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Abstract

A time-domain technique is developed for the real-time estimation of wave-induced
vertical bending moment from the coupled heave and pitch motion measurements. The
estimated values can be compared with those obtained from the strain gauge readings to

ensure the validity of Hull Response Monitoring Systems (HRMS).

A general time-domain relationship between the vertical bending moment and the
coupled heave and pitch motions was formulated through a Fourier transform of the
frequency-domain mathematical model. The instantaneous bending moment value was
approximated by a functioﬁ of the heaving and pitching displacements, velocities, and
accelerations. A neural network technique was developed to identify this unknown

function through a leaming process.

The application of the proposed technique to the experimental data demonstrated the
validity of the methodology. The simulation results suggested that this technique could be
used in conjunction with a time-domain simulation package to provide a numerical

estimation model.
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1. Introduction
1.1 Objective

The growth in the size and complexity of ship structures has provided an impetus for the
increased use of Hull Response Monitoring Systems (HRMS). These systems are
intended to enhance ship operational safety by monitoring and displaying ship response
information. Since ship structural design is mainly based on the magnitude of the
allowable hull girder bending moment, it would be preferable for the HRMS systems to

display the instantaneous bending moment against allowable values in real time.

In most HRMS systems, bending moment values are obtained from strain gauge
measurements. These transformations are usually based on the theoretical strain-moment
relationship and need to be validated by some other estimation methods. Significant
research has been conducted in an attempt to estimate hull girder bending moments from
ship motion data. These estimated values can be compared with those transformed from

the strain gauge readings to prevent any significant errors.

The main objective of this work is to develop a time-domain technique for estimating the

wave-induced vertical bending moment from the coupled heave and pitch motions.

1.2 Research Outline

Ship response analysis could be carried out in three different domains, namely, the time
domain, the frequency domain, and the probability domain. Numerous transformation

techniques allow the researchers to move from one domain to another.



For real-time estimation in this work, a time-domain relationship between the wave-
induced bending moment and vertical ship motions has to be established. It is convenient
to determine a mathematical model in the frequency domain first, and then transform the
model into the time domain. The frequency-domain model for the rigid-body ship
motions and the wave-induced bending moment can be formulated using a strip theory.
Through Fourier transform, the wave-induced bending moment is approximated by a
function of the heaving and pitching displacements, velocities, and accelerations in the

time domain. This function can be identified using artificial neural networks.

The important feature of neural networks is their ability to approximate arbitrary
functions through on-line and off-line learning processes. A multilayer perceptron (MLP)
network is employed in this work, and the backpropagation leaming algorithm is used.
The training data must be maximally representative and informative. For the present
system, it is proved that the auto- and cross-correlation functions of the bending moment
and ship motions are suitable training data. The correlation functions can be estimated

from the ship response time histories.

The proposed technique is applied to experimental data as well as to simulated data.
Model tests of ‘R-class Icebreaker’ ship model are carried out in the wave tank at
Memorial University of Newfoundiand. The model consists of two segments joined at the
midship section by an aluminum bar. Four strain gauges are mounted on the joint bar to
measure the midship bending moment. Afier the training process, the neural network

produces the accurate estimates of the instantaneous bending moment. The simulation



results suggest that this technique can be used in conjunction with a time-domain

simulation package to provide a numericat estimation model.

This work is based on a mathematical model for the rigid ship hull and a linear
relationship between the wave-induced bending moment and the ship motions in the
vertical plane. The high-frequency vibratory loads due to whipping and springing are not
considered in the current work. It is promising to extend the present technique to include

the high-frequency loads in the final estimation.

1.3 Organization
An extensive review of previously published work and available techniques is presented

in Chapter 2. A full description of the ship model and the experimental program follows
in Chapter 3. The mathematical formulation as well as the experimental analysis in the
frequency domain is described in Chapter 4. The time-domain estimation technique is
developed in Chapter 5. A numerical simulation procedure and the results are given in

Chapter 6. Finally, the conclusions and recommendations are presented in Chapter 7.

More details of the numerical computations, the computer programs, and the

experimental results are presented in Appendix I to Appendix III.



2. Literature Review
2.1 Hull Response Monitoring System

2.1.1 HRMS Overview
Ship response to the sea environment is a main concern for ship designers and operators.

With the growth in ship size and structural complexity, it has been difficult for mariners
to monitor various ship responses through their physical senses. Hull Response
Monitoring Systems (HRMS) have been developed to measure and display the real-time
ship motions and hull structural responses. The recorded data is also valuable for more
sophisticated onshore analysis to develop and verify ship design criteria. HRMS
development is spurred by regulatory bodies, classification societies, academic
organizations, and ship owner/operators. IMO is developing a set of HRMS rules for bulk
carriers over 20,000 DWT. ABS, Lloyd’s, and DNV have offered guidelines for HRMS
systems. Some technical issues are also addressed in recent ISSC proceedings (Moan and
Berge, 1997). A survey result from Slaughter et al. (1997) shows that there are more than
200 HRMS installations around the world. Representative installations include four crude
oil tankers for BP Oil Company (Witmer and Lewis, 1995), and two other crude oil

tankers for ARCO Marine (Lacey and Chen, 1995).

Ashcroft (1996) and Slaughter er al. (1997) present an overview of Hull Response
Monitoring Systems. There are four major components in a basic HRMS system: a
microprocessor, a visual display, data storage equipment, and a suite of sensors. Long
baseline strain gauges are typically used to measure primary hull girder strain on the main

deck. Accelerometers are used to measure ship motions. Some environmental sensors are



also available for installation. The microprocessor analyzes the raw data and interprets
the signals. Immediate comparison can be made between measured and allowable values.
Suitable information is displayed in real time. The storage of monitored data allows more
sophisticated post voyage analysis. The basic HRMS system may be expanded to
incorporate a wide variety of additional sensors. Some more extensive systems include
automatic downloading of weather forecast information via satellite and advanced
voyage-planning capability based on weather information. It is expected that HRMS

systems will become a standard feature in future ships.

2.1.2 Characteristics of Major Ship Responses
The major environmental factor for a floating vessel is ocean waves. The wave elevation

In a realistic seaway is always imregular and never repeats itself. Ship responses that may
require monitoring are mainly ship motions, hull girder stresses, and wave loads. They

are also random processes (Slaughter et al., 1997).

The six-degree-of-freedom ship motions are three translational (surge, sway, and heave)
and three rotational (roll, pitch, and yaw). Roll, pitch, and heave are generally of most
concern for ship motion analysis. Roll motion reduces reserve transverse stability and
causes crew discomfort. The coupled heaving and pitching generate the vertical cargo
acceleration and increase relative bottorn velocity with respect to the waves. A detailed

description of ship motions is given in Lewis (1989).

Full-scale stress data from Little and Lewis (1971), Vulovich er al. (1989) and other
research programs have clarified the characteristics of hull girder stresses under actual

service conditions. These characteristics are summarized by Mansour (1990). A typical



stress time history is the combination of three independent components: static stress, low-
frequency wave-induced stress, and high-frequency vibratory stress. The static stress
results mainly from the stillwater loads caused by the loading condition in stillwater and
the thermal loads due to temperature difference in water and air. The wave-induced stress
is associated with the loads resulting from the motions of the ship as a rigid body. The
frequency range is relatively low and close in magnitude to the wave encounter frequency
for a wave having a length nearly equal to the ship length. The vibratory stress is
associated with loads resulting from the two-node mode vibration of the hull girder. The
frequency range is relatively high and close to the two-node mode natural frequency of
the hull girder. The vibration can be continuous “springing” excited by the high-
frequency wave components. It also can be the transient “whipping” caused by bottom or
bow flare slamming. The wave-induced stress and the vibratory stress do not always
occur simultaneously. Quite often only the wave-induced component appears in a stress
record. Due to the random nature of the ocean waves, both wave-induced stress and

vibratory stress are random processes.

Wave loads exerted on a ship hull girder include bending moments and shear forces
(Bhattacharyya, 1978). Similar to the hull girder stresses, the total bending moment
consists of a static component, a wave-induced component, and a vibratory component
(due to whipping and springing). From full-scale measurements and model tests results,
the whipping bending moment may be as large as the wave-induced bending moment,
while the springing bending moment is usually of low magnitude. Only in very long

flexible ships such as Great Lakes bulk cammers, the springing loads are found to be



important. Jenson and Dogliani (1996) shows that a design wave bending moment
probably can be derived without considering springing for normal merchant ship types. In
most cases, only static and wave-induced bending moments are superimposed on each
other. At an arbitrary longitudinal section, total wave-induced bending moments can be
resolved into three components: vertical bending moment, horizontal bending moment,
and torsional moment. Vertical bending moment dominates the structural design.
Horizontal bending moment is generally much less important because of its smaller
magnitude and the greater hull strength. Torsional moment is usually insignificant.
Therefore, the wave-induced vertical bending moment represents a major component of

hull girder bending moment for a ship at sea.

2.1.3 Monitoring Hull Girder Bending Moments
With the drastic increase in ship size since 1960’s, overloading of hull structures has been

highlighted in many marine losses. Since ship structural design is based mainly on the
magnitude of the allowable bending moment, it would be preferable for the HRMS
system to display the instantaneous bending moment against allowable values in real time
(Witmer and Lewis, 1995). The recorded data is also valuable for the structural reliability

analysis, which requires more specific information about wave loads (Mansour, 1990).

In most full-scale measurements, the bending moment values are obtained from the strain
gauge readings. Strains experienced by a ship’s deck structure normally comprise three
components, namely, primary hull strain due to hull girder bending moments, secondary
grillage strains and tertiary strains in local plate panels. Long baseline strain gauges are

typically designed to measure primary hull strain by measuring the displacement of a



metal rod of about two meters in length. The rod is rigidly fixed at one end and free to
move at the other. The coefficient of thermal expansion of the rod and deck material
should be matched to minimize errors caused by thermal expansion. Experience has
shown that long baseline strain gauges are more durable in exposed locations and less
susceptible to local strain effects (Ashcroft, 1996). As long as the ship structure remains
elastic, hull girder bending moment varies linearly with the primary hull strain. Ideally
the transformation from strain readings to bending moment values should be based on a
full-scale calibration. That is, a known bending moment is applied on the ship in calm
water while the corresponding change in strain gauge reading is recorded (Little and
Lewis, 1971). The “known” bending moments are usually applied in either of two ways:
special ballast changes or normal cargo discharges. Full-scale calibration frequently takes
several days and the strain gauges are responsive to thermal effects that may cause a
gross change in hull stress. It is thus required to conduct full-scale calibrations on
overcast, windless nights after the hull structure has reached a steady-state temperature.
Even if the calibration were “thermal effects free”, the final measurements may still be
affected by the diurmmal thermal stress changes, particularly in the more tropic regions.
Such thermal contamination has been fully discussed by Shi er al. (1996). As an
altemnative to full-scale calibrations, some HRMS systems obtain the linear strain-
moment relationship from the structural analysis results. Witmer and Lewis (£995) used
simple beam theory to obtain the bending moment as the product of the measured
bending stress and the calculated section modulus. The use of finite element analysis
should provide more accurate results. As indicated by Ashcroft (1996), an HRMS system

should include a means for checking the system results to ensure its validity. Significant



research has been conducted in an attempt to estimate hull girder bending moments from

wave information or ship motion measurements.

Theoretically it is easier to estimate the hull girder bending moment from wave
information rather than from ship motion measurements. But shipboard environmental
sensors are much less accurate than ship motion sensors. Some researchers are even back-
calculating sea states as a function of ship motion parameters (Hua and Palmquist, 1995).
It is expected that values of hull girder bending moments estimated from ship motion
measurements should be more accurate than those estimated from wave information.
Slaughter et al. (1997) quoted a technique proposed by Lovdahl, Lacey, and Chen in their
presentation *‘Advances in Computer Based Onboard Voyage Planning” to the 1995
SNAME Joint California Sections Meeting. Their approach is based on the work of
Kaplan (1995), but the accuracy of this approach is not within ABS guidelines for real-
time value display. In Kaplan (1995), both wave-induced loads and slam-induced
vibratory loads are incorporated into time-domain simulations. The rigid-body ship
motion characteristics are calculated in the frequency domain using a linear strip theory.
Although time histories of ship motions and wave loads are generated, the general time-
domain relationships between the wave loads and ship motions are not established.
Without a time-domain mathematical model, it is not convenient to estimate the

instantaneous bending moments from ship motion measurements in real time.



2.2 Theories for Ship Response Analysis

2.2.1 Frequency-domain Theories
Extensive research has been conducted to study ship response in regular waves. The strip

theory for heave and pitch motions in head waves (Korvin-Kroukovsky and Jacobs,
1957) was the first motion theory suitable for numerical computations with adequate
accuracy. This theory was later extended by Jacobs (1958) to include wave-induced
bending moments and shear forces for a ship in regular head seas. The more rigorous
approach of Salvesen er al. (1970) has been widely accepted for computing the motions
and loads of a rigid-body ship advancing at constant mean forward speed with arbitrary

heading in regular sinusoidal waves.

Strip theory is used to determine the coefficients and exciting forces in the linear
equations of ship motion. It is assumed that the vessel is a slender body moving in high-
frequency waves. Consequently, the fluid flow velocities in the transverse direction are
much greater than in the longitudinal direction, and the flow field around any cross
section of the ship may be approximated by the assumed two-dimensional flow in that
plane. If the ship body is divided into many narrow strips, the total effect on the ship is
the integration of the effects on all individual strips. The essence of strip theory is thus to
reduce a three-dimensional hydrodynamic problem to a series of two-dimensional
problems. The most popular methods for solving the two-dimensional hydrodynamic
problems are the boundary integral method (Frank, 1967) and the Lewis-form method
(Lewis, 1929). Frank’s method allows a more accurate description of the hull cross

section, but requires more computational effort compared with the Lewis-form approach.
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Strip theory methods have been extended to study the springing loads in flexible ship
hulls. Troesch (1984) carried out both experiments and computations for springing
response on a ship model joined amidships. Jensen and Dogliani (1996) performed
springing load calculations within the framework of a nonlinear, quadratic strip theory.
The complete solution to the springing problem requires consideration of the hull

structural properties as well as the hydrodynamic excitation.

For ship motions in low-frequency waves, the ordinary slender-body theory has to be
used instead of the strip theory. Newman and Sclavounos (1980) developed a unified
theory to cover the whole frequency range. At low frequencies, the unified theory
approaches the ordinary slender-body theory and yields terms that involve longitudinal
interference between sections. For high frequencies, this longitudinal interference

disappears and the results are identical to the strip theory.

The advent of large, high-speed computers has allowed the application of three-
dimensional calculation methods, which take into account the 3-D effects and improve
the accuracy of both local and global force predictions. The Rankine source methods and

3-D panel methods are being developed to replace the strip theory (Tan ez al., 1996).

The equations for regular-wave responses involve frequency-dependent coefficients. For
a given frequency they are all constants and the system has a solution. Essentially we are
solving the problems in the frequency domain, and the regular-wave equations constitute

a frequency-domain mathematical model (Ogilvie, 1964).
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2.2.2 Linear-Random Theory
The theory for the response of a linear system to random excitation was developed in the

realm of electrical engineering (Rice, 1944). It is essentially a combination of linear
system theory and random process theory. St. Denis and Pierson (1953) first introduced
this linear-random theory to the marine field for the study of irregular ship motions. Later
application for the wave load evaluation helped in the development of the structural

reliability analysis for marine structures (Mansour, 1990).

Lewis (1989) gives a description of the linear-random theory for marine applications.
There are two crucial assumptions underlying the theory. First, the short-term ocean
waves are stationary, zero-mean, Gaussian random processes. Secondly, ship responses
are linear transformations of the wave elevation or slope. Based on these assumptions the
probability structure and the statistical parameters of the wave elevation and the ship
response are constant in the short term. Linear-random theory is intended for predicting
the stationary statistics of the ship response. In a stationary, zero-mean, Gaussian process
the only necessary statistical parameter is the variance. It is uniquely determined by the
power spectrum. Because of the linearity assumption, the response spectrum is related to
the wave spectrum through a Response Amplitude Operator (RAO). The Response
Amplitude Operator is conventionally defined as the modulus of the frequency response
function, and physically interpreted as the ratio of the response amplitude to the
amplitude of a harmonic wave. The RAOs represent the frequency-domain relationship
between ship responses and wave elevations. They can be obtained from either
theoretical calculations or regular-wave experiments. Once the wave spectrum and RAOs

are available, the ship response spectra and statistics can be easily determined.
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The essence of linear-random theory is transforming the frequency-domain results into a
probability domain. The statistical parameters as well as extreme values are suitable for

use in reliability analyses and performance assessments.

2.2.3 Time-domain Theories
Although the application of linear strip theory in the frequency and probability domains

has achieved remarkable success, there are a number of ship response problems that can
not be satisfactorily analyzed using such techniques. Bottom slamming, bow flare impact,
and the resulting whipping are obvious examples. They are commonly dealt with in the
time domain using estimated motion history and impact forces (Oliver, [990). A
comprehensive review of the theories and techniques for impact loading is given in
Daidola and Mishkevich (1995). In order to analyze the combined responses, even linear

rigid-body results have to be expressed in the form of a time history.

Kaplan (1995) describes a quasi-linear analysis procedure to determine both the rigid-
body and hydroelastic vibratory responses due to slamming impacts. The nigid-body ship
motions and wave loads are calculated in the frequency domain using a linear strip
theory. These outputs in frequency response form are then expressed in time history form
in order to be combined with the slam-induced responses that are determined in the time
domain. The transformation is perforrned using a time-domain simulation method. A
wave spectrum is considered as a sum of sinusoidal components, and the response time
history is obtained as the linear superposition of responses to these individual wave

components. The general time-domain equations are not formulated in this procedure.
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In Oliver (1990), the simulation of ship motions and the hull girder loads is based on the
time-domain equations. The assumed equation form is similar to that of the frequency
domain, but the coefficients are calculated at each time step. The frequencies at which the
coefficients are evaluated can be selected to be either peak frequencies of response
spectra or the average frequencies during the previous two cycles of response. Here the

time-domain equations are actually approximated using the frequency-domain models.

For the ship response in ocean waves, it is usually convenient to formulate a
mathematical model in the frequency domain first, and then transform the results into the
time domain (Hutchison, 1990). The frequency-domain equations are generally
differential equations with frequency-dependent coefficients. Tick (1959) and Ogilvie
(1964) have shown that these equations can be transformed to the time domain as
convolution integral equations. Under certain conditions, they may be approximated by

the constant-coefficient differential equations.
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2.3 Experiments for Ship Response Analysis

2.3.1 Full-scale Measurements and Ship Model Tests
Full-scale measurement is the most direct approach to study ship response in actual

secaways. More and more design criteria are based on the results of full-scale
measurements. Typical programs are presented in Little and Lewis (1971) and Vulovich
et al. (1989). This approach, however, has some disadvantages and difficulties. First of
all, full-scale measurements are very expensive and difficult to implement. Secondly, it is
difficult to measure the sea state, in particular the directional wave spectrum. Thirdly, it
is impossible to fully control the experimental environment. Finally, full-scale
measurements can not be used as a design tool for predicting the behavior of a proposed

new design (Hutchison, 1990).

In contrast to full-scale measurements, ship model tests are controlied experiments. The
desired sea environment can be achieved and maintained during the test. This approach is
a useful design tool and relatively inexpensive. One major problem is the errors caused
by scale effect due to viscous and surface tension forces. In some experiments, the
physical dimensions of the test facility make it difficult to obtain long duration test runs

for a model with forward speed (Hutchison, 1990).

During model tests, the motion measurements are relatively straightforward. But the
experimental study of the hull girder bending moment requires a specially designed ship
model. Lewis (1954) used a wooden model to determine the wave-induced bending
moment. The model was segmented amidships and the bending moment was determined

by measuring the relative deflection between the two segments. This model is essentially
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rigid and does not include any hydroelastic effects. De Does (1960) measured bending
moments at three locations along the model length. The models were made of fiberglass
with wire resistance strain gauges imbedded in the walls. Wachnik and Schwartz (1963)
segmented a ship model at seven stations and interconnected the model parts using an
aluminum flexure beam. These models are essentially hydroelastic models and the hull

vibratory responses are included in the measurements.

Recently, Hermanski (1993) measured the wave-induced bending moment on a rigid ship
model. McTaggart (1997) used a hydroelastic model with a continuous flexible backbone

to determine both the wave-induced and whipping bending moments.

2.3.2 Experimental Data Analysis and System Identification
Ship response data are recorded during ship model tests and full-scale measurements.

Data analysis and system identification techniques have been employed to determine the
response characteristics and the coefficients of the assumed mathematical model.
Hutchison (1990) mentioned some applications in determining resistance and
maneuvering characteristics for a full-scale ship. Application to the rolling model tests

showed some good results.

A typical procedure for conducting system identification is described in Ljung (1999).
The most fundamental step is the careful design of the experiments. The recorded
response data must be representative and informative. After data acquisition and
preparation, the form of the mathematical model has to be determined. This is the most
difficult step in the procedure. In some cases, a model with several unknown physical

parameters may be constructed using basic physical laws and other well-established
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relationships. This is a “gray box” model. In other cases some standard mathematical
structures, such as a linear time-invariant model and artificial neural networks, are
assumed without reference to the physical background. The parameters of these models
have no physical interpretation. This is a “black box” model. The final step in the
procedure is to identify the unknown parameters using the experimental data through the
application of estimation methods. The quality of the model is assessed from the

performance when the model is used to reproduce the experimental data.

The analysis of the experimental data could be carried out in threec different domains,
namely, the time domain, the frequency domain, and the probability domain. Numerous
transformation and analysis techniques allow the researchers to move from one domain to
another (Hutchison, 1990). Typical data processing techniques include data filtering,
mean and variance analysis, probability density analysis, auto-correlation analysis, cross-
correlation analysis, auto-spectral density analysis, cross-spectral density analysis,
impulse response analysis, and frequency response analysis. The details of data analysis

techniques are fully presented in Bendat and Piersol (1986), and Ljung (1999).
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2.4 Real-time Techniques for Ship Response Analysis

2.4.1 Application of Real-time Techniques
Real-time techniques have been developed rapidly in the past decades. Their application

in the marine field has helped to improve the operational safety and efficiency. Real-time
estimation is widely used in HRMS systems for monitoring instantaneous ship response.
Real-time forecasting is developed for predicting motions or other responses over an
interval of several seconds. Tan et al. (1993) gives a brief review of these techniques. The
early attempts for real-time prediction of ship responses were made using Kalman
filtering techniques. The mathematical model of the ship response is provided using
seakeeping theory and based on the knowledge of the encountered wave spectrum and
response transfer functions. The main difficulty in this approach is the estimation of the
wave spectrum. Later development involved the application of on-line system
identification techniques. Chung et al. (1990) developed an algorithm in which the wave
excitation information is extracted from the ship motion data. The estimated wave
excitation is extrapolated for the forecasting of the ship motions. Broome and Pittaras
(1990) used the ARMAX models (Auto Regressive Moving Average with eXogenous
input) to identify the ship motion equations in real time. No previous knowledge of the
ship response is required. The mathematical model is formed on-line and conveniently

updated whenever it is necessary.

Recent development is closely associated with the real-time control of ship response and

machinery. The application details and technical issues are presented in Wilson (1997).
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The focus of the real-time techniques is the construction of a mathematical model in the

time domain.

2.4.2 Artificial Neural Networks
Artificial neural networks are a group of cellular computational structures that can be

implemented in both hardware and software forms. One of their capabilities is to
approximate arbitrary functions through an on-line or off-line learning process. This
provides a means to identify and model complex systems without a priori knowledge of
the physical mechanisms. In the past decade, they have become a very popular choice as
a universal “black box™ model for nonlinear systems (Ljung, 1999). A full discussion
about network structures, functional capabilities, learning algorithms, and generalization

performaiuce is presented in Hush and Home (1993).

Artificial neural networks are constructed from individual neurons, which are the basic
computing units in the structure. Static networks are characterized by neuron equations
that are memoryless, thus the output is a function only of the current inputs. Dynamic
networks, on the other hand, are systems with memory. Their neuron equations are
typically described by differential or difference equations. In the multilayer perceptron
(MLP) network, which is the most widely used static network, individual neurons are
arranged in successive layers with the sigmoid nonlinearity as neuron equation. Quite
often each layer is fully connected to the adjacent layers and information is passed only
forward from the input layer through the hidden layer(s) to the output layer. Linear
neurons are commonly used in the output layer to make learning easier. The connecting

weights between the layers are the trainable network parameters that fully determine the

19



relationship between the inputs and the outputs. During the supervised learning process,
the neural network is presented with a set of input-output points and trained to implement
a mapping that matches the sample points as closely as possible. The most popular
learning method for the MLP is the backpropagation algorithm, which uses a gradient
search technique to find the optimum values for the connecting weights. It is an iterative
process of computing the gradient and adjusting the weight values until a minimum error
is located. This leaming process finally selects a “black box” model suitable for the

underlying system.

The most important issue for the network implementation is the generalization
performance, which is a measure of how well the network performs on the actual data
outside the training set. A particular method, cross-validation, has been developed to
monitor generalization performance during the leaming process. It works by splitting the
sample data into two sets: a training set that is used to train the network, and a test set that
is used to measure the generalization performance of the network. During the leaming
process the performance of the network on the training data will continue to improve, but
its performance on the test data will only improve to a point, beyond which it will start to
degrade. It is at this point where the network starts to memorize the data instead of to
learn the function. This is the point at which the leaming process should be stopped.
Cross-validation not only avoids any premature termination, but also improves the

generalization performance of the network.

In the marine field, the MLP networks have been used for ship motion identification by

Haddara & Hinchey (1995), and Haddara & Xu (1999). More applications are associated



with ship control systems. Hardier (1997) developed a maneuverability model using
recurrent neural networks. Zhang er al. (1997) described an on-line trained neutral
network controller (NNC) for the automatic ship control. The focus of these

developments is to take advantage of the leaming ability of the neural networks.
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2.5 Review Summary
An extensive review of the literature indicates that Hull Response Monitoring Systemn

(HRMS) is a developing technology to measure and display the real-time ship response
information. The major ship responses that may require monitoring are ship motions, hull
girder stresses, and wave loads. The results of full-scale measurements and model tests
have shown that the wave-induced vertical bending moment is the significant wave load
component. Since ship structural design is mainly based on the magnitude of allowable
bending moment, it would be preferable for the HRMS system to display the
instantaneous bending moment against allowable values in real time. In most HRMS
systems, the bending moment values are determined from the strain gauge readings based
on linear strain-moment relationship. The transformation results may be affected by the
calibration process and the computational inaccuracies. They need to be validated by
some other estimation results. Significant research has been conducted in an attempt to

estimate hull girder bending moments from ship motion readings.

Ship response analysis could be carried out in three different domains, namely, the time
domain, the frequency domain, and the probability domain. Numerous theories and
transformation techniques allow the researchers to move from one domain to another.
Strip theory, unified theory, and 3-D theories have been developed to solve the regular-
wave problems and formulate the frequency-domain equations. Linear-random theory
transforms the frequency-domain results into probability domain. The resulting statistical
parameters and extreme values are suitable for reliability analysis and performance

assessment. The time-domain results are also transformed from the frequency domain.
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Numerical simulations and Fourier transforms are most common techniques. In addition
to theoretical analysis, full-scale measurements and ship model tests provide the
experimental methods for ship response analysis. System identification techniques have
been combined with the experimental data to determine the unknown coefficients and

terms in ship response models.

More and more real-time techniques have been developed for estimation, forecasting, and
control of ship responses. The fundamental element of the real-time techniques is the
construction of a mathematical model in the time domain. Artificial neural networks have
become a popular choice as a universal “black box” model of nonlinear systems. The
peculiar advantage lies in their capability to approximate arbitrary functions through an
on-line or off-line learing process. This provides a good means to identify and model the

complex systems without a priori knowledge of physical mechanisms.



3. Model Tests
3.1 Experimental Set-up

3.1.1 General Arrangement
The objective of the present work is to identify the time-domain relationship between

wave-induced vertical bending moment and coupled heave and pitch motions. Time
histories of bending moment and ship motions have to be measured during model tests.
The experimental technique involving a segmented model, as seen in Lewis (1954) and

Hermanski (1993), is used in this work.

Model tests were carried out in MUN’s wave tank using a 1:40 ‘R-class Icebreaker’ ship
model. The testing facility consists of a wave tank, an instrumented towing carriage, and
a fully equipped control room. The wave tank has inside dimensions of 58.27m in length,
4.57m in wide, and 3.04m in depth. At one end of the wave tank is a hydraulically
operated, piston type wave generator. At the other end is a parabolic beach for absorbing
and dissipating the incident wave energy. Waves are created in the tank by the translatory
motion of a waveboard, which is electronically controlled from the control room. The
available wave frequencies range from 0.3Hz to 1.2Hz. The towing carriage over the

wave tank is equipped with a dynamometer, which is able to measure the vertical motion

up to 0.4m and rotations within a £30°.

During the model tests, an ‘R-class Icebreaker’ ship model was positioned along the
centerline of the wave tank, and attached to the towing carriage through the

dynamometer. The model was free to move only in the vertical plane, and the forward



speed was provided by the towing carriage. In every test run, five parameters were

measured and recorded in the form of time history. They are:
* Model Speed (m/sec)
=  Wave Elevation (cm)
* Heave Displacement (cm)
* Angular Pitch Displacement (degree)
* Wave-induced Midship Bending Moment (Nm)

In order to measure the wave-induced bending moment amidships, the ship model was
segmented at the midship section. The two segments were joined together by an
aluminum bar, and the hull gap was sealed with medium-resistive latex medical band.

The general arrangement is illustrated in Figure 1.
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Figure 1: llustration of General Arrangement



3.1.2 Model Description
The model used for the tests is a 1:40 scale ‘R-class Icebreaker’.  The hydrostatic

particulars of the ship model are presented in Table 1, and the body plan is shown in
Figure 2. The model hull was made of glass reinforced plastic and segmented at the
midship section. A gap of about Smm was left between the segments to allow the small
deflection of the joint bar. This gap was sealed with medium-resistive latex medical band,
which was attached to the hull surface using duct tape. When the ship model was out of
the tank, three auxiliary bars were added to prevent the overload of the midship section.

They were removed before each calibration and test run.
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Figure 2: Body Plan of 'R-class Icebreaker’ Ship Model
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Table |: Hvdrostatic Pariiculars for 'R-class Icebreaker’ Ship Model

Length between perpendiculars (LPP), m 2.1985
Length of waterline (LWL), m 2.3250
Waterline beam at midships, m 0.4840
Waterline beam at maximum section, m 0.4840
Maximum waterline beam, m 0.4845
Draft at midships, m 0.1735
Draft at maximum section, m 0.1745
Draft at aft perpendicular, m 0.1790
Draft at forward perpendicular, m 0.1675
Equivalent level keel draft, m 0.1735
Maximum section forward at midships, m -0.1850
Area of maximum section, m* 0.0773
Center of buoyancy forward of midships (LCB), m -0.0080
Center of buoyancy above keel, m 0.0970
Wetted surface area, m* 1.3347
Volume of displacement, m’ 0.1190
Center of floatation forward of midships (LCF), m -0.0175
Center of floatation above keel, m 0.1735
Area of waterline plane, m” 0.899
Transverse metacentric radius (BM), m 0.122
Longitudinal metacentric radius (BML), m 24
Center of area of profile plane forward of midships, m -0.0195
Center of area of profile plane above keel, m 0.0895
Area of profile plane, m* 0.3580

The platform structure, the aluminum bar, and the dynamometer formed a considerable

proportion of the ballast on the model. Other lead ballast weights were distributed along

27




the model length and placed as low as possible to assure maximum transverse stability.

The individual weight locations are listed in Table 2, and the model longitudinal weight

distribution is plotted in Figure 3.
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Figure 3: Weight Distribution of ‘R-class Icebreaker’ Model



Table 2: Weight Locations in 'R-class Icebreaker’ Model

Component Mass Aft-edge (cm) Fore-edge (cm) Length
(kg) (from midship) | (from midship) (cm)

Ballast-1 12.005 425 705 28
Ballast-2 8.381 425 64.5 22
Ballast-3 1.964 425 515
Ballast-4 4.056 325 425 10
Ballast-5 4.075 325 425 10
Ballast-6 4.110 -14 -3 : 11
Ballast-7 4.285 -14 -3 11
Ballast-8 1.998 -36.5 -31.5 5
Ballast-9 1.996 -36.5 -31.5 5
Ballast-10 8.607 -58.5 -36.5 22
Ballast-11 12.005 -63.5 -36.5 27
Ballast-12 2.096 -83.5 -74.5 9
Dynamometer 73 -8 8 16
Aft-platform 11.33 -27.5 -1.5 20
Center-platform 1.643 -7.5 7.5 15
Fore-platform 8.667 7.5 275 20
Joint bar 2.348 -22.5 225 45
Ship Hull 245 -110 110 220
Total 121.366

3.1.3 Instrumentation
Five parameters were recorded during model tests. The wave elevation was measured

using a capacitance type wave probe, which was installed on the carriage at a fixed

location about 0.5m away from the model at the midship section. The forward speed was
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measured by a velocity meter on the towing carriage. Heave displacement and angular
pitch displacement were measured using the dynamometer located on the vertical line
through the center of gravity. The wave-induced bending moment was determined from
the strain of the aluminum bar, which was equipped with four strain gauges at the center.

During model tests, a computer on the towing carriage was used to record the

experimental data at a frequency of S0Hz.

The aluminum bar actually functioned as a bending moment transducer. It was machined
from an aluminum 6061 T6 stock. The elastic part is 150mm long and extends 75Smm
fore-and-aft from the midship section. Its cross-sectional shape is 20mmx20mm square.
The strain values were measured using four metal-foil strain gauges mounted along the
loﬁgitudinal center of the bar. The four matched gauges were connected to form a full .
Wheatstone bridge, which compensated for temperature effects and other environmental
noise. A schematic diagram is shown in Figure 4. This design is based on the work of

Wachnik and Schwartz (1963).

treain gauges

Figure 4: Schematic Diagram of the Aluminum Bar









3.2 Experimental Preparation

3.2.1 Bending Moment Calibration
Prior to the model tests, one major concemn is the calibration of the bending moment

transducer. Since the bending moment is linearly proportional to the strain of the
aluminum bar, the calibration was performed by applying a series of known loads to the
bar. The calculated bending moments were combined with the strain gauge readings to
determine the slope and offset constants using a least-square linear fit. In this experiment,
two types of calibration were carried out for validating each other. They are the bench

calibration and the in-situ calibration.

For the bench calibration the aluminum bar was removed from the model and set up as a
cantilever beam. Several known weights were placed at the free end, and the
corresponding bending moments at the strain gauge location were calculated as the
product of loads and distance. These calculated values represent dynamic bending
moments rather than total bending moments. The sagging moments were recorded as
positive values, and the hogging moments were negative. The applied weights, calculated

bending moments, and the strain gauge readings are listed in Table 3.

Table 3: Bench Calibration Results for Dynamic Bending Moment

Load Distance Dynamic BM Digital Reading
W (kg) L (m) M (Nm) X
0 0.215 0 31420
1 0.215 -2.107 31051
3 0.215 -6.321 30300
4 0.215 -8.428 29928
5 0.215 -10.535 29553
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The in-situ calibration took place in the wave tank with the aluminum bar and the strain
gauges mounted on the fully outfitted model. Some known weights were placed initially
at the midship section, and the bending moment was recorded as zero. The weights were
then separated into two equal sets, and moved the same distance in opposite directions.
The calibration process is illustrated in Figure 7. The changes of the midship bending
moment due to the weight movements were calculated as the product of the moved
weight and the distance to the midship section. The changes in the sag direction were
recorded as positive values, and those in the hog direction were negative. The final results

of the in-situ calibration are listed in Table 4.

Figure 7: In-situ Calibration Nlustration



Table 4: In-situ Calibration Results for Dynamic Bending Moment

Moved Weight Distance Dynamic BM Digital Reading
W (kg) L (m) M (Nm) X
4 0 0 36534
4 0.25 9.8 35007
4 04 -15.68 33991
4 0.5 -19.6 33326
4 0.6 -23.52 32649
4 0.7 -27.44 31910
4 0.8 -31.36 31254
4 09 -35.28 30534
4 1.0 -39.2 29827

Both bench calibration data and in-situ calibration data are plotted together in Figure 8.
There is a perfect linear relationship between the midship dynamic bending moment and
the strain gauge readings. The straight line passing through the bench calibration points is
parallel to the line through the in-situ calibration points. After performing the least-

squares linear fit, we got the bench calibration equation

M =0.005637X -177.13 (1)
and the in-situ calibration equation

M =0.005800X —-212.8 (2)

The slope values in two equations are very close to each other. The difference in offset
values is caused by the zero adjustment of the instrument. In bench calibration the initial

value of the digital reading was set to 31420, while for in-situ calibration it was 36534.




These offset values, however, have no effect on the final results since wave-induced
bending moments are always taken as the relative change with respect to the stillwater

measurements. Therefore, the bench and in-situ calibrations are in excellent agreement.
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Figure 8: Calibration Results for Bending Moment

Before the model tests, other measuring instruments were also calibrated. The positive
direction for the heave displacement and the wave elevation was set vertically upward.

For the angular pitch displacement, the positive direction was set bow upward.

3.2.2 Free Response Tests
Prior to the model tests in the waves, the free response tests were carried out to determine

the natural frequencies of the ship responses. The model was excited and released in calm



water, and the declining responses were recorded. The coupled heave and pitch responses

are shown in Figure 9, and the midship bending moment response is shown in Figure 10.

From the free response results, the natural frequency of the coupled heave and pitch
motions is about 1.0Hz. For the midship bending moment, there are two components
present in its free response data. While the low-frequency component corresponds to the
coui)led heave and pitch motions, the high-frequency component is associated with two-

node mode ship hull vibration. The two-node mode natural frequency is about 6.5Hz.

Heawe Free Response
2 T L T
A
1 i ] :
Sf 0 " ’; /‘A\. / i ——-\:._/'ﬂ'
2 1 S
g . -
T
2r _,j'; -
_N
3 L . : =
0 1 2 3 4 5 6
Pitch Free Response
15 : : : ;
P PR, T hh—\"A‘—’\r‘\_.
1+ 1
g 05+ A~ 1
g 0 r “‘ - ™~ h__/"“m"\_,\,_f
a i AN
'0.5 (" ‘.\ ‘ 1
N o
(v
-1 1 1
0 1 2 3 4 5 6
Time (sec)

Figure 9: Coupied Heave and Pitch Free Responses
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3.3 Scope of the Experiments

3.3.1 Stationary Tests in Head Waves
Stationary tests were carried out in regular head waves, JONSWAP random head waves,

and broad-band random head waves.

Regular head waves with different frequencies were generated in the wave tank. In each
test run, 120sec long experimental data were recorded in five channels. The initial part of
the time history was obtained in calm water, which was used as the zero value for data

analysis. The data files of regular wave tests are listed in Table 5.

Table 5: Stationary Tests in Regular Head Waves

Wave Frequency Wave Height Data Files
(Hz) (cm)
0.3 6 W3h6.dat
04 6 W4h6.dat
0.5 6 W5h6.dat
0.6 6 W6h6.dat
0.7 6 W7h6.dat
0.8 6 W8h6.dat
0.9 6 WOh6.dat
1.0 6 W 10h6.dat
1.1 6 W1 1h6.dat

Six groups of JONSWAP head waves were generated in the wave tank. For the test runs
within the same group, the wave time histories were generated from the same spectrum.

In each test run, 500sec long experimental data were recorded in five channels. The initial
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part of the time history was obtained in calm water, which was used as the zero value for

data analysis. The data files of JONSWAP wave tests are listed in Table 6.

Table 6: Stationary Tests in JONSWAP Head Waves

Peak Frequency Significant Wave Height Data Files
Fun (H2) H; (cm)
0.7 5.0 J7hSc.dat
07 7.5 J7h75a.dat, J7Th75b.dat
J7h75¢c dat
0.5 5.0 J5h5a.dat, JShSb.dat
J5hSc.dat
05 1.5 J5h75a.dat, J5h75b.dat
J5h75c.dat
0.6 5.0 J6h5a.dat, J6h5b.dat
J6hS5c.dat
0.6 75 J6h75a.dat, J6h75b.dat
J6h75¢c.dat

Two groups of broad-band random wave tests were carried out in the wave tank. For the
test runs within the same group, the wave time histories were generated from the same
spectrum. In each test run, 500sec long experimental data were recorded in five channels.
The initial part of the time history was obtained in calm water, which was used as the
zero value for data analysis. The data files for broad-band random wave tests are listed in

Table 7.




Table 7: Stationary Tests in Broad-band Random Head Waves

Frequency Range Significant Wave Height Data Files
F (H2) H, (cm)
03~12 7.5 B75a.dat, B75b.dat
B75c.dat
03-~1.2 50 B5a.dat, BSb.dat
BS5c.dat

3.3.2 Stationary Tests in Following Waves
Stationary tests were carried out in regular following waves, JONSWAP random

following waves, and broad-band random following waves.

Regular following waves with different frequencies were generated in the wave tank. In

each test run, 120sec long experimental data were recorded in five channels. The initial

part of the time history was obtained in calm water, which was used as the zero value for

data analysis. The data files for regular wave tests are listed in Table 8.

Six groups of JONSWAP waves were generated in the wave tank. For the test runs within

the same group, the wave time histories were generated from the same spectrum. In each

test run, 500sec long experimental data were recorded in five channels. The initial part of

the time history was obtained in calm water, which was used as the zero value for data

analysis. The data files for JONSW AP wave tests are listed in Table 9.
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Table 8: Siationary Tests in Regular Following Waves

Wave Frequency Wave Height Data Files
(Hz) (cm)

0.3 6 fw3h6.dat
0.4 6 fw4h6.dat
0.5 6 fw5h6.dat
0.6 6 fw6h6.dat
0.7 6 fw7h6.dat
0.8 6 fw8h6.dat
0.9 6 fwOh6.dat
1.0 6 fw10h6.dat
1.1 6 fwl1h6.dat

Table 9: Srationary Tests in JONSWAP Following Waves

Peak Frequency Significant Wave Height Test Data Files
Fn (Hz) H, (cm)
0.5 50 Fj5hSa.dat, FjSh5b.dat
0.5 7.5 Fj5h75a.dat, Fj5h75b.dat
0.6 50 Fj6h5a.dat, Fj6h5b.dat
0.6 7.5 Fj6h75a.dat, Fj6h75b.dat
0.7 50 Fj7h5a.dat, Fj7hSb.dat
0.7 1.5 Fj7h75a.dat, Fj7h75b.dat

Two groups of broad-band random wave tests were carried out in the wave tank. For the
test runs within the same group, the wave time histories were generated from the same
spectrum. In each test run, 500sec long experimental data were recorded in five channels.

The initial part of the time history was obtained in calm water, which was used as the
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zero value for data analysis. The data files for broad-band random wave tests are listed in

Table 10.

Table 10: Stationary Tests in Broad-band Random Following Waves

Frequency Range Significant Wave Height Test Data Files
F (Hz) H; (cm)
03-~1.2 5.0 Fb5Sa.dat, FbSb.dat
03~12 7.5 Fb75a.dat, Fb75b.dat

3.3.3 Towing Tests in Head Waves
Towing tests were carried out in calm water, regular head waves, and JONSWAP random

head waves with a forward speed 0.5m/sec.

A towing test in calm water was carried out prior to each group of test runs. The purpose
of these tests is to measure the ship responses due to the model wave system in calm
water. In each test run, 90sec long experimental data were recorded in five channels. The
initial part of the time history was obtained in stationary state, which was used as the zero

value for data analysis.

Regular head waves with different frequencies were generated in the wave tank. In each
test run, 90sec long experimental data were recorded in five channels. The initial part of
the time history was obtained in calm water stationary state, which was used as the zero
value for data analysis. Prior to each group of test runs, a towing test in calm water was
carried out. The data files for the towing tests in regular wave and the corresponding calm

water tests are listed in Table 11.
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Table - Towing Tests in Regular Head Waves

Wave Frequency Wave Height Calm Water Test Data Files
(Hz) (cm)
03 6 CO5b.dat SSw3h6.dat
04 6 CO0Sb.dat SSw4h6.dat
0.5 6 CO05b.dat S5w5h6.dat
0.6 6 CO0Sb.dat S5w6h6.dat
0.7 6 COSb.dat S5w7h6.dat
0.7 5 C05c.dat S5w7hS . dat
0.8 5 C05c.dat S5w8hS5.dat
09 5 CO05c.dat S5w9hS5.dat
1.0 5 COSc.dat S5w10hS.dat
1.1 5 CO05c.dat S5wllhS.dat

JONSWAP random waves were generated in the wave tank. Due to the limited length of

the wave tank, a single test run did not provide a data record long enough for random data

analysis. Therefore, a JONSWAP wave time history of 450sec long was divided into

seven segments, which were generated sequentially in the wave tank. A separate towing

test was performed for each wave segment. The time histories from the seven segment

runs were finally joined together to form an experimental data record of 350sec length. In

each segment run, 120sec long experimental data were recorded in five channels. The

initial part of the time history was obtained in calm water for the stationary model. This

was used as the zero value for data analysis. Prior to each segment run, a towing test in




calm water was also carried out. The data files for towing tests in JONSWAP wave

segments and the corresponding calm water tests are listed in Table 12.

Table 12: Towing Tests in JONSWAP Head Waves

JONSWAP Wave Calm Water Tests Test Segments Data
Fan=0.7Hz COSc.dat S5j7rl.dat, S5j7r2.dat
H;=7.5cm S$5j7r3.dat, S5j7r4.dat

C05d.dat $5j7r5.dat, S5j7r6.dat
S5j7r7.dat
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4. Frequency-domain Analysis

4.1 Mathematical Model
For a ship advancing at constant mean forward speed with arbitrary heading in regular

waves, the six-degree-of-freedom motion responses and the wave-induced bending
moment could be computed theoretically. Under the assumption of linear response and
ship port/starboard symmetry, the vertical-plane motions are uncoupied from the
horizontal-plane motions. Both the wave excitation forces and the resultant oscillatory

motions are assumed to be linear and harmonic at the frequency of wave encounter .,

w,’U (3)

where @)y is the wave circular frequency, U is the ship forward speed, and p is the wave
direction angle. The equations of coupled vertical motions and wave-induced bending
moment can be formulated using a strip theory. It is customary to use two sets of
coordinate systems as shown in Figure 11: an inertia system (Xo, Yo. Zo) and a body
system (X, y, z). The origin of the body system is attached to the center of gravity of the
ship, with its x-axis pointing forward, y-axis pointing to port and z-axis pointing upward.
The inertial system is fixed in space with its coordinate axes parallel to that of the body

system before the ship motion starts.



-
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In this work we use the equations given in Lewis (1989), which are based on the work of

Figure 11: Ship Motions Coordinate Systems

Salvesen ez al. (1970). The equations of motion for a rigid-body ship are expressed as

(M +A,);+B,,;+Cy,z+ A0 +B,0+C,0=Fe™ (4)
A7+ Byt +Coz+ (I + Ay )0 + B0 +C,0 = Fye'™
where z is the heave displacement of the center of gravity, 0 is the angular pitch
displacement, M is the mass of the ship, I is the mass moment of inertia; F; and Fs are
complex amplitudes of the exciting force and moment, respectively. The force and

moment are given by the real part of F.e“’ (j=3, 5). The positive direction for z is

vertically upward, and for © is bow downward. The added mass and moment Aj,
damping coefficients By, and restoring coefficients Cj are expressed in terms of the

sectional coefficients as follows:
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Ay =Ia33d§ B, = Ib33d§ (5)
L L

U
Ay = "Igassdé '""w +B;; By, =‘I§b33d§ +UA;y,
L e L
U
Ag = —Jlga”d{ "‘57,833 B; = -I§b33d§ ~UA;
L c L
U" I d

P - 2 U-
A = Ié'assdg *“a‘,‘i'Aas By, = Iﬁ‘b,,dé + w_z—Bss
Cy, = [cy,dE = [ peBE)dE
Cy;=Cy = -J-gcjjdg = —Igpr &)ds

Ci = I§1c33d§ =J'¢ *pgB(&)dE
L L
For head sea conditions (u=180deg), the wave excitation forces F; and Fs can be
simplified as

F, =g, J-e"‘ée'mg) [cy; —@y (®,a,, —ib,;)}dE (6)
L

U .
—wy (W, a;; —ib;;) }dé
[/}

[ 4

F; =g, I Gl {5["33 =Wy (W, ay; —iby;)] -

L

In equations ( 5 ) and ( 6 ), a33 is the sectional heave added mass, bs; is the sectional
heave damping, c33 is the sectional restoring force pgB, B is the sectional waterline beam,
T 1s the mean sectional draft 5/B, and ¢, is the incident wave amplitude. The sectional
coefficients as3 and bs;; are obtained by solving the two-dimensional hydrodynamic

problems. All coefficients are frequency-dependent.

For a rigid ship hull, the wave-induced vertical bending moment at an arbitrary
longitudinal location xo can be expressed in terms of the resulting motions. If the sag

direction is taken positive, the expression is



y(%)=A:+B:+C,z+DO+EO+HO+ye™ )

where

, - U
A = ‘I:‘ (m, +a,, W& —x;)dE +f w_tz—b”d§ *

B, —J‘:wbu (€ —x)d _I:;'Uand‘f
C,- = ‘_":v c3(§ —x,)dE
, gV 4
D, =_‘:W(mn +ay)e€ 'xo)d§+_[:-z,¢_za33d§_."jw_¢3bnx°d§
UZ
E, -fbng(‘: ~X%)dg *‘_‘:W;)t_:bssd‘f +I:~Ua33x°d§
H, = [ cnl(€ - x,)dE

The bending moment component y.e** results from the wave excitation forces, and the

complex amplitude y; can be simplified for head sea conditions as

(%)

o,

L ) U . .
¥; =6a Ie'k‘e e {(g =x5)lc3; — @y (W a5 —ibs;)] - W, (@, a;, —'bss)}dé

L

In linear theory, the steady-state harmonic responses z, 0, and y(x¢) have the same
encounter frequency e, but different phase shifts. Consequently, they can be expressed
in the complex form as

z=z,e™ (10)

0=0.,"

¥(x3) =y, (x5)e

o,
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The complex amplitudes z;, 6, and y,(xp) are functions of both the magnitude and phase
of the responses. Substituting expression ( 10 ) into equations ( 4 ) and ( 7 ), and

eliminating the common term &', the resulting equations are

[‘wez(M +A;)+Cy; +iw, By )z, +(_“’e2A35 +Cy5+iw, B}, = F, (11)
[w, (I + Ay) +Cys +iw B, 8, +(~w,° Ay, +Cy; +iw B,,)z, = F,

and
Yol%)=(-A,@,° +C, +iw,B,)z, +(-D,w,’ + H, +iw,E,)0, +y, (12)

Equations ( 11 ) and ( 12 ) constitute the frequency-domain model for vertical ship

motions and bending moment. The solution to equation ( 11 ) is easily obtained as

. =GS-FQ (13)
* " PS-QR
g ~FP-ER
* PS-OR
where
P=-0 (M +A;)+C, +iw_B,, (14)

Q=-0A;+Cy +iw, By

R=-w A, +Cg,+iw, B,

S=-0, (I + Ay)+Cys +iw By,
Substitution of ( 13 ) into ( 12) gives the solution for the wave-induced bending moment
amplitude y.(x¢). The ratios between the complex response amplitudes and the wave

amplitude are frequency response functions as shown below,



H:(w,)=—z"- (13

a

H,@,)=2¢

H_\- (wt)z.y"(i)

a

The modulus of the frequency response function is a Response Amplitude Operator
(RAQO). These frequency-domain solutions could be obtained either from theoretical
computations of two-dimensional hydrodynamic proviems, or from experimental model

tests in a wave tank.
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4.2 Regular Waves Data Analysis

4.2.1 Frequency Analysis Method
Following Ljung (1999), if the input signal u(t) to a linear system has the form

u(t) = uy cos(wr +a) (16)

then the output signal y(t) will be given by

y(t) = u,|H (w)|cosfax +a +arg H ()] + V(1) + transient (17)

where v(t) is noise. The transient response eventually decays and only the steady state
response remains. The amplitude and the phase of H(w) are related to the amplitudes and
phase angles of u(t) and y(t). This provides a means to estimate the frequency response

function H(w) from a series of sinusoidal-wave tests with different frequencies.

For each sinusoidal-wave test, the amplitudes and phase angles of u(t) and y(t) can be
determined first from the time histories of the input u(t) and the output y(t), respectively.
The existence of noise v(t) in the signal makes it difficult to determine the required
parameters accurately. Since the steady state part of y(t) is harmonic, it is possible to
average out the noise using the correlation method described by Ljung (1999). From the
amplitudes and phase angles of u(t) and y(t), the frequency response function H(w) can
be calculated. The following algorithm was used in this work

Yo (@) (18)

uy (@)
arg H(w) = arg y(w) —argu(@)

H @)=
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where

Yo@)=2{I_*(y)+1,*(y) (19)

LGy ; +km,(k=0,1)

arg y(@) = —arctan

c

I.(y) =%2~: y[n]cos(%n)

a=l K3

1 & @
I.(y)=— sin(—n)
(y Nz;y[n]l 7

5

and

uq(w)=2\[1c:(u)+[,:(u) (20)

I, (u)

+km,(k=01)
u)

arg u(w) = —arctan

c

1 ¢ )
I(u)= qu[n]cos(T n)

a=1 5
N

I,w)= %Zu[nlsin(%n)

n=} s

Here o is the circular encounter frequency and f; is the sampling frequency taken as
50Hz. The effect of the noise v(t) diminishes to zero as the number of data points, N

approaches infinity.

4.2.2 Results of Regular Wave Tests
From the frequency analysis of the regular wave tests data, we could determine the

amplitudes and phase angles of the wave elevation, the heave displacement, the angular
pitch displacement, and the wave-induced midship bending moment. Based on these

values, the frequency response functions can be estimated. The modulus (RAO) was
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calculated as the ratio of the response amplitude to the wave amplitude, and the phase

angle of H(w) is the phase difference between the response and the wave elevation.

The results of stationary tests in head waves are presented in Table 13 and Table 14. The

results of stationary tests in following waves are presented in Table 15 and Table 16.

For each towing test in regular waves, a towing test in calm water was always performed
previously. The mean values of the calm water test data were subtracted from the regular
wave test data to determine the wave-induced responses. Since the wave probe was fixed
to the towing carriage, the identified frequency was the wave encounter frequency. The

results of towing tests in head waves are presented in Table 17 and Table 18.



Table 13: Results of Stationary Tests in Regular Head Waves

F Wave BM BM Heave | Heave Pitch Pitch
(Hz) | Amp. | Amp. Pha. Amp. Pha. Amp. Pha.
(cm) | (Nm) (deg) (cm) (deg) | (deg) | (deg) |
W3h6 | 0.294 | 3.40 3.27 221 3.29 6.0 091 73.5
W4h6 | 0.392 | 3.31 383 205 3.05 5.8 0.75 87.5
W5h6 | 0490 | 3.56 7.39 203 3.02 9.0 1.28 81.1
W6h6 | 0.588 2.82 8.89 205 1.94 8.5 2.06 92.1
W7h6 | 0.685 | 2.70 1048 196 1.35 16.6 2.37 101.7
W8h6 | 0.784 3.28 13.75 188 0.88 238 2.36 106.2
Woh6 | 0.882 | 3.30 10.82 194 0.52 833 1.82 104.1
W10h6 | 0.980 4.13 6.14 222 222 181.3 1.32 132.2
WIilh6 | 1.077 | 3.32 6.63 230 0.54 150.1 0.79 166.3
Table 14: Frequency Response Functions of Stationary Tests in Regular Head Waves
F [H| ang(H,) [H} ang(H,) |He| ang(He)
(Hz) | (Nm/cm) (deg) (cm/cm) (deg) (deg/cm) (deg) |
0.294 0.962 221 0.968 6.0 0.268 73.5
0.392 1.157 205 0.921 5.8 0.226 87.5
0.490 2.076 203 0.848 9.0 0360 81.1
0.588 3.152 205 0.688 8.5 0.730 92.1
0.685 3.881 196 0.500 16.6 0.878 101.7
0.784 4.192 188 0.268 23.8 0.720 106.2
0.882 3.279 194 0.158 833 0.551 104.1
0.980 1.487 222 0.538 181.3 0.320 132.2
1.077 1.997 230 0.163 150.1 0.238 166.3
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Table 15: Results of Stationary Tests in Regular Following Waves

F Wave BM BM Heave | Heave Pitch Pitch
Hz) | Amp. | Amp. Pha. Amp. Pha. Amp. Pha.
(cm) | (Nm) | (deg) (cm) (deg) (deg) (deg) |
fw3h6 | 0.295 | 349 291 109 3.21 1.96 0.89 2555
fw4h6 | 0.393 | 3.03 3.63 149 2.68 2.51 0.62 279.3
fw5hé | 0.491 3.98 7.09 159 323 3.30 1.38 2716
fwéh6 | 0.590 | 3.04 8.14 163 1.79 -2.01 1.89 271.2
fw7h6 | 0.689 | 3.09 11.29 177 1.41 2.07 235 271.7
fw8h6 | 0.787 | 3.40 13.69 190 0.72 -0.41 2.30 2854
fwoh6 | 0.886 3.70 17.68 218 0.65 72.7 2.13 287.1
fwl0h6 | 0.983 249 16.74 241 314 124.6 1.43 284.2
fwllh6 | 1.081 | 2.94 10.57 272 051 125.1 0.72 3374
Table 16: Frequency Response Functions of Stationary Tests in Regular Following Waves
F |H,| ang(H,) [H,| ang(H,) [Hel ang(Hy)
(Hz) | (Nm/em) (deg) (cm/cm) (deg) (deg/cm) (deg) |
0.295 0.834 109 0.920 1.96 0.254 255.5
0.393 1.198 149 0.884 2.51 0.203 279.3
0.491 1.781 159 0.812 3.30 0.347 271.6
0.590 2678 163 0.589 -2.01 0.620 271.2
0.689 3.652 177 0.456 2.07 0.760 2777
0.787 4.027 190 0.212 041 0.676 2854
0.886 4.778 218 0.176 72.7 0.576 287.1
0.983 6.723 241 1.261 124.6 0.576 284.2
1.081 3.595 272 0.172 125.1 0.246 3374




Table 17: Results of Towing Tests in Regular Head Waves

En.F | Wave | BM BM Heave | Heave | Pitch | Pitch
(Hz) | Amp. | Amp. Pha. Amp. Pha. Amp. Pha.
(em) | (Nm) | (deg) (cm) (deg) (deg) | (deg)
S5w3h6 | 0.333 | 2.82 2.30 2320 290 6.12 0.81 92.3
SSw4h6 | 0450 | 2.23 3.12 2189 2.24 7.65 0.96 944
SSw5h6 | 0.573 | 2.61 5.84 207.8 253 10.56 1.64 98.7
S5w6h6 | 0.702 | 3.02 9.71 190.0 241 7.56 222 99.2
S5w7h6 | 0.840 | 295 12.39 167.6 1.99 8.43 3.26 103.0
SSw7h5 | 0.841 | 2.57 11.73 163.1 1.68 3.04 2.77 99.7
S5w8h5 | 0.987 | 1.37 13.09 79.7 131 306.9 3.20 243
S5w9hs5 | 1.135 | 2.90 4.86 4.6 0.34 356.3 1.98 236
S5wl0hS | 1.292 | 3.23 7.65 -108.1 043 76.95 0.26 64.7
SS5wllh5 | 1454 | 3.12 4.65 -113.2 0.25 108.3 0.19 159.2
Table 18: Frequency Response Functions of Towing Tests in Regular Head Waves
En. F |H,| ang(H,) [H,| ang(H,) |He| ang(Hp)
(Hz) | (Nm/em) (deg) (cm/cm) (deg) (deg/cm) (deg)
0.333 0.82 2320 1.03 6.12 0.29 92.3
0.450 1.40 2189 1.00 7.65 043 944
0.573 224 207.8 0.97 10.56 0.63 98.7
0.702 322 190.0 0.80 1.56 0.74 99.2
0.840 4.20 167.6 0.67 8.43 1.11 103.0
0.841 4.56 163.1 0.65 3.04 1.08 99.7
0.987 9.55 79.7 0.96 306.9 234 243
1.135 1.68 4.6 0.12 356.3 0.68 236
1.292 237 -108.1 0.13 76.95 0.08 64.7
1.454 1.49 -113.2 0.08 108.3 0.06 159.2
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4.3 Random Waves Data Analysis

4.3.1 Spectral Analysis Method

The Response Amplitude Operators (RAOs) can be estimated from the random test data

using a spectral analysis method (Ljung, 1999). An algorithm in continuous form is given

in Thomson (1981) as

T )
X (@) = lim [ x@e=dr

T .
¥(@)=lim jo y(t)e™™ d
54(@) = lim L X @)X @)
5, (@) = m Y @) @)

S, @)
S .. ()

|H ()| =

The discrete form used in this work is as follows,

-
——r

Xy =3 xinle ¥
n=l
N —ik—n

Y(k)=Y ylnle ¥

Rt

1 .
=X
S (k) N (k)X (k)

iy

1
Swlk) =

4

Y(k)Y' (k)

N0

k)| =
|H(&)| 5

fk)=f, -ﬁ-,(os k<N-1)



From linear-random theory, the above RAO values should have a good agreement with

the frequency response functions estimated from the regular wave tests.

4.3.2 Results of Random Wave Tests
For each stationary test in random waves, 500sec long experimental data were recorded

in five channels. Since the initial S0sec segment consisted of the calm water data and the
transient response data, only the latter 450sec long experimental data could be used for
spectral analysis. For the towing test in random waves, 350sec long time histories were
formed by joining seven segments. The estimated frequency was the encounter

frequency.

For stationary tests in head waves, representative results of the JONSWAP random wave
tests and the broad-band random wave tests are plotted in Figure 12 and Figure 13,
respectively. The circle points in the figures are RAO values obtained from the stationary

tests in regular head waves. Other test results are presented in Appendix III.

For stationary tests in following waves, representative results of the JONSWAP random
wave tests and the broad-band random wave tests are plotted in Figure 14 and Figure 15,
respectively. The circle points in the figures are RAO values obtained from the stationary

tests in regular following waves. Other test results are presented in Appendix II.

For towing tests in head waves, the results of the JONSWAP random wave tests are
plotied in Figure 16. The circle points in the figure are RAO values obtained from the

towing tests in regular head waves.
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From Figure 12 to Figure 16, there is an excellent agreement between the RAOs obtained
from both regular wave tests and random wave tests. According to linear-random theory,
this agreement validates the assumption of linearity that is adopted in the current work. In

addition, the accuracy of the experimental measurements is also validated.



4.4 Numerical Computations
In order to validate the experimental results theoretically, the frequency response

functions of heave, pitch, and midship bending moment for head sea stationary conditions

were computed using a strip theory. The two-dimensional sectional coefficients and

excitation forces were determined by Lewis-form method. The computation details are

described in Appendix I, and the results of the frequency response functions are presented

in Table 19. The comparisons between the calculated results and the experimental results

obtained from the regular wave tests are shown in Figure 17 to Figure 19. It should be

noted that the positive direction for angular pitch displacement is bow downward in the

computations, but bow upward in the experiments. This causes a 180° difference in pitch

phase angles, as seen in Figure 19.

Table 19: Frequency Response Functions from Numerical Compuiations

F [H,| ang(H,) [Hy ang(H, |He| ang(Hp)

(Hz) | (Nm/cm) (deg) (cm/cm) (deg) (deg/cm) (deg)
0.392 0.6829 181.75 0.921 -1.18 0.389 267.68
0.490 1.345 185.64 0.848 -2.54 0.537 266.17
0.588 2.130 188.70 0.749 -4.89 0.662 263.81
0.685 3.208 191.35 0.542 -8.16 0.761 260.61
0.784 3.939 196.74 0.258 -8.05 0.721 256.64
0.882 4.017 205.55 0.119 111.62 0.527 249.03
0.980 3.566 221.71 0.332 110.95 0.167 241.30
1.077 2.695 23295 0.271 85.75 0224 41.04
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The computed frequency response functions of heave and pitch motions agree well with
the experimental results for the frequency range from 0.4Hz to 0.9Hz. There is a
discrepancy for frequencies 1.0Hz and 1.1Hz. This is the frequency range where

resonance occurs. The assumption of linearity may not be valid in this range.

For the frequency response functions of wave-induced bending moment, the agreement
between theoretical and experimental values is not as good as in the case of motions. This
1s expected since errors in the motion computations produce larger errors in the bending

moment computations.

Due to time and resource constraints, we used a strip theory based on Lewis-form
method. It has limitations in computational accuracy. A more sophisticated theory will

yield better results.



4.5 Frequency-domain Results
In the previous sections, the obtained frequency response functions or RAOs expressed

the frequency-domain relationship between ship responses and wave elevation. Following
linear-random theory, they can be used to estimate the statistical parameters of the ship

responses from the wave spectrum.

In this work, the main objective is the relationship between wave-induced bending
moment and ship motions. The input signal is the heave or pitch motion instead of the
wave elevation. Therefore, the RAOs should be calculated as the ratios between the
bending moment amplitudes and the motion amplitudes. These amplitude values are
available from both the experimental results and the computational results presented in

the previous sections.

Based on the regular wave results given in Table 13, Table 15, and Table 17, the RAOs
of the heave-moment system are calculated and plotted in Figure 20. The RAOs of the
pitch-moment system are calculated and plotted in Figure 21. The results are dependent

on the forward speed and the heading angle.

Given the power spectra of the ship motions, the statistical parameters of the wave-

induced bending moment can be estimated from the above RAOs.
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Although the frequency-domain relationships shown in Figure 20 and Figure 21 are
suitable for the statistical estimation of the bending moment parameters, they are not

sufficient for real-time estimation of the instantaneous values. A time-domain

relationship is needed for this purpose.
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5. Time-domain Analysis

5.1 Mathematical Formulation

In this work, the objective is to estimate the instantaneous bending moment from ship
motion measurements. This real-ime estimation procedure requires a time-domain
relationship between the wave-induced bending moment and ship motions. It can be

obtained by transforming the frequency-domain model into the time domain.

The frequency-domain model of ship vertical motions and wave-induced bending
moments is expressed by equations ( 11 ) and ( 12 ). For steady-state solutions, both the
motions and the bending moments are sinusoidal with a frequency @ equal to the

encounter frequency. Therefore the equations can be written in the complex form as

A(w) X () + B(iw) X, (w) = F,iw)U (w) (23)
Ciw)X .(w)+ D(iw) X, (w) = F; (io)U (w)

and
Y(w) =a(io)X . (o) + B(iw) X, () + L{iw)U(w) (24)

where Y(w), U(w), X (®) and Xg(w) are complex amplitudes of the bending moment y(t),
wave elevation {(t), heave displacement z(t) and pitch angle 0(t), respectively. Other
complex coefficients in equation ( 23 ) and ( 24 ) can be expressed in terms of the

coefficients in equations (11 ) and ( 12),
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A(iw) =[Cy; —0* (M + A,)]1+i(wB,,) (25)
B(iw) = (C,s —@° Ay ) +i(wB,;s)

C(iw) =(C,, —0*A,,) +i(wB,,)

D(iw) =[Cs —w* (I + Agg)1+ i(@B,)

F,(iw) =_£_.

U(w)

and

a(iw) =(C, -@*A,) +i(wB,) (26)
B(iw)=(H,-w’D,)+i(wE,)

2
L(lw)——U(w)

The motion responses X,(w) and Xgo(w) can be obtained from equation ( 23 ) in terms of

the wave complex amplitude U(w) as

[X:(w)J I:A(iw) B(iw)]“[ﬁ(iw)] (27)
= U (w)
X,(®) | [Clw) D(iw)| |F,(iw)
Equation ( 27 ) can be rewritten in the following form
U (@)= 2UDUW) ~BUa)Cha) y () (28)
D(iw)F,(iw) - B(iw)F,(iw) " *
or
Uw)= A(iw)D(iw) - B(iw)C(iw) X, @) (29)

" A(io)F,(iw) - C(iw)F,(iv)
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Substitution of equation ( 28 ) into equation ( 24 ) results in the following equation

Y(w)=a(iw)X (w)+b(iw) X, (w) (30)

where

A(iw)D(iw) — B(iw)C(iw)

- - - — L(iw) (31)
D(iw)F,(iw) - B(iw) F;(iw)

aiw) =a(io)+

b(iw) = B(iw)

Equations ( 30 ) and ( 31 ) express the frequency-domain relationship between the
bending moment and ship motions. This relationship is independent of the wave
excitation. The complex coefficients a(iw) and b(iw) are frequency-dependent for any
combination of ship speed and heading angle. To get estimates for the instantaneous

bending moment, we have to transform equation ( 30 ) to the time domain.

Tick (1959) has shown that frequency-dependent equations actually represent systems
that are described in the time domain by equations involving convolution integrals. Under
certain conditions they may be approximated by constant-coefficient differential
equations. Following the approach of Tick (1959), we can first apply the inverse Fourier
transform on both sides of equation ( 30 ) and obtain a convolution integral equation in

the time domain as
y0 = [Th,@2e-t)dr+ [ h @0 -1)d7 (32)

where
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(33)
1 ,
h(t)=—| b(iw)e " dw
W)= [ “biw)
Since this is a real-valued system, the complex coefficients in equation ( 30 ) must have
Hermitian symmetry as

a(-iw)=a (iw) (34)
b(-iw) =b"(im)

If a(iw) and b(iw) can be approximated by polynomials, their real parts must be even
polynomials and the imaginary parts must be odd polynomials to satisfy the above

Hermitian symmetry. The simplest approximation uses the second order polynomials as
a(io) = (A®* +A4,) +i(A,w) (35)
b(iw) = (Bw* + B,) +i(B.w)

—oo L) < too

where A,,B, are real-valued constants. Then,

h, (1) =—-AS(1)+ A,8(1)+ A8(T) (36)
h,(7)=-B,6(1)+ B,8(1) + B,5(7)

where 6(t) is the Dirac delta-function. Substituting ( 36 ) into equation ( 32 ) and

performing the integration, we get a 2™ order constant-coefficient differential equation

y(t) =-AZ(1)+ A,3() + A, 2(t) - BO (1) + B,O(r) + B,O () (37)
—co ) < +oo
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In the above derivation, the approximation given in equation ( 35 ) is assumed to be valid

for the full frequency range (-oo, +o0). Since the ship motions and the wave-induced

bending moment are both narrow-band processes, we need only consider the

approximation in a narrow-band frequency range. The approximation thus becomes

a(iw) = (C,w* +C,) +i(C,w)
b(iw) = (D,w* + D,)+i(D,w)
o, <lo| <o,

Substitution of ( 38 ) into equation ( 30 ) results in

Y(@)=[(Cw* +C,) +i(C,w))X_(@)+[(Do* + D,)+i(D,)]X , ()
o, <|o| <,

Taking the inverse Fourier transform of both sides, we get
y(@) = iaj'wzx_(w)e"“'dw+laj'iwx-(w)e""'dw+L(‘ij'x-(w)e‘"dw
r - 2r 7, C 2t s T
+-L B [o'x, (w)e‘"dw+—l—5,Iia1X9 (w)e""'dw+—l-"D‘3IXe (@)™ dw
2z ) b SEN4 2T
w, <|oj<w,

Using the following identities:

2
Iwz X(w)e“dw = -d—,[f X (w)e™dw)
o d'- o

j'iwx @e“dw =2 j' X (@)e™ dw)
dr)

(38)

{39)

{40)

(41)

equation ( 40 ) reduces to a second order constant-coefficient differential equation in the

following form:
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y@0) =-CZ(0)+C.2)+C,2(t) - DB (1) + D.8(1) + D P(1) (42)
o, <o <o,
This is a time-domain approximation for a narrow-band process. For more complicated
cases, the coefficients a(im) and b(im) may be approximated by higher-order polynomials,
and the convolution integral equation ( 32 ) reduces to a constant-coefficient differential

equation of a higher order.



5.2 Neural Networks Model

5.2.1 Structure and Algorithm
There are six unknown coefficients involved in the time-domain model given by equation

(42). It is not easy to determine the individual values of these coefficients. Instead, we

can express this parametric model in the following form:
y(t) = F,[2(0). (1), 2().6 (1).6(0).0(r)] (43)

A neural network model is employed in this work to approximate the function F, in
equation ( 43 ). This is achieved through a leaming process using a set of known input-

output data.

Artificial neural networks constitute a set of cellular computational structures that can be
implemented in both hardware and software forms. The operation of neural networks can
be viewed as that of nonlinear systems. Static networks are used to map the static input-
output relationship, while recurrent networks are used to simulate dynamic systems. In
the system given by equation ( 43 ), the output y(t) is a function only of the current six
inputs. A typical static network, single-hidden-layer MLP network, is suitable to model

this system. The network structure is illustrated in Figure 22.

This MLP network has six input neurons and one output neuron. A single bias neuron is
added to each of the input and hidden layers. Data passing through the neurons in the
hidden layer undergo a nonlinear transformation using a sigmoid function. Linear

neurons are used in both the input and the output layers. All three layers are fully



connected as shown in Figure 22, and the weight values between the layers can be

adjusted to map any input-output relationship.

/]
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Figure 22: Structure of Single-hidden-layer MLP Neural Network

If the first layer weights are denoted as oy;, the output of the j™ hidden neuron is given as
[1+exp(-Y a;x)"

(44)

qu=

i=0

7



where the 0" component of the input vector, xo=1, is the bias input, and 0g; are the bias
weights. Similarly, the second layer weights are denoted as §;, and the neural network

output is given as

3 (45)

U, = zuﬂiﬁi

J=l

where Ny is the number of the neurons in the hidden layer. It has to be chosen carefully

to model the system properly.

The important feature of neural networks is their ability to approximate arbitrary
functions through on-line and off-line leaming processes. During the learning process,
the neural network is presented with a set of input-output points and trained to implement
a mapping that matches the sample points as closely as possible. The most popular
learning method for the MLP is the backpropagation algorithm. It uses a gradient search
technique to find the optimum weight values that ‘minimize a criterion function. In this

work the criterion function is the SUM-of-Squared-Error function defined as follows,

N

EDIA (46)

p=l

1 .
J, =5[uo(p) -y(pl

where uo(p) is the network output for the p™ training points, y(p) is the corresponding
actual value, Jp is the squared error of the p"' training points, and J is the total squared
error for all training points. The weights of the network are adjusted iteratively according

to the following algorithm,



aJ 47)
a,k+)=a;(k)—pu— o |y =2, (k)= #2 ”|m (

d (] p=l

B, (k+1)=B,(k)— # Im B, (k)— uzaﬂ .

where | is a positive constant called the leamning rate. To implement this algorithm we
must have an expression for the partial derivative of J, with respect to each weight in the
network. This can be derived from the output layer backwards (Hush and Home, 1993),

and the final results are given as

2 s el - (48)
B, du,(p) 9B, =[up (P) - y(P)luy;

9J = a"p auo(P) a“Hi

P

da, -auo(p) du,. da;

Uj

=[ue (P)— y(P)IB juy; A -1y )x,

The results of equation ( 48 ) are substituted into equation ( 47 ) to implement the
gradient search. The weights are typically initialized to small random values. The process
of computing the gradient and adjusting the weights is repeated until a minimum value of

J 1s found,

a9J ¥ dJ, (49)
= =0

da; g.‘ da;

aJ &LaJ, 0

df; 7=0B;

A cross-validation technique can be used to monitor the generalization performance

during the leaming process.
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5.2.2 Training Data Selection
Generalization performance is a measure of how well the network performs on the actual

data outside the training set. It represents the quality of the training results. From Hush
and Home (1993), generalization performance is heavily influenced by the selection of

the training data samples.
In this work, the following criteria are used for the training data selection:

1. Representative — The training data must satisfy the mathematical model of

the underlying system.

2. Informative — The training data should include information covering the

whole frequency range of the frequency-dependent system.

3. Efficient — The ratio of the information amount to training data number

should be high enough to reduce the computational time.
4. Noiseless — The training data should have minimum noise effects.

Conventionally, the time histories from the experiments are used as the training data.
They are naturally representative of the underlying system. In this work there are two
groups of test data available, the regular-wave test data and the random-wave test data.
Since the system given by equation ( 43 ) is a frequency-dependent system, the regular-
wave time histories with the discrete frequency values are not informative on the whole
frequency range. Only the random time histories may have enough information and can
possibly be used as training data. However, in this case a long time history is needed to

retrieve the complete information. This requires a large amount of computational time. In
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addition, the random data obtained from model experiments or full-scale tests are usually

contaminated by noise. They are not efficient or noiseless as the training data.

As an alternative to the raw test data, the statistical data is another source for the training
data selection. Previous experience from similar studies (Xu and Haddara, 2001) shows
that one set of the auto- and cross-correlation functions provides good training resulits.
These correlation functions are Fourier transforms of the auto- and cross-spectral of the
ship motions and the hull bending moment. They are informative on the whole frequency
range. Since all correlation functions are in decay form, the complete information is
carried on a limited number of data points. This provides an efficient training scheme. In
addition, the averaging process involved in the calculation of the correlation functions
greatly reduces the effect of noise on the data. Therefore, the correlation functions meet
the most requirements of the training data. The only concem is that the selected
correlation functions must satisfy the system model expressed in equation ( 43 ). One set

of the training data is derived as follows.
Multiplying both sides of equation ( 30 ) by the complex conjugate X,*(), one gets
X (@Y ) =a(iw)X ()X (0)+bin)X:(0)X,(w) (50)

Thus the auto-spectral density S (w), cross-spectral density S.g(®) and S, (w) are related

as

S, (@) = aio)S _ (@) +b(iw)S 4 () (51)

Taking the inverse Fourier transform of equation ( 51 ) gives the time-domain expression



R, ()= J:ha (DR_(t-1)dr + L_ h,(D)R,(t-T)dT (52)

where Rz(7) is the auto-correlation function of the heave displacement z(t), R,(?) is the
cross-correlation function between the heave displacement z(t) and the bending moment
y(t), and Ro(T) is the cross-correlation function between the heave displacement z(t) and
the angular pitch displacement 6(t). They can be estimated from the random time

histories in the following form

T W i (53)
R, (T)= ;13_1?‘[) 2@)y( +7)dr

1T
R_(r)= ;13_1?'[) 20zt +T)dt

LT
R,(7)= ;_Lr;_) F-[' 2()8(r + t)dt

Equation ( 52 ) is identical to equation ( 32 ). Therefore, an expression similar to equation
( 43 ) can be used to relate the auto- and cross-correlation functions of the motions and

the bending moment. This relationship is given as
R_(t)=F [R_(*),R_(T),R_(T).R 4 (T).R (), R 4(7)] (54)

Equation ( 54 ) is equivalent to the system model given in equation ( 43 ). Therefore, we
can conclude that samples from the correlation functions can be used for the training of

the neural network.

5.2.3 Training Procedure
In this work, a commercial software package “NeuroShell 2” is used to create and train

the single-hidden-layer MLP network. There are six input variables and one output



variable. In the training process, the input variables are correlation functions R_,R_; and
their derivatives, while the output variable is R:,— . The auto- and cross-correlation

functions were estimated from the random time histories using equation ( 53 ). Their

derivatives were obtained using the following algorithm:

R(t)=R(t+At)—R(t—At) (55)
2(Ar)
R = R(+Ar) —2R(t1)+ R(t—Ar)
(ar)

Since “NeuroShell 2” requires all variables to be in the range [0,1] or [-1,1], we need to
know the real value range of each input variable and scale the actual input data to the
required range. In order to achieve the uniform value ranges for different test data, all
correlation functions and their derivatives were divided by value R(0). In this work
10sec long correlation functions were calculated and normalized, and 480 sample points

were selected for network training.

After the training points were imported into “NeuralShell 2" using the File Import
module, the inputs/output variables and their real value ranges were specified in the
Define Inputs And Outputs module. Generally, the real value ranges of the input and the
output variables have to be specified close to those of the training data. Otherwise the
network may lose its ability to spot small differences between the points. In this work, we
specified the real value ranges of the variables to be 20% wider than those of the training

data. This allows for some flexibility in future predictions.



The network architecture and the parameters were specified in the Design module. The
single-hidden-layer MLP network was chosen in this work. There were six input neurons
and one bias neuron in the input layer, and only one neuron in the output layer. The
number of hidden neurons was set by default to 24 plus one bias neuron. In the MLP
networks, the number of the hidden neurons determines how well a system can be
modeled. If we use too many, the network will tend to memorize the training points
instead of learning the relationship between the input and the output. This network will
not generalize well. If we use too few, the network may not have enough “power” to
learn the system well. Specifying the right number of the hidden neurons is a matter of

trial and error, and the default number was calculated here with the following formula:

| ]
N ourons =5(1~/mr + N e )+ AN i (56)

where Ninpy 1S 6, Nougpur 15 1, and Nipgins is 480.

After determining the neuron number, we have to specify the scaling functions for the
input layer and the activation functions for the hidden and output layers, respectively.
When the input variables are imported into the neural network, they must be scaled
within the numerical range [0,1] or [-1,1] for the efficient operation of the network. In
this work, the linear scaling functions were used for the input neurons

f’(x)=l- Xmu — X uin

where x denotes the actual input to the neuron, fi(x) is the output of the neuron, and Xmax

and Xnin are maximum and minimum values of the corresponding variable, respectively.



The numerical range of fy(x) is [-1,1]. These outputs from the input layer neurons were
weighted and then passed to the hidden layer, and the neurons in the hidden layer
produced their outputs based upon the sum of the weighted values passed to them. The
activation function between the hidden neurons input and output was specified as a

sigmoid function

1
f"(y)=l+e" (58)

The outputs fi(y) were weighted and passed to the output layer. Since the network output
is a continuous variable, the activation function for the output neuron was specified as a

linear function
[, (D=2 (59)

The output fy(z) is the final output of the neural network. The leaming rate and
momentum for all links were set to 0.1 and 0.1, respectively. The initial weight values

were randomly set within the range [-0.3, +0.3].

After the network architecture was decided, several parameters for the training process
had to be specified in the Training Criteria module. The most important is the set-up of
the NET-PERFECT function, which limits the over-training of the network and prevents
the pure “memorization” of the training points. With the NET-PERFECT feature, the
network is only trained to build the model that smoothly interpolates between close
training points, thus the network could generalize well in later predictions. In the

operation, a test set was created by randomly extracting 57 points from the 480 sample



points. The network was trained using the training set of 423 points, but at specified
intervals it was tested by computing the average error on the 57 test points. The test
interval was set as 200 training events. We also specified that the network be saved on
the best test set, thus NET-PERFECT saved the network weight values every time the
average error of the test set reached a new minimum value. The training process was

stopped after the minimum test error did not change for 40,000 training events.

After the network training was completed, other sets of data could be processed through
the trained neural network in the Apply To File module. The network outputs could be
compared with the actual values for validation. The statistical indicator R* was calculated

as

Y .-3.) (60)
R: =-E&—
> . -u,)

where y, is the actual value, y, is the network output, and u, is the mean of the actual

values. A perfect fit would result in an R* value of 1, a very good fit near 1, and a poor fit
near 0. After the neural network has been validated, it can be used for prediction or real-

time estimation.



5.3 Time-domain Results
The proposed technique was applied to the ‘R-class Icebreaker’ model test data. All test

data was filtered using a low-pass filter with a cut-off frequency of 2.5Hz. The auto- and
cross-correlation functions of each random test run were computed first. For every
combination of forward speed and heading angle, one set of correlation functions was
used for the network training. Other sets of correlation functions were imported into the
trained network for validation. The validated network was then used for the real-time
estimation of the midship bending moment in regular and random waves. The estimated

values were compared with the actual values obtained from the experiments.

5.3.1 Stationary Tests in Head Waves
The correlation functions of the random test J6h75a were used for the network training.

The training data sample consisted of 480 training points, which were selected from
10sec long correlatior: functions. The final R? value is 0.999. The training data and the

results are plotted in Figure 23. The network weight values are presented in Tabie 20.

The correlation functions obtained from other test runs were used to validate the neural
network model. The R? values are presented in Table 21. All correlation functions

satisfied the trained neural network very well.
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Figure 23: Training Results for Stationary Test in Head Waves




Table 20: Network Weight Values for Stationary Tests in Head Waves

Hidden Input Output
bias 1 2 3 4 5 6
bias / / / / / ! / -0.20
1 -0.23 -0.16 0.28 0.00 -0.11 0.51 -0.15 0.58
2 0.10 -0.07 -0.17 -0.22 -0.22 -0.19 -0.11 -0.17
3 -0.07 0.02 0.15 0.25 0.01 0.27 0.22 0.36
4 0.21 0.02 0.18 -0.04 0.03 -0.15 -0.05 -0.19
5 0.11 0.08 0.31 -0.05 -0.20 0.03 0.15 -0.01
6 -0.02 0.08 0.33 0.19 0.35 -0.06 0.06 -0.22
7 0.31 0.03 0.02 0.12 -0.52 0.56 -0.16 0.82
8 0.31 0.06 -0.11 -0.14 0.15 0.23 0.15 0.17
9 0.28 -0.09 -0.21 0.15 0.03 -0.02 0.23 0.09
10 0.24 -0.11 -0.18 0.01 -0.22 0.13 -0.05 0.21
11 -0.01 0.00 0.28 0.06 -0.21 0.60 -0.12 0.75
12 0.25 0.05 -0.23 -0.01 -0.10 -0.52 0.22 -0.40
13 -0.15 0.13 -0.06 -0.04 043 -0.35 -0.24 -0.50
14 0.08 0.14 -0.22 -0.16 0.25 -0.28 0.35 -0.52
15 -0.23 -0.12 0.17 -0.24 0.05 -0.48 0.04 -0.65
16 -0.24 -0.17 -0.31 -0.10 0.19 -0.08 -0.26 -0.02
17 -0.05 0.39 <0.17 -0.03 0.08 0.74 -0.18 0.79
18 -0.02 0.18 0.28 0.14 0.06 0.17 -0.19 0.07
19 -0.15 0.24 -0.11 -0.04 -0.09 -0.26 0.25 -0.33
20 -0.08 0.27 -0.13 0.33 -0.24 0.07 0.04 0.20
21 0.30 -0.04 -0.03 0.09 0.24 -0.38 0.25 -0.56
22 -0.25 -0.23 0.18 -0.22 0.21 -0.48 -0.18 -0.61
23 -0.17 0.02 0.23 -0.19 -0.24 0.31 0.16 0.22
24 -0.26 -0.16 0.11 0.17 -0.09 0.17 -0.26 0.30
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Table 21: Validation Results for Stationary Tests in Head Waves (Correlation Functions)

Test Data | Test Conditions Peak Significant | Random R?
Frequency | Wave Height Seed
Training JONSWAFP 0.6 Hz 0.75cm I 0.999
(J6h75a) Head Waves
B5a Broad-band 03~12Hz 50cm 1 0.969
B5b Head Waves 2 0.960
B5c - 3 0.971
B75a Broad-band 03~12Hz 7.5cm 1 0.983
B75b Head Waves 2 0.969
B75¢c 3 0.980
J5hSa JONSWAP 05Hz 50cm 1 0.963
J5h5b Head Waves 2 0.982
J5h5c 3 0.984
J5h75a JONSWAP 05Hz 7.5cm 1 0.968
JSh75b Head Waves 2 0.976
J5h75¢ 3 0.983
J6hSa JONSWAP 0.6 Hz . S0cm 1 0.996
J6h5b Head Waves 2 0.998
J6h5c 3 0.996
J6h75a JONSWAP 06Hz 7.5¢cm 1 0.999
J6h75b Head Waves 2 0.996
J6h75c¢ 3 0.997
J7hSc JONSWAP 0.7 Hz 5.0cm 3 0.992
Head Waves
J7h75a JONSWAP 0.7 Hz 7.5¢cm 1 0.992
J7h75b Head Waves 2 0.995
JTh75¢ 3 0.996

For each regular wave test, 48 equally spaced points were selected from 10-second long
time histories and imported into the neural network for validation. The results are shown
in Table 22 and Figure 24. Excelient fits are obtained for the frequency range 0.4Hz to
0.9Hz. The agreement is not so good for frequencies in the range of 1.0Hz and 1.1Hz.

This is expected since resonance occurs within this range.




Table 22: Validation Results for Stationary Tests in Regular Head Waves

Test Data | Test Conditions Frequency Wave Height R’
W4h6 Stationary Tests 0.4 Hz 60cm 0.813
W5h6 in Regular Head 0.5Hz 0.829
W6h6 Waves 0.6 Hz 0.899
W7h6 0.7 Hz 0.975
W8h6 0.8 Hz 0.937
W9h6 - 09Hz 0.931

W10h6 1.0Hz 0.715
W11h6 1.1 Hz 0.718
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Figure 24: Validation Results for Stasionary Tests in Regular Head Waves

This trained neural network could be used for the real-time estimation of instantaneous

bending moment on the frequency range [0.4Hz, 1.1Hz]. A typical example for 10sec
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long estimates of J6h75a random test is shown in Figure 25. There are 480 points

estimated, and R? value is 0.943.

--—- Actual
-o— Neural

Bending Moment (Nm)

0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Figure 25: Estimation Example for Random Test J6h75a

5.3.2 Stationary Tests in Following Waves
The correlation functions of the random test Fj6h75a were used for the network training.

The training data sample consisted of 480 training points, which were selected from
10sec long correlation functions. The final R? value is 0.998. The training data and results

are plotted in Figure 26. The neural network weight values are presented in Table 23.
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Figure 26: Training Results for Stationary Tests in Following Waves




Table 23: Nerwork Weight Values for Stationary Tests in Following Waves

Hidden Input Output
bias 1 2 3 4 5 6
bias / / / / / / / -0.15
1 -0.17 -0.33 0.23 0.01 -0.01 -0.16 -0.22 0.40
2 0.14 -0.04 -0.23 -0.21 -0.22 0.06 -0.12 -0.07
3 0.01 0.1} 0.27 0.02 0.08 -0.56 -0.07 0.72
4 0.31 0.11 0.15 -0.07 0.06 0.20 -0.11 -0.16
5 0.17 0.10 0.29 -0.05 -0.22 0.17 0.14 0.09
6 0.10 0.14 0.19 0.20 0.39 041 0.09 -0.42
7 0.06 -0.22 0.16 0.15 -0.30 -0.13 -0.31 0.47
8 0.36 0.04 001 -0.19 0.19 -0.23 0.11 0.17
9 0.38 0.03 0.19 -0.03 -0.14 -0.47 0.19 0.52
10 0.25 -0.10 0.00 -0.06 -0.23 -0.26 -0.10 0.33
11 -0.01 -0.29 0.25 0.14 -0.07 -0.08 -0.17 0.38
12 0.33 0.10 -0.23 0.03 -0.29 -0.32 0.21 0.17
13 -0.14 0.16 -0.17 0.09 0.35 0.26 -0.12 -0.47
14 0.03 0.11 -0.39 0.01 0.25 047 0.58 -0.87
15 0.03 0.07 -0.07 -0.25 -0.06 0.21 0.05 -0.29
16 -0.25 -0.21 0.02 -0.11 -0.04 -0.48 -0.21 0.42
17 -0.37 0.15 -0.46 0.03 0.38 0.22 -0.00 -042
18 0.03 0.15 0.09 0.19 0.19 0.51 -0.09 0.44
19 -0.10 0.27 -0.36 0.03 0.01 0.30 0.27 -0.50
20 -0.10 0.23 -0.10 0.31 -0.23 -0.27 0.00 0.28
21 0.38 0.12 0.01 0.06 0.26 0.29 0.21 -0.43
22 0.06 -0.13 0.04 -0.16 0.05 0.11 -0.19 -0.12
23 -0.15 -0.03 0.15 -0.18 -0.18 0.24 0.22 -0.07
24 -0.30 -0.17 0.24 0.08 -0.11 -0.45 -0.45 0.70

The correlation functions of other test runs were imported into the neural network for the

validation. The R? values are presented in Table 24. The agreement is excellent for all

sets of correlation functions with one exception. The broad-band following wave test

Fb5b produced a poor fit. This is expected since the analysis is based on the narrow-band

process assumption.




Table 24: Validation Resulis for Stationary Tests in Following Waves (Correlation Functions)

Test Data | Test Conditions Peak Significant | Random R?
Frequency | Wave Height Seed
Training JONSWAP 0.6 Hz 0.75cm 1 0.998
(Fi6h75a) | Following Waves

Fb5Sa Broad-band 03~12Hz 50cm 1 0.903
Fb5b Following Waves 2 0.558
Fb75a Broad-band 03~12Hz 7.5cm 1 0.861
Fb75b Following Waves 2 0.957
FjShSa JONSWAP 0.5Hz SOcm 1 0.981
FjSh5b Following Waves 2 0.976
FjSh75a JONSWAP 0.5 Hz 75cm 1 0.947
Fj5h75b | Following Waves 2 0.957
Fj6hSa JONSWAP 0.6 Hz 50cm 1 0.995
Fj6h5b Following Waves 2 0.988
Fj6h75a JONSWAP 0.6 Hz 75cm 1 0.998
Fj6h75b | Following Waves 2 0.999
Fj7hSa JONSWAP 0.7 Hz SOcm 1 0971
Fj7hSb Following Waves 2 0.975
Fj7h75a JONSWAP 0.7 Hz 7.5cm 1 0.980
Fj7h75b Following Waves 2 0.986

For every regular wave test, 48 equally spaced points were selected from a 10-second
long time history and imported into the neural network for validation. The results are
shown in Table 25 and Figure 27. The neural network model is only valid on a narrow-
band frequency range centered around the peak frequency of 0.6Hz. This agrees with the

narrow-band process assumption.




Table 25: Validation Results for Stationary Tests in Regular Following Waves

Test Data | Test Conditions Frequency Wave Height R’
Fw3h6 Stationary Tests 0.3 Hz 6.0cm 0.000
Fw4h6 in Regular 0.4 Hz 0.650
Fw5hé Following Waves 0.5Hz 0.852
Fw6h6 0.6 Hz 0.982
Fw7h6 0.7Hz 0.998
Fw8h6 0.8 Hz 0.874
Fw9h6 0.9Hz 0.749

Fw10h6 1.0Hz 0.947
Fwllhé 1.1Hz 0.689
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Figure 27: Validation Resulis for Stationary Tests in Regular Following Waves




The trained network could be used for the real-time estimation of instantaneous bending
moment in narrow-band waves. A typical example for 10-second long estimates of
Fj6h75a random test is shown in Figure 28. There are 480 points estimated, and R? value

is 0.959.
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Figure 28: Estimation Example for Random Test Fj6h75a

5.3.3 Towing Tests in Head Waves
Due to the limited length of the tank, the time history from a single test run was not long

enough for data analysis. Thus the data from seven test runs were joined together to form
a single time history, and 10sec long correlation functions were computed for the network

training. The training sample consisted of 480 points, and the final R* value is 0.995. The



training data and the results are plotted in Figure 29. The neural network weight values

are presented in Table 26.

The training data shown in Figure 29 do not have good decay form. This is caused by
discontinuity between different data segments. The accuracy of the neural network model

may also be affected.

For each regular wave test, 48 equally spaced points were selected from a 10sec long
time history and imported into the neural network for validation. The results are shown in
Table 27 and Figure 30. The neural network model is valid only on a very narrow
frequency range. This agrees with the narrow-band assumption adopted in the
mathematical formulation. Another reason is the inaccuracies of the neural network

model caused by discontinuity in joined time histories.

This network was also used for the real-time estimation of instantaneous bending moment
in narrow-band waves. A typical example of 10sec long estimates of the JONSWAP
random test is shown in Figure 31. There are 480 points estimated, and R* value is 0.819.

The estimation result is not too bad even though the training data are not very good.
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Figure 29: Training Results for Towing Tests in Head Waves
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Table 26: Network Weight Values for Towing Tests in Head Waves

Hidden Input Output
bias 1 2 3 4 S 6
bias / / / / / / / -0.23
1 0.28 -0.20 0.32 0.44 0.04 -0.02 -0.23 0.13
2 0.52 -0.16 -0.18 -0.40 -0.35 0.17 -0.26 -0.48
3 0.33 0.29 0.29 0.61 0.26 -0.54 0.49 0.88
4 0.71 -0.03 0.19 -0.14 -0.06 0.18 -0.11 -0.19
5 0.60 -0.25 0.27 -0.11 -0.31 0.45 0.06 -041
6 0.49 0.06 0.30 0.21 0.26 0.17 0.11 0.10
7 0.42 -0.62 -0.84 2.00 -0.92 1.15 0.67 1.10
8 0.79 -0.02 -0.07 -0.12 0.22 0.08 0.11 0.00
9 0.72 0.10 -0.13 0.31 0.11 -0.42 0.38 0.52
10 0.68 0.03 -0.10 0.06 -0.15 -0.19 -0.05 0.09
11 0.31 -1.09 0.58 2.06 0.69 1.78 -0.85 0.92
12 0.67 0.11 -0.24 -0.25 -0.24 -0.20 0.34 0.00
13 0.62 0.19 -0.05 -0.19 0.26 0.11 -0.22 -0.14
14 0.19 -0.13 -0.43 -0.88 -0.09 0.54 0.22 -0.76
15 0.24 -0.23 -0.04 -0.93 -0.37 0.38 -0.04 -0.78
16 0.10 0.19 -0.22 0.08 0.26 -0.55 -0.18 0.388
17 0.22 0.34 -0.25 0.23 0.22 0.10 0.00 0.21
18 0.42 0.19 0.29 0.15 0.05 0.24 -0.15 -0.01
19 -0.05 041 -0.65 -0.85 -0.82 0.00 0.65 -0.78
20 0.25 0.57 0.04 0.48 -0.01 -0.40 0.31 0.67
21 0.85 -0.24 0.01 -0.04 0.08 0.30 0.11 -0.30
22 0.45 -0.40 0.05 -0.31 -0.17 0.21 -0.28 -0.52
23 0.37 -0.53 0.15 -0.24 -0.37 0.69 -0.06 -0.73
24 0.24 0.28 0.25 0.53 0.09 -0.61 -0.06 0.66
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Table 27: Validation Results for Towing Tests (0.5m/sec)

Test Data | Test Conditions | Encounter Fre. Wave Height R
Training Towing Tests Peak Fre. Significant Height 0.995
(JONSWAP) (0.5nmv/s) in 0.840 Hz 75cm
S5w3h6 Regular Head 0.333 Hz 60cm 0.000
S5w4h6 Waves 0.450 Hz 0.000
S5w5h6 0.573 Hz 0.000
S5w6h6 0.702 Hz 0.520
S5w7hS 0.841 Hz 50cm 0.988
S5w8h5 0.987 Hz 0.724
S5w9h5 0.135 Hz 0.000
S5w10h5 1.292 Hz 0.977
S5wll1h5 1.454 Hz 0.508
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Figure 30: Validation Results for Regular Wave Towing Tests (0.5m/sec)
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6. Time-domain Simulations

6.1 Simulation Procedure
The single-hidden-layer MLP network is used in the present technique to learn the time-

domain relationship between wave-induced bending moment and ship motions. In the
previous sections, the auto- and cross-correlation functions were estimated from the
experimental data for the training of neural networks. These correlation functions can

also be estimated from the simulated time histories.

A time-domain simulation procedure based on frequency-domain solutions is used in this
section. The frequency response functions are available from both theoretical
computations and wave tank tests. The JONSWAP random waves were simulated using

the following expression

5H 1,03 5 3 exp ({;f.):: (61)
sip=Hetn_ = exp(-——ffﬂ )4 5
16f°y?

where the peak enhancement factor vy is 3.3, the shape parameter ¢ is 0.07 (f<fm) or 0.09
(f>fn), the significant height H; is 7.5cm, and the peak frequency fi, is 0.6Hz. This is the
wave spectrum used in the previous experiments. In the simulation process, the spectrum
was divided into 51 equally spaced segments on a frequency range 0.4Hz to 0.9Hz. In
each segment, the spectrum value was assumed to be constant over a frequency interval
of 0.01Hz. This spectrum value was then used to generate one regular wave component.

The elevation of each wave component is expressed as
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G (D) =y25(f)Af cos(2nft +o,) (62)
Af =0.01hz

where the phase angle ¢; is a random variable with a uniform distribution.

Using the frequency response functions defined in equation ( 15 ), the harmonic heave,
pitch and bending moment components were generated as
z (0 =|H (@) cos[2nft + @, + ang(H )] (63)

0,(t) =|Hy (@) ; cos[2nf;t + @, +ang(H,)]
¥ =|H @)l cos(2f .t + ¢, + ang(H )]

The frequency response functions were computed and tested only at discrete frequency
points 0.4Hz, 0.5Hz, 0.6Hz, 0.7Hz, 0.8Hz, 0.9Hz, 1.0Hz, and 1.1Hz. The values between
these points were obtained using a linear interpolation method. The 450sec long random
time histories of heave, pitch and bending moment were simulated by the superposition

of 51 regular components,

51
20)=Yz,@) (64)

=l
S1

8(r)=Y.6.(1)
=l
31

¥y =Yy,
i=l

The correlation functions were computed from the above simulated time histories using

equation ( 53 ).
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6.2 Simulation Results
For the stationary model in head waves, the frequency response functions were available

from both strip theory computations and regular wave tests. The first simulation was
based on the computed frequency response functions given in Table 19. The simulated
correlation functions were compared with those estimated from the model test of J6h75a.
This comparison is shown in Figure 32. There is a discrepancy in the heave-moment
cross-correlation function. The second simulation was based on the experimental
frequency response functions given in Table 14. The comparisons between the simulated
correlation functions and the results of model test J6h75a are shown in Figure 33. There

is an excellent agreement between the two sets of correlation functions.

Obviously, the discrepancy of the first simulation results shown in Figure 32 is caused by
the inaccuracy of the computed frequency response functions. The second simulation

results shown in Figure 33 have demonstrated the validity of this simulation method.

For the stationary model in following waves, the simulation was based on the
experimental frequency response functions given in Table 16. The simulated correlation
functions were compared with those estimated from the model test Fj6h75a. The
comparison results are plotted in Figure 34. There is an excellent agreement between two

sets of correlation functions.

For the towed model in head waves, the simulation was based on the experimental
frequency response functions given in Table 18. The simulated correlation functions were
compared with those estimated from the joined test data. The comparison results are

plotted in Figure 35. There is a quite big discrepancy shown in the plot.
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In Figure 35, both the experimental and the simulated correlation functions are not
accurate enough. The experimental time history was formed by joining seven segments.
Discontinuity between different segments must have some effects on the accuracy of the
estimated correlation functions. In the simulation, the time history was generated using
the frequency response functions. Since only values at 10 discrete frequency points were
available, the values at other points were obtained by linear interpolations. For the towed
model in head waves, the values of the frequency response functions have several big
jumps between the 10 discrete points shown in Table 18. These jumps make it very
difficult to obtain the accurate values from the linear interpolations. More values of the

frequency response functions are needed, particularly within the range of jumps.

Generally, it is possible to obtain the correlation functions from the time-domain
simulations. If the available frequency response functions are accurate and sufficient
enough, the simulated correlation functions can be used for the training of neural

networks. The calibrated neural network will provide a numerical estimation model.
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7. Conclusions and Recommendations

In this work, a time-domain technique was developed for estimating the wave-induced
vertical bending moment from coupled heave and pitch motions. The estimated values
can be compared with those obtained from the strain measurements to ensure the validity

of Hull Response Monitoring Systems (HRMS).

The frequency-domain analysis showed that the relationship between vertical bending
moment and coupled heave and pitch motions can be expressed by their frequency
response functions or Response Amplitude operators (RAOs). They could be obtained
from both theoretical computations and ship model experiments. This frequency-domain
relationship is suitable for the estimation of the statistical parameters of the bending

moment, but not sufficient for the real-time estimation of the instantaneous values.

A time-domain relationship between the bending moment and the ship motions was
formulated in this work through a Fourier transform of the frequency-domain model. It
was shown that the wave-induced vertical bending moment can be approximated by a
function of the heaving and pitching displacements, velocities, and accelerations in the

time domain.

An efficient neural network technique was developed in this work to identify the time-
domain model through a leaming process. It was proved herein that one can use a set of
auto- and cross-correlation functions of the bending moment and the ship motions to train

the neural network. This should reduce the computational time significantly and improve
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the accuracy of the training results. The calibrated neural network model is expected to

produce accurate estimates of the instantaneous bending moment.

The experimental data of an “R-class Icebreaker” ship model were used to validate the
methodology. For the stationary model in both head waves and following waves, the
estimates from the neural networks had an excellent agreement with the bending moment
values measured from the experiments. For the towing test in head waves, a single time
history was formed by joining seven short segments. The accuracy of the estimated
correlation functions was affected by discontinuity in joined time history. Even with this
defect. the bending moment estimates from the neural network had a good agreement
with the experimental values. A more sophisticated test facility should produce long

enough time histories and better training data.

From the verification results shown in Figure 24, Figure 27, and Figure 30, the proposed
technique has variable effective range for different test conditions. In the head sea
stationary tests, the technique is effective across the range of the tested frequencies with a
slight degeneration around the motion resonance frequency. In the following sea
stationary tests, it is more effective in the narrow band around the spectral peak
frequency with sharp declines in effectiveness outside this region. In the head sea towing
tests, the verification results are not very good due to the inaccuracies of the training data.
The above vanation of the effective range is caused by the approximation given in
equation ( 35 ) and ( 38 ). For the head sea stationary condition, this approximation is
valid for a broad-band frequency range. For the following sea stationary condition, it is

only valid in a narrow band around the spectral peak frequency. To get an accurate
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estimation model effective over the whole frequency range, we have to develop a
technique based on the general time-domain model given in equation ( 32 ). It is a
dynamic model involving convolution integrals, and the recurrent neural networks are

suitable tools.

Due to the limitations of the MUN test facility, the experimental data for other directional
seas and multidirectional seas are not available in this work. More validations are needed

in further research.

After the technique was validated by the experimental data, a simulation method was also
investigated to produce the simulated correlation functions as the training data. This time-
domain simulation was based on the frequency-domain solutions. The comparisons
between the simulation results and the experimental results showed that the accuracy of
the simulated correlation functions was greatly determined by the accuracy of the
frequency-domain solutions. It is suggested that the proposed technique can be used in
conjunction with a time-domain simulation package to provide a numerical estimation

model.

The current work is based on a mathematical model for a rigid ship hull and a linear
relationship between the wave-induced bending moment and the vertical ship motions.
This poses certain limitations on the range of applicability. Since neural networks can
easily model nonlinear systems, the present technique can be extended to include the
nonlinear effects in the estimation. In this case the time-domain mathematical model

needs to be reformulated.
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In addition to rigid-body wave loads, both the springing and whipping bending moments
are also related to ship motions. The whipping bending moment may be as large as the
wave-induced bending moment, while the springing loads are found to be important for
very long flexible ships. It is possible to estimate these vibratory loads from ship motion
information. In this case, the mathematical formulation of the time-domain model
involves consideration of the hull structural properties as well as the hydrodynamic

forces.
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Appendix1 Strip Theory Computations

In this appendix, the coupled heave and pitch motions and the wave-induced midship
bending moment of the rigid-body “R-class Icebreaker” ship model are solved in the
frequency domain using a strip theory. The ship mode! is in head regular waves with zero

forward speed.

From Lewis (1989) and Salvesen et al. (1970), the solution of the vertical ship motions in
regular waves can be expressed by the complex amplitudes of the heave displacement z,

(positive upward) and the angular pitch displacement 8, (positive bow downward) as

, <EBS-FQ (65)
“~"PS_OR
o - EP-FR
*~ " PS-OR
where
P=-0>(M +A,)+C, +iw B, (66)

Q= _wezAss +Cy5 +iw, B,

R=-0A;+C, +iw B,

S=-0,"(I+Ay)+Cy +iw B,
For zero forward speed and head sea conditions, the hydrodynamic coefficients in the
above equations can be expressed in terms of the sectional coefficients in the following

form:
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A; = Iassdg B, = Ib;;;df (67)
L L

Ays = -.[ gay,d§ By = ”Igbssd 3
Agy =‘I§a33d§ B = "Iébndé
Ay = Ié *ay,dg B, = Ié *by,d€

Gy —J'cndé ! PgB(E)dS
Cy=Cq = "'J‘écssdg ‘J EogB(&)dE
Css = _"5 cssdé —If PgB(g )d§

and the complex amplitudes of the wave excitation forces, F; and Fs, are simplified as
F, =g, J'e'“e'mé’ [€y; —wy(®,a5; —iby, E (68)

L
Fy= gaJ‘e'ﬁe T Eley, ~wy (w,ay, ~iby;) ] HE
L

For a rigid ship hull, the complex amplitude of the wave-induced midship bending

moment (positive in sag direction) can be solved in terms of the resulting motions,
Ya(Xp) = (—Awa +C, +iw B )z, +(—D_‘,w,2 +H, +iw,E )0, +y, (69)
where

=Ca J' ee™® {(§ = Xy)¢3; — @y (@, ay; —iby, )]Hé (70)
L

and
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A, = (m, +a, ) - x,)dE (71)
B, == by (€ -5 )dE

C, --—j:"' ey (- x,)dE

D, =["(m, +a,)5(€ —x,)dE

E, =j:"b,,§(§ —x,)dE

H,=[" cuf € -x,)dE

The two-dimensional sectional coefficients a;3 and b3 can be determined using Lewis-
form method. From Bhattacharyya (1978), the added mass coefficient as; is calculated as

GB:CPNBS(E)' (72)

where the coefficient C for Lewis-form sections is plotted in Figure 36 as a function of
the draft/beam ratio (B/T), the area coefficient of the section (S/BT), as well as a function
of the circular frequency of oscillation. Similarly, the sectional damping coefficient bs; is

given by

(73)

where the coefficient A for Lewis-form sections is plotted in Figure 37. It is assumed
that the hydrodynamic coefficients for sections other than those of the mathematical
Lewis form will not differ appreciably as long as the beam B, draft T, and the section
area S are equal in both cases. The offsets of the full-scale “R-class Icebreaker” ship are

presented in Table 28.
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Table 28: Offsets Table of the Full-scale “R-class Icebreaker’ Ship

Offsets Tabie for Full-scale 'R-class icebreaker'

Z Station 20 |Station 19 |Station 18 |Station 17 |Station 16 |Station 15 | Station 14

{m) X=0.000m |[4.326m |8.651m |12.977m |17.303m |21.629m [25.954m
0.250 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 | 0.000 0.255 0.510 1.008 2.569 4.159 4.392
0.500 | 0.000 0.255 0.583 1.364 3.392 5121 6218
0.750 | 0.000 0.255 0.664 1.708 3.960 5.710 6.797
1.000 | 0.000 0.255 0.755 2.045 4.407 6.157 7.184
1250 | 0.000 0.255 0.853 2377 4.783 6.498 7.496
1500 | 0.000 0.255 0.957 2703 5.112 6.775 7.737
1.750 | 0.000 0.255 1.067 3.024 5.408 7.008 7.930
2.000 | 0.000 0.255 1.186 3.342 5.682 7.207 8.087
2250 | 0.000 0.255 1.317 3.659 5.937 7.384 8.220
2500 | 0.000 0.255 1.462 3.973 6.179 7.544 8.339
2.750 | 0.000 0.255 1.621 4282 6.408 7.692 8.443
3.000 | 0.000 0.255 1.795 4583 6.626 7.831 8.535
3250 | 0.000 0.259 1.991 4.873 6.832 7.960 8.615
3.500 | 0.000 0.267 2215 5154 7.028 8.082 8.687
3.750 | 0.000 0.278 2.476 5.425 7.209 8.194 8.753
4.000 | 0.000 0.295 2787 5.687 7.376 8.298 8.813
4.250 0.000 0.312 3.154 5.941 7.528 8.393 8.870
4.500 0.000 0.366 3.567 6.184 7.668 8.479 8.924
4750 | 0.000 0.747 3.994 6.414 7.796 8.557 8.977
5.000 | 0.000 1.308 4414 6.632 7.915 8.629 9.028
5250 | 0.000 1.849 4.808 6.838 8.027 8.695 9.076
5500 | 0.000 2.372 5172 7.033 8.131 8.756 9.122
5.750 | 0.000 2.888 5.506 7216 8.228 8.813 9.166
6.000 | 0.000 3.379 5812 7.387 8.319 8.866 9.209
6.250 | 0.794 3.828 6.090 7.542 8.403 8.916 9.248
6.500 1.322 4.232 6.339 7.682 8.482 8.963 9.285
6.750 1814 4.591 6.562 7.805 8.555 9.007 9.321
7.000 2.264 4910 6.757 7.916 8.623 9.048 9.356
7250 | 2665 5.191 6.928 8.015 8.686 9.088 9.390
7.500 3.025 5.436 7.076 8.104 8.743 9.127 9.423
7.750 | 3.350 5.648 7.203 8.185 8.794 9.164 9.442
8.000 | 3.640 5.832 7.313 8.258 8.843 9.185 9.442
8.250 | 3.897 5.990 7410 8.324 8.887 9.205 9.439
8.500 | &.121 6.126 7.497 8.382 8.924 9222 9.430
8.750 | 4312 6.243 7.575 8.435 8.960 9.236 9.422
9.000 | 4.472 6.345 7.644 8.482 8.991 9.248 9.413
9250 | 4.603 6.431 7.704 8.525 9.017 9.256 9.404
9.500 | 4.709 6.504 7.756 8.565 9.036 9.261 9.395
9750 | 4.793 6.566 7.802 8.600 9.051 9.264 9.386
10.000 | 4.860 6.619 7.841 8.626 9.061 9.267 9.377
10.250 | 4.913 6.666 7.876 8.642 9.070 9.270 9.369
10.500 | 4.960 6.709 7.909 8.654 9.077 9.273 9.360
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Offsets Table for Full-scale 'R-ciass Icebreaker’

Z Station 13 |Station 12 |Station 11 |Station 10 |Station 9 [Station 8 |Station 7
(m) 30.280m [34.606m {38.931m [43.257m [47.513m (51.750m_|{55.988m
0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 4.392 4.392 4.392 4.392 4.392 4.392 4.392
0.500 6.937 7.262 7.292 7.292 7.309 7.1585 6.666
0.750 7472 7.797 7.843 7.843 7.851 7.711 7.297
1.000 7.822 8.125 8.188 8.188 8.175 8.048 7.701
1.250 8.078 8.370 8.450 8.450 8.420 8.295 7.982
1.500 8.286 8.563 8.654 8.654 8.606 8.479 8.195
1.750 8.456 8.723 8.812 8.812 8.752 8.629 8.375
2.000 8.595 8.854 8.933 8.933 8.870 8.754 8.526
2.250 8.711 8.957 9.025 9.025 8.964 8.858 8.655
2.500 8.812 9.034 9.091 9.091 9.038 8.945 8.761
2.750 8.899 9.092 9.123 9.123 9.104 9.015 8.846
3.000 8.971 9.135 9.148 9.148 9.148 9.075 8.924
3.250 9.028 9.171 9.172 9.172 9.172 9.131 8.999
3.500 9.073 9.197 9.197 9.197 9.197 9.181 9.056
3.750 9.111 9.222 9.222 9.222 9.222 9.219 9.106
4.000 9.145 9.247 9.247 9.247 9.247 9.248 9.151
4.250 9.178 9.271 9.271 9.271 9.271 9.269 9.187
4.500 9.212 9.296 9.296 9.296 9.296 9.296 9.224
4.750 9.248 9.321 9.321 9.321 9.321 9.321 9.261
5.000 9.284 9.346 9.346 9.346 9.346 9.346 9.302
5.250 9.318 9.370 9.370 9.370 9.370 9.370 9.334
5.500 9.351 9.395 9.395 9.395 9.395 9.395 9.362
5.750 9.383 9.420 9.420 9.420 9.420 9.420 9.396
6.000 9.412 9.445 9.445 9.445 9.445 9.445 9.429
6.250 9.440 9.469 9.469 9.469 9.469 9.469 9.458
6.500 9.468 9.494 9.494 9.494 9.494 9.494 9.480
6.750 9.495 9.519 9.519 9.519 9.519 9.519 9.506
7.000 9.522 9.544 9.544 9.544 9.544 9.544 9.535
7.250 9.549 9.568 9.568 9.568 9.568 9.568 9.563
7.500 9.576 9.593 9.593 9.593 9.593 9.593 9.591
7.750 9.585 9.600 9.600 9.600 9.600 9.600 9.599
8.000 9.585 9.600 9.600 9.600 9.600 9.600 9.599
8.250 9.579 9.594 9.594 9.594 9.594 9.594 9.594
8.500 9.562 9.576 9.576 9.576 9.576 9.576 9.576
8.750 9.545 9.558 9.558 9.558 9.558 9.558 9.558
9.000 9.528 9.541 9.541 9.541 9.541 9.541 9.539
9.250 9.511 9.523 9.523 9.523 9.523 9.523 9.521
9.500 9.494 9.505 9.505 9.505 9.505 9.505 9.503
9.750 9477 9.487 9.487 9.487 9.487 9.487 9.485
10.000 9.460 9.469 9.469 9.469 9.469 9.469 9.467
10.250 9.443 9.451 9.451 9.451 9.451 9.451 9.449
10.500 9.426 9.433 9.433 9.433 9.433 9.433 9.431
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Offsets Tabie for Full-scaie 'R-class icebreaker

Z Station 6 |Station 5 [Station 4 [Station 3 [Station 2 |Station 1 |Station 0

(m) 60.255m |64.463m |68.700m [72.938m |77.175m [|81.413m |85.650m
0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 4.371 3.677 2.664 1.576 0.508 0.000 0.000
0.500 5.826 4.748 3.526 2.160 0.694 0.000 0.000
0.750 6.565 5.508 4.187 2.638 0.911 0.000 0.000
1.000 7.059 6.053 4.712 3.048 1.135 0.000 0.000
1.250 7.405 6.462 5.144 3412 1.360 0.000 0.000
1.500 7.672 6.791 5.510 3.745 1.587 0.000 0.000
1.750 7.895 7.070 5.828 4.060 1.819 0.000 0.000
2.000 8.087 7.311 6.111 4.353 2.051 0.000 0.000
2.250 8.252 7.520 6.365 4.639 2.288 0.000 0.000
2.500 8.391 7.705 6.596 4.908 2.527 0.000 0.000
2.750 8.509 7.873 6.813 5.153 2.775 0.000 0.000
3.000 8.615 8.019 7.009 5.398 3.017 0.095 0.000
3.250 8.708 8.149 7.190 5.632 3.257 0.289 0.000
3.500 8.793 8.267 7.358 5.853 3.505 0.508 0.000
3.750 8.870 8.379 7.514 6.061 3.759 0.750 0.000
4.000 8.939 8.485 7.661 6.258 4.018 1.031 0.000
4.250 9.000 8.582 7.798 6.444 4.281 1.351 0.000
4.500 9.056 8.671 7.926 6.620 4.543 1.691 0.000
4.750 9.107 8.753 8.044 6.787 4800 2.035 0.000
5.000 9.156 8.828 8.154 6.946 5.046 2.380 0.000
5.250 9.202 8.895 8.256 7.098 5.278 2.717 0.000
5.500 9.247 8.958 8.350 7.243 5.494 3.035 0.104
5.750 9.288 9.019 8.438 7.379 5.693 3.337 0.297
6.000 9.327 9.072 8.518 7.509 5.879 3.623 0.748
6.250 9.364 9.119 B.592 7.630 6.055 3.889 1.155
6.500 9.399 9.164 8.661 7.744 6.227 4.145 1.602
6.750 9.431 9.205 8.724 7.849 6.396 4.385 1.957
7.000 9.462 9.240 8.782 7.948 6.559 4614 2.267
7.250 9.491 8.270 8.835 8.041 6.716 4.832 2.546
7.500 9.518 9.297 8.883 8.129 6.863 5.041 2.804
7.750 9.548 9.320 8.928 8.212 7.003 5.242 3.041
8.000 9.551 9.339 8.970 8.290 7.135 5.433 3.259
8.250 9.551 9.353 9.007 8.364 7.261 5.614 3.461
8.500 9.536 9.363 9.042 8.433 7.381 5.787 3.651
8.750 9.520 9.368 9.074 8.497 7.496 5.950 3.830
9.000 9.504 9.369 9.102 8.557 7.606 6.104 3.998
9.250 9.488 9.370 9.128 8.611 7.710 6.248 4.158
9.500 9.473 9.368 9.149 8.662 7.806 6.383 4.309
9.750 9.457 9.364 9.166 8.709 7.893 6.510 4.450
10.000 9.441 9.360 9.180 8.754 7.974 6.627 4.583
10.250 9.426 9.355 9.191 8.797 8.049 6.735 4.711
10.500 9.410 9.351 9.202 8.840 8.123 6.837 4.835

128



The sectional geometric data of the full-scale “R-class Icebreaker” ship are calculated
from the offset values and listed in Table 29. The strip theory computations for a 1:40
scale ship model in head wave conditions are performed using the scaled geometric data.

The computational details at the frequency point 0.685Hz are presented in Table 30.

Table 29: Sectional Data of the Full-scale “R-class Icebreaker” Ship

Full Scale Ship Data

LBP(m)= 87.93 Midship{m) 43.965 LCB(m)= 43.635
FP Draft(m) 6.71 Mid Draft(m) 6.93 AP Draft(m) 7.16
Station From AP |Beam Draft Area From LCB
X(m) Bn(m) Tn{m) Sn(m) Xc(m) dax{m)
FP 85.650 4.520 1.562 3.244 42.015
1| 81.413 9.200 4.003 18.514 37.778 4.237
2| 77.175 13.120 . 6.746 48.912 33.540 4.238
3| 72938 15.900 - 6.769 75.992 29.303 4.237
4| 68.700 17.600 6.792 95.128 25.065 4.238
5| 64.463 18.500 6.815 107.790 | 20.828 4,237
6] 60.225 18.940 6.838 115.790 | 16.590 4.238
7| 55.988 19.100 6.861 120.344 | 12.353 4.237
8| 51.750 19.100 6.884 122.788 8.115 4.238
9| 47513 19.100 6.907 123.908 3.878 4.237
10| 43.257 19.120 6.930 124.506 | -0.378 4.256
11| 38.931 19.120 6.953 124.946 | -4.704 4.326
12| 34.606 19.120 6.976 125.060 | -9.029 4.325
13| 30.280 19.100 6.999 123.504 | -13.355 4.326
14| 25.954 18.800 7.022 118.704 | -17.681 4.326
15| 21.629 18.200 7.045 110472 | -22.006 4.325
16| 17.303 17.400 7.068 96.042 | -26.332 4.326
17| 12.977 16.100 7.091 73.124 | -30.658 4.326
18| 8.651 14.000 7.114 45.396 | -34.984 4.326
19| 4.326 10.620 3.387 18.228 | -39.309 4.325
AP 0.000 6.000 1.381 4.654 -43.635 4.326
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Table 30: Strip Theory Computations for 1:40 “R-class Icebreaker™ Model

Ship Model Calculation Wave Frequency (h2) | 0.685/(rad/sec) 4.304
Mode! Speed (m/sec) 0 Encounter Frequency (hz) 0.685|(rad/sec) 4.304
Station |xc(m) Bn(m) Tn(m) Sn(m"2) Sn/(Bn*Tn)|Bn/Tn F(t,Bn) |C A Simpson
FP 1.050 0.113 0.039 0.002 0.459 289 0.107 1.4 0.2 1
1 0.944 0.230 0.100 0.012 0.503 2298, 0.217 1 0.32 4
2 0.839 0.328 0.169 0.031 0.553 1.945 0.310 0.88 043 2
3 0.733 0.398 0.169 0.047 0.706 2.349 0.376 0.77 0.5 4
4 0.627 0.440 0.170 0.059 0.796 2591 0416 0.76 0.58 2
5 0.521 0.463 0.170 0.067 0.855 2.715) 0437 0.82 0.59 4
6 0.415 0474 0471 0.072 0.894 27701 0447 0.86 0.53 2
7 0.309 0478 0172 0.075 0.918 2.784| 0.451 0.86 0.52 4
8 0.203 0.478 0.172 0.077 0.934 2775 0.451 0.86 0.5 2
9 0.097 0.478 0.173 0.077 0.939 2765, 0.451 0.86 05 4
10 -0.009 0.478 0.173 0.078 0.940 2759 0.452 0.86 0.5 2
11 -0.118 0.478 0.174 0.078 0.940 2.750 0.452 0.86 05 4
12 -0.226 0.478 0.174 0.078 0.938 2741] 0452 0.86 0.5 2
13 -0.334 0.478 0.175 0.077 0.924 2729 0.451 0.86 0.5 4
14 -0.442 0.470 0.176 0.074 0.899 2.677] 0.444 0.86 0.52 2
15 -0.550 0.455 0.176 0.069 0.862 2583 0.430 0.79 0.56 4
16 -0.658 0.435 0177 0.060 0.781 2462 0411 0.73 0.53 2
17 -0.766 0.403 0177 0.046 0.641 2270, 0.380 0.73 0.51 4
18| -0.875 0.350 0.178 0.028 0.456 1968/ 0.331 0.9 0.45 2
19 -0.983 0.266 0.085 0.011 0.507 3.136 0.251 1.15 0.41 4
AP -1.091 0.150 0.035 0.003 0.562 4.345! 0.142 1.4 0.24 1
w’B
F(f.,B)= a = C is from Figure 36, A is from Figure 37.
8
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Station {a33(kg/m) [M1(a33) |M2(a33) |b33(kg/ms)M1(b33) [M2(b33) lcn(kg/mss)|M1(cn) (M2(cn) |mn(kg/m) [M2(mn)
FP 7.020 7.374 7.745 48.188] 50616 53.165 1107.4f 1163.2| 1221.78 11.449 12.631
1 20.773 19.619 18.529| 123.361} 116.509| 110.037 2254 2128.8| 2010.54 11.449 10.212
2 37.177 31.173 26.139| 222.749| 186.775] 156611 32144 2695.3| 2259.99 11.449 8.049
3 47.776 35.000 25.640[ 301.175| 220.633] 161.631 3895.5| 2853.7| 2090.58 11.449 6.144
4 57.778 36.205] 22.687] 405.261| 253947] 159.129 4312! 2702.0f 1693.15 96,376 37.843
5 68.879 35.865 18.675] 419.356] 218.359| 113.699 4532.5| 2360.1| 1228.89| 145.603 39.477
6 75.716 31.403 13.024] 338.401{ 140.352 58.211 4640.3| 1924.6 798.21| 107.465 18.486
71 77.000f 23.780 7.344| 325.751| 100.600 31.068 4679.5) 1445.1 446.30] 49.444 4.716
8 77.000 15.621 3.169{ 301.175] 61.101 12.396 4679.5 949.4 192.60| 60.049 2471
9 77.000 7.465 0.724! 301.175| 29.199 2.831 4679.5 453.7 43.98 48.916 0.460
10| 77.162 -0.729 0.007| 301.175 -2,846 0.027 4684.4 -44.3 042 47.628 0.004
11 77.162 -9.074 1.067| 301.175| -35.418 4.165 46844 -5509 64.78| 116.959 1,618
12] 77.162| -17.417 3.932| 301175 -67.983 15.345 4684.4| -1057.4| 23868 64.393 3.281
13| 77.000] -25.708 8.583| 301.175| -100.555 33.573 4679.5{ -1562.4] 52164 81.693 9.107
14| 74.600] -32.975| 14.576] 325.751| -143.990 63.647 4606| -2036.0] B899.95| 82.893] 16.196
15 64.224| -35.333 19.438| 377.794| -207.843| 114.345 4459| -2453.1] 1349.58 82.893 25,089
16 54.244| -35.709| 23.507| 338.401| -222.769| 146.649 4263 -2806.3] 1847.41 28.278 12.255
17] 46.441] -35.595| 27.282| 313.343( -240.162| 184.072 3944.5| -3023.3| 2317.18] 31.037 18.233
18] 43.294]| -37.865f 33.117] 243.952| -213.360] 186.605 3430| -2999.9| 262369 11.449 8.757
19 31.833) -31.283 30.742| 202.510| -199.012| 195574 2601.9| -2557.0| 251278 11.449 11.056
AP 12.370] -13.494 14.720 69.391| -75.697 82.576 1470, -1603.6] 1749.31 11.449 13.624
m(kg) lyy(kgmm}
SUM 125.547 <3130 33.344] 625.626) -15.458] 197.485 8604.462] -192.024| 2654.466| 121.498| 26.585
A33 833 A35 B35 A53 853 AS5 B55 C33 C35(C53) |C55
125.547| 625.626 3.130, 15.458 3130, 15.458] 33.344] 197.485| 8604.462) 192.824| 2654.466
pnB* pg’A* o
a,,=C 2 -, b;, o c, = pgB,; m, is weight distribution;

M, and M, are first and second moments, respectively.
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Station [T*(x) exp(-k'T) [k'xc cos{k*xc) |sin{k*xc) [{3(R) £3(1) h3(R)  {h3() {3+h3(R) {{3+h3(l)
FP 0.018 0.967 1.985 -0.403 0.915| -431.151] 979.808]-132.873| -195.795| -564.024| 784.01
1 0.050 0.909 1.785 -0.213 0.977! -435.916] 2002.645| -397.307| -444.556| -833.223| 1558.09
2 0.093 0.838 1.585 -0.014 1.000] -37.917| 2694.952| -795.634| -568.665| -833.551| 2106.29
3 0.119 0.798 1.385 0.185 0.983| 575.197| 3054.320| -1146.99| -502.476| -571.789| 2551.84
4 0.135 0.775 1.184 0.377 0.926| 1258.737| 3093.836{-1563.86] -258.737| -305.126] 2835.10
5 0.146 0.759 0.984 0.554 0.833] 1905.105| 2866.290| -1677.63| -48.214| 227477 2818.08
6 0.153 0.749 0.784 0.708 0.706] 2461.553| 2454.321) -1514.31| 30.796] 947.244| 2485.12
7 0.158 0.743 0.584 0.834 0.551| 2899.229| 1914.919| -1457.38] 284.956| 1441.845| 2199.87
8 0.161 0.738 0.383 0.927 0.374| 3202.785| 1292.093| -1334.1] 493.343| 1868.684| 1785.44
9 0.162 0.736 0.183 0.983 0.182| 3386.378] 627.584|-1205.99! 746.737{ 2180.387 1374,32
10 0.163 0.735 -0.018 1.000 -0.018| 3443111 -61.506{-1033.52| 971.505| 2409.588/ 910,00
11 0.163 0.734 -0.222 0.975 -0.220; 3355.288| -758.337| -813.908| 1159.817| 2541.380| 401.48
12 0.164 0.734 -0.427 0910; -0.414| 3130.676| -1423.109| -561.427( 1300.496| 2569.248| -122.61
13 0.162 0.737 -0.631 0.807 -0.590] 2783.501) -2034.029; -284.975| 1390.988| 2498.527 -643.04
14 0.158 0.742 -0.835 0.671 -0.742| 2292.747) -2534.718] 83.6815| 1458.307| 2376.429; -1076.41
15 0.152 0.751 -1.040 0.506 -0.862| 1694.822| -2886.326] 600.33] 1388.068| 2295.152| -1498.26
16 0.138 0.770 -1.244 0.321 -0.947| 1053.469| -3110.758| 814.475| 1093.098| 1867.943| -2017.66
17 0.114 0.807 -1.449 0.122 -0.993| 387.679| -3158.923] 995.454| 821.456] 1383.134| -2337.47
18 0.081 0.858 -1.653 -0.082 -0.997| -241.919| -2932.773| 954.292| 611.834] 712.373| -2321.14
19 0.043 0.922 -1.857 -0.283 -0.959] -678.401] -2301.295| 924.619( 294.272] 246.218| -2007.02
AP 0.019 0.964 -2.062 -0.472 -0.882| -668.281| -1249.625| 358.039| 59.007] -310.242| -1190.62
F}R) F3()
2424.899| 942.785
T'(x) = %—; K=-2: fi(R) =€ W cos(Kx, ), ; fi) =" Psin(Kx ), ;

(R) = e *[—cos(Kx, ) m,a,, — sin(Kx, Jw,b,,];

(1) = e ¥ [-sin(Kx,)w,0,a,, +cos(Kx, )b, ]
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Station |xc(f3+h3)r [xc(f3+h3) [{(U)r H{U)I Momen(R)|Momen(!)
FP -592.437| 82351 0 0| -592.437| 823.51
1] -786.937| 1471.54 0 0| -786.937! 147154
2| -698.932| 1766.12 0 0| -698.932| 1766.12
3| -418.879] 1869.42 0 0| -418.879| 1869.42
4] -191.199| 1776.54 0 0| -191.199| 1776.54
5| 118.447| 1467.37 0 0| 118.447| 1467.37
6] 392.869| 1030.70 0 0| 392869 1030.70
7/ 445278| 679.38 0 0| 445278] 679.38
8] 379.109| 362.22 0 0] 379.109| 36222 P(R) 4028.452
9| 211.388] 133.24 0 0| 211.388 133.24 P 2692.605
10 -22.771 -8.60 0 0| -22.771 -8.60 Q(R) 134.844
11] -298.866 -47.21 0 0| -298.866 -47.21 Q) 66.527
12| -579.944 27.68 0 0| -579.944 27.68 R(R) 134.644
13| -834.196] 214.70 0 0| -834.196] 214.70 R(1) 86.527
14| -1050.441] 475.80 0 0] -1050.441 475.80 S(R) 1544.386
15/-1262.678|  824.27 0 0]-1262.678|  824.27 U 849.9461
16/ -1229.667] 1328.23 0 0]|-1229.667| 1328.23 F3(R) 2424.899
17|-1060.103| 1791.55 0 0/-1060.103| 1791.55 F3{1) 942.785
18| -623.041) 2030.07 0 0| -623.041| 2030.07 F5(R) 856.573
19| -241.964| 1972.35 0 0| -241.964| 1972.35 F5(1) -2183.022
AP 338.435| 1298.82 0 0| 338.435| 1298.82
F5(R) |F5{))
856.573| -2183.022

P(R) = C;, _wcz(m +4;)  OR)=Cy "wezAls .
P(l)=w B,

(1) =w,B,,

R(R) =C,, "wezAss.
R(/)=w,B,, '

S(R)=Cyy -0, (1, + Ayy)
S(I)=w B
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Station |[xc-X0 (m) |mn+a33 |Product  |f(U) An Simpson  |b33(xc-X0}(U*a33 [Bn ¢33(xc-X0)Cn
FP 1.050{ 18.469] 19.399 0| -19.399 1 50.616 0| -50.616| 1163.19(-1163.185
1 0.944 32,222 30.432 0| -30.432 4/ 116.509 0| -116.509| 2128.79; -2128.79
2 0.839 48.626 40.773 0] -40773 2 186.775 0] -186.775( 2695.27|-2695.274
3 0.733 59.225 43.387 0| -43.387 4| 220,633 0| -220.633] 2853.75(-2853.746
4 0.627] 154.155| 96.597 0| -96.597 2| 253.947 0| -253.947| 2702.01)-2702.007
5 0.521] 214.481| 111.680 0] -111.680 4 218.359 0] -218.359| 2360.07|-2360.073
6 0.415| 183.181] 75974 0| -75.974 2| 140.352 0] -140.352| 1924.56| -1924.564
7 0.309] 126.444 39.049 0] -39.049 4| 100.600 0| -100.600| 1445.15|-1445.147
8 0.203} 137.04% 27.804 0| -27.804 2 61.101 0 -61.101 949.35( -949.3536
9 0097} 125.916] 12.208 0| -12.208 4 29.199 0| -29.199] 453,68|-453.6775
X0(mid 0] 124,789 0.000 0 0.000 1 0.000 0 0.000 0.00 0
A B C
-51.188 -144.0245 -1931.72
Station |xc{m) xc(mn+a3d3Product  |f(U) Dn xc*b33 Product  [{{U) En xc’c33  {Hn
FP 1.050, 19.399| 20.376 0l 20.376] 50.616 53.165 0] 53.165/ 1163.19| 1221.78
1 0944 30432 28.741 0] 28.741] 116.509| 110.037 0] 110037 2128.79| 2010.54
2 0.839 40.773 34.188 0 34.188] 186.775] 156.611 Ol 156.611] 2695.27| 2259.99
3 0.733] 43.387[ 31.784 0 31.784] 220.633] 161.631 0] 161.631| 2853.75| 2090.58
4 0.627] 96.597] 60.530 0| 60.530] 253.947] 159.129 0] 159.129| 2702,01| 1693.15
5 0.521] 111.680 58.152 0 58.162] 218.359] 113.699 0] 113699 2360.07( 1228.89
6 0415| 75974] 31.510 0| 31.510] 140.352 58.211 0] 58211 192456 798.21
7 0.309] 39.049/ 12.059 0| 12.059| 100.600 31.068 0] 31.068] 1445.15| 446.30
8 0.203] 27.804 5.641 0 5.641 61.101 12.396 0] 12396 94935 192,60
9 0.097] 12.208 1.184 0 1,184 29,199 2.831 0 2831 45368 43.98
X0(mid 0 0.000 0.000 0 0.000 0.000 0.000 0 0.000 0.00 0.00
D E H
28.683 88.437 1215.143
A, ==(m, +a,)(x, —X); B, = =by,(x. —x); C, =, (%~ %);

D, = (m, +ay)x (x, - %); E, =byx (x. —x); H, =cx(x.-x).



Station |13+h3(R) {Product [{U)r Addition 13+h3{l) |Product  {{(U)I Addition
FP -564.024) -592.437 0| -592.437 784.012| 823507 0l 82351
1| -833.223| -786.937 0| -786.937 1558.090| 1471.538 0] 1471.54|A -51.188
2| -833.551] -698.932 0| -698.932 2106.287| 1766.122 0] 1766.12|B -144.0245
3| -571.789| -418.879 0| -418.879 2551.844| 1869.417 0| 1869.42(C -1931.72
4] -305.126| -191.199 0| -191.199 2835.099| 1776.544 0| 1776.54|D 28.683
5| 227.477| 118.447 0 118.447 2818.076| 1467.372 0| 1467.37(E 88.437
6] 947.244| 392.869 0| 392.869 2485.117| 1030.702 0| 1030.70(H 1215.143
7| 1441.845| 445.278 0] 445278 2199.875| 679.376 0| 679.38Mw(R) -90.155
8| 1868.684| 379.109 0] 379.109 1785.436| 362.220 0] 362.22|Mw(l) 1172.308
9| 2180.387| 211.388 0] 211.388 1374321 133.240 0| 133.24|Fre(rad/s) 4.304
XO0(mid] 2409.588 0.000 0 0.000 909.999 0.000 0 0.00
Mw(R) Mw(l)
-90.155 1172.308

M R) = [Lf,(R)+ i (R)N(x, - xy)dx,

bow
M ()= [LAA)+hDKx, - x)dx,

Xo

X

13§



The above computations are performed at each frequency value of the regular wave tests,

and the resulting coefficients and excitation forces are presented in Table 31.

Table 31- Computed Hvdrodvnamic Coefficients and Exciting Forces

f (hz) 0.392 049%0]  0.588 0.685 0784  0.882 0.980/ __ 1.077
P(R) 6674.607| 5887.607| 4978.069| 4028.452| 2845.297| 1462.324] -127.046!-1964.160
P 1716.990] 2168.582| 2597.614| 2692.605] 3034.788| 3075.315| 3174.711! 2967.506
Q(R) 162.694| 154.762| 149.877| 134.844] 133.010] 112.021 94.004! 79.093
Q) 47.056 38.091 60.629 66.527 43.043 69.732] 102.196{ 120656
R(R) 162.694| 154.762] 149.977! 134.844] 133.010] 112021] 94.004| 79.093
R() 47.056 38.091 60.629 66.527 43.043 69.732| 102.196| 120.656
S(R) 2181.033] 1982.103] 1770.019| 1544.386| 1290.567] 986.514| 643.872| 262.540
S() 466.014] 607.099] 754.714] 849.946| 939.412] 1022.667| 1110.795| 1106.427
F3(R) 6203.765| 5092.730{ 3931.362] 2424.899| 839.657| -381.029| -955.902] -849.701
F3(1) 1341.580| 1468.128| 1440.556| 942.785| 488.463| -92.221]| -454.565! -415.557
F5(R) 407.117| 575.957] 761.8983; 856.573| 809.860| 541.038; 151.208! -237.863
F5(1) -1453.112| -1864.272] -2090.322| -2183.022| -1846.876| -1174.525| -303.360/ 417.912
A -65.505| -69.679{ -55.220| -51.188] -48.871] -47422| -46.621! -46.340
By -144.561| -151.604| -153.101] -144.024| -142.879| -131.485/ -123.969/ -108.073
Cy -1931.720| -1931.720/ -1931.720/ -1931.720| -1931.720} -1931.720| -1931.720 -1931.720
Dy 36.880 33.757 31.004 28.683 27.207 26.276 25.638 25.313
Ey 84.475 91.492 93.081 88.437 89.155 83.687 80.498 71.596
Hy 1215.143] 1215.143] 1215.143] 1215.143] 1215.143] 1215.143] 1215.143] 1215.143
Mw(R) 1236.769| 833.036; 408.406| -90.155| -540.361] -727.826| -615.086] -255.997
Mw(l) 975.096] 1185.071! 1265.253! 1172.306! B844.491| 350.465| -145.257] -409.219
From the above calculations, we can get the following complex coefficients:
P=P(R)+IP(1) (74)

Q=Q(R)+iQ(I)
R =R(R)+iR(I)
S=S(R)+iS(I)

F, = F,(R)+iF,(I)
F, = F,(R)+iF,(I)

v, =M (R)+iM ()

Substitution of P, Q, R, S, F;, and Fs into equation ( 65 ) results in the complex

amplitudes of the heave displacement z, and the angular pitch displacement 0,.

Subsequent substitution of z,, 8,, A,, By, C,, D,, E,, H,, and Y; into equation ( 69 ) gives
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the complex amplitude of the wave-induced midship bending moment. The modulus and
phase shift could be determined from the complex amplitude. The final results are listed

in Table 19. The MATLAB M-file for the complex solutions is presented below.

solution.m

$M-file for Solution Of Regular Wave Motion
P=motion(l)+i*motion(2):
Q=motion(3)+i*motion(4);
R=motion(S)+i*motion(6);
S=motion(7)+i*motion(8};
F3=motion(9)+i*motion(10);
FS=motion(1ll)+i*motion(12) :
x3=(F3*S-F5*Q) /(P*S-Q*R) ;
x5=(F5*P-F3*R) /(P*S-Q*R) ;
$Computation of Midship Bending Moment
A=motion(1l3);
B=motion(1l4):;
C=motion(15):;
D=motion(1l6);
E=moticn(1l7);
H=motion(1B8) :
Mw=motion(1l9) +i*motion (20);
omega=motion{(21);
BM=(C-A*omega”~2+i*B*omega) *x3+(H-D*omega~2+i*E*omega) *X5+Mw;
$Magnitude and Phase
mag3=abs (x3) ;
magS5=abs (x5) ;
magBM=abs (BM) ;
if real(x3)>=0
phase3=atan (imag(x3) /real (x3))*180/pi;
else
phase3=(pi+atan(imag(x3)/real (x3)))*180/pi:
end
if real(x5)>=0
phaseS=atan(imag(x5)/real(x5))*180/pi;
else
phaseS=(pi+atan(imag(x5)/real(x5)))*180/pi;
end
if real(BM)>=0
phaseBM=atan(imag (BM) /real (BM)) *180/pi;
else
phaseBM= (pi+atan(imag (BM) /real (BM)))*180/pi;
end
result=[mag3, phase3;mag5, phase5;magBM, phaseBM]
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Appendix II Data Analysis Programs

The computer programs used for the data analysis and numerical simulations are

summarized in Table 32. All programs in this work are written as MATLAB M-files.

Table 32: Summary of the Computer Programs

Stationary Tests in Head Waves
hregu.m Frequency Analysis of Regular Wave Tests
hspec.m Spectral Analysis of Random Wave Tests
hneural.m Estimation of Correlation Functions for Neural Network Training
htestl.m Regular Wave Data Processing for Neural Network Validation
hrest3.m Random Wave Data Processing for Neural Network Validation
hsimu.m Estimation of Correlation Functions using Time-domain Simulations
Stationary Tests in Following Waves
fregum Frequency Analysis of Regular Wave Tests
fspec.m Spectral Analysis of Random Wave Tests
fneural.m Estimation of Correlation Functions for Neural Network Training
ftestl.m Regular Wave Data Processing for Neural Network Validation
ftest3.m Random Wave Data Processing for Neural Network Validation
fsimu.m Estimation of Correlation Functions using Time-domain Simulations
Towing Tests in Head Waves (0.5mv/sec)
sSregu.m Frequency Analysis of Regular Wave Tests
s3sample.m | Data Processing of Random Wave Tests
sSspec.m Spectral Analysis of Joined Random Time History
sSneural.m | Estimation of Correlation Functions for Neural Network Training
sStestl.m Regular Wave Data Processing for Neural Network Validation
sS5test3.m Random Wave Data Processing for Neural Network Validation
s5simu.m Estimation of Correlation Functions using Time-domain Simulations
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hregu.m

% Frequency Analysis of Regular Test (Head Wave Stationary Tests)

heave=-0.00140*data(:,1)+87.5966;
pitch=-0.00232*data(:,2)+70.5666;
speed=0.00015*data(:,3)-5.0490C;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:,5)-212.5687;
heave=heave(3001:6000) -mean (heave(1:100)):
pitch=pitch(3001:6000)-mean(pitch(1:100));
wave=wave (3001:6000) -mean (wave(1:100)) ;
bend=bend(3001:6000) -mean(bend(1:100)) ;
£=[0:2999]'/50;
£
Icw=wave'*cos(2*pi*£*t)/3000;
Isw=wave'*sin(2*pi*f*t)/3000;
Ich=heave'*cos(2*pi*£f*t}/3000;
Ish=heave'*sin(2*pi*£*t}/3000;
Icp=pitch'*cos(2*pi*£*t}/3000;
Isp=pitch'*sin(2*pi*£*t}/3000;
Icb=bend'*cos(2*pi*£f*t)/3000;
Isb=bend'*sin(2*pi*£*t)/3000;
W=2*sqrt (Icw*2+Isw"2);
H=2*sqgrt(Ich~2+Ish"~2);
P=2*sqrt (Icp~2+Isp"2):
B=2*sqrt (Icb~2+Isb"2):
if Icw>=0
phasew=(-atan(Isw/Icw))*180/pi;

else
pPhasew={pi-atan(Isw/Icw})*180/pi;

end
if Ich>=0

phaseh=(-atan(Ish/Ich})*180/pi:
else

phaseh=(pi-atan(Ish/Ich))*180/pi-;
end
if Iecp>=0

phasep=(-atan(Isp/Icp)}*180/pi:
else

phasep=(pi-atan{Isp/Icp})*180/pi;
end
if Ich>=0

phaseb=(-atan(Isb/Icb)}*180/pi;
else

phaseb=(pi-atan(Isb/Icb})*180/pi;
end

result=(f,W, H, phaseh-phasew, P, phasep-phasew, B, phaseb-phasew]
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hspec.m

% Spectral Analysis of Random Test (Head Wave Stationary Tests)
heave=-0.00140*data(:,1)+87.5966;
pitch=-0.00232*data(:.2)+70.5666;
speed=0.00015*data(:,3)-5.0490;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:.5)-212.5687;

heave=heave (2501:25000) -mean (heave(1:100)) ;
pitch=pitch(2501:25000)-mean(pitch(1:100));
wave=wave (2501:25000) -mean (wave (1:100)) ;

bend=bend (2501:25000) -mean (bend{(1:100) ) ;

% Spectrum Estimation

fwave=££ft (wave) ;

swave=fwave. *conj ( fwave) /1125000;

fheave=fft (heave);
sheave=fheave. *conj (fheave) /1125000;

fpitch=fft (pitch);
spitch=fpitch.*conj(fpitch)/1125000;

fbend=££ft (bend) ;

sbend=fbend. *conj (fbend) /1125000;
swave=swave(1l:11250) *2;

sbend=sbend(1:11250) *2;

sheave=sheave(1:11250) *2;

spitch=spitch(1:11250)*2;

£=[0:11249]/450;

raoh=sqgrt (sheave./swave) ;

raop=sgrt(spitch./swave) ;

raob=sqgrt (sbend. /swave) ;

$Regqular Wave Test Results
F=[0.294,0.392,0.490,0.588,0.685,0.784,0.882,0.980,1.077]*;
AW=[3.40,3.31,3.56,2.82,2.70,3.28,3.30,4.13,3.32}1"';
AB=[3.27,3.83,7.39,8.89,10.48,13.75,10.82,6.14,6.63]";
AH=(3.29,3.05,3.02,1.94,1.35,0.88,0.52,2.22,0.54]";
AP=[0.91,0.75,1.28,2.06,2.37,2.36,1.82,1.32,0.79]";
RAOH=AH./AW; RAOP=AP./AW; RAOB=AB./AW:

§Plotting

subplot(2.1,1)

plot(£(100:600),swave(100:600), ‘")

title ('Wave Spectrum'); ylabel (*S(£f}')

subplot (2,1, 2)
ploc(£(100:600),racb(100:600), '-r* ,F,RAOB, 'ob*)
legend('Random Test', 'Regular Test')

ticle ('BM RAOs'); ylabel ('RAO')

figure

subplot(2.,1,1)

plot (£(100:600),raoch(100:600), '-r* ,F,RAOH, 'Ob"')
title ('Heave RAQOs'); ylabel ('RAO'}

subplot(2,1,2)
plot(£(100:600),racp(100:600), '-r',F,RAQOP, 'ob"')
title ('Pitch RAOs')

ylabel ('RAQ'); xlabel ('f(Hz)')



hneural.m

% Estimation of Correlation Functions for Training (Head Wave
Stationary Tests)
heave=-0.00140*data(:,1)+87.5966;
pitch=-0.00232*data(:,2)+70.5666;
speed=0.00015*data(:,3)-5.0490;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:,5)-212.5687;
heave=heave(2501:25000) -mean (heave(1:100)};
pitch=pitch(2501:25000) -mean(pitch(1:100)};
wave=wave (2501:25000) -mean(wave (1:100)) ;
bend=bend(2501:25000) -mean(bend(1:100));
% Estimation of Auto- and Cross-correlation Functions
for J=1:500 .
crosshh(J) =heave (1+(J-1) :22500) ' *theave(1:22500~-(J-1) )/ (22500-(J-1)} ;
crosshp (J)=pitch(1+(J-1) :22500) ' *heave(1:22500-(J-1)) / (22500~-(J-1)) ;
crosshb(J) =bend(1+{(J-1) :22500) ' *heave (1:22500~-(J-1)) 7/ (22500-(J-1)) ;
end
MX=max (crosshh} ;
crosshh=crosshh/MX:
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
£or K=1:480
I=K+10;
dhh (K) =crosshh(I);
vhh(K)=(crosshh(I+10) -crosshh(I-10))/(2*0.2};
ahh (K) =(crosshh(I+10)-2*crosshh(I}+crosshh(I-10))/(0.2)"~2;
dhp (K) =crosshp(I);
vhp (K) =(crosshp (I+10) -crosshp(I-10))}/(2*0.2);
ahp(K) =(crosshp (I+10) -2*crosshp (I)+crosshp(I-10))/(0.2)"2;
dhb(K) =crosshb(I):
end
t=[1:480]/50;
resulc=[dhh' vhh' ahh' dhp’' vhp*' ahp* dhb'];
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htestl.m

% An M-file for Regular Test Verification (Head Wave Stationary Tests)
heave=-0.00140*data(:,1)+B7.5966;
pitch=-0.00232*data(:,2)+70.5666;
speed=0.00015*data(:.3)-5.0490;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:,5)-212.5687;
heave=heave(3001:600]1) -mean (heave(1:100)) ;
pitch=pitch(3001:6001)-mean (pitch(1:100));
wave=wave (3001:6001) -mean(wave(1:100)) ;
bend=bend(3001:6001) -mean(bend(1:100});
% Resampling Data
for J=1:50
crosshh(J) =heave(1+(J-1)*10:3001) ' *heave(1:3001-(J-1)*10)/(3001-(J-
1)*10);
crosshp(J)=pitch(1+(J-1)*10:3001) ' *heave(1:3001-(J-1)*10)/(3001-(J~
1)*10);
crosshb(J)=bend(1+(J-1)*10:3001) **heave(1:3001-(J-1)*10)/(3001-(J-
1)*10);
end
MX=max(crosshh) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calcularion of Velocity & Acceleration
for K=1:48
I=K+1l;
dhh (K) =crosshh(I);
vhh(K)=(crosshh(I+1l) -crosshh(I-1))/(2*0.2);
ahh (K)=(crosshh(I+1l) -2*crosshh(I)+crosshh(I-1))/(0.2)"2;
dhp (K) =crosshp(I):
vhp (K)=(crosshp(I+1l) -crosshp(I-1))/(2+0.2);
ahp (K) = (crosshp(I+l) ~2*crosshp (I)+crosshp(I-1))/(0.2)"2;
dhb (K) =crosshb(I) ;
vhb (K)=(crosshb(I+1l) -crosshb(I-1))/(2*0.2);
ahb (K)=(crosshb(I+1l) -2*crosshb{I)+crosshb(I-1))/(0.2)"2;
end
t=[1:48]/5;
resulc={dhh' vhh' ahh' dhp' vhp' ahp*® dnb']:
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htest3.m

% An M-file for Random Test Verification (Head Wave Stationary Tests)
heave=-0.00140*data(:,1)+87.5966;
pitch=-0.00232*data(:,2)+70.5666;
speed=0.00015*data(:,3)-5.0490;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:,5)-212.5687;
heave=heave (2501:25000) -mean (heave(1:100))
pitch=pitch(2501:25000)-mean(pitch(1:100))
wave=wave (2501:25000) -mean(wave{1:100)) ;
bend=bend (2501:25000) -mean{bend(1:100)):;
% Resampling
N
crosshh=heave (N+1:N+500) ;
crosshp=pitch(N+1:N+500);
crosshb=bend (N+1:N+500) :
MX=max (crosshh}) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX;
crosshb=crosshb/MX:
% Calculation of Velocity & Acceleration
for K=1:480
I=K+10;
dhh (K) =crosshh(I):
vhh(K)={crosshh(I+10)-crosshh(I-10))/(2*0.2);
ahh (K)=(crosshh(I+10)-2*crosshh(I)+crosshh{I-10))/(0.2)"2;
dhp (K) =crosshp(I):
vhp(K) =(crosshp (I+10) -crosshp(I-10))/(2*0.2);
ahp(K)=(crosshp(I+10)-2*crosshp(I)+crosshp(I-10))/(0.2)"2;
dhb (K) =crosshb(I):

.
.

end

t=[1:480]1/50;

$Frequency-domain Filter Implementation
fbend=fft (bend) ;
nfbend=zeros(size({fbend)):;
nfbend(1:1000)=fbend(1:1000) ;

nfbend (21502:22500) =ftbend (21502:22500) ;
nbend=ifft (nfbend) ;

nbend=real (nbend) ;

fheave=££ft (heave) ;
nfheave=zeros(size(fheave));
nfheave(1:1000) =fheave{1:1000);
nfheave(21502:22500) =fheave (21502:22500) ;
nheave=ifftr(nfheave)};

nheave=real (nheave) ;

fpitch=fft (pitch);
nfpitch=zeros(size(fpitch));
nfpitch(1:1000)=£fpitch(1:1000);
nfpitch(21502:22500)=£fpitch(21502:22500);
npitch=ifft(nfpitch);

npitch=real (npitch);

% Calculation for Filtered Values



for J=1:500
ncrosshh(J) =nheave (1+N+(J-1
ncrosshp (J) =npitch(1+N+(J-1
ncrosshb (J) =nbend (1+N+(J-1)

e S S

end
ncrosshh=ncrosshh/MX
ncrosshp=ncrosshp/MX;
ncrosshb=ncrosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:480
I=K+10;
ndhh(K) =ncrosshh(I);
nvhh (K) =(ncrosshh(I+10) -ncrosshh(I-10))/(2*0.2);
nahh (K) =(ncrosshh(I+10)-2*ncrosshh(I)+ncrosshh(1-10))/(0.2)°2;
ndhp (K) =ncrosshp(I):
nvhp (K) = (ncrosshp(I+10) -ncrosshp(I-10))/(2*0.2);
nahp (K) = (ncrosshp (I+10) ~-2*ncrosshp(I) +ncrosshp(I-10})/(0.2)"2;
ndhb (K) =ncrosshb(I) ;

. v

end
result=[ndhh' nvhh' nahh*®' ndhp' nvhp' nahp' ndhb']};
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hsimu.m

$Simulation of Ship Motions and Bending Moment (Head Wave Stationary

Condition)

$JONSWAP Wave Spectrum

£1=0.4:0.01:0.6;

§1=0.21*7.52%0.6"4./£1.~S.*exp(-1.25*0.6"4./£1.~4) .*3 .3 . ~“exp(-(£f1i-

0.6).72/2/(0.07*0.6)"2);

£2=0.61:0.01:0.9;

§2=0.21*7.52*0.6"4./£2_."5.*exp(-1.25*0.6"4./£2.74) .*3 .3 . ~exp(-(£2-

0.6).72/2/(0.09%0.6)"2);

={£f1,£2]";

s=(sl,s2]"';

tWave Simulation

phasew=rand(size(f))*2*pi;

ampliw=sqgrt(2*s*0.01) ;

$Computed Frequency Transfer Functions

$F=[0.4:0.1:0.9]"';

tMagh=[0-921,0.848,0.749,0.542,0.255,0.119] *;

$Angleh=[-1.18,-2.54,-4.89,-8.16,-8.05,111.62]1"';

$Magp=[0.389,0.537,0.662,0.761,0.721,0.527] *;

$Anglep=[267.7,266.2,263.8,260.6,256.6,249.0]"';

$Magb=[0.683,1.345,2.130,3.208,3.939,4.017]"*;

$2Angleb=(181.8,185.6,188.7,191.4,196.7,205.6] ';

$Experimental Frequency Response Functions

F=[0.4:0.1:0.9]":

Magh=[0.921,0.848,0.688,0.5,0.268,0.158]"';

Angleh=[5.8,9,8.5,16.6,23.8,83.3]"';

Magp=[0.226,0.36,0.731,0.878,0.72,0.552])";

Anglep=[267.5,261.1,272.1,281.7,286.2,284.1]"';

Magb=(1.1571,2.0758,3.1525,3.8815,4.1921,3.2788]"';

Angleb=[205,203,205,196,188,194]';

$Heave Simulation

rach=interpl(F,Magh, f) :

phaseh=interpl{(F,Angleh, £) *pi/180;

t=[0.02:0.02:459]"';

heave=zeros(size(t)):

for k=1:size(f)
heave=heave+ampliw (k) *raoh(k) *rcos(2*pi~f (k) *t+phasew (k) +phaseh(k)) ;

end

$Pitch Simulation

raop=interpl(F,Magp.f);

phasep=interpl (F,Anglep, £) *pi/180;

pitch=zeros(size(t));

for k=l:size(f)
pitch=pitch+ampliw(k) *raop(k) *cos(2*pi*£f(k) *t+phasew(k) +phasep(k)):;

end

$Bending Moment Simulation

racb=interpl(F,.Magb, £f) ;

phaseb=interpl (F,Angleb, f) *pi/180;

bend=zeros{size(t)):

for k=l:size(f)
bend=bend+ampliw (k) *raob(k) *cos (2*pi*£f (k) *t+phasew(k) +phaseb(k)) ;
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end

% Estimation of Correlation Functions

for J=1:500

crosshh(J)=zheave (1+(J-1) :22500) ' *heave(1:22500-(J-1) )/ (22500~(J~-1));

crosshp (J)=pitch(1l+(J-1) :22500) ' *heave(1:22500-(J-1) )/ (22500-(J-1)):

crosshb(J)=bend(1+{J-1) :22500) ' *heave (1:22500-(J-1)) /{22500~ (J-1)) ;

end

MX=max{crosshh);

crosshh=crosshh/MX;

crosshp=crosshp/MX;

crosshb=crosshb/MX;

% Calculation of Velocity & Acceleration

for K=1:480
I=K+10;
dhh(K) =crosshh(I) :
vhh(X)=(crosshh({I+10)-crosshh(I-10))/(2*0.2);
ahh({K)=(crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/{0.2)"2;
dhp (K) =crosshp(I) ;
vhp (K) =(crosshp (I+10}-crosshp(I-10})/(2*0.2);
ahp(K)=(crosshp(I+10)-2*crosshp({I)+crosshp(I-10))/(0.2)"2;
dhb(K)=crosshb(I);

end

T=[{1:4801/50;

result=[dhh' vhh' ahh' dhp*' vhp' ahp' dhb'}:
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Jregu.m

% Frequency Analysis of Regular Test (Following Wave Stationary Test)
heave=-0.0013967*data(:,1)+88.866;
pitch=-(-0.00090696*data(:,2)+30.743};
wave=0.00103865*data(:,4)-34.1906;
bend=0.00705158*data(:,3)-249.699;
heave=heave(3001:6000) -mean (heave (1:100)) ;
pitch=pitch(3001:6000)-mean(pitch(1:100)):
wave=wave (3001:6000) -mean (wave(1:100));
bend=bend (3001:6000) -mean{bend(1:100)) ;
t=[{0:2999]'/50;
f
Icw=wave'*cos(2*pi*£*t)/3000;
Isw=wave' *sin(2*pi*£*t)/3000;
Ich=heave'*cos{2*pi*£f*t)/3000;
Ish=heave'*sin(2*pi*£*t)/3000;
Icp=pitch'*cos{(2*pi~*f*t)/3000;
Isp=pitch'*sin(2*pi*£*t)/3000;
Icb=bend'*cos(2*pi*£f*t})/3000;
Isb=bend'*sin(2*pi*£*t)/3000;
W=2*sqgrt(Icw”2+Isw"2);
H=2*sqrt(Ich"~2+Ish"2);
P=2*sqrt (Icp~2+Isp~2);
B=2*sqgrt(Icb"2+Isb"2) ;
i1f Icw>=0

phasew=(-atan(Isw/Icw))*180/pi;

else
phasew=(pi-atan(Isw/Icw))*180/pi:

end
if Ich>=0

phaseh={-atan(Ish/Ich))*180/pi:
else

phaseh=(pi-atan(Ish/Ich)) *180/pi;
end
if Icp>=0

phasep={(-atan(Isp/Icp))*180/pi;
else

phasep=(pi-atan(Isp/Icp)) *180/pi:
end
if Icb>=0

phaseb=(-atan{Isb/Icb))*180/pi;
else

phaseb={pi-atan(Isb/Icb))*180/pi;
end

result=[f,W,H, phaseh-phasew, P, phasep-phasew, B, phaseb-phasew]
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fspec.m

% Spectral Analysis of Random Test (Following Wave Stationary Tests}
heave=-0.0013967*data(:,1)+88.866;
pitch=—(-0.00090696*data(:,2)+30.743);
wave=0.00103865*data(:,4)-34.1906;
bend=0.00705158*data(:,3)-249.699;

neave=heave (2501:25000) -mean(heave(1:100)):
pitch=pitch(2501:25000)-mean(pitch(1:100)};

wave=wave (2501:25000) -mean (wave (1:100)) ;

bend=bend (2501:25000) -mean(bend (1:100)) ;

% Spectrum Estimation

fwave=fft(wave) ;

swave=fwave. *conj (fwave) /1125000;

fheave=fft (heave) ;

sheave=fheave. *conj (fheave)/1125000;

fpitch=fft(pitch);

spitch=fpitch.*conj(fpitch)/1125000;

fbend=fft (bend) ;

sbend=fbend. *conj (fbend) /1125000;

£=[0:22499] ' /450;

swave=swave (1:11250) *2;

sbend=sbend(1:11250) *2;

sheave=sheave(1:11250)*2;

spitch=spitch(1:11250) *2;

£=£(1:11250);

raoh=sqgrt (sheave./swave) ;

raop=sgrt(spitch./swave) ;

raob=sqgrt (sbend. /swave) ;

$Regular Wave Test Results
F=[0.295,0.393,0.491,0.590,0.689,0.787,0.886,0.983,1.081]";
RAOB=[0.834,1.198,1.781,2.678,3.652,4.027,4.778,6.723,3.595]";
RAOCH=[0.920,0.884,0.812,0.589,0.456,0.212,0.176,1.261,0.172]"';
RAOP=[0.254,0.203,0.347,0.620,0.760,0.676,0.576,0.576,0.246] ";
$Plotting

figure

subplot(2,1,1)

plot(£(100:600) ,swave(100:600), ‘")

title ('Wave Spectrum'); ylabel ('S({f)‘*)

subplot(2,1,2)

plot(£(100:600) ,raob(100:600},'-r',F,RAOB, 'ob"')
legend('Random Test', 'Regular Test')

title ('BM RAOs'):; ylabel ('RAO')

figure
subplot(2,1,1)
plot(£(100:600),raoh(100:600), '-r',F,RACOH, ‘ob"'}

title ('Heave RAOs'); ylabel ('RAO')

subplot (2,1, 2)
plot(£(100:600),raop(100:600), '-r',F,RAOP, 'ob")
title ('Pitch RAOs')

ylabel ('RAO'); xlabel ('f(Hz)')
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Jfneuralm

% Estimation of Correlation Functions for Training (Following Wave
Stationary Test)
heave=-0.0013967*data(:,1)+88.866;
pitch=-(-0.00090696*data(:,2)+30.743);
wave=0.00103865*data(:,4)-34.1906;
bend=0.00705158*data(:,3)-249.699;
heave=heave (2501:25000) -mean (heave(1:100)) :
pitch=pitch(2501:25000) -mean(pitch(1:100)):
wave=wave (2501:25000) -mean(wave(1:100}) ;
bend=bend (2501:25000) -mean(bend(1:100)) :
% Estimation of Correlation Functions
for J=1:500
crosshh(J)=heave(l+(J-1) :22500) ' *heave(1:22500-(J-1));
crosshh(J) =crosshh(J) /(22500-(J-1)):
crosshp (J) =pitch(1+(J-1) :22500) ' *heave(1:22500-(J-1) ) ;
crosshp (J) =crosshp(J) / (22500-(J-1));
crosshb(J)=bend(1l+(J-1) :22500) ' *heave (1:22500-(J-1));
crosshb (J) =crosshb(J) / (22500-(J-1));
end
MX=max (crosshh) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:480
I=K+10;
dhh (K) =crosshh(I);
vhh(K)=(crosshh(I+10) -crosshh(I-10))/(2*0.2);
ahh(K)=(crosshh(I+10)-2*crosshh(I) +crosshh(I-10))/(0.2)“2;
dhp (K) =crosshp(I);
vhp (K) =(crosshp(I+10)-crosshp(I-10))/(2*0.2);
ahp (K)=(crosshp(I+10)-2*crosshp(I)+crosshp(I-10))/(0.2)"2;
dhb(K)=crosshb(I);
end
t=[1:480]/50;
result=[dhh' vhh' ahh' dhp' vhp' ahp' dhb']:;
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Stestl.m

% An M-file for Regular Test Verification (Head Wave Stationary Tests)

heave=-0.00140*data(:,1)+87.5966:;
pitch=-0.00232*data(:,2)+70.5666;
speed=0.00015*data(:,3)-5.0490;
wave=0.00050*data(:,4)-17.3866;
bend=0.00580*data(:,5)-212.5687;
heave=heave(3001:6001) -mean (heave(1:100))
pitch=pitch(3001:6001) -mean(pitch(1:100))
wave=wave (3001:6001) -mean (wave(1:100));
bend=bend(3001:6001) -mean(bend(1:100));
% Resampling Data
for J=1:50
crosshh (J)=heave (1+{J-1) *10:3001) ' *heave (1:3001-(J-1)*10) /(3001-(J-
1)*10):
crosshp (J)=pitch(1+(J-1)*10:3001) '*heave(1:3001-(J-1)*10)/(3001-(J~-
1)*10);
crosshb(J)=bend(1+(J-1)*10:3601) ' *heave (1:3001i-(J-1)*10)/(3001~-(J~
1)+*10);
end
MX=max (crosshh) ;
crosshh=crosshh/MX:
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:48
I=K+1;
dhh (K) =crosshh(I);
vhh({K) =(crosshh(I+1l)-crosshh(I-1})/(2*0.2);
ahh(K)=(crosshh(I+1l)-2*crosshh(I)+crosshh(I-1))/(0.2)"2;
dhp (K) =crosshp(I);
vhp(K)=(crosshp(I+1l) -crosshp(I-1))/(2*0.2);
ahp (K)=(crosshp(I+l) -2*crosshp(I)+crosshp(I-1))/(0.2)"°2;
dhb (K) =crosshb(I) ;
vhb(K)=(crosshb(I+1l}-crosshb(I-1))/(2*0.2);
ahb(K)=(crosshb(I+1l)-2*crosshb(I)+crosshb(I-1))/(0.2)"2;

.
’

end
t=[1:481/5;
result=[(dhh' vhh' ahh' dhp' vhp' ahp' dhb*'};
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Jtest3.m

% An M-file for Random Data Verification (Following Wave Stationary

Test)
heave=-0.0013967*data(:,1) +88.866;
pitch=-(-0.00090696*data(:,2)+30.743);
wave=0.00103865*data(:,4)-34.1906;
bend=0.00705158*data(:,3)-249.699;
heave=heave (2501:25000) -mean (heave (1:100})
pitch=pitch(2501:25000) -mean(pitch(1:100))
wave=wave (2501:25000) -mean (wave(1:100) };
bend=bend(2501:25000) -mean (bend(1:100) ) ;
% Resampling
N
crosshh=heave (N+1:N+500) ;
crosshp=pitch(N+1:N+500);
crosshb=bend (N+1:N+500) ;
MX=max(crosshh) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX
crosshb=crosshb/MX:
% Calculation of Velocity & Acceleration
for K=1:480

I=K+1l0;

dhh (K)=crosshh(I);

DT Y

vhh(K)=(crosshh(I+10)-crosshh(I-10))/(2*0.2);
ahh(K)=(crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/(0.2)"2;

dhp (K) =crosshp(I);

vhp (K) = (crosshp (I+10) -crosshp(I-10))/(2*0.2);
ahp (K)=(crosshp(I+10)-2*crosshp(I)+crosshp(I-10})/(0.2}"2;

dhb (K)=crosshb(I);
end
t=(1:4801/50;
$Frequency-domain Filter Implementation
fbend=fft (bend) ;
nfbend=zeros(size(fbend));
nfbend(1:1000)=£fbend(1:1000) ;
nfbend (21502:22500) =fbend (21502:22500) ;
nbend=ifft (nfbend) ;
nbend=real (nbend) ;
fheave=f£ft (heave) ;
nfheave=zeros(size(fheave));
nfheave(1:1000) =fheave(1:1000);
nfheave (21502:22500) =fheave(21502:22500) ;
nheave=ifft (nfheave) ;
nheave=real (nheave) ;
fpitch=fft(pitch):;
nfpitch=zeros(size(fpitech));
nfpitch(1:1000)=£fpitch(1:1000);
nfpitch(21502:22500)=£pitch(21502:22500) ;
npitch=ifft (nfpitch):
npitch=real (npitch):
$ Calculation for Filtered Values
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for J=1:500
ncrosshh(J)=nheave (L+N+ (J-1));
ncrosshp (J) =npitch(1+N+(J-1));
ncrosshb(J)=nbend (1+N+ (J-1));
end
ncrosshh=ncrosshh/Mx;
ncrosshp=ncrosshp/MX;
ncrosshb=ncrosshb/MX;
% Calculation of Filtered Velocity & Acceleration
for K=1:480
I=K+10;
ndhh (K) =ncrosshh(I):
nvhh(K)=(ncrosshh(I+10) -ncrosshh(I-10))/(2*0.2):
nahh (K)=(ncrosshh(I+10)-2*ncrosshh(I)+ncrosshh(I-10))/(0.2)"2;
ndhp (K) =ncrosshp(I):;
nvhp (K) =(ncrosshp(I+10) -ncrosshp(I~-10))/(2*0.2);
nahp (K)=(ncrosshp(I+10) -2*ncrosshp(I) +ncrosshp(I-10))/(0.2)*2;
ndhb (K) =ncrosshb(I);
end
result={ndhh' nvhh' nahh' ndhp' nvhp' nahp' ndhb']:
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Jsimu.m

$Simulation of Ship Motions and Bending Moment (Following Wave

Stationary Test)

$JONSWAP Wave Spectrum

£1=0.4:0.01:0.6;

s1=0.21*7.5%2*0.6~4./£f1.~5.*exp(-1.25*0.6"4./£1.~4) .*3 .3 ~“exp(~(£f1-

0.6).72/2/(0.07*0.6)"2);

£2=0.61:0.01:0.9;

52=0.21*7.572*0.674./£2.°5."exp(-1.25*0.64./£2.74) .*3.3."exp(-(£f2-

0.6).72/2/(0.09*0.6)"2);

f=[£1,£21"';

s=[sl,.s2]"':

$Wave Simulation

phasew=rand(size(f)) *2*pi:

ampliw=sgrt(2*s*0.01);

$Tested Frequency Transfer Functions

F=[0.4:0.1:0.9)"';

Magh=[0.884,0.812,0.589,0.456,0.212,0.176] ';

Angleh=[2.51,3.3,-2.01,2.066,-0.412,72.74)"';

Magp=(0.203,0.347,0.62,0.76,0.676,0.576}";

Anglep=[279.3,271.6,271.2,277.7,285.4,287.1)"':;

Magb=[1.198,1.781,2.678,3.652,4.027.,4.778]';

Angleb=[149.42,159,163.2,176.5,190.3,218.4]"';

$Heave Simulation

raoh=interpl (F,Magh, £) ;

phaseh=interpl (F,Angleh, £f) *pi/180;

t=[0.02:0.02:450]"';

heave=zeros(size(t)):

for k=1l:size(f)
heave=heave+ampliw (k) *raoh(k) *cos (2*pi*f (k) *t+phasew({k) +phaseh(k));

end

%$Pitch Simulation

raop=interpl (F,Magp. £f) ;

phasep=interpl (F,Anglep, f) *pi/180;

pitch=zeros(size(t));

for k=l:size(f)
pitch=pitch+ampliw(k) *raop(k)*cos(2*pi*£f (k) *t+phasew(k) +phasep(k}):

end

$Bending Moment Simulation

raob=interpl (F,Magb, £) ;

phaseb=interpl(F,Angleb, £) *pi/180;

bend=zeros (size(t));

for k=l:size(f)
bend=bend+ampliw(k) *raob(k) *cos(2*pi~f (k) *t+phasew(k) +phaseb(k));

end

% Estimation of Correlation Functions

for J=1:500

crosshh(J) =heave(1+(J-~1):22500) ' *heave (1:22500-(J-1)) /(22500-(J3-1) ) ;

crosshp (J)=pitch(1+(J-1) :22500) ' *heave (1:22500-(J~1)) / (22500~ (J3-1));

crosshb(J)=bend(1+(J~1):22500) '*heave (1:22500-(J-1))/(22500-(J-1));

end

MX=max (crosshh) ;
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crosshh=crosshh/MX;
crosshp=scrosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:480
I=K+10;
dhh (K) =crosshh(TI);
vhh(K) ={crosshh(I+10) ~crosshh(I-10))/{2*0.2);
ahh(K) =(crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/(0.2)"2;
dhp (K) =crosshp(I);
vhp (K)=(crosshp(I+10)~crosshp(I-10))/{(2*0.2);
ahp (K)=(crosshp(I+10)-2*crosshp(I)+crosshp(I-10})/(0.2)°2;
dhb(K) =crosshb(I);
end
T={1:4801/50;
result=[dhh' vhh' ahh* dhp' vhp' ahp' dhb']-
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sSregu.m

$Frequency Analysis of Regular Wave Towing Test (0.5m/sec}

cheave=-0.00140*calm{:,1)+87.5966;
cpitch=-0.00232"calm(:,2)+70.5666;
cspeed=0.00015*calm(:,3)-5.0490;
cwave=0.00050*calm(:,4)-17.3866;
cbend=0.00580*calm(:,5)-212.5687;
cheave=cheave-mean (cheave(1:100});
cpitch=cpitch-mean (cpitch(1:100));
cspeed=cspeed-mean (cspeed(1:100)) ;
cwave=cwave-mean (cwave (1:100)) ;
cbend=cbend-mean (cbend(1:100)) ;
sheave=-0.00140*data(:,1)+87.5966;
spitch=-0.00232+*data(:,2)+70.5666;
sspeed=0.00015*data(:,3)-5.0490;
swave=0.00050~*data(:,4)-17.3866;
sbend=0.00580*data(:,5)-212.5687;
sheave=sheave-mean (sheave(1:100));
spitch=spitch-mean (spitch(1:100));
sspeed=sspeed-mean (sspeed(1:100)) :
swave=swave-mean (swave(1:100)) ;
sbend=sbend-mean (sbend(1:100)) ;

% Find the Speed Segment for Analysis
[mxi, I]=max(cspeed) ;

cheave=cheave (I+150:I+2649);
cpitch=cpitch(I+150:I+2649);
cspeed=cspeed (I+150:I+2649);
cwave=cwave (I+150:1+2649);
cbend=cbend(I+150:1+2649);

(mxj,J] =max(sspeed) ;

sheave=sheave (J+150:J+2649) ;
spitch=spitch (J+150:J3+2649);
sspeed=sspeed (J+150:J+2649) ;
swave=swave (J+150:J+2649) ;
sbend=sbend(J+150:J+2649) ;
t=[0:2499]"'/50;

% Find the Wave-induced Response
heave=sheave-mean (cheave) ;
pitch=spitch-mean (cpitch) ;
wave=swave-mean (cwave) ;
bend=sbend-mean (cbend) ;
speed=sspeed;

% Correlation Analysis for Amplitudes and Phase
b

Icw=wave'*cos (2*pi*f*t)/2500;
Isw=wave'*sin(2*pi*f*t)/2500;
Ich=heave'*cos(2*pi*£*t)/2500;
Ish=heave'*sin(2*pi*£*t)/2500;
Icp=pitch'*cos(2*pi*£*t)/2500;
Isp=pitch'*sin(2*pi*£*t}/2500;
Icb=bend'*cos(2*pi*£f*t)/2500;
Isb=bend'*sin(2*pi*f*t)/2500;
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Aw=2*sqrt(Icw 2+Isw™2};

Ah=2*sqgrt(Ich™2+Ish"2);

Ap=2+*sqrt(Icp"2+Isp~2};

Ab=2*sqrt(Icb”~2+Isb"~2):

if Icwe>=0
phasew=(-atan(Isw/Icw))*180/pi;

else
phasew=(pi-atan(Isw/Icw))*180/pi;

end
if Ich>=0

phaseh=(-atan(Ish/Ich))*180/pi;
else

phaseh=(pi-atan(Ish/Ich))*180/pi:
end
if Icp>=0

phasep=(-atan(Isp/Icp))*180/pi;
else

phasep=(pi-atan(Isp/Icp))*180/pi;
end
if Icb>=0

phaseb=(-atan(Isb/Icb))*180/pi;
else

phaseb=(pi-atan(Isb/Icb))*180/pi;
end

resulc=(£f, Aw, Ah, phaseh-phasew, Ap, phasep-phasew, Ab, phaseb-phasew]
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sSsample.m

% An M-file for Data Preparation of Towing Tests (0.5m/sec)

cheave=-0.00140*calm(:,1)+87.5966;
cpitch=-0.00232*calm{:,2)+70.5666;
cspeed=0.00015*calm(:,3)-5.0490;
cwave=0.00050*calm(:,4)-17.3866;
cbhbend=0.00580*calm(:-,5)-212.5687;
cheave=cheave-mean(cheave(1:100)) ;
cpitch=cpitch-mean{cpitch(1:100));
cspeed=cspeed-mean (cspeed(1:100) ) ;
cwave=cwave-mean (cwave(1:100}) ;
cbend=cbhend-mean (cbend(1:100)) ;
sheave=-0.00140*data(:,1)+87.5966;
spitch=-0.00232*data(:,2)+70.5666;
sspeed=0.00015*data(:,3)-5.0490;
swave=0.00050*data(:,4)-17.3866;
sbend=0.00580*data(:,5)-212.5687;
sheave=sheave-mean (sheave{1:100));
spitch=spitch-mean(spitch(1:100));
sspeed=sspeed-mean(sspeed(1:100)) ;
swaves=swave-mean (swave(1:100)) ;
shend=sbend-mean(sbend(1:100));

% Find the Speed Segment for Analysis
[mxi, Il=max({cspeed) ;cheave=cheave (I+150:1+2649};
cpitch=cpitch(I+150:I+2649);
cspeed=cspeed (I+150:T+2649);
cwave=scwave (I+150:I+2649);
cbend=cbend(I+150:I+2649);

[mx] ,J]}=max(sspeed) ; sheave=sheave (J+150:J+2649) ;
spitch=spitch(J+150:J+2649);
sspeed=sspeed (J+150:J+2649);
swave=swave (J+150:J+2649);
sbend=sbend (J+150:J+2649) ;

% Find the Wave-induced Response
heave=sheave-mean (cheave) ;
pitch=spitch-mean(cpitch);
wave=swave-mean (cwave) ;
bend=sbhend-mean (cbend) :
speed=sspeed;

sample=[{wave heave pitch bend];
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sSspec.m

% Spectral Analysis of Random Test (Head Wave Towing Test 0.5m/sec)
series=[];

calm=c05¢c;

data=s5j7rl;

sSsample

series=(series;sample] :

data=s5j7r2;

sS5sample

series=[series;sample];

data=s537r3;

s5sample

series=[series;sample];

data=sS5j7r4;

sSsample

series=[series;sample]:;

calm=c05d;

data=s53j7r5;

sS5sample

series=[series;sample];

data=s5j7r6;

sS5sample

series=[series;sample];

data=s537r7;

sS5sample

series=[series;sample];

%Read Data from Joined Time Series
wave=series(:,1);

heave=series(:,2);

pitch=series(:,3);

bend=series(:,4):

$Spectrum Estimation from Joined Time Series
fwave=££fC (wave) ;
specw=fwave.*conj (fwave)/ (17500*50) ;
fheave=££ft (heave) ;
spech=fheave. *conj (fheave)/(17500*50) ;
fpitch=££t(pitch);

specp=fpitch. *conj(fpitch)/ (17500*50);
fbend=££ft (bend) ;
specb=£fbend. *conj (fbend)/ (17500*50);
specw=2*specw(1:8750);
spech=2*spech(1:8750);
specp=2*specp(1:8750);
specb=2*specb(1:8750) ;
£={0:8749] ' /350;

raoh=sgrt (spech. /specw) ;

raop=sqgrt (specp./specw) ;

raob=sqgrt (specbh. /specw) ;

$Regular Wave Test Results
F=[0.333,0.450,0.573,0.702,0.840,0.841,0.987,1.135,1.292,1.454)";
AW=[2.82,2.23,2.61,3.02,2.95,2.57,1.37,2.90,3.23,3.12}"';
AH=[2.90,2.24,2.53,2.41,1.99,1.68,1.31,0.34,0.43,0.25}]";
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AP=[{0.81,0.96,1.64,2.22,3.26,2.77,3.20,1.98,0.26,0.19]";
AB={2.30,3.12,5.84,9.71,12.39,11.73,13.09,4.86,7.65,4.65]"';
RAQH=AH. /AW:;

RAOP=AP./AW;

RAOB=AB./AW;

$Plotting

figure

subplot(2,1,1)

plot (£(100:600),specw(100:600), ‘r')

title ('Wave Spectrum‘)

ylabel ('S(f}')

subplot (2,1, 2)
plot(£(100:600),raob(100:600), '-r*,F,RAOB, 'ob’)
legend ('Random Test', 'Regular Test')

title ('BM"RAOs')

ylabel ('RAOQ')

figure

subplot(2,1,1)

plot (£(100:600),raoh(100:600), '-r' ,F,RAQH, 'ob"*)
title ('Heave RAOs')

vlabel ('RAQ')

subplot(2,1,2)

plot (£(100:600),raop(100:600),'-xr',F,RAOQOP, 'Ob"')
title (*Pitch RAOs')

ylabel (°'RAO‘)

xlabel (*£(Hz)')

159



sSneural.m

% Estimation of Correlation Functions for Training (Towing Test 0.5m/s)
series=[];
calm=c05c; data=s5j7rl;
sS5sample
series=[series;sample]:
data=s5j7r2:
sS5sample
series=[series;sample];
data=s53j7r3;
sS5sample
series=[series;sample];
data=s5j7r4;
sSsample
series=[series;samplel]:;
calm=c05d; data=s5j7r5;
sS5sample
series=[series;sample];
data=s5j7r6;
sS5sample
series=[series;sample];
data=s53j7r7;
s5sample
series=[series;sample];
%Read Data f£rom Joined Time Series
wave=series(:,1);
heave=series(:,2);
pitch=series(:,3);
bend=series(:.4);
% Estimation of Correlation Functions
for J=1:500
crosshh(J) =heave(l+(J-1):17500) ' *heave(1:17500-(J-1))/(17500-(J-1}));
crosshp(J) =pitch{l+(J-1):17500) ' *heave(1:17500-(J-1))/(17500-(J-1));
crosshb(J) =bend (1+(J-1) :17500) ' *heave(1:17500-(J-1))/(17500-(J-1));
end
MX=max(crosshh) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:480
I=K+10;
dhh (K) =crosshh(I):;
vhh(K) =(crosshh(I+10) -crosshh(I-10))/(2*0.2);
ahh (K) = (crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/(0.2)"2;
dhp (K) =crosshp(I):
vhp (K) =(crosshp(I+10) -crosshp (I-10))/(2*0.2);
ahp(K) =(crosshp(I+10)-2*crosshp(I) +crosshp(I-10))/(0.2)"2;
dhb (K) =crosshb(I);
end
t=[1:480]1/50;
result=[dhh' vhh' ahh' dhp' vhp' ahp' dhb']:;
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s5testl.m

% An M-file of Regular Test Verification (Towing Tests 0.5m/sec)
s5sample
% Resampling Data
for J=1:50
crosshh(J)=heave(1+(J-1)*10:2500) ' *heave (1:2500-(J-1)*10)/ (2500~ (7~
1)*10);
crosshp(J)=pitch(1+(J~1)*10:2500)"'*heave(1:2500-(J-1)*10)/(2500-(J-
1)*10);
crosshb(J)=bend(1+(J-1)*10:2500) '*heave(1:2500-(J-1)*10)/(2500-(J-
1)*10);
end
MX=max (crosshh) ;
crosshh=crosshh/MX;
crosshp=crosshp/MX;
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:48
I=K+l;
dhh(K)=crosshh(I):;
vhh (K)=(crosshh(I+1l)-crosshh(I-1))/(2*0.2);
ahh (K)={crosshh(I+l)-2*crosshh(I)+crosshh(I-1))/(0.2)"2;
dhp (K)=crosshp(I);
vhp (K)=(crosshp(I+l) -crosshp (I-1))/(2%0.2);
ahp (K) =(crosshp(I+1l)-2*crosshp (I) +crosshp(I-1))/(0.2)"2;
dhb (K) =crosshb(I);
vhb (K)=(crosshb(I+l)-crosshb(I-1))/(2*0.2);
ahb(K)={crosshb(I+l)-2*crosshb(I)+crosshb(I-1))/(0.2)~2;
end
t=[{1:481/5;
result=(dhh' vhh' ahh' dhp' vhp' ahp' dhb'};
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s5test3.m

% An M-file for Random Test Verification (Towing Test 0.5m/sec)

series=[];

calm=c05c¢;

data=s5j7rl;

sS5sample

series=[series;sample] ;

data=s53j7r2;

sSsample

series=[series;samplel];

data=s537r3;

s5sample

series=[series;sample];

data=s5j7r4;

sSsample

series=[series;sample];

calm=c054d;

data=s537r5;

sS5sample

series=[series;sample];

data=s5j7r6;

sS5sample

series=[series;sample]:;

data=s53j7r7;

sSsample

series=[series;sample];

$Read Data from Joined Time Series

wave=series(:,1);

heave=series(:,2);

pictch=series(:,3);

bend=series(:,4);

% Resampling

N

crosshh=heave (N+1:N+500} ;

crosshp=pitch(N+1:N+500) ;

crosshb=bend (N+1:N+500) ;

MX=max (crosshh) ;

crosshh=crosshh/MX

crosshp=crosshp/MX

crosshb=crosshb/MX;

% Calculation of Velocity & Acceleration

for K=1:480
I=K+10;
dhh (K) =crosshh(I) :
vhh(K) =(crosshh{(I+10)-crosshh(I-10})/(2*0.2);
ahh(K)=(crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/(0.2)"2;
dhp (K) =crosshp(I);
vhp (K)=(crosshp (I+10)-~-crosshp(I-10))/(2*0.2);
ahp(K)=(crosshp(I+10)-2*crosshp(I)+crosshp(I~-10)})/(0.2)"2;
dhb(K)=crosshb(I):;

T T

end
t=[{1:480]/50;
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$Frequency-domain Filter Implementation
fbend=££t (bend) ;
nfbend=zeros(size(fbend)):
nfbend(1:1000) =fbend (1:1000) ;
nfbend(16502:17500) =fbend (16502:17500) ;
nbend=ifft (nfbend) ;

nbend=real (nbend) ;

fheave=fft (heave) ;
nfheave=zeros(size(fheave)):;
nfheave(l1:1000)=fheave(1:1000) ;
nfheave(16502:17500) =fheave(16502:17500) ;
nheave=ifft (nfheave) ;

nheave=real (nheave) ;

fpitch=f£t(pitch);
nfpitch=zeros(size(fpitch));
nfpitch(1:1000)=£fpitch(1:1000);
nfpitch(16502:17500) =fpitch(16502:17500) ;
npitch=ifft (nfpitch) ;

npitch=real (npitch);

% Calculation for Filtered Values

for J=1:500

end

ncrosshh (J) =nheave (1+N+ (J-1)) ;
ncrosshp (J)=npitch (1+N+{J-1)):
ncrosshb (J)=nbend (1+N+(J-1)):

ncrosshh=ncrosshh/MX:

ncrosshp=ncrosshp/MX;

ncrosshb=ncrosshb/MX:;

% Calculation of Filtered Velocity & Acceleration
for K=1:480

end

I=K+10;
ndhh (K) =ncrosshh(I):;
nvhh (K) =(ncrosshh(I+10) -ncrosshh(I-10))/(2*0.2);

nahh (K) =(ncrosshh(I+10)-2*ncrosshh(I)+ncrosshh(I-10))/(0.2)"2;

ndhp (K) =ncrosshp(I);
nvhp (K) =(ncrosshp(I+10) -ncrosshp(I-10))/(2*0.2);

nahp (K) =(ncrosshp(I+10) -2*ncrosshp (I) +ncrosshp(I-10))/(0.2)~2;

ndhb (K) =ncrosshb(I);

result=[ndhh' avhh' nahh' ndhp' nvhp' nahp' ndhb']:
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sSsimu.m

$Simulation of Ship Motions and Bending Moment (Towing Test 0.5m/sec)

SJONSWAP Wave Spectrum

£1=0.5:0.01:0.7;

s1=0.21*7.5%2*0.7~4./£1.~5.*exp(-1.25*0.7"4./£1_.~4) .*3.3."exp(-(£1-

0.7).°2/2/(0.07*0.7)°2);

£2=0.71:0.01:1.0;

$2=0.21%7.52*0.7~4./f2.~5.%*exp(-1.25*0.7~4./£f2.74) .*3.3."exp(-(£2~

0.7).72/2/(0.09*0.7)"2);

fO0=(£f1, £2]*;

f=f0+2*pi*£0.42/9.8*0.5;

s=[sl,s2]"';

$Wave Simulation

phasew=rand(size(£f))*2*pi;

ampliw=sqgrc(2*s*0.01);

%$Experimental Fredquency Transfer Functions

F={0.573,0.702,0.84,0.987,1.135,1.292,1.454])*;

Magh={0.97,0.8,0.67,0.96,0.12,0.13,0.08]';

Angleh=({10.56,7.56,8.43,~-53.1,-3.7,76.95,108.3]"';

Magp=[{0.63,0.74,1.11,2.34,0.68,0.08,0.061"';

Anglep=[(98.7,99.2,103,24.3,23.6,64.7,159.2]";

Magb=[2.24,3.22,4.2,9.55,1.68,2.37,1.49]':

Angleb=(207.8,190,167.6,79.7,-4.6,-108.1,-113.21";

%$Heave Simulation

rach=interpl (F,Magh.£f);

phaseh=interpl (F,Angleh, £) *pi/180;

t=[0.02:0.02:450] *;

heave=zercos{size(t));

for k=l:size(f)
heave=heave+ampliw(k) *raoh(k) *cos (2*pi*f (k) *t+phasew (k) +phaseh(k)) :

end

$Pitch Simulation

raop=interpl (F.Magp, £);

phasep=interpl(F,Anglep, £) *pi/180;

pitch=zeros(size(t)):

for k=l:size(f}
pitch=pitch+ampliw(k) *raop (k) *cos(2*pi*f (k) *t+phasew (k) +phasep(k));

end

$Bending Moment Simulation

raob=interpl(F,Magb, £) ;

phaseb=interpl (F,Angleb, £) *pi/180;

bend=zeros(size(t)):;

for k=l:size(f)
bend=bend+ampliw(k) *raob (k) *cos (2*pi*f (k) *t+phasew (k) +phaseb (k) } ;

end

% Estimation of Correlation Functions

for 5=1:500

crosshh(J)=heave(1+(J-1) :22500) ' *heave (1:22500-(J-1)) /(22500-(J-1));

crosshp (J)=pitch(l+(J-1):22500) '*heave(1:22500-(J-1))/(22500-(J-1});

crosshb (J)=bend(1+(J-1):22500) '*heave (1:22500-(J-1))/(22500-(J-1));

end

MX=max(crosshh) :
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crosshh=crosshh/MX
crosshp=crosshp/MX
crosshb=crosshb/MX;
% Calculation of Velocity & Acceleration
for K=1:480

I=K+10:

dhh(K) =crosshh(I):;

vhh(K)=(crosshh(I+10) -crosshh(I-10))/(2*0.2);

ahh(K) =(crosshh(I+10)-2*crosshh(I)+crosshh(I-10))/(0.2)"2;

dhp(K) =crosshp(I):

vhp(K) ={crosshp(I+10)-crosshp(I-10))/(2*0.2);

ahp(K) =(crosshp(I+10) -2*crosshp(I)+crosshp(I-10})/(0.2)"2;

dhb(K) =crosshb(I);

o« Sy .

end
T=[(1:4801/50;
result=[dhh' vhh’' ahh' dhp' vhp' ahp' dhb‘'}];
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Appendix I Data Analysis Resuits

The RAOs results obtained from both the regular wave tests and the random wave tests

are presented in this Appendix.

In the following figures, the circle points represent the RAOs values from the regular

wave tests.
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Figure 44: Spectral Analysis Results of B5a.dat
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Figure 45: Spectral Analysis Results of B75b.dat
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Figure 46: Spectral Analysis Results of FjSh5a.dat
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Figure 47: Spectral Analysis Results of FjSh75b.dat
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Figure 48: Spectral Analysis Results of Fj6hSa.dar
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Figure 49: Spectral Analvsis Results of Fj6h75a.dat
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Figure 50: Spectral Analysis Results of Fj7h5a.dat
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Figure 51: Spectral Analysis Results of Fj7h75a.dat
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Figure 52: Spectral Analysis Results of Fb5a.dat

181



Wawe Spectrum

< T

1.4 1.6

250 : T
—— Random Test
200+ S Regular Test |7
o 150 = 3
<
e sy 100 - i
50+~ .
(o) — e SN e WP 3 Cpommceiv i (e vea o o e .
0.2 04 0.6 0.8 1 1.2 1.4 1.6
Heawe RAQOsS
15 | T T T —
t
10+ i i
g i
<
= l
5L i
i
o \va‘}_-‘&"“ﬁa.""“g"—’?f—-— N VLA _,..,(;\. S PR N
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Pitch RAOs
20 : ; v
15+ .
2 10+ -
a sy
5t p
S~ '_._3.__‘_,.:.!-\,“ AEETPA RN Y~ 2 A N B e PNy, WP, . N
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
f(hz)

Figure 53: Speciral Analysis Results of Fb75a.dat
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