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Chapter 1

Introduction t ' th. Immune System

and HIV

NE OF THE GREATEST HEAL1 CRISES of the modern era has been the outbreak of
O the HumanImmunoc iciency rus(HIV). Amongst the various weapons
brought to bear against HIV has been 2 mathematical model. In this work, we
shall introduce several novel models fo: :udying HIV. But before we can introduce
the analytical tools which will ¢ e these endeavours, it is first essential that we
acquaint ourselves with thet »>keyr .-world mechanisms that will contribute
to our models: on one side, the human mune system, and on the other, the HIV

pathogen.

























































1.2 Tue HumaN IMMUNOIL __ CIENCY \ U 20

such an extent that it is unable to combat opportunistic infections and tumours such
as tuberculosis, pneumonia, shingles ca ed by the Varicella zoster virus, Kaposi’s
sarcoma, and other maladies which a healthy immune system would normally be

able to eliminate. Death then, inevitably, results.


































2.2 TRANSCRITICAL BIFURCATIONS 31

the parameters which give rise to the bifurcation. Hence a bifurcation will be of
codimension 1 if it occurs when (some or all of) the m parameters meet just a single
condition.

In this work, we are interested only in the transcritical bifurcation, which is a
codimension-1 bifurcation. No equilibria are created or destroyed at a transcritical
bifurcation, but an exchange of stability oes occur, with an asymptotically stable
fixed point becoming unstable, and an stable fixed point becoming asymptoti-
cally stable. Geometrically, when y = i, the two equilibria pass through each other
at a point x = X, exchanging s ility as they do so.

More rigorously, for u € +ay define a transcritical bifurcation in the

following manner. [8, 10]
















2.3 AN INTRODUCTION TO DirrerENTIAL EQUATIONS wiTH IMPULSES 36

The first class of IDE under consideration shall be those for which the moments
of impulse are fixed. Inthisca  the set M; = {74} and is monotonically increasing.

The resulting system is

X(t) = f(tl X(t)), if t * Tk,
(2.6)
Ax = I(x(})), if t = 7.
In this simplest case, the solution x(f) of the IDE satisfies the ordinary differential

equation for t € (74, Txs1] as v 1l as the limit
lim x(t) = x(1¢) + L(x(T4) = Pk(x(Ti)),
—)’[k

where 1, : Q — Q. Note that we can therefore rewrite the system as

x(t)  ft,: ), if t # 1y,
2.7)

,ll.r? x Pr(x(Th))-

The other major class of IL ~ in which we may be interested is that for which
the moments of the impulse ef ts are not fixed  in other words, they will occur
when the system has attained a given st e. In this case, the system can be written

in a form similar to Equation (2.6):

x(t) = ft,x(t), it # T(x(t), (2.8a)

Ax = I(x(t)), if t = Te(x(t)). (2.8b)
















Chapter 3

Survey of Mc els of HIV

Pathogenesis

3.1 Introduction

HE BODY OF MATHEMATICAL ___ERATURE surrounding the study of HIV infection
T has grown in leaps an ands over the past two decades. Spurred in part
by the enc  ous public: - -of HIV, and .. part | the u " jue biomedical
questions raised by its pathoger s, mathematicians have developed a remarkable
array of models in an attempt  capture the behaviour of infection by HIV and its

response to various forms of






3.2 THE ONE-DIMENSIONAL MODEL 43

¢. Here P is in units of particles per volume per time, while ¢ is simply in units
of per-time. The clearance rate c is a broadly-defined constant incorporating the
action of cytotoxic T cells, macrophages, antibodies, and so forth, which assumes
that the rate at which the immune system extinguishes the virus is proportional to
the amount of virus present.

The simplest possible model for HIV infection [5] is thus as follows:
V= —cV().
This model can straightforwardly 1 solved to obtain the solution
V(t) = g +Cre™®,

for some constant C;. In the ; then, if some drug treatment were completely
effective and caused the production of ew virus to cease (rendering P = 0), the
rate of change of the virus ¢ entratic in the host would obey the elementary
differential equation

V() -cV(),

with an exponential solution

V(t) = Voe ™,

where the constant V rep t« revi ipop * ‘ion prior to therapy.


































3.5 MopELs witH DrRuG THERAPY 54

Sadly, no drug is perfect, and the model must (in principle) reflect the nonideal
effectiveness of the therapy. As in [5],t model the influence of RT inhibitors we

can replace Equation (3.1b) with
Uy =Q1-ner VOT() - 68U (3.10)

where ngr € [0, 1] represents the effecti' ness of the RT inhibition therapy. In the
ideal case where the drug cc ) letely inhibits the reverse transcription (so that

nrr = 1), this equation simply becomes
U(t) = -sU(D), (3.11)

implying that the infected T cell population will decay exponentially.

The effects of protease inhibitors are more complicated to model, because the
treatment leads to a new population, imely noninfectious virions. If we now
assume that V(t) is the population of strictly infectious virions, whereas Vy(t)
accounts for their noninfectious counterparts, we must replace Equation (3.1c)

with two equations:

V()= (1 -1 NOU(t) - cV(t)
(3.12)

V() = npNOU(t) = cVn(t)

where 1p € [0, 1] represents the effi wess of the protease inhibitor. In the case






















3.7 MoDpELS WITH IMPULSES 61

protease inhibitor, Up(t). They include two virus populations explicitly in their sys-
tem: the infections virions, V(t), and non-infectious virions produced by infected
T cells that are either defective or have i sorbed the protease inhibitor, V(t). The
novel parameters of Smith? and Wahl’s system include w (the fraction of virions
produced by an infected . cell which are themselves infectious), nr (the rate at
which the reverse transcripta: i ibitor inhabits the intracellular compartment
of the T cells), np (the rate at which the protease inhibitor inhabits the intracel-
lular compartment), mg (the rate at wl :h the reverse transcriptase inhibitor is
cleared from the intracellular irtm  t), and mp (the rate at which the protease

inhibitor is cleared from the intracellular compartment).



















Chapter 4

A New Model

HE AUTHOR’S ULTIMATE GOAL IN DEVELOPING a new mod¢ was to devise a more
T refined formulation for the prog ssion of HIV under the influence of drug
therapy. In particular, it was thought { be important to include in such a model
the mutation of wild-type HIV. As discussed in Chapter 1, mutation appears to be
a critical phenomenon in exp ning why HIV is so difficult to control pharmaco-
logically, and so it was felt that to ignore this mechanism would be to introduce a

fundamental oversimplification into the model.






















































4.5 BEHAVIOUR OF THE SYSTEM 85

suggested by [4,17,23]. Note that, with 1ese parameters values, we have fixed
B=5x10""mm3d",

Less clear-cut are the choices of values for ky,, nm and 7, which suggests that
we should vary each of these in order to situate the system within the four regimes
described above. Our general approach is to begin by varying ny as our chief
bifurcation parameter, since the effectiveness of the drug therapy relative to an
individual mutation is not predictive, being dependent upon both the nature of
the mutation and the type of therapy nployed. If this is insufficient, we shall
next vary 7, since different forms of tre ment will affect even the wild-type virus
in different ways [25]. Our baseline assumption, however, will be that the drug
inhibits 70% of the virus replication ( atis, . 0.7). Finally, if the need still
persists, we shall adjust our choice of ka since there is also no certitude as to how
virulent a mutant strain might be. Hov ser, as suggested by Nowak and May [4],

we will typically assume ka to be approximately 80% of k, and hencesetky; 0.003.

4.5.2 Numerical Simulations: The Disease-Free Equilibrium

First we illustrate the most trivial of the jur regimes described above, namely that

in which the disease-free equilibrium  the only stable fixed point. In this case,
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illustrates the presence of an asymptotically stable node in this casc.
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Figure 4.1: Time series for T(t) (dotted line), U(t) (black line), Unm(t) (grey line) with

nm =0.85and n=0.9.

Obviously, this is the optin  situation for a patient suffering from HIV. How-
ever, the situation described in which t : drug is extremely effective against both
the wild-type strain and the mu 1t strain is not very feasible. In reality, the virus
would mutate to produce a more strongly-resistant form. As such, while this fixed
point is of some mathematical erest, it does not reflect a reasonable choice of

parameter values,
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Figure 4.2: Phase portrait for Equation (4.3) with ny = 0.85 and 1 = 0.9.

4.5.3 Numerical Simulations: The Mutant-dominant Equilibrium

For the second regime, in which the pop  ation of T cells infected with the wild-type

virus dies out, we choose ny = 0.2 so
ay =0.0024 > and (1- p)a=0.00114 < ay.

The time series plot is given in Figure 4.3. Again, the graph bears out our analytical
expectations: the popul: nfected T cells attains an equilibrium state well
below its disease-free levels, while the T cells infected with the mutant virus are

selectively advantageous compared to those infected with the wild-type virus,

which vanish.
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Of note, there is an evident oscillation present in both © ) and Upm(t). This is
borne out by the phase portrait, given in Figure 4.4, which confirms the presence of
an asymptotically stable spiral-node, with the spiral existing in the (T, Up)-plane.

This is because the condition given by I uation (4.15) is satisfied:

2 2
20° 1- w/1—é z5.1x10—4<aM<£ 1+w/1—‘—1 ~ 0.049.
s o) S o)

What about parameter valuesinthis zime which giverise to an asymptotically

stable node, absent of spiral phenomena? We first examine the case where

aM<%§—2[l— \,1—%1.
ﬂ<7:2[1— \/1 g}

This result is not merely true for the values of s, d and 6 that we have selected, but

Observe that

is in fact independent of f  :ter values. To see this, assume again that 6 > d.
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Then we have

d d d?
1—5<1—5+2_62
dZ
<(1—‘2—5)
d d
1--<1-
\/ 0 20
d d
1- 1--
zo< o
2
@<£ 1_ 1_4
S o
[ d
1—4/1—-
p< S o

Thus, one way that the system could :in this second regime but exhibit only

26° [, d
ﬁ<aM<Tll— 1—'5]

However, the range of possible val s of a) which satisfy this inequality is

nodal behaviour is if

extremely small. By expanding as a Maclaurin series, we obtain the approximation

282 [ a) 287 d d ds  d? d?
1 — —_ ~ j— _ = = = —_.
s | \/1 6J s {1 (] 26 504)] s " as ﬁ+4s

Hence the length of the interval of ap v ues which exhibit the desired behaviour

262 [~ d & Py
T[l— 1—5— ~IS'—5X1O

is
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for the given parameter values. As such, the system is very close to the first regime,
and both the time series and phase port: t are nearly indistinguishable from those
depicted in Figures 4.1 and 4.2.

For instance, if we once again set 7 = 0.9, but now let 1y = 0.832, then
ap =5.04x107 > B

and

(1-pa ~3.8x107™* < ay,
so the system does indeed lie in the sec d regime. However, in this case,

252
|1_ ,/1_€]>aM,
S o

so the system will not exhibit a spiral-n.  e. However, the parameter values are so

close to those for the first regime that the steady-state values of T(t) and Up(t) are
T~9921 a 1 Uy=~032.

We therefore omit the time series and p.  se portrait for this case.

Let us now turn our attention to the maining possibility, in which

2
aM>z6_[1+,/1_é].
s 6

In order for this inequality to be satisfied without changing the values of param-

eters which do not directly re e to the mutant strain, the mutant would have to
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2), U(t) (black line), Up(t) (grey line) with
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T(t) (inm~3)

Figure 4.6: Phase portrait for Equation (4.3) with ny = 0.85 and n = 0.9.

4.54 Numerical Simulations: e Coexistence Equilibrium
For the third regime, we immediately have the first condition satisfied, since
(1 - u)a=0.00114 > B.

It is possible to choose values of ny and n which place us in this regime, but
only in a narrow range (for example, ny = 0.8 and 7 = 0.85) in which both virus
populations are largely suppressed. A better illustration of this regime can be
found by maintaining the values of the respective drug efficacies at ny = 0.2 and
our baseline assumption of n = 0.7, as we originally used in considering the second

regime. Instead, we will assume in this case that the virulence of the mutant strain
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Figure 4.8: Phase portrait for Equation 3) withny = 0.2and kv = 3.0x10"*mm™3.

eter values in which this is satisfied; the only modification we must make to our
earlier analysis is to acknowledge that it is now (1 — y)a which needs to fall within
a narrow interval of length approximately %. Keeping ny = 0.2 and ky = 3 x 107%,
we can situate the model within this interval while remaining in the third regime,
by setting n = 0.868.

Again, however, the proximity of these parameter values to those which would
place the system in the firstre , > 1 sinbehaviour similar to that depicted in

Figures 4.1 and 4.2. Here, for instance, 2 find that

1 ~996.8mm™>, 0.131 n73, HM ~ 7.28 X 107°mm~.
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As with the regime-two analogue of this situation, we shall omit the corresponding
time series and phase portrait.

The other possibility, that

22
(l—y)a>-g—

/ d
1+ 1—5],

cannot be achieved under the |  meter values established in Table 4.1. We have

1+ \/1 _ g] ~ 0.049,

26%
S

while
(1-pe =1 - w1 -k <k =0.0038.

Biologically speaking, it is probably not of any real-world interest. Nonetheless, if
we relax our restrictions on these param: >r values for the sake of providing a com-
prehensive mathematical ove ew of tI model, we could achieve this behaviour
by returning to the same param« :r va es used to generate Figures 4.7 and 4.8
(namely ny = 0.2,1=10.7, km = 3% 10*mm™), and compound this with the further
modification that the virulence of the w 1-type strain is in fact much greater than

previously assumed: k = 0.2mm™. We1 w have

2 [
(l—y)az0.06>% 1+ 1—%].

The time series for this scenario can be found in Figure 4.9. Observe that, in

this case, the incredible potency of the virus has a significantly deleterious effect
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on the population of uninfected T cells, implying the onset of full-blown AIDS.
Again, then, the situation described really falls outside the bounds of the model.
As with Figure 4.7, it is worth emphasising that the population of T cells infected
with the mutant virus is in fact at a very small, yet positive, steady state here:

Uy ~ 0.0012mm3.

10
80
60

401

T cell populations (mm™3)

20

_20 L | L . )
0 50 100 150 200 250
t (days)

Figure 4.9: Time series for T(t) (dotted line), U(t) (black line), Upm(t) (grey line) with

v = 0.2, ky = 3.0x 10*mm and k = 0.1mm~>.

The phase portrait for this set of parameter values may be found in Figure 4.10.
Observe that the fixed point is now a node, with no spiral behaviour in evidence.

Finally, we come to the fourth regime. ..1e only distinction between these final
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Figure 4.10: Phase portrait for . a >n (4.3) with ny = 0.2, kv = 3.0x10"*mm™3

amd k = 0.1lmm™3.
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two regimes is the non-negativity of the second fixed point. However, because
this point is unstable in both cases, we do not expect the overall dynamics to differ
between them. This is clear from the time series given in Figure 4.11, which is
similar in terms of behaviour to that of Figure 4.7. This is confirmed by the phase
portrait, depicted in Figure 4.12, which exhibits an asymptotically stable spiral-
node — with a very tight spi.  inthe  U)-plane — exactly as with Figure 4.8.
The parameter values used tc :neratet ‘se plots are ny = 0.2 and np = 0.3, that is,
the wild-type virus is nearly as resistant to the drug therapy as the mutant strain.
Note that, as expected,

ap =~ 0.0024 > 8

and

(1-wa= 0027 > ay.

Finally, let us again consider the ways in which the equilibrium point can be a

pure node in the fourth regime, si ting with the possibility that

262 [ d
(1—p)a<T[1— 1—5].

As before, there is a small range of values of (1 — p)a in which this must occur;
this can be achieved, for example, with ny = 0.833 and n = 0.868. By now, we

should not be surprised to discc - thal ich a system behaves almost identically
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2
(1- wa ~ 0.056 > %[n w/1—%].

The results, however, are essentially identical to that depicted in Figures 4.9

have

and 4.10, and so we avoid repeating them here.

The overall conclusion that we can draw is that, as expected, there is no funda-
mental change in behaviour between the third and fourth regimes. As long as the
wild-type virus exhibits a selective advantage as compared to the mutant strain, it
does not matter if the mutat 1is quali ively “good” or “bad.” This is in accor-
dance with our mathematical expectatic , namely that the change of a fixed point
from negative to positive does not producé an appreciable change in the dynamics

of the system.

4.5.5 Bifurcations

Finally, these graphs demonstrate that 1e system may undergo three different
bifurcations; each of these is a transcritical bifurcation, witnessing an exchange of
stability but no creation or el  nation of fixed points. These bifurcations are as

follows;

1. if B > (1 — p)a, a bifurcati  from the first (disease free) fixed point to the

second (mutant strain dominant) fixed point occurs when 8 am,
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Then for § > (1 — p)a we have that

W' - =0
¢ 4
T B [ﬁ— (1-als
Wi, = A B 0zpal
aud

Hence this is a transcritical bifurcation.
For the second bifurcation, when = (1 — p)a, observe that both the first and

third fixed points become simply

T=— = = U.
d’ UM 0

The Jacobian has a zero eigenvalue, and the corresponding eigenvectors of | and

JT are, respectively,

[ s[(1 - pwam —B] ] [ ]
& 0
Y
(l—u\(B—aM\ _
V= and w=|1
rr
1 | 0 ]
Then we have that for § > aum,
of
rZ2 =
w e 0
WT[]aV] = #0
aua
2501 — M8 — ans)[(1 - _
Wil = o O el = e =,

a‘yz







Chapter 5

A Model with Two Mutants

! LTHOUGH THE MODEL GIVEN BY Eq1  tion (4.3) appears to give a good descrip-

tion of HIV pathogenesis in the resence of a mutant strain of the virus, a
critical question which naturally follows concerns the basic assumption that only
one mutation is present at a given time. If the existence of more than two kinds
of HIV at any one time produces funde entally different behaviour than that ob-
served in our investigation of Equation (4.3), then the robustness of this model
must be called into question.

In this chapter we shall extend the odel to incorporate two mutant strains,
in addition to the wild-type form of the virus. We shall analyse this augmented

model in a similar manner to our appr ch in Chapter 4. Finally, we shall again
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These analogous equilibria reflect the two cases in which one population of T cells
infected by a mutant strain survives, while the other perishes along with the T cells
infected by the wild-type virus. In both instances, the form of this fixed point is
reminiscent of the second fixed point of Equation (4.5).

The last fixed point of Equation (5.2) is

o 0= [ =1 = e = an 1M1 = ps = pa)a — ]G
(1= = p2)a’ a " 656)
ur = ey —a(l = g1 — p)lg, Uy = paolay — a(l = — w2)IC

T=

where

B sl(1 — g — pz)a — Bl B
6(1 — p1 — )@ — )@ — @) — (e — ay) = @ — a)]’

¢

As with the final fixed point of Equation (4.5), this is the case in which all the
T cell populations survive. However, as we discovered at the end of Chapter 4, for
realistic parameter values this really indicates that the wild-type strain dominates
the mutant viruses, which are r ntair 1 (at an extremely low level) only by the
assumption of a constant mutation rate from the wild-type. As we shall show later
in this chapter, the same applies to this fourth fixed point of Equation (5.2).

Not every conceivable behaviour is flected by these equilibria. For instance,
there is no fixed point in which both mutant strains survive while the wild-type
strain is eradicated, nor any case where rﬁore than one form of the virus is main-

tained at a significant lev
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5.4 Eigenvalues and Stability

THE JACOBIAN MATRIX CORRESPONDING to Equation (5.2) is

- —d—-al—-oU; —a s —aT -y —al, “
- (1— 1 — p2)al (1—p —p)al =6 0 0
pial + o Uy - paT aT -6 0

thal + ar U, T 0 ar T =06 |

For the disease-free fixed point, the Jacobian matrix has eigenvalues

/\1 _ -—d, /\2 _ S_[_(_l_— L '; uﬂa—_ﬁ]} | /\3 _ s(ald— ﬁ)/ A4 _ S(azd— ﬁ) (59)

We have A; < 0 since d is a positive parameter, while the remaining eigenvalues

are negative only for
B > o, ﬁ > (g, B > (1 — U1 - yz)a. (510)

Observe that these conditions 2 simil to those for the first fixed point of Equa-
tion (4.5), given by Equation (4.12). The first two conditions also coincide with those
under which the second and third equ ibria fail to be non-negative, as indicated
by Equations (5.7) and (5.8).

As we might expect given their analogous construction, the second and third

fixed points produce very similar eige ralues of J. For the second fixed point,
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Figure 5.1: Time series for T(t) (black dotted line), U(t) (black line), U (t) (grey line),

U(t) (grey dotted line) withn =0.9,7; 0.85and 1, = 0.8.
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Figure 5.2: Phase portrait for Equation (5.1) with n = 0.9, 7, = 0.85 and 7, = 0.8.

first mutant strain is dominant while the remaining infected T cell population
is eliminated. We choose 1 0.2 and 7, = 0.15, and obtain the time series
given in Figure 5.3. Here we see that, although the second mutation exhibits
stronger resistance to drug therapy, this insufficient to compensate for its reduced
virulence. The phase portrait projection demonstrates that these parameter values
give rise to an asymptotically stable spiral-node, as shown in Figure 5.4.

The obverse case can be depicted by setting m; = 0.25 and 1, = 0.1. The
correspondingtimeseriescanl foundi Figure5.5. Now the discrepancy between

the resistance of the two mutant strains is suff’ " :nt to lend the second strain the
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Figure 5.3: Time series for T(t) (black dotted line), U(t) (black line), U(t) (grey line),

Uy(t) (, 'y dotted line) withn;  0.2and 7, = 0.15.
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Figure 5.5: Time series for T(t) (black dotted line), U(t) (black line), U;(t) (grey line),

Uy(t) (grey dotted line) with; =0.25a 17, =0.1.
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Figure 5.6: Phase portrait for Equi on (5.1) with n; = 0.25 and n; = 0.1.

stable. Although this was not tractable nalytically, it is easy to illustrate, as with
n=0.3,1n =02 n;=0.15. ...etimese :sisgiveninFigure5.7. Again, as in our
consideration of the final equilibrium ; int in Chapter 4, it should be noted that
the populations of T cells infected by the mutant strains are not extinct in this case,
but rather subsisting at a very low level.

Exhaustive numerical investigations indicate that, in fact, these are the only
types of behaviour exhibited ~ juation (5.1) for the standard parameter values
givenin Table4.1. This evidence, combi :d with the apparent parallels between the

fixed points, non-negativity conditions and stability conditions for both the one-
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Figure 5.7: Time series for T(t) (black dotted line), U(t) (black line), U;(t) (grey line),

U,(t) (grey dotted line) withn=0.3,7; 0.2and 7, 0.15.




5.5 BEHAVIOUR OF THE SYSTEM 128

and two-mutant models suggests  even in the absence of a complete analysis
of the final fixed point of Equation (5.1)  that, indeed, the two models behave
analogously, exhibiting only transcritical bifurcations and regimes in which at most
one population of infected T cells exists at a significant level.

Consequently, we conclude that for an ODE model of virus mutation, there is
no need to consider the existence of m e than one mutant species. One mutant
strain will dominate all others on a sho timescale (or all of them will diminish to
insignificant levels, leaving the wild-type as the lone viable species) and so only
this dominant mutant need be considered. As such, we can conclude that the

model given by Equation (5.1) in fact si plifies to that given by Equation (4.3).




Chapter 6

A Model with Impulsive Moments

S KEY SIMPLIFICATION MADE IN THE construction of the ordinary differential

equation model given by Equa
drug in the system is consti . Of ¢ r
taken only periodically, and therefore t
abruptly at these moments of time, and
simple continuous functic ¢ usly |
if one did present itself, its use would

of the drug, since the amount in the sy

n (4.3) is the assumption that the level of
. this does not reflect reality: dosages are
» amount of drug in the system increases
:cays thereafter until the next dosage. No
nulates this kind of behaviour, and even
ill only approximate the true behaviour

'm should change discontinuously at the

instant in which a new dosage is taken [26].

In this chapter, we shall detail the construction of a new version of the model
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which incorporates impulsive differential equations. We shall conduct an analysis
of the dynamical behaviour of this model comparable to that performed for the
ODE version, and examine the sim irities and differences which arise from the
two models. The use of impulses provides us with an opportunity to model phe-
nomena which could not be incorpora d into Equation (4.3). For instance, it is
common for HIV patients to adhere imperfectly to the drug therapy. Unlike con-
tinuous models, models with impulses provide a natural way to include various
patterns of non-adherence into the HIV pathogenesis, and to otherwise alter the
drug treatment regimen. We shall consider the effects of increasing or decreas-
ing the dosing frequency, and examine the ramifications of various schedules of

imperfect adherence.

6.1 The Author’s Model, Impulsive Version

SINCE THE INTRODUCTION ¢ AN impulse into Equation (4.3) is directly tied to
the drug concentration . (t), we must address the connection between this
quantity and the parameters 1 and 7y, used previously to denote the efficacy of

the (constant) drug concentration. Per ahl and Nowak [27] we can instead write

__pn D
T“Dhn+e ¥ ™TDu+on
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The single-mutant model now becomes

D(t)

D)+ 6
D(t)

" D()+6
D(t)

D)+ 6

D(t)
D(t) + By

T(t) = s — dT(t) — (1 - )ET(t)U(t) - (1 - )fcMT(t)uM(t)

)ET(t)U(t) - sU(t)

0
. D(t) + O

) = (1 - ) (1

Un(®) _u(l— )ch(t)U(t) (1 )i&MT(t)uM(t)—auM(t) (6.3)

D(t) = -mD(t), t# t

AD=D', t=4.
6.2 The Fixed Points and mpulsive Periodic Orbits

OTE THAT THE DIFFERENTIAL EQUATION for D(t) does not depend on the other
N quantities T(t), U(t) or Um(t), so we can easily integrate and solve for D(t)

explicitly on each interval t; < t < f3,1:
D(t) = e ™tH) (6.4)

where

Dy = lim D(¥).

t-ty
Although this expression tends tow: s zero over time, the impulsive condition

indicates that D(t) will be forced away >m zero at each moment of the IDE. Note
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real parts as long as they fulfill the joint conditions
wpm > PO +0pm) and wm(D + 0) > (1 - (D" + Om),

which is similar to Equation (4.14) in the ODE case. In this context, we more

usefully write these conditions in the form

WM . WM D'+6M
8 >D'+ y and (1—y)w> Do

(6.17) \

The impulsive periodic orbit given by Equation (6.8) yields the following eigen-

values of J: ‘

g[ "+ 0) - (1 - (D" + Opm]

(1 - (D" + 6pm) ’ ‘
s(1-pw st (1 - pfa? - 4635(D" + O)[(1 - g — (D" + 9)]}.
(6.18)

A

1
A2z = 26(D" + 6) {

In order for A, to be negative, we require
(1-wawD +€ )>wuD +0).

As with the corresponding condition for the third fixed point of the ODE system,
this is the antithesis of the condition found for A; of the impulsive periodic orbit
given by Equation (6.7). Also as in the ODE case, we can pursue an analysis similar
to that of the second and third eigenvalues of the preceding impulsive periodic

orbit. We find that, as long as the impulsive periodic orbit given by Equation (6.8)
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impulsive periodic orbit given by Equation (6.7) are positive and unstable;
the impulsive periodicorbit ‘ven by Equation (6.8) is positive and stable (the

drug concentration is insufficient to inhibit either virus variant).

6.5.1 Numerical Simulations: Parameter Values

We will now illustrate each of these r imes for appropriate parameter values.
Many of the quantities chosen for Table 4.1 remain suitable, but we now have
additional parameters whose values must be substantiated. The updated list of

parameter values is givenin’ 6.1. Note that, as in Chapter 4, we have
B 5x107*mm3d".

We do not seek to model the effects of any particular drug, and so we have
chosen typical values for 6 and m here. As with the ODE model, we have particular
freedom to choose the value of §  depending upon the strength of the resistance
of the mutant strain that we v h to model.

Furthermore, we now require values > describe the impulse. We shall assume
that the moments of impulse are evenly spaced, with a new dose of the drug

therapy taken daily, so ty = k¢ ys. We all additionally assume that the amount
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The time series plot for this situatic is given in igure 6.3. As anticipated,
there appears to be no periodic bc avio associated with this regime. In fact, the
graph is virtually indistinguis! >le from the corresponding ODE case depicted in
Figure 4.1, with both of the infected T ¢ populations tenc g towards extinction

and the uninfected T cell population returning to its uninfected level of 1000mm™3.
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Figure 6.3: Time series for T(t) = otted li ), U(t) (black line), Uum(t) (grey line) with

Oy =1.0x107"M and m = 247",
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6.5.3 Numerical Simulations: he Mutant-Dominant Impulsive

Periodic Orbit

For the second regime, we e: :ct the impulsive moments to force periodic os-
cillations in both T(t) and Upm(t). 2 1in, complete subscription to this regime of
behaviour is difficult to achieve simply by changing Oy. We will assume that the
mutant strain is more resistant to the drug, and that the drug is cleared at a rate
slower than in the previous example, but still much faster than in our baseline

assumption. Hence we let 8y 1.5x10°®Mand m = 7d ™",
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Figure 6.4: Time series for T(t) (dotted line), U(t) (black line), Upm(t) (grey line) with

Om = 15%x10"°M and m = 7d°..
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Figure 6.11: Time series for T(t) (dotted line), U(f) (t 1ck line), Um(t) (grey line)

with 6 = 1.0 x 107"M.
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Figure 6.12: Time series for T (dotte line), U(t) (black line), Um(t) (grey line)

with Gy = 3.0 x 107°M.
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Figure 6.13: Time series for T  (dotted line), U(t) (black line), Up(t) (grey line)

with 8,y 3 x1077M and therapy occur g every 0.75 days.
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Figure 6.14: Time series for T(t) (dotted line), U(t) (black line), Upm(t) (grey line)

with By = 3 x 107’M and therapy occurring every 0.5 days.
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significant quantities, and the uninfected T cell count remains low. This is depicted

in Figure 6.16.
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Figure 6.16: Time series for T  (dotted line), U(t) (t 1ck line), Upn(t) (grey line)

with 0 = 3 X 107°M and therapy occurring every 0.2 days.

Now consider some examples in which the replenishment of the drug becomes
less frequent. In Figure 6.17, the period is prolonged by 5%, to 1.05 days. Observe
the sensitivity of the dominar  of the mutant strain to the dosage frequency: it
now takes much longer for the levc of the T cells infected by the mutant virus
to exceed that of the T cells infected by the wild-type strain. This now occurs at

t ~ 128 days. Less aggressively a cted is the population of uninfected T cells. As







6.6 THE ErrecT oF CHANGING THE D0OSING INTERVAL 172

500

450 F

400
;I,“ 350
g :
E 300}
a :
2
@
= T T
Bl T et i o i
a
5
(3]
e

0 Su 100 150 200 250
t (days)

Figure 6.18: Time series for T(t) (dotted line), U(t) (t 1ck line), Up(t) (grey line)

with 6y = 3 X 1077M and therapy ccurring every 1.2 days.
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Figure 6.19: Time series for T(t) (dotte line), U(f) (black line), Uy(t) (grey line)

with Oy =3 x107"Mand z = s: 1 -eatments (evenly distributed).
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Figure 6.21: Time series for T(f) (dotted line), U(t) (black line), Upm(t) (grey line)

with Oy =3 x1077Mand z = 50 issed treatments (evenly distributed).

Table 6.3: Effects of missing z evenly-spaced drug treatments over 500 days.

z | mean T(t) (mm™) | mean U(t) + Upn(t) (mm™) | % of inf. T cells

10 221.8 31.21 12.34
20 220.7 .31.12 12.36
30 218.8 31.31 12.52
50 216.7 31.40 Y4

75 208.0 31.69 13.22
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Figure 6.23: Time series for T(t) (dotted line), U(t) (black line), Up(t) (grey line)

with Oy 3x107Mandz 20 missed tréatments (randomly distributed, different

from ..gure 6.22).
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adherence to therapy using the model represented by Equation (6.3). First, the effect
of structured treatment interruptions is small in the context of the ramifications for
the HIV pathogenesis. Second, asindica dby Tables 6.3, 6.4 and 6.5, drug holidays

are less harmful if they occur closely to; her than if they are staggered.
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7.7 Restoration of Explicit Virus Populations

INALLY, WE COULD REVISIT THE simplifying assumption that the infected T cells
F and corresponding virus populations are proportional to each other. As pre-
viously indicated, this would complica fhe analysis of the model: Equation (4.3)
would grow to include five ODEs (| :ause separate equations would be needed
for both the wild-type virus and the mutant strain), while Equation (6.3) would
involve at least six equations: 1 potentially more, even exhibiting multiple impul-
sive effects if different types of inhibitic ~were incorporated, as in [18]. However,
the dismissal of a simplifying assumption always raises the possibility of lending
added accuracy to the model, and from there offers even more opportunities for
further study, possibly in conjunction with some of the other ideas discussed in

this chapter.
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