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1 INTRODUCTION 

Since animals cannot generate energy on their own, energy intake via food 

consumption is an absolute necessity. The irregularity of food availability in the wild has 

forced evolutionary adaptation to store and prepare for long-term energy requirements 

and to override short-term energy homeostasis. However, the environment for humans 

and companion animals has changed within the past half century, in which food is more 

readily avai lable and the labor associated with food consumption (hunting, collecting, 

etc.) has greatly diminished. Evolution has not caught up with this drastic environmental 

change as our genes are still encouraging the intake of high-energy food. As was shown 

by a recent RAND study, obesity in the US is growing rapidly and morbid obesity in 

particular is rising three times faster (DeNoon, 2007). Obesity prevails as one of the top 

global health problems because it is known as a risk factor for various chronics di sorders 

such as type II diabetes, cardiovascular disease, hypertension and certain forms of cancer. 

(World Health Organization, 2007). In order to control obesity, it is important to 

understand how energy homeostasis and appetite for food is controlled. 

The motivation to eat palatable food is not only driven by its nutritional value, but 

also by the brain 's ability to recognize energy dense food as a tasty and palatable 

stimulus. Behavioral responses to the reinforcing nature of palatable food involve a wide 

range of brain areas and neurochemicals, particularly those involved in reward and 

energy homeostasis (DiLeone et al. , 2003; Erlanson-Aibertsson, 2005; Saper et al., 2002). 

Among these, the lateral hypothalamus (LH) has been recognized as a common brain area 



,-----------------------------------------------------------------

that mediates both feeding and reward-related behaviour (MARGULES and OLDS, 

1962). Furthermore, recent studies suggest that orexin-expressing neurons may be 

mediating the feeding and reward-related functions of the LH (H irasawa et al., 2007). 

Therefore, investigating the physiology and pathology of orexin neurons may help us to 

understand the central mechanism of energy homeostasis and food reward. This thesis 

focuses on the interaction of dopamine (DA) and orexins neurons, two key players in 

reward and energy homeostasis. 

1.1 Hypothalamic control of energy homeostasis 

An important site for central regulation of food intake is the hypothalamus. Brain 

lesion and stimulation studies first implicated the LH as the "hunger center'' and the 

ventromedial hypothalamus (VMH) as the "satiety center" (Stellar, 1954). Although we 

now know that this 'dual center' model is oversimplified (Schwartz et al., 2000). these 

early studies indicated that the hypothalamus plays a critical role in food intake. More 

recent research suggests that there is a hypothalamic neural network that plays a central 

role in energy homeostasis. This network includes the arcuate nucleus (ArcN), LH, 

VMH, paraventricular nucleus and dorsomedial hypothalamus (Schwartz et al. , 2000). 

The ArcN is located adjacent to the median eminence that has a fenestrated blood brain 

barrier through which nutrient signals from the circulation are believed to enter and 

diffuse into the ArcN (Schwartz et al., 2000; van Den Pol, 2003). This allows neurons in 

the ArcN to work as sensors for the levels of circulating nutrient signals, including 
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glucose, leptin, ghrelin and insulin (van Den Pol , 2003). ArcN neurons in turn project to 

other hypothalamic nuclei to form the neural network for energy homeostasis (Saper et 

a!., 2002; Schwartz et al., 2000; Spiegelman and Flier, 2001; Inui, 2000a). 

Within this neural network, multiple neuropeptides have been identified as 

modulators of food intake. Neuropeptides that inhibit feeding (anorexigenic peptides) 

include a-melanocyte stimulating hormone (a-MSH), cocaine- and amphetamine­

regulated transcript (CART), corticotropin-releasing factor (CRF), cholesystokinin 

(CCK) and neurotensin (Schwartz eta!. , 2000). Appetite-inducing (orexigenic) peptides 

include neuropeptide Y (NPY), agouti-related protein (AgRP), galanin, orexin, melanin­

concentrating hormone (MCH) and ghrelin (Nakazato eta!. , 2001; Schwartz eta!. , 2000). 

The ArcN contains at least two populations of neurons that produce peptides with 

opposite action on food intake. One population of ArcN neurons produces NPY and 

AgRP. lntracerebroventricular administered show a rapid and robust feeding effect after 

a bolus ofNPY application (Edwards eta!., 1999; Kalra eta!. , 1999). Also NPY neurons 

show increase in NPY mRNA expression in response to insulin treatment (Wilding eta!. , 

1993; Williams et al. , 1989). Central administration of AgRP also produces a significant 

increase in food intake at 24 hrs post injection (Rossi eta!., 1998). It is known that AgRP 

is a potent and selective endogenous antagonist for MC3/MC4 melanocortin receptors 

(Yang et a!. , 1999b; Yang et a!. , 1999a). Another population of ArcN neurons produces 

a-MSH which derives from the precursor pro-opiomelanocortin (POMC) (Chen et al., 

1999; Jobst et al. , 2004) and binds to MC3/MC4 receptors, reducing food intake and 

body weight (van Den Pol, 2003). Both NPY/AgRP and POMC neurons are known to 
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innervate the LH as well as other hypothalamic nuclei involved in energy homeostasis 

(Elias et al. , 1998; Inui, 2000b). 

Two neuropeptides highly expressed by the LH and perifomical area (LH/PF A) 

are MCH (Bittencourt et al. , 1992) and orexins (de Lecea et al. , 1998; Sakurai et al. , 

1 998) and are thought to provide the neuronal substrate for LH functions related to food 

intake. MCH and orexins are found in separate but spatially overlapping populations of 

neurons in animal and human brain (Broberger et al. , 1998; Elias et al. , \998; Peyron et 

al. , 1998). Both types of neurons receive direct projections from NPY/AgRP and POMC 

neurons ofthe ArcN (Elias et al., 1998) and have similar wide-ranging projections to a 

number of structures including: cerebral cortex, hippocampus, hypothalamus, thalamus, 

brain stem and spinal cord (Bittencourt et al., 1992; Broberger et al. , 1998; Chemelli et 

al. , 1999; Peyron et al., 1998). 

1.2 The LH as part of the reward circuit 

While a negative energy balance is sensed by the hypothalamus and stimulates 

food intake, the amount offood eaten is also influenced by environmental factors. 

Among the environmental factors, the availability of palatable foods is the most obvious 

(Volkow and Wise, 2005). It is known that the rewarding nature of food activates brain 

circuits involved in reward, motivation and decision-making (Volkow et al. , 2004). The 

experience or expectation of reward is associated with the activity of the mesolimbic 

dopamine system that originates from the midbrain ventral tegmental area (VTA) and 
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projects to forebrain structures including the nucleus accumbens (NAcc) (Berridge and 

Robinson, 1998; Kelley and Berridge, 2002). 

In addition, the LH has been seen as an integral part of a larger reward circuit 

(DiLeone eta!., 2003; Kelley eta!., 2005). Stimulation studies demonstrated that rats will 

self-administer electrical stimulation (intracranial self-stimulation; ICSS) directly to the 

LH (OLDS and MILNER, 1954). This behaviour is dependent at least in part on direct 

stimulation of intrinsic neurons of the LH because chemical lesions selectively destroying 

cell bodies in the LH attenuate ICSS response (Velley eta!., 1983). It was recognized 

early that the LH is a common brain area that mediates both feeding and reward-related 

behaviour. Electrode placements in the LH that induced food intake were also sites which 

generated high rates of self-stimulation (MAR GULES and OLDS, 1962). Recent studies 

suggest that neuropeptides expressed in the LH play a critical role in food intake and 

reinforcement (DiLeone eta!., 2003). 

The LH also receives inputs from the amygdala and integrates the environmental 

and emotional signals that are associated with food delivery (Kirouac and Ganguly, 1995; 

Petrovich et al. , 2002; Petrovich eta!., 2005), which can override satiety (Petrovich et al., 

2002). Thus, the LH not only mediates phagic functions (Saper, 1985; Saper et al., 1986) 

but also cognitive, reward- and emotion-related functions (Berthoud, 2002; Saper eta!. , 

2002). 
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1.3 Orexin neurons 

One of the primary cellular substrates that mediate the function of the LH may be 

orexin neurons. Majority of orexin expression is concentrated in the LH. Although, Pre­

pro orexin mRNA also has been detected in the testis (Sakurai et al. , 1998 ;Johren et al. , 

2001) stomach, lung and kidney (Yan et al. , 2005). Orexins (orexin A and B, also known 

as hypocretin 1 and 2) were originally identified as orexigenic neuropeptides, because 

they induce feeding when injected into the cerebral ventricles (Edwards et al., 1999; 

Haynes et al. , 1999; Sakurai et al. , 1998; Yamanaka et al. , 1999) or the LH (Sweet et al. 

1999) and orexin receptor antagonists conversely decreases food intake (Haynes et al. , 

2002). Orexin neurons are sensitive to nutritional states such as fasting and hypoglycemia 

where they show changes in c-Fos expression (Cai et al., 2001 ; Moriguchi et al. , 1999; 

Sakurai et al. , 1998; Tritos et al., 2001 ; Yamamoto et al. , 2000). However, more recent 

studies have provided evidence that orexin is not just anorexigenic factor. 

It is now thought that orexins are responsible for the motivational and hedonic 

aspects of feeding. Orexins have been shown to mediate behavioural responses to 

addictive drugs (Borgland et al. , 2006; Boutrel et al., 2005 ; Georgescu et al. , 2003; Harris 

et al., 2005; Narita et al. , 2006) and facilitate responses to natural rewards such as 

palatable food (Clegg et al. , 2002; Furudono et al., 2006; Thorpe et al. , 2005). 

Conversely, intake of palatable food stimulates orexin neurons. For example, high-fat diet 

and calorie-free sweetener have been shown to elevate orexin gene expression (Furudono 

et al., 2006; Park et al. , 2004; Wortley et al. , 2003). Thus, the intake of pleasurable food 

is associated with increased orexin neuron activity which acts in tum to promote further 
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intake of such food. 

Furthermore, orexins play a critical role in stabilizing arousal (Mochizuki et al. , 

2004; Saper et al., 2005) and lack of orexin signalling leads to narcolepsy (Chemelli et 

al. , 1999; Hara et al., 2001; Lin et al. , 1999). Also, orexins have been shown to induce 

spontaneous physical activity (Kotz, 2006; Nakamura et al., 2000; Sunter et al. , 2001 ; 

Thorpe and Kotz, 2005), increase sympathetic outflow (Ferguson and Samson, 2003 ; 

Follwell and Ferguson, 2002; Samson et al. , 2002; Samson et al., 2005; Smith et al. , 

2002) and thermogenesis (Oldfield et al., 2002; Yasuda et al. , 2005; Yo himichi et al., 

2001). 

Collectively, orexin neurons seem to coordinate arousal, sympathetic and physical 

activity as well as the motivation to seek/eat food. Proper coordination of these functions 

is vital for survival because there will be a greater chance of finding and consuming food 

while staying vigilant to potential threats. This property of orexin neurons is manifested 

as food anticipatory behaviour or fasting-induced arousal that disappear in mice with 

genetic ablation of these neurons (Akiyama et al., 2004; Yamanaka et al. , 2003). 

Orexin A and Bare 33- and 28-amino acid peptides, respectively (de Lecea et al. , 

1998; Sakurai et al., 1998) and are coded by the same gene located on chromosome 

1 7q21 (Sakurai et a!. , 1998). There are two subtypes of orexin receptor , namely orexin-1 

and orexin-2 receptors that have extensive yet distinct expression patterns in the brain 

(Marcus et al. , 2001; Trivedi et al. , 1998). Orexin-1 receptor shows higher affinity for 

orexin A, while orexin-2 receptor shows equal affinity for both orexin A and B (Ammoun 

et al. , 2003; Sakurai et al. , 1998). Both subtypes are G-protein coupled; orexin-1 receptor 
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seems to signal through Gq while orexin-2 couple to Gi/Go and Gq subunits (Sakurai et 

al. , 1998; van Den Pol et al. , 1998). 

1.4 MCH neurons 

Another population of neurons that are expressed exclusively in the LH and that 

may mediate the known LH function on food intake and reward is MCH neurons (Nahon, 

1994). MCH induces feeding and suppresses energy expenditure when overexpressed or 

injected centrally (Ito et al. , 2003; Ludwig et al. , 2001 ; Nahon, 1994; Qu et al. , 1996; 

Rossi et al., 1999; Shimada et al., 1998). On the contrary, MCH knockout mice are 

hypophagic and lean (Shimada et al. , 1998). MCH is also known to mediate responses to 

rewarding stimuli such as food and alcohol (Duncan et al. , 2005; Georgescu et al. , 2005). 

In addition, it has been shown that blockade or genetic deletion of MCH receptor 

subtype 1 (MCHlR; the cognate MCH receptors in rodents) results in antidepressant-like 

and anxiolytic phenotype in animals (Borowsky et al. , 2002; Chaki et al. , 2005 ; 

Georgescu et al., 2005; Roy et al. , 2006b; Roy et al. , 2006a; Takekawa et al. , 2002). 

MCH also activates the hypothalamo-pituitary-adrenal axis (Kennedy et al. , 2003 ; Smith 

et al. , 2005) Thus, MCH has implications in motivation, mood and stress response which 

in tum may influence food intake and response to reward. 

MCH was discovered in fish pituitary as a hormone that mediated color changes 

in the skin of the teleost fish (Kawauchi et al. , 1983). After several years, MCH was 

described in mammals as a 19 amino acid cyclic neuropeptide which is identical in all 
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mammals including the mouse, rat, rabbit and human [reviewed in (Pissios and Maratos­

Flier, 2003)]. MCH neuropeptide is expressed in the LH and zona incerta (Bittencourt et 

al. , 1992). Also, MCH mRNA and pro MCH-derived peptide were founded in genitals 

and gastrointestinal tracts of rats (Hervieu and Nahan, 1995). In contrast to fish, MCH 

has no association to mammalian pigmentation (Pissios and Maratos-Fiier, 2003). 

MCH binds to two kind of receptors in the brain, MCH-1 and MCH-2 receptors, 

which are G protein-coupled that activate Gi, Go or Gq subunits (Hawes et al. , 2000; 

Maulon-Feraille et al. , 2002). Interestingly, MCH-2 receptors are not present in all 

species. Rodents apparently do not have MCH-2 receptors. Pigs and rabbits have non­

functional alleles, whereas dogs, monkeys and humans have both MCH-1 and MCH-2 

receptors (Tan et al. , 2002). These receptors are expressed in various brain areas 

implicated in energy balance, as well as in cell groups involved in other aspects of 

feeding behaviour such as olfaction, motivation/reward, mastication and swallowing 

(Saito et al. , 2001). The activation of these receptors modulates intracellular calcium 

concentration (Bachner eta!., 1999; Chambers eta!., 1999; Gao and van Den Pol, 200 I ; 

Gao and van Den Pol , 2002; Hawes et al. , 2000; Lembo et al. , 1999) or synaptic 

transmission (Gao and van Den Pol , 2001; Gao and van Den Pol, 2002; Varas eta!., 

2002). 

1.5 Role of dopamine in food intake and motivation 

Dopamine (DA) is another critical player in food intake and reward. Genotypes 

that alter DA reuptake are known to have a strong influence on food reinforcement and 
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weight gain (Epstein and Leddy, 2006). DA release in the NAcc is associated with 

palatable food intake (Hajnal and Norgren, 200 I; Masi et al., 200 I), and motiva6on to eat 

requires this DA system to be intact. Animals with inactivated tyrosine hydroxylase in 

DA neurons will not eat enough to survive even though they can seek and ingest food 

(Szczypka et al., 1999). 

On the contrary, genetic backgrounds that manifest lower DA signaling (higher 

DA reuptake or lower receptor expression) are associated with a stronger response to 

food reward and obesity in humans and animals (Epstein et al., 2004; Epstein and Leddy, 

2006; Figlewicz et al., 1998). Conversely, blocking DA reuptake, which increases the 

synaptic DA level in the brain, causes anorexia and weight loss in obese subjects (Epstein 

et al., 2004). It has been postulated that less DA signaling in the brain means reduced 

sensitivity of the mesolimbic system to reward, causing the subject to consume more food 

to compensate for the reduced sensitivity (Wang et al., 200 I). While this is possible, it 

may also be due to inhibition of DA action in the hypothalamus. 

Available evidence suggests that DA's inhibitory influence on food intake 

involves the hypothalamus. In the LH/PF A, DA receptor activation suppresses feeding 

(Leibowitz, 1975; Leibowitz and Rossakis, 1979; Leibowitz et al., 1986; Parada et al., 

1988; Yang eta!., 1997), whereas the 02-like receptor antagonist blocks the anorexic 

effect of DA (Leibowitz, 1975; Leibowitz and Rossakis, 1978; Parada et al., 1988). 

Endogenous DA release in this area is associated with food intake, suggesting it may be a 

satiety signal (Meguid et al., 1995; Yang and Meguid, 1995). DAis known to increase 

latency to meal onset and reduce meal size and duration (Fetissov et al., 2000; Leibowitz 

10 



et al. , 1986). Also DA receptor agonists normalize hyperphagia and rectify 

metabolic/endocrine abnormalities, resulting in an improvement of obese-diabetic 

syndrome in leptin deficient ob/ob mice (Cincotta et al., 1997; Scislowski et al. , 1999). 

Furthermore, DA receptor expression and DA release in the LH/PF A are modulated by 

different energy states such as fasting, obesity and anorexia (Fetissov et al. , 2000; 

Fetissov et al. , 2002; Sato et al., 2001 ). 

DA action within the LH/PF A is also known to inhibit the reward circuitry, the 

mesolimbic DA system. Injection of the D2-like receptor antagonist sulpiride into the 

LH/PF A results in DA release in the NAcc(Morutto and Phillips, 1998b; Parada et al. , 

1995) and induces robust locomotor activity and conditioned place preference through 

this mechanism (Morutto and Phillips, 1998a). In fact, rats will self-inject sulpiride into 

the LH/PF A consistent with it being a rewarding stimulus (Parada et al. , 1995). Given 

that the bulk ofDA fibers in the LH/PFA projects from the VTA (Leibowitz and Brown, 

1980; Yoshida et al. , 2006), the inhibitory DA effect in the hypothalamus may be a 

feedback mechanism for fine-tuning the excitatory hypothalamic influence to the 

mesolimbic DA system. 

1.6 Effect of glutamate and GABA on food intake 

It has been suggested that glutamate and y-aminobutiric acid (GABA) regulates 

hypothalamic control of food intake (Maldonado-lrizan-y et al. , 1995; Stanley et al. , 

1996; Tsuj ii and Bray, 1991; van Den Pol, 2003). Endogenous glutamate release occurs 

during meal initiation and GABA release during satiation in the LH/PF A where orexin 
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and MCH neurons exist (Rada eta!., 2003). In the same area, injection of glutamate or its 

agonists receptors elicits intense feeding (Duva eta!. , 2005; Stanley eta!., 1993) while 

infusion of picrotoxin, a non-competitive GABAA-antagonist increased food intake 

(Tsujii and Bray, 1991). Therefore, glutamate and GABA play a critical role in the 

control offood intake by the LH. 

It has been shown that orexin and MCH neurons receive synaptic inputs mediated 

by glutamate and GABA, respectively. Glutamate mediates excitatory synaptic 

transmission, whereas GABA mediates the inhibitory synaptic inputs. Modulation of 

these synaptic inputs is one mechanism by which the firing activity of the postsynaptic 

orexin and MCH neuron can be altered (Acuna-Goycolea eta!., 2004; Guyon eta!., 2005; 

Huang eta!., 2007; Li eta!., 2002). 
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2 Aim 

Based on the current literature, it is possible that DA release in the LH/PF A 

modulates energy states of the animal, like obesity or anorexia, through its action on 

orexin and MCH neurons. 

The goals of this thesis were two fold. First, we sought to determine a standard to 

identify orexin and MCH neurons using their electrophysiological characteristics. 

Because these neurons are found to be spatially overlapping in the same hypothalamic 

area, establishing such criteria would enhance our ability to perform studies on identified 

neurons. Second, we tested the effect ofDA on synaptic transmission to orexins and 

MCH neurons, to explore the cellular mechanism of DA action in the LH/PF A. 
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3 Materials and Methods 

3.1 Animal model 

Sprague Dawley (SD) rats were used in this study. Male SO rats between 60 to 

I 00 grams were obtained from Memorial University Vivarium. The rats were housed 

with food and water available ad-libitum and with controlled room temperature (21 °C, 

+/-2°C), humidity, air renovation and light/dark cycle controlled (12112hrs). All 

experiments were performed in accordance with the guidelines established by the 

Canadian Council on Animal Care and were approved by the Memorial University 

Institutional Animal Care Committee. Attention was paid to use the minimum number of 

animals necessary to ensure results were consistent. Nonetheless, in each set of 

experiments, no more than two cells were used that derived from an individual animal. 

3.2 Slice preparation 

Rats were decapitated using a guillotine under deep halothane anesthesia. The 

brain was rapidly removed and placed for two minutes in ice-cold buffer solution (0- 2°C) 

composed of the following (in mM): 87 NaCl, 2.5 KCl, 1.25 NaH2P04, 7 MgClz, 0.5 

CaC)z, 25 NaHC03, 25 glucose, 30 sucrose, 3 pyruvic acid, 1 ascorbic acid. A 

hypothalamic block was prepared and 250-!Jm-thick coronal slices were obtained on a 
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vibrating-blade microtome (Leica Microsystems, model VTI OOOS) in the same ice-cold 

buffer solution. Slices were incubated at 33- 34°C for forty five minutes in order to allow 

neurons recover from the mechanical stress produced by the sectioning process. Then 

slices were kept at room temperature until recording. The samples were maintained in 

artificial cerebrospinal fluid (ACSF) before and during recordings. It was composed of 

the following (in mM): 126 NaCl, 2.5 KCl, 1.2 NaH2P04, 1.2 MgCh, 2 CaCh, 25 

NaHC03, 10 glucose, I ascorbic acid. Both solutions were continuously bubbled with a 

gas mixture of02 (95%) and C02 (5%). 

3.3 Electrophysiological recordings 

A hemisected slice was transferred into a linear flow small volume perfusion 

recording chamber (Dagan Corporation, model RCP-6T) and was perfused at 1.5-2 

mllmin with ACSF. The chamber temperature was set at 33- 34°C with a temperature 

controller (Dagan Corporation, model HW-30). Whole-cell patch-clamp recording was 

performed using a Multiclamp 700B amplifier (Axon Instruments, Inc.) and pClamp 9.2 

software (Axon Instruments, Inc.). With the visual guidance by infrared-differential 

interference contrast (IR-DIC) microscope (Leica Microsystems, model DM LFSA), 

neurons adjacent to the fornix with a diameter between 10 to 20 ~-tm were selected. The 

recording electrode was made of borosilicate glass (Garner Glass Company) using a 

Sutter micropipette puller (Sutter Instrument Co., model P-97). The resistance of the 

electrode was 4-7 MQ when filled with the internal recording solution containing the 
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following (in mM): 123 K-gluconate, 2 MgCl2, 8 KCl, 0.2 EGTA, 10 HEPES, 4 Na2-

ATP, 0.3 Na-GTP, pH 7.3. The electrode was advanced to the cell until the tip touched 

the membrane. After a GQ seal was made, negative pressure was applied to break the 

membrane and obtain the whole-cell configuration. Membrane potentials and currents 

were filtered at 1 kHz, digitized at 5 kHz and stored for off-line analysis. 

3.4 Synaptic currents 

As was described earlier by Fatt and Katz in 1952 spontaneous subthreshold 

electrical activity, called miniature events can be recorded from postsynaptic cells with 

an intracellular electrode. Synaptic currents can be monitored using Voltage-clamp 

technique and spontaneous synaptic currents, like action potential-independent miniature 

events, can be recorded in the presence of TTX. These miniature events are the result of 

quanta! neurotransmitter release from the presynaptic terminal to the synaptic cleft in a 

random manner (FA TT and KATZ, 1952; DEL CASTILLO and KATZ, 1954). Quanta! 

can be defined as a minimum unit of neurotransmitter contained in a single vesicle in the 

presynaptic terminal that produce a visible postsynaptic response (DEL CASTILLO and 

KATZ, 1954). Voltage-clamp experiments were performed at a holding potential of - 80 

m V, to facilitate the driving force of ions passing through AMP NKainate receptors. With 

this condition spontaneous miniature postsynaptic currents were continuously monitored. 

A 20 m V -hyperpolarizing pulse lasting for 1 00 ms was applied every 20-60 s throughout 

each experiment, and the steady-state current and decay rate of the capacitance transient 
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were monitored as measures of input resistance and series/access resistance, respectively. 

Cells that showed significant change in these parameters were excluded from additional 

analysis, because such changes in recording condition can influence the results. 

Miniatures events were pharmacologically isolated with tetrodotoxin (TTX) and 

picrotoxin application. After the effect of these compound stabilized (7 minutes), 

miniatures EPSCs (mEPSCs) frequency and amplitude were analyzed and the average of 

three consecutives minutes immediately prior to drug application was used as control to 

normalized data. For time effect plots, mEPSCs frequency and amplitude were analyzed 

and the mean values were calculated for each minute. For drugs tests, a period of three 

minutes following five minutes of drug application was considered as drug effects. This 

criterion was used throughout this study. 

3.4.1 Electrophysiological characterization of LH/PF A neurons 

In current clamp mode, the cells were injected with a series of five 200 ms-step 

pulses ranging from -300 pA to +200 pAin 100 pA increments. Every cell fired action 

potentials in response to depolarizing current steps. When the time interval between the 

last two spikes was longer by 30% or more in comparison with the two first spikes, we 

called it spike adaptation. 
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3.4.2 Action potential recording 

The current-clamp mode was used to record spontaneous firing activity, without 

any current injection. 

3.5 Data analysis 

Miniatures EPSCs and action potentials were detected using Mini Analysis 6.0 

software (Synaptosoft, Inc.). The data are expressed as mean ± SEM. Statistical 

comparisons were performed by using appropriate statistics i.e., Kolmogorov-Smimov 

test for testing individual cells. Unpaired or paired Student t-tests for group comparison. 

A value of p<0.05 was considered significant. 

3.6 Immunohistochemistry 

For immunohistochemical identification of the recorded cell , biocytin (1-1.5 

mg/ml) was included in the internal solution. Immediately after the recording, slice were 

placed in 4% paraformaldehyde in 0.1 M PBS overnight at 4°C, then washed and stored 

in PBS. Slices were then washed in PBS, followed by incubation with anti-orexin A goat 

polyclonal IgG (1 :3000 dilution) and anti-melanin-concentrating hom1one (MCI-1) rabbit 

polyclonal IgG (1 :2000 dilution) for three days at 4°C. Slices were then washed and 

treated for three hours with a combination of indocarbocyanine (Cy3) conjugated donkey 
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anti-goat antibody, cyanine (Cy2) conjugated donkey anti-rabbit antibody, and 

streptavidin-conjugated aminomethylcoumarin acetate (AMCA), all at I :500 dilutions at 

room temperature. Antibodies were diluted with PBS with 0.05% Triton X. Slices were 

then washed, mounted, and examined under a conventional fluorescence microscope 

(Olympus, BX 51) for detection of orexin A (Cy3), MCH (Cy2) immunoreactivity, and 

biocytin (AMCA). 40 X images of Cy2, Cy3 and AMCA fluorescence were captured 

individually. Contrast of the images was improved and amalgamated using Adobe 

Photoshop 5.5 (Adobe Systems Inc.). 

3. 7 Chemical compounds 

All drugs were bath perfused at final concentrations as indicated, by diluting 

aliquots of 1000 x stock in the ACSF immediately before use. Dopamine (DA) stock and 

the solutions included ascorbic acid ( 1 mM) and were light protected during storage and 

recordings to minimize oxidation. The final concentration ofDMSO used as a vehicle 

was 0.1 %. SKF 81297, quinpirole, SCH 23390 and sulpiride were purchased from Tocris 

Bioscience (Ellisville, MO), DA, biocytin, picrotoxin from Sigma-Aldrich (St. Louis, 

MO), tetrodotoxin (TTX) from Alomone Labs (Jerusalem, Israel). Anti-orexin A goat 

polyclonal lgG was from Santa Cruz Biotechnology (Santa Cruz, CA) and anti-melanin­

concentrating hormone (MCH) rabbit polyclonal lgG was from Phoenix Pharmaceuticals 

(Belmont, CA). 
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4 Results 

4.1 Identification of neurons in the LH 

In hypothalamic slices, sixty-three neurons were filled with biocytin and the 

phenotype of each neuron was confirmed using the immunohistochemical technique. 

These sixty-three cells were divided in three different types according to their 

electrophysiological characteristics (Fig. 1, 2, 3 and 5). In Type 1 we included fifty-two 

neurons that showed a depolarizing sag (lh current) in response to hyperpolarizing pulses 

from the resting membrane potential (RMP) (98.1 %, 51 of 52) and a rebound 

depolarization at the current offset (98.1 %, 51 of 52). The majority of them displayed no 

spike adaptation (69.1 %, 36 of 52), while others showed a different degree of spike 

adaptation. Also these neurons presented spontaneous firing at rest (90.4 %, 4 7 of 52). 

The RMP for these fifty-two cells were between -39.0 to -62.0 mV (Fig. 1). RMP was 

measured as the stable membrane potential recorded in between synaptic potentials 

without any current injection. 

Among these fifty-two cells, two of them presented a RMP of -60.0 mY or lower 

(Fig. 1 B) and were immunonegative for both orexin A and MCH. There were no criteria 

that could be used to further distinguish different phenotypes in the remaining group. Of 

these remaining fifty neurons, three were non-orexin, non-MCH neurons and forty-seven 

of them were orexin A-immunopositive neurons (Fig. 4A). This result suggests that the 

majority of the Type I cells that present a RMP above -60mV are orexin neurons (94%, 
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47 of 50). The average RMP for neurons that were orexm A immunopositive was 

-48.6±0.8 mV. 

In contrast, nine neurons were grouped as Type 2 (Fig. 2) that showed no Ih 

current (1 00 %, 9 of 9) nor rebound depolarization (1 00 %, 9 of 9) in response to a 

hyperpolarizing pulse from the RMP. The average RMP for these neurons was -58.8± 1.9 

mV and a majority ofthem did not fire spontaneously (88.9 %, 8 of9). Furthermore, 

eight of nine cells showed a clear spike adaptation (88.9 %; Fig. 2). All of these neurons 

were immunopositive for MCH (Fig. 4B). 

Finally, Type 3 included two neurons (Fig. 3). These cells presented no lh current 

and fired an action potential when released from a hyperpolarizing current step. The RMP 

was -50.5±9.5 m V and there was no spontaneous firing at rest. In response to positive 

current injection, they initially fired an action potential but ceased further activity (Fig. 

3). These neurons were non-orexin, non-MCH neurons. 

According to the results shown above, orexin and MCH neurons in the LH/PF A 

can be identified by their distinct electrophysiological features (Fig. 1, 2 and 5). For the 

rest of the study, these characteristics were mainly used to distinguish the phenotype of 

recorded neurons. 

4.2 Synaptic currents in orexin neurons 

Spontaneous postsynaptic currents were recorded in orexin neurons. Addition of 

50 J.!M picrotoxin (non-competitive GABA-A antagonist) in the bath reduced the 
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frequency of spontaneous postsynaptic currents and spontaneous excitatory postsynaptic 

currents (EPSCs) were monitored in isolation (Fig. 6). The frequency of spontaneous 

EPSCs was 2.5±0.7 Hz (n=5). Miniature EPSCs (mEPSCs) were recorded in the presence 

of picrotoxin 50 !J.M and TTX 1 !J.M which showed a frequency of 1.5±0.2 Hz (n=30) and 

an amplitude of 14.7±0.7 pA, where we were able to record good examples of miniature 

and measured the amplitude just in six cells to be compared with the control. The 

frequency of spontaneous EPSCs was significantly higher than the frequency of mEPSCs 

(n=5, p<0.05). Almost all mEPSCs were abolished by DNQX I 0 !J.M application (the 

AMP A/kainite receptor antagonist) (Fig. 6; n=3). Thus, in orexin neurons, the excitatory 

synaptic transmission is mediated by glutamate. 

4.3 Dopamine Effect on orexin neurons 

To test if dopamine (DA) induced any change in the excitatory synaptic 

transmission on orexin neurons, various DA concentrations were applied for a period of 

five minutes. When I !J.M DA was applied (Fig. 7 A-C), it induced a reversible and 

significant increase in the frequency of mEPSCs in orexin neurons from 2. 9±0.6 Hz to 

3.8±0.6 Hz (n=9; p<0.05). In contrast, a high DA concentration (100 !J.M; Fig. 8A-C) 

induced a significant decrease in mEPSCs frequency from 3.3±0.7 Hz to 2.0±0.5 Hz, 

which was reversible upon wash (n=9, p<0.01 ). Overall, as shown in Fig. 9, we found 

that the direction of the DA effect was concentration dependent: 1 !J.M increased, whereas 

10 and I 00 !J.M decreased mEPSCs frequency (I 0 !J.M, control condition 4.6±1.2 Hz and 
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DA application 3.3±0.9hZ, n=5, p<0.05). DA 0.1 J..LM had no effect in four cells tested 

(control condition was 5.2±1.6 Hz and 5.2±1.4 Hz in DA application) (p>0.05; ig. 9). 

There was no significant change in the amplitude of mEPSCs in every dose of DA tested, 

even when there was a significant change in the frequency of mEPSCs (Fig. 70; 80) (I 

J..LM, n=9, p>0.05; 10-100 J..LM, n=9, p>0.05), indicating that the locus ofDA action is 

most likely presynaptic instead of postsynaptic. 

4.4 Role of Dl-like receptors 

It is possible that the bidirectional effect ofDA on mEPSCs results from an 

activation of different subtypes of DA receptors, such as D 1-like (D 1/05 dopamine 

receptors) or 02-like (D2/D3/D4 dopamine receptors) receptors. To test whether Dl-like 

receptors could mediate the synaptic effects of DA in orexin neurons, SKF 81297 10 J..LM 

(the D 1-like receptor agonist) was applied for a period of five minutes. SKF 81297 

significantly increased the frequency of mEPSCs (n=9, p<0.05) without affecting the 

amplitude (p>0.05; Fig. lOA-D). The effect ofSKF 81297 was not significantly different 

from that ofDA 1 J..LM (p>0.05). Thus, we hypothesized that SKF 81297 and DA I ~LM 

act on a common target, i.e., Dl-1ike receptor. To test this hypothesis, SCH 23390 10 J..LM 

(the D 1-like receptor antagonist) was bath applied for five minutes prior to and during 

DA 1 J..LM application (Fig. II A). We found that SCH 23390 not only blocked DA 1 J..LM­

induced facilitation of mEPSCs, but also unmasked an inhibitory effect of DA on 

mEPSCs (n=5, p<0.05; Fig. 11 B). Therefore, these results are consistent with the 
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excitatory effect ofDA 1 11M being mediated by D1-like receptors. 

4.5 Role of D2-like receptors 

To test whether D2-like receptors also modulated the excitatory synapses to 

orexin neurons, D2-like receptor specific agonist and antagonist were examined. 

Quinpirole 10-50 11M (the D2-like agonist) application for five minutes reduced the 

frequency ofmEPSC (n=6, p<0.05) without altering the amplitude (p>0.05 ; Fig. 12A-D). 

This inhibitory effect was similar to that of 100 11M DA (p>0.05), from which we 

conclude that high dose ofDA may activate D2 receptors. Therefore, we tested the effect 

of the D2-like receptor antagonist sulpiride on DA 100 11M-induced inhibitory effect. 

Sulpiride 10 11M was applied five minutes prior to and during 100 11M DA application 

(Fig. 13A). In this condition, DA did not alter the frequency of mEPSCs (n=4, p>0.05). 

This result is consistent with inhibitory effect of a high concentration ofDA being 

mediated by D2-1ike receptors (Fig. 13B). 

4.6 Effect of Dopamine on Spontaneous Firing Activity 

Next we tested whether the effects of DA on excitatory transmission could alter 

the firing activity of orexin neurons. In current-clamp mode, spontaneous action 

potentials were monitored in the presence of picrotoxin to block the influence of 

inhibitory synaptic inputs. The recorded orexin neurons showed spontaneous firing with 
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an average frequency of0.7±0.2 Hz (n=5). In this condition, three minutes of I J.!M DA 

application significantly increased the frequency of firing by 201.9% of control, which 

returned to control level upon wash (n=3, p<0.05; Fig. 14A-C). In contrast, three minutes 

of DA application at 30 or 100 )lM eliminated spontaneous action potentials for a period 

of 4.4±0.5 min (n=4; Fig. 15A-C). Also DA at these concentrations hyperpolarized orexin 

neurons from a RMP of -43.1±1.7 mV to -53.0±2.0 mV (n=4; p<0.0005). 

4.7 Bidirectional effect 

It is possible that the bidirectional effect ofDA results from a subpopulation of 

orexin neurons that responds only to Dl-receptor activation whereas another population 

responds to D2-like receptor activation. To test whether this was the case, recordings 

were made during sequential application of drugs having opposite effects (agonists or 

different concentrations of DA; Fig. 16A -C; n=3 ). We found that every cell tested was 

able to respond in both directions: D 1-like receptor activation increased mEPSCs or 

action potential frequency, whereas D2-like receptor activation induced a reduction in 

mEPSCs or action potential frequency. We conclude that, both D 1- and D2-like receptors 

can modulate excitatory synaptic transmission in a single orexin neuron. 

4.8 Dopamine effect on MCH neurons 

ln current clamp mode, l 00 J.!M DA was found to hyperpolarize the MCH 
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neurons (cell I from -60.9 mV to -72.6 mV and Cell2 from -62.9 mV to -68.I mV)(n=2; 

Fig. I7 A), suggesting that DA may also plays a significant role in modulating the 

physiological function of MCH neurons. As described in Section 4.1 , MCH neurons were 

quiet at rest in our recording condition, but positive current injection caused these cells to 

fire action potentials (Fig. 17B, left panel). In the presence of DA, the input resistance of 

the cell decreased and the same positive current either failed to induce firing or induced a 

smaller number of spikes (Fig. 178, center panel). This effect was reversible upon 

washout of DA (Fig. 17B, right panel). 

To determine whether modulation of excitatory synaptic transmission underlined 

the inhibitory effect ofDA, we switched to voltage clamp mode and DA effect was tested 

on mEPSCs (Fig. 18). I f..LM DA had no effect on mEPSC frequency or amplitude (n=3). 

During the application of I 0 !lM DA, it increased the frequency of mEPSCs in three of 

five cells while the remaining two neurons did not reveal a change. When I 00 f..LM DA 

was applied, one offour neurons increased the frequency ofmEPSCs, one did not change 

and two showed a decrease in mEPSCs frequency. Overall, none of the concentrations 

tested (I, 10, and I 00 !lM) had a significant effect (p>O.OS) on mEPSCs in MCH 

neurons. Therefore, EPSC modulation does not underline DA's effect on MCH neurons. 

These results suggest that the action ofDA on MCH neurons may be distinct from that of 

orexm neurons. 
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5 Discussion 

5.1 Neuronal phenotype 

Our first step was to characterize orexin and MCH neurons according to their 

electrophysiological features, in order to facilitate our ability to distinguish the type of 

LH/PF A neurons under investigation. Our results reveal that approximately 97% of the 

neurons recorded and selected according to their size (1 0-20 )lm in diameter) and their 

proximity to the fornix were either orexin or MCH neurons. 

The electrophysiological characteristics of individual neurons were investigated using 

a current clamp protocol that applies a series of hyperpolarizing and depolarizing steps. 

MCH neurons were easily identifiable by their distinct pattern of responses categorized as 

Type 2, including lack of Ih current, strong spike adaptation and relatively hyperpolarized 

RMP. Orexin neurons also had distinct features including Ih current, depolarized RMP 

and spike adaptation, and composed a majority of Type 1 neurons. These characteristics 

are similar to those described in previous studies (Burdakov eta!., 2004; Eggermann et 

al. , 2003 ; Gao eta!. , 2003 ; Jo eta!. , 2005). 

In our preparation, orexin neurons were more frequent than MCH neurons (82.5% vs. 

14.3% among 63 neurons analyzed). The difference in the distribution may be influenced 

by the dissection technique, which affects the survival ofMCH neurons in om 

preparation. An other possibility is that the anatomical distribution of MCH neurons is 

different in relationship with the fornix (Baldo et al. , 2004). 
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We also observed seven neurons that were neither orexin nor MCH immunoreactive. 

Some had distinct electrophysiological features and were categorized as an independent 

group (Type 3). Other neurons were similar to orexin neurons (Type 1). Non-orexin, non­

MCH neurons we have observed in this study may correspond to other neuronal types 

that are known to exist in the LH/PF A. Expression of different 

neurotransmitters/modulators has been observed, including galanin (Melander et a!. , 

1986; Wortley eta!., 2003; Skofitsch and Jacobowitz, 1985), neurotensin (Allen and 

Cechetto, 1995; Elias eta!., 2000), calcitonin gene-related peptide (CORP) (Skofitsch 

and Jacobowitz, 1985) and acetylcholine (Tago eta!., 1987) has been observed in the 

LH/PF A. There is a possibility that some of these neurons did not reveal peptide 

immunoreactivity as a result of technical problems. For example, if the penetration of the 

antibody in the tissue is poor and the recorded cell was located deep in the section, the 

neuron may not stain. However, we excluded this possibility since we were able to detect 

orexin-A and MCH expression in neighboring neurons in the same layer where the 

biocytin-filled cell was located that failed to express orexin-A or MCH. 

Our results demonstrated that distinct electrophysiology characteristics of orexin and 

MCH neurons can be used as reliable criteria to identity neurons during recording. 

5.2 Dopamine effect on orexin neurons 

The present study demonstrates that DA modulates excitatory synaptic 

transmission in a concentration-dependent and reversible manner in orexin neurons. The 
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direction of modulation depends on distinct types of receptors. D 1-like receptors mediate 

the effect of low concentration DA (1 J.!M) that induce facilitation whereas 02-Iike 

receptors mediate the effect of higher concentration (1 0-100 J.!M) that diminish the 

frequency of spontaneous excitatory transmission. These changes occurred in the absence 

of any alteration in the amplitude of mEPSCs, from which we conclude that DA affects 

the transmitter release probably at the presynaptic terminal, but does not change the 

postsynaptic sensitivity. Furthermore, low and high concentration of DA results in an 

increase and decrease in action potential firing of orexin neurons, respectively, 

suggesting that DA modulation of spontaneous excitatory synaptic transmission may 

translate into altered postsynaptic firing. Indeed, it has been shown that enhancing 

spontaneous excitatory transmission increases the firing rate of orexin neurons (Li et a!. , 

2002). 

The hyperpolarizing effect of DA on orexin neurons is in agreement with the 

previous reports that employed high DA concentration (30-300 ~tM) (Li and van Den Pol, 

2005; Yamanaka eta!., 2006), resulting in cessation of firing (Li and van Den Pol, 2005) 

and a reduction in intracellular calcium (Tsujino et al., 2005). Inhibition ofTTX­

insensitive spontaneous excitatory synaptic current shown in the present study may at 

least partially account for the reduced activity of orexin neurons. A direct postsynaptic 

effect causing a sustained outward current (Yamanaka et a!. , 2006) is also a potential 

mechanism, although we did not observe a sustained current in the presence ofDA in our 

preparation. This discrepancy may reflect the lower concentration used in our study [ 100 

J.!M vs. 300 J.!M; (Yamanaka eta!., 2006)] and hyperpolarized holding potential (-80 vs. 
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-60 mY). 

5.3 Bidirectional effect 

The concentration-dependent bidirectional effect of DA is somewhat similar to 

that observed in the inhibitory transmission and NMDA receptor modulation in the 

prefrontal cortex (PFC). In the PFC slice, DA has been shown to induce a biphasic effect 

on the amplitude of evoked IPSCs: 02-like mediated inhibition was followed by a long­

lasting D 1-like receptor-mediated increase, with the D 1- mediated effect apparent at a 

lower concentration (Seamans eta!., 2001; Trantham-Davidson et al., 2004). Zheng eta!. 

(1999) demonstrated that NMDA receptor currents were similarly modulated, with low 

concentration of DA inducing enhancement and high concentration inducing inhibition 

(Zheng et al., 1999). 

Nonetheless, the mechanisms underlying the dopaminergic modulation in the 

prefrontal cortex (PFC) and orexin neuron are likely different. In the PFC, presynaptic 

D I receptors cause a long-lasting increase in GABA release, and postsynaptic D2 

receptors modulate the phosphorylation state of postsynaptic GABA receptors 

(Trantham-Davidson et al., 2004). Also, DA can modulate postsynaptic glutamatergic 

receptors such as synaptic expression of AMPA receptor (Sun et al., 2005;Zou et al., 

2005) or NMDA receptor function (Zheng eta!., 1999). In orexin neurons, we did not 

observe any change in the amplitude of mEPSCs indicating no effect on synaptic 

glutamatergic receptors. In addition, the effect of the Dl receptor was readily reversible 
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after washout of the ligand. 

The mechanism for differential concentration dependency of D I and D2 receptor­

mediated modulation is unknown. It may involve different affinity state of the receptors 

(Seeman and Van Tol, 1993) and/or differential expression of D2 receptor isoforms that 

have distinct impact on excitatory transmission (Centonze et al., 2004). Interestingly, 

when 1 j.!M DA was tested in the presence of the D1-like receptor antagonist SCH23390, 

an inhibitory effect was uncovered. It is possible that at I j.!M, DA has some effect on 

D2-like receptors in addition to activating D 1-like receptors. May be this inhibitory effect 

ofD2-like receptors was masked by the effect ofDA on D1-like receptors. In contrast, 

the effect of 100 j.!M DA was blocked by the D2-like receptor antagonist sulpiride, and 

there was no underlying excitatory effect of DA. 

We also observed that the opposite effects of DA could be observed in the san1e 

postsynaptic neuron. Thus we conclude that D 1- and D2-like receptors can induce the 

opposite effects on synapses converging onto the same neuron. In fact, it is possible that 

D 1- and D2-like receptors exert opposing effects on the same signaling pathway in the 

presynaptic terminal. Dl receptor activation is known to positively affect adenylyl 

cyclase, whereas D2 receptor activation negatively affects it (Missale et al., 1998). 

Activation of adenylyl cyclase and subsequent activation of cAMP and protein kinase A 

signaling may facilitate spontaneous neurotransmitter release, as shown in number of 

other synapses including those in the hypothalamus (Chavez-Noriega and Stevens, 1994; 

Chen and Regehr, 1997; Hirasawa and Pittman, 2003). 
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-------- - -------------------- --- ---------

5.4 Dopamine effect on MCH neurons 

We observed that in MCH neurons, DA induces a hyperpolarization that 

accompanies a reduction in the rate of action potential firing in response to positive 

current injections. Based on this preliminary observation, an ongoing project in our 

laboratory has discovered that DA induces a direct, sustained outward current in MCH 

neurons in a concentration-dependent manner. Surprisingly, this effect is mediated by 

alpha 2-adrenoreceptors, not by DA receptors (Trask and Hirasawa, 2005). This finding 

is in agreement with a previous publication where norepinephrine reduces spike 

frequency and hyperpolarized MCH neurons through alpha 2-adrenoreceptor activation 

(van Den Pol et al. , 2004). 

The present study also suggests that DA has some effect on the excitatory 

synaptic inputs to MCH neurons. The magnitude and the direction of effects varied 

among cells tested and the concentration ofDA used but bidirectional effects were never 

observed in a given neuron. We propose that there are subpopulations ofMCH neurons 

that respond differently to DA. The precise cellular mechanism by which DA modulates 

the activity of MCH neurons remains unknown and needs more studies. 

5.5 Physiological implication 

There is a reciprocal communication between the mesolimbic DA system and the 

LH/PF A, more specifically orexin and MCH neurons. Orexin neurons are known to send 

direct projections to the ventral tegmental area (VTA) (Fadel and Deutch, 2002) and 
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exhibit excitatory effect there (Borgland et al., 2006; Harris et al. , 2005; Korotkova et al. , 

2003a; Vittoz and Berridge, 2006), which leads to DA release in nucleus accumbens 

(NAcc) (Narita et al., 2006) and prefrontal cortex (PFC) (Vittoz and Berridge, 2006). 

MCH containing fibers are also found within the VT A (Dallvechia-Adams et al. , 2002), 

although MCH has no apparent effect on the activity of VT A neurons (Korotkova et al. , 

2003b). In contrast, MCH is known to inhibit DA-induced AMPA receptor 

phosphorylation in medial spiny neurons of the NAcc (Georgescu et al. , 2005). This 

effect would reduce the AMP A receptor-mediated current in these neurons. Therefore, 

MCH also modulates the functioning of the mesolimbic DA system. This mechanism at 

least partially accounts for the excitatory effect of MCH on food intake (Georgescu et al. , 

2005). 

On the other hand, the VT A supplies a bulk of the DA input to the LH/PF A 

(Leibowitz and Brown, 1980; Yoshida et al., 2006). DA in the LH/PF A reduces food 

intake, reward response and locomotion (Leibowitz, 1975; Leibowitz and Rossakis, 1978; 

Parada et al. , 1988; Yang et al., 1997). Our study provides a cellular mechanism by which 

DA suppresses the activity ofLH/PFA neurons. We propose that DA directly inhibits 

MCH neurons. Also we have demonstrated that DA inhibits orexin neurons at higher 

concentrations through synaptic inhibition. Given the orexigenic effects of MCH and 

orexins, the anorexic action of DA in the LH/PF A may be due to inhibition of MCH and 

orexm neurons. 

Based on the current study, in combination with previous reports, we propose a 

concentration-dependent dual feedback mechanism between the orexin and mesolimbic 
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DA system (Fig. 19). A low/moderate level of DA in the LH/PF A may excite orexin 

neurons through Dl-like receptor-mediated facilitation of excitatory input, which in turn 

provides excitatory influence on VTA neurons, thus creating a positive feedback 

mechanism. When dopaminergic activity is elevated and a higher concentration of DA is 

achieved in the hypothalamus, this will work to activate D2-like receptors and inhibit 

orexin neurons. This will lead to decreased excitatory input to the VTA, acting as a 

negative feedback mechanism. Such two-way communication between the LH/PF A and 

the meso limbic DA pathway is likely to be critical for optimal control of appetite, reward 

value of food and feeding. 
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6 Conclusion 

Obesity is a serious global health problem of epidemic proportions around the 

world (DeNoon, 2007; World Health Organization, 2007). Canadian society is not an 

exception where the overconsumption of high-energy food contributes to the rising 

problem of obesity, which is in tum a high risk factor for various chronic diseases (World 

Health Organization, 2007). In order to understand the etiology of obesity, it is important 

to comprehend how energy homeostasis and motivation to eat food is controlled. Since 

1962, the LH has been recognized as a brain area where feeding and reward are regulated 

(MARGULES and OLDS, 1962) and orexin and MCH neurons are found in this area 

(Nahon, 1994; Sakurai et al. , 1998). DA releases in the LH/PF A is known to modulate 

feeding reward (Fetissov et al., 2000; Fetissov et al. , 2002; Sato et al. , 2001 ). Therefore, 

we hypothesized that DA modulated orexin and MCH neurons. To test this hypothesis, 

this thesis focused on the mechanism of DA effect on orexin and MCH neurons at the 

cellular level, which play an important function in reward and energy homeostasis. 

We demonstrated a dose-dependent bidirectional effect on the activity of orexin 

neurons via modulation of excitatory transmission at the presynaptic terminals. In 

contrast, DA inhibits MCH neurons in a dose dependent manner without a significant 

effect on excitatory transmission. Thus, the results of my theses project suggest that DA 

has an effect on MCH neurons through a mechanism different from that of orexin 

neurons. Nonetheless, inhibitory effect of DA on both types of neurons provides a 

negative feedback mechanism to prevent overactivation of the reward circuit. 
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Overall, these data suggest that DA plays an important role in the modulation of 

the LH/PF A function, vital players in the control of food intake, energy expenditure and 

food reinforcement. Perhaps, disruption of the physiological DA function within the 

LH/PF A may result in the excessive food intake and disruption of metabolism leading to 

obesity. 
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Figure I: Electro physiological characteristics of Type 1 neuron 

A: In fifty-two neurons, hyperpolarization induced a sag characteristic of an Ih 

current (arrow head) and rebound depolarization at the current offset (arrow). Also 

spontaneous firing (*) and no adaptation ( +-+) are shown. Lower panel indicates current 

clamp protocol of a series of 200 ms-step pulses. 

B: A representative cell showing characteristic of Type 1 with a resting 

membrane potential (RMP) lower than -60mV. Lower RMP corresponds to a non-orexin, 

non-MCH neuron. Lower panel indicates current clamp protocol of a series of 200 ms­

step pulses. 
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Figure 2: Electro physiological characteristic of Type 2 neuron 

Nine neurons displayed neither Ih current nor rebound depolarization, but showed 

a strong spike adaptation. Lower panel is indicating a series of 200 ms-step pulses. 
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Figure 3: Electrophysiological characteristics of Type 3 neuron 

Two neurons displayed no Ih current, but fired an action potential following a 

hyperpolarizing current step. A positive current injection induced only one action 

potential which then ceased all activities. Lower panel is indicating a series of 200 ms­

step pulses. 
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Figure 4: Immunohistochemical characterization of recorded neurons 

A: (Left panel) An example of a cell filled with biocytin during recording. 

(Middle panel) Orexin A immunoreactivity shown in red. 

(Right panel) Overlay showing the biocytin labeled cell is orexin A 

immunopositive. 

B: (Left panel) An example of a cell filled with biocytin during recording. 

(Middle panel) MCH immunoreactivity shown in green. 

(Right panel) Overlay showing the biocytin labeled cell is MCH immunopositive. 
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Figure 5: Phenotyping of PF A/LH neurons 

A diagram showing different cells types in the PF A/U-1 divided by their 

electrophysiological characteristics and confirmed by immunohistochemical technique. 
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Figure 6: Spontaneous synaptic currents in orexin neurons 

(left panel) Representative traces from an orexin neuron showing miniature 

EPSCs recorded in the presence of picrotoxin and TTX. 

(right panel) Almost all events were abolished by addition ofDNQX. 
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Figure 7: Low concentration of dopamine increases excitatory transmission 

A: Sample traces showing mEPSCs in control condition, in the presence of 

dopamine (DA) ( lJ..i.M) and after wash as indicated. 

B: A time-effect plot of the frequency of mEPSCs in a representative cell in 

presence of DA ( 1 ~LM). 

C: Cumulative plot of inter event interval. 

D: Cumulative plot of amplitude of mEPSCs from the same cell as A. 
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Figure 8: High concentration of dopamine decreases excitatory transmission 

A: Sample traces showing mEPSCs in control condition, in the presence ofDA 

(I 00 f.!M) and after wash as indicated. 

B: A time-effect plot of the frequency of mEPSCs in a representative cell in 

presence of DA (I 00 !lM). 

C: Cumulative plot of interevent interval. 

D: Cumulative plot of amplitude of mEPSCs from the same cell as A. 
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Figure 9: Dopamine induces a reversible bidirectional changes in spontaneous 

excitatory transmission 

Bar graph showing a summary of the effect of DA on mEPSC frequency at 

different concentrations. P<0.05: *, P<0.005: ***,!-test. 

53 



......._ 200 0 * ~ ...... 
c 
0 
u 
~ 0 ...._., 
>-. 
u 
c 100 Q.) 
::s 
cr' 
Q.) 

c.1:: 
u 
r:/'J 
0.. 

~ 0 
10-7 

10-6 10-5 10-4 

Dopamine concentration (M) 

Figure 9 

54 



Figure 10: Dl-like receptor activation increases the frequency ofmEPSCs 

A: Sample traces showing mEPSCs in basal condition (control), in the presence 

of SKF81297 (1 0 J.!M) and after wash as indicated. 

B: A time-effect plot of a representative cell showing the frequency of mEPSCs 

in the presence of SKF81297 ( 10 J.!M). 

C: Cwnulative plot of interevent interval. 

D: Cumulative plot of the amplitude of mEPSCs from the same cell as A. 
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Figure ll: Dl-like receptor activation 

A: Time-effect plot of the frequency ofmEPSCs depicting the response to DA (1 

)lM) in a cell pre-treated with SCH23390 ( l 0 )lM). 

B: Summary of the effect ofDA I )lM alone, DA l f.!M in the presence of 

SCH23390 and SKF81297 alone on mEPSC frequency. P<0.05:* compared to baseline 

condition, P<O.Ol:**. n. s.: no significant, t-test. 
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Figure 12: 02-like receptor activation decreases the frequency of mEPSCs 

A: Sample traces showing the basal mEPSCs (control), in the presence of 

quinpirole (I 0 J.!M) and after wash as indicated. 

B: A time-effect plot of a repre entative cell showing the frequency of mEPSCs in 

the presence of quinpirole (I 0 J.!M). 

C: Cumulative plot of interevent interval. 

D: cumulative plot of amplitude of mEPSCs from the same cell as A. 
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Figure 13: 02-like receptor activation 

A: Time-effect plot of the frequency of mEPSCs depicting the response to DA 

( 100 )lM) in a cell pre-treated with sulpiride ( 10 )lM). 

B: Summary ofthe effect ofDA 100 )lM, Sulpiride plus DA 100 )lM and 

quinpirole (10-50 )lM) on mEPSC frequency. P<0.05:* compared to the baseline 

condition, P<0.005:***. n.s.: no significant differences between the two drug 

concentrations, t-lest. 
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Figure 14: Low concentration of dopamine increases the rate of action potential in 

orexin neurons 

A: Sample recording showing the effect of I )lM DA on the firing activity. 

B: Expanded traces from another cell recorded before, during and after DA I )lM 

application. 

C: Time-effect plot of the same experiment as shown in B. 
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Figure 15: High concentration of dopamine hyperpolarizes and diminishes the firing 

activity of orexin neurons 

A: Typical recording depicting the effect of 100 f.!M DA on firing activity. 

B: expanded traces from an other orexin neuron recorded before, during and after 

DA 100 f.!M application. 

C: Time-effect plot of the same experiment as shown in B. 
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Figure 16: Dl- and 02-like receptors modulate synaptic inputs to the same orexin 

neuron 

A: A time-effect plot of a cell showing the frequency of mEPSCs in response to 

sequential applications of DA ( l 00 J.tM) and SKF 81297 (1 0 J.tM). 

B: Time-effect plot of the frequency of mEPSCs from another neuron depicting 

the response to consecutive application of quinpirole (I 0 J.tM) and KF 81297 (I 0 J.tM). 

C: A cell showing the rate of action potential firing is bidirectionally modulated 

by low and high dose of DA. 
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Figure 17: Effect of dopamine on MCH neuron 

A: Sample recording in current clamp mode showing the effect of 100 JlM DA on 

a MCH neuron. Vertical lines depict the voltage responses to hyperpolarizing and 

depolarizing current step pulses applied through the recording pipette. Arrow is showing 

changes in the input resistance. 

B: Voltage responses to positive and negative current injections recorded from the 

same neuron in panel A, in expanded time scale. When DA was applied the cell RMP 

changed from -60 to -70 m V. 
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Figure 18: Effect of DA on mEPSCs in MCH neurons 

Summary of the effect of DA 0.1, I 0 and I 00 !lM on mEPSC frequency in MCH 

neurons. Each circle denotes a cell. 
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Figure 19: Schematic representation of dose-dependent dual feedback 

A: Low or moderate DA input from the ventral tegmental area (VT A) to the 

LH/PF A (a) activates orexin neurons. Orexin neurons in turn send excitatory input from 

the LH/PFA to the VTA (b). This is a positive feedback loop. 

B: The excitatory orexin effect in the VTA (d) increases DA release in the Nacc 

(e). 

C: Higher orexinergic activity increases DA input from the VTA to the LH/PFA 

(f), which in turn inhibits orexin neurons. This acts as a negative feedback loop. 

D: Less orexin input to the VTA (g) results in less DA release in the Nacc (h). 
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