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Abstract 

In many of the multi-species trawl surveys conducted by Fi herie and Oceans Canada, 

the survey ve sel "Wilfred Templeman" (WT) may be replaced by the ves el ' Alfred 

Need! r" (AN). We examined paired-trawl experiments involving th se two vessels to 

examine for differences in catchability. In particular , we examine for differences in 

catchability of the Witch flounder species. 

The relative effi ciency of the A compared to the WT i defined as th ratio of 

the means from both trawl catches. Four models are investigated in this thesis, Con­

ditional Poisson (i .. Binomial), Mixed Binomial egative Binomial and Conditional 

egative Binomial. When catch data are Poisson distributed ,the approach is clear 

and well-developed. However, over-dispersion creates probl ms, and ov r-dispersion 

is common in many types of data including fisheries data. 

We dealt with the over-dispersion problem using the egative Binomial distribu­

tion to model the paired-counts instead of the Poisson di tribution. We dev lop Con­

ditional Negative Binomial (Conditional NB) and Concentrated Negative Binomial 

(Concentrated B) models for e timating relative efficiency. We compared estimate 

wi th those from the more commonly used approaches involving standard logi t ic r -

gression and also a mixed binomial regre sian model. We found that the Conditional 

NB and mixed binomial models performed better. 

Our results uggest that there were no significant cliff rences in the relative catch­

ability of the two vessels, based on the Mixed Binomial and Conditional B models. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

As essment of fish stocks involves evaluating the status of a stock relative to its 

past. Stock indices are fundamental components of stock assessments. An index is 

a measurement that we expect is proport ional to stock size. A random index Ry 

available for year y i related to stock size ( Sy) via the model 

( 1.1) 

and Sy is treated as a fixed quant ity to estimate. Often in stock as ssment a popu­

lat ion model is used to relate Sy with Sy-l and oth r quantit ies such as e t imates of 

fishery catches and natural mortality. These population models contain parameters 

that need to be estimated , and tack indices are used for th is purpo e. T he on tant 

of proportionality, q, is usually referred to as the catchability index. Although we 

can not directly infer stock size from a time series of indices R1 , ... , Ry, we can infer 

trends in stock size when q is th same each year . ote that q may be much different 

from one for many r asons; for example, the ind x may be based on a fi shing gear 

that does not catch small fish, or the index may be based on measurements from only 

par t of the stock area. 
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Stock size indices are often based on a survey in which randomly chosen sites are 

sampled for fish . Commonly used survey methods include random chosen sites. In our 

study, we focus on stratified random bottom trawl surveys such as tho ·e conducted 

off the east coast of Canada by Fisheries and Oceans Canada (e.g. Doubleday 1981). 

These are multi-species surveys that are used extensively in stock assessments. The 

information collected from these surveys is used for many other purposes as well, such 

as determining species at risk (e.g. Smedbol et. a!. 2002) and evaluations related to 

closed areas. The urvey observation is commonly referred to as a set (i .e. set the 

gear) or a tow when a trawl is used. The average urvey catch can be taken as an 

index of stock size. If the same survey protocols are used from year to year then the 

catchability index should remain relatively constant. 

Wh n survey vessels are changed it is important to compare the efficiency and se­

lectivity of the vessels for the species of interest. In bottom-trawl surveys conducted 

by Department of Fisheries and Oceans, the survey vessel "Wilfred Templeman" 

(WT) may be replaced by t he ve sel "Alfred eedler" (A ). The e two vessels have 

potentially different catchabilities for some species. We examine paired- trawl experi­

ments to estimate the relative difference between WT and AN catchabilities. This is 

often referred to a vessel calibration. We apply our methods to data for one specie, 

the Witch flounder ( Glyptocephalus cynoglussus) . 

Sampling with nets or trawls remains a common technique for determining the 

relative abundance of aquatic organisms. In paired- trawl exp riments two ves els ar 

used to fish as close together as possible to minimize spatial heterogeneity between 

the stock densities the vessels encounter. The paired trawling is repeated at many 

different sites to cover a range of species, depth , and fish densities. Pelletier (1998) 

reviewed estimation m thods used in many vessel calibration exp riments. In the 

past, normal linear models for differ nee in log catches were used for analysis. This 

approach does not properly account for the stochastic nature of the data (counts) . 

Benoit and Swain (2003) used a better approach by treating the catches from both 
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vessels as Pois on or over-dispersed Poisson random variable (rv s), which are appro­

priate for count data, including zero count . However, their approach was complicated 

becau e many fish density parameters usually had to be estimated . Addit ional details 

are provided later in this chapter. A similar approach was used by Pelletier (1 99 ) 

with a mean-variance assumption that was the same as an over-disper ed Poisson 

distribution (e.g. Negative Binomial). To reduce the number of nuisance fish density 

parameters , Pelletier (1998) a! o assumed that fish densities were constant between 

paired tows, although this assumption will not be appropriat in a typical paired-trawl 

comparative fishing experiment. 

In this thesis, stock densit ies are not assumed to be constant. We assume that 

stock densities are cliff rent at different paired-si tes (i.e. between-pairs), which is 

usually the case in practice. There may be some spatial correlation between stock 

den it ies, but we do not try to utilize this in our analysi . Vessels are fished close 

together in a. paired-trawl experiment, but it is not pos ible to ensure that exactly 

the same stock densities are fished by both vessels. A new development in this thesis 

involves methods to deal with random differences between within-pair stock densities. 

ote that we do not assume that differences in stock densities at different paired-tow 

locations are random. Catches from different paired-tow locations are assumed to 

be independent, but with location-specific mean . F\1rthermore, we assume that the 

probability that a fish is captured is the same at each site and for a ll lengths but possi­

bly different for each vessel (A and WT). For some species the first two assumptions 

may not be appropriate. Length and location (e.g. depth) effects in capture probabil­

ities are sometimes found. Our methods can be modified to account for such effects, 

although this is not pursued in this thesis. Our methods are directly applicable to 

species where length and depth efFects in capture probabilities are unlikely. 

The basic type of data collected in a comparative fishing experiment i paired 

count data, in which a sample of N pairs is obtained. The data is de crib d in more 

detail later in this chapter. Th within-pair difference in log-mean is assumed to be 

constant between pair of trawls, but otherwise the means arc assumed to be different. 
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This type of data is discussed in Section 4.5 of Cox and Snell (19 9). These authors 

con iclered the case when the response were Poi son rv 's. In this thesis we consider 

the generalization that the responses are over-disp rsed Poisson rv's, namely Negative 

Binomial. 

The benchmark or simplest model for count data is the Poi son di tribution. It 

is u eful at the out et to review some fundamental properties that characterize the 

Poisson distribution . If the discrete rv Y is Poi son distributed with rate parameter 

). > 0, then Y has density 

e-A( ).)Y 
P (Y = y) = I , y = 0, 1,2, ... , 

y. 
(1.2) 

where E(Y) = Var(Y) = >.. This distribution has a single parameter ). and its kth 

moment , E(Y"'), may be derived by differentiating the moment generating function 

( mgf) k times 

( 1.3) 

Equality of the mean and variance is referred to as the equi-clispersion property of the 

Poisson distribution. This prop rty is frequently violated in real-life data. Ov rdisper­

sion (or sometimes underdispersion) means the variance exceeds (or is le s than) the 

mean. A key property of the Poisson distribution is additivity. That is if Y;,....., P(>.i) , 

i=1,2, ... are independent rv ' , and if 2: Ai < oo, then 2: Y;,....., P(l: >.i)· 

Let J..L denote th common fi h density encountered by each vessel at a tow station. 

If the number of fish entering a trawl as a Poi son process, and are caught indepen­

dent ly with probability q, which is sometimes referred to as Poisson thinning (e.g. 

Grimmett and St irzaker , 1992), then the catch will be Poisson distributed with mean 

q x J..L· If q1 and q2 are the catchabilities of the WT and A vessels, resp ctively, and 

Y1 and Y2 are their catches, then Y;,....., Poi(qiJ..L) i = 1, 2. The relative efficiency of the 

WT compared to the AN is defined as the ratio of their means, 

(1.4) 
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Hence, the within-pair difference in log-means, or log(p), is constant between tow 

sites, which is the same as the model considered in Cox and Snell (1989; Section 

4.5). The fish densit ies (J.l'S) vary between paired-tow sites. If a total of N tow 

sites are sampled t hen there are 2N observations and N + 1 parameters. The N 

density parameters, J.11 , .. . , J.lN are nuisance parameters that are not of direct interest 

but necessary to model the data. In our application N =57. The only parameter of 

interest is the relative efficiency between the two vessels, p. 

It is easier to use a condit ional distribution that treats the sum of paired-trawl 

catches from both vessels as fixed. This eliminates the large number of fish density 

parameters, and the corresponding statistical likelihood function only involves p when 

catches are Poisson distributed. We show this below. The sum of catches from both 

trawls are t reated like sample sizes. A thorough discussion on the roles of condition­

ing in statistical inference is provided by Reid (1995). Cox and Snell (1989) gave 

more detailed inferences about p for Poisson paired-count data using the conditional 

dist ribution of Y, I (Yi + Y2). 

Millar (1992) advocated the condi t ional approach in closely related commercial 

fishing gear size selectivity studies when catches are Poisson distributed . In this case, 

selection curves can be fi tted using the logistic regression generalized linear model 

(GLIM, see McCullagh and elder , 1989). The conditional approach has been used 

in paired-trawl calibration studies by Fanning (1985) and Lewy, Niel en, and Hovgard 

(2004). 

Benoit and Swain (2003) used an over-dispersion parameter to account for extra­

Poisson variation, but they did not show clearly the reason behind the sourc of extra 

variation. In this thesis we explore in more detail the ff ct of over-dispersion on 

conditional inferences, but first we consider the simple situation when catches are 

Poisson rv 's. 

Let Y1 and Y2 be independent Poisson rv 's for the number of fish caught at orne 

tow station by the WT and AN, respectively. Let y1 and y2 denote observations of 
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Y1 and }2 . Also, let E (Y2 ) = q2J.L = A and E(Yi.) = q1J.L = pA. The conditional 

d istribution of Y1 given Y1 + Y2 is Binomial. This can be shown as follows. 

P (Y, IY y = ) = P(YI = yi)P(Y2 = Y2) 
1 1 + 2 n P (Y1 + Y2 = n) 

e-p>.(pA)Yl e->.( A)Y2 e-(p>.+>.)(pA + A)n 
= { Y1 ! Y2! } / { n! } 

= ~( pA )Yl( A )Y2 
Y1 !y2! p).. + A pA + A 

_ n! ( P )Yl ( 1 )Y2 
- Y1 !y2 ! 1 + p 1 + p 

n' = __ ·_ pYl(1 -pr-Yl, 
Yt!y2! 

where p = p/(1 + p). This is the Binomial distribution with n = y1 + y2 and p = 
p/( 1 + p). T he only unknown parameter in this distribution is p. The A parameter i 

eliminated in the conditional distribution. 

Relative efficiency, p, is non-negative and constant for all sampling locations. To 

avoid complications due to boundary constraints it is better to estimate log(p), and 

transform after for inferences about p. In this case, p can be defined as p = exp(,8). 

This I ads to 

ef3 
1 + ef3 = p({J), 

where p({J) is the canonical link function for the Binomial distribution GLIM (McCul­

lagh and Nelder , 19 9) . If log relative efficiency is linearly r lated to covariates, such 

as length or depth (e.g. Benoit and Swain) , then this produce a logistic r gre sion 

model. This model is described in more detail in the next chapter. 

In the Binomial distribution E(YJ) = np and Var(YI) = np( l - p) or Var(Yi.) = 
¢np(1 - p) for the over-disper ion case, where ¢ is an over-disper ion parameter. 

McCullagh and N lder (1989) used a quasi-likelihood approach to deal with over­

dispersion. Note that the over-dispersed Pois on approach to paired count data 

may leads to different statistical inferences (e.g. confidence interval ) than the over­

dispersed Binomial approach. They are not exactly equivalent, whereas the Pois on 
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and Binomial approaches without over-dispersion produce identical maximum like­

lihood estimate (!VILE) and tandard error's via the observed information matrix 

(Cox and Snell , 19 9). The Binomial approach seems preferable for r ason outlined 

in Cox and Snell (19 9) and Reid (1995) . 

As mentioned previously, it is not po ible to ensure that exactly th sam stock 

densities (J.l) are fished at each tow site. Let J.lt and J.~-2 denote the den ities at each 

site fished by pair d tows. Within-pair spatial heterogeneity in fish den ities is a 

source of over-dispersion in paired-trawl comparative fishing studi s (Lewy i !sen , 

and Hovgard, 2004). We account for this by u ing a mixture distribution, J.li "' 

Gamma(J.l, k ), where J.l is the gamma mean and J.~-2 / k i the varian e. An over­

dispersion parameter like ¢ may not be sufficient to account for the e random effects. 

Note that th gamma mean J.l is as umed to be different at different paired tow sites. 

Conditional on J.lt and J.~-2 , it is easy to show that Yi IY, wh re Y = Yi + )12, i still 

Binomially distributed with 

p(1 + QlJ.ll) = QlJ.ll 

Q2J.l2 Q2J.l2 

p = PJ.ll (1 - p) 
J.l-2 

p J.ll 
-- = p-
1 - p J.l-2 

log (-P ) = log (p'""1
) 

1 - p J.l-2 

log (-p ) = (3 + log ('""
1

) . 
1 - p J.l-2 

(1.5) 

In Figure [) I we show 10000 realizations of the log-gamma ratio where each gamma 

has the same mean. It resembles a normal distribution which sugge ts that a rea­

sonable approach to deal with within-pair variability in stock densities i a Binomial­

normal mixture model , where 8 = log(J.~- 1 / J.~-2 ) is assumed to b N(O , CJ2
) . This is a 

common gen ralized linear mixed model (GLMM). GLMM ' can tructure multiple 



sources of variation, measured as covariates and unmeasured as random effect . They 

are described in more detail in the next chapter. In the GLMM , p((J) is defined as 

ef3+u 

1 + ef3+u = p((J)' 

where u is a random effect and u ,....., N(O, a 2
). T his is an approach we investigate to 

accommodate within-pair spatial variabili ty in stock densities. 

In the GL 1M approach some information about the random effect (i.e. their 

variability) will also available in the marginal totals Y1 , ... , YN· It is not clear how 

efficient the GLMM approach may be. Also, proper selection of the random effects 

is required for valid point estimat s and for correct standard errors when a nonlinear 

link function is used (e.g. Heagerty and Kurland 2001). However, it is relatively easy 

to show that the marginal (over gamma random effects) distribut ion of Yi is Negative 

Binomial (NB) . In the NB distribution, the probability of an event occurring is given 

by: 

PY - - r(k+y) ( - J..L ) Y (~) k 
( - Y)- r (k) r(y + 1) J..L +k J..L+k ' 

(1.6) 

where the mean is J..L and the variance is J..L ( 1 + J..L/ k). It is clear that the variance is 

greater than the mean. This form of the B distribution , where Var(Y) J..L2 when 

J..L is large, is often considered to be a suitable distribution for modeling trawl catches 

(e.g. Gunderson , 1993), and in particular catches from pair-trawl fishing experiments 

(Pelletier, 1998). This is referred to as the NB2 model by Cameron and Trivedi 

(199 ) . A less common form is the NB1 distribution, with Var(Y) J..L. Ask-+ 

then Var(Y) -+ J..L (Poisson distribution) for the NB2 distribut ion. The parameter 

k mea ure the Pois on over-dispersion of the distribution. We also inv tigate the 

conditional B2 di tribution Y1 JY for inferences about p. This is an important new 

contribution of this thesis. 

While the conditional Poisson distribution (i . . Binomial) is very common, th re 

appears to be li ttle information published on the conditional B distribution. An 

exception is Hausman , Hall , and Griliches (19 4). They studied the conditional 
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NB1 distribution; however, Cadigan (in prep) has shown that thi distribution is not 

suitable for trawl catches. The paper by James and Moser (1999) is another example 

of the suitability of the NB2 distribution for fishery catch data. In this thesis w study 

the conditional NB2 distribution , which we refer to as the condi tional NB distribution 

for simplicity. 

The NB is a discrete probability distribution that is often used for organism 

count data. Flexibility of the NB distribut ion to accommodate different values of 

k is an advantage when modeling frequency distributions. A characteristic of the 

NB distribution that lends itself particularly well to biological populations is that 

frequencies can decrease monotonically from a modal value, providing a highly kewed 

distribution. The Poisson distribution can also be skewed , but requires that the mean 

equals th variance, an assumpt ion not required with the B distribution. 

The interpretation and derivation of the B as a Poisson - gamma mixture is 

a re ult that can be algebraically derived in several different ways as in Greenwood 

and Yule (1920). Here, we approach the problem directly in terms of a mixture 

distribution. If a random variable Y (e.g. the number of fi sh caught in a tow) is 

conditionally distributed as Poisson(.Ai) given a fixed Ai then 

! ( ·I>- ) = exp( - >.i) >-¥' Yt t 1 , 
Yi· 

Yi = 0, 1, .... 

and the mean parameter 

(1.7) 

Suppose the parameter Ai is actually a random term with density function g(>.i)· 

The marginal distribution of y i obtained by integrating out Ai, 

h(yi) = J f(Yii>-i)g(.Ai)d>.i, 

where g(>.i) is a mixing di t ribution. For specific hoices of J(.) and g(.) , for example 

Poisson and gamma densities respectively, the in tegral has an explicit solu t ion . From 
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here on the i ub cript is omitted. Suppose that A has a two-parameter gamma 

di tribution g(A; k, J.L) 

( \ k ) (~ f , k-1 _.\:>. k 0 0 
g 1\; ' 11 = r(k) 1\ ,. ' " > ' 11 > ' 

where E(A) = 11 and V(A) = 112 /k. 

The marginal distribution of y i given by 

h( I k)= J exp(-A).AY (~f , k- 1 -;>-dA 
Y/1 y! r(k)" e . 

Using the following definitions 

r (a) = 1 
r(x - 1) = x ! 

r(a) = r 
ba Jo 

the integral in ( 1.:-\) can be re-written in th form 

a > 0 

b > 0. 

h( I k) _ (k/ J.L)k J { A ( k)} , y+k- ld' 
y /1, - r(k)r(y + 1) exp - 1 +-;;, 1\ 1\ 

( ~) k ( 1 + ~ ) -(k+y) f (k + y) 

r(k)f(y + 1) 

(1. ) 

r (y+k) ( 11 )v( k ) k 
= f (k)r(y + 1) k + 11 k + 11 (1.

9
) 

If k is an integer then 

(
y + k - 1) ( 11 ) y ( k ) k 

J(y)= k-1 k+J.L k+J.L 
(1.10) 

1.2 Objective of the Thesis 

One of t h main objectives of this thesis is to find a model that gives good esti­

mates and confidence intervals for the relative efficiency. Conditional Poisson (i.e. 
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Bin), Overdispersed Binomial (OD Bin) and Mixed Binomial (GLMM) models will 

be studied for this purpose. We feel that trawl catches tend to follow the egative 

Binomial distribution, so two more models will be studied, the FUll egative Bino­

mial and the Conditional Negative Binomial (cond NB). In the full NB model, we 

simplify numerical technique u ing a concentration approach, which i described in 

Chapter 2. Therefore, we refer to the full NB approach as th concentrated (cone) 

NB approach . 

The econd main objective of the thesis i to study the properties of the Condi­

tional Negative Binomial model. If Y1 "" N B(p,1, k) and Y2 "" N B(p,2 , k), then the 

cond itional distribution of Y1 given the total sum of Y1 and Y2 is : 

r(k+y)r(k+n-y) ( ~) Y { q(111 + 112)+k }Y 
P(y, _ IY, '\/' _ ) _ r (y+ I) r (n-y+ l ) q p(rLI+!l2)+k 

1 - Y I + I2 - n - ( )X { }X l Tl r (k+x) r(k+n-X) ~ Q(i.Ll +112)+k 
L:x=O r{x+l)r{n-x+l) q P(/LJ+!l2)+k 

(1.11) 

where p = ___1!:!_+
1 

• This density function will be derived, studi d , and analyzed in 
JJ I /'2 

Chapter 2. It will be compared to previously mentioned di tributions in terms of 

estimation and tatistical inference (i.e. confidence intervals) for relative efficiency. 

The estimation of parameters for the five different models we investigate arc presented 

in Chapter 2. The estimators will be applied to a case study involving Witch flounder 

( Glyptocephalus cynoglussus) in Chapter 3. 

We use the well known maximum likelihood approach for stimation. We conduct 

a simulation study in the fourth chapter to examine the performance of the models 

under study. The five models (Bin, OD Bin, GLMM, Cone NB, Cond B) will 

be compar d in terms of bias and confidence intervals for relative efficiency. Our 

conclusions are outlined in Chapter 5. 



Chapter 2 

Model Developments 

2.1 Introduction 

In this chapter , methods are reviewed and/or developed for estimating differences 

in the relative efficiency of survey vessels, or more generally the ratio of means in 

paired count da ta . An important emphasis is on reliable confid nee intervals. The 

common Binomial (Bin) and over-dispersed (OD Bin) models are reviewed , as well 

as an alternative Binomial mixed model (GLMM) for dealing wi th over-dispersion . 

Two approaches ba: ed on the NB distributional assumption for paired counts are also 

developed , which is new research. The general modeling approa h used in this thesi 

is likelihood-based. Thi approach, and the associated maximum lik lihood estima­

tor , requires complete specification of t he distribution of the r span es. Stati t ical 

inference is usually performed under the assumpt ion that the di tribution is correctly 

specified , and this i the approach taken in this chapter . 

The basic data structure and model assumption we considered is a sample of 

N pairs of counts, where the within-pa ir log difference in means is as ·umed to be 

constant across pairs, but otherwise the between-pairs means are different for each 

12 
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pair; that is , the data are 

YNl YN2 

where E(Yij) = J.lii ,i = 1, ... , N , j = 1, 2 and log(J.Lil/J.Li2) = {3 . This case is valid 

under distributions other than poisson random variable. 

The results in this chapter arc applied to a case study in Chapter 3, and further 

investigated in a simulation study in Chapter 4. 

2.2 Likelihood Models 

Likelihood models are based on specifying the joint density of the dependent variables. 

We assume that the random variable Yi given the covariate vector x i and parameter 

vector 0 , is distributed with density f(Yilx i, 0 ). The likelihood principle chooses as the 

estimator of 0 t he value t hat maximizes the joint probability of observing the sample 

values y1 , ... , Yn· This probability, viewed as a function of parameters conditional on 

the data, is called the likelihood function and is denoted 

n 

L(O) = IT f (Y.i lx i, 0), (2.1) 
i=l 

where independence over i is assumed. Maximizing the likelihood function is equiva­

lent to maximizing the log-likelihood function 
n 

l(O) = log L(O) = L log f(Yil x i , 0). (2.2) 
i=l 

In this thesis, three different likelihood approaches will be used, namely, maximum 

likelihood, profile likelihood and conditional likelihood. The maximum likelihood 
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approach will be used for estimation purposes in the next ection and the other two 

approaches wi ll be used for the Negative Binomial model. 

2.3 Poisson Model 

2.3.1 Conditional Poisson 

In this ection, we present some details about a very important member of the family 

of generalized linear models, namely binomial logistic regression. As shown in Chapter 

1, the binomial di tribut ion can be derived from conditioning one of two Poisson 

random variables on the total sum of both of them. This take us to logistic regre sion . 

Logistic regression became a useful tool in the 1950s in applications of biostati tics. 

Consider first a regression structure in which t he response is binary (0 or 1) if the 

endpoint of an experimental run is whether a fi h is caught or not. It is reasonable 

to assume tha t the re ponse is a Bernoulli random variable Y;, where E(Yi) = Pi, 

i=1, .. ... ,n. Here Pi is a probability in a Bernoull i process and Var(Yi) = Pi(1 - Pi)· 

For grouped data, t here are n i experimental uni ts at the ith data point, i = 1, .. . , n. 

This is the case in our study where n i fish are caught at each site i. Thus the model 

can be written as 

E(Yi) = nipi , i = 1, ... , N. 

We assume that the Pi can be modeled as a function of a. linear combination of known 

covariate ; that is, 

exp(x:f3) 
Pi = 1 + exp(x;f3 )' 

i= 1, 2, .... n 

where xi is a vector of predictor variables. In this case Var(Yi) = niPi(1 - Pi) · 

We use the maximum likelihood approach to estimate the parameter vector {3 . It 

is well known that the probabili ty function for a single binomial random variable Y 
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indexed by nand pis given by (;)pY(1 - p)n-y. Since (;) for our ituation does not 

involve {3, it will b dropped and thu the log likelihood for the logi tic regression 

model i given by 

where Y1, y2 , ... , Yn arc observed values of ind pendent binomial random variables. The 

term log c~~.) is called the logit and can be written as 

log --' - = xJ3 ( 
p · ) I 

1 - Pi 

k 

= L: x;j{3j, i= 1, 2, ... ,n. 
j = l 

We assume that n 2: k. The loglikelihood can also be written as 

n 

= f3' Xy - L n; log { 1 + exp(x:{3)} , 
i = l 

(2.4) 

where X i the traditional model matrix in lin ar regression and y is the re ponse 

vector. The derivative with respect to {3 is 

8log{L({3;;y)} = X ' _ ~{( n i ) X: f3 ·} 
8{3 y L......, x'{3 e X 1. , 

i = L 1 + e' 

Since 

(2.5) 

we have 

8log{L({3;y)} _ x' ~ 
8

{3 - Y - L...._, niPiX i · 

i= l 

Since the n;pi represents the means of th binomial random variables, w can express 

the right-hand ide above in matrix notation as x ' (y - f.L ), where 
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/-ll 

f-l2 

f-ln 
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and f-li = niPi. The " f-l" notation is motivated by the fact that at the ith data point 

the mean of the binomial distribution is given by niPi· As a result , th maximum 

likelihood estimator (MLE) is the solution to the score equation 

x '(y - J.L ) = o. (2.6) 

2.3.2 Overdispersion 

Overdispersion is an important concept that will interest us as we use logi tic regres­

sion. When the response probabilities vary over groups of experimental uni ts exposed 

to similar experimental conditions, some assumptions have to be made about the form 

of this variation. First we consider a general model, described by Williams (19 2). 

Suppose that the data consists of n proportions, y;jn;, i=1, 2, ... , n, and suppose 

that the corresponding response probability for the ith observation depends on k 

explanatory variables X 1 , X 2 , ... , X k through a linear logistic model. To introduce 

variability in the response probabilities, the actual respon e probability for the i 

observation, 7ri, will be assumed to vary about a mean Pi · This response probability 

is therefore a random variable where E(1ri) = Pi· The variance of 7ri must be zero 

when Pi is either zero or unity, and the simplest function for which this is true is 

(2.7) 

where r 2': 0 is an unknown scale parameter. The quanti ty 7ri is an unobservable 

random variable. The mean of )'i, conditional on 7ri, is given by 
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and the condit ional variance of Yi is 

The unconditional mean and variance of Yi is required to estimate the regression 

parameters. This leads us to investigate t he effect of the assumption about the random 

variability in the response probabilities in equation (ll) on E(Yi) and Var(Yi). 

The unconditional expected value of a random variable Y can be obtained from 

the conditional expectation of Y given 1r u ing t he equation 

E(Y) = E {E(YI1r)} , 

and the unconditional variance of Y is given by 

Var(Y) = E {Var(YI1r)} + Var {E(YI1r)} . 

Application of these two results gives 

and 

Now, 

Also, 

Var(Yi) = E{Var(Yil7r;)} + Var{E(Yil7r;)}. 

E{Var(Yil7r;)} = E{n;7r;(1 - 7r;)} 

= n;{E(1r;) - E(7ri)} 

= n;{E(1ri)- Var(1ri)- (E(1r;) 2
} 

= n;{p;- TPi(l - p;)- pi} 

= n;p; { ( 1 - p;) ( 1 - T)} . 

(2. ) 

(2.9) 
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and so 

(2.10) 

In the absence of random variation in the response probabili ties, 1~ would have a 

binomial distribution, Bin(n;, p;), and in this case Var(~) = n;p;( 1-p;). This corr­

sponds to the situation where T = 0 in equation (:2 .'1) and leads to Var (~)=n;p;(1-p;) 

in equation (:!.l!l). If there is variation amongst the response probabilities, so that T 

is greater than zero, the variance of~ will exceed n;p;(1 - p;), the variance under bi­

nomial am piing, by a factor of {1 + (n; - 1)T }. Thus variation among t the respon e 

probabilities causes the variance of the observed number of uccesses to be inflat d 

resulting in overdisp rsion. 

In the special case of ungrouped binary data n; = 1, for a ll valu s of i , and the 

variance in equation (:!. 1 !l) becomes p;(1-p;), which is exactly the variance of a binary 

response variable. Con equ ntly, binary data can provide no information about the 

parameter T. 

Suppa e that evidence of overdi persian i found after fitting a linear logistic 

model to n observations of the form y;/n;, i = 1, 2, ... , n. In order to model this 

overdispersion , the variance of ~ will be taken to be c/J;n;p;(1 - p;), where, from 

equation (:!. Jrl), cPi = 1 + (n;- 1)T. This function includes an unknown parameter, 

T, which will have to be estimat d . T > 0 implies c/J; > 1. If c/J; < 1, we call the 

phenom non underdi persian . However this problem does not occur in practice as 

often as overdisper ion. 

We can use maximum likelihood to estimate the regres ion parameters and the 

disper ion parameter jointly. Williams (1982) shows how an estimate f of the pa­

rameter T can be found by equating the value of Pearson ' x-statistic for the model 

to its approximate expected value. The value of x for a given model depends on th 

value of f, and so this procedur is iterative. The estimate of the parameter T will 

also depend on the actual explanatory variabl in the fitted model. 
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The more common approach de cribed in McCullagh and Neider (19 9) is based 

on th as umption that Var(Y) = ¢niPi(1 - Pi); that is, th Binomial overdispersion 

is constant between observations. In this case ¢ can be estimated more asily using 

the chi- quare statistic as outlined in McCullagh and Neider (1989). This is the 

approach used in the glm function in R and this is the approach we u e in t his thesis. 

It is commonly applied in GLIM's, including those in Benoit and Swain (2003), and 

Lewy, Nielsen , and Hovgard (2004). McCullagh and Neider (1989) state that over­

dispersion can arise in a number of ways. The simplest and perhaps the most common 

mechanism, is clu tering in th population, (e.g. Stigler 19 6). Cluster usually vary 

in size, but McCullagh and Neider (1989) assumed for simplicity that the cluster size, 

k, was fixed and that the n ind ividuals were actually sampled from n/ k clusters . In 

the ith cluster, the number of po itive respondents, Zi, is assumed to have a Binomial 

distribution with index k and param ter 7l'i, which varies from clu ter to cluster. Thus 

the total numb r of positive respondents is 

If we wri te E(7ri) = 71' and Var(7ri)=r27r(1 - 7r), then using (:.U'1) and ( 2 . ~J ) it can be 

shown that the unconditional mean and variance of Y are 

E(Y) = npi 

Var(Y) = np;(1 - p;){ 1 + (k - 1)r 2
} 

= ¢npi(1 -Pi)· 

Note that the overdispersion parameter ¢ = 1+(k-1 )r2 depends on the cluster size 

and on the variability of 71' from cluster to cluster, but not on the sample size, n. 

This enables us to proceed as if the observations were binomially distributed and to 

estimate the dispersion param t r from the residuals. An e timate of ¢ can be based 

on the residual sum of squares appropriately weighted, 

;, = _ 1_ Lm (Yi - nipi)2 = 2/( _ ) 
'f' ' ( ') x m v, m - v n ·p · 1 - p · 

i=l t ' ' 

(2.11) 
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where m is the number of observations and v i the number of parameters. The last 

¢ estimate in (:2 I I ) is a special case of 

¢ = _1_ f. {Yi- E(Yi)F = x2/(m _ v) , 
m- v . Var(Yi) 

t=l 

(2.12) 

where x2 is the generalized Pear on statistic. 

2.3.3 Mixed Binomial Model 

A common feature of the model that have been described in the previous section 

is that their linear components contain terms known as fixed effects. Models for 

binary data may also incorporate what are known as random effects, and a model 

that contains a combination of fixed and random effects is known as a mixed model. 

In this section , a mixed model for binomial data is described. The logistic regres­

sion model can be extended to include a single random effect. Suppo e that t here ar 

n binomial observations of the form ydni, where Yi is the observed value of a binomial 

respon e, Yi, associated with the ith proportion, i = 1, 2, ... , n. The binomial re ponse 

variable will be assumed to depend on k explanatory variables, X 1, X 2 , ... , Xk , which 

take the values x 1i, x2i, ... , Xki for the ith observation, and on a random effect ui · 

If the corresponding response probability is Pi, the random variable Yi has a 

binomial distribution conditional on u i with parameters ni and Pi· The dependence 

of the Pi on the explanatory variables and the random effect is then modeled by taking 

Pi 
log(--) = f3o + fJ1X1i + ... + fJkXki + U ; , 

1 - Pi 
(2.13) 

where {30 ,/31 , .. . , {Jk are unknown fixed-effects parameters and ui is a random effect. 

The term ui in ( ~.1 :1) is a realization of a random variable Ui, and we will assume 

that ui has a normal distribution with zero mean and variance o-2
' that is ui f'V 

N(O , o-2
). The model in equation (2. Ll) may also be written in the form 

(2.14) 
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where Zi is a realization of the standard normal random variable Z;. 

This model can be fi t ted through the method of maximum likelihood. Wri ting 

ry; = f3o + (31x 1; + ... + (Jkxki for th linear component of the model derived from the 

fixed effects, the model becomes 

and the likelihood of the ith of n observation is given by 

L(/3 , au, z;) = (~;) p;• (1 - P;t•- Y• 

(ni) {exp(ry; + auz; ))Yi 
- Yi {1 +exp(ry;+ auz;) f i ' 

(2.15) 

The likelihood of then observations conditional on the random effects is Jl~1 L (/3 , au, z;) 

which depends on the unknown parameters {30, (31, .. . , (Jk and au, and the unknown re­

alizations of the random variables Z1 , Z2 , .. . , Zn which have N(0,1) distributions. 

The standard method of handling a likelihood function that involves random vari­

ables that have a fully specified probability distribution is to integrat e the likelihood 

function with respect to the distribut ion of these variabl s. After ' integrating out' 

the z, the resulting function is termed a marginal likelihood function, and depends 

only on (30 , (31 , .. . , fJk and au. The maximum likelihood estimates of the e parameters 

are then those values which maximize the marginal likelihood function given by 

L(f3 ,au) = IJn 100 [(ni) {exp(ry; +auzi )}Y• . exp(-zl/2) ] dzi· 
i= l _ 00 Yi {1 +exp(ry;+auz;) }n, .j2ir 

(2. 16) 

Usually, the logarithm of this marginal likelihood function is maximized usmg an 

optimization routine, but this is complicated by the fact that the integral can only 

be evaluated numerically. One way of carrying out this numerical integration is to 

use the Gauss-Hermite formula for numerical integration, or quadrature, according 

to which 

(2.17) 
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where the values of Cr and s,. are given in standard tables, such as those of Abramowitz 

and Stegun (1972). The integral in equation (21 fl ) can then be expressed as a sum­

mation, and to the marginal likelihood is approximately 

The values {30 ,{31 , ... , rJ~o and au, which maximize this expression , or its logarithm, can 

then b determined numerically. Standard errors of the e parameter estimates are 

usua lly also available as a by-product of t he optimization process. Standard errors are 

obtained from the inverse of H, where H is the hessian matrix of second derivatives 

of the negative log likelihood. This procedure can be implemented in R using th 

package glmmM L. 

This model can account for over-dispersion in the logit proport ion of WT catch , 

caused by random differences in local within-pair stock densities fished by each vessel. 

If the local stock densities arc viewed as independent and identically distributed (iid) 

from a gamma distribution then the logit proport ion of catch depend on the log ratio 

of the two stock densities. A Torma! random effect is a reasonable approximation to 

the distribution of the log ratio of gamma random variables (see Chapter 1). 

Although in practice one is usually primarily interested in estimat ing the parame­

ters in the marginal linear mixed-effects model ( th fixed effects {3 and au) , it is often 

useful to calculate estimates for the random effects Zi as well. 

One way of obtaining estimates of a random effect is through using an empirical 

Bayes procedure (e.g. Collett, 1991). In this approach, inference about a parameter 

() is bas d on the following statement 

p(Bjy) ex L(yjB)p(B), (2 .1 ) 

wh re the constant of proportionality is 

J L(yjB)p( B)dB, (2. 19) 
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which ensures that p(B jy) integrates to unity. 

In our study, the equivalent of the prior d ensity, p(B) , is th n the density of Zi, the 

random variable corresponding to Zi, and the equivalent of L(yjB) is the likelihood 

function in equation (;!.l 1) with (3 and <Ju replaced by their maw"Ximum likelihood 

estimates, {3 and au. The posterior density of Z; is then proportional to the product 

of L(/3, au, z;) and the density of Z;, which from equation (:2 1.-J) is 

(2 .20) 

where f); = /30 + /31x 1; + ... + /3kxki · An estimate of z; is the value z;, which maximizes 

the logarithm of this function. On differentiating the logarithm of thi expression 

with respect to z; and equating the derivativ to zero. 

and 

8 log { L(/3, au, z;) } • auexp (f);+ auz;) 
= Yi<Ju - n; ( . . ) - Z; = 0 

8z;. 1 + exp 'rJi + <7uZi 

Finally, z; can be found by numerically by solving for Z; th quation 

n;cfu xp(f)i + auz;) • • (2.21) 
( . . . ) + Zi = <7 uYi · 

1 + exp 'fli + <7uZi 

An estimate of of U ; is Ui = auZ; . 

2.4 Negative Binomial Model 

Thi section also deals with departures from the Poisson distribution. An alternative 

approach to deal with over-disper ion caused by within-pair local variation in stock 
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den it ie is to work directly with the marginal distribut ion of paired-t rawl catches. 

Th mixed model approach and over-disper ed Binomial model approach discussed 

in the previous two sections may be inefficient because they do not utilize informa­

tion about random effects provided by the total catches from both vessels or more 

generally in the paired-sums. In the Poisson model Yi has mean ).i and variance ).i· 

We now relax the variance assumption, because it is not sui table for many types of 

biological data. A common parametric model to account for overdisp rsion is the 

Negative Binomial ( B). This distribution arises when data are Pois on, but there 

is gamma-distributed unobserv d individual heterogeneity such as when within-pair 

stock densities are iid gamma random variables. 

The TB density function can be written as 

r(y + k) ( f..L ) y ( k ) k 

J (y) = r(k)r(y + 1) k + f..L k + p, , 

where r i the gamma function. The parameter k is regarded as the overdispersion 

paramet r. The mean and variance of Y ar given by 

E(Y) = J..L 

Vm·(Y) = J..L (1 + ~) . 

(2 .22) 

(2.23) 

The leading motivation for considering parametric distributions other t han the 

Poisson is that they have the potential to accommodate features of data that are 

inconsistent with Poisson assumptions. Some common departures from the Poi son 

model are as follows. 

1. The failur of the mean equals variance r striction : Frequently the variance of 

data exceeds the mean, which i usually referred to as extra-Poisson variation 

or overdispersion relative to the Poisson model. If the variance i less t han the 

mean, we have underdispersion. 

2. The "excess zeros" or "zero inflation" problem : The observed data may show 

a higher relative frequency of zeros, or some other integer, than i con i tent 
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with Poisson model. The e cas s are discussed in Mullahy (19 6) and Lambert 

(1992). The higher relative fr quency of zeros is a feature of all Poi on mixtures 

obtained by convolution . 

3. tlultimodali ty: Observed univariate count distributions arc som time bimodal 

or multimodal. If t his is also a feature of the conditional di tribution of counts , 

perhaps because observations may be drawn from different populations, then 

extension of th Poisson are desirabl ~ . 

4. The failure of the condi t ional indep ndence assumption : Ev nt counts espe­

cially if they are a time eric may be independent. 

The last consideration has to do with the failure of the Pois on procc a umption , 

whereas the fir t three are concession to the characteristic of ob rvcd data. ote 

that in this thesis, the first consideration is applicable to pair d-trawl lata. This is 

the main reason we onsider the B distribution. 

Figure I ) l hows, as an example, the Poisson-gamma mixtur gative Bino-

mial) , with mean 10 and k = 5 with the Poi son distribution with mean 10. 

2.4.1 Concentrated Negative Binomial Model 

In this section we consider direct c timati n of relative cfficicn y (p) and the NB 

ovcr-dispcr ion parameter k by the maximum likelihood method but concentrating 

(or profiling) the tock density parameters J.l-.1, ... , J.l.JV out from num rica! estimation. 

The full likelihood depends on a parameter vector J1. in addition to p and k , where 

Jl. = 

J.l.J . 

J.l-2· 
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so the likelihood function is L (p, k, 11- ). Th concentrated or profile likelihood elimi­

nates 11- by obtaining the restricted MLE of {1, for fixed p and k. Then 

L eone (p k) = L { p, k {1, (p, k)}. (2.24) 

The profile likelihood is useful if 11- i a nuisance parameter. For example, our 

interest is in the parameter p, and k is important for confidence intervals . In such 

circumstanc there is an advantag to profiling out {L , e pecially if 11- is of high 

dimension. More details can be found in Davidson and MacKinnon (1993). 

Restricted ILE's of the NB J..L parameter are derived a follow . R call that our 

data are }j1 ,....., B(J..Li1 , k) and Yi2,....., NB(J..Li2 k), i=1, .. . ,n. Again 1 t f..L i· = f..Li l + f..Li2· 

The constant relative efficiency assumption implies that f..Lil = Pf..Li· and f..Li2 = Qf..Li· 

where q = 1- p and logit(p) = {3 . The conditional joint density for the 2 ob ervations 

is 

P (y11, ... Yn! ,Y12, .. . ,yn2IP,k,J..LJ ... . , f..LN .) 
n 2 

=II II P (YiiiP, k f..LJ., ... , f..LN.) 
i=l j=l 

= , • ... , N,j = 1,2. IIn II2 { f(yij + k) ( f..Lij ) Y'J ( k )k } ,; = 1 
i= l j= l r(k)f(yij + 1) f..Lij + k k + f..Lij 

(2.25) 

Note that in (2 2:) ) the f..Lii are defined in terms of p and f..L 1., ... , f..LN· as shown 

above. Th corre ponding log-likelihood function i 

l(y11, .. . ,yni ,Yt2 , ... ,yn2IP, k, J..LJ. , ... f..LN .) 

= t. [tog { r(~;~i(y:; 1) } + Yit log { p;f..L: k } + k log { k + kPf..Li. }] 

+ t. [tog { r(~;~(y:; 1) } + Yi2 log { Qf..L~f..L: k} + k log { k + kQf..Li } ] , (2.26) 



Differentiating with respect to J.ki. and setting to zero yields 

8log P (y11 , ... , Yn1, Y12, ... , Yn2IP , k , /-LJ ., ... , /-lN.) 

8 J.ki. 

= Yil { p2 /-li. + pk - p2 1-li. } I ( PI-li. ) + k { - kp } I ( k ) 
(PJ.Li. + k )2 P/-li . + k (PI-li. + k )2 PI-li. + k 

+ y·
2 

{ Q
2

/-li. + qk - Q
2

/-li. } ( Q/-li. ) + k { -kq } ( k ) 
t (qJ.Li. + k) 2 I Ql-li. + k (ql-li. + k)2 I Ql-li. + k 

pk p qk q 
= Yi! - k + Yi2 - k-__:__-

P/-li.(Pf.li. + k ) PI-li.+ k Q/-li.(Qf.li. + k) Q/-li. + k 
Yi lk kp + Yi2k kq 

1-ldPJ.Li. + k) PJ.ki. + k J.ki.(QJ.Li. + k) QJ.Li. + k 
Yi lk - kpP,i. + Yi2 k - kq!J.i. 

1-ldP/-li. + k) /-li (q!J.i. + k). 

Setting this equation equal to zero is equiva lent to solving 

= Yil - P/-li. + Yi2 - QJ.Li. = O 
PI-li. + k Q/-li. + k ' 

which leads to 

Yi ! - PJ.ki. Yi2 - Q/-li. 

P/-li. + k Q/-li. + k 

=* (Yi! - P/-li.)(q!J.i. + k) = -(P/-li. + k)(Yi2 - QJ.ki. ) 

'* YiiQ/-li. + Yilk- PQ/-l;. - P/-li. k = -(Yi2P/-li. + Yi2k- PQ/-l;. - QJ.ki.k) 

=* Yil (1 - p)p,; + Yilk - p(1- P)/-l;.- P/-li. k = - {Yi2PJ.ki. + Y;2k - p(1 - P)J.L;. 

- (1 - p)f.li.k} 

This simplifie to 

or 
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The last equation is a quadratic of the form a~-ti. + bJ..Li. + c = 0 wh r a = -2p + 2p2 

b = Yil - PYil + PYi2 - k and c = (Yi t + Yi2)k. So the mle of /-Li. for fixed p and k is 

, . ( k) _ - b ± )b2 
- 4ac 

J.L,. p, - 2a 

_ -(Yit- PYit + PYi2- k) ± J(Yit - PYit + PYi2- k) 2
- 4( - 2p + 2p2 ){(Yit + Yi2)k} 

- 2( -2p + 2p2) 

(2.27) 

Sub tituting this back into (".!.~r~ ) yields the concentrated log-likelihood function, 

Leone (p , k) 

= t. [log { r(~~~i(y~; 1) } + Yil log { p~~~~~,)~ k } + k log { k + pfl~. (p , k) } ] 

~ [I { r(y;2 + k) } l { (1 - p){L;.(p, k) } ] + L..,; og + Yi2 og ~-__:_:, ~~--'--
i= J f(k)f(y;2 + 1) (1 - p)J.Li. (p, k) + k 

+""' k log , . n [ { k }] 
~ k + (1- p)J..Li. (P, k) 

(2.2 ) 

Rather than e timate the + 2 parameters in the full likelihood numerically, 

we estimate only 2 parameters in the concentrated likelihood given by ( .! .2 ). This 

greatly p d e timation. The mle' for the J..L;. parameters ar obtained using (2 :!";) 

and the mlc's for p and k . The p,;. 's arc nui ance parameters so w are not worried 

about finding standard errors for their estimates. Large sample tandard errors for 

the mle' of p and k can be obtained from the inverse of the hes ian matrix of the 

concentrated loglikelihood function evaluated at the mle values. We u c numeric 

derivatives (he sian() function in R) to get the standard errors. 

2.4.2 Conditional Negative Binomial Model 

We haveN pairs of observations, (Y11 , Y12 ), ... , (Y;,1 , Yn2 ) that arc NB distributed 

with mean and variances, 

( 
/-Lij ) Var(Y;j ) = J.l ij 1 + k , i = 1, .. . , j = 1, 2. 
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All observations are independently d istributed. We assume that the ratio of means 

is constant for a ll i, and we ar interested in inferences about this ratio, p = IJ;J/ /1;2 . 

This is a generalization of the Poisson model considered by Cox (1970, section 4.5.1). 

The g neralization is to accommodate over-dispersion in the observations. 

Define lli. = /lil + 1J;2 . ~e can specify the joint distribution of the observations 

in terms of N+ 2 parameters : p, k, 111., ... , /lN . . The parameter of interest is p, and the 

11~8 and k are nuisance parameters that are not of direct interest but necessary in 

the distribution of (Y11 , Y12 ), ... , (YNJ , Y;v2 ). In Section 2.4.1 we presented a compu­

tationally more efficient method to estimate the N + 2 parameters directly from the 

2N observations using a 2 dimensional numerical optimization; however, there is a 

problem with that approach. 

It is well known that maximum likelihood estimates of variance parameters are 

seriously biased when there are many nuisance paramet rs. The mle of a 2 in the 

normal linear regression model is a common example. If the number of parameter 

p = N / 2 then t he ml of a 2 i biased by 50% of a 2
. This leads to poor tati tical 

inferences unless orne type of adju tment is made. Several other examples of prob­

lems with maximum likelihood estimation when the number of nuisance parameters 

is large arc given in Barndorff- eilscn and Cox (1994; Section 4.2). The approach we 

explore is condi tioning, similar to what is standard when the observations are Poi -

son distributed (see Section 2.3.1). We explore the utility of using the condit ional 

distribution of (Y11 IYL) ... , (YN1 IYN.) for inferences about p. Conditioning can be a 

useful approach when dealing with nuisance parameters. 

Another argument for conditioning on Y1., .. . , Y N. is that in t he absence of any 

information about 111. , ... , /lN. the marginal distribution of Yi ., .. . , YN. give no addi­

tional information about p. T he pair-totals really only d fin the preci ion of the 

data. Conditioning on their values make statistical inferences more relevant to the 

observed data, which is a position closer to the Bayesian philosophy. An extensive 

review of this subj ct is given by Reid (1995) . 
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For the ith pair of observations (we drop the i sub cript for now to simplify 

notation), t he condit ional distribut ion of Y1IY = n can be obtained from 

P (Yt = y, Y2 = n- y) 
P (Yt = yi Y1 + Y2 = n) = L:n P (Y _ y _ _ ) 

x=O 1 - X , 2 - n X 

P (Y1 = y) P(Y2 = n - y) 
I:~=o P (Y1 = x) P(Y2 = n- x). 

Note t hat Yi and Y2 are independent so t hat 

P (Y1 = Y1, Y2 = Y2) = P(Y1 = yl) P (Y2 = Y2)· 

Recall that p = J.LJ/(J.L1 + J.L2 ) = pj( l + p) and q = l-p and that the pdf of Yi is 

P()l;- ) - r(k + y) (_!!!__)Y ( -k-) k 
t - y - r( k) r(y + 1) J.Li + k J.Li + k 

It follows that 

P(Yj = y)P(Y2 = n- y) 
P (Y1 = YIYi + Y2 = n) = I:~=O P (Yj = x)P(Y2 = n _ x), 

r(k+y) (_l!:j_ ( k ) r(k+n-y ) __1!1_ k 
{ ) 

y k } { ( ) n-y ( ) k } 
r(lc)l(y+l ) 1->1 +k 1->1 +k r(k)r (n-y+l) ~-t2+k ''2+k 

~n r(k+x)r(k+n-x) (l!:.!. )x ( 1 ) X ( ] ) n-x 
L...-x=O r(x+l ) r (n-x+1) /->2 •q+k J1.2+k 

r(k+y)r(k+n-y) ( l!i:!:.:. ) y (''2+k ) y ( 1 ) n 
_ r(y+ l )r (n-y+ l ) q,.. . I'I +k ;;:t:k 

- ~n r(k+x)r(k+n- x) ( l!i:!:.:. ) x ( '"2+k ) x ( 1 ) n 
L...-x=O r (x+ 1)l(n- x+l) Ql" · 1"1 +k ~-t2+k 

r(k+y)r(k+n- y) (E)Y (~)Y 
r(y+ 1)r(n-y+1) q P~-t. +k 

(2.29) 
= ~n r(k+x) r(k+n-x) (E)x ( qf.l. .+k ) x . 

L...-x=O r(x+ 1)r(n-x+1) q Pl".+k 

An algorithm to evaluate Pn(x) = P(Y1 = xiY = n) is given in Appendix A. 

Tote that we did not achieve a clean partition of the information about p, k and 

J.L .. We had hoped that the condi t ional distribution would only involve p and k and 

not J.L.; however , t his is not the case. In the next ection we explore how ensitive the 

conditional d i t ri bu tion is to values of J.L.· 



31 

2.4.3 M ean and Variance of Conditional NB 

We could not find simple expressions for the conditional NB means and variances. 

They can be directly computed using 

n n 

E(Y1IY = n) = L YlPn(Yl); E(Y?IY = n) = L Y~Pn(Yl) (2.30) 
Yt=O Yt=O 

and 

(2.31) 

In Figure D. l we plot the difference in the expected NB fraction E(YtiY = n)/n 

and th Binomial probability p. The results are identical when p=0.5 but can be 

sub tantially diff rent otherwise, especially when k is small (i.e. the B overdispersion 

is large). These results also sugg st that E(~ IY = n) is sensit ive to the value of J.L. 

which is a problem for estimation . 

In Figure D. I we plot the variance of the condit ional NB distribution. When n 

(total urn) is fixed the variance increases as k gets smaller (i.e. overdispersion gets 

larger). Also, the results are symmetric around p=0.5 for all k and n values. That 

is, the variance is the sam for p = Po or 1 - Po· \tV hen J.L. > > n then the variance 

becomes more constant as a function of p. 

To better understand the effect of ;.t. on E(Y1IY = n) we plot the expe tation 

at various values of J.L. in Figures I)(, - D.!l for n = 1, 5, 25, 50, respectively. The 

heavy solid line is the B conditional expectation. The dashed and dotted-dashed 

curve are Taylor 's series approximations described later. The vertical dotted line 

in each panel denotes the value J.L. =n. The shaded regions cover ±50% of n. The 

horizontal dotted line denotes the Binomial exp ctation np. Again, the expectation 

can be considerably different (and greater) than the Binomial result when k is mall 

and p < 0.5. 

The conditional B expectation increases as J.L. increases or k decreases. The 

mean of the conditional NB distribution is a finite sum; hen e, limiting moments can 
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be found by evaluating the moments for t he limi ting probability density function. Let 

Plim(x) = lim1,. ~ P (Y1 = xJY = n), 

where 

r(k+x)r(k+n-x) ( E) x ( llli:±!5.) x 
( ) _ )' r(x+l)r(n-x+l} q PJ.L.+k 

Plim X - 1-' . ~Tl '\"n r(k+x)r(k+n-x) ( E) x ( llli:±!5.) x 
L..x=O r(x+l}r(n-x+l} q PJ.L.+k 

r(k+x)r(k+n-x) ( E) x ( 9. ) x 
r (x+ l }r (n-x+ l) q p = ------------~~~~~ 

'\"n r (k+x)r(k+n-x) ( E) x ( 9. ) x 
L..x=O r(x+ l )r(n-x+l } q p 

r(k+x)r(k+n-x) 
r(x+ l}r(n-x+l} 

'\"n r(k+x)r(k+n-x) 
L..x=O r(x+l)r(n-x+l) 

>.(x) 

>.(x) = f (k + x) f (k + n- x) 
f( .x + 1)f(n- x + 1) · 

T he rat io of Plim(x + 1)/Plim(x) can be helpful in finding t he fi r t two moments of 

the limit ing di tribut ion. To simpli fy notation let X denote a random variable with 

the limiting di tribution of Y1JY = n. 

Plim(X + 1) 
Plim(x) 

>. (x + 1) 
>.(x) 

= r(k + x + 1)r(k + n - x - 1) 
1

r (k + x)r(k + n- x) 
f( x + 2)f (n- X) f (x + 1)f (n- X+ 1) 

(x + k)(n- x) 
(x+ 1)(n - x+k- 1)' 

and thi Equation (2 t:n implie that 

(2.32) 

Plim(x + 1){(n + k)(x + 1)- (x + 1)2
} = (k + x)(n- x)Pum(x). (2.33) 

The sum of both sides of (:2 :l:~ ) for x = 0, ... , n - 1 is 

n-1 n-1 

(n + k) l:)x + 1)Plim(X + 1)- l:)x + 1)2Plim(X + 1) 
x=O x=O 



n- L n-l n- l 

= nk L Plim(x ) + (n- k) L XPlim(x)- L X2Pum(x) . 
x=O x=O x=O 

Recall that X = Y1 1 Y = n , so 

n - l n n 

L (x + 1)Plim(X + 1) = L XPlirn(x) = L XPiirn(x) = E(X), 
x=O x=l x=O 

and 

n- l 

L (x + 1)2Piim(X + 1) = E(X2
). 

x=O 

Hence, 

(n + k)E(X)- E(X2
) = nk{l- Plim(n) } + (n- k){E(X )- nplim(n)}- E (X 2

) 

+ n2Plim(n), 

==> (n + k )E (X) = (n- k)E(X)- n(n- k) Plim(n ) + n2Pum(n) 

+ nk{ 1 - Plim(n)} 

2kE(X) = -n(n - k)Plim(n) + n2Plim(n) + nk{1- Plim(n)} 

E(X) = _ n(n- k )Plim(n) n2Plim(n) nk{1 - Plim(n)} 
2k + 2k + 2k 

n2Plim(n) nplim(n) n2Pum(n ) n nplim(n) 
= - 2k + 2 + 2k + 2 - 2 

n 
-
2 

We can also show that 

. n 
ltm E (Y1 IY = n; J.t. , k) = - . 
k-0 2 

33 

This suggests that when ;.t. is large or when the NB overdispersion is large (i.e. 

k is small) then the data are less informative about p. This is because as J.L . or 

the overdispersion increases then E(Y1IY = n) deviates more from np, where p = 

p/( 1 + p) , and eventually this expectation equals n/2 regardless of the value of p. 

For finite values of ;.t and k, direct estimation of p from p = Y1 /Y. will be biased 
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towards one (i.e. equal catchability). For example, if n = J.L.= 25, p=0.25, and k=0.5 

then E(YtiY = n) ='=8.5 (see Figure D.?'). If w were to ob erve this value then 

p= .5/ 25= 0.34 and p = 0.34/ 0.66 = 0.52, wher a: t he true value is p=0.25/ 0.75=0.33. 

This is a bias in th estimate of p towards one. This is similar to the attenuation bias 

resulting from measurement errors in covariates in linear regression (e.g. Stefanski , 

2000). Overdispersion will tend to "mask" differenc s in catchabili ty and reduce 

power. 

The conditional variance is shown in Figure I ).J II . The lifferent line types arc 

for different values of k, which arc shown in the top left-hand panel. The horizontal 

dotted line denotes the Binomial variabi lity. 

The Conditional JB variance increases as J.L. increases or k decreases. To help 

derive the limiting variance as J.L. ---t oo we mul tiply (:2 .. \:l) by x + 1 and sum it for x 

= 0, .. . , n- 1, 

n - l n - 1 

x=O x=O 
n-1 n-1 

= nk 'l)x + 1)Plim(x) + (n - k) L x (x + 1)Pum(x) 
x=O x=O 

n-1 

- L x2(x + 1)Plim(x). 
x=O 

It follows that 

(n + k)E(X2
) - E(X3

) = nk{1 - PLim(n)} + (nk + n - k){n/2 - npl;m(n)} 

+ (n- k- l )E(X2
) - n2 (n - k - 1)Plim(n)- E(X3

) 

+ n3Plim(n). 

(2k + 1)E(X2
) = nk- nkplim(n) + (nk + n- k)(n/ 2) - n2kPlim(n) 

- n2Plim(n) + nkPlim(n)- n3Plim(n) + n2kPlim(n) 

+ n2Plim(n) + n3Plim(n). 

(2k + 1)E(X2
) = nk + (nk + n- k)(n/2) 



(2k + l)E(X 2
) = nk + n 2k/2 + n 2 /2- nk/2. 

E (X 2 ) = nk + n
2
k/2 + n

2 
/2- nk/2. 

2k + 1 
nk n2 k n2 

E (X
2

) = 2(2k + 1) + 2(2k + 1) + 2(2k + 1) 

nk + n2k + n2 

2(2k + 1) 

Subtracting E(X )2 from E (X 2
) gives 

E (X 2)- E (X )2 = nk + n2k + n2 - (~) 2 
2(2k+ 1) 2 

nk+n2k+n2 
_ 2(2k+ 1) (~)2 

2(2k + 1) 2(2k + 1) 2 
2(nk + n 2k + n2

) (2k + 1)n2 

4(2k + 1) 4(2k + 1) 
n (2k + n) 
4(2k+ l )" 

Therefore 

. n(2k+n) 
Var(X ) = ,}~ Var(Y1IY = n;J.L., k) = 

4
(
2

k + 
1

) . 
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The Binomial variance analogue to E(X ) = n/2 is n/4. Th Condit ional B 

variance is infla ted by the factor (2k + n) / (2k + 1). If k is mall th n the inflation i 

large, whereas if k ---t the variance inflation goes to one. 

Clearly the condi t ional probability is sensitive to the value of J.L .· As such it is not 

directly useful for inferences abou t p. However, we explore two approximations for J.L. 

that we hope will lead to good inferences about p. We pursue the cond itional approach 

because we ant icipa te t hat it will give more reliable estimates of k. Although k is a 

nuisance parameter, it will be important to have good estimates of k to get r liable 

confidence intervals for p. 

The first approach we explore is to replace J.L. with n, which is the mle of J.L . as 

k ---t . The second approach we explore is to replace J.L with its approximate mle 
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based on the margina l distribution of Y = n, but t reating p and k as fixed. This can 

be different from n when k is small. In effect we replace J.I.. in (??) with a function of 

n, p and k. T his is similar to the concentration approach we used for J.I.. in Section 

2.4.1. 

The approximation we use for the mle of J.I.. has a closed form expres ion. We 

require th is because it makes the numerical calculation of t h mle of p and k much 

more feasible. If we used numerical methods to compute J.I. . then this would involve two 

levels of numerical optimization , optimize over J.I.. for fixed p and k , and then optimize 

over p and k. The first numerical optimization for J.I.. will introduce roughnes into the 

likelihood surface for p and k which means that standard numerical derivative-based 

optimization routines (such as optim or nlminb in R ) can be used to estimate p and 

k. Fortunately the mle for J.I. . can be closely approximated using a Taylor 's series 

expansion of E(Y1 IY = n; J.I. ., k) about J.I. . = n. We present the expansion in the next 

section , followed by the approximate marginal mle of J.I. .· 

2.4 .4 Taylor Series Approximation of the conditional m ean 

The B condi t iona l expectation can be reasonably approximated using a Taylor 's 

series expansion around J.I. . = n (sec shaded area in Figures I) '' - I) CJ ). We will use 

this result in the next section to develop a better conditional estimator of p. Let 

il! (J.I..) = E(Y1 IY = n ; J.I. ., k) and let cPx(J.I. .) denote the numerator term in th B pdf, 

cjJ _ f(k + x)f(k + n- x) ( E) x (QJ.l. . + k ) x 
x(J.I. .) - f( x + 1)f (n- x + 1) q PJ.I.. + k 

(2.34) 

By definition il! (J.I..) = 'f.x~)~/ . It is not hard to show that 

8¢x(J.I..) = { f(k + x)f(k + n - x)} { (E)x} {x (QJ.l.. + k)x-l} 
OJ.I.. f (x + 1)r(n- x + 1) q PJ.l.. + k 

X {q (PJ.I. . +k) -p(QJ.I.. +k) } 
(PJ.I. . +k)2 
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{ 
r(k + x) r (k + n- x) } { (p)x} { (qJ.L. + k)x-1} 

= r (x+ l )f (n-x+ l ) q x(PJ.L. +k)x+t {k(q-p)} 

= k(q- p)x¢x(J.L.) (2 35) 
(PJ.L. + k)(qJ.L. + k). · 

Let IJ!i(J.L.) = Li"'~~(t) ), i= 2,3. The first-order Taylor's series approximation of 

w (J.L.) is 

(2.36) 

where 

w'( )=~ {L: x<Px(J.L.) } 
J.L. OJ.L. L cPx(J.L .) 

_ {L ¢x(J.L.) } {L: x<P~(J.L.) } - {L: x<Px(J.L)} {L ¢~(J.L .) } 
- {L ¢x(J.L. )} 2 

{ '\:"""' ,.!.. ( ) } {"' x k(q- p)xtl>x(l•.) } _ {"' x,-~.. ( )} {"' k(q- p)xtl>x(P.) } 
6 '+'X J.L. 6 (p/l .+k)(q/L .+k) 6 ' '+'x J.L. 6 (P!I .+k)(q/L +k) 

w' = aw(J.L.) = k(q - p) w _ w2 
(J.L.) a ( + k)( + k) { 2 (J.L.) (J.L.)}. J.L. PJ.L. qJ.L. 

Hence, the first-order approximation is 

. k(q - p)(J.L. -n) 2 
W(J.L.) = w(n) + ( k)( k) {w2 (n) - w (n)}. (2.37) 

pn + - qn + 

The first-order approximations are hown a the dashed straight lin in Figures I ) .fi 

- I ) '). 
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To derive the s cond-order approximation, we first evaluate 

II fJ2iJJ(J.t.) k(q- p) I I 

iJJ (J.t.) = f) 2 = ( + k)( + k) {iJJ2(J.L.)- 2iJJ2(J.L.)iJJ2(J.L.)} 
J.t . PJ.t. QJ.t. 

+ -k(q- p)p(QJ.t. + k)q(PJ.t. + k) {iJJ ( ) _ iJJ2 ( )} 
(PJ.t . + k)2(qJ.t. + k)2 2 J.t . J.t . 

= -k(q- p)((pqj.ty + 2pqkj.t. + k2
) {iJJ ( ) - iJJ2 ( )} 

(PJ.t + k)2(QJ.t. + k)2 2 J.L. J.t . 

k(q-p) I I 

+ ( k)( k) {iJJ2 (J.L)- 2iJJ(J.L.)iJJ (J.L.) }, 
PJ.t. + " QJ.t. + " 

where 

and 

which implies that 

These results are used to compute the second-order approximation, 

I 1 2 II 

iJJ(v) ~ iJJ(n) + (J.t.- n)iJJ (n) + 2(J.L - n) iJJ (n), (2.38) 

which are shown as dotted-dashed curves in Figures D.h - D .~l. 

Within a neighborhood of ±50% of J.L. = n the first and second order approxima­

tions work well. We will use these in the next section to find a closed-form expression 

for the approximate mle of J.t , given p and k , bas d on Y = n. 
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2.4.5 Estimation of f-L. 

An approach to deal with the f..L. term in (??) for inferences about p is to replace f..L . 

by its marginal mle but with p and k treated as unknown parameters. The marginal 

pdf for Y is given by 

n 

P(Y = n) = L P(Y, = x)P(Y2 = n- x) 
x=O 

~ f(k+x) ( f.LJ )x( k ) k r(k+n-x) ( J.L2 ) n-x 
= ~ f(k)r(x + 1) /-Ll + k f..LI + k r(k)r(n- x + 1) J.L2 + k 

X (f..L2: k) k 

k2k ( )n n 
= f(k)2 qJ.Lq~ k (pf..L, + ktk(Qf..L. + k)-k ~ </Jx(J.L.), 

where <Px(J.L.) is given by (:2.:11 ). T h loglikelihood for f..L ., A(J.L.), is given by 

A(~.) ~ C + n log(~) - k log(w + k) - k log(QI'. + k) +log { t, <t>. (~) } , 
where C denotes terms that do not involve f..L.· After some simplification , 

8A(J.L) 
0 

. = n(pf..L. + k)- (2pqf..L. + k)f..L. + (q- p)f..L. iJJ(J.L.). (2.39) 
f..L. 

To derive this expression we used (1 .. F1 ) and the fact that 

__§___I {~ A- ( ) } - l:;=o <P~(J.L.) - k(q - p)iJJ(J.L.) 
og L.... 'Px f..L - "'n - ) . 

Of..L. x=O . Ln=O </Jx(J.L.) (PJ.L. + k)(qJ.L, + k 

The first-order approximate mle of f..L. can be obtained by replacing iJJ(J.L.) in (:2 :~!l ) 

with (2.36). This yields a quadratic equation in f..L. a1J.L2 + a2J.L. + a3 where 

a1 = (q - p) iJJ' (n) - 2pq, 

a2 = np + (q- p){iJJ(n)- nw' (n) } - k 
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The root of this equation is easy to obtain. It can be shown that the first-order 

approximate mle for J.L. is n wh n p = 1/ 2. 

A slightly more accurate approximation for the mle of J.L. m ay be obtained by 

replacing W(J.L.) in (2 .. ~U ) with (:2 ''-~ ) . Howev r , in simulations we did not find any 

advantage in using the second-order approximation for estimat ing p so we do not 

pr sent further details about this approximation. However , it is more complicated 

becau e the approximate mle is the root of a cubic polynomial. 

We illustrate the accuracy of t he approximations to the mle in Figure D. II -

!).1 :l. The profile values are 2 x the difference between the maximum log-likelihood 

and the log-likelihood for values of J.L.; hence, the minimum of the profile is zero. The 

second-order approximate mle for J.L. is usually coincident with the mle, except when 

k=0.5 and p=O.l. The first-order mle is usually very close to the mle as well. Note 

that th mle can be quite different from n when k and p a re m all. The likelihood 

profiles are flat indicating that a wide range of J.l·. values are consistent with a specific 

value of n. Based on a xi distribution, a 95% confidence interval for J.L. would include 

values such that the profile was less than XT ,o.95= 3. 4. Such confidence intervals would 

greatly exceed the range of J.L. 's in most panels of Figures !) l I - D. l :l. This suggests 

that , as expected, a ingle observation of Y does not give much information about J.L .. 

The percent differences in the first-order mle Cii.), 

(
J.L -n) %di ff erence = 100 - ·-n- , (2.40) 

are shown in Figure I) I I. When k and p are mall then the mle can be almost 50% 

greater than n; however, if k 2: 1 and p 2: 0.25 then the differences are less than 8%. 

This figure suggests that the m lc converges to n as k --+ or p --+ 0.5. 
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2.4.6 Models Diagnostics 

Once a model has been fit ted to the observed values of response variables, it is e sent ia l 

to check tha t the fitted model is actually va lid. 

There are a number of ways in which a fi t ted model may be inadequate. The 

most serious of these is tha t the linear systematic component of the model may 

be incorrectly specified; for example, it may not include explanatory variabl that 

really should be in the model. Also, the data may contain particular observations, 

termed ou t liers, that are not well fi t tcd by the model. Finally, the assumption that 

t he observ d da ta come from a particular probability distribution, for example, the 

egative Binomial distribution, may not be valid. 

The techniques used to xamine t he adequacy of a fit ted model a re known as di­

agnostics. These techniques frequently involve s ta tistics tha t are ba eel on differences 

between the fitted values under a model and the observations to which tha t model 

has been fitted. 

Measure of agreement between an observation of a respon e variable and the 

corresponding fi t ted value are known as residuals. The e quant ities can provide much 

information about the adequacy of a fi t ted model. 

In thi thesis, we use a common form of residua ls known as Pearson chi-square 

residuals. The chi-square residual arc defined by 

Yi- E(Yi ) 
ri == . 

J Var(Yi ) 
(2.41) 

It is simply t h residuals scaled by t he estimated standard deviation of Y. 

Suppo e t ha t a linear logistic model is fi tted to n observations of t he form y;jni, 

i == 1, 2, ... , N, and th corresponding fitt d value of Yi is fli == ni'fJi. Then for the ith 

observa tion, the Binomial chi-square residua l is given by 

(2.42) 
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and the over-dispersed binomial chi-square residual is 

(2.43) 

Equation (2 II ) is also used in this thesis to compute residuals for both t he Con­

ditional NB and the Concent rated NB models. For the Conditional B model, the 

condi t ional exp ctation and condit ional variance need to be found based on (2.:l0) 

and (:2.:11 ) so t hat equation (:2 11 ) is expressed as 

Yi l - l:~:=o YlPn; (yi) 
r;= ~============================= 2' 

2:~: =0 YfPn, (YI ) - { 2:~: =0 YlPn; (Yl )} 

where Pn, (yi) = P (Yt = Y1 IY = n;) as given in (??) 

(2.44) 

In Concentrated NB model, residuals are computed for both test and control 

observa tions. The NB chi-square residuals are 

Yi1 - fl;j 
r ;1 = ---;~~===~===, i = 1, ... , N, j = 1, 2. 

ilij ( 1 + fl f1 I k) 
(2.45) 

2.4. 7 Computer Software for Models Analysis 

R provides a powerful interactive comput ing environ ment for data analysis with ex­

tensive graphical facilit ies. This package is not st raightforward to use as other pack­

ages. The scope of t he package can be extended by wri t ing new functions or modifying 

existing ones. The software incorporates a function named glm used to fit generalized 

linear models, and for b inary data analysis t he argument f amily=binomial is included. 

Having fitted a model using the function glm, the function summary is used to ob­

tain parameter estimates and their standard errors. The function residuals can be 

used to calculate the values of cer tain resid uals. Numerical solution for maximizing 

likelihood functions can be found by nlminb and optim functions. 



Chapter 3 

Real Data Analysis 

3.1 Comparative Fishing Survey Protocols 

The main objective of the comparative fishing exercise was to determine if diff rences 

exist between WT and AN catchabilities (q) wh n both vessels us d the standard 

survey trawl. Data from paired tows were collected to quantify potential differences. 

The location of the comparative fishing was off the east coast of Newfoundland , in 

Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps and Divisions 

3LNO (sec Figure D. :!). Tow stations were selected randomly as part of research 

surveys. High density aggregations were not specifically targeted because information 

was required on differences in catchability when stock densities are high and low. 

The WT followed normal survey protocols, and the A surveyed for comparison 

purpose only. Th ve sels were instructed to tow on the same course, and the WT 

relayed the course to the A . On slope edges, where ·ide by side tows were not feasible 

due to depth differences, one vessel towed ahead of the other, alternating the lead 

vessel on a tow-by-tow basis . This was done so that the end of the tow for the trailing 

vessel occurred at a position just before the start of the tow for the leading ve sel; 

that is, there was no overlap in the area covered by the tows. The same depth rang 

43 
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for each paired tow was maintained as close as possible between boats. 

Differences in the depths fished for both vessels were minimized for a target of 

less than 10% during comparative tows. If the WT had an un ucce ful set both 

ves els repeated their tows, moving slightly so that the sam grounds were not towed 

over again . A full range of Scanmar trawl geometry sensors were used on each vessel, 

including n additional depth sensor mounted 50 m in front of the trawl doors. This 

additional sensor monitored the effect of using trawl warp on the AN which was 1/8 

inch larger in diameter than that used on the WT (1 inch). 

Let Yis be the number of fi sh caught at t he ith tow station by vessel s. We refer 

to the replacement vessel as s = t for the test vessel, and we refer to the ves el to 

be replaced as s = c for control. We assume that the replacement vessel is the AN, 

although our results can easily be adjusted if the WT is the replacement vessel. 

3.2 R esults 

A total of 57 paired survey sets wi th the A and WT were carried out in 2005. There 

were 49 sets with no catch for both ves. els, so these sets provide no information about 

rho. The number of sets with som catch by either vessel was 106 - 49 = 57. Most 

major commercial species had some survey coverage. Sets were located in the far 

offshore port ion of 3Ps (Fig. ]) . 1.-, ), the helf area in 3 , and the northern part of 

31. Note that in this figure the location of the plotting symbols indicate the average 

location of fishing for the two vessels. The size, type, and color of the plotting symbols 

give information about th within-pair differences in catches ( e figure capt ion). 

The actual catches are shown in Table C.l. The distance between paired tows was 

rela tively constant, wi th a maximum of 3.7 km. Tow depths wer al o usually similar , 

wit h a maximum ab olute difference of 37 m (Cadigan et al, 2006). Mo t of the Witch 

flounder catches occurred in Subdivi ion 3Ps. In Fig. D. I -, we show the difference in 

catches for each pair of tows, scaled by their "Pois on" standard deviation, which wa 
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the square root of the sum of the catches. Black symbol merely indicate potent ial 

out lier ; how ver, these "residuals" wer not adjusted for over-di persion, and we do 

not suggest that the e catches are out lier . 

In this thesi , a length effect is not considered . That is, relative efficiency 

assumed to be the same for all length , and only affected by ves els (WT and A ). 

This implies that equations (-2 . -)) and (:.! . ! :1) can be simplified to 

ef3 

1 + ef3 = P (3.1) 

and 

logit(p) = {J + u. (3.2) 

Table C.2 shows a summary of re ul ts for all fi t t ed model . Appendix B.1 shows 

the results of fitting the Binomial logi ti models. Substantially more user-d veloped 

computer code is required to fi t the NB cone. and NB cond. models. This code is 

not given in Appendix B. 

3.2.1 Binomial Model 

The standard binomial logistic r grc ion model was implemented in R using the 

function glm. Appendix B.1 gives th code results for thi mod I. The estimate of 

{J i -0.17214. That is, relative efficiency estimate is exp(-0.17214) = 0. 41. ote 

that the estimate ign is negative indicating that WT had a slightly lower relative 

efficiency than the A . The 95% confidence interval does not cov r on , which leads to 

the conclusion that the vessels had significantly different catchabili t i (q s) . The data 

and estimated relative efficiency are shown in Figure I) I ti (solid lin ) as a straight­

line through th origin with slope p wher p = xp(b). Residuals f this model are 

presented in Figure I l .l l . More than 5% of the chi-square residual have absolute 

value > 2, which sugge ts over-eli persion . 
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3.2.2 Over-dispersed Binomial model 

Appendix B.2 gives the code results for the Overdispersed Binomial model. It was 

implemented in R in which the quasi-likelihood approach was used to e timate the 

over-dispersion parameter. ote that the parameter estimates from this approach 

are identical to those in the previous ection (see Table C.2), but the standard error 

is larger. This leads to a wider confidence interval for the v sse! effect. Th 95% 

confidence interval for p also does not cover one, which leads to the same conclusion 

from the Binomial model with no over-dispersion. The relative efficiency from the 

Overdispersed Binomial model is presented in I) I;:... The chi-square re iduals adjusted 

for over-disper ion ar shown in Figure I ). 1 q .. ote that their overall magnitude is 

smaller than the Binomial residuals (Fig. I). II) . Figure f). l CJ hows that one of the 

sets had are idual of value less than -4. This set may be an outlier. 

3.2.3 Mixed Binomial model 

R code and results for the Mixed Binomial model are presented in Appendix B.3. 

The maximization was implemented in R using the function glmmML. The estimate 

of relative efficiency (Table C.2) from this model differs somewhat from what we 

obtained with the previous two model . In this model, /:J = -0.1251, which implies that 

p = exp(-0.1251) = 0.884. The 95% confidence interval for p cover one, which leads 

to the conclusion that the vessel did not have significantly differ nt catchabilit ies. 

This is d ifferent than the conclusion from the Binomial and over-disp rsed Binomial 

models. Figure I) .:2t I shows the relative efficiency. Residual for this model are not 

presented in this thesis because the R glmmML procedure does not produce any 

residuals. Chapter 5 gives more discussion about residuals for the GLMM model. 
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3.2.4 Conditional Negative Binomial, J.-L. = n 

The conditional B model with f..l . = n (total observed catch) was estimated by 

maximum likelihood using the R function optim. The resulting {3 estimate was similar 

to the Mixed Binomial model estimate. Relative efficiency for this model i presented 

in Figure I) :2 I. Residuals are presented in Figure [) 2:2 . All residual values were 

within -3 and 3, and there is no evidence of model mis-specificat ion. 

3.2.5 Conditional Negative Binomial, J.-L. estimat ed 

The estimate of {3, from the conditional B model in which f.L. was replaced by its 

marginal estimate, was also similar to the Mixed Binomial model estimate. Relative 

efficiency for this model is presented in Figure D.2.L Residuals are presented in 

F igure D.2 I. All residual values were within -2 and 2, and there is no evidence of 

model mis-specification. 

3.2.6 Full N egative Binomial 

The concentrated NB model likelihood was maximized using the R function optim. 

It produced a f3 estimate that is very close to those we obtained from GLMM, Condi­

tional NB (f..l . = n) and Condi tional NB (f..l. estimated) . Also, it produced a standard 

error that is clearly smaller than standard errors produced by GLMM and Conditional 

NB (for both f..l. cases) models and this resulted in having a shorter 95% confidence 

interval. Hence, the conclusion from this model is that relative efficiency was sig­

nificantly different from one, whereas from the GLMM and condi tional NB mod I 

analyses we did not conclude that p i= 1. Estimated relative efficiency is shown in 

Figure D.:z.-) . Also, residuals of this mod I are presented for both of test and control 

catches in Figure !Uii. The residuals look reasonabl . 
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3.3 Conclusions 

The re ults in Table C.2 sugge t that th re were no significant diff'erence in catcha­

bility for the WT and A fi hing the Witch Flounder trawl bas d on the GLMM 

Conditional NB (J.L. timated ) and Conditional B (J.L. = n) model . Thi i because 

(3 confidence intervals from tho e mod Is contained zero as a value. That is, in the 

GLMM, Cond NB and Cone NB models, (3 was not significantly different from zero. 

The analyse for the Binomial , over-dispersed Binomial and Full NB model sug­

gested that relative efficiency was ignificantly different from one. However, in the 

next chapter we how that confidence intervals from the latter three approaches a re 

much le s reliable than the GLMM and Conditional NB model . H nee, our con­

clusion i that the ves els did not have significantly different catchabilitie for Witch 

flounder. 



Chapter 4 

Simulation Study 

4.1 Design 

Simulat d data were generated to compare estimates of (3 from the OD Bin , GLMM, 

Cone NB, and Cond NB models. Data were generated using pseudo-random number 

generators for the egative Binomial distribution. In each data set, paired catches 

wer generated from independent Negative Binomia l distributions with parameters 

(3, J.L., and k. Recall that the IB means for each pair, J.i-I and J.i-2, are obtained as 

mu1 = pJ.L. and mu2 = QJ.L ., where q = 1 - p and logit(p) = (3. The simulation 

parameter values were: (3 = 0,0.4,0.69 ,1.60 (corresponding p values described below) , 

J.L. = 15,30,60 and k = 1,3,10. In the simulation ets of net catch sample data were 

randomly gen rated as ou tlined above. Sample sizes (i.e. number of sets) of N = 20, 

35 and 50 were con idered. The simulation values of (3, J.L., k, and n wer chosen to 

cover the range of value · that might occur in real comparative fishing data ets. Two 

thousand pairs of data sets were generated for each of the 108 possible combinations of 

(3 value, total mean value J.L. , k and sample size. The corresponding p true simulation 

values are 1, 1.5, 2 and 5. 
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Bias, standardized bias, mean quare error (MSE) and confidence intervals cover­

age wer ass ed. Th total biru of the estimated parameter {3 i given by 

1 2000 • 

Total Bia = 
20 

2:)!3i - {3), 
00 . 

t= l 

( 4.1) 

where 2000 is the number of iteration performed for any one of the prcviou men­

tioned simulation chemes. The total standardized bias is given by 

1 2000 ({3. - {3) 
Total Standardized Bia = 

2 
OO L 1 

• x 100%. 
0 i= t SE({Ji ) 

(4.2) 

Also, ( I I) can used for computing total bias for the e timated ovcrdisper ion 

parameter (k) in which {3 is replaced by k. 

Confidence interval coverage is also important to under tand for r liabl statistical 

inferences. We evaluated the accuracy of 90% and 95% confidence intervals computed 

as follows 

(4.3) 

Simulated confidence interval coverage is th proportion of simulations (i.e. out of 

2000 for each set of simulation paramet r ) in which the true simulation value of 

{3 fall s within the computed confidence interval endpoints. For reliable confidence 

interval the proportion of (1-a)% coverage confidence intervals covering the true {3 

value should be close to (1-a)%. 

The conditional B model was e timated using three different option for J.L. 

namely 1) J.L. e timated · 2) J.L. = n; and 3) J.L. fixed at the true imulation value. 

The latter approach could not be used in practi e because we would not know the 

true value for J.L.; however , it is u eful for understanding problem with the cond NB 

approach a ociatcd with not knowing J.L .. 
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4.2 Simulation Outcomes 

Simulation r suit are shown in Table C.3 - C.29. Column 4- 9 arc for t he following 

6 estimators: 4) Conditional B with mu.dot = est, 5) Conditional B with mu.dot 

= n, 6) Conditional B with mu.dot = true, 7) Concentrated NB, ) GLIM, 9) 

GLMM . Results for a ll simulation scheme arc better summarized in figure I ).:a to 

]) ;\!") . Biases are presented in Figure 1>.:.!1 . These results are also shown in Table 

C.3, C.4 and C.5. fean Square Error (MSE) i presented in Figure I) ..?fJ and Tables 

C.9, C.lO and C. ll. Simulated lower, upper and total coverage of 90o/c and 95% of 

{J estimates can be een in Figure I) ;11 to ]) Ti and Tables C.12 to C.29. In each 

figure, nine panel are given so that each panel shows the re ult for a combination 

of n and k for the previous mentioned 6 e timators which arc shown at the top and 

right-hand side, respectively. The model and valu for J.t. are shown at the left-hand 

side. Each group of points correspond to a value of p = xp({J) = 1 (top line), 1.5, 

2, and 5 (bottom line). Conditional 1B with mu.dot =est is abbreviated as Cond l , 

Conditional B with mu.dot = n as Cond2 and Conditional B with mu.dot = true 

as Cond3. AI o, Concentrated B is abbr viated as Cone. Zero i hewn as a solid 

vertical line. 

The bias was generally found to fall within -0.05 and 0.05 value cxc pt for {J = 

1.6 (p = 5) in the Conditional NB model wh re some extreme negative bias values 

were found. Those negative low bias valu can be clearly e n when k = 1 or 3. 

As the overdisper ion parameter (k) gets larger then the six c timators give smaller 

bias values. fSE re ults are presented in Figure I> l!J. MSE dccrcas as k increase 

(i.e. ovcr-di persian decrease ) for all model . Also, it is cl ar that when k and p 

increase then t he MSE's are smaller, for all e timators under tudy. The combination 

of bias and MSE values can be found in Figures u.:lfJ to l">.Ti where the total 90% 

and 95% cov rage are presented. In Figur 1).:~:2, it can be cl arly seen that when k = 

1 both the Concentrated NB and GLIM · t imators produce coverage value less than 

0% and Cond l , Cond2, Cond3 and GLMM produce coverage values closer to 90%. 
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If k = 3 or 10, then the Concentrated NB estimator produces coverage values less 

than 0% while the GLI 1 coverages tend to get higher t han than 0% and closer to 

90%. In Figure D.';.i the Concentrated B estimator resulted in the lowe t coverage 

value . The 95% coverage value arc generally less than 95% for all k combinations. 

Note that Con entrated B estimator produced coverage values around 5% for a ll 

k combination . All Cond1, Cond2, Cond3 and GLMM give coverage values were 

close to 95% for all k combinations while GLII\II coverage values incr ascd when k got 

larger. 

The general conclusion from the imulation is that bias and standardized bias 

in the variou c t imators of /3 tended to be mall , except when p = 5. In thi case 

t he conditional B approaches with f..L . estimated or fL. = n had substantial bias 

which was wor e when fL. = n . This bias did not occur when fL. was fixed at the 

true value which suggests that the problem when p = 5 is rela ted to th unknown 

fL. parameter in the conditional likelihood . These biases did not affect MSE. In fact, 

in a ll three conditional B model the MSE was usually lowe t when p = 5. Total 

coverage of confidence intervals was affected by t he bias, especially when fL. = n. 

Total coverage was reasonably accurate when fL. was estimated, a lthough one-tailed 

coverage tend d to be le s accurate when p = 5. All e timator yielded confidence 

interval coverage that were somewhat lower than the nominal considered percent level. 

The Con cntratcd NB estimator performed very poorly in all case . T h Binomial 

approach resulted in poor confidence coverag , especially for small k = 1, 3. 

The GLMM produced confidence interval that had relatively good coverage prop­

ertie , pecially when n = 50. However this procedure was clearly inefficient in terms 

of MSE when k = 1, which is a practically relevant amount of over-eli persian. 



Chapter 5 

Conclusion 

The results in Chapter 3 sugge ted that t here were small difference in catchability 

between the WT and A I for the species Witch flounder. The sign of th log rela tive 

efficiency parameter estimate for different models under study was always negative 

which provid orne additional eviden c that t he catchabili ty of t he A was lower 

than the WT. However the effect , if it exists appeared small and could be ignored 

without erious consequence . 

The Conditional Poisson model (i.e. Binomial model) sugge ted that t he A 

vessel is 4% as efficient as the WT ve sel, and the effect was statistical significant. 

However, over-dispersion was apparent in this model. An analysi of Pear on chi­

square residual showed that many were 2:: ± 2, more than one would expect due 

to simply random variability. The data exhibited more variabili ty than could be 

explained by Binomial sampling. 

One source of over-dispersion in the Binomial model is the rroneou as umption 

that differen es in tock densitie fished by each trawler were identical. In practi e 

this docs not happen , although differences in stock densities a t each tow site within 

a pair should be completely random so that they can be viewed as iid samples from 

some di t ribut ion of densities. We conjecture that t his was the motivation by Benoit 
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and Swain (2003) and Lewy et a l. (2004) for using a Binomial ov r-dispcrsed pa­

rameter. We al o fitted a Binomial model with an over-dispcr ed variance, using 

qua i-likelihood to estimate the over-di persian parameter. The estimate of {3 was 

identical to the Binomial model estimate but t he standard error was larger and con­

fidence intervals were wider. We suggc t the wider confidence interval are more 

accurate. Nonethele s, the results still suggested that {3 was marginally significantly 

different from zero. The residual· from the over-dispersed Binomial looked more rea­

sonable as well. Benoit and Swain (2003) sugge ted that the ovcr-dispcrs d Binomial 

approach till Jed to false significance, and they used a randomization method for de­

termining statistical significance. The main research in thi thesis was to investigate 

more thoroughly models for a specific type of over-di per ion , which is within-pair 

random differ nces in stock densities. 

Three alternative method were cxplor d. First, we analyzed th data using a 

mixed binomial model with an independent and identically distributed random stan­

dard normal effect for each ct. The mixed binomial model (GLMM) suggested that 

the A Twa % as efficient as WT ve sel , but that p was not ignifi antly different 

from one at th 5% level. A well develop d theory exi ts for rc idual diagnostics in 

fixed effects models, but much less seem to b available for mix d-cff cts models and 

we could not produce residuals for the GLMM. Residual diagnostics for GLMM's are 

practically important and future research in thi. area would be useful. Simulation 

re ults showed that this model did a good job in avoiding bias and giving confi­

dence interval coverage close to the nominal desired levels; however, it performed 

fairly poorly in terms of MSE for the type of over-dispersion we considered. This 

model seems more reliable for practical u e than the over-dispersed Binomial model 

approach; however , further improvements arc possible. 

We also investigated the probl m of ovcrdi persian by assuming that th vessel' 

catches have a Negative Binomial distribution, which can be regard d as a general­

ization of th Poi son distribution with an additional parameter a llowing the variance 
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to exceed the mean. Direct estimation of the NB model by maximum likelihood sug­

gested that the A ve sel was % as efficient as the WT ve sci, and that t he ves el 

effect was marginally significant. However, in our imulation analy i we found that 

this model wa the worst among those examined, in terms of confidence interval cov­

erage The probl m is related to gro over-estimation of th NB k parameter which 

leads to gross under-estimation of ·tandard errors and confidence intervals that are 

much too narrow. Direct estimation of variance parameters by maximum likelihood 

is known to b bia cd when there arc many mean parameters, and thi is certainly 

the case for pair d-trawl calibration data. In thi model, th many J.(s arc nui ancc 

parameter and orne adjustment for c timating these parameter i required for in­

ferences about the B k parameter. Our imulation result how d that the mle of 

k was badly biased. Using the full B model i not recommended . Thi is why we 

investiga t d condit ioning for inferences about relative efficiency. 

Conditioning with paired count data when the data are NB distributed has re­

ceived !itt! tudy in the statistical literature, and this was an important contribution 

of this thcsi . The conditional approach is commonly used when data are Poisson 

d istributed, and a good way to deal with the pair-total nui ancc parameters , J.L. ' . 

However , the approach is more probl matic with B data becau c th J.L. 's are not 

eliminated in the onditional distribution . We explored two option for dealing with 

these nuisanc parameters. One was to r place them by n , which i their mlc when 

t he NB over-dispersion is small (i.e. k is larg ) , and the oth r option was to replace 

them with th ir direct mle based on the marginal distribution of the paired-totals. 

The conditional B model performed lightly better in our imulation than the 

Mixed Binomial model in terms of MSE; however , the condi tional approaches we 

investigated had bias problems when th vc sel effect was large, and this led to poorer 

confidence interval coverage. The option of estimating J.L. gave better bias results and 

good total confidence interval coverag , but there was sti ll orne problems with one­

sided coverages. 
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Th conditiona l B model ugge ted that A vessel is % as effi cient as WT. 

This model produced a standard error that was appreciably larg r t han tho e for 

the model under except GL 1 I mod I. This is because it a llow for overdi persion . 

Residuals produced in Conditiona l B are presented in Figure f) 2:2 when J.L. = n 

a nd in Figure I l .! 1 when J.L. is c t imated . It is clearly noted that if J.L. = n then the 

obtained residua ls are relatively smaller t han those obtained wh n J.L. is stimated 

in the Conditional NB model. In general, residuals obtained under both cas s of 

Condi t iona l B model are relatively mall compared to those produced with other 

models. In thi model, residuals value records are within -3 to + 3 while it can be 

noted in figures I) I';" and I) 1 q that ·orne re iduals values fell out ide the range -3 to 

+ 3. For both opt ions of dealing wi th p,., p was not s ignificant ly d ifferent from one at 

the 5% level becau e confidence intervals for (3 estimates contained zero as a value. 

In this thesis we demonstra ted t hat t he Condi tional NB and Mixed Binomial 

models performed better t han the Binomial logi t ic model wi th over-dispersion or 

t he full B model. However, the efficacy of the these approach s for e timating 

relative effi ciency requires further re earch e pecially for large (3 value . lso, we 

conclude t hat t he full NB model and ov r-d isper ed Binomial model provide poor 

confidence intervals and are not recommended for pa ired-trawl calibration studie in 

which within-pa ir gamma-type variations in local stock dcnsitie occur , which would 

seem to be common. 



Appendix A 

Evaluation of Conditional NB 

Probability 

A.l 

To compute th pdf, let Pn(x) = P (Y1 = xiY = n) 

rn(x) = Pn(x) =(E) (qtJ-. + k ) (X+ k - 1) (n-X+ 1) 
Pn(x- 1) q PtJ-. +k x n-x+k 

Let Cn ( x) b a numerator term in P n ( x) : 

(0) r(k)f(k + n) 
Cn f (n+ 1) ' 

Cn(1) =cn(O)r,(1) 

C11 (2) =cn( l )r11 (2) = C11 (0)rn(1)r11 (2) 

C11 (3) =cn(2)rn(3) = C11 (0)r,(1)rn(2)rn(3) 

etc. 
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This is an easy recursive formula to compute 

() 
Cn(x) 

Pn X = '\'n ( ·) · 
L..,x=O Cn X 

An even better formula is 

Pn (X) C~ (X) • ( ) _ Cn (X) 
'\' n ( ) , en X - -(-) , 
L..,x=O c;l X Cn Q 

c~( 1 ) = 1, 

c~ ( 1) =r n ( 1) 

c~(2) =rn(2) = rn(1)rn(2) 

c~(3) =Tn(3) = rn( 1)rn(2)rn(3) 

etc. 
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Appendix B 

R Software Codes 

B.l 

Binfit <- glm(cbind(test,control) - 1, family=binomial,data=catches) 

summary(Binfit) 

Call : glm(formula = cbind(test, control) - 1, family binomial, 

data = catches) Deviance Residuals : 

Min 1Q Median 3Q Max 

-9.4286 -1 .0936 0 .2656 1.2513 7.6943 Coefficients: 

Estimate Std. Error z value Pr(>lzl) 

(Intercept) -0.17214 0.02923 -5.89 3.87e-09 *** 

Signif . codes: 0 '***' 0 . 001 '**' 0. 01 '*' 0. 05 ' . ' 0 . 1 ' ' 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 334 .55 on 56 degrees of freedom 

Residual deviance: 334.55 on 56 degrees of freedom AIC: 537 .49 

Number of Fisher Scoring iterations: 3 
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B.2 

Binfit.od <- glm(cbind(test,control) - 1, 

family=quasibinomial(link = "logit "),data=catches) 

summary(Binfit.od) 

Call: glm(formula = cbind(test, control) - 1, family 

quasibinomial(link = "legit"), 

data = catches) 

Deviance Residuals: 

Min 1Q 

-9.4286 -1.0936 

Median 

0.2656 

3Q 

1.2513 

Max 

7.6943 Coefficients: 

Estimate Std . Error t value Pr(>lt l ) 

(Intercept) -0.17214 0.06891 -2 .498 0.0154 * 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0 .1' '1 

(Dispersion parameter for quasibinomial family taken to be 5 . 557919) 

Null deviance : 334 .55 on 56 degrees of freedom 

Residual deviance : 334.55 on 56 degrees of freedom AIC: NA 

Number of Fisher Scoring iterations : 3 

B.3 

set<-catches$total 

60 

Binfit .ri <- glmmML(cbind(test, control) - 1, family=binomial,data=catches, 

cluster = set) 

Warning message : non- integer #successes in a binomial glm ! in: 

eval(expr, envir, enclos) 

summary(Binfit . ri) 



Call: glmmML(formula = cbind(test, control) - 1, family binomial, 

data = catches, cluster = set) 

coef se(coef) z Pr(>lzl) 

(Intercept) -0.1251 0 . 1218 -1.028 0 . 304 

Standard deviation in mixing distribution: 0.7049 Std. Error : 

0 .09519 

Residual deviance: 173.8 on 55 degrees of freedom AIC:177.8 
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Appendix C 

Tables 
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Table C.1: Catch Summaries for Witch Flounder 

T estCatch Control Catch TestCatch Control Catch 
1 0 113 125 
0 1 141 119 
0 1 64 64 
1 0 95 79 
13 18 146 145 
1 0 92 4 
0 1 58 83 
1 0 56 5 
1 0 27 19 
2 0 13 13 
5 3 68 73 
1 1 1 5 
18 33 0 1 
93 310 1 3 
55 23 10 14 
17 23 41 55 
95 105 89 2 
4 13 42 36 
1 3 

13 17 
4 11 
12 1 
102 112 
5 42 
5 7 
6 1 
1 30 
71 44 
74 119 
72 90 
46 67 
5 2 

59 131 
1 0 

65 84 
65 71 
41 46 
51 33 
75 132 
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Table C.2: Numerical Results in Real Data Application. {3 is the logarithm of relative 
efficiency 

Model {3 p Std.ErTor {3 95%CI p 95%CI 

CondPoi -0.17214 0.841 0.02923 ( -0.229, -0.114) (0.795, 0.894) 

ODBin -0.17214 0.841 0.06891 ( -0.307, -0.037) (0.735, 0.963) 

GLMM -0.12218 0.884 0.09290 ( -0.304, 0.059) (0.737, 1.060) 
ConcNB -0.12463 0.882 0.06189 ( -0.245, -0.003) (0.782, 0.997) 

CondNB -0.12604 0.881 0.09320 ( -0.308, 0.056) (0.734, 1.057) 

(f.l. = est.) 
CondNB -0.12604 0.881 0.09316 ( -0.308, 0.056) (0.734, 1.058) 

(f.l. = n) 
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Table C.3: Bias ( x 100) in estimates of (3 from the simulations with k = 1. Other 
simulation factors are listed in columns 1-3. p = exp((3). 

p f..L . Nobs Cond Cond Cond Cone Bin Bin 
B 1 NB 2 NB 3 B GLM_OD GLMM 

1 15 20 0.27 0.85 1.18 0.22 -0.38 0.33 
1.5 15 20 1.01 0.42 -0.60 -1.62 -1.54 1.63 
2 15 20 1.41 0.10 1.02 -2.13 - 0.35 3.01 
5 15 20 -4.23 -16.06 0.83 -3.63 -1.06 4.68 
1 30 20 -0.73 0.28 0.79 - 0.65 -0.37 - 0.69 
1.5 30 20 2.00 0.04 1.48 0.67 1.47 2.60 
2 30 20 0.42 -3.63 0.87 - 0.82 -0.41 1.82 
5 30 20 -8.29 -18.25 1.24 -3.58 - 1.20 1.06 
1 60 20 -0.85 -0.78 -0.95 -0.87 0.35 -0.69 
1.5 60 20 -0.41 - 1.57 2.74 -0.84 -0.37 0.03 
2 60 20 0.54 -4.07 2.28 0.55 1.11 2.05 
5 60 20 -7.55 -21.10 1.07 0.23 1.66 2.43 
1 15 35 - 0. 0 1.04 -0.24 - 0.63 -0.10 - 0.90 
1.5 15 35 1.63 0.38 - 0.77 - 1.25 -0.82 2.10 
2 15 35 2.79 1.11 1.19 - 1.08 0.53 3.91 
5 15 35 -3.27 -15.86 1.10 -2.59 0.98 5.68 
1 30 35 0.39 0.95 0.16 0.37 0.08 0.50 
1.5 30 35 0.50 -0.00 0.76 -1.01 - 0.67 0.81 
2 30 35 -0.33 - 1.33 1.22 -2.00 - 0.07 0.52 
5 30 35 -5.63 -18.94 1.29 - 1.13 0.68 3.63 
1 60 35 0.15 - 0.81 0.30 0.14 0.34 0.16 
1.5 60 35 -0.24 - 1.88 1.38 - 0.84 0.02 0.04 
2 60 35 -0.00 - 2.14 1.1 - 0.48 - 0.38 0.80 
5 60 35 -7.86 -20.91 1.32 -0.87 0.05 1.43 
1 15 50 - 0.27 0.62 0.72 -0.32 - 0.61 - 0.33 
1.5 15 50 1.46 0.25 1.26 - 1.36 - 0.39 1.75 
2 15 50 2.62 -0.48 1.00 -1.38 0.32 3.57 
5 15 50 -2.48 - 15.50 0.34 -2.12 0.66 6.34 
1 30 50 -0.27 - 1.02 -0.19 -0.28 -0.25 - 0.17 
1.5 30 50 0.10 0.24 0.23 -1.43 -0.30 0.21 
2 30 50 0.58 - 1.93 0.32 - 1.29 - 0.14 1.55 
5 30 50 -6.32 - 19.04 0.90 - 1.99 0.08 2.61 
1 60 50 0.06 -0.31 0.07 0.06 0.32 0.13 
1.5 60 50 0.11 1.24 0.47 - 0.66 - 0.18 0.30 
2 60 50 0.33 -2.03 0.16 - 0.22 0.34 1.33 
5 60 50 - 7.37 -21.35 0.35 - 0.65 0.35 1. 5 
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Table C.4: Bias ( x 100) in estimate of {3 from the simulations with k = 3. Other 
simulation factors are listed in column 1-3. p = exp(/3). 

p /-L . obs Cond Cond Cone Bin Bin 
B 1 NB 2 B GLM_OD GLMM 

1 15 20 0.89 -0.26 -0.19 0.70 0.55 0.90 
1.5 15 20 0.97 0.37 0.79 -0.71 -0.16 1.22 
2 15 20 1.45 0.17 -0.16 -0.75 0.30 2.13 
5 15 20 -2.85 -6.90 0.60 -1. 8 -0.01 3.21 
1 30 20 - 0.00 0.58 0.06 - 0.02 - 0.14 0.01 
1.5 30 20 0.49 0. 6 - 0.20 - 0.43 - 0.02 0.71 
2 30 20 0.12 - 0.62 0.4 -0.93 0.01 0.90 
5 30 20 - 4.45 - 7.55 0.23 -1.04 0.3 2.06 
1 60 20 -0.0 - 0.17 0.21 -0.08 - 0.05 - 0.16 
1.5 60 20 0.94 0.41 -0.10 0.50 0.92 1.18 
2 60 20 -0.32 -1.37 0.59 -0.53 -0.23 0.54 
5 60 20 -5.68 -9.82 0.70 -0.68 -0.1 1.10 
1 15 35 0.45 0.33 0.57 0.40 0.33 0.43 
1.5 15 35 0.59 0. 2 0.48 -1.09 -0.26 0.75 
2 15 35 1.72 0.31 - 0.48 - 0.61 0.62 2.35 
5 15 35 - 3.16 - 6.17 0.03 -2.29 - 0.37 3.01 
1 30 35 -0.51 - 0.43 -0.19 - 0.53 - 0.77 -0.59 
1.5 30 35 0.36 0.01 - 0.03 - 0.69 - 0.44 0.57 
2 30 35 0.69 - 0.86 0.26 -0.52 - 0.01 1.36 
5 30 35 -4.73 -8.18 -0.27 - 1.29 -0.25 1.82 
1 60 35 -0.26 - 0.00 0.13 - 0.23 -0.16 - 0.31 
1.5 60 35 0.36 -0.37 -0.68 -0.13 0.07 0.46 
2 60 35 -0.33 -1.06 0.04 -0.69 -0.34 0.38 
5 60 35 -5.28 -10.06 0.20 -0.10 0.55 1.65 
1 15 50 0.26 - 0.05 0.07 0.32 0.45 0.24 
1.5 15 50 1.26 0.91 - 0.18 -0.54 - 0.01 1.43 
2 15 50 1.19 0.67 - 0.2 - 1.26 - 0.21 1. 0 
5 15 50 -3.27 - 6.94 0.29 - 2.36 - 0.27 2.93 
1 30 50 - 0.16 -0.16 - 0.17 -0.20 -0.30 - 0.14 
1.5 30 50 0.33 0.65 0.45 - 0.69 - 0.17 0.49 
2 30 50 0.25 -0.78 0.63 -0.95 - 0.09 0.90 
5 30 50 - 4.68 -8.41 0.06 -1.27 0.14 1.92 
1 60 50 0.31 0.19 0.33 0.29 0.20 0.32 
1.5 60 50 -0.23 0.06 0.09 -0.74 -0.06 - 0.06 
2 60 50 0.35 - 0.66 - 0.04 - 0.01 0.39 1.09 
5 60 50 - 5. 4 - 9.9 - 0.08 - 0.71 0.32 1.05 



67 

Table C.5: Bias ( x 100) in estimates of /3 from the simulations with k = 10. Other 
simulation factors are listed in columns 1-3. p = exp(/3) . 

p f..L. Nobs Cond Cond Bin 
NB 1 NB 2 GLMM 

1 15 20 -0.04 0.12 -0.01 -0.03 
1.5 15 20 0. 1 0.78 0.16 0. 5 
2 15 20 0.89 0.49 -0.09 1.07 
5 15 20 0.27 -0.78 0.25 2.22 
1 30 20 -0.21 0.16 - 0.19 -0.18 -0.21 
1.5 30 20 0.35 0.52 -0.27 -0 .06 0.40 
2 30 20 0.63 0.47 0.51 - 0.25 0.24 0. 6 
5 30 20 -0.77 -1.75 0.40 -0.50 0.23 1.46 
1 60 20 -0.03 -0.18 -0.30 0.00 0.05 - 0.03 
1.5 60 20 0.51 -0.18 0.01 0.07 0.25 0.59 
2 60 20 0.36 -0.30 0.10 -0.13 0.08 0.62 
5 60 20 -1.28 -2.16 -0.46 -0.20 0.44 1.10 
1 15 35 0.03 0.09 0.15 0.09 0.16 0.03 
1.5 15 35 0.84 0.86 -0.42 -0.04 0.22 0. 8 
2 15 35 0.77 0.92 0.0 -0.50 -0.13 0.94 
5 15 35 0.34 -0.61 -0.16 - 0.31 0.26 2.37 
1 30 35 0.15 0.19 0.12 0.17 0.24 0.15 
1.5 30 35 0.37 - 0.04 0.14 - 0.30 0.01 0.42 
2 30 35 0.6 0.50 - 0.11 - 0.24 0.19 0. 9 
5 30 35 -1.07 - 1.95 0.31 - 0.89 0.01 1.17 
1 60 35 0.17 0.05 0.50 0.16 0.14 0.1 
1.5 60 35 0.40 0.06 -0.04 -0.04 0.23 0.47 
2 60 35 0.43 -0.31 0.14 - 0.08 0.27 0.69 
5 60 35 -1.65 -2.67 0.09 -0.52 0.10 0. 1 
1 15 50 0.06 -0.19 0.09 0.09 0.09 0.06 
1.5 15 50 0.58 0.63 0.35 -0.39 -0 .19 0.62 
2 15 50 1.06 1.02 0.01 - 0.29 0.12 1.23 
5 15 50 - 0.02 -1.05 -0.11 - 0.71 -0.04 2.02 
1 30 50 0.11 - 0.23 0.07 0.10 0.09 0.11 
1.5 30 50 0.55 0.43 -0.04 - 0.16 0.13 0.59 
2 30 50 0. 3 0.45 0.14 - 0.16 0.25 1.04 
5 30 50 - 0.74 - 1.98 - 0.06 - 0.61 0.25 1.54 
1 60 50 0.02 - 0.35 0.09 - 0.00 -0.06 0.02 
1.5 60 50 0.03 -0.03 0.19 -0.42 -0.2 0.09 
2 60 50 - 0.0 0.0 0.17 -0.63 - 0.35 0.17 
5 60 50 - 1.99 -2.47 -0.05 - 0.89 - 0.32 0.45 
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Table C.6: Standardized bias (100x bias/standard error) in estimates of (3 from 
the simulations with k = 1. Other simulation factors are listed in columns 1-3. 
p = cxp((J) . 

p JL. obs Cond Cond Cone Bin Bin 
TB 1 B3 NB GLM_OD GLMM 

1 15 20 0.13 2.2 0.27 -1.3 0.36 
1.5 15 20 3.67 6.47 -6.63 -8.36 3.43 
2 15 20 6.25 8.76 2.50 - 7.37 - 5.03 7.11 
5 15 20 -8.61 -50.22 3.45 -13.67 - 9.35 
1 30 20 - 2.94 0.24 2.14 -3.95 - 2.2 
1.5 30 20 6.69 5. 13 5.08 1.98 2.30 
2 30 20 3.89 - 3.05 3.74 -3.56 - 6.29 
5 30 20 - 20.93 - 58.50 6.32 -14.57 - 10. 1.42 
1 60 20 -2.35 -2.90 - 3.25 - 3.08 0.97 - 1.76 
1.5 60 20 1.2 1.46 8.44 -2.19 -4.33 0.70 
2 60 20 4.69 -3.40 8.43 2.04 0.01 5.19 
5 60 20 -17.64 -70.66 5.67 1.42 -0.66 6.48 
1 15 35 -2.25 3.70 -1.2 -2.70 - 0.51 - 2.4 
1.5 15 35 6.3 5.35 -3.94 -6.22 - 5.61 6.31 
2 15 35 11.96 9.95 3.83 - 4.78 - 0.92 12.83 
5 15 35 - 8.46 -67.89 5.54 -12.27 -1.05 1 .30 
1 30 35 1.79 3.69 0.55 2.36 0.51 2.11 
1.5 30 35 2.78 5.09 2.61 - 5.27 - 5.34 2.33 
2 30 35 1.13 1.49 5.51 - 9.80 - 3.6 1.63 
5 30 35 - 18.36 - 83.45 7.17 - 5.72 - 2.43 
1 60 35 0.82 -3.07 1.06 1.04 2.11 
1.5 60 35 0.85 - 1.7 5.49 -3.56 - 1.44 
2 60 35 1.97 - 1.12 4.82 -2. 1 -5.79 2.24 
5 60 35 - 26.79 - 94.37 7.85 -3.82 -5.05 5.01 
1 15 50 - 1.19 2.33 3.54 - 1.89 -3.18 -1.33 
1.5 15 50 6.89 4.87 5.46 - 8.06 - 4.2 6.63 
2 15 50 11.86 3.36 4.55 - 8.74 - 1.23 12.97 
5 15 50 - 8.44 - 79.86 2.70 - 12.80 - 1.57 23.72 
1 30 50 - 1.44 - 3.90 - 1.39 - 2.10 -1.79 - 1.02 
1.5 30 50 1.13 5.23 0.04 - .63 - 3.52 0.3 
2 30 50 3.99 - 2.80 1.22 - 7.83 - 3.55 5.51 
5 30 50 - 26.11 - 101.85 6.2 - 11.10 - 4.07 10.15 
1 60 50 0.54 - 1.46 -0.68 0.75 2.22 0.77 
1.5 60 50 1.90 10.54 1.43 - 3.43 - 2. 7 1.44 
2 60 50 3.27 - 2.93 1.10 - 1.59 - 1.06 5.1 
5 60 50 -31.61 - 115.96 3.2 - 3.63 - 2.56 7.42 
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Table C.7: Standardized bias (100x bias/ standard error) in estimates of f3 from 
the simulation with k = 3. Other simulation factors are listed in columns 1-3. 
p = exp(fJ). 

p 1-L. Nob Bin Bin 
GLM_OD GLMM 

1 15 20 3.67 5.34 
1.5 15 20 2.69 3.22 -2.15 4. 8 
2 15 20 2.54 -2.75 -4.77 0.37 9.15 
5 15 20 -37.17 1.49 -12.20 -1.97 14.56 
1 30 20 0.31 2.16 -0.22 0.6 0.06 0.40 
1.5 30 20 3.43 5.70 - 1.44 - 2.72 -0.31 3.55 
2 30 20 1.95 - 0.65 1.81 -6.27 - 0.76 4.26 
5 30 20 -22.93 -42.90 1.90 - 7.16 0.77 10.11 
1 60 20 -0.85 - 1.29 0.55 -1.03 -0.51 -1.1 
1.5 60 20 5.23 4.17 - 1.63 2. 7 4.19 5.50 
2 60 20 -0.56 -4.77 2.40 -4.33 -2. 3 2.40 
5 60 20 -30.18 -4.49 -2.86 5.90 
1 15 35 2.72 1. 1 3.62 2.52 2.68 
1.5 15 35 4.01 6.39 - 9.62 - 2.54 4.31 
2 15 35 11.73 3.34 - 4.00 -5.20 3.53 14.26 
5 15 35 -20.70 - 42. 1 -1.06 -20.65 -3.39 1 .52 
1 30 35 -2.57 - 2.73 - 0.74 - 4.04 - 5.31 - 3.03 
1.5 30 35 2.53 1.14 - 0.42 - 7.01 - 3.98 3.19 
2 30 35 5.54 - 4. 4 1.3 -4.81 - 0.81 .64 
5 30 35 -33. 3 -59.60 -2.46 - 13.28 - 3.61 10.9 
1 60 35 -1.76 -0.16 1.08 - 2.17 -0.99 -2.05 
1.5 60 35 3.20 - 1.65 -5.34 -1.10 0.29 3.14 
2 60 35 -1.02 -5.35 -0.27 -6.26 -3.37 2.72 
5 60 35 -38.29 -75. 1.44 -1.61 2.23 10.53 
1 15 50 1.56 -0.25 1.04 3.14 3.80 1.43 
1.5 15 50 9.59 7.98 -2.81 -5.70 - 0.53 10.14 
2 15 50 9.19 6.25 - 3.53 - 13.99 - 2.96 12.38 
5 15 50 - 26.33 - 58.84 1.61 -26.51 - 3.90 21.10 
1 30 50 - 1.35 - 1.24 - 1.39 - 2.40 - 2.9 - 1.19 
1.5 30 50 2.79 5.59 3.59 - 7.99 - 2.44 3.33 
2 30 50 2.40 - 4.98 5.40 - 11.27 - 2.32 6.40 
5 30 50 - 39.84 - 73.96 0.03 - 14.7 - 0.33 14.41 
1 60 50 2.54 1.4 2.79 3.42 1.99 2.67 
1.5 60 50 -1.03 2.34 0.16 - 7.95 -1.00 - 0.29 
2 60 50 3.23 -4.15 -0.54 -1.02 2.35 7.99 
5 60 50 - 50.98 - 89.54 - 1.05 -8.56 0.84 7.90 
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Table C.8: Standardized bias (100 x bias/standard error) in estimates of (3 from 
the simulations with k = 10. Other simulation factors are listed in columns 1-3. 
p = exp((J). 

p 1-L. Nobs Cond Cond Cone Bin Bin 
B2 NB 3 NB GLM_OD GLM 1 

1 15 20 1.13 -0.56 -0.34 -0.19 -0.32 
1.5 15 20 5.94 - 1.23 -0.17 0.37 5.34 
2 15 20 2.96 1.45 -2.88 -1.34 7.55 
5 15 20 -6.49 -2.85 - 0.94 1.71 17.46 
1 30 20 - 1.40 0.70 4.86 - 1.81 - 1.22 - 1.37 
1.5 30 20 2.70 4.47 0.48 - 3.00 -0.65 2.94 
2 30 20 5.31 4.45 4.29 - 3.31 1.42 6. 6 
5 30 20 -7.07 - 16.31 2.44 -5.69 1.33 12.09 
1 60 20 - 0.38 -1.60 -2.74 0.00 0.43 - 0.32 
1.5 60 20 4.82 - 1.71 -0. 13 1.07 2.10 5.26 
2 60 20 3.35 -2.40 1.01 -2.01 0.42 5.34 
5 60 20 -11.83 -20.82 -6.29 -2.19 3.74 10.37 
1 15 35 0. 6 0.89 1.31 1.61 2.04 0.92 
1.5 15 35 8.27 8.44 -4.86 -0.30 1. 0 .55 
2 15 35 7.70 9.69 0.17 - 6.71 - 1.93 9.14 
5 15 35 3.66 - 6.59 - 3.70 -2.79 2.20 24.36 
1 30 35 2.01 2.02 1.06 3.05 3.05 2.05 
1.5 30 35 3.74 - 0.47 1.75 -5.47 - 0.6 4.0 
2 30 35 7.5 5.73 -2.37 -4.10 1.54 9.67 
5 30 35 - 13.20 -23.96 3.28 - 15.05 -0.79 12.75 
1 60 35 1.9 0.47 6.47 2.71 1.81 2.0 
1.5 60 35 4.63 1.06 - 0.69 -1.18 2.35 5.25 
2 60 35 5.01 -3.72 1.58 -2.17 2.70 7. 1 
5 60 35 - 20.65 - 33.9 0.59 -9.60 0.6 9.72 
1 15 50 0.01 - 2.25 1.20 0.80 0.57 0.02 
1.5 15 50 6.86 6.98 3.36 -6.67 - 2.74 7.16 
2 15 50 13.02 12.66 -0.49 - 4.25 1.4 14. 5 
5 15 50 - 0.50 - 14. 10 - 2.96 - 11.64 - 1.35 24.67 
1 30 50 1.52 - 3.05 1.01 1. 6 1.22 1.50 
1.5 30 50 7.47 5.82 - 1.00 - 2.65 1. 5 7.95 
2 30 50 11.10 5.95 1.59 - 3.44 3.02 13.69 
5 30 50 - 10.02 - 28.62 - 1.83 - 11.26 3.77 21.51 
1 60 50 0.12 -5.00 1.3 -0.25 -0.95 0.12 
1.5 60 50 0.57 - 0.05 3.17 -8.55 - 4.19 1.20 
2 60 50 - 0.57 1.47 2.15 - 12.30 -5.0 2. 6 
5 60 50 -29.85 -37.48 - 1.40 - 1 .77 -4. 7 6.60 
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Table C.9: Mean quare error ( x 100) in estimates of {3 from the simulations with 
k = 1. Other simulation factors are listed in columns 1-3. p = exp({3) . 

p 1-L. 1obs Cond Cond Cond Cone Bin Bin 
NB 1 NB 2 NB 3 B GLM_OD GLMM 

1 15 20 17.12 17.29 13.20 13.67 1 .09 
1.5 15 20 17.09 14.61 11.6 14.29 1 .43 
2 15 20 15.23 13.36 11.95 13.37 17.09 
5 15 20 11.67 11.96 8.90 12.83 12.19 16.28 
1 30 20 15.98 15.10 12.16 14. 13 12.35 16.97 
1.5 30 20 15.14 13.45 11. 9 13.79 12.22 16.47 
2 30 20 15.29 12.61 10.20 14.72 12.57 17.26 
5 30 20 12.48 12.23 8.13 14.35 12.27 16. 1 
1 60 20 15.43 15.41 12.01 14.45 12.12 16.71 
1.5 60 20 14.72 13.71 11.72 14.23 12.01 16.35 
2 60 20 14.62 12. 4 10.67 12.34 16.54 
5 60 20 11.62 12.67 8.03 11.79 15. 7 
1 15 35 9.28 9.99 6.93 7.33 9.77 
1.5 15 35 9.29 .54 6.80 6.88 9.91 
2 15 35 9.29 7.65 5.90 7.43 10.2 
5 15 35 7.27 7.57 4. 0 7.21 10.26 
1 30 35 9.31 8.76 6.82 6.98 9.72 
1.5 30 35 9.10 8.29 6.61 8.26 7.32 9.72 
2 30 35 8.66 7.31 5.94 .24 7.21 9.64 
5 30 35 6.94 4.63 8.19 7.05 9.5 
1 60 35 9.16 6.5 .50 7.19 9.64 
1.5 60 35 8.69 6.10 .30 7.27 9.41 
2 60 35 8.42 5.66 8.39 7.30 9.56 
5 60 35 7.12 4.34 .52 7.02 9.62 
1 15 50 6.79 4.92 5.38 5.22 7.07 
1.5 15 50 6.70 4.18 5.55 5.16 7.03 
2 15 50 6.66 5.54 4.34 5.77 5.19 7.45 
5 15 50 5.07 5.95 3.49 5.80 5.11 7.35 
1 30 50 6.35 6.13 4.59 5.51 4.90 6.4 
1.5 30 50 6.27 5.61 4. 23 5.68 4.97 6.67 
2 30 50 6.40 5.14 4.04 6.04 5.0 7.15 
5 30 50 5.03 7.23 3.25 5.76 5.09 6.56 
1 60 50 6.04 4.1 5.60 4.97 6.3 
1.5 60 50 5.92 5.54 4.23 5.63 4.99 6.4 
2 60 50 5. 7 5.19 3. 0 5.90 5.02 6.5 
5 60 50 4.95 8.10 3.22 5.7 4.79 6.43 
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Tab] C.10: Mean square error ( x 100) in estimates of {3 from the simulations with 
k = 3. Other simulation factors are listed in columns 1-3. p = exp({J) . 

p J.L. Nobs Cond Cone Bin Bin 
B3 NB GLM_OD GLMM 

1 15 20 4.27 4.19 4.45 4. 1 
1.5 15 20 3.94 4.18 4.44 4.76 
2 15 20 3.79 4.30 4.47 4.92 
5 15 20 3.13 4.35 4.61 4. 2 
1 30 20 4.51 3.91 4.14 4.30 4.57 
1.5 30 20 4.37 3.62 4.11 4.35 4.51 
2 30 20 4.29 3.53 4.18 4.26 4.5 
5 30 20 3.86 3.84 2.64 4.17 4.22 4.56 
1 60 20 4.33 4.04 3.85 4.12 4.36 4.43 
1.5 60 20 3. 6 4.07 3.70 3.75 3.95 4.01 
2 60 20 3.88 3.60 3.43 3.92 4.10 4.15 
5 60 20 3.75 4.11 2.35 4.04 4.18 4.26 
1 15 35 3.05 2.73 2.48 2.68 2.85 3.09 
1.5 15 35 2.91 2.67 2.42 2.64 2.83 2.99 
2 15 35 2.56 2.45 2.10 2.36 2.50 2.71 
5 15 35 2.26 2.40 1.76 2.42 2.49 2.74 
1 30 35 2.53 2.56 2.12 2.31 2.47 2.5 
1.5 30 35 2.53 2.44 2.07 2.37 2.49 2.60 
2 30 35 2.30 2.08 1.96 2.24 2.47 2.4 
5 30 35 2.35 2.58 1.54 2.49 2.5 2.70 
1 60 35 2.44 2.27 2.09 2.32 2.42 2.49 
1.5 60 35 2.39 2.24 2.01 2.33 2.52 2.48 
2 60 35 2.09 2.09 1.92 2.12 2.31 2.24 
5 60 35 2.03 2.92 1.4 2.10 2.29 2.24 
1 15 50 2.01 1.98 1. 0 1.76 1. 2.03 
1.5 15 50 1.94 1.93 1.56 1.74 1. 7 1.9 
2 15 50 1.90 1.73 1.57 1.74 1.83 2.02 
5 15 50 1.57 1.90 1.21 1.6 1.72 1.90 
1 30 50 1.76 1.79 1.54 1.61 1.74 1. 0 
1.5 30 50 1.7 1.62 1.44 1.66 1. 1 1. 3 
2 30 50 1.67 1.51 1.37 1.64 1.77 1.77 
5 30 50 1.59 2.10 1.06 1.61 1.75 1.75 
1 60 50 1.66 1.67 1.43 1.58 1.69 1.68 
1.5 60 50 1.66 1.51 1.31 1.62 1.70 1.71 
2 60 50 1.61 1.51 1.30 1.63 1.70 1.72 
5 60 50 1.61 2.27 1.01 1.52 1.63 1.62 
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Table C.ll: Mean square error (x lOO) in estimates of (3 from the simulations with 
k = 10. Other simulation factors ar listed in columns 1-3. p = exp(/3) . 

p f..l . obs Cone Bin Bin 
B GLM_OD GLMM 

1 15 20 1.91 1.95 
1.5 15 20 1.74 1.79 1. 3 
2 15 20 1.74 1.71 1.72 1.75 1.77 
5 15 20 1.44 1.51 1.54 1.56 1.57 
1 30 20 1.45 1.5 1.40 1.42 1.52 1.45 
1.5 30 20 1.40 1.41 1.34 1.36 1.46 1.41 
2 30 20 1.32 1.34 1.30 1.30 1.40 1.35 
5 30 20 1.17 1.30 1.02 1.23 1.35 1.27 
1 60 20 1.33 1.28 1.22 1.29 1.41 1.33 
1.5 60 20 1.28 1.21 1.10 1.25 1.40 1.29 
2 60 20 1.22 1.14 1.09 1.20 1.31 1.25 
5 60 20 1.16 1.13 0.85 1.20 1.33 1.24 
1 15 35 1.04 0.97 1.00 1.04 1.04 
1.5 15 35 1.02 0.97 0.98 1.02 1.03 
2 15 35 0.92 0.91 0.89 0.93 0.94 
5 15 35 0.84 0.71 0.90 0.92 0.96 
1 30 35 0. 8 0.77 0.84 0.90 0.88 
1.5 30 35 0. 1 0.76 0.79 0. 7 0. 1 
2 30 35 0.7 0.71 0.75 0.81 0.80 
5 30 35 0.74 0.54 0.76 0. 2 0.80 
1 60 35 0.75 0.71 0.69 0.73 0. 3 0.75 
1.5 60 35 0.65 0.71 0.67 0.64 0.72 0.66 
2 60 35 0.67 0.69 0.62 0.67 0.75 0.69 
5 60 35 0.66 0.71 0.48 0.67 0.74 0.69 
1 15 50 0.76 0.72 0.72 0.72 0.74 0.76 
1.5 15 50 0.72 0.71 0.68 0.69 0.72 0.73 
2 15 50 0.6 0.66 0.57 0.65 0.67 0.69 
5 15 50 0.58 0.61 0.50 0.63 0.62 0.66 
1 30 50 0.60 0.61 0.54 0.58 0.63 0.60 
1.5 30 50 0.57 0.53 0.54 0.55 0.61 0.57 
2 30 50 0.5 0.55 0.52 0.57 0.63 0.60 
5 30 50 0.52 0.50 0.39 0.53 0.5 0.57 
1 60 50 0.51 0.4 0.49 0.54 0.50 
1.5 60 50 0.46 0.50 0.45 0.51 0.47 
2 60 50 0.47 0.45 0.47 0.54 0.48 
5 60 50 0.4 0.53 0.47 0.54 0.4 
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Table C.12: L-lower Percent coverage of 95% confidence limi t for /3, based on the 
simulations with k = 1. O ther simulation factors are listed in column 1-3. p = 
exp(/3). 

p f..l . ob· Cond Cond Bin Bin 
B 1 NB 2 GLM_OD GLMM 

1 15 20 3.55 5.05 .80 6.80 3.55 
1.5 15 20 4.05 4.95 7.80 6.25 3.90 
2 15 20 3. 0 5.10 4.75 7.20 5.60 3.65 
5 15 20 2.80 0.75 4.50 6.60 3.35 3.35 
1 30 20 3.70 4.20 4.00 7.65 7.15 3.45 
1.5 30 20 4.30 4.45 3.60 8.35 7.10 3.70 
2 30 20 3.80 3.15 3.90 9.25 5.45 4.05 
5 30 20 2.35 1.15 3.80 6.40 3.45 3.35 
1 60 20 3.20 4.15 3. 5 8.30 7.85 3.30 
1.5 60 20 3.60 4.25 4. 0 7.60 5.65 3.60 
2 60 20 4.30 4.40 4.65 .95 6.25 3.60 
5 60 20 2.55 0.25 4.60 8.40 3.15 3.50 
1 15 35 2.80 4.85 3.15 7.95 7.20 2.80 
1.5 15 35 3.15 3.95 3.20 6. 15 5.60 2.95 
2 15 35 5.05 4.25 2.90 8.05 7.20 4.95 
5 15 35 2.85 0.55 3.20 7.05 4.15 4.05 
1 30 35 2.70 3.55 3.20 8.35 6.95 3.35 
1.5 30 35 3.75 3.65 4.10 7.70 7.30 3.35 
2 30 35 3.20 3.65 3.65 6.95 6.05 3.00 
5 30 35 2.00 0.25 3.75 6.80 3.70 3.25 
1 60 35 3.60 3.00 3.40 9.80 7.55 3.60 
1.5 60 35 2.90 3.60 4.05 6.90 6.70 3.05 
2 60 35 3.30 4.00 3.85 8. 15 6.35 3.35 
5 60 35 2.00 0.30 3.65 8. 10 3.80 3.60 
1 15 50 2.80 3.70 3.85 7.30 7.75 2.95 
1.5 15 50 3.80 3.30 2.80 7.40 7.00 3.70 
2 15 50 3.70 3.05 3.35 6.45 5.90 3.40 
5 15 50 2.65 0.45 3.30 6.95 3.60 4. 5 
1 30 50 2.75 2.85 2.95 7. 15 7.15 2.50 
1.5 30 50 3.10 4.20 2.70 6.95 6.45 2.65 
2 30 50 3.45 2.85 3.20 7.95 5.50 3.30 
5 30 50 1.50 0.25 3.00 6.65 3.25 3.60 
1 60 50 2.60 2.80 2.90 7. 5 8.25 2.40 
1.5 60 50 3.45 4.70 3.55 7. 5 7.10 3.05 
2 60 50 3.10 3.00 2.90 7.25 7.25 2.85 
5 60 50 1.35 0.10 3.65 7. 15 3.60 3.60 
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Table C.13: 1-lower Percent coverage of 95% confidence limit for {3, based on th 
simulations with k = 3. Other simulation factors are listed in columns 1-3. p = 
exp(f3). 

p f..L. obs Cond Cond Cone Bin Bin 
TB 1 NB 2 TB GLM_OD GLMM 

1 15 20 3.85 3.60 9.60 4.90 3.75 
1.5 15 20 4.15 3.40 8.50 4.95 4.20 
2 15 20 4.30 4.15 9.20 4.70 4.35 
5 15 20 2.90 2.00 9.30 4.95 4. 5 
1 30 20 3.75 3.70 3.75 9.85 5.45 3. 0 
1.5 30 20 4.30 3.30 3.65 9.60 5. 0 4.45 
2 30 20 4.45 4.20 3.60 9.05 5.45 4.50 
5 30 20 2.70 1.55 3.90 .80 4.45 4.70 
1 60 20 3. 0 4.00 4.05 9.50 6.00 3.75 
1.5 60 20 3.30 4.45 3.30 .60 5.10 3.25 
2 60 20 3.95 3.10 4.25 8.35 4.90 4.05 
5 60 20 2.20 1.15 3.35 8.70 4.40 3.95 
1 15 35 3.15 2.90 3.15 9.35 4.70 3.25 
1.5 15 35 3.60 3.85 3.60 8.10 5.40 3.65 
2 15 35 4.10 3.40 2.85 8.15 4.35 4.05 
5 15 35 2.35 1.15 3.10 7.05 3.90 4.50 
1 30 35 2.95 2.80 2.85 8.25 5.15 3.05 
1.5 30 35 3.55 3.45 3.15 .70 5.30 3.50 
2 30 35 3.55 1.90 2.90 7.45 4.30 3.65 
5 30 35 1.85 1.05 3.10 7.65 4.30 4.20 
1 60 35 3.30 2.55 3.75 8.80 5.25 3.30 
1.5 60 35 3.65 2.95 2.65 8.25 5.65 3.55 
2 60 35 2.85 2. 0 3.40 7.40 4.70 3.10 
5 60 35 1.25 0.90 3.20 7.75 3.70 3.40 
1 15 50 2.30 2. 5 3.00 8.10 4.50 2.50 
1.5 15 50 3.50 3.65 2. 0 7.85 4.00 3.50 
2 15 50 4.50 3.80 3.25 7.40 4.35 4.65 
5 15 50 1.70 0.75 3.10 6.20 3.35 4.40 
1 30 50 3.55 3.15 3.00 7.95 5.35 3.70 
1.5 30 50 3.25 3.75 3.25 8.20 5.05 3.20 
2 30 50 3.10 2.00 3.10 7.75 5. 15 3.30 
5 30 50 1.25 0. 0 2.60 6. 0 4.55 3.65 
1 60 50 2.80 3.20 3.20 .75 5.20 3.00 
1.5 60 50 3.40 2.65 2.45 7.55 4.90 3.50 
2 60 50 3.05 2.55 3.10 8.80 5.10 3.20 
5 60 50 0.85 0.20 2. 0 7.20 3.45 3.20 
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Table C.14: 1-lower Percent coverage of 95% confidence limit for /3 , based on the 
simulations with k = 10. Other simulation factors ar listed in columns 1-3. p = 
exp(/3). 

p 1-l. obs Cone Bin Bin 
B GLM_OD GLMM 

1 15 20 9. 15 4.60 4.25 
1.5 15 20 9.81 4.25 4.10 
2 15 20 10.30 4.15 3.90 
5 15 20 12.60 3.90 4.55 
1 30 20 3.85 4.25 9.35 4.15 3.65 
1.5 30 20 4.00 3.55 9.00 4.45 3.40 
2 30 20 4.20 4.30 9.70 4.10 4.10 
5 30 20 3.15 3.90 10.15 4.00 4.00 
1 60 20 3.65 3.60 10.25 5.10 3. 0 
1.5 60 20 3.15 3.00 10.51 5.20 3.90 
2 60 20 3. 15 3.75 9.80 4.50 3.90 
5 60 20 2.50 3.00 10.30 4.50 4.45 
1 15 35 3.35 2.95 3.10 8.36 4.15 3.40 
1.5 15 35 3.55 4.20 2. 5 . 5 4.40 3.55 
2 15 35 3.70 3.75 3.70 8.80 3.55 3.70 
5 15 35 3. 0 3.00 2.60 11 .86 4.35 5.25 
1 30 35 3.40 3.45 2.50 9.65 4.15 3.40 
1.5 30 35 3.30 2.25 3.65 .85 4.15 3.25 
2 30 35 3.55 3.60 3.00 .65 4.10 3.75 
5 30 35 3.00 1.80 2.85 .50 4.50 4.55 
1 60 35 2. 5 2.50 3.95 9.65 5.00 2.90 
1.5 60 35 2.65 3.40 3.05 7.95 3.30 2.60 
2 60 35 2.75 3.00 3.40 8.60 4.35 2. 0 
5 60 35 2.35 1.55 2.75 8.00 4.30 4.30 
1 15 50 3.10 2.40 3.25 8.90 3.75 3.15 
1.5 15 50 3.05 3.30 3.10 8. 15 3.50 3.05 
2 15 50 3.75 3.50 2.45 9.10 3.95 3.75 
5 15 50 2.35 2.25 2.90 10.60 2.90 4.65 
1 30 50 3.15 2. 5 2.90 9.65 4.75 3.20 
1.5 30 50 4.00 2. 5 2.95 9.00 4.90 3.95 
2 30 50 3.50 3.40 3.55 8.60 4.60 3.65 
5 30 50 2.60 1.40 2. 5 .70 4.50 4.50 
1 60 50 2.75 2.45 2.70 . 0 3.55 2.70 
1.5 60 50 2.95 2.95 3.10 7.60 4.05 3.00 
2 60 50 2.75 2.45 3.55 7.35 4.25 2. 5 
5 60 50 1.50 2.00 2.70 6.45 3.35 3.35 
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Table C.15: U-Upper Percent coverage of 95% confidence limit for /3, based on the 
simulations with k = 1. Other simulation factors are listed in columns 1-3. p= 

exp(/3). 

p f..L. obs Cond Cond Cond Cone Bin Bin 
NB 1 NB 2 NB 3 NB GLNLOD GLMM 

1 15 20 3.50 4.20 3.25 8.80 6.80 3.45 
1.5 15 20 3.15 2.95 3.85 9.70 8.10 3.25 
2 15 20 2.80 2.30 3.05 8.90 7.50 3.00 
5 15 20 4.15 6.70 3.05 9.35 6.35 3.00 
1 30 20 3.75 3.95 3.60 10.00 8.10 3.65 
1.5 30 20 3.10 3.05 3.65 7.50 6.60 2.90 
2 30 20 3.20 3.35 2.80 9.75 8. 15 3.15 
5 30 20 4.95 7.40 2.55 10.20 6.80 3.65 

1 60 20 3.55 4.85 3.95 8.55 6.65 3.95 
1.5 60 20 2.80 3.45 3.90 8.95 7.45 2.75 
2 60 20 2.75 2.90 3.15 8.35 7.40 2.80 
5 60 20 4.45 10.20 3.00 7.55 5.25 3.00 

1 15 35 2.85 3.00 3.25 8.30 7.35 3.40 
1.5 15 35 2.25 2.75 3.85 8.90 7.30 2.50 
2 15 35 2.80 2.60 2.45 9.50 7.55 2.60 
5 15 35 3.10 9.50 2.60 9.85 5.45 2.10 

1 30 35 3.00 3.00 3.05 8.30 7.25 2.80 
1.5 30 35 2.90 2.35 3.35 8.65 7.50 2.70 
2 30 35 3.00 2.30 1.95 9.35 7.85 3.35 

5 30 35 4.35 12.25 1.85 9.05 5.85 2.90 

1 60 35 3.35 3.65 3.25 8.20 7.55 3.15 
1.5 60 35 3.05 2.85 2.40 8.85 7.75 2.60 
2 60 35 3.20 3.20 2.65 8.30 7.65 3.50 

5 60 35 4.90 14.90 2.30 7.95 5.55 2.80 

1 15 50 2.80 3.00 3.05 7.80 7.80 2.90 

1.5 15 50 2.45 2.65 2.00 9.10 7.70 2.60 

2 15 50 2.60 2.60 2.60 10.20 7.30 3.00 

5 15 50 3.45 11.80 2.40 9.85 5.55 1.40 

1 30 50 2.80 2.95 2.95 8.00 7.60 2.80 

1.5 30 50 3.55 2.10 2.85 8.90 7.85 3.30 
2 30 50 3.05 2.60 2.70 9.40 7.70 2.85 

5 30 50 4.65 16.70 2.25 9.25 5.90 2.60 

1 60 50 2.75 3.00 2.65 7.65 7.10 2.75 
1.5 60 50 2.85 2.05 2.70 8.50 8.40 3.15 
2 60 50 3.00 2.50 2.70 8.50 7.70 3.20 

5 60 50 5.00 21.30 2.15 8. 15 5.90 2.25 
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Table C.16: U-Uppcr Percent coverage of 95% confidence limit for (3 based on the 
simulations with k = 3. Other simulation factors are listed in columns 1-3. p= 
exp(f3) . 

p J.l. obs Cond Cond Cond Cone Bin Bin 
NB 1 B 2 NB 3 B GLM_OD GL ilM 

1 15 20 2.80 3.55 3.75 .10 4.10 2.65 
1.5 15 20 2.40 3.25 3.40 9.60 4.85 2.55 
2 15 20 2.75 3.20 4.25 10.00 4.70 2.85 
5 15 20 3.90 5. 0 3.30 12.55 5.35 2.45 
1 30 20 3.60 3.40 3.20 10.25 5.30 3.55 
1.5 30 20 3.35 2.70 3.50 9.60 5.25 3.20 
2 30 20 3.15 3.45 4.30 9.90 4.85 3.20 
5 30 20 5.00 7.65 3.05 10.20 4.95 2.75 
1 60 20 3.65 3.75 3.95 8.85 5.40 3. 5 
1.5 60 20 3.30 3.40 3.95 .10 4.85 3.30 
2 60 20 3.40 3.35 4 .05 9.85 5.45 3.45 
5 60 20 5.80 8.70 2.35 9.55 5.30 3.70 
1 15 35 3.80 2.35 2. 5 9.10 5.40 3.90 
1.5 15 35 3.55 2.85 3.25 10.55 6.30 3.70 
2 15 35 1.90 3.15 2.75 9.30 4.25 1. 5 
5 15 35 4.35 6. 0 2.90 11.15 4.20 1.75 
1 30 35 3.10 3.60 2.90 8.85 5.30 3. 10 
1.5 30 35 3.00 2. 0 3.05 10.15 5.80 3.05 
2 30 35 2.20 3.10 3.05 7.95 5.05 2.30 
5 30 35 6.00 8.30 2.60 11.50 5.45 2.90 
1 60 35 3.40 2.50 2.85 9.25 5. 75 3.50 
1.5 60 35 3.10 2.90 3.20 8.75 5.70 3.05 
2 60 35 2. 0 3.30 3.35 8.55 5.25 2.70 
5 60 35 4.80 13.45 2.60 7.50 3.60 1.90 
1 15 50 3.50 3.05 3.30 7. 0 5.10 3.70 
1.5 15 50 2.65 2.35 3.30 9.35 4.90 2. 0 
2 15 50 2.05 2.15 3.65 10.15 5.10 2.05 
5 15 50 4.75 8.60 3.25 12.15 4.25 1.25 
1 30 50 2.65 2.75 3.50 7.55 4. 0 2.75 
1.5 30 50 2.65 2.20 2.55 9.30 5.90 2. 0 
2 30 50 2.60 2.70 2.10 10.60 4.90 2.70 
5 30 50 6.50 12.10 3.05 9.85 4.25 1.95 
1 60 50 2.50 3.05 2. 0 7.00 5.35 2.65 
1.5 60 50 2.75 2.20 2.20 9.70 5.40 2.55 
2 60 50 2.85 3.20 2.40 8.90 5.45 2.50 
5 60 50 7.25 14.30 2.55 .90 4.35 2.55 
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Table C.17: U-Upper Percent coverage of 95% confidence limit for /3, based on the 
simulations with k = 10. Oth r . imulation factors are listed in columns 1-3. p = 
exp(/3). 

p J.L. Nobs Cond Cond Cond Cone Bin Bin 
B 1 NB 2 B3 NB GLM_OD GLMM 

1 15 20 3.80 3.20 3.40 9.25 4.95 3.95 
1.5 15 20 3.30 3.15 3.95 9.36 4.15 3.30 
2 15 20 3.50 3.95 4.30 10.30 4.85 3.50 
5 15 20 3.35 4.10 3.70 12.25 4.20 2.45 
1 30 20 3.35 4.90 3.25 9.50 4.55 3.35 
1.5 30 20 2.95 3.15 3.90 10.80 4.60 3.00 
2 30 20 2.50 3.20 3.40 10.30 3.80 2.45 
5 30 20 3.45 4.45 4.00 10.65 3.65 2.40 
1 60 20 3.95 3.45 3.55 9.95 4.50 4.05 
1.5 60 20 2.80 3.80 3.25 9.75 4.65 2.90 
2 60 20 3.50 3.60 3.55 10.10 4.35 3.45 
5 60 20 4.30 4.70 4.30 10.50 4.30 2.90 
1 15 35 2.65 2.95 2.60 .41 3.50 2.75 
1.5 15 35 2.85 3.15 3.50 8.75 4.15 2. 5 
2 15 35 3.00 2.55 3.20 10.05 3.95 2.95 
5 15 35 2.35 3.60 3.30 12.56 3.85 1.50 
1 30 35 3.35 2.60 3.50 9.20 3.75 3.40 
1.5 30 35 2.75 2.75 3.00 10.00 4.35 2.60 
2 30 35 2.75 2.95 3.40 9.65 4.50 2.65 
5 30 35 4.80 4.80 2.90 11.90 4.45 2.40 
1 60 35 3.50 2.85 2.75 8.60 4.80 3.45 
1.5 60 35 2.25 2.75 3.15 8.05 3.95 2.20 
2 60 35 2.40 3.25 3.30 9.20 4.30 2.40 
5 60 35 4.55 6.15 2.65 10.25 4.00 2.70 
1 15 50 2.90 2.90 3.05 .70 3.80 3.05 
1.5 15 50 2.70 2.65 2.55 10.45 4.55 2.75 
2 15 50 2.15 2.40 2.55 9.75 3.60 2.10 
5 15 50 2.85 4.40 3.30 13.70 3.95 1.80 
1 30 50 2.90 3.35 2.20 8.65 4.00 2.90 
1.5 30 50 2.15 2.35 3.05 8.40 3.65 2.15 
2 30 50 2.85 2.60 2.80 9.45 4.35 2.70 
5 30 50 4.00 4.05 3.60 10.90 4.10 1.90 
1 60 50 3.55 2.75 3.35 8.20 4.55 3.30 
1.5 60 50 2.40 2.95 2.65 8.90 4.10 2.40 
2 60 50 3.00 2.35 2.80 9.95 4.65 2.70 
5 60 50 5.30 6.25 3.30 11.40 4.50 2.80 
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Table C. 1 : T-Total Percent coverage of 95% confidence limits for {3, based on the 
simulations with k = 1. Other simulation factors are listed in columns 1-3. p = 
exp({J). 

p f.l. Nobs Cond Cone Bin Bin 
B3 NB GLM_OD GLMM 

1 15 20 7.80 17.60 13.60 7.00 
1.5 15 20 7.20 7.75 17.50 14.35 7.15 
2 15 20 6.60 7.40 7.80 16.10 13.10 6.65 
5 15 20 6.95 7.45 7.55 15.95 9.70 6.35 
1 30 20 7.45 8.15 7.60 17.65 15.25 7.10 
1.5 30 20 7.40 7.50 7.25 15.85 13.70 6.60 
2 30 20 7.00 6.50 6.70 19.00 13.60 7.20 
5 30 20 7.30 8.55 6.35 16.60 10.25 7.00 
1 60 20 6.75 9.00 7.80 16.85 14.50 7.25 
1.5 60 20 6.40 7.70 8.70 16.55 13.10 6.35 
2 60 20 7.05 7.30 7.80 17.30 13.65 6.40 
5 60 20 7.00 10.45 7.60 15.95 8.40 6.50 
1 15 35 5.65 7. 5 6.40 16.25 14.55 6.20 
1.5 15 35 5.40 6.70 7.05 15.05 12.90 5.45 
2 15 35 7.85 6.85 5.35 17.55 14.75 7.55 
5 15 35 5.95 10.05 5.80 16.90 9.60 6.15 
1 30 35 5.70 6.55 6.25 16.65 14.20 6.15 
1.5 30 35 6.65 6.00 7.45 16.35 14.80 6.05 
2 30 35 6.20 5.95 5.60 16.30 13.90 6.35 
5 30 35 6.35 12.50 5.60 15.85 9.55 6.15 
1 60 35 6.95 6.65 6.65 1 .00 15.10 6.75 
1.5 60 35 5.95 6.45 6.45 15.75 14.45 5.65 
2 60 35 6.50 7.20 6.50 16.45 14.00 6. 5 
5 60 35 6.90 15.20 5.95 16.05 9.35 6.40 
1 15 50 5.60 6.70 6.90 15.10 15.55 5.85 
1.5 15 50 6.25 5.95 4. 0 16.50 14.70 6.30 
2 15 50 6.30 5.65 5.95 16.65 13.20 6.40 
5 15 50 6.10 12.25 5.70 16.80 9.15 6.25 
1 30 50 5.55 5.80 5.90 15.15 14.75 5.30 
1.5 30 50 6.65 6.30 5.55 15.85 14.30 5.95 
2 30 50 6.50 5.45 5.90 17.35 13.20 6.15 
5 30 50 6.15 16.95 5.25 15.90 9.15 6.20 
1 60 50 5.35 5. 0 5.55 15.50 15.35 5.15 
1.5 60 50 6.30 6.75 6.25 16.35 15.50 6.20 
2 60 50 6.10 5.50 5.60 15.75 14.95 6.05 
5 60 50 6.35 21.40 5. 0 15.30 9.50 5. 5 
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Table C.19: T-Total Percent coverage of 95% confidence limits for {3, based on the 
simulations with k = 3. Other simulation factors are listed in columns 1-3. p = 
exp({J). 

p J..L . Nobs Cond Cond Cone Bin Bin 
B2 NB 3 NB GLM_OD GLMM 

1 15 20 7.15 6.90 17.70 9.00 6.40 
1.5 15 20 6.55 6.65 6.95 18.10 9.80 6.75 
2 15 20 7.05 7.35 7.25 19.20 9.40 7.20 
5 15 20 6.80 7.80 6. 0 21.85 10.30 7.30 
1 30 20 7.35 7.10 6.95 20.10 10.75 7.35 
1.5 30 20 7.65 6.00 7.15 19.20 11.05 7.65 
2 30 20 7.60 7.65 7.90 18.95 10.30 7.70 
5 30 20 7.70 9.20 6.95 19.00 9.40 7.45 
1 60 20 7.45 7.75 8.00 18.35 11.40 7.60 
1.5 60 20 6.60 7.85 7.25 16.70 9.95 6.55 
2 60 20 7.35 6.45 8.30 18.20 10.35 7.50 
5 60 20 8.00 9.85 5.70 18.25 9.70 7.65 
1 15 35 6.95 5.25 6.00 1 .45 10.10 7.15 
1.5 15 35 7.15 6.70 6. 5 1 .65 11.70 7.35 
2 15 35 6.00 6.55 5.60 .60 5.90 
5 15 35 6.70 7.95 6.00 .10 6.25 
1 30 35 6.05 6.40 5.75 6.15 
1.5 30 35 6.55 6.25 6.20 11.10 6.55 
2 30 35 5.75 5.00 5.95 15.40 9.35 5.95 
5 30 35 7.85 9.35 5.70 19.15 9.75 7.10 
1 60 35 6.70 5.05 6.60 1 .05 11.00 6. 0 
1.5 60 35 6.75 5.85 5.85 17.00 11.35 6.60 
2 60 35 5.65 6.10 6.75 15.95 9.95 5. 0 
5 60 35 6.05 14.35 5. 0 15.25 7.30 5.30 
1 15 50 5. 0 5.90 6.30 15.90 9.60 6.20 
1.5 15 50 6.15 6.00 6.10 17.20 .90 6.30 
2 15 50 6.55 5.95 6.90 17.55 9.45 6.70 
5 15 50 6.45 9.35 6.35 18.35 7.60 5.65 
1 30 50 6.20 5.90 6.50 15.50 10.15 6.45 
1.5 30 50 5.90 5.95 5. 0 17.50 10.95 6.00 
2 30 50 5.70 4.70 5.20 18.35 10.05 6.00 
5 30 50 7.75 12.90 5.65 16.65 .80 5.60 
1 60 50 5.30 6.25 6.00 15.75 10.55 5.65 
1.5 60 50 6.15 4.85 4.65 17.25 10.30 6.05 
2 60 50 5.90 5.75 5.50 17.70 10.55 5.70 
5 60 50 8.10 14.50 5.35 16.10 7.80 5.75 
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Table C.20: T-Total Percent coverage of 95% confidence limits for /3, based on the 
simulations with k = 10. Other imulation factors are listed in columns 1-3. p = 
exp(/3). 

p J.L . 1obs Cond Cond Cone Bin Bin 
B 1 NB 2 B GLM_OD GLMM 

1 15 20 8.00 6.95 9.55 .20 
1.5 15 20 7.21 7.35 19.17 8.41 7.41 
2 15 20 7.30 7.80 20.60 9.00 7.40 
5 15 20 7.00 7.75 24. 5 8. 10 7.00 
1 30 20 7.00 .75 7.50 1 .85 .70 7.00 
1.5 30 20 6.50 7.15 7.45 19.80 9.05 6.40 
2 30 20 6.45 7.40 7.70 20.00 7.90 6.55 
5 30 20 6.10 7.60 7.90 20.80 7.65 6.40 
1 60 20 7.75 7.10 7.15 20.20 9.60 7. 5 
1.5 60 20 6.60 6.95 6.25 20.26 9.85 6. 0 
2 60 20 7.05 6.75 7.30 19.90 .85 7.35 
5 60 20 7.60 7.20 7.30 20.80 .80 7.35 
1 15 35 6.01 5.90 5.70 16.77 
1.5 15 35 6.40 7.35 6.35 17.60 
2 15 35 6.70 6.30 6.90 18.85 
5 15 35 6.15 6.60 5.90 24.41 
1 30 35 6.75 6.05 6.00 18.85 
1.5 30 35 6.05 5.00 6.65 1 .85 
2 30 35 6.30 6.55 6.40 18.30 6.40 
5 30 35 7.80 6.60 5.75 20.40 6.95 
1 60 35 6.35 5.35 6.70 18.25 9.80 6.35 
1.5 60 35 4.90 6.15 6.20 16.00 7.25 4.80 
2 60 35 5.15 6.25 6.70 17.80 .65 5.20 
5 60 35 6.90 7.70 5.40 8.30 7.00 
1 15 50 6.00 5.30 6.30 7.55 6.20 
1.5 15 50 5.75 5.95 5.65 8.05 5.80 
2 15 50 5.90 5.90 5.00 7.55 5.85 
5 15 50 5.20 6.65 6.20 6. 5 6.45 
1 30 50 6.05 6.20 5.10 1 .30 .75 6.10 
1.5 30 50 6.15 5.20 6.00 17.40 8.55 6.10 
2 30 50 6.35 6.00 6.35 18.05 .95 6.35 
5 30 50 6.60 5.45 6.45 19.60 8.60 6.40 
1 60 50 6.30 5.20 6.05 17.00 .10 6.00 
1.5 60 50 5.35 5.90 5.75 16.50 .15 5.40 
2 60 50 5.75 4.80 6.35 17.30 .90 5.55 
5 60 50 6.80 8.25 6.00 17.85 7. 5 6. 15 



83 

Table C.21: L-lower Percent coverage of 90% confidence limit for {3 , based on the 
simulations with k = 1. Other simulation factors are listed in columns 1-3. p = 
exp({3). 

p f.L. Nobs Cond Cone Bin Bin 
B3 NB GLM_OD GLMM 

1 15 20 7.30 11.65 10.65 6.70 
1.5 15 20 6.10 11.75 9.25 6.40 
2 15 20 7.40 10.40 10.05 6.45 
5 15 20 4.50 7.00 9.50 5.95 6.45 
1 30 20 5.75 7.15 11.50 10.00 5.55 
1.5 30 20 6.70 6.30 12.80 10.70 6.10 
2 30 20 7.35 6.00 6.75 12.35 9.15 7.30 
5 30 20 4.40 2.35 6.85 9.95 5.95 5.75 
1 60 20 6.15 7.20 6.45 12.00 11.65 5.90 
1.5 60 20 6.20 7.00 8.05 11.25 9.80 5. 0 
2 60 20 7.05 6.75 8.10 12.75 9.95 7.05 
5 60 20 4.10 0.90 7.80 11.75 5.75 6.20 
1 15 35 5.55 7.35 5.60 11.05 10.55 5.60 
1.5 15 35 5.70 6.50 5.35 10.65 9.25 5.65 
2 15 35 7.70 7.10 6.05 11.45 11.00 7.85 
5 15 35 5.00 0.90 5.75 10.90 6.90 .05 
1 30 35 5.65 6.50 6.30 12.45 10.65 5.70 
1.5 30 35 6.50 6.85 6.90 11.05 10.70 5.90 
2 30 35 5.70 7.20 6.90 10.45 9.90 5.55 
5 30 35 3.55 0.80 6.50 11.30 6.35 6.80 
1 60 35 6.80 4.90 7.00 12.75 12.20 6.60 
1.5 60 35 5.70 6.10 6.05 10.90 9.95 5.85 
2 60 35 6.15 6.55 6.55 11.40 10.05 5.95 
5 60 35 3.55 0.85 6.60 11.90 6.70 6.60 
1 15 50 4.45 7.00 6.55 11.25 11.15 4.70 
1.5 15 50 6.80 6.95 5.60 10.90 9.90 6.60 
2 15 50 6.70 5.65 5.90 10.00 9.65 6.70 
5 15 50 5.15 0.65 6.25 10.45 6.45 8.85 
1 30 50 4.90 5.40 5.70 10.85 10.55 4.80 
1.5 30 50 5.80 6.75 5.50 10. 15 10.15 5.65 
2 30 50 6.95 6.35 5.55 11.80 9.20 6.60 
5 30 50 3.60 0.60 6.05 9.70 6.45 6.05 
1 60 50 5.30 5.35 5.45 11.50 12.55 5.40 
1.5 60 50 6.15 7.35 6.25 10.10 10.80 5.90 
2 60 50 5.35 6.05 5.50 10.65 11.05 5.50 
5 60 50 3.30 0.25 6.25 11.05 6.40 6.45 
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Table C.22: 1-lower Percent coverage of 90% confidence limit for {3 , ba don th 
simulations with k = 3. Other simulation factors are listed in columns 1-3. p = 
exp({3). 

p 1-L. Nobs Cond Cond Cone Bin Bin 
B 2 NB 3 B GLM_OD GLMM 

1 15 20 6.50 5.75 13.85 8.45 6.50 
1.5 15 20 6.10 5.90 12.00 7. 0 6.60 
2 15 20 6.75 5.55 13.10 8.20 7.30 
5 15 20 3.15 6.30 12.20 7.65 .45 
1 30 20 6.75 6.25 13.85 8.95 6.95 
1.5 30 20 7.05 6.00 13.15 9.40 7.50 
2 30 20 7.10 7.60 5.60 12.90 .05 7.60 
5 30 20 4.80 2.90 6.30 13.30 7.60 7.95 
1 60 20 6.50 6.45 6.40 13.60 9.00 6.40 
1.5 60 20 6.30 7.05 6.00 12.45 .95 6.20 
2 60 20 6. 0 5.45 6.40 12.50 7. 0 6. 0 
5 60 20 3.95 2.20 5.75 11 .75 6. 5 7.20 
1 15 35 6.40 5. 10 6.50 13.55 8. 0 6.50 
1.5 15 35 6.40 6.60 6.70 11.90 8.55 6.45 
2 15 35 7.35 6.35 5.35 11.20 7.80 7.30 
5 15 35 4.10 2.35 5.90 10.55 6. 5 7.70 
1 30 35 5. 5 5.05 5.20 11 .45 8.10 5.70 
1.5 30 35 6.55 6.00 5.80 12.60 8.45 6.70 
2 30 35 5.80 3.90 5.75 11.20 7.55 6.05 
5 30 35 3.55 1.95 5. 15 11.90 7.05 7.30 
1 60 35 5.70 5.15 6.45 12.05 8.75 6.00 
1.5 60 35 6.55 5. 5 4.95 12.65 8.85 6.25 
2 60 35 5.30 5.55 5.45 11.00 7.85 5.65 
5 60 35 2.60 1.50 5.55 11.70 7.30 6.30 
1 15 50 5.10 5.50 5.20 12.85 8.65 5.55 
1.5 15 50 6.70 6.90 5. 15 11.60 7.85 6.75 
2 15 50 7.45 6.50 5.35 10.70 8.10 7.65 
5 15 50 3.15 1.70 5.30 9.30 6.05 7.70 
1 30 50 5. 5 5.50 4.90 11.40 .30 5.95 
1.5 30 50 6.25 5.75 6.00 11.20 8.25 6.40 
2 30 50 6.40 4.25 5.25 11.25 7.95 6. 0 
5 30 50 2.60 1.30 4.90 10.50 7. 5 7.05 
1 60 50 5.45 5.55 5.90 12.70 8.50 5.55 
1.5 60 50 5.75 5.65 5.00 10.55 7.70 5.60 
2 60 50 6.00 5.20 5.60 13.35 9.00 6.50 
5 60 50 1.55 0.75 5.65 10.15 5.90 6.25 
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Table C.23: L-lower Percent coverage of 90% confidence limit for /3, based on the 
simulations with k = 10. Oth r simulation factors are listed in column 1-3. p = 
exp(/3). 

p J.L. Nobs Cond Cone Bin Bin 
B GLM_OD GLMM 

1 15 20 6.40 7.55 6.60 
1.5 15 20 7.11 7.05 7.96 7.16 
2 15 20 6.75 6.05 14.30 7.00 6.95 
5 15 20 6.35 6.10 6.10 16.30 6.85 7.50 
1 30 20 6.35 6.25 6.90 12.70 7.20 6.35 
1.5 30 20 6.30 6.80 6.05 12.80 7.15 6.35 
2 30 20 6.40 6.50 7.75 13.30 7.50 6.60 
5 30 20 5.45 5.30 6.30 14.25 6.90 7.00 
1 60 20 6.20 5.60 6.40 14.40 8.05 6.25 
1.5 60 20 7.15 5.75 5.60 13.91 8.65 7.15 
2 60 20 6.60 5.90 6.00 13.75 7.60 6.95 
5 60 20 5.25 4.00 5.55 13.80 .20 7.80 
1 15 35 5.76 6.10 5.85 12.21 6.71 5.76 
1.5 15 35 6.95 7.05 5.35 12.35 7.20 7.10 
2 15 35 6.95 6.80 5. 5 11 .65 6.65 7.05 
5 15 35 6.75 5.45 4.75 15.41 7.40 9.60 
1 30 35 6.05 6.05 5.25 13.80 7.55 6.10 
1.5 30 35 5.85 5.15 5.90 12.25 7.65 6.05 
2 30 35 6.65 6.55 5.40 12.30 7.10 6.90 
5 30 35 4.90 3.40 5.75 12.30 7.40 7.60 
1 60 35 5.95 5.25 6.65 13.45 8.95 5.95 
1.5 60 35 5.05 6.85 5.90 12.00 6.50 5.05 
2 60 35 5.60 5.55 6.15 12.95 7.25 5.90 
5 60 35 4.45 3.20 5.60 11.60 7.60 6.70 
1 15 50 5.35 4.15 5.75 12.86 6.65 5.40 
1.5 15 50 6.10 6.20 6.20 11.40 6.35 6.15 
2 15 50 7.45 6.60 4 .30 12.51 6.80 7. 0 
5 15 50 5.25 4.10 5.20 14.45 5.55 7.75 
1 30 50 5.55 5.10 5.30 12.70 7.70 5.65 
1.5 30 50 6.65 5.05 5.35 12.80 .00 6.70 
2 30 50 6.95 5.90 5. 0 12.65 8.00 7.15 
5 30 50 4.75 2.85 5.10 12.55 7.50 .45 
1 60 50 5.25 5.05 5.50 12.65 6.70 5.35 
1.5 60 50 5.35 5.65 5.90 10.80 6.45 5.30 
2 60 50 5.45 5.35 6.10 10.75 7.00 5.75 
5 60 50 3.20 3.05 5.05 9.85 6.45 5.55 
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Table C.24: U-Upper Percent coverage of 90% confidence limi t for {3 , based on the 
simulations with k = 1. Other imulation factors are listed in columns 1-3. p= 
exp((J). 

p J.L. obs Cond Cone Bin Bin 
B3 NB GLM_OD GLMM 

1 15 20 7.40 5.90 12.80 10.65 6.15 
1.5 15 20 5.20 6.55 14.40 11.50 6.00 
2 15 20 4.90 4.30 5.70 13.35 10.75 5.20 
5 15 20 6.55 12.80 5.30 13.90 9.70 5.40 
1 30 20 7.10 7.10 6.45 14.25 11 .65 7.05 
1.5 30 20 5.15 5.05 5.70 11 .75 10.35 5.35 
2 30 20 5.60 5.55 5.15 13.30 12.20 5.90 
5 30 20 8.40 15.05 4.60 14.25 10.55 6.00 
1 60 20 6.15 8.00 6.20 12.90 10.40 6.45 
1.5 60 20 5.60 6.60 6.90 12. 5 11 .35 5.80 
2 60 20 5.20 5.45 5.50 12.45 10.85 5.25 
5 60 20 7. 15 16.70 5.20 11.30 .85 5.35 
1 15 35 5.40 6. 15 6. 10 11.60 11.05 5.65 
1.5 15 35 4.65 4. 5 6.60 13.10 10.65 4.70 
2 15 35 4.85 4.85 5.10 13.85 11.90 4.90 
5 15 35 6.75 16.10 4.65 14.65 .95 4.20 
1 30 35 5.55 5.00 5.80 12.25 11.20 5.30 
1.5 30 35 5.20 4.75 5.75 13.00 11.65 5.60 
2 30 35 5.40 4.85 4.30 14.25 11.05 5.75 
5 30 35 7.80 20.05 4.20 12.95 9.20 4. 5 
1 60 35 5.95 6.35 5.85 12.20 11 .95 6.10 
1.5 60 35 6.05 5.10 5.25 13.20 11.20 6.15 
2 60 35 5.40 5.95 4.95 12.65 5.60 
5 60 35 8.45 24.70 4.50 11.80 5.05 
1 15 50 5.30 5.90 6.10 11.95 5. 0 
1.5 15 50 4.90 5.25 3.95 12.95 11.70 5.30 
2 15 50 4.95 5.25 4.75 14.25 11 .45 5.55 
5 15 50 6.70 19.60 4.75 13.85 8.40 3.35 
1 30 50 5.55 6.05 5.95 12.00 10. 5 5.25 
1.5 30 50 5.80 3. 5 5. 15 12.65 11.55 5.90 
2 30 50 5.75 5.35 4.45 13.60 6.35 
5 30 50 8.25 27.25 5.00 13.20 4.60 
1 60 50 5.20 5.25 5.10 11 .20 5. 5 
1.5 60 50 5.15 4.05 5.30 12.10 5. 0 
2 60 50 5.65 5.30 4. 5 11.65 10. 5 5.35 
5 60 50 9.70 32.25 5.05 11.80 9.35 4.60 
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Table C.25: U-Upper Percent coverage of 90% confidence limit for /3, based on the 
simulations with k = 3. O ther simulation factors are listed in columns 1-3. p = 
exp(/3) . 

p f..L obs Cond Cond Cond Cone Bin Bin 
B 1 NB 2 NB 3 B GLl\iLOD GLMM 

1 15 20 5.20 6.35 5.95 11 .20 6.65 5. 15 
1.5 15 20 4.75 5.85 5.55 13.70 .80 4.65 
2 15 20 5.25 6.00 6.55 14.50 8.35 5. 10 
5 15 20 7.90 10.75 6.10 16.95 8.55 4.65 
1 30 20 6.30 6.00 6.25 13.65 9.15 6.50 
1.5 30 20 5.85 4.90 6.20 13.50 9.40 6.05 
2 30 20 5.75 6.25 6.70 13. 75 8.10 5.75 
5 30 20 8.95 13.05 5.45 15. 15 7.80 5.15 
1 60 20 5.80 6.70 5.90 13.20 9.70 5.80 
1.5 60 20 5.45 5.80 7.10 11 .10 7.75 5.75 
2 60 20 6.35 5.80 6.25 14. 10 8.60 6.25 
5 60 20 10.00 14.30 4.50 14.05 8.00 5.75 
1 15 35 6.10 5.05 5.05 12.85 9.35 6.30 
1.5 15 35 6.15 4.35 5.75 14.95 9.75 6.05 
2 15 35 4.30 5.80 5.95 13.20 7.35 4.05 
5 15 35 8.35 11.45 5.65 15.35 7.50 4.05 
1 30 35 5.75 5.95 5.40 13.00 8.70 5.95 
1.5 30 35 5.65 4.90 5.35 14.05 8.60 5. 70 
2 30 35 4.60 5.85 5.20 12.50 8.10 4.50 
5 30 35 11.50 15.50 5.35 16.35 8.95 4. 5 
1 60 35 6.45 5.10 5.25 12.75 9.45 6.25 
1.5 60 35 5.55 6.05 6.00 12.50 9.60 5.45 
2 60 35 4.90 5.85 5.55 12.40 .00 4.90 
5 60 35 10.00 20.55 5.60 11 .80 6.50 3.95 
1 15 50 5.55 6.00 5.55 11.70 7.75 5.45 
1.5 15 50 4.85 4.80 6.00 13.90 9.00 4.75 
2 15 50 4.35 4.90 6.35 14.40 8.15 4.30 
5 15 50 8. 0 14.00 5.80 16.90 7.35 3.75 
1 30 50 5.05 4.95 5.85 11.55 8.30 4.90 
1.5 30 50 4.95 4.00 4.85 13.70 9.50 4.70 
2 30 50 5.00 5.45 4.40 14.90 8.35 4.55 
5 30 50 10.45 19.90 5.80 14.40 7.25 3.95 
1 60 50 4.80 5.50 4.65 11.15 8.60 4.85 
1.5 60 50 5.85 4.70 5.05 13.70 8.80 6.20 
2 60 50 5.60 6.05 5.10 13.20 8.20 5.20 
5 60 50 11.90 23.40 5.10 12.25 6.60 4.70 
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Table C.26: U-Upper Percent coverage of 90% confid nee limit for {3, based on the 
simulations with k = 10. Other simulation factors are listed in columns 1-3. p= 
exp ({J) . 

p f..t. lobs Cond Cond Cond Cone Bin Bin 
B 1 NB 2 NB 3 NB GLM_OD GLMM 

1 15 20 6.95 6.10 6.25 13.40 7.60 7.05 
1.5 15 20 5.71 5.35 6.15 14.01 7.51 5.96 
2 15 20 6.00 5.95 6.40 14.65 7.65 5.90 
5 15 20 6.30 7.15 6.35 15.55 6.85 4.80 
1 30 20 5.95 7.60 5.35 12.75 7.50 5.95 
1.5 30 20 6.00 5.90 6.70 14.55 7.90 6.05 
2 30 20 5.50 5.50 5.55 14. 5 7.00 5.45 
5 30 20 5.90 8.35 6.30 15.20 6.05 4.35 
1 60 20 6.70 5.55 6.50 13.90 7.60 6.75 
1.5 60 20 5.35 6.40 6.25 14.01 7.60 5.20 
2 60 20 6.00 6.75 6.50 14.20 7.80 5.80 
5 60 20 7.45 7.95 6.90 13.75 7.40 5. 10 
1 15 35 5.21 5.80 5.35 11.91 6.01 5.21 
1.5 15 35 5.20 5.85 6.45 13.20 7.05 5.25 
2 15 35 4.65 4.75 5.25 13.60 6.60 4.55 
5 15 35 4.80 6.70 5.85 16.06 6.30 3.55 
1 30 35 5.95 5.70 5.90 13.10 7.25 5.90 
1.5 30 35 5.15 5.15 5.40 14.35 7.60 5.10 
2 30 35 4.90 5.60 5.80 13.25 6.95 4.70 
5 30 35 8.35 8.75 5.20 15.95 7.35 5.35 
1 60 35 5.85 5.60 5.05 12.05 7.80 5.80 
1.5 60 35 4.50 5.50 5.55 12.30 6.65 4.45 
2 60 35 5.10 6.45 5.80 13.20 7.95 5.05 
5 60 35 7.95 9.85 5.65 14.25 7.00 4.85 
1 15 50 6.20 5.35 5.85 12.56 6.80 6.25 
1.5 15 50 5.30 5.00 5.70 14.80 7.15 5.35 
2 15 50 4.25 4.50 5.05 13.26 6.50 4. 15 
5 15 50 5.80 7.50 6.00 18.15 6.95 3.40 
1 30 50 5.45 6.35 4.85 12.10 7.45 5.35 
1.5 30 50 4.55 3.95 6.20 12.85 6.90 4.60 
2 30 50 4.85 5.70 5.45 13.75 7.15 4.50 
5 30 50 6.65 8.40 6.10 15.15 6.15 4.10 
1 60 50 4.95 5.05 5.15 11.90 7.25 5.00 
1.5 60 50 4.95 5.50 5.15 12.90 6.90 5.00 
2 60 50 5.25 5.20 5.75 13.75 8.05 4.95 
5 60 50 10.00 11 .10 6.95 16. 15 8.20 4.75 
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Table C. 27: T-Total Percent coverage of 90% confidence limits for {3, based on t he 
simulations with k = 1. Other simulation factors are listed in columns 1-3. p= 
exp({3). 

p f..L . Nobs Cond Cond Cond Cone Bin Bin 
NB 1 B2 NB 3 NB GLM_OD GLMM 

1 15 20 12.65 15.80 13.20 24.45 21.30 12.85 
1.5 15 20 12.35 13.30 12.65 26.15 20.75 12.40 
2 15 20 11.30 12.20 13.10 23.75 20.80 11.65 
5 15 20 11.05 14.70 12.30 23.40 15.65 11.85 
1 30 20 12.85 14.00 13.60 25.75 21.65 12.60 
1.5 30 20 11.85 11.65 12.00 24.55 21.05 11.45 
2 30 20 12.95 11 .55 11.90 25.65 21.35 13.20 
5 30 20 12.80 17.40 11.45 24.20 16.50 11.75 
1 60 20 12.30 15.20 12.65 24.90 22.05 12.35 
1.5 60 20 11.80 13.60 14.95 24.10 21.15 11.60 
2 60 20 12.25 12.20 13.60 25.20 20.80 12.30 
5 60 20 11.25 17.60 13.00 23.05 14.60 11.55 
1 15 35 10.95 13.50 11.70 22.65 21.60 11.25 
1.5 15 35 10.35 11.35 11.95 23.75 19.90 10.35 
2 15 35 12.55 11.95 11.15 25.30 22.90 12.75 
5 15 35 11.75 17.00 10.40 25.55 15.85 12.25 
1 30 35 11.20 11.50 12.10 24.70 21.85 11.00 
1.5 30 35 11.70 11.60 12.65 24.05 22.35 11.50 
2 30 35 11 .10 12.05 11.20 24.70 20.95 11.30 
5 30 35 11.35 20.85 10.70 24.25 15.55 11 .65 
1 60 35 12.75 11.25 12.85 24.95 24.15 12.70 
1.5 60 35 11.75 11.20 11.30 24.10 21.15 12.00 
2 60 35 11.55 12.50 11.50 24.05 21.20 11.55 
5 60 35 12.00 25.55 11.10 23.70 15.35 11.65 
1 15 50 9.75 12.90 12.65 23.20 22.35 10.50 
1.5 15 50 11.70 12.20 9.55 23.85 21 .60 11.90 
2 15 50 11.65 10.90 10.65 24.25 21.10 12.25 
5 15 50 11.85 20.25 11.00 24.30 14.85 12.20 
1 30 50 10.45 11.45 11.65 22.85 21.40 10.05 
1.5 30 50 11.60 10.60 10.65 22.80 21.70 11.55 
2 30 50 12.70 11.70 10.00 25.40 21.20 12.95 
5 30 50 11.85 27.85 11.05 22.90 15.00 10.65 
1 60 50 10.50 10.60 10.55 22.70 22.65 11.25 
1.5 60 50 11.30 11.40 11.55 22.20 22.60 11.70 
2 60 50 11.00 11.35 10.35 22.30 21.90 10.85 
5 60 50 13.00 32.50 11.30 22.85 15.75 11.05 
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Table C.28: T-Total Percent coverage of 90% confidence limi ts for /3, based on the 
simulations with k = 3. O ther simulation factors are listed in columns 1-3 . p= 
exp(/3). 

p J.L. obs Cond Cond Cond Cone Bin Bin 
NB 1 B2 NB 3 NB GLM_OD GLMM 

1 15 20 11 .65 12. 5 11.70 25.05 15.10 11.65 
1.5 15 20 11 .65 11 .95 11 .45 25.70 16.60 11.25 
2 15 20 12.50 12.75 12.10 27.60 16.55 12.40 
5 15 20 13.20 13.90 12.40 29. 15 16.20 13.10 
1 30 20 13.30 12.75 12.50 13.45 
1.5 30 20 13.40 11 .95 12.20 13.55 
2 30 20 12.85 13. 5 12.30 13.35 
5 30 20 13.75 15.95 11.75 13.10 
1 60 20 12.30 13.15 12.30 1 .70 12.20 
1.5 60 20 11.75 12.85 13 .10 16.70 11.95 
2 60 20 13. 15 11.25 12.65 16.40 13.05 
5 60 20 13.95 16.50 10.25 14. 5 12.95 
1 15 35 12.50 10.15 11.55 26.40 1 .15 12.80 
1.5 15 35 12.55 10.95 12.45 26.85 18.30 12.50 
2 15 35 11.65 12.15 11.30 24.40 15.15 11 .35 
5 15 35 12.45 13. 0 11.55 25.90 14.35 11.75 
1 30 35 11.60 11.00 10.60 24.45 16.80 11.65 
1.5 30 35 12.20 10.90 11.15 26.65 17.05 12.40 
2 30 35 10.40 9.75 10.95 23.70 15.65 10.55 
5 30 35 15.05 17.45 10.50 28.25 16.00 12.15 
1 60 35 12.15 10.25 11 .70 24.80 18.20 12.25 
1.5 60 35 12.10 11.90 10.95 25 .15 18.45 11.70 
2 60 35 10.20 11.40 11.00 23.40 15.85 10.55 
5 60 35 12.60 22.05 11.15 23.50 13.80 10.25 
1 15 50 10.65 11.50 10.75 24.55 16.40 11 .00 
1.5 15 50 11.55 11.70 11 .15 25.50 16. 5 11.50 
2 15 50 11.80 11.40 11.70 25.10 16.25 11.95 
5 15 50 11.95 15.70 11.10 26.20 13.40 11.45 
1 30 50 10.90 10.45 10.75 22.95 16.60 10. 5 
1.5 30 50 11 .20 9.75 10.85 24.90 17.75 11.10 
2 30 50 11 .40 9.70 9.65 26. 15 16.30 11 .35 
5 30 50 13.05 21.20 10.70 24.90 15.10 11.00 
1 60 50 10.25 11.05 10.55 23.85 17.10 10.40 
1.5 60 50 11.60 10.35 10.05 24.25 16.50 11. 0 
2 60 50 11.60 11.25 10 .70 26.55 17.20 11.70 
5 60 50 13.45 24.15 10.75 22.40 12.50 10.95 
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Table C.29: T-Total Percent coverage of 90% confidence limits for {3 , ba ed on th 
simulations with k = 10. Other simulation factors are listed in columns 1-3. p = 
exp((J). 

p f..L. obs Cone! Cond Cond Cone Bin Bin 
B 1 NB 2 NB 3 B GLM_OD GLMM 

1 15 20 13.50 12.51 12.95 26.70 15.15 13.65 
1.5 15 20 12.81 12.41 12.25 27.78 15.47 13.11 
2 15 20 12.75 12.01 13.35 28.95 14.65 12.85 
5 15 20 12.65 13.26 12.46 31.85 13.70 12.30 
1 30 20 12.30 13.85 12.25 25.45 14.70 12.30 
1.5 30 20 12.30 12.70 12.75 27.35 15.05 12.40 
2 30 20 11.90 12.00 13.30 2 .15 14.50 12.05 
5 30 20 11.35 13.65 12.60 29.45 12.95 11.35 
1 60 20 12.90 11.15 12.90 28.30 15.65 13.00 
1.5 60 20 12.51 12.15 11.85 27.91 16.26 12.36 
2 60 20 12.60 12.65 12.50 27.95 15.40 12.75 
5 60 20 12.70 11.95 12.45 27.55 15.60 12.90 
1 15 35 10.96 11.90 11.20 24. 12 12.71 10.96 
1.5 15 35 12.15 12.91 11.80 25.55 14.25 12.35 
2 15 35 11 .60 11.55 11.11 25.25 13.25 11 .60 
5 15 35 11.56 12.15 10.60 31.47 13.71 13.16 
1 30 35 12.00 11.75 11.15 26.90 14. 0 12.00 
1.5 30 35 11.00 10.30 11.30 26.60 15.25 11.15 
2 30 35 11.55 12.15 11.20 25.55 14.05 11 .60 
5 30 35 13.25 12.15 10.95 28.25 14.75 12.95 
1 60 35 11.80 10.85 11.70 25.50 16.75 11.75 
1.5 60 35 9.55 12.35 11.45 24.30 13.15 9.50 
2 60 35 10.70 12.00 11.95 26.15 15.20 10.95 
5 60 35 12.40 13.05 11 .25 25.85 14.60 11 .55 
1 15 50 11.56 9.50 11.60 25.41 13.46 11 .66 
1.5 15 50 11 .40 11.20 11.90 26.20 13.50 11.50 
2 15 50 11.71 11.10 9.35 25.76 13.31 11.96 
5 15 50 11.05 11.60 11 .20 32.60 12.50 11.15 
1 30 50 11 .00 11.45 10.15 24. 0 15.15 11.00 
1.5 30 50 11.20 9.00 11.55 25.65 14.90 11.30 
2 30 50 11.80 11.60 11.25 26.40 15.15 11 .65 
5 30 50 11.40 11.25 11.20 27.70 13.65 12.55 
1 60 50 10.20 10.10 10.65 24.55 13.95 10.35 
1.5 60 50 10.30 11.15 11.05 23. 70 13.35 10.30 
2 60 50 10.70 10.55 11.85 24.50 15.05 10.70 
5 60 50 13.20 14.15 12.00 26.00 14.65 10.30 
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Figure D.l: Top: log gamma ratio divided by the standard deviation. Bottom: qq 
plot. The straight line is for the standard normal distribution. 



94 

1E 

N orlln-vest AHan1::ic 
~~-i;~!L-----"'"--->" Fisheries l\1anag e n 1en t 

,e;;~t;~~~~A:::=~v~---D-__.jv-.....isions \ 

Figure D.2: Northwest At lant ic Fisheries Organization (NAFO) management Divi­
sions. 
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Figure D.3: NB compared with Poisson disLibut ion. egativ Binomial density func­
tion is presented by dotted curve. Pa is on den ity function is pr nted by solid 
curve. 
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Figure D.4: Diff renee in the expected NB fraction E(Y1 IY)/n and the Binomial 
probability p, as a function of p = J..Ld J..L .. Each panel shows r sults for a value of n 
and J..L., which is shown as a ratio of n. Different line types are for different values of 
t he NB k , which are shown in the top left-hand panel. T hey-scale may differ between 
panels. 
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Figure D.20: The dotted line has slope of one. The solid line has a slope equal to the 
estimated relative efficiency (p) from Mixed Binomial model. 
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Figure D.2 1: The dotted line has slop of on . T he solid line has a ·lope equal to 
the estimated relative efficiency (p) when f.i.. = n from Conditiona l Negative Binomial 
model. 
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Figure D.33: Simulated lower exceedance of 95% confidence intervals . See Figure 
I) 27 for details . 2.5% is shown as a solid vertical line. 
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