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ABSTRACT 

Drilling fluid, as a rich source of petroleum compounds, is a potential 

environmental pollutant after disposal. The effects of two drilling fluids: IP AR 

and NEODENE on biotransforming enzyme activities in rats were examined 

following administration of 1 to 4 doses (i.p. lmVdose). These activities measured 

included hepatic and renal mixed function oxidases, glutathione S-transferases, 

and peroxisomal enzymes. 

IPAR specifically induced two isofonns of cytochrome P450: CYP lAl 

and CYP2Bl in liver. Induction of CYP IAI protein (100%) as well as its 

associated EROD activity (46%) was significant 24 hours after IPAR 

administration. Although these elevations returned to normal by 72 hours, further 

administration of IP AR caused EROD activity and CYP lA I protein levels to 

increase by about 30% in both the 2 dose and 4 dose treatment groups. Moreover, 

IPAR increased hepatic PROD activity (CYP 281 associated) 9-fold in the 24 

hour (I dose) group, 3-fold in the 72 hour (l dose) and 6 day (2 doses) groups, and 

1.5-4 fold in the 12 day ( 4 doses) group. The associated CYP 281 protein levels 

were also increased correspondingly, but the extent of increase was not as much as 

that of PROD activity. 

transferases activities. 

However, IPAR had no effect on glutathione S-
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In contrast, NEODENE significantly inhibited hepatic microsomal 

cytochrome P450 levels (25 to 30%) and the dependent EROD activity (20 to 

45%), along with glutathione $-transferase activity (DCNB substrate, 14 to 40%) 

in all four treated groups. However, Western blot analysis showed that individual 

protein levels did not correlate well with the associated enzyme activity. The CYP 

lA 1 protein concentration was slightly increased as opposed to the decreased 

EROD activity. The Ya protein of glutathione S-transferase was decreased only in 

the 12 day (4 doses) group and remained unchanged in other treated groups. The 

Yb subunit of glatathione $-transferase was not altered corresponding to the 

decreased GST activity. There was no change in PROD activity after NEODENE 

administration. 

Overall, IP AR and NEODENE have the potential to cause metabolic 

dysfunction. A significant weight loss was observed after NEODENE 

administration in every treated group. The inhibition of xenobiotic metabolizing 

enzyme activities would lead to a slower elimination of NEODENE which may 

contribute to its toxicity. However, the alteration of enzyme activity is not dose­

dependent. Therefore, these endpoints as biomarkers of drilling fluid exposure 

need to be further examined. 

The peroxisomal enzymes, palmitoyl CoA oxidase and camitine transferase 

along with microsomal lauric acid hydroxylase and serum cholesterol and 
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triglycerides levels were not significantly altered suggesting that neither IP AR nor 

NEODENE is likely to cause peroxisomal proliferation. 

Overall, it appears that both IP AR and NEODENE have significant effects 

on biotransforming enzymes and NEODENE appears to be more toxic than IPAR. 
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CHAPTER I 

1. Introduction 

Accompanying the development of modem industry, more and more 

chemicals that include industrial products and solvents, fuels, agricultural 

chemicals, drugs, and consumer products are being released into the environment. 

Chronic exposures of large populations to these chemicals may cause 

environmental pollution and other consequences such as exerting teratogenic 

effects, affecting the aging process, or causing cell mutations and inducing cancer 

directly (Ames, 1979; Crow, 1973; Freese, 1973; De Serres, 1975; Thomas and 

Michael 1980). Because of the toxic, mutagenic or carcinogenic properties of 

some chemicals, environmental contamination has become a significant public 

health problem. More and more research is being canied out to assess the health 

and ecological effects of these toxic substances. 

In the petroleum industry, mainly aliphatic and aromatic hydrocarbons and 

a few nonhydrocarbons (Atlas and Bartha, 1973) are the major pollutants in the 

environment. Their toxic effects such as growth delay (Gundersen et al. , 1996), 

immune system impairment (Tahir and Secombes, 1995) and neoplasia (Max, 

1986) have been well documented in different species. Drilling fluid, essential for 

the successful drilling operation of an oil well, is a rich resource of petroleum 
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based compounds. Thus, it may be a potential toxicant to the environment and to 

hwnans after disposal. With the increasing number of oil wells and new leases for 

oil exploration, the components and types of drilling fluid are being carefully 

selected and examined. Furthermore, toxicity tests of drilling fluids have received 

more serious consideration in order to minimize the possible environmental impact 

from their disposal. 

1.1 Drilling fluid 

1.1.1 Function of drilling fluid 

Drilling fluid, also referred to as mud, is pumped and recirculated through 

the borehole of oil wells. It lubricates the drill, cleans the hole of drilling debris, 

cools the drilling head, weights the column to prevent blow-outs, seals the 

surrounding surface, and serves other beneficial functions (Logan and Sprague, 

1979). 

1.1.2 Classification of drilling fluid 

According to the International Association of Drilling Contractors (IADC) 

and the American Petroleum Institute (API), drilling fluids are categorized into 
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four basic mud systems: water-based systems, low solid systems, oil-based 

systems, and air, gas, mist systems (Drilling fluid file, 1974). 

Historically, most drillings have been performed with water-based muds 

along the Canadian continental shelf. However, oil-based muds tend to be more 

efficient and better lubricants. The use of oil-based muds has thus led to a steady 

decline in the usage of water-based muds since 1983. By 1987, 58% of 

exploratory wells were drilled with oil-based muds (Chenare et al., 1989). 

Since about 1990, the oil and gas extraction industry has developed new 

synthetic base materials from which to formulate high performance drilling fluids 

named synthetic-based drilling fluids (SBFs). The synthetic-based fluids have the 

drilling performance charactetistics of traditional mineral oil and diesel oil-based 

fluids (OBFs), but have lower environmental impacts and greater worker safety. 

1.1.3 Composition of drilling fluid 

Drilling fluid began as mud---just clay and water. It is a complex mixture 

and its chemical composition is only partly known. Most muds consist of a 0.5% 

slurry of bentonite, an organic material such as lignite or lignosulfonate to 

stabilize the slurry in water. Sodium hydroxide is added as a dispersant and a 

density-increasing material and, usually, barite (BaSO~) is added to help float out 

rock particles (Miller and Pesaran, 1980). 
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Nowadays, modem muds are designed for a wide range of drilling 

conditions of the hole. The properties of drilling fluid can be modified by a 

variety of additives, such as pH control additives, bactericides, calcium removers, 

corrosion inhibitors, defoamers, emulsifiers, filtrate reducers, foaming agents, lost 

circulation materials, lubricants, shale control inhibitors, surface active agents, 

thinners, dispersants, viscocifiers, and weighting materials. Many factors are 

carefully addressed on environmental safety. 

In synthetic-based muds, the synthetic materials are produced by reaction 

of specific purified chemical feedstock, as opposed to the oil-based fluids that are 

derived from crude oil solely through physical separation processes. These 

oleaginous (oil-like) materials include vegetable esters, poly alpha olefins, internal 

olefms, synthetic paraffins, ethers, alkyl benzene, and others. Typically, synthetic­

based fluids are free of polycyclic aromatic hydrocarbons (PAHs) which are 

known to be toxic to the environment (www.epa.gov). 

The two drilling fluids used in my research are IPAR and NEODENE. 

They are synthetic-based muds. IPAR and NEODENE differ significantly in their 

chemical components as can be seen from the HPLC graphs (Figures 1. 1 and 1.2). 

However, other properties are unknown due to little information released from the 

oil company. 

- 4-



I 
~ 

I 

• • i i • • • • • • • 
i i i ! i i ti 

.. ,_.__._ 
./ 

I .. , - - - 1-Ift I .. I ..... ... e1 - UIMIIf I -u-11~ 
··-- I -& f I - ... , .. I ..... • : .... .. ..., .... _.__. .... I eey 

... , 

··-

··-

I 
••• 1 

~ 
I: i ·-:1 a. 
I: e 
II 8 I: 
0 -D. ·s e .s 0 w e .. 
tS ~ 
s 1 "' .. u 
Dl e 
I: 8 ·-.. I: 

ii ~ .. rn 
D. ·;; 

>. • c - V'l • a ·-• iii>\ u -• ...J I: !a • u '-
..;J 0 
~ 2 
= .2 -....c ·-• ~ ....c 

f! 
i • ·-[I.e 



-·· ,_ 

-·· .... 
HI -·· -c 
JJ -·· ' I 
i -·· .. 

• I -·· 1: .. .. 
sl! I -·· ~ ·) 
t'i I 

I -·· .. 
!I 
.:a· · -·· 
J! -·· 

I i 
~ i ..... 
I -
u! ••• . 

~ ~u.. --~ ~ . -iJi ~ ••• • JJ; • ' • • • • • i i ! SJ, .. __ 
c.,.., 

Flpre l.Z HPLC analysis• presenting Cu to C21 eomponentaln NEODENE 

• Conditions ofHPLC analysis are not released from the oil company 

- 6-



1.1.4 Disposal of drilling fluid 

Since drilling fluids are rich in petroleum based compounds some of which 

could be toxic or mutagenic to living organisms, a great concern is given to its 

disposal. Nesbitt and Sandes (1981) presented a set of disposal methods with 

approximate cost to serve as an initial guide for disposal of drilling fluids. The 

Canada-Newfoundland Offshore Petroleum Board (C-NOPB), the Canada-Nova 

Scotia Petroleum Board (C-NSOPB) and The National Energy Board (NEB) co­

published a review of the Offshore Waste Treatment Guidelines (OWTG) that 

described minimum standards for the treatment and/or disposal of waste associated 

with routine operations of drilling and production installations offshore in 

September, 1996 (http://www.neb.gc.ca). Disposal of drilling fluid from land­

based operations is usually into temporary or permanent pits (Collins, 1971). As 

for offshore or lake drilling, methods of disposal are based upon careful 

consideration of mud formulation and specific environmental conditions at the 

site. Water-based muds may be discharged from offshore installations without 

treatment if fluids are not contaminated with oil, heavy metals, or other 

bioaccumulating substances. Oil-based or synthetic-based muds are often 

reconditioned or recycled, transferred to shore and disposed in a manner approved 

by authorities (http://www.grida.no). The Environmental Assessment Division 

(EAD) pointed out that synthetic-based drilling fluids are preferred for more 
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complex drilling situations as long as the drilling cuttings can be discharged on 

site rather than hauled to shore for disposal (http://www.ead.anl.gov). Toxicity 

tests of drilling fluids are performed to estimate the maximum amount of drilling 

fluid that can be discharged without having a direct, toxic effect on the 

environment or a predicted impact on living organisms. 

1.1.5 Toxicity of drilling fluid 

The environmental effects of drilling fluid have been evaluated on soil, 

plants, bacterial and marine organisms since early 1980's. The degree of impact 

drilling fluids have on the environment depends on the type of mud used and the 

prevailing environmental conditions. Water-based mud is generally less damaging 

compared to oil-based mud. Drilling muds contaminated with petroleum 

hydrocarbons from oil bearing formations could be more toxic than 

uncontaminated muds. Despite the large scale of inputs of drilling fluids, all the 

field studies around the North Sea platforms showed that the major deleterious 

biological effects occurred within 500 m of the platform. In the surrounding area, 

approximately within 400-1000 m of the platform, subtle biological effects could 

be detected (Davies et al., 1984). This is mainly because discharge of drilling mud 

into the ocean results in substantial dilution of potentially toxic components with 

natural seawater (Audredge et aL, 1986). 
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When an oil-based drilling fluid is dispersed in water, the oil components 

are present in three phases: a water phase, a particle phase and a mineral phase. 

The dissolved and particle oil has toxic effects, which results in the growth delay 

of mussels. The mineral particles are usually biologically inert, but in high 

concentration, they would cause stress to the test organisms and might have a 

negative effect on growth (Stromgren and Reiersen, 1988). The oily cuttings do 

not disperse as much as water-based muds and so may deposit on the seabed. 

High concentrations of organic materials can have profound effects on plants and 

animals living on the seabed. Laboratory data showed that a number of 

macrobenthic invertebrates were significantly suppressed after exposure for 

different periods to different drilling fluids (\Veber et al., 1992). The productivity 

of seagrass was also reduced by drilling fluid exposure in response to seasonal 

changes (Price et al., 1986). The Allium test, which tests the toxicity in plant 

systems, demonstrated that in spite of different organic and inorganic components 

in the drilling fluids, they all have toxic effects on plants (Vidalovic et al., 1993). 

Similarly, not only the individual fluid components, but also the complete drilling 

fluid mixture can cause poor plant growth (Miller and Pesaran, 1980). The organic 

materials accumulated on the seabed also result in the generation of anaerobic 

conditions because rapid bacterial activity uses up the available oxygen in an area. 
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Such a condition leads to the almost total elimination of bottom dwelling 

organisms very close to the rig (http://www.l.slb.com). 

The potential adverse effects after discharge of drilling fluids have been 

examined in a variety marine species, such as fish, lobster, crab, and mussels. 

Intraperitoneal administration of an extract from a diesel oil-based drilling mud to 

rainbow trout caused both stimulatory and inhibitory effects of the immune system 

(Tahir and Secombes, 1995). However, it is difficult to extrapolate these findings 

to the consequences of immunomodulation of fish in drilling fluid-contaminated 

areas, because of the diversity of components involved in the test system. 

In order to assess the environmental effects of drilling fluids properly, some 

sensitive stages of potentially affected organisms are usually chosen. In assessing 

the developmental toxicity of drilling fluids in marine species, it is important to 

observe effects on fertilization, embryonic development, and early larval life. 

Studies on the embryo development in Fundulus showed clearly that drilling fluid 

contained toxic materials which affected the development of teleosts and the 

fertilization and development of sand dollars (Crawford and Gates, 1981). 

Although some investigations have shown that drilling fluids have little or 

no effect on adult marine organisms, larvae and juvenile invertebrates are believed 

to be sensitive to the exposure of drilling fluids . Bookhout et al. ( 1984) focused 

on the effects of a low density lignosulfonate type drilling fluid on the complete 
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larval development of two species of crabs. The aqueous fraction and suspended 

particle fraction were nontoxic to the development of crabs from the time of 

hatching to the first crab stage. However, a decline in swimming speed in general 

was observed with both fractions of drilling fluid which indicated sublethal stress 

on crabs. 

Moreover, drilling fluids have been demonstrated to induce sublethal 

effects on animal behavior. In the American lobster, burrowing behavior and food 

detection capabilities were changed because of exposure to drilling fluid (Atema et 

al., 1982). The sw-vival metabolism, energy utilization and other biochemical 

effects in lobsters were also altered by exposure to drilling fluids (Derby and 

Capuzzo, 1984). 

The toxicity of drilling fluids varies widely mainly because the components 

present in them are not completely known. Because of interaction between 

components, the toxicity of total drilling fluids may not be the simple additive 

toxicity of individual components. Logan and Sprague ( 1979) found that an 

additive effect was only observed in three used drilling fluids out of seven. Less­

than-additive toxicity or antagonism was also observed. Due to the complexity of 

interactive effects, it is important to emphasize that research should be carried out 

on whole drilling fluids rather than on partial fluids or single components so that 

relatively comprehensive biological effects could be assessed. 
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On the other hand, synthetic-based fluids have a lower environmental 

impact because of their lower toxicity, lack of polycyclic aromatic hydrocarbons, 

fast biodegradability, lower bioaccumulation potential and, in some drilling 

situations, less drilling waste volume according to current Environmental 

Protection Agency (EPA) data (http://www.epa.gov). The use of synthetic-based 

fluids would thus be environmentally preferable to the use of oil-based fluids. 

1.2 Biotransformation and toxicity 

Xenobiotics present in an animal must undergo biotransformation to more 

hydrophilic derivatives which are easy to excrete. Without biotransformation, 

lipophilic compounds would bioaccumulate in organisms and eventually 

overwhelm and kill the cells. Generally, the overall sequence may be considered 

as a detoxification or deactivation since the metabolite is usually less toxic than 

the parent compound. However, not all biotransformtions are beneficial to the 

organisms. Some components could become more toxic or biologically active than 

the parent compound after individual reactions; in these cases, biotransformation 

becomes a sequence oftoxication or activation. A great number of chemicals have 

been studied for their toxicities that are closely related to their biotransformation 

in organisms. The hepatotoxicity of the anesthetic halothane is due to its 
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biotransformation either to a free radical that initiates lipid peroxidation or to a 

reactive electrophile that covalently binds to hepatic proteins and/or DNA 

(Reynolds and Moslen, 1980). Chemicals such as aflatoxin 8 1, benzo(a)pyrene, 

dimethynitrosamine, safrole, benzidine, etc., are activated to their ultimate 

carcinogenic forms through a number of metabolic reactions (Henry and Yvonne, 

1996). Therefore, biotransformation may be an important determinant of the 

toxicity of certain chemicals. 

Biotransformation is canied out by Phase I enzymes, mainly cytochromes 

P450, which usually results in a small increase in hydrophilicity of chemicals and 

phase II enzymes such as glutathione S-transferases, glucuronosyl transferases and 

sulfotransferases which leads to a large increase in hydrophilicity of chemicals. In 

most species, exposure of an animal to certain foreign organic chemicals or drugs 

for a period of time can either induce or inhibit the activities of these 

biotransforming enzymes. Because of this, the rate at which an animal can 

metabolize and excrete xenobiotics is altered correspondingly. This perturbation 

may eventually influence the potential toxicity of chemicals. In most cases, 

induction of enzyme activity causes polar metabolites to be formed and excreted 

more quickly, therefore, it decreases the toxicity of chemicals. However, since 

certain xenobiotics are metabolized to more toxic intermediates, an increase of 

enzyme activity may exaggerate the toxic effects to an animal, especially when 
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other pathways for further metabolism and elimination of the toxic intermediates 

are not also induced or possibly inhibited. 

1.2.1 The role of cytochrome P450 in metabolism and toxicity 

1.2.1.1 Induction of cytochrome P450 

Cytochrome P450 enzymes are heme-containing proteins which are 

important in the oxidative, peroxidative, and reductive metabolism of a wide range 

of foreign chemicals as well as endogenous compounds. Ce1tain isoforms of 

cytochrome P450 are inducible by a variety of xenobiotics such as drugs, 

pesticides, and industrial chemicals, resulting in increased levels of the associated 

catalytic activities as well as increased expression of RNA and protein. The 

inducing ability varies mainly depending on the nature of the chemicals. Nims 

and Lubet (1995) categorized the potential environmental contaminants into four 

classes: polycyclic aromatic hydrocarbons, polyhalogenated aromatic 

hydrocarbons, organochlorine pesticides and phthalate plasticizers because of their 

specific patterns of cytochrome P450 induction. In a structural study of PCB 

mixtures, chemicals with 2,2'-dichloro substitution and additional substitution 

especially at the para position of biphenyl are predominantly CYP 28 inducers, 

while chemicals which lack substitution at the ortho position are usually CYP lA 
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inducers (Safe, 1984 ). However, other structurally dissimilar compounds such as 

industrial plasticizers, di(2-ethylthexyl)phthalate (DEHP) and hypolipidemic drugs 

such as clofibrate and nafenopin induce lauric acid ro-hydroxylation, which is 

catalyzed by the cytochrome P450 4A family ( Orton and Parker, 1982). 

Many drugs have the potential to induce cytochrome P450 activity 

(Frotschl et al., 1998). This induction is clinically important especially in 

explaining or predicting drug interactions and drug side effects. Usually, the 

induction of cytochrome P450 accelerates the elimination of foreign chemicals. 

Therefore, it may lower plasma concentrations of simultaneously administered 

drugs and decrease their therapeutic activity. For example, aminoglutethimide, a 

drug used in the treatment of advanced breast cancer, can accelerate the clearance 

of warfarin, theohylline and digitoxin about 3- to 5-fold (Kvinnsland et al. , 1986). 

The combined use of isoniazid and rifampicin in the treatment of tuberculosis can 

sometimes, cause fulminant hepatitis which is due to the inductive effect of 

rifampicin (Pessayre et al., 1963). 

Not only drugs, but also many environmental pollutants have been found 

to exert their toxic effects via activation by cytochrome P450. For example, 

acrylonitrile is known to be a carcinogen in animals and a suspected human 

carcinogen whose toxicity is associated with its metabolism by cytochrome P450 

(Felten et al., 1998). Under these circumstances, the induction of cytochrome 
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P450 leads to a number of adverse consequences. Nyarko et al. ( 1997) found that 

the induction of P450 enhanced the metabolism of N-(3,5-dichlorophenyl) 

succinimide (NDPS), an agricultural fungicide and suggested that the induction of 

cytochrome P450 is closely correlated to NDPS-induced nephrotoxicity. Lehman­

McKeemanld et al. ( 1997) observed that musk xylene, a synthetic nitromusk 

perfume ingredient, was capable of inducing cytochrome 28 protein which caused 

liver tumors in mice. The hepatotoxicity of carbon terachloride and acetaminophen 

is largely increased in rats by inducing hepatic cytochrome 2E 1 after alcohol 

exposure (Wang et al., 1999). 

Exposure to certain chemicals such as polycyclic aromatic hydrocarbons 

causes cytochrome P450 induction in many species. For example, elevated 

cytochrome P450 activities were observed in fish after exposure to petroleum 

hydrocarbons (Payne and Denrose, 1975). Although there is no causal relationship 

between induction and exposure, this inducing response provides a way to monitor 

environmental pollution and predict potential health hazards. 

1.2.1.2 Inhibition of cytochrome P450 

Cytochrome P450 activities can also be inhibited by many chemicals 

(Reidy, 1990). As a consequence, the inhibition of cytochrome P450 delays the 

metabolism, detoxification and elimination of xenobiotics and causes overload of 
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chemicals in the body which turns into adverse effects in organisms. However, in 

a study of developing chemopreventive compounds, 2-(allylthio) pyrazine (2-AP) 

was found to reduce rat hepatoxicity by inhibiting the cytochrome P450 mediated 

metabolic activation and protein expression (Kim and Kim, 1999). 

Inhibition of cytochrome P450 is also an important issue in the study of 

drug metabolism and drug interaction because it can cause a rapid and profound 

increase in blood levels of a drug, which can lead to toxic effects and symptoms of 

drug overdose (Walkins, 1990). Blobner et al. (1999) reported that inhibition of 

cytochrome P450 led to a decreased sensitivity to and a decreased elimination of 

vecuronium, which causes inflammatory liver dysfunction. 

1.2.2 The role of glutathione S-transferase in metabolism and toxicity 

1.2.2.1 Isoforms of glutathione S-transferase 

The glutathione S-transferases (GSTs) are a family of proteins that 

conjugate glutathione on the sulfur atom of cysteine to various electrophilic 

xenobiotics or electrophilic metabolites. GSTs are composed of several isoforms 

which are arranged into four gene families designated A, M, P, and T (which refer 

to alpha, mu, pi, and theta or a, J..l, n: and 6). In rat liver, the most important 
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isofonns belong to the a and J.l families. The a family includes principally Ya and 

Yc subunits and the J.l family includes the Yb subunit (Cecil, I 989). 

1-Chloro-2,4-dinitrobenzene (CDNB) is a general substrate for the 

reactions catalyzed by all glutathione S-transferase isoenzymes, while other 

substrates are fairly specific for one class of enzymes. Table 1.1 lists substrate 

specificities for the major glutathione S-transferases in rat (Bengt, 1985). 

1.2.2.2 Induction of glutathione S-transferase 

Glutathione S-transferases are believed to play an important protective role 

m living organisms by metabolizing electrophiles. Otherwise, some toxic 

xenobiotics and metabolites would bind to critical macromolecules, such as 

proteins and nucleic acids and cause cellular damage, mutation and even cancer. 

Glutathione S-transferases are differentially induced by xenobiotics, carcinogens 

and other drugs. This induction is usually associated with increased levels of 

mRNA and protein as well as glutathione S-transferase activity (Marcelo and 

Vivianna, 1999; Viviana and Marcelo, 1998). Similar to the induction of 

cytochrome P450, the induction of glutathione S-transferase is usually beneficial 

to the animals because it facilitates the clearance of active metabolites. Bishayee 

et al. ( 1999) showed that elevation of glutathione S-transferase led to a reduced 

intracellular concentration of carcinogen-derived reactive intermediates and 

- 18-



Table 1.1 Substrate specifities of major rat glutathione S-transferases 

Substrate YaY a YaYc YcYc Yb1 Yb1 Yb 1Yb2 

1-Chloro-2,4-dinitrobenzene 100(38) I 00(28) 100(19) 100(38) 100(28) 

1 ,2-Dichloro-4-nitrobenzene <0.2 <0.2 0.2 10 9 
Ethacrynic acid 0.4 3 7 0.3 l 
Trans-4-phenyl-3-buten-2-one NO NO NO 0.2 2 
1 ,2-Epoxy-3-(p-nitrophenoxy )-propane 0.4 0.3 0.3 1.3 1.6 

I. Relative specific activity (umol/min/mg) is given as a percentage of the specific activity determined with 
I ~chloro-2,4-dinitrobenzcne as substrate 

II. ND=not detectable activity under assay conditions used 
lll. From Benb>1, 1985 
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resulted in an inhibitory response against rat liver carcinogenesis. The induction 

was also considered as a protective response and can be used as a bioindicator of 

chemical exposure (Egaas et al., 1999). 

1.2.2.3 Inhibition of glutathione S-transferase 

Over-expression of glutathione S-transferase isoenzymes such as a., J.L, 1t 

have been found in many cultured cells after exposure to vanous 

chemotherapeutic drugs such as cisplastin (Teicher et al., 1987) and chlorambucil 

(Schisselbauer et al., 1990). These responses have been found to play a significant 

role in cell resistance to these drugs. Therefore, GST inhibitors as well as GSH 

depletors are receiving more attention to overcome the GST mediated drug 

resistance in cancer chemotherapy. Nakanishi et al. ( 1997) showed that some 

glutathione derivatives enhanced the sensitivity of tumors to acriamycin by 

inhibiting GST activity. Thus, these glutathione derivatives are tested as 

sensitizers in chemotherapy. However, inhibition of glutathione S-transferases 

may delay the excretion of toxic substances and thus enhance the potential 

toxicity. In a study of the neurotoxic effects of the organophosphate, 

phosphamidon on GST activity, a significantly lower level of GST activity was 

observed in various CNS regions of phosphamidon intoxicated rat (Naqui and 

Hasan, 1991 ). 
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1.3 Biomarker and toxicity test of drilling fluid 

Toxicity tests are performed to predict the impact of different xenobiotics 

on the receiving environments or organisms. The most common method is to 

determine LD50 after exposure of animals to crude drilling fluid or diluted drilling 

fluids. However, besides the increasing concern for the welfare and protection of 

laboratory animals, LD50 can be influenced by many factors so that it may not 

reflect the environmental risks properly. Also, it is a crude measure of toxicity and 

does not take into account subtle, sublethal effects. Some studies have also 

detected the chemical concentration present in animal tissues, but it seemed hard 

to establish a close relationship between exposure to chemicals and environmental 

effects of driiling fluid. In addition, the complex chemical composition of drilling 

fluid makes the assessment of its toxic effect more difficult. 

Currently, EPA is collecting a variety of toxicity test data about 

biodegradation, bioaccumulation and biotranforrnation of drilling fluids in order to 

improve effluent limitation guidelines and to better regulate the discharge of 

drilling fluids. In this case, the use of biological markers, which are defined as 

xenobiotically induced alterations in cellular or biochemical components or 

processes, structures or functions that are measured in a biological system or 

samples is receiving more interest. Biomarkers serve as endpoints of natural toxic 

responses. These include alterations in cytochrome P450 enzyme activity, 
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tmmunoresponse, stress protein levels, and DNA adduction. These changes 

establish a potential relationship between health impairment in an organism and 

exposure to contaminants. Among many endpoints, it is a challenge to identify 

which endpoint is more sensitive. Ngui and Bandiera ( 1999) found that induction 

of cytochrome CYP 2B to monitor exposure to a polychlorimated biphenyl 

mixture is more sensitive than the induction of CYP lA. In a study monitoring 

the toxicity of 1,3 butadiene, a hazardous air pollutant, a series of endpoints were 

compared in order to frnd out a useful biomarker of exposure in which quantitative 

linkages between exposure and its carcinogenicity could be established (Osterman 

and Bond, 1996). However, a single endpoint may be affected by other potentially 

complicating factors. Leave et al. ( 1988) found a seasonal variation of increased 

cytochrome P450 EROD and AHH activities in fish after exposure to drilling 

muds. Thus, it is necessary to use a suite of biomarkers to reflect the responses to 

exposure more completely and accurately so that the interactions of other 

potentially complicating factors could be avoided. Stein et al. (1992) 

demonstrated that usage of the biomarkers EROD, GST, and DNA adduction 

concurrently provided a clearer assessment of the impact of contaminants in fish. 

Together with other parameters: chemical content, sediment toxicity, rate of 

biodegradation, the environmental risk of drilling fluids could be well assessed. 
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1.4 Objective of the thesis 

The objective of my research is to investigate the effects of administration 

to rats of two drilling fluids, IPAR and NEODENE, on activities of some isoforms 

of cytochrome P450, glutathione S-transferases and of peroxisomal enzymes. The 

purpose of these experiments is to establish the primary patterns of enzymatic 

alternation related to IPAR and NEODENE exposure, respectively. These 

responses would further help to shed light on the possible mechanism(s) of their 

impact on the environment and could be considered as useful biomarkers to assess 

the adverse effects of these two drilling fluids . 
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2.1 Materials 

CHAPTER2 

2. Methods 

Drilling fluids: IP AR and NEODENE were obtained from Dr. Jeny Payne, 

Depa.rtrnent of Fisheries and Oceans (DFO), St. John's. Tris (enzyme grade), 

sodium dithionite, BSA (bovine serum albumin), ethoxyresoru:fin, 

pentoxyresorufin, DL-isocitric acid, isocitric dehydrogenase, resorufin, methanol, 

DMSO (dimethyl sulfoxide), cholesterol (Sigma diagnostics procedure No.352), 

triglyceride (Sigma diagnostics procedure No.336), NADPH (13-nicotinamide 

adenine dinucleotide phosphate, reduced form), NADP (13-nicotinamide adenine 

dinucleotide phosphate), ether, hexane, Sintiverse II, palmitoyl-CoA, FAD (flavin 

adenine dinucleotide), scopoletin, peroxidase, Triton X-100, borax, 30% H20 2, 

acetyl-CoA, DL-carnitine, EDT A (ethylenediamine tetraacetic acid), ethacrynic 

acid, DNBT 

dinitrobenzene ), 

(5',5'-dithio-bis-nitrobenzoicacid), CDNB ( 1-chloro-2,4-

GSH (glutathione, reduced form), DCNB (1-nitro-2,4-

dichlorobenzene), trans-4-phenyl-3-buten-2-one, SDS (sodium dodecyl sulphate), 

CAPS (3-cyclohexylamino-l-propanesulfonic acid), acylamide, N, N'-methylene­

bis-acrylamide, sodium azide, glycine, glycerol, b1illiant blue R, bromophenol 

blue, AP (ammonium persulfate), TEMED (N, N, N·, N'-tetramethyl-
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ethylenediamine), BCIP (5-bromo-4-chloro-3-indolylphosphate), NBT (nitro blue 

tetrazolium) and Tween-20 (poly oxyethylenesoibitan monolaurate) were 

purchased from Sigma Chemical Co. (St. Louis, MO). Lauric acid was from BDH 

Canada (Toronto, Ontario). 14C Lauric acid in hexane (specific activity 2.15 

Gbq/mmol, 58.0 mCi/mmol) was purchased from Amersham Life Sciences 

(Buckinghamshire, England). Prestained protein molecular weight markers, 

polyclonal goat anti-rat GST Yb, polyclonal goat anti-rat GST Ya and alkaline 

phosphatase-conjugated anti-goat IgG were purchased from Oxford Biomedical 

Research (Oxford, MI). Anti-rat CYP28 1 serum and anti-rat CYP IA I serum 

were purchased from Daiichi Pure Chemicals Co. Ltd. (Tok-yo, Japan). 

2.2 Method 

2.2.1 Animal treatment 

Male Sprague-Dawley rats weighing 190 g - 220 g were divided into 3 

groups of 6 rats each: control group, IPAR group, and NEODENE group. One ml 

IP AR or NEODENE was administered intraperitoneally to each rat every time. 

Control rats received an equivalent amount of 0.9% NaCl. Additional dosing(s) 

were given at 3 day intervals after the first treatment. Rats were sacrificed 24 
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hours or 3 days after the final administration. The treatment regimen is illustrated 

below (Table 2.1): 

Rats were sacrificed by cervical dislocation. Blood was collected from the 

heart of each ether-anesthetized rat with the aid of a 10 ml plastic disposable 

syringe. The individual blood samples were centrifuged at 9,000 rpm for 10 min 

to obtain serum (about 1 ml). Sera were stored in -70°C for one week prior to 

measurement of cholesterol and triglyceride concentrations. 

Each liver was immediately perfused with 0.9%> NaCI and then the liver 

and kidneys were removed separately into isocitric 250 mM sucrose- I 0 mM Tris­

HCI buffer, pH 7.4. Liver and kidney homogenates were prepared as described 

below. 

2.2.2 Preparation of microsomes and cytosols 

All the following procedures were performed at 0-3°C according to the 

method described by Rahimtula et al. (1979). Liver and kidneys were separately 

blotted dry, weighed and transfened into beakers containing 4 volumes of 250 

mM sucrose-10 rn1ti Tris-HCI buffer, pH 7.4. Liver and kidneys were minced into 

small pieces and homogenized by a motor-driven Potter-Eljevhem homogenizer. 

The homogenates were centrifuged at 10,000 g for 15 minutes. 
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Day 1 
Day 2 
Day3 
Day 4 
Day 5 
Day 6 

Day 7 

Day 8 
Day 9 

Day 10 
Day 11 
Day 12 
Day 13 

Table 2.1 Treatment regimen of drilling fluids to rats 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 
administration administration administration administration 

sacrifice 

sacrifice administration administration 

sacrifice administration 

administration 

sacrifice 

I. Rats were administered intraperitoneally with either I ml of IPAR or NEODENE each time. 
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The supernatants from the 10,000 g spin were filtered through two layers of 

Kimwipes in order to get rid of fat and then recentrifuged at 105,000 g for one 

hour to yield cytosol. The pellets were resuspended in ice-cold 250 mM sucrose­

tO mM Tris-HCl buffer, pH 7.4 and homogenized using 6 strokes of a tissue 

homogenizer. In the case of liver microsomes, the resuspended pellet was washed 

with above buffer by recentrifugation at 105,000 g for I hour. 

Both microsome and cytosol samples ofliver and kidney were stored at 

-70°C in aliquots for future enzymatic assays. 

2.2.3 Determination of protein concentration 

Protein concentration was determined by the method of Lowry et al. ( 1951) 

using bovine serum albumin as a standard. 

2.2.4 Measurement of microsomal cytochrome P450 levels 

Microsomal cytochrome P450 levels were determined according to Omura 

and Sato (1964). Microsomal samples were diluted with 0.1 M Tris-HCl buffer, 

pH 7.4 containing 20% glycerol to a volume of 5 ml and containing approximately 

2 mg protein per ml. A few grains of sodium dithionite were added and the 

contents mixed to reduce cytochrome P450. The reduced sample was divided 

equally between two matched cuvettes and a baseline was recorded between 400-
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500 nm. Only the sample cuvette was gently bubbled with carbon monoxide for 

30 seconds. The absorbance was re-scanned between 400-500 run. P450 levels 

were detennined using the molar extinction coefficient of 9lcm·1mM·1 for 

absorbance between 450-490 nm. 

2.2.5 Enzymatic assays 

2.2.5.1 Measurement of 7-ethoxyresorufin-0-deethylase (EROD) and 7-

pentoxyresorufin-0-depentylase (PROD) activities 

EROD and PROD activities were measured respectively usmg 

ethoxyresorufin (ER) and pentoxyresorufin (PR) as substrates by a modification of 

the method described by Burke et al. ( 1985). The reaction mixture containing 

either 100 ug liver microsomal protein or 200 ug kidney microsomal protein, 5 uM 

ER or PR (12.5 ul of a 0.5 mM ER solution in DMSO or 6.5 ul of a 1 mM PR 

solution in DMSO), BSA 1 mg/ml, 0.1 M potassium phosphate buffer, pH 7.6 was 

equilibrated for l min at 3 7°C. The reaction was then sta11ed by the addition of 

125 ul NADPH regenerating system. The NADPH regenerating system contains 

50 ul of 1.0 M MgCh solution, 15 mg DL-isocitrid acid, 4 rng NADP, 65 ul 

isocitric dehydrogenase and 885 ul of 0.1 M potassium phosphate buffer, pH 7.6 

per ml. Blanks received 125 ul of buffer. The final reaction volume was 1.25 rnl. 
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After 10 minutes incubation at 3 7°C, the reaction was stopped with 2 ml methanol. 

Precipitated protein was centrifuged and the fluorescence of the supernatant was 

measured at the excitation wavelength of 550 run and the emission wavelength of 

585 run. Enzyme activity was determined by the increased fluorescence of the 

reaction mixture and standardized by constructing a standard curve with resorufm. 

2.2.5.2 Measurement of lauric acid hydroxylase activity 

Lauric acid hydroxylase activity was measured according to a modification 

of the method described by Viswalingam and Caldwell ( 1997). One hundred ug 

liver microsomal protein or 200 ug kidney microsomal protein, 210 ul of 1 mM 

lauric acid solution (approximately 1.4 x 106 dpm/tube), and 190 ul of 0. 1 M 

sodium phosphate buffer (pH 7.4) were pipetted into individual tubes and placed 

in a 37°C water bath for 5 min. The reaction was staited by adding 50 ul NADPH 

regenerating system (composition mentioned above) to all tubes except the blank 

to which 50 ul buffer was added. The reaction was allowed to continue for 20 

minutes at 37°C and then terminated with 400 ul of 3 M HCI. 

Three ml ether was added to each tube and the mixture was vortexed and 

centrifuged at 8,000 rpm for 5 min. After allowing the phases to separate, the 

ether layer was pipetted out into a fresh tube and the aqueous phase was extracted 

again with 3 ml ether. The combined ether phases were evaporated to dryness by 
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nitrogen. The residue was taken up in 100 ul methanol and 25 ul was counted for 

14C in 7 ml Scintiverse II. The counting efficiency was assessed using an external 

standard. A further 25 ul was streaked on a TLC plate which was developed with 

hexane:ether:glacial acetic acid (49:49: 1.5). Radioactive bands were located by 

autoradiography with Kodak scientific imaging film. Individual bands thus 

visualized were scraped into separate sintillation vials to which 7 ml Scintiverse II 

was added before counting. The 14C radioactivity was detetmined by liquid 

scintillation counting. Lauric acid hydroxylase activity was expressed as nmol 

hydroxylated lauric acid formed/ min! mg protein. 

2.2.5.3 Measurement of palmitoyi-CoA oxidase activity 

Palmitoyl CoA oxidase activity was determined by the fluorometric assay 

of Walusimbi-Kisitu and Harrison ( 1983). For this assay, fatty acyl-CoA 

dependent H202 production is coupled in a peroxidase-catalyzed reaction to the 

oxidation of scopoletin (6-methoxy-7-hydroxycoumarin), a highly fluorescent 

compound, to a nonfluorescent product. 

The reaction mixture in a final volume of 1 ml contained 60 ml'vf Tris-HCl , 

pH 8.3, 35 uM palmitoy-CoA, 50 uM FAD, 1 uM scopoletin, 10 ug (3 units) 

peroxidase, 0.6 mg BSA, 0.01% Triton X-100, and 100 ug liver microsomal 

protein or 200 ug kidney microsomal protein. The incubation was carried out 
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under subdued light at 37°C with shaking for 20 minutes. The reaction was 

terminated by adding 4 ml of 0.1 M borate buffer, pH 10. The fluorescence was 

measured at room temperature with emission wavelength at 4 70 run and excitation 

wavelength at 395 nm. A control without enzyme was included in each assay. A 

standard curve was constructed at the same time by adding known amounts of 

H20 2 to the reaction mixture containing all components except the microsomal 

protein. 

2.2.5.4 Measurement of carnitine acetyl transferase activity 

Carnitine acetyl transferase activity was determined by the method of Bock 

et al. (I 980). The assay was carried out at 25°C in a spectrophotometer set at a 

wavelength of 412 nm. The sample cuvette contained 0.5 mM DNBT -2.5 mM 

EDTA-0.2% Triton X-100 in 116 mM Tds-HCI buffer, pH 8.0, 0.1 mM acetyl­

CoA, 5 mM camitine, and 100 ug microsomal protein in a total volume of I mi. 

The reference cuvette contained the same mixture but without camitine. The 

molar extinction coefficient of the reaction is 13 .6cm -t mM _,_ 

2.2.5.5 Measurement of glutathione S-transferase activities 

Glutathione S-transferase activities were measured using l -chloro-2,4-

dinitrobenzene (CDNB), 1-nitro-2,4-dichlorobenzene (DCNB), ethacrynic acid, 
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and trans-4-phenyl-3-buten-2-one as substrates. All reactions were carried out at 

30°C in 3 m1 spectrophotometer cuvettes and were initiated by the addition of 

GSH. Individual conditions varied as follows: 

2.2.5.5.1 CDNB 

The reaction mixture contained 0.1 M potassium phosphate buffer, pH 6.5, 

l mM CDNB, I mM GSH and 50 ug cytosol protein. The reaction was followed 

by measuring the change in absorbance at 340 nm. The extinction coefficient of 

CDNB is 9.6 cm-1 mM _,_ 

2.2.5.5.2 DCNB 

The reaction mixture contained 0. I M potassium phosphate buffer, pH 7.5, 

l mM DCNB, 5 mM GSH and 400 ug cytosol protein. The reaction was followed 

by measuring the change in absorbance at 345 nm. The extinction coefficient of 

DCNB is 8.5cm-1 mM · t . 

2.2.5.5.3 Ethacrynic acid 

The reaction mixture contained 0.1 M potassium phosphate buffer, pH 6.5, 

0.2 mM ethacrynic acid, 0.25 mM GSH and 1 mg cytosol protein. The reaction 
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was followed by measuring the change in absorbance at 270 nm. The extinction 

coefficient is 5.0 cm-1 mM-1
• 

2.2.5.5.4 Trans-4-phenyl-3-buten-2-one 

The reaction mixture contained 0.1 M potassium phosphate buffer, pH 6.5, 

50 uM trans-4-phenyl-3-buten-2-one, 0.25 mM GSH and l mg cytosol protein. 

The reaction was followed by measuring the change in absorbance at 290 run. The 

extinction coefficient is -24.8 cm-1 mM-1
. 

2.2.6 Measurement of serum cholesterol and triglyceride concentration 

Serum cholesterol was determined using Sigma diagnostics procedure No. 

352 based on the method described by Allan et al. ( 1974 ). Serum triglycerides 

were measured by Sigma diagnostics procedure No. 336 based on the procedure of 

Bucolo and David (1973). 

2.2. 7 \Vestern Blot analysis 

Microsomal and cytosol proteins were boiled with an equal volume of 

0.065 M Tris-HCI. pH 6.8, 4.5% sodium dodecyl sulphate (SDS-w/v), 13% 

glycerol (v/v), 0.3% sodium azide and 0.001% bromophenol blue (w/v) for 5 min. 

Aliquots of microsomal or cytosol protein along with con·esponding standard 
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protein (Table 2.2) were loaded on 10% acryamide gels. Electrophoresis was 

performed at 180 V at the room temperature by the method of Laemmli ( 1970). 

Proteins were then transferred from the gel to a PVDF membrane in 10 mM 

CAPS-I 0% methanol buffer following the method of T owbin et al. ( 1979). The 

membrane was then soaked in 3% skim milk for one hour at room temperature. 

Blots were washed twice with a solution of 20 mM Tris-HCl, pH 7.5, 0.5 M NaCl 

and 0.05% Tween 20 (Tris-Tween buffered saline, TTBS) for 5 min each. They 

were then incubated with primary antibody (Table 2.3) in TTBS buffer for one 

hour. After washing with TTBS buffer, the blots were incubated with alkaline 

phosphatase-conjuated secondary antibody (Table 2.3) for 30 min. Finally, the 

PVDF membrane was washed as above again and the blots were visualized by the 

addition of 0.165 mM NBT and 0.0825 mM BCIP in 20 ml of 100 mM Tris-HCl 

buffer, pH 9. 7, containing 5 mM MgC12. Immunoreactive protein bands were 

quantified by Corel Draw Photo-Paint 8 software and the density was expressed in 

reversed gray level. The moiecular weights of immunopositive bands were 

determined from simultaneously run pre-stained molecular weight markers. 
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2.2.8 Statistical analysis 

Statistical comparisons between control and treated groups were carried out 

using student's t-test. A significant difference is expressed at P < 0.05 or P < 0.01. 

All values were expressed as mean± SO. 
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Table 2.2 Proteins loaded on the 10% acryamide gel 

Microsomal protein 
CYP lAl 10 ug 
CYI, 281 10 ug 

GSTYa 
GSTYb 

Cytosolic protein 

10 ug 
10 ug 

Standand protein 
2 ug 

5 ug 

0.5 ug 
not available 

Table 2.3 Primary and secondary polyclonal antibodies and working dilutions 

Primary antibody 
Dilution 
Secondary antibody 
Dilution 

Microsomal protein Cytosolic protein 
CYPIAI CYP281 GST Ya GST Yb 

goat anti-rat CYP 1 A 1 goat anti-rat CYP2B 1 goat anti-rat GST Ya goat anti-rat GST Yb 
1/1000 l/500 111000 l/1000 

dog anti-goat 
1/5000 
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dog anti-goat 
1/5000 

dog anti-goat 
1/5000 

dog anti-goat 
1/5000 



CHAPTER3 

3. Results 

3.1 Biological effects of IPAR and NEODENE administration 

It was observed that in both IPAR and NEODENE treated groups, rats had 

an accumulation of slippery fluid in their abdominal cavities and cohesion 

between liver and intestine. The effects were more severe in the NEODENE 

group than in the IP AR group and also increased with the number of doses 

administered. 

IP AR administration did not cause any significant weight loss in rats m 

any of the treated groups, nor did it alter the liver or kidney weights (Table 3.1). 

Although 1\TEODENE did not cause weight loss 24 hours after 

administration, it decreased body weight significantly m the other three 

administration groups: about 10% to 14% in the 72 hour ( l dose) group, 16% in 

the 6 day (2 doses) group, and 7% to 11% in the 12 day (4 doses) group (Table 

3 .2). Moreover, the decrease in weight was consistent in repeat experiments. 

Generally, liver weight and liver weight to body weight ratio remained unchanged 

after NEODENE administration. In contrast, kidney weight decreased 

significantly in the three treated groups. The decreases were about 13% in the 24 

hour ( 1 dose) group, about 17% in the 72 hour ( 1 dose) group, and about 20°/o in 
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the 6 day (2 doses) group. In the 12 day (4 doses) group, kidney weight decreased 

slightly and was not significant as compared to the control group. However, the 

kidney weight to body weight ratio was unchanged. 

3.2 Effect of IPAR and NEODENE administration on cytochrome P450 levels 

IP AR had no impact on either hepatic or renal cytochrome P450 levels in 

any of the four treated groups (Table 3.3). 

In contrast, NEODENE caused hepatic cytochrome P450 levels to decrease 

significantly in each of the four treated groups (Table 3.4). The extent of inhibition 

was 25%-33% in the 24 hour ( 1 dose) group, 28%-81% in the 72 hour ( 1 dose) 

group, 50% in the 6 day (2 doses) group and 36o/o-38% in the 12 day (4 doses) 

group. The inhibiting effect of NEODENE was consistent in replicate 

experiments, but did not change with the increasing doses. NEODENE did not 

alter renal cytochrome P450 levels after any treatment. 

In one replicate experiment of hepatic P450 activity in the 72 hour ( 1 dose) 

NEODENE treated group, the P450 values were only 0. l nmol/ mg ± 0.04. This 

P450 estimation was repeated on a different day with the same result. The reason 

for why the activity is so low is not obvious . 
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Table 3.1 Effect ofiPAR administration to rats on body, liver, and kidney weights 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL I PAR CONTROL IPAR CONTROL IPAR CONTROL I PAR 

Initial weight (a) 208.0±2.53 207.0±4.65 208.3±3.93 207.3±1.51 194.0±5.73 191 .5±2.35 206.3±6.09 203.0±3.46 

(g) (b) 210.8±9.60 208.7±1 1.96 

Weight at death (a) 189 .3±6.28 188.5±2.95 210.2±4.02 205.3±3.78 224.0±14.81 217.0±5. 19 318.5±7.50 290.5±20.33• 

(g) (b) 290.3±13.52 288.3±10.93 
Liver weight (a) 7.60±1.35 6.71±0.46 7.13±0.36 7.51±0.43 8.47±0.84 8.14±0.54 13.45±2.93 12.29±2.20 
(g) (b) I 1.75±1.38 12.16±1.63 
Liver weight to body (a) 4.01±0.66 3.56±0.22 3.44±0.20 3.64±0.19 3.77±0.22 3.75±0.21 4.22±0.90 4.23±0.67 
weight ratio (gllOOg) (b) 4.06±0.52 4.22±0.54 
Kidney weight (a) 2.07±0.13 1.91±0.14 2.14±0.13 2.11±0.02 2.43±0.39 2.22±0.11 2.84±0.29 2.62±0.21 
(g) (b) 2.55±0.31 2.71±0.20 
Kidney weight to body (a) 1.09±0.05 1.02±0.07 1.02±0.05 1.03±0.02 1.08±0.1 1 1.02±0.04 0.89±0.09 0.90±0.10 

wei&ht ratio (g/100&) (b) 0.88±0.08 0.94±0.08 

I. Values are expressed as mcan±SD from 6 rats. 

II. Significantly different from control at • p< 0.05 or •• p< 0.01. 
Ill. Results of replicate experiments are expressed at (a) and (b) in corresponding columns. 
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Table 3.2: Effect of NEODENE administration to rats on body, liver, and kidney weights 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 

Initial weight (a) 202.7±4.46 203.8±4.49 213.0±12.95 214.0±5 .71 228.2±2.95 223.4±4.78 206.3±6.09 21 1.0±3.66 

(g) (b) 207.0±6.89 21 1.5±5.07 203.0±4.63 199.0±6.26 2 10.8±9.60 209.0±5.38 

(c) 202.8±3.11 208.0±7.78 

Weight at (a) 196.5±4.32 197.5±7.66 212.8±11.79 191.8±10.34• 255.0±3.08 213.2±8.79• 3 18.5±7.50 297±13.84•• 

death (g) (b) 191.6±1.02 197.0±4.24 213.2±5.27 182.5±1.64"* 290.3± 13.52 257.8±26.1 * 

(c) 2 12.8±4.49 192.0±1.49• 

Liver weight (a) 7.19±0.24 6.86±0.32 8.39±1.08 7.90±0.36 9.27±0.39 9.43±1.34 13.45±2.93 12.4 1±2.21 

(g) (b) 6.64±0.92 7.23±0.52 7.78±0.24 6.81±0.80* 11.75±1.38 11.03±0.80 

(c) 7.72±0.27 7.50±0.45 

Liver weight (a) 3.66±0.11 3.48±0.22 3.94±0.49 4.13±0.28 3.63±0.12 4.43±0.65* 4.22±0.90 4. 16±0.58 

to body weight (b) 3.45±0.37 3.67±0.24 3.65±0.11 3.73±0.24 4 .06±0.52 4.32±0.60 
ratio (g/1 OOg) (c) 3.62±0.09 3.91±0.21 * 

Kidney weight (a) 1.88±0.13 1.62±0.10* 2.16±0.31 1.86±0.18 2.40±0.16 1.92±0.16* 2.84±0.29 2.56±0.24 
(g) (b) 1.83±0.10 1.82±0.14 2.09±0.13 1.73±0.24• 2.55±0.31 2.23±0.21 

(c) 2.21±0.11 1.95±0.13"" 

Kidney weight (a) 0.96±0.05 0.82±0.08• 1.02±0.14 0.97±.080 0.94±0.07 0.90±0.08 0.89±0.09 0.86±0.06 

to body weight (b) 0.96±0.04 0.93±0.07 0.98±0.05 0.95±0.07 0.88±0.08 0.88±0.01 
ratio (gil OOg) (c) 1.04±0.05 1.01±0.03 

I. Values are expressed as mean±SD from 6 rats. 

II . Significantly different from control at • p< 0.05 or •• p< 0.0 I . 

Ill . Results of replicate experiments are expressed at (a), (b), and (c) in corresponding columns. 
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Table 3.3 Effect of I PAR administration on liver and kidney microsomal P450 activities 

24 hours (I dose) 72 hours (1 dose) 6 days (2 doses) 12 days ( 4 doses) 

CONTROL IPAR CONTROL IPAR CONTROL IPAR CONTROL IPAR 

Liver P450 (a) 0.46±0.05 0.49±0.09 0.53±0.05 0.53±0.07 0.63±0.12 0.53±0.09 0.68±0.03 0.61±0.14 

(b) 0.58±0.10 0.76±0.04* 

kidney P450 (a) 96.20±26.85 97.07±35.38 97.23±26.29 112.6±43.96 87.00±35.68 95.44±36.09 65.80±27.90 75.00±24.41 

(b) 54.60±30.00 105.91±50.2 

I. Values are expressed as mean±SD from 6 rats. 

II . Significantly different from control at • p< 0.05 or •• p< 0.01. 

III. Results of replicate experiments are expressed at each row in corresponding columns. 

IV. Liver and kidney P450 activities are expressed as nmoVmg protein and pmoVmg protein 
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Table 3.4 Effect of NEODENE administration on liver and kidney microsomal P450 activities 

24 hours (l dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 
Liver P450 (a) 0.58±0.12 0.39±0.09" 0.62±0.19 0.59±.080 0.61±0.07 0.30±0.08"" 0.68±0.03 0.42±0.08"" 

(b) 0.69±0.06 0.52±0.05"" 0.61±0.08 0.44±0.09"" 0.58±0.10 0.37±0.10" 

(c) 0.53±0.07 0.10±0.04"" 

Kidney P450 (a) 78.76±24.30 47.16±16.52" 97.94±20.46 93.12±23.19 95 .58±24.08 88.95±47.53 65.80±27.90 60.20±21.22 
(b) 70.06±25 .13 42.13±13.83 86.54±35.60 103.8±37.29 

(c) 75.81±18.47 87.36±33.33 

I. Values are expressed as mean±SD from 6 rats. 
II. Significantly different from control at • p< 0.05 or •• p< 0.01. 
III. Results of replicate experiments are expressed at (a), (b), and (c) in corresponding columns. 
IV. Liver and kidney P450 activities arc expressed as nmoUmg protein and pmoUmg protein 
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3.3 Effect of IPAR administration on EROD activity and CYPlAl protein 

levels 

EROD activity has been used as a marker for CYP IA (Kedderis et al., 

1991). In liver, the EROD activity was significantly induced by 46% 24 hours 

after IPAR administration, but had returned to normal by 72 hours (Table 3.5). 

Further administration of IP AR caused the EROD activity to increase again. 

Following 2 doses ofiPAR, the EROD activity was significantly higher by 27% as 

compared to control rats while, after 4 doses, there was still a nearly 30% increase, 

but no significant difference between the treated and control groups. This lack of 

significance is probably due to the higher standard deviation. Western blots of 

liver microsomes incubated with polyclonal anti -CYP 1 A I were carried out using 

microsomes from every treated group and the results are described in Figure 3 .1. 

CYP lAl protein was visualized at an approximate molecular weight of 48 K.Da, 

which was confirmed by using standard CYP 1 A 1 protein. Western blots of 

replicate experiments were quite similar but result of only one such experiment 

was shown. Overall, the alteration of CYP 1 A 1 level in the treated groups was 

correlated with that of EROD activity. The CYP I A I protein was increased about 

lOOo/o after 24 hours of IPAR administration. The extent of CYPlAl protein 

induction exceeded the rate of EROD activity induction. However, there was no 

change in protein level after 72 hours of administration. Similar to the increase in 
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EROD activity, the CYPIAl protein was increased agam after further 

administration of IPAR. After 2 doses, CYPlAl protein level was about 30% 

higher than that in control rats and increased by 39% after 4 doses. 

The effect of IP AR administration on kidney microsomal EROD activity 

was similar to that on liver microsomal EROD activity (Table 3.5). IPAR also 

caused a significant 256% increase in renal EROD activity at 24 hours but the 

activity returned to the normal level after 72 hours. A second dose of IP AR again 

increased the activity but not as much (129o/o) . However, after 4 doses, the EROD 

activity was unchanged. In the case of two treated groups (24 hours and 6 days) in 

which the EROD activities were induced, CYPIA 1 protein was not detected by 

Western blot analysis even by increasing the protein load on the gel. Results of 

Western blot analysis were not shown. 



Table 3.5 Etl'ect of IPAR administration on liver and kidney microsomal EROD activities 

24 hours (1 dose) 72 hours (I dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL IPAR CONTROL IPAR CONTROL IPAR CONTROL IPAR 

Liver EROD (a) 55.85±9.95 83.56±30.59* 71.67±12.82 75.45±11.34 70.17±7.45 88.84±11.67* 139.79±24.0 186.39±55.0 
(b) 165.4±35.68 212.2±37.65 

Kidney EROD (a) 0.64±0.27 2.34±2.81 * 0.56±0.33 0.55±0.17 0.55±0.12 

(b) 

I. Values arc expressed as mcan±SD from 6 rats. 
fl. Significantly different from control at * p< 0.05 or** p< 0.0 I. 
Ill. Results of replicate experiments arc expressed at (a) and (b) in corresponding columns. 

IV. EROD activity is expressed as pmollmin/mg protein 
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0.42±0.24 0.39±0.17 



Lane: I 
Grey level: 
(reversed) 

II 1 
51 

24 hours 
(1 dose) 

2 3 4 
57 107 94 

*Lane I: molecular weight marker 
*Lane II: standard CYPlA protein 
*Lane 1, 2: control 
*Lane 3, 4: treated 

1 
85 

2 3 
107 80 

72 hours 
(1 dose) 

4 
88 

1 2 3 
109 100 131 

6 days 
(2 doses) 

4 
148 

1 
76 

2 3 
64 95 
12 days 

(4 doses) 

4 
114 

Figure 3.1: Western blots employing anti-CYPlAl polyclonal antibodies on liver microsomes after IPAR 
administration 
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3.4 Effect of NEODENE administration on EROD activity and CYPlAl 

protein levels 

The effect of NEODENE administration on hepatic and renal microsomal 

EROD activity was quite different from that after IPAR administration (Table 

3.6). The hepatic EROD activity was inhibited significantly about 34% 24 hours 

after I dose. But after 72 hours, the EROD activity data was more difficult to 

interpret. In three separate experiments, EROD activity increased significantly by 

19% in only one experiment (Table 3.6) while, in the other two, there was no 

statistical difference between the control and treated groups. However, the 

inhibitory effect was significant after 4 doses with EROD activity being decreased 

by about 21 o/o to 45% in duplicate experiments. Although EROD activity 

decreased approximately 20% in the 2 dose group, the difference was not 

statistically significant from the control group because of the relatively high 

standard deviation. 

Values between the three control EROD activities in the 72 hour (1 dose) 

group in liver were different. This difference may be due to the individual 

differences between rats because the difference persisted when these activities 

were assayed on the same day under identical conditions. 

Liver microsomal CYPlAl protein concentration was measured by 

Western blot in each of the fom treated groups (Figure 3.2). Results of replicate 



experiments were similar but results of only one such experiment were shown. 

Replicate experiments with different results were shown seperately. In general, 

CYPlAl protein showed an increase while EROD activities decreased. Thus, 

there was a 24% to 32%, induction of CYP IA 1 protein content 24 hours after one 

dose. It is also interesting that CYPIA 1 protein increased by 22% in the 6 day (2 

doses) group and by about 26% in the 12 day ( 4 doses) group as opposed to the 

EROD activities observed in these groups. In the 72 hour (Idose) NEODENE 

treated group, CYPIAI protein was either slightly increased or slightly decreased. 

Furthermore, unchanged CYPIA 1 protein level was also observed. It is hard to 

establish a relationship between the alteration of EROD activity and that of 

CYP lA 1 protein level in that treated group. 

NEODENE did not have a significant impact on renal microsomal EROD 

activity as showed in Table 3.6. 



Table 3.6 Effect of NEODENE administration on liver and kidney microsomal EROD activities 

24 hours (1 dose) 72 hours (I dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 
Liver EROD (a) 115.50±16.8 70.81±9.91** 127.10±21.4 150.60±20.5 113.50±28.3 90.93±10.92 

(b) 114.60±9.72 79.17±14.3** 79.89±8.45 95.14±13.66* 

(c) 155.30±32.0 99.94±32.61 

Kidney EROD (a) 0.65±0.07 0.59±0.13 0.67±0.18 1.26±0.42* 0.61±0.10 0.87±0.56 
(b) 0.89±0.26 0.35±0.19* 0.50±0.17 0.65±0.26 

(c) 0.63±0.62 0.39±0.23 

I. Values arc expressed as mcan±SD from 6 rats. 

II. Significantly different from control at* p< 0.05 or** p< 0.0 I. 

Ill. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns. 
IV. EROD activity is expressed as pmol/min/mg protein 
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Lane: 1 2 3 4 1 2 3 4 
Grey level: 
(reversed) 

104 99 123 
24 hours 

144 65 73 74 60 
72 hours 

Lane: 
Grey Level : 
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*Lane 1, 2: control 
*Lane 3, 4: treated 

(1 dose) 

1 2 3 4 
83 100 97 126 

6 days 
(2 doses) 

1 
72 

(1 dose) 

2 3 
64 89 
12 days 

( 4 doses) 

1 2 4 
61 71 173 106 

72 hours 

4 
83 

(1 dose) 

1 2 
209 189 

3 4 
158 119 

72 hours 
(1 dose) 

Figure 3.2: Western blot employing anti-CYPlAl polyclonal antibodies on liver microsomes after NEODENE 
administration 
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3.5 Effect of IPAR administration on PROD activity and CYP2Bl protein 

levels 

IP AR caused liver microsomal PROD activity to increase significantly in 

all treated groups as shown in Table 3.7. In particular, 24 hours after 

administration, PROD activity was increased nearly 9-fold (775%), even though 

the standard deviation was higher than that in other treated groups. In the other 

three treated groups, PROD activities were all induced about 3-fold. Therefore, 

the extent of induction did not correlate with the multiple dosing. The Western 

blot results indicated that induction of CYP2B l protein correlated with induction 

of PROD activity (Figure 3.3). The degree of CYP2B 1 protein induction was 67% 

in the 24 hour (1 dose) group, 53%, in the 72 hour (1 dose) group, 18%, in the 6 day 

(2 doses) group, and 141% in the 12 day (4 doses) group. 

In kidney, IPAR administration inhibited PROD activity (Table 3.7). 

However, only in the 72 hour ( 1 dose) group ( 4 7%) and the 12 day ( 4 dose) group 

(19%) were the decreases significant. In the other groups, there was a trend toward 

a decrease, but the results were not significant due to the high standard deviation. 

3.6 Effect of NEODENE administration on PROD activity 

NEODENE administration had no effect on PROD activity both in liver 

and kidney microsomes in any of the four treated groups (Table 3.8). The only 
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exception was a significant 103% increase in PROD activity m kidney 

microsomes after 2 doses. The difference in the values between the control PROD 

activities in the 72 hour ( l dose) group persisted when the activites were measured 

on the same day under identical conditions. 

3.7 Effect ofiPAR and NEODENE administration on microsomal lauric acid 

hydroxylase activity 

Hydroxylation of lauric acid (w-oxidation) representing the CYP 4A 1 

isoenzyme by liver and kidney microsomes was not altered in IP AR administered 

rats, except one significant increase (53%) was observed in kidney microsomes 

after 4 doses (Table 3.9). NEODENE caused hepatic lauric acid hydroxylase 

activity to decrease slightly (13o/o-29%) 24 hours after administration although this 

change was not significant (Table 3.10). By 72 hours, the enzyme activity was not 

different from that of the control. However, further administration of NEODENE 

again inhibited lauric acid hydroxylase activity. Significant drops were seen in the 

6 day (2 doses) group (44%) and in one oft\vo separate experiments (38 %) in the 

12 day ( 4 doses) group. NEODENE did not cause any changes in renal enzyme 

activity. 
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Table 3.7 Effect of IPAR administration on liver and kidney microsomal PROD activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL IPAR CONTROL IPAR CONTROL IPAR CONTROL IPAR 

Liver PROD (a) 12.24±2.74 107.1±91.62* 13.10±4.53 43 .18± 13.0** 12.61±4.27 38.03±24.69* 24.49±2.76 36.63±10.37* 

(b) 29.69±8.71 128.1±50.16* 
Kidney PROD (a) 0.83±0.51 0.48±0.42 0. 78±0.16 0.41±0.34* 0. 79±0.18 0. 76±0.52 

(b) 

I. Values arc expressed as mcan±SD from 6 rats. 
II. Significantly different from control at • p< 0.05 or** p< 0.0 I. 

Ill. Results of replicate experiments are expressed at (a) and (b) in corresponding columns. 
IV. PROD activity is expressed as pmol/min/mg protein 
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1.84±0.79 

1.97±0.37* 
1.27±0.68 



Lane: 
Grey Level: 
(reversed) 

Lane: 
Grey Level: 
(reversed) 

*Lane 1, 2: control 
*Lane 3, 4: treated 

I II 1 2 
69 62 

24 hours 
(1 dose) 

I 3 2 
72 111 120 134 

12 days 
(4 doses) 

3 4 
100 119 

*Lane I : molecular weight marker 
*Lane II : standard CYP2B 1 protein 

1 
73 

2 3 4 
88 116 131 

72 hours 
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3 4 
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(2 doses) 

Figure 3.3: Western blots employing anti-CYP2Bl polyclonal antibodies on liver microsomes after IPAR 
administration 
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Table 3.8 Effect of NEODENE administration on liver and kidney microsomal PROD activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 
Liver PROD (a) 12.89±3.50 11.63±2.26 19.51±5.18 19.27±4.94 24.32±5.76 16.61±2.21 

(b) 14.52±2.07 11 .99±2.19 9.83±6.12 12.70±3.88 

(c) 29.04±8.94 17.52±9.76 

Kidney PROD (a) 2.20±0.50 2.23±0.30 0.80±0.30 1.04±0.24 1.47±0.30 2.99±0.98* 

(b) 1.53±0.16 1.66±0.12 1.69±0.57 1.92±0.40 

(c) 1.79±0.16 1.99±0.21 

I. Values arc expressed as mcan±SD from 6 rats. 

II. Significantly different from control at • p< 0.05 or** p< 0.0 I. 

Ill. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns. 

IV. PROD activity is expressed as pmol/min/mg protein 
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29.69±8.71 19.15±6.93* 

2.44±0.19 2.18±0.81 

1.84±0.79 1.10±0.59 



Table 3.9 Effect of I PAR administration on liver and kidney microsomal 

lauric acid hydroxylase activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL I PAR CONTROL I PAR CONTROL I PAR 
Liver lauric acid (a) 0.29±0.12 0.37±0.09 0.26±0.05 0.22±0.07 0.26±0.10 0.34±0.03 
hydroxylase (b) 

Kidney lauric (a) 0.31±0.13 0.32±0.08 0.23±0.04 0.25±0.06 0.18±0.09 0.21±0.04 
acid hydroxylase (b) 

I. Lauric acid hydroxylase activity is expressed in nmol hydroxylated lauric acid fom1cd/min/mg protein 
11. Values arc expressed as mcan±SD from 6 rats. 
III.Significantly different from control at* p< 0.05 or** p< 0.01. 

IV.Rcsults of replicate experiments are expressed at (a) and (b) in corresponding columns. 
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CONTROL I PAR 
0.53±0.25 0.68±0.26 
0.42±0.03 0.59±0.19 
0.22±0.05 0.26±0.09 
0.38±0.10 0.58±0. 15• 



Table 3.10: Effect ofNEODENE administration on liver and kidney 
lauric acid hydroxylase activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 

Liver lauric acid (a) 0.75±0.19 0.65±0.16 0.88±0.17 1.01±0.37 0.87±0.30 0.49±0.19* 

hydroxylase (b) 1.01±0.24 0.72±0.18 0.37±0.13 0.40±0.15 
(c) 0.38±0.06 0.44±0.08 

Kidney lauric (a) 0.13±0.04 0. 14±0.02 0.20±0.02 0.22±0.05 0.22±0.03 0.20±0.03 
acid hydroxylase (b) 0.20±0.03 0.19±0.02 0.17±0.04 0.19±0.06 

(c) 0.12±0.06 0.09±0.05 

I. Lauric acid hydroxylase activity is expressed in nmol hydroxylatcd laurid acid fom1cd/min/mg protein 
II. Values arc expressed as mea.n±SD from 6 rats. 
III. Significantly different from control at* p< 0.05 or** p< 0.01. 

IV. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns. 
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0.53±0.25 0.30±0.07 

0.42±0.03 0.26±0.14* 

0.22±0.05 0.20±0.03 

0.38±0.10 0.41±0.15 



3.8 Effect of IPAR and NEODENE administration on palmitoyl CoA oxidase 

and carnitine acetyl transferase activities 

Both IPAR and NEODENE increased hepatic palmitoyl CoA oxidase 

activity significantly after 4 doses and this increase was consistent in repeated 

experiments (Tables 3.11 and 3.12). The degree of induction caused by 

NEODENE was much higher (92% and 327%) than that caused by IPAR (66% 

and 75%). However, neither liver nor kidney palmitoyl CoA oxidase activity was 

changed in the other treated groups. 

As for carnitine acetyl transferase, IPAR or NEODENE administration did 

not displaly any major effect on either liver or kidney in any of the four treated 

groups. In some treated groups, such as after 4 doses of IP AR in the kidney or 

after a single dose of NEODENE in the liver and kidney, the difference was 

significant. However, these changes were not observed in replicate experiments. 
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Table 3.11: Effect of IPAR administration on liver and kidney peroxisomal palmitoyl CoA oxidase 

and carnitine acetyl transferase activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL I PAR CONTROL I PAR CONTROL IPAR CONTROL 
Liver Palmitoyl CoA (a) 0.89±0.04 1.01±0.40 0.55±0.17 0.52±0.27 0.63±0.26 0.59±0.26 0.62±0.33 

oxidase (b) 0.40±0.16 

Carnitine acetyl (a) 13.30±2.37 16.09±0.51 11 10.48±0.60 10.23± 1.64 13.88±1.90 15.59±2.46 16.95±4.7 

transferase (b) 19.91±5.06 

Kidney Palmitoyl CoA (a) 0.66±0.24 0.45±0.09 0.59±0.14 0.52±0. 11 0.46±0. 1 0 0.52±0.16 0.44±0.17 

oxidase (b) 0.41±0.10 

Carnitine acetyl (a) 18.23±2. 73 19.36±1.91 14.64±1.48 15.69±2.84 13 .20±2.86 14.77±2.82 24.38±7.44 

transferase (b) 25.83±4.62 

I. Values arc expressed as mcan±SD from 6 rats. 

II. Significantly different from control at * p< 0.05 or** p< 0.0 1. 

III. Results of replicate experiments arc expressed at (a) and (b) in corresponding columns. 

IV. Palmitoyl CoA oxidase is expressed as nmol H20 2/min/mg protein and camitinc acetyl transferase is expressed as 

nmol/min/mg protein 
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I PAR 
1.03±0.15* 

0.70±0.16* 

25.49±9.0 

19.26±1 .86 

1.09±0.36"' 

0.49±0.19 

34 .89±3.01 11 

25.59±3.30 



Table 3.12: Effect of NEODENE administration on liver and kidney peroxisomal 

palmitoyl CoA oxidase and carnitine acetyl transferase activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROLNEODENECONTROLNEODENECONTROLNEODENECONTROLNEODENE 

Liver Pa1mitoyl CoA (a) 0.70±0.27 0.92±0.30 0.32±0.14 0.41±0.10 0.42±0.14 0.46±0. 11 0.62±0.33 

oxidase (b) 1.11±0.27 0.89±0.37 0.37±0.22 0.96±0.19"' 0.40±0.16 

(c) 0.83±0.18 0.97±0.1 2 

Carnitine acetyl (a) 12.33±2.98 10.65±1.82 13.58±2.82 22.62±2.82* 17.52±1.65 17.05±4.79 16.95±4.70 

transferase (b) 11 .63±0.83 9.48±0.95* 11.39±1.90 11.15±1.79 19.91±5.06 

(c) 14.03±3.40 14.24± I. 70 

Kidney Palmitoyl CoA (a) 0.47±0.14 0 .29±0.21 0.23±0.10 0 .24±0.09 0.18±0.05 0.37±0.14 0.44±0.17 

oxidase (b) 0.44±0.12 0.55±0.07 0.53±0.13 0.37±0.20 0.41±0.10 

(c) 0.60±0.11 0.80±0.17 

Carnitine acetyl (a) 11.59±0.99 12.47±1.47 20.70±3.40 24.10±4.70 26.38±3.56 32.50±2.53"' 24.38±7.44 

transferase (b) 12.27±0.65 13.66±0.53 12.96±1.67 15.12±1.52* 25.83±4.62 

(c) 14.45±0.93 15.17±2.30 

I. Values arc expressed as mcan±SD from 6 rats. 
II. Significantly different from control at * p< 0.05 or** p< 0.0 I. 
Ill. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns. 
IV. Palmitoyl CoA oxidase is expressed as nmol H20 2/min/mg protein and carnitinc acetyl transferase is expressed as 

nmol/min/mg protein 
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1.19±0.87* 

1.71±0.23"'* 

23 .10±3.66* 

15.46±2.67 

0.62±0.1 1 

0.81±0.17* 

23 .65±5 .15 

20.32±4.15 



3.9 Effect ofiPAR and NEODENE administration on glutathione S­

transferase (GST) activity, GST Ya and GST Yb protein levels 

IPAR administration did not significantly alter hepatic glutathione S­

transferase activity with the four test substrates in any of the four treatment groups 

(Table 3.13). 

In contrast, NEODENE administration had varymg effects on the liver 

activity with the four test substrates in the four treated groups (Table 3.14). 

NEODENE had no significant effect on glutathione S-transferase activity in any of 

the four treated groups when ethacrynic acid was used as substrate. With CDNB as 

substrate, a small but significant decrease in hepatic glutathione S-transferase 

activity was observed in the 1 dose (24 hours) group (21% ), the 1 dose (72 hours) 

group (19%) and the 2 dose group (20%). However, this inhibitory effect was not 

consistent and was seen in only one of two and one of three repeat experiments in 

the 1 dose (24 hours) and the 1 dose (72 hours) groups respectively. The 2 dose 

experiment was not repeated. With trans-4-phenyl-3-buten-2-one as substrate, a 

significant decrease (21% to 42%) was seen only in the 4 dose treated group in 

both replicate experiments. Finally, with DCNB as substrate, a more consistent 

decrease was seen in all treated groups except the 1 dose (24 hours) group. The 

glutathione S-transferase activity was decreased by 13% 24 hours after 1 dose and 

further decreased by 26% after 72 hours. Following 2 doses, the glutathione S-
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transferase activity reached its maximal inhibition ( 40%). By the end of 4 doses, 

a 17% to 30% drop in activity was observed. 

Control values in replicate experiments were different in the 24 hour ( 1 

dose) and the 12 day ( 4 doses) groups using ethacrynic acid as substrate and in the 

72 hour (1 dose) group using trans-4-phenyl-3-buten-2-one as sustrate. However, 

similar results were obtained when these activities were measured at the same day 

under identical condition. 

Immunoblotting was performed simultaneously to examme the effect of 

NEODENE on the levels of Ya and Yb subunits of glutathione $-transferase, 

which represent the alpha and mu classes of glutathione $-transferase, 

respectively. As shown in figure 3.4, the level of Ya was unaltered except after 4 

doses where about a 24% decrease was observed. NEODENE did not cause any 

effect on Yb protein in any of the treated groups as shown in figure 3.5. Thus, 

immunoblots did not reveal a positive cmTelation between the activity of 

glutathione S-transferase and levels of Ya and Yb subunits in liver. 

In general, neither IP AR nor NEODENE caused any major changes m 

glutathione S-transferase activities with CDNB and ethacrynic acid as substrates in 

kidney (Tables 3.15 and 3.16). With the other two substrates: DCNB and trans-4-

phenyl-3-buten-2-one, the glutathione $-transferase activity was not detectable in 

the kidney cytosols. 
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Table 3.13: Effect of IPAR administration on liver cytosol glutathione S-transferase activities 

Ethacrynic 
acid<"> 

Trans-4-phcny1-

3 b (II) - uten-2-one 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL IPAR CONTROL IPAR CONTROL IPAR CONTROL IPAR 

(a 1.24±0.09 1.19±0.09 I .26±0.09 1.53±0. 14* 1.53±0. 14 1.48±0.22 1.08±0.05 1.02±0. 14 

(b) I .61±0.35 I .66±0.27 

(a 59.31±7.43 52.65±2.49 56.85±5.88 62.72±12.90 64.64±11.46 65.57±6.63 60.88±6.35 65.30±3.54 
(b) 60.82±10.92 49.19±4.47 
(a 35.60±7.20 38.0±4.52 

(b) 

(a 13.66±1.94 14.0±2.66 

(b) 

53.00±7.01 44.0±4.90* 52.50±13.81 44.75±1l.l6 31.9±3.34 

65 .6±7.47 

16.73±2.76 17.64±2.11 13 .10±2.13 12.55±2.20 12.42±1.47 

23.33±4.82 

35.16±3.28 

63.80±4.66 

12.04±3.43 

15.08±2.90* 

I. umol/min/mg protein 

II . nmol/min/mg protein 

Ill . Values arc expressed as mcan±SD from 6 rats . 

IV. Significantly different from control at * p< 0.05 or** p< 0.0 I. 

V. Results of replicate experiments arc expressed at (a) and (b) in corresponding columns. 
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Table 3.14: Effect of NEODENE administration on liver cytosol glutathione S-transferase activities 

24 hours (l dose) 72 hours (l dose) 6 days (2 doses) 12 days (4 doses) 
CONTROL NEODENE CONTROL NEODENE CONTRO NEODENE CONTROL NEODENE 

CDNBCil (a) I. 75±0.18 

(b) 1.23±0.17 
(c) 

DCN8<11l (a) 70.94±7.01 

(b) 72.34±4.78 

(c) 

Ethacrynic (a) 53 .79±4.02 
acid<liJ (b) 39.60±2. 72 

(c) 
Trans-4-pheny1- (a) 14.49±3.34 
3-butcn-2-one<IIJ (b) 11.61±1.52 

(c) 

I. umol/min/mg protein 

II. nmol/min/mg protein 

1.39±0.23* 

1.23±0.17 

61.38±4.93* 

78.54±1.16 

51 .17±2.95 
40.50±3.0 

16.32±2.39 
12.64±3.12 

III . Values arc expressed as mcan±SD from 6 rats. 

1.22±0.14 1.20±0.09 

1.73±0.19 1.40±0.21 * 
1.25±0.12 1.13±0.25 

88.59±14.31 65.85±7.95* 

89.25±10.28 66.05±11.10* 

77.19±10.10 70.88±9.35 
41.15±3.66 45.87±2. 70* 
45.90±5.50 38.70±5.79 

43.44±5.53 46.!W±6.57 

23.09±2.89 18.82±3.69 
13.47±2.01 12.92±1.76 

9.37±2.76 7.02±2.33 

IV. Significantly different from control at* p< 0.05 or** p< 0.0 I. 

1.18±0.13 0.94±0.16"' 1.08±0.05 0.97±0.23 

1.61±0.35 1.29±0.19 

69.06±7.23 41.33±16.2* 60.88±6.35 50.3±4.44* 

60.82±10.92 42.40±7.86* 

42.69±4.6 47.37±4.09 31.9±3.34 54.1±3.09** 
65.60±7.47 65 .3±3.54 

16.71±4.78 12.76±3.13 12.42± 1.47 9.82±2.09* 

23.33±4.82 13.53±3.51* 

V. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns. 
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Lane: 
Grey Level: 
(reversed) 

2 3 
222 211 216 

24 hours 
(1 dose) 

*Lane 1, 2: control 
*Lane 3, 4: treated 

4 
195 

1 
219 

2 3 
220 195 
72 hours 
(1 dose) 

4 
229 

1 2 3 4 
248 212 242 196 

6 days 
(2 doses) 

1 3 2 
255 203 255 

12 days 
(4 doses) 

4 
180 

Figure3. 4: Western blots employing anti-GSTYa polyclonal antibodies on liver cytosols after NEODENE 
administration 

- 66-



Lane: 
Grey Level : 
(reversed) 

Lane: 
Grey Level : 
(reversed) 

1 2 3 
203 186 192 

24 hours 

1 
137 

(1 dose) 

3 2 
150 255 

12 days 
(4 doses) 

*Lane 1, 2: control 
*Lane 3, 4: treated 

4 
255 

4 
255 

1 
255 

2 3 
255 255 
72 hours 
(1 dose) 

4 
255 

1 
238 

2 3 
209 192 

6 days 
(2 doses) 

4 
244 

Figure 3.5: Western blots employing anti-GSTYb polyclonal antibodies on liver cytosols after NEODENE 
administration 
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Table 3.15: Effect of I PAR administration on kidney cytosolic glutathione S-transferase activities 

24 hours (1 dose) 

CONTROL 
CDNBti> (a) 0.34±0.04 

(b) 

Ethacrynic (a) 27.01±7.59 

acid111
> (b) 

I. umol/min/mg protein 

II. nmollmin/mg protein 

I PAR 
0.36±0.03 

28.08±5.0 

72 hours (1 dose) 

CONTROL I PAR 
0.39±0.02 0.44±0.02"* 

29.50±5.00 32.00±5.82 

Ill. Values arc expressed as mcan±SD from 6 rats. 
IV. Significantly different from control at * p< 0.05 or ** p< 0.0 I. 

6 days (2 doses) 

CONTROL I PAR 
0.35±0.06 0.37±0.08 

30.0±3.15 28.5±3. 15 

V. Results of replicate experiments arc expressed at (a) and (b) in corresponding columns. 
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12 days (4 doses) 

CONTROL I PAR 
0.30±0.08 0.29±0.07 

0.29±0.03 0.33±0.04 

85.62±8.89 57.38±8.03"* 

44.94±8.78 54.56±7.19 



Table 3.16: Effect of NEODENE administration on kidney cytosolic 

glutathione S-transferase activities 

24 hours (1 dose) 72 hours (1 dose) 6 days (2 doses) 12 days (4 doses) 

CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE CONTROL NEODENE 
CDNB11

> 

Ethacrynic 
'd(ll) ac1 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

0.27±0.03 

0.39±0.08 

29.0±2.45 

36.98±6.59 

I. umol/min/mg protein 
II . nmol/minlmg protein 

0.29±0.03 0.34±0.04 

0.31±0.02 0.24±0.03 

0.43±0.05 

28.51±3 .14 36.77±3.16 

33.73±3.81 28.5±2.48 

35.96±3.53 

III. Values arc expressed as mean±SD from 6 rats. 

0.38±0.03* 

0.29±0.04* 

0.46±0.03 

42.76±3.98* 

27 .01±1.88 

37.41±2.39 

IV. Significantly different from control at* p< <l.05 or** p< 0 .01. 

0.34±0.04 0.33±0.05 

36.7±3 .64 41 .78±4.80 

V. Results of replicate experiments arc expressed at (a), (b), and (c) in corresponding columns . 
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0.30±0.08 0 .27±0.05 

0.29±0.03 0.32±0.05 

85 .62±8.89 79.94±1.88 

44.94±8.78 49.31±4.21 



3.10 Effect ofiPAR and NEODENE administration on serum cholesterol and 

triglyceride concentrations 

Serum cholesterol and triglyceride concentrations were only determined 

in the 4 doses administration group. Neither IPAR nor NEODENE had any effect 

on serum cholesterol or triglyceride levels (Table 3.17). 

Table 3.17 Concentrations of serum cholesterol and triglycerides after 
administration of 4 doses of IPAR or NEODENE 

CONTROL IPAR NEODENE 
Cholesterol (mg /dL) (a) 123.98±29.58 137.83±32.62 139 .87±45 .87 

(b) 1 02.6± 14.21 106. 1±28.21 87.3±15.44 
Triglyceride (mg/dL) (a) 187.02±75.0 166.08±78.97 234.2±45.66 

(b) 97.58±23 .10 86.52±27.75 86.08±11.55 

I. Values are expressed as mean±SD from 6 rats. 
II. Significantly different from control at* p< O.Oj or** p< 0.01. 
III. Results of replicate experiments arc expressed at (a) and (b) in corresponding columns. 
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CHAPTER4 

4. Discussion 

IPAR and NEODENE caused different effects on biotransforming enzymes in 

rats. Overall, IP AR had no impact on total cytocP.rome P450 activity, nor on 

glutathione S-transferase activity in both liver and kidney samples. However, 

IPAR specifically induced two isofonns of cytochrome P450: CYPlAl and CYP 

281 in liver. This induction is significant and consistent as evidenced by EROD 

and PROD activities as well as by Western blot analysis of CYPlAl and CYP 

281 proteins. Induction of kidney EROD activity was also observed 24 hours 

after administration of one dose and after two doses. In contrast, NEODENE 

exerted an inhibiting effect on rat hepatic biotransforming enzymes, but had no 

effect on renal enzymes. NEODENE not only significantly inhibited total 

cytochrome P450 levels (30%-50%), but also significantly inhibited the specific 

cytochrome P450 isoform: CYPlAl as expressed by EROD activity (20%-45%). 

Furthermore, glutathione S-transferase as measured by one substrate: DCNB was 

significantly inhibited (13%-30%) in all four treated groups. Lauric acid 

hydroxylase, catalyzed by another isofonn of cytochrome P450: CYP 4A l , also 

had a trend to decrease as a result of NEODENE administration though a 

significant difference was only seen in the 6 day (2 doses) group and one of the 12 
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day (4 doses) groups. The difference in response to IPAR and NEODENE is most 

likely due to their different chemical composition. These results thus provide a 

clue to identify the specific chemicals present in the drilling fluids which are 

responsible for either induction or inhibition. Since synthetic-based muds are 

typically based on ester, ether, olefin and paraffin, these chemicals can be either 

hydrolysed or oxidized by xenobiotic biotransforrning enzymes. Therefore, the 

metabolites associated with different metabolic pathways may also affect the 

enzyme activity and exert toxic effects. One possible type of metabolite could be 

olefin epoxides because olefin epoxidation is a widespread reaction catalyzed by 

cytochrome P450 ( Vaz et al., 1998; Wang et al., 1998). Propylene oxide, a 

aliphatic oxide was found to inactivate human erythrocyte glutathione S­

transferase (Ansari et al., 1987). Others such as glycidol and 2-methyl-2,3-

epoxybutane are carcinogenic and mutagenic to rats ( hwin et al., 1986; Gollapudi 

et al., 1995). 

Moreover, this different pattern of changes in biotransforming enzymes 

by IPAR and NEODENE may play a role in their potential toxicity. In the present 

study, body weight as well as liver and kidney weights were monitored as indices 

of toxic effects. No weight loss was observed in any of the four treatments after 

IP AR exposure. Although the inducing responses of IP AR were similar to those 

obtained after exposure of rats to crude oil and other drilling fluids (Rahimtula et 
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al., 1985; Khan et aL, 1987), this induction was not accompanied with liver 

enlargement which may be related to hepatotoxicity as observed in many cases 

(Knasmulle et al., 1997; Khan et aL 1989). Thus, from current data available, it is 

suggested that IP AR caused no significant sublethal effects in rats either after one 

dose or after exposure to multiple doses. The inducing property of IP AR could be 

considered as a protective mechanism which enhances detoxification of lipophilic 

compounds present in this drilling fluid. 

In contrast, a substantial 10% weight loss was observed in three 

NEODENE treated groups except in the single dose group 24 hours after 

NEODENE exposure. With increasing time and dose, the weight loss effect due 

to NEODENE was apparent and persistent. The absolute kidney weight had a 

trend to decrease after all four treatments. However, because body weight also 

decreased, kidney weight to body weight ratio remained unchanged. Therefore, 

NEODENE may cause sublethal effects to rats after exposure for a period of time. 

This toxic effect is not immediate, but manifests itself in a few days. Since 

NEODENE inhibited both phase I and phase II metabolic enzyme activities, this 

inhibition could delay its clearance from the rats which could add to its toxic 

effects. In the present study, only body weight was used as an indicator of toxic 

effects; more work is needed to determine if there are other toxic effects. 
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IP AR had a preference to induce the CYP 28 isofonn because the 

induction of PROD activity was much higher than the induction of EROD activity. 

This induction was similar to the effect caused by phenobarbital which was found 

to cause a marked (>20-fold) induction of CYP 28 and a 2-4-fold increase in the 

levels of CYPIA (Parkinson, 1996). The CYPlAl protein induction is well 

correlated to its associated catalytic activity, EROD. It is suggested that the 

increased EROD activity is possibly due to the increased synthesis of CYP lA 

protein. However, the increase in CYP2B protein was not as much as the 

induction of its associated PROD activity. Therefore, the induction of PROD 

activity may not be solely due to increased CYP2B protein synthesis, other 

mechanisms may also exist. One possibility is that cytochrome P450 isoforms 

other than CYP2B are also induced by IPAR which may be involved in catalyzing 

PROD activity. In a study of PCB contamination in polar bears (Letcher et al., 

1996), similar results were obtained, i.e., induction of EROD activity correlated 

strongly with CYP lA protein induction, while the induction of PROD activity did 

not correspond to the induction of CYP2B protein. The authors further pointed 

out that PROD activity correlated well with CYP IA protein. With additional 

immunoinhibition assays, PROD activity was decreased about 60°/o employing 

anti CYP lAl IgG. They concluded that CYP lA also played a role in the 

induction of PROD activity. It can be extrapolated from this study that 
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overlapping substrate specificity of CYP 28 may exist However, in the case of 

my study, this possibility needs to be confirmed by immunoinhition studies of 

CYP2B and other cytochrome P450 enzyme assays. 

It is interesting that NEODENE caused EROD activity to decrease 

significantly, while the CYP IA 1 protein content was only slightly increased or 

unaltered as shown by Western blot analysis. This lack of correlation between 

enzyme activity and enzyme content may be due to the mechanism of inhibition. 

As opposed to the well known mechanism of CYP IA induction, which involves 

transcriptional activation of the CYP lA gene resulting in an increase in the levels 

of mRNA and newly synthesized CYPIA protein, the inhibition of CYP IA can 

occur at any step of the catalytic cycle of cytochrome P450, such as competition at 

the substrate binding site (Paul and Maria, 1989) and interaction with the haem 

moiety of the cytochrome to prevent oxygenation of the substrates (Rodrigues et 

al., 1987). Therefore, CYP IA protein synthesis may not be affected even though 

the CYPIA enzyme activity is inhibited. A slight increase of CYP1A protein 

content may be considered as an adjustable response of the organism for the 

compensation ofCYPIA enzyme activity loss. 

Subunits Ya and Yb of glutathione S-transferase were analyzed by 

Western blot analysis as well as glutathione S-transferase activity. Although 

glutathione S-transferase activity was decreased with several substrates, Ya and 
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Yb protein content was not decreased except in the 12 day ( 4 doses) group in 

which Ya protein was decreased by about 30%. The decrease in Ya may be 

responsible for the significant inhibitory response seen with the two substrates: 

DCNB and trans-4-phenyl-3-buten-2-one. Since glutathione S-transferases exhibit 

broad, overlapping substrate specificities, neither Ya nor Yb could alone be 

responsible for the inhibition of glutathione S-transferase activity as measured by 

the different substrates. 

The 72 hour time point after administration seems to be critical for both 

IP AR and NEODENE. In the case of IPAR, EROD activity increased at 24 hours 

and returned to normal by 72 hours. The EROD activity also increased with 

additional doses. The induction of CYP IA protein strongly correlated with the 

changes observed in EROD activity. Although the increased PROD activity did 

not return to normal by 72 hours, the increased level of PROD activity declined to 

230% after it reached a maximal induction of 775% at 24 hours after 

administration. The alteration in EROD activity was also observed in the 72 hour 

NEODENE treated group. Although EROD activity was significantly decreased 

after 24 hours, by 72 hours after administration, EROD activity was either 

increased, in some cases substantially, or decreased. Moreover, CYP 1 A 1 protein 

content was either elevated or decreased in keeping with the changes in EROD 

activity. Brady et aL (1991) also indicated a similar result The induction of 
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EROD enzyme activity reached to a maximal level at about 1.8-24 hours and 

returned to normal by 72 hours. After administration, components of IP AR and 

NEODENE can be expected to interact with cells in the liver, a major metabolic 

site, and trigger perturbations in cell function such as induction or inhibition of 

cytochrome P450 enzyme activities as were seen in this study. The early 

alteration in enzyme activity thus could trigger homeostatic mechanisms that may 

account for the complicated patterns of enzyme activity by 72 hours. However, 

after additional exposure, the perturbations continue and enzyme activities do not 

return to normal. 

Khan et al. ( 1989) found that crude induced peroxisome proliferation 

which was thought to play a role in its carcinogenic I tumorgenic potential. 

Therefore, the possibility of peroxisome proliferation induced by IPAR and 

NEODNE was also investigated in this study. Peroxisome proliferation has been 

observed in mammalian liver by many chemicals. It is characterized by increased 

activity of several peroxisomal enzymes which are involved in the f3 oxidation of 

fatty acids and in an increased activity of lauric acid co-hydroxylase, which is 

catalyzed by cytochrome P450 4A 1 and plays a role in the metabolism of long­

chain fatty acids (Sharma et al., 1987; Sabzevari et al., 1994; Bentley et al., 1993). 

Furthermore, peroxisome proliferation is also associated with a decrease in serum 

cholesterol and/or triglycerides since peroxisomes are involved in lipid 
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metabolism (Moody et al., 1983). Therefore, two peroxisomal enzymes: palmitoyl 

CoA oxidase and camitine transferase, which are biomarkers of peroxisome 

proliferation (Demoz et al., 1994; Khan et al., 1989), as well as microsomal lauric 

acid hydroxylase and serum cholesterol and tryglycerides were all measured in my 

study. Both palmitoyl CoA oxidase and camitine transferase were only induced 

about 50% in liver microsomes after 4 doses of IPAR or NEODENE. However, 

neither lauric acid hydroxylase nor serum cholesterol and triglyceride levels 

changed in this 4 dose treated group. No changes in these enzyme activities were 

observed in either the one dose group or in the two dose group. Thus, the 

peroxisome proliferating property of either lPAR or NEODENE is not clear. 

Since peroxisomal enzyme activities are induced after four doses of treatment, it 

could be implied from these data that both IPAR and NEODENE may exert their 

effects on fatty acid metabolism because lipophilic chemicals present in them 

become more abundant in the body at that time point. The peroxisomal enzyme 

activity is much more induced by NEODENE than it is by IPAR. This may be due 

to the delay in the elimination of lipophilic chemicals because of the inhibiting 

property of NEODENE on the biotransfonning enzymes. Alternately or 

additionally, NEODENE could contain chemicals that selectively induce 

peroxisomal enzyme activity. 
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CH ' APTERS 

5. Conclusion 

1. IPAR administration did not cause weight loss while NEODENE 

administration caused a significant weight loss in rats in every treatment group. 

2. Significant changes in hepatic enzyme activities but not in renal enzyme 

activities suggest that liver is the major effected site by both IP AR and 

NEODENE. 

3. Cytochrome P450 enzyme activities as well as their associated protein levels 

were either increased or decreased by IPAR or NEODENE. However, the rate 

of alteration was not dose-dependent. Therefore, these endpoints may not be 

used as biomarkers of drilling fluid exposure. 

4. NEODENE is a potential inhibitor of cytochrome P450 IA enzymes and 

glutathione S transferases which may in part account for its toxic effects. 

5. Following IPAR or NEODENE administration, peroxisomal enzyme activities, 

lauric acid hydroxylase activity and serum lipid level were not changed 

coordinately. Thus, neither IPAR nor NEODENE is likely to cause 

peroxisomal proliferation. 

6. Overall, it appears that both IPAR and NEODENE exhibit low toxicity. 
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