tunnel

A newly constructed low speed wind tunnel, which facilitates bot h atmospheric

boundary layer simula.tion in a main tunnel section and flow-induced vibration

studies in an auxiliary flow duct, is located in the Fluids Laboratory at Memo­

ria l Univeraity, The main tunn el consist.l of a centrifugal blower with variable angle
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inlet vanes driven by a 19 kW motor, a flow conditioning chamber and e t m by 20

m roughed Doorboundary layer test section. The auxiliary duct facilities consist of

a 430 ffi111l by610 mm test section constructed of plexiglas,several high-loss screens

to achieve uniform flowprofiles upstream of the tested array, and a flexible coupling

to isolate the lest section from the main wind tunnel.

4 .2 .2 Test section

The test section is made of pl.,~)(iglas5 plate on all four sides to provide a dea r

observable testi ng environment. For ease in installing cylinders and for changing

array pattern, the top and bottom plates of the test section are removable. These

plates have the same pattern of 10 mm holes, either parallel triangular or square, to

allow anchor bolts to fix the cylinders in proper positions. The only difference is in

the size of the holes in the bottom plate, at the lccetion of flexible cylinders, which

were drilled to a diameter of 35 mm to allow free movement of these cylinders. In

order to adjust their damping, the oil-filled cups could be attached to the bottom

plate . Additionally, fourteen holes were drilled upst ream of the tested array, eight

in the side and six in the top plate, so that the hot-wire probe support could be

inserted at various positions (Figure 4.1 shows some viewsof the test section).

In the first stage, experiments were conducted with a 1.315 pitch ratio parallel

tri angular configuration to permit comparison with the extensive air flow data re­

ported in the literature. {31,82,83]. Since it has been found that only the monitored

cylinder, positioned in the third or fourth row, and its immediate neighbours need to

be flexible to simulate the behaviour of a fully flexible array. [82}, the experimenta.l

array consisted of 1 flexible cylinders with the central one in the fourt h row. Rigid

cylinders and half-cylinders along the side walls were used to complete an, initially,

8 row deep array, as presented in Figure 4.2.
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Figure 4.2: A tested para llel triangular array (linear dimensions in mm) and cylin­
ders numbering.

In the second stage, the tested array was replaced with a 1.433 square con­

figuratio n. As with Reference 177,821. a flexible kernel. within a rigid array, was

. const ructe d of 9 flexible cylinders. the cent ral one being in the fourth row. Here,

the experimental array wu initial ly 6 rows deep (see Figure 4.3).
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Fi8\1re 4.3: A teeted square array (linear dimensicee in mm ) and cylinders aumbee­
ing .
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All rigid cylinders and half-cylinders were 610 mm long and made out of 60 mm

outside diameter PVC pipe. The rigid cy linders were bolted to both the top and

bottom plates, while the half-cylinders were atta ched to the side plates int roduced

to simulate Rowconditions of the surround ing cylinders. Each flexible cylinder was

...lso 60 mm in an outside diameter but only 600 mm long to provide roughly 5

mm cleara nce at each end. Each was mounted as a cantilever on a 365 mm long

steel rod which in turn was threaded into a steel template (alternatively, a damping

paddle, which was free to move within an oil-filled cup, could be at tached to the

free end of the steel rod ). The 50 mm thick templa te was fixed to a welde d steel

Ireme anchored to the floor. This stand was made very stiff, with bending natural

frequency in excessor 85 Hz, to minimise m echanical coupling between the cylinders

through the base.

Figure 4,4 presents schematically some constructi onal details of this experimental

set-up.

Figure 4.4: Test section layout showing some construct ional details.
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4.2.3 Flex ible cylinde r

For simp lification of analyt ial modelling, th e flexible cylinder should ideally be ..

simple sprinS-du hpot system. such as that shown in Fisure 4.5. In this cue, it can

be seen that only planar motion is allowed which, additionally, is fully correlated

alons the pipe sp an. Moreover, the damping and stiffn~ss properties are linear and

equal in all directions (late r simplified to a. single degree-ol-Ireedcm system which

can vibrate in a. tr ans\'erse-to-f1.ow direction only).

Figure U: An idealized model of a single 8exible cylinder in an rigid array.

In practice, it is very difficult and expensive to construct such an ideal system

because it general ly requires a complex electro-rnegnenc suspension, such as that

described in Reference [551. The cantilever arrangement, which was implemented

in this study, may be considered a reasonable compromise since a routine modal

an alysis shows that the mode shape effect is almost negligible. However, linear

da mping requires special precautions to be tak en to ensure perfect alignment of the

cantilever rod and the cylinder. While this was not always realizable in pract ice,



the effects of non-linearity and asymmetry in the cylinder behaviour were made as

small as possible.

The mass-dampi ng parameter, m.5o, of the flexible cylinder was varied bycha ng­

ing the mass, m, and the damping, Do, separately. The cylinder mass was changed

by unscrewing it and replacing it with one made of a different material. Three sets

of cylinders were used; made from PVC pipe (m=1.04 ~), steel pipe (m=6.16 ~)

and steel rod covered with PVC pipe (m=12.93 ~). The cylinder damping cou ld

be ..aried by attaching a paddle to the free end of the cantilever support rod and

then by changing th e oil level or, alternative ly, the oil density in a cup (however,

the application of this method was found to be limited for investigat ion of post­

stable oscillat ions since the oil-damper showed strongly non-linear characteristics).

Table 4.1 summarizes the cylinder data for various bundles used throughout this

experimenta l study.

As noted earlier, the cantilever rod, which projected the flexible cylinder into

the test section, was 365mm long. For symmet ricst iffness tests, two different rods

were used, depending on t he cylinder mass: for the low mass PVC pipe case th e

rod diameter was 9.5 mm while for the higher mass steel pipe and steel rod/PVC

cases it was 15 mm. For asymmetric stiffness tests, 30 mm diameter rods with a

20 mm long plate near the base were used to force the flexible cylinder to move in

tra nsverse-ta-flow direction only (for frequency separation, see Table 4.1). For the

low mass case , the plates were 2.5 mm thick and 30 mm wide. For the higher mass

cases, they were 5.0 mm by 30 mm. Figure 4.6 shows schematics of this cantileve r

supporting rod .
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Table 4.1: A summary of experimental data.Cor tested arrays (parallel triangular and square) .

Array Cylinder S,l '" Co
"'''

f. f. r. Remarks

I geometry material # (. ) (. l I. n» (.)

Parallel PV pipe I 237 0.009 ± 10% 2.13 ± 10 S.lO ± 1 S.10 ± 1% 1.0 Preliminarytcsts
triangular PVC pipe 2 2.\0 0.009± 10% 2.25 ± 10 5.00 ± I 5.00 ± 1 1.0 Varied dampmg

3 250 0.020 ± 10% 5.00 ± I 4.95 ± 1 4.95 ± 1% 1.0, 250 0.030 ± 10 1.50 ± 10 4.90 ± 1 4.90 ± 1 1.0
PVv pipe 5 237 0.008 ± 10 L90 ± 10 5.10 ± 1 S.10 ± 1 1.0 Varled number 0

237 0.010 ± 1 0 2.31 ± I 6l.5 S. IS 11.9 degree-of-Ireedcm
Steel pipe 6 1401 0.008 ± 10 0 11.2 ± 10 5.10 ± 2 S.7"' ~~

(varied man)

1401 0.006 ± 1% 8.41 ± 1 ' 2.5 ;J.95 7.1
Steel rod & 7 29'2 0.008± 10% 23.5 ± 10 3.85 ± 2% 3.85± 2% 1.0
eve pipe 29'2 0.0075 ± 1 22.J ± 1 29.0 4.00 7.3

Square PVC pipe 8 237 0.008± 10% 1.90± 10% 5.15 ± 1% 5.15 ± 1% 1.0 Variet.lnumber of
237 0.012 ± 1 2.84 ± I 61.0 IU O 12.0 d_&fee-o(.tre eGom

Stee pIpe 9 1401 0.008 ± 10:fu 11.2 ± 10 .OO±2 6.00± 2 1.0 (varied mass)

1<01 0.007± 1% 9.80 ± 1 42.S 5.95 7.1

I
Steel rod oil 10 2942 0.008 ± 10 23.5 ± 10 U S ± 2 4.15 ± 2 1.0
PVC pipe 29<2 0.0075 ± 1 22. l ± I .5 4.10 7.2
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ri~re 4.6: A schema tic view of an asymmetric C&.D.t ilever rod (all dimennoDl in
mm).

4.3 In strumenta t ion

Figure 4.7 shows a view or an instrum entatio n system which, in general , consisted

of l10w velocity (hot-wire anemometer) and pipe motion (st rain gauge) measuring

devices.



Figure 4.7: A photograph of an instrumentation system .

4 .3 .1 F low velocity

The 80w velocity was measured upstream of the experimental ar ray using a cal­

ibrated D1sA constant temperature hot-wire anemometer connected to the DISA

55~f sys tem. This system consisted of a 55~101 uni t. a 55~fl O constant temperature

anem om eter standard bridge . a 55~105 po wer pack and a DIsA 90 deg sensor (type

55P13 ) parallel to axis probe . Th e voltage reading during the experiments .....as per ­

formed using a 55D31 digital voltmeter with a 10 sec time constant. The hot- ..... ire

sensor was installed on the probe support at a fixed position.

Defore any test , th e instruments were warmed-up and the hot-wire sensor .....as

heated for at least 30 min to avo id drift in voltage reading during the expe riment.

To account for room temperature variation from one day to the nex t , actual reading s

in st ill air were converted to values recorded during cal ibra t ion run s.
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4.3.2 Pipe motion

Vibrat ion response of the cylinder due to air flow was monitored using the fellow­

ing sot-up: stu ' · gauges, Whea tstone bridge , filter, oscilloscope, chart record er and

RMS voltmete r. Two VISHAYEA-06-125BT·120 open faced general purpose metal­

lie foil strain gauge s were mounted near the base of each cantil ever st eel rod in both

srreamwise and transverse- to-flow direction s. The str ain gauges were connected to

the Wheatstone bridges, MICRO ·MEASUREMENTS BA-4, giving readings in mA

or micro - strain. The electri c signal from the bridge was tran sfened t hrough the

dual HI/LO filter (cut off frequency was set twice the natural frequency of th e cylin­

der), model Rockland 1022r~, to the storage oscilloscope giving a wave pattern which

represented the vibration response of the monitored cylinde r (hard copy cou ld be

obt ained using a char t reco rder ). Its RMS displacement .vas recorded by a OlSA

55D35 RMS digital voltmeter with a 100 sec time constant.

For final analysis of the cylinder physical properties (natural frequency and

damp ing) the response pattern was digiti:l:ed using a KEITHLEY SYSTEM 570

data aquisition instrument, displayed on the monito r screen for control and stored

on a floppy disc for further processing on a VAX/VMS mainframe computer.

4.4 Procedure

Prior to the actual testing, a calibration of the inst rum"lIts and a series of pee­

lirnmaey tests were performed which included close tuning of all flexible cylinders

(nat ural frequencies and dampings) and , because the facility was new , an essearnent

of its quali ty in terms of up stream flowconditions (velocity and tu rbul ence intensity

profiles) and cylinder mechani cal properties.



4.4.1 Instrument cali bratio n

H ot-wir e a nemo me te r

During calibra.tion, the hot-win: probe wu mounted in air flow. of known variable

velocity, over a relevant velocity range, U ::;: 0.0 - 4.0;. For U "" 0.0 - 1.0 ~,

the hot-win: sensor wu placed at the inlet to the water-filled container and the

velocity of in-flowing air wu calculated, via the 1"'-rnoulli's equation, from the rete

oCchange of wa.tercolumn level (Cor details, see neferenee [84]). The velocity ra.nge

could be changed by vuying the orifice size in the bottom of the cylinder. For

U ::;: 1.0 - 4.0 ~. a Pitot tube and the hot-wire probe were mounted in the main

wind t unnel. Thus, the velocity of air flow was ~gulated by varying the degree or

fIJIopening and calculated Cromthe measured .La~ation pressure. In both cases,

t he probe operation temper ature was set at 200 deg.C and decade resistance was

calculated from the equation sta.ted on the probe test card. FiVlre 4.8 shews a

typical calibration curve.

-:;: 12
> "

> ,

50,0 '.0
Fl•• •~.clty. u" Ioo/HdU

Figure 4.8: Calibr&tion curve for bot-wire probe OISA MP I3.
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For calibration, the squares of voltages were plotted against the square roots of

velocities to yield a linear characteristic for U > 0.7.5;;eoOver this range, the flow

velocity was directly calculated using the equation for this line. However, over the

lowerrange. the experimental data had to be compared with the calibration curve to

obtain the actual flow velocity. It can be seen that all experimenta l points correlate

very well; the water cylinder readings 'Jeing a ncn-Iineer extension of the Pitot tube

readings.

Str ain gauges

The st rain gauges were calibrated for tip deflections up to one half a cylinder diem-

eter (30 mm), which is more than that needed to cause inter -cylinder das hing, in

both streamwise and tran sverse-to-Hew directions. separately. The outpu t from the

Wheatstone bridge was found to be a linear function of cylinder sta tic displacement ,

equal in both direct ions. Thus, the calibration factor was direct ly obtained from

the calibration curve which is shown in Figure 4.9.

i
; 0r-- - - - - -"I"-I;-- - - - --
:
"

Figure 4.9: Calibrati on curve for strai n gauge VISHAY EA·06-12.5BT. 120.
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4 .4.2 P reliminary tests

Upst ream flow co nd it ion s

This measurement was done over the range of critical Rowvelocities for the tested

-.nay s. The Bow velocity and the t urbulence intensity were recorded in a. erose­

sectiona l pla.ne, 70 mm upstream of the test section (measured to the symmetry

axis of th e first row of cylinders ), at 48 uniformly spaced point s. It WAS found

that velocity profile showed mean variations between test points less than 1j' % and

turbulence intensi ties variations less than &-10 %. These values, comparable with

those reported for other tests riV (see Reference (55), for exam ple), were felt to be

acceptable, given the predom inant effect of the pipe bundle geom et ry on the flew

field within the bundle , Fisure 4.10 shows ~ypiul measured velocity and turbulence

intensity profiles (for t hese, the mean upstream flow velocity wu Ou:;;: 0.78 ;;; ).

,.,

".~...~ .ou

.i-

'"~;fII'''IH'.".

,y'
Figure 4.10: Upstream flow condit ions for flu = 0.78 ;;; (a) velocity profile, (b)
turb ulence intensity profile .
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M echanica l tler"u" fluid co up ling

Although the support stand for the flexible cylinden was inten tionally made very

stiff, tests wereconducted to i nv~tigate the relative importance of mechanical WNIU

aerodynamic couplinS between adjacent PVC flexible cylinden . When a neighbour­

ing cylinder wu plucked in still air at a relat ively large amp litude (15 % d), the

monitored cylinder', vibrat ion ampl itude wu roughly 40 t imes smaller, sugg~ting

small coupling, in general. The monitored cylinder wu then replaced on its can­

t ilever rod with an equivalent solid steel lumped mas, of a diameter 60 mm and

130 mm long which was tuned to the same frequency. The damp ing for this system

dropped by a factor of three from the value for the full PVC cylinder, reflecting

the lower aerodynamic damping of the smaller lumped mass, When the neighbour­

ing cylinder was then plucked at large amplitude , the monitored system vibration

amplitude was roughly 120 t imes smaller. Tha t is, the same factor of three reduc­

ricn wu seen for both the damp ing and the induced vibration oi the lump mass in

comparison with the full PVC cylinder.

These tests suggested that virt ually all the coupling between adjacent flexible

cylinders was aerodynamic, with essentially oes lip ble mechanical coupling. Thus,

it is very unlikely that heavier cylinders, used in subsequent experim ents, could

int roduce significant mechanical coupling. This, in tum , confirmed the effect iveness

of the stiff base plate and support st and.

Natu ra l frequency and d am ping

The natural frequency, /0, and the logarithmic decrement of damp ing, 6o• of the

flexible cylinder were determined using a simple pluck tesl.. Initially, they were ob­

tai ned from a 20 sec recording on the cscilloeccpe. T he number of cycles ever this

tim e period was counted and the peak-to-peak cylinder response at the beginning

and at the end wu determined from the square root of the sum of the &quares of
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the measured responses in the ;r- and y.direct ions. In t his way, both the natur al

freq uency and the logarit hmic decrement of damping could he calculat ed and subse­

quently t uned , by adjusting slightly the length of the cantilever steel rod. to bett er

t han 2 % (4 % for an asymm etric rod ) for frequency and 20 % for damping.

The final analysis, after the bundle was tuned, was performed by means of a

digi tizer and 11.specially developed computer code (it will be described in detail

in Section 4.3). The natural frequency and the logar ithmic decrement of damping

were computed as a function of oscilla tion amplitude to verify t heir linear proper­

ties (separ ately, in both st reamwise and transverse-to-flow directions ). Thc natural

frequency was virtually constant and equal in both directions . while t he logatith ­

mi c decrem ent of damp ing slightly increased over the tested response range (typical

plot s are shown in Figure 4.11).

x- cl lr , c I I OIl
y- cl, r , c l l oll

5 • 10
AH"LITUOE , A rx d l

Figu re 4.11: Logarithmic decrement of damping in quiescent fluid, 60• as a function
of am plitud e (moo::: 2.25).
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4.4 .3 Response curves

The fluidclast ic behaviour of each array was invest igated based on response curves:

the nondimensional RMS-amplitude of oscillation ,~,plotted aga inst t he redu ced

pitch velocity, UPr ~ ¥07, which defined t he Rowvelocity inside the array . The pitch

velocity , Up, was expressed in term s of the upstream flow velocity, as Up~ -I:~.uv .

The coefficient P defines the arra y pit ch (see Figure 1.3).

Each experiment was commenced at some low flow velocity which was t hen

increase d in small steps. T he RMS amplitude meas ureme r ts were made in both the

streamwise and tran sverse-to-flow direction s (A RMS was calculated as the squar e

root of the sum of the squares of these ), with a minimum 10 min settling time

elapsing at each velocity (to achieve steady state). The flow velocity was increased

until the non-linear response plateau was observed or cylinder -to-cylind er clashing

occurred. The flow was then decr eased in small steps, egaln allowing a. minimum 10

min settling t ime to elapse before response readings were take n, until t he vibration

amplitudes dropp ed to their stable levels. In this way, bot h soft- and hard- excited

[hyste resis-type ] oscillations were identified. The effectiveness of thi e procedure was

examined in a series of preliminary tes ts (set 1 in Table 4.1).

Init ially, t he effect of varied damp ing on the response curves was invest igated.

These tests were started at the structural damping level, 60 ll:l 0.01 and were per­

formed only for a paral lel triangular array at the lowest mass , since it was observed

tha t an oil-filled damper caused the damping to be non-linear . A total of six re­

sponse curves were recorded ; one for a "fully flexible" arr ay and one for a single

flexible cylinder, which WM positioned in the fourth row (see Figure 4.2), a t three

different damping levels (set 2, 3 and 4 in Table 4.1).

Next , the det ailed studies of a minimum number of degrees-of-freedom, needed

to capture the essence of array behav iour , were conducted. These tests were first

perform ed on "fully flexible" ar rays; flexib le kernel of seven (paral lel triangular ar-
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ray) or nine (square arrey] cylinders surrounded by rigid neighbours. The cylinder

at the center of each kernel was monitored . In this way, the basic response pattern

was established and the next tests were intended to reproduce thi s patt ern with

a fewer number of degrees-of-freedom. Thus, the flexible kernel was reduced to a

tand em cylinder arrangements; the central one and one of the adjacent cylinders.

All possible configurations were tested to find those which matched closely the pre­

viously recorded response patt ern . During these tests, both of the flexible cylinders

were monitored to explore the effect of neighbouring cylinder motion and the physi­

cal role of fluid coupling. This procedure gradually eliminated some of the cylinders

and identified the critic al zone withi n the f lexible kernel. Subsequently, a single flex­

ible cylinder in an otherwise rigid array was investigated . Th is required recording

a total of twenty (paral lel triangular arr ay) or twenty five (square array ) response

curves. Finally, the symmetric cantilever rods of the cylinders were replaced with

asymmetri c ones, allowing oscillations in the trensveree-to-Howdirection only, thus

further reducing the number of degrees-of-freedom. As before, first the tandem flex­

ible cylinder configurations and then the single flexible cylinders were investigated

Cortheir behaviour within a rigid array_

Summa summarumi in this procedure the multi degree-of-Ire -dcm "Bexlble ar­

ray" was gradually reduced to the single degree-of-freedom flexible cylinder .

When one sequence of experiments was completed, two upst ream cylinder rows

in a parallel triangular array were step by step inserted (see Figure 4.2) and one in a

square array (see Figure 4.3), and the whole process repeated. Then , the array was

assembled to its initial configurations and the effect of varied maea was investigated

by replacing the flexible cylinders. Thus , a total of nine such experiments were run

for a parallel triangular array (upto thirty response curves each); three different

cylinder masses (set 5, 6 and 7 in Table 4.1) for each of three different array geome­

tries depending on J. number of upstream rows. Since in a square array only one
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upstream cylinder row was additionally inserted to study the row dependence ef­

fect, a tota l of six such experiments were performed (upto forty one response curves

each); three different cylinder masses (set 8,9 and 10 in Table 4.1) for two different

array geometries.

4 .4 .4 Transient excitation

The transition of an array from stable to post-stable states at the same flowvelocity

(hard-excited oscillations) was examined using both transient displacement and ve­

locity exciratlon. These tests were conducted in order to determine the magnitude

of the excitation needed to trigger instability of a stable array operat ing with in the

hysteresis region.

Di sp lacement ex cit ati on

With an array oscillating at steady, stable amplitude near the lower limit of the

hysteresis region, the monitored cylinder Wall plucked. The transient displacement

of the cylinder was recorded on a char t recorder to determine the peak amplitude

which was converted to an equivalent RMS by dividing by the square root of two.

To allow the system to reach steady-state, a minimum of 10 min was permitted to

elapse before RMS readings were ta ken. The test was terminated afte r an elapsed

tiMe of more than 30 min. At the same flowvelocity, the process Wall t hen repeated

w;th larger peak displacement excitation until the array.vent unstable. In this

way, the minimum peak (RMS) t ransient displacement needed to cause transition

from stable to pest-stable oscillations was determined. The flow velocity was then

increme..-ed in steps and the whole procedure repeated until the upper hysteresis

limit was reached.

These excitation experiments were performed for parallel triangular and square

ar rays (set 1 and 8 in Table 4.1), at the loweet cylinder mass where the observed
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wid th of the hyste resis region was the largest.

Ve locity ex citation

These tests were conducted by star~ing at a stab le vibration level at initial velocity,

Us, near the lowest region of the hyst eresis region, increasing the velocity by t1lf

for a time period of At, then return ing to velocity Uf • The time inte rval was \'ariI'Q

over the values 10, IS, 20, 30, 45 And 60 "ee, and for each .6.U, the minimum .6.1

needed to tr igger instabili ty was det ermined. After the surge, at least 10 min of

set tling t ime was permitted to elapse before the cyli nder amplit ude readings were

t ake n and 30 min before th e test was terminated. A time series tr ace of the velocity

surge, U( t ), was obtained from the hot-wire anemometer for each test (a typical

tr ace is shown in Figure 4.12) . Note that the steady flow resul ts (response curves)

corresp ond essenti ally to .6.t> 10 mi n and AUmin= Ur;; -Ur (the minimum velocity

increment needed to raise the system to the stab ili ty threshold under steady state

conditions). Tuus , a .6.tof longer tha n I min was not used, since it was felt th at

this would tend to approach t he ste ady flow test conditions.

.- 41*dU ·0.59m/sec

Fi gure 4.12: Typical tra ce of velocity surge, U(t), ob ta ined from hot-wire anemome­
ter.

As with displacement excitation , t he velocity Ui was incremented in steps to­

war ds the upper hysteresis limit. The prod uct of velocity and time increments,

A U · At , was taken to be a measur e of t he overall array excitation. The se test s

were of prac tical im port ance, showing how the velocity surge may t rigger inst ability
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within che hysteresis region, However, t hey gave very lit t le add itiona l insight and

were only conduct ed for a par allel triangu lar array at the lowest cylinder mass (set

1 in Tab le 4.1).

4 .4.5 Velocit y-dependent dam ping

This experimental study looked at t he natu re of velocity-dependent damping of

cylinders oscillating in both rigid and flexible ar rays. The tests were conduct ed for

a paralle l triangu lar and a square array with the monito red cylinder (m= L04 ~J

positioned in th e fourth row.

An alysis of de cay c urve

Decay curves were used as a common meth od of assessing the damping in flow.

induced vibration s, The mon itored cylinder. sub jected to steady flow velocities

from zero to Uc. was plucked upto a tip peak deflection of A = 20 % d in the

streamwise and tran sverse-to-flow directions, separat ely. In each case (below the

hysteresis limi ts) , the cylinder oscillat ions, induced by plucking, decayed to the

turbulent buffeting level at a given flow velocity.

The amplitude decay curves were digiti zed with a samp ling rate of approximately

40 points per cycle (200 Hz for fo = 5,00 Hz). To reduce the "noise" caused by

random tu rbulence fluctuation in the mean flow, the data files were smoothed using

the five-point marching polynomial of Longuet -Higgins and Cokelet, [85}, Addi­

tionally, the "mean drift" of the equilibr ium sta te (A = 0) was removed to obtain

comparable results from the negative and the posit ive peaks, Figure 4,13 shows a

typ icaJ.experimental decay cu rve which was obtained, using t his procedu re, in the

presence of fluid flow.
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Figure 4.13: Ty pical decay curve in transverse-to-Bow direction (Uu::::lO.5Uc) .

Th e dampingfa.ctor , (,(A), was computed as a function of the peak ampli tude . A,

over port ions of t he deca y curve in small amplitude intervals , (A". A,,+N), which were

2 %d. The damping, at each Bowvelocity, was then obtained by extrapolat ion of

( (A) to t he amplitude level induc ed by turbulen ce (typi cally, less than 1 %d). This

method was especially convenient within the hysteresis region, where t he dampin g

showed a stron g dependence on tb, oscillation amplitude due to the coexist ence of

stable and unstabl e dom ains. The final values of damp ing were a n average of three

different pluck tests .

Th e associate d frequency of oscillations which follows from the number of cycles ,

N, in the equivalent tim e inter val. ( ~".t ,,+N), is:

which yields fo in the st ill fluid.

f =_N__.
t"+N-t,,
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Methods of damping estimation

Experimental decay data were in itially ana lyzed using three different techniques:

(1) a st andard logarithmic decremen t method, (2) a mooified logarit hmic decrement

method and ('1a num erical parameter ident ificat ion technique.

The method of logarithm ic decrement, which is most commonly used in prac tice ,

allows t he linear damping to be estima ted {rom the raw decay data l,ja equat ion:

o=.!..fn~
N A..+N

(4.2)

which yields 00 in the still fluid. The ampl itude An at tn and An-"-N at t..+N are

calculated as average value! {rom the positive and negative peaks, [43}:

An = A .. +2A..+1 ; A..-+N = An• N +An+N+1 (4.3)

The logari thmic decrement of damping, 6, was converted to the damping factor (ex­

pressed in percentage of actual over critical), C, using the approximate relationship:

C== -i;6*lOO%. (4.4)

In this method, only one value of damping was obtained in a given ampli tude range,

(An, An+N). However, thi s value varied with the number of cycles, N, posing an

important experimental problem .

The modified logarithmic decrement method , [86), is an alternative procedure,

independent of the number of cycles in equation (4.2 ). The expotential decay curve:

(4.5)

is fitted through the peak points (separately, through positive and negative) of the

experimental decay curve. The constant Codefines the int ersection point (t = 0)

with th e amplitude axis. After taking the logarithm of both sides and substituting

for f (equation (4.1)) , this expression becomes:

InA = InCo - 2tr(,N.

71

(4.6)



The function, which is given by equation (4.6) (plott ed against time measured in

units of N ), represents a straight line on a log-linear basis with equally spaced

points, at t:1N = 1, for approximately constant frequency of oscilla tions. Thus,

the departu re of the experimental peak points, InA, from this line is entirely due

to non-linearity in the dampi ng. As before, equat ion (4.6) was applied in ampli­

tude intervals of 2 % d, using a best-fit straight-line representation of experimental

data , yielding the actual "due of the damping fac~ .1r . This method was especially

convenient if the decay curve was perturbed by flow turbulence.

The paramete r identificat ion technique, originally developed by Bass and Had­

dara, [871, for finding the roll damping of ships, allows a direct assessment of damp ­

ing non-linearities. This method can be applied to the complete portion of the

decay curve, assuming equation of decay motion, induced by plucking, to be of the

following non-linear form:

yt,) + ""([1+., 1>(')I+.,;(')'];(')+w'[l + ",,(,)'I ,(t) = 0 (4.7)

where the constants 111, 112 and III reflect the fluid-damping and fluid-stiffness non­

linearitles, respectively. The identification of these constants is performed through

a best-fit of equation (4.1) to experimental decay da ta , either all recorded points or

the peak values. This numerical routine requires as an input the init ial conditions

at the peak point (Yo= An' Yo = 0), the estimated linear param eters (w, ('), >w.d the

"guessed" non-linear parameters (rh, 112, 1J1l. The difference bet ween the predicted

and the observed values of the decay amplitude is minimized with respect to the

paramete rs to be identified. Some detaib of this complex numerical procedure can

be found in Reference [87J.

To tf'st the validity of the proposed methods, t he pluck experiments were fint

performed in still air and then in fluid flow (UU I'::l O.5Ue) . Table 1.2 bh~ws the

variat ion of the damping, with the amplit ude of oscillat ions, derived from numerical

analysis of the decay curves. The numerical results, which were obtained from
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application of the different techniques (1,2,3), were found to be generally in very

close -greement, In view of these results, it could be concluded that each method

gave accurate estimates of the damping in a given ampli tude interval (2 % of d).

However, the logarith mic decrement method (1) and the parameter identification

technique (3) showed a sensitivity to 80w turbulence "noise" which obscured the

true value at the response peaks. Moreover, the parameter identification technique

was strongly dependent on its linear inputs; wand' , Thu s, on the basis on these

observations, the modified decrement method (2) was chosen for the present work

since it gave more consistent estimates of damping and was relatively sin.ply to

apply.

Table 4.2: Numerical values or damping factor (% ofcrit ical); comparison of different
techniqu es.

.
15·13 .142 .140 .141 .180 .182 .177
13-11 .136 .134 .134 .184 ,184 .182
11-9 .128 .130 .130 ,191 .185 .189
9-7 .127 .127 .129 .119 .178 .175
7-' .U9 .120 .122 .180 .180 .182

'-3 .121 .120 .129 .171 .179 .175
3-1 .120 .121 .124 .167 .174 .168

I A I Uu 0.0 I Uu",o.;Uc I
(II d) (1) I (2) 1(3) 0) I (2) I (3)
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Chapter 5

Experimental results a n d
discussion

The expe riment al program , undertaken with in t his study, was very extensive; ap­

proximately five hundred response curves were recorded. T herefore, only t hose re­

suits which were found essent ial for furth er model development are reported and

discussed in t bis Chapter. However. viewed in this condensed form, they may ap­

pear difficult to inter pret . For thi, reason, the majority of the recorded response

curves are presented in the Appendix A, while the detailed dampins eurvea are

included in the Appendix B.

To ensure t hat the tr ends observed are nOC dist inct phenomena associat ed with

an array geometry, t wo di fferent oonfi.!Urations were tested : parallel trian gular Uld

squue.

5.1 P arall el t r iang ular array

The tested cylin~er configuration is displayed in Figure 4.2. Th e monitored cylinder,

No.7, is positioned in the fourth row for the basic geometry or, alternati vely, in the

fifth and sixth row! with addi tional cylinders insta lled upstream.
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5.1. 1 Poa t-atable b eh aviour

Preliminary tests

These experiments, which included both steady flowand transient excitation tests,

were aimed to recognize the nature of post-stable oscillations.

Figure 5.1(a) shows the initially obtained RMS response curves as a function or

reduced pitch velocity, UPr , for the steady flow tests conducted on both -; flexible

and 1 flexiblecylinder arrays (set 1 in Table 4.1), with the monitored cylinder in the

fourth row. Notice that the 7 flexible cylinder configuration shows clear hysteresis

behaviour, while the single flexible cylinder system does not. For the 7 flexible

cylinder array, a stab ility threshold, Uc , of Up, = 13.66 may be clearly assigned.

since the curve is essentially vertical at this point (it should be vertical, in principle,

but it is shown here M connections between data points as actually obtained). The

post-stable vibration amplitudes saturated at _ 1l .S % d. Higher flow velocities

were found to init iate cylinder clashing, leading to slightly lower RMS amplitudes.

As the flow velocity was reduced, the array remained unstable unti l the velocity

dropped below Up, ~ 10.80. The lowest velocity point on the hysteresis curve. UN.

may he taken as UPr = 10.42. For the single flexible cylinder arr~y, the stability

threshold may be defined as Up, = 14.75 using the criterion suggested in Section

3.3.1 (intersection of steepest tangent to the post-stable response curve with the

response induced by turbulence). The post-stable vibration amplitudes appear to

be self-limiting, reaching a plateau of ARMS se 6.7 %d. It is worth noting that these

tests were subsequentl y repeated and gave virtually identical results.

With the basic post-stab le behaviour recognized, the t ransient excitation tests

were conducted. The 7 flexible cylinder array was excited at initial velocities, U/:

Up, = 9.95,10.80, 11.87,12.95. For Ur < UH (U~ = 10.42), the array always

returned to its original state (regardless of excita tion characteristics), while for UN

< Ur < Ue(U~ =13.66) these transients could t rigger a transition to pest-stable
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D:lcillation" with all 7 fl~xibl~ cylinders vibrating at larg~ amplitudes. The final post­

.tabl e RMS amplitudes were found to be very dose to tboee levels recorded durin!

the steady flow tests (it should be-noted that once unstable , the array ,bowed no

tendency to return to its original lower vibration level). Figure 5.I (b) presents these

data together with the minimum peak di,placement excitat ion level! eceveeted to

equivalent RMS amplitudes (natu rally, l&rgerexcitation. tban these minima ""QUId

also O "J.5e transition). As expected, smaller minimum excita tion!> were required to

cause transit ion as Uowas approached. However, these excitat ion amplitudes all lie

above the expected location of the unstable limit cycle which should be positioned

within hysteresi. region (see Figure 3.5). Th is is not lurpri,i ng since addit ional

energy must be put into the system via fluid coupling to trigger instability of the

neighbouring cylinders (the single flexible cylinder array would always return to its

original vibration amplitude afte r any exciterien]. It i. thu. reasonable to expect

that the unstable limit cycle would show up at lower excitat ion level! if all flexible

cylinders were excited at the same rime.

The overall excitat ion was accomplished with the velocity t ransients , howeverthe

sizeof velocity surge could not beconverted to an equivalent displaeementexcitation .

Inlere!ltingly, the product needed to trigger t ransit ion, li.U . .6.t, is approximately

constant , at a given U" aDd decreases as U, approachCli Uc (AU · li.t ~ 24,1 5,8 at

respective velocities U,.. =10.80,1 1.87,1 2.95). This . uggestJ tbat the threshold for

transit ion by surge, at a given Ut , is related to tbe increued energy in the surge 80w

as compared with the steady flow. As one would expect , the larger the magnitude

of the surge, the les. it would need to persist to trigger the tran sition to post ·stabl e

vibration.
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Figure 5.1: RMS response cur ves for the 7 and 1 flexible cylinder parallel triangular
array; (a) steady flow and (b) excitation tests .
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Effect ordamping

fi gure 5.2 presents the effect of damp ing on the array behaviour (to allow damp ing

variations, paddles were fitted to the top of each cantilever support rod ). Steady

fiow tests were run for 60""0.010,0 .021,0.030 (set 2, 3, and 4 in Table 4.1). Notice

t hat the response curve for the 7 aexible cylinder array with 50 = 0.010 agrees

well qualitative ly with that obt ained previously for th is cue which, for eu y of

comparison, is also presented in Figure 5.2. For some reason, the stabili ty threshold

has dropped slightly from UPr = 13.66 to 12.96 while the width of th e hysteresis

region has decreased from 24 % Uo to 16 % Uo- The most noticeable change.

however, is t he reduction in the post-stable ampli tude platea u from ..... n.5%d to

..... 6.3 % d. Since t his la tter vibrat ion level did not produce cylinder d ashing, data

were obt ained at several velocity points higher than Ye. As can ~e seen in Figure

5.2, this lower post-stable plateau ",as observed at all dam ping values . However,

the furt her increase of damping to 60 = 0.021 and 0.030 increased the stabilit y

thr eshold to Uh = 14.21 and 15.35, and reduced the width of the hys~esis region

to 10 % Ue and 6 % Ye. respect ively. Also, the single ll.exible cylinder cases &11

showed slightly higher stability thre3ho1ds, len dramatic t ransition from sta ble to

post-stable beha viour and no hysteresis.

In additio n. for each damp ing value, tran sient displacement and velocity excita­

tion \e3ts were conducted on the 7 aexible cylinder array a.t steady velocities, UI.

just below UN and approximately half way between UN and Ye. As with the pre-

vious tellt series, transi tions generated by either displacement or velocity transients

gave final RMS amplit udes virtually ident ical with t he corresponding steady Bow

results which Me presented in Figure 5.2. Also, the single aexible cylinder array

always returned to ite initial amplitude levels, regardless of the magni tude of the

transient.
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Before proceeding further with the experimental investiga tion, it was necessary to

find an explanation for the significant discrepancy in the observed RMS ampli tud es

of post-stabl e oscillati ons for Co= 0.010 (see Figure 5.2(a) and 5.2(b)) . For this, the

damping paddles were removed and the steady flow test for the 7 flexible cylinder

array (set » in Table 4.1) was run again. Figure 5.3 shows the new response curve

which is drawn without markers (solid for increasing and dashed for decreasing flow

velocity) and is denot ed as "ideal". Interestingly, th b response curve agrees well

qual itatively with the previous steady flow tes ts for Co = 0.010 (set 1 in Table

4.1), yielding t he stabilit y t hreshold Up, = 13.75 and the width of the hysteresis

region 20 % Ue. The post-stab le amp litud e plateau is even higher from observed

earlier, reaching e- 15.4 %d. Thi s suggests that an oil-filled damper introduces non­

linear damping, causing additional energy dissipat ion at large amp litude oscillations .

Because of t his, damping paddl es were not used in subsequent work .

Imperf ect ion eensl - . vity

As noted earlier , the mass-damping parameter was varied by changin g the mass

of the flexible cylinders. Unfortunately, this required the reassembly of the array

each time, leading to inevitab le changes in relativ e cylinder positions. As shown

by Andjelic, [54,55], these changes , although very small, may affect the crit ical

flow velocity. Ther efore, before proceed ing to actual experi ments on a number of

degrees-of-Ireedcrn, a limited study was performed , showing sensi t ivity of t he pest­

stab le array behaviou r to the slight impe rfections in the <.:ylinden alignment . To

measure the extre me imperfect ion effect possible, t he "dominant" cylinde r (e.g. the

cylinder which was observed to have t he lowest stability thres ho ld and t he largest

pest-stable oscillation amplitude) was slightly displaced , N 10 %of the gap between

cylinders, from its " ideal" position.
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Figure 5.3 ..how, the response curves Cor the 7 flexible cylinder array with the

dominAnt cylinder, No.1, displaced (a) downstream, (b) u~tre&m, (c) leCtand (d)

right (together with the "ideaJ." which is presented Cor ~a:JY of comparison). Notice

that , unlike the previous tests, the response curves display significant qualitative

discrepancy, However, the post-stable amplitude plateaux, all in the range _ 15.8­

16.8 %d, are essenti&1ly uutfected. The stability threshold, Uc, hu varied between

UPT = 10.61 (Figure 5.3(d» and UPT = 15.22 (Figure 5.3(c» , while the lowest

point on the hysteresis curve, UH, has varied.only between U~ = 10.81 (Figure

5.3(b)) and Up,.= 11.99 (Figure 5.3(c)) . The width. cf the hysteresis region are

in the range 14-21 % Uc. Evidently, the most not iceable change in the array be­

haviour is the disappearance of hysteresis in Figure 5,3(d). However, the . tability

thresbold,Up,. = 10,61, falls close to the UH range (Up,. = 10.81 - 11.99). These

results explicitly show that, indeed, even slight imperfection in cylinder alignment

may influence the post-stable array behevicur. However, Cor the limited Ca.'5e! stud­

ied, UH is approximately constant. T his suggests that, in t' le extreme situation of

the disappearance of hyslcresis, Uc may be interpreted as Uc =UH.

Effect of number of degree ...of· freed om

The detailed experimentel studies, to reduce a number of degrees-of-freedom needed

to model the post-stable behaviour of a fully flexible anay, were conducted in the

mass-damping parameter ruge (m60 :::l 1.9 - 23.5 (set 5, 6 and 7 in Table 4.1).

Figures 5.4-5.6 give the essence oCthese experiments. To provide a clear description

oCthe tested arrays, a code i. employed (indica.ting the monitored cylinder and the

total number of degreea-cf-freedcmj; No.1: m x n, where I identifies the monitored

cylinder (1-7), m denotes the number of 8exible cylinder. (1-7) and n is the number

of degrees-cf-Ireedcrn Cor the Bexible cylinder (1,2). For a given geomet ry, each

Figure contains four response curves; the central cylinder in tLe 7 flexible cylinder



array (No.1: 7 x 2), the central cylinder in the 2 flexible cylinder array (No.i :

2 x 2) wbese strong coupled motion approximat ely replicated No.7: 7 x 2, and t he

single flexible cylin der (1 x 2 and 1 x I) whose motion domin ated the behaviou r of

the 2 flexible cylinder &fray previously recorded . In this way, the examined arra y

was gradual ly reduced Crom 14 to 1 degrees-cf-Ireedem, Viewed in t his condensed

Corm , Figures 5.4·5.6 may appear difficult to interpr et . Thus, additional results are

presented in Appe ndix A {Figures AI-A21). Below, some observations are noted ,

regard ing th e stability be haviour oCcylinder arrays (enclosed in brackets are th e

supplementary observations Ircm examinat ion of Figures Al .A21).

Figure 5.4 shows the results obtained at m60 == 1.9- 2.4 (set 5, Table 4.1). Note

t hat (see also Figures Al -A9), altho ugh almost all 2 x 2 configurations tested show

coupled mot ion [e.g, bot h cylinders move in a well defined mode induced by th e

"dominant" cylinder ), only one closely replicat es 1 :< 2 response (fluid coupling in

2 x I was not cbeervedl . It appears tha t there is one cylinder in the bundle which,

via fluid coupling, dominat es 2 x 2 and 7 x 2 behavioUl; it init iates in, ta bility and

governs post-stab le oscillat ions.

• Figure 5.4(a ) - the central cylinder in 4-th row:

- No.7: 7 )( 2 disp lays hysteres is (No.7: 1 x 2 dOClnot)

- No.1: 2 )( 2 closely replicates No.7: 7 )( 2 beh aviour, showing st rong

coupled motion (only one 2 x 2 configuration , No.1 and No.1, behaves

similar ly to No.1: 1)( 2, coupled motion Cor 2 x 1 is not present )

- No.1: 1 x 2 an d No.1: I >< 1 also show hysteresis, however d iffer Crom

No.7: 7 x 2 in exact details (both 3·rd row flexibl e cylinders, No.1 and

No.5, display nearly same 1 x 2 and 1 x 1 behaviour)
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• Figure 5.4(b) . the cent ra l cylinde r in 5-t h row:

- No.7: 7 x 2 display s hysteresis (No.7: 1 x 2 is stable in the tested velocit y

range]

•. No,7: 2 x 2 closely replica tes No.7: 7 x 2 post -stable behaviour, however

becomes unstable earlier (only one 2 x 2 configuration, No.7 and No.6,

shows coupled mot ion which is not present for 2 x 1)

- No.6: 1 x 2 and No,6: 1 x 1 show qualitatively simila r behav iour to No,7:

7 x2 , pos t-stab le response is significantly higher (cylinders No.1 and No.5

are almos t stable)

• Figure 5.4(c) - the central cylinder in 6-th row:

- No.7: 7 x 2 does not display hysteresi s (No.7: 1 x2 is st able in the tested

velocity ran ge)

- No.7: 2 x 2 rep licates No.7: 7 x 2 behaviour (no hysteresis), althoug h

shows clean response ju mp at the stability t hreshold (only one 2 x 2

configuration, No.7 and No.6, show coupled motio n which is not present

for 2 x 1)

- No.6: 1 x 2 and No.6: 1 x 1 behav e similarly to No.7: 7 x 2, No.6:

1 x 2 shows stee per post-stable response (No.6 is the only clearl y unstable

cylinder)

Figure 5.5 presents the corresponding results for tests cond ucted at mao l::: 8.4 ­

11.2 (set 6, Table 4.1). Th e most not iceable difference is the weaker coupling in aU

tested 2 x 2 configurations (lee also Figures AIG-AI5). However , the role of th e

dominant cylinder is clearly establis hed.

86



~ ; 1 0 1
" Xl ' D1UNMl ....

1111
;:<::;:0:

US:

iii!
R j i

~HH

'\ .

I I I
fIH

01 III at " IIICP lI:l 'DlU _ Of III 01 01 01I ' X) ' lQ'l ll _

87



• Figure 5.5(/1.) - the central cylinder in 4-th row:

- No.7: 7 x 2 displays very narrow hysteresis (No.7: 1 x 2 does not )

- No.7: 2 x 2 replicates No.7: 7x 2 post-stable behavio ur, howeverini tiation

of instability is delayed (only one 2x2 configuration, No.7 and No.1, show

coupled motion which is not present for 2 xl)

- No.1: 1 x 2 and No.1: 1 x 1 closely reflects No.7: 2 x 2 behaviour , thus

initiation of instability is delayed with respect to No.7: 7 x 2 (No.5: 1 x 2

shows better qualitative agreement with No.7: 7 x 2 behaviour , however

No.5 and No.7 do not show coupling in 2 x 2 configuratio n)

• Figure 5.5(b) - the cent ral cylinder in 5·th row:

- No.7: 7 x2 displays wide hysteresis, post-stabl e plate au is very low (No.7:

I x 2 is stab le in the tested velocity range)

- No.7: 2 x 2 closely replicates No.7: 7 x 2 behav iour (only one 2 x 2

configura tion. No.7 and No.6. show coupled motion which is not present

for 2 x 1)

- No.6: 1 x 2 displays qualitatively similar hyste resis behav iour to No.7:

7 x 2 and No.7: 2 x2. higher post-stabl e response (No .6 is t he only clearly

unstable cylinder)

- No.6: 1 x 1 disp lays significantly narrower hysteresis than No.6: 1 x 2

and becomes unstable earlier

Th e results for the cent ral cylinder in 6-th row are not discussed since all configu­

rations (including No.7: 7 x 2) were found stab le in the tested velocity range .

Figure 5.6 shows results obtained at meo =::: 22.1 - 23.5 (set 1, Tab le 4.1). The

recorded response curves are more difficult to interp ret due to general lack of cou­

pling in 2 x 2 configurations (Figures A16·A21 indica.te tha.t the case presented in
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Figure 5.6(bl) is the only exception] , Thus, the dominant cylinder, whose role in an

array was so pronounced (as a source of post-stable behaviour) in the lower ranges

of the mass -damping parameter, cannot be clearly identified, Here, it appears that

the least st able single flexible cylinder (1 x 2), whose response is presented for com­

parison, may initiate inst ability of a flexible array (7 x 2). However, the post-stable

beha viour t>fthis init ially domi nant cylinder result s from coupling between all free­

t o-move cylinders.

• Figure 5.6(a) • the central cylinder in 4-th row:

- No.7: 7 )( 2 disp lays wide hysteresis (No.7: 1 )( 2 does not )

- No.7: 2 )( 2 is stable in the test ed velocity range (No.1: 2)( 2 replicate s

qual itatively No.7: 7)( 2 behaviou r)

- No.1: 1 x 2 and No.1: 1 )( 1 show essentially identical behaviour as No.1:

2 )( 2, however No.1: 1 x 1 becomes unstablc latcr (3-rd row flexible

cylinders , No.1 and No.5, display simila r 1 x 2 and I x 1 behaviour )

• Figure 5.6(b) - the central cylinder in 5-t h row:

- No.7: 7 x 2 displays wide hysteresis, post-stable plateau is very low (No.7:

I x 2 is stab le in the tested velocity range)

- No.7: 2 x 2 also shows hysteresis, however it is nar row and induced earlier

(only one 2 x 2 configuration, No.7 and No.6, shows coupled motion which

is not present for 2 x 1)

- No.6: 1 x 2 displays quali tatively similar hysteresis behav iour to No.7:

2 x 2, post-stable response is substantially highe r (No.6 is the only clearly

unstab le cylinde r)

- No.6: I x 1 does not display hyste resis, however post-stable response

replicates closely that of No.6: 1 x 2 for decreasing flow velocity
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As before, for the central cylinder in 6·th row, all tested configurations (including

No.7: 7 x 2) were found stable.

When st udied together , the presented Figures indicate that only cylinders in

the second and third row display hysteres is (first row was not investigated ). T hese

cylinders tend to dominate the 7 x 2 configuratio n and their post -stable behav iour is

only slightly modified by the motion of flexible neighbours (especially, at a low mass­

damping parameter range). Thus, it appea rs that the observed hysteres is in a ; x 2

ar ray is due to the cascade effect , which is caused by fluid coupling, and has its actual

source in the beha viour of the dominant cylinder (qualitatively well represent ed by

a I x I system). Fluid coupling , however, becomes less significant with incre asing

mass-damping parameter and clearly coupled modes between cylin ders do not occur.

Unfortunately, quantitative compar ison betw een the dominan t cylinder and a 7 x 2

array is hindered by shifts in t he location of tbe stability threshold. Th is could be

attributed to geometrical imperfections, resulting from unavoidable modifications

to change the number of degr ees-of-freedom . Note, however, th at tbe lowest point

on the hystere sis curve, which should be chosen as the practical stability t hreshold,

is significantly less affected.

Eff ect ormass

In view of Figures 5.4-5,6, t he overall effect of increas ing the mass parameter, fil,

is to increase th e criti cal flow velocity and to lower the non-linea r platea u of the

post -arable amp litudes. Also, fluid coupling becomes lees important. The stability

threshold is always wen defined due to existen ce of a response jump, characterizing

a hysteresi s loop. In general, the width of the hyste resis region decreases, suggesting

that hysteresi s behaviou r may disappear at moo R:l 30.0. This observation agrees

with the experimen tal results presented by Hera, 121J and Andjelic , [55J.

Table 5.1 gives A summary of the experimental data for the monitored cylinder
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in the fourth row of the 7 flexible cylinder array (No.7: 7 )( 2 . these results are

most commonly reported in the open literat ure) and for the single flexible dominant

cylinder in an otherwise rigid array (1 x 2 end 1 )( 1). For completeness, the varied­

d&mpingdata. are abo presented .

Table 5.1: A summary of experimental results for a peeallel triangular array; varied
damping and man.

Set ..s, 7x2 1 x 2 1 x 1
Uo UH "';P- Uc UH "'"'"' Uc UH """""1 2.1 13.66 10.42 24%

2 2.3 12.96 10.89 14 %
3 ' .0 14.21 12.81 10%
4 7.' 15.35 14.47 6%, 1.9 13.75 11.04 20 % 18.15 13.93 ,,%

2.4 18.15 16.87 7%
6 11.2 19.91 19.65 2 % 19.66 18.30 7 %

6.4 25.92 22.55 13%
7 23.5 27.43 23.03 16 % 2'1.26 21.30 4 "

22.1 25.4.8 24.75 3 %

The critical flow velocities, Uc, and the hysteresis velocities , UH, are plotted in

Figure 5.7 together with the st ability t.hreshold limits observed by other researchen

(based on Reference [16], the direct comparison with data for a 1.375 pitch ratio

parallel triangul&rarrey is presented in Section 7.2.1). It can be seen that , while

the hysteresis velocities all lie well within these limits , the crit ical flow velocitseeare

concent rated mainly near the upper sta bility boundary, in some cases exceeding it.

[t should be remembered, however, t hat the stability criterio n used in this study

is, in general, unconservative (see discussion in Section 3.3.1). Moreover, since the

concept or excited instability within the hysteresis region is not clarified in the

literat ure, it is believed that some experimental data report ed are in fact within the

hyster esis region. Notice that the general trend with respect to the ma,ss.damping
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parameter is similar with th at suggested by the limits of all experimental dat a.
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Figure5.7: Stabili ty plots comparing present experimental da ta (m60::::: 1.9-23.5) to
existing in the literature for a par allel trian gular array ; (a) crit ical and (b) hysteresis
How velocities.
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5.1.2 Veloc ity-depende nt damping

The velocity-dependent damping was determined for the cylinder positioned in the

fourth row of the 7 and 1 flexible cylinder array s in st reamwise and transverse-to­

flow direct ions, separately. Only one cylinder was monitored, since the experimental

data reported by Weaver and El-Kashlan, 13l], indicate t hat the damping is virtual ly

independent on the cylinder location within an array. At a given flow velocity,

the velocity-dependen t damping as a function of amplitud e was est im ated from

pluck-generated decay curves. By subtracting the value of damping in quiescent

fluid, the fluideJastic damping factor , {, was derived. Figures Bl and 82 , which

are included in Appendix B, show that the fluidelastic component of damping is

essentially independent on the amplitude, except in the amplitude range close to

the steady turbulence response level where a significant scatter in measured data

was observed (especially, near the stability threshold). It was thus felt that in this

range a larger number of tests would be required to obtain reliable estimates of

damping. Notice t hat , within the hyst eresis limite, the experiment coul d not be

fully completed due to the existence of an unstable limit cycle which manifested

itse1£in very low damping values at higher recpcnse levels.

Figure 5.8 shows the results as a function of reduced pitch velocity, together with

the response curves for easy of interpretation. Figure 5.8(0'1.) shows that the f1.uide·

lastic component of damping (or the 7 flexible cylinder array, after an initial drop ,

increases linearly with flow velocity upto "" 60 % Uo and is essentially ident ical

in both the streamwise and transverse-to-flow directions. For higher How veloci­

ties, t he damping in the transverse-to-Row direction (y) decreases, approaching zero

(quiescent 8uid damping) towards the stability threshold, Uc, while the damping

in the erreemwlae direction (or) continues to increase linearly upto the lowest limit

of hysteresis region, UH ::::80 % Uo. Thus, as it was already observed experimen­

tally, the cylinder loses stability in the transverse-to-flow direction. These trends
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were compared with those of Weaver and El-Kashla n, 131], who reported the only

experimen tal dat a for this array available in the literatu re. They used essent ially

an identic al technique of damping estimation. The measurement, however, was per­

formed Jose to t he actua l response level to avoid the effect of eventual non-linearity

(t he average value of three pluck tests was reported). It can be seen that the t rends

from both experi ments are quite consistent ; init ially, bot h curves increase linea rly

with reduced pitch velocity (proportionality constent e- 0.015), reaching a. pea k at

"" 50 - 60 %Uc and then decreasing gradu ally towards the stability thr eshold. The

quant itati ve difference results apparently from the lower sta bility threshold observed

by Weaver and El-Kashlan; UPr =8.66 in comparison to Up, =13.75 obtained in

this study.

Figure 5.8(b) presents the corresponding re3ulh for th e single flexible cylind er

in an ot herwise rigid arra y. It can be seen tha t , in the velocity range upto ...., 50 %

Uc, the ftuidelastic component is virtu ally identical to that of the 7 flexible cy linder

array. However , for higher f1.ow velocities, the damping further increases iI. the

transverse-to-flow direc tion (y) , reaching a maximum va lue at a velocity ..... 90 %

Uo where it st arts to decrease sharply, approac hing zero at the th reshold, while the

damp ing in the streamwise direction (or) is approximate ly constant . As with the 7

flexible cylinder array, the system has only the structural component of dam ping

to overcome to become unstable. Unfortunately, there are no another experimen tal

data in the open literature tl'l comp are with.

From compar ison of Figures 5.8(a) and 5.8(b), the role of fluid coupling in the

sub-crit ical region becomes apparent. At a velocity ..., 50 % Uo, the dampi ng in

the tr aneveree-to-Ecw direction starts to decrease towards threshold in the 7 flexible

cylinder arra y, while in the 1 flexible cylinder array it continues to grow linearly

with flow upto a velocity ...... 90 % Uc . It is felt th at this difference can be compl etely

at tributed to coupling between flexible cylinders.
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Interestin gly, the damping in the 1 flexible cylinder array showsgood qualit e­

tive agreement with theoretical predict ion of Blevins, [71. He found that the fluid

damping factor for the single str ucture, oscillating in the fundamental mode. rna}'

be expressed as:

(. = ~CD(~)(£; )

(~ = iCD(~)(~)

(5. 1)

(5.2)

where (., and (" are the damping factors in the st rearnwise and transverse-to-flow

directions, respecti vely, CD denotes the stead y fluid drag, and U is the flow velocity

in the vicinity of the st ructure (in the case of cylinder arrays, U =Un, the actual

velocity in the gap between the cylinders), These equations are linearized, for the

small ampli tude oscillat ions with respect to the flow velocity, since it was found

that velocity-dependent damping in cylinder arrays is essentially independent of

the oscillatory amplitude (see Figures Bl and 82) and the non-linear terms may

be neglected. By fitting the single-flexible-cylinder experimental data. to equa tion

(5.2). the value of drag coefficientCD ::::: 2.20 was obtained.

It follows from equation (5.1) and (5.2) that the etreamwieedamping component

should be twice higher than that in the t ransverse-to-Bowdirection. This is not

reflected in the experimental.data , perhaps, due to the existence of an upstream

wake region, in front of the cylinder oscillating within an array, which reduces steady

drag. For comparison, the experimental data for t he 7 flexible cylinder array were

also fitted to equation (5.2), yielding CD ~ 1.90 and CD :=:$1.60 for the present test

and that of Wea.verand Bl-Keahlan, respectively.
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5.2 Square array

The tested cylinder array. which consisted of 9 flexible cylinders surrounded by

rigid neighbours, is illustra ted in Figure 4.3. The monitored cylinder, No.9, was

positioned either in the th ird row, for a basic geometry, or in the fourth row with

addit ional upstream cylinders inst alled.

5.2.1 Post-stable behaviour

Pr eliminary tests

As with the parallel tri angular array, t he nature of post-stab le oscillations was first

sought, based on both steady flow and t ransient excita tion tests, for the 9 and 1

flexible cylinder arrays. The moni tored cylinder was in the third row to ensure flex-

ibility of all cylinders with in the critical zone (second tc fourth row). Figure 5.9(a)

shows results from steady flow tests which are essent ially similar to those reported

for the parallel triangular array; the 9 flexible cylinder configurat ion displays hys­

teresis behaviour, while the single flexiblecylinder in an other wise rigid array does

not. T he most noticeable difference is the low stability threshold in the latter case,

UPr = 7.28, which is within the hysteresis region of the 9 Ilexible cylinder array

(UPr = 6.42 - 7.84). Thus, the lack of \vsteresis for the 1 flexible cylinder array

must be interpreted with caut ion since the observed Ua could be Un (indeed, in

subsequent tests , hysteresis behaviour was observed). For the 9 flexible cylinder ar­

ray, a stab ility threshold of UPr = 7.84 can be clear ly assigned since the monitored

cylinder experiences a vertical response jump at th is point, reaching a post-eteble

amplitude of A RMS RI 26.0. The non-linear platea.u was not clearly observed, since

higher flow velocities resulted in a furth er increase of post-stab le oscillations and,

finally, cylinder clashing. The lowest point on the hysteresis curve may be taken

as UPr= 6,42, yielding a. width of 18 % Ua. For the 1 flexible cylinder arra.y, the

stability threshold is also clearly defined. Similar ly, the response curve is close to
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vertical at this point and does not saturate for slightly higher velocities.

Figure 5.9(b) shows displacement excitat ion results for th e 9 flexible cylinder

arraYi the final RMS amplitudes after transi ents together with the minimum RMS

excitat ion levels. As with the parallel triangular array , t he final post-stable RMS

ampli tudes (each showing no tendency to ret urn to its original stable vibrati on level)

were very close to those levels recorded during t he steady flow tests . Again, for flow

velocities less then UH (Up~ = 6.42), the flexible cylinders always remained stable,

regard less of t he excita tion level. For flow velocities between UI1and Ve , minimum

exci tation levels were found which caused a treaeltion to post-stable oscillations

with al19 flexible cylinders vibrating at large amplitudes . It can be seen that , unlike

the paralle l triangular array, these excit ation ampli tudes all lie within the hysteresis

region and indica te the actu al position of the unstable limit cycle. This suggests that

the observed hysteresi s results not from coupling with th e flexible neighbours, as in

t he case of the para llel tria ngular array where a non-dominant cylinder was excited,

bu t rather from the single flexible dominant cylinder characteristics. However, th is

obse rvation was not confirmed by the experiments on the 1 flexible cylinder array

since the single flexible cylinder always returned to its original vibrat ion amplitude

afte r any excitat ion (this is as expected since, in steady flow tests , no hysteresis was

observed ).

Notice that the unstab le limit cycle for the 9 flexible cylinder array yields the

RMS ampli t udes (AR MS ss 2.5,2 .0, 1.75 % d for Up~ = 6.75,7 .18,7 .71, respec­

tively) which are only slightly bigher than the sta ble response levels (ARMS =

0.63,0 .76, 1.20 % d, respectively) . In th is case, a t ransit ion from stable to post­

st able behaviour is very easy within the hypl.eresie region. Thus , severe imperfect ion

sensitivity, perhaps already observed in the response of the single flexible cylinder,

may be expected .

99



A} Shg dy r io" I...

LEGEND;

9 , .._, ~, . , 'Mro to'"t ' l .~

-0- 40.....00 '"' " ...
-*"" I " .. ' b'. , '" .~. and d• •,.",n8 , , ...

ooo x ~

O®OX ~

OOO X~

. , .
I\£COCEC l"ITCHvtLOCIlV

Sl E_c, l g l,on hl l " , t h I hody r i o" ~ ..u l h

1" ....• .. ' " 8 · t..dY tl tv
O' CU • • ,nl . to ady ".~

RHS . '10. d, .pl •• •unt ... , to lo ...
P . a~ d 'o p "t , t • • , ...

. , .
I'lClAJC ED P ilot VEl OCIl V

Figure 5.9: RMS response curves for the 9 and I 8exible cylinder square array; (a)
steady flowand (b) excitation tests.

100



Imp erfect.ion sen sitivity

The next series of test e were conducted with the motivat ion to confirm the hypothesis

that imperfection sensit ivity, associated with cylinder alignment , could cause qual­

itative difference in the observed behaviour of the 9 and 1 flexible cylinder arrays.

The posit ion of the monitored cylinder was almost identical in both configurations

(the steady blow-back for the 1 flexible cylinder array was less than ....1 %of the gap

between the cylinders and, therefore, was not corrected). However, the surround­

ing flexible cylinders could be slightly displaced due to inevitable change between

free-to-vibrate (9 flexible) and fixed (1 f1.ex ible) posit ions. Therefore, steady flow

tests were repeat ed on the 1 flexible cylinder array with the upst ream one (No.8)

displaced by ....10 %of the gap between the cylinders.

Figures 5.1O(a)·5.IO(d) show the response curves with the cylinder No.8 dis­

placed upst ream, downstream, left and right , respect ively. Not ice that unlike the

previously obtai ned response curve, which is also presented in Figure 5.10 (denoted

as "ideal"}, all display hysteresis. Interestingl y, the post-stable behaviour shown

in Figure 5.10(d) is virtu ally identical to that obtai ned for the 9 flexible cylinder

array. Although the response curves shown in Figures 5.10(11.), 5.1O(b) and 5.10(d)

are qualitative ly similar, the strongly delayed stabili ty thr eshold in Figure S.JO(c)

is difficult to explain.

This test suggests tha t, indeed, slight imperfections in cylinder alignment can not

only modify (as in the ClISe of parallel triangular array ) but drastically change the

post-stab le behaviour. Thus, this geometric imperfection sensitivity may account

for why the subsequent tests, on a number of degrees-of-freedom needed to model

the post-stable behaviour of cylinder arrays, were somewhat confusing and difficult

to interpret.
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Effect of number of degrees-of freedom

An experimental program, virtually identical to that conducted previously (or the

parallel triangular array, was underta ken to reduce a number of degrees-of-freedom

needed to model the post-stable behaviour of a fully flexible ar ray. Figures 5.11-5.13

show the essential results obta ined with the mass-damping parameter in the range

of mOo ~ 1.9-23.5 (set 8, 9 and 10 in Table 4.1). For a given geometry, each Figure

contains four response curves (reflecting the process ofgradua l reduction (rom 18 to I

degree-oC-freedom); the cent ral cylinder in the 9 flexible cylinder array (No.9: 9 x 2),

the cent ral cylinder in the 2 flexible cylinder array (No.9: 2 x 2) and the dominant

single flexible cylinder (1 x 2 and 1 x 1). For completeness, additional results for the

upstr eam (No.8) and the downstream (No.4) cylinders, which show coupled motion

in No.9: 2 x 2 configurat ions, are presented in Appendix A (Figures A22-A33).

Below, some observations are noted following from examinatio n o( Figures 1i.11··5.13

and Figures A21-33 (in brackets) .

Figure 5.11 shows the results of experiments conduct ed at moo~ 1.9-2.8 (set 8,

Table 4.1). Again, it appears tha t there is one cylinder in the bundle (No.9: 1 x 2)

which, via fluid coupling, domina tes 2 x 2 and 9 x 2 behaviour . Its role, however,

is difficult to establi sh based on Figure 5.11 alone since all 2 x 2 configurations

tested show strong coupled motion (this requires careful analysis of Figures A22­

A25). Unfortunately, 1 x 2 and 1 x 1 behaviour of the dominant cylinder, although

phenomenologically similar , cannot be directly compared due to a strongly delayed

initiation of instability in the 1 x 1 system (in eorne cases, Uc i! twice higher, as

in Figure 5.1l (b2), for example). T his may be either due to geometric imperfection

sensit ivity or separa tion of mass-damping parameter (moo= 1.9 for 1 x 2 in com­

parison to moo= 2.8 for 1 x 1) which cause! instability in the higher region (see

Section 7.2.1, for deta ils).
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• Figure 5. l1(a) - the central cylinder in J-rd row:

- No.9: 9 x 2 displays hyste resis

- No.9: 2 x 2 closely reSect s No.9: 9 )( 2 behav iour, however it shows

narro wer hyste resis (al l 2 x 2 configuration. behave similarly to No.9:

9 x 2, very weak coupling for 2 x 1 confi!lJrations)

- No.9: I x 2 does not display hysteresis, however its post-stabl e response

replicates well No.9: 2 x 2 behaviour for decreasing flow (No.8: 2 x 1

displays hyste resis)

- No.9: 1 x 1 shows hysteresis, however init iation of inst ability is strongly

delayed (No.4: I x 1 and No.8: 1 x I behaviour is qual itatively similar

to th at of No.9 : 1 x 1)

• Figure 5.11(b) - the central cylinder in 4-th ro.....:

- No.9: 9 x 2 does not diJplay hystereJis

- No.9: 2 )( 2 th owl very niUTO'IV hy. terais, itt post-. t ab le response for

decreasing flow velocity is similar to tba.t of No.9: 9 x 2 (all 2 x 2 con­

figurati ons behave similarly to No.9: 9 x 2, very weak coupling for 2 x 1

configurations)

- No.9: 1 )( 2 replicates closely No.9: 9 x 2 behaviour for decreas ing flow

(No.8: 2 )( 1 di.plays clear byste resi. )

- No.9: 1 x 1 showl wide hysteres is, however initiation of instabilit y is

strongly delayed (No.4: 1 x 1 and No.8: 1 x 1 do not di splay hysteresis,

however thoy show goo d agreement with No.9: 1 x 1 post- stable response

for decreasing ftow velocity)
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Figure 5.12 shows the next series of results obtained at m.6.0 ~ 9.8 - 11.2 (~t

9. Table 4.1). These response curves. showing good agreement in exact detail, of

Buidelastic insta.bility. are easier to interpret. The most not iceable difference to the

lower m.60 is the weaker coupling in the tested 2 x 2 configun. tiOll' which i, present

mostly between cylinden in the same row (see Figures A26-A29).

• Figure 5.12(.) • the cent ral cylinder in 3-rd row:

- No.9: 9 x 2 display, clear hysteresis (No.9: 1 x 2 does not , however its

post-lt able response shows good agreement with No.9: 2 x 2 behaviour

for decreasing flow)

- No.9: 2 x 2 closely replicates No.9: 9 x 2 behaviour (only one 2 x 2

configura.tion. No.9 and No.8. behaves similarly to No.9: 9 x 2, weak

coupling for 2 x 1 configurat ions)

- No.8: 1 )( 2 displays qualitatively similar byatereaia, however it becomes

unstable earlier

- No.8: 1 x 1 does not show hyste resis, however its poIt-stable response is

qualitat ively similar to No.9: 2 x 2 behaviour for decreasing flow velocity

(good agreement wit h No.4: 1 x 1 and No.8: 1 x 1 behaviour)

• Figure 5.12(b) • the cent ral cylinder in 4-t h row:

- No.9: 9 x 2 displays clear hysteresis (No.9: 1 x 2 does not)

- No.9: 2 x 2 closely replicates No.9: 9 x 2 behaviour (only ODe 2 )( 2

configurati on. No.9 and No.8, behaves similarly to No.9: 9 x 2, weak

coupling for 2 x 1 configurat ions)

- No.8: 1 )(2 shows good qualitative agreement with No.9: 9 x 2 behaviour

- No.8: J x 1 does not display hysteresi. , it becomes unst able early (No.9:

1 x 1 displays hysteresi s)
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Figure 5.13 shows the corresponding results obtained at m6o::::: 22.1 - 23.5 (set

10, Table 4.1). As with the parallel triangular array, the role of th e dominant cylln­

der does not manifest itself as dearly as it did at lower mass-damping parameters

due to a general lack of coupling in 2 x 2 configurations (Figures A30-A33 indi­

cate that the case presented in Figure 5.13(al) is the only exception). However,

fluid coupling is present in all 9 x 2 configurations, suggesting that more than two

flexible cylinders are needed to initia te coupled motions. It wasobserved th at insta­

bility, once excited by one of the flexible cylinders, cascades through the array (the

post-stable behaviour results from coupling between all free-to-move cylinders]. It

appears that the least stab le single flexible cylinder (No.8: 1 x 2), whose response is

presented for comparison, initiates the instabili ty in the fully flexible array (9 x 2)

at this mass-damping parameter .

• Figure 5.13(a) - the central cylinder in 3·rd row:

- No.9: 9 x 2 displays d ear hysteresis (No.9: 1 x 2 does not, however its

poet-eteble response is essentially identical to that of No.9: 9 x 2 for

decreasing Bowvelocity)

- No.9: 2 x 2 does not display hysteresis, however its post-stable response is

qualitatively similar to No.9: 9 x 2 behaviour for decreasing Bow velocity

(only one 2 x 2 configuration, No.9 and No.8, showscoupled motion, not

present in 2 x I]

- No.8: 1 x 2 and No.8: 1 x 1 replicate closely No.9: 9 x 2 (No.8 is the only

clearly unstable cylinder)

• Figure 5.13(b) - the central cylinder in 4-th row:

- No.9: 9 x 2 displays clear hysteresis, however the post -stable response

plateau is low (No.9: 1 x 2 does not display hysteresis)
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- No.9: 2 x 2 is stable in the tested velocity range (no coupling in all tested

2 x 2 and 2 x 1 configurations)

- No.S: 1 x 2 does not display hysteresis. however its post-stab le reapcnae is

qualitatively similar to No,9: 9 x 2 be haviour for decreasing Row velocity

- No,S; 1 x 1 shows good qualitative agreement with No.9: 9 x 2 behaviour

(No.8 is the only clearly unstable cylinrl..rI

Figures 5.11-5.13, together with Figures A21-A33, clearly indicate that only

flexible cylinders in the second, thi rd and fourth rows of a square array can exhibit

hysteresi s behaviour (first row was not examined ). As with a parallel triangular

aIrilY, these cylinders ten d to dominate 9 x 2 configurat ions (Ruid coupling, however,

becomes less significant at higher mass-dampin g parameters). Again, it appears that

the observed hysteresis in a 9 x 2 array is due to the cascade effect , and has its actual

source in the behaviour of the dominant cylinder (well qualita tively represented by

a 1 x 1 system) . As expected , the exact details of post-stab le behaviour [e.g. critic al

velocity. hyste resis effects, limit cycle amplitudes) depend st rongly on geometrical

imperfections, resulting from unavoidable modifications of the tested array. It is

worth noting th at, agai n, the lowest point on the hysteresis curve is significantly

less affected .
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E fFectof m l'l9g

It follows from Figures 5.11-5.13 tha t increasing the mass parameter , m, in the

square array generales trends which are simila r to those seen in the parallel tri­

angular array. Specifically, it (i) increases the stability thresh old, (Ii) lowers the

non-linear platea u of the post-stable amplitud es, (iii) has less fluid coupling and

(iv) reduces the width of the hysteresis regia. Table 5.2 summarizes the experi­

mental data for the monitored cylinder in the third row (stabi lity thresholds of early

upstr eam rows are mainly reported in the open literature) of the 9 fiexible cylinder

array (No.9: 9 x 2) and for the single flexible dominant cylinder in an otherwise

rigid array (1 x 2 and 1 Xl ).

Table 5.2: A summary of experimental results for a square array, varied mass.

8 1.9 4.90 5.63 5.03 11%
2.8 12.51 10.26 18%

9 11.2 22.70 21.45 6% 22.34 21.45 4%
9.8 18.04"

10 23.5 33,10 31.45 5% 27.47
22.1 30.68 28.14 8%

EO 9x2 I 1x2 I i x ; I
Uc I Un I "iF?' Uc I Un I "iF?' Uc I o» I ¥

These da ta, compared with the results of others, are plotted in Figure 5,14. As

before, the limits for an experimentally observed sta bility thre shold are defined based

on Reference [161. It can be seen that t hese limits bracket well all experimental data;

the critical and the hysteresis flow velocities. Notice that for cylinders in the fourth

row, although the criticai llow velocities at the lowest mailS-damping paramet ers are

"'"50 % bigher, all results would also fall within the experimental limits .
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Figure 5.14: Stability plots comparing present experimental data (moo~ 1.9-23.5)
to existing in the literature for a. square arraYi (a) critical and (b) hysteresis flow
velocit ies.
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5.2. 2 Vel o cit y-depend en t da m ping

Damping was est imated using the procedur e developed earl ier for the parallel trian­

gular array . Here, the monitored cylinder was positioned in the thi rd row. Figures

B3 and B4, which are presented in Appendix B, show streamwise and transverse-to­

(low components of the fluidelastic damping factor, «(A), as a funct ion of amplitude

at Il. given flow velocity. As before, the damping is essentially indepen dent of the

oscillatio n amplitude.

Figure 5.15 shows the fluidelasti c component of damping , obtained by project­

ing the measured data on the response level induced by tur bulence, t..s a function of

reduced pitch velocity (for ease of interpretation, the corresponding response curves

are also presented). There are two noticeable changes with relative to the parallel tri­

angular array; (i) the damping is essentially identical for the 1 and 9 flexible cyli nder

arrays, and (ii) t he fluidelastic damping factor in transverse-t o-flow direction (y) is,

in general, nega tive (flow does not ceuse an additional energy dissipat ion). The first

observation suggests that the monitored cylinder is de facto dominan t in the tested

configuratio u (a similar conclusion may be drawn from an analysis of the response

curves presented in Figure 5.II (a)). It can be seen that the damping is init ially

not affected by the flow but then , at a veloclty e- 50 %Uo, it shows a gradual re­

duction towards the stability th reshold (t he net damping approaches approximately

zero at this point) in the transve rse-to-flow direct ion and a gradual increase in the

st rearnwise direction (based on equation (5.1), CD :::s 0.80 and CD :::= 1.10 for the

1 and 9 flexible cylinder arrays , respectively). The second observat ion is t hat the

stability threshold may vary significantl y in this configuration due to the very low

value of net damping over a large velocity range in the aub-eteble region. 'I'hia, in

part, explains the result of the impe rfectio n sens itivity study presented in Figure

5.10.
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5.3 Conclusions and recommendat ion for a na­
lytical modelling

A detailed experimental study was conducted with the objective to captu re the

physica l essence of the post-stable behaviour of a fully flexible array with a minimum

number of degrees -of-freedom . Although the results may appear inconsistent in

some aspects, analyzed globally they yield d ear tr ends in the tested mass-damping

parameter range .

• T he stability behaviour of a fully flexible array results from single flexible

cylinder characteristics due to strong coupled motion induced by the dominant

cylinder (the effect of coupling, however, decreases with increase of mass­

damp ing parameter ). Only two degrees-of-freedom cylinders show coupled

motion.

• A single flexible cylinder in an otherwise rigid array may display hysteresis

behaviour which appears to vanish at mS ;::,; 30 (t he underlying excitation

mechanism is, however, row-dependent and manifests itself in the second and

third rows for a para llel triangular array, and in the second to fourth rows

for a square array). Thus, coupled motion between flexible cylinders is not

required for hysteresis effects.

• The stabili ty behaviour of a single flexiblecylinder arr ay may be qualita tively

represen ted by a one degree-of-freedom system which also may display hys­

teresis. Thus, coupling between str eamwise and t rensveree-tc-flow cylinder

motions is not essential to the underlying instability mechanism.

• The exac t details of the stability behaviour (e.g. critica l velocity,hysteresis ef­

fects, limit cycleamp litudes) depend strongly on geomet ric imperfection. Also,

tur bulence may affect hysteresis behaviour tria random initia tion of instability

within t he hysteresis region. In the extreme case, Uo = UH.
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• The velocity-depend ent damping increases approximately linearly with the

flow velocity in the sub-critical region (thus, the form suggested by Blevins,

[7}, may be used to account for the fluid steady drag) . The rate of increase,

however, depends of the number of flexible cylinders and the array configura­

tion.

• The velocity-dependent damping is easentielly independe nt of the cylinder

oscillatory amplitude. Thus, its linearized form, for t he small amplitude cscil­

lat ions with respect to the flow velocity, yields a good approximation.

Briefly, it can be concluded that instability and the post-sta ble behaviour of a fully

flexible array is governed by the dominant cylinder (the least sta ble) which may

be well represented by a one degree-of-freedom system. The velocity-dependent

damping, due to the fluid steady drag only, may be modelled using the linearized

Blevins' expression.
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Chapter 6

N on-linear model for fluidelastic
instability

This Chapter describes a theory which is capable of modelling the post-stable be­

haviour of a cylinder ar ray. Since a complete theoretical analysis of a fully flexible

array, due to complexi ty this would involve, is beyond present capabilities, it was

decided to look for a practical alternative. The experimental results, report ed and

discussed in the previous Cha ptet ecvlded evidence tha t 8uid damp ing forces, as­

sociated with th e motion of a single flexible cylinder within a criti cal zone in an

array, are exclusively operat ive at stability thresholds and dominant in the post­

stable region at the mass-damping parameter range governed by hysteresis -type

behavio ur (mDn< 30). Because of this, the present theor y for fluidelasti c instability

is rest ricted to a single flexible cylind er in an ot herwise rigid array. The flexible

cylinde r is constrai ned to move in t he transverse -to-flow di rection only since it was

found from t he experiments that th is simp lified representation is sufficient to cap­

ture the essence of it s behaviou r. The theory includes also the random buffeting due

to tur bulence which in real situations is always present and can inte ract with Hu­

ideleeti c instability. Par ticu larly important is the influence of turb ulence on system

be haviour near bifurcat ion points .
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6. 1 Ti me -d omain for mu la tion

6.1.1 Fluidelastic excitation

The present theory is essentially a modified time-domain version of the lineari zed

steady-state model of Lever and Weaver, (46-481. Here. the first, [46J. more com-

pact version is chosen, to establish foundations for non-linear analysis, due to its

simplicity and relatively good agreement with experimental data. However, the

latt er version, [47,481, is more consistent in terms of physical parameters which de­

scribe the arrays of interest (see Figure L3); staggered (parallel triangular , normal

triangular, rotated square) and normal square. Thus, the geometrical parameters,

which define the cylinde r-in-channel configurat ion, are taken from References [47,48J.

Since References (46-48J contain the details of the developmen t of this theory, only

the modifications necessary to permit a time-domain non-linear formulation will be

discussed here. Nevertheless , it is instructive to outline briefly the simplifying as­

sumption, underlying the original model of Lever and Wea.verI including extensions

to account for the present experimental observat ions.

• The motion of the neighbouring cylinders is not essential ~o model the be­

haviour of the dominant cylinder, either at the stability thres hold or in the

post-stable region. Fluid coupling is importan t primarily in triggering insta-

bility of adjacent cylinders but its effect on the dominant cylinder may be

ignored.

• The mechanisms underlying stability behaviour, in either streamwise or trans­

verse directions , are independent of each other (coupling is not important).

Thus, it is legitimate to pursue them individual ly and to model t he dominant

cylinder as a single degree-of-freedom system. Instability in the transverse

direction has, in general , a significantly lower threshold.

118



• The mot ion of a cylinder near its stab ility thr eshold is, essentia lly, periodic

at a simple frequency. As th e excit ation mechanism is a self-excited one, any

unsteady flow perturbatio n, due to cylinder mot ion, may be assumed to have

periodic time dependencies at the cylinder frequency.

• The fluid-elastic excitation me chanism is assumed not to be dependent on wake

phenome na. Thus, only perturbations in the free-stream flow along eith er side

of the cylinder are considered.

• A highly regular flow field is defined by each array . The main st ream lines tend

to pass thro ugh an array without crossing from one flow channel to the next .

T he st reamtubes are narrow relative to their lengt h, so that one-dimensional

flow assumption can be used .

Figure 6.1 shows the " un it cell" sufficient to describe fully the fluidelastic system

cont rolled by the velocit y mecha nism. A single flexible cylinder is symmetrically

located relative to the apparent position of neighbouring cylinders and undergoes

mot ion y(t ) in the tra nsverse -to-flow direct ion only. The steady streamlines through

the ar ray define the boundaries of th e "un it cell" . Assuming incompressible, one­

dimensiona l flow, the area, velocity and pressure variation along the two stream ­

tubes passing on eithe r side of t he cylinder may each be writt en as the sum of first

order functio ns of posit ion only, plus second order perturbation functions [contain­

ing linear and non' linear terms) of both position and time. Employing symmet ry

condit ions, t he area, velocity and pressure distribution may be th ue writ ten 35:

Ul(s,t) = O{s).J (_ l) i+lu(s, t)

Po(.,I) =P(.)+ (- I)"'p( .,I)
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a(s, t) < A(s)

U('. ') < 0( .)

p(• •I) -cP( ,)

(6.1)

(6.2)

(6.3)



where the subscript i = 1, 2 refers to the left and right str eamtubcs, respectively

(see Figure 6.1). From geomet ry arguments, the area pertu rbat ions and, therefore,

the velocity and pressure pertu rbations are limited by the steady-st ate terms,

Figure 6,1: "Un it cell" for fluidelastic model.

Whereas the model presented in References 146-48) assumed simple harmonic

cylinder motion, the present formulation requires that t he time depe nde nce of yet)

and the perturbat ion functions remain unspecified. In keeping with th e hydraulic

tr ansient analog presented in Reference [46], it is assumed tha t th e streamtube area

pertur bation follows the cylinder motion but with a time lag due to fluid inertia.

FUrther , this time lag, T , varies linea rly from T = 0, at the cylinder cente rline

($ =0), to '-0=V; at th e unit cell inlet ($ =- 30), where I is relevant fluid inert ia

length for small cylinder motion. Thus , to a first approximatio n, the st reamt ube

pertur bati on functio n may be written as:

a(s,t) = y(t + TO!")
s

(6.4)

Note that since 3 is negat ive in the direction of the inlet , this area perturb at ion lags

cylinder motion, as required.

12<l



Expression (6.4) is here ex tended to include t he effect of viscous flow on the

st reamtube area per turba tion, as suggested by Yetisir and Weaver, [49J. They pea­

tu lat ed that the et reemtube area pert urbation must dimin ish at large distance s (rom

the cylinder and int roduced an area decaying function, f(~), to account for this. In

the present analysis, this function is taken to be:

(6.6)

where a is a positive constant in the ups tream region and negat ive in the downstream

region. Thus , there is no decay at t he attachment points, 1( 0) :::: 1 (for simplicity,

positi ons of the flow attachment points are defined by the cylinder cente rline. s ::::0),

and no pertu rbation at large distances from the cylinder, lim._ ±coj (s ) :::: 0, as

req uired. Combining equation (6.4) and (6.5), the str eamtube pe rturbation function

can befinally written as:

a(s,t) = e"'*y(t +To !.).
"

(6.6)

With the streamtube perturbation funct ion specified, the velocity and pressure

variations may be readily fou nd using the one-dimensional unsteady cont inuity and

Ber noulli equations, respect ively;

[ .0 ~8s +A(s,t)U(s,t)::::A(-so, t)U(-so,t ) (6.7)

;P(s.t)+¥~~,t) +E.., ~8s+~ f"" U28s = U2(~$0 , t ) + ; P(- so, t ) (6.8)

whe re h is the flow resistance coefficient. Here, the simplifying a.ssumpt ions of

constant area st reamtubes, A(s) :::: AD, and no velocity and pressu re fluctuefious

at t he inlet (boundary conditio ns), u( - ee, t ) :::: p(-SO, t) =0, are applied. Thus,

solution of the continuity equat ion becomes :

u(s, t ) _ (1+ 'He-Oy(t - 'To) - eO~y(t +'T»)+' J~.g e°1oy(t + 'T)8s
Uo - Ao + e°,* y(t + 'T)
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wher e y(l + T) == yet + TO:)' To solve the Bernoulli equat ion. this solution was

expan ded into a.power series in e....:;~. Note that this aeries converges for I y(111

< Ao a.t ~ =0, u initially defined by equatio n (6.1). Arter expansi on, th e unstead y

velocity and pressure pert ur bat ion functi ons are, respect ively:

U~~f) = {(I + T )(e-Oll(t - TO)- eO~Y(f +T)I+ 7'L~ eO~y(t+ T)aJ } '

.E(-l )·(i)·+· ,~~y·(t +,) (6.10)

~~;) ::: HI +T)2{eO~II(t + T) - e- Oy( t - TO)}-7flO eO ~ y(t + T)8~} ·

. f: (-I )..(1..)"+l e....~IIt1( t + T)+
....e Ao

+~((1 +7 )[e-"Y(I - TO ) - e"~ y(t + T) J +7'E..e" ~Y(t + T)/h }2 •

. f: (_ l )" ( ..!.. ) "+l nel "-I )O~ y"-l(t +T)+
"",t Ao

- (1+T)e-O~y(t - TO)k- ~(- l )ll(i)" +1E.. e.....~y"(t + T)lJ"+

+O(:!2)2E (- W (...!.-)"+Ie- (..+I)<>y"+l(t . _ ~) +
, .. ..0 Ao

-7~(-l )"(i}"+I I(l+ T)(n+ I ) +7J["..e1tt+I)ao * , ..+I(t + T)8J ·1-

+(7)2~(-l)"(n+ 1)(i)"+I 1~f.. e("+I )<> ~y"+ I (t+T )lJ~J+

+~«I +~) E (- I)"(...!.. )"+Il!.(1 +~)n +Il L " ef. +I)ao* y"+I(t + T)O" +
$I) 1 " -0 Ao 2 I - ..

-(I +T )e-Oy(t - TO)~(-l)"(*)"+I(l +7)n + 1)Eoo e.....~y ..(t + T)O" +

+~( 1 + T)2 e-2"yZ(t - TO)~(-I)\i; )''+In f..... el..-l )o':;y" - I( t + T)8J +

- Tf:(-I)"(-A
1 )"+I [(I +~,o )n+ l l L" e....1o"yll(t + T) 1 ' eO * y(t + T)8JO,,+

n =O 0 - .. - ..

+~(7}2 ~(-I )n(i)"+1 n [ .. eCn- ljo* y..- I(1+THE..e..~y(t +T)a~ l zoJ +

+7(1 +7)e-O y(t - TO) •

122



·E(-I)"(i),,+ l n E~ eC"-llo;';y"-I(1 + r) E.. e"~ y( t + T)asi).llJ}

16.11)

where the subscript, n, yields the desired order of solution; n = 0 for the linear and

n;:: 1 for the non-linear. It can be seen that the series arising from the expansion of

the ve locity perturbation [unction converges faster than that arising from its square

(contain n coefficient). This indicates that [rom those two sources cf non-linear

terms, which appear in the solut ion of the Bernoulli equation, the contri bution from

the squar e of the velocity per turbation funct ion becomes Increasingly important

with increasing order of solution. This also suggests that, for adequate convergence

of pressure pe rturbation function. a high order solution may he required.

Eq uatio ns (6.10) and (6.11) were carefu lly verified against the solutions for Q = 0

(no decay of the streamtuhe perturbation) which were separat ely derived . These

expressions are much simpler and yield a closed form solut ion of the unsteady con­

tinuityequation. In this case, the unsteady velocity (in the closed form an d series

expansion) and pressure perturbation functions become, respect ively:

u~:t) = (1 +THY(I;o~y(tYJtT~ r)J (6.12)

u~:t) = (1 + THy(t - TO) - y(t + r )]~(-I)"(it+lyn(t +r) (6.13)

P;~;) = II + 'T){(l+ 'TlI,lt+T) -y(. - To)IE (- I)"(i )"+' , "(' +T)+

+~(1 +T)[y(t - To)- y(t + r W~(_ I)..(*)n+lny"-I(t + r) +

--'-!.'('- TO) £;1-1 )"(.!..)"+1 j ' ,"(I + T)8.) +
Uodt n:a O Ao - '.

+.'o{£;( _ I)"(.!..)"+'[!.(1+ :!!)n+ Ilj' ,"+'(. + ,)8H
110 "",0 An 2 1 - '.

-y(t - To) E(- I)n(-iln+L[( 1+ y)n + IIL'~ yn(t + r)8s +
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+~(l +Tly2( t - TO)~(-l)',<::i;)" -ln flO y"-+1(t +T)a,,]) }

(6.14)

As in Reference[46), the lIuidelastic force acting on the cylinder, FE(t), is epprcx-

imated as the pressure difference across its centerline, p(O,t), times an equivalent

area facto r, loDE:

(6.15)

where 10 denotes the cylinder length. Note that the fluidelastic force is assumed to

be fully correlated along the cylinder spa n. Thus, the equation of motion of the

cylinder, oscillating in the transverse-to-flow direction, may now be written as:

where mo. Co and ko are the structural mass, damp ing and stiffness coefficients, and

CDdenotes the steady drag coefficient. Note that the present analysis also includes

a non-linear velodty-dependent damping term, due to the fluid drag, which in the

linearized form was suggested by Blevins. (7J. As before, this term may beexpanded

into a power series in W. This yields:

'"= ! CDPdl,Uo{l- !I ; (t)l' +!.:l[!1!l],_~[!1!lI' ~ " ' } (6.17)
2 2 Uo 2 ·4 Uo 2 ·4 ·6 o,

where I W1<1 to ensure convergence.

6.1.2 Combined ftuidelastic and turbulence excitation

The random field of tu rbulence, within a flexible array, is defined here by the spec­

trum form ulated by Pett igrew and Gorman , [64}. They assumed that the power

spectra l density of th e turbulence force field per unit cylinder length, 5(1 ), which

is homogeneous and fully correlated, is proportional to the square of flow dynamic

head (see Section 2.2 for details). That is:

SO"If) - ~C.(f)pdrPp
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where the effective random excitation coefficient, C.(f), defines the shape of the

spectrum and is obtained experimentally. Because random excitation coefficients

are nearly constant in the range of the cy linder fundamental frequencies typ ical

for a marine riser or a heat exchanger, a flat power spectr um, C.(f) ::: C.., was

used to represent the random field of turbulence. The dimensional inconsistency in

equat ion (6.18) is eliminated by introducing a nondimension al excitat ion coefficient,

C; = C..(tf;Jo.s, as suggested by Blevins et aI, [651, and Chen and Jendrzejczyk,

[881. This nondimeneicneliaaticn yields the final Iorrn of the power spectral dens ity

function per unit cylinder length as:

(6.19)

which is used, via Fourier transformation, in the time-domain model to construct

the turbu lence excita tion force, FT(t).

Now, th e equat ion of motion takes the form:

where the sum of fluid forces consist! of fluidelast ic force, Fe(t) , and turb ulence

force,FT( t) .

6.2 Analytical solution

6.2.1 Limit cycle and dynamic bifurcat ion under fluide las­
t ic excit at ion

The non-linear equat ion of motion (6.16) is solved using the first approxima tion

method of Kryloff and Bogoliuboff, [89].

Initiall y, this equation is reduced to the basic differential form:

y(l) +w'y(t) +F[y( t),Y(t)] = 0 (6 .21)

where, unlike the original theory of Lever and Weaver, Fly(t),Y(t)j:: p/[y(t),y(l)j

is a non-linear function of cylinder displacement ar 1 velocity which pertu rb! the
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simple linear system oscillating with the frequency w "" .f£(this frequency differs

from W(I due to ftuidelast ic stiffness terms). The constant , P. is a small positive

quantity which defines the size of the perturbat ion , p «:: w2
• This means that the

contribution of non-linear terms to the final solution must be very small.

Then , the solution of equation (6.21) is assumed to b~ periodic:

ylt) = a(t)w.[wt + ~(t )J (6.22)

where the amplitude, a(t ). and the phase, t%l (t), are slowly varying functions of the

time, t, in the stat e of equilibrium. It can be shown that they are given by the

following formulae [eee Appendix C, for details) which sa tisfy equation (6.21) to

art) = 2:,,11
2

" F(acos6, - aw3in6) 3inSdS (6.23)

"'d

e(t ) ~wla) (6.24)

where art)= wt + t%l (t ) denotes the total phase. The frequency of oscillat ion w(a)

depends on amplitude vi a:

Note th at the function F(acose, -awsin6 ) enters into equations (6.23) and (6.25)

directly and not only through its non-linear part . Since the limit cycle of constant

amplitude is expected, its rate of change may be set equa l to zero (a(t) = 0 in

equat ion (6.23».

Unfortunately, the full form of the function F(II( t),!i(t )], which is given for Q '#0,

does not yield analytical solutions. Thus, equat ion (6.21) was solved for -:r=0 (no

decay of the str eamtube perturbat ion). For simplicity, the function F [y(t ), y(t»)

was reduced to third order (n = 2 in equation (6.14» , leading to the following

nondimensional forms of the limit cycle amplitud e and the associated frequency of
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cecillericn, respect ively:

( ~)2 = (m60+ ~lfCD(;;)(7)(~)U~ - 2lf(PfHf)(;)2{7 )2(1+T)(:;)-
,U:[(1+ !!.).tin..!..- ~..!..co.t..!.. +h(.tin..!... + U.cos"!'"- U~)]}I, u, ' U~ U~ U. U.

{2lf (~)(f)3(f )2(7)2{1 +T)(~)U: {sin ckl~ +TT

- ~(l +T)CMV;)- ~T cT.co.tk + h{sink[~ + T-~(l +T)U..tincT.) +

+(i +TlU,(OMcT. - I ll } - lrCD(~)(T )(;; ) cT. }

(6.26)

(~)2 =1 +2(~)(Pf )(T)2(~)2(1 + ~)(1/~2)2U;{(~)2(~)2 .

·[(1+ ~)( l - co".!.)- ~.!..tin .!..1 + ~ ( l + ~)(l - co.t'!") +
I u, 1 u, u, 4 I u,

-~.t inV;l(l + T ).tin!J; +TcT.J +h{(~)2(-f)2(U."in cT. - co.tcT.)+

+ !Ur.tin.!..{(l + ~)CO.t.!. +2 + !2J-(! +~)co.t.!..} } (6.27)
2 U~ IU. 1 21 U.

where U~ de notes reduced velocity which is defined as;

u - ~.. - '"'" (6.2S)

These expressions satisfy equation (6.21) to order p2 for p < ,",,2. Th is implies t hiot:

(6.29)

An estimate for th e range of applicabil ity of the solution can be made using t he

stability criterion of ConD.ON (equati on (2.1». Thi.t yields:

(6.30)

where K =9.9 is the stability constant found by Connors. Physically, for lightly

damped system s, condition (6.29) does not impose restriction s on the derived solu-

tion.
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As follows from equat ions (6.26) and (6.27), the t rivi&1linear solution (a "" 0),

which defines the dynamic point of bifurCAt ion, takes t he form:

o = m60 -2lr(~)(~)(T)2ri)2 ( 1 + T)(;;)U~((1 + y)sinTi;+

-TV:-cos V; + h(s inv:- + UrCOS~ - Ur)] - ~'lI'CD(;)(~)(~)Ur (6.31)

(~)2 = 1 + 2(~ )(~)(T)2 (7)2(l + T)(t)U~ [(l + T )(I -COS,x) +

-~ ..!.. sin ..!.. + h(U.s in..!..- cos"!")] (6.32)
I U. U. U. U.

In general, these equation s represen t the net mu s-damping param eter m6.. and

t he frequency of oscillatio ns, w, at a. given flow velocity , U•. As can be seen, th e net

mass-damp ing parameter , which at the point of bifurc ation becomes zero, incorpo­

rates the posit ive str uctu ral parameter 17160 and t he negative fluidela.stic parame ter

(flow-dependent terms), fi16/ •. Similarl y, th e freque ncy, w, differs from Wodue to

t he the fluidelast ic stiffness (note th at for (~) = 1 equations (6.31) is identical to

th at presented in Reference (46]).

For ecmptereneee, the trivia.llinear solution s were also derived {or a #:O(decay

of t he st reamtube perturbation). In nondimensional form these are:

0 = ril60 + ~rCD(;;) (7)(;;-)U' - 2 lt (~)(;; )\4~ )e7)\:;)U~'
.{e--"in..!..+ 2~ ..!...!.. [a +..!.e-o"in..!. - (0+ ! a Ile-ocos..!.)+u. I U. ol U. U. 2 U.

+( 7)2(k)2(~)2(aal + o2)e-"sin-J;+ 2~a +V; (20 +ol)e-OcoskJ+

-h ..!...!.nU.(o+all + ..!..(!! + !!...»)e-Osin..!..+
U.ot U. I crl U.

+11 - Tea +~)Ie-olcos v:- +T~ - I}](6.33)
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+(~~f( ..!....)2(.!.. ) 2(~ - (~ - O')e-" ' c/M .!.. _ "!""(l +20'0'1)e- .."in..!....1 +
f U. 0'1 0'1 0'1 U. U. U,

+h1..-.!..(O'{U.+0'1'!") + (1 - ~o:+ ~~)e-"" in ..!.. +
U. O'l U. I 10' 1 U.

- [0.(0:2 + 0:) + ~( l + T+aad1e-..1cosi }} (6.3-1 )

6.2. 2 Linear resp onse and dynamic b ifurcat ion und er com­
b in ed excitatio n

The non-linear equa tion of motion (6.20) cannot be solved analytically (its numerical

solution is presented in Section 6.4). Here, an approximat e method is formulated:

superposition of the response for fluidelastic excitat ion only with that excited by

turbulence.

First , the combined response for linear fluidelastic excitation was found. As

follows {rom random vibr at ion theory, the RMSresponse of a lightly damped, single

degree-of-freedom, linear system to broad band excitation is given by:

(6.35)

where 10 is the cylinder length, ko is the structural st iffness, 60 is the logari thmic

decrement of structural damping, and S(lo) denotes the power spectral density

function of the turbulence force at t he cylinder 's natural frequency, as given by

equation (6.19). Because both excitati on mechanisms superimpose, t he structural

terms in equatio n (6.35 ) are directly affected by the ftuidelastic force. Thus, ko

becomes kn, the net system stiffness, and f o becomes f . the frequency at a given

velocity. After suhstitutionof equation (6.19) into (6.35), the RMS cylinder response

to combined t urbulence and linear fluidelastic excitat ion takes the nondimensional

form:
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where the net mass-da mpi ng parameter, mlio-mli/e, is given by tile set of equatio ns

(6.31) and (6.32) for Q' =0, and (6.33) and (6.34) for Q' #- o. Because the net system

damping decreases with flow velocity towards the dynam ic poin t of bifurcat ion for

fluidelast ic excitat ion (mlio - fil6/e = 0), t he linear response excited by turbulence

rises asympto tica lly to infinity at this point . In act ual fact , however, these large

amplitude oscillat ions are controlled by non-linear fluidelasti c effects: stable and

unstable bifurcat ions.

Next, the dynamic point of bifurcation under combined excitat ion was found.

To predict its locat ion correctly, a tru ly non-linear solut ion of the equation of mo­

t ion (6.20) is needed. However, some insight may be gained by superimposing the

combined linear response with the non-linear limit cycle due to fluidela.stic excita-

tion only, both of which are described anaJy tically (see Figure 6.2). Thus , based on

th is heurist ic representat ion which conception ally ignores coupling mechanism, the

intersect ion point may approximate the dynamic point of bifurc ation .

iLi n• orp
"\ \ Fluid.lutie

!bif urcotio n

ApprOll imol t
bifureot ion
undt r combintd

Fluidtlo,t ie u citotion
] un'loblt l imit ~l:t

1 .................
]
"

Figure 6.2: Heuristi c representation of linear combined response and fluidelast ic
unstable limit cycle.

Th is inte rsection point was det ermined by combining equati on (6.36) with ex­

pression for the unsta ble limit cycle, equat ions (6.26) and (6.27), which may be
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formulated aa <:)3 = -!Jft. This yields:

where the non-linear operator , D, which arises from fluid load, is defined to third

order lIS:

D "" -2r(~)(1; )3 (~ )3<~ )'(1 +T)(:;)U:{" in v;«~ +T)+
_!(l +~)co" .!..J + !~.!..co.s":'" +h {"in.!..l~ +~ - !(l +~)U,.sin .!..J +

2 I U~ 2 I U,. U,. U. 2 I 2 I u.
+(! + ~)U.(co" .!.. - I)}} - !,...CD ( ~)(~)( ~)-.!...

4 I U. 4 1 "0 WI) U.

(6.38)

with (~ ) given by equat ion (6.27).

Expression (6.38) requires the geometric conversion between the reduced pitch

velocity, Up" and U•. This will be defined in the next Chapter, together with the

other parameters which enter in the model.

It follows from equa tion (6.37) that the dynamic point of bifurcation , under

combined excitation , C&n be approximated usioS superposition only for unstable

bifurcation s, D < 0, where both curves intersect (see also Figure 6.2).

6 .3 Stability analysis

6. 3.1 Dynamic stabili ty

The concept of dynamic stab ility was discussed in details in Chapter 3. BrieRy, it

was shown that only asymptotic st ability, which is defined by a stable bifurcation,

can guaran tee sta bility of self-excited 05cillations. Thu s, a dynamic bifurcation

formula is needed which can be obtained from non-linear solution of equati on of

motion.

From the solution of the first approximation, it follows that the equat ion of
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motion (6,16) is satis fied by the cubic expression:

(6.39)

where D is th e non-linear coefficient ar ising from fluid load. T h is expression yields

the bifurcat ion formula, which is defined by its two solutio ns; first, ( , )' = -~,

for the limit cycle amplitude which is given by the set of equa tions (6.26) and (6.27)

for Cl:'= 0, and second, (i ) = 0, for the trivial equi librium solut ion which is given by

the set of equations (6.3 1) and (6.32) for Q = 0, and the set of equatio ns (6.33) and

(6.34) for Cl:' #- O. Depending on the sign of th e non-linear coefficient , th is formula

gives possible dynamic bifurcation; sta ble for D > 0 and unst able for D < 0. It

can be seen that both bifurcatio ns are symmet ric of Hcpf type. They are shown

schematically in Figure 3.3, together with the separate linear res ponse curves due to

combined excitation (solid and dashed lines represe nt th e stable and uns tab le states,

respect ively) . By descr ibing t he net mase-dam plng parameter as the sum of cont rol

par amete rs, mOn= Ae - A, which incorporates the positive st ructural parameter

(stabi lizing component), Ae , and negative flow-induced para mete r (destabilizing

compo nent ), A, a dynam ic inst ability ar ises at th e bifu rca tion point, A = Ae.

Stable bifur cati on

T he instability signalled by a stab le bifurcat ion can he qualit atively described by

the trivial equilibrium solution ((~) = 0), since (or A<A e all local motions are

asymptotically stable. However, at the point of bifurcation, A == Ae, t he non-linear

solution is bounded by a limit cycle, while the linear solution becomes infinite. Thu s,

the linear solution to combined excitation tends asympt otical ly to infinity at t L
"

poin t. Because the curve does not intersect the stab le limit cycle, the linear h.

tote becomes the lowest stabi lity boundary for the combined sys tem . T herefore, t .. ­

equa tions which specify the location of the dynam ic poi nt of bifur cation , (6.31) and

(6.32) for Q = 0, and (6.33) and (6.34) for Q '#0, are generally sufficient to ClItab1ish
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the dynam ic st ability cri terion for stable bifurcat ions subjected to turbulence. h

should be remembered , however, that tur bulence does affect our interpretation of

response curves for stable b ifurcation . Specifically, an increase in turbulence reo

sponse leads to an apparent decrease in t he crit ical velocity assigned on the basis of

stan da rd t hreshold definitions (see Sectio n J .3.1 ).

Unstable b ifu r cation

The instability signalled by an unstable bifurcat ion cannot be quali tat ively described

by the trivial equilibrium solu t ion, since it is not asymptotieally stab le for A < !I.e.

H fellows that , even without non-linear coupling between the t urbulence And flu­

idelastic mecha nisms, t he linear response to combined excitation is sufficient to

initia te inst abili ty below the fluidelast ic stabili ty boundary (trivial equilibrium s0­

lution A = !I.e) when it exceeds the unstable limit cycle. Thus , it may be concluded

that the stab ility threshold for combined f1uidelastic and tu rbulence e..citation may

be app roximately defined by the inte rsection point of t he linea r combined response

curve with t he unstable limit cycle, as given by equa tion (6.37).

Note, however, th at any fini te dist urbanc.ewhich car ries the syste m beyond t he

unstable lim it cycle may cause instabi lity . Since this distu rbance arises {rom turbu ­

lence buffeti ng; the RMS response underestimates it and random vibration theory

must be appl ied to defin e its possible peak size (see Reference (71. for exa mple) . For

narrow-band ed random cylinder moti on excited by turbulence, the displacement

peak will be governed by the Rayle igh probabili ty density dist ribu tion function:

(6.40)

where p(y) dy is the p robability of a peak falling within interval y + fl y a.nd o ill

the standard deviation . The average numbe r of cycles before a peak displacement

Y",•., ;?:Y is exper ienced may be shown to be:

(6.41)
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Therefore, for a cylinder vibrating at frequency f , the average return period in

seconds is:

(6.42)

In the present experimental investigation, f = 5.1 Hz (the frequency of oscillations)

and T {Y ) =10 min (the t ime during which the cylinder motion was allowed to sta·

bitize at a t;iven flow velocity). It {ollows from equation (6.43) that the maximum

peak displacement expected , Y",.., is four times higher than the average RMS re­

sponse for these condit ions. Thus, to account for this effect, the random excitat ion

coefficient in equation (6.37) must be defined via expression (6.43) '.0 represent the

maximum displacement in the average retu rn period. This gives:

c:= J 2Inl!T(Yl!C; (6.43)

where C: was obtained experimentally based on the RMS cylinder response. Thus,

the stabili ty crit erion for unstable bifurcations subjected to turbulence, still ignorin~

ftuid coupling, becomes:

Note, however that to ensure asymptot ic stabil ity independent of turbulence

excitation , t he non·linear 8uidelutic analysis mw t beextended to define a secondAt)'

stable point of bifurcatio n which, in real situations, defines the lower limit of the

hysteresis region. That is, UN is the stability threshold independed o{ turbu lence.

Because operation of the array with in the hysteresis region risks turbu lence-induced

tran sitions to instability, UN may also be taken as the practical stability boundary.

6.3.2 St atic st ability

It is interesting to note that , based on equation (6.34), the tran sition from dynamic

to stati c instability may be defined. Physically, t his ma.oifa h itself in the frequency

134



reduction towards zero at the st ability threshold, yielding:

o, I m
;;;=~U.){l '-'+~II ' - ' (Q+ I)J}' (6,45)

Note that t his expreesien is defined only for a ", O. Thus, the present theory predicts

static instability only if the are a pert urbation function diminishes at large distances

from the cylinder (as already noted by Yetisir and Weaver, [49]).

6.4 N umerical procedure

With the approximate analytica l solution behind, numerical time-domain procedure

was developed with two objectives. First , to perform a fullynon-linear analysis since

the simplified analytical solutio n ( 0: = 0), reduced to third order, might be insuf­

ficient to describe accurately the cylinder behaviour under fluidelast ic excitat ion.

Second, to quantify the influence of turbu lence on fluidelastic instability based 00

the true non-linear interaction mechanism.

T he equations of motion (6.16) and (6.20) were integrated using a fourth order

corrector-predictor technique [90} . To verify the effectivenessof the numerical lnte­

gration scheme and to specify certain parameters for its operat ion, such as the time

step and the number of correcto r iterat ions, this tech nique was first applied to the

stand ard non-linear equations: Van der Pol's and Rayleigh's oscillators (t he details

of this stud y are contained in the Appendix D). It was found that for a lightly

dam ped system, the chosen integration scheme gives accurate results for a time step

of .6.t =f; with th ree corrector iterations per step.

The numerical evaluation of the equation of motion requires, at each time step,

the time history of previous cylinder response, the fluidelastic force, which is cal­

cula ted from equation (6.15) after substitution of equation (6.11) for 0: :f:. 0 and

(6.14) for 0: = 0, and the turbulence force which via inverse Fourier t ransformation

is obtained from the spectrum, equat ion (6.19). Th e integrals in equat ions (6.11)
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and (6.14) are solved in the time-domain after int roducing the integration variable.

~ = t + T or equivalently ~ = t + TO';; . Since calculat ion of the fluiclelasticforce

requires that an estimate of cylinder displacement be made at the same instant of

time, the integration procedure is iterat ed at each time step until the desired degree

of convergence is obtained. It was found that two iterations for the chosen time step

were sufficient for accurate and effective simulat ions.

6.4 .1 Operation of the flu id elast ic mod el

Figure 6.3 shows a flow chart for the operation of fluidelastic model, that is the

numerical evaluation of equation (6.16). This numerical procedure may be described

as follows. First, the physical parameters are chosen which define the array and

the cylinder. Simultaneously, th e numerical parameters, such as time and velocity

steps, initial disturba nce, number of corrector iterations, and order of solution,

are defined. Next, the critical velocity is calculated from linear equations (6.31)

and (6.32) for Q = 0, and equa tions (6.33) and (6.34) for Q ,p O. This velocity

specifies start ing flow conditions such as streamtube velocity and time lag. Since

the t ime-domain simulat ion requires the t ime history of cylinder response, y(/ ) and

y(t ), these are generated for 0 ::::; t ::::; 70 as harmonic motion of small amplitude

Yo. Then, the fluidelastic simulation proceeds until the state of equilibrium (stable

attracting limit cycle) is reached or inetebility cccurs (unstable repelling limit cycle).

Note that the unstable limit cycle is defined by the amplitude of initial harmonic

disturbance, Yo, for which unstabLe growth occurs. During the simulations, the

RMS amplitude is computed and saved at each t imeste p together with the segment

of displacement and velocity records which are required for further analysis (phase

plane, Fourier transform). If desired, the final amplitude response curve is obtained

by incrementing (stable limit cycle) or decrementing (unstab le limit cycle) the flow

velocity.
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Figure 6.3: Flowchart of f1.uidelastic numerical simulation.

6 .4 .2 Operation of the coupled mod el

Figure 6,4 shows the operation of the coupled model, that is the numerical evalua­

tion of equation (6.20). As before, the physical paramete rs defining the ar ray and

Row condit ions are first chosen, together with the simulation parameters such as

tim e step and length of simulation. At each flow velocity, the turbulence force time

series is then generated from the spectrum (equation (6.19)) using an inverse Fourier

transformation. Next, the fluidelesfic streamtube velocity and time lag are calcu­

lated. The simulati . .... begins with zero initial cylinder displacement and velocity.
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The response to tu rbulence only is generated until t ::: TO, using the central difference

method as a sta rt ing procedure. At time 1"0, it becomes possible to calculate the

fluidelastic excitation force as in the fluidelastic model. T he simulation proceeds.

for the prechosen length of time, with the RMS cylinder displacement computed

and saved at each time step , together with.a segment of y(t) itself. For a given flow

velocity, the results are examined and, if desired, the flow velocity is incremented

and the simulation repeated. In this way, a simulat ion is conducted much like an

experimental investigation, the final output being an amplitude versus flow velocity

response curve.

Figure 6.4: Flow chart of coupled turb ulence and fluidelastic numerical simulat ion.
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The numerical time-domain model requires certain simulat ion parameter s for its

operation. As before, it was found that a time step of 6.t = ~ is sufficiently small for

accurat e and effective simulat ion. The frequency resolution of the turbulence force

spectrum , 6./ , was set based on a consideration of the bandwidth of the cylinder

transfer function in st ill fluid:

(6.46)

where ( is the damping ratio. The constan t , J( , denote . t he minimum numbe r

of frequency components in the bandwidth needed to assure accurate tu rbulence

response simulations. The resolution error can be calculated by compar ing the

amplit ude of linear resonance under harmonic excitati on with the amplitude given

by equat ion (6.36). For K = 1 (harmonic excitat ion], this was found to be 25 %,

while 1<= 2 reduced this error below 10 %. Combined excitati on, however, requires

pract ically infinitely small li.1 in the immediate vicinity of a stab ility threshold

(cn .....0). Thus , K = 10 was chosen for the lowest damping value, Co - 0.01. T he

result ing li.1was used for all subsequent simulat ions.

Having selected the time and the frequency step s, t he max imum frequency in

the tur bulence force spect rum is given by the Nyquist criterion:

(6.47)

and the length of the corresponding time series of tbe tu rbulence force generated by

inverse Fourier transform is

(6.48)

For a cylinder frequency of 10 = 5.1 Hz (as in the experimental st udy), t his

yields T"'G:t' = 12.5 min. If required, simulations of arbi trar y length can be con-

docted, without the prohibit ive computational effort associated with very long in­

verse Fourier Transform , by piecing together tu rbulence force t ime series of T"'a:t'=

12.5 min . This technique was checked against the use of one very long unique time
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series and was found to yield equivalent results.

The random nat ure of the turbule nce force was expressed by assigning random

phases to each frequency component in the inverse Fourier tran sformatio n. Thus

each set of ra ndom phases produces a different tur bulence force time series. How.

ever, it was found that t he steady-state cylinder response is essentially independent

of this randomizing effect , especially if Do! is small compared wit h the bandwith

of the trans fer functio n. For example, the maximum discrepancy result ing from

random phase is wit hin 5 % {or K "" 2 and 0.2 % for K =80. Therefore, to re­

duce computa t ional effort, one set of random phases was used for all subsequent

simula tions.
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Chapter 7

Theoretical r esults: comparison
and dlscussion

The objectiv e of this Chapter is to compa re the first principles DOll-linear model

for fluidelastic instab ility with experimenta l results. In this regard, the analytical

model is applied to the two array geometr ies investigated experimentally; a paralle l

triangular of 1.375 pitch ratio and a square of 1.433 pitch ratio. Comparison is made

on the basis of sta bility thresholds and response curves for the linear system, an d

limit cycle of post-st able oscillations , with special emphas is on a tu rbulence effect

on unstabl e bifurca tio n, for the Don-linear syste m.

First, the theoretical results from equations of the first approximation are gen­

erated. These are then compared with the present experimental data to assess the

accuracy of the theoretical predict ions and to investigate their sensitivity to veri-

ations in model perem eters. Next, numerical simulat ion is performed to genera te

fully non-linear theoret ical results and to investigate the actual effect of turbulence

on the fluidelMtic eyetem. Thi~ numerical procedure is verified against analytic al

expressions of the first approximation.

7.1 M o del p aramet ers

To generate t heoretical results, the ar ray and cylinder param eters required by the

fluidelast!c model must be defined. As with the experiment, the cylinder paramet ers
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are; d =6Omm, 10 =~.OO H: and 60=0.01, while the fluid density is p =1 .22 1 ~.

Similarly, the arr ay parameters are expressed in terms of the physical parame ters,

descr ibing the tested configurations , which can be divided into two groups .

Th e first grou p includes those which directly follow from geomet ry considerations

of the fto.v pattern and the unit cell (see Figure 6.1) and were already specified in

References [47,481. T hus, with out furth er explan at ion, the y ue defined in Table 7.1

which also gives thei r nume rical values. Note. however, t hat the steady st reamtube

area, ~, is expressed based on the minimum gap between the cylinders which for

staggered arr ays (parallel tr iangula.r) is ,. = min(~ -1,~ - 1).

Table 7.1: The nondimensiona l geometric parameters and thei r nume rical values for
t he t heoretical model.

I Srreameube shape I
Circular
segment

St raight

I 'i I , I "f I
anna 1 -00 Qo
1.191 0.375 0.720 0.381

1 Q,
1.-433 0.433 1.433 0.196

Also, a geometr ic conversion is required to comp u e t he reduced pitch velocity,

Up..~ ~, usuall y deplo yed in st abil ity analyses to express flow dynamics , wilh the

reduced velocity releva.nt to the theoretical modd , U. ~ ~. For stauered &.rYays,

this conversion tak es t he form:

(7.1)

while, for a square array, it is:

(7.2)

The second group includes param eters which are measur ed or, in the absence

of appropriate experimental data., simply "guessed" based on commo n sense (they
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are summarized in Table 7.2). A~ with Reference [48), the relevant fluid stream

length is set 1 = 4Jo, reflecting the likehood that perturbations generated by a

flexible cylinder may persist upto two rows upstream and downstream, s = ±2Jo

(in staggered arrays, nearest neighbours are two rows away). From this Il8sumpt ion

it follows that Q' ::::: L This means that further upstream and downstream from

the flexible cylinder , the effect of perturbation is negligible (86.5 % reduct ion at

s ;; ±2Jo). The pressure loss coefficient , h, depend, on the array configuration,

and the values recommended in Reference [48) are shown in Table 7.2. The drag

coefficient, CD, . ' y be expressed in terms of h based on the following relation, [48];

CD = 2(~)h . (7.3)

For a parallel t riangular ar ray, this yields CD ;; 0.225. Note that the value ob­

tained from Blevins' formulae, for drag-dependent damping (equations (5.1) and

(5.2)) which was measured experimentally, le approximately ten times higher. Nev­

ert heless, for the overall stability analysis, it was decided to use the value suggested

in Reference [48J. Also, the measured flow-velocity dependent damping, although

it increased linearly with flow as suggested by Blevins, represents the net and not

just the drag-dependent te rm . However, the effect of increase in CD and h will be

also investigated. The random excitatio n coefficient, C;, was obtained directly from

damping measurements at th e RMS response level via expression (6.36). It is worth

noting that the values of C; are approximate ly constant in the sub-stab le region and

are in close agreement with those reported by Pettigrew and Gorman , [64].

Table 7.2: The empirical paramete rs for the theoretical model.

143



It follows that, for a given array of specified geometry (angle, 00, pitch, l ' and

pattern , 5), there are seven independent parameters required by the theoretical

model: ~, ,. I2t ,1;, h, C~ and Q . Complete results of the sensitivity analysis, on

the linear stability equations, in which first five of those parameters were indepen­

dentlyvaried ±lO %and ± 50 %from the baseline values shown in Tablei.l and 7.2,

iU ~ reported in Reference [48J. It was found that t he model. although qualitative ly

unaffected by those changes, is governed primarily by the param eters which describe

the relevant fluid streams on either side of the cylinder; the steady streamt ube area,

~, and the relevant fluid stream length, ;;. Since the variation s of streamtube area

are limited to ±lO%by the minimum gap between cylinders, it may be concluded

that the model virtua lly depends on the assumed flow redistribution mechanism

which is described by the time lag, TO = t .

7.2 Analytical solution

The theoretical model predicts the linear and non-linear stabili ty behaviour of cylin­

der arrays as a funct ion of the mass-damping paramete r and the reduced pitch ve­

locity. The prediction s are greatly simplified if the relevant ftuid inertia length is

expressed in te rms of the st reamtube length, I = 450.

7.2.1 Lin ear stability boundary

The linear stability curves may he written as:

(a) Dynamic instability for a :f 0

rflOo =32'f(~)(~)(~)\;)U; {e-""ink +

+~v;~IO' + ~e-"sinv; - (a+ ~O' , )e-"co.!kl +

+~(-k)2 (~Yl((OQ' +0'2)e-""ink +2~Q + k(2Q +ot}e-"co"v;J +
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-hV;~{(U.(a +ad + ~(~ +;;)]e-<>Sinv; +

+[1- i (a+ ~)Je-<>Icosk + i~ -I}} - 2lfCD (~ )(~)U. (7.4)

(~)2 '" 1+32(~)!?;)(f)(7)2U~{1 _ e- <> I CDs~ +

+~ V;~ [c7: - !J:e-<>lcosfJ: - (a + ~ade-OsincJ;] +

+fG(c1. )2(~)2[~ - (~ - a)e-01cQSV; - k(1 + 2aade-Q sinv;]+

+hk~{a(U. +CIt !x) +(1- ia- i~)e-"sin~ +

- IU,(a2 + a) +k(~ + oadJ e-Qcosv;}} (7.5)

where at = a~ +(t? and a~ = 0 2 - (t)2 . The flowvelocity U. is convert ed to the

reduced pitch velocity Up.,. via equations (7.1) and (7.2), yielding Up. =20.891U,

and Up, = 36.015U. for a parallel t riangular and a square array, respectively.

(b) Static instability for 0 oF a

u (i ) A.) r.s(d) I m
p, '" 2l1' i _1 U,( d T VI - e <> + ~[1 e-Q(o+1)1

(c) Dynamic instability for 0 = 0

ritlio = 40lf(!f)(~)(~)2(~)U~[isink - ikcosv; +

+h(sinv; +v,cosk - U,)]- 2'11'CD(7)(~)U'

(;;)' = 1+4O.(~)(!f)(~)'(f,)u;1~(1 - ,o'V;) +

-ii sinv; +hCU.sinV; -cosk)1

(7.6)

(7.7)

(7.8)

Figure 7.1 shows these stability curves for a parallel triangula r and a square

array in the form of a stab ility map. For direct comparison with experimental

results, the model parameters are selected as presented in Table 1.1 and 7.2 (the

damping values chosen, Co = 0.01 and Co '" 0.10, bracket nearly ..11 rf"ta reported in

the open litera ture). The stability curves, presented in Figure 7.1, reflect a number

of interesting features of this model.
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• The existence of mul tiple stab ility boundaries at low mass-damping parame­

ters. This results from the time delay between cylinder motion and the as­

sociated fluid forces which, as follows from equations (7.4) and (7.5), varies

hermealc elly with flow velocity. It is unlikely, however, tha t these harmonic

pressure pert urbat ions would be communicated through a real fluid indefl.

nitely. T hus, it is probable that , in practice , only two or th ree upper stability

branches may exist. It is interesting to note that mult iple st ability regions were

observed experimentally by Andjelic, ISS), and were also predicted by other

theoretical models which incorporate the velocity mechanism (see References

(41,42,81I,fo rexample).

• The separation in the two dimensionless parameters, 00 and lit, which results

from fluidelastic stiffness. This has also been predicted by Price et al., {38].

• The transition from fluid-damp ing controlled to fluid-st iffness contro lled insta­

bilit ies via frequency reduct ion towards zero. This process takes place grad.

ually, over the low (rnc o < 1) and high (mOo> 300-500) range of the mass­

damping parameter, where the dynamic and stat ic stability boundar ies star t

to approach each other (clearly visible for Co = 0.10). This is in agreement

with other theoretical models which, however, predict fluid-stiffness controlled

instability by including the effect of relat ive cylinder motion (see References

[37,39], for example).

• Th e existence ofstat ic stabilit y boundary. The slope of this line is proport ional

to (17100)0.6, limiting the increase of dynamic stability curve which is directly

proport ional to moo at high mOo. While the predicted st atic instahility hea

not been observed experimentally for these arrays, its impact on dynamic

instability significantly improves the agreement with experimen tally observed

stability curves (see Table 3.2) and with other theoretical models (28,30,37,391.
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Figure 7.1: Theoretical stability curves, in comparison to experimental data, for a
paral lel t riangular array and a square array (varied 60).
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Figure 1.1 shows that the stability curves are reasonably well predicted by the

model. While a. very good agreement can be seen with the experimental data of

Weaver d ai, 131,831, for a parallel tri angular array (Figure 7.1(a)), the present

results exceed the theoretical predict ion. However, they show the correct depen­

dance with respect to m50 • This ind icates that the recommended values of the

CD and h coefficients may be too low for this array (recall that an approximately

ten t imes higher CD was obtai ned from Blevins' expression for velocity-dependent

damping). Better overall agreement can be seen for a square array (Figure 7.I(b».

Note that the scatte r in critical flow velocities. observed experimentally in the range

of ih50 ~ 1.9 - 2.8, can be att ributed to the existence of multiple stability regions.

This may explain the significant difference in critical flow velocity for the dominant

cylinder (1 x 2 and 1 x 1, see Table 5.2).

Figure 7.2 shows the effect of the decaying of the area perturbat ion function

on the stability curves. The st rength of the decay term (0) Wall varied ±1 00 %

from the baseline value suggested in Table 7.2. Since the decay term cont ributes to

energy dissipation in the fluidelastic system, it increases the stability boundary, as

expected. This effect is partic ularly im portant at high m50 • Note. that at low m50

the increase in decaying strength reduces the size of multiple stabili ty regions, while

the upper stability boundary is virtually unaffected.

Figure 7.3(80) presents the stability curves for a parallel tri angular array Cor

various values of the CD and h coefficients. As ment ioned earlier, these parameters

have virtually no influence on the predict ed stability boundary if changed ±lOO%.

Thus, it was decided to increase the drag coefficient to CD =0.65 (value s1,lggested

in Reference [461)and to CD == 2.20 (value found in this study). Respectively, t.he

flow resistan ce coefficient wa... 'ncreesed, based 00 equation (7.3), to h == 0.87 and

h = 2.93. It can be seen that this only slight ly improves the agreement with the

experimental data.. Thus, it does not account for the difference between the pr-eent
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result s and those reported in References [31,831. A similar analy sis was performed

for II. square array (see Figure 7.3(b» . As before, there is II. little effect on the

stability curves.
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Figure 7.2: Theoretical stability curves , in comparison to experim ental data , for a
para llel triangular arra y and a square array (varied 0:),

149



Al P OI'" l l., ' f"on ; u lor- (If'r (l ~

LEGENDl
n . ... . " .. , . lo~ ' I ' l y 1.... . . ~. l d' ~••:

~·2. ' 3

::~:~c::P;;;~;;: ' ., ".., bl .

8) Squ (Ir' DM'(IY

Th ... . I ' •• 1 .'.b, llly j .... . . ~old' ~:~••~~

h_3• • Z
p,....nl np"''' '"h 9 ,. .. ,)1.

Figure 7.3: T heoretical stability curves, in comparison to experimental data, for a
parallel triangular array and a square array (varied h).

150



7.2.2 Li. t ear response curves

The linear response curve , under combined turbulence and f1uldelastic excitation,

was formulated as:

where mOle denotes the f1uidela.stic mase-demping parameter (the RHS of equ ation

(7.7)) which includes the deag-dependent term. Thi s is the term which account s for

the reduction in the net damping and, hence , the increase in turb ulence response as

the stabi lity thr eshold (moo= mo/.) is approac hed . Note, however, that because in

a linear formulation both excitation mechan isms superimpo se, the predicted stability

threshold location is unaffected by turbulence . Thu s, only the effect of the vari ation

in mOJe on the shape of the linear response curve is investigated here (the random

excitation coefficient , C:, is set at the baseline value).

Figure 7.4 compares the experimentally obtained f1uidelasticdamping factor (ex­

pressed in percentage of critical u a function of reduced flow velocity) with tha t

predicted by the model. Since the Blevins' velocity-dependent damping term is sub­

jected to some uncertai nty, two sets of CDand h wereused for the model predictions;

first , t he baseline values suggested in Table 7.2 (Figures 7.4(al) and 7.4(bl)) and

next, the values obtained from experiment (Figures 7.4(a2) and 7.4(b2)).

lSI



~
:>

mi m; I.'.'= ..---Ii; ~ - !

r ~ ! i5-! ! Ii ';~
J I IiH I l iH

~~ 1

·n
:~

• · h.f
·

~~
Sir
.! "
i~

• i ~
e e

~~ ·~ 3e e

m~~
~~ j ~m;: ~:i

itii - :::i ~ ~ :s
; ~ ~ !

~• ! ! .~

t Ii - ~ .! .n
~ Ili H IUt T~: ~ f• ~~ ~

:~

~ ~ ·H• •i i• • ]
· ...

~

"~
~

152



It can be seen that unlike the measured dampin g curves, which smoothly vary

with flow velocity, the theoretical damping curves oscillat e around the mean which

is defined hy the Blevins' term. These oscillations produce the multiple instability

regions (as shown in Figures 7.1-7.3) and their magnitude increases with h. Some­

what more realistic modelling is achieved with the decaying of area pert urbat ion

function (0) which strongly reduces the st rength of the oscillatory te rm and delays

the initia tion of instability. Reasonably good agreement is seen between the ob­

served and predicted damp ing curves for 0' = 2 (Co and h as with the experiment).

Note tha t for a square ar ray, the stability threshold is located at the lower branch

of insta bility.

Figure 7.5 shows the corresponding experimental and theore tical response curves

which Are computed from equation (7.9) (vertical scale is exagerated for easy of

compari son). For a parallel triangular array (Figures 7.5(1.1)and 7.5(1.2)), all curves

show a smooth increase in RMS response towards an essentially vert ical asymptot e

at the critical flow velocit y. The rate of increase is similar Io. all response curve.

However, the predicted critical flow velocities, except for a = 2 (h =2.93), differ

significantly Ircm that experimentally observed. For a square array (Figures 7.5(1.2)

and 7.5(b2)), a similar ly smooth increase in predicted RMS amplitu de, towards a

vertical asymptote, is seen for a = 2 only (other curves show local response "bumps"

due to more severe dampi ng oscillations). The measured amplitud es, however, are

significantly higher, reflecting the observed lack of positive damping induced by flow.

Note tha t for a = 0 only, does the system become uneteble at the lower instabili ty

branch, revealing good agreement with experiment .
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7.2.3 Limit cycle oscilla t io ns

For a = 0, ,. ~ th ird order non -linear solution yields the following ampli tu de of limit

cycle oscillati ons:

(~)2 == {meo+ 21rCD{7)(~)Ur - 4 01r(~)(:t; )(7 )\;;)u: ri6inv; +

-~~co3i + h(sinv; +Urco3!J;- Ur )]} /

{40~(q;:)( ~)3(:jl(~)U:{sinV;rl- ~coscT. J - ~cT.cosV;+
+h{sincT.ri - ~U.sinV;J +2Ur(cosi - In} - I6~CD(t)( :; ) V;j (7 .10)

(:;'r1 == 1+40(~)(~)(7)\t;)3( ~)2U:{(~)2( ;)2[~(I - cask) +

-i;};sini;l +*(1-~o" V; ) - ~sinv;(i6 ini +~~I +

+h{(~)\t/(U,sini -Co.fi) +~Ur sincT. [~casV; + ~l- i cas kn (7.11)

Figure 7.6 shows the amplitudes of limit cycle oecillatione for the t wo arrays of

interest ecd t he values of CD and h which were suggested in t he linear analy sis. T he

ampli tudes are comp uted for a variety of mass -dam ping parame te rs; m Oo== 1 (t wo

bran ches), 10, 20, 30 , 50, 100 with Co== 0.01. For a parallel t riang ular ar ray, sta ble

limit cycle oscillati ons are pr edicted below meo == 5.10 for h == 0.30 (Figure 7.6(a l»

and below 1'J100 == 20. 30 for h =2.93 (Figu re 7.6(a2» . Intere stingly, these oscillations

show non-linear soft ening [l.e. a tra nsition to unst able limit cycle oscillat ions) at

larger amplitudes, particularly explicit at the upper instability branch far moo = 1.

T his remit s from fluidelasti c stiffness which reduces the natu ral frequency. In t he

high er mass-damping parameter range , only t he unsta ble limit cycle oscilla tions are

predicted. For a sq uare array, the model yields essent ially similar results; stable

limit cycle oscil lat lona below moo = 8.95 for h == 0.35 (Figure 7.6(bl)) and below

ITllio == 44.10 for h = 3.42 (F igure 7.6( b2)), an d unst abl e limit cycle oscillations in

th e higher range.
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7.2.4 No n-linear sta bilit y bound ary und e r combi ned exci ­
ta t ion

The non-linear stability curve under combined. excitation was approximately ex­

pressed, using superposi tion of the linear response to combined excitat ion with the

non-linear limit cycle due to fluidelastic excitation only, iLS:

where m6/cdenotes the ftuiddastic mass-damping parameter and D is the non-linear

o~r""tor (denominator in equation (7.10». Note that expression (7.12) gives the

effect of t urbulence on th e dynamic bifurcation which defines the stabil ity thre shold

for the fluidelastic excitation only (m60 = m6,.). It follows that the th reshold

reduction is directly proportional to the amplit ude of turbulence buffeting, C;, and

inversely proportional to the amp litude of unstable limit cycle, ,;::JJ.

Table 7.3 presents the solution of equation (7.12) for m,60'" SOwhere the fl.u ide­

Jastic system is governed by the unstable bifurcat ion (D < 0), as required. Results

were obtai ned for the base line values of the random excita tion coefficient (suggested

for both arrays in Table 7.2) and twice these values to show the effect of increasing

turbulent response on the stability thres hold. The aver"'!!..' return period was set

T(Y ) = 10 min (the t ime at which cylinder wu allowed to stabilize, at a given

flow velocity, during the experimental investigat ion) and T( Y) = 25 gear~ (typical

in-service period for prod uction platform). As expected, superposition of turbu­

lence lowers the f1.uidelutic sta bility threshold for the unstable bifurcation. Since,

in the practical range of C:, the rate of reduct icc W iLl foun d to be very sma ll for

Co= 0.01, the analy sis WlU also performed for 60 = 0.10 where the reduction is more

pronounced due to the larger t urbulence response (it is inversely proportional to

v'm).

The small effect of t urbulence on the fluidelu·ic stability threshold results from

the ext reme steepness of the unstable limit cycle predicte d by the model (see Fig-
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ures 7.6(a l) and 7.6(b l )) . It must be app reciated, however, t hat the experiment ally

observed unstab le limit cycle (wit hin the hysteres is region, see Figure 5.9) is signif.

icantly lower. T hus, more severe turbu lence sensitivity may be expected.

Table 7.3: Turbulence sensitivity of the unst able bifurcation for m.5o = 50 (coupling
ignored) .

j Array geomet rY i .50 I c' I T(Y ) I( V ) I R d t i (0/. ) 1P•• e uc Ion .
Parallel 0.01 0.000 0 16.622 0.00

tringu lar 0.065 10 min 16.587 0.21
25 year" 16.564 0.35

0.130 10 min 16.552 0.42
2.') year" 16.506 0.70

0.10 0.000 0 16.585 0.00
0.065 inmin 16.475 0.66

25 year" 16.404 1.09
0.130 10 min 16.368 1.31

25 years 16.230 2.14

Square 0.01 0.000 0 20.056 0.00
0.200 10 min 19.938 0.59

25 years 19.869 0.93
0.400 10 min 19.819 l.l8

25 year s 19.685 1.85
0.10 0.000 0 19.988 0.00

0.200 10 min 19.626 1.81
25 year s 19.425 2~82

00400 tomin 19.297 3,46
25 years 18.848 5.70

7'.3 Numerical simulat ion

Phys ical arguments sugges t that stronge r non-linea r hardening, lead ing to stable

limi t cycles at large amplitudes , should be predicted by the single flexible cylinde r

model used here. T his non-linear hardening may ar ise from higher orde r terms or,

alter natively, decaying of st reamt ube area funct ion (Q 'I 0). To examine these effects

and to model the actual coupling between turbulence and f1uidelastic excitations ,

the numerica l procedure, described in Sectio n 6.4, is applied here.
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7.3 .1 Fluidelasti c excitat ion

The initial series of simulat ions was conducted to determine t.he linear st.a.bility

threshold (n "" 0 in equation (6.13)). The cylinder was harmonically excited in

the vicinity of the threshold (defined by the analytia l solution. equat ions (7.3) and

(7.4)) and the response record (10 min ) .....1.1 carefully examined by checking for

exponential increase or decrease of the oscillation envelope. If desired, the flow ve-

locity wascorrected and the procedure repeated until a. constant amplitude sinewave

(neither decay nor growth) was observed. This was taken as the sta bility threshold.

Comparing the results to the analytical solution, the absolute simulation error in

the linear threshold estimat ion, for mass-damping parameter of 1-100, was found to

be in the range 0.02·0.20 %(a ~ 0) and 0.05-0.40 % (a oF 0) for a parallel triangular

array, and in the range 0.10·0.30 % (Q "" 0) and 0.20-0.60 % (a i- 0) for &. square

array_ The simulation error increased at higher mass-damping paramet er due to the

shorter t ime lag, TO' This error can be significantly reduced by finer time stepping,

at. However, a discrepancy within 1 % is acceptable for this kind of numerical

simulation.

The next seri~ or tests was conducted to determine limit cycle oscillations.

Initially, the third order solut ion ....as computed for Q "" 0 (n = 2 in equa.tion

(6.13») to compare directly with tbe analytical expressions of tbe first approxima.tion

(equa.tions (7.10) and (7.11)). These simulat ions were performed (or moo = I [stable

limit cycle) and for ril60 ::: 50 (unstable limit cycle). Numerical determ ination of

the stable limit cycle was conducted on two upper stability branches. Tbis could

be done only over a very limited velocity range due to the ext reme steepness of

the equilibrium path . As shown in Figures 7.7, agreement between analytical and

numerical solutions was excellent. In all cases investigated, both solutions predicted

the same type of limit cycle (stab le or unstable) at a given flow velocity, indicating

that the numerical implementat ion o( the nOQ-line&t8uidelastic model is correct .
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Next, the numerical simulation was exte nded to include higher order terms . To

recognize t he natu re of the limit cycle oscillat ions, the computation W I1! performed

for mass-dam ping parameter in t he range moo= I - 100. These simulat ion results

were found to be qualitatively ident ical to those of the third orde r (see Figure 7.7).

As an examp le, Table 7.4 presents the limit cycle amplitudes obtained for moo =so
at three different velocity levels (note that the even terms were found to be zero) . It

can be seen that convergence to the limit cycle amplit ude increases as the stabili ty

th reshold is approached (Up., = 16.62 for a parallel triangu lar array and Up, = 20.06

for a square array). A t hird order solution yields t he correct qualitative assessment

(st able versus unsta ble limit cycles) and is very close to a fully non-linear solutio n

(with in 10 %) in the vicinity of the stability threshold. Thus, it may be concluded

that the thi rd orde r analytical solutio n of the first approxi matio n is sufficient to

capt ure th e essential featu res of the present model.

Table 7.4: Convergence test of numerical solution.

Arra.ygeometry Up,
3-r Lim~~tte ~plitu~~i AR~f~:W~

Parallel 11.98 24.70 20.50 19.55 19.25 19.15 19.15
triangular 13.18 19.75 17.10 16.50 16.40 16.35 16.35

14.38 14.90 13.60 13.20 13.15 13.10 13.10
Square 16.23 26.98 22.45 21.70 21.60 21.50 21.50

17.31 20.90 18.45 18.05 18.00 17.95 17.95
18.39 14.95 13.95 13.75 1:.1.75 13.70 13.70

The ll1!t series of tests WI1! conducted to determine limit cycle cecillatione includ­

ing the decey lng effect of etreamt ube area function (o-:f0). The simulations results

were found to be qualitat ively identical to t hose already presented (a = 0), with

only the bifurcat ion point and limi t cycle amplitud es changing. Unfor tun ately, the

simulations with a :f 0 do not show non-linear harde ning wit h increase of amplitude

and mass-damping parameter . T hat is, the decaying function does not reproduce
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the non-linear behaviour expected on physical grounds, pointing to a weakness in

the model formulated here.

7.3.2 Comb ined ftuidel ast ic and turbulenc e excitation

Initially, linear numerical simulations were conducted to determine RMS cylinder

response for separa te turbu lence buffeting and combined excitation at m~ = 50

over broad ranges of dampi ng, ~, and random excitatic.ncoefficient, C:.
Asan example, Figure 7.8 shows the simulated time series RMS cylinder response

to combined excitation for a parallel trilUlgular array at the baseline value of C;

(the curves obtai ned for a square array were essentially identica l). Two values of

damping were used, 60 = 0.01 and 60 = 0.10, which bracket all numerical tests.

Since the heavier damped cylinder shows larger tu rbulence response (3.16 times, as

follows from equation (7.9)), a 3 times higher scale in Figure 7.8(b) was used to

approximately compensate for this effect. According to equat ions (7.7) and (7.8),

the ftuidelstic stab ility houndary is UP,= 16.62 for 60= 0.01 and Uh = 16.59 for

~ = 0.10. As can beseen, t he combined response achievesIte~)'-Itate for each ftow

velocity lower than critical before the end ofT-.. = 12.5min, u cept for UPr = 16.5J

(Fi!UJe 7.8{a» where a longer t ransient time was observed. Therefore, to perform

simulations near the stab ility threshold wit hout the prohibit lYecomput ational effnrt,

the steady.state response value, given by equation (7.9), was used as & starti ng

parameter.
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Table 7.5 compares the simulation result.. (examined only in the steady-state ), in

par t presented in Figure 7.8, with the corresponding ana lytical solution to tu rbulence

and combined excita tion (equation (7.9)). As can be seen, the turbulence R!\IS

response agreed to better than 2.5 % for 60= 0.01 and to better than 1.0% for 60 =

0.10 at each velocity point. The combined RMS response agreed to bett er than \0 %.

except very near the stability t hreshold. In t his region, the response Willi sensitive to

the randomizing effect of turbulence because of discretizat ion errors associated with

the decreasing bandwitb of the system (very small tSn). It should be noted , however,

that some variations in the simulated response were expected since specific timeseries

of finite length were generated, whereas equation (7.9) applies, st rictly speaking, to

infinitely long records. It is th us felt that the numerical implement - 'Ion of the

combined tur bulence/ fluidelast ic model (at least its linear part) yields accurate and

reliable result s.

Table 7.5: Validation test s for linear system (A RMS in % d).

Up, ;. Analytical Numerical
Tur bulent Combined Turbulent Combined

12.22 0.01 0.0156 0.0253 0.0153 0.0272
13.44 0.01 0.0180 0.0346 0.0176 0.0364
14.67 0.0 1 0.0206 0.OS07 0.0201 0.05 17
15.89 0.01 0.0232 0.0938 0.0227 0.0883
16.51 0.01 0.0246 0.2550 0.0240 0.1824
16.74 0.01 0.025 1 unstable 0 .0245 unstable

12.22 0.10 0.0494 0.0806 0.0491 0.0945
13.44 0.10 0.0570 0.1103 0.0566 0.1246
14.67 0.10 0.0650 v.1619 0 .0644 0.1761
15.90 0.10 0.0733 0.3083 0.0727 0.3385
16.50 0.10 0.0775 0.9155 0.0768 1.31t .c!
16.74 0.10 0.0792 unstable 0.0784 unstable

Next . two separat e sets of non-linear simulations were conducted; at 71'160 = 1

(60 = 0.01) for stable limit cycle (Figure 7.9(a)) and at mtSo = 50 (60 = 0.10)
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for unstable limit cycle {Figure 7.9(b)). In each set, both non-linear and linear

RMS iL -tplitudes were computed and compared to the analytical expressions {Of

linear combined excitat ion (equat ion (7.9)) and non-linear ll.uidelast ic excitat ion

only (limit cycle, equations (7.10) and (7.11)). Therefore, a J. rd order non-linear

simulation was run to allow direct comparison with limit cycle predictions.

As seen in Figure 7.9, the overall effect of non·linearity on the simulated re­

sponse curves was very weak in both cases slnce the limit cycle oscillations were

nearly vertical at the pract ical response range (ARMS ""0 - 20 % 11). Nevertheless,

the non-linear simulated response curves show qualitatively correct behaviour. ~")r

stable bifurcations, the combined response tends uymptot ieally to the analytically

predicted. limit cycle and remains stable for flow velocities greater than critical. For

unstable bifurcations, the non-linear response curve shows a lowering of the ere-

bility boundary (as predicted by the analyt ical solut ion) altho::agh this reduction

was quite small. Note that these numerical results confirmed. a direct analogy, sug­

gested in Section 3.2.2, between a dynamic system under combined excitation and

an equiva.lentstatic system by considering turbulence u an imperfection parameter.

To exactly examine the effed of turbulence on unstAblebifurcation, a separate

series of thi rd order simulations was conducted. (higher order terms were almost

negligeable in the immediate vicinity of the stability threshold). For a direct com­

parison with the analytical results presented in Table 7,4 (equation (7.12» , the

runn ing t ime, &Cter reaching steady state response level, was set T(Y ) = 10 min.

Table 7.6 gives a aummaey of this computatio ns for a parallel triangular and a

square arra.y. The numerically observed reduction in critical flowvelocity was - 60

%of that predicted from equation (7.12) by ignoring coupling. This suggests that ,

perhaps, Cor II. randomly oscillating system more than one consecutive excursions,

exceeding the unstable limit cycle, are required to trigger instability. Note, that in

"'nth cases the reduct ion was approximately proport ional to turbulence strength.
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Figure 7.9: Compar ison between analytical predictions and numerical simula.tions
to combined excita.tion for a parallel tr iangular array (moo = 1 . stable bifurcat ion
and m6n =50 • unstable bi furcation).
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Table i .6: Turbulence sensitivity of the unstable bifurcat ion (ml5o = 50, 00 =0.10).

Array geomet ry c; (UP.) " Reduction %)
Numerical Eq. 1.12 Numerica Eq. 7.12)

Parallel o.ceo 16.565 16.585 0.00 0.00
triangular 0.065 16.500 16.475 0.39 0.66

0.130 16.440 16.368 0.76 1.31

Square 0.000 19.938 19.988 0.00 0.00
0.200 19.125 19.626 L01 1.81
0.400 19.530 19.297 2.05 3.46

7.4 Conclusions

The theoretical model has been applied to perform the stabili ty analysis of a single

flexible cylinder, in an array of rigid cylinders, subject ed to the fluidolastic and

turbulence excita tion.

The model proved successful in its prediction of linear stability boundaries and

linear response curves. Interestingly, it reflects all essential featur es of the expert-

mentally observed behaviour of a fuUyflexible array : (i) the presence of dynamic and

static stability boundar ies, (ii) the separatio n in t be two dimensionless parameters ,

050 and fil , at the dynamic stability boundary and (iii) the transi tion from fluid·

damping controlled instability , which manifests itself by multiple stability bound-

aries in a low mass-dam ping parameter range, to fluid-stiffness controlled instability

which dominates in a high mass-dumping parameter range. Note that these features

are not crit ically dependent on model parameters.

The non-linea r analysis gives only limited agreement with the observed pest­

stable behaviour due to its lack of non-linear harde ning in the high mess-damping

parameter range. Nevertheless, it predicts stable and unstab le points of bifurcation,

as experimenta lly observed. Th rough theoretical considerations, based on superpo­

sition of the linear combined response with the fluidelastic limit cycle, and a series
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of numerical simulat ions, a direct correspon dence with equivalent stat ic syste ms is

shown by considering turb ulence response iU an imperfection parameter . This al­

lows us to draw some general conclusions regarding the effect of tu rbulence on the

ftuidelastic stability bounduy.

• For stab le bifurcations linear theory yields t he lowest stability threshold: the

8uidelu tic bounduy ca.nnot be reduced by inte rac t ion with turbule nce. How­

ever. the response to turbulence below t he threshold can lead to apparent

reductions in the pract ical stab ility boundary usigned on the basis of stan­

dard definition s.

• For unstable bifurcat ions a non-linear theory is require d for stability ana lysis;

inte raction with turb ulence lowers t he ftuidelu tic sta bility threshold. Th e rate

of reduction, which was found to be directly propor tional to the amplitude

of the turbulence buffeting and inversely proport ional to the amplit ude of

the unstable limit cycle, can be approximated based all the superpositio n

principle. The numer ical simul at ion , however. suggests that more t han ODe

consecutive excursions due to turb u lence, exceeding t he unst able limit cycle,

may be required to t riu er insta bility.
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Chapter 8

Proposed modification of
theoretical model

The present theoretical model predic ts reasonably well linear stabili ty bounda ries

and combined turbulence and ftuidela.stic response curves. However, it gives only

limited agreement with the observed post-stable behaviour of cylinder arrays due

to, particularly, its lack of non-linear hardenig . This raises a funda mental ques­

tion; does the underlying "cyliuder-in-chennel" theory warrant non-linear analysis?

The detailed exper imenta l investiga tion, conducted here, demonstrates that 11. sin-

gle degree-or-freedom cylinder displays similar non-linear behaviour as a fully flex­

ible array. It also showed that non-linear hardening results from ftuidelast ic and

not structural cylinder characteristics. These observati ons suggest tha t the model

shortcomings resu lt from failure of the one-dimensiona l fluid mecha nics used here,

Indeed , at large amplit ude unsta ble oscillations, mai n streamlines may pass from

one flow channel to the next . Thus, the assumptio n that the flow field area chan ges

with cylinder motion , due to the presence of solid bou ndaries, may not be valid in

the poet-stable region. In t his case, variations in muauitude and direct ion .n the

flow field have to be addressed by defining its acn-uuiform distributi on based on

t wo-dimensional fluid mechenlcs.

The modificat ion of underlying fluid mechanics requires formula tion of an essen­

t ially new theory. T hus, rath er than consider t he increasingly complex flowfield, this
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chapter looks into t he possible improvement of the assumed one-dimensional flow

redistribution mechanism which accounts for moat <lethe observed chaeacterietics of

the fluideJastic instabil ity.

8.1 Flow redistribution as amplitude-dependent
mechanism

The postula ted Rowredistribution mechanism , formulated from an analogous tran­

sient problem (see Reference [46]), appears well founded for a small cylinder motion .

In this case, fluid inertia predom inates viscous effects in a near wake region whose

size is strongly limited by t he constrained streamlines , passing along both sides of

the flexible cylinder. Thus, the phase lag is a function of flow velocity only. How­

ever , for increas ing amplitude of unstab le oscillat ions, perhaps al lowance should be

mad e for an unsteady wakeeffect resulting in shift ing of Bowsepa ration points . The

net force exert ed on the cylinder becomes a comb ination of the pe rturbation in th e

free-stream flow,due to the cylinder motion , and the perturbation in t he near wake.

Without taking into consideration the magnitude of the near wake oscillations , it

is reasonable to assume th at this force affects the flow/cylinder feedback mecha-

nism. For large amplit ude cylinder oscillations, this mechanism may be self-limiting

due to the presence of the large-magn itude unsteady wake (a "peacemaker" for the

under lying instability).

Indeed, Hara, [92}, suggests that the movement of Row separation poinh gov­

erns the phas e relatio n between flow adjustment and the large amplit ude cylinder

motion . In an interest ing experimental study on a cylinder row, Hara found that

the phase between t he fluidela.stic force and cylinder moti on is strongly displace­

ment dependen t in the post-stabl e region. Initially, it inc reases with the amplit ude

of oscillations and generates negative net damping . T hen, app roaching ti ll' limit

cycle, it decreases shar ply and genera tes, in t ur n, posit ive net dampi ng leading to
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non-linear hardening. In this experiment , however, the adjacent cylinders werefree

to move, affecting the measurement through fluid coupling effects . Nevertheless, the

results may be qualitatively correct also for a single flexible cylinder array. Note

that Hara's observed damping variations dearly suggest hysteresis behaviour, as in

the single flexible cylinder case.

To simulate a possible amplitude dependent phase lag between the ftuidelastic

force and cylinder motion, it was decided that the relevant fluid inertia length de­

creases linearly with the amplitude rat io, (~), from its initial value at the stable

equilibrium state, I, to f' = [1 - P( ~)I, at a given amplitude (P is a proportionality

constant). Thus , the st reamtube area perturbat ion, as expressed in equation (6.4),

follows the post-stable cylinder motion with a time lag, or , which at the unit cell

inlet is formulated as:

(8.1)

At present, ther e is llttle justlfication for this expression, except that it bas a proper

physical meaning, limiting the underlying fluidelastic feedback mechanism.

8.2 Modified limit cycle oscillations

Figure 8.1shows the amplitude of the limit cycle oscillations obtained from equations

(7.10) and (7.11) after substitution of equation (8.1) for the relevant fluid inertia

length (note that the linear stabili ty boundaries are not affected). Typical sets

of resul ts are given for p = 1 (ro = 0 at (~) = 100 % d) and fJ ::::: 2 (TO = a
at ( ~) = 50 % d). To allow for direct comparison with Figure 7.6 (P = 0), the

amplit ude is computed for the same values of mass-damping parameter ; mOo :::::

1, 10, 20, 30, 50, 100 (So = 0.01). It can be seen that the assumed reduction of

the time delay results in a dramatic change and a significant improvement in the

predicted post-stable behaviour . It causes an increasing non-linear hardening with

increase in amplit ude and mass-damping parameter . Part icularly interesting is the
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t ransition from unstable to stab le limit cycle for m60 ~ 30 - 50. T his reflects the

experimentally obse rved hysteresis behaviour which, for both arrays, disappears at

m60 ~ 30, For high values of mass-damping parameter, only stable limit cycles are

p redicted. As with the experiment, the rate of incr ease of post -stable amplitude

becomes lower with increasing tii8o,

Note that the variations of fJ a llow accurate adjustment of the predicted limit

cycle amp litude (for a square array, the value of fJmust be slightly higher), leading

to remarkable agreement with the observed stability behaviour of cy linder ar rays,

At the present t ime , however , expression (8.1) is just a hypothesis, Nevertheless, it

suggeste that the flow-adjust ment phase lag ma.ybe both flow velocity and cy linder

amplitude dependent.
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Chapter 9

Summary and conclusions

The main objective of thls work was to develop foundations for the design of mult i-

tube marine risers agaill~t current-ind uce-dvibration t h rough est ab lishing character-

istics of the under lying ftuidela.stic excitation mechanism . Despite research efforts,

undertaken in recent years, and the substant ial progress made in understand ing

fluidelastic instability in cylinder arrays, the basic practical question still remains

unanswered. Namely, what is the critical Bowvelocity from an operationa l point

of view? The experimen tal study, undertaken as a part of this research program,

suggests that predicti on based on linear fluidelast ic models may be unconservative,

particu larly, in a low mass-damping paramete r range, typical for mar ine risers, where

strongly non-linear hysteresis phenomena can domina te . Since sta bility of cylinder

arrays cannot be guaranteed within the hyst eresis region (unstable oscillatio ns may

be excited by a sufficiently large disturbance caused, for example, by turbulence),

reliability considerations dictate that its lower bound defines the crit ical flow veloc­

ity. This finding clear ly emphasies the necessity for expe rimental investigations into

the post-stab le behaviour of cylinder arrays subjec ted to fluid-cross flow or, alter­

nat ively, for development of accurate non-linear models foe fluidelastic instability,

as initiated in this work.
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9. 1 Su mmary

An experiment.al program was conducted with the objective to invest igate the post­

stable fluidelas tic behav iour of cylinder arrays subjected to fluid cross-How (the

arrays were modelled as infinite in transverse-t o-flow directio n). A wind tunnel

was used to allow a clear separat ion between Strauha! periodicity and Iluldelas-

tic instability. This st udy was performed at the mees-damplng param eter range ,

mea se 1.9 - 23..5, where hysteresis-type behaviour has been observed . The se-

quenee of tests WM des igned to gradually isolate the degrees-or-freedom needed to

capt ure the physical essence of an array vibrat ional behaviour in the simplest way

possib le. It was found tha t inst ability and post-stable behaviour of a fully flexible

array are governed by a dominant cylinder and may be well represented by a one

degree-of-freedom system constrained to move in t he tran sveree -tc-flew direc tion

only (no o-linear hardening resul ted from fluldelastic and not from structural cylin­

der eharecteristlce]. Thus, coupled motion between flexible cylinders is not required

for hysteresis effects. Although the response curves were recorded for Increasing and

decreasing steady flow velocity under ideal conditions possible , the effect s of eye-

tern imperfections (e.g. transient tu rbule nce excitations, ar ray misal ignments) were

also considered. It was shown that the exact details of the stability behav iour [e.g.

critical flow velcity , hysteresis effect s, lim it cycle ampli tudes ) depend strongly on

these imperfections. To ensure that th e trends observed are not d istinct phenomena

associated with an array geomet ry, two different configuration were tested; pa rallel

tr iangular and square.

Based on this detailed experimental study, the non-linear theoretical mode l for

f1uidelastic instability in cylinder arrays was formu lated . T he p resent model is a

modified time-domain version ,)f an ea rlier steady-state "cylinder-in -channel" for-

mulation (the experiments provide physical just ification for the modelling of a single

flexible cylinder, constrained to move in the traneveree-to-How direct ion on ly) . The
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underlying theory employsone-dimensional fluid dynamics and a phase lag between

cylinder motion and How adjustme nt . It accounts for both fluid-damping and fluid­

stiffness fOt(:e$ acting on the flexible cylinder. Here, an area perturba tion decay

funct ion wu included which expresses the amplitude reduction of pertu rbat ion' in

the free-stream flowaway from the cyllnder. The equat ion of mot ion wu then devel­

oped with the non-linearity associated with the fluid forces:only. T his equation wu

solved analytica.lly to third order using the fint approximation metho d of Kryloff

and &golibolf.

The third-order non-linear solution gives only limited agreement with the ob­

served pO$t-st able behaviour of cylinder arr ays due to, in particular, its lack of

non-linear hardening. Nevertheless, it predicts stable and unstable points of bifurca­

tion, allowing us qualitative assessment of the effect of turbulence on the fluidelastic

stability boundary, An approximate method wu formulated using superposition

of both excita tion mechanisms (a flat power spectrum wu used to represent the

random field of t urbulence within a cylinder array), Thi , heuristi c representation

suggests that t urbulence affects the unstable point of bifurcation and lowers the ac­

tual stability thresbcld . The ra~ of reduction was found to be proport ional to the

amplit ude of t urhulence buffeting and to the amplitude of the unstable limit eylce.

Physical argument! suggest t hat stronger non.linear hardening, leading to stable

limit cycles at large amp litudes, should be predicted by the single flexible cylinder

model used here. To check thi" the fully non·linear solution was found u,i ng a di­

rect numerical integrat ion of the equation of motion. Unfortunately, the analytical

and higher order numerical results were found to be qu&lita.tively identical, point­

ing to a weakness in the ftuidelastic model fom lUlated here (wor th not ing ie the

excellent agreement bet weenthe closed form solution and the third order numerical

simulat ion). Nevertheless, the developed numerical scheme was applied to simulate

array behaviour under combined fluidelastic and tur bulence excitat ion based on the
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t rue non-linear in teract ion mechanism . Again , the atte ntion was rest ricted to stabl~

and unstab le bifurutions, because both types of stabili ty behaviour were observed

experimentally. Particular ly important was the influence of turbulence on unste­

ble bifurca tions since it was shown. based on superposition, that the interact ion

mechanism may lower the ftuidelast ic sta bility boundary. The numerical simulation

confirmed this hypothesis. However, it was found that more than one consecutive

excur sions may be required to t rigger insta bility. Little overall effect was not iced

due to the extreme steepness of the predicted unstab le limit cycles near the stability

t hreshold. A direct comperlaon with equivalent static systems was made in which

turb ulence response was considered as an imperfect ion parameter.

The theo retica l model can be significantly improved wit h the assum ption that

the flow-adjustment phase lag is dependent on cylinde r motion and decreases with

increas ing oscillatory amplit ude. This causes an increas ing non-linear hardening

with increase in amplitude and the mass-dam ping paramet er. Part icularly inte rest­

ing is the transition from unstable to stab le limit cycles for m60 i:::l 30 - 50. This

reflects the experimentally observed hysteresis behaviour which, for both arrays,

d isappears for m60 ll:l 30. For high values of the mass-damping parameter , only

sta ble limit cycle are predicted. As with the expe riment, the rate of increase of

the post -stable amplitude becomes lower with increasing m6o. These resute suggest

that t he flow-adjus tment phase lag may be bot h flow velocity and cylinder amplitude

depend ent.

9 .2 Conclusions

Several concludin g remarks. regarding t he details of experimental an d theoretical

investigations, have been noted separately at t he e nd of Chapte r 5 and Cha pter 7.

Here, t he ma jor conclusions, regard ing the fluidelastic instab ility in cylinder array!

sub jecte d to fluid cross-flow, are resta ted based on the presented work as a whole.
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• The non-linear effects, in the mass dampi ng param eter range governed by the

hysteresis behaviour, are as important for the onset of instab ility as array pitch

and patte rn. In the absence of a reliable coupled turbulence and f1uidelastic

model, t he lower limit of the hysteresis region must be considered as a.practical

t hreshold for fluidelast ic instabilit y.

• The fluldelast.ie instability mechanism of a single flexible cylinder is a row­

dependent phenomenon, The least sta ble (dominant) row reflects all essential

featu res of the stab ility behaviour of a fully fiexlble array including hystere­

sis effects. Within the mass-damping parameter range studied, the motion of

neighbouring cylinders is not funda mental to the fluidelastic instab ility. In­

stead , fluid coupling te nds to cascade instabilit y thr ough the array.

• The non-linear stability charaderist ics of an array (including hysteres is effects)

may be qualit atively represented by a single flexible cylinder constrained to

move in the tr ansverse-to-flow direction only. That is, the underlying flulde­

lastic mechanism requires only one degree-of-freedom to operate.

• For unstable bifurcations, characterized by hysteresis behaviour, interac tion

with turbulence reduces the t1uidelastic stability threshold. The rate of reduc­

tion was found to he directly propor tional to the amplit ude of the turbu lence

buffeting and inversely proport ional to the amp litude of the unstable limit cy­

cle. For stable bifurcati ons, turbule nce does not affect the fluidelastic stability

boundary , but its apparen t value reduces with increasing turb ulence.

• The "cylinder-in-channel" model lacks the non-linear hardening needed to

yield good predi ction of cylinder behaviour. It appears that the phase lag,

between cylinder motion and flow adjustment, must be smaller at the final

limit cycle than that at the sta ble equilibrium state.
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• The numerical procedure appears to be a promising starting point for the

modelling of fluidelaet!c oscillations in cylinder arrays, partie !' -Iy the pest­

stable behaviour . However,improvements to the underlying fluidelesric model

are needed.

9.3 Further development

This work, both experime ntally and analyt ically, contri butes to better understand­

ing of the fluidelastic instability in cylinder arrays. The att ent ion was focused on

the simplest physical system, retain ing the behaviour of full array s. Many of the

assumpt ions, made in the formulation of the theor:tical model, require furthe r ex­

perimental justification . Consequently, considerable scope for subsequent research

exists.

• The post ulated flow redistributio n mechanism, which accounts for most of the

observed characteristics of the fluidelastic instability, requires experimental

validation. Particularly important is t he experimental determ ination of the

velocity and amplitud e dependence of the assumed phase lag. Unfortuna tely,

these experiments are rather difficult to perform due to the high turbulence

levels generated by cylinder arrays.

• Th e utili zed one-dimensional8uid mechanics and the presence of"solid bound­

aries", limi\ ing the fiuid field, must be verified experimentally for large am pli­

tu de oscillations of the flexiblecylinder, If required , workcan then be directed

towards the applicat ion of two-dimensional flow. In viewof the presented level

of effort, this is believed to be very challenging.

• Experimenta l stud ies on cylinder ar.ays in water flows indicate that St rouhal

periodicity aod fluidelast ic instabili ty nearly coincide and, as shown by Pr ice

et al., (11], cannot be separated in some cases. It follows that Strouhal pe-
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riodicity may excite fluldelastic instability, leading to significantly stronger

reduction in the critical flow velocity tha n that predicted here for turbulence

buffeting. Thus, t he interactio n effect bet ween Strouhal periodicity and f1u­

idelasticinstabili ty should recive fur. ;ler research attention.

• The arrays , considered for application in production marine risers, have a lim­

ited number of flowlines. Thus, t he internal r.....w field may differ from that in

an infinite a rray. However, as suggested by Blevins, (7J, the change in the flow

field is very small for arra)" consisting of more than four cylinders. Neverthe­

less, further experimental work, on a finite array in water flow, is recommended

to determine the applicability of theories based OD infinite arrays.
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Appendix A

Response curves

This Appendix shows the post-stabl e response response curves, for increasing and

decreasing flow velocity, obtained for moo ~ 1.9 - 23,5; Figures Al·A21 are for a

parallel t riangular array of pit ch ratio 1.375 and Figures A22-A33 M e for a square

array of pitch ratio 1.433.
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Appendix B

Damping curves

Th is Appendix shows the fluidelastlc component of damping, at various Bow ve ­

locities below crit ical , u a function of amplit ude . The results were obtained at

moo = 2.25 for & pa rallel triangular array of pitch ratio 1.375 (F igures HI and 8 2)

and at mOo = 1.90 for a square &fray of pitch ra t io 1.433.
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Appendix C

Formulation of the first
approximation method

An oscillating cylind er in a.state of equilibrium (limit cycle) can be described in the

form of the basic differential equation:

i( t ) +w' , (t) + "f[y(t) ,;(I»)~ 0 (C.l)

where f[y(t), y(t)] is a Don-linear function of cylind er displacement and velocity , an d

IJ is a. small positive quan tity .

Here, equation (C.I ) is solved, using the first approximation method of Kryloff

and Bogoliuboff [89J. by writing the solution as:

y(t ) =a(t)~,[wt + ~(t»)

and imposing the condition tha t y(t) takes the form:

(C .2)

(C .3)

Evidently, equation (C.3) is correct only for I.l = O. Physically, this implies that

contribution of non-liner terms to the finel soluticn of equation (C.1) is very small,

Il < w2• Thus, the f1uidelastic system under consideration is trea ted as near ly linear .

From equa tion s (C.2) and (0.3) it follows that:

'(t)~,[wt + ~(t)J - . (I)a(t), ;n[wt +~ (t )J =0 (CA)
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Th is means that the amplitude, a(t), and the phase, 410 ), are slowly varying func­

tions of time, t , in the state of equilibrium. It can be shown that they sat isfy the

following formulas:

art)= ;[(aco,,8, - aw.fin8 ), in8

~(t) ... ;!;;[ (aco"e , - aw, in8 )COI8

(C.S)

(C.B)

where e =art) denotes the total phase. This set of two fin t order equat ion COrre­

sponds exactly to the in itial second order differential equation (C.l). An import&D.t

step to finding their solution i, an a.pplicat ion of the averaging principle. Fin t ,

t he right hand sides of equations (C.S) and (C.6) are expanded tntc Fourier series

as periodic functions with the period T = ~. In this process, 4(t ) and ~(t) are

considered to be made up of slowly varying components, aO) and ,fI(t), and small

rapidly oscillat ing term s. Then, by integrating these expressions over each period

(&SSuming th&t art) = art) and ~(t ) = 41(1) in the first epp roxim ation] all cecil-

lating terms are •averaged out to since the slowly varying precess is nol inftuenced

by small rapid oscillati ons. In ot her word" the instantaneous values of a( l) &od

t ( t) are replaced in thi, process by their averages whicl, are calculated in the usual

way. Thus, the equat ionl of the fun approximat ion, which latid y equation (C.I )

to with in the order of p.' , may be finally writ ten as:

art)=2: Wfo2~ [ (aco.f8 , -aw.fin8 )Jin8d9 (C.?)

and

e(, ) =~(.)

where the frequency of oscillation w(a) depends on amplitude tria:

(C.S)

W(4) =W +2:War[ (aeos0 , - awJin8)cos0d8 (C.9)

Note that the function ! (acoJ8 , -4W"in8 ) may enter into equatiolll (" .7) and (C.9)

directly and Dot ooly throu&hits non-linear part . T bua, after squaring both sides
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of equation (C.9) and retaining only terms of the same order of smallness O(p2) as

used in the formulation of the first approximation method , the expression for ....(a)

takes the form:

w2(a) =: w~ +~ f" f (acos8, -awsine)co.!I8d8 (C.l O)

These equation s yield the dynamic bifurcation formulae; a linear solution and a

non-linear limit cycle. Since th e limit cycle of constant amp litude is expected, its

rate of change may be set equal to zero (iI(l) =: 0 in equa t ion (C.7)) and the linear

solution becomes trivial (a =: 0).

Further, it is inte resting to note that, based on equation (C.9) or equation (C.10),

the transition from an oscillatory to a static state can he defined. Physically, this

implies that :

~~w(a)=:O
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Appendix D

Verification of numerical
integration scheme

To verify the effect ivenes s of the numerica l integrati on scheme and to specify certai n

parameters for its opera tio n, a fourth order predicto r-corrector metho d is appl ied to

the Va.nder Pol'. oscillator, which is expres sed in t he form of the basic differential

equation:

moli(' )+ (B,'(,) - 801;(1) +",,(f) - 0 (D.l)

where B and Bo ue pos itive constants. First, this equation is examined in the

simpli fied version:

lilf) + eIY'(,)- 1J;(I) + , (f) - 0 (D.2)

for di fferent values of t he positive COnstiUlt, C, which reftecu th e strength of DOn­

linear and dissipative terms . This test showed, in particulu, the importance of

selecti ng the proper time step for accurate simulat ioDl. It wu found that for small

values atC (C :S1), th e time step At = ~ i. sufficient, by three corrector itera­

tions, to minimize the numerical error and the possibility of numerical instability.

These simulation results , which in part are presented in Tab le 0 .1, were in excellent

agree ment wit h numerical data published by Urabe [911. As can be seen, simulations

with C>l requi red finer time stepping t han initi ally defined, due to the increasing

steepness of respon se t raj ectori es. Th e first appr oximation method yield. a limit

cyc1eo f2 for all C.
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Table 0 .1: Predict ion of limit cycle ampli tude for Van dee Pol's equati on.

C Time .tep First Reference
T. /IO T.2<I T. /40 T. /SO app roxima tion 1911

0.5 2.115 2.007 2.003 2.0030 2
1.0 unstabl e 2.028 2.009 2.0090 2 2.0090
3.0 unstab le unstab le unstable 2.0034 2 2JlO35
5.0 unstable unsta ble unstable 2.1)011 2 2.0016

Having specified the time step , equat ion (D.I) wu exami ned for a large variety

of system para meters . Tabl e 0 .2 shows some numerical resu lts, together with the

solution of the first approximation which yield, a limit cycle amplitude of a "" 2,fij.
Because equation (D. I} undergoes dynamic instabil ity, one might expect its limit

cycle to be sensit ive to th e periodic forcing coadltl oae. Thus, it WM decided to

examine the Van der Pol', oscillato r under harmonic excita tion:

moy(t) + (BlI~ ( t ) - Bolit(i ) +koy(t} "" Esin1 i (0. 3)

where E and ., are t he amplitud e a.nd t he frequency of forcin! term, respectiv ely.

First, numerical. fe3ult. were compar ed wit h the simplif iedsolution of the first ap­

proximation (mo "" ko... 1 and B = Eo~ 1) derived, for example, in Reference (891.

Next, equation (28) was solved, following Reference (89], and test ed numerically for

a variety of parameters. Table 0 .2 presents some examples of these validation tests.

Also, RAyleigh's oecilla to r WM examined; &Dother import an t equation with re­

gard, to non-linear Iystem•• Thi. equat ion i, expressed in t he form :

""Y(' ) +IBY'(.) - BoIW)+ loy (' ) = 0 (0.4 )

It s solutio n of th e fint approximatioo yield . a limit cycle am plitu de Q, = *Jili
(for deraile, see Reference [89]). For completeness, some numerical and anal yt ical

ex am ples are incl uded in Table 0 .2. It can be eeeu ~ hat , in nearly all exam ined

cases, close agree ment with the app roxima te solutions of equations (0 .1),(0.2) and

(0 .3) was found.
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Table D.2: Predictions of limit cycle amplitudes for equations (D.l ,D.3.Do4).

Eq. m, k, B B, E 7 Limit cycle amp litude, a
Numerical First approximation

0 .1 1 2 1 2 2.86 2.83
2 1 • 3 1.75 1.73
1 s 10 1 0.65 0.63

0.3 1 1 1 1 0.75 0.50 2041 2.43
1 1 1 0.25 0.75 0." l. 00 1.02

0 .4 1 1 1 1 1.25 1.16
2 3 3 2 0.81 0.77

1.16
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