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Abstract

In many of the multi-species trawl surveys conducted by Fisheries and Oceans Canada,
the survey vessel "Wilfred Templeman™ (WT) may be replaced by the vessel ™ Alfred
Needler™ (AN). We examined paired-trawl experiments involving these two vessels to
exauline for differences in catchability. In particular, we examine for differences in

catchability of the Witch flounder species.

The relative efficiency of the AN compared to the WT is defined as the ratio of
the means from both trawl catches. Four models arc investigated in this thesis, Con-
ditional Poisson (i.c. Binomial), Mixed Binomial, Negative Binomial and Conditional
Negative Binomial. When cateh data are Po  on distributed .the approach is clear
and well-developed. However, over-dispersion ereates problems, and over-dispersion

is common in many types of data including fisheries data.

We dealt with the over-dispersion problemn using the Negative Binomial distribu-
tion to model the paired-coun i d of the Poisson distribution. We develop Con-
ditional Negative Binomial (Conditional NB) and Concentrated Negative Binomial
(Concentrated NB) models for  imating relative efficiency. We compared estimates
with those from the more commonly used approaches involving standard logistic re-
gression and also a mixed binomial regression model. We found that the Conditional

NB and mixed binomial modc formed better.

Our results st jest that there were no significant differences in the relative catch-

ability of the two vessels, be 1. the Mixed Binomial and Conditional NB mod
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Chapter 1

Introduction

1.1 Background of the Problem

Assessment of fish stocks involves evaluating the status of a stock relative to its
past. Stock indices are fundamental components of stock assessments. An index is
a measurcinent that we expeet is proportional to stock size. A random index R,

available for vear y is related to stock size (S),) via the model
E(R,) =4S,. (1.1)

and S, is treated as a fixed quantity to estimate. Often in stock assessment a popu-
lation model is used to relate S, with S,_; and other quantities such as estimates of
fishery catches and natural mortality. These population models contain parameters
that need to be estimated. and stock indices are used for this purpose. The constant
of proportionality, ¢, is usually referred to as the catchability index. Although we
can not directly infer stock size from a time series of indices Ry, .... Ry, we can infer
trends in stock size when ¢ is the:  ne cach year. Note that ¢ may be much different
from one for many reasons: for exanmple, the index may be based on a fishing gear
that does not catch small fish, or the index may be based on measurements from only

part of the stock arca.



Stock size indices are often based on a survey in which randouly chosen sites are
sampled for fish. Commonly used survey methods include random chosen sites. In our
study. we focus on stratified random bottom trawl surveys such as those conducted
off the cast coast of Canada by Fisheries and Ocecans Canada (c.g. Doubleday 1981).
These are multi-species surveys that are used extensively in stock assessments. =~
information collected from these surveys is used for many other purposes as well, such
as determining species at risk (c.g. Smedbol et. al. 2002) and cvaluations related to
closed arcas. The survey observation is conmmonly referred to as a set (i.e. set the
gear), or a tow when a trawl is used. The average survey cateh can be taken as an
index of stock size. If the same survey protocols are used from year to year then the

catchability index should remain relatively constant.

When survey vessels are changed it is important to compare the efficicucy and se-
lectivity of the vessels for the species of interest. In bottom-trawl surveys conduc 1
by Department of Fisheries and Occans, the survey vessel “Wilfred Teniplem
(WT) may be replaced by the vessel “Alfred Needler™ (AN). These two vessels have
potentially different catchabilities for some species. We examine paired-trawl experi-
ments to estimate the relative difference between WT and AN catchabilities. This is
often referred to as vessel calibration. We apply our methods to data for one specie.

the Witch flounder (Glyptocephalus cynoglussus).

Sampling with nets or trawls remains a common technique for determining the
relative abundance of aquatic organisms. 1 paired-trawl experiments two vessels e
used to fish as close together as possible to minimiize spatial heterogeneity between
the stock densities the vessels encounter. The paired trawling is repeated at urany
different sites to cover a range of species, depths, and fish densities. Pelletier (1998)
reviewed estimation methods used in many vessel calibration experiments. I the
past, normal lincar models for difference in log catches were used for analysis. This
approach does not properly account for the stochastic nature of the data (counts).

Benoit and Swain (2003) uw a better approach by treating thie catches from both




vessels as Poisson or over-dispersed Poisson randoin variables (rv's). which are appro-
priate for connt data, including zero counts. However, their approach was complicated
because many fish density parameters usually had to be estimated. Additional details
are provided later in this chapter. A similar approach was used by Pelletier (1998)
with a mean-variance assumption that was the saine as an over-dispersed Poisson
distribution (c.g. Negative Binomial). To reduce the number of nuisance fish density
parameters, Pelletier (1998) also assuined that fish densities were constant between
paired tows, although this assuinption will not be appropriate in a typical paired-trawl

comparative fishing experiment.

In this thesis, stock densities are not assunied to be coustant. We assuure that
stock densitics are different at different paired-sites (i.e.  ctween-pairs), which is
usually the case in practice. There may be some spatial correlation between stock
densities, but we do not try to utilize this in our analysis. Vessels are fished close
together in a paired-trawl experiment, but it is not possible to ensure that exactly
the sanme stock densities are fished by both vessels. A new development in this thesis
involves methods to deal with random differences between within-pair stock densities.
Note that we do not assume that differences in stock densities at different paired-tow
locations arc random. Catches from different paired-tow locations are assumed to
be independent, but with location-specific means. Furthermore, we assuine that the
probability that a fish is captured is the same at cach site and for all lengths bhut possi-
bly different for cach vessel (AN and WT). For some species the first two assumptions
may not be appropriate. Length and location (e.g. depth) effects in capture probabil-
ities arc sometimes found. Our methods 1 be modified to account for such cffects.
although this is not pursued in this thesis. Our methods are divectly applicable

species where length and depth effects in capture probabilities are unlikely.

The basic type of data collected in a comparative fishing experiment is paired
count data. in which a sample of N pairs is obtained. The data is deseribed in more
details later in this chapter. The within-pair difference in log-means is assumed to be

constant between pairs of trawls, but otherwise the incans are assuied to be different.




This type of data is discussed in Section 4.5 of Cox and Snell (1989). These authors
considered the case when the responses were Poisson rv's. 1 this thesis we consider
the generalization that the responses are over-dispersed Poisson rv’s, namely Nega ¢

Binomial.

The benchmark or simplest model for count data is the Poisson distribution. It
is useful at the outset to review some fundamental properties that characterize the
Poisson distribution. If the d  rete rv Y is Poisson distributed with rate param v

A >0, then Y has density

-A 3
e MAW
P(Y y)=+).y:(),l‘2,.... (1.2)
y!
where E(Y) = Var(Y) = A. This distribution lhas a single parameter A and its "
monient, E(Y*), may be derived by differentiating the moment generating function

(mgf) & times
My(t)  E(e¥)=cexp{A(c'=1)}. (1.3)

Equality of the mean and variance is referred to as the equi-dispersion property of the
Poisson distribution. This property is frequently violated in real-life data. Overdisper-
sion (or sometimes underdispc  on) means the variance exceeds (or is less than) the
mean. A key property of the Poisson distribution is additivity. That is if ¥; ~ P(A;).

i=1.2,... arc independent rv's, and if TN, < oo, then D ¥ ~ P/STA)).

Let g denote the common fish density encountered by each vessel at a tow station.
If the number of fish entering a trawl as a Poisson process, and are caught indepen-
dently with probability ¢, which is sometimes referred to as Poisson thinming (e.g.
Grinmuett and Stirzaker. 1992). then the cateh will be Poisson distributed with mean
g x . If g and g are the catel Hilities the WT  1d AN vessels, respectively. and
Y} and Y5 are their catches, then Y; ~ Poi(gi). i = 1,2. The relative efficiency of the
WT compared to the AN is defined as the ratio of their nmecans,

oo (1.4)
p




n

Hence, the within-pair difference in log-means. or log(p), is constant between tow
sites, which is the same as the model considered in Cox and Snell (1989; Scction
4.5). The fish densitics (p's) vary Detween paired-tow sites. If a total of NV tow
sites are sampled then there are 2N observations and N 4+ 1 parameters. The N
density parameters, fi. ..., fiy are nuisance parameters that are not of direct interest
but necessary to model the data. In our . plication N = 57. The ouly paraincter of

interest is the relative efficiency between 2 two vessels, p.

[t is casicer to use a conditional distribution that treats the sum of paired-trawl
catches from both vesscls as fixed. This eliminates the large number of fish density
parameters. and the corresponding statistical likelihood function only involves p when
catches are Poisson distributed. We show this below. The sum of catches from both
trawls are treated like sample sizes. A thorough discussion on the roles of conditi
ing in statistical inference is provided by Reid (1995). Cox and Snell (1989) gave
more detailed inferences about p for Poisson paired-count data using thie conditional

distribution of Yy | (Y1 +Y2).

Millar (1992) advocated the conditional approach in closely related cominercial
fishing gear size selectivity studies when catches are Poisson distributed. In this case,
selection curves can be fitted using the logistic regression generalized linear model
(GLIM, see McCultagh and Nelder, 1989). The conditional approach has been used
in paired-trawl calibration studies by Fanning (1985) and Lewy. Nielsen, and Hovg 1

(2004).

Benoit and Swain (2003) used  over-dispersion parameter to account for extra-
Poisson variation, but they did not show clearly the reason behind the source of ex v
variation. In this thesis we explore in more detail the effect of over-dispersion on
conditional inferences, but first we consider the siimple situation when catches are

Poisson rv's.

Let Yy and Y, be independent Poisson rv's for the number of fish caught at some

tow ation bv t} WT d N, 1w oectively. Let g and yy denote observations of



Y and Y,. Also. let E(Y2) = quue = A and E(Y)) = qiip = pA. The conditional
distribution of Y| given Y] + Y5 is Binomial. This can be shown as follows.
PYy = y)P(Yy = )
PY\+Y,=mn)
F—/v\(,,))yl C—/\(/\)U!

={—  — 1A

PYiIlY1+Y,=n)

C—(p,\+,\)(p/\ + /\\)n

}

! ya! n!
_ n! ( PA o A oo
gl pA+ A PAF A
nl! n 1
— — I\ y2
gyl L+ p L+p
n! e
— ' "1).111(1 _1)) ./x)
Yy

where p = p/(1 + p). This is the Binomial distribution with n = y; + y» and p =
p/(1+ p). The only unknown parameter  this distribution is p. The A parameter is

climinated in the conditional distribution.

Relative efficiency, p. is non-negative and constant for all sampling locations. To
avoid complications due to boundary constraints it is better to estimate log(p), -
transtorm after for inferences about p. In this case. p can be defined as p = exp(7).
This leads to

(f‘j

1+e’

= p(3),

where p(i7) is the canonical link function for the Binomial distribution GLIM (McCul-
lagh and Nelder, 1989). If log relative efficiency is lincarly related to covariates, such
as length or depth (e.g. Benoit and Swain). then this produces a logistic regres  n

model. This model is described in more detail in the next chapter.

In the Binomial distribution E(Yy) = np and Var(Yh) = np(1 — p) or Var(}1) =
onp(l — p) for the over-dispersion case, where ¢ is an over-dispersion parameter.
MeCullagh and Nelder (1989) used a quasi-likelihood approach to deal with o -
dispersion.  Note that the over-dispersed Poisson approach to paired count data
may leads to different statistical inferences (e.g. confidence intervals) than the over-

dispersed Binomial approach. They are not exactly equivalent, whereas the Polsson



-1

and Binomial approaches without over-dispersion produce identical maximum like-
lthood estimates (MLE) and standard crror’s via the observed information matrix
(Cox and Snell. 1989). The Binomial approach scems preferable. for reasons outlined

in Cox and Sucll (1989) and Reid (1995).

As mentioned previously. it is not possible to ensure that exactly the same stock
densities () are fished at each tow site. Let gy and g denote the densities at cach
site fished by paired tows. Within-pair spatial heterogeneity in fish densities is a
source of over-dispersion in paired-trawl comparative fishing studies (Lewy, Nielsen.
and Hovgard. 2004). We account for this by using a mixture distribution. g ~
Gamma(u. k). where g is the ganuma mean and g?/k is the variance. An over-
dispersion parameter like @ may not be sufficient to account for these random cffects.

Note that the gamnia mean g is assumed to be different at different paired tow sites.

Conditional on ji; and je. it is casy to show that Yi|Y., where Yo = Y| + Y5, is still

Binomially distributed with

QL
1) — /) — G242
Qs
Il+p 1+ .
( (
p(1 + {1 H 1110
(a2ft2 /12
H
p=p—I(1-p)
12
P _ )/1_1
1—p D)

log

)= ()
=log|p
l—p He
log ( b ) 3+ log (H—I> . (1.5)
I -p
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In  _ure ! i we show 10000 realizations of the log-gamma ratio where cach gamma

lias the same mean. It resemb  a normal distribution which sugges  that a rea-

sonable approach to deal with within-pair variability in stock densitics is a Binomial-
. N . 9 . .

normal mixture model, where & = log(p, /1) is assunmied to be N(0,07). This is a

common generalized linear mixed model (GLNA). GLMMs can structure multiple




sources of variation, measured as covariates and minneasured as random cffects. They
arc deseribed in more detail in the next chapter. In the GLMM |, p(3) is defined as
ed+u

| + ¢ltu = ‘1)('3)'
where u is a random effect and u ~ N(0.0%). This is ann approach we investigate to

accomnmodate within-pair spatial variability in stock densities.

In the GLNATL approach some information about the random effects (i.e. their
variability) will also available in the marginal totals Yy, ..., Y a. It is not clear how
efficient the GLMAI approach may be. Also, proper selection of the random cffects
is required for valid point estimates and for correct standar — errors when a nonlinear
link function is used (e.g. Heagerty and Kurland 2001). However, it is relatively casy
to show that the marginal {over gainma random cffects) distribution of Y, is Negative

Binomial (NB). In the NB distribution, the probability of an event occurring is given

: [k + y) N (RN ‘
P = = — N 1(
( y) Dk +1) </1+k) o+ k (1.6)

where the mean is g and the variance is (1 4 p/k). It is clear that the variance is

by :

greater than the mean. This form of the NB distribution, where Var(}) x 42 when
i 1s large. is often considered to be a suitable distribution for modeling trawl catches
(c.g. Gunderson, 1993), and in} ticular catchies from pair-trawl fishing experiments
(Pelletier, 1998). This is referred to as the NB2 model by Cameron and Trivedi
(1998). A less conmmmon form is the NB1 distribution. with Var(} )x g, As b —
then Var(Y) — p (Poisson distribution) for the NB2 distribution. The parameter
k micasures the Poisson over-dispersion of the distribution. We also investigate the
conditional NB2 distribution ¥1|Y" for inferences about p. This is an himportant new

contribution of this thesis.

While the conditional Poisson distrib- on (i.c. Binonual) is very common, there
appears to be little information published on the conditional NB distribution. 1

exception is Hausman. Hall, and Griliches (1984). They studied the conditional
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NB1 distribution; however, Cadigan (in | p) has shown that this distribution is not
suitable for trawl catches. The paper by James and Moser (1999) is another exaniple
of the suitability of the NB2 distribution for fishery catch data, In this thesis we sty
the conditional NB2 distribution, which we refer to as the conditional NB distribution

for simplicity.

The NB is a discrete probability distribution that is often used for organism
count data. Flexibility of the NB distribution to accommodate different values of
A is an advantage when modeling frequency distributions. A characteristic of the
NB distribution that lends itself particularly well to biological populations is that
frequencies can decrease monotonically from a modal value. providing a highly skewed
distribution. The Poisson distribution can also be skewed, but requires that the mean

cquals the variance, an assumption not required with the NB distribution.

The interpretation and derivation of the NI as a Poisson - gamua mixture is
a result that can be algebraically derived in several different ways as in Greenwood
and Yule (1920). Here. we approach the problem directly in terms of a mixt ¢
distribution. If a random variable Y {c.g. the nuuber of fish caught in a tow) is
conditionally distributed as Poisson(A,) given a fixed A;. then
rvx'n(—/\i)/\f"

Sy ="
yi!

o= 010.

and the mean parameter

E(gI\) = . (1.7)

Suppose the parameter A, is actually a random term with density function g(A;).

The marginal distribution of y is obtained by integrating out A;,

h@J=/ﬂmMMMW&

where g(A;) is a mixing distribution. For specific choices of f(.) and g(.). for example

Poisson and gamma densit v tively, the integ  has an explicit solution. From
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here on the i subscript is omitted. Suppose that A has a two-parameter gamima

distribution g(A; &, yt)

k
(lk_‘) kX
gAk ) = WA*"‘N: k>0 4>0,

where E(A) = g and V(A) = p2/k.

The marginal distribution of y is give by

l\.
“exp(—=A). A (;%) 5\
h(ylp. k) =/ Nelemi A,

y! L'(k)

Using the following definitions
X
F(a)z/ e tde, a > 0
0

[z—1)=.u!
Tla) o
=/ e ™de, b o> 0.
o o

the integral in (1 *) can be re-written in the form

N (k)" - k yrk—1
hylp. k) = —I’(l\')l“(g =y /(I\]) {—/\ (l + ;) } AY dA

6 (25) " o

- T(k)(y + 1)

_ Ty+k) < f )‘” < k )k
CT(MT(y ) \k+n k+p)
If & is an integer then

_(yrh = (e VY
f(y)_( k-1 )<k+/1> (’\'+/1> '

1.2 Objective of the Thesis

(1.8)

(1.9)

(1.10)

One of the main objectives of this thesis is to find a model that gives good esti-

mates and confidence intervals for the relative efficiency. Conditional Poisson (i.c.
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Bin). Overdispersed Binomial (OD Bin) and Mixed Binomial (GLNNM) models will
be studied for this purpose. We feel that trawl catches tend to follow the Negative
Binomial distribution, so two more models will be studied, the Full Negative Bino-
mial and the Conditional Negative Binomial (cond NB). In the full NB model. we
simplify numerical techniques using a concentration approach. which is described in
Chapter 2. Therefore. we refer to the full NB approach as the concentrated (cc )

NB approach.

The sccond main objective of the thesis is to study the properties of the Condi-
tional Negative Binomial model. If ¥, ~ N By, k) and Yo ~ NB(uz.h), then the

conditional distribution of ¥} given the total sum of Y] and Y, is .
P+ C(k+n—y) [ p v g +p2)+k
Dy+ DI (n—y+1) \ q p /q+/u +A

Zn Flh+o)P(h+n—x) (p gl +pa)+

r=0 e+ D0(n—a+1) \ ¢ plin e )+

where p = ;71%:77 This density function will be derived, studied, and analyzed in

Chapter 2. It will be compared to previously mentioned distributions in terms of

P =ylY1+Y,=n)= (r )

estimation and statistical inference (i.e. confidence intervals) for relative efficiency.
The estimation of parameters for the five different models we investigate are presented
in Chapter 2. The estimators will be applied to a case study involving Witch floun  r

(Glyptocephalus cynoglussus) in Chapter 3.

We use the well known maximum likelihood approach for estimation. We conduct
a simulation study in the fourth chapter to examine the performance of the models
under study. The five models (Bin, OD Bin, GLAAM, Cone NB. Cond NB) will
be compared in terms of bias and confi 1nce intervals for relative efficiency. Our

conclusions are outlined in Chapter 5



Chapter 2

Model Developrents

2.1 Introduction

In this chapter. methods are reviewed and/or developed for estimating differences
in the relative efficiency of survey vessels, or more generally the ratio of means in
paired count data. An important cinphasis is on reliable confidence intervals. The
coninon Binomial (Bin) and over-dispersed (OD Bin) models are reviewed. as well
as an alternative Binomial mixed model (GLMM) for dealing with over-dispersion.
Two approachies based on the NB distributional assumption for paired counts are o
developed, which is new research. The general modeling approach used in this thesis
is likelihood-based. This approach, and the associated maximum likelihood estima-
tor. requires complete specification of the distribution of the responses. Statistical
inference is usually performed under the assumption that the distribution is corre v
speeified, and this is the approach taken in this chapter.

The basic data structure and model assumption we considered is a sample of
N pairs of counts, where the withi-pair log difference in means is assumed to be

constant across pairs, but otherw  the between-pairs means are different for cach
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pair; that is, the data arc
Yo Yo
Yor Yo
Yy Y
where E(Y;) = wij i = 1. N j = 1,2 and log(pti1/pi2) = 3. This casc is valid

under distributions other than poisson r. lom variable.

The results in this chapter arc applied to a case study in Chapter 3, and further

investigated in a simulation study in Chi  ter .

2.2 Likelihood Models

Likelihood models are based on specifying the joint density of the dependent variables.
We assume that the random variable Y; given the covariate vector x; and parameter
vector 8. is distributed with density f(y;]x;. 8). The likelihood principle chooses as the
estimator of @ the value that maximizes the joint probability of observing the sample
values 4. ..., ¥.. This probability, viewed as a function of parameters conditional on

the data, is called the likelihood function and is denoted
L(O) = [] f(ulx:. 6), (2.1)
i=1

where independence over 7 is assuned. Maximizing the likelihood function is equiva-
lent to maximizing the log-likelihood function

1(8) logL(6) =\ log [(1[x,.0). (2.2)

=1

In this thesis, three different likelihood approaches will be used, namely, maxinum

likelihood, profile likelihood and conditional likelihood. The maxinmun likelihood
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approach will be used for estimation purposes in the next section, and the other two

approaches will be used for the Negative Binomial model.

2.3 Poisson Model

2.3.1 Conditional Poisson

In this section, we present some details about a very important member of the family
of generalized lincar models, 1 aely binomial logistic regression. As shown in Chapter
1. the binomial distribution can be derived from conditioning one of two Poisson

random variables on the total sum of both of them. This takes us to logistic regression.

Logistic regression became a useful tor n the 1950s in applications of biostatistics.
Consider first a regression structure in which the response is binary (0 or 1) if the
endpoint of an experimental run is w ther a fish is caught or not. It is reasonable
to assume that the response is a Bernoulli random variable Y;. where E(Y)) = p.

i=1.....n. Here p, is a probability in a Bernoulli process and Var(Y:) = pi(1 — p,).

For grouped data, there are n; experimental units at the ith data point. i = 1.....n.
This is the case in our study where n; fish are caught at cach site ¢ Thus the model

can be written as
e = =100\

We assume that the p; ¢ bco  odeled as a function of a linecar combination of known

covariates; that is,

erplx.3 )
pi = : —,—)— (=1.2....n
1+ crpix;8)
where x, is a vector of predictor — iables. In this case Var(Y;) = npi(l — pi).

We use the maxinmm likelihood approach to estimate the parameter vector 3. It

is well known that the prol  ility function for a st > binomial random variable Y



indexed by nand p is given by (Z)p-’/(l —p)"7¥. Since (’U') for our situation does not
involve .3, it will be dropped. and thus the log likelihood for the logistic regression

model is given by

) ,
log{L (p:y)} = » {.‘/i log 1——7 , ) +n;log (1 _I)i)}- (2.3)
=1 \ o ?

where yp. ya. ..., y, arc observed values of independent binomial random variables. T o

term log (1—’_’T> is called the logit and can be written as

log <_P1_) = xp3
1_:“1

k
r g, i=1.2.....n
=1

J

We assume that n > k. The loglikelihood can also be written as

n k - k
log{L(B:y)} = Z Zy,.r,jp’j — L n, log {1 + (’.If[)(z .1',»JA)’J)}
i=1 j=1

=1 j=1

T

=08Xy-— Z n, log {1 + (‘.z'p(x;ﬁj1 . (2.1)

i=1
where X is the traditional model matrix in linear regression and y is the response
vector. The derivative with respect to 3 is

dog {L(B:y)} _ o _%{( n, ),x;g }
o Y erc) A

t— 1
Since
,
(jxrﬁ

1—+‘Tﬁ = P (2-5)
[Gat

we have

o8

Since the nyp; represents the means of the binomial random variables, we can express

9log {L(B;¥)} . ~
= =Xy - Z npiX;.
i=1

. . . . . /
the right-hand side above in matrix notation as X (y — p), where
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Hi

i

and ji; = nyp;. The 7 notation is motivated by the fact that at the ith data point
the mean of the binomial distribution is given by n;p;. As a result, the maximum

likelihood estimator (MLE) is the solution to the score equation

X' (y—p)=0. (2.6)

2.3.2 Overdispersion

Overdispersion is an important concept that will interest us as we use logistic regres-
sion. When the response probabilities vary over groups of experimental units expe 1
to stmilar experimental conditions, some assumptions have to be made about the forin

of this variation. First we consider a general model, described by Williams (1982).

Supposc that the data consists of n proportions. y;/n;. i=1, 2, ..., n. and supposc
that the corresponding response probability for the ith observation depends on &
explanatory variables X, Xa, ..., X} through a lincar logistic model. To introduce
variability in the response pro  ilities, the actual response probability for the ¢
observation. ;. will be assumed to vary about a mean p,. This response probability
is therefore a randoimn variable where E(mr;) = p,. The variance of 7; must be zero

when p; is cither zero or unity, and the simplest function for which this is true is

Var(m,) = mp,(1 — p)). (

S
|
~—

where 7 > 0 is an unknown scale paramcter. The quantity m; is an unobservable

raudom variable. The mean of Y, conditional on 7;, is given by

Y

my=n
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and the conditional variance of Y is
Var(Yim) =nm{l — 7).

The unconditional mean and variance of Y is required to estimmate the regression
paramcters, This leads us to investigate the effeet of the assuniption about the random

variability in the response probabilities in equation (V) on E(Y;) and Var(}).

The unconditional expected value of a random variable Y ¢an be obtained from

the conditional expectation of ¥ given 7 using the equation
E(Y)=E{E{Y|r)}. (2.8)
and the unconditional variance of Y is given by
Var(Y)=  Var(Yim)} + Var{EX|7)}. (2.9)
Application of these two results gives

E(Y;) = E{E(Yi|7)} = E(ni7,) = n.E(7,) = nip;.

and
Var(Y;) = E{Var(Yilm,)} + Var{E(Y;|7)}.
Now.
E{Var(Yi|n)} = E{n;m(l — 7,)}

=n{E(m) - E(x})}

= nl{E(')T,) = Var(m) - (E(ﬂ'l)z}

=n{p =71 = p) = i}

=np {(L=p) (1 -7)}.
Also.

VarlEY,|7))}  Var(nm) = 12Var(m) = n?mp(1 = p,).
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and so
Viar(Y)) = npi(1 = p) {1+ (n; = D7} (2.10)

In the absence of random variation in the response probabilities, ¥, would have a
binomial distribution, Bin(n;, p;). and in  is case. Var(Y;) = n,p;(1 —p,). This corre-
sponds to the situation where 7 = 0 in equation (. V) and leads to Var(Y:)=n;p;(1—p;)
in equation (- ''1). If there is variation amongst the response probabilities, so that 7
is greater than zero, the variance of ¥ will exceed nyp, (1 — p;). the variance under bi-
nomial sampling. by a factor of {1 +(n, — 1)7}. Thus variation amongst the response
probabilitics causes the variance of the observed number of successes to be inflated

resulting in overdispersion.

In the special case of ungrouped binary data n; = 1, for all values of i, and the
variance in equation (.’ i++) becomes p;(1—p;). which is exactly the variance of a binary
response variable, Cousequently, binary data can provide no information about the

p‘dl'klll](‘t(‘l' T.

Suppose that evidence of overdispersion is found after fitting a linecar logistic
model to n observations of the form y;/n,, ¢ =1, 2, ... n. In order to model this
overdispersion, the variance of ¥ will be taken to be ¢n,p, (1 — p,). where, from
equation { ), ¢; = 1 + (n; — 1)7. This function includes ann unknown paramcter,
7, which will have to be estimated. 7 > 0 fmplies ¢; > 1. If ¢; < 1, we call the
plicnomenon underdispersion. However, this problem does not occur in practice as

often as overdispersion.

We can use maximum likelihood to estimate the regression paramecters and the
dispersion parameter jointly. Williams (1982) shows how an estimate, 7, of the -
rameter 7 can be found by equating the value of Pearson's y-statistic for the model
to its approximate expected value. The value of y for a given model depends on the
value of 7, and so this procedure is iterative. The estimate of the paranicter 7 will

also depend on the actual exp  1atory variables in © fitted  Hdel.
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The more common approach described in McCullagh and Nelder (1989) is based
on the assumption that Var(}) = on;p;(1 — p;): that is. the Binomial overdispersion
is constant between observations. In this case ¢ can be estimated more casily using
the chi-square statistic. as outlined in McCullagh and Nelder (1989). This is the
approach used in the glm function in R and this is the approach we use in this thesis.
[t is commonly applied in GLIN s, including those in Benoit and Swain (2003), and
Lewy. Niclsen, and Hovgard (2004). McCullagh and Nelder (1989) state that over-
dispersion can arise in a muuber of wavs. The siimplest. and perhaps the most connmon
mechanisui, is clustering in the population, (c.g. Stigler 1986). Clusters usually vary
in size. but McCullagh and Nelder (1989) assmned for shimplicity that the cluster size.
k, was fixed and that the n individuals were actually sampled from n/k clusters. In
the ith cluster, the number of positive respondents, Z;. is assumed to have a Binomial
distribution with index & and parameter 7;, which varies from cluster to cluster. Thus

the total number of positive respondents is
)" = Z] + 22 + + Zn/k'

If we write E(m;) = m and Var(m,)=7%r(1 — 7). then using () and (") it can be

shown that the unconditional mean and vartance of Y are

E(Y) =np;
Var(Y) npi(1 = p){l + (k= 1)7°}

onp, (1 —p,).

Note that the overdispersion parameter ¢ = 14+(k-1)7¢ depends on the cluster size
and on the variability of 7 from cluster to cluster. but not on the sample size, n.
This enables us to proceed as if the observations were binomially distributed and to
estimate the dispersion paranieter from the residuals. An estimate of ¢ can be based
on the residual sum of squares appropriately weighted,

e

R 1 (1. — nh)2 9
< —Z =\"/(m —v). (2.11)

m-—u npiL —pi)

=1
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where m is the number of observations and ¢ is the number of parameters. The last

¢ estimate in (1) is a special case of
. 1 2y — RO
o = — _ ‘ Y — 2 o 9 1:)
0=— _ T Varty) X /(m =), (2.12)

where y? is the generalized Pearson statistic.

2.3.3 Mixed Binomial Model

A common feature of the models that have been described in the previous section
is that their lincar components contain terms known as fixed effects. NModels for
binary data may also incorporate what are known as random cffects, and a model

that contains a combination of fixed and random effects is known as a mixed model.

In this section, a mixed model for binomial data is described. The logistic regres-
sion model can be extended to include a single random effeet. Suppose that there are
n binomial observations of the form y; /n;, where y, is the observed value of a binomial
response. Y;. associated with the ith proportion, i = 1.2, ..., n. The binomial respouse
variable will be assuined to depend on & explanatory variables, X7, .Yo. ... Xy, which

take the values @y, e, ..., o for the ith observation. and on a random effeet w;.

If the corresponding response probability is p;. the random variable Y; has a
binomial distribution conditional on u; with parameters n,; and p;. The dependence
of the p; on the explanatory variables and the random effect is then modeled by taking

Pi
L —p

log( Y=o+ Ay + o+ e + o, (2.13)
where Jy. J), ..., J, arc unknown fixed-ceffects parameters and u; is a random effect.

The term u; in () is a realization of a random variable U;, and we will asst ©
that {/; has a normal distribution with zero mean and variance @2, that is U; ~

N(0,0%). The model in equation () may also be written in the form

1()(]It(])7) J() + J’l.l‘l, + ..+ J)A-J'kl + o043 (214)



where z; is a realization of the standard normal random variable Z,.

This model can be fitted through the method of maximum likelihood. Writing
= o+ A1z + ...+ Geaxs; for the lincar component of the model derived from the

fixed effects, the model becomes
logit(pi) = 1i + 0wz,
and the likelihood of the ith of n observations is given by

n, Y, ne—y,
Lwﬂmm=< )ﬂu—m>1

Yi

_ {eap(r + 0u2:) Y (2.15)
i) {1 +exp(n +ouz)}" .

The likelihood of the n observations conditional on the random effects is [['L, L(B. 0y =)
which depends on the unknown parameters Jo, J;, ..., Jp and g, and the unknown re-

alizations of the random variables Z), Zs, .... Z,, which have N(0.1) distributions.

The standard method of handling a likelithood function that iuvolves random vari-
ables that have a fully specified probability distribution is to integrate the likelihood
function with respect to the distribution of these variables. After ‘iutegrating out’
the z, the resulting function is termed a marginal likelihood function, and depc s
only on g, 3. ....;% and g,. The maximum likelihood estimates of these paranieters
arc then those values which maximize the marginal likehhood function given by

" oc el 0. ~ ~ i ~2
uam:H/ vaf - w2 g )

e \u) (U eapun + 0wz} Vor

Usually, the logarithm of this marginal likelihood functic  is maximized usiug an
optimization routine, but this is complicated by the fact that the integral can ouly
be evaluated numerically. One way of carrving out this numerical integration is to
use the Gauss-Hermite formula for numerical integration, or quadrature, according

to which
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no

where the values of ¢, and s, are given in standard tables, such as those of Abrammowitz
and Stegun (1972). The integral in equation () can then be expressed as a sum-

mation, aund to the marginal likeliliood is approximately

~ " . m r i udr 2)}%
T (n,> ,- {exp(n + 0,5, V2 ]
(B.0u) =7 H Y ;C {1 +exp(n + Uusr\/g)} l

i=1

The values /);0, 31, 3}. and ., which maxinize this expression, or its logarithm, can
then be determined numerically. Standard errors of these parameter estimates are
usually also available as a by-product of the optimization process. Standard errors are
obtained from the inverse of H, where H - the hessian matrix of sccond derivatives
of the negative log likelihood. This procedure can be implemented in R using >

package glimm Al L.

This model ean account for over-dispersion in the logit proportion of WT catcli,
caused by random differences in local within-pair stock densities fished by cach vessel.
If the local stock densities are viewed as independent and identically distributed (iid)
from a gamma distribution then the logit proportion of catch depends on the log ratio
of the two stock densities. A Norimal random cffect is a reasonable approximation to

the distribution of the log ratio of gamma random variables (sce Chapter 1).

Although in practice one is usually primarily interested in estimating the parame-
ters in the marginal linear mixed-effeets model (the fixed effects @ and o,,), it is often

useful to calculate estimates for the random cffects z; as well.

Oue way of obtaining estimates of a random effect is through using an empirical
Bayes procedure (e.g. Collett, 1991). In this approach, inference about a parameter

# is based on the following statement
ply) x L(y|0)p(0), (2.18)
where the constant of proportior ity is

/L(y|9)1)(9)(16’. " 19)
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which ensures that p(f]y) integrates to unity.

In our study, the equivalent of the prior density, p(6), is then the density of Z;, the
random variable corresponding to z;, and the equivalent of L(y!f) is the likelihood
function in equation (' ") with 8 and o, replaced by their maximun likelihood
estimates. B and &,,. The posterior density of Z, is then proportional to the product
;

of L(B, .. z;) and the density of Z;, which from cquation ( ) is

(m) [ {erp(; + ffl,fi)}z" i } {(’FP /2)} (2.20)
vi) {1+ exp(n +a,2)}1" o

where 1), = Jg+ I + .o+ Ferg Anestimate of z; s the value Z;, which maximizes

the logarithm of this function. On differentiating the logarithm of this expression

with respeet to z; and equating the derivative to zero.

. Y {exp(n + .2 cap(—2z2/2)
on {26520} =tex (1) | 7t s 1]

log{< >}+“1 U+ ) = milog {1+ ep (i + 6,5}
Ui

~— log ( vzm
2 % V )
and
A ) S WU
; = Y0, — 1 A - —5=0
2z L+ cap (i +64%)
anallye o befo Thy v by solving for z, the equation
Nt oernln LA <) . R )
+ 2= TuY (221)

1+ €O, + 0y3,)

An estimate of of w; is u; = 6,3,

2.4 Negative Binomial Model

This scetion also deals with departures from the Poisson distribution. An alternative

approach to deal with over-dispersion caused by within-pair local variation in stock



densities is to work directly with the marginal distribution of paired-trawl catches.
The mixed model approach and over-dispersed Binomial model approach discussed
i the previous two sections may be inefficient because they do not utilize informa-
tion about random cffects provided by the total catches from both vessels, or more
generally in the paired-sums. In the Poisson model Y; has necan A; and variance A,.
We now relax the variance assumiption, because it is not suitable for many tvpes of
biological data. A common parametric model to account for overdispersion is the
Negative Binomial (NB). This distribution arises when data are Poisson, but there
is gamma-distributed unobserved individual heterogeneity such as when within-pair

stock densities are iid gamma random variables.

The NB density function can be written as
Tl 4 k) ‘o y L k
L)Ly +1) A+ h+

fly) =

where [ is the gamma function. The parameter & is regarded as the overdispersion

parameter. The mean and vartance of Y are given by
E(Y)=p (2.22)
11
Var(Y) = u (1 + ) .

It

The leading motivation for considering paramnetric distributions other than
Poisson is that they have the potential to accommodate features of data that are
inconsistent with Polsson assumptions. Somne common departures from the Poisson

model are as follows.

1. The failure of the nrean equals variance restriction : Frequently the variance of
data exceeds the mean, which is usually referred to as extra-Poisson variation
or overdispersion relative to the Poisson model. If the variance is less than

nican, we have underdispersion.

o

The “excess zeros™ or “zero inflation™ problem @ The observed data may show

a higher relative frequency of zeros, or some other integer, than is consistent



with Poisson model. These cases are discussed in Mullahy (1986) and Lambert
(1992). The higher relative frequency of zeros is a feature of all Poisson mixtures

obtained by convolution,

3. Multimodality : Observed univariate count distributions are sometimes bimodal
or multimodal. If this is also a feature of the conditional distribution of counts,
perliaps because observations mav be drawn from ditferent populations, then

extensions of the Poisson are desirable.

4. The failure of the conditional independence assumption : Event counts, espe-

cially if thev are a time series, may be independent.

The last consideration has to do with the failure of the Poisson process assumption,
whercas the first three are concessions to the characteristics of observed data, Note
that in this thesis, the first consideration is applicable to paired-trawl data. This is

the main reason we consider the NB distribution.

Figure ' shows, as an example, the Poisson-gamma mixture (Negative Bino-

mial), with mean 10 and & 5 with the Poisson distribution with mean 10,

2.4.1 Concentrated Negative Binomial Model

In this section we consider direct estimation of relative efficiency (p) and the NI3
over-dispersion parameter A by the maximum likelihood method, but concentrating

(or profiling) the stock density paranieters g, ..., 1.y out from munerical estimation.

The full likelihood depends on a parameter vector g in addition to p and &, wh

an

[
=\ |

Hn.



so the likelihood function is L(p. k. u). The concentrated or profile likelihood el i-

nates g by obtaining the restricted MLE of g for fixed p and k. Then

Leone (p k) = L{p k. pu(p.k)}. (2.21)

The profile likelihood is uscful if g is a nuisance paramcter. For example. our
interest is in the parameter p, and A is important for confidence intervals. In such
circumstances there is an advantage to profiling out u. espeeially if g is of high
dimension. More details can be found in Davidson and MacKinnon (1993).

Restricted MLE's of the NB i parameters are derived as follows. Recall that our
data are Y,; ~ NB(u;1, &) and Yiy ~ NB(je0. k). i=1,....n. Again let = piy + o
The constant relative cfficiency assumption implies that g, = py,. and 0 = g,
where ¢ = 1—p and logit(p) = 3. The conditional joint density for the 2N observations

18

Pyive o Y ynze o Yn2 Do hopinc fix.)

n 2
= H H Pyjlp- koo opn)
i=1 j=1
w0 v k
- Py + k) ( py Nk ) i=1..Nj=12
LI\ T0T (g + 1)\ + 4 ) [ IR
(2.25)
Note that in (- ) the p;; are defined i terms of p and g ... jin. as shown
above. The corresponding log-likelihood function is
Lyine e Yut Y1z Yn2 PR i)
" |NETIE S , L
=D |loe S e e }
= LKL Wi+ 1)) pi. 4k K+ P,
! Tl + k) i k
+ log + Yo log { — +hklogq —— > 1. 2.
Z[ E’{l\h‘)uyi2+1}} v g{q/ll_-rfc} O{A'%—(H:,AH ( )

=1
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Differentiating with respect to p; and setting to zero vields

dlog P(yi1.ccoymr Yizs oo Ynz|p bty M)
i,

_, {pzxu. + pk = p*u. } ) ( Pl > N k{ —kp } / ( k )
! (ppi. + k)2 Pl + k (ppi + k)2 pre. +k
2 2
g + gk — ¢ ;. qit;. —kq ( 8
“+ 1 i —— + k ;
g { (qpe;. + k)2 } / <<1/u. + k’) { (qua. + /\‘)2} / Qi+ k

Pk p gk q
= _ I + U _ A.
e + &) pm+ kP (g + ) g, + R
_ virk kp Yiok kq
fG.(pra, +K) ppe A g k) qui R
ik — knag n Yiok — kg
papii ) (g + k)

Setting this equation cqual to zero is equivaleut to solving

T o n Yio — Qi

ppi +k Qi+ k

k]

which leads to

Yin — PHi Y2 — 4l

pii + k g, + K
= (yn — ppe ) qa. + k) = —(ppa + k) (2 = qpi)
= Yo Qi + Yah — pait = ik = —(Yopu, + Yok — papd — quk)
= g (1 = P + yak = p(1 = p)iid = ppak = —{yaapps + yiok — p(1 = p)i
(1 —puik}

= yujt — pyapti + yak — pud + Pt = pak = —yopit = yok + pd — Pl + ks

— pky.
This simplifies to

Yl — pyitpt. + Yk + vieppti, + Yok — by — 277/1'3 + 21)2/‘?. =0
or

(=2p+ 20" + (ya — 1+ DY — k) + (ya + ye)k =0.



The last equation is a quadratic of the form ap? +by; + ¢ = 0 where a = ~2p + 2p?,
b= yn — pyi + pyiz ~— k and ¢ = (y;; + yio)k. So the mle of y; for fixed p and & is

b+ Vb2 - dac

2a

i (p k) =

—(yn — pyn +pyia = k) £ Sy — by + mig = w)- — ai—2p + 2p2){(yi1 + yi2)h}
2(=2p + 2p?) '

(2.27)

Substituting this back into (. ") vields the concentrated log-likelihood function.

LC‘(m(' (P 'l‘)

. yn + k) it (p.ok) k
=D |tog § Frmpr e v los § b K log § e
Z{Og{ () (ya + }““‘”“{pu,«p.k)w B R i (0 B
(v
)

S [log _F;’»)} e { (1= )it (p.k)
i []%{ (M) (g2 + 1) T eloe (1 = p)ii (p. k) + k

k .
+V‘[ ()g{k+ T A‘)}]. (2.28)

Rather than estimate the NV + 2 paramcters in the full likelihood numerically,
we estimate only 2 parameters in the concentrated likelihood given by (). This
greatly speeds estimation. The mle's for the g, parameters are obtained using ()
and the mle's for p and A, The g;.’s are nuisance parameters so we are not worried
about finding standard crrors for their ¢ mates. Large sample standard crrors for
the mle's of p and Ak can be obtained from the inverse of the hesstan matrix of 2
concentrated loglikelihood function evaluated at the mle values. We use mnneric

derivatives (hessian() function in R) to get the standard crrors.

2.4.2 Conditional Negative Binomial Moc |

We have N pairs of observations, (Y1, Y12). ..., (Y1, Yi2) that are NB distributed

with mean and variances,

E(Y;) = ;. Var(Yy) =, (1 + NA”> (=1...N: j=12
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All observations arc independently distributed. We assume that the ratio of means
is constant for all 7. and we are interested in inferences about this ratio, p = i,y /0.
s is a generalization of the Poisson model cousidered by Cox (1970, section -1.5.1).

1c generalization is to accommodate over-dispersion in the observations.

Define p; = iy + 0. We can specify the joint distribution of the observations
in terms of N42 parawncters: p, k. ., ..., un.. The paramcter of interest is p, and the
(i s and A are nuisance paramcters that are not of direct interest but necessary in
the distribution of (Y1;.¥12). .... (Y. Yyv2). In Section 2.4.1 we presented a compu-
tationally more efficient method to estimate the N + 2 parameters directly from the
2N observations using a 2 dimensional numerical optimization; however, there is a

problem with that approach.

[t is well known that maximum likelihood estimates of variance parameters are
seriously biased when there are many nuisance parameters. The mle of ¢ in the
rmal linear regression model is a common example. If the number of parameters
p = N/2 then the mle of o2 is biased by 50% of o2, This leads to poor statistical
inferences unless some type of adjustinent is made. Several other examples of prob-
lemis with maximuin likelihood estimation when the number of nuisance parameters
is large are given in Barndorff-Neilsen and Cox (1994 Section 4.2). The approach we
explore is conditioning, siiilar to what is standard when the observations are Pois-
son distributed (see Section 2.3.1). We explore the utility of using the conditional
stribution of (Y1;¥7.). ... (Yy|Yy)) for inferences about p. Conditioning can be a

useful approach when dealit - with nuisance parameters.

Another argument for conditioning on Yi ..., Yy is that in the absence of any
information about gy, ....ux. the marginal distribution of Y7 ...... Yy gives no addi-
tional information about p. The pair-totals really only define the precision of the
data. Conditioning on their values make statistical inferences niore relevant to the
observed data, which is a position closer to the Bavesian philosophy. An extensive

review of this subject is given by Reid (1995).



For the ith pair of observations (we drop the i subscript for now to simplify

notation). the conditional distribution of Y1|}Y = n can be obtained from

. v P =y Yo=n—y)
M =yYi+Yo=n)= S PV =2 Yo=0n—1)
p()lz y)P(Ya = n — y)
TS P = e P = 1)

Note that Y7 and Y5 are independent so that

J L

PY1 =y Yo=y) = P(Y1 =y)P(Ys = ya).

Recall that p =y, /(py + p2) = p/(1 + p) and ¢ = 1-p and that the pdf of }7 is
F 5 N v /\ 4
POV = ) = ot (L .
CMTy+1) \yt, ++ i+ k

P()', =y)P¥2=n—y)
P =0)PYo=n—rx)

riky) (L Y (k) Plktn=y) (e Y70 (e )P
P(MT(y+1) \ pa+k jy+h A (n—y+1) \ po+k jr2+k
Zn I'(k4x) H1 * k b C(k+n—ur) 2 * k K
r=0 PORC(r+1) \ etk itk Ck)D(n—w+1) \ pat+k po+k

Tkty)lktn-y) ()Y
Cly+ DT (n-y+1) \ p2

It follows that

PYi=ylY1+Y,=n)=

Zn Ck+o)l(k+n—x) ()
=0 e+ D)0 (n—x+1)

)
P . y(l2 k)y
., . 1
Zn (k) {(k+n—1) " )
)

+
e
X
r=0 Tt DI (n—at1) | 4 (I
g +k
k

P

(o
£ T
y_»+k) ( I )
1 +k
f‘(k+J “(Atn—y) ( ) ( )
TN n—nt g e
__X | (2.20)
Zn 1(A+1)1u\+n T)
r=0 I'(o+ 1) (n—ao+1) (q) (}1/4 +A>
An algorithm to evalunate p,(x) P}, = oY = n) is given in Appendix A,

Note that we did not achicve a clean partition of the information about p. & and
.. We had hoped that the conditional distribution would only involve p and & and
not 4 however, this is not the case. In the next section we explore liow sensitive the

conditional distribution is to values of pi.
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2.4.3 Mean and Variance of Conditional NB

We could not find simple expressions for the conditional NB means and variances.

They can be directly computed using

EMY =n) =N yipup): EQRY =n) =Y uipa() (2.30)

y1=0
and
Var(WM|Y =n) = EQEY = n) — {EY Y = nm)}* (2.31)
In Figure i we plot the difference in the expected NB fraction E(Y|Y, = n)/n

and the Binomial probabilitv p. The results are identical when p=0.5 but can be
substantially different otherwise. especially when &is small (i.e. the NB overdispersion
is large). These results also suggest that E(Y Y = n) is sensitive to the value of 4.

which is a problenm for estimation.

[n Figure 1" » we plot the variance of the conditional NI distribution. When n
(total sum) is fixed the variance increases as b gets smaller (i.e. overdispersion gets
larger). Also, the results are symnetric around p=0.5 for all & and »n values. That
is. the variance is the same for p = p, or 1 — p,. When g >> n then the variance

becomes more constant as a function of p.

To better understand the effect of 12 on E(Y,|Y = n) we plot the expectation
at various vatues of g in Figures o« - '+ for n = 1. 5. 25, 50. respectivelyv. The

heavy solid line is the NB conditional ¢ 2ctation. The dashed and dotted-dashed
curves are Taylor's series approximations described later. The vertical dotted o
in cach panel denotes the value g =n. The shaded regions cover £50% of n. ~ ¢
horizontal dotted line denotes the Binomial expectation np. Again, the expectation
can be considerably different (and greater) than the Binomial result when A is sniall

and p < 0.5.

The conditional NB expectation inereases as g inereases or b decrcases. The

mean of the conditional NB distribution is a finite sum: hence, limiting moments can
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n—1 ! n—1
- n‘l‘ E th ” - ‘l‘) z -lplzm E I pllm
r=0

Recall that

=
|
—_

(E + 1)plzm T+ 1 Z Iplnn Y‘Iplim('l') = E<X)

r=0 £r=u
and
n—1
Z(.’z: + 1)2p1,-,”(1 +1)= E(/Y2).
r=0
Hence,

(n+ k) E(X) = E(X?) = nk{1 = prn(n)} + (n = M{E(X) = np ()} = E(X?)
+ 1P (1),
= (n+Ak)EX) = (n —F)E(X) = n(n—K)punm(n) + N2 prin (1)
+ nk{l = pun(n)}
RE(X) = —n(n = k)pun () + 102prin (1) + k{1 = pri ()}
n{n = Kpun(n) Wpim(n) | k{1 = pun(n)}

E(X)= -

2k 2k 2k
. 77'2pli111(n) '”Plim('”) ’lzplim(”) n ‘”Plim(‘”)
N T T Ta 2
n
=3
We can also show that
lim E(Y1|Y = nsp k) =
}\133) WY =nipu k)= 5

This suggests that when g is large or when the NB overdispersion is large (i.c.
k is small) then the data are less informative about p. This is because as yi or
the overdispersion increases then E(Y(|Y. = n) deviates more from np, where p =
p/(1 + p), and eventually this expectation equals 1/2 regardless of the value of p.

For finite values of x and k, direct estimation of p from p = y/y. will be biased
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towards one (i.e. equal catchabilitv). For example, if n = y =25, p=0.25. and k=0.5
then E(Y|Y = n) =8.5 (sce Figure - ~). If we were to observe this value then
p=8.5/25=0.34 and p = 0.34/0.66 =0.52, whereas the true value is p=0.25/0.75=0.33.
This is a bias in the estimate of p towards one. This is similar to the attenuation bias
resulting from nreasurement crrors in covariates in lincar regression (e.g. Stefan i,
2000). Overdispersion will tend to “mask™ differences in catchability and reduce

power.

The conditional variance is shown in Figure . The different line types are
for different values of k. which are shown in the top left-liaud panel. The horizontal

dotted line denotes the Binomial variability.

The Conditional NB variance inereases as pi increases or A decrcases. To help

derive the liniting variance as . — oc we multiply () by & + 1 and sum it for .«
=0,....n~1,
n—1 n—1
(k) (@ 120+ 1) = D> (0 4+ 1) pr (2 + 1)
r=0 =0
n-—1 n—1
= nk Z(.T + Vi) + (n — k) Z Tl 4+ 1)pgm(r)
=0 =0
n—1
— Z 22+ Dpn ().
r=0

It follows that

N+ REX?Y - EXY) k{1 = prn()} + (k40— k)Y{n/e npaa(n)}
+ (1 =k = DE(X) = n*(n = k = D (n) = E(X?)
+ 1131),,»,“(71.).
(2k + 1)E(X?) = nk — nkpum(n) + (nk +n —k)(n/2) - kP (n)
= 0P (1) + 0k i (1) = 17 prins () + 0k (n)
Pt () + 0 pria ().
2k + 1DE(X?) =nk+ k1 -k)(n/2)



(2k + Y)E(X?) = nk + 12k/2 + 12 /2 — nk/2.
nk+n2k/2+n?/2 — nk/2.

2k +1
2 nk n2k n?
EXY =i T sman Yo D)
nk + n?k 4+ n?
—2(4/\' +1)

E(X?) =

Subtracting E(.X)? from E(X?) gives

nk 4+ n%k+n? ny 2
202k +1) <5)
nk 4+ 2k +n? 0 A2 4 1) 2
T U202k + ) 2wkt (5)
Mok 4+ 122k + 112) (2/\‘ + 1)712

E(X*) - E(X)? =

42k + 1) 1(26 + 1)
_ n(2k+n)
ARk + 1)
Therefore
n(2k 4+ n)

Var(X e Var(W Y =nip k) = ——.
1r(X) o r(MY =nip k) 102k + 1)
The Binomial variance analogue to E(X) = n/2 is n/4. The Conditional NB
variance is inflated by the factor (2k + n)/(2k + 1). If & is sinall then the inflation is

large. whereas if A — oo the variance inflation goes to one.

Clearly the conditional probability is sensitive to the value of y. As such it is not
directly uscful for inferences about p. However. we explore two approximations for .
that we hope will lead to good inferent about p. We pursue the conditional approach
because we anticipate that it will give more reliable estimates of A, Although A is a
nuisance parameter, it will be important to have good estinat  of A to get reliable

confidence intervals for p.

The first approach we explore is to replace powith no which is the mle of 1 as

A — 00. The sccoud approach we explore is to replace po with its approximate mle
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based on the marginal distribution of ¥ = n., but treating p and & as fixed. This can
be different from n when & is small. In effect we replace j in (77?) with a function of
n, p and k. This is similar to the concentration approach we used for p in Section

2.4.1

The approximation we use for the mle of g has a closed form expression. We
require this because it miakes the numerical caleulation of the mle of p and & much
more {easible. If we used numerical methods to compute g then this would involve two
levels of numerical optimization, optimize over i for fixed pand & . and then optimize
over p and A. The first numerical optimization for 4. will introduce roughness into the
likelihood surface for p and & which means that standard numerical derivative-based
optimization routines (such as optim or niminb in R) can be used to estimate p and
A, Fortunately the mle for p, can be closely approximated using a Tavlor's series
expausion of E(Y1|Y = n;u k) about g = n. We present the expansion in ther  t

section, followed by the approximate marginal mle of p .

2.4.4 Taylor Series Approximation of the conditional mean

The NB conditional expectation can be reasonably approximated using a Tavlor's
series expansion around g = n (sce shaded arca in Figures - ). We will use
this result in the next section to develop a better conditional estimator of p. Let

V(i)  EMWY = o k) and let ¢,(p) denote the numerator term in the N3 pdf,

o) = F(h+0)0(k+n—r) (Q)I (M)r (2.34)

Fle+1O)(n—a+1) g pH. A+ k
By definition ¥(u ) = Z’;o((/f'_')). It is not hard to show that

do, (1) _ {F(k + )k +n— J?)} { <B>J'} ) <M>I—l
. e+ Dl(n—a+1) q i by
x {Q_(M_A_)—( +M}
(pu
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_ F(A' -+ .’IZ)F(/C +n— AL‘) p ’ ‘((1111,‘ + k-t . A
B {F(l’ + )M - +1) } { <(1> } {J (pat. + /«')“'*"} thly — 2
Kla—p)re (1)

(P, + K)iqu, + k)

Let W;(p) = 211;3?;([.1)')7 i= 2.3. The first-order Taylor's series approximation of

Wip ) is
Wi )zwin + SV, (2.36)
()lu~ jo=n
where
, J Z.’rm(;z,)}
v = e
=5 e
_AZ e} {Ewo, 1)} - 2 c@e(i0)} {Zdu{i)}
{Z Ql‘(/‘«)}z
(SonH Dottty | - (o0} {E fem |
{Z ("').r(,“.)}"2
| e [ o HE o)) — (S rone)}]
(X o))
_ s (el {e o)l - ) {o 0. ()Y
(T oun))

B Mo — n) " 72

o R+ k) () =)}
N

o owu)  Ma—p) e
W)= R TEDI +A,){‘1’z(ﬂ.) W)}
Hence, the first-order approximation is
W) = B(n) + LD 21 pg ) gz, (2.37)

(pn+ k)(gn +F)

The first-order approximations are shown as the dashed straight lines in Figures i
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To derive the second-order approximation, we first evaluate

DU {u Lla — / ,
- 015; : N (pu. +(Z)(qZ? 1K) {Wolp) = 2Wa(p )Wy (40 )}
—k(g — p)plan k L L
(q(l)ll[.)i(lf‘/)é(;,‘)j(f;‘z' u ){‘1’2(/1.) — W)}
—k(q = P)((P(IN.)Z + 2pghu + },-'2) \
(D + k)*(qp. + k)? {92(p) = ¥ )}

k(g =) o ,
v. —9 .
{(pp. + k) (g, + A){ 2(:“.) )\I’(/I)\D (/1)}

H

U (u)

where
Z;I'zﬂ') (/L')

W) = —_
) 2. 0n1)

and

OUalin) _ (X 0uln VIS (01}~ (X 6,0 H T rn(n)}
on. {2 0 (1)}
{ZO K }{Z (pue. i(l\q) (]’;l +k) I (p (!1 )} B {k((g[:in/\;[(lpl-:f }{Zl Or /L
_4 1‘(:“)}‘Z

T W ST O ()} = Wl W () 57 o
{2 o: ()}

which implies that

’ 8\110(“ \ L((] _— p)

Vy(u)=— =~ = (g + k)
(1) op. .+ k) g+ k)

{Wa(pe) = Yalp )W (1)}
These results are used to compute the second-order approximation,
s 1 B "
U(p)=W(n)+ (. —m)¥ (n) + 5(;1, —n)*¥ (n), (2.38)

which are shown as dotted-dashed curves in Figures 00 - 1

Within a neighborhood of £50% of . n the first and sccond order approxima-
tions work well. We will use these in the next section to find a closed-form expression

for the approximate mile of u, given p an k. based on Y = n.
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2.4.5 Estimation of

An approach to deal with the . term in (?7?) for inferences about p is to replace o
by its marginal mle but with p and k treated as unknown parameters. The marginal

pdf for ¥ is given by
=n)= Z PYi=a2)PY,=n—1x)
r=0

_ Zn: I'(k+ ) < 1 )I ( A >k Ck+n-—2) [t n-r
N e FMT(x +1) \y + 4 m+k) TkT(n—r+1) </12 mn A‘)

_ K < qr. >”()1+1\) (qu. + k)~ Z t)

wliere ¢, (y) is given by (). The loglikelihood for . A{p), is given by

A(pr) = C+nlog(u) — Klog(pp. + k) = klog(qu. + k) + log {Z g‘)(,,(,u_)} .

r=0

where ¢ denotes terms that do not involve g After some simplification,

OA (1) |
('),El = n{pu+ k) = (Zpare + k) + (g = plu Y {p). (2.39)
To derive this expression we used (/) and the fact that

%log{i@r(#.)} _ roo@li) _ kg —p)¥(p)
‘ 2

Yo @) (pp R (g + k)

The first-order approximate mle of g can be obtained by replacing W(y ) in {3 9)

with (2.36). This yiclds a quadratic equation in pr. ayp® + axp + ay, where

ay = (g — p)¥ (n) — 2pg.
ars=np+{g—p}H{ n)- 'n\IlI(n)} — k.

as = nk.
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The root of this equation is casy to obtain. It can be shown that the first-order

approximate mle for g is n when p =1/2.

A slightly niore accurate approximation for the mle of g may be obtained by
replacing (g ) in (1) with (7). However. in simulations we did not find any
advantage in using the second-order approximation for estimating p so we do not
present further details about this approximation. However, it is more complicated

because the approximate mle is the root of a cubic polynomial.

We illustrate the accuracy of the approximations to the mle in Figures |- -
v 5. The profile values are 2x the difference between the maximum log-likelihood
and the log-likelihood for values of yi; hence, the minimun of the profile is zero. The
second-order approximate mle for g is usually coincident with the mle, except when
A=0.5 and p=0.1. The first-order mle is usually very close to the nile as well. Note
that the mle can be quite different from n when & aud p arce small. The likelihood
profiles are flat indicating that a wide range of yr values are consistent with a specific
value of n. Based on a x? distribution, a 95% confidence interval for g would include
values such that the profile was less than x7 . g5=3.84. Such confidence intervals would
greatly exceed the range of g 's in most panels of Figures ' - 10 14 This suggests

that, as expected, a single observation of ¥ does not give much information about g .

The percent differences in the first-order mle (7).

. 0=
Ydif ference = 100 ( —> . (2.40)
n
are shown in Figure ! . When A aud p are siall then the mle can be alimost 50%

greater than n; however, if & > 1 and p > 0.25 then the differences are less than 8%.

This figure suggests that the mle converges to n as & — oc or p — 0.5.



2.4.6 Models Diagnostics

Once a model has been fitted to the observed values of response variables, it is essential

to check that the fitted model is actually valid.

There are a number of ways in which a fitted model may be inadequate. The
most serious of these is that the linear systematic component of the model may
be incorrectly specified; for example, it may not include explanatory variables that
really should be in the model. Also, the data may contain particular observations,
termed outliers, that are not well fitted by thie model. Finally, the assumption that
the observed data come from a particular probability distribution, for example, the

Negative Binomial distribution. may not be valid.

The techniques used to examine the adequacy of a fitted model are known as di-
agnostics. These techniques frequently involve statistics that are based on differences
between the fitted values under a model and the observations to which that model

has been fitted.
Measures of agreement between an observation of a response variable and the
corresponding fitted value are known as residuals. These quantities can provide much

information about the adequacy of a fitted model.
In this thesis, we use a common form of residuals known as Pearson chi-square
residuals. The chi-square residual are defined by
Yo — E(Y:)

v Var(iy

It is simply the residuals scaled by the estimated standard deviation of Y.

'y =

Suppose that a linear logistic model is fitted to n observations of the form y,/n,.
i=1,2. ... N, and the corresponding fitted value of y; is ; = n;p,. Then for the ith
observation, the Binowmial chi-square residual is given by

Ho—n.n )
\/Ili‘l}, L= )
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and the over-dispersed binomial chi-square residual is

pp— '{I‘,‘A,
R [ — (2.43)
onipi (1 = pi)
Equation (71 ) is also used in this thesis to compute residuals for both the Con-
ditional NB and the Concentrated NB models. For the Conditional NB model, the
conditional expectation and conditional variance need to be found based on (1)

and () so that cquation (") is cxpressed as

- Z;’* a D (1) (2.44)

2
\/Z:/:_O lenl yl) {ZZ;:() ylpn,(yl)}

where p,,, (1) = P(Yy = yi|Y. = n;) as given in (77)

In Concentrated NB model, residuals are computed for both test and control

observations. The NB chi-squarce residuals are

Uii — fiis
py=—ed ZH 21 N, =12 (2.1

g (14 72 /1)

no
L
[ ]
e

2.4.7 Computer Software for Models Analysis

R provides a powerful interactive computing environment for data analysis with ex-
ter  ve  aphical facilitics. Th  package is not straightforward to usc as other pack-
ages. The scope of the package can be extended by writing new functions or modify 3
existing ones. The software incorporates a function named glm used to fit generalized
linear models, and for binary data analysis the argument family=binomialis included.
Having fitted a model using the function glm, the function summary is used to ob-
tain parameter estimates and their standard errors. The function residuals can be
used to calculate the values of certain residuals. Numerical solutions for maximizing

likelihood functions can be found by nimenb and optim functions.



Chapter 3

Real Data Analysis

3.1 Comparative Fishing Survey Protocols

The main objective of the comparative fishing exercise was to determine if differences
exist between WT and AN catchabilities (¢) when both vessels used the standard
survey trawl. Data from paired tows were collected to quantify potential differences.
The location of the comparative fishing was off the cast coast of Newfoundland. in
Northwest Atlantic Fisheries Organization (NAFQO) Subdivision 3Ps, and Divisions
SLNO (sce Figure |'.). Tow stations were selected randomly as part of rescarch
surveys. High density aggregations were not specifically targeted because information

was required on differences in catchability when stock densities are high and low.

The WT followed normal survey protocols, and the AN surveved for comparison
purposes onlv. The vessels were instructed to tow on tlie same course, aid the WT
relaved the course to the AN, Ou slope edges, where side by side tows were not feasible
due to depth differences. one vessel towed alicad of the other, alternating the lead
vessel on a tow-by-tow basis. This was done so that the end of the tow for the trailing
vessel occurred at oa position just before the start of the tow for the leading vesscel;

that is. there was no overlap in the arca covered by the tows. The same depth range
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for cach paired tow was maintained as close as possible between boats.

Differences in the depths fished for both vessels were minimized, for a target of
less than 109 during comparative tows. If the WT had an unsuccessful set, both
vessels repeated their tows, moving slightly so that the same grounds were not towed
over again. A full range of Scanmar trawl geometry sensors were used on cach vessel,
including n additional depth sensor inounted 50 m in front of the trawl doors. T 5
additional sensor monitored the effect of using trawl warp on the AN which was 1/8

inch larger inn diameter than that used on the WT (1 inch).

Let .5 be the mumber of fish caught at the /th tow station by vessel s. We refer
to the replacement vessel as s = t for the test vessel. and we refer to the vessel to
be replaced as s = ¢ for control. We assume that the replacement vessel is the AN,

althongh our results can casily be adjusted if the WT is the replacement vessel.

3.2 Results

A total of 57 paired survey sets with the AN and WT were carried ont in 2005. There
were 49 sets with no cateh for both vessels. so these sets provide no information about
rho. The number of sets with some cateh by either vessel was 106 - 49 = 57, Nost
major commercial species had some survey coverage. Sets were located in the far
offshore portion of 3Ps (Fig. ' ), the shelf arca in 3N, and the northern part of
3L. Note that in this figure the location of the plotting svinbols indicates the average
location of fishing for the two vessels. The size. type, and color of the plotting symbols
give information about the within-pair differences in catches (see figure caption).
The actual catches are shown in Table C.1. The distance between paired tows was
relatively constant, with a maximum of 3.7 km. Tow depths were also usually similar,
with a maximum absolute difference of 37 m (Cadigan ot al, 2006). Most of the Witch
flounder catches occurred in Subdivision 3Ps. In Fig. = we show the difference in

catches for cach pair of tows, scaled by their “Poisson”™ standard deviation, which was




the square root of the sum of the catches. Black svinbols merely indicate potential
outliers; however, these “residuals™ were not adjusted for over-dispersion, and we do

not suggest that these catches are outliers.

In this thesis, a length effect is not considered. That is, relative efficiency is
assumed to be the same for all lengths, and only affected by vessels (WT and AN).
1} can be simplified to

This implies that equations (. ) and (

(.»3
—_— = y . .1
T+ed P B
and
logit(p) = 3+ u. (3.2)

Table C.2 shows a summary of results for all fitted models. Appendix B.1 shows
the results of fitting the Binomial logistic models. Substantially more user-developed
conmputer code is required to fit the NB cone. and NB cond. models. This code is

not given in Appendix B.

3.2.1 Binomial Model

The standard binomial logistic regression model was implemented in R using the
function glm. Appendix B.1 gives the code results for this model. The estimate of
J1s -0.17214. That is. relative efficiency estimate is exp(-0.17214) = 0.811. Note
that the estimate sign is negative indicating that WT had a slightly lower relative
efficiency than the AN. The 95% confidence interval does not cover one. which leads to
the conclusion that the vessels had significantly different cat — abilities (¢'s). Thed
and estimated relative efficiency are shown in Figure 0 't (solid line) as a straight-
line through thie origin with slope p where p = (’,1'1)(3). Residuals of this model are
presented in Figure |1 7. More thau 5% of the chi-square residuals have absolute

value > 2, which suggests over-dispersion.
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3.2.2 Over-dispersed Binomi model

Appendix B.2 gives the code results for o Overdispersed Binomial model. It was
implemented in R in which the quasi-likelihood approach was used to estimate the
over-dispersion parameter. Note that the parameter estimates from this approach
arc identical to those in the previous section (sce Table C.2), but the standard crror
is larger. This leads to a wider confidence interval for the vessel effect. The 95%
confidence interval for p also does not cover one, which leads to the same conelusion

from the Binomial model with no over-dispersion. The relative efficieney from the

Overdispersed Binomial model is presented in - -, The chi-square residuals adjusted
for over-dispersion are shown in Figure 7. Note that their overall magnitude is
smaller than the Binomial residuals (Fig. | ). Figure I 7 1 shows that one of

sets had a residual of value less than -4, This set may be an outlier.

3.2.3 Mixed Binomial model

R code and results for the Mixed Binomnial model are presented in Appendix B.3.
The maximization was implemented in R using the function gimmAfL. The estimate
of relative cfficiency (Table C.2) from this model differs somewhat from what we
obtained with the previous two models. In this model. 3 =-0.1251, which implies that
p = exp(-0.1251) = 0.884. The 95% confidence interval for p covers one, which leads
to the conclusion that the vessels did not have significantly different catchabilities.
This is different than the conclusion from the Binc  al and over-dispersed Binomial
models. Figure '+ 1 shows the relative efficiency. Residuals for this model are not
presented in this thesis because the R glimmML procedure does 1ot produce any

residuals. Chapter 5 gives more discussion about residuals for the GLNM model.
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3.2.4 Conditional Negative Binomial, p. = n

The conditional NB model with 1, = n (total observed catch) was cstimated v
maximun likelihood using the R function optim. The resulting J estimate was similar
to the Mixed Binomial model estimate. Relative efficiency for this model is presented
in Figure 1" '1. Residuals are presented in Figure 1. All residual values were

within -3 and 3, and there is no evidence of model mis-specification.

3.2.5 Conditional Negative Binomial, u. estimated

The estimate of 3. from the conditional NB model in which g was replaced by its
marginal estimate, was also similar to the Mixed Binomial model estimate. Relative
efficiency for this model is presented in Figure ' .. Residuals are presented in
Figurce 1+ . All residual values were within -2 and 2, and there is no evidenee of

model mis-specification.

3.2.6 Full Ne¢ ative Binomial

The concentrated NB model likelihood was maximized using the R function optim.
It produced a ;3 estimate that is very close to those we obtained from GLMM. Condi-
tional NB (. = n) and Conditional NB (jz. estimated). Also. it produced a standard
error that is clearly smaller than standard+ rs produced by GLNNM and Conditional
NB (for both . cases) models and this resulted in having a shorter 95% confidence
interval. Hence, the conclusion from this model is that relative efficiency was sig-
nificantly different from one, wherecas from the GLMAI and conditional NB mc 1
analyses we did not conclude that p 1. Estimated relative efficiency is shown in
Figure 1 . Also, residuals of this model are presented for both of test and control

catches in Figure 1+ . The residuals look reasonable.
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3.3 Conclusions

The results in Table C.2 suggest that there were no significant difference in cat a-
bility for the WT and AN fishing the Witch Flounder trawl based on the GLMM.
Conditional NB (g estimated) and Conditional NB (2. = n) models. This is because
J confidence intervals from those models contained zero as a value. That is. in the
GLMM, Cond NB and Conc NB models, 3 was not signifi  atly different from zero.
The analyses for the Binomial, over-dispersed Binomial. and Full NI models sug-
gested that relative efficiency was significantly different from one. However, in the
next chapter we show that confidence intervals from the latter three approaches are
much less reliable than the GLAIN and Conditional NB models. Hence. our con-
clusion is that the vessels did not have significantly different catchabilities for Witch

flounder.




Chapter 4

Simulation Study

4.1 Design

Simulated data were generated to compare estimates of .3 from the OD Bin, GLNM,
Conc NB, and Cond NB models. Data were generated using pseudo-random number
generators for the Negative Binomial distribution. In cach data set. paired catches
were generated from independent Negative Binomial distributions with parameters
3, yi, and k. Recall that the NB means for cach pair. jy and jia, are obtained s
mu; = pu. and muy = qu., where ¢ = 1 — p and logit(p) = J. The simulation
parameter values were: 3 = 0,0.14.0.69.1.00 (correspouding p values described below),
o= 15,30,60 aud & = 1,3.10. In the simulation sets of net catel sample data were
randomly generated as outlined above. Sample sizes (i.c. number of sets) of N = 20,
35 and 50 were considered. The simulation values of J, g, A, aud n were chosen
cover the range of values that might occur in real comparative fishing data sets, Two
thousand pairs of data sets were generated for cach of the 108 possible conbinations of
& value, total imcan value p., & and sample size. The corresponding p true simulation

values are 1, 1.5, 2 and 5.
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Bias, standardized bias, mean square error (MSE) and confidence intervals cover-
age were assessed. The total bias of the estimated parameter 7 is given by

2000

Total Bias = 3 = 3). 1.1
erat s .4\)()\};( ) (41

where 2000 is the number of iterations performed for any one of the previous men-

tioned simulation schemes. The total standardized bias is given by

‘)f\l\() -
A *ji — N
Total Standardized Bias = 5000 ,Z;T ( E(;)) x 100%. (1.2)

Also, (') can used for computing total bias for the estimated overdispersion

parameter (A) in which .3 is replaced by k.

Confidence interval coverage is also important to understand for reliable statistical
inferences. We evaluated the accuracy of 90% and 95% confidence intervals computed

as follows
3+ Z,ySE(3). (4.3)

Simulated confidence interval coverage is the proportion of simulations (i.c. out of
2000 for cach set of simulation parameters) in which the true simulation value of
3 falls within the computed confidence interval endpoints. For reliable confidence
intervals the proportion of (1-a)% coverage confidence intervals covering the true J

value should be close to (1-a)%.

The conditional NB model was estimated using three different options for g,
namely 1) g estimated: 2) g = n; and 3) g fixed at the true simulation val
The latter approach could not be used in practise because we would not know 2
true value for g.: however. it is useful for understanding problems with the cond NB

approach associated with not knowing ..
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4.2 Simulation Outcomes

Simulation results are shown in Table C.3 C.29. Columus 4 — 9 are for the following
6 estimators: -1} Conditional NB with mu.dot = est. 5) Conditional NB with mu.dot
= n, 6) Conditional NB with mu.dot = true, 7) Concentrated NB, 8) GLINM. 9)
GLMAIL Results for all simulation schemes are better summarized in figures 1) 7 to
v U Biases are presented in Figure | - . These results are also shown in Table
C.3, C.4 and C.5. Mcan Square Error (MSE) is presented in Figure v and Tables
C.9. C.10 and C.11. Simulated lower, upper and total coverage of 90% and 95% of

+ to ' . and Tables C.12 to C.29. In cach

3 estimates can be seen in Figures
ficure, nine pancls are given so that each panel shows the results for a combination
of n and & for the previous mentioned 6 estimators, which are shown at the top and
right-hand side, respectively. The model and value for p. are shown at the left-hand
side. Each group of points corresponds to a value of p = exp(d) = 1 (top line), 1.5,
2, and 5 (bottomn line). Conditional NB with mu.dot = est is abbreviated as Condl,
Conditional NB with mu.dot = n as Cond2 and Conditional NB with mu.dot = true

as Cond3. Also. Concentrated NB is abbreviated as Cone. Zero is shown as a solid

vertical e,

The bias was generally found to fall within -0.05 and 0.05 values except for 3 =
1.6 (p = 5) in the Conditional NB model where some extreme negative bias values
were found. Those negative low bias values can be clearly seen when & =1 or 3.
As the overdispersion parameter (k) gets larger then the six estimators give smaller
bias values. MSE results are presented in Figure "+ .0 . MSE decreases as & increc s
(i.c. over-dispersion decreases) for all models. Also, it is clear that when &k and p
increase then the MSE's are smaller, for all estimators under study. The combination
of bias and MSE values can be found in F~ wes 1) 5 to Do where the total 90%
and 95% coverage are presented. In Figure [v ', it can be clearly scen that when b =
1 both the Concentrated NB and GLII  estimators produce coverage values less than

80% and ¢ 11. Cond2, C 13 and GLMM | lucc coo .ge vall ¢l - to 90%.




If & = 3 or 10, then the Concentrated NB estimator produces coverage values less
than 80% while the GLIM coverages tend to get higher than than 80% and closer to
90%. In Figure '+ ", the Concentrated > estimator resulted in the lowest coverage
values. The 95% coverage values are generally less than 959 for all & combinatic s
Note that Concentrated NB estimator produced coverage values around 85% for all
k combinations. All Condl, Cond2. Cond3 and GLNDM give coverage values were
close to 95% for all & combinations while GLIM coverage values increased when & ot
larger.

The general conclusion from the shmulations is that bias aud staudardized bias

5. In this case

in the various estimators of 3 tended to be small. except when p =
the conditional NB approaches with g estimated or o = n had substantial bias,
which was worse when . n. This bias did not occur when g was fixed at the
true value which suggests that the problem when p = 5 is related to the unknown
4. paranieter in the conditional likelihood. These biases did not affect MSE. In fact,
in all three conditional NB models the MSE was usually lowest when p = 5. Total
coverage of confidence intervals was affected by the bias. especially when po = n.
Total coverage was reasonably accurate when j. was estimated. althougl one-tailed
coverage tended to be less accurate when p = 5. All estimators vielded confidence
interval coverage that were somewhat lower than the nominal considered percent level.
The Concentrated NB estimator performed very poorly in all cases. The Binomial

approach resulted in poor confidence coverage, especially for small & = 1, 3.
The GLMM produced confidence intervals that had relatively good coverage prop-
ertics, especially when n = 50. However, this procedure was clearly ineflicient in ter 3

of MSE when & = 1, which is a practically relevant amount of over-dispersion.



Chapt r 5
Conclusion

The results in Chapter 3 suggested that there were small differences in catchability
between the WT and AN for the species Witch flounder. The sign of the log relative
efficiency paramecter estimate for different models under study was always negative
which provides some additional evidence that the catchability of the AN was lower
than the WT. However. the effect, if it exists, appeared small and could be ignored

without serious consequences.

The Conditional Poisson model (ic. Binomial model) snggested that the AN
vessel is 84% as cfficient as the WT vessel, and the effect was statistical significant.
However, over-dispersion was apparent in this model. An analysis of Pearson chi-
square residuals showed that many were > £2. more than one would expect due
to simply random variability. The data exhibited more variability than conld e

explained by Binowmial sampling.

Oue source of over-dispersion in the Binomiial model is the erroneous assumption
that differences in stock densities fished by cach trawler were identical. In practise
this does not happen, although differences in stock densitics at cach tow site within
a pair should be completely random so that they can be viewed as iid samples from

sonie distribution of densitics. We conjecture that this was the motivation by Benoit



and Swain (2003) and Lewy et al. (2004) for using a Binomial over-dispersed pa-
rameter.  We also fitted a Binomial model with an over-dispersed variance. using
quasi-likelihood to estimate the over-dispersion parameter. The estimate of 3 was
identical to the Binomial model estimate. but the standard error was larger and con-
fidence intervals were wider. We suggest the wider confidence intervals are more
accurate. Nonctheless, the results still suggested that 3 was marginally significantly
different from zero. The residuals from the over-dispersed Binomial looked more rea-
sonable as well. Benoit and Swain (2003) suggested that the over-dispersed Binomial
approach still led to false significance. and they used a randomization method for de-
termiining statistical significance. The main rescarch in this thesis was to investigate
more thoroughly models for a specific type of over-dispersion, which is within-pair

random differences in stock densities.

Three alternative methods were explored.  First, we analyzed the data nsing a
mixed binoniial model with an independent and identically distributed random s -
dard normal effect for cach set. The mixed binomial model (GLNNI) suggested that
the AN was 88% as efficient as WT vessel. but that p was not significantly different
from one at the 5% level. A well developed theory exists for residual diagnostics in
fixed effects models. but much less seems to be available for mixed-effects models and
we could not produce residuals for the GLMMIL Residual diagnostics for GLMNM's are
practically important and future rescarch in this arca would be useful. Simulation
results showed that this model did a good job in avoiding bias and giving cc -
dencee interval coverage close to the nominal desired levels: however, it performed
fairly poorly in terms of MSE for the tvpe of over-dispersion we considered. This
model scems more reliable for practical use than the over-dispersed Binomial model
approach: however, further improvements are possible.

We also investigated the problem of overdispersion by assuming that the vessel's
catches have a Negative Binoniial distribution, which can be regarded as a general-

ization of the Poisson distribution with an additional parameter allowing the variance
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to exceed the mean. Direct estimation of the NB model by maxinnun likelihood sug-
gested that the AN vessel was 88Y% as efficient as the WT vessel. and that the vessel
offect was marginally significant. However, in our simulation analysis we found t .t
this model was the worst among those examined. in terms of confidence interval cov-
crage The problem is related to gross over-estimation of the NB A parameter. which
leads to gross under-estimation of standard errors and confidence intervals that are
much too narrow. Direct estimation of variance parameters by maximum likelihood
is known to be biased when there are many mean parameters. and this is certainly
the case for paired-trawl calibration data. In this model, the many g/ s are nuise ¢
parameters and some adjustinent for estimating these parameters is required for 1-
ferences about the NB A parameter. Our simulation results showed that the mle of
# was badly biased. Using the full NB model is not recomniended. This is why we

investigated conditioning for inferences about relative efficiency.

Conditioning with paired count data when the data are NB distributed has re-
ceived little study in the statistical literature. and this was an important contribution
of this thesis. The conditional approach is commonly used when data are Poisson
distributed, and a good way to deal with the pair-total nuisance parameters, p.'s.
However, the approach is more problematic with NB data because the p's are not
climinated in the conditional distribution. We explored two options for dealing with
these muisance parameters. One was to replace them by n. which is their mle when
the NB over-dispersion is small (i.e. & is large). and the other option was to replace

thent with their direct mle based on the marginal distribution of the paired-totals.

The conditional NB model performed slightly better in our simulations than the
Mixed Binomital model in terms of MSE: however, the conditional approaches we
investigated had bias problems when the vessel effect was large, and this led to poorer
confidence interval coverage. The option of estimating . gave better bias results and
good total confidence interval coverage, but there was still some problems with one-

sided coverages.



The conditional NB model s1 ested that AN vessel is 88% as efficient as WT.
This model produced a standard crror that was appreciably larger than those or
the models under except GLMAL model. This is because it allows for overdispersion.
Residuals produced in Conditional NB are presented in Figure when g = n
and i Figure .~ when g is estimated. It is clearlv noted that if . = n then the
obtained residuals are relatively smaller than those obtained when g is estimated
in the Conditional NB model. In general, residuals obtained under both cases of
Conditional NB model arc relatively small compared to those produced with other
models. In this model. residuals values records are within -3 to +3. while it can be
noted in figures + " and ¢ that some residuals values fell outside the range -3 to
+3. For both options of dealing with jo. p was not significantly different from one at

the 5% level because confidence intervals for .3 estimates contained zero as a value.

In this thesis we demonstrated that the Conditional NB and Mixed Binomial
models performed better than the Binowial logistic model with over-dispersion or
the full NB model. However, the efficacy of the these approaches for estimating
relative efficiency requires further rescarch especially for large J values.  Also, we
conclude that the full NB mod * and over-dispersed Binomial model provide poor
confidence intervals and are not recommended for paired-trawl calibration studies in
which within-pair gamma-type variations in local stock densities occur. which would

scem to be common,



Appendix A

Evaluation of Conditional NB
Probability

A.l

To compute the pdf, let p,(xr) = P(Y) = r}}Y = n)

ey = L (0 (kY (k) (e
ralt) = pa(e—1)  Ng/) \pp +F xr n—u+k

Let ¢,(2) be a numerator term in p, (@)




This is an easy recursive formula to compute

o2

pulr) = S penlz)

An even better formula is

(1) =1,

cp(1) =r, (1)

(2) (2) =ru(1)r.(2)
(3) =r@3)  ru(D)ra(2)ra(3)




Appendix B

R Software codes

B.1

Binfit <- glm(cbind(test,con 1) ~ 1, family=binomial,data=catches)

summary (Binfit)
Call: glm(formula = cbind(t« ., control) ~ 1, family = binomial,
data = catches) Deviance ! .iduals:
Min 1Q Median 3Q Max

-9.4286 -1.0936 0. 56 1.2513 7.6943 Coefficients:
I L. value Pr(>|zl)
(Intercept) -0.17214 0.02923 -5.89 3.8 09 *x*x
Signif. codes: 0 ’%*’ 0.001 ’#*’ 0.01 ’*> 0.05 ’.” 0.1’ 7 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 334.55 on 56 degri : of freedom
Residual deviance: 334.55 on 56 degrees of freedom AIC: 537.49

Number of Fisher Scoring iterations: 3



B.2

Binfit.od <~ glm(cbind(test,control) ~

family=quasibinomial (1ink

summary (Binfit.od)

60

L,

"logit"),data=catches)

Call: glm(formula = cbind(test, control) ~ 1, family
quasibinomial (link = "logit"),
data = catches)
Deviance Residuals:
Min 1Q Median 3Q Max
-9.4286 -1.0936 0.2656 1.2513 7.6943 Coefficients:
Estimate Std. Error t value Pr(>[t])
(Intercept) -0.17214 0.06891 -2.498 0.0154 *
Signif. codes: O ’*%x’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1’ ’ 1

(Dispersion parameter for
334.55
334.55

Null deviance:

Residual deviance:

quasibinomial family taken to be 5.557919)
on 56 degrees of freedom

on 56 degrees of freedom AIC: NA

Number of Fisher Scoring iterations: 3

B.3

set<-catches$total

Binfit.ri <- glmmML(cbind(test,control) ~ 1, family=binomial,data=

cluster = set)

.ches,

Warning message: non-integer #successes in a binomial glm! in:

eval (expr, envir, enclos)

summary (Binfit.ri)



Call: glmmML(formula = cbind(test, control) ~ 1, family = binomial,
data = catches, cluss -~ = ¢ )
coef se(coef) z Pr(>lzl)

(Intercept) -0.1251 0.1218 -1.028 0.304

Standard deviation in mixing distribution: 0.7049 Std. Error:

0.09519

Residual deviance: 173.8 on 55 degrees of freedom AIC:177.8

Gl
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Tables
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Table C.1: Catch Summarices for Witch Flounder

TestCateh | orrolCateh | TestCateh | ControlCateh
1 0 113 125
0 1 141 119
0 1 04 64
1 0 95 79
13 18 146 145
1 0 92 48
0 1 58 83
1 0 56 5
1 0 27 19
2 0 13 13
5 3 68 73
1 1 1 5
18 33 0 1
93 310 1 3
55 23 10 14
17 23 41 90
95 105 89 82
4 13 42 30
1 3
13 17
4 11
12 138

102 112
5 42
5 7
6 1
18 30
71l 14
74 119
T2 90
46 67
5 2
59 131
1 0
65 81
65 71
41 16
51 33
Il 179

03
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Table C.2: Numerical Results in Real Data Application. 3 is the logarithm of relative

efficiency
Model 3 1 & T <StdError 3 95%C 1 5 95%.C'1
CondPoi | =0.17214 | v.o41r | 0.02923 | (—0.229,—0.114) | (0.795,0.894)
ODBin | —0.17214 | 0.841 | 0.06891 | (-0.307,—0.037) | (0.735,0.963)
GLMM | —0.12218 | 0.884 | 0.09290 | (—0.304, 0.059) | (0.737,1.060)
ConeNB | —0.12463 | 0.882 | 0.06189 | (—0.245,—0.003) | (0.782,0.997)
CondNB | —0.12604 | 0.881 0.09320 (—0.308, 0.056) | (0.734,1.057)
(o, = est.)
CondNB | —0.12604 | 0.881 0.09316 (—0.308, 0.056) | (0.734.1.058)
(. =n)




Table C.3: Bias (x100) in cstimates of J from the simulations with & = 1.

simulation factors are listed in columns 1-3. p = exp(,J).

Other

p . Nobs Cond Cond Cond Conc Bin Bin
NB 1 NB2 NB3 NB GLM_OD GLMNM
1 15 20 0.27 0.85 1.18 0.22 —0.38 0.33
1.5 15 20 1.01 042 -0.60 -1.62 —1.54 1.63
2 15 20 1.41 0.10 1.02 -2.13 —0.35 3.01
5 15 920 —493  —16.006 0.83 —3.63 —1.06 4.68
1 ou av  —uio V.28 079 —-0.65 -0.37  —0.69
1.5 30 20 2.00 0.04 1.48 0.67 1.47 2.60
2 30 20 042 —-3.63 0.87 —0.82 -0.41 1.82
) 30 20 —8.29 ~18.25 1.24 —3.58 -1.20 1.06
1 60 20 —-0.85 —0.78 —0.95 -0.87 0.35 -0.69
1.5 60 20 —-0.41 —1.57 274 —0.84 -0.37 0.03
2 60 20 0.54 —1.07 2.28 0.55 1.11 2.05
5 60 20 —7.55 —=21.10 1.07 0.23 1.66 2.43
1 15 35 —0.80 1.04 -0.24 —-0.63 —-0.10 —-0.90
1.5 15 35 1.63 0.38 —=0.77 —=1.25 —0.82 2.10
2 15 35 2.79 1.11 1.19 —1.08 0.53 3.91
5 15 35 —397 —1RR({ 1.10 —=2.59 0.98 5.68
1 30 35 0.5y U.ub 0.16 0.37 0.0%8 0.50
1.5 30 35 0.50  =0.00 076 -1.01 -0.67 0.81
2 30 35 -0.33 —-1.33 .22 -=2.00 -0.07 0.52
5 30 35 —-5.63 —18.94 1.29 —-1.13 0.68 3.63
1 60 35 0.15 —=0.81 0.30 0.14 0.34 0.16
1.5 60 35 -0.24 —1.88 1.38 —0.84 0.02 0.04
2 60 35 -0.00 -2.14 1.18 —0.48 —0.38 0.80
5 G0 35 1.99 _—n w7 n 05 147
1 15 50 —u.zi u.ul 02 —uv.oc —u.0l
1.5 15 50 1.46 0.25 1.26 —1.36 —-0.39 1.75
2 15 50 2.62 —-0.48 1.00 -1.38 0.32 3.57
5 15 50 —2.48 —15.50 0.34 —-2.12 N.66 6.34
1 30 50 —0.21 —i.02 —-0.19 -0.28 —u.25 -0.17
1.5 30 50 0.10 0.24 023 —1.43 —0.30 0.21
2 30 50 058 —1.93 0.32 —-1.29 —0.14 1.55
A 30 AN —f29 1004 0.9n  —109 0.08 2.61
1 60 ou vov  —u3l 00  uv.ub 0.32 0.13
1.5 60 50 0.11 1.24 047 —0.60 —0.13 0.30
2 60 50 0.33 =203 0.16 —0.22 0.34 1.33
b 60 50 ~7.37 - .35 0.35 —-0.65 0.35 1.85
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Table C.4: Bias (x100) in estimates of 7 from the simulations with A = 3. Other
simulation factors are listed in columns 1-3. p = exp(J).

p . Nobs Cond Cond Cond Cone Bin Bin
NB 1 NB2 YNR3 NB GLM_.OD GLAIMN

1 15 20 0.89 —-0.26 —v.9 0.70 0.55 0.90
1.5 15 20 0.97 0.37 0.79 -0.71 —0.16 1.22
2 15 20 1.45 0.17 -0.16 -=0.75 0.30 2.13
A 15 20 —-2.85 —6.90 0.60 —1.88 -0.01 3.21
1 30 20 —0.00 0.58 0.06 -0.02 -0.14 0.01
1.5 30 20 0.49 0.86 —-0.20 —-043 —0.02 0.71
2 30 20 0.12 -0.62 048 -0.93 0.01 0.90
5 30 20 —4.45  =7.55 0.23 —1.04 (.38 2.00
1 60 20 —-0.08 =0.17 0.21 -0.08 -0.05 -0.16
1.5 060 20 0.94 041 =0.10 0.50 0.92 1.18
2 60 20 —-0.32 -—1.37 0.09 -0.53 -0.23 0.54
5 60 20 —-5.68 —9.82 0.70 —0ARR ~0 1R 110
1 15 35 0.45 0.33 0.57 0.4vu U.00 U.40
1.5 15 35 0.59 0.82 0.48 —1.09 —0.20 0.75
2 15 35 1.72 0.31 —-0.48 -0.61 0.62 2.35
5 15 35 -1  —=6.17 0.0 —299 -0.37 3.01
1 30 35 —vol =043 =01y —v.wo —-0.77 —0.59
1.5 30 35 0.36 0.01 -=0.03 -0.09 —0.44 0.57
2 30 35 0.69 —0.86 0.26 —-0.52 -0.01 1.36
I 30 35 -7 -R18 —-0.27 -1.29 —0.25 1.82
i 60 35 —v.zu —u.00 0.13 -0.23 —0.16 -0.31
1.5 60 35 0.36 =037 —-0.68 -=0.13 0.07 0.46
2 60 35 133 —1.00 0.0 1.69 ).34 .38
H 60 35 —5.28 —10.06 0.20 -0.10 0.55 1.65
115 50 0.26 —0.05 0.07 0.32 0 0.24
1.5 15 50 1.26 0.91 -0.18 -0.54 —0.01 1.43
2 15 50 1.19 0.67 —-0.28 -1.26 —(0.21 1.30
5 15 50 -3.27 —06.94 0.29 -2.36 —0.27 2.93
1 30 50 -0.16 -0.16 -=0.17 -=0.20 —0.30 —-0.14
1.5 30 50 0.33 0.65 0.45 —0.69 -0.17 0.49
2 30 50 0.25 —0.78 0.63 -0.95 -0.09 0.90
5 30 50 —-4.68 —8.41 0.06 -1.27 0.1 1.92
1 60 50 0.31 0.19 0.33 0.29 0.20 0.32
1.5 60 50 —0.23 0.06 0.09 —-0.74 —0.06 -().06
2 60 50 0.35 —0.66 —-0.04 -0.01 0.39 1.09
5 60 50 -5.84 =998 -0.08 -0.71 0.32 1.05
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Table C.7: Standardized bias (100x bias/standard crror) in estimates of .3 from

the simulations with & = 3. Other simulation factors are listed in columns 1-3.
p = exp(i7).
p 4y Nobs  Cond  Cond Cond Conc Bin Bin
NB 1 NB2 XNB3 NB GLM_.OD GLAMI\I
1 15 20 5.22 —=0.5% -—-1.19 6.09 3.67 5.3
1.5 15 20 4.63 2.09 3.22 =559 -2.15 1.88
2 15 20 7.61 2.54 =275 =477 0.37 9.15
5 15 20 —1300 1717 149 —12.20 -1.97 14.56
1 30 20 U.01 2.0 —0.22 u.68 0.06 0.40
1.5 30 20 3.43 570 —144 272 —0.31 3.55
2 30 20 1.95 —0.65 1.81 —6.27 —0.76 4.26
5 30 20 —92903 4990 19n —716 0.77 10.11
1 60 20 —usn =129 ubo  —1.03 —0.51 -1.13
1.5 60 20 5.23 4.17 -1.63 2.87 1.19 5.50
2 00 20 —0.56  —1.77 240 —4.33 —2.83 2,40
5 60 20 —3018  —50.84 484 —4.49 —2.86 5.90
1 15 35 202 1.81 4.02 3.62 2.52 2.6
1.5 15 35 1.01 6.39 221 -9.62 —2.51 1.31
2 5 35 11.73 3.34 =400 —=5.20 3.53 11.206
5 15 2% _ONTA 1921 _10A 9N A% _220 1R B9
1 30 QJ —Z.J1 —Z.{J —U. i3 —3.U4k — .21 —J.Ud
1.5 30 35 2.53 .14 —042 —=7.01 —-3.98 3.19
2 30 35 5.54  —4.84 1.38°  —1.81 -0.81 8.64
5 30 35 —33.83 —Ran) =240 -—1228 —-3.01 10).98
1 60 35 —1.76  —u.6 1.08 —2.17 -0.99 —-2.05
1.5 60 35 320 =165 =531 -—1.10 0.29 3.14
2 60 35 —1.02 135 =027 —6.26 -3.37 2.72
5 60 35 —-3829 -75.88 [ S
1 15 50 156 —025  1usx buaa 0.0u A
1.5 15 50 9.59 7.98 —2.81 =570 —0.53 10.14
2 15 50 9.19 6.2 —-3.53 —13.99 —-2.96 12.38
5 15 50 —-26.33 —58.84 1.61 —-26.51 —3.90 21.10
1 30 50 -135 -1.24 -139 —-240 -2.08 -1.19
1.5 30 50 2.79 5.99 3.09 =799 —2.44 3.33
2 30 50 240  —-4.938 540 —11.27 —2.32 6.40
5 30 50 —39.84 —-73.90 0.03 —-14.78 —n 14.41
1 60 50 2.54 1.48 2.79 3.42 L.yy 2.67
1.5 60 50 —1.03 2.3 0.16 -=7.95 —1.00 -0.29
2 60 50 323 —4.15 =054 —-1.02 2.35 7.99
5 60 50 —50.98 —-89.54 —-1.05 —856 0.84 7.90




Table C.8: Standardized bias (100x bias/standard crror) in estimates of ,3 from

the simulations with & = 10. Other simulation factors ave listed in columms 1-3.
p = cxp(d).

o 1. Nobs Cond Cond  Cond Conce Bin Bin
NR 1 NB2 NB3 NB  GLM_OD GLMM

| 520 —udT 113 -056  —0.34 —0.19  —0.32
1.5 20 5.22 5910 —-1.23 -=0.17 0.37 5.34
2 20 6.59 2.96 1.45 ~2.88 —1.34 7.55
5 20 267 —(G10 283 _NY4 171 17.46
1 30 20 —1.40 G.iu  wov —1.81 —1.22 —1.37
1.5 30 20 2.70 4.47 048  =3.00 —0.65 2.9
2 30 20 5.31 1.45 420 -=3.31 1.2 6.86
5 30 20 -7.07 -16.31 244 —=5.69 1.33 12.09
1 60 20 -0.38 —1.60 -2.74 0.00 0.43 -0.32
1.5 60 20 1.82 -1 —-0.13 1.07 2.10 5.26
2 60 20 335 —=2.10 1.01 =201 0.42 5.3
5 60 20 —11.83 =20.82 -6.29 —-2.19 3.74 10.37
1 15 35 0.0u 0.89 1.31 1.61 2.04 0.92
1.5 15 35 8.27 844 —1.86 —0.30 1.80 8.55
2 15 35 7.70 9.69 0.17 —-6.71 —-1.93 9.14
5 15 35 266 0659 =-3.70 =279 2.20 24.36
1w 30 202 1.06 3.05 3.05 2.05
1.5 30 35 374 —0.... 1.75 =547 —0.68 1.08
2 30 35 7.58 573 =237 —4.10 1.54 9.67
5 30 35 —-13.20 -23.96 3.28 —15.05 —0.79 12.75
1 60 35 1.98 0.47 6.47 2.71 1.81 2.08
1.5 60 35 1.63 1.06 -0.69 -1.18 2.35 5.29
2 60 35 501 =372 1.58 =217 2.70 7.81
5 60 35 —-20.65 -33.98 0.59  —-9.60 0.68 09.72
1 15 50 0.01 —-2.25 1.20 0.80 0.57 0.02
1.5 15 50 6.80 6.98 336 —06.67 —2.74 7.16
2 15 50 13.02 12.66 —-0.49 —1.25 1.48 11.85
5 15 50 -050 —-14.10 -296 -11.64 —1.35 2:4.67
1 30 50 1.02 —3.05 1.01 1.86 1.22 1.50
1.5 30 50 7.47 582 —1.00 —-265 1.85 7.95
2 30 50 11.10 5.95 1.59 —3.44 3.02 13.69
5! 30 50 —10.02 —-28.62 —-183 -11.26 3.77 21.51
| 60 50 0.12 =5.00 1.38  —-0.25 —0.95 0.12
1.5 60 50 0.57 -0.05 3.17 —=8.55 —4.19 1.20
2 60 50 —-0.57 1.47 2.15 -12.30 -5.08 2.86
5 60 50 '9.85 '7.48 .40 8.77 —4.87 6.60




Table C.9: Mean square error (x100) in estimates of 3 from the shinulations with
k = 1. Other simulation factors are listed in columns 1-3. p = exp(,3).

p . Nobs Cond Cond Cond Conc Bin Bin
NB1 NXB2 NB3 NB GLM_OD GLAIM
1 15 20 1712 1429 13.20 13.67 12.80 18.09
1.5 15 20 17.09  11.61 11.68 14.29 12.67 18.13
2 15 20 15.23 13.36 11.95 13.37 12.82 17.09
5 15 20 1MA7 1196 890 12.83 12.19 16.28
1 30 20 pwys 1510 12,16 1413 12.35 16.97
1.5 30 20 15.14 1345 11.89 13.79 12.22 16.47
2 30 20 1529 1261 1020 14.72 12.57 17.26
5 30 20 1248 12,23 813 1.4.35 12.27 16.81
1 60 20 15.43 1541 1201 14.45 12.12 16.71
1.5 60 20 14.72 13.71 L7200 1.1.23 12.01 16.35
2 60 20 14.62 1284 10.67 14.81 12.34 16.54
5 G0 2N 11,62 1267  8.03 1429 11.79 15.87
1 1o s v28 999 693 7.37 7.33 9.77
1.5 15 35 929 854 680 7.58 6.88 9.91
2 15 35 929 7.65 590 8.09 7.43 10.28
5 15 35 727 757 480 R18 791 1N 98
1 30 35 931 876 682 o7 bvo  vis
1.5 30 35 9.10 8.29 6.61 8.26 7.32 9.72
2 30 35 8.66 7.31 5.94 8.2 7.21 9.6
) 30 35 6.94 8.65 1.63 8.19 7.05 9.58
1 60 35 9.16 824 658 850 7.19 9.64
1.5 60 35 8069 7.73  6.10 830 7.27 9.141
2 60 35 842 738 5.66 839 7.30 9.50
5 O 35 719 q 131 1.34 R K9 709 G4.62
I 10 50 vy vwr 492 boo w2 0T
1.5 15 50 6.70 621 418 5.55 5.16 7.03
2 15 50 6.66 5.54 4.34 5.77 5.19 T.15
b5} 15 50 5.07 5.95 3.49  5.80 5.11 7.35
1 30 50 6.35 6.13 4.09  5.561 4.90 6.48
1.5 30 50 6.27 5.61 1.23 5.68 1.97 6.67
2 30 50 640 514 4.04  6.04 5.08 7.15
5 050 503 723 320 0.76 5.09 6.56
L vu ol 6.04 0.85 4.18 5.60 1.97 6.38
1.5 60 50 592 551 123 5.63 1.99 6.48
2 60 50 587 519 380 590 5.02 6.58
5 60 50 495 810 322 & 4. 643
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Table C.10: Mean square error (x100) in estimates of 3 from the simulations with
A = 3. Other simulation factors are listed in cohmins 1-3. p = exp(J3).

p i Nobs Cond Cond Cond Conc Bin Bin

NB1 NB2 XNB3 NB GLM_OD GLNMIN
1 15 20 1.75 5.06 4.27  4.19 1.45 1.81
1.5 15 ) 4,63 163 394 418 444 1.76
2 15 20 4.63 453 379  4.30 4.47 1.92
5 15 20 3.95 405 313 4.35 1.61 1.82
1 30 20 451 450 391 A14 1.30 4.57
1.5 30 20 437 406 362 {411 1.35 1.51
2 30 20 4,29 396 353 118 1.26 1.58
) 30 20 3.86 3.84 264 417 4.22 1.56
1 60 20 1.33 1.04 3.85 4.12 4.36 4.43
1.5 60 20 3.86 4.07 3.70  3.75 3.95 4.01
2 60 20 3.88 3.60 3.43  3.92 1.10 1.15
5 60 20 3.7% 411 235 404 1.18 1.26
| 15 35 3uo 273 248 208 2.85 3.09
1.5 35 291 267 242 2064 2.83 2.99
2 35 2.56 2.5 2,10  2.36 2.50 2.71
5 35 226 240 176 949 2.49 2.74
1 30 35 2.53 2.00 212 2ol 2.47 2.58
1.5 30 35 2.53 2.44 2.07  2.37 2.49 2.60
2 30 35 2.30 2.08 1.96  2.24 2.47 2.8
B 30 35 2.35 2.58 1.54  2.49 2.58 2.70
1 60 35 244 2.0, 2.09 2.32 2.42 2.19
1.5 60 35 239 224 201 233 2.52 248
2 60 35 200 209 192 212 2.31 2.24
5 60 35 202 292 1A 9210 2.29 2.24
1 15 50 2ur 198 1ou  1.av 1.88 2.03
1.5 15 50 194 193 156 1.74 1.87 1.98
2 15 50 1.90 1.73 1.57 1.74 1.83 2.02
5 15 50 1587 100 1.21 1 AR 1.72 1.90
1 30 50 16 Lay Lbhe Lol 1.74 1.80
1.5 30 50 1.78 1.62 1.44 1.66 1.81 1.83
2 30 50 1.67  1.51 1.37  1.064 1.77 1.77
5 30 50 1.59 210 1.06 1.61 1.75 1.75
1 60 50 1.66 1.67 1.43 1.58 1.69 1.68
1.5 60 50 1.66  1.51 1.31  1.62 1.70 1.71
2 60 50 1.61 1.51 1.30  1.63 1.70 1.72
D 60 50 1.61 2.27 1.01 1.52 1.63 1.62
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Table C.13: L-lower Percent coverage of 95% confidence limit for .3, based on the
simulations with & = 3. Other simulation factors are listed in columns 1-3. p =
exp(.3).

p . Nobs Cond Cond Cond Conc Bin Bin

NR1 NB2 NB3 NROOCTALODY GLMNI
1 15 20 035 360 315 wv.ou 4w 3.75
1.5 15 20 4.15 3.40 3.0 8.50 1.95 1.20
2 15 20 4.30 4.15 3.00  9.20 4.70 1.35
B 15 20 2an  20an 350  9.30 1.95 1.85
1 30 20 s.00 sau o 375 9.8 5.45 3.80
1.5 30 20 430 330 3.65 9.60 5.80 445
2 30 20 445 420  3.60 9.05 5.45 4.50
b N 90 270 1.5 3.90  R.80 1.45 1.70
1 ou 20 3.80 4.00 4.05  9.50 6.00 3.75
1.5 60 20 330 445 3.30  8.60 5.10 3.25
2 60 20 3.95 3.10 425 8.35 4.90 1.05
5 60 20 220 1.15 335 870 140 3.95
1 15 35 3.15 2.90 3.15 9.35 4.1V 3.25
1.5 5 35 3.60 3.85 3.60  8.10 5.40 3.65
2 5 35 1.10 3.40 2.85 B.15 1.35 1.05
o 15 35 2.35 1.15 10 TNR 3.90 4.50
1 su 35 295 280 28, 8. 5.15 3.05
1.5 30 35 3.55 345 315 K70 5.30 3.50
2 30 35 3.55 0 190 290 745 4.30 3.65
5 30 35 185 105 310 7.65 1.30 4.20
1 60 35 330 255 375 880 5.25 3.30
1.5 60 35 3.650 295 265 825 5.65 3.55
2 60 35 285 280 340 7.40 1.70 3.10
5 (035 126 090 3.20 7.75 3.70 3.40
1 50 2.30 2.85 3.00 8.10 4.50 2.50
1.5 50 3.50 3.65 2.80 7.85 41.00 3.50
2 o0 1.50 3.80 3.25  7.40 1.35 4.65
1) 15 50 170 075 3.10  6.20 3.35 1.40
1 30 50 3.00 0.15 3.00 7.95 5.35 3.70
1.5 30 50 3.25  3.75 325 820 5.05 3.20
2 30 50 3.10 200 310 17.75 5.15 3.30
5 30 50 1 080 260 6.80 1.55 3.65
1 60 50 30 37 377 8T 5.20 3.00
1. 60 _J 2100 2 2...  7.95 1.90 3.50
2 60 50 3.05 255 310 8.80 5.10 3.20
15} 60 50 0.85 0.20 2.80 7.20 3.45 3.20



Table C.14: L-lower Percent coverage of 95% confidence limit for 3. based on the

simulations with & = 10. Other simulation factors are listed in columns 1-3.

exp(d).

pu. Nobs Cond Cond Cond Conc Bin Bin
NB1 ..2 NXB3 NB  GLAL.OD GLAMIAI

1 15 20 420 375  5.70  9.15 4.60 1.25
1.5 15 20 3.90 4.20  3.00 9.81 1.25 1.10
2 15 20 3.80 3.85 3.85 10.30 4.15 3.90
D 590 PAR TR 310 12.60 3.90 4.55
1 QU P4y Q.VUJ 0.0J —1.25 9.00 ‘115 365
1.6 30 20 355  4.00 355 9.00 145 3.0
2 30 20 395 420 430 9.70 4.10 4.10
5 30 20 265 315 390 10.15 1.00 4.00
1 60 -~ 3.0u 3060 3.60 10.25 5.10 3.80
1.5 60 20 3.80  3.15  3.00 10.51 5.20 3.90
2 60 20 3.55 315 375 9.80 4.50 3.90
5 60 20 3.20 9280 200 10.30 150 .15
1 15 35 350  2ud 5.0 836 410 3.0
1.5 15 35 3.55 420 285 8.85 4,40 3.55
2 15 35 3.70 375 370 880 3.55 3.70
5 15 35 38R0 300 260 11RA 1125 5 o9R
1 30 35 3.4u 3.45 2.5u0 v ) 0.4V
1.5 30 35 3.30 225  3.65 8.85 4.15 3.25
2 30 35 3.5 3.60 3.00 8.65 1.10 3.75
5 30 35 3.00 1.80 285 8.50 4.50 1.55
1 60 35 2.85 250 395 9465 5.00 2.90
1.5 60 35 265 340  3.05  7.95 3.30 2.60
2 60 35 2.0 300 340 8.60 1.35 2.80
s AN 2R 228 1 ARR2.75  8.00 1.30 4.30
1 10 U o.1u Z.4U 3.25 8.90 3.75 3.15
1.5 15 50 3.0 330 310 8.15 3.50 3.05
2 15 50 3.75 350 245  9.10 3.95 3.75
5 15 50 235 225 290 10.60 2.90 1.65
l 30 50 3.15 285 290 9.65 1.75 3.20
1.5 30 50 400 285 295  9.00 4.90 3.95
2 30 50 3.50 340 3.55  8.60 4.60 3.65
5 30 50 260 140 285 87N 150 £.50
1 60 5u 70 8.8V 3.55 2.70
1.5 60 50 3.10 7.60 1.05 3.00
60 50 3.55 7.35 4.25 2.85

5 60 50 1.50 200 270 6.45 3.35 3.35

p =






Table C.16:

U-Upper Pereent coverage of 95% confidence limit for 3. hased on the

simulations with & = 3. Other simulation factors are listed in cohunus 1-3.
exp(.3).
p . Nobs Cond Cound Cond Cone Bin Bin
NB1 NB2 NB3 NB  GLM_OD  GI NN
1 15 20 280 355 375 810 1.10 200
1.5 15 20 2.40 3.25 3.40  9.60 1.85 2.5
2 15 20 2.75 3.20 1.25 10.00 1.70 2.85
5 15 20 3.90 5.80) 3.30 12.55 5AR AR
1 30 20 3.60 340 320 10.25 5.5V 5.00
1.5 30 20 335 270 350 9.60 5.25 3.20
2 30 20 3.15 345 430 9.90 4.85 3.20
5 30 20 5.00 7.65 3.05 10.20 4.95 2.75
1 60 20 3.65 375 395 8385 5.40 3.85
1.5 60 20 330 340 395 810 1.85 3.30
2 00 20 340 335 4.05 9.8 045 3.45
5 60 20 5.80 8.70 2.35 9.55 5.30 3.70
1 15 35 3.80 2.35 2.85 9.10 5.40 3.90
1.5 15 35 3.55 2.85 3.25 10.55 6.30 3.70
2 15 35 1.90 3.15 2,75 9.30 1.25 1.85
5 15 2R 4 35 fRI) 290 11.15 4.20 1.75
1 oU 00 o.1u .00 290 8.85 5.30 3.10
1.5 30 35 3.00 280 3.05 10.15 5.80 3.05
2 30 35 220 310 3.05 7.95 5.05 2.30
5 30 2R 6.00 830 260 11.50 5.45 2.90
1 60 oo 340 250 285  9.25 5.75 3.50
1.5 60 35 3.10 290 320 875 5.70 3.05
2 60 35 280 330 335 8... 5.25 2.0
) 60 35 480 1345 2.60 7.50 3.00 1.90
1 15 50 3.50 3.05 3.30 7.80 5.10 3.70
1.5 15 50 2.65 2.35 3.30  9.35 4.90 2.30
2 15 50 2.05 2.15 3.65 10.15 5.10 2.05
5 15 50 4.75 8.60 3.25 12.15 1.25 1.25
1 30 50 2.65 2.75 3.50 7.55 1.80 2.75
1.5 30 50 2.65 2.20 2.55 9.30 5.90 2.80
2 30 50 2.60 270 210 10.60 4.90 2.70
5 30 50 6.50 12.10 3.05 9.85 4.25 1 058
1 60 50 250 3.05 280 7.00 5.35 00
1.5 60 50 .3 220 220 9. 5.40 2.55
2 60 50 285 320 240 890 5.45 2.50
5 60 50 7.25 1430 255  8.90 4.35 2.55

P =



Table C.17: U-Upper Percent coverage of 95% confidence limit for .3, based on the
simulations with & = 10. Other simulation factors are listed in cohmmns 1-3. p =

exp(.7).

p 4. Nobs Cond Cond Cond Cone Bin Bin

NB1 NB2 NB3 NB GLM.OD GINN
1 15 20 380 320 340 9.25 1.95 2.90
1.5 15 20 330 315 395 9.36 4.15 3.30
2 15 2 3.50 395 130 10.30 1.85 3.50
5 15 20 335 410 370 1995 1.20 2.45
1 30 20 Q.09 +.Uu 3.20 v.ou 4.55 3.35
1.5 30 20 295 315 390 10.80 1.60 3.00
2 30 20 250 320 3440 10.30 3.80 2.45
b 30 20 345 145 4.00 10.65 3.65 2.10
1 60 20 395 345 355 995 4.50 1.0
1.5 60 20 280 3.80 325 9.75 4.65 2.90
2 60 20 3.50 3.60 3.55 10.10 4.35 3.45
5 60 20 430 470 430 1050 430 2.90
1 15 35 265 295 2606  o.41 2.0U 2.75
1.5 15 35 285 315 350 875 4.15 2.85
2 15 35 3.00 255 3.20 10.05 3.95 2.95
5 15 35 235 3A) 330 12.56 2.85 1.50
I 30 35 335 zwowd 350 9.20 2.75 3.40
1.5 30 35 275 27 3.00 10.00 1.35 2.60
2 30 35 27 295 340 9.65 4.50 2.65
5 30 35 480  4.80 2.90 11.90 4.15 2.10
1 60 35 3.50 285 275 8.60 1.80 3.45
1.5 60 35 225 275 315 805 3.9 2.20
2 60 35 240 325 3.30  9.20 4.30 2.40
5 60 35 455  6.15  2.65 10.25 1.00 2.70
1 15 50 290 290 3.05 870 3.5u 3.05
1.5 15 50 270 265 255 1045 4.55 2.75
2 15 50 215 240 255 9.75 3.60 2.10
5 15 50 285 440 3.30 13.70 3.95 1.80
1 30 50 290 335 220 8.65 1.00 .90
1.5 30 50 215 235 3.05 840 3.65 2.15
2 30 50 285 260 280 9.45 4.35 2.70
5 30 50 4.00 4.05 3.60 10.90 4.10 1.90
1 60 50 355 275 335 820 4.55 2.0U
1.5 60 &0 240 295 265 8.90 1.10 2,40
2 60 50 3.00 235 280 9.95 4.65 2.70
5 60 50 530  6.25 3.30 11.40 4.50 2.80
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Table C.18: T .otal Percent coverage of 95% confidence limits for .3, based on the

simulations with A = 1.

exp(.d).

Other simulation factors are listed i columns 1-3.

p i Nobs Cond Cond Cond Conc Bin Bin
NB1 NB2 NB3 NB  GLN_.OD GLMNAI
1 15 20 705 925 780 17.60 13.60 7.00
1.5 15 20 720 790 7.75 17.50 14.35 7.15
2 15 20 6.60 740 7.80 16.10 13.10 6.65
5 15 20 6.95 745 7.55 15.95 9.70 6.35
1 30 20 745 815 T7.60 17.65 15.25 7.10
1.5 30 20 740 750 7.25 15.85 13.70 6.60
2 30 20 7.00 650 6.70 19.00 13.60 7.20
5 30 20 7R 8BS A35 166N 10.25 7.00
1 60 20 vaio 900 .80 16.00 14.50 7.25
1.5 60 20 6.40  7.70 870 16.55 13.10 6.35
2 60 20 7.0 730 7.80 17.30 13.65 6.-40
560 20 700 10dR  7AN 1R 0& ] AN 650
1 15 35 J.0UJ {f.0OJ V.10 10.£9 o 14k.90 ) U..{.(_
1.5 15 35 540 670 7.05 15.05 12.90 5.45
2 15 35 785 6.85 535 I7.55 14.75 7.55
5 15 35 508 1NNR KRN 1R AN ann Q1R
1 30 35 0.V LY V.20 1L.LY 14.2U V.10
1.5 30 35 6.65 6.00 745 16.35 14.80 6.05
2 30 35 6.20 595 560 16.30 13.90 6.35
5 30 35 6.35 1250 5.60 15.85 0.55 6.15
1 60 35 6.95 6.6 06.65 18.00 15.10 6.7
1.5 60 35 595 645 6.45 15.75 14.45 5.65
2 60 35 6.50 720 6.50 16.45 1.£.00 6.85
5 60 35 6.90 15.20 5.95 16.05 0.35 6.40
1 15 50 560  6.70 690 15.10 15.55 5.85
1.5 50 6.25 595 4.80 16.50 14.70 6.30
2 50 6.30  5.65 595 16.65 13.20 6.40
5 5 50 6.10 12.25 570 16.80 9.15 6.25
1 30 50 5.0D 5.80 590 15.15 14.75 5.30
1.5 30 50 6.65 6.30 555 15.85 14.30 5.95
2 30 50 6.50 545 590 17.35 13.20 6.15
5 30 50 6.15 16.95 525 15.90 915 (3. 91)
1 60 50 535 580 555 15.50 15.00 SHSE
1.5 60 50 6.30 675 6 v 16.35 15.50 ¢
2 60 50 6.10 550 560 1575 14.95 6.05
B) 60 50 G6... 2140 5.80 30 9.50 5.85

p =






o

[ O]

Table C.20: T-Total Percent coverage of 95% confidence limits for .3. based on the
simulations with A& = 10. Other simulation factors are listed in colunmns 1-3. p =

exp(s7).

pp Nobs Cond Cond Cond Conc Bin Bin
NB1 NB2 NB3 NR  GTA_OD  GLMAI
1 15 20 800 0695 710 1o0.4u 9.55 3.20
1.5 15 20 7.21 7.35 0695 19.17 8.41 741
2 15 20 7.30  7.80 8.15 20.60 9.00 7.40
f 15 20 7.00 7.75  6.80 21.85 8.10 7.00
o oou 20 7.00 875 7.50 18.85 8.70 7.00
1.5 30 20 6.50 7.15 745 19.80 9.05 6.0
2 30 20 6.45 740 7.70 20.00 7.90 6.55
A 30 20 ain 760 7.90 20.80 7.65 6.40
1 60 20 i 100 715 20.20 9.60 7.85
1.o 60 20 6.60 695 6.20 20.206 9.85 6.80
2 60 20 7.050 675 7.30 19.90 8.85 7.35
5 60 20 7hR0 790 7.30 20.80 8.80 735
1 15 35 vur 00 570 16.77 7.66 V.
1.5 15 35 640 735 6.3 17.60 8.55 6.40
2 15 35 6.70 630 6.90 18.85 7.50 (.65
5 15 35 A15  AA0 K00 2441 8.20 6.75
]. 30 35 U.iv v.UJ v.uuv 1885 790 680
1.5 30 35 6.05 500 6.65 18.85 8.50 5.85
2 30 35 6.30  6.55  6.40 18.30 8.60 6.40
5 30 35 7.80 660 575 onan 8.95 6.95
1 60 35 6.35 .00 0.7u  10.20 9.80 6.35
1.5 60 35 490 615  6.20 16.00 7.25 1.80
2 60 35 515  6.25  6.70 17.80 8.65 5.20
5 60 35 6.90 770 540 1R9I5 8.30 7.00
1 15 50 600 530 Gouv 1ius 7.55 € )
1.5 15 50 575 595 5.5 18.60 8.05 5.80
2 15 50 590 590  5.00 18.86 7.55 5.85
5 15 50 520 6.65 A.20 24.30 6.85 6.45
1 30 50 6.05  6.20  L.10 18.30 8.75 6.10
1.5 30 50 6.15 520 6.00 1740 8.55 6.10
2 30 50 6.35  6.00  6.35 18.05 8.95 6.35
5 30 50 6.60 545 6.5 1960 8.60 6.40
L 60 50 6.30 520 6.6o 1:.0Y 3.10 6.00
1.5 60 50 535 590 5.75 16.50 8.15 5.40
2 60 50 575 480  6.35 17.30 3.90 5.55
5 60 50 6.80 8.25 6.00 17.85 7.85 6.15
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Table C.22: L-lower Percent coverage of 90% confidence limit for ,3. based on the
simulations with & = 3. Other simulation factors are listed in columns 1-3. p =
exp(d).

pp. Nobs Cond Cond Cond Cone Bin Bin
NB1 NB2 NB3 NB GLM.OD GLMI
1 15 20 6.45 650 5.75 13.85 8.15 6.50
.o 15 20 6.90 6.10 590 12.00 7.80 6.60
2 20 7.25  6.75 555 13.10 8.20 7.30
5 15 20 530  3.15  6.30 12.20 7.65 3.45
1 30 20 7.00 6.75 6.25 13.85 8.95 6.95
1.5 30 20 705  7.050  6.00 13.15 9.40 7.50
2 30 20 7.10  7.60  5.60 12.90 8.05 7.60
5 20 9N 480 900 4230 1330 7 (0 7 an
1 101V ZU UT\)U U:io i .4y 12.UU N v.uu U.‘lU_
I.h 60 20 6.30  7.05 600 1245 8.95 6.20
2 60 20 680 545 640 12.50 7.80 6.80
5 60 20 205 220 575 11.75 6.85 7.20
1 15 35 vau 510 6.50 13.55 8.80 6.50
1.9 15 35 6.40  6.60  6.70 11.90 8.00 6.-10
2 15 35 735  6.35  5.35 11.20 7.80 7.30
5 15 35 410 235 590 10.55 6.85 7.70
1 30 35 585  5.060 520 11.45 8.10 5.70
1.5 30 35 6.55  6.00 5380 12.60 8.45 6.70
2 30 35 580 390 575 11.20 7.55 6.05
5 30 35 3.55 1.95 515 11.90 7.05 7.30
1 60 35 5.70 515  6.45 1205 8.75 6.00
1.5 60 35 6.5 5.85 4.95 12.65 8.85 6.25
2 60 35 530 555 545 11.00 7.85 5.65
S N AR 9 AN 1 5N SRR 1170 7.30 AN
i 10 ou 0.1V DU 02U 1289 8.65 0.00
1.5 15 50 6.70  6.90 5.15 11.60 7.85 6.75
2 15 50 7.45  6.50 5.35 10.70 8.10 7.65
5 15 50 3.15  1.70 530  9.30 6.05 7.70
1 30 50 585  5.50  1.90 11.40 3.30 5.95
1.5 30 50 6.25 575 6.00 11.20 8.25 6..10
2 30 50 6.40 425 525 11.25 7.95 6.80
5 30 50 2.60 130 1.90 10.50 7.85 7.0
1 60 50 5 5.05 5.90 12.70 8.50 5.55
1.5 60 50 5 5.0 5.00 10.55 7.70 5.60
2 60 5O 6.00 5.20 5.60 13.35 9.00 6.50
) 60 50 L.o5 0.7 565 10.15 5.90 6.2
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Table C.24: U-Upper Percent coverage of 90Y confidence limit for .3, based on the

simulations with & = 1.

exp(.3).

p . Nobs Cond Cond Cond Conc Bin Bin

NB1 NB2 XNB3 NB GLM_OD GLAIM
1 15 20 6.15 740 590 12.80 10.65 6.15
1.5 156 20 5.60  5.20 655 14.10 11.50 6.00
2 15 20 490 430 570 13.35 10.75 5.20
5 15 20 6.55 1280 530 13.90 Q7n 5.40
1 30 20 7.10  7.10 645 14.25 11.00 7.00
1.5 30 20 515 505 570 11.75 10.35 5.35
2 30 20 560 555 515 13.30 12.20 5.90
530 20 840 1505  1.60 14.25 10.55 6.00
1 60 20 6.15 800 6.20 1290 10.40 G.45
1.5 60 20 560  6.60 690 12.85 11.35 5.80
2 60 20 5.20 545 550 1245 10.85 5.25
D 60 20 7.15 16.70  5.20 1130 8.85 535
| 15 35 540 6156 6.10 11.060 11.05 .05
1.5 15 35 4.65 435 6.60 13.10 10.65 1.70
2 15 35 1.85 485 510 13.85 11.90 1.90
5 15 35 6.75 16.10  1.65 14.05 8.95 A0
1 30 35 555 500 5380 1225 11.20 2.0U
1.5 30 35 520 475 575 13.00 11.65 5.60
2 30 35 540 4.85 430 14.25 11.05 5.75
5 30 35 7R090.05 1.20 1295 9.20 1.85
1 60 35 owo 635 5.85 1220 11.95 6.10
1.5 60 35 6.00 5.10 525 13.20 11.20 6.15
2 60 35 540 595 195 12.65 11.15 5.60
5 60 35 845 2170 450 11.80 8.05 5.05
1 15 50 530 590 6.10 11.95 11.20 5.80
1.5 15 50 490 525 395 1295 11.70 5.30
2 15 50 495 525 475 14.25 11.45 5.55
5 15 50 6.70 19.60 4.75 178K 8.40 135
l 30 50 550 6.05 595 icuvu 10.85 0.25
1.5 30 50 580 385 515 12.65 11.55 5.90
2 30 50 5,75 5356 445 13.60 12.00 6.35
S 30 50 8.25 2725 5.00 13.20 8.55 460
I 60 50 520 525 510 11.20 Odv oo
1.5 60 50 515 405 530 12.10 11.80 5.80
2 60 5O 560 530 485 11.65 10.85 5.35
) 60 50 9.70 3225 5050 11.80 9.35 1.60

Other simulation factors are listed in columuns 1-3. p =
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Table C.25: U-Upper Pereent coverage of 90% confidence limit for .3, based on 10
simulations with & = 3. Other simulation factors are listed in colummns 1-3. p =
exp(3).

p . Nobs Cond Cond Cond Cone Bin Bin
NB1 NB2 NB3 NB  GLM.OD GLMNM
1 15 20 5.20 6.35 595 11.20 6.65 0.15
1.5 15 20 475 585 555 13.70 8.80 1.65
2 15 20 5.25 6.00 .55 14.50 8.35 5.10
5 1520 7.90 10.75 6.10  16.95 8.55 4.65
L ou 20 6.30  6.00 6.25 13.65 9.15 6.50
1.5 30 20 585 490 6.20 13.50 9.40 6.05
2 30 20 575 6.25 6.70 13.75 8.10 5.75
5 30 20 895 13.05 5.45 15.15 7.80 5.15
1 60 20 580  6.70 590 13.20 9.70 5.80
1.5 60 20 545 580 7.10 11.10 7.75 5.75
2 60 20 6.35 5.80 6.25 14.10 8.60 6.25
5 [ 10.0n 14.30 A4 R0 1405/ 8.00 R75
1 -ln) JJ 6.1\1 505 J.UdJ 12.00 935 U.L)O_
1.5 15 35 6.15 135 5.75 14.95 9.75 6.05
2 15 35 4.30 5.80 5.95 13.20 7.35 4.05
S 1815 812 |1 4% RAR 1R AR 7.50 1.05
1 oU 0o S0 DHyo  D.4U 1o.wu 8.70 5.95
1.5 30 35 565 490 535 14.05 8.60 5.70
2 30 35 460 585 520 1250 8.10 4.50
5 30 35 11.50 1550 5.35 16.35 8.95 1.85
1 60 35 6.45 5.10 525 12.75 9.45 6.25
1.5 60 35 5.5  6.05 6.00 12.50 9.60 5.45
2 60 35 490 585 5.55 12,140 8.00 1.90
5 60 35 10.00 20.55 5.60 11.80 6.50 3.95
1 15 50 5.55 6.00 _55 11.70 7.75 5.45
1.5 15 50 4.85 4.80 6.00 13.90 9.00 4.75
2 15 50 4.35 4.90 6.35 14.40 8.15 4.30
) 15 50 8.80 14.00 5.80 16.90 7 3R 3.75
1 30 50 5.05 1.95 5.856 11.55 0.0U 41.90
1.5 30 50 4.95 0 485 13.70 9.50 4.70
2 30 50 5.00 545 440 14.90 8.35 4.55
5 30 50 10.45 19.9n  RRnN 1440 7.25 3.95
1 60 50 480  5Hu 4o 1110 3.60 1.85
1.5 60 50 585 470 5.05 13.70 8.80 6.20
2 60 50 560 6.05 5.10 13.20 8.20 5.20
) 60 50 11.90 23.40 5.10 12.25 6.60 NN
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Table C.27: T-Total Percent coverage of 90% confidence limits for /3. based on the
Other simulation factors are listed in columns 1-3. p =

simulations with & = 1.

exp(J3).

p u. Nobs Cond Cond Cond Conce Bin Bin

NB1 NB2 NB3 NB GLM.OD GLM)
1 15 20 12.65 15.80 13.20 24.45 21.30 12.85
1.5 15 20 12.35 13.30 12.65 26.15 20.75 12.40
2 15 20 11.30  12.20 13.10 23.75 20.80 11.65
5 15 20 11.05 14.70 12.30 23.40 15.65 11.85
1 30 20 12.85 14.00 13.60 25.75 21.65 12.60
1.5 30 20 11.85 11.65 12.00 24.55 21.056 11.45
2 30 20 1295 11.55 11.90 25.65 21.35 13.20
5 30 20 12.80 17.40 11.45 24.20 16.50 11.75
1 60 20 12.30  15.20 12.65 24.90 22.05 12.35
1.5 60 20 11.80 13.60 14.95 24.10 21.15 11.60
2 60 20 12.25 12.20 13.60 25.20 20.80 12.30
) 60 20 11.25 17.60 13.00 23.05 14.60 11.55
1 15 35 10.95 13.50 11.70 22.65 21.60 11.25
1.5 15 35 10.35 11.35 11.95 23.75 19.90 10.35
2 15 35 12,55 11.95 11.15 25.30 22.90 12.75
5 15 35 11.75 17.00 10.40 25.55 15.85 12.25
1 30 35 11.20 11.50 12.10 24.70 21.85 11.00
1.5 30 35 11.70  11.60 12.65 24.05 22.35 11.50
2 30 35 11.10 12.05 11.20 24.70 20.95 11.30
) 30 35 11.35 20.85 10.70 24.25 15.55 11.65
1 60 35 1275 11.25 12.85 24.95 24.15 12.70
1.5 60 35 11.75 11.20 11.30 24.10 21.15 12.00
2 60 35 11.55 12,50 11.50 24.05 21.20 11.55
5 60 35 12.00 25.55 11.10 23.70 15.35 11.65
1 15 50 9.75 1290 12.65 23.20 22.35 10.50
1.5 15 50 11.70 12,20 9.55 23.85 21.60 11.90
2 15 50 11.65 10.90 10.65 24.25 21.10 12.25
5 15 50 11.85 20.25 11.00 24.30 11.85 12.20
1 30 50 1045 11.45 11.65 22.85 21.40 10.05
1.5 30 50 11.60 10.60 10.65 22.80 21.70 11.55
2 30 50 12.70 11.70 10.00 25.40 21.20 12.95
5 30 50 11.85 27.85 11.05 22.90 15.00 10.65
1 60 50 10.50 10.60 10.55 22.70 22.65 11.25
1.5 60 50 11.30 11.40 11.55 22.20 22.60 11.70
2 60 50 11.00 11.35 10.35 22.30 21.90 10.85
5 60 50 13.00 3250 11.30 22.85 15.75 11.05



Table C.28:

T-Total Percent coverage of 90% confidence limits for 3. based on

90

R

simulations with & = 3. Other simulation factors are listed in cohuns 1-3. p =
exp(.9).
p p. Nobs Cond Cond Cond Cone Bin Bin
NB1 NB2 XNB3 NB  GLM.OD GLMNM
1 15 20 11.66 1285 11.70 25.05 15.10 11.65
1.5 15 20 11.65 1195 11.45 25.70 16.60 11.25
2 15 20 12.50 1275 12,10 27.60 16.55 12.40
5 15 20 13.20 13.90 1240 29.15 16.20 13.10
1 30 20 13.30 1275 1250 27.50 18.10 13.45
1.5 30 20 1340 11.95 1220 206.65 18.80 13.55
2 30 20 12.85 13.85 1230 26.65 16.15 13.35
5 30 20 175 1595 11.75 2845 15.40 13.10
1 60 20 1200 1315 1230 26.80 18.70 12.20
1.5 60 20 11.75 1285 13.10 23.55 16.70 11.95
2 60 20 13.15 11.25 12.65 206.60 16.-10 13.05
) 60 20 13.95 16.50 10.25 25.80 14.85 12.95
1 15 oo 12.50 10.15 11.55 26.10 18.15 12.80
1.5 15 35 12.55 1095 12.45 26.85 18.30 12.50
2 15 35 11.65 1215 11.30 2440 15.15 11.35
o 15 35 1245 13.80 11.55 25.90 1.£.35 11.75
1 30 35 11,00 11.00 10.60 16.80 11.65
1.5 30 35 12.20 1090 11.15 26.65 17.05 12.140
2 30 35 1040 975 10.95 23.70 15.65 10.55
5 30 35 15.05 1745 10.50 28.25 16.00 12.15
1 60 35 12.15 10.25 11.70 24.80 18.20 12.25
.o 60 35 12.10 11.90 10.95 25.15 18.45 11.70
2 60 35 10.20 1140 11.00 23.40 15.85 10.55
0 60 35 12.60 2205 11.15 23.50 13.80 10.25
1 15 50 10.65 11.50 10.75 24.55 16.10 11.00
1.5 15 »O 11.55 11.70 11.15 25.50 16.85 11.50
2 15 50 11.80 11.40 11.70 25.10 16.25 11.95
o 15 50 11.95 1570 11.10 2620 13.40 1115
1 30 50 1090 1045 10.75 2295 16.60 1U.00
1.5 30 50 11.20  9.75 10.85 21.90 17..0 11.10
2 30 50 1140 9.70  9.65 26.15 16.30 11.35
5 30 50 13.05 21.20 10.70 24.90 15.10 1100
1 60 50 10.25 11.05 10.55 23.85 1710 1wd0
1.h 60 50 11.60 10. 1( | 11.80
2 00 50 11.60 11. 1C... N
) 60 50 13.45 2415 10.75 22.40 12.50 10.95
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Table C.29: T-Total Percent coverage of 90% confidence limits for 3, based on the

simulations with & = 10. Other simulation factors are listed in columns 1-3. p =
exp(.7).

p 4 Nobs Cond Cond Cond Cone Bin Bin

NB1 NB2 XB3 NB  GLM.OD  GLMIM
1 15 20 13.50 1251 1295 26.70 15.15 13.65
1.5 15 20 1281 1241 1225 27.78 15.47 13.11
2 15 20 12,70 12.01 13.35 28.95 14.65 12.85
) 15 20 1965 1326 1246 721.85 13.70 12.30
1 30 20 tzou 1385 1225 0.4 14.70 12.30
1.5 30 20 12,30 12,70 1275 27.35 15.05 12.40
2 30 20 11.90 12.00 13.30 28.15 14.50 12.05
) 30 20 11.35 13 A5 1940 9045 19.95 11.35
I 60 20 1290 1l.adp i1zwu  zowv 10.65  13.00
1.5 60 20 1251 12,15 11.85 2791 16.26 12.36
2 60 20 12.60 12.65 12.50 27.95 15.40 12.75
D 60 20 12,70 11.95 1245 27.55 15.60 12.90
1 15 35 10.96 11.90 11.20 24.1. 12.71 10.96
1.5 15 35 12.15 1291 11.80 23.55 14.25 12.35
2 15 35 11.60 11.55 11.11 25.25 13.25 11.60
5 15 35 1156 1215 106N 31 47 1271 12 1R
1 30 35 lzou 110 1110 2uwu 14.0U 12.0U
1.5 30 35 11.00 10.30 11.30 26.60 15.25 11.15
2 30 35 11.55 12.15 11.20 25.55 14.05 11.60
) 30 35 12925 1215 10.95 28.25 14.75 12.95
1 60 35 liouv 10.85 11.70 25.50 16.75 11.75
1.5 60 35 9.56 1235 11.45 24.30 13.15 9.50
2 60 35 10.70  12.00 11.95 26.15 15.20 10.95
] 60 35 1240 13.05 11.25 25.85 14.60 11.55
1 15 50 11.56  9.50 11.60 25.41 13.46 11.66
1.5 15 50 11.40 11.20 11.90 26.20 13.50 11.50
2 15 50 11.71 11.10  9.35 25.76 13.31 11.96
5 15 50 11.05 11.60 11.20 32.60 12.50 11.15
l 30 50 11.00 1145 10.16 24.80 10.15 11.00
1.5 30 50 11.20  9.00 11.55 25.65 14.90 11.30
2 30 50 11.80 11.60 11.25 26.40 15.15 11.65
5 30 50 1110 11.25 11.20 27.70 13.65 12.55
1 60 50 10.20  10.10 10.65 24.55 13.95 10.35
I.b 60 50 1030 11.15 11.05 23.70 13.35 10.30
2 60 50 10.70 10.55 11.85 24.50 15.05 10.70
5 60 o0 1320 14.15 1200 26.00 14.65 10.30
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Figure D.1: Top: log gamma ratio divided by the standard deviation. Bottom: qq
plot. The straight line is for the standard normal distribution.
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Figure D.3: NB compared with Poisson distibution. Negative Binomial density fu -
tion is presented by dotted curve.  Poisson density function is presented by solid
curve.
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Figure D.10: Conditional NB variance versus g. Each panel shows the results ¢
a choice of n and p = g /p.. Line t. os correspond to different values of the NB
k parameter, which are shown in the top left-hand panel. The Binomial variance is
shown as the horizontal dotted line.
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for tow distance. Plotting svinbols arve proportional to the difference: - - negative,
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Figure D.16: The dotted line has slope of one. The solid line has a slope equal to
estimated relative efficiency (p) from Conditional Poisson model.
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Figure D.17: Residuals for the Conditional Poisson model.
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estimated relative efficieney (p) from Overdispersed Binomial model.
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Figure D.19: Residuals for the Overdispersed Binomial model.
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Figure D.21: The dotted line has slope of one. The solid line has a slope equal to
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model.
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Figure D.22: Residuals for the Conditional Negative Binomial model when 0 = n.
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Figure D.24: Residuals for the Conditional Negative Binomial model when g is
estimated.



160
100
0
@
=
[}
®
&}
w
@
[
50
0 —
T T
0 50

100

T
150

T
200

Control Catches

T
250

T
300

113

Figure D.25: The dotted line has slope of one. The solid line has a slope cqual to the
estimated relative efficiency (p) from Concentrated Negative Binomial model.

onchB (Tes)

Resduals

3 — <
=2 -
(=3
o o
1 (=3 < (=3
[==a . ) V> (=3
[=3 S = &
O [ T o S o ] [V
(=] oo o w2
== o
@ooo (=N &
o
P o o
o
o
S — o
o
T T T T T T
O 20 40

Set Numbaear

m Cono)

Resdual

Set Number

Figure D.26: Residuals for the Concentrated Negative Binomial model.
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