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Abstract 

In fitting regression models with spatial dat.a, it is often assumed that the relationships 

between the response variable and explanatory variables are the same throughout t he 

study area (i.e., the processes being modelled are stationary over space). This may be 

a reasonable assumption, but should not be .accepted without further analysis. Ge­

ographically weighted regression ·(GWR) is a technique for investigating the validity 

of this assumption and is used to examine the presence of spatial non-stationarity. 

It allows relationships between a response variable and the explanatory variables to 

vary over space. Most studies in GWR to date have focussed on the case where the 

response variable is continuous and is assumed to follow a normal distribution. How­

ever, in many regression models, this is not the case. Here, the concept of geographical 

weighting is applied to Poisson regression, where the response variable represents a 

count and takes the form of any non-negative integer. 
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Chapter 1 I > 

Introduction 

1.1 Ordinary Least Squares (OLS) Regression 

In an ordinary least squares (OLS) regression model, the dependent variable (or 

response variable) y is expressed as a linear function of a set of independent (or 

predictor) variables x1, ... ,xp, where y is continuous and the xk's (k = 1, ... ,p) 
1 'I , 

are qualitative, quantitative, or · a combinat'ion of both. Based on a sample of n 

observations, the model can oe expressed as follows: 

p 

Yi = f3o + L f3kxik + Ei, (1.1) 
k= l 

where i = 1, ... , n; {30 , {31 , ... , {3p are regression parameters and the Ei 's are assumed 

to be independent normal random variables with zero mean and constant variance 

1 

l ,o 0 J 
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The OLS estimate of the coefficient parameter vector is given by: 

(1.2) 

T-.. .-...,-.., ......... T 
where y = (y1, ... , Yn) , {3 = (f3o, /31, ... , /3p ) and 

1 xu Xlp 

1 X21 X2p 
X= 

·1, : Xry.l .•• ·i. Xnp 

X is then x (p + 1) design matrix (with a vector of 1's in the first column for the 
.. I . 

intercept term) and X T denotes the transpose of X . 

1.2 Geographically Weighted Regression (GWR) 

In spatial analysis, the model represented in equation (1.1) is often referred to as 

a global (or spatially stationary) model since the relationship between the response 

variable y and the predictor variables x = (x1 , .. . , xp) is assumed to be constant 

(or stationary) across the study region; that is, the parameters do not change with 

geographical location (Atkinson et. al, 20Q3) .. 

However, a global regression model is only appropriate when it is reasonable to 

assume that the relationship between y and x does not change across the study region. 

In some cases, there may be evidence to suggest that the relationship between the 



·' 
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response and predictor variables depends on the geographical location and that the 

parameters are not constant over the study re.gion - that is, t he relationships being 

examined may exhibit significant spatial variation that is not accounted for in the 

estimation of the global parameter estimates. ' This variation is referred to as spatial 

non-stationarity (Brunsdon et. al, 1996\ Pbt"h~ringham et. al, 1996, 1998). Instead 

of a global model, a model of ihe following· form should be used in determining the 
; 

nature of the relationship between y and x: 

p 

Yi = f3io + L f3ikXik + Ei, 

k= l 

(1.3) 

where f3ik is the value of the kth parameter at the ith data point. Although this 

model allows the parameters to vary over space, there are problems in calibrating 

this type of model since there are more unknowns than observed variables - as the 

number of observations increa.Ses, the nl\mber of parameters increases as well (Leung 

et. al, 2000). To overcome this problem, . fother,i~gham, Charlton and Brunsdon 

(1998) developed a technique k~own.1as: _gi~gr~phically weighted regression (GWR). 

This technique allows the regi.~s.~ion model . to be expressed in the form of equation 

(1.3); however, the regression 'c~efficieJ!.tS are assumed to be deterministic functions of 

some other variables (in the case of GWR, the geographical location in space) rather 

than random variables. 

GWR is a technique used to account for (and to examine the presence of) spatial 

non-stationarity by calibrating a regression model which allows different relationships 

to exist at different locations in space. In the process of fitting a GWR model to 

spatial data, the regression parameters in equation (1.3) are estimated by a weighted 

, t.· ; ;\"' '.~ , .I . ' . 
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least squares (WLS) procedure such that the weighting system is dependent on the 

location in geographical space and allows local rather than global parameters to be 

estimated (Leung et. al, 2000). The weighting scheme used in calibrating a GWR 

model at the ith data point is such that observed data that are near point i have more 

of an influence in the estimation of the local regression coefficient estimates than data 

located farther from i - that is, data from observations close to i have higher weights 

and data from observations farther away have lower weights (Fotheringham, Charlton 

and Brunsdon, 1998). 

For the Gaussian GWR model (sl;1.0wd\in. equation (1.3)), local estimates of the 
• '.t' 

parameters may be produced ~t !~cations o~h~r than those at which data are observed 

or sampled- that is, estimates pf {3 can be computed for any point in space, regardless 

of whether or not that point is an actual data point (Fotheringham, Brunsdon and 

Charlton, 2002). Let j = 1, ... , n represent the locations at which data have been 

observed (i.e., data points, or sample points) and let i = 1, . .. , m represent the 

locations at which the local coefficient estimates are produced (i.e., regression points). 

In most cases, the regression points and the data points will be the same. However, 

for geographically weighted Poisson or logistic regression models, the regression points 

must be the same as the data points - that is, there is no option of producing local 

parameter estimates at points other than the data points (Charlton, Fotheringham 

and Brunsdon, 2003). This will be diSC\lSSed fu,rther in Chapter 2 . 
• . . ' /1. , .. I .. ·' \ ' . . ' 

The GWR estimate of {3 at t.he ith regression point is given by the following: 

(1.4) 



5 

where W(i) is an n x n spatial weighting matrix whose off-diagonal elements are 

zero and whose diagonal elements represent the weighting of each of the n observed 

data points for regression point i (such , trraL ehch of. the n data points are weighted 

in accordance with its proxi~ity; to point i) .~ ;,That is, 

0 
W(i) = (1.5) 

0 0 

where Wij is the weight given to the yth data point in the calibration of the GWR 

model for the ith regression point. 

Since the weights in GWR vary according·to the geographical location of the ith 

regression point, the weighti.ng matri.~ . 'Vi.~~ ). {las tq. be computed for all regression 

points. By computing W(i)! · fi.n~ ~-val~ating; : (1.4) for all values of i, sets of local 

regression parameter estimates. can be obtained. Assuming that there are m regression 

points and p explanatory variables, the m x (p + 1) matrix /3 which contains the 

complete set of GWR parameter estimates can be expressed by the following: 

• • I I I i I: . 
· ; ., 
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1.3 Geographically Weight ed Poisson Regression 

(GWPR) 
\- . .. ~. :. 

To date, most studies in GWR ;have focus~d on the case where the dependent (or 
I ' I! 

response) variable is continuous )and follows (approximately) a normal, or Gaussian 

distribution. That is, most appl~cations of GWR have involved calibrating a model 

with a Gaussian error term (which is the geographically weighted equivalent of an 



7 

OLS regression model). However, in many models, the dependent variable is actually 
: ~ ( 

discrete. It may be defined for ' integers only (e.g., the number of traffic accidents . ' ' 
' ] ~ 

that occur at a busy intersec~iort ' over a month), or it can be a binary or categorical 

variable (e.g., yes/no, disagree/no opinion/ agree, etc.). In these cases, applying a . . . ~ 
Gaussian model is inappropriate. However, the concept of GWR can be applied to 

generalized linear models (GLMs) , including those based on the binomial or Poisson 

distributions. 

Poisson regression is used when the dependent variable refers to counts of the 

occurrences of some event over time or space and takes the form of any non-negative 

integer (i.e., 0, 1, 2, 3, ... ). The independent variable(s) can be either qualitative, 

quantitative or a combination of both. In order to fit a geographically weighted 

Poisson regression ( GWPR) model, each observation must also have information that 

describes its location. This informati~rt ca~,.-~e \ n the form of (x,y) coordinates based 
,I • l. 

I ' \ ' i • 
on a two-dimensional Cartesic!.n grid, or latitude-longitude coordinates which describe 

a point on the Earth's surface: : · 
., ! · :-

The focus of this practicum is to study the technique of GWPR, its underlying 

theory and practical applications. Chapter 2 discusses the theoretical aspects of 

GWPR including how a GWPR model is calibrated, spatial weighting functions, 

bandwidth (or distance) selection, calculation of the GWPR model deviance and AIC 

(Akaike Information Criterion) as well as hypothesis testing procedures. The results 

of simulation studies are described in Chapter 3, where the focus is on computing 

the estimates of the coefficient parameters · from fitting a variety of GWPR models 

to simulated data from a Poisson distribut~6n: In. Chapter 4, a dataset is selected 
,. 

for the application of GWPR m~thods. < Oo,nclusions and areas of further work and 
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future research are discussed in Chapter 5. 

~ . 
I' ' 
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Chapter 2 

Theory of GWPR 

2.1 Introduction 

As in the case of a normal or Gaussian GWR model, the resulting regression coefficient 

estimates from a GWPR model are specific to each individual location. However, 

unlike Gaussian GWR, a GWPR model is calibrated using a procedure known as 

iteratively reweighted least squares (IRLS). As a result, the amount of time required 

to calibrate a GWPR model will be much longer, compared to an equivalent Gaussian 

GWR model. Also, the observed values of the dependent variable are required in order 

to compute the standard errors of the regression coefficients, so parameter estimates 

can only be obtained at the same location as the data points; that is, the regression 

points must be the same as the data points (Charlton, Fotheringham and Brunsdon, 

2003). 

9 
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2.2 Calibration of a GWPR Model 

Using results from Nakaya et al. (2005), the regression coefficients of a GWPR model 

can be estimated using a modified local Fisher scoring procedure, which is a form of 

iteratively reweighted least squares (IRLS). 

Let fj(l) ( i) be the vector of local parameter estimates for the ith location, with l 

representing the number of iterations, where-

(2.1) 

The local parameter estimates for the ith location and (l + 1)th iteration is defined 

as follows: 

(2.2) 

X is the n x (p + 1) design matrix (with a vector of 1 's in the first column for the 

intercept term) and xr denotes the transpose of X. W(i) represents the diagonal 

spatial weights matrix for the ith location, V ( i) denotes the diagonal variance weights 

matrix for the ith location and z(i ) is the vector of adjusted response variables at the 

i th location. 
,, • .J ;'("' 

The above matrix computation should be repeated to update the local parameter 

estimates until convergence is reached. 

The diagonal variance weights matrix for the ith location at the zth it eration is as 

follows: 
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, ;·· 

I';. 

p,~ ({3(l) ( i)) 0 

V(i)(l) = (2.3) 

0 Pn ({3(l) ( i)) 

where 

P,;{f3(ll(i)) ~ exp (~ {J, (l) (i)x;k) (2.4) 

The vector of adjusted response variables for the ith location at the zth iteration 

is as follows: ... 

(2.5) 

;, J 

where 

(2.6) 

Note that x;1 = 1 for j = 1,2,· · · ,n. 

At convergence, the local parameter estimates for the ith location can be written 

as: 

(2.7) 

By repeating this procedure for each regression point, sets of local parameter estimates 
( . 

can be obtained. 
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2.3 Log Likelihood Function, Deviance and AIC 

A generalized linear model (GLM) has three components: a random component, a 

systematic component and a link function (Agresti, 2002). The random component 

identifies the response variable Y wit~ i~q:~Prende~t :observations (y1 , .. . , Yn) from a 

distribution in the . natural exponent ial family. This family has probability density 

function or mass function of the. following form: 

(2.8) 

Several important distributions are special cases of the natural exponential fam-

ily, including the Poisson distribution. When Yi follows a Poisson distribut ion with 

positive mean J-ti , it can be shown that (Agresti, 2002): 

(2.9) 

Let L(!-£; y) represent the ,log-likelihood ;fmiction and let Li =log f(yi; J-ti) denote 
: ' \·)tJ' I ' . 

the contribution of Yi to the log-likelihood·.·. 'l;'hen,. it can be shown that: · 
j • ) If I " • 1 t ' ; 

(2.10) 

Let y = (y1, ... , Yn) represent n independent observations from a Poisson distri-

bution with mean 1-ti · The estimated log-likelihood function for the model is: 

n n 

L(P,; y) = L Li = L [Yi .log(P,i)- P,i - log(yi!)] (2.11) 
i=l i=l 

' ' 
: J • l 

i , • ~ I. ~ r 
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: I. l. 
·I 

where the maximum likelihood estimate of J.L is: 

P,i = exp { t ~kXik } 
k=O 

13 

(2.12) 

For a GWPR model, the estimated log-likelihood function for the ith location 

(i = 1, .. . , n) can be written as 

(2.13) 

where ·' 
' ·.i'f ' 

Mf3 (i\ l = e;,P {t. ti. (i l x,. } (2.14) 

The estimated log-likelihood function for a GWPR model is: 

n 

L({t(f3(i)); y) = L Li(f3(i)) (2.15) 
i=l 

where Li(f3(i)) reflects the dependence of P,i on the model parameters (J(i) estimated 

for the ith regression point. 

Let L(y; y) represent the maximum achievable log-likelihood over all possible 

models. This occurs for the most general · mo;del (known as the saturated model), 

which has a separate parameter for each 'ob;~er\r.ation and provides a perfect fit to the . ;. · 
' ' 

data (i.e., P,i = Yi, fori = 1, ... ; n). The saturated model can be used as a baseline 
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for comparison with other model fits, and is given by: 

n 

L(y; y) = L[Yi log(yi)- Yi -log(yi!)) (2.16) 
i=1 . ; .. 

t .1' . ~ 
' \. ,. 

The deviance for a GWPR model can be expressed by the following: 

D(y; P,({3(i))) = -2 [L(P,({3 (i); y)- L(y; y)] (2.17) 

Using equations (2.13), (2.15) and (2.16) results in the following formula for the 

deviance: 

The AIC for a GWPR model is defi~e(i'as (Nakaya et. al, 2005): 
.· 

'~ . ·' I'' . " , 
1 ,· 

AICJ = D(y; P,(/3(i))) + 2K (2.19) 

where K is the effective number of parameters for the model. Since the trace of the 

hat matrix is equivalent to the number of regression parameters in a GLM (including 

the Poisson model), then the effective number of parameters for a GWPR model can 

be defined as: 

K = trace(S) (2.20) 
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where S represents the hat matrix for the model and maps y to the fitted values y 

in the following manner: 

y= Sy (2.21) 

where the ith row of S is given by: 

(2.22) 

The corrected AIC (or AICc) for a GWPR model is defined as (Nakaya et. al, 
I ... : · 

2005): 

AI C~ = AI C ~ 2( K ( K + 1) ) 
. . n-K-1 

(2.23) 

There is little difference between AICc and AIC if the effective number of param-

eters K is small relative to the number of observations n. However, AICc is often 

preferred over AI C since the degrees of freedom are likely to be small in the case of 

local regression (Nakaya et. al, 2005). 

To choose between a number of competing models (e.g., a GWPR model vs. a 

global Poisson regression model; GWPR models with different explanatory variables; 

GWPR models with different bandwidths), Nakaya et. al recommend computing the 

AICc for each model and the model with the smallest AICc should be selected as the 

best model. A common rule-of-thumb in the use of AICc is that there is a significant 

difference in the performance of two competing models if the difference in the AICc 

values between the models is at least 3 (Nakaya et. al, 2005). 
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2.4 Choice of Spatial Weighting Function 

Let Wij represent the geographical weight of the ;th data point at the ith regression 

point (i.e., the weight given to th~ jth obs~rv~tio'n in the calibration of the GWR model 
;_ 'I. . ' • 

for the ith location) and let dii ~epresEmt' t~e distance between the ;th observation 

and the ith regression point. Under a. global regression model with no geographical 

weighting, each observation has a weight of unity: 

Wij = 1, i, j = 1, ... , n 

where j represents a point in space at which data are observed and i represents a 

point in space for which parameters are estimated (i.e., a regression point). In GWR 

models, the weights vary according to the location of the ith regression point, where 

0 ::::; Wij ::::; 1 and where W ij decreases ~ dij increases. That is, observations that 

are recorded at locations close to the ith, regr~_~sio!l ~oint are given higher weighting 
\·t \ cl · lj .. 

than observations recorded at loc~tions, fu;1,th~er away. Also, as the focal point of the 
' I · · :! I • • I 

regression changes, so do the ·;weights - hence, the weighting matrix W has to be 
• I ~ 

computed for each regression point. Some of the weighting functions encountered in 

the literature (Fotheringham et. al, 2002) are listed in Table 2.1 and are discussed 

below. 

For the binary weighting function, only a subset of the data points is used to 

calibrate the model at each regression point. Data points that lie within a certain 

distance d of the regression point are given a weight of one, while all other data points 

are given a weight of zero. However, while many spatial processes are continuous, this 

weighting function is discrete. The estimates for the model coefficients could change 

: < I , 

1 1 -4 • • ' . 

'J l; · ~ '!. · . .. 

. ' 
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Table 2.1: Spatial Weighting Functions Commonly Used in Geographically Weighted 
Regression 

Weighting Formula N otes 
Function 

Binary 
1, if dij < d 

d = the distance at which W ij Wij = 
0, otherwise 

' . is set to zero 
Gaussian Wij = exp[-1/2(~ )2] b = bandwidth 

[1- (Si. )2]2 ' if i-~ < d 
Fixed Wij = d ' ' ' ,t) , · , d = the distance at which W ij 

Bi-Square 0, otlierwise . is set to zero ' '· ' 

Adaptive Wij = 
[1- (~-)2]2, . if d {j < d 

d = the distance to the Mth 

Bi-Square 0, otherwise nearest neighbour (and j is one ' 
of the Mth nearest neighbours 
of the ith regression point) 

drastically as the regression point changes. The other weighting functions (Gaussian, 

fixed bi-square and adaptive bi-square) try to solve the problem of discontinuity by 

specifying Wij as a continuous function of dij, the distance between regression point 

i and data point j. 

For the Gaussian weighting function, the weights gradually decrease according to 

a Gaussian curve as the value of d i j inci:'ea~~s ... As dij becomes larger, the degree of 

influence of surrounding points will decaY~.~~?nentially and the value of Wij will fall 

towards zero (i.e., observation~ that are f~ away from the ith regression point will 

have little or no influence on the parameter estimates for location i.) The parameter 

b (which is known as the bandwidth or scale parameter) controls the rate at which 

the weight of a data point decreases as the distance between the location at which the 
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data point is recorded and the regression point increases. If the bandwidth is large, 

the weights decrease slowly; if the bandwidth is small, the weights decrease rapidly. 
' ... . . , 

For the fixed bi-square weighting funct'ibn the weights will also decrease according 
, I , I. 

to a continuous curve as the. {ralue of dii increases. However, the weights for data 

points whose distance from the ith regression point is greater than or equal to d will 

be set to zero (i.e., points that lie beyond a certain distance will be excluded from 

the estimation of the regression parameters for location i). 

The above types of spatial weighting functions are fixed in terms of their shape and 

magnitude over space. However, a fixed weighting function may not be appropriate 

when the data points are not evenly distributed over space - in some regions, the 

density of data points may be high, while in other regions, the data points may be 

sparse. In regions where data are dense, 'the estimates obtained from fixed weighting 
' 

functions are more likely to be biased. sinp~ · t~e number of data points used in the 

calibration of the local model','wi)l be :·larg~.-~ In r·egions where data are sparse, the 
' ' • r 

standard errors of the coeffic::itmt estimates · will be high since the number of data 

points used in the calibratio~ ··of the local model will be small; thus, the estimates 

obtained from fixed weighting functions will be unreliable. 

An adaptive weighting function is a spatially varying weighting method which 

reduces the problems that can occur with a fixed weighting function when the den­

sity of the data points varies over space. The adaptive bi-square weighting function 

mentioned in Table 2.1 involves a function that is related to the Mth nearest data 

points (or nearest neighbours) of the ith regression point. The calibration of a local 

model using this weighing function involves the estimation of M, which is the number 

of data points (besides the regression point).~ to be •included in the model calibration. 

"!/ ' 
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This weighting function ensures that the number of data points to be included in the 

local model is the same for each regression point. The weights of each data point 

(up to the Mth point) will decrease according to a continuous curve as the distance 

between the ith regression point and the lh data point increases; weights for all data 

points beyond the ith point are set to zero. 

; .. ' ' IJ 1·, 

2.5 Choice of Nejghbour~ood Size 

In addition to selecting a sp~tial weighting function, one must also determine an 

optimal window (or neighbour~~pd) size which will be used to subset the data locally 

for model estimation (Farber and Paez, 2007). This involves choosing a suitable 

bandwidth b (if the Gaussian weighting function is used), distance d (if the binary or 

fixed bi-square weighting function is used) or the number of nearest neighbours M (if 

the adaptive bi-square weighting function is used). Although the estimated regression 

coefficients depend, in part, on the weighting function chosen, studies have indicated 

that the choice of an appropriate value of b, d or M has more of an influence on the 

estimated parameters than the choice of the _weighting function (Simonoff, 1996). 

There are a number of meth<1ds for s~l~ct~ng ·an · appropriate value of b, d or M 
•• ~ • I ' .; • • • 

that are mentioned in the literature, including cross-validation, generalized cross-

validation, the Akaike Information Criterion, the Bayesian Information Criterion and 

the Schwartz Information Criterion. However, the methods that are most often used in 

practice are the cross-validation criterion (CV) and the Akaike Information Criterion 

(AIC). 
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The cross-validation (CV) approach suggested.by Cleveland (1979) and Bowman 

(1984) involves choosing a valu~: of :b;1 d·;d'r·::M such that the following quantity is 

minimized: 

' . n 

CV Score·= l:[Yi- Y;ei(b)] 2 (2.24) 
i=l 

where Y;ei (b) is the fitted value of Yi using a bandwidth of b (or distanced or number of 

nearest neighbours M) such that the ith observation is omitted from the estimation 

of the GWR model. Omitting this data point is necessary since minimizing the 

above equation using all observations results in the fitted values tending toward their 

corresponding actual values (i.e., the CV score tends toward zero). This occurs when 

the weights for all other data points (except for the ith data point) tend to zero, 
. I 

\ •• 1 

which occurs when the value of b, d or M 'tends tb zero (a meaningless result since 

the parameter estimates are urid~fine~hrtt~i~ ·~ase): The CV or 'leave-one-out' score 

can be regarded as the sum of' the squared errors associated with estimating Y#i (b) 
I' ' 

at each data point, where each point contributes toward the total CV score (Farber 

and Paez, 2007) . 

The AIC approach involves choosing a value of b, d or M which minimizes the 

AIC. In addition to GWPR, the AIC can also be used for choosing a suitable value 

of b, d or M in logistic GWR and other geographically weighted generalized linear 

models. It can also be used to assess whether a particular GWR model provides a 

better fit than another model as mentioned previously. 

Nakaya et. al (2005) mention that either'the cross-validation (CV) score or AIC 
. (' { 

(conventional and corrected) can . be ,used to ~elect an appropriate value of b, d or 
' I, ' ' .' ~ • • 

\ ·. 
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M for a GWPR modeL However, they recommend using the corrected AIC (or 

AICc) given in equation (2.23) since it allows· for a more suitable penalty for model 

complexity (i.e., models with a large number of predictors will tend to have a higher 

AICc) and is less likely to result in an over-parameterized model than using the CV 

score and the conventional AIC. In add~tiO·lf, emp,irical and simulation studies by 

Farber and Paez (2007) have shown tl;lat it lfs ppssipl,e for the CV score to be heavily 
" ··r•·· 

influenced by a small number 'of highl~· icllliential observations in the dataset (i.e., 

points that have relatively larger differences between Yi and Y;~=i(b) and thus, impact 

the CV score disproportionately); when this occurs, the chosen value of b, d or M 

may not be optimal for model calibration. 

One problem that may arise in calibrating a GWPR model is when the chosen 

value of b, d or M is too low and the dependent variable consists of a large number 

of zeroes (Charlton, Fotheringham and Bri.msdon, 2003). When this occurs, it is 

possible that all of the values for the dependent variable are zero for an individual 

regression point; hence, the estimated regression coefficients cannot be computed for 

that data point. As a result, one must· use caution in selecting an optimal value of b, 

dorM for a GWPR model when there are:la iargemumber of zeroes in the data. 
. . . ;;.J 

.. 

' '· .. 

2.6 Covariance Matrix and Hypothesis Testing 

Using results from Nakaya et. al (2005), the asymptotic variance-covariance matrix 

of the estimated regression coefficients jj(i) at the ith data point is given by: 

Cov(jj(i)) = C(i)A(i)- 1C(if (2.25) 
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J . ' : I· • ! ( ~· • ~ ~· I. 

where 

C(i) = (XTW(i)V(i)X)-1XTW(i)V(i) 
' . 

\ ', . ~ 
(2.26) 

The standard error of ~(i), the estimate of the kth regression coefficient at the 

ith data point, is given by: 

SE(~(i)) = Jcov(/3(i))k (2.27) 

where Cov(/3(i))k is the kth ~iagonal element of the variance-covariance matrix for 

the ith data point. 

The local t-statistic for jjk ( i) is tl}e'ri · c'O~ptited '\ising the following formula: 

(2.28) 

This quantity approximately follows the t-distribution with n- K degrees of freedom, 

where K is the effective number of parameters for the GWPR model, and can be com­

puted for each regression coefficient estimate at each data point. The resulting local 

t-statistics can then be used for conducting local tests of hypotheses for parameter 

significance. 

In testing to see if there is evidence of spatial non-stationarity with respect to a 

particular predictor variable, Nakaya et. al (2005) recommend the following approach: 
• ' 1• I : .l:'· t ,/ 

calibrate a full GWPR model (i.e.,, a mo~el where all coefficient parameters are allowed 
' 

to vary spatially) and a mixed GWPR model (i.e., such that the coefficient parameter 
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associated with the variable of interest is assumed to be constant across the study 

region, while all other coefficients are allowed to vary spatially). If the AICc from 

the mixed GWPR model is lower than that of the full GWPR model, then there 

is evidence to suggest that the relationship between the response variable and the 

predictor variable of interest varies spatially; otherwise, there is little evidence to 
. 

suggest that the relationship varies ov~r spl:1:de.) I• •,, 

' ' 

. ' 
-

'· ·'' ~-~~;-;~.~. t 

.· 
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Chapter 3 

Simulation Studies 

I ' " ' 

3.1 Introduction 
·' 

This chapter presents results from fitting two different geographically weighted Pois­

son regression (GWPR) models using simulated data. The first model is one with a 

single predictor variable and the second is one with three predictor variables. Results 

from both models were obtained using the spatial weighting functions discussed in the 

previous chapter (i.e., binary, Gaussian, fixed bi-square and adaptive bi-square), and 

a variety of bandwidth/distance/nearest neighbour values were used with each of the 

weighting functions. Estimates of the local regression coefficients, the log-likelihood, 

effective number of parameters, deviance and Akaike Information Criterion (AIC) 

were computed from each of the fitted dWPR models. Hypothesis tests for deter-

mining the statistical significance of the regression coefficient parameters were also 

carried out for both the single and multiple predictor models. 

24 
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3 .2 Single P.redictor GWPR Model 

The general form of a GWPR model for a response variable y and a single predictor 

variable x is given by 
J : 

(3.1) 

where 
·, 

(3.2) 

and where i = 1, · · · , n. The spatial region of interest consists of the coordinates 

(ui, vi) on a two-dimensional Cartesian grid. The simulation is conducted such that 

the grid consists of m x m lattice points with unit distance between any two adjacent 

points along the horizontal or vertical axes. Throughout this chapter, i = 1 refers to 

the location in the lower-left hand corner of the grid, i = 2 is the point above it, and 

so on, such that the n t h point is located in the upper-right hand corner. 

For the single predictor GWPR model, we chost;l m = 4, so there are n = m2 = 16 . . 
observations in the study regi<m: Figur~ · 3:~t±:: illustrates the geographical location of 

the 16 points in the study region. 
' 

The values for the regression coefficients (f3oi and /3li) and the predictor variable 

(xi ) for the 16 data points were chosen using the following step-changing approach: 

0.1, fori= 1, .. . , 4 

f30i = 
0.3, fori = 5, . .. , 8 

0.6, for i = 9, . .. , 12 

0.9, fori = 13, ... 16 

., \"'•': .. 



I 

'I .• ( \ ~ ' . 26 

4 

3 

2 

2 3 4 

Figure 3:1: ·A grid with 4 x 4 lattice points 

1, for i = .1, 5, 9, 13 

!31i = 
2, for i = 2, 6, 10, 14 

- 1, for i = 3, 7, 11, 15 

-2, for i = 4, 8, 12, 16 

1.0, for i = 1, 5, 9, 13 

0.7, for i = 2, 6, 10, 14 
Xi= 

-1.3, fori = 3, 7, 11, 15 

- 0.4, for i = 4, 8, 12, 16 
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The values for /li, i = 1, · · · , 16, were calculated using equation (3.2) and the 

chosen values of {30i, {31i and xi·· The values of the response variable Yi, i = 1, · · · , 16, 

were then randomly generated from a Poisson distribution using equation (3.1) -this 

process was carried out 1000 times in order to obtain the simulated datasets that 

were used in the analysis for th~ single predi~tor case. 

3.2.1 Estimates of Regression Coefficients 

The estimates of f3oi and {3li for the 16 data points were computed from each of 

the 1000 simulated datasets using the iteratively reweighted least squares method 

described in Chapter 2 (the initial estimated values of f3oi and {31i were obtained from 

fitting a global Poisson regression model to the data and were updated using the IRLS 

method until convergence was; reached). The Euclidean distance between points on 

the 4 x 4 grid were computed and were used in the calculation of the weights Wij 

' 
for the binary, Gaussian, fixed hi-square and adaptive hi-square spatial weighting 

' ' ' :~.. i ~ ' ' 

functions. A number of GWPR models· wer'e calibrated using a variety of bandwidths 
I t , . ) ' ~· !' 

(Gaussian), distances (binary and fixed hi-square) and values of M (adaptive hi-

square) . A global Poisson regression model (with no geographical weighting) was also 

calibrated for each dataset to serve as a comparison to the results obtained from the 

GWPR models. 

The average AICc from the simulated datasets was computed for each calibrated 

model and the values of b, d and M chosen for the four spatial weighting functions 

were those which produced the minimum average AICc· Average CV scores were also 

computed for each model and the values o.f b, d and M which gave minimum average 

I J '\'' \. ' 



. ' . 

1• .. \ 

. 28 

AICc values were reasonably close to those which gave minimum average CV scores. 

Table 3.1 shows the average AICc and average CV scores for a number of GWPR 

models that were calibrated for the single-predictor case. 

The minimum average AICc values occur at d = 2.0 for the binary weighting 

function, b = 1.5 for the Gaussian weighting function, d = 3.5 for the fixed hi-square 

weighting function and M = 15 for the adaptive hi-square weighting function. Also, 

the average AICc values for all GWPR models shown in Table 3.1 are lower than 

the average AICc for the global Poisson regressio~ model (31.99558). The mean 
' 

and standard deviation of the regression co~fficient estimates for the binary (distance . ' 

d = 2.0), Gaussian (bandwidth; b = 1.5), fiXed hi-square (distance d = 3.5) and 

adaptive hi-square (M = 15) weighting functions are shown in Tables 3.2 to 3.5 

respectively. 

'(; \ 

I ' · 
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Table 3.1: Single Predictor GWPR Models: Average AICc Values and Average CV 
Scores 

Weighting Function Average AICc Average CV Score 
Binary d = 2.0 27.31918 38.46512 
Binary d = 2.5 29.45442 42.52043 
Binary d = 3.0 30.45489 43.93526 
Binary d = 3.5 31.69904 46.97942 
Binary d = 4.0 31.89712 47.19748 

Gaussian b = 1.0 31.16112 373.58236 
Gaussian b = 1.5 28.39134 38.13858 
Gaussian b = 2.0 29.07540 40.67315 
Gaussian b = 3.0 30.35731 43.82787 
Gaussian b = 5.0 31.33713 46.01594 . \ . 

I 

Fixed d = 2.5 · 30 .. 30836 64.42804 
Fixed d = 3.0 28.34982 37.23726 
Fixed d = 3.5 28.19576 38.02199 
Fixed i 'd = 4.01 28.54374 39.28102 
Fixed d = 5.0 29.47119 41.71317 

Adaptive M= 15 28.44211 38.14971 
Adaptive M= 14 28.72668 37.33535 
Adaptive M= 12 28.92167 37.32353 
Adaptive M=11 28.99388 37.34254 
Adaptive M=9 31.58296 42.50882 
Global 31.99558 47.43878 

; . . ( 
• I. •• 

--- - -----
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Table 3.2: Summary statistics of GWPR parameter estimates: Binary weighting 
function with d = 2.0 

Intercept (/3o) Slope (/31) 

Points Mean St. Dev. Mean St. Dev. 
1 1.380424 0.3186759 0.05679597 0.3390346 
2 1.448374 0.1810716 0.05309431 0.1956084 
3 1.379398 0.1957863 -0.10843129 0.2123751 
4 1.250920 0.3022829 -0.06997141 0.3696410 
5 1.577091 0.2211894 0.02592263 0.2335517 
6 1.629591 0.1422096 0.02875213 0.1468863 
7 1.564026 0.1504.539\ ··-0.08867626 0.1660162 
8 1.424075 0.2658942 -0.08131402 0.3050974 
9 1.815996 o'.193ao83 -0.09426530 0.1923349 
10 1.799082 0.1270725 -0.05191960 0.1312799 
11 1.772903 0.1390153 0.05725511 0.1495637 
12 1.565832 0.2558508 -0.13390825 0.2938054 
13 1.985336 0.1779333 -0.17089310 0.1698431 
14 1.922429 0.1433866 -0.05631208 0.1475726 
15 1.906150 0.1476894 0.07223157 0.1600729 
16 1.836293 0.2329335 0.04367913 0.2900557 

Global statistic 1.657375 0.1129078 -0.01274097 0.1260806 

As shown in Tables 3.2 to ·3.5, the means of the GWPR estimates of /30 are much 
' . 

larger than their corresponding true values a~ each of the 16 locations for all 4 models 

(i.e., for all spatial weighting functions), so there is a large positive bias associated 

with these estimates. For most of the: fin~~ '. ~ loca~ions, the GWPR estimates of 
) • I 1 ; ·~\· l 1 ' i 

{30 using the binary weighting Junction· h~v,e ;the lowest bias among the 4 weighting 
· I t •. 

' .. 

functions while the Gaussian atid. adaptive hi-square weighting functions have the 
. ' 

highest bias. However, for most ·of the last 8 locations, the GWPR estimates using 

the Gaussian weighting function have the lowest bias while the binary and adaptive 

hi-square weighting functions have the highest bias. The standard deviations of the 

- - - - ---------



31 

. ' . . ~ l .. 

Table 3.3: Summary statistics of GWPR, p~r(!.meter estimates: Gaussian weighting 
function with b = 1.5 

• i I 

.' i . 

Intercept (f3o) Slope ({31) 

Points Mean St. Dev. Mean St. Dev. 
1 1.529052 0.1415824 -0.0520005732 0.1434242 
2 1.519977 0.1380288 -0.0164573930 0.1492346 
3 1.490459 0.1371564 0.0028531741 0.1635775 
4 1.419947 0.1511544 -0.0150061307 0.1898297 
5 1.647574 0.1242936 -0.0534318110 0.1241223 
6 1.638418 0.1216429 -0.0182903097 0.1289533 
7 1.609061 0.1214874 0. 0008668628 0.1411059 
8 1.539256 0.1342213 -0.0166939654 0.1633812 
9 1.771096 0.1227802 -0.0550500454 0.1199244 
10 1.762058 0.1204212 -0.0201188965 0.1244368 
11 1. 732917 0.1206723 -0.0010982362 0.1359728 
12 1.663495 0.1337516 -0.0186496370 0.1572763 
13 1.875452 0:1320706 -0.0563863611 0.1278008 
14 1.866644 0:1294330 t. ·-0.0214343088 0.1325985 
15 1.837687 o·.12!n~53 · 1 . ~0.0024750800 0.1449892 
16 1.768288 0:14114003' -0.0202116066 0.1679986 

Global statistic 1.657375 0:1129078 -0.01274097 0.1260806 

·.! 
I .. 

{30 estimates are lowest for the Gaussian weighting function at 11 of the 16 locations 

and are highest for the binary weighting function at 15 of the 16 locations. The range 
~ 

of the standard deviations of {30 among the 16 locations is small for the Gaussian 

and adaptive hi-square weighting functions (between 0.12 and 0.15) . For the fixed hi­

square weighting function, the standard deviations range between 0.12 and 0.19, while 

for the binary weighting function, the standard deviations among the 16 locations 

range between 0.12 and 0.32. 

In contrast to the results obtained for;.JJ0 , the me.ans of the GWPR estimates of 
' . . 

1 I I • '! ~ ' .. 

{31 (for all 4 models) are neg(!.t~";~ly bi8f~d)~r locations 1, 2, 5, 6, 9, 10, 13 and 14 
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Table 3.4: Summary statistics of GWPR parameter estimates: Fixed hi-square 
weighting function with d = 3.5 

Intercept (f3o) Slope ({31) 
Points Mean St. Dev. Mean St. Dev. 

1 1.500245 0.1624557 -0.037916343 0.1605247 
2 1.489722 0.1476723 -0.010770129 0.1596105 
3 1.455533 0.1479899 -0.008787483 0.1749742 
4 1.361697 0.1873'Mi1·· .. l0.043775056 0.2347639 

I I. 

5 1.65843.;1 o.i3o7\:l2 -0.051191609 0.1262712 
6 1.637787 0.'1217927 -0.017829236 0.1290507 
7 1.606772 0.1223666 -0.004011229 0.1415448 
8 1.527697 0.1513848 -0.032877975 0.1842759 
9 1.800755 0.1272578 -0.077552896 0.1192082 
10 1. 763157 0.1199444 -0.024454625 0.1237750 
11 1.735582 0.1207566 0.006792435 0.1361976 
12 1.678522 0.1475618 -0.004204512 0.1761175 
13 1.925289 0.1408901 -0.089790020 0.1308413 
14 1.883737 0.1318211 -0.028209851 0.1343259 
15 1.856799 0.1330906 0.011770547 0.1482595 
16 1.801080 0.1644313 0.001946380 0.1960232 

Global statistic 1.657375 0.1129078 -0.01274097 0.1260806 

(i.e., they underestimate their corresponding true values) while they are positively 

biased for the other 8 locations. , As with tp~; case fo~ the estimates of {30 , the bias in 
# " ' :: • 

the estimates of {31 is quite large .. In c~fuplifing the results between the 4 models, the 
' j :. ' ~ I .. I ' l ' 

GWPR estimates of {31 using. th¢ Gau~sian weighting function have the highest bias 
i ' I 

(in absolute value) for most of th~ first 8 locations and the lowest bias for most of the 

last 8 locations, while the opposite result occurs for the binary weighting function. 

The standard deviations of the {31 estimates are lowest for the Gaussian weighting 

function at 10 of the 16 locations and are highest for the binary weighting function 

at 15 of the 16 locations, which is similar to the results obtained for the {30 estimates. 
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Table 3.5: Summary statistics of GWPR, parameter estimates: Adaptive hi-square 
weighting function with M = · l5.. ' · . :· . 

Points 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Global statistic 

Intercep~ (f3o) 
Mean· St. Dev. 

1. 553689 0.1359770 
1.498833 0.1440187 
1.466105 0.1443894 
1.469081 0.1422187 
1.659976 0.1287166 
1.624235 0.1352787 
1.577505 0.1384238 
1.540599 0.1454307 
1. 793438 0.1258073 
1.818389 0.1287063 
1. 778821 0.1322400 
1.682787 0.1421727 
1.848668 0.1~77117. 

t I , • .'Jt .:. 

1.872723 Q.13q2487 
1.841126 . o: t3i3&.~a · 
1. 777592 0.1341994 
1.65.7375 0.1129078 

t ., : ~ 

Slope ({31) 

Mean St. Dev. 
-0.021886853 0.1409639 
-0.010717806 0.1562663 
-0.010173779 0.1702049 
-0.026885850 0.1733224 
-0.048569923 0.1252412 
-0.019565822 0.1372849 
0.001434572 0.1633140 

-0.026647651 0.1768868 
-0.072648944 0.1188958 
-0.031286212 0.1259716 
0.018978195 0.1501063 
0.001316782 0.1697950 

. -0.062682696 0.1251655 
.:o.027578990 0.1332878 

\ 

.. 0.011007915 0.1462333 
0.019048616 0.1571813 
-0.01274097 0.1260806 

Also, the range of the standard deviations of iJ1 among the 16locations is small for the 

Gaussian and adaptive hi-square weighting functions (between 0.12 and 0.19). For 

t he fixed hi-square weighting function, the standard deviations range between 0.12 

and 0.24, while for the binary weighting function, the standard deviations among the 

16 locations range between 0.13 and 0.37. In comparing the estimates of the two 

regression coefficients, the average iJ1 values have a greater departure from their true 

values at 10 of the 16 locations (for all 4 moc;lels), while the average fio values display 

··' a greater departure from their true values .~NJocatib!fs 1, 3, 5, 7, 9 and 11 . 
. •' ~ I · ' , . ' 

· ·~:'I ·: ' .,. . 

The last row of Tables 3.2 'to 3.5 show the means and standard deviations of fio 
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(mean= 1.657, standard deviation= 0.113) and iJ1 (:t;nean = -0.0127, standard devi­

ation = 0.126) obtained from the Poisson regression model assuming the regression 

coefficients are stationary over the study region. Since no variation in the parameter 

values are assumed in the calibration process, this . model is referred to as the global 

regression model and the statisti,cs comp).lt~~ from this model are referred to as global 
•: 1. ~ ; ,1 

' • .: \ 1: 
' ~ . .'\ I :' ' ', 

statistics. I! 
•'''. 

I ~ 

Figures 3.2 to 3.5 display the distribution of the {30 values at locations 1, 6, 11 . . . 

and 16 for the binary, Gaussian:, fixed hi-square and adaptive hi-square weighting 
~ 

functions respectively. Figure 3.6 to 3.9 show the distribution of the {31 values at 

the same locations for the 4 spatial weighting functions. For the binary weighting 
~ 

function, the shape of the distribution of {30 is slightly skewed to the left at all 4 

locations while the distribution of iJ1 is slightly skewed to the right at location 1 and 

somewhat close to normal at locations 6 and 11. For the Gaussian, fixed hi-square 
~ ~ 

and adaptive hi-square weighting functions,· the distributions of both {30 and {31 are 

fairly symmetric and close to normal at all. 4 locations. These plots also show the 

bias (which is quite large) in the GWBR e~.imtates· qr lJo and iJ1 in all cases . 
.... '. .,, . . ' 

'.' 

' .. ~ ,· ; : .; 
Figures 3.10 and 3.11 show' line diagrams for the average estimates of {30 and {31 

obtained using the 4 spatial weig;hting functions and their corresponding true values 

at the 16 points on the grid. 

. ~ ~ ~.· . ~ 
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Figure 3.2: Single Predictor GWPR Models: Distribut ion of {30 at various points on 
the grid - Binary weighting function 
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Figure 3.3: Single Predictor GWPR Models: Distribution of {30 at various points on 
the grid - Gaussian weighting function 
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Figure 3.4: Single Predictor GWPR Models: Distribution of {30 at various points on 
the grid - Fixed bi-square weighting function 



0 
0 
(1) 

0 
0 
N 

0 
0 ... 
0 
1.() 

0 

0 
0 
(1) 

0 
0 
N 

0 
0 ... 
0 
1.() 

0 

1.2 

1.2 1.4 

1.4 1.6 1.8 2.0 

Estimates of betaJ at location 1 

1.6 1.8 2.0 2.2 

Estimates of bet aD at location 11 

0 
0 
(1) 

0 
0 
N 

0 
0 ... 
0 
1.() 

0 

0 
0 
(1) 

0 
0 
N 

0 
0 ... 
0 
1.() 

0 

r ' 

I . " 

-· .. 

1.2 

1.4 

38 

1.4 1.6 1.8 2.0 

Estimates of betaJ at location 6 

1.6 1.8 2.0 2.2 

Estimates of betaO at location 16 

Figure 3.5: Single Predictor GWPR Models: Distribution of 1Jo at various points on 
the grid - Adaptive bi-square weighting· function 
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Figure 3.6: Single Predictor GWPR Models: Distribution of {31 at various points on 
t he grid - Binary weighting function 
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Figure 3. 7: Single Predictor GWPR Models: Distribution of Jh at various points on 
the grid - Gaussian weighting function 
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Figure 3.8: Single Predictor GWPR Models: Distribution of /31 at various points on 
the grid - Fixed hi-square weighting function 
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Figure 3.9: Single Predictor GWPR Models: Distr~bution of jj1 at various points on 
the grid - Adaptive hi-square weighting ·function 
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3.2.2 Hypothesis Testing 

As mentioned in Section 2.6, testing for significance in the regression coefficients of 

a GWPR model can be carried out using local t-statistics, given by equation (2.28). 

To assess the performance . of this testing procedure for the single predictor GWPR 

model, local t-tests were applied to the same simulated data generated using equations 

(3.1) arid (3.2). The hypotheses to be tested at the ith data point (i = 1, · · · , 16) are 

' . 
Ho: f31i = o 
H1: f31i # 0 

Since for the simulated data the true regression parameter values are known, the 

power of the local t-tests can be determined. The power of a statistical test is the 

probability of rejecting the null hypothesis H0 when it is actually false and should be 

rejected. 

For the single predictor case, the local t-tests had to be carried out 16,000 times 

for each GWPR model since the estimates of f3H for the 16 data points were computed 

from each of the 1000 simulated datasets. Since the null distribution of the local t-

statistic is approximated by a t-distribut~on with n, - K degrees of freedom ( K is 

the effective number of parameters), th,e cprres~onding p-values can be obtained. All 

4 spatial weighting functions described earlier were used in the analysis, where the 

values of b, d and M used were the same as those listed in Table 3.1. Table 3.6 

provides a summary of the results from the local t-tests at the 5% level of significance 

(a= 0.05). 
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I 

H;, <' ~.l· , r· ~ ~~ ; ' ' . 

:: :-. I • 

Table 3.6: Single .Predictor GWPR Models: Summary of Results from Local t-Tests 
for Testing H o : f31i = 0 

Weighting Function # of Times H0 Rejected Power 
Binary d= 2.0 943 '0.06 
Binary d = 2.5 893 0.06 
Binary d = 3.0 805 0.05 
Binary d= 3.5 832 0.05 
Binary d= 4.0 654 0.04 

Gaussian b = 1.0 703 0.04 
Gaussian b = 1.5 657 0.04 
Gaussian b = 2.0 622 0.04 
Gaussian ~ = 3.0 634 0.04 
Gaussian b = 5.0: .:: ... • t; · : ' ' 632 0.04 

Fixed ·I d = 2.5 i '. 
895 0.06 

Fixed d= 3.0 774 0.05 
Fixed . d_= 3.5 723 0.05 
Fixed d= 4.0 I 690 0.04 
Fixed d= 5.0 638 0.04 

Adaptive M=15 695 0.04 
Adaptive M = 14 723 0.05 
Adaptive M=12 746 0.05 
Adaptive M=ll 746 0.05 
Adaptive M=9 1161 0.07 

. ·' 
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As shown in Table 3.6, the local t-test does not appear to perform well for the 

single predictor case. The number of times that the null hypothesis is rejected (i.e., 

the correct decision) at the 5% level of significance is very small for each of the GWPR 

models, ranging between 600 and 1,200 (out of 16,000). As a result, the power of the 

local t-test is very low (ranging between 0.04 and 0.07). However, there appears 

to be some sort of relationship between the power of the test and the value of b, d 

and M; for the binary and fixed bi-~quare .weighting functions, as the value of the 
. I : : '· '• ,•· 

distanced decreases, the power of the local t-~est increases; for the Gaussian weighting 
,, ~ ;. 

function, the power of the test increases as the bandwidth b decreases; and for the 

adaptive hi-square weighting function, the power of the test increases as the value of 
' 

M decreases. To summarize, for GWPR models with a single predictor variable, the 

power of the local t-test is very low regardless of the spatial weighting function used. 

However, the power improves slightly if the ba~dwidth/distancefvalue of M is chosen 

such that, in the calibration of a GWPR mo~el around the ith regression point, other 

surrounding points have a smaller amount of influence on the regression parameters 

for that regression point. 

I . • t I I ' .·.! 

'. I:·: 

f. 
I :. 
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3.3 Multiple Predictor GWPR Model 

The general form of a GWPR rrio8el for a response variable y and k predictor variables 

X1, x2, ... , Xk is given by · 

Yi = Poisson(f.Li) (3.3) 

where 

(3.4) 

andwherei=1,··· ,n. 

For the multiple predictor case, we chose k = 3 and set m = 6, so there are n = 

m 2 = 36 observations in the study re~ion.' The val~es for the regression coefficients 

(f30i, f3li, fJ2i and f33i) and tw.~ q~ t~e predjctor var~ables (xli and x2i) were chosen 

using the following step-changing approach: 

0.1, 

0.2, 

f30i = 
0.3, 

0.7, 

0.8, 

0.9, 

'I "1 I . 

'{'' f3li - _ 
. . -1 , 

I 

fori= 1, .. . , 6 

for i = 7, ... , 12 

for i = 13, ... , 18 

for i = 19, ... , 24 

fori = 25, . .. , 30 

for i = 31, ... , 36 

' I ' '-· f 

: I ' l t 0 . . 

for· ~= 1, : .. , 18 

for i = 19, ... , 36 



'; 

f32i = { 
3
' 

-3, 

{ 

2, 
f33i = ) ,,: . 

. -2, 

:i 

0.7, 

0.6, 

0.5, 
Xli = 

-1.25, 

- 0.8, 

-1, 

~0.05, 

0.17, 

0.1, 

-0.08, 

I ' 
I I ~ .~ 

foi i = 1, ... , 18 

for i = 19, . .. , 36 

l~ .. ' 

for i = 1, : .. , 18 
,., ' J. 

fof. ~ = 19, ... , 36 

fori= 1, ... , 6 

for i = 7, ... , 12 

for i = 13, ... , 18 

for i = 19, ... , 24 

fori= 25, ... , 30 

fori= 31, ... , 36 

'I 

f0r. i .= 1, ... , 9 

for i = 10, . . . , 18 

for i = 19, ... , 27 

for i = 28, ... , 36 

49 
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The values for the predictor variable X3i were randomly generated from a uniform 

distribution on the interval (0\ 0.~) for points 1 to 18 and from a uniform distribution 

on the interval (-0.2, 0.2) for points 19 to 36. Similar to the single predictor case, the 

values for Jl.i, i = 1, · · · , 36, were calculated using equation (3.4) and the chosen values 

for the regression coefficients and predictor variables. The values of the response 

variable Yi, i = 1, · · · , 36, were randomly generated from a Poisson distribution using 

equation (3.3) - this process was also carried out 1000 times in order to obtain the 

simulated datasets that were used in the an~lysis for the multiple predictor case. 

3.3.1 Estimates of Regres~ion Coefficients 

·, , 
' : . '!. 

The estimates of f3oi, f3H, {32i and f33i for the 36 data points were computed from each 
' ' 

of 1000 simulated datasets us~ng· the IRLS method described in Chapter 2 (the initial 
''l I ,,1· ' 

estimated values of the regression coefficients were obtained from fitting a global 

Poisson regression model to the data and were updated using the IRLS method until 

convergence was reached). As with the single predictor case, a number of GWPR 

models were calibrated usin~ a variety of bandwidth values (Gaussian), distances 

(fixed hi-square) and M values (adaptive hi-square). Table 3.7 shows the average 

AICc and average CV scores for a number of GWPR models that were calibrated for 
I : ' 

the three-predictor case. 

The minimum average AICc_ value~ ,?c,?'{~ -~t b .. I-:. _2.0 for the Gaussian weighting 

function, d = 5.0 for the fix~d bi-square' (w~ighting. fu~ction and M = 31 for the 
' ' 

adaptive hi-square weighting f~ilction: With" .the exception of the model calibrated 

using the Gaussian weighting . fi\l~ction with b = 1.0, the average AICc values for the 

' I 
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. I, I. \ . ' ~ ,.; . 
Table 3.7: Three-Predictor GW:PR Models: Average AICc Values and Average CV 
Scores · · ~ ,· .,. ' · ' 

'· ~ 
Weighting Function Average AICc Average CV Score 
Gaussian ' b ~ 1.0 90.63627 4369800 
Gaussian ' b · i 1.5 62.27233 145.7924 
Gaussian b ' 2.0 58.75471 95.35532 
Gaussian b = 2.5 59.55068 96.98658 
Gaussian b = 3.0 60.95578 98.46995 
Gaussian b = 5.0 64.59212 101.8378 

Fixed d= 3.5 63.6522 30141770 
Fixed d= 4.0 59.63074 60275.03 
Fixed d= 4.5 58.28422 114.1461 
Fixed d= 5.0 ' 58.22338 93.29386 
Fixed d= 5.5 58.6963 94.8348 
Fixed d= 6.0 59.3653 96.15068 

Adaptive lv! = 35 ·' ;, ~~ :4072~.· 93.5373 
Adaptive M = ~4 d "· f·\:57:40191:' 91.2117 ., I' • . 

Adaptive M .= 33 . .5!-37232 91.36778 
Adaptive ·.M=32 57.02166 91.01119 
Adaptive . M .= .31 56,91001 104.9112 
Adaptive M= 30 57.26042 104.4442 

' . 
Adaptive M=25 59.35501 1539372 
Adaptive M=21 63.06902 1536233 
Global 67.67622 104.80036 

: , ~ ' ') . .(. ' 
·~ : I , ; ··: ;:. ·: . ·' 'I, , 
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Figure 3.12: Three-Predictor GWPR Models: Pattern of /30 estimates- Gaussian and 
hi-square weighting functions 

GWPR models shown in Table 3. 7 are iower than the average AICc for the global 
' I 

Poisson regression model. The m1nimum average CV scores occur at the same value of 

band d for the Gaussian and fiXed hi-square weighting functions, while the minimum 

average CV score for the adaptive hi-square weighting function occurs at M = 32. 

Figures 3.12 through 3.15 show line diagrams for the estimates of /30 , /31 , /32 and /33 

obtained using the Gaussian and hi-square (fixed and adaptive) weighting functions 

and their corresponding true values at the 36 points on the grid. 

The means of the GWPR estimates of /30 overestimate their corresponding true 

values by quite a large margin at all 36 locations for the Gaussian and both hi-square 

weighting functions. While the estimat~s apPrea to ~iffer between the 3 models for the 
~ ' I ,: . ; , •, t 

1st 18 points, they appear to be reasonably dose tb each other for the last 18 points. 
' f : . ..~ ~ 

For the Gaussian and fixed hi-square functions, the estimates follow an increasing 
· . . . • l 

trend for points 1 to 12, and :appear to level off between points 13 and 18. For 
. ., 

the adaptive hi-square weighting function, the estimates appear to follow a wave-like 
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Figure 3.13: Three-Predictor GWPR Models: Pattern of {31 estimates- Gaussian and 
hi-square weighting functions 
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Figure 3.14: Three-Predictor GWPR Models: Pattern of {32 estimates- Gaussian and 
hi-square weighting functions 
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Figure 3.15: Three-Predictor GWPR Models:; Patt~rn of {33 estimates- Gaussian and 
, , ' , L 

bi-square weighting functions 

I ,; 

pattern between points 1 and 18 .. For points 19 to 36, the estimates appear to follow 

a step-changing pattern for all 3 models, with increases occurring between points 18 

and 19, points 24 and 25 and points 29 and 30. Between points 19 and 24, points 25 

and 30 and points 31 and 36, the estimates follow a decreasing trend. 

The means of the GWPR estimates of {31 for the 3 spatial weighting functions 

underestimate their corresponding true values for points 1 to 18 (where {31 = 1) and 

overestimate their corresponding true values for points 19 to 36 (where {31 = - 1). In 

comparing the results among the 3 weighting functions at each of the 36 locations, 

the estimates appear to be ve~Y. c.lose ,~9.:~~?~·.ft:her ~d follow a similar step-changing 

pattern that was seen in the ·pl~t of the· a~~rage estimates of {30 . Increases occur 
'I • ' 

between the step-changing points (i.e., between points 6 and 7; points 12 and 13; 

points 18 and 19; points 24 and. 25; and between points 30 and 31). The estimates 

follow a decreasing trend between the points where the step-changes occur (i.e., from 

points 1 to 6; points 7 to 12; points 13 to 18; points 19 to 24; points 25 to 30; and 
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from points 31 to 36). 

Similar to the results for (31, the average.GWPI,t .. estimates of (32 for the 3 models 
: . .·. I)' ' . j ·' ·. 

underestimate their corresponqing tr~e v~li.1~s for ·points 1 to 18 (where (32 = 3) and 
. . ·. ·.. : \ , 

overestimate their corresponding.'true values for points 19 to 36 (where (32 = -3). The 
' ' ' 

estimates also follow a step-changing .pattern, but with decreases occuring between 

the step-changing points. The estimates obtained from the models calibrated with 

the Gaussian and fixed bi-square weighting functions follow the same pattern and 

the average estimates of (32 for these models appear to be very close to each other 

at most of the 36 points. The estimates from the 2 models follow a decreasing trend 

between the step-changing points for points 1 to 12, appear to level off between points 

13 and 18, and then follow an increasing trend between the step-changing points for 

points 19 to 36. The estimates from the model calibrated with the adaptive bi-square 

weighting function appear to fol~ow a wave-;-i~ke pattern (similar to what was shown 

for this model for (30 ). It should., alsO'; ,b~, 1~Jt~d th~t; for points 1 to 18, the average 
.. t 

estimates for (32 are closer to thei'r. corresponding true values for the first 6 points and 
• . J.' ( 

are furthest from their true vafu~,s for the last 6 points. However, for points 19 to 36, 
I ... : 

the estimates are furthest away from their true values for the first 6 points and are 

closer to their true values for the last 6 points. 

Similar to what was shown for (31 and (32 , the average GWPR estimates of (33 for 

the 3 models also underestimate their true values for points 1 to 18 (where (33 = 2) 

and overestimate their true values for points 19 to 36 (where (33 = -2). Similar to the 

results shown for (32, the estimates also follow a step-changing pattern, with decreases 

occuring between the step-changing points. With the exception of the first 6 points, 

. · .. \ . 

" :.· :.=: j;-.. -; l ' ' 
'I' ' 

I ~· j ' 
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the estimates obtained from the models calibrated with the Gaussian and fixed bi-

square weighting functions follow the same pattern and are close to each other at 

each point. The average estimates of {33 appear to be constant between points 7 and 

12 for the 2 models and follow an increasing trend between the step-changing point s 

for points 13 to 36. The estimates from the model calibrated with the adatptive hi­

square weighting function appear to follow a wave-like pattern for the first 18 points 
l 

and then follow a pattern similar to the estimates o.btained from the Gaussian and 
.1' . 1 . 

fixed bi-square weighting funCtio~s for ·th~;1l~t '18 .points. 
: , .. 
, , .. , . . 

The mean and standard deviation of the regression coefficient estimates for the .. ' 

Gaussian (bandwidth b = 2.'0);' fixed bi-square (d = 5.0) and adaptive bi-square 

(M = 31) weighting functions are shown in the Appendix. 

3.3.2 Hypothesis Testing 

To assess the performance of this testing procedure for the multiple predictor GWPR 
C -

model, local t-tests were applied to the simulated data generated using equations 

(3.3) and (3.4). The hypotheses to be tested at the i th data point (i = 1, · · · , 36) are 

,. 

', ' 

( ' 

Ho : !32i = 0 

HI : f32i =f 0 

Ho: f33i = 0 

' ' 
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For the multiple predictor case, the lo'c~;~.l ;t-tests had to be carried out 36,000 
·. .' ' 

~ ' I ·: : ; : ; ' ' . . \ 

• r~ . I \ . 

times for each GWPR model since the estimates of f3Ii, /32i and /33i for the 36 data . \•'. 

points were computed from each of 1000 simulated datasets. The Gaussian and both 

bi-square weighting functions (fixed and adaptive) were used in the analysis, where 

the values of b, d and Mused were the· same as those listed in Table 3.7. Tables 3.8, 

3.9 and 3.10 provide a summary of the results from the local t-tests for testing the 

null hypothesis that f3li, /32i and f33i are equal to 0 respectively. All tests were carried 

out at the 5% level of significance (a= 0.05). 

As shown in Tables 3.8, 3.9 and 3.10, the local t-test appears to perform better for 

the three-predictor case, compared to the single predictor case. The number of times 

that the null hypothesis is rejected for /31 and /33 (i.e., the correct decision) at the 

5% level of significance is small for eacli ·ofrthe: GWP.R models, ranging between 4000 . ' ' 
I I ' _. , ' ' ' ' ' • ~• ,', 1 

and 7000 (out of 36,000) . As·~.result~ · the~ IJ:f.ower of the local t-test is low (ranging 

between 0.12 and 0.20). However, there appears to be an improvement in the results 
·,, 

from the local t-test for /32 . The'Jn1mber of times that the null hypothesis is rejected 

at a = 0.05 is higher, ranging between 8000 and 14000 for each of the GWPR models. 

As a result, the power of the test is higher, ranging between 0.20 and 0.40. It should 

be noted that the true values of /32 are further away from zero, compared to the true 

values for the other regression coefficients. 

For the tests involving /31 , the power of the local t-test increases as the values 

of b, d and M increase (Le., the power increases when the values of the band­

width/ distance/number of nearest neighbours are ehosen such that the calibrated 

GWPR models become closer to the gl~Bal trifodel0~ .. ' However, the opposite results 
' ' ' 

occur for the tests involving /3{atld /3;,\vh~rJthe power increases when the values of 

' ) 
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Table 3.8: Three-Predictor GWPR Models: · Summary of Results from Local t-Tests 
for Testing Ho : f3H = 0 

Weighting Function 
; , #' oHI'i:rrles Ho Rejected Power I ) 

Gaussian b = hO I 
'. 4202 0.12 

I I ' 

Gaussian b = 1.5 
OJ ' 

6001 0.17 
Gaussian b = 2.0 6413 0.18 
Gaussian b = 2.5 6522 0.18 

" · 
Gaussian b'= 3.0 6629 0.18 
Gaussian b = 5.0 6838 0.19 

Fixed d= 3.5 4844 0.13 
Fixed d= 4.0 5591 0.16 
Fixed d = 4.5 5813 0.16 
Fixed d= 5.0 5808 0.16 
Fixed d= 5.5 5836 0.16 
Fixed d= 6.0 6045 0.17 

Adaptive M=35 5735 0.16 
Adaptive M=34 . 5421 0.15 
Adaptive M=33 5405 0.15 
Adaptive M = 32 '' if -~ ~- ?_330 0.15 

'' . J ; ' 

Adaptive ~1 ' I ' 5337 0.15 · M = 31 · .!: ~ -·-

Adaptive .M=3b ·· \\, .: . 5319 0.15 
Adaptive ·M=25 5283 0.15 
Adaptive M=2.1 5420 0.15 
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Table 3.9: Three-Predictor GWPR Models: Summary of Results from Local t-Tests 
for Testing Ho : /32i = 0 

Weighting Function # of Times H0 Rejected Power 
Gaussian b = 1.0 10367 0.29 
Gaussian b = 1.5 12132 0.34 
Gaussian b = 2.0 10746 0.30 
Gaussian b = 2.5 9279 0.26 
Gaussian b = 3.0 ' 8449 0.23 
Gaussian b = 5.0 8135 0.23 

Fixed d = 3.5 . ~ .J,3177 0.37 ,,: .. ~ 

Fixed d ·= 4.() I ·~' ·13089 0.36 
' 

Fixed d = 4.5 .· 12644 0.35 
Fixed 4 = 5.0 11768 0.33 
Fixed d = 5.p 10776 0.30 
Fixed d= 6.0 9793 0.27 

Adaptive M=35 9648 0.27 
Adaptive M=34 11105 0.31 
Adaptive M=33 11233 0.31 
Adaptive M=32 12122 0.34 
Adaptive M=31 12377 0.34 
Adaptive M=30 12750 0.35 
Adaptive M=25 13778 0.38 
Adaptive M=2l 13785 0.38 

' : 

' I • •. ~· :.. :. 
~- \ ' 

.. 
l 
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Table 3.10: Three-Predictor GWPR ~:?4eJJ; 'Stmrnary of Results from Local t-Tests 
for Testing Ho : !3Ji = 0 ~- · 

1 
~ 

Weighting FUnction . . # of Times H0 Rejected 
Gaussian r · b, = 1.0 
Gaussian b· = 1.5 
Gaussian b = 2.0 
Gaussian b = 2.5 
Gaussian b = 3.0 , 
Gaussian b = 5.0 

Fixed d = 3.5 
Fixed d = 4.0 
Fixed d= 4.5 
Fixed d = 5.0 
Fixed d = 5.5 
Fixed d = 6.0 

Adaptive M = 35. ',t L ~ 
I , I •, • t ,'"'l' ' l 

Adaptive . M = ·34"' '-·~-. 
• , I 

Adaptive M = '33 
;''. 

Adaptive M=32 
' 

Adaptive M=31 
Adaptive M=30 
Adaptive M = 25 
Adaptive M = 21 

' ., ' '· . .t ..... :o: 

5335 
6393 
6046 
5680 
5599 
5630 

6720 
6695 
6542 
6195 
5856 
5666 

., ~250 
: ~ 5451 

5481 
5868 
5990 
6102 
6910 
7001 

Power 
0.15 
0.18 
0.17 
0.16 
0.16 
0.16 

0.19 
0.19 
0.18 
0.17 
0.16 
0.16 

0.15 
0.15 
0.15 
0.16 
0.17 
0.17 
0.19 
0.19 



61 

I . 

b, d and M are chosen such that ,the c·alibrated GWPR models have a higher degree 

of geographical weighting (i.e .. , data ~oints that are close to a regression point have 

a strong influence in the estimation of the local regression coefficients for that point, 

while data points that are further away from the regression point have very little or 

no influence). 

One may feel that the power the local t-test should be higher given the biased 

estimates that were observed for both the single and multiple predictor cases. How-

ever, the variability of the estimates is quite high, which may suggest why the power 

is low. 

I• ' 
't t,j' . '~~·' 

~ - I 1 , I I 

'· 
·., 

. . 
, • • 1 · , r 



Chapter 4 

Analysis of a Socio-Economic 

Dataset Using GWPR 

4.1 Introduction 

One of the primary objectives of spatial analysis is to identify the nature of rela­

tionships that exist among variables (Brunsdon et. al, 1996). The most common 

type of analysis used to undertake this is regression, where relationships between a 

response variable and a number of predictor variables are estimated (Fotheringham 

et. al, 1998). These relationships are often assumed to be constant (or stationary) 

across space; however, this assumption is usually not verified. In this section, GWPR 

methods are applied to a well-known socio-economic dataset. After performing an 

exploratory analysis, a global Poisson regression model is then fit to the data and a 

62 



,, 
• 

.'· 
. :11 1 • . 

63 

' ' 

suitable subset of predictor variables is chosen using a backwards-elimination step­

wise procedure and a drop-in-de\tiance test. A number of GWPR models are then fit 

to the data using this subset of predictor variables in order to assess the presence of 

spatial non-stationarity. 

4. 2 Data Description 

A dataset on housing prices from the Boston Standard Metropolitan Statistical Area 

(SMSA) is used for illustrating GWPR calibration and inference methods discussed 

in Chapter 2. Harrison and Rubenfeld '(1,9;7~} usee( this dataset to analyze various 

methodological issues related to.hedo~i6' li?using ~rices to estimate the demand for 

clean air. The hedonic price i~de~ is based o~ the fitted values of a regression of price 

on various predictor variables.·
1
aAd is used to represent its qualitative determinants. 

The 1970 Census Bureau Publication is the source of the majority of the data. The 

dataset consists of 506 observations (1 observation per census tract) and a number 

of predictor variables. These variables include crime rate ( CRIM), proportion of area 

zoned with large lots (ZN), proportion of non-retail business areas (INDUS), location 

contiguous to the Charles River (CHAS), levels of nitrogen oxides (NOX), average 

number of rooms (RM), proportion of .struc~ures built before 1940 (AGE), weighted 

distances to the employment centres (DIS), an index of accessibility (RAD), property 

tax rate (TAX), pupil-teacher ratio (\T~-{\TIO), .?lack population proportion (B) 

and lower status population pr?~·~rtio~ '(LS}'.f{~'). The response variable used in their 

study was the median value of. o:wner ·occup~ed homes in the census tract (MEDV). 

The variables RM and AGE :ean b~ considered to represent the structural aspect 



' ' ,. 

64 

of houses, where RM represents spaciousness and quantity of housing, while AGE 

is related to housing quality. The variables B, LSTAT, CRIM, ZN, INDUS, TAX, 

PTRATIO and CHAS are considered to be relating to the neighborhood amenities. 

In their study, Harrison and Rubenfeldi \.1p7~) ops~rved that when the proportion 
. . ' 

of blacks (B) in the Boston area was lo.w. Qli moderate, an increase in the black 
' : . .. . . ~ :, , ' \ 

population had a negative effect .on housing prices, whie the reverse trend occurred 
;. 

when the proportion of back . people y.ras very high. Based on this parabolic trend, 
I I ~ 

the variable B is created by shifting the proportion 0.63 towards the origin. The 

variable LSTAT represents the proportion of lower status people, which is obtained 

by averaging the proportion of adults without some high school education and the 

proportion of male workers classified as labourers. The variable INDUS is considered 

to be a proxy measure of externalities associated with industry, such as noise and 

heavy traffic. The variable TAX represents full value property taxes and measures 

the cost of public services in the com~un.ities. The local assessment ratio is used 

as a correction factor with the nominal t~, ~ate ljtl,ld yields the full value tax rate 
. ! . ~ . ~ J .' 

which varies from town to town .. 7he. 1~~:~~~~~:;PT~TIO is treated as a measure of 
. . I :" 

public sector benefits in the town, where tb_ere are better opportunities for a child's 
',•. ;' 

education if the value of PTRATJO is low. The variable CHAS is an indicator variable 
1., ' . . •, 

which represents the amenities of a riverside location. 

Harrison and Rubenfeld (1978) used this data to investigate the willingness to 

pay for air quality improvements. Belsley et. al (1980), Krasker et. al (1983), Subra­

manian and Carson (1988), Brieman and Friedman (1985), Lange and Ryan (1989) , 

Brieman et. al (1993) and Pace (1993) have also used this data for examining robust 

estimation, normality of residuals, non-parametric and semi-parametric estimation. 
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Table 4.1: Description or Yariables in the Boston Housing Price Dataset 

Variable 
CMEDV 
CRIM 
ZN 
INDUS 
CHAS 
NOX 
RM 
AGE 
DIS 
RAD 
TAX 
PTRATIO 
B 
LSTAT 
LAT 
LONG 

Description 
Corrected median value of owner-occupied homes (in $1,000s) 
Per capita crime rate by town 
Proportion of residential land zoned for lots over 25000 square feet 
Proportion of non-retail business acres per town 
Charles River dummy variable (1 if tract borders the river; 0 otherwise 
Nitric oxides concentration (parts per 10 million) 
Average number of rooms per dwelling 
Proportion of owner-occupied units built prior to 1940 
Weighted distances to five' Boston employment centres 
Index of accessibility to radial highway 
Full-value property tax rate J?er $10,0QO 
Pupil-teacher ratio by tdwn<·r·;Jt~ , ' ' 
1000(Bk- 0.63)2 rvhere Bk' i~ ~he proportion of blacks by town 
Proportion of lower stat us of the population 
Standardized L~titude coordinates 
Standardized Lbhgitude coordinates 

In addition to the variables mentioned above, Gilley and Pace (1996) collected 

the location of each census tract in latitude (LAT) and longitude (LON), based on 

results obtained from the 1970 census. However, in the process of conducting their 

own study with the data, they discovered some incorrectly coded observations in the 

MEDV variable (8 in total) as well as a ce;nsoring problem with the same variable: 

they discovered that all observations (16 in total) with a value equal to or greater 
. . 

than $50,000 appeared as $50,000. The vari~ble, C1vp~mv represents the median value 
. . " ' ~. t· ··. . 

of housing prices with these errors c~f~~c~~ci~' .'A biief description of the variables is 
.... ,· ' . ~ \ . 
' . l ~. 

presented in Table 4.1. 

As mentioned earlier, the rti~dian value of owner occupied homes (i.e., the variables 
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MEDV or CMEDV) was used as the response variable in most studies which used 

this dataset for regression analysis. However, in order to fit a Poisson regression 

model (global or geographically weighted) to this . cll~ta, another variable would have 
j • ·~.' . ·, 

to be used as the response sine~ .MED:V 9~: 9J:VIEDV are continuous variables. The 
,., . : . 
' ' 

variable representing the averag~ :number of rooms per dwelling (RM) was chosen as 

a candidate for the response >variable - however, a modification had to be made to 
' . . . ; 

this variable since the values were given to 3 decimal places. As a result, the values 

for RM were rounded to the nearest whole number and stored in a new variable 

ROOMS. This variable (ROOMS) was used as the response variable in fitting global 

and geographically weighted Poisson regression models. 

4 .3 Exploratory Analysis ·· 

A key feature of the Poisson distribution i.~' that ·its variance is equal to its mean. 

In practice, count observations. often ! ~~hibi~ ~~k.riability' exceeding that predicted by 
' '( . .• . ~' :: 

the Poisson distribution- this 'fs ··· teferred to as overdispersion, which can result from 

heterogeneity among observations. In such cases, assuming a Poisson distribution for . . , ~ 

a count variable may be incorrect. When the model for the mean is correct but the 

true distribution is not Poisson, the maximum likelihood estimates of the regression 

coefficients are still consistent but their standard errors are incorrect. If there is strong 

evidence of overdispersion, fitting a negative binomial regression model to the data 

may be more appropriate. The negative binomial distribution is a related distribution 

for count data that has an extra parameter to better account for overdispersion by 

allowing the variance to exceed the mean. 

l . \ •\ 

I 

~! \. :, • ~.~'I >~ . 
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Although overdispersion is common in the modelling of counts, in some cases, 

the variance in the count data may be smaller than what the Poisson distribution 

predicts, reflecting underdispersion. For the Boston housing price data, the mean and 

variance of the ROOMS variable are 6.2668 and 0.5326 respectively, with a variance­

to-mean ratio of 0.0850. Also, ?-S shown in Figure 4.1, although the values of ROOMS 

range from 4 to 9, most observations · are clustered near the mean ( 437 of the 506 

observations, or 86%, have avah~e of eitJ;l~r .:~G· or 7).( !his indicates that there may be 

underdispersion which should be ,takeriTr~t'~i~~C<?unfbefore fitting a Poisson regression 

model to the data with ROOMS. as th~ respio.nse variable . 
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Figure 4.1: Boston Housing Price Data- Histogram of the Variable ROOMS 
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4.4 Global P oisson Regre~sion. Model 
i I 

In this section, Poisson regressi~n a~~ly~iJ' was u~ed in choosing a suitable model 
. .:. . 

for the number of rooms in a dwelling. The initial step in the analysis was to fit 

a Poisson log-linear model using all possible predictor variables (with the exception 

of LAT and LON) . The backwards-elimination stepwise procedure was then used to 

remove variables from the model that were not significant (i.e., those variables whose 

corresponding regression coefficients had the highest p-values). The drop-in-deviance 

test was then used to determine if the reduced model (i.e., the model using the subset 

of predictors obtained from the stepwise procedure) provided a better fit than the full 

model (i.e., the model using all predictors). The subset of predictors in the reduced 

model was then used for applying GWPR methods and techniques, which will be 

discussed further in the next section. .·, : \ \ 

. i ' 
' • • ,t ·~ ; ·, :i ' lj . : . . . 

Using ROOMS as the resp~nse vatiab1el ~the following global Poisson regression 

model was fit to the data: 

log(J.t) - /3o + /J1 CMEDV + /J2CRIM + /33ZN + /34INDUS + /35CHAS + 

/35NOX + /37AGE + /38DIS + /39RAD + /310TAX + 

/3nPTRATIO + /J12B + /313LSTAT (4.1) 

where J.l represents the mean ,number of rooms per dwelling. To account for the 

possibility of dispersion, a quasipoisson regression model was fit to the data, using 

the 13 predictors indicated in model .( 4.1) :, . The estimates and standard errors of 
. I ' : ~~ . I I l 

the regression coefficients from this ~odel1 .'jncluding their corresponding t-statistics 
t' .. . . • . 

l , t• ' ~ ; .-. I : 1i ,,, • ~ 
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Table 4.2: Results from the Global Poisson Regression Model (allowing for dispersion) 
with 13 Predictors 

Variable {3 ' SE({3) t-stat p-value 
Intercept ' 1.8410 0.0780 23.6090 0.0000 
CMEDV 0.0055 ' 0.0007 8.1220 0.0000 

CRIM 0.0005 0.0006 0.9470 0.3441 
ZN . 0.0005 0.0002 ~.l200 0.0345 . \ ' ·' 

INDUS -0.0025 . :0.0,010 .:.2.4210 0.0158 
CHAS . -0 ,0027;~' 1o,;o'144 .:.6.1850 0.8535 

NOX ·'. ~o :o223L 0.06B~( -0.3350 0.7379 
AGE o:ooo8 0.0002 3.8860 0.0001 

DIS -0.0008 0.0035 -0.2330 0.8158 
RAD · . 0.0019 0.0012 1.6020 0.1099 
TAX -0.0001 0.0001 -0.8700 0.3846 

PTRATIO -0.0006 0.0023 -0.2660 0.7906 
B -0.0002 0.0000 -3.9360 0.0001 

LSTAT -0.0057 . 0.0009 -6.0900 0.0000 

and p-values are shown in Table 4.2. As shown in Table 4.4, the estimate of the 

dispersion parameter and the ratio of the. !deviance to the degrees of freedom are 

both approximately 0.04. These results indicate that there is strong evidence of 
•, 

underdispersion in this model. 
1 . ·• ~: .. ' '' t . 

i .• · , ~ . l ' 
As shownin Table 4.2, there·;are .ti :rilicl~er'of ~ariables in model (4.1) which are 

: . '' ::~ .. t • • \ ~ { . · ·· ; • 

not significant. There are 6 variables which have a p-value greater than 0.2: CRIM, 
t , ; . . 

CHAS, NOX, DIS, TAX and PTRATIO. These variables were then dropped from 
. l i : 

model (4.1), resulting in the following model with 7 predictors: 

(4.2) 
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Table 4.3: Results from the Global Pqi~s~m ltegressi.on Model (allowing for dispersion) 
with 7 Predictors :-' -~· .:, 1 . · J !· q.~~~··., · '. ' ., . 

. ' ; 

Variable {3 SE(,6) t-stat p-value 
Intercept '· 1.7990i 0.0283 63.6420 0.0000 
CMEDV o.'oo57 0.0006 9.9850 0.0000 
ZN ·0.0004 0.0002 2.3610 0.0186 
INDUS .-0.0030 0.0008 -3.7280 0.0002 
AGE 0.0008 0.0002 4.4230 0.0000 
RAD 0.0012 :0.0006 2.2160 0.0271 
B -0.0002 0.0000 -4.1570 0.0000 
LSTAT -0.0055 0.0009 -6.0250 0.0000 

Table 4.4: Indicators for the 13-Predictor and 7-Predictor Global Poisson Regression 
Models ,. 

Indicator 13-Predictor .Moqel 
Degrees of Freedom .. , ·· 1 492 
Dispersion Estimat~ '- :-; ::_: -;,_;\.1_i:·: · 5.03~9 
Deviance ._:: \.: i20.0872 
AIC0 · · · 48.9426 

7-Predictor Model 
498 

0.0396 
20.1683 
36.4580 

A quasipoisson regression model was then fit to the data, using the 7 predictors 

indicated in model (4.2). The estimates and standard errors of the regression coef­

ficients from this model, including their corresponding t-statistics and p-values are 

shown in Table 4.3. In comparison to the model with 13 predictors, the estimate 

of the dispersion parameter and the ratio of the deviance to the degrees of freedom 

are both approximately 0.04. These results .. indicate that there is strong evidence of 

underdispersion in the 7-predictor global Poisson regression model. 

, '. I 
To determine whether or not the variap~es iCRIM, CHAS, NOX, DIS, TAX and 

. , : . . r ' 

PTRATIO can be dropped f;omJhe - ~~lf'g~~b~l P~i~'son regression model (i.e. , with 
. . ' . : .· 
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all 13 predictors), an adjusted drop-in-deviance test (which accounts for dispersion) 

was used to test the following hypothesis: 

H o : fJ2 = f3s = (36 = f3s = fJ10 = f3u = 0 

H1 : at least one f3i f 0 (i = 2, 5, 6, 8, 10, 11) 

' ' ' l' ' 
' ' ' ~· ',! ' '' 

The test statistic for the adj~sted . ~'rop;i,~1~vi.ruhce test is given in equation (4.3). 

' \ , 

F. _ (DevianceR- DevianceF)/(dfR- dfF) 
obs - Dispersion Parameter Estimate 

(4.3) 

where DevianceR and DevianceF represent the deviance under the reduced and full 

models respectively; dfR and dfF represent the degrees of freedom under the reduced 

and full models respectively. The dispersion parameter is estimated by the ratio of 

the deviance and degrees of freedom under the full model. Under H0 , Fobs follows 

an F-distribution with numerator degrees :of freedo~ (dh) equal to dfR - dfF and 
• !, 

denominator degrees of freedom (d/2) equal to dfF·: 
' " 

' I: ' ' ;. I i:: I • ·j', l ,f, '' 
From Table 4.4, with the r~dlfced :mo~.~r;repres.~n.~ing the model with 7 predictors 

l j, ,'• ( ' ' 

and the full model representing ' the ~odei · ~i~h 13 predictors, Fobs = 0.338, wit h 

p-value = 0.9167, using dfi ,.,6 .. and ~h = 4~2. Thus, there is no evidence against 

H0 and the variables CRIM, CHAS, NOX, DIS, TAX and PTRATIO can be dropped 

from the global Poisson regression model. 

In interpreting the regression coeffiCients shown in Table 4.3, a 1-unit increase in 

the value of a predictor variable x (with all other variables being held constant) has 

a multiplicative impact of ef3 on P,. For example, the estimate of (31 is 0.0057, so a 
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. '· 
' . Y, ' 

1-unit increase in the value of CMEDV (i.e., an increase of $1000 in the corrected 

median house price) is estimate,d to be asso.ciated with a 1.0057-fold change in the 
'j I 

mean number of rooms per dwelling (where e0·0057 = 1.0057). In other words, a 

$1000 increase in the median house price yields an increase of 0.57% in the estimated 

mean. Similarly, an increase in the proportion of residential land zoned for lots over 

25000 square feet (ZN) by 1% results in a 0.04% increase in the estimated mean while 

an increase in the proportion of non-retail business acres per town (INDUS) by 1% 

results in a decrease of 0.3% in the estimat~d mean. 

4 .5 GWPR Models 
! ., 

\ ' I 

After presenting the underlying 'theory (Chapter 2) and examining results from simu-

lation studies (Chapter 3) , GWP~R techniques (i.e., model calibration and hypothesis 
I , 

testing) are applied to the Boston housing price dataset. As mentioned earlier, there 

are two variables in the dataset which measure the geographical location of the houses 

in the sample: latitude (LAT) and longitude (LONG). These two variables are used 

as inputs for the spatial weighting function, where the distance between each of the 

data points is computed and the weighting matrix W ( i) is obtained for each data point. 

Various GWPR models were fit to the ·da.ta using the seven predictor variables in 

model (4.2). The Gaussian spatial weighting function was used in the calibration of 

the models, with bandwidths ranging frbm·4:.5 to 20. Table 4.5 shows some summary 
' ~ \., ', I, 1: •' •\ j • ~ 'I II'; '·I · : • 

indicators (effective number of parameters, deviance and corrected AI C) from the . ) \ 

calibrated GWPR models. ~ .. 1· 

·. \ ' 
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Table 4.5: Indicators for the 7-Predictor GWPR Models (Gaussian weighting func­
tion) 

Effective No·. 
Bandwidth of Parameters Deviance AICc 
2.5 99.8560 14.5819 264.0100 
3.0 78.B22,7 .· t 15::5427 202.1526 
3.5 62.'96i7'; ) 16'.':5312 - 160.4753 
4.0 5'i ·.1924'\ ': 16.9642 131.1242 
5.0 35.5346 17.8431 94.4430 
7.5 19.5285 18.8661 59.5747 
10.0 .· 14.4141 19.3675 49.1016 
12.5 12.1081 19.6574 44.5176 
15.0 10.8289 19.8295 42.0058 
20.0 9.5482 19.9960 39.4989 
Global 8 20.1683 36.4580 

Local t-tests were also carried out for each of the GWPR models shown in Table 

4.5, where the following hypotheses were tested for the 7 regression coefficients at 

each of the data points: 

~ :' . 

Ho :,{3ki ":""" 0 ',' . 
I •, '(\l ' t. 

Af. :\ f3Ji;~~ :o ,.·· ( · 
: J • t • • ~·: ; :. 

I \ , 

where k = 1, 3, 4, 7, 9, 12. and 13 (representing the· coefficients for CMEDV, ZN, 
': . 

INDUS, AGE, RAD, B and LS.TAT respectively) and i = 1, · · · , 506. Table 4.6 

provides a summary of the results from the local t-tests for each of the calibrated 

GWPR models. All tests were carried out at the 5% level of significance (a= 0.05). 

As shown in Table 4.5, the AICc values for all GWPR models are higher than the 

AICc for the global Poisson regression model. Also, there is an inverse relationship 

between the bandwidth and AICc- a.S the bandwidth increases, the AICc decreases 

..: . 
'. ~· . ,, ... 

, . 
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Table 4.6: Hypothesis Testing'Results for the 7-Predictor GWPR Models (Gaussian 
weighting function) 

Number of times H0 : f3ki = 0 rejected 
Bandwidth f3Ii f33i f34i f37i {3gi f3I2i f3I3i 

2.5 340 129 152 ' 118 52 191 324 
3.0 392 172 223 174 58 246 348 ' 
3.5 432 212 283 274 71 286 381 
4.0 470 243 330 415 86 324 409 
5.0 492 291 389 441 121 378 444 
7.5 506 348 482 482 257 493 497 
10.0 506 399 506 503 356 506 506 
12.5 506 437 506 506 405 506 506 
15.0 506 463 506 506 • 440 506 506 
20.0 506 500 506 506 486 506 506 
Global 506 50p_ ' ~gp . '50~ ~· 506 506 506 

j ' 
' ! 

' 

and the model tends towards ~h:e global Poisson·regression model in terms of model 

fit and number of parameters. This indicates that for this dataset, where ROOMS is 

the dependent variable and CMEDV, ZN, INDUS, AGE, RAD, Band LSTAT are the 

predictor variables, it appears that a GWPR model does not perform better than the 

global model. However, it should be noted that the GWPR models calibrated here 

allow all of the regression coefficients to vary over space (i.e., they are full-GWPR . 

models) . It may be the case that at le'ast one of the coefficients does not depend on 

geographical location and that a mixed-GWPR model may be more appropriate for 
' ' 

this data (i.e., result in a lower AICc vahie) . compared to a full-GWPR model or the 

global model. 
; I I t , 

As shown in Table 4.6, it appears that when the value of the bandwidth is low, 

for some variables, the number :of times Ho :is rejected is small (e.g., for the RAD 

variable, less than 20% of the ·ccJeffcients are determined to be significant when the 
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bandwidth is less than 4). However, as the bandwidth increases, the number of 

significant coeffcients increases for all variables - w,hen the bandwidth is 10, 5 of the 

7 variables have significant coefficient~ at ... ~lnwst all of the 506 data points; when 
\ \ I ' .~I •:' I 1 • 't 

, I , ' 

the bandwidth is 20 (i.e., the' GWPR mode~ becoming more similar to a global or 
'• ·, ' . \ •, 

non-geographically weighted model), practically all coefficients are significant at each 
,;,. !!, I 

of the data points for all 7 varia.bles. 

,. r , .. ·• ll· ' r, .. 
. ·l' ' I 

\o ;' ·~ , ';\ ' 

j : ,'· . . ' ' 
.. ·. ··' 

., , r ,. ' ,, 
' ' . 

,, 
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Chapter 5 

Conclusions 
' : ~;~·~ ... 
'' • 

·, , '. ' 
•I 

In this practicum, the theory of GWPR has been discussed, including model calibra-

tion, calculation of various indicators (log-likelihood, effective number of parameters, 

deviance, AICc), choice of spatial weighting function and its corresponding parame­

ter (i.e., bandwidth, distance or number of nearest neighbours) and hypothesis testing 

for the regression coefficients using local t-tests. The performance of GWPR meth­

ods was then assessed through its use on simulated data as well as a socio-economic 

dataset. The key findings are summarized ~elow. 

For the 1000 simulated datasets using one predictor variable, the calibrated GWPR 

models appeared to provide a better fit (i.e., lower average AICc values) than the 
I ' ':•\ , \• : 

global Poisson regression model. However, there was a large bias in the average values 
: . ·, . 

of the regression coefficients at each of the 16 data points, regardless of the spatial 

weighting function used. For the ·ffiost part, the variability in the coefficient estimates 

appeared to be smallest for the model which 'used the Gaussian weighting function. 

76 
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The local t-tests did not perform well for the single predictor case, with the power of 

the tests being very low (less than 10%) for all calibrated GWPR models. However, 
. . ' . l . 

the power improved slightly when the .val~~·, ofth~ weighting function parameter de-
. . ~- ; .. 

creased (i.e., such that, in the calibration of. the GWPR model around the ith data 

point, the influence of surrounding points on the regression parameters for that point 
' . . 

became smaller and smaller, with larger weights for points close to the ith data point 

and smaller weights for points far away from the ith data point). 

· For the 1000 simulated datasets using three predictor variables, the calibrated 

GWPR models also provided a better fit than the global model. Even though the 

minimum average AICc values and cross-validation (CV) scores occurred at around 

the same value of the weighting function parameter (for both the single and multi­

predictor case), there appeared to be more variability in the CV -scores in the multi­

predictor case. As with the single predictor ·Case, there was a large bias in the average 
._, '. 

values of all regression coefficients. at ea~h. of; the 36 data points. The local t-tests also 
• • ; · : " I,' • . ' • 

did not perform well in the multi--predictor base; however, the power of the tests were . ;, 

higher compared to the single ,predictor case (between 12% and 20% for both /31 and 

/33 ; and between 20% and 40% for /32 , where the true values were farther away from 

zero, compared to the other regression coefficients). For /31 , the power of the local 

t-test increased as the value of the weighting function parameter increased (i.e., as 

the calibrated GWPR model became closer to the global model) while for /32 and /33 , 

the power increases as the value of the weighting function parameter decreased. One 

must be cautious, however, in the use of GWPR models because of the large degree 
. ' 

of bias in the estimators. 

In the study by Nakaya et. al {2005) wh~oh:'examined the geographical patterns in 
... . ' 

! · •. !,' 1 .',jl ~~ ~r ' .. 
' 

': J ( 
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the relationship between working-age mortality rates and a number of socio-economic 

covariates, it was found that the optimal model was a mixed (or semi-parametric) 

GWPR model (i.e., it produced the lowest AICc value, compared to all other fitted 

models). In this model, the coefficients associated with at least one of the co variates 

are held constant while the coeffidents for all other covariates are allowed to vary over 

space. As discussed in Chapter 4, the calibrated . GWPR models were full-GWPR 
.• . ' 

, I ' 

models (i.e., where the coefficie;nts for ~ll~ari'ables ,.are allowed to vary over space) 
:, • . 'I !,: j ,,;j \, • , I I 

and they did not provide a better fit to·the' c;lata compared to the global model (where 
1,1 • • 

there was no geographical weighting); however, it is possible that a mixed GWPR 

model may yield a lower AICc value, in comparison to the full-GWPR model or global 

Poisson regression modeL As an area of future research, more simulation studies may 

be needed to examine the performance of a mixed GWPR model, with respect to 

the degree of bias in the regression coefficients, selection of the weighting function 

parameter (i.e., bandwidth, distance or number of nearest neighbours) which yields 

the lowest AI Co value and CV score, as well as hypothesis testing for the significance . . 

of the regression coefficients and the power :Of these tests. 
, I 

As mentioned in Chapter 1, most applica:tions, of GWR have been used in the 

case where the response variable is ~on~in.~9us and .. the error terms' are assumed to 
1 

, • • 1 I r ' · f, ' ' '' 

be normally distributed. Nak8.ya et.• !a;l (2005) discuss in detail the framework of 
1 

GWPR while Atkinson et. al (2003) focus on geographically weighted logistic regres­

sion (GWLR), where the response variable is binary (i.e., the presence or absence of 

riverbank erosion). However, the concept of GWR can be extended to other GLMs 

and other statistical techniques - Paez (2006) examines the use of a geographically 

weighted probit model in determining the presence of spatially varying relationships 
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in land use and transportation modeling while Bru~sdon, Fotheringham and Charlton 

(2007) discuss the concept of geo'grap4ib~lii\veight~d·.discriminant analysis (GWDA), 

an adaptation of the GWR m'~tl{6d whlch alfo:Ws the modeling and prediction of cat-

egorical response variables. 

' · ' .. 

i . ~, :.' ;., 
I .,. I • I ' ., I • \~ , 1' . ~ : . 

~: . 
: .. l r f: · 

\1 ·i· ' 

. I 

·.I 

'i . 
1, ! I 

.'• I ' 
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Table 1: Summary statistics of GWPR parameter estimates- Three Predictors: Gaus-
sian weighting function with b = 2.0 

f3o (31 (32 (33 
Points Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

1 1.2717 0.2089 -0.2139 0.1693 1.7140 1.2033 0.9540 0.9004 
2 1.2694 0.1880 -0.2255 0.1513 ' I 1.7255 1.1038 0.9738 0.8150 
3 1.2878 0.1707 -0.2498 . 0.1_402 ' 1.6810 1.0522 0.9518 0.7619 
4 1.3169 0.1633 -0.2881 . '· ·~.1377 ,. ·. ·. 1.6252 1.0557 0.9183 0.7761 
5 1.3428 0.1681 .:,, ~0.3381; ,;0.1472 1.5948 1.1057 0.9161 0.8524 

;-0.3948 
•• t, • 

6 1.3586 0.1812 0.1680 1.5958 1.1926 0.9643 0.9545 
7 1.4621 0.1696 '-0.1570 0.1553 0.8530 1.1249 0.3129 0.8018 
8 1.4534 0.1508 -0.1747 0.1398 0.8737 1.0063 0.3572 0.7289 
9 1.4647 0.1366 -0.1992 0.1304 0.8229 0.9309 0.3550 0.6819 
10 1.4858 0.1299 -0.2324 0.1271 0.7541 0.9064 0.3410 0.6873 
11 1.5035 0.1317 -0.2749 0.1327 0.7091 0.9244 0.3618 0.7511 
12 1.5114 0.1408 -0.3250 0.1488 0.6973 0.9780 0.4391 0.8531 
13 1.6707 0.1415 -0.0780 0.1489 -0.2353 1.0099 -0.3957 0. 7413 
14 1.6492 0.1245 -0.1037 0.1343 -0.1856 0.8855 -0.2995 0.6764 
15 1.6444 0.1150 -0.1301 0.1262 -0.2013 0.8074 -0.2461 0.6368 
16 1.6495 0.1120 -0.1601 0.1234 -0.2362 0.7848 -0.2102 0.6394 
17 1.6543 0.1149 -0.1964 0.1275 -0.2558 0.8084 -0.1528 0.6934 
18 1.6530 0.1232 -0.2398 ·0.1402 -0.2506 0.8680 -0.0507 0.79QO 

I < 

0.7~~$ 19 1.8400 0.1355 0.0090 0.1509 -1.2553 0.9335 -0.9817 
20 1.8062 0.1183 -0.0254 p.1361 -1.1824 0.8113 -0.8269 0.6~ .~ 
21 1.7847 0.1103 -0,0560 0.1286 I -1.1418 0.7444 -0.7108 0.635$ 

\ 1 ·. 

0.6424 22 1.7731 0.1095 -O.O~.~Q .· .. , ·:;'Q'.1~70 -~ · ~ -1.1067 0.7444 -0.6246 
23 1.7648 0.1143 ~9-11.'95 . :q.l31q -1.0621 0.7993 -0.5396 0.6917 
24 1.7547 0.1241 . ' .~0.1586 '· 0·.1431 -1.0082 0.8886 -0.4298 0.71~0 
25 1.9509 0.1430 ·,- b.o891 0.1601 -2.0342 0.9515 -1.3838 0.7636' 
26 1.90.96 0.1248 0.0471 0.1445 -1.9605 0.8357 -1.1866 0.7085 .... 
27 1.8765 0.1158 

-
0.0111 0.1373 -1.8703 0.7787 -1.0303 0.6944 

28 1.8522 0.1148 -0.0223 0.1368 -1.7586 0.7914 -0.9155 0. 7i'50 
29 1.8328 0.1208 -0.0575 0.1431 -1.6371 0.8613 -0.8184 0.7626 
30 1.8150 0.1326 -0.0963 0.1562 -1.5235 0.9653 -0.7102 0.8342 
31 2.0130 0.1558 0.1517 0.1755 -2.5938 1.0511 -1.6444 0.8611 
32 1.9676 0.1365 0.1036 0.1587 -2.5258 0.9453 -1.4324 0.8129 
33 1.9268 0.1260 0.0612 0.1509 -2.3952 0.8892 -1.2655 0.8160 
34 1.8926 0.1243 0.0212 0.1513 -2.2175 0.8884 -1.1412 0.8463 
35 1.8644 0.1314 -0.0194 0.1601 -2.0286 0.9408 -1.0363 0.8855 
36 1.8404 0.1450 -0.0613 0.1762 -1.8615 1.0351 -0.9245 0.9354 

Global 1.7475 0.1019 -0.1573 .0.1140 -0.9260 0.7135 -0.6119 0.57~0 
- ' ' ti 

~ ;- ' : 
• I 
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Table 2: Summary statistics of GWPB. pararpeter estimates- Three Predictors: Fixed 
hi-square weighting function with d = . 5.0 ·\ ·' · 

Points 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Global 

f3o 
Mean St. Dev. 

1.0513 0.2788 
1.0509 0.2400 
1.1148 0.2076 
1.2015 0.1905 
1.2659 0.1888 
1.2838 0.2079 
1.3719 0.1992 
1.3995 0.1639 
1.4305 0.1435 
1.4646 0.1354 
1.4925 0.1352 
1.5052 0.1433 
1.6784 0.1467 
1.6671 0.1252 
1.6590 0.1131 
1.6513 0.1115 
1.6472 0.1158 
1.6477 0.1241 
1.8347 0.1396 . 
1.8078 0.1200 
1. 7868 0.1090 
1.7685 0.1074 
1.7552 0.1129 
1.7514 0.1237 
1.9496 0.1503 
1.9058 0.1278 
1.8828 0.1159 
1.8660 0.1145 
1.8528 0.1232 
1.8421 0.1412 
2.0974 0.1855 
2.0108 0.1544 
1.9653 0.1403 
1.9412 0.1438 
1.9132 0.1626 
1.8651 0.1880 
1.7475 0.1019 

Mean 
-0.1649 
-0.1655 
-0.2016 
-0.2560 
-0.3220 
-0.4084 
-0.1238 
-0.1449 
-0.1774 
-0.2167 
-0.2634 
·-0.3233 

. -0.0~.7~ . 
.:'0.0955 ' 

,, :: .:.b.1286 

-0.1633 
. ·=0.2010 

-:0.2444 
-0.0005 
-0.0330 
-0.0658 
-0.0979 
-0.1297 
-0.1612 
0.0867 
0.0405 
0.0109 

-0.0145 
-0.038'6 
-0.0640 
0.2~q~ 

. 0.1495 
. . I , • . 

·: :p.1008 
0.07:36 
0.0424 

.:o.0166 
~0.1573 

St. Dev. 
0.2003 
0.1725 
0.1533 
0.1478 
0.1592 
0.1961 
0.1666 

' 0.1451 
'0.1324 
0.1289 
0.1348 

· D.l66d . ~ \ . 
: 0.1530 
. !~.i34i 

0.1238 
0.1213 
0.1255 
0.1390 

-0.1529 
0.1352 
0.1258 
0.1235 
0.1279 
0.1413 
0.1655 
0.1458 
0.1359 
0.1345 
O.l431 · 
0..1649 . 

. ·o:.2b52 ·. 
,: ~.1'743; . 
b';1610 
0.1653 
0.1883 
0.2198 
0.1140 

Mean St. Dev. 
2.6119 1.3370 
2.5712 1.2074 
2.3628 1.1398 
2.1106 1.1231 
1.9578 1.1740 
1.9868 1.3222 
1.2731 1.2123 
1.1144 1.0522 
0.9876 0.9622 
0.8651 0.9259 
0.7769 0.9427 
0.7436 1.0151 

-0.3356 1.0408 
-0.3183 0.8840 
-0.2920 0.7974 
-0.2492 0. 7804 
-0.2121 0.8177 
-0.2151 · 0.8899 
-1.3026 0.966 
-1.2146 0.8153 
-1.1332 0. 7364 
-1.0523 0. 7352 
-0.9934 0. 7969 
-0.9777 0.8940 
-2.0231 0.9885 
-1.9132 0.8440 
-1.8393 0. 7738 
-1.7825 0.7954 
-1.7335 0.8874 
-1.6682 1.0175 
-2.7564 1.1535 
-2.6182 1.0177 
-2.5169 0.9515 
-2.4422 0.9815 
-2.3279 1.0707 
-2'.1234 1.1659 
-0.9260 0. 7135 

' ., 

/33 . 
Mean St. Dev. 

1.4752 1.0227 
1.4832 0.9042 
1.3613 0.8185 
1.1870 0.8028 
1.0811 0.8898 
1.1737 1.0991 
0.4864 0.8~i96 

0.4489 0. 7§,11 
0.4069 0.69'6~ . \ 
0.3613 0.687,3 
0.3426 0. 757b 
0.4209 0.9149 

-0.4640 0. 7526 
-0.3792 0.6662 
-0.3046 0.623,1 
-0.2290 0.6330 
-0.1532 0. 7Q13 
-0.0496 0.8165 
-0.9798 0.7338 
-0.8380 0.6538 
-0.7166 0.6195 
-0.6050 0.6394 
-0.4879 0. 7118 
-0.3882 0.8144 
-1.3229 0.78,69 
-1.1358 0.7221 
-0.9821 0.69~1 
-0.8441 0. 72:H,~ 
-0.7257 0.8d2i 

. ' 
-0.6751 0.9179 
-1.6123 0.9320 
-1.3522 0.88'87 
-1.1892 0.8789 
-1.0772 0.90q4 
-1.0394 0.96~9 
-1.0246 l.Oq59 
-0.6119 0.5780 



82 

Table 3: Summary statistics of GWPR paran;wter estimates- Three Predictors: Adap-
tive bi-square weighting function with M = 31 

f3o (31 \ f32 
Points Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean 

1 1.2555 0.2060 -0.157.4 Q.1628 1.7774 1.1742 0.8794 
2 1.0664 0.2341 -0.1647 H· ·~p94 ... : .. 2.5175 1.1978 1.4358 
3 1.1384 0.2018 -0.202;1 .. 0.1511 2.2816 1.1295 1.2905 
4 1.2239 0.1847 ·~0.25'44· ;d·. l459 2.0229 1.1072 1.1175 
5 1.2848 0.1829 ·~b.3161 0.1561 1.8694 1.1497 1.0166 
6 1.4237 0.1552 -0.3422 0.1536 1.2241 1.0595 0.6651 
7 1.4030 0.1902 ·0.1235 0.1634 1.1218 1.1844 0.3992 
8 1.2053 0.2144 -0.1372 0.1643 1.9884 1.1958 0.9794 
9 1.1614 0.2056 -0.1673 0.1559 2.1591 1.1470 1.1577 
10 1.2757 0.1775 -0.2249 0.1461 1.7833 1.0970 0.8957 
11 1.4200 0.1527 -0.2806 0.1481 1.2000 1.0501 0.5508 
12 1.5138 0.1406 -0.3176 0.1524 0.6899 0.9980 0.3858 
13 1.6856 0.1441 -0.0691 0.1509 -0.3846 1.0225 -0.4826 
14 1.5445 0.1546 -0.0808 0.1527 0.3966 1.0510 -0.0547 
15 1.4159 0.1702 :.o.1043 0.1520 1.0056 1.0614 0.3531 
16 1.5215 0.1413 -0.1502 0.1413 0.4940 0.9671 0.1525 
17 1.6175 0.1244 -0.2074 0.1379 -0.0225 0.8943 -0.0124 
18 1.6494 0.1231 -0.2418 . ' 0.1371 -0.2254 0.8824 -0.0675 
19 1.8327 0.1380 -0.0043 0.1510 . -1.2986 0.9525 -0.9710 
20 1.8166 

I 
0.1319 0.0033 ' Q.:j.496 -1.2393 0.9092 -0.8647 , . 

"Q.l~62 ; : 21 1.7956 0.1283 -0.0031 ' -1.3161 0.8583 -0.5678 
22 1.8144 0.1277 -0.0~6~ ;Q.i445 -1.5038 0.8872 -0.3962 
23 1.7895 0.1244 ~0.09'62· a:i421 -1.2538 0.8956 -0.4307 
24 1.7487 0.1224 ~.0.1630 O.i393 -0.9584 0.8834 -0.3910 
25 1.9401 0.1476 .:0.0767 0.1626 -1.9886 0.9731 -1.3014 
26 1.9440 0.1400 0.0839 0.1577 -2.1477 0.9357 -1.1924 
27 1.9388 0.1357 0.0801 0.1548 -2.3097 0.9265 -0.9786 
28 1.9206 0.1400 0.0551 0.1598 -2.2600 0.9742 -0.8187 
29 1.8888 0.1428 0.0043 0.1650 -1.9992 1.0181 -0.7289 
30 1.8370 0.1376 -0.0698 0.1605 -1.6319 0.9956 -0.6645 
31 1.9741 0.1474 0.1048 0.1645 -2.2988 0.9552 -1.3955 
32 1.9985 0.1502 0.1354 0.1699 -2.5571 0.9933 -1.3376 
33 1.9590 0.1366 0.0923 

I . 

0.1573 -2.4648 0.9311 -1.1747 
34 1.9398 0.1396 0.0696 0.1610 -2.4037 0.9652 -1.0563 
35 1.9178 0.1576 0.0444 p.1827 -2.3125 1.0575 -1.0053 
36 1.8754 0.1421 :.o.o197 0.1669 -1.9553 1.0106 -0.8648 

Global 1.7475 0.1019 -0.1573 . 0.1140 -0.9260 0.7135 -0.6119 

! ) J.' ·' 

.. . 
·. 
• ' ,: 

' 
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St. De~t: 
0.854.§ 
0.8893 
0.8053 
0.7884 
0.8666 
0.86.Q7 
0.8395 

' 0.8579 
0.8167 
0.8039 
0.8588 
0.8941 
0.7423 
0.7706 
0.79.69 

' 0.7857 

0.8~~7 
0.8036 
0. 7~47 , r: 
0.74~4 

0.8035 
0.7908 
0.800~ 
0.8022 ,, 
0.77p1 
0.8d~8 
0.8580 
0.8848 
0.8984 
0.8998 
0.7946 
0.8726 
0.8610 
0.89.p 

·' 0.9524 
l !i<· 

0.91113 
0.57~0 .. 
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