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Abstract 

Over the past quarter-century, considerable work has been invested in the study 

of the Human Immunodeficiency Virus (HIV). Within the mathematical arena, 

numerous models have been developed to reflect various phenomena associated 

with the virus. We construct a new ordinary differential equation model for the 

evolution of the CD4 + T cell population- the white blood cells principally targetted 

by the virus- in the presence of HIV, incorporating mutation of the wild-type 

virus and virus response to imperfect drug therapy. In so doing, we make the 

investigation of the model more tractable by eliminating an explicit reference to 

the virus population itself. We analyse this model both from a dynamical systems 

perspective and via numerical simulation, and show that the only possible long

term behaviours are the elimination of both forms of the virus, the elimination of the 

wild-type virus only, or the co-existence of both virus strains with the uninfected 

T cell population. We generalise this model to investigate the presence of multiple 
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mutations, and demonstrate that the behaviour of this augmented model reduces 

naturally to the single-mutant case. Finally, we consider the possibility of imperfect 

adherence to drug therapy by the patient, by introducing impulsive differential 

equations into the original model. We determine the impulsive periodic orbits 

of this model and inspect it numerically. Finally, we use this impulsive model to 

consider different frequencies and patterru_; of non-adherence on the part of the HIV 

sufferer. We determine that as interruptions to drug therapy occur more closely 

together, they become less harmful to the patient with regard to the progression of 

the virus. 
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Chapter 1 

Introduction to the Immune System 

and HIV 

O
NE OF THE GREATEST HEALTH CRISES of the modern era has been the outbreak of 

the Human Immunodeficiency Vi~us (HIV). Amongst the various weapons 

brought to bear against HIV has been the mathematical model. In this work, we 

shall introduce several novel models for studying HIV. But before we can introduce 

the analytical tools which will drive these endeavours, it is first essential that we 

acquaint ourselves with the two key real-world mechanisms that will contribute 

to our models: on one side, the human immune system, and on the other, the HIV 

pathogen. 
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In this chapter, we shall give a thorough overview of all the biological consider-

ations of this work, illuminating in real terms how the immune system functions, 

and how HIV attacks the host by targetting components of the very immune system 

designed to safeguard it. 

1.1 The Immune System 

I
N THE MACROSCOPIC WORLD, HUMAN armies are incredibly COmplex entities, COm

prised of numerous divisions dedicated to different tasks, and consisting of a 

dizzying array of soldiers, each class having its own set of characteristics and du-

ties. The human 'immune system is no different- it defends the body from foreign 

attack not through a single monolithic mechanism, but via multiple routes, mak-

ing use of a variety of cells, working both together and singly, in its effort to rout 

invading matter. In the following, we shall summarise the essential functions of 

the immune system, particularly those which are important in the body's response 

to viral infection. See [1-3] for details. 

Broadly speaking, the immune system exhibits two types of responses. The 

innate (or non-specific) response is the body's generic reaction to infection or body 

trauma; it is not tailored to the presence of any specific form of foreign agent or 
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tissue damage and represents a "one size fits all" approach to dealing with harm 

to the host. The acquired (also known as the adaptive or specific) response, on 

the other hand, involves cells which can identify foreign interlopers - be they 

mutated host cells, invading virions, or other "non-self" microorganisms - and 

coordinate a suitable retaliation. The cells which play the most crucial role in both 

the innate and specific responses are collectively known as the white blood cells, 

or leukocytes. 

As we shall see in more detail, some leukocytes can interact directly with foreign 

material via receptors on their surface. Foreign molecules which can bind to 

leukocytes in this manner are called antigens. Technically, not all antigens will 

excite an immune response on their own; some can only do so once they have 

bound to other antigens. These are termed haptens, and are of no interest to 

this work. Those antigens which do provoke an immune response directly are 

properly called immunogens. (However, it is customary in the literature to ignore 

the distinction between immunogens and antigens, and to give preference to the 

latter term; we shall adhere to this practise.) Antigens can be found, for instance, 

on the surface of a pathogen - a non-self microorganism harmful to the host. 

We are concerned with the specific case where the non-self presence takes the 

form of a pathogen known as the Human Immunodeficiency Virus, which will itself 
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be discussed in greater detail later in this chapter. HIV excites both the innate and 

acquired responses; indeed, it directly targets cells involved in the latter, and hence 

leads to the development of the Acquired Immunodeficiency Syndrome (AIDS), 

so named because of the deleterious effect of the virus on the acquired response. 

Although the mathematical models of HIV infection we shall consider will not 

explicitly incorporate every facet of the immune system's efforts to eradicate the 

pathogen, it is instructive to detail both those elements which are specifically 

included in the models, and those which are omitted, and to furthermore justify 

these omissions. 

1.1.1 The Innate Response: The Complement System 

The first prominent agent of the immune system typically activated following the 

intromission of non-self microorganisms is the complement system. Complement 

is a collection of proteins flowing freely in the bloodstream which are normally in 

an inactive state. The first component protein of the complement system can be 

alerted to the presence of antigenic material in the body in several different ways. 

In particular, it can bond directly to the surface of a pathogen, or to certain proteins 

produced in the early stages of infection which themselves bind to the surface of 

non-self material. Alternatively, the first component protein can be activated via 
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bonding with an immune complex, in which an antigen is itself bonded to a gly

coprotein (a macromolecule composed of amino acids and sugars) known as an 

antibody or immunoglobulin. (Antibodies are produced by B lymphocytes, cells 

which play a key role in the acquired response, and exhibit several different im

munological functions; they will be discussed in more detail later. The complement 

system therefore represents a link between the immune and acquired responses.) 

The activation of the first component protein produces a cascade of chemical 

reactions in which the other proteins of the complement system become activated 

themselves (through one of three possible pathways). In particular, several of 

the complement proteins generate the membrane attack complex, which attacks 

foreign microorganisms directly. This results in the lysis of such cells (that is, their 

death by bursting, usually via the dissolution of the cell membrane). 

Unfortunately, the complement system is highly toxic to the body. The mem

brane attack complex, for example, can attack indiscriminately, lysing not just the 

non-self material but host cells as well. As a result, complement excitation is 

typically virulent only in cases of extreme infection by foreign material, and the 

activation of complement is regulated by t~e body in order to limit possible damage 

to the body. 

Additionally, the role of complement is not limited to cytotoxicity (that is, the 
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direct killing of cells). Byproducts resulting from the complement cascade serve 

to chemically attract more advanced components of the immune system (called 

chemotaxis), cause inflammation which also stimulates other immunological cells, 

and make the non-self material more easily or aggressively digested by certain 

structures in the immune system (a process known as opsonisation). 

1.1.2 The Innate Response: Phagocytosis 

The other prominent mechanism in the innate immunological response is phago

cytosis - literally, "eating of cells". Whereas cell lysis involves the destruction of 

cells by compromising the integrity of their cellular membranes, in phagocytosis 

the target cell is consumed by an attacking cell. The principal types of phago

cyte are the polymorphonuclear neutrophils, the monocytes/macrophages, and the 

dendritic cells. 

The polymorphonuclear leukocytes encompass several types of white blood 

cells, characterised by the presence of granules in their cytoplasm (the extranuclear 

material which makes up much of the volume of a cell). Consequently, they are 

also known as granulocytes. The vast majority of polymorphonuclear leukocytes 

are neutrophils; although these are not th~ only phagocytic granulocytes, they are 

the most aggressively so. Neutrophils are attracted to the site of an infection via 
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chemotaxis and through the action of endothelial adhesion molecules. 

Monocytes are phagocytic cells found in the blood; when they migrate to the 

tissues, they evolve (or differentiate) into macrophages. Although polymorphonu

clear neutrophils devour non-self material more efficiently - and respond to the 

site of infection more rapidly - than monocytes and macrophages, the latter are 

significantly larger (and therefore have a greater capacity for the consumption of 

other cells) and are also much longer-lived. Furthermore, the macrophages are 

capable of antigen presentation, a critical component of the acquired response 

which will be discussed below. 

Immature dendritic cells dwell in the blood and in the body's tissues, particu

larly those which come into contact with the environment, such as the skin, lungs 

and intestines. Dendritic cells are characterised by the small strands of cytoplasm 

(called dendrites) they are capable of forming. Like the m acrophages, dendritic 

cells exhibit antigen presentation, and therefore play a key role in the immune 

system beyond phagocytosis. 

Regardless of the type of phagocyte, however, the process of cell "eating" is 

essentially the same. Having identified a microorganism as being non-self, the 

phagocyte then attaches itself to the foreign material, a process which can be 

enhanced via opsonisation. The consumption of the foreign material then takes 
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place, with the phagocyte extruding pseudopodia to surround its target, eventually 

encasing it in a vesicle known as a phagosome. The phagosome is then transported 

within the phagocyte, where the non-self microorganism is finally digested. (Recent 

research suggests that dendritic cells may instead exhibit a similar faculty called 

pinocytosis -literally, "drinking of cells"- which involves the uptake of soluble 

material.) 

1.1.3 The Innate Response: Other Mechanisms 

Although the complement system and phagocytosis are the predominant elements 

of the innate response, they are not the only mechanisms available to the immune 

system's non-specific defense against the intromission of foreign material. Inflam

mation, for example, activates mast cells and polymorphonuclear leukocytes such 

as basophils. Early signs of infection are. inhibited by chemicals known as inter

ferons (usually in the presence of viruses) and acute-phase proteins (typically in 

response to bacteria). The large granular lymphocytes, such as natural killer (NK) 

cells, hunt for host cells which have been altered (such as by the actions of a virus 

or due to the development of tumours) and induce apoptosis, a form of cell death 

in which the cell shrinks and ultimately fragments, to then be phagocytosed. 
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1.1.4 The Acquired Response: Antigen Presentation 

Although it would be convenient to thirik of the immune system's acquired re

sponse as separate from the innate response, the distinction is really far more 

blurry. Indeed, the functionality of the acquired response is largely dependent 

upon cells typically associated with the innate response, via a mechanism known 

as antigenic presentation. 

Antigens are present not only on viruses and other intruders to a host's system, 

but indeed on all cells of the body; these are known as human (histocompatibility

linked) leukocyte antigens. Evidently, the immune system must be capable of 

recognising that antigens produced by the host are "self" and should not provoke 

an immune response. This is performed via the coding of a group of genes known 

as the major histocompatibility complex (MHC). "Histocompatibility" literally 

means "tissue compatibility", and is indi.cative of the fact that material in a host 

which is not coded in a manner consistent with the host's MHC will be rejected by 

the body. 

The genes which make up the MHC can be divided into three classes. Of these, 

Class I and Class II are of particular importance to the acquired response. Class III 

genes also produce some of the elements necessary for the acquired response to be 

effective and play a role in other aspects of the immune system, such as providing 
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the genetic code for the complement system previously discussed. 

When a macrophage or a dendritic cell phagocytoses an antigen, Class II 

molecules (that is, molecules coded by MHC Class II genes) act on the microorgan

ism, binding proteins and then migrating to the surface of the macrophage or den

dritic cell where the antigenic material is expressed. For this reason, macrophages 

and dendritic cells are known as (professional) antigen-presenting cells. MHC 

Class I molecules, on the other hand, can be expressed on the surface of any 

nucleated cell. Note that the MHC class depends on the type of antigen which 

was phagocytosed: MHC Class II molecules are associated with antigens arising 

directly from foreign microorganisms (exogenous antigens) while MHC Class I 

molecules are associated with antigens produced by host cells which are infected 

by viruses or are cancerous (endogenous antigens). 

Once an antigenic fragment is expressed upon the surface of a macrophage or 

a dendritic cell, it matures and becomes less able to undertake further phagocy

tosis, but more efficient at antigen expression. The cell is also induced through 

chemotaxis to travel to the location of more advanced cells which can identify the 

antigen; these typically reside in the lymph nodes. Once there, the macrophage or 

dendritic cell will present its MHC Class II molecules to the receptor on the surface 

of a CD4+ T cell. Similarly, ens+ T cells are receptive to the presentation of MHC 
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Class I molecules. 

1.1.5 The Acquired Response: T Cells 

The most crucial type of cell in this work is the CD4+ T cell. It is not only an 

essential component of the body's immune system but, as we shall see, it is also 

the specific target of the human immunodeficiency virus and hence will become 

the fundamental component of our mathematical models of HIV. 

One of the major classes of white blood cells is the lymphocyte. Although we 

have already noted two members of this class- the NK and K cells, both large 

granular lymphocytes - these are essentially minor members of the lymphocyte 

family. Lymphocytes originate as stem cells in the bone marrow. Some of these 

lymphoid progenitor cells continue to develop in the bone marrow, while others 

migrate to different parts of the lymphatic system, most notably the thymus. Those 

cells which mature in the thymus become T lymphocytes, more commonly simply 

referred to as T cells. Once developed, they depart the thymus and proliferate 

throughout the host. 

The most significant characteristic of T cells is that they each possess receptors 

on their surface. As with other types of leukocytes, these receptors enable the 

T cell to bind to antigens. However, unlike the white blood cells involved in the 
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innate response, T cell antigen receptors are specific to a particular type of antigen; 

antigens of a type other than that for which the given T cell is coded cannot undergo 

binding to the receptor. 

In addition to being subdivided according to the type of antigen which will 

cause the excitation of the T cell, they can also be classified according to the type 

of response they provide. This is determined by the antigen receptors, which will 

be associated with different glycoprotein molecules depending on the function the 

given T cell is to play in the immune system. These molecules are classified accord

ing to the cluster determinant system, and are therefore identified as molecules 

CD1, CD2, and so forth. In particular, the two molecules which are used to classify 

the major types of T cell are molecules CD4 and CD8; T cells which exhibit these 

are known as CD4+ T cells and CDS+ T cells. (Here the+ simply denotes that 

these T cells express the indicated molecule; consequently, they are also known as 

CD4+s- T cells and CD4- s+ T cells, respectively.) 

The CD4+ T cells are also known as helper T cells, and are activated by the 

presentation of antigen associated with MHC Class II molecules. Once excited, 

helper T cells proliferate quickly and begin to produce chemicals known as cy

tokines, most notably interleukin 2 (IL-2), whose principal effect is to stimulate 

the production of additional T cells and other members of the immune system. 
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Further cytokines enhance phagocytosis, and perform other functions to aid in the 

elimination of non-self matter. Although they are chiefly regarded as facilitating 

the ability of other cells to attack invading microorganisms, it appears that some 

CD4+ T cells are also cytotoxic themselves, helping to regulate and suppress the 

immune system in the event that discernment between self and non-self molecules 

fails. 

However, cytotoxicity is not the major role of helper T cells; this is the purview 

of the CDS+ T cells, known as killer T cells for this very reason. The CDS+ T cells 

bind to antigens associated with MHC Class I molecules, and act to lyse the cells 

expressing such antigens. 

An alternative way to classify T cells is according to their longevity. Nascent 

T cells which have yet to encounter antigen are known as naive T cells. T cells 

which are produced in response to the presence of antigenic material in the host are 

called effector T cells. These are typically short-lived and highly excited, produced 

specifically for the purpose of effecting an immune response. 

Finally, T cells which have been exposed to an antigen but subsequently re

turned to dormancy are known as memory T cells. Memory cells can enable the 

immune system to respond more quickly and effectively should the same antigen 

be recognised in the host again in the future; for instance, memory T cells will pro-
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liferate far more rapidly in response to antigenic stimulation than do naive T cells. 

Both CD4+ and CDS+ T cells can develop into memory cells. 

1.1.6 The Acquired Response: B Cells 

Lymphocytes which remain in the bone marrow during their maturation are known 

as B lymphocytes, or merely B cells. Like T cells, they also possess antigen receptors 

on their surface; however, the behaviour of B cells following antigenic presentation 

can differ greatly from T cells. 

First, binding to antigen is not sufficient to completely stimulate a B cell. The 

B cells require cytokines secreted by helper T cells in order to become fully excited; 

however, B cells can act as antigen-presenting cells themselves in order to activate 

CD4+ T cells. Those B cells which have encountered no antigens are known as 

virgin B cells. 

Once fully excited, a B cell may differentiate into a memory cell, much in the 

same manner as T cells. However, the key immune response for B cells is to 

evolve into plasma cells. These are capable of producing different varieties of the 

glycoproteins known as antibodies or immunoglobulin, as previously discussed; 

these antibodies will be keyed to cells displaying the same type of antigen which 

originally stimulated the B cell. 
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In addition to provoking the activity· of the complement system, as already 

noted, antibodies play a number of roles in the immune system. They can impede 

the ability of non-self microorganisms to bind to host cells and thereby infect 

or damage them; they can cause opsonisation by coating non-self material and 

facilitating phagocytosis; they can bind to antigens present on the surface of infected 

cells and lyse these cells; each antibody can adhere to two different microorganisms 

simultaneously, so that by working together, they can create a large clump of foreign 

matter which can more easily be cleared from the host (a phenomenon known as 

agglutination); and exhibit still other functions. 

1.2 The Human Immunodeficiency Virus 

A
LTHOUGH THE PRECEDING DISCUSSION of the immune system applies generally 

to the reaction of the body to the presence of any non-self microorganisms, 

the chief concern of this work is the response of the immune system to pathogens, 

and to one pathogen in particular. 

In the early 1980s, American scientists became alarmed by a marked rise in the 

occurrence of illnesses related to the suppression of the body's immune system. It 

soon became clear that some new malady was inhibiting the function of the immune 
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system, resulting in a disease which came to be known as the Acquired Immune 

Deficiency Syndrome. The pathogen which resulted in AIDS was initially called 

the Human T-Lymphotropic Virus-III or the Lymphadenopathy-Associated Virus, 

but these terms have been supplanted by the name Human Immunodeficiency 

Virus [4], [5], [6]. 

It is believed that the predominant strain of the virus, denoted HIV-1, likely 

arose first in the African nation of Cameroon, migrating from wild chimpanzees 

to humans; it has since spread globally. (A second strain, HIV-2, is less virulent 

than HIV-1 and remains principally confined to western Africa.) HIV is typically 

contracted either via the transmission of sexual secretions (genitally, orally or rec

tally) or the injection of infected blood (such as from transfusions or unsterilised 

syringes). HIV can also be passed from mother to child in utero, during childbirth 

or through breastfeeding. 

HIV is so devastating to the immune system because its targets are the very 

CD4 + helper T cells whose function is to coordinate the body's resistance to any 

invasion. A protein on the surface of the virion binds with the CD4+ receptor on the 

surface of the lymphocyte, as well as to secondary receptors, which are typically 

associated with chemokines (chemotactic cytokines) secreted by the T cell. The 

viral and T cell membranes then fuse, permitting the contents of the virion to enter 
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the lymphocyte. (HIV can also affect macrophages and dendritic cells in much the 

same manner.) 

The next step in the pathogenesis of HIV is unusual compared to that of most 

other viruses. Typically, a virion carries a copy of its DNA which it will insert into 

a victim cell. Hrv, however, is a retrovirus (specifically, a lentivirus, characterised 

by its lengthy incubation within an infected cell before causing disease in a host). 

This means that each virion carries a copy of its RNA- the genetic precursor 

to DNA- which is injected into the target cell's cytoplasm. (In fact, retroviruses 

carry not one but two identical copies of their RNA genome, a phenomenon known 

as diploidy.) 

The virion then employs a protein enzyme known as reverse transcriptase to 

transcribe the RNA into DNA. This process is not always perfect: the reverse 

transcriptase does not simply act on one of the RNA copies but moves back and 

forth between them. The resulting DNA is therefore essentially the synthesis 

which would arise naturally from the RNA molecules, but the reverse transcriptase 

sometimes errs in its replication of the RNA sequence. This is the most common 

cause of mutation of HIV, and the large nu!'Ilber of mutant virions produced during 

the course of HIV infection is an important component of its pathogenesis. 

Once the viral RNA has been converted into DNA, it is suitable for insertion 



1.2 THE HuMAN IMMUNODEFICIENCY VIRUS 18 

into the DNA of the lymphocyte. This is accomplished using a second enzyme 

known as integrase; the resulting integrated DNA is called an integrated provirus. 

The provirus lies dormant within the infected T cell until it is activated. 

The cruel irony of HIV then becomes apparent, as the very act of inducing the 

helper T cell to replicate itself in order to aid in fighting the HIV infection incites 

the transcription of the viral DNA into the building blocks of new virions. Many 

of the elements needed for these virions are created in the form of an immature 

polypeptide chain; this is cleaved into individual proteins by a third enzyme called 

protease. 

Once the new virions are fully assembled, they bud from the surface of the 

infected T cell. In some cases, this budding may transpire slowly such that the 

host cell continues to survive the infection; in other instances, the new HIV virions 

burst from the T cell, killing it. 

HIV therefore has a calamitous effect on the helper T cell population: not only 

does bursting cause the death ofT cells; but the infected CD4+ T cells become 

targets for the killer CDS+ T cells as well. Furthermore, infected T cells undergo 

increased rates of apoptosis. 

The pathogenesis of HIV typically falls into three stages. The initial phase 

- which usually lasts for a period of weeks- involves an acute drop in CD4+ 
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T cell levels (which are normally around 1000 cells per flL of blood). Despite the 

deleterious effects on the overall immune response caused by the loss of so many 

helper T cells, the immune system is not crippled: cytotoxic T cells, antibodies 

produced by B cells, uninfected helper T cells, and other elements of the immune 

system continue to respond to the assault the pathogen. This stage - known as 

the primary (or acute) phase- often manifests with influenza-like symptoms in 

the host. 

By the end of the primary phase of infection, the CD4+ T cell count typically 

rebounds and roughly stabilises at a level known as the set point. The host usually 

displays no symptoms during this period, which is therefore known as the chronic 

(or latent, or asymptomatic) phase. Depending on the individual, it may last 

anywhere from a few short months to many years. It appears that, during this 

time, the immune system is essentially fighting a losing battle against the pathogen, 

slowing but never arresting the rate of infection. 

Over the course of the chronic phase, the host's CD4+ T cell count gradually 

decays until, finally, it becomes critically low. The onset of the final stage of 

infection- AIDS itself- is defined to occur when the CD4+ T cell count drops 

below 200 cells per f1L. At this stage, the loss of such a huge proportion of the helper 

T cell population has impaired the functioning of the acquired immune response to 
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such an extent that it is unable to combat opportunistic infections and tumours such 

as tuberculosis, pneumonia, shingles caused by the Varicella zoster virus, Kaposi's 

sarcoma, and other maladies which a healthy immune system would normally be 

able to eliminate. Death then, inevitably, results. 



Chapter 2 

Mathematical Background 

H
AVING EXPLORED THE IMMUNOLOGICAL background of HJV, We now wish to 

encapsulate many of the phenomena associated with its pathogenesis 

within a mathematical model. It is therefore essential that we first provide the 

mathematical underpinnings of such a task. 

We shall begin by introducing key terminology and theory related to systems 

of ordinary differential equations and dynamical systems. We shall then go on 

to introduce the more sophisticated idea of differential equations with impulsive 

moments, which will ultimately enable us to consider discontinuous phenomena 

within the context of our model. 
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2.1 Systems of Differential Equations 

T
o AVOID DEVOLVING THIS TEXT TO an overtly elementary stage, we shall assume 

that the reader is familiar with the basic terminology associated with scalar 

ordinary differential equations (ODEs). For additional review, we refer the reader 

to suitable reference works in differential equations and dynamical systems, such 

as [7-12]. 

Consider a system consisting of ordinary differential equations involving n 

unknown functions x1(t), ... , Xn(t). Taking I to be an open interval, we let X; : 

I ~ IR for all i. In this work we will be interested only in models which make no 

explicit reference to time, because we will avoid making any a priori chronological 

assumptions. As such, we can now consider an autonomous system of n ordinary 

differential equations in these n unknown functions, of the form 

Here, and throughout this work, we use the notation ~~ = x(t) to represent the 

time-derivative of x with respect tot. 
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To simplify our notation further still, consider the vector x = (x1, x2, ... , Xn)T

so that x = (.X1, Xz, ... , .Xnl - and the vector-valued function f = (/1, fz, ... , fn)T. 

Then we can write the system of ODEs more compactly as 

x = f(x(t)) . (2.1) 

We are not interested in systems of differential equations in isolation, but rather 

in the context of initial value problems (IVPs) in which such a system is paired with 

an appropriate initial condition, of the form x(t0 ) = x0 where x0 = (x~, x~, ... , x~)r. 

(Note that there is typically a discrepancy in the notation between scalar values 

such as t and vector values such as x. In the context of vectors, subscripts differ

entiate between the components of a given vector, while superscripts differentiate 

between individual vectors. In the context of scalars, we use subscripts to dis

tinguish between scalars.) Note that there is no necessity that to = 0, although it 

is often convenient to make this assumption. Indeed, because we are interested 

only in autonomous differential equations, we can always translate the indepen

dent variable - or, more formally, define a new function X(t) = x(t + to) - which 

satisfies both the same ODE and the same initial condition at t = 0 rather than at 

t =to. 
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An initial value problem thus takes the form 

x = f(x(t)), x(t0) = x0 (2.2) 

while a solution to this IVP is given by cp(t, x0
), for which ¢(0, x0) = x0 . 

Let the set of all continuous vector-valued functions f : U ~ IR, where U is 

a subset of lR", be denoted by CO(U, IR). Similarly, let the set of all differentiable 

functions f : U ~ lR with continuous first derivatives be denoted by C1(U, IR). We 

will suppress the notation of the domain and range when there is no ambiguity, 

simply referring to CO and C1 functions as appropriate. 

We now have the following two theorems. 

Theorem 1: Existence of Solutions 

Let f E C0(IR11
, IR). Then for any x0 E lR" there exists an interval Ixo = (ax0 , ~x0 ), 

not necessarily finite, containing t0 = 0, and there exists a solution cp(t, x0) of 

Equation (2.2) defined for all t E Ixo such that ¢(0, x0) = x0 . In addition, if axo 

is finite then 

Similarly, if ~xo is finite then 
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The largest possible interval Ixo described in Theorem 1 is called the maximal 

interval of existence of the solution cj>(t, x~) . 

Theorem 2: Uniqueness of Solutions 

Iff E C1(JR",JR) then, for any x0 E lR11
, cj>(t,x0) is unique on Ixo and cj>(t,x0) is 

itself a C1 function. 

Theorems 1 and 2 can easily be generalised to functions whose domain is not 

the whole of lR11
• In particular, iff E C1(U, JR) for some open, bounded subset U of 

JR", then Theorem 2 remains unchanged and Theorem 1 must be amended only to 

reflect the fact that, if axo or ~xo is finite, t~en the limit points as t ~ a;0 or t ~ ~;o 

must lie on the boundary of U. 

It is generally difficult or impossible to find an exact solution of a given ODE. 

Consequently, the solution curves or trajectories in (n + 1)-dimensional space, 

passing through the initial condition x0, can typically be drawn only by numerical 

means. Although we will certainly make use of this approach, more informa

tion can often be drawn by investigating the differential equation through other 

methods. 

Definition 1 

A point x E lR is called an equilibrium point of Equation (2.1) if f (x) = 0. 
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In the literature, equilibrium points are also known as fixed points or steady 

state points. Graphically, an equilibrium point is such that if a trajectory starts at 

x = x then it will remain at x = x for all t. 

Equilibria are of enormous utility, because they can be used to characterise how 

trajectories behave if their initial condition is sufficiently close to the equilibrium 

point: this is the local stability of the ODE. 

Definition 2 

An equilibrium point of Equation (2.1) is said to be stable if, for any£> 0, 

there exists a D(E) > 0 such that for every x0 for which llx0 -ill < D, the 

solution cp(t, x0
) of Equation (2.1) satisfies llcp(t, x0

)- ill <£for all t ~ 0. 

Here, II ·II denotes a norm. Observe that we have made explicit the dependence 

of D on the choice of £ in this definition. Graphically, a stable equilibrium point is 

such that if a trajectory starts near x = x, then it will remain near x = x as t ~ oo. 

One form of stability is particularly important. 
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Definition 3 

An equilibrium point :X is said to be asymptotically stable if it is both stable 

and there exists an r > 0 such that, for all x0 satisfying llx0 - :XII < r, 

ll<f>(t, X0 
- X)ll ~ 0 

as t ~ oo. 

If an equilibrium point is asymptotically stable, then any trajectory that starts 

near x =:X will become infinitesimally clo~e to x =:X as t ~ oo. 

Definition 4 

An equilibrium point :X which is not stable is said to be unstable. That is, 

there exists an 17 > 0 such that, for any 6 > 0, there exists an x0 for which 

The critical tool to be used in the determination of the equilibrium points of 

Equation (2.1) is the Jacobian matrix of£, given by 

a!J (x) 
ax1 

a!J (x) 
dX2 

a !I (x) ax, 

ah (x) ah (x) 
J(x) = 

ax1 ax2 

aJ,, (x) 
ax! 

aJ,, (x) 
ax2 

aJ" (x) ax, 
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Definition 5 

If xis an equilibrium point of Equation (2.1) then the system of differential 

equations 

x = J(X)x 

is called the linearisation of f at x (or the linear variational equation). 

It is, in fact, this linearised version of Equation (2.1) which can be used to 

determine the local stability of an equilibrium point in many cases. 

Theorem 3 

Suppose that f is a C1 function and xis an equilibrium point of Equation (2.1). 

Then xis asymptotically stable if all the eigenvalues of the Jacobian matrix 

J(X) have negative real parts, and xis unstable if at least one of the eigenval-

ues of J(X) has a positive real part. 

2.2 Transcritical Bifurcations 

A s AN ALTERNATIVE, WE CAN VIEW Equation (2.1) as being of the fonn 

x = £(f1, x(t)), (2.3) 

where f1 E Rm represents the parameters of the system. From experience, we 

know that, as any parameter changes, the overall behaviour of the system may 



2.2 TRANSCRITICAL BIFURCATIONS 29 

also change: equilibria may appear or be annihilated, and their stability may be 

altered. Points at which these fundamental modifications to the characteristics of 

the solutions occur are known as local bifurcation points. 

To more precisely define the concept of a bifurcation point, we require some 

topological considerations. 

Definition 6 

If cj>(t, x0) is a solution of Equation (2.2) defined for all t E lxo such that 

cj>(O, x0) = x0, then the orbit y (x0) of x0 is the subset of lR" defined by 

y(xo) = U cj>(t, xo). 
tEI,o 

For the next two definition, let Yk(V) be the space of Ck vector fields (k ;::: 1) 

defined on a compact subset V of lR" and pointing inwards at the boundary points 

of :D. 

Definition 7 

Two differential equations x(t) = f(x) and x = g(x) defined on V are said to 

be topologically equivalent if there exists a homeomorphism h : V ~ V 

such that h maps the orbits of the vector field f onto the orbits of g and 

preserves the sense of direction of time. 
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Note that by "homeomorphism" we mean that his continuous and possesses a 

continuous inverse. 

Definition 8 

A vector field f E Yk(!D), k ~ 1, is structurally stable if there exists a neigh

bourhood Nf of f in Yk(!D) such that any g E Nf is topologically equivalent 

to f. 

Finally, then, we have the following [7]. 

Definition 9 

A parameter value of Equation (2.3) for which f is not structurally stable is 

called a bifurcation value, and the system is said to be at a (local) bifurcation 

point. 

In general, a bifurcation point occurs when an eigenvalue of the Jacobian matrix 

of f at a fixed point x possesses a zero real part: the transitional state between 

stability and instability. 

There are many different kinds of bifurcations, depending on the exact nature 

of the change to the qualitative behaviour of the system. One means of classifying 

them is according to their codimension, which - at the risk of oversimplifying 

the topological significance of the term - describes the number of conditions on 
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the parameters which give rise to the bifurcation. Hence a bifurcation will be of 

codimension 1 if it occurs when (some or all of) them parameters meet just a single 

condition. 

In this work, we are interested only in the transcritical bifurcation, which is a 

codimension-1 bifurcation. No equilibria are created or destroyed at a transcritical 

bifurcation, but an exchange of stability does occur, with an asymptotically stable 

fixed point becoming unstable, and an unstable fixed point becoming asymptoti

cally stable. Geometrically, when f1 = "'ji, the two equilibria pass through each other 

at a point x = x, exchanging stability as they do so. 

More rigorously, for f1 E lR we may define a transcritical bifurcation in the 

following manner. [8,10] 
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Theorem4 

Let X: = £(11, x(t)) be a system of differential equations in lR" depending on the 

parameter 11· Suppose that J(x) at (/1, x) = Cfi, X) has a simple eigenvalue i\ = 0 

such that the corresponding eigenvector of J(x) is v and the corresponding 

eigenvector of [J(x)F is w. Then a transcritical bifurcation occurs at 11 = fi 

and x = x if each of the following conditions hold: 

y df 
(a) w d!l (fi, X) = 0, 

In the theorem, ft~ denotes the Jacobian matrix of %!, while f is the Hessian 

matrix, 

f(x) = 

Finally, for vectors y and z, 

()2f 

axna~l (x) 

;)2/2 

axnax2 (x) 

a2J,, (x) 
a~ 

2 'f ()2f(X) 
J (fi, X)(y, z) = i....J d ·d . y;Zj · 

.. 1 x, x, 
1,]= 
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As we shall demonstrate in Chapter 4, the mathematical model developed in 

this work does not possess any other form of bifurcation. In particular, it exhibits 

no codimension-2 bifurcations, which are of significantly greater mathematical 

complexity than the relatively straightforward class of codimension-1 bifurcations. 

2.3 An Introduction to Differential Equations with Im-

pulses 

H
AVING DEVELOPED AND EXPLORED AN ordinary differential equation model for 

HIV, we shall then introduce the.notion of moments of impulse into our 

model in order to reflect the discontinuous nature of drug therapy in a patient 

suffering from HIV. In reality, drugs do not follow a constant or even continuous 

level of dosage, but pursue a trajectory that can be assumed to shift instantaneously 

when a new round of treatment occurs. In the next two sections, we will offer an 

overview of the basic terminology and theory behind differential equations with 

impulses [13-15]. 

We consider a system of differential equations 

x = J(t, x(t)), (2.4) 
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where t E lR (and, in most cases, represents time) and x(t) is an n-dimensional 

column vector. We will let 0 be the phase space such that x(t) E 0 and f : lR x 0 ~ 

lR". 

We introduce the sets M1 and N 1 E lR X 0 and an operator A1 : M1 ~ N1, for each 

t E lR, as follows. If P1 is a point in the (n +I)-dimensional extended phase space 

lRxO, we assume that it begins at an initial point (t0, x0) and originally moves along 

the curve (t, x(t)) defined by a solution x(t) of Equation (2.4) with initial condition 

x(t0) = x0• This continues until the moment T1 > to when P1 intersects the set Mt. 

At t = -r1, the operator A'"(
1 

discontinuously shifts P1 from the point P'"(1 = (TJ, x(TJ)) 

to the point p;l E N'"CJ • If we let xr = A'"CJ X(TJ)) then p;l = (T], xr). Thereafter, Pt 

moves along the curve (t, x(t)) defined by a solution x(t)) of Equation (2.4) with 

initial condition x(TJ) = xr until it again intersects with the set Mt. This process 

continues analogously for all such encounters. 

Equation (2.4), together with the descriptions of the sets M1 and N1 and the 

operator A1, define a system of differential equations with impulse effect or, more 

conveniently, a system of impulsive differential equations (IDEs). The times Tk 

are called the moments (or instants) of the impulse effect. Observe that the solution 
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x(t) of an IDE is assumed to be left-continuous, that is, 

For simplicity, we will often write 

Several classes of impulsive differential equations arise from this definition, 

depending on the way in which the moments of the impulse effect occur. For 

instance, the IDE could be autonomous (in that the occurrence of the impulses is 

not based upon the passage of time), although this type of IDE is of no value to the 

current work. 

We shall assume that the set M1 is defined by the solutions of some equation 

cp(t, x(t)) = 0. Then the IDE can be written in the form 

x(t) = f(t, x(t)), if cp(t, x(t)) =F 0, 
(2.5) 

!1x = I(t, x(t)), ifcp(t,x(t)) = 0, 

where I : JR x 0 ~ 0. In this case, 

M1 = {(t, x(t)) E JR X 0 I cp(t, x(t)) = 0), 

so that t = Tk is a moment of the impulse effect if cp(Tk,x(Tk)) = 0. Furthermore, 

N 1 = JR x 0 , while the operator At is defined by the mapping 

(t, x(t)) H (t, x(t) + I(t, x(t))). 
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The first class of IDE under consideration shall be those for which the moments 

of impulse are fixed. In this case, the set J.41 = {Tk) and is monotonically increasing. 

The resulting system is 

x(t) = f(t, x(t)), 
(2.6) 

!1x = h(x(t)), if t = Tk· 

In this simplest case, the solution x(t) of the IDE satisfies the ordinary differential 

equation fortE (Tb Tk+I] as well as the limit 

where t/Jk : 0 ~ 0. Note that we can therefore rewrite the system as 

x(t) = f(t, x(t)), 
(2.7) 

The other major class of IDE in which we may be interested is that for which 

the moments of the impulse effects are not fixed -in other words, they will occur 

when the system has attained a given state. In this case, the system can be written 

in a form similar to Equation (2.6): 

x(t) = f(t, x(t)), if t =f. Tk(x(t)), (2.8a) 

11x = h(x(t)), if t = Tk(x(t)). (2.8b) 
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H ere, Tk : 0 ~ JR. As before, however, we assume that {Tk(x(t))} is a monotonically 

increasing sequence. 

Note that, in general, the solutions to impulsive differential equations are piece-

wise continuous. Only in the cases for which the trajectory P1 either fails to en-

counter the set M 1, or does so at fixed points of the operator A1, can the solutions be 

continuous. In the case of Equation (2.6), all solutions will possess discontinuities 

at the same points in time (namely the moments of the impulse effect, T k), whereas 

this will not be true, in general, for solutions to Equation (2.8). 

2.4 Existence and Unique~ess of Solutions to Differ-

ential Equations with Impulses 

I
N THIS WORK, WE SHALL CONCENTRATE on IDEs which assume the form of Equa

tion (2.6). In general, however, we are interested in developing theory asso-

ciated with Equation (2.8), since Equation (2.6) is effectively a special case of this 

equation. 

First, we shall formally define what we mean by the solution of a system of irn-

pulsive d ifferential equ ations as given by Equation (2.8). We shall place additional 

restrictions on Tk in addition to the assumption that {Tk(x(t))} is monotonically in-
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creasing for all x(t) . Namely, we shall assume that T k : 0 ----+ [0, oo), and that Tk is 

continuous for all k. 

Let I be an arbitrary interval with endpoints a and ~ (where a < ~). For 

convenience, we shall denoteD = IRxO. Then we have the following definition [13]. 

Definition 10 

The function cp I ----+ lR11 is said to be a solution of the system given by 

Equation (2.8) if 

(a) (t, cf>(t)) E D for t E I, 

(b) ¢(t) is differentiable and cj>(t) = f(t, ¢(t)) for all t E I, t -:f. Tk(¢(t)), 

(c) ¢(t) is left-continuous in I and 

lim = ¢(t) + h(¢(t)), 
I-> -r: k( cfl(t))+ 
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D efinition 11 

If I= (t0, ~) and ¢(t) is a solution of Equation (2.8), defined in I, such that 

lim ¢(t) = xo 
t-+t~ 

then ¢(t) is said to be a solution of the initial value problem for Equation (2.8) 

with initial condition (t0, x0). 

As noted above, if a solution to an IDE exists then it will be piecewise continuous 

in general. We denote each "piece" of the solution by Dkt that is, 

Dk = !(t,x(t)) E DITk-l (x(t)) < t ~ Tk(x(t))}. 

It will also be useful to consider each of these pieces with the point of discontinuity 

deleted; we call such a set D~, defined analogously by 

D~ = !(t, x(t)) ED I Tk-l (x(t)) < t < Tk(x(t))}. 

We can establish the existence of a solution to Equation (2.8) via the following 

theorem [13]. Here, ak denotes the hypersurfaces formed by t = Tk(x(t)). 
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Theorem 5 

Assume that f : D ~ IR.n is continuous in D k and, for any k and any 

(t0, x0) E D n c}k, there exists some ~ > t0 and a solution cj>(t) of the initial 

value problem for Equation (2.8a) such that (t, cp(t)) E Dk+l for t E (t0, ~). 

Then there exists a solution to the initial value problem for Equation (2.8) 

for any (t0, x0) ED. 
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The uniqueness of a solution to Equation (2.8) is given by the following theo-

rem [13]. 

Theorem 6 

Under the assumptions of the previous theorem, together with the require-

ment that f be locally Lipschitz continuous with respect to x(t), then if cp(t) 

and !f;(t) are solutions to Equation (2.8), cp(t) = ljJ(t) for all tin the intersection 

of their respective domains. 



Chapter 3 

Survey of Models of HIV 

Pathogenesis 

3.1 Introduction 

T
HE BODY OF MATHEMATICAL LITERATURE surrounding the study of HIV infection 

has grown in leaps and bounds over the past two decades. Spurred in part 

by the enormous public awareness of HIV, and in part by the unique biomedical 

questions raised by its pathogenesis, mathematicians have developed a remarkable 

array of models in an attempt to capture the behaviour of infection by HIV and its 

response to various forms of treatment. 
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In this chapter, we examine some of the fundamental models of HIV infection, 

concentrating initially on those models which employ a traditional ordinary dif-

ferential equation approach. We shall begin with ODE models which seek only to 

model HIV proliferation and the inherent immune response. Next we shall con-

sider models which incorporate drug therapy to combat the HIV infection. And 

finally, we shall examine models in which the virus responds to the presence of 

drugs by developing resistant strains. Lastly, we shall deviate from our strict obser-

vation of ODE models, expanding our interest to models which include impulsive 

differential equations as well. 

There is no standardised notation for mathematical models of HIV. We shall 

therefore seek to clarify the relationship between the various models discussed by 

applying a uniform notation throughout this chapter, often eschewing the notation 

which may have been used in the original references. 

3.2 The One-Dimensional Model 

L
ET V(t) BE THE CONCENTRATION OF HJV virions in the host (such that it is ex

pressed in units of particles per volume). We assume that new virus is 

produced at a rate P, while virions are cleared by the immune system at a rate 
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c. Here P is in units of particles per volume per time, while c is simply in units 

of per-time. The clearance rate c is a broadly-defined constant incorporating the 

action of cytotoxic T cells, macrophages, antibodies, and so forth, which assumes 

that the rate at which the immune system extinguishes the virus is proportional to 

the amount of virus present. 

The simplest possible model for HIV infection [5] is thus as follows: 

V(t) = P - cV(t). 

This model can straightforwardly be solved to obtain the solution 

for some constant C1 . In theory, then, if some drug treatment were completely 

effective and caused the production of new virus to cease (rendering P = 0), the 

rate of change of the virus concentration in the host would obey the elementary 

differential equation 

V(t) = -cV(t), 

with an exponential solution 

where the constant V0 represents the virus population prior to therapy. 
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This suggests a way of estimating the clearance rate c experimentally. Further

more, if the host had entered the chronic phase of the infection before the treatment 

took place (and this will be a common assumption in investigating any model of 

HIV), we expect that the virus concentration is in a quasi-steady state such that 

V(t) = 0 and therefore P = cV0 . This provides a way to estimate the HIV production 

rate. 

However, this approach - while elementary and therefore a useful building 

block -is inexact in several respects. First, as we shall discuss in more detail later, 

the notion of therapy which perfectly inhibits virus production, while attractive, 

is not realistic; consequently, the value of c arrived at through this approach will 

be a lower bound at best. Additionally, experimental studies indicate that the 

exponential progression suggested by this model is overly simplistic, and lacks 

the finer detail necessary to genuinely encapsulate the progression of the disease. 

Finally, although this model provides some idea of the evolution of the virions, in 

immunological terms we are more interested in the dynamics of the CD4+ T cell 

population. Consequently, a simple one-dimensional model cannot suffice for our 

needs. 
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3.3 The Basic Three-Dimensional Model 

I
N ADDITION TO THE VIRUS CONCENTRATION V(t), we will now incorporate the con

centration of uninfected helper T cells T(t) and the concentration of infected 

helper T cells U(t) into the model; analogously to V(t), these terms are in units of 

cells per volume. 

To be precise, T(t) and U(t) should refer exclusively to concentrations of HIV-

specific CD4+ T cells -that is, to those T cells which are stimulated by the presence 

of HIV- rather than to the entire population of helper T cells. However, presum-

ably due to the difficulty in experimentally measuring levels of HIV-specific CD4+ 

T cells as compared to the overall CD4 + T cell count, many HIV models suppress 

this distinction. At any rate, the form of the models is unaffected. 

To begin, we assume that in a healthy body, new CD4+ T cells are produced at a 

constant rates (in units of cells per volume per time), with a constant per-cell death 

rate of d (in units of per-time). This latter. parameter also implies that the average 

lifespan of a helper T cell is~· Hence, in an uninfected individual, the CD4+ T cell 

population would be governed by the differential equation 

T(t) = s - dT(t). 

Next we assume that the body is infected with HIV virions, denoted by V(t) 
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as before. Infection by the virus creates a new population of helper T cells, U(t), 

denoting the concentration of infected T cells. We assume that the rate at which 

uninfected T cells become infected is proportional to size of both the T cell and virus 

populations (thus representing the infection via a mass-action term, which both 

depletes the uninfected T cell population and augments the infected T cell popu

lation). We denote the constant of proportionality by k; this parameter therefore 

represents the rate of infection, and is in units of per (virus) particle per time. 

As with their uninfected brethren, we assume that the natural death rate of an 

infected T cell is a constant, but we allow for the likelihood that the death rates of 

the uninfected and infected T cells may differ. Hence we represent the death rate of 

the infected helper T cells by 6 (also in units of per-time). Again, we may observe 

that this suggests that the average lifespan of an infected T cell is ! . 

Finally, we must incorporate the production of new virus into the model. Pre

viously, we had 

V(t) = P- cV(t). 

Since the source of new virions is the infected T cells U(t), however, it is reasonable 

to infer that P is proportional to the infected T cell population. Thus we assume 

that, on average, N virions will be produced from an infected T cell (such that Nisin 

units of particles per cell) over the course of its lifespan. Since, as previously noted, 
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the average lifespan is z, we have that the ~verage number of virions produced per 

infected T cell per unit of time is 

N 
1 =N6. 
6 

Under this set of assumptions, we arrive at the system [4,5, 16] 

T(t) = s- dT(t) - kV(t)T(t) 

U(t) = kV(t)T(t)- 6U(t) 

V(t) = N6U(t)- cV(t) 

(3.1a) 

(3.1b) 

(3.1c) 

where, as before, cis the clearance rate of the virus from the system (in units of 

per-time). Note that the fine detail of the immune response, such as the activity 

of CD8+ T cells, B cells, and other leukocytes, is not addressed in this basic model. 

Rather, all of these mechanisms are aggregated into the single clearance parameter 

c. 

Some straightforward modifications to this basic model (before the incorpora-

tion of more significant phenomena, such as drug treatment, which will be ad-

dressed in subsequent sections) can also be found in the literature. For instance, 

Equation (3.1) neglects the proliferation ofT cells caused by existing T cells (al-

though the literature generally suggests that such a term has a negligible effect 
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on model dynamics). Perelson and Nelson [5] deal with this by replacing Equa-

tion (3.1a) with 

T(t) = s + pT(t) ( 1 - J~:~) -dT(t) - kV(t)T(t). (3.2) 

The idea behind the extra logistic term is that T cells will proliferate at a maximal 

rate p (in units of per-time) until such time as a density T max (measured in cells per 

volume) is achieved. Note that that population must therefore decline should it 

ever reach T max · Consequently, the rate ofT cell production s must be less than the 

rate of death of this largest possible concentration, that is, we must require 

dT max > S . 

Strictly speaking, this maximal number of CD4+ T cells should be independent 

of the existence of infected T cells- in other words, Tmax should be the maximum 

total T cell population, including both infectives and non-infectives. This yields 

T(t) = s + pT(t) (1 - T(t) + U(t))- dT(t)- kV(t)T(t) 
Tmax 

(3.3) 

but Perelson and Nelson [5] suggest that because in reality U(t) « T(t), this is an 

unnecessary complication. 

Kirschner [17] also incorporates the proliferation ofT cells due to the existing 

T cell population. However, she observes that because the only T cells which 



- ·---------------------------

3.3 THE BASIC THREE-DIMENSIONAL MODEL 49 

ought to be under consideration in the model are HIV-specific T cells, they will 

be stimulated to different rates of proliferation depending upon the amount of 

virus present (while acknowledging that the nascent T cells thereby produced will 

not necessarily be HIV-specific). To account for this, Kirschner not only includes 

a dependence on V(t) in her proliferation term (in contrast to Perelson and Nel-

son) but also formulates it using a saturation approach. She therefore replaces 

Equation (3.la) with 

. T(t)V(t) 
T(t) = s + p C + V(t) - dT(t) - kV(t)T(t). (3.4) 

Here, p again represents the rate of proliferation while C (in units of particles per 

volume) is the half-saturation constant. 

In addition, Kirschner observes that the stimulation of infected CD4+ T cells 

to proliferate will result in their demise through bursting due to the ejection of 

the virions. Thus the concentration of infected T cells will be reduced at a rate 

analogous to the proliferation ofT cells developed above. In Kirschner's model [17], 

then, the rate of change of the infected T cell population becomes 

. ~0~0 
U(t) = kV(t)T(t) - 6U(t) - p C + V(t). (3.5) 

Finally, Kirschner's third modification. to the basic model addresses both natu-

ral virus death and virus production from secondary sources - that is, host cells 
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which are susceptible to HIV infection other than CD4+ T cells, such as infected 

macrophages. Again using a saturation-type term, Kirschner [17] replaces Equa-

tion (3.1c) with 

. U(t)V(t) V(t) 
V(t) = Np C + V(t) - cr V(t)T(t) + g b + V(t) . (3.6) 

Here, g is the rate of free virus production from secondary sources (in units of 

per-time) while b (in units of particles per volume) is the half-saturation constant. 

Note also that Equation (3.6) incorporates a modified version of the first term 

of Equation (3.1c). This reflects the assumption that all virion production from 

infected T cells will come about as a result of the bursting of stimulated T cells, and 

therefore accounts for the rate of bursting developed as part of Equation (3.5). 

Muller and Bonhoeffer [16] incorporate the possibility that not all infected cells 

will survive to virus production. Under their scheme, Equation (3.1b) becomes 

U(t) = fkV(t)T(t) - 6U(t), (3.7) 

where the dimensionless parameter f E [0, 1] represents the likelihood of the in-

fected T cell progressing to such a state. · 

Perelson and Nelson [5] observe that the process of creating an infected T cell 

actually kills the virion responsible. Hence Equation (3.1c)- or, similarly, Equa-
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tion (3.6) - could be modified to become 

V(t) = N6U(t) - cV(t) - kV(t)T(t), (3.8) 

with the mass-action term reflecting the growth in the infected helper T cell pop-

ulation also now accounting for the corresponding decrease in the free virus con-

centration. 

Finally, note that the source terms, found in Equation (3.1a) and its variations, 

is not necessarily constant, although it is often assumed to be such. Kirschner [17] 

does in fact treat it as a saturating function of the viral load V(t), of the form 

5s 
s(t) = 0.5s + 1 + V(t) 

for some constants. This is intended to reflect the fact that HIV can progress to the 

thymus, and therefore will infect members of the T cell reservoir before they can 

migrate to the bloodstream. The new vi~us produced by these infectives would 

then be accounted for by the secondary source term in Equation (3.6). 

3.4 The Two-Dimensional Model 

I
RONICALLY, ALTHOUGH WE BEGAN BY developing a one-dimensional model which 

accounted only for the HIV virus concentration, this is perhaps the least impor-

tant of the three populations in the model. Practically, we are far more interested 
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in the uninfected and infected T cell counts. It would therefore be of benefit to 

eliminate the third equation, and V(t), from the model altogether. 

This approach is of particular benefit when considering more than one strain 

of HIV, as we shall do later in this chapter. Each new strain adds at least two 

equations to Equation (3.1) or any of its variations (one for the corresponding virus 

population, one forT cells infected by the.given strain), making the analysis of the 

model significantly more difficult. Furthermore, even in the presence of two strains, 

a model which does not explicitly include any virus populations will remain a three-

dimensional system, and hence can still straightforwardly be visually represented. 

This is not a brand-new idea, but other references which take this approach [ 4,16] 

do so by inferring that V(t) exists at a quasi-steady state. They then set V(t) = 0 and 

solve for V(t) in terms of U(t). However, since this shows V(t) to be proportional 

to U(t), and U(t) is not zero, this justification appears spurious. Nonetheless, the 

proportional relationship between V(t) and U(t) arrived at by this method is, in and 

of itself, a reasonable assumption to make, given that we are already assuming an 

average number of virions produced by each infected T cell, as well as a constant 

clearance rate of the HIV virus. 

Consequently, let us indeed assume that 
I 

V(t) = bU(t), 
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for some constant b (in units of particles per cell). The basic model given by 

Equation (3.1) is reduced from a system of three differential questions to a system 

of only two: 

T(t) = s - dT(t) - kT(t)U(t) (3.9a) 

il(t) = kT(t)U(t) - 6U(t) (3.9b) 

where k = bk represents the overall virulence of the infection; it is in units of per 

cell per time. 

3.5 Models with Drug Therapy 

W
HEN DISCUSSING DRUG THERAPY OF patients with HJV, two forms of treat

ment are principally considered. The first involves a class of drugs 

called reverse transcriptase (RT) inhibitors, which prevent the virus from transcrib-

ing its RNA into DNA and thereby infecting a target T cell. The second treatment 

is in the form of protease inhibitors, which cause noninfectious virions to arise 

from infected cells. Simply put, then, RT inhibitors prevent the migration from 

population T(t) to population U(t), while protease inhibitors dampen the growth 

of the population V(t) of active virions (by causing the development of a second 

population of noninfectious free virus). 
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Sadly, no drug is perfect, and the mod~l must (in principle) reflect the nonideal 

effectiveness of the therapy. As in [5], to model the influence of RT inhibitors we 

can replace Equation (3.1b) with 

U(t) = (1- T/RT)kV(t)T(t)- ou(t) (3.10) 

where T/RT E [0, 1] represents the effectiveness of the RT inhibition therapy. In the 

ideal case where the drug completely inhibits the reverse transcription (so that 

T/RT = 1), this equation simply becomes 

U(t) = -oU(t), (3.11) 

implying that the infected T cell population will decay exponentially. 

The effects of protease inhibitors are more complicated to model, because the 

treatment leads to a new population, namely noninfectious virions. If we now 

assume that V(t) is the population of strictly infectious virions, whereas VN(t) 

accounts for their noninfectious counterparts, we must replace Equation (3.1c) 

with two equations: 

V(t) = (1 - TJp)NoU(t) - cV(t) 

VN(t) = TJpNOU(t)- cVN(t) 

(3.12) 

where T/P E [0, 1] represents the effectiveness of the protease inhibitor. In the case 
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where the treatment is completely effective (1]P = 1) these equations reduce to 

V(t) = -cV(t) 
(3.13) 

VN(t) = NoU(t)- cVN(t) 

so that the number of effective virions declines exponentially. Note that due to 

the decoupled nature of the differential equation for VN(t), this equation could 

be suppressed unless an understanding of the dynamics of this population is of 

specific interest. (Indeed, even in the absence of drug therapy, 1-ITV produces 

malfunctioning virus due to transcription errors, so there always exists a population 

comparable to VN(t) which is typically neglected.) 

Of course, in practise, most patients receive a drug cocktail combining both 

RT and protease inhibitors, due to the serious problem of fast-evolving drug immu

nity exhibited by 1-llV (which will be considered in the next section). To model this 

so-called combination therapy, we can incorporate both Equations (3.10) and (3.12) 

into the basic model given by Equation (3.1) to obtain 

T(t) = s - dT(t) - kV(t)T(t) 

!l(t) = (1 - 1JRT )kV(t)T(t) - oU(t) 

V(t) = (1 -ryp)NoU(t)- cV(t) 

VN(t) = rypNOU(t)- cVN(t). 

(3.14) 



3.6 MoDELS WITH DRuG REsiSTANCE 56 

If the RT and protease inhibitors are alllOO% effective, this model reduces to 

T(t) = s - dT(t) - kV(t)T(t) 

U(t) = -oU(t) 
(3.15) 

V(t) = -cV(t) 

suggesting the elimination of the virus over time. Again, the equation for V N(t) 

could be neglected altogether. 

Other possible extensions to the basic model found in [5] include those ac-

counting for long-lived (noninfected and infected) cells M(t) and M u(t), for latently 

infected cells L(t), or indeed for both long~lived and latently infected cells. 

3.6 Models with Drug Resistance 

O
NE OF THE MAJOR OBSTACLES TO THE effective treatment of HJV is its ability to 

respond efficiently to the debilitating influence of drugs. The original HIV 

strain, called the wild-type, can undergo mutations which result in the emergence 

of additional drug-resistant strains. Having considered models which incorporate 

drug therapy into the progression of the virus, it is imperative that we now survey 

models which exhibit the evolution of HIV in response to drugs. To avoid the 
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proliferation of the model to five dimensions or more (incorporating wild-type 

infectives and free virus, and mutant infectives and free virus, in addition to the 

uninfected T cells), it is convenient to make use of the two-dimensional basic model 

given by Equation (3.9). 

Muller and Bonhoeffer [16] consider the question of modelling the mutation 

between a wild-type virus population and a drug-resistant virus population. Let 

f1 E [0, 1] be the mutation rate between the two variants (where f1 = 0 would 

indicate no mutation and f1 = 1 would indicate universal mutation), and assume 

that the two strains differ only in their overall infection rate, so that U(t) remains 

the population of cells infected with wild-type virus (with infection rate k) and 

UM(t) is the population of cells infected with mutant virus (with infection rate kM). 

Then Equation (3.9) now becomes 

T(t) = s - dT(t) - kT(t)U(t) - kM T(t)UM(t) 

U(t) = (1- f1)kT(t)U(t) + f.LkMT(t)UM(t)- 6 U(t) 

UM(t) = f1kT(t)U(t) + (1 - f1)kMT(t)UM(t) - 6UM(t). 

(3.16) 

Nowak and May [4] exhibit a similar model, but neglect the possibility of 

back-mutation from the resistant strain to the wild-type virus. However, they 

do not eliminate either virus population from their model, resulting in the five-
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dimensional system 

T(t) = s- dT(t)- kT(t)U(t) _:_ kMT(t)UM(t) 

u(t) = (1 - 11)kT(t)U(t) - ou(t) 

V(t) = NoU(t)- cV(t) 

uM(t) = 11kT(t)U(t) + kMT(t)UM(t)- ouM(t) 

VM(t) = N MoUM(t)- cVM(t). 
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(3.17) 

Here NM is the average number of virions produced by aT cell infected by the 

mutant strain. 

We can easily reduce Nowak and May's system to its corresponding three

dimensional version: 

T(t) = s- dT(t)- kT(t)U(t)- kMT(t)UM(t) 

u(t) = (1 - 11)kT(t)U(t) - oU(t) 

uM(t) = 11k:T(t)U(t) + k:MT(t)UM(t)- oUM(t). 

(3.18a) 

(3.18b) 

(3.18c) 

Nowak and May separately concern themselves not with how a drug-resistant 

mutant arises from the wild type, but rather with the response of both virus strains 

under the effects of drug therapy (effectively, this model assumes the preexistence 

of a resistant strain, but ignores the possibility of further mutation from the wild

type). In this case, Nowak and May eliminate the virus terms in the manner of 
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Equation (3.9) and assume that the production of newT cells infected by the wild

type strain has been inhibited with an effe~tiveness 17 (while the production of new 

T cells infected by the mutant form is not curtailed in this manner at all). Then 

Equation (3.9) can be rewritten as 

T(t) = s - dT(t) - (1 - 'l)kT(t)U(t) - kM T(t)UM(t) 

U(t) = (1 - 'l)kT(t)U(t) - 6U(t) 

UM(t) = kMT(t)UM(t)- 6UM(t). 

(3.19a) 

(3.19b) 

(3.19c) 

Note that there is an underlying assumption in this model that only RT inhibitors 

are being employed. In order to model protease inhibition, we would replace 

Equation (3.19a) with the equation 

T(t) = s - dT(t) - kT(t)U(t) - kM T(t)UM(t). 

To model both RT and protease inhibition, we would instead replace Equation (3.19b) 

with 

U(t) = (1 - 'IP)(1- 'l)kT(t)U(t)- 6U(t). 
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3.7 Models with Impulses 

T
O DATE, THE PRINCIPAL USE OF IMPULSIVE effects in models of HlV pathogenesis 

has been in a series of papers by Smith? and Wahl [18,19], Smith? alone [20], 

and Krakovska and Wahl [21]. (Note that Smith? does employ a question mark in 

his surname.) In these, the authors present two models. The first considers the 

effects of both protease and reverse transcriptase inhibitors in mitigating infection 

by a wild-type HIV strain. The second does not make a distinction between types 

of treatment but does incorporate the existence of a resistant strain of the virus into 

the model. Both involve large systems of differential equations, together with the 

impulsive effect. 

The first of these [18] consists of ten differential equations together with two 

impulses. One impulse reflects treatment with a reverse transcriptase inhibitor 

R(t), and the other indicates treatment with a protease inhibitor P(t). Smith? and 

Wahl consider six populations of CD4+ T cells: the uninfected population, T(t), the 

infected population, U(t), uninfected cells which have absorbed the reverse tran-

scriptase inhibitor only, TR(t), uninfected cells which have absorbed the protease 

inhibitor only, Tp(t), uninfected cells which have absorbed both the reverse tran-

scriptase and protease inhibitors, T RP(t), and infected cells which have absorbed the 
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protease inhibitor, Up(t). They include two virus populations explicitly in their sys

tem: the infections virions, V(t), and non-infectious virions produced by infected 

T cells that are either defective or have absorbed the protease inhibitor, VN(t). The 

novel parameters of Smith? and Wahl's system include cv (the fraction of virions 

produced by an infected T cell which are themselves infectious), 1]R (the rate at 

which the reverse transcriptase inhibitor inhabits the intracellular compartment 

of the T cells), 1]P (the rate at which the protease inhibitor inhabits the intracel

lular compartment), mR (the rate at which the reverse transcriptase inhibitor is 

cleared from the intracellular compartment), and mp (the rate at which the protease 

inhibitor is cleared from the intracellular compartment). 
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The system is then 

T(t) = s- dT(t)- kV(t)T(t) -T]RT(t)R(t) -T]pT(t)P(t) + mRTR(t) + mpTp(t) 

TR(t) = T]RT(t)R(t)- dTR(t) + mpTRP(t)- mRTR(t) -T]pTR(t)P(t) 

Tp(t) = T]pT(t)P(t)- dTp(t)- kV(t)Tp(t) -T]RTp(t)R(t)- mpTp(t) + mRTRP(t) 

T RP(t) = 1]RTp(t)R(t)- dT RP(t)- mpTRp(t)- mRT RP(t) + T]PTR(t)P(t) 

U(t) = kV(t)T(t)- 6U(t)- 7]pU(t)P(t) + mpUp(t) 

Up(t) = kV(t)Tp(t)- 6Up(t) + 7]pU(t)P(t)- mpUp(t) 

V(t) = NowU(t)- cV(t)- kV(t)T(t)- kV(t)Tp(t) 

VN(t) = N6Up(t) + N6(1- w)U(t)- cVN(t) 

R(t) = -dRR(t), t * tk 

P(t) = -dpP(t), t * Sk 

llR = Ri I t = tk 

llP =pi, t = Sk· 
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(3.20) 

Smith? and Wahl analyse this model by considering extreme cases of dosage 

schedules (four cases, wherein the treatment frequencies of each of the two in

hibitors is made either very large or very small) and find that it is the reverse 

transcriptase inhibitor which holds the greatest effect on T cell levels in vivo, to 

the point of (theoretically) maintaining the uninfected count close to that of levels 
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pre-infection. 

Of greater relevance to our current work is Smith? and Wahl's second model [19, 

20]. As in the author's model, Smith? and Wahl here dispense with the distinction 

between reverse transcriptase and protease inhibitors (although they maintain the 

virus population as an explicit inclusion in the model) and consider the emergence 

of a mutant, resistant strain from the wild-type virus. However, they do not 

consider an ongoing mutation rate from the wild-type to the mutant virus, and 

hence confine themselves to the case where the mutant virus population is pre

existing. 

Rather than establishing a uniform model which is independent of the drug 

levels, Smith? and Wahl instead alter the formulation of their model according 

to a range of values of the drug concentration, D(t). For D(t) at low levels, it is 

assumed that there is a negligible chance of an uninfected T cell absorbing sufficient 

quantities of the drug to prevent infection by either form of the virus. For D(t) at 

intermediate levels, it is assumed that there is a negligible chance of an uninfected 

T cell absorbing sufficient quantities of the drug to prevent infection by the mutant 

virions, but that the chance of infection by the wild-type virus being inhibited 

grows monotonically with D(t). Finally, for D(t) at high levels, it is assumed that 

there is a chance of an uninfected T cell preventing infection by either form of the 
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virus, with a greater likelihood in the case of the wild-type virus. 

Each variant of Smith? and Wahl's model consists of nine differential equations, 

as well as an impulsive condition. In addition to the uninfected CD4 + T cell 

population T(t), the population ofT cells infected by the wild-type virus U(t), and 

the population ofT cells infected by the mutant virus UM(t), Smith? and Wahl 

further include the population of uninfected T cells which have absorbed sufficient 

quantities of the drug so that infection by the wild-type virus is inhibited T w(t), and 

the population of uninfected T cells which have absorbed sufficient quantities of 

the drug so that infection by both forms of virus is inhibited T M(t). The wild-type 

and mutant virus populations are V(t) and V M(t), respectively. New parameters in 

this case are mw and mM, the rates at which the drug is cleared from the intracellular 

compartment in cases of intermediate and high concentrations, respectively. The 

rate at which the drug is cleared from the body is denoted by m. 
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At low levels of drug concentration, the model takes the form 

T(t) = s - dT(t) - kV(t)T(t) - kM V M(t)T(t) + mw T w(t) 

Tw(t) = -kMVM(t)Tw(t)- (d + mw)Tw(t) + mMTM(t) 

T M(t) = -(d + mM)T M(t) 

U(t) = kV(t)T(t) - 6T(t) 

UM(t) = kMVM(t)T(t) + kMVM(t)Tw(t)- 6UM(t) 

V(t) = N6wU(t)- cV(t)- kV(t)T(t) 

VM(t) = N6wUM(t)- cVM(t)- kMVM(t)T(t)- kMVM(t)Tw(t) 

VN(t) = k6(1- w)[U(t) + UM(t)]- 6VN(t) 

D(t) = -mD(t), t i- tk 

!1D = D;, t = tk· 
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(3.21a) 

(3.2lb) 

(3.21c) 

(3.21d) 

(3.21e) 

(3.21£) 

(3.21g) 

(3.21h) 

(3.21i) 

(3.21j) 

At intermediate levels of drug concentration, the following equations are re

placed: 

T(t) = s- dT(t) - kV(t)T(t) - kM V M(t)T(t) + mw T w(t) - 7]w T(t)R(t) 

Tw(t) = -kMVM(t)Tw(t)- (d + mw)Tw(t) + mMTM(t) + 7]wT(t)R(t), 

(3.22a) 

(3.22b) 

where T/W is the rate at which the intermediate-level drug concentrations inhibit 

the wild-type virus. 
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At high levels of drug concentration, the deviations from the original model are 

as follows: 

T(t) = s- dT(t)- kV(t)T(t)- kM V M(t)T(t) + mw T w(t)- T]wM T(t)R(t) 

t w(t) = -kM V M(t)T w(t) - (d + mw )T w(t) + mM T M(t) 

+ T]wMT(t)R(t)- T]MT w(t)R(t) 

T M(t) = -(d + mM)T M(t) + T]M T w(t)R(t) 

(3.23a) 

(3.23b) 

(3.23c) 

where T]wM and T]M are the rates at which the high drug concentrations inhibit the 

wild-type and mutant virions, respectively. 

Under Smith? and Wahl's model, at low drug levels the wild-type virus dom

inates, with the mutant form becoming extinct. At intermediate drug levels, both 

virus variants coexist. At high drug levels, the two virus strains may again coexist, 

or they may both become extinct. Smith? and Wahl also noted that, while the total 

T cell counts at low and intermediate drug concentrations were considerably less 

than in the disease-free state, these rebounded under high drug concentrations to 

survive at very near the drug-free tally. 

In Chapter 5, we will detail the analytical methods used by Smith? and Wahl and 

employ it in the investigation of our own model incorporating impulsive effects. 



Chapter 4 

ANew Model 

T
HE AUTHOR'S ULTIMATE GOAL IN DEVELOPING a new model WaS to devise a more 

refined formulation for the progression of HIV under the influence of drug 

therapy. In particular, it was thought to be important to include in such a model 

the mutation of wild-type HIV. As discussed in Chapter 1, mutation appears to be 

a critical phenomenon in explaining why· HIV is so difficult to control pharmaco-

logically, and so it was felt that to ignore this mechanism would be to introduce a 

fundamental oversimplification into the model. 
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4.1 The Author's Model, Initial Version 

W
HILE CAREFUL CONSIDERATION WAS given to each term which would be in

corporated into the model, it was also acknowledged that it would be, 

at best, inefficient to "reinvent the wheel." As detailed in the preceding chapter, 

popular models already exist to account for drug therapy in HIV pathogenesis, as 

do variant approaches to the inclusion of mutant virions in the analysis. In partie-

ular, then, the ensuing discussion owes much to models of Muller and Bonhoeffer, 

and of Nowak and May, given in Chapter 3 as Equations (3.16), (3.18) and (3.19). 

Also playing a role in the formulation of the model was a desire to ensure 

that it be susceptible to a dynamical systems-type analysis, rather than being suit-

able only for investigation via numerical simulation - albeit, of course, without 

compromising the integrity of the model by making gratuitous oversimplifications 

purely to keep the system as "small" as possible. Consequently, it was decided 

to build the model on the basic two-dimensional system given in Equation (3.9). 

This greatly enhances the mathematical tractability of the system, especially when 

virus mutations are introduced. (For example, the two-mutant model to be studied 

in Chapter 5 is reduced to four dimensions rather than the seven which explicit 

inclusion of the virus would necessitate.) Furthermore, the removal of the virus 
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term does not impede the determination of the relative fitness of HIV under vari

ous scenarios (drug therapy, drug resistance, etc), a role which the infected T cell 

populations fill without loss of adequacy. 

Since it is fundamental to the rest of the work in this chapter, we will repeat the 

basic two-dimensional model here for clarity: 

T(t) = s - dT(t) - kT(t)U(t) 

U(t) = kT(t)U(t) - 6U(t). 

(4.1a) 

(4.1b) 

The variables in this system are T(t), the population of uninfected HIV-specific 

CD4+ T cells, and U(t), the population of HIV-specific CD4+ T cells infected with 

HIV. The parameters are the T cell production term, s; the respective death rates of 

the uninfected and infected T cells, d and 6; and the virulence of the infection, k. 

We assume that drug therapy has been initiated, such that the effectiveness of 

the treatment is T]; as discussed in Chapter 3, we will henceforth assume that this 

therapy takes the form of RT inhibitors. Thus the model becomes 

T(t) = s- dT(t) - (1 - T])kT(t)U(t) 

U(t) = (1 - T])kT(t)U(t) - 6U(t). 

(4.2) 

We will assume that the wild-type virus mutates at a constant rate f1, the result 

being helper T cells infected with mutant virus, UM(t). As in Chapter 3, we assume 
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that the death rate ofT cells infected by the mutant strain is 6, the same as the death 

rate ofT cells infected by the wild-type strain. However, we will draw no such 

parallels in relation to the other two descriptive parameters: that is, we will assume 

that the mutant virus possesses a virulence TcM and is resistant to the drug therapy 

such that its efficacy is T]M· We would typically expect a mutant to exhibit TcM ~ k 

and T]M ~ TJ (that is, that the mutant strain be less virulent but also less susceptible 

to therapy), but we shall make no overt assumptions in this regard, thus allowing 

for the possibility of retrograde mutations. 

Unlike Muller and Bonhoeffer, but in· accordance with Nowak and May, we 

shall neglect the possibility of back-mutation (that is, the reversion of the mutant 

virus to wild-type virus). Note, however, that we have deviated from Nowak and 

May in making no assertion that the mutant virus is completely resistant to the 

drug therapy, as in their model described in Equation (3.19). Consequently, our 

model is the following: 

T(t) = s- dT(t)- (1- T])kT(t)U(t)- (1- T]M)kMT(t)UM(t) 

U(t) = (1 - /1)(1 - TJ)lcT(t)U(t)- 6U(t) (4.3) 

UM(t) = !1(1- T])lcT(t)U(t) + (1- T]M)kMT(t)UM(t) - 6UM(t). 

In Chapter 5, we will extend this model by considering the possibility that a 

second mutant strain might be present. In Chapter 6, we will augment it by in-
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traducing the notion of impulsive differential equations. First, though, we shall 

analyse Equation (4.3) by investigating its fixed points and its eigenvalues. In so 

doing, we will explain these results in both mathematical and biological terms, 

thereby demonstrating that the model is valid not only mathematically, but also 

with regards to the phenomena it represents. Finally, we will investigate Equa-

tion (4.3) numerically, illustrating the various kinds of behaviour which may arise 

from this system. 

We first acknowledge, however, that following the completion of this step of 

our work, Rong, Feng and Perelson [22] published a model with much the same 

goal of considering both drug therapy and mutation of the virus. Their system is 

T(t) = s- dT(t) - k(1- T/RT)T(t)V(t)- kM(1- Tf~T)T(t)VM(t) 

U(t) = (1- ~)k(1- T/RT)T(t)V(t)- 6U(t) 

V(t) = N(1- TJp)6U(t)- cV(t) (4.4) 

Here, T/RT and Tf~T are the effectiveness of treatment with an RT inhibitor on the 

wild-type and mutant strains, respectively, while T/P and 17~ are the effectiveness of 

treatment with a protease inhibitor on these two forms of the virus. However, a rig-

orous analysis of this system is provided only in the case where no drug resistance 



4.2 THE FIXED POINTS 72 

is present (that is, T]RT = TJ'A = T]P = TJt;;' = 0). Consideration is also not given to this 

model from the perspective of the orbit structure of the solutions. Finally, although 

Rong, Feng and Perelson do deal with issues of drug non-adherence which we 

shall also tackle later in this work, the methods they employ differ greatly from 

those we shall use. 

4.2 The Fixed Points 

T
O BEGIN, WE FIRST DETERMINE THE FIXED points of model. We begin by rewriting 

Equation (4.3) in a slightly simplified form in order to facilitate the analysis. 

Let 

As the product of the virulence and resistance to drug therapy of each strain of the 

virus, these new parameters essentially represent the "quality" of the wild-type 

and mutant viruses, respectively. In other words, an HIV strain which is both 

highly virulent and acutely resistant to therapy is of a very high "quality." On 

the other hand, a strain which is quite virulent but poorly resistant (or vice versa) 

may be less successful than one which is both moderately virulent and moderately 

resistant, and therefore could be viewed as being of lower relative "quality." With 
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these substitutions, the model becomes 

T(t) = s- dT(t)- aT(t)U(t)- aMT(t)UM(t) 

U(t) = (1 - 11)aT(t)U(t)- fJU(t) (4.5) 

Where convenient, we will also set 

f3 = db. 
s 

This system exhibits three fixed points. In this chapter and the sequel, we shall use 

X to denote a steady-state value of a variable X. Note that we have not gone so 

far as to nondimensionalise the model, because we wish to examine the biological 

significance of each result. 

The first, and simplest, fixed point is 

- s 
T = d' u = UM = 0. (4.6) 

Clearly, this represents the case where HIV is eradicated, and only the uninfected 

T cells survive. 

Secondly, we have 

u = 0, (4.7) 

In this instance, the T cells infected with the wild-type strain perish, leaving only 

the uninfected T cells and the T cells infected by the mutant variant. 
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The final fixed point is 

T- o 
- (1 - fl)a' 

where 

- [(1- fl)a- aM]~ 
U= I 

a 

s[(1 - fl)a- ~] 
~------

- 6(1 - f1)(a -aM)· 

This reflects the scenario in which all three T cell populations survive. 
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(4.8) 

We might anticipate that there would be a fourth fixed point, in which the T cells 

infected by the mutant virus vanish (in the case of a "low-quality", retrograde 

mutation), leaving only the uninfected T cells and those infected by the wild-type 

virus. However, it should be noted that the model assumes that mutation occurs at 

a constant rate, and is not an isolated event. Consequently, new mutant virus will 

always be produced from the wild-type and therefore UM(t) must endure (albeit 

perhaps at very low levels) as long as any.HIV remains. 

More obviously, there is no fixed point at which the population of uninfected 

T cells vanishes. This is because T(t) is a factor in all of the non-constant terms in the 

equation for the rate of change of T(t), and consequently as T(t) ~ 0, these become 

negligible. In this case, the rate of change of T(t) will be dominated by the constant 

production term s, ensuring that the T cell levels are constantly replenished -

possibly at low levels depending on the size of the infected T cell populations. 
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4.3 Non-negativity of Fixed Points 

S
INCE THE SYSTEM IS INTENDED TO MODEL biological phenomena, it is ~perative 

that no stable fixed point exists which involves negative values ofT, U or UM 

for feasible values of the parameters. Otherwise, a negative attractor would exist 

which would have no interpretation in reality, thereby undermining the validity 

of the model. Thus we will begin our analysis by deriving the conditions under 

which each fixed point is non-negative. We will subsequently assess their stability. 

Recall that s, d, 6, k and kM are all positive parameters, while 11, 17 and T]M are 

defined in the interval [0, 1] (although we operate under the implicit assumption 

that 11 > 0 here, since we are uninterested in the case where no mutation occurs). 

Note that this means that a, aM and ~ are also positive quantities. 

The first fixed point is clearly non-negative for all parameter values, since U 

and UM are zero and Tis simply the quotient of two positive quantities. 

A similar assertion applies to the value of T for the second fixed point while, 

again, U = 0. For the equilibrium value of UM to be non-negative, we require 

(4.9) 

In other words, the quality of the mutant strain must be sufficiently strong in order 

for this fixed point to be biologically feasible. In this case, not only are the T cells 
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infected with the mutant strain viable enough to survive, but indeed they may 

be so preferable that the population ofT cells infected by the wild-type form are 

eradicated. 

The analysis of the third fixed point is more complicated. First, T is, again, 

clearly non-negative, exactly as in the cases already considered. To investigate the 

non-negativity of U and UM, we will have to examine several cases. There are 

three quantities of interest here: the signs of both U and UM will be affected by 

the positivity or negativity of (1 - fl)a - ~ and a - aM, while the sign of U is also 

dependent upon the positivity or negativity of (1 -11)a- aM. 

In principle, this gives us eight possibilities but we can simplify matters slightly 

by observing that a- aM ~ (1- fl)a- aM, since 11 E [0, 1]. Hence, if (1- fl)a ~ aM 

then a~ aM. Similarly, if a~ aM then (1-fl)a ~aM. Thus we effectively have only 

six cases to consider: 

1. if (1- fl)a ~aM and (1- fl)a ~ (3 then both U and UM will be non-negative; 

2. if (1- fl)a ~aM and (1 -11)a ~ (3 then both U and UM will be non-positive; 

3. if a ~ aM but a(1-f1) ~ aM and a(1-f1) ~ ~then U will be non-positive while 

UM will be non-negative; 

4. if a ~ aM but a(1 - /1) ~ aM and (1 - fl)a ~ (3 then U will be non-negative 
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while UM will be non-positive; 

5. if a ::::; aM and (1 - fl)a 2:: ~ then U will be non-negative, but UM will be 

non-positive; 

6. if a ::::; aM and (1 - f.L)a ::::; ~ then U will be non-positive, but UM will be 

non-negative. 

Only the first of these six cases results in non-negative equilibrium values, so 

we can conclude that the third fixed point of the system is non-negative only if 

(4.10) 

In other words, this fixed point is non-negative only if the mutation rate is ade-

quately low and/or the quality of the wild-type virus is sufficiently strong, while 

the quality of the mutant strain is correspondingly weak- a set of conditions 

which make sense of the co-existence of the two types of infected T cells. 

4.4 Eigenvalues and Stability 

H
AVING ESTABLISHED THE CONDITIONS under which each of the three equilib

rium points is non-negative, we now determine their stability. This serves 

a twofold purpose. First, if a fixed point is stable for a set of parameter values which 
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allow it to be negative then this would suggest a fundamental flaw in the construe-

tion of the model. Second, the conditions for stability enable us to understand how 

changing parameter values affect the overall behaviour of the system. 

The Jacobian matrix for this system is 

-aT 

J= (1- fl)aU (1- fl)aT- cS 0 

For each of the fixed points, we wish to determine the conditions under which all the 

eigenvalues of J are negative, so that the corresponding fixed point is asymptotically 

stable. 

For the first fixed point, the eigenvalues of the Jacobian matrix are 

s(aM- ~) 
i\z = , d . 

s[(1 - fl)a- ~] 
i\.3 = d . (4.11) 

While clearly i\.1 < 0 always, note that i\.2 and i\.3 are negative only if 

(4.12) 

The first of these conditions implies that' the second fixed point of the system is 

non-positive, per Equation (4.9), while the latter denies the first condition for the 

non-negativity of the third type of equilibrium (and the combination of these two 
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conditions contradicts the second condition), as given in Equation (4.10). Hence 

this fixed point is stable only when there are no other non-negative fixed points. 

Now we turn our attention to the second fixed point. The eigenvalues of J now 

become 

ih ,3 = 
2
1
6 

{-SaM± ~S2a~- 4D2s(aM- m}. 
(4.13) 

Observe that A1 < 0 if 

The other two eigenvalues A2 and A3 are less straightforward to analyse, but they 

are tractable. Note first that the term outside the square root is negative. Under the 

condition cited for the non-negativity of this equilibrium point, Equation (4.9), the 

second term under the square root must be non-negative. Hence these eigenvalues 

are of the form 

-lxl ± ~x2 - y2 

and therefore they will be either negative real quantities, or complex quantities 

with a negative real part. Either way, we have established that this equilibrium 

will be asymptotically stable if 

(4.14) 
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These inequalities make sense in light of the preceding discussion: the first con-

clition coincides with the condition that this equilibrium be non-negative, while 

the second indicates that the third fixed point is non-positive, as shown by Equa-

tion (4.10). 

Additionally, it is instructive to investigate the conditions under which A2 and 

A3 are complex. This will occur when 

2t? [ [dl 2{/ [ [dl s 1 - -y 1 - 6 < aM < -s- 1 + -y 1 - 6 . (4.15) 

Note that we assume that d > o, and hence all terms in this inequality are themselves 

real. 

Finally, we examine the eigenvalues which arise in connection with the third 

fixed point: 

O[aM- (1- ,U)a] 
A1 = (1 _ ,u)a , 

Az,3 = 
2

1

6 
{ -s(1 - ,u)a ± ~s2(1 - ,u)2a2- 462s[(1 - ,u)a- {3]}. 

(4.16) 

Again the condition for A1 < 0 is obvious: 

which is precisely the reverse of the condition found when analysing the corre-

sponding eigenvalue for the second fixed point. 
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The analysis of the remaining eigenvalues, A2 and A3, is analogous to that of 

the second and third eigenvalues for the second fixed point. The term outside 

the square root is again negative. Under the second condition cited for the non-

negativity of this fixed point, the second term under the square root must be non-

negative. Again, then, these will be either negative real eigenvalues, or complex 

eigenvalues with a negative real part. Regardless, we have established that this 

equilibrium will be asymptotically stable if 

(1- fl)a > ~ and (1- fl)a >aM. (4.17) 

These are precisely the two conditions which guarantee the non-negativity of this 

equilibrium point, as given by Equation (4.10). 

Finally, we shall again determine when these two eigenvalues will be complex. 

The relevant condition is 

2ri [ n] 2["/ [ n - 5- 1- -y 1- b < (1- fl)a < s 1 + \' 1- b J' (4.18) 

which resembles the corresponding condition found for the eigenvalues of the 

second fixed point. 
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4.5 Behaviour of the System 

W
E CAN NOW ESTABLISH FOUR REGIMES of behaviour for the system given by 

Equation (4.3). They are as follows: 

1. ~ > (1-tJ.)a and~> aM: the first fixed point is positive and stable; the second 

and third fixed points are negative ahd unstable (both wild-type and mutant 

strains are of poor quality), 

2. aM > ~and aM > (1- tJ.)a: the first fixed point is positive and unstable; the 

second fixed point is positive and stable; the third fixed point is negative and 

unstable (the mutant strain is of sufficiently higher quality than the wild-type 

virus, or the wild-type virus experiences a high level of mutation, regardless 

of the level of quality of the wild-type strain), 

3. (1 - tJ.)a > ~ > aM: the first fixed point is positive and unstable; the second 

fixed point is negative and unstable; the third fixed point is positive and stable 

(the wild-type virus is of good quality and/or experiences low mutation, while 

the mutant strain is of poor quality), 

4. (1-tJ.)a >aM > ~: the first and second fixed points are positive and unstable; 

the third fixed point is positive and stable (the wild-type and mutant strains 
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are of good quality, but the wild-type virus is of appreciably better quality or 

undergoes a small rate of mutation). 

4.5.1 Numerical Simulations: Parameter Values 

To illustrate each regime, we must choose suitable parameter values. Although 

HIV has been studied extensively over the past quarter of a century, considerable 

uncertainty remains with regards to some quantities associated with its pathogen

esis. Consequently, while every effort has been made to establish parameter values 

from reputable sources in the literature, it must be acknowledged that there exists 

an implicit uncertainty in many of these quantities. 

Table 4.1: Parameter values for Equation (4.3). 

Parameter Symbol Quantity References 

production of newT cells s 20d-1mm-3 [4,23] 

death rate of healthy T cells d 0.02d-1 [23] 

death rate of infected T cells 6 o.5d-1 [17,23] 

virulence of wild-type k 0.0038mm3d-1 [ 4, 16, 17,23] 

mutation rate from wild-type f1 3 x lo-s [4,24,25] 

Values for most of the parameters used in Equation (4.3) are given, with ref-
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erences, in Table 4.1. Of particular note is the provenance of k. Both Nowak and 

May [4] and Muller and Bonhoeffer suggest that an appropriate form for the con-

stant of proportionality b between the virus population V(t) and the population of 

T cells infected with the wild-type virus is given by 

b= No. 
c 

Using the value of D provided in Table 4.1, together with N = 100 and c = 0.3d-1 as 

suggested by [17,23], we obtain the approximation 

b ~ 160. 

Furthermore, Kirschner [17] indicates that 

is a suitable parameter value for the rate of infectivity of the wild-type virus. Hence, 

using the relation k = bk, we derive the value of k given in Table 4.1. 

It is also worth noting that the literature exhibits a fair degree of variance in the 

value of s, the production term for nai've T cells. In [23], for example, s = 10d-1mm-3 

while in [4] it is a full order of magnitude larger, with s = 100d-1mm-3 . We have 

chosen a value of s = 20d-1mm-3 to ensure that the disease-free fixed point is such 

that the population of uninfected T cells comes to equilibrium at T = lOOOrnrn-3, as 
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suggested by [4, 17,23]. Note that, with these parameters values, we have fixed 

Less clear-cut are the choices of values for kM, '1M and ry, which suggests that 

we should vary each of these in order to situate the system within the four regimes 

described above. Our general approach is to begin by varying 17M as our chief 

bifurcation parameter, since the effectiveness of the drug therapy relative to an 

individual mutation is not predictive, being dependent upon both the nature of 

the mutation and the type of therapy employed. If this is insufficient, we shall 

next vary ry, since different forms of treatment will affect even the wild-type virus 

in different ways [25]. Our baseline assumption, however, will be that the drug 

inhibits 70% of the virus replication (that is, 17 = 0.7). Finally, if the need still 

persists, we shall adjust our choice of kM since there is also no certitude as to how 

virulent a mutant strain might be. However, as suggested by Nowak and May [4], 

we will typically assume kM to be approximately 80% of k, and hence set kM = 0.003. 

4.5.2 Numerical Simulations: The Disease-Free Equilibrium 

First we illustrate the most trivial of the four regimes described above, namely that 

in which the disease-free equilibrium is the only stable fixed point. In this case, 



4.5 BEHAVIOUR OF THE SYSTEM 86 

our chosen parameter values are insufficient because the second condition for this 

regime is violated. In this instance, then, ·we set TJ = 0.9 (that is, the drug is more 

effective than our standard assumption) so that 

(1 - f1)a ~ 3.8 x 10-4 < fi. 

Furthermore, we set T]M = 0.85 (meaning that the drug is remarkably effective 

against both the wild-type and mutant strains of the virus) which gives 

The conditions for this regime are now satisfied. 

The initial conditions used to generate a time series graph for this case, as well 

as the subsequent time series graphs depicted in this chapter, are given in Table 4.2. 

The initial condition for T(t) is To = SOOmm-3, a 50% reduction from the expected 

healthy T cell count of 1000mm-3, reflecting the assumption that HIV infection 

is not novel. There is no special significance to this particular choice of T cell 

depletion. Rather, it was selected with consideration given to ensuring that the 

uninfected T cell count (i) exhibits a significant loss from healthy levels, and (ii) is 

not so extraordinarily depleted as to indicate that HIV infection has given way to 

full-blown AIDS. Recall that this system exhibits only one stable fixed point for 

any given set of parameter values so, operating under the assumption that these 
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dynamics are globally applicable (and a variety of numerical experiments suggest 

that there are no occurrences of phenomena such as chaos or periodic orbits), we 

are free to choose any initial conditions. The initial conditions for U(t) and UM(t) 

depict the relatively shallow levels of infected T cells as compared to uninfected 

T cells [4, 17]. In particular, the initial condition for UM(t) is chosen to be an order 

of magnitude smaller than that for U(t) to reflect the assumption that the mutant 

strain is of recent genesis. The phase portraits depicted in this chapter utilise this 

set of initial conditions, along with several other (comparable) initial conditions 

selected in order to fully illustrate the dynamical phenomena. 

Table 4.2: Initial conditions for time series plots of Equation (4.3). 

Population Variable Initial Quantity 

Uninfected T cells T(t) SOOmm-3 

T cells infected with wild-type virus U(t) 100mm-3 

T cells infected with mutant virus UM(t) 10mm-3 

The time series generated by these initial conditions when T/M = 0.85 and 17 = 

0.9 is given in Figure 4.1. As expected, the two virus populations tend towards 

extinction while the population of uninfected T cells returns to its pre-infection 

level of 1000mm-3 . The corresponding phase portrait is given in Figure 4.2, which 
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illustrates the presence of an asymptotically stable node in this case. 
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Figure 4.1: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

T]M = 0.85 and 1J = 0.9. 

Obviously, this is the optimal situation for a patient suffering from HIV. How-

ever, the situation described in which the drug is extremely effective against both 

the wild-type strain and the mutant strain is not very feasible. In reality, the virus 

would mutate to produce a more strongly-resistant form. As such, while this fixed 

point is of some mathematical interest, it does not reflect a reasonable choice of 

parameter values. 
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Figure 4.2: Phase portrait for Equation (4.3) with TJM = 0.85 and TJ = 0.9. 

4.5.3 Numerical Simulations: The Mutant-dominant Equilibrium 

For the second regime, in which the population ofT cells infected with the wild -type 

virus dies out, we choose TJM = 0.2 so 

aM = 0.0024 > {3 and (1 - fi)a = 0.00114 < aM. 

The time series plot is given in Figure 4.3. Again, the graph bears out our analytical 

expectations: the population of uninfected T cells attains an equilibrium state well 

below its disease-free levels, while the T cells infected with the mutant virus are 

selectively advantageous compared to those infected with the wild-type virus, 

which vanish. 
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Figure 4.3: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

T/M = 0.2. 
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Figure 4.4: Phase portrait for Equation (4.3) with T/M = 0.2. 
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Of note, there is an evident oscillation present in both T(t) and UM(t). This is 

borne out by the phase portrait, given in Figure 4.4, which confirms the presence of 

an asymptotically stable spiral-node, with the spiral existing in the (T, UM)-plane. 

This is because the condition given by Equation (4.15) is satisfied: 

2{} [ n] 2rl [ n 
-

5
- 1 - -y 1 - 6 ~ 5.1 X 10-4 < aM < -

5
- 1 + \' 1- 6 J ~ 0.049. 

What about parameter values in this regime which give rise to an asymptotically 

stable node, absent of spiral phenomena? We first examine the case where 

Observe that 

2{)2[ n 
aM < S 1 - \' 1 - 6 r 

2{/[ n 
{3< -s- 1- -y1-6J" 

This result is not merely true for the values of s, d and {j that we have selected, but 

is in fact independent of parameter values. To see this, assume again that {j > d. 
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Then we have 

Thus, one way that the system could lie in this second regime but exhibit only 

nodal behaviour is if 

However, the range of possible values of aM which satisfy this inequality is 

extremely small. By expanding as a Maclaurin series, we obtain the approximation 

2tl [1 _ OJ ~ 2ri [1 _ (1 _ .!!__ _ ~)] = do + a
2 

= ~ + a
2

• 
s '/ 

1 
- 6 s 26 862 s 4s 4s 

Hence the length of the interval of aM values which exhibit the desired behaviour 

is 

- 1 - 1 - - - ~ ~ - = 5 X 10-6 262[ Rl d2 
s 6 · 4s 
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for the given parameter values. As such, tJ:le system is very close to the first regime, 

and both the time series and phase portrait are nearly indistinguishable from those 

depicted in Figures 4.1 and 4.2. 

For instance, if we once again set 17 = 0.9, but now let 7]M = 0.832, then 

aM = 5.04 x 10-4 > ~ 

and 

(1 - 11)a ~ 3.8 x 10-4 < aM, 

so the system does indeed lie in the second regime. However, in this case, 

2(/ [ [dl s 1 - -y 1 - 6 > aM, 

so the system will not exhibit a spiral-node. However, the parameter values are so 

close to those for the first regime that the steady-state values of T(t) and UM(t) are 

T ~ 992.1 and UM ~ 0.32. 

We therefore omit the time series and phase portrait for this case. 

Let us now turn our attention to the remaining possibility, in which 

2{/ [ [dl 
aM > s 1 + -y 1 - 6 . 

In order for this inequality to be satisfied without changing the values of param-

eters which do not directly relate to the mutant strain, the mutant would have to 
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be a "supermutant," exhibiting significantly greater virulence than the wild-type 

virus, probably (though, if the virulence is sufficiently increased, not necessarily) 

combined with the better resistance to drug therapy we expect of HIV mutations. 

The time series for such a "supermutant" is given in Figure 4.5. In this case, we 

have set kM = 0.1, two orders of magnitude larger than our standard value (and 

than the value of k)! Here, then, 

2ri[ n] aM = 0.08 > -
5
- 1 + '/ 1 - "6 . 

Note that the catastrophic effects such a "supermutant" has on the population of 

uninfected T cells is such that the patient has certainly progressed to full-blown 

AIDS over the course this simulation, and so the model no longer truly applies. The 

corresponding phase portrait can be found in Figure 4.6, and illustrates the presence 

of an asymptotically stable node in this case, absent of a spiral-type phenomenon. 

Observe that the transition from spiral-node behaviour to purely nodal be-

haviour, and vice versa, in this second regime does not constitute a bifurcation of 

the system. Although the change in the nature of the model is of intrinsic interest, 

the two cases remain topologically equiva~ent. We will discuss the true bifurcations 

of the system later in this section. 
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Figure 4.5: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

1JM = 0.2 and kM = 0.1. 
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Figure 4.6: Phase portrait for Equation (4.3) with f/M = 0.85 and 'I= 0.9. 

4.5.4 Numerical Simulations: The Coexistence Equilibrium 

For the third regime, we immediately have the first condition satisfied, since 

(1 - fl)a ~ 0.00114 > f3. 

96 

It is possible to choose values of f/M and 'I which place us in this regime, but 

only in a narrow range (for example, f/M = 0.8 and 'I = 0.85) in which both virus 

populations are largely suppressed. A better illustration of this regime can be 

found by maintaining the values of the respective drug efficacies at f/M = 0.2 and 

our baseline assumption of 'I= 0.7, as we originally used in considering the second 

regime. Instead, we will assume in this case that the virulence of the mutant strain 
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is an order of magnitude less than our typical assumption: kM = 3.0 x 10-4mm-3d-1
. 

We now have 

as required. 

The resulting time series can be found in Figure 4.7. Note that although it 

appears that the population of T cells infected with the mutant virus is becoming 

extinct, it is in fact merely subsisting at a very low level. As discussed earlier, the 

constant rate of mutation from the wild type makes it impossible for the mutant 

population to die out completely. In this case, UM ~ 8.5 x 1Q-4mm-3• Hence 

all three T cell populations coexist in this case, although the wild-type virus is 

predominating over the mutant strain. 

From the phase portrait given in Figure 4.8, we observe that the equilibrium 

point for these parameter values is an asymptotically stable spiral-node, with the 

spiral existing in the (T, U)-plane this time. 

As with the second regime, let us turn our attention to the possibility that the 

equilibrium point is purely nodal, beginning with the case where 

2fl[ 01 (1 - ~)a < -
5
- 1 - \1 1 - b J' 

Again, from the preceding discussion we are assured of a narrow range of param-
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Figure 4.7: Time series for T(t) (dotted lin~), U(t) (black line), UM(t) (grey line) with 
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Figure 4.8: Phase portrait for Equation (4.3) with T]M = 0.2 and kM = 3.0 x 10-4mm-3 . 

eter values in which this is satisfied; the pnly modification we must make to our 

earlier analysis is to acknowledge that it is now (1 - r)a which needs to fall within 

a narrow interval of length approximately ~ · Keeping T]M = 0.2 and kM = 3 X 10-4
, 

we can situate the model within this interval while remaining in the third regime, 

by setting TJ = 0.868. 

Again, however, the proximity of these parameter values to those which would 

place the system in the first regime results in behaviour similar to that depicted in 

Figures 4.1 and 4.2. Here, for instance, we find that 
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As with the regime-two analogue of this situation, we shall omit the corresponding 

time series and phase portrait. 

The other possibility, that 

2{l[ 01 (1- fl)a > -
5
- 1 + \1 1- b J' 

cannot be achieved under the parameter values established in Table 4.1. We have 

2tl [ [dl -
5
- 1 + -y1- b ~ 0.049, 

while 

(1 - fL)a = (1 - fL)(1 - ry)k ~ k = 0.0038. 

Biologically speaking, it is probably not of any real-world interest. Nonetheless, if 

we relax our restrictions on these parameter values for the sake of providing a corn-

prehensive mathematical overview of the model, we could achieve this behaviour 

by returning to the same parameter values used to generate Figures 4.7 and 4.8 

(namely 1JM = 0.2, 1J = 0.7, kM = 3 X 10-4rnrn-3), and compound this with the further 

modification that the virulence of the wild-type strain is in fact much greater than 

previously assumed: k = 0.2rnrn-3 . We now have 

The time series for this scenario can be found in Figure 4.9. Observe that, in 

this case, the incredible potency of the virus has a significantly deleterious effect 
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on the population of uninfected T cells, implying the onset of full-blown AIDS. 

Again, then, the situation described really falls outside the bounds of the model. 

As with Figure 4.7, it is worth emphasising that the population of T cells infected 

with the mutant virus is in fact at a very small, yet positive, steady state here: 
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Figure 4.9: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

The phase portrait for this set of parameter values may be found in Figure 4.10. 

Observe that the fixed point is now a node, with no spiral behaviour in evidence. 

Finally, we come to the fourth regime. The only distinction between these final 
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two regimes is the non-negativity of the second fixed point. However, because 

this point is unstable in both cases, we do not expect the overall dynamics to differ 

between them. This is clear from the time series given in Figure 4.11, which is 

similar in terms of behaviour to that of Figure 4.7. This is confirmed by the phase 

portrait, depicted in Figure 4.12, which exhibits an asymptotically stable spiral-

node - with a very tight spiral in the (T, U)-plane - exactly as with Figure 4.8. 

The parameter values used to generate these plots are '1M = 0.2 and '1 = 0.3, that is, 

the wild-type virus is nearly as resistant to the drug therapy as the mutant strain. 

Note that, as expected, 

aM ~ 0.0024 > ~ 

and 

(1- fl)a ~ 0.0027 >aM. 

Finally, let us again consider the ways in which the equilibrium point can be a 

pure node in the fourth regime, starting with the possibility that 

As before, there is a small range of values of (1 - fl)a in which this must occur; 

this can be achieved, for example, with '1M = 0.833 and '1 = 0.868. By now, we 

should not be surprised to discover that such a system behaves almost identically 
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Figure 4.11: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with T]M = 0.2 and TJ = 0.3. 
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Figure 4.12: Phase portrait for Equation (4.3) with f[M = 0.2 and Tf = 0.3. 

to the basic disease-free case of the first regime, as depicted in Figure 4.1 and 4.2. 

Here, for instance, the steady-state values are T ~ 996.8mm-3, U ~ 0.12mm-3 and 

UM ~ 0.0032mm-1. Again, we suppress the relevant plots. 

So, lastly, let us turn our attention to the case where 

2[/ [ n 
(1 - f.l)a > -s- 1 + \1 1 - 6 r 

As with the analysis of this possibility in the third regime, we must alter our chosen 

value of kin order to satisfy this condition while still remaining within the fourth 

regime. For instance, if we choose T[M = 0.2, Tf = 0.3 and k = 0.08mm-3d -1 then we 
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have 

2{/ [ [dl (1 - f.l)a ~ 0.056 > -:-;- 1 + '/ 1 - 6 . 

The results, however, are essentially identical to that depicted in Figures 4.9 

and 4.10, and so we avoid repeating them here. 

The overall conclusion that we can draw is that, as expected, there is no funda-

mental change in behaviour between the third and fourth regimes. As long as the 

wild-type virus exhibits a selective advantage as compared to the mutant strain, it 

does not matter if the mutation is qualitatively "good" or "bad." This is in accor-

dance with our mathematical expectations, namely that the change of a fixed point 

from negative to positive does not produce an appreciable change in the dynamics 

of the system. 

4.5.5 Bifurcations 

Finally, these graphs demonstrate that the system may undergo three different 

bifurcations; each of these is a transcritical bifurcation, witnessing an exchange of 

stability but no creation or elimination of fixed points. These bifurcations are as 

follows: 

1. if {3 > (1 - f.l)a, a bifurcation from the first (disease free) fixed point to the 

second (mutant strain dominant) fixed point occurs when (3 = aM, 
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2. if (3 > aM, a bifurcation from the first (disease free) fixed point to the third 

(coexistent) fixed point occurs when (3 = (1- fl)a, 

3. if aM > (3, a bifurcation from the second (mutant strain dominant) fixed point 

to the third (coexistent) fixed point occurs when aM= (1- fl)a. 

Of course, each of these bifurcations is reversible. 

To demonstrate these bifurcations more rigorously, let's consider them in the 

order given above, in conjunction with Theorem 4. For the first bifurcation when 

(3 = aM, both the first and second fixed points assume the steady-state values 

- s 
T=d, U=UM= O. 

The Jacobian has a zero eigenvalue, for which the corresponding eigenvectors of J 

and f are, respectively, 

6 
d 

v = 0 

1 

0 

and w = 1 

(3- (1- f1)a 

afl 
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Then for~> (1- fl)a we have that 

Hence this is a transcritical bifurcation. 

For the second bifurcation, when~ = (1- fl)a, observe that both the first and 

third fixed points become simply 

- s 
T = d' u = UM = 0. 

The Jacobian has a zero eigenvalue, and the corresponding eigenvectors of J and 

JT are, respectively, 

s[(1- fl)aM- ~] 

d2f1 0 

v= 
(1 - f1)(~- aM) 

fl~ 
and w = 1 

Then we have that for ~ > aM, 

w ydf = 0 
da 

1 

T (1- mu)s(~- aM) 
W Uav] = d :1= 0 

fla 

0 

T[J2( )] = 2s(1 - f1)(~- aM)[(1 - p)aM- ~] -+- 0 w ~v . ~~ ~ . 
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Note that, since~ > aM, then~ > (1- 11)aM as well, ensuring the third condition. 

Again, this is a transcritical bifurcation. 

In the case of the third bifurcation, when aM = (1- 11)a, note that both the second 

and third fixed points can be rewritten as 

The Jacobian has a zero eigenvalue with corresponding eigenvectors 

1 

s(1 - 11)[~ - aM] 
and v= 

()211 
w = 

s[aM(1 - 11)- ~] 
()211 

of J and f, respectively. Then we have that for aM >~' 

wT~=O 
daM 

w T[Jav] = s(1- 11)(~- aM) * 0 
a611 

0 

1 

0 

w T[f(v, v)] = 2sa M(1 ~':~(~-aM) * O. 

This is therefore also a transcritical bifurcation. 
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Chapter 5 

A Model with Two Mutants 

A
LTHOUGH THE MODEL GIVEN BY Equation ( 4.3) appears to give a good descrip

tion of HIV pathogenesis in the presence of a mutant strain of the virus, a 

critical question which naturally follows concerns the basic assumption that only 

one mutation is present at a given time. If the existence of more than two kinds 

of HIV at any one time produces fundamentally different behaviour than that ob-

served in our investigation of Equation (4.3), then the robustness of this model 

must be called into question. 

In this chapter we shall extend the model to incorporate two mutant strains, 

in addition to the wild-type form of the virus. We shall analyse this augmented 

model in a similar manner to our approach in Chapter 4. Finally, we shall again 
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demonstrate these results by providing some illustrative numerical examples. 

5.1 The Author's Model, Two-Mutant Version 

W
E CONSIDER A MODEL WITH EXACTLY two mutant strains, because if we can 

show that the types of behaviour exhibited by this model reduce to the 

phenomena exhibited by the one-mutant model then we can reasonably deduce 

that the same will be true of a model incorporating any number of mutations. 

We assume that each mutation individually functions in the same manner as 

the single mutant of Equation ( 4.3). In other words, we conjecture that each mutant 

is produced from the wild-type strain at a constant rate f-L1 and f-L2, respectively. 

This results in two strains of T cells infected by mutant virions, which we now 

denote U1(t) and U2(t). We continue to assume that T cells infected by the mutant 

forms of the virus die at the same rate, 6, as T cells infected by the wild-type virus. 

In this case, the first mutation is characterised by virulence k1 and susceptibility 

to drug therapy T]l, while the second mutant similarly exhibits virulence k2 and 

susceptibility f]2 . Again, we typically expect (but do not enforce) the restrictions 

k1 ~ k, k2 ~ k, T]l ~ ry, 172 ~ T], where k and fJ are the virulence and resistance to drug 

therapy, respectively, of the wild-type virus. 



5.2 THE FIXED POINTS 

The resulting model is as follows: 

T(t) = s- dT(t)- (1 - 1J)kT(t)U(t) 

- (1 - 1]1)k1 T(t)U1 (t) - (1 - l]z)kz T(t)Uz(t) 

U(t) = (1 - 111 - f1z)(1 - 1J)kT(t)U(t) - 6U(t) 

Ul(t) = f11(1-1])kT(t)U(t) + (1-l]l)klT(t)Ul(t)- 6Ul(t) 

llz(t) = f1z(1 -l])kT(t)U(t) + (1 -l]z)kzT(t)Uz(t)- 6Uz(t). 

112 

(5.1) 

In addition to our preceding assumption that we could neglect back-mutation 

from the mutant virus to the wild-type vi'rus, we similarly exclude the possibility 

of cross-mutation from one mutant strain to the other. 

5.2 The Fixed Points 

A
S WITH OUR INVESTIGATION OF THE one-mutant model given by Equation (4.3), 

our analysis of Equation (5.1) will be greatly aided by rewriting it in a 

simplified form. We will follow a similar approach to the transformation of Equa-

tion (4.3) into Equation (4.5), by letting 

as before, and now setting 
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As with the quantity aM discussed in Chapter 4, a1 and a 2 can be viewed as a 

measure of the overall "quality" of the two mutants - the balance of the selec-

tive advantage provided by increased resistance to the drug therapy versus the 

disadvantage of decreased virulence. 

The simplified model is given by 

U(t) = (1 - f.ll - f.12)aT(t)U(t) - 6U(t) 
(5.2) 

The first fixed point is effectively the same as the first fixed point of Equa-

tion (4.5): 

- s 
T = d' u = u1 = u2 = o. (5.3) 

Again, this is the disease-free case in which all forms of HIV are eliminated, leaving 

only the population of uninfected T cells. 

The second fixed point of Equation (5.2) is 

(5.4) 

while the third fixed point is 

u = u1 = o, (5.5) 
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These analogous equilibria reflect the two cases in which one population of T cells 

infected by a mutant strain survives, while the other perishes along with the T cells 

infected by the wild-type virus. In both instances, the form of this fixed point is 

reminiscent of the second fixed point of Equation (4.5). 

The last fixed point of Equation (5.2) is 

(5.6) 

where 

As with the final fixed point of Equation (4.5), this is the case in which all the 

T cell populations survive. However, as we discovered at the end of Chapter 4, for 

realistic parameter values this really indicates that the wild-type strain dominates 

the mutant viruses, which are maintained (at an extremely low level) only by the 

assumption of a constant mutation rate from the wild-type. As we shall show later 

in this chapter, the same applies to this fourth fixed point of Equation (5.2). 

Not every conceivable behaviour is reflected by these equilibria. For instance, 

there is no fixed point in which both mutant strains survive while the wild-type 

strain is eradicated, nor any case where more than one form of the virus is main-

tained at a significant level. 
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5.3 Non-negativity of Fixed Points 

0 
NCE AGAIN 1 IT IS IMPORTANT TO CONSIDER the conditions under which the fixed 

points of Equation (5.2) are non-negative, with the ultimate goal of ensur-

ing that none of the equilibria is stable at negative values. As in Chapter 4, note 

that s, d, D, k, k1 and k2 are all positive parameters, while /111 /12 1 17, 171 and 172 are 

defined in the interval [0, 1]. Hence a, a 1, a2 and {3 are positive quantities as well. 

As we might anticipate, the disease-free equilibrium is non-negative regardless 

of parameter values, since the only non-zero value is T, which is a quotient of 

positive quantities. 

Since their forms are analogous, we may consider the second and third fixed 

points togeth er. In both cases, Tis a quotient of positive parameters, while two 

of the infected T cell populations have a zero equilibrium value. The second fixed 

point, then, will be non-negative as long as 

(5.7) 

while the third fixed point will be non-negative if 

(5.8) 

In both cases, as we observed in Chapter 4, {3 represents a minimum level of quality 

a mu tant strain must exhibit in order to be biologically feasible. 
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Unfortunately, the fourth fixed point is sufficiently complicated to be intractable 

under this form of analysis, and we are unable to derive conditions for its non-

negativity. Unlike Equation (4.5), in which the solution of such conditions was 

made easier by the symmetrical construction of each of the three equations, Equa-

tion (5.2) necessarily loses some of this symmetry because the equation for il(t) 

contains a term involving 111 + f12 whereas the equations for U1(t) and U2(t) include 

terms involving either 111 alone or 112 alone. 

However, we can observe that when(, = 0, U = U1 = U2 = 0. Furthermore, this 

can only happen if 

so 

(1 - 111 - 112)a = {3, 

- 6 s 
T---- f3 - a· 

In other words, for(,= 0, the final fixed point coincides with the disease-free fixed 

point. Hence, by the continuity of the solutions, this fixed point cannot become 

negative without undergoing an exchange of stability with the first point. 
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5.4 Eigenvalues and Stability 

THE JAcOBIAN MATRIX coRRESPONDING to Equation (5.2) is 

-d- aU- a1U1- azUz -aT -a1U1 -azUz 

J= 
(1 - 111 - flz)aU 0 0 

For the disease-free fixed point, the Jacobian matrix has eigenvalues 

s[(1 -111 -f.Lz)a- ~] 
i\z = d , (5.9) 

We have i\.1 < 0 since dis a positive parameter, while the remaining eigenvalues 

are negative only for 

(5.10) 

Observe that these conditions are similar to those for the first fixed point of Equa-

tion ( 4.5), given by Equation ( 4.12). The first two conditions also coincide with those 

under which the second and third equilibria fail to be non-negative, as indicated 

by Equations (5.7) and (5.8). 

As we might expect given their analogous construction, the second and third 

fixed points produce very similar eigenvalues of f. For the second fixed point, 
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these are 
6[(1- t11 - f12)a- a1] 1 _ 6(a2- a1) 

i\1 = I /~2 - I 

al al 

i\3,4 = 
2

1
6 

{ -sa1 ± ~s2ai- 462s(a1 - {3)} . 
(5.11) 

For the third fixed point, these are 

6[(1- !11- f12)a- a2] 12 = 6(a1- a2)' 
i\1 = I /~ 

a2 a2 

i\3,4 = 
2
1
6 

{ -sa2 ± ~s2a~- 462s(a2- {3)}. 
(5.12) 

Let's consider the eigenvalues of the second equilibrium point; the analysis 

of the eigenvalues of the third equilibrium point will follow in exactly the same 

manner. We immediately see that i\1 will be negative if 

a1 > (1 - !11 - f12)a, 

which is virtually the same as the first condition of Equation (4.14) for the second 

fixed point of Equation (4.5). Furthermore, i\2 will be negative if 

Finally, making an argument similar to that presented in our consideration of the 

second equilibrium point of Equation (4.5), we see that as long as this fixed point 

is non-negative, i\3 and i\4 will either be negative real eigenvalues or complex 

conjugate eigenvalues with negative real parts. Either way, the second fixed point 

will be asymptotically stable under the conditions 

(5.13) 
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The corresponding conditions for the third fixed point are 

(5.14) 

Un fortunately, it was not possible to derive the conditions for the stability of 

the final fixed point. 

5.5 Behaviour of the System 

D
ESPITE THE FACT THAT THE FINAL equilibrium point of Equation (5.2) proved 

intractable, our results about the first three fixed points suggest that there 

is a great deal of commonality between the behaviour of this model and that 

given by Equation (4.5). We can establish further evidence for this conclusion by 

examining some representative parameter values. 

To this end, we shall use those parameter values employed to illustrate Equa-

tion (4.5), as given in Table 4.1. Because the mutation rate is relatively insignificant 

in comparison to the virulence or resistance to therapy of each virus strain, we set 

111 = !lz = p. Furthermore, w e shall typically adopt a familiar value for the drug 

resistance of the wild-type virus, T] = 0.7. For the virulence of the mutant strains, 

we shall assume that the first strain is more virulent, with k1 = 0.003 (which, again, 

is about 80% of k) and k2 = 0.0027 (which .is about 70% of k). We shall vary T/l and 
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TJ2 • Our choice of initial conditions will echo those of Table 4.2, and is provided in 

Table 5.1. As in Chapter 4, the phase portraits will be supplemented by comparable 

initial conditions in order to better illustrate the dynamical phenomena. 

Table 5.1: Initial conditions for time series plots of Equation (5.1). 

Population Variable Initial Quantity 

Uninfected T cells T(t) 500mm-3 

T cells infected with wild-type virus U(t) 100mm-3 

T cells infected with first mutant virus U1(t) 10mm-3 

T cells infected with second mutant virus U2(t) 10mm-3 

To situate the model within the disease-free regime, w e follow the practise 

indicated in Chapter 4 and assume that all of the virus species are extremely 

susceptible to the drug therapy. We set T] = 0.9, T]l = 0.85 and T]2 = 0.8, and thus 

obtain the time series given in Figure 5.1. Evidently, for this four-dimensional 

model we cannot depict the full phase portrait. Since we are most interested in the 

two mutant strains here, we will instead depict the projection onto the (T, U1, U2) 

phase subspace. The asymptotically stable node corresponding to this case is 

illustrated in Figure 5.2. 

Next we can generate the case where the population of T cells infected by the 
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Figure 5.1: Time series for T(t) (black dotted line), U(t) (black line), U1(t) (grey line), 

U2(t) (grey dotted line) with 17 = 0.9, 771 = 0.85 and 172 = 0.8. 



---------~------------------------------------

5.5 BEHAVIOUR OF THE SYSTEM 

100 

90 

80 

70 

60 
7 so E 
5 40 

:S 30 

20 

10 

0 

- 10 

0 

··>····· 
··· · ··· ··:······· 

. ~ . . . . . . . 

. ~ ·.:.:.: ... ·. 

so 

100 

)f) 
. . . . ~ . . . . . . :·,, 

. . .· ...... . 

1000 800 
600 400 

T (t ) {mm- 3 ) 

122 

·. :'· . 
·:·. · .. : 

· .. ·. 

200 ° 

Figure 5.2: Phase portrait for Equation (5.1) with ry = 0.9, ry1 = 0.85 and 172 = 0.8. 

first mutant strain is dominant while the remaining infected T cell population 

is eliminated. We choose ry1 = 0.2 and ry2 = 0.15, and obtain the time series 

given in Figure 5.3. Here we see that, although the second mutation exhibits 

stronger resistance to drug therapy, this is insufficient to compensate for its reduced 

virulence. The phase portrait projection demonstrates that these parameter values 

give rise to an asymptotically stable spiral-node, as shown in Figure 5.4. 

The obverse case can be depicted by setting ry1 = 0.25 and ry2 = 0.1. The 

corresponding time series can be found in Figure 5.5. Now the discrepancy between 

the resistance of the two mutant strains is sufficient to lend the second strain the 
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Figure 5.3: Time series for T(t) (black dotted line), U(t) (black line), U1(t) (grey line), 

U2(t) (grey dotted line) with T]1 = 0.2 and T]2 = 0.15. 
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Figure 5.4: Phase portrait for Equation (5.1) with T)l = 0.2 and T}z = 0.15. 

selective advantage. The phase portrait - again indicating that the fixed point is 

an asymptotically stable spiral-node- is depicted in Figure 5.6. 

As with the second fixed point of Equation ( 4.5), it should be acknowledged 

that there are also parameter values for which no complex eigenvalues occur, and 

thus the dominance of the respective mutations is achieved via an asymptotically 

stable node, rather than an asymptotical~y stable spiral-node. We shall omit the 

illustration of these cases, however; their correspondence to Figures 5.3 and 5.5 is 

analogous to that described in Chapter 4. 

Lastly, we consider the regime in which the final fixed point is asymptotically 
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Figure 5.6: Phase portrait for Equation (5.1) with T]l = 0.25 and T]2 = 0.1. 

126 

stable. Although this was not tractable analytically, it is easy to illustrate, as with 

T] = 0.3, T]l = 0.2, T]2 = 0.15. The time series is given in Figure 5.7. Again, as in our 

consideration of the final equilibrium point in Chapter 4, it should be noted that 

the populations ofT cells infected by the mutant strains are not extinct in this case, 

but rather subsisting at a very low level. 

Exhaustive numerical investigations indicate that, in fact, these are the only 

types of behaviour exhibited by Equation (5.1) for the standard parameter values 

given in Table 4.1. This evidence, combined with the apparent parallels between the 

fixed points, non-negativity conditions and stability conditions for both the one-
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Figure 5.7: Time series for T(t) (black dotted line), U(t) (black line), U1(t) (grey line), 

Uz(t) (grey dotted line) with 17 = 0.3, 171 = 0.2 and 172 = 0.15. 
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and two-mutant models suggests - even in the absence of a complete analysis 

of the final fixed point of Equation (5.1) -that, indeed, the two models behave 

analogously, exhibiting only transcritical bifurcations and regimes in which at most 

one population of infected T cells exists at a significant level. 

Consequently, we conclude that for an ODE model of virus mutation, there is 

no need to consider the existence of more than one mutant species. One mutant 

strain will dominate all others on a short timescale (or all of them will diminish to 

insignificant levels, leaving the wild-type as the lone viable species) and so only 

this dominant mutant need be considered. As such, we can conclude that the 

model given by Equation (5.1) in fact simplifies to that given by Equation (4.3). 



Chapter 6 

A Model with Impulsive Moments 

A 
KEY SIMPLIFICATION MADE IN THE construction of the ordinary differential 

equation model given by Equation (4.3) is the assumption that the level of 

drug in the system is constant. Of course, this does not reflect reality: dosages are 

taken only periodically, and therefore the amount of drug in the system increases 

abruptly at these moments of time, and decays thereafter until the next dosage. No 

simple continuous function obviously simulates this kind of behaviour, and even 

if one did present itself, its use would still only approximate the true behaviour 

of the drug, since the amount in the system should change discontinuously at the 

instant in which a new dosage is taken [26]. 

In this chapter, we shall detail the construction of a new version of the model 
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which incorporates impulsive differential equations. We shall conduct an analysis 

of the dynamical behaviour of this model comparable to that performed for the 

ODE version, and examine the similariti~s and differences which arise from the 

two models. The use of impulses provides us with an opportunity to model phe-

nomena which could not be incorporated into Equation (4.3). For instance, it is 

common for HIV patients to adhere imperfectly to the drug therapy. Unlike con-

tinuous models, models with impulses provide a natural way to include various 

patterns of non-adherence into the HIV pathogenesis, and to otherwise alter the 

drug treatment regimen. We shall consider the effects of increasing or decreas-

ing the dosing frequency, and examine the ramifications of various schedules of 

imperfect adherence. 

6.1 The Author's Model, Impulsive Version 

S
INCE THE INTRODUCTION OF AN impulse into Equation (4.3) is directly tied to 

the drug concentration D(t), we must address the connection between this 

quantity and the parameters 17 and 17M, used previously to denote the efficacy of 

the (constant) drug concentration. Per Wahl and Nowak [27] we can instead write 

D(t) 
17 = D(t) + e 

and D(t) 
17M= D(t) +eM' 
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where 8 and 8M are the concentrations of drug which would inhibit by 50% the 

reproduction of the wild-type and mutant strains. 

We can now represent the dynamics of the drug concentration via a fourth 

equation, 

D(t) = -mD(t), (6.1) 

where m is the rate of clearance of the drug. We will assert that this equation is 

valid at all times t =I= tkl where tk are the moments of the impulsive differential 

equation - that is, the instants at which the amount of drug is replenished. The 

accompanying impulsive condition is 

(6.2) 

such that 

lim D(t) = D; +lim D(t). 
t-+t; t-+t; 

In other words, the concentration of drug in the host jumps by D; at each moment 
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The single-mutant model now becomes 

t(t) = s- dT(t)- ( 1- D~)(~ e) k:T(t)U(t)- ( 1- D(~~) eM) k:MT(t)UM(t) 

U(t) = (1 - 11) ( 1 - D~)(~ e) k:r(t)U(t) - oU(t) 
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. ( D(t) ) - ( D(t) ) - (63) 
UM(t) = !1 1 - D(t) + e kT(t)U(t) + 1 ~ D(t) + eM kM T(t)UM(t) - [)UM(t) · 

D(t) = -mD(t), t * tk 

6.2 The Fixed Points and Impulsive Periodic Orbits 

N
OTE THAT THE DIFFERENTIAL EQUATION for D(t) does not depend on the other 

quantities T(t), U(t) or UM(t), so we can easily integrate and solve for D(t) 

explicitly on each interval tk < t ~ tk+l: 

where 

Do = lim D(t). 
t-+t; 

(6.4) 

Although this expression tends towards zero over time, the impulsive condition 

indicates that D(t) will be forced away from zero at each moment of the IDE. Note 
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that the cumulative effect of the impulse can be expressed via the recurrence relation 

lim D(t) =lim D(t) + Di. 
t-+t; t-+lk 

If we assume that the impulsive moments tk are evenly spaced, let T = tk+l - tk. 

Then 

lim D(t) = [ litn D(t)] e-m-r 
t-+lk 1--+1;_1 

and so 

lim D(t) = [ lim D(t)] e-m-r + Di 
t--+1; t--+1;_1 

= [lim D(t) +vi] e-mT + Di 
1--+lk- 1 

Hence, repeating this process k times, we have that 

Note, however, that as k ~ oo we can use the result 

to obtain that 

k 1 
lim ~ e- ntnT = --
k--+oo L...J 1 - e-tn'[ 

n=O 

D' 
limD(t) ~ ---
1--+1+ 1 - e-mT 

k 
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Furthermore, if 

then 

Di 
lim D(t) = ---
t-+t+ 1 - e-mT 

k 

1 ( ) 
Di - mT 

imDt= e. 
t-+tk+1 1 - e-mT 
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We can conclude, then, that if the impulsive moments are evenly spaced, each new 

dosage will tend towards an impulsive periodic orbit with endpoints 

1- e- mT 
and 

Di - m-r ---e . 1- e-m'[ 

We label this impulsive periodic orbit D*; we shall use similar notation throughout 

this chapter to denote other periodic orbits. As before, we shall use the notation X 

to indicate a fixed point. 

Depending on the parameter values, we shall now show that the fixed points 

we computed for T(t), U(t) and UM(t) in examining the ODE model may persist 

in the IDE model, or they may be replaced by impulsive periodic orbits. As 

suggested by Smith? and Wahl [18], in the latter case we can characterise these 

periodic orbits (and analyse the tendency of solutions to move towards or away 

from them) in terms of D*. It should be noted that, in general, systems exhibiting 

periodic solutions cannot be analysed in the manner of an ODE system; however, 

the framework of IDEs permits an analogous approach [13-15,19]. 
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As in the case of the ODE model, our analysis can be simplified by introducing 

new parameters. Much like the introduction of the parameters a and aM to obtain 

Equation (4.5), we will set 

Observe that e and eM play a similar role in the IDE model to 1 - T] and 1 - T]M in 

the ODE model. Equation ( 6.3) now becomes 

· W WM 
T(t) = s - dT(t) - D(t) + e T(t)U(t) - D(t) + eM T(t)UM(t) 

. w 
U(t) = (1 - !-L) D(t) + e T(t)U(t) - oU(t) (6.5) 

. W WM 
UM(t) = 1-L D(t) + e T(t)U(t) + D(t) + eM T(t)UM(t) - oUM(t). 

Here we have suppressed the equation and condition on D(t), since we have already 

solved it analytically. As in the case of our investigation of Equation (4.5), we will 

make the substitution 

~=do 
s 

when suitable. 

Recall that the ODE model exhibited three fixed points: a disease-free fixed 

point, a fixed point at which the wild-type HIV strain was eradicated, and a fixed 

point at which the wild-type and mutants viruses coexisted. For the model with 

impulses, we again set T(t), U(t) and UM{t) equal to 0, and solve in terms of the 



6.2 THE FIXED POINTS AND IMPULSIVE PERIODIC ORBITS 136 

impulsive periodic orbit D*. We find that three solutions- which variously consist 

of either fixed point values or additional periodic orbits - now arise, and can be 

classified in a similar manner. 

First, the disease-free fixed point of Equation ( 4.5) 

- s 
T = d' u = UM = 0 (6.6) 

is a fixed point of Equation (6.5). In other words, if the parameters are such that 

HIV will actually be eradicated then the long-term behaviour is independent of the 

treatment schedule: after sufficient time has passed, there is no virus remaining to 

be affected by the drug. 

The second solution is actually one in which only U(t) reaches an equilibrium 

value, while T(t) and UM(t) follow impulsive periodic orbits proportional to D*. 

Specifically, these are 

(6.7) 

In this instance, the wild-type virus is annihilated in favour of the mutant strain. 

However, the populations of both the uninfected T cells and the T cells infected by 

the mutant virus continue to vary as the drug level varies - with, as we would 

expect, the population of uninfected T cells increasing as the amount of drug in the 

system increases, and the population of infected T cells decreasing. 
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The final solution is one in which each of T(t), U(t) and UM(t) follows an im-

p ulsive periodic orbit . Unlike the previous case, however, the dependence of U(t) 

and UM(t) is no longer a simple matter of direct proportionality to o·. The periodic 

orbits are now given by 

where 

r = (1 _o~-L)w (o· + e), 

u· = [(1 - ~-L)w(o· + eM)- wM(o· +e)]~· 
I 

(JJ 

~· = s[(l -~-L)w- {3(0• +e)] 
6(1 - /1)[w(D• + eM)- WM(D• + e)] 

(6.8) 

6.3 Non-negativity of Fixed Points and Impulsive Pe-

riodic Orbits 

O
NCE AGAIN, IT IS IMPORTANT TO consider the conditions we must place upon 

the parameters to ensure that each fixed point or impulsive periodic orbit 

remains positive. Observe that, as can be seen from Equation (6.4), D(t) > 0 for all t, 

and hence o· > 0 as well. In addition, note that w, WM and f3 are positive quantities. 

As with the ODE model, the fixed point given by Equation (6.6) is non-negative 

for all parameter values, since both sand dare positive (guaranteeing the positivity 

of T) while U = UM = 0. 
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In the case of the impulsive periodic orbit given by Equation (6.7), we have 

u = 0. r is a quotient of positive parameters multiplying the positive periodic 

orbit D·, so r > 0 as well. More interesting is U~. It will be non-negative as long 

as 

(6.9) 

which is analogous in form to the condition for non-negativity derived for the 

second fixed point of the ODE model, Equation (4.9). 

This condition can perhaps more usefully be written in an impulsive context as 

w M >D. + e 
~ - M· (6.10) 

Recall that D• is not a fixed value, but rather a periodic trajectory driven by the 

impulsive moments. This means that the condition given by Equation (6.10) may 

not be satisfied for the entire period of D•, but may be satisfied for a subinterval 

of that period. In other words, U~ may be negative for part of the orbit of D•, 

and non-negative for the remainder of the orbit. Obviously, this is behaviour not 

seen in the ODE version of the model, where a condition such as Equation (4.9) 

guarantees the non-negativity of the corresponding equilibrium point for all t. 

Finally, we come to the impulsive periodic orbit given by Equation (6.8). Once 

again, r is a positive multiple of D•, so it must be non-negative. By performing 
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an analysis analogous to that given for the third fixed point of Equation (4.5), we 

conclude that u· and u~ will be non-negative as long as 

(1- f1)w(D* + 8M) ~ w(D* + 8) and w(1- f1) ~ ~(D* + 8). (6.11) 

As with the preceding, there are clear similarities to the corresponding condition 

given in Equation (4.10), but this time it is more useful to rewrite the condition in 

the form 

(1 - f1 )w > D* + 8 . 
~ -

(6.12) 

Again, we note the possibility that these conditions may be satisfied for some, but 

not all, of the periodic orbit D*. 

6.4 Eigenvalues and Stability 

I
N THE PREVIOus SECTION, WE DREW A number of parallels between the conditions 

under which the fixed points or impulsive periodic orbits of the impulsive 

model are non-negative, and the conditions under which the fixed points of the 

ODE model are non-negative. We shall make similar comparisons in studying the 

eigenvalues, and hence the stability, of these fixed points and impulsive periodic 

orbits, observing again that the key difference in the case of Equation (6.5) is the 
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dependence upon the state of the impulsive periodic orbit o· describing the in vivo 

drug levels. 

The Jacobian matrix of Equation (6.5) is given by 

-d- o~8 U- o~~M UM -o~8T WM T 
-0+8M 

J= (1-p)w U 
0+8 

(1-p)w T- 6 
0+8 0 

flW u WM u 
0+8 + 0+8M M 

flW 
0+8T o~~M T- 6 

As in Chapter 4, we shall determine the conditions under which each of the fixed 

points and impulsive periodic orbits is stable, that is, under which J possesses only 

negative eigenvalues. 

For the disease-free fixed point, the eigenvalues of the Jacobian matrix are 

S[WM- ~(D* +eM)] 
Az = d(D• +eM) I 

,\ _ s[(1 - /l)w- ~(D* + e)] 
3 - _ _____:~d(_D_• _:+_e_) --. (6.13) 

Evidently, ,\1 < 0 for all feasible values of d, while ,\2 and ,\3 are negative only if 

~(D* + eM) > WM and ~(D* + e) > (1 - /l)W. (6.14) 

These conditions can be compared to those for the first fixed point of Equation ( 4.5), 

given by Equation (4.12). In this case, they can more usefully be written as 

(6.15) 

The first of these conditions coincides with the condition under which the im-

pulsive periodic orbit given by Equation (6.7) becomes negative, as indicated by 
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Equation ( 6.10). The other condition implies that the impulsive periodic orbit given 

by Equation (6.8) is also negative, as given by Equation (6.12). Hence, exactly as in 

the ODE case, the disease-free fixed point is asymptotically stable only when the 

system possesses no other non-negative fixed points. 

For the impulsive periodic orbit given by Equation (6.7), in which the T cells 

infected with the wild-type virus are driven to extinction in favour of the mutant 

strain, the eigenvalues of the Jacobian matrix are 

6[(1- r)w(D· +eM)- wM(o· +e)] 
i\.1 = WM(D• +e) I 

-SWM ± ~s2w~- 4C52s(D• + eM)[wM- ~(D• +eM)] 
i\.23- ------~----------------------------' - 2C5(D• +e) 

(6.16) 

Considering i\.1 first, we immediately see that this eigenvalue will be negative if 

We can subject i\.2,3 to the same analysis employed for the eigenvalues of the cor-

responding fixed points of the ODE model. Thus we conclude that, when this 

impulsive periodic orbit is positive, as fulfilled by the condition 

as given in Equation (6.10), i\.2,3 will possess a negative real part (although it may be 

a real or complex number). Thus these three eigenvalues will all possess negative 
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real parts as long as they fulfill the joint conditions 

which is similar to Equation (4.14) in the ODE case. In this context, we more 

usefully write these conditions in the form 

UJM > 0 * + 8M and 
~ 

(6.17) 

The impulsive periodic orbit given by Equation (6.8) yields the following eigen-

values of J: 

A2,3 = 2o(D~ +e) { -s(1- f-L)cu ± ~s2(1 - f-L}2cu2
- 4o2s(D• + 8)[(1- f-L)cu- ~(D• + 8)]}. 

(6.18) 

In order for A1 to be negative, we require 

As with the corresponding condition for the third fixed point of the ODE system, 

this is the antithesis of the condition found for A1 of the impulsive periodic orbit 

given by Equation (6.7). Also as in the ODE case, we can pursue an analysis similar 

to that of the second and third eigenvalt1es of the preceding impulsive periodic 

orbit. We find that, as long as the impulsive periodic orbit given by Equation (6.8) 
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is positive, A.2,3 must possess a negative real part. In other words, the desired 

condition is 

(1 - 11)w > ~(o· + e), 

although the eigenvalues may be real or may form a complex conjugate pair. Thus 

the eigenvalues of this impulsive periodic orbit will all be negative as long as the 

dual conditions 

are satisfied. Note the similarity to Equation (4.17). We can rewrite these conditions 

as 

and (6.19) 

6.5 Behaviour of the System 

A
S WITH THE ORDINARY DIFFERENTIAL equation model given by Equation (4.5), 

we can establish four regimes of behaviour for the system of Equation ( 6.5). 

These parallel the four regimes described for Equation (4.5), but are intrinsically 

dependent upon the impulsive periodic orbit o·. Consequently, as the amount of 

drug in the body changes, the positivity and stability of the other fixed points and 

impulsive periodic orbits can also change, even if all the param eters of the system 
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remain constant. Hence it makes the most sense to characterise these regimes in 

terms of the drug concentration wherever possible. The regimes of behaviour are 

as follows: 

1. v· +eM> W~M and v· + e > (
1 -~fl)UJ: the fixed point given by Equation (6.6) 

is positive and stable; the impulsive periodic orbits given by Equations (6.7) 

and (6.8) are negative and unstable (there is enough drug in the system to 

suppress both the wild-type and mutant virus strains), 

2 wM v · e d UJM v· +eM h £. d · · b E · (6 6) . - > + M an (1 ) > D e : t e lXe pomt giVen y quahon . 
~ -flW •+ 

is positive and unstable; the impulsive periodic orbit given by Equation (6.7) 

is positive and stable; the impulsive periodic orbit given by Equation (6.8) is 

negative and unstable (the mutant strain is sufficiently resistant to the drug, 

whereas the wild-type virus is not), 

3 (l- fl)W P. WM h f" d . . b E . (6 6) . . . . D· + e > JJ > D· + eM: t e lXe pomt giVen y quahon . lS positive 

and unstable; the impulsive periodic orbit given by Equation (6.7) is negative 

and unstable; the impulsive periodic orbit given by Equation (6.8) is positive 

and stable (the mutant strain is severely inhibited by the drug, but the wild-

type virus successfully resists it), 

(1- fl)W WM 
4. D• + e > D• +eM > ~: the fixed point given by Equation (6.6) and the 
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impulsive periodic orbit given by Equation (6.7) are positive and unstable; 

the impulsive periodic orbit given by Equation (6.8) is positive and stable (the 

drug concentration is insufficient to inhibit either virus variant). 

6.5.1 Numerical Simulations: Parameter Values 

We will now illustrate each of these regimes for appropriate parameter values. 

Many of the quantities chosen for Table 4.1 remain suitable, but we now have 

additional parameters whose values must be substantiated. The updated list of 

parameter values is given in Table 6.1. Note that, as in Chapter 4, we have 

We do not seek to model the effects of any particular drug, and so we have 

chosen typical values for 8 and m here. As with the ODE model, we have particular 

freedom to choose the value of eM, depending upon the strength of the resistance 

of the mutant strain that we wish to model. 

Furthermore, we now require values to describe the impulse. We shall assume 

that the moments of impulse are evenly spaced, with a new dose of the drug 

therapy taken daily, so tk = k days. We shall additionally assume that the amount 
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Table 6.1: Parameter values for Equation (6.3). 

Parameter Symbol Quantity References 

production of new T cells s 20d-1mm-3 [ 4,23] 

death rate of healthy T cells d 0.02d-1 [23] 

death rate of infected T cells 6 o.sd-1 [17,23] 

virulence of wild-type k 0.0038mm3d-1 [4,16,17,23] 

virulence of mutant kM 0.003mm3d-1 [4] 

mutation rate from wild-type fl 3 X 10-5 [4,24,25] 

drug concentration for 
e 3 X 10-8M [27] 

50% inhibition of wild-type 

rate of drug clearance m 12d-1 [17, 18] 
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of drug introduced at this point is 

D; = 6 X 10-6M, 

which again reflects a typical value suggested by [17-19]. Finally, for convenience, 

we shall assume that our numerical simulations start precisely at an impulsive 

moment (that is, that treatment has just begun) so that Do = D;. The augmented 

table of standard initial conditions, which otherwise resembles Table 4.2 for the 

ODE model, is given in Table 6.2. 

Table 6.2: Initial conditions for time series plots of Equation (6.3). 

Population Variable Initial Quantity 

Uninfected T cells T(t) 500mm-3 

T cells infected with wild-type vi~us U(t) lOOmm-3 

T cells infected with mutant virus UM(t) lOmm-3 

Drug concentration D(t) 6 X 10-6M 

A time series depicting the evolution of the drug concentration under the given 

parameter values with tk = k days is given in Figure 6.1. By way of comparison, a 

corresponding time series for the case where tk = 0.2k days is given in Figure 6.2. 

We now proceed with our numerical investigation of Equation (6.5) in much 

the same way as we explored Equation (4.5) in Chapter 4. The impulsive system 
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Figure 6.1: Time series for D(t), with tk = k days. 

10 

9 

8 

7 

~ 
C) 

4 

3 

2 

1 

0 
0 1 2 3 4 5 

t (days) 

Figure 6.2: Time series for D(t), with tk = 0.2k days. 
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permits us greater flexibility, because we can now manipulate elements such as 

the dosing period, and consider the possibility that the patient does not adhere 

completely to the treatment regimen. However, we shall defer these topics to later 

sections of this chapter; to obtain a basic understanding of the system given by 

Equation (6.3), we shall leave the period of the dosages unchanged, and instead 

manipulate the other parameters of the model. 

To follow the methodology of the preceding chapter, it would appear that the 

parameter which could be most usefully treated as the principal bifurcation pa

rameter is eM, with other values altered depending on the needs of each particular 

regime. However, because o· now plays such a prominent role in the evolution of 

the model, it will frequently be the case that the system will shift from one regime 

to another within a single impulsive period. This is important behaviour that we 

will investigate later in this section, but for our initial observations we wish to keep 

the system within the same regime for all t. This is most usefully accomplished 

by considering a slower clearance rate of the drug, and so in these first numerical 

simulations we will in fact find ourselves adjusting the value of m quite often. 
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6.5.2 Numerical Simulations: The Disease-Free Equilibrium 

To begin, we briefly consider the first regime, in which the disease-free equilibrium 

is asymptotically stable. We have shown analytically that this is identical to the 

corresponding result for the ODE model: there are no impulsive periodic orbits 

apart from D* and so this is a true fixed point. Unlike Equation (4.3), it is more 

difficult to place the system in this regime due to the fact that the amount of drug 

is no longer assumed to be constant: as time progresses between dosages, the 

influence of the drug quickly subsides. 

Under the given parameter values, 

so in order for the first condition of this regime to be satisfied for all t, we must 

have min D(t) > 58M. However, for the indicated parameter values, 

D(1) = 0 0 exp -12 ~ (3.7 X 10-5)00. 

Since D0 = 6 initially, and becomes 6 + D(1) ~ 6 at subsequent impulsive moments, 

it is certainly true that minD(t) < 58M. Hence, in order to illustrate this regime, we 

will consider a drug which is unrealistically robust, such that m = 2d-1
. We will 

also let the mutant be scarcely more resistant to treatment than the wild-type, with 
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The time series plot for this situation is given in Figure 6.3. As anticipated, 

there appears to be no periodic behaviour associated with this regime. In fact, the 

graph is virtually indistinguishable from the corresponding ODE case depicted in 

Figure 4.1, with both of the infected T cell populations tending towards extinction 

and the uninfected T cell population returning to its uninfected level of lOOOmm-3 . 
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Figure 6.3: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

8M = 1.0 X 10- 7M and m = 2d-1
. 



6.5 BEHAVIOUR OF THE SYSTEM 152 

6.5.3 Numerical Simulations: The Mutant-Dominant Impulsive 

Periodic Orbit 

For the second regime, we expect the impulsive moments to force periodic os-

cillations in both T(t) and UM(t). Again, complete subscription to this regime of 

behaviour is difficult to achieve simply by changing eM. We will assume that the 

mutant strain is more resistant to the drug, and that the drug is cleared at a rate 

slower than in the previous example, but still much faster than in our baseline 

assumption. Hence we let eM = 1.5 X 10-6M and m = 7d-1
. 
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Figure 6.4: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

eM= 1.5 X 10- 6M and m = 7d-1
. 
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The resulting time series is given in Figure 6.4. As expected, the population 

of T cells infected by the wild-type virus vanishes under these parameter values, 

while those infected by the mutant strain thrive. This plot appears to be similar 

to Figure 4.3. However, consider Figure 6.5. This is a magnification of Figure 6.4 

between t = 175d and t = 200d. Here we can see the persistent oscillations exhibited 

by UM(t) in response to the daily replenishment of the drug. Although not shown, 

similar behaviour can be observed in T(t). On the other hand, U(t) demonstrates 

no such oscillations: it simply tends towards extinction. 

35 

34.5 

34 

33.5 

7 33 
El 
s 32.5 

~ 32 

31.5 

31 

30L---------~----------~--------~ 
185 190 195 200 

t (days) 

Figure 6.5: Magnified view of UM(t) in Figure 6.4. 
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6.5.4 Numerical Simulations: The Coexistence Impulsive Peri-

odic Orbit 

For the third regime, we seek values for .which the wild-type virus will obtain a 

selective advantage over the mutant strain. This suggests that both forms of the 

virus should be strongly resistant to the drug, while the virulence of the mutant 

strain is significantly lower than its wild-type counterpart. We choose eM = 1.5 X 

as in our general assumptions. 
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Figure 6.6: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 
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Figure 6.6 gives the corresponding time series. In this case, all of the T cell 

populations exhibit periodic oscillations, although they are difficult to perceive 

given the scale of the plot. Even UM(t), which appears to have converged to zero, 

is in fact oscillating at very small, yet positive, values. This can be seen from the 

magnified plot given in Figure 6.7. 
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Figure 6.7: Magnified view of UM(t) in Figure 6.6. 

From our study of the ODE model in Chapter 4, we expect the behaviour of 

Equation (6.3) in the fourth regime to be essentially the same as in the third regime. 

We illustrate this situation by using identical parameter values as for Figure 6.6, 

with the exception of restoring kM = 0.003. The result is the time series depicted 
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in Figure 6.8 which does, indeed, vary only slightly from the previous plot (the 

population ofT cells infected by the mutant virus is slightly elevated, for instance). 

Again, each of T(t), U(t) and UM(t) exhibits periodic oscillations. 
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Figure 6.8: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

8M = 1.5 X 10-6M, 8 = 9.5 X 10-7M and m = 12d-1
. 

6.5.5 Numerical Simulations: Other Cases 

The cases considered so far are highly speCialised, however, because the parameter 

values have been carefully chosen so that the impulsive periodic orbit D* does not 

pull the system into different regimes of behaviour at different times. It is because 
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of the specialised nature of these examples that we have not pursued the cases for 

the second, third and fourth regimes in which no complex eigenvalues arise, as we 

did for the ODE system in Chapter 4. It is far more likely that the basin of attraction 

will change as the drug concentration decreases between impulsive moments. 

Consider, for example, the case where all the parameter values are as given in 

Table 6.1, and eM = 3.0 X 10-7M (an order of magnitude greater than e). Observe 

that 

lim D(t) ~ 3.7 x lo-s « D; 
1--+1-

so we can assume that, in general 

lim D(t) ~ Di = 6 and 
1--+t; 

lim D(t) ~ 3.7 x l o-s. 
t -+ t;; 

Immediately upon the initiation of a new treatment period, 

0• + eM ~ 6.3 > WM = 1.8 
. ~ 

and 

• (1 - ,u)w o + e ~ 6.03 > ~ ~ o.23 

so the system lies within the first regime. In other words, the drug concentration 

is initially powerful enough to inhibit both the wild-type and mutant forms of the 

virus. 
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As time passes, however, the strength of the drug's influence quickly wanes. 

For instance, at t = tk + 0.25, 

while 

WM D* +eM 
( ) 

;::;:; 7.89 > e ;::;:; 1.82. 
1-fl w D• + 

This means that the system has now shifted to the second regime: the mutant strain 

is no longer controlled by the therapy, although the wild-type remains in check. 

By the timet= tk + 0.55, however, circumstances have changed again. Now we 

have 

v · + eM ;::;:; 0.31 < wF 

and 

cuM D* + eM 
(1 ) 

< 
0 

e ;::;:; 8.08. 
- p w * + 

The system now lies in the fourth regime, because the drug levels have reached 

sufficiently low levels so as to inhibit the spread of neither the wild-type nor the 

mutant virus. The system remains in the fourth regime until the drug level is 

replenished at t = tk+l, at which point this cycle begins to repeat. 

The time series plot for this situation is given in Figure 6.9. Observe that it 

is ultimately the second-regime-type behaviour which predominates: this makes 
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sense, because there is a substantial amount of time within each impulsive period 

during which the wild-type virus is inhibited and the mutant strain is not, and the 

virulence of the mutant virus is not drastically poor in comparison with that of the 

wild-type. That is, the difference between k and kM is not sufficient to allow the 

wild-type form to "catch up." Nonetheless, the rise of the mutant strain is slow, 

with the crossover not occurring until t ~ 81 days. 
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Figure 6.9: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

This situation can be drawn out even further. The dominance of the mutant 

strain demands that its resistance to the drug be sufficiently great (compared to 
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the wild-type) so as to compensate for its reduced virulence. If the mutant is 

slightly less resistant to therapy than in the preceding example, it will take a much 

longer time to become the prevalent species of virus. Consider the system with 

eM = 2.0 x 10-7M. On each impulsive period, the model follows the same evolution 

as described above, shifting from the first regime initially, to the second regime, 

and finally to the fourth regime. As shown in Figure 6.10, the overall behaviour of 

the system is much like that of Figure 6.9. However, in this case, the population 

ofT cells infected by the mutant virus does not exceed the population ofT cells 

infected by the wild-type virus until t ~ 401 days. 

Ultimately, the resistance of the mutant strain can be lowered to such a degree 

that this form of the virus loses its selective advantage. At eM = 1.0 X 10-7M, for 

instance, the system still goes through the same three stages already described, but 

now the growth of the mutant virus is sufficiently impaired that the more virulent 

wild-type remains dominant for all t, as shown in Figure 6.11. 

Other paths through the regimes of behaviour are also possible. For instance, if 

the mutant virus is very resistant to the drug then it will never be controlled. If we 

let eM= 3.0 x 10-6M, for example, the system begins in the second regime, since at 

t = tb 

v· +eM~ 9.o < ~M = 18 
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Figure 6.10: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with 8M = 2.0 X 10- 7M. 
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Figure 6.11: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 
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and 

D* +eM wM 
D* + e ~ 1.49 < (1 - fl)W ~ 78.9. 

Subsequently, at t = tk + 0.6, the first inequality is still obeyed, with 

but now 

D* +eM wM 

e ~ 87.1 > (1 ) 1 

D* + - f1 w 

situating the system within the fourth regime. As a result, the mutant virus rises 

to prominence much more quickly than in the previous examples. This is shown 

in Figure 6.12. 

The same routes could also be accomplished by varying k instead. Allowing 

variation in the other parameters opens up still more potential behaviours for the 

system. We will not attempt to exhaustively catalogue the resulting variations here, 

but prefer to acknowledge their existence. Instead, we will now take advantage 

of the opportunities offered by the impulsive differential equation framework to 

investigate other phenomena associated with HIV and drug therapy. 
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Figure 6.12: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 
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6.6 The Effect of Changing the Dosing Interval 

A
PART FROM THE ADDED REALISM offered by the impulsive differential equation 

model, we now have the versatility to keep the standard parameters of 

the system constant and observe what happens when we vary the impulsive effect 

itself, specifically by altering the instances of the drug replenishment. 

The most basic way of going about this is to simply change how frequently 

a new dose is introduced. We expect that a shorter dosage period will result in 

the suppression of both infected T cell populations, with the uninfected T cell 

population becoming increasingly resilient. Although the mutant strain will be 

inhibited more than at longer dosage periods, it will be less negatively affected than 

the wild-type, and so will become the dominant virus species more quickly. On the 

other hand, less frequent replenishment of the drug will cause the mutant form to 

lose its selective advantage: with weaker inhibition of the virus strains, the fact that 

the mutant is less virulent than the wild-type will result in the latter becoming the 

foremost virus species. We also expect the uninfected T cell population to become 

smaller. 

To see this, consider the parameter values used to generate Figure 6.9, with eM = 

3 x 10- 7M and all other parameter values as given in Table 6.1. As already noted, 
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with daily doses the mutant strain becomes dominant at t ~ 81 days. Observe 

also that T(t) experiences small oscillations with a mean value of approximately 

223.8mm -3 . 

We begin by shortening the interval between consecutive doses. If this is re

duced to 0.75 days, we obtain the time series depicted in Figure 6.13. This reflects 

precisely the behaviour we anticipated. The mutant strain becomes dominant over 

the wild-type very quickly - at t ~ 22.5 days, even before the transient effects 

of the initial conditions have become negligible. The uninfected T cell population 

now subsists at roughly 251.7rnrn-3 . 

These effects become even more pronounced if we make the drug replenishment 

twice as frequent as in our baseline assumption, occurring every 0.5 days. As shown 

in Figure 6.14, the mutant form of the virus almost instantly prevails over the wild

type strain, while the uninfected T cell population rises to a mean count of about 

332.9mm-3. 

Despite the increase in the frequency of drug therapy in these two examples, 

the mutant virus still manages to eke out a substantial (if reduced) existence, and 

the uninfected T cell levels are significantly below the disease-free ideal. If we 

allow the doses to be extremely frequent- for instance, every 0.2 days- then the 

drug remains at sufficient levels to completely inhibit both strains of the virus in 
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Figure 6.13: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM = 3 x 10- 7M and therapy occurring every 0.75 days. 
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Figure 6.14: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM = 3 x 10-7M and therapy occurring every 0.5 days. 
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the long-term. As seen in Figure 6.15, under these circumstances the uninfected 

T cell count slowly returns to pre-infection levels. 
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Figure 6.15: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM = 3 x 10-7M and therapy occurring every 0.2 days. 

Note that HIV drugs are often cytotoxic or induce other undesirable side effects 

in the sufferer that are not evident from the model. The idea of simply flooding the 

patient with these medications is therefore unrealistic. 

These results are also sensitive to parameters such as the resistance of the mutant 

strain. For instance, if we repeat Figure 6.15 but with a much more resistant 

mutant (eM = 3 x 10-6M) then we find that the mutant form again survives in 
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significant quantities, and the uninfected T cell count remains low. This is depicted 

in Figure 6.16. 
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Figure 6.16: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM= 3 x 10-6M and therapy occurring every 0.2 days. 

Now consider some examples in which the replenishment of the drug becomes 

less frequent. In Figure 6.17, the period is prolonged by 5%, to 1.05 days. Observe 

the sensitivity of the dominance of the mutant strain to the dosage frequency: it 

now takes much longer for the level of the T cells infected by the mutant virus 

to exceed that of the T cells infected by the wild-type strain. This now occurs at 

t ~ 128 days. Less aggressively affected is the population of uninfected T cells. As 
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expected, its long-term mean value does fall, but only slightly, to approximately 

221.3mm-3. 
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Figure 6.17: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM= 3 x 10-7M and therapy occurring every 1.05 days. 

Figure 6.18 depicts what happens when the period is 20% greater than our 

baseline value, 1.2 days. There is now sufficiently little drug introduced that the 

greater resistance of the mutant is no longer preferable, given its reduced virulence. 
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Figure 6.18: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with eM= 3 x 10-7M and therapy occurring every 1.2 days. 
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6.7 Drug Holidays: The Effects of Non-Adherence to 

Treatment 

I
N THE PRECEDING, WE HAVE ASSUMED THAT the patient adheres perfectly to the as

signed (periodic) course of drug therapy. In reality, however, there are many 

reasons why HIV sufferers do not follow treatment stringently- whether due to 

the toxic nature of the drug cocktails, the inconvenience of the regimen, or another 

reason. Some researchers have suggested that it is advantageous for a patient 

to take so-called "drug holidays" or structured treatment interruptions, with the 

principal argument for this course of action being that it stimulates the immune 

system to better fight the virus of its own accord [20, 22,28-32]. 

Given that the framework of impulsive differential equations enforces no re-

quirement that the impulsive moments be periodic in nature, Equation (6.3) repre-

sents a mechanism by which the effects of these drug holidays can be numerically 

investigated. Of particular interest is the effect of nonadherence on the population 

of uninfected T cells, and on the relative dominance of the two virus strains. 

We will first explore what happens when z scheduled doses of the drug are 

missed within a given period of time. We shall conduct our investigations with 

the parameter data of Table 6.1 and 8M = 3.0 X 10- 7M, so that Figure 6.9 represents 
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the "baseline" behaviour (that is, it represents the evolution of the system under 

perfect adherence). The most straightforward case to consider is that in which 

these doses are missed regularly. 

First, consider what happens when z ·= 20 over a 500-day interval, such that 

treatment does not occur for t = 25, 50, 75, .... This is depicted in Figure 6.19. 

Observe that the overall behaviour of the system does not change significantly: the 

population of T cells infected by the mutant strain of the virus eventually super

sedes the population ofT cells infected by the wild-type virus, while the population 

of uninfected T cells oscillates about some median value that is significantly lower 

than the disease-free ideal. 

However, several differences in the details are apparent. First, the introduction 

of structured treatment interruptions causes more significant oscillations in each 

of the three populations. This is because the oscillations present in the perfect

adherence case still occur, but these are now superimposed upon the more sub

stantial oscillations caused by the missed dose. The imperfect adherence shifts the 

system towards a different set of fixed points or impulsive periodic orbits, and once 

the patient returns to the established treatment schedule, the former behaviour be

gins to reassert itself, until the next missed dose moves it away again. This is 

illustrated in the magnified view of T(t) provided in Figure 6.20. 
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Figure 6.19: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with 8M = 3 X 10- 7M and Z = 20 missed treatments (evenly distributed). 
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Figure 6.20: Magnified view of T(t) in Figure 6.19. 
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The mean long-term value of the uninfected T cells becomes slightly lower as 

a result of the imperfect adherence, now standing at approximately 220.7mm-3
. 

Furthermore, the point at which the mutant strain of the virus comes to dominate 

the wild-type is much later, occurring at about t = 114 days. This makes sense, 

because there are now prolonged periods during which the mutant form loses its 

selective advantage. 

A subsidiary question, then, is to ask how the average total population of 

infected T cells U(t) + UM(t) is affected by this jostling for position between the two 

virus strains. In Figure 6.9, the average count is 31.18mm-3, while in Figure 6.19 
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it actually drops very slightly, to 31.12mm-3. However, in Figure 6.9, the infected 

T cells account for 12.23% of the total T cell population; in Figure 6.19, they represent 

12.36%. As we continue to investigate drug holidays, we shall return to these values 

as additional indicators of the success or failure of the treatment non-adherence: 

for example, it may be worth suffering a small drop in the uninfected T cell count 

in return for a significant drop in the total infected T cell population. 

As a second illustration, consider the case where z = 50 misses over a 500-

day interval. This is depicted in Figure 6.21. In this case, the shorter span of 

time between missed doses serves to tame the oscillatory behaviour observed in 

Figure 6.19: the system simply does not have enough time to (nearly) re-attain the 

perfect-adherence state before another missed dose occurs. The mean long-term 

value of the uninfected T cell population is now 216.7mm-3, which again is smaller 

than in the preceding cases. The mutant strain does not become predominant until 

about t = 350 days. The mean long-term total number of infected T cells rises 

slightly to 31.40mm-3, representing 12.67% of the total number ofT cells. 

Table 6.3 lists data for several values of z over a 500-day span. This illustrates 

the trend described above: as more doses are missed, the virulent wild-type plays 

an increasing role in the pathogenesis, a.nd so the uninfected T cell levels drop 

while the total infected T cell counts ultimately rise. 
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Figure 6.21: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with 8M = 3 X 10-7M and z =50 missed treatments (evenly distributed). 

Table 6.3: Effects of missing z evenly-spaced drug treatments over 500 days. 

z mean T(t) (mm-3) mean U(t) + UM(t) (mm-3 ) % of inf. T cells 

10 221.8 31.21 12.34 

20 220.7 31.12 12.36 

30 218.8 31.31 12.52 

50 216.7 31.40 12.67 

75 208.0 31.69 13.22 
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Of course, it is unreasonable to expect that an HIV sufferer would be so dogmatic 

in their non-adherence to the treatment regimen. The preceding experiments were 

therefore repeated, but with the missed doses assigned according to a random 

distribution. Figures 6.22 and 6.23 depict two different 500-day cycles, each with a 

different random distribution of z = 20 drug holidays. 
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Figure 6.22: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with 8M = 3 X 10-7M and Z = 20 missed treatments (randomly distributed). 

This random distribution does, however, raise the possibility that a drug holiday 

might have a different effect on the overall behaviour of the system if it occurred 

very early in the 500-day interval, before transient phenomena arising from the 
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Figure 6.23: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) 

with 8M = 3 X 10-7M and z = 20 missed treatments (randomly distributed, different 

from Figure 6.22). 
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Table 6.4: Effects of missing z randomly-distributed drug treatments over 500 days. 

z mean T(t) (mm-3) mean U(t) + UM(t) (mm- 3) % of in£. T cells 

10 221.9 31.20 12.33 

20 220.4 31.22 12.41 

30 219.0 31.26 12.49 

50 216.2 31.32 12.65 

75 211.8 .31.28 12.87 

choice of initial conditions can still be felt. Of particular concern would be a scenario 

in which a number of drug holidays are clustered early in the integration. To guard 

against this, a randomly-distributed schedule of missed doses was fabricated. This 

identical schedule was then applied to several concatenated 500-day intervals (in 

which the final state of one cycle was used to provide the initial conditions for 

the next). In this manner, the effects of the original transient behaviour could be 

suppressed. 

Table 6.4 shows the results of these numerical experiments, which are taken as 

the mean of a large number of trials. While the data do not deviate significantly 

from that of Table 6.3, note that the infected T cells uniformly represent a smaller 

percentage of the overall T cell count when the missed doses are randomised. 
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While this approach is more realistic than evenly spacing the drug holidays, it 

is still unsatisfactory, because drug holidays are not usually taken completely at 

random, either. In particular, rather than missed dosages occurring in isolation, 

it is likely that several consecutive dosages will be missed. As a final numerical 

experiment, we consider the extreme case in which all z instances of non-adherence 

occur sequentially, as shown in Figure 6.24. This graph indicates that having a 

sufficient number of treatment interruptions in succession can (temporarily) reverse 

the dominance of the mutant form of the virus. 

Again, we wish to ensure that these results are not affected by the possibility that 

this grouped holiday might occur early in the given 500-day cycle. We follow the 

same procedure outlined above, concatenating several such intervals during which 

the grouped treatment interruption occurs at the same point of each iteration. 

Table 6.5 shows the results of these trials. The raw numbers of uninfected 

and infected T cells do not demonstrate a significant change from the preceding 

tests. However, the infected T cells do represent a smaller percentage of the total 

T cell population than in cases where the drug holidays are randomly distributed. 

This is particularly apparent in comparing these results to the case where the drug 

holidays are evenly spaced. 

We can now draw two conclusions from these numerical investigations of non-
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Figure 6.24: Time series for T(t) (dotted line), U(t) (black line), UM(t) (grey line) with 

8M = 3 X 10-7M and Z = 20 missed treatments (consecutive, beginning at t = 171 

days). 

Table 6.5: Effects of missing z consecutive drug treatments over 500 days. 

z mean T(t) (mm-3) mean U(t) + UM(t) (mm- 3) % of inf. T cells 

10 222.5 31.10 12.26 

20 221.9 31.14 12.31 

30 221.1 31.19 12.36 

50 218.8 31.26 12.50 

75 217.9 31.27 12.55 
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adherence to therapy using the model represented by Equation ( 6.3). First, the effect 

of structured treatment interruptions is small in the context of the ramifications for 

the HIV pathogenesis. Second, as indicated by Tables 6.3, 6.4 and 6.5, drug holidays 

are less harmful if they occur closely together than if they are staggered. 



Chapter 7 

Concluding Remarks 

I
N THIS WORK, WE HAVE PRESENTED THREE new models for HIV drug therapy in the 

presence of both the wild-type virus and a resistant mutant strain. In particular, 

the IDE model offers the opportunity to both analyse and numerically simulate 

different treatment regimens within a mathematical framework. We have gone to 

some length to investigate and explore these models from the perspectives of both 

dynamical systems and rigorous computation. 

Inevitably - and, perhaps, encouragingly - many other avenues of research 

present themselves, both in terms of further study of the models constructed in this 

work, and of refining and augmenting these models to exhibit more sophisticated 

behaviour. In this final chapter, we enumerate some of these possible directions. 
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7.1 Global Dynamics of the ODE System 

A
LTHOUGH WE HAVE PROVIDED A thorough and rigorous stability analysis of the 

ordinary differential equation model given by Equation (4.3), these results 

possess certitude only on a local scale. What we were not able to accomplish in this 

work was an analysis of the global dynamics of the system. For example, we wish to 

establish that none of the functions T(t), U(t) or UM(t) become unboundedly large 

under any feasible parameter values. A .global stability analysis- presumably 

using the standard framework of Lyapunov functions and the LaSalle Invariance 

Principle (as in, for example, Guo [33])- is a desirable next step to enhance the 

sophistication of the mathematical understanding of Equation ( 4.3). 

7.2 Delay Differential Equations 

A
s BRIEFLY MENTIONED IN CHAPTER 3, another powerful tool for modelling HIV 

pathogenesis is delay (or functional) differential equations, in which the 

d ifferential equation involves both the current state of the variables as well as one 

or more past states. Delay differential equations can arise in HIV models in several 

ways: for instance, they could represent the pharmacological delay (that is, the fact 

that a drug will not affect the system immediately, but will take time to be absorbed 
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by the body) or the viral eclipse phase (the interval between the infection of aT cell 

by the virus and the production of nascent virions from the newly infected cell). 

These phenomena have been considered in various previous models [34-36] but 

the possibility of combining both a delay and an impulsive effect opens up a new 

realm of investigation. 

7.3 Sophistication of Drug Therapy Non-Adherence 

Patterns 

W
E WERE UNABLE TO FIND AUTHORITATIVE research on the pattern of behaviour 

amongst HIV sufferers who exhibit imperfect adherence to drug therapy. 

For instance, would such a patient typically miss just two consecutive doses? Or 

a full week? Or more than that? What is a reasonable interval between drug hoi-

idays, during which the patient remains adherent? Improved knowledge of these 

patterns - if, indeed, such patterns exist - would provide greater focus to the 

investigation of treatment interruptions using the impulsive differential equation 

model of Equation (6.3). 
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7.4 Generalisation of the Model to Encompass Other 

Classes of IDE 

A
S NOTED IN CHAPTER 2, THE FRAMEWORK of the impulsive differential equation 

admits more general impulsive moments than those utilised here. In 

particular, rather than assigning the impulsive effect to occur at prescribed moments 

tkt it is possible instead to stipulate that the impulse will occur when certain criteria 

are met. For example, this approach could be utilised to model the scenario wherein 

a new course of drugs is not taken according to a strict schedule, but is only begun 

when the T cell count falls below a given level. Comparison of the results of such 

an impulsive scheme with those of Equation (6.3) could offer considerable insight. 

7.5 Further Analysis of the Model with Impulses 

A
LTHOUGH THIS WORK DOES PROVIDE some analysis of Equation (6.3), the rig

orous study of impulsive differential equations (except under special cir-

cumstances, or through numerical simulations) remains a formidable challenge. 

The body of knowledge concerning IDEs is still at a fairly nascent stage, but the 

utility of the model presented here offers encouragement to advance the frontier 
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of knowledge of this subject. Certainly, additional analytical results would be 

invaluable in better understanding the role that the impulsive effect plays in the 

behaviour of the present model. 

7.6 Incorporation of Additional Immunological Phe-

nomena 

A
S DISCUSSED IN CHAPTER 3, THERE are many aspects of the immune system 

which are not dealt with (or which are dealt with in only a very ho-

mogenous way) in Equations (4.3) and (6.3). Components such as CDS+ T cells, 

macrophages and other phagocytes, and long-lived lymphocytes arguably play a 

crucial role in the HIV pathogenesis, and therefore it may be important to incor-

porate their effects into the models in a more sophisticated manner. Similarly, the 

models could be augmented with the inclusion of other HIV-related phenomena, 

such as latently-infected cells. 
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7.7 Restoration of Explicit Virus Populations 

F
INALLY, WE COULD REVISIT THE simplifying assumption that the infected T cells 

and corresponding virus populations are proportional to each other. As pre-

viously indicated, this would complicate the analysis of the model: Equation (4.3) 

would grow to include five ODEs (because separate equations would be needed 

for both the wild-type virus and the mutant strain), while Equation (6.3) would 

involve at least six equations and potentially more, even exhibiting multiple impul-

sive effects if different types of inhibition were incorporated, as in [18]. However, 

the dismissal of a simplifying assumption always raises the possibility of lending 

added accuracy to the model, and from there offers even more opportunities for 

further study, possibly in conjunction with some of the other ideas discussed in 

this chapter. 
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