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- Chapter 1 -

Introduction

1.1 Purpose
The aim of this research project is 1 determine the role of motely sensed snow data in
daily flow modeling on the Humber River, Newfoundland and Labrador, using the

Rango-Martincc snowmelt runoff m  zl.

1.2 Overview

Daily flow predictions are rec ~ ed for forecasting floods. Rain-runoff models are used to
forecast flow rates and water leve using real-time or periodic rainfall and discharge
data. These predictions can ra1 : from hours to days ahead. There arc scveral rationales
on flood forecasting. The main re: Hn is to implement flood control and mitigation; this
includes protection of settlements through proper and timely management and warning
protocols. Other reasons for flood  :casting are to control rescrvoir levels and handle
water volumes for appropriate hydroelectric power production year-round. To be specific,
operators of large reservoirs would be able to plan for expected inflows and therefore

maximize the hydropower generation from the reservoir (Bettwy 2004).


































specific Earth property that is being investigated. Certai vy, the key feature in remote
sensing is that the sections that can be used within the electromagnetic spectrum are
limited by the properties of the Ear s surface and/or landscape characteristics required

for analysis (Maidment 1993).

Remote sensing can provide significant data used to complement the conventional data.
This new direction allows for exciting expansions in hydrology; it can help hydrologists
undertake previously unsolv >le problems such as exploring vast remote areas in a timely
manner (Maidment 1993). Its practical applications to aid in flood forecasting are fairly
new: practical because of the daily temporal data available via satellite. For this analysis,
remote sensing is specifically used to collect snow cover data for the Upper Humber
Basin. The flow diagram in Figure 2.1 illustrates how this data acquisition interconnects

with predicting flows in rivers.
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Appendix A

Sequence of Steps to Correct MODIS/Terra Data Download

Website

WIST: data searcn page

Choose discipline/topic first: Cryosphere MODIS/Terra

Choose appropriate data set: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid
V005
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filo =2 + "pix"”
dbiw = 1,1,1240,890
dbic = 1

dbib =

dbvs =

dblut =

dbpct =

Jype = "PIX"
foptions =

R Fexport

/

! Add bitmaps from ¥
!

rshed_Bitmaps.pix to the exported PIX file

Sfili = waterbit
filo =m2 + " pix"
dbib = 2,3

dbob =

dbiw =

dbow =

report = "OFF"
Monitor = "ON"

R iib

!

! Compute area of lav  over classes under watershed masks

/

FORj=2TO :

Vi

FILE =2 + " pix"

DBIC = |
DBIB = j

UNITS = "S¢  re Kili  ters”

IF j=2 THEN
REPC !
ELSE

3+ "axt”

REPORT = fud + ".txt"

ENDIF

MONITOR = "ON"

r AREAREPC
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ENDFOR
PRINT @({ ,1,CLREOS)
endif
endfor
else
goto ASKAGAIN

endif

PRINT (@1 ,1,CLREOS)

print "
print "

print "The hdf files are stored in the ;
print """ out files

print "

print
print (@reverse,” Percent snow ¢
print ""

nee

lowing directory:”

er extraction EASI Script Finished

print "

return
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flg = False
Jn = Dir
Loop
Ifn>0Then
Sheets(1).Cells(1).Resize(n, 100).Vc
End If
End Sub

'=aQa
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*Type II Curves from 2005 to 2009’
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Performing ANOVA:
Checking the assumptions of ANOVA: (1) Normality, (2) Constant variance, and (3)

independence:

First, the “Normal Plot of Residuals™ looks fairly normal. The data points roughly follow

the straight line.

Design-Expert® Software .
Nash-Sutcliffe, E AlAavemnnl DiAd Af DAanidhiiala
Color points by value of

T fe E:

Normal % Probability

Internally Studentized Residuals
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Performing ANOVA: Checking the assumptions of ANOVA: (1) Normality, (2)

Constant variance, and (3) indepenc ce:

First, the *Normal Plot of Residuals™ does not look normal.

Design-Expert® Software

Ln(Nash-Sutcliffe, E + 333.00) Normal Plot of Residuals

Color points by value of
L fe, E + 333.00):

Normal % Probability

Internally Stude  'ed Residuals
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Trying a POWER TRANSFORM: Note: a constant k = 333 needed to be added to
ensure all responses were greater than zero. Lamda = 1. Be w is the "“Half-Normal Plot”
with the effects that appear important. These are the same factors as above: A, B, D, AB,

AD, BD, and ABD.

Design-Expert® Software

(Nash-Sutciffe, £ + 333.00)*1 I -No al Plot

Shapiro-Wilk test
W-value = 0.900 «
p-value = 0.291
A: recession coefficient, k -
B: snow runoff coefficient, cs =
C: rain runoff coefficient, cr S
a © 0
£
2
o * 3
= - D
© \
70
£ \B °
o
BD
s - |
©
T
10
o

|Standardized Effect|

Performing ANOVA: Checking the assumptions of ANOVA: (1) Normality, (2)

Constant variance, and (3) independence:



First, the “Normal Plot of Residuals” looks normal - about as normal as the data with no

transformation earlier.

x:;%?;g:;?gi’gg%o)q MArmal Diat Af Dacidniale
Color points by value of
(*" = cliffe, E + 333.00)*1;

Normal % Probability
8

Internally Stude  =d Residuals
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Interaction plot between factors A and D: recession coefficient and degree-day
factor:

Design-Expert® Software .
Nash-Sutciffe, E Interaction

w. degree-day factor, a

X1 = A recession coefficient, k
X2 = D degree-day factor, a

Actual Factors
B: snow runoff coefficient, cs = 0.50
C: rain runoff coefficiert, cr = 0.50 o~ -

Nash-Sutcliffe, E

A: recession coefficient, k

As the recession coefficient increases from 0.20 to 0.60 and the degree-day factor is high
(8.0) the Nash-Sutcliffe coefficient  reases at a steep rate to it’s desired value of 1.0. It
is quite obvious that a degree-day :tor of 1.0 is much better for predicting the flow
compared to a = 8.0. When "a’ is 1.. the variation of the recession coefficient from 0.20

to 0.60 has very little effect and the Nash-Sutcliffe coefficient stays very close to 1.0.
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Recommendations: Try another DOE experiment with refined ranges for factors to
assess improvement. The rain runoff coefficient physically seems like an important factor
and it will be kept for the next trial. It may have been overshadowed by the large effects
that the degree-day factor | 1 on the response. From the DOE analysis it can be
concluded that for predictii  flow in the snowmelt season of 2002 from March 1* to June

30" for the watershed of the Upper Humber River above Black Brook:

e Factor A, recession coefficient: 0.6 was better than 0.2
e Factor B, >w runoffcoeff ent: 0.3 was better than 0.7

¢ Factor C, rain runc.. coefficient: no conclusion, deemed non-significant in this

model

¢ Factor D, degree-day factor: 1.0 was much b« r than 8.0
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