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Abstract 

Consistent and efficient estimation of the parameters of generalized linear 

mixed models (GLMMs) has proven to be difficult in the infinite population 

setup. This estimation issue becomes more complex in the infinite population 

setup where the estimation is done based on a sample of a small number of 

clusters chosen from a finite population with a large number of unequally 

sized clusters. This practicum examines the role of the sampling designs on 

the estimation of the parameters of the GLMM based super-population for 

clustered count data. 
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Chapter 1 

Introduction 

1.1 Motivation for Complex Sampling Based 
Inferences 

There exists a vast literature in cluster sampling (Cochran (1977, Chapter 

9)) where it may be of interest to estimate the finite population total. In this 

cluster sampling setup, one deals with a suitable sample of clusters chosen 

from the finite population consisting of a large number of unbalanced clusters. 

Consequently, to reflect the unequal cluster sizes, traditionally, a probability 

proportional to size (PPS) sampling scheme is used to choose the sample, 

and the totals of the clusters of that sample, along with the PPS weights, 

are exploited for the unbiased, and hence, consistent estimation of the finite 

population total. For example, the number of visits to a physician paid by a 

member of a family can be considered as a discrete random variable and the 

health department may be interested in estimating the total number of visits 

paid by the family members in a city. For this purpose, a sample of families 

may be chosen using PPS sampling and the total number of visits for each 

family in the sample, along with their family sizes, may be exploited. 
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It may, however, be the case that , as opposed to the number of visits, 

the researcher / health depart ment may be interested in knowing the effects 

of certain covariates on the number of visits paid by the individual members. 

For example, the number of visits may be affected by gender, age, and the 

number of chronic conditions of the individual. One may be interested in 

estimating the effects of these covariates in a fini te population setup. Since 

the visits by the family members are correlated due to a common family 

effect, the estimation of the effects of the covariates becomes complicated . In 

fact, there does not exist adequate discussion on such a clustered regression 

problem in the finite population setup. 

We must , however, note that as opposed to the finite population setup, 

there exist some studies to deal with the clustered regression problem in the 

infinite population setup. Breslow and Clayton (1993), for example, discuss 

a penalized quasilikelihood (PQL) method of estimation for a generalized lin­

ear mixed model (GLMM). This PQL approach may, however, not produce 

consistent estimates for the variance of the cluster effects. See, for example, 

Sut radhar and Qu (1998) and Jiang (1998). Jiang (1998) proposes a method 

of simulated moments (SMM) to obtain consistent estimates for such a vari­

ance parameter under a GLMM setup . However, this estimate, along with the 

regression effects, may be inefficient. Sutradhar (2004) provides an improve­

ment over this method of moments using an exact generalized quasilikelihood 

(GQL) approach. Nevertheless, when one deals with this regression problem 

in a fini te population setup , it becomes time and cost effective to estimate 

the parameters of the model, based on a suitable sample of clusters. This 

motivated us to consider a sample of K clusters/families from a population 

with a large number, N, of unbalanced families, and use the GQL idea of Su-
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tradhar (2004) in such a finite population setup. To be a little more specific, 

a sample chosen based on the PPS sampling scheme would be used for the 

estimation of the parameters of the clustered count data model in the finite 

population setup. 

1.2 Objective of the Practicum 

In Chapter 2, we give a brief overview of the Simple Random Sampling 

(SRS) and Probability Proportional to Size (PPS) sampling schemes. These 

two sampling schemes are compared using a simulation study to estimate 

the finite population totals in a non-regression setup. Chapter 3 deals with 

a traditional clustered regression model, or a familial mixed model for count 

data, for the infinite population setup. For the estimation of the parame­

ters, namely, the regression effects and variance component of the model, 

the performance of a recent generalized quasilikelihood (GQL) technique is 

examined through a simulation study. In Chapter 4, we continue to deal 

with a clustered regression model for count data, but unlike Chapter 3, we 

consider a finite population setup. The effects of the two sampling schemes, 

SRS and PPS, on the GQL estimation of the parameters of a familial mixed 

model are examined using another set of simulation studies. We conclude 

the practicum with a summary and suggestions for future studies and im­

provements in Chapter 5. 
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Chapter 2 

Estimation of Finite Population 
Total 

There is a vast li terature in single stage cluster sampling, where the popu­

lation total is consistently estimated by using a suitable weighted average, 

where the weights are chosen based on the well-known sampling scheme Prob­

ability Proportional to Size (PPS). We refer to Cochran (1977, chapter 9) 

and the references therein for such an estimation. 

Let there be N clusters in t he population. Let Yi (i = 1, ... , N) denote 

the ith cluster total and mi (i = 1, .. . , N) denote the corresponding cluster 

size. Suppose that we are interested in estimating the finite population to­

tal, Y = '2:~ 1 Yi, based on a sample of size n. Also suppose that s; is a set 

of responding units containing n responses. ote that under the clustered 

population, it is customary to choose this set s; using the Probability Pro­

portional to Size (PPS) technique. This is because the PPS technique uses 

proper weights based on the cluster size in selecting the population unit . 

Furthermore, it is well-known that the application of the Simple Random 

Sampling (SRS) technique would produce an unbiased estimate, but with 

poor precision, in the clustered population case. evertheless, in this sec­

t ion, we conduct a simulation study to examine the relative performance of 
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the PPS and SRS sampling t echniques where the clustered data are generated 

from a suitable distribution for counts such as the Poisson distribution. This 

will primarily be done to understand the small sample relative performance 

of the estimation, which is not adequately addressed in the literature. 

For the purpose of the simulation-based comparisons, we provide the 

formulae for SRS and PPS scheme-based estimation of the totals. 

2.1 SRS versus PPS Estimation 

SRS Estimation Our population of interest consists of N pairs of infor­

mation (m1 , Yt) , ... , (mi, Yi), ... , (mN, YN ). Here, the m/s (i = 1, ... , N) are 

assumed to be known, mi being the size of the i th cluster. However , the y/s 

are unknown. It is of interest to estimate Y = L:f Yi· m/s are considered 

to be the same for all i, or when m/s are ignored, one may use the SRS 

technique to estimate the population total, Y = L iEs; Yi · To be specific, Y 

is estimated based on the SRS technique using the formula 

YsRs = L wiyi, 
ies; 

(2.1) 

where wi = Njn is the constant weight for the population to be included in 

the sample, and y1, ... , Yi, ... , Yn are known in the sample, s;. This estimator 

has the variance given by 

V(Y) = N
2 

(1 - f)s;, 
n 

(2.2) 

LN ( Y)2 
with f = n/ N and s; = i-Jv~\- . This variance may be estimated by 
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A N 2 

v(Y) = -(1- f)s;, 
n 

(2.3) 

as given in Cochran (1977, Chapter 9), where s; = ~iEs~ (Yi- y) 2 /n- 1. 

We remark that the estimator of Y given in (2.1) is a simple estimator. 

The estimate Y, however, will often be of poor precision, as point d out by 

Cochran (1977, Chapter 9) . This lack of precision will occur when the means 

per element, fA = ~j'!! 1 Yij/mi = ydmi do not vary much from cluster to 

cluster, while the ffii vary greatly. Thus, Yi in (2.1) will vary more from 

cluster to cluster, and so, the variance given in (2.2) will be large, causing Y 

in (2.1) to be inefficient. 

PPS Estimation In an effort to remedy the precision deficiency of the 

SRS estimator, there exists an alternative sampling technique known as PPS 

sampling, where the Yi in the sample of size n is chosen with replacement 

from the population based on weights proportional to the cluster size. For 

i = 1, ... , N, we define zi = mdm0 , where m 0 = ~~~ mi. We now let 

s; denote the sample of size n based on t he PPS scheme. Under this P PS 

scheme, ~~ 1 Yi is estimated by 

which has the variance 

A 1 Yi 
Yppz =- L -, 

n iEsj, Zi 

A 1 ~ (Yi 2 V(Yvvz) =- 0 zi-- Y) . 
n i=l Zi 

6 
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Furthermore, the variance in (2.5) is usually estimated by 

• """ Yi • 2 v(Yppz) = ~ (-- Yppz) /n(n- 1). 
iEsf, Zi 

(2.6) 

2.2 A Simulation Study 

In this simulation study, we consider populations with N clusters (N 

100,200, 300). Suppose that we assign mi as follows : 

{ 

4 for i = 1, ... , !f 
mi = 6 for i = !f + 1, ... , 3

:;' 

5 for i = 3
:;' + 1, ... , N 

(2.7) 

Next, suppose that Yij denotes the count response for the jth member (j = 

1, ... , mi) of the ith cluster, and Yi = 'L~ 1 Yij denotes the cluster total so 

that y1, . .. , Yi, . .. , YN denotes N totals in the finite population. To generate 

Yi, we consider that Yij rv Poi (f.Li), where we choose f.Li, for example, as 

2 for i = 1, . .. , if 
4 f · N 1 3N or z = 4 + , ... , 4 
3 for i = 3

:;' + 1, ... , N 
(2.8) 

It is clear from (2. 7) and (2 .8) that the count responses will have the in­

finite population total YI = 'L~1 mif.Li, yielding YI = 1775,3550,5324 for 

N = 100,200, 300, respectively. For the construction of the population un­

der the simulation study, let Yi be generated from Poi(f.Li )· Consequently, 

in the simulation study, y1 , ... , YN are known, whereas, in practice, they are 

unknown. For convenience, we have computed Y = 'L~1 Yi (finite population 

total) from the simulated observations. It was found that the values of Y are 

v ry close to the infinite population total YI, for all N = 100, 200, 300, as ex-
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pected. It is of interest to estimate the total, Y, based on samples chosen by 

SRS and PPS techniques. As far as the sample size is concerned, we consider 

n = 10, 20, 30, 50 when N = 100. Similarly, we choose n = 10, 20, 30, 50, 100 

for N = 200, and n = 10, 20, 30 50, 100, 150 when N = 300. 

To obtain SRS and PPS estimates of Y, we have written a Fortran pro-

gram to generate the sample of size n under each of these sampling schemes 

and compare the performance of these two techniques in estimating the pa-

rameters of the finite population. This program containing both SRS and 

PPS schemes is given in the appendix. 

ext, using formulas (2.1) and (2.4) , we have estimated the population 

total based on SRS and PPS designs, where we denote these estimates by 

YsRs and Ypps for SRS and PPS, respectively. The simulation means (SM) of 

these estimates based on 2000 simulations, along with the simulated standard 

errors (SSE) are reported in Tables 2.1 and 2.2 for two different elections 

of the values of J..li (i = 1, . . . , N). Specifically, the simulation results with 

f..£i defined as in (2.8) are reported in Table 2.1 , whereas the results with 

f..£i = f..£ = 3 for all i = 1, ... , N are exhibited in Table 2.2. Note that in 

Tables 2.1 and 2.2 we also report the simulated bias computed by 

1 2000 A 

Bias = 
2000 

L IYs - Ysl, 
s= l 

(2.9) 

under both sampling schemes, as well as estimated standard rror (ESE) 

computed by (2.3) and (2.6) for SRS and PPS based designs, respectively. 
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The results in Table 2.1 show that PPS sampling performs much bet­

ter than SRS in estimating the finite population total. This holds for all n 

and N considered in the simulation. For example, for the population size 

N = 100, the finite population total was found to be Y = 1774 (which is 

close to Y1 = 1775) based on 2000 simulations. When this total Y was es­

t imated by using a sample of size n = 10, SRS produces the estimate 1756, 

while the PPS sampling based estimate was found to be 1765. Clearly, the 

PPS estimate is much closer to the population total Y. When t he corre­

sponding standard errors are compared, the PPS design produces estimates 

wi th smaller standard errors. Also, the biases are smaller for PPS sampling 

as compared to SRS. We may note that the estimated standard errors for 

both SRS and PPS sampling appear to work well , as they are found to be 

close to the corresponding simulated standard errors. Similar interpretation 

holds for all other results of this table. 

It is clear from Tables 2.1 and 2. 2 that as n increases, standard errors 

decrease under both SRS and PPS designs, with similar standard errors under 

the PPS design. We also observe t hat t he bias appears to be decreasing 

more under PPS as n increases, as compared to the results for SRS. We also 

note t hat , as expected when the relative sample size n is much smaller as 

compared to the population size N, both SRS and PPS sampling perform 

poorly, with PPS performing somewhat bet ter than SRS. 
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Table 2.1: Simulated Mean (SM), Simulated Standard Errors (SSE), Esti-
mated Standard Errors (ESE) and Simulated Bias (SB) for the estimates of 
finite population total (Y) using SRS and PPS sampling design (with vari-
able cluster size mi as in (2.7)) based on 2000 simulations for selected sample 
size (n) drawn from the population size (N) with unequal means as in (2.8). 

N 100 200 300 

Yl ,N 1775 3550 5324 

n Quantity YsRs Ypps YsRs Ypps YsRs Ypps 

10 SM 1755.57 1765.06 3171.05 3548.39 3521.66 5338.29 
SSE 259.76 189.38 590.00 376.94 743.45 561.51 
ESE 248.53 181.81 557.66 359.53 692.90 538.71 
SB 165.10 97.68 806.70 316.53 1825.60 456.10 

20 SM 1767.08 1776.95 3149.24 3548.52 3531.16 5316.78 
SSE 186.52 137.97 406.86 266.83 507.78 394.31 
ESE 177.08 128.55 396.81 257.85 506.06 386.94 
SB 186.25 126.09 505.05 292.97 1726.35 269.68 

30 SM 1758.62 1771.26 3167.57 3545.91 3544.23 5323.64 
SSE 151.49 115.25 337.18 222.06 444.32 332.57 
ESE 146.20 105.43 325.57 211.76 415.54 316.08 
SB 124.74 64.11 439.07 184.84 1756.35 216.00 

50 SM 1765.70 1769.62 3158.17 3549.59 3516.09 5318.42 
SSE 122.38 92.14 272.74 180.02 336.49 259.90 
ESE 112.56 81.75 252.95 164.96 321.84 246.04 
SB 95.46 70.76 400.72 132.87 1854.88 180.79 

100 SM 3155.62 3554.28 3541.45 5318.42 
SSE 201.92 130.65 252.34 197.14 
ESE 178.82 116.30 229.70 174.85 
SB 374.58 102.31 1819.25 136.63 

150 SM 5322.63 5328.17 
SSE 215.95 163.32 
ESE 185.93 142.39 
SB 1802.49 111.49 
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As is the case with Table 2.1, Table 2.2 shows that PPS performs much 

better than SRS in the estimation of the finite population total under equal 

means. This happens because the PPS design chooses more clusters of larger 

size in the sample. For example, for N = 200, we have an infinite population 

total of Y1 = 3150. For n = 30, the PPS scheme gives the closer estimate of 

3149, while SRS gives an estimate of 2980. However, when n increases, the 

estimates do not seem to get much better under either of the two sampling 

schemes as was the case for Table 2.1. This shows that small sample size 

works reasonably well, but when the standard errors are compared, they 

decrease as n increases. This shows that a larger sample size is needed 

for better performance, as expected. Next, the estimating formulas for the 

standard errors appear to work well as the estimated standard errors are seen 

to b close to the simulated standard errors. 

In summary, it is clear from both tables that the PPS technique is far 

superior to SRS in estimating the finite population total. This is because the 

PPS design is constructed to utilize more information as compared to the 

SRS design. 
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Table 2.2: Simulated Mean (SM) , Simulated Standard Errors (SSE), Esti-
mated Standard Errors (ESE) and Simulated Bias (SB) for the estimates of 
finite population total (Y) using SRS and PPS sampling design (with vari-
able cluster size mi as in (2. 7)) based on 2000 simulations for selected sample 
size (n) drawn from t he population size (N) with equal means /-Li = 1-L = 3. 

N 100 200 300 
YI,N 1573 3150 4725 

n Quantity YsRs Ypps YsRS Ypps YsRs Ypps 

10 SM 1557.85 1574.20 2980.04 3148.83 3985.56 4734.30 
SSE 157.98 130.79 336.44 254.58 450.22 394.96 
ESE 147.51 121 .92 304.81 240.58 410.32 361.92 
SB 123.90 51.98 403.60 173.30 730.00 348.76 

20 SM 1563.51 1575.70 2964.19 3148.82 3981.54 4729.23 
SSE 115.45 98.82 235.73 183.30 321 .63 271.72 
ESE 105.23 87.00 219.42 174.15 302.28 263.43 
SB 104.60 70.16 257.60 177.71 694.00 180.65 

30 SM 1561.16 1573.85 2972.46 3147.25 4002.74 4729.23 
SSE 95.53 83.36 198.47 154.40 284.02 226.49 
ESE 86.59 71.09 180.45 143.50 244.13 214.94 
SB 79.17 51.15 201.17 86.60 674.33 160.32 

50 SM 1563.82 1573.26 2968.78 3149.22 3983.75 4718.73 
SSE 79.78 69.02 204.84 96.51 217.59 186.01 
ESE 67.34 55.49 140.62 111.89 191.45 165.69 
SB 54.50 45.58 204.84 96.51 774.44 133.29 

100 SM 2965.89 3153.09 4001.52 4720.92 
SSE 128.00 97.08 174.09 143.35 
ESE 99.64 79.00 136.24 118.47 
SB 173.16 63 .40 725.52 100.05 

150 SM 3990.17 4722.68 
SSE 163.16 122.33 
ESE 110.54 96.58 
SB 729.05 69.98 
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Chapter 3 

Estimation of Parameters of 
the Poisson Mixed Model: 
Infinite Population Setup 

In the previous chapter, we estimated the population total for a finite 

number of clusters, where clust er elements were assumed t o follow the Possion 

distribution. But, in practice, we may be interested in regression effects of 

certain covariates on the count responses recorded under a large number of 

clusters. For example, we may be interested in the effects of the covariates 

age, gender , and education level on the count responses such as the number 

of visits to the physician by the members of a large number of independent 

families. 

Our purpose is to make inferences for these types of regression effects in 

the finite population setup. However, there exist many examples for this type 

of inference in the infinite population setup. For convenience, in this chapter , 

we briefly review the non-linear regression analysis that other researchers 

have done for familial count data. 

Familial Mixed Model for Count Data Let there be K independent 

clusters/families randomly selected from an infinite population. Note t hat in 
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the previous chapter, for convenience, we used "n" instead of K and n clusters 

were chosen from N finite clusters. Recall that Yij is the count response 

for the jth (j = 1, .. . , mi) member of the ith family. We now consider 

Xij = ( Xij 1 , . . . , Xijm; f as the p-dimensional regression vector corresponding 

to Yij. Also suppose that {3 = ({31 , . . . , f3n, .. . , {Jpf be the p-dimensional 

effects of the variable Xij on Yij. In this setup, it is common to use the 

Poisson distribution Yij for the random counts, that is, 

(3.1) 

where 1-"ij = exp(x'{j{J + 1i) with 'Yi* representing the ith family effect. As far 

as the distribution of 'Yi is concerned, it is reasonable to use the Gaussian 

distribution. See, for example, Breslow and Clayton (1993), Jiang (1998), 

Sutradhar and Qu (1998), and Sutradhar (2004). Thus, we assume that 

'Yi• ~ N(O , a~). It is of interest to obtain consistent and efficient estimates 

for the regression effect {3 and the variance component of the random effects 

2 a "'f. 

Note that the responses Yi1, . . . , Yim; in the ith family are correlated . This 

is because the family members share the common effect 'Yi . To be specific, 

the mean, variance, and the correlation structure under this model are given 

by 

/-"ij = E(Yij) 

(3.2) 
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(Jijj = Var(Yij) 

and 

E (Yij Yik) - /Lij /Lik 

E"Y; E[Yij Yik ll'tJ - /Lij/Lik 

E"Y; [JL;j IL;k] - /Lij /Lik 

( e
172 

- 1) /Lij f.Lik, 

(3.3) 

(3.4) 

respectively. Note that the formulas in (3.2)-(3.4) were obtained by using 

the fact that for a positive integer t and for ,; ~ N (O, (J~), we have 

t • I t 2 2 E(e "Y;) = e2 17
"'. 

3.1 Some Remarks on Likelihood Estimation 

With respect to the inference for (3 and (J;, one may attempt to use the 

traditional likelihood approach, which, however, is extremely complicated. 

This is because, in the present case, the log likelihood may be written as 
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J< m, /( m; J< 

logL(/3, a-y ) = - L L Yii! + L L YijX~/3 + L logJi, 
i = l j = l i= l j= l i= l 

with 

where for 'Yi = "fi / a-y, cp('Yi) is t he standard normal density, and 

m i m1. 

di('Yi ) = a-y"/i LYij - L exp(x~/3 + a-y'Yi)· 
j=l j=l 

The estimation of J3 and a; requires the solut ion of the likelihood estimating 

equations 

OlogL(/3, a;) 
8/3 = 0 and (3.5) 

which appear to be complicated because of the computational difficulties for 

the second order derivatives. Furthermore, finding the covariance matrix of 

the estimators will be more complicated because of the difficulty in computing 

the Fisher Information matrix (Sutradhar and Das (2001, eq.(4.8))). This 

complexity increases when one considers mult i-dimensional random effects. 

For these reasons, many authors such as Breslow and Clayton (1993) have 

avoided the use of the exact likelihood approach. Specifically, these authors 
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have used a penalized quasi-likelihood (PQL) approach. Jiang (1998) has 

used a simulated moment approach for the estimation of {3 and <7~. Jiang 

(1998) has adopted this moment approach because of the inconsistency prob­

lem encountered by the PQL approach in estimating <7~. See also Sutradhar 

and Qu (1998). Later, Sutradhar and Rao (2003) and Sutradhar (2004) have 

proposed a generalized quasi-likelihood (GQL) approach for the estimation 

of the parameters. This approach, unlike the moment approach of Jiang 

(1998) and of Jiang and Zhang (2001), provides both consistent and efficient 

estimates for {3 and <7~. In this chapter, we follow Sutradhar (2004) and 

verify the perfomance of the GQL approach for such an estimation through 

a simulation study in the infinite population setup. We do this for the main 

purpose of using and examining the performance of the GQL approach in 

the finite population setup which will be provided in the next chapter. 

3.2 GQL Estimation for the Regression Ef­
fects 

In this section , we will follow the Generalized Quasi-Likelihood (GQL) 

approach (Sutradhar (2004)) for the estimation of the {3 parameter. This 

provides a consistent as well as efficient estimate for {3, provided one can 

estimate the <72 parameter consistently. For consistent estimation of <72
, 

we use the method of moments (Jiang (1998)) and provide the estimation 

formula in the next section. Note that we also could use the GQL approach to 

efficient ly estimate <72
, but we have chosen the moment estimation approach 

instead, as we are much more interested in estimating the main regression 

parameter, {3 . Also note that the moment approach is much simpler than 

GQL. 
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For the GQL estimation of {3, we write the estimating equation as follows: 

(3.6) 

variance matrix of Yi · In notation, 

(Jill (Ji l2 ailm; 

L:i = ()ijl (Jij2 a ijm; (3.7) 

aim;! a im;2 aimimi 

where the formulas for a ijj and aijk (j # k) are given in (3.3) and (3.4), 

respectively. For compuational convenience, we simplify the formula for the 

derivative involved in (3.6) as 

(3.8) 

where Xi and Ai are defined as 

Xi! I Xi i 2 Xiip J..lil 0 . . . . . . 0 

0 

X i= Xij l Xij2 Xijp Ai= J..lij 
(3.9) 

Ximil Ximi2 Ximip 0 . . . . .. 
J..limi 
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By using (3.8) in (3.6), we obtain the GQL estimating equation for {3 given 

by 

K 

L xr Ail:i 1 (Yi- /.1-i) = 0. (3.10) 
i= l 

We can now solve this estimating equation for {3 by using the well-known 

ewton-Raphson iteration technique. The iterative formula is given by 

(3.11) 

3.3 Moment Estimation for the Variance Com­
ponent 

Following Jiang (1998) [see also Sutradhar (2004)], we use the second 

order responses to construct a moment estimating formula for 0'
2

. To be 

specific, we consider 

I< m, K m, 

S = L L (Yij- /1-ij)2 + L L (Yij- /.1-ij)(Yiu- /.1-iu ) (3.12) 
i= l j = l i = l j<u 

as a basic statistic and find its expectation as 
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K m; K m; 

E(S) = L L E(yij- ,Uij)
2 + L L E{(Yij- ,Uij )(Yiu- .Uiu)} 

i=lj=l i=lj<u 

K m; K m i K m; 

:L :L ,Uij + ( ea
2 

- 1) :L :L .u;j + :L :L ea
2 

/Lij,Uiu, (3.13) 
i=l j=l i= l j=l i=l j<u 

by (3.3) and (3.4) . Now, by solving S- E(S) = 0 we obtain 

(3.14) 

where 

K m ; !( m, 

91 (f3) :L :L .u;j + :L :L ,Uij,Uiu 
i=lj= l i=lj<u 

!( m , !( m; 

92(f3) = :L :L ,Uij- :L :L .u;j. (3.15) 
i=l j=l i=l j= l 

It then follows from (3 .15) that the moment estimating formula for o-2 is 

given by 

(3.16) 

In the next section, we examine the performance of the GQL estimate of 

(3 and the moment estimate of o-2 obtained by (3.11) and (3.16) , respectively, 

through a simulation study. 
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3.4 Performance of GQL Estimation: A Sim­
ulation Study 

For this simulation study, we consider an infinite population and use a 

sample of K families/clusters (K = 100, 200) and with size mi for the ith 

cluster, where i = 1, . .. , N . To be pecific, we consider 

2 for i = 1, ... , lf 
4 f · K 1 3K or 2 = 4 + ... ,4 
3 for i = 3~< + 1, ... , K 

(3.17) 

As far as the covariates Xij (i = 1, . .. , K , j = 1, . . . , mi) are concerned , 

we consider p = 2-dimensional covariates as: 

. . _ { 0 for j = 1 , i = 1, ... , lf 
XtJl - 1 f . - 2 . - 1 K or J - , 2 - , . .. , 4 

{ 

1 f . 1 . K 1 3K 

X

.·J·l = -11 for ~ = 2 , ~ = I + 1, ... , 3} 

. -1 for~ = 3 , ~ = I+ 1, ... , 3} 
or J = , 2 = 4 + , ... , 4 

f . 4 . K 1 31< or J = , 2 = 4 + , .. . , 4 

- 1 for j = 1 , i = 3~ + 1, ... , K 
0 for j = 2 , i = T + 1, ... , K 
1 for j = 3 , i = 3

/ + 1, ... , K 

for the first covariate. The second covariat e, xi12 , was randomly generated 

from the binary d istribution for selected i and j as follows: 

Xij2 rv b(0.3) for j = 1, i = 1 K 
"')4 
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Xij2 rv b(0.5) for j = 2, i = 1, . . . 1 f 

Xij2 rv b(0.1) for j = 1, i = f + 1, ... ) 3~( 

Xij2 rv b(0.3) for j = 2, i = f + 1, .. . , 3~( 

Xij2 rv b(0.5) for j = 3, i = f + 1, .. . , 3~( 

Xij2 rv b(0.7) for j = 4, i = f + 1, . .. , 3: 

Xij2 rv b(0.2) for j = 1, i = 3~( + 1, ... ,K 

Xij2 rv b(0.5) for j = 2, i = 3_:< + 1, .. . ,K 

Xij2 rv b(0.8) for j = 3, i = 3_:< + 1, . .. ) K 

Thus, we consider /3 = (/31, fJ2f. Next, with regard to the random family ef­

fects, we consider 'Yi ~ N(O, a 2
) with selected values of a 2 = 0.09, 0.25, 0.5625, 

1.00, 1.44. To generate the data, we consider /31 = 1.0 and /32 = 0.5. The 

above values of the covariates, the generated values for 'Yi and /31 and /32 , 

lead to the numerical values for J..Li.j = exp(x'Ij/3 + 'Yi) as given in (3.1). Next, 

we generate Yij from the Poisson distribution with mean J..Lij· That is, Y ij 

conditional on 'Yi is generated following 

iid p '( * ) Yij rv OZ J..Lij . (3.18) 

It then follows that, unconditionally, these responses, Yij , for j = 1, ... , mi 

under the ith family will be correlated following the correlation structure 

given in (3.4) 

All together, we consider 2000 simulations. Under each simulation, we 

estimate /3 = (/31, /32f by using the GQL estimating equation (3.10) . To be 

specific, we solved (3. 10) by using (3. 11). This has been done for a given 

value of a 2 . Note, however, that this a 2 has also to be estimated, as it is 
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unknown. With the first step values of {31 and {32 , we now use the moment 

estimating formula (3.16) to obtain an estimate of CY2 • With this value of 

CY
2

, we go back to obtain an improved estimate for {3 by using (3.11). These 

improved values of {31 and {32 are in turn used in (3.16) to obtain an improved 

estimate of CY
2

. This constitutes a cycle of iteration. This cycle continues 

until convergence. Finally, the converged estimates for {31, {32 , and CY
2 under 

all 2000 simulations are used to compute the simulated means, which are 

referred to as the simulated estimates. The simulated standard errors are 

also computed. These simulated means and standard errors are reported in 

Table 3.1 for all 5 selected values of a 2 as well as for N = 100, 200. 

The results in Table 3.1 show that for both K = 100 and K = 200, the 

GQL approach yielded estimates for {31 that are very close to 1.0 with small 

standard errors that are quite small. For {32 , however, the GQL approach 

gave estimates close to 0.5 with slightly larger standard errors. For example, 

for CY
2 = 0.09, we have {31 = 1.0012, {32 = 0.4961. The results are comparable 

for K = 200. However, we do find that as the true value of CY
2 increases, 

the estimates for a 2 become less accurate. For example, for CY
2 = 1.44, we 

get the following results: {31 = 0.9940(0.1048), {32 = 0.4815(0.2086) , and 

CY
2 = 1.2044(0.5286) . We see that although the values for {3 are similar in 

magnitude as those for CY
2 = 0.09, the value for the simulated CY

2 is much 

lower than we would expect to get. The results for K = 200 are slightly 

better with a 2 = 1.2903(0.4689). 

Overall, we do see that the estimates for {3 seem reasonable and seem to 

be consistent. The estimates for CY
2

, although somewhat disappointing for 

the larger values, are also consistent. 

Note that we have examined the performance of the GQL approach for 
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Table 3.1: Simulated means (SM) and simulated standard errors (SSE) for 
the estimates of {3 and a 2 based on cluster size K (drawn from an infinite 
population) under the familial regression Poisson mixed model (3.1)-(3.4) 
using 2000 simulations. 

Estimate 

K True a 2 Quantity f3J {32 a2 

100 0.09 SM 1.0012 0.4961 0.0867 
SSE 0.0640 0.0791 0.0375 

0.25 SM 0.9989 0.4937 0.2400 
SSE 0.0661 0.0889 0.0761 

0.5625 SM 0.9972 0.4876 0.5381 
SSE 0.0677 0.0997 0.1982 

1.0000 SM 0.9962 0.4848 0.9125 
SSE 0.0696 0.1147 0.3728 

1.4400 SM 0.9940 0.4815 1.2044 
SSE 0.1048 0.2086 0.5286 

200 0.09 SM 1.0008 0.4978 0.0878 
SSE 0.0461 0.0567 0.0258 

0.25 SM 1.0006 0.4957 0.2459 
SSE 0.0477 0.0636 0.0555 

0.5625 SM 1.0001 0.4921 0.5504 
SSE 0.0484 0.0704 0.1439 

1.0000 SM 0.9973 0.4910 0.9410 
SSE 0.0501 0.0769 0.3123 

1.4400 SM 0.9969 0.4871 1.2903 
SSE 0.0515 0.0818 0.4689 

24 



estimates of the parameters for the Poisson mixed model. As pointed out, 

this approach appears to work well in estimating the parameters involved. 

This gives us some confidence to also use this approach under the finite 

population setup. We discuss this in Chapter 4. 
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Chapter 4 

Finite Sampling Based 
Inference on Poisson Mixed 
Models 

In the previous chapter, we dealt with a Poisson mixed model under infinite 

population setup. To be specific, a large sample of clusters with unequal 

sizes was chosen from an infinite population. There, the underlying sample 

was thought to be selected based on the well known simple random sampling 

(SRS) technique. Thus, the inference made in the last chapter was completely 

infinite population-based. In a sample survey setup, however, we deal with a 

finite population of N clusters, similar to that of Chapter 2. We then make 

t he inferences based on a smaller sample of n clusters chosen by using a 

suitable sampling technique. In this chapter , we follow this finite population 

concept, but, as opposed to the non-regression problem in Chapter 2, we now 

deal with an inference problem in the regression setup. 
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4.1 Weighted GQL (WGQL) PPS Design Based 
Estimation 

4.1.1 Estimation of {3 

ote that at the finite population level, the responses under the clusters are 

practically unknown. If, however, they were known, we could follow (3.6) 

and use the estimating equation 

(4.1) 

to estimate the regression parameter (3. We also note that in (4.1), N is the 

number of clusters in the finite population, whereas in (3.1), J( was a number 

of clusters in a sample chosen from the infinite population. 

Because of the unavailability of the responses under each of theN clusters, 

we now choose a sample of J( clusters based on a suitable sampling technique. 

Here, it is reasonable to use a PPS sampling technique because of the fact 

that the sizes for all N clusters are known and they may vary from cluster 

to cluster. To be more specific, the probability of selection of a cluster 

should depend on its size for efficient information. For the purpose, similar 

to Chapter 2, we use zi = mdmo as the probability of the selection of the 

ith cluster in the sample of size K, and write the estimating equation as 

(4.2) 

where ; denotes the sample of size J( chosen from the population of size 
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N clusters. Note that an estimating equation similar to (4.2) was suggested 

by Binder (1983) for the estimation of the regression effects in the finite 

population setup for longitudinal clustered data, whereas ( 4.2) is written for 

familial clustered data. For some discussion on the importance of using a 

sampling scheme that incorporates sampling weights for non-clustered data, 

see, for example, Pfeffermann (1993) . Further note that we may also express 

(4.2) as 

The function on the left hand side of ( 4.2) may estimate the finite popula­

tion function given in (4.1) unbiasedly, provided we use PPS sampling with 

replacement. This is because under the "with replacement" scheme, we may 

express ( 4.2) as 

( 4.3) 

where t i = 0, ... , K and follows the joint multinomial distribution 

( 4.4) 

and it follows that E(ti) = K Zi . Now, if we take the expectation of the left 

hand side of ( 4.3) over t i , we arrive at the expression given on the left hand 

side of (4.1) as illustrated below 
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(4.5) 

It is, therefore, clear that to estimate j3 based on the PPS sampling 

technique, we can use the estimating equation (4.2). In the simulation study 

in section 4.3, we will examine the performance of the PPS sampling based 

WGQL e timator for j3 to be obtained from (4.2) . 

4.1.2 Weighted MM (WMM) for ~2 

We can follow the same methodology as given previously in section 3.3 to find 

the weighted moment estimate for e72 . This estimate will be denoted as ;~. 

We start with the equation given in (3.12) , and modify it by accommodating 

the sampling weights similar to that of the last subsection. So, we write 

m 1 m , 

Sw = L Wi L(Yij- P,ij)
2 + L Wi L (Yij- f.LiJ)(Yiu- f.Liu) , (4.6) 

iEsp j<u 

where under PPS sampling with replacement, we have Wi = 1/ Zi with Zi = 

mdmo as given in Chapter 2. Following (3 .3) and (3.4) , we obtain the model-

based expectation as 

/( m; /( m; }( m, 

E(Sw) = L Wi L /.Lij + (e172
- 1) L Wi L J.Lt + L Wi L e

172 
/.Lij /.Liu· (4.7) 

i = l j = l i = l j = l i = l j<u 

By solving Sw - E(Sw) = 0 we obtain 
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(4.8) 

where 

K m, K m; 

91.., ({3) L Wi L f.L:j + L Wi L f.Lij f.Liu 
i=l j=l i= l j<u 
K m; K m; 

92w ({3) L Wi Lf.Lij- L Wi LJ.L:j. (4.9) 
i=l j = l i= l j = l 

This will lead us to the weighted moment estimating formula for a 2 analogous 

to that of (3.16). To be specific, thew ighted moment estimator is given by 

A 2 _ 1 Sw - 92w ({3) 
aw - og 91w ({3) . (4.10) 

ote that this weighted moment estimator in ( 4.1) is a consistent estimator. 

This is because it was obtained by solving the unbiased estimating equation 

Sw - E(Sw) = 0. This estimator, unlike the WGQL estimator of {3, may 

not, however, be highly efficient. By exploiting the WGQL approach for a 2 

estimation, we may obtain a highly efficient estimator which will be more 

complicated and has been omitted from the present discussion. In Section 

4.3, we will also examine the performance of t he weighted method of moments 

(WMM) estimator of a 2 through a simulation study. 
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4.2 SRS Design Based Estimation 

Under a PPS sampling design, we selected a sample of K clusters from the 

finite population with N clusters based on the probability for the selection 

of the ith cluster with zi = mdm0 • Now, to choose a simple random sample 

of size K for the same finite population, we need to use mi = m, say, for all 

i = 1, ... , N so that zi = md L:~1 mi = 1/N. Consequently, when the SRS 

design is used to choose a sample from an unbalanced clustered population, 

the weights do not contribute towards the estimation of the parameter. Thus, 

we can simply use the GQL estimating equation 

to solve for {J, which is the same equation as (3.6) in Chapter 3. Similarly, 

by solving (3.16) we may obtain the SRS estimator for &2
. Note, however , 

that there is a big difference between the samples considered here and those 

of Chapter 3. This is because in Chapter 3, the random sample was taken 

from an infinite population consisting of clusters with equal size, whereas in 

this section, we are dealing with SRS from the fini te population of N clusters 

with unequal sizes. 

4.3 Relative Performance of the Approaches: 
A Simulation Study 

Our objective is t o compare the estimation performance of the GQL es-

t imate for {J obtained by ( 4.2) using the PPS sampling scheme and its coun­

terpart obtained by using SRS. For the comparison of the estimates of a 2 , we 
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use equation ( 4.10) under PPS sampling and its counterpart SRS sampling 

as discussed in subsection 4.2. 

We are using the same p= 2-dimensional covariates as we did in section 

3.4, which are given as 

Xijl = or J_ = ' ~ = ' ... ' 1 {of . 1 . 1 /( 

1 for J = 2 , z = 1, ... , 4 

- 1 
-1 
1 
1 

{ 

- 1 

Xij l = ~ 

f . 1 . /( 1 3/{ or J = , z = 1 + , .. . , ~ 
for j = 2 , i = 4 + 1, ... , ~ 
f . 3 . I< 1 3}( or J = , z = 4 + , ... , 4 
f . 4 . /( 1 3}( or J = , z = 4 + , ... , 4 

for j = 1 , i = 3~ + 1, ... , K 
for j = 2 , i = 3 'k + 1, . . . , K 
for j = 3 , i = ~ + 1, . .. , K 

for the first covariate. The second covariate was randomly generated from 

the binary distribution and is given as 

Xij2 rv b(0.3) for j = 1, i = 1, .. . , If 
Xij2 rv b(0.5) for j = 2, i = 1, ... , If 

Xij2 rv b(0.1) for j = 1, i =If+ 1, . . . ' 3~< 
Xij2 rv b(0.3) for j = 2, i = If + 1, . . . , 3~< 
Xij2 rv b(Q.5) for j = 3, i =If+ 1, ... , 3: 

Xij2 rv b(Q.7) for j = 4, i =If+ 1, ... , 3~< 

Xij2 rv b(0.2) for j = 1, i = 3~< + 1, ... , K 

xi12 rv b(0.5) for j = 2, i = 3~< + 1, . . . , K 

Xij2 rv b(0. 8) for j = 3, i = 3
: + 1, . . . 'K 
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We are also considering the same cluster sizes as given in (3.17). For 

each simulation, we generate these clusters with size mi, where i = 1, ... , N, 

drawn from a finite population of N = 200 and 300 under either the SRS or 

PPS sampling scheme. For the SRS case, the clusters are selected at random, 

with replacement, irrespective of their sizes. The estimation of f3 is done by 

using the GQL estimation equation (3.6) , and a2 is estimated by the method 

of moments using (3.16). Under the SRS scheme, the results for the GQL 

estimation of the f3 parameter and the MM estimation of the a 2 parameter 

are displayed in Tables 4.1 and 4.2 for N = 200 and 300, respectively. 

For PPS, we consider two scenarios. Under the first scenario, ]( clusters 

are chosen from N clusters based on the PPS sampling scheme but we use 

equal weights, zi = 1/N in (4.2) in estimating /3, and in (4.10) in estimating 

a2 . Under the second scenario, we use weights, wi = 1/ zi, in the estimating 

equations proportional to the size of the cluster, where zi = md mo and 

m 0 = "Lf:1 mi as described in section 4.1.1 for the estimation of f3 and 

section 4.1.2 for the estimation of a2 • The results for the GQL estimation for 

f3 and the MM estimation of a 2 under equally weighted PPS scheme (first 

scenario) are shown in Tables 4.3 and 4.4 for N = 200 and 300, respectively. 

Similarly, for the design-based weighted PPS (WPPS) case (second scenario), 

the results are shown in Tables 4.5 and 4.6, respectively. These results are 

given for sample clusters J( = 40, 60, 80, 100 under population N = 200 and 

J( = 60, 80, 100, 140 for N = 300. 

Note that for some selected values of the parameters, the iterative tech­

nique did not converge. Hence, no estimate was obtained. These are denoted 

by"- " in Tables 4.1 through 4.6. 
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Table 4.1: GQL Estimates and associated standard errors for {3 = ({31 , {32)T 
and the moment estimate of a2 and its standard error, using a Simple Ran-
dom Sample of size I< clusters from a finite population containing N = 200 
clusters of unequal sizes based on 1000 simulations. 

Estimate 

K True a2 rJ1 (SSE) rJ2(SSE) ,;2(SSE) 
40 0.01 0.9919(0.1089) 0.4924(0.1393) 0.0543(0.0870) 

0.09 0.9889(0.1198) 0.4859(0.1572) 0.1179(0.1411) 
0.25 0.9930(0.1242) 0.4 720(0.1788) 0.2500(0.2205) 

0.5625 0.9865(0.1369) 0.4530(0.2142) 0.5042(0.3801 ) 
0.81 

60 0.01 0.9955(0.0962) 0.4883(0.1178) 0.0486(0.0784) 
0.09 0.9886(0.1058) 0.4895(0.1376) 0.1092(0.1246) 
0.25 0.9866(0.1105) 0.4764(0.1563) 0.2561 (0.2109) 

0.5625 0.9891(0.1210) 0.4489(0.1837) 0.5027(0.3352) 
0.81 

80 0.01 0.9910(0.0892) 0.4970(0.1122) 0.0435(0.0675) 
0.09 0.9940(0.0910) 0.4855(0.1200) 0.1043(0.1143) 
0.25 0.9951 (0.0983) 0.4768(0.1379) 0.2502(0.1854) 

0.5625 0.9845(0.1114) 0.4778(0.1653) 0.5067(0.3241) 
0.81 

100 0.01 0.9933(0.0827) 0.4963(0.1079) 0.0408(0.0598) 
0.09 0.9974(0.0901) 0.4880(0.1211) 0.1093(0.1069) 
0.25 0.9939(0.0897) 0.4750(0.1313) 0.2419(0.1668) 

0.5625 0.9893(0.1065) 0.4732(0.1471) 0.5187(0.3238) 
0.81 0.9860(0.1028) 0.4698(0.1585) 0.7473(0.4640) 
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Table 4.2: GQL Estimates and associated standard errors for {3 = ({31, {32f 
and the moment estimate of a 2 and its standard error, using a Simple Ran-
dom Sample of size K clusters from a finite population containing N = 300 
clusters of unequal sizes based on 1000 simulations. 

Estimate 

K True a 2 J]t(SSE) f]2(SSE) d2(SSE) 
60 0.01 0.9900(0.1084) 0.4947(0.1338) 0.0442(0.0703) 

0.09 0.9900(0.1127) 0.4912(0.1475) 0.1079(0.1261) 
0.25 0.9842(0.1283) 0.4800(0.1748) 0.2529(0.2079) 

0.5625 0.9887(0.1360) 0.4521(0.1893) 0.5007(0.3258) 
0.81 

80 0.01 0.9978(0.1027) 0.4944(0.1203) 0.0424(0.0661) 
0.09 0.9940(0.1028) 0.4832(0.1385) 0.1097(0.1254) 
0.25 0.9875(0.1165) 0.4831 (0.1514) 0.2510(0.1896) 

0.5625 0.9845(0.1228) 0.4689(0.1843) 0.5084(0.3397) 
0.81 

100 0.01 0.9913(0.0927) 0.5002(0.1164) 0.0396(0.0580) 
0.09 0.9960(0.0995) 0.4912(0.1289) 0.1038(0.1071) 
0.25 0.9905(0.1091) 0.4818(0.1500) 0.2497(0.1797) 

0.5625 0.9894(0.1088) 0.4721(0.1665) 0.5249(0.3289) 
0.81 0.9819(0.1318) 0.4702(0.1852) 0.7176(0.4504) 

140 0.01 0.9965(0.0896) 0.4973(0.1037) 0.0410(0.0609) 
0.09 0.9938(0.0918) 0.4912(0.1209) 0.1018(0.0968) 
0.25 0.9922(0.0989) 0.4875(0.134 7) 0.2486(0.1617) 

0.5625 0.9958(0.1080) 0.4711(0.1514) 0.5347(0.2950) 
0.81 0.9868(0.1111) 0.4614(0.1742) 0.7394(0.4192) 
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Table 4.3: Equal Weights based GQL estimates and associated standard 
errors for (3 = (!31, f32f and the moment estimate of a 2 and its standard 
error, using a sample of size K clusters chosen based on the Probability 
Proportional to Size sampling scheme from a finite population containing 
N = 200 clusters of unequal sizes based on 1000 simulations. 

Estimate 

K TI:-ue a 2 rJ1 (SSE) rJ2(SSE) ; 2 (SSE) 
40 0.01 0.9872(0.1039) 0.4939(0.1211) 0.0550(0.0917) 

0.09 0.9908(0.1062) 0.4845(0.1374) 0.1141(0.1264) 
0.25 0.9900(0.1090) 0.4779(0.1511) 0.2463(0.1971) 

0.5625 0.9847(0.1221) 0.4639(0.2133) 0.5075(0.3640) 
0.81 

60 0.01 1.0002(0.0874) 0.4891(0.1035) 0.0436(0.0631) 
0.09 0.9954(0.0822) 0.4912(0.1118) 0.1022(0.1076) 
0.25 0.9915(0.0958) 0.4832(0.1286) 0.2533(0.1854) 

0.5625 0.9889(0.0974) 0.4655(0.1439) 0.5182(0.3266) 
0.81 1.0083(0.5774) 0.4598(0.1559) 0.7106(0.4574) 

80 0.01 0.9946(0.0794) 0.4959(0.0993) 0.0392(0.0565) 
0.09 0.9978(0.0796) 0.4873(0.1064) 0.1084(0.1017) 
0.25 0.9932(0.0854) 0.4876(0.1180) 0.2526(0.1703) 

0.5625 0.9905(0.0909) 0.4747(0.1310) 0.5128(0.2994) 
0.81 0.9925(0.0941) 0.4626(0.1563) 0. 7 438(0.4480) 

100 0.01 0.9987(0.0711) 0.4945(0.0847) 0.0357(0.0485) 
0.09 0.9995(0.0780) 0.4875(0.0994) 0.1013(0.0870) 
0.25 0.9965(0.0803) 0.4855(0.1108) 0.2505(0.1583) 

0.5625 0.9990(0.0834) 0.4780(0.1177) 0.5177(0.2927) 
0.81 0.9957(0.0830) 0.4777(0.1264) 0.7389(0.3942) 
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Table 4.4: Equal Weights based GQL estimates and associated standard 
errors for /3 = (/31 , /32f and the moment estimate of a 2 and its standard 
error, using a sample of size I< clusters chosen based on the Probability 
Proportional to Size sampling scheme from a finite population containing 
N = 300 clusters of unequal sizes based on 1000 simulations. 

Estimate 

K True a 2 rJ1 (SSE) f]2(SSE) d2(SSE) 
60 0.01 0.9959(0.0853) 0.4977(0.0978) 0.0371(0.0535) 

0.09 0.9955(0.0857) 0.4891(0.1083) 0.1026(0.1020) 
0.25 0.9946(0.0935) 0.4811(0.1272) 0.2556(0.1701) 

0.5625 0.9923(0.0964) 0.4 759(0.1433) 0.5419(0.3381) 
0.81 0.9948(0.0925) 0.4 708(0.1529) 0. 7225(0.4386) 

80 0.01 1.0016(0.0770) 0.4892(0.0876) 0.0342(0.0488) 
0.09 0.9933(0.0762) 0.4922(0.0951) 0.0972(0.0865) 
0.25 0.9980(0.0821) 0.4786(0.1109) 0.2561(0.1564) 

0.5625 0.9909(0.0830) 0.4780(0.1216) 0.5434(0.3009) 
0.81 0.9898(0.0823) 0.4714(0.1321) 0.7316(0.4032) 

100 0.01 0.9986(0.0664) 0.4928(0.0761) 0.0318(0.0414) 
0.09 0.9990(0.0696) 0.4892(0.0832) 0.0994(0.0824) 
0.25 0.9931(0.0762) 0.4889(0.0971) 0.2501(0.1452) 

0.5625 0.9936(0.0749) 0.4815(0.1085) 0.5351(0.2630) 
0.81 0.9979(0.0727) 0.4777(0.1168) 0. 7353(0.3668) 

140 0.01 1.0002(0.0600) 0.4953(0.0709) 0.0331(0.0425) 
0.09 1.0003(0.0619) 0.4897(0.0805) 0.0959(0.0725) 
0.25 0.9973(0.0662) 0.4889(0.0832) 0.2560(0.1326) 

0.5625 0.9978(0.0702) 0.4 786(0.1049) 0.5385(0.2483) 
0.81 0.9937(0.0701) 0.4845(0.1133) 0.7527(0.3643) 
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Table 4.5: Design Weights based GQL estimates and associated standard 
errors for {3 = ({31 , {32)T and the moment estimate of a 2 and its standard 
error , using a sample of size I< clusters chosen based on the Probability 
Proportional to Size sampling scheme from a finite population containing 
N = 200 proportionally weighted clusters of unequal sizes based on 1000 
simulations. 

Estimate 

K True a 2 
rJ1 (SSE) rJ2(SSE) d2(SSE) 

40 0.01 0.9862(0.1073) 0.4958(0.1232) 0.0530(0.0881) 
0.09 0.9910(0.1095) 0.4850(0.1401) 0.1103(0.1184) 
0.25 0.9902(0.1122) 0.4800(0.1554) 0.2453(0.1897) 

0.5625 0.9872(0.1227) 0.4592(0.1889) 0.5084(0.3493) 
0.81 

60 0.01 0.9998(0.0880) 0.4907(0.1037) 0.0427(0.0604) 
0.09 0.9953(0.0902) 0.4929(0.1130) 0.0998(0.1016) 
0.25 0.9927(0.0994) 0.4833(0.1325) 0.2528(0.1793) 

0.5625 0.9889(0.0986) 0.4666(0.1444) 0.5202(0.3172) 
0.81 

80 0.01 0.9941(0.0799) 0.4975(0.0998) 0.0374(0.0525) 
0.09 0.9973(0.0805) 0.4882(0.1017) 0.1065(0.0975) 
0.25 0.9946(0.0868) 0.4874(0.1203) 0.2527(0.1625) 

0.5625 0.9904(0.0936) 0.4 755(0.1327) 0.5125(0.2910) 
0.81 0.9902(0.0982) 0.4667(0.1516) 0.7471(0.4337) 

100 0.01 0.9998(0.0719) 0.4937(0.0863) 0.0348(0.0461) 
0.09 0.9993(0.0786) 0.4878(0.0999) 0.0994(0.0826) 
0.25 0.9975(0.0818) 0.4846(0.1118) 0.2498(0.1520) 

0.5625 0.9898(0.0850) 0.4811 (0.1183) 0.5202(0.2813) 
0.81 0.9956(0.0848) 0.4786(0.1265) 0.7420(0.3855) 

38 



Table 4.6: Design Weights based GQL estimates and associated standard 
errors for (3 = ((31, (32f and the moment estimate of CJ2 and its standard 
error, using a sample of size I< clusters chosen based on the P robability 
P roportional to Size sampling scheme from a finite population containing 
N = 300 proportionally weighted clusters of unequal sizes based on 1000 
simulations. 

Estimate 

K True CJ2 ~~(SSE) ~2(SSE) ; 2(SSE) 
60 0.01 0.9955(0.0872) 0.4991(0.0990) 0.0363(0.0516) 

0.09 0.9962(0.0878) 0.4894(0.1112) 0.1016(0.0980) 
0.25 0.9955(0.0947) 0.4822(0.1291) 0.2533(0.1630) 

0.5625 0.9930(0.0981) 0.4766(0.1457) 0.5416(0.3251) 
0.81 0.9952(0.0947) 0.4733(0.1975) 0.7210(0.4079) 

80 0.01 1.0011(0.0769) 0.4896(0.0872) 0.0340(0.0472) 
0.09 0.9938(0.0785) 0.4922(0.0976) 0.0963(0.0836) 
0.25 0.9978(0.0831) 0.4811(0.1120) 0.2547(0.1519) 

0.5625 0.9908(0.0840) 0.4 782(0.1237) 0.5442(0.2936) 
0.81 0.9898(0.0855) 0.4712(0.1344) 0. 7328(0.3888) 

100 0.01 0.9972(0.0674) 0.4955(0.0780) 0.0311 (0.0391) 
0.09 0.9985(0.0707) 0.4906(0.0856) 0.0984(0.0797) 
0.25 0.9930(0.0774) 0.4906(0.0994) 0.2500(0.1391) 

0.5625 0.9940(0.0769) 0.4829(0.1100) 0.5383(0.2542) 
0.81 0.9976(0.0733) 0.4794(0.1179) 0.7372(0.3582) 

140 0.01 1.0003(0.0608) 0.4958(0.0718) 0.0325(0.0406) 
0.09 0.9999(0.0630) 0.4910(0.0815) 0.0942(0.0688) 
0.25 0.9979(0.0681) 0.4886(0.0854) 0.2556(0.1271) 

0.5625 0.9983(0.0715) 0.4793(0.1054) 0.5419(0.2418) 
0.81 0.9935(0.0757) 0.4857(0. 1102) 0.7604(0.3569) 
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4.3.1 Comparison of SRS and Equal Weights based 
PPS Sampling 

The results given in Tables 4.1 and 4.2 for the SRS case and in Tables 4.3 

and 4.4 for the equally weighted PPS case show that the later scheme pro­

duces much better estimates for the {3 and a2 parameters. For example, 

when a sample of size K = 60 or K = 100 is chosen from the finite pop­

ulation with size N = 200, the estimates for {31 = 1.0 and {32 = 0.5 for, 

say, a2 = 0.25, and the associated standard errors in parentheses, were 

found as follows. Under SRS when K = 60, we have /31 = 0.9866(0.1105), 

/32 = 0.4764(0.1563) and &2 = 0.2561(0.2109). Similarly, for K = 100, we 

have /31 = 0.9939(0.0897), /32 = 0.4750(0.1313) and &2 = 0.2419(0.1668) . For 

the analogous equally weighted PPS cases we have estimates using K = 60 as 

follows: /31 = 0.9915(0.0958) , /32 = 0.4832(0.1286) and &2 = 0.2533(0.1854). 

Similarly, for K = 100, we have /31 = 0.9965(0.0803), /32 = 0.4855(0.1108) 

and &2 = 0.2505(0.1583). We can see that within either of the techniques, 

the estimates as well as their standard errors improve (estimates approach 

true values and standard errors decrease) as sample size increases from 60 

to 100. We also notice that those estimates under equally weighted PPS are 

better than those under the SRS scheme. As an illustration, for K = 60, 

t he /31 value under SRS is 0.9866(0.1105) , while it is 0.9915(0.0958) under 

equally weighted PPS, a much closer estimate with a smaller standard er-

ror. This comparative performace is not surprising. This is because the PPS 

scheme allows larger sized clusters to be included in the sample with more 

probability, and hence more information was included in the sample. These 

estimates also improve with increased population size. 

For population N = 300, we see similar results as with theN = 200 case. 
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Suppose we compare the results for I< = 80 and I< = 140 for a 2 = 0.09 from 

Tables 4.2 and 4.4. For SRS, we report the estimates and their standard 

errors as follows. For I< = 80, ~1 = 0.9940(0.1028), ~2 = 0.4832(0.1385) and 

&2 = 0.1097(0.1254). For I< = 140, ~~ = 0.9938(0.0918), ~2 = 0.4912(0.1209) 

and &2 = 0.1018(0.0968). We again see that with increased sample size, 

we get improved estimates with smaller errors. For the equally weighted 

PPS case, for I< = 80 we have ~~ = 0.9933(0.0762) , ~2 = 0.4922(0.0951) 

and &2 = 0.0972(0.0865), and for I< = 140, ~1 = 1.0003(0.0619), ~2 = 

0.4897(0.0805) and &2 = 0.0959(0.0725). It is evident that equally weighted 

PPS outperforms SRS in all cases. 

4.3.2 Comparison of SRS and WPPS Sampling 

In a similar comparison as given in the previous subsection, we can see that 

Design-Based Weighted PPS (WPPS) also performs better than SRS. We 

compare the results for SRS given in the previous subsection to those of 

WPPS. Specifically, we compare the results for J( = 60 and I< = 100 when 

N = 200 from Tables 4.1 and 4.5. For SRS with J( = 60, we have ~~ = 

0.9866(0.1105) , ~2 = 0.4764(0.1563) and &2 = 0.2561(0.2109). Similarly, 

for I< = 100, we have ~1 = 0.9939(0.0897), ~2 = 0.4750(0.1313) and &2 = 

0.2419(0.1668), as recorded in the previous subsection. For WPPS I< = 

60, we have ~1 = 0.9927(0.0994) , ~2 = 0.4833(0.1325) using the WGQL 

estimating technique, and &2 = 0.2528(0.1793) using WMM. For I< = 100, 

we have ~1 = 0.9975(0.0818), ~2 = 0.4846(0.1118) and &2 = 0.2498(0.1520). 

In both cases, WPPS gives estimates with smaller biases and standard errors. 

Using the same SRS cases where N = 300, J( = 80 and 140, and 

a 2 = 0.09, we can compare with WPPS for the same cases from Table 4.6. 
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These results for SRS were given in the previous section, and are not re­

peated here. Under WPPS for I< = 80, we found /31 = 0.9938(0.0785), 

/32 = 0.4922(0.0976) and &2 = 0.0963(0.0836). Likewise, for I< = 140, we 

have /31 = 0.9999(0.0630), /32 = 0.4910(0.0815) and &2 = 0.0942(0.0688). 

Though the {3 estimates do not change much, their standard errors are smaller 

and the estimate of a 2 improves, giving more accurate results. 

4.3.3 Comparison of Equally Weighted PPS and WPPS 

Using the same examples as given in the previous two subsections from Ta­

bles 4.3 and 4.4, for N = 200 and I< = 60 under equally weighted PPS we 

found /31 = 0.9915(0.0958), /32 = 0.4832(0.1286) and &2 = 0.2533(0.1854). 

Similarly, for I< = 100, we have /31 = 0.9965(0.0803) , /J2 = 0.4855(0.1108) 

and &2 = 0.2505(0.1583). For the design based weighted case, WPPS, Ta­

ble 4.5 reports for I< = 60, /31 = 0.9927(0.0994), /J2 = 0.4833(0.1325) 

and &2 = 0.2528(0.1793). For I< = 100, we have /31 = 0.9975(0.0818) , 

/32 = 0.4846(0.1118) and &2 = 0.2498(0.1520). In each case, WPPS produces 

slightly better estimates than the equally weighted PPS scheme. 

Under the equally weighted PPS scheme for N = 300 for I< = 80, we get 

/31 = 0.9933(0.0762) , /32 = 0.4922(0.0951) and &2 = 0.0972(0.0865) , and for 

I< = 140, /31 = 1.0003(0.0619), /32 = 0.4897(0.0805) and &2 = 0.0959(0.0725) 

from Table 4.4. Under WPPS, we acquire the estimates for I< = 80 as /J1 = 

0.9938(0.0785), /32 = 0.4922(0.0976) and &2 = 0.0963(0.0836). For I< = 140, 

we have /31 = 0.9999(0.0630) , /32 = 0.4910(0.0815) and &2 = 0.0942(0.0688) 

from Table 4.6. 

We find that under both scenarios, PPS performs much bet ter than that 

of SRS. WPPS seems to give very similar results to that of equally weighted 
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PPS. Most notably, we can see that the estimate of a 2 improves slightly with 

the addition of weights to the estimating equations. 

Overall, we can see that the estimates tend to be more precise with a 

larger sample relative to the population size, and they exhibit smaller values 

of the variance parameter. The estimates become even more precise using 

a sampling scheme that takes the sizes of the clusters into account, such as 

WPPS. 
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Chapter 5 

Concluding Remarks 

There does not appear to be adequate discussion on the estimation of the 

parameters of the clustered regression models for the count data under the 

finite population setup. For a discussion on the estimation of regression 

parameters in such a finite population setup, one may refer to Thompson 

(1997, Chapter 6). 

The main contribution of the practicum is to develop an estimation 

methodology for consistent estimation of both the regression effects and the 

variance paramenter of the random effects for a clustered regression model 

under the finite population setup. It was found that when cluster/family sizes 

were different, the use of the PPS sampling scheme provided better estimates 

of the parameters, as opposed to the use of the SRS scheme. These results 

are, in general, in agreement with those discussed by Binder (1983) and Pf­

effermann (1993) . Note, however, that Binder (1983) discussed longitudinal 

cluster data analysis under the finite population, whereas we have discussed a 

Poisson mixed model, that is, a familial clustered regression model for count 

data, under the finite population . The non-regression cases were also studied 
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in the beginning of the practicum. This study showed the usefulness of the 

application of the PPS scheme for t he purpose of estimation of the finite 

population total. 

We remark t hat in the practicum, we have used the GQL approach for 

regression estimation and the moment approach for the variance parameter 

estimation under the finite population setup. One may also attempt to use 

the GQL approach, instead of the method of moments approach to increase 

the efficiency of the variance estimate, which can be a future project. We 

also remark that t he estimating equations based results of this practicum 

should be highly useful to statistical agencies such as Statistics Canada for 

the inferences on familial count data. 
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Appendix 

Fortran Program to Generate a Simple Random Sample 

integer i,j,k , N,iseed,n1,n2,n3,n 
integer m(N),y1(N/4,n1),y2(N/2,n2) 
integer y3(N/4,n3) 
integer y(N),ir1(n1),ir2(n2),ir3(n3) 

parameter(N=100,n1=4,n2=6,n3=5,n=20) 

real mu1,mu2,mu3 ,y(n) 
real r(n),z(n) 

[comment: N is the population cluster number and n is the sample clust 

external rnpoi,rnset,rnun 

open(10,file='srs.out',status='new') 

iseed=2345678 
call rnset(iseed) 

mu1=2 
mu2=4 
mu3=3 

do i =1,N/4 
call rnpoi(n1,mu1,ir1) 
do j =1,n1 
y1(i,j)=ir1(j) 
end do 
end do 
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do i=1,N/2 
call rnpoi(n2,mu2,ir2) 
do j=1 ,n2 
y2(i,j)=ir2(j) 
end do 
end do 

do i=1,N/4 
call rnpoi(n3,mu3,ir3) 
do j=1,n3 
y3(i,j)=ir3(j) 
end do 
end do 

do i=1,N/4 
y(i)=O 
do j=1,n1 
y(i)=y(i)+y1(i,j) 
end do 
end do 

do i=N/4+1,N/4*3 
y(i)=O 
do j=1,n2 
y(i)=y(i)+y2(i-N/4,j) 
end do 
end do 
do i=N/4*3+1,N 
y(i) =O 
do j =1,n3 
y(i) =y(i)+y3(i - N/4*3,j) 
end do 
end do 

do i =1,N/4 
m(i)=n1 
end do 
do i=N/4+1,N/4*3 
m(i)=n2 
end do 
do i =N/4*3+1,N 
m(i) =n3 
end do 
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end 

call rnun(n,r) 
do j=1,n 
z(j)=y(int(r(j)*100) ) 
end do 

close (10) 
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Fortran Program to Generate a Sample using Probability Proportional to 
Size 

integer i,j,k,N,iseed,n1,n2,n3,n 

parameter(N=100,n1=4,n2=6,n3=5,n=20) 

integer m(N),y1(N/4,n1),y2(N/2,n2) 
integer y3(N/4,n3) 
integer y(N),ir1(n1),ir2(n2),ir3(n3) 
integer T,c(N),nr(n) 
integer yf(n),mf(n) 

real mu1,mu2,mu3 
real d(N),rl(N),dd(N),rT,r(n) 
real yn(n),absdf(N),z(n),rn 
real q(n),df(N),sabsdf(N) 

external rnpoi,rnset,rnun 

open(10,file='pps .out',status='new') 

iseed=2345678 
call rnset(iseed) 

mu1=2 
mu2=4 
mu3=3 

rn=n 

do i =l , N/4 
call rnpoi(n1,mu1,ir1) 
do j=l ,nl 
y1Ci,j) =ir1(j) 
end do 
end do 

do i=l ,N/2 
call rnpoi(n2,mu2,ir2) 
do j =1,n2 
y2(i,j)=ir2(j) 

49 



end do 
end do 

do i=1,N/4 
call rnpoi(n3,mu3,ir3) 
do j=1 ,n3 
y3(i,j)=ir3(j) 
end do 
end do 

do i =i,N/4 
y(i)=O 
do j=1,n1 
y(i)=y(i)+y1(i,j) 
end do 
end do 

do i=N/4+1,N/4*3 
y(i)=O 
do j=1 ,n2 
y(i)=y(i)+y2(i-N/4,j) 
end do 
end do 
do i=N/4*3+1,N 
y(i)=O 
do j =1 ,n3 
y(i)=y(i)+y3(i-N/4*3,j) 
end do 
end do 

do i=1 ,N/4 
m(i) =n1 
end do 
do i =N/4+1,N/4*3 
m(i)=n2 
end do 
do i =N/4*3+1,N 
m(i) =n3 
end do 

T=N/4*n1+N/2*n2+N/4*n3 
rT=T 
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c (1)=m(1) 
d(1)=c(1)/rT 
do i=2,N 
c( i) = c ( i -1) +m ( i) 
end do 

do i=2,N 
d(i)=c(i)/rT 
end do 

call rnun(n,q) 

do j=1 ,n 
do i=1,N 
df ( i ) =q ( j ) - d ( i ) 
absdf(i)=abs(df(i)) 
end do 
call svrgn(N,absdf,sabsdf) 
do i=1 ,N 
if(sabsdf(1).eq . (1*df(i)) . or.sabsdf (1).eq. (-1*df(i)) )then 
nr(j)=i 
end if 
end do 
end do 

do j=1 ,n 
yf(j)=y(nr(j)) 
mf(j) =m(nr(j)) 
end do 

close (10) 

end 
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