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Abstract

Consistent and efficient estimation of the parameters of generalized linear
mixed models (GLMMs) has proven to be difficult in the infinite population
setup. This estimation issue becomes more complex in the infinite population
setup where the estimation is done based on a sample of a small numb  of
clusters chosen from a finite population with a large number of unequally
sized clusters. This practicum examines the role of the sampling designs on
the estimation of the parameters of the GLMM based super-population for

clustered count data.
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Chapter

Introduction

1.1 Motivation for Complex Sampling Based
Inferences

There exists a vast literature in cluster sampling (Cochran (1977, Chapter
9)) where it mmay be of interest to estiinate the finite population total. In this
cluster sampling setup, one deals with a suitable sample of clusters chosen
from the finite population consisting of a large number of unbalanced clusters.
Consequently, to reflect the unequal cluster sizes, traditionally, a probability
proportional to size (PPS) sampling scheme is used to choose the sample,
and the totals of the clusters of that sample, along with the PPS weights,
are exploited for the unbiased, and hence, consistent estimation of the finite
population total. For example, the number of visits to a physician paid by a
member of a family can be considered as a discrete random variable and the
health department may be interested in estimating the total number of visits
paid by the family menibers in a city. For this purpose, a sample of families
may be chosen using PPS sampling and the total number of visits for each

family in the sample, along with their family sizes, may be exploited.




It may, however, be the case that, as opposed to the number of visits,
the researcher/health department may be interested in knowing the effects
of certain covariates on the number of visits paid by the individual inembers.
For examnple, the number of visits may be affected by gender, age, and the
number of chronic conditions of the individual. One may be interested in
estimating the effects of these covariates in a finite population setup. Since
the visits by the family members are correlated due to a common family
effect, the estimation of the effects of the covariates becomes complicated. In
fact, there does not exist adequate discussion on such a clustered regression
problem in the finite population setup.

We must, however, note that as opposed to the finite population setup,
there exist some studies to d  with the clustered regression problem in the
infinite population setup. Breslow and Clayton (1993), for example, discuss
a penalized quasilikelihood (PQL) method of estimation for a generalized lin-
car mixed model (GLMM). This PQL approach may, however, not produce
consistent estimates for the variance of the cluster effects. See, for example,
Sutradhar and Qu (1998) and Jiang (1998). Jiang (1998) proposes a method
of simulated moments (SMM) to obtain consistent estimates for such a vari-
ance parameter under a GLMM setup. However, this estimate, along with the
regression effects, may be ineflicient. Sutradhar (2004) provides an improve-
ment over this method of moments using an exact generalized quasilikelihood
(GQL) approach. Nevertheless, when one deals with this regression problem
in a finite population setup, it becomes time and cost effective to estimate
the parameters of the model, based on a suitable sample of clusters. This
motivated us to consider a sainple of K clusters/families from a population

with a large number, N, of unbalanced families, and use the GQL idea of Su-



tradhar (2004) in such a finite population setup. To be a little more specific,
a sample chosen based on the PPS sampling scheme would be used for the
estimation of the parameters of the clustered count data model in the finite

population setup.

1.2 Objective of the Practicum

In Chapter 2, we give a brief overview of the Simple Random Sampling
(SRS) and Probability Proportioual to Size (PPS) sampling schemes. These
two sampling schiemes are compared using a simulation study to estimate
the finite population totals in a non-regression setup. Chapter 3 deals with
a traditional clustered regression model, or a familial inixed model for count
data, for the infinite population setup. For the estimation of the parame-
ters, namely, the regression effects and variance component of the model,
the performance of a recent generalized quasilikelihood (GQL) te nique is
examined through a simulation study. In Chapter 4, we continue to deal
with a clustered regression model for count data, but unlike Chapter 3, we
consider a finite population setup. The effects of the two sampling schemes,
SRS and PPS, on the GQL estimation of the parameters of a familial mixed
model are examined using another set of simulation studies. We conclude
the practicum with a summary and suggestions for future studies and im-

provements in Chapter 5.



Chapter 2

Estimation of Finite Population
Total

There is a vast literature in single stage cluster sampling, where the popu-
lation total is counsistently estimated by using a suitable weighted average,
where the weights are chosen based on the well-known sampling scheme Prob-
ability Proportional to Size (PPS). We refer to Cochran (1977, chapter 9)
and the references therein for such an estimation.

Let there be N clusters in the population. Let y; (1 = 1,...,/NV) denote
the ith cluster total and m; (i = 1,..., N) denote the corresponding cluster
size. Suppose that we are interested in estimating the finite population to-
tal, ¥ = 2N | v, based on a sample of size n. Also suppose that s! is a set
of responding units ¢~ 1 n responses. Note that under the clustered
population, it is customary to choose this set s using the Probability Pro-
portional to Size (PPS) techunique. This is because the PPS technique uses
proper weights based on the cluster size in selecting the population unit.
Furthermore, it is well-known that the application of the Simple Random
Sampling (SRS) technique would produce an unbiased estimmate, ut with
poor precision, in the clustered population case. Nevertheless, in this scc-

tion, we conduct a simulation study to examine the relative performance of



the PPS and SRS sampling techniques where the clustered data are generated
from a suitable distribution for counts such as the Poisson distribution. This
will primarily be done to understand the small sample relative pe rmance
of the estimation, which is not adequately addressed in the literature.

For the purpose of the simulation-based comparisons, we provide the

formulae for SRS and PPS scheme-based estimation of the totals.

2.1 SRS versus PPS Estimation

SRS Estimation Our population of interest consists of N pairs of infor-
mation (my, ), ..., (M, ¥),- .., (my,yn). Here, them;’s (1 = 1,...,N) are
assumed to be known, m; being the size of the ith cluster. However, the y;'s
are unknown. It is of interest to estimate ¥V = Z{V ¥ my's are cousidered
to be the same for all 7, or when m,'s are ignored, one may use the SRS
technique to estimate the population total, Y = Yics: Y- To be specific, Y

is estimated based on the SRS technique using the formula

Yors = 3 Wi, (2.1)

iCa*
EASE 4

where w; = N/n is the constant weight for the population to be included in
the sample, and y1,..., ¥, - . ., Y are known in the sample, s;. This estimator

has the variance given by

viyy=Yu - pe, (2.2)

n

i g2
with f =n/N and S? = 215}\(31—)) This variance may be estimated by




v(V) = —(1 = f)s? (2.3)

as given in Cochran (1977, Chapter 9), where s? = ... (y; — 7)/n — 1.
We remark that the estimator of ¥ given in (2.1) is a simple estimator.
The estimate Y, however, will often be of poor precision, as pointed out by
Cochiran (1977, Chapter 9). This lack of precision will occur when the means
per clement, §; = Z;-":’l Yi;/m. = yi/m; do not vary much from cluster to
cluster, while the m; vary greatly. Thus, y; in (2.1) will vary more from
cluster to cluster, and so, the variance given in (2.2) will be large, causing Y

in (2.1) to be inefficient.

PPS Estimation In an effort to remedy the precision deficiency of the
SRS estimator, there exists an alternative sampling technique known as PPS
sampling, where the y; in the sample of size n is chosen with replacement
from the population based on weights proportional to the cluster size. For
i =1,...,N, we define z; = m;/m,, where m, = ¥I¥ m;. We now let
s, denote the sample of size n based on the PPS scheme. Under this PPS

scheme, "N | y; is estimated by

-, 1 Y
ypp: = ;7: :y (2 4)

i€, “1

which has the variance
N

VIV, = 25 % vy 2.5
( ppz) - TLZZZ("‘ ) . ( . )
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Furthermore, the variance in (2.5) is usually estimated by

(V) = 2 (L = V) /n(n = 1), (2.

e R
[SE M

2.2 A Simulation Study

In this simulation study, we consider populations with N clusters (N =

100, 200, 300). Suppose that we assign m; as follows:

4 fori=1,... %
mi=1¢6 fori=f+1,..., % (2.7)
5 fori=¥ 41, N

Next, suppose that y;; denotes the count response for the jth member (j =
1,...,my) of the ith cluster, and y; = Z;’Ql yi; denotes the cluster total so
that y1,...,%....,y~ denotes N totals in the finite population. To generate

yi, we consider that y,;; ~ Poi(u;), where we choose y;, for example, as

2 fori=1,...,%
pi=19 4 fori==% 41, & (2.8)
3 fori=3F+1,...,N

It is clear from (2.7) and (2.8) that the count responses will have the in-
finite population total Y; i’il m;;, yielding Y 1775, 3550, 5324 for
N = 100, 200, 300, respectively. For the construction of the population un-
der the simulation study, let y; be generated from Poi(y;). Consequently,
in the simulation study, y;.. .., yy are known, whereas, in practice, they are
unkuown. For convenience, we have computed Y SN | y; (finite population
total) from the simulated obs  ations. It was found that the values of Y are

very close to the infinite population total Y7, for all N = 100, 200, 300, as ex-




pected. It is of interest to estimate the total, Y, based on samples chosen by
SRS and PPS techniques. As far as the sample size is concerned, we consider
n = 10,20, 30,50 when N = 100. Similarly, we choose n = 10, 20, 30, 50, 1€
for N = 200, and n = 10, 20, 30, 50, 100, 150 when N = 300.

To obtain SRS and PPS estimates of Y, we have written a Fortran pro-
gram to generate the sample of size n under each of these samnpling schemes
and compare the performance of these two techniques in estimating the pa-
rameters of the finite population. This program containing both SRS and
PPS schemes is given in the appen  x.

Next, using formulas (2.1) and (2.4), we have estimated the population
total based on SRS and PPS designs, where we denote these estimates by
Ysrs and Ypps for SRS and PPS, respectively. The simulation means (SM) of
these estimates based on 2000 simulations, along with the siinulated standard
errors (SSE) are reported in Tables 2.1 and 2.2 for two different selections
of the values of y; (i = 1,...,N). Specifically, the simulation results with
; defined as in (2.8) are reported in Table 2.1, whereas the results with
p = ¢ = 3 forall i = 1,..., N are exhibited in Table 2.2. Note that in

Tables 2.1 and 2.2 we also report the simulated bias computed by

Annn

Bias = Y, — Y|, (2.9)
ZUUU T

s=1

under both sampling schemes, as well as estimated standard error (ESE)

computed by (2.3) and (2.6) for SRS and PPS based designs, respectively.




The results in Table 2.1 show that PPS sampling performs much bet-
ter than SRS in estimating the finite population total. This holds for n
and N considered in the simulation. For example, for the population size
N = 100, the finite population total was found to be Y = 1774 (which is
close to Y; = 1775) based on 2000 simulations. When this total Y was es-
timated by using a sample of size n = 10, SRS produces the estimate 1756,
while the PPS sampling based estimate was found to be 1765. Clearly, the
PPS estimate is much closer to the population total Y. When the corre-
sponding standard errors are compared, the PPS design produces estimates
with smaller staundard errors. Also, the biases are smaller for PPS samnpling
as compared to SRS. We may note that the estimated standard errors for
both SRS and PPS sampling appear to work well, as they are found to be
close to the corresponding simulated standard errors. Similar interpretation
holds for all other results of this table.

[t is clear from Tables 2.1 and 2.2 that as n increases, standard errors
decrease under both SRS and PPS designs, with similar standard errors under
the PPS design. We also observe that the bias appears to be decreasing
more under PPS as n increa:  as compared to the results for SRS. We also
note that, as expected, when the relative sample size n is much smaller as
compared to the population size N, both SRS and PPS sampling perform

poorly, with PPS performing somewhat better than SRS.




Table 2.1: Simulated Mean (SM), Simulated Standard Errors (SSE), Esti-
mated Standard Errors (ESE) and Simulated Bias (SB) for the estimates of
finite population total (Y) using SRS and PPS sampling design (with vari-
able cluster size m; as in (2.7)) based on 2000 simulations for selected sample
size (n) drawn from the population size (N) with unequal means as in (2.8).

N 100 200 300
VYin o 1775 30U 5324
n  Quantity Ysgs Y pps YSRS Ypps Ysrs Ypps
10 SM 1755.57 1765.06 3171.05 3548.39 3521.66 5338.29
SSE 259.76 189.38  590.00 376.94 74345  561.51
ESE 248.53 181.81  557.66 359.53 69290 538.71
SB 165.10 97.68 806.70 316.53 1825.60 456.10
20 SM 1767.08 1..5.95 3149.24 3548.52 3531.16 5316.78
SSE 186.52  137.97 406.86  266.83 507.78 394.31
ESE 177.08 12855 396.81 257.85 506.06 386.94
SB 186.25 126.09  505.05 29297 1726.35 269.68
30 SM 1758.62 1771.26 3167.57 354591 3544.23 5323.64
SSE 151.49 115.25 337.18 222.06 444.32 332.57
ESE 146.20 105.43 32557 211.76  415.54  316.08
SB 124.74 64.11 439.07 184.84 1756.35 216.00
o0 SM 1765.70  ..J9.62 3158.17 3549.59 3516.09 5318.42
SSE 122.38 92.14 272.74 180.02 336.49  259.90
ESE 112.56 81.75 252.95 164.96 321.84 246.04
SB 95.46 70.76 400.72 132.87 1854.88 180.79
100 SM 3155.62 3554.28 3541.45 5318.42
SSE 201.92 130.65 252.34 197.14
ESE 178.82 116.30  229.70 174.85
SB 374.58 102.31 1819.25 136.63
150 SM 5322.63 5328.17
SSE 215.95 163.32
ESE 185.93  142.39
SB 1802.49 111.49

10



As is the case with 7 "¢ 7 1, Table 2 = shows that PPS perfo s much
better than SRS in the estimation of the finite population total under equal
means. This happens because the PPS design chooses more clusters of larger
size in the sample. For example, for N = 200, we have an infinite population
total of Y; = 3150. For n = 30, the PPS scheme gives the closer estimate of
3149, while SRS gives an estimate of 2980. However, when n increases, the
estimates do not seem to get much better under either of the two sampling
schemes as was the case for Table 2.1. This shc  that small sample size
works reasonably well, but when the standard errors are compared, they
decrecase as n increases. This shows that a larger sample size is nceded
for better performance, as expected. Next, the estimating formulas for the
standard errors appear to work well as the estimated standard errors are  n
to be close to the simulated standard errors.

In summary, it is clear from both tables that the PPS technique is far
superior to L..3 in estimatit the finite population total. This is because the
PPS design is constructed to utilize more information as compared to the

SRS design.

11




Table 2.2: Simulated Mean (SM), Simulated Standard Errors (SSE), Esti-
mated Standard Errors (ESE) and Simmulated Bias (SB) for the estimates of
finite population total (Y) using SRS and PPS sampling design (with vari-
able cluster size m; as in (2.7)) based on 2000 simulations for selected sample
size (n) drawn from the population size (N) with equal means p; = p = 3.

N 100 200 300
Yin 1573 3180 4725
1 Quantity Ysrs  Ypps  Ysgs Ypps Yspns  Vrps
10 SM 1557.85 1574.20 2980.04 3148.83 3985.56 4:04.30
SSE 157.98  130.79 336.44 25458 450.22 394.96
ESE 147.51 121.92 304.81 240.58 410.32 361.92
SB 123.90 51.98 403.60 173.30  730.00 348.76
20 SM 1563.51 1575.70 2964.19 3148.82 3981.54 4729.23
SSE 115.45 98.82 235.73 183.30 321.63 271.72
ESE 105.23 87.00 219.42 174.15  302.28  263.43
SB 104.60 70.16 257.60 177.71  694.00 180.65
30 SM 1561.16 1573.85 2972.46 3147.25 4002.74 4729.23
SSE 95.53 83.36 198.47 154.40 284.02  226.49
ESE 86.59 71.09 180.45 143.50 244.13 214.94
SB 79.17 51.15 201.17 86.60 674.33 160.32
50 SM 1563.82 1573.26 2968.78 3149.22 3983.75 4718.73
SSE 79.78 69.02 204.84 96.51 217.59 186.01
ESE 67.34 59.49 140.62 111.89 191.45 165.69
SB 54.50 45.58 204.84 96.51 774.44 133.29
100 SM 2965.89 3153.09 4001.52 4720.92
SSE 128.00 97.08 174.09  143.35
ESE 99.64 79.00 136.24 118.47
SB 173.16 63.40 725.52  100.05
150 SM 3990.17 4722.68
SSE 163.16  122.33
ESE 110.54 96.58
SR 729.05 69.98

12




Chapter 3

Estimation of Parameters of
the Poisson Mixed Model:
Infinite Population Setup

I the previous chapter, we estimated the population total for a finite
number of clusters, where cluster elements were assumed to follow the Possion
distribution. But, in practice, we may be interested in regression effects of
certain covariates on the count responses recorded under a large number of
clusters. For example, we may be interested in the effects of the covariates
age, gender, and education level on the count responses such as the number
of visits to the physician by the members of a large number of independent
families.

Our purpose is to make inferences for these types of regression effects in
the finite population setup. However, there exist many examples for this type
of inference in the infinite population setup. For convenience, in this chapter,
we briefly review the non-linear regression analysis that other researchers

have done for familial count data.

Familial Mixed Model for Count Data Let there be K independent

clusters/families randomly selected from an infinite population. Note that in

13



the previous chapter, for convenience, we used "n” instead of K" and n clusters
were chosen from N finite clusters. Recall that y,; is the count response
for the jth (7 = 1,...,m;) member of the ith family. We now consider
Ty = (Tijiy- - -, Tijm,)T as the p-dimensional regression vector corresponding
to y;;. Also suppose that 8 = (B1,...,0,,...,0,)7 be the p-dimensional

effects of the variable z;; on y;;. In this setup, it is common to use the

Poisson distribution y;; for the random counts, that is,

where u;; = e:vp(w;gﬂ + ) with 7! representing the ith family effect. As far
as the distribution of 4] is concerned, it is reasonable to use the Gaussian
distribution. See, for example, Breslow and Clayton (1993), Jiang (1998),
Sutradhar and Qu (1998), and Sutradhar (2004). Thus, we assume at
¥ % N(0, . It is of interest to obtain consistent and efficient estimates
for the regression effect 3 and the variance component of the randoin effects

2
8-

o
Note that the responses y;1, . . ., Yim, 1 the 7th family are correlated. This
is because the family members share the commnion effect 4. To be specific,

the mean, variance, and the correlation structure under this model are given

by

py = E(Y;)) = EyE[Yyh!)
E,. ['“;J']

Il

14



oy = Var(Yy) = B(Y5) — i
= Enlui; + ui] — i
= py+ (e =)k, (3.3)

and

ok = Cov(Yi;, Yae) = E(Yi;Yik) — pajptax

Ey;E[Yinikh;] — Hij ik

= By ppi] = pijptar

= (6‘72 — D)ptijttin,s (3.4)

li

respectively. Note that the formulas in (3.2)-(3.4) were obtained by using

the fact that for a positive integer t and for ~; ud 0,02), we have
P ; 2

B(e) = e,

3.1 Some Remarks n Likelihood Estimation

With respect to the inference for 4 and 03, one may attempt to use the
traditional likelihood approach, which, however, is extremely complicated.

This is because, in the present case, the log likelihood may be written as

15



K m, K m, K
logL(B,0,) = =X "Nyt >0 ?/inIiTjﬁ + ) logJ;,
=] jJ=1 i=1 j:l i=1

with
Ji= /_O:O expldi(7:)]o(vi) dyi,

where for v; = 7} /0., ¢(7:) is the standard normal deusity, and

m, my
di(vi) = a4y AR Yij — vexp(:zrzjﬁ +0,7%:)-

J—

The estimation of 8 and 03 requires the solution of the likelihood estimating

cquations

dlogl(B,02) and dlogL(B, o2)
ag da?

= (), (3.9)
which appear to be complicated because of the computational difficulties for
the second order derivativ  Furthermore, finding the covariance matrix of
the estimators will be more complicated because of the difficulty in computing
the Fisher Information matrix (Sutradhar and Das (2001, eq.(4.8))). This
complexity increases when one considers multi-dimensional random effects.
For these reasons, many authors such ac _:eslow and Clayton (1993) have

avoided the use of the exact likelihood approach. Specifically, these authors

16




have used a penalized quasi-likelihood (PQL) approach. Jiang (1998) as
used a simulated moment approach for the estimation of 8 and 03. Jiang
(1998) has adopted this moment approach because of the inconsistency prob-
lem encountered by the PQL approach in estimating af. See also Sutradhar
and Qu (1998). Later, Sutradhar and Rao (2003) and Sutradhar (2004) have
proposed a generalized quasi-likelihood (GQL) approach for the estimation
of the parameters. This approach, unlike the moment approach of Jiang
(1998) and of Jiang and ~ .ang (2001), provides both consistent and efficient
estimates for 3 and 03. In this chapter, we follow Sutradhar (2004) and
verify the perfomance of the GQL approach for such an estimation through
a simulation study in the infinite population setup. We do this for the main
purpose of using and examining the performance of the GQL approach in

the finite population setup which will be provided in the next chapter.

3.2 GQL Estimation for the Regression Ef-
fects

In this section, we will follow the Generalized Quasi-Likelihood (GQL)
approach (Sutradhar (2004)) for the estimation of the 3 parameter. This
provides a consistent as well as efficient estimate for 3, provided one can
estimate the o? parameter consistently. For consistent estimation of o2,
we use the method of moments (Jiang (1998)) and provide the estimation
formula in the next section. Note that we also could use the GQL approach to
efficiently estimate o2, but we have chosen the moment estimation approach
iustead, as we are much more interested in estimating the main regression
parameter, 8. Also ite that the moment approach is much simpl than

GQL.
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For the GQL estimation of 3, we write the estimating equation as follows:

Z ‘% =57y — ) = 0, (3.6)

where i = (Vir, Y2, -« > Yime ) s Hi = (fity fizs - -, fim,) ", and £, is the co-

variance matrix of y;. In notation,

g Oaz2 0 Oiam,
Si=| oy Oz Oigmg | (3.7)
Oim;1 Tim,2 " Oim;m;

where the forinulas for o;;; and o, (j # k) are given in (3.3) and (3.4),
respectively. For compuational convenience, we simplify the formula for the

derivative involved in (3.6) as

HIIT T
where X; and A, are defined as
Tin Zaz o Tap par 0 e e 0
: . . : 0
Xi=| g1 Tjo - Tgp |, A= : Lij : (3.9)
:Ejmil ‘rEi"L,Q e Iim,p 0 P e iu‘i"ll

18



By using (3.8) in (3.6), we obtain the GQL estimating equation for 3 given

by

.
SXTAX (g — ) = 0. (3.10)

i=1

We can now solve this estimating cquation for 8 by using the well-known

Newton-Raphson iteration technique. The iterative formula is given by

K -1 K
ﬁnew = /Bold + |:Z X-;TA‘LE'L—IAI/Y{| Z‘X'LTA'Lzl_l(yt - Ml) (311)

i=1 i=1

3.3 Moment “stir ation for the Variance Com-
ponent

Following Jiang (1998) [see also Sutradhar (2004)], we use the second
order responses to construct a moment estimating formula for 0%, To be

specific, we consider

K m, K m,
S = NS (i = ) 20N (Wi ) (Yo — M) (3.12)
1 j=1 =1

as a basic statistic and find its expectation as
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K - K m,

E(S) = Z ya E(yl] - iui_l)2 + Z Z E{(yl] - :uij)(yiu - ,“'iu)}

i=1j=1 i=1 j<u
K my ) K m, ) K my )

= ZZMJ’"‘(GU - I)ZZﬂij+ZZ€a ity (3:13)
i=1j=1 i=1j=1 i=1j<u

by (3.3) and (3.4). Now, by solving S — E(S) = 0 we obtain

e 91(8) = S - ga(3), (3.14)
where
K m, K m,
a(B) = VN ,“'121' + 3N i
=1 =1 i=1 j«u
K m, K m,
@B) = Y3 ny—D) ul (3.15)
i=1 j=1 i=1j=1

It then follows from (3.15) that the moment estimating formula for ¢? is

given by

(3.16)

In the next section, we examine the performance of the GQL estimate of
3 and the moment estimate of o2 obtained by (3.11) aud (3.16), respectively,

through a simulation study.
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3.4 Performance of GQL Estimation: A Sim-
ulation Study

For this simulation study, we consider an infinite population and use a
sample of K families/clusters (K = 100,200) and with size m; for the ith

cluster, where i = 1,..., N. To be specific, we consider

2 fori:1,...,%g
mi={ 4 fori="%41.. % (3.17)
3 f0r7:%+17 '7]"

-

As far as the covariates z;; (1 = 1,...,K, j = 1,...,m;) are concerned,

we consider p = 2-dimensional covariates as:

~_Jo forj=1,z':1,...,§-
AT forj=2,i=1,... %

-1 forj=1,i=%41, . 33X
_ -1 forj:2,i:§+1_..,i
AL forj:3,i:¢+1,...,3i"
1 forj:4,i:{j—f+1,...,3‘4£

—1 forj=1,i=3%4+1,... K
Iy = 0 fijZQ,i
1 forj=3.i=%+1...K

[
-+
—_
=

for the first covariate. The second covariate, z;jz, was randomly generated

from the binary distribution for selected ¢ and j as follows:

Lij2 l)(03) forjzl,i: 1,...
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.’l'ZJsz(OS) fOr]':27i:l’._.7%

Tip~b(0.1) forj=1,1=% 41, &K
Tip~b(03) forj=2i=541, 3K
Tij2 ~ b(0.5) for j =3, i =5 +1,... 3K
zip ~ 0(0.7) for j =4, i = § 41, 2

Tijo ~b(0.2) for j=1,i =3 41, K
Tijo ~ b(0.5) for j =2, =3 +1,... | K
Tiyo~b(08)forj=3 1= 11 K

Thus, we consider 8 = (8, 3;)7. Next, with regard to the random family cf-
fects, we consider ~y; ud N(0, 0?) with selected values of ¢% = 0.09, 0.25, 0.5625,
1.00, 1.44. To generate the data, we consider #; = 1.0 and G, = 0.5. The
above values of the covariates, the generated values for v* and ; and s,
lead to the numerical values for u;; = emp(x5ﬁ+ v:) as given in (3.1). Next,
we generate y;; from the Poisson distribution with mean g}, That is, y;;

conditional on v} is generated following

T .
Yiz ~ Pm(llij)~ (3.18)
It then follows that, unconditionally, these responses, y;;, for j = 1,...,m;

under the ith family will be correlated following the correlation structure
given in (3.4)

All together, we consider 2000 simulations. Under each simulation, we
estimate B = (3. 3)7 by using the GC~ estimating equation (3.10). To be
specific, we solved (3.10) by using (3.11). This has been done for a given
Z]

value of ¢2. Note, however, that t| = ¢ .+ 1 to be ted, as it is



unknown. With the first step values of 3; and [, we now use the moment
estimating formula (3.16) to obtain an estimate of ¢2. With this value of
a?, we go back to obtain an improved estimate for 8 by using (3.11). These
improved values of 3, and (3, are in turn used in (3.16) to obtain an improved
estimate of ¢?. This constitutes a cycle of iteration. This cycle continues
until convergence. Finally, the converged estimates for 3y, 3;, and ¢? under
all 2000 simulations are used to compute the simulated means, which are
referred to as the simmulated estimates. The simulated standard errors are
also computed. These simulated means and standard errors are reported in
Table 3.1 for all 5 selected values of 0% as well as for N = 100, 200.

The results in Table 3.1 show that for both K = 100 and K = 200, the
GQL approach yielded estimates for 3; that are very close to 1.0 with small
standard errors that are quite small. For (3,, however, the GQL approach
gave estimates close to 0.5 with slightly larger standard errors. For example,
for 02 = 0.09, we have 3, = 1.0012, 3, = 0.4961. The results are comparable
for K = 200. However, we do find that as the true value of o2 increases,
the estimates for o2 become less accurate. For example, for 0% = 1.44, we
get the following results: 3, = 0.9940(0.1048), f2 = 0.4815(0.2086), and
o? = 1.2044(0.5286). We see that although the values for 3 are similar in
nagnitude as those for 2 = 0.09, the value for the simulated ¢? is nuch
lower than we would expect to get. The results for X' = 200 are slightly
better with o2 = 1.2903(0.4689).

Overall, we do see that the estimates for /3 seem reasonable and seem to
be consistent. The est .es for o2, although somewhat disappointing for
the larger values, are also cons  nt.

Note that we have «d the performance of the GQL approach for
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Table 3.1: Simulated means (SM) and simulated standard errors (SSE) for
the estimates of 8 and o2 based on cluster size K (drawn from an infinite
population) under the familial regression Poisson mixed model (3.1)-(3.4)
using 2000 simulations.

Estimate
K True 02 Quantitv A. A 2
100 0.09 SM 1.wl2 uvasur  v.woud
SSE 0.0640 0.0791 0.0375
0.25 SM 0.9989 0.4937 0.2400

SSE 0.0661 0.0889 0.0761
0.5625 SM 0.9972 0.4876 0.5381
SSE 0.0677 0.0997 0.1982
1.0000 SM 0.9962 0.4848 0.9125
SSE 0.0696 0.1147 0.3728
1.4400 SM 0.9940 0.4815 1.2044
SSE 0.1048 0.2086 0.5286

200  0.09 SM 1.0008 0.4978 0.0878
SSE 0.0461 0.0567 0.0258
0.25 SM 1.0006 0.4957 0.2459

SSE 0.0477 0.0636 0.0555
0.5625 SM 1.0001 0.4921 0.5504
SSE 0.0484 0.0704 0.1439
1.0000 SM 0.9973 0.4910 0.9410
SSE 0.0501 0.0769 0.3123
1.4400 SM 0.9969 0.4871 1.2903
SSE 0 N515 - 1),0818 0.4689
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estimates of the parameters for the Poisson mixed model. As pointed out,
this approach appears to work well in estimating the parameters involved.
This gives us some confidence to also use this approach under the finite

population setup. We discuss this in Chapter 4.
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Chapter 4

Finite Sampling Based
Inference on Poisson Mixed
Models

In the previous chapter, we dealt with a Poisson mixed model under infinite
population setup. To be specific, a large sample of clusters with unequal
sizes was chosen from an infinite population. There, the underlying sample
was thought to be selected based on the well known simple random sampling
(SRS) technique. Thus, the inference made in the last chapter was completely
infinite population-based. In a sample survey setup, however, we deal w 1a
finite population of NV clusters, similar to that of Chapter 2. We then make
the inferences based on a smaller sample of n clusters chosen by using a
suitable sampling technique. In this chapter, we follow this finite population
concept, but, as opposed to the non-regression problem in Chapter 2, we now

deal with an inference problem in the regression setup.
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4.1 Weighted GQL (WGQL) PPS Design Based
Estimation

4.1.1 Estimation of 3

Note that at the finite population level, the responses under the clusters are
practically unknown. If, however, they were known, we could follow (3.6)

and use the estimating equation

,
DT (e ) =0, (4.1)

to estimate the regression parameter 3. We also note that in (4.1), N is the
number of clusters in the finite population, whereas in (3.1), K was a number
of clusters in a sample chosen from the infinite population.

Because of the unavailability of the responses under each of the IV clusters,
we now choose a sample of K clust ; based on a suitable sampling technique.
Here, it is reasonable to use a PPS sampling technique because of the fact
that the sizes for all N clusters are known and they may vary from cluster
to cluster. To be more specific, the probability of selection of a cluster
should depend on its size for tu.cient information. For the purpose, similar
to Chapter 2, we use z; = m;/m, as the probability of the selection of the

ith cluster in the sample of size K, and write the estimating equation as

1 1 0u’
— Sl yiod
K Z i 86 !

i€s}, ~

(i — ) =0, (4.2)

where s7 denotes the sample of size K chosen from the population of size
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N clusters. Note that an estimating equation similar to (4.2) was suggested
by Binder (1983) for the estimation of the regression effects in the finite
population setup for longitudinal clustered data, whereas (4.2) is written for
familial clustered data. For some discussion on the importance of using a
sampling scheme that incorporates sampling weights for non-clustered data,
see, for example, Pfeffermann (1993). Further note that we may also express

(4.2) as

-

Sy — ) = 0.

n 7z 0P

The function on the left hand side of (4.2) inay estimate tle finite popula-
tion function given in (4.1) unbiasedly, provided we use PPS sampling with
replacenient. This is because under the ”"with replacement” scheme, we may

express (4.2) as

1 Mot ouT
2 T — ) =0, (4.3)
Kz 0B
where t; = 0, ..., K and follows the joint multinomial distribution
I‘,! ty Lt tn
P(tl,tg,...,tN):mzllzfn-z,\, y (44)

and it follows that E'(t;) Kz;. Now, if we take the expectation of the left
hand side of (4.3) over ¢;, we arrive at the ion given on the left © nd

side of (4.1) as illustrated below
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N

1Oy - Z%‘gm ) (4.5)

o~

1 N
Blg 2

k3

t-)

1

It is, therefore, clear that to estimate (3 based on the PPS sampling
technique, we can use the estimating equation (4.2). In the simulation study
in section 4.3, we will examine the performance of the PPS sampling based

WGQL estimator for 4 to be obtained from (4.2).

4.1.2 Weighted MM (WMM) for o?

We can follow the same methodology as given previously in section 3.3 to find
the weighted moment estimate for o2, This estimate will be denoted as 02
We start with the equation given in (3.12), and modify it by accommodating

the samipling weights similar to that of the last subsection. So, we write

m,

Z wy Z Yij — ,U,u + Z Wy Z Yij — ;Uvzj yzu - Niu), (46)

169 163 J<u

where under PPS samnpling with replacement, we have w;,  1/z; with 2, =
m;/m, as given in Chapter 2. Following (3.3) and (3.4), we obtain the model-

based expectation as

my K m, ml
E w = ZNU - 1) Z ZMU + Z?UZ c Qu'ijll/riu- (47)
=1 J=1

Jsu

By solving S,, — E(S,) = 0 we obtain
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e 91,(8) = Su — g2.(B), (4.8)

where

K m, K m,
9. (B8) = Z wy Z #?j + Z w; Z HijHiu
=1 j=1 i=1  j<u

m,

K K m;
92 (B) = Dowid_ gy — Y wi Y (4.9)
i=1 =1 i=l =1

This will lead us to the weighted moment estimating formula for 6 analogous

to that of (3.16). To be specific, the weighted moment estimator is given by

~2 logSuv - _(]'2‘1,(:8)'

(8 (4.10)

Note that this weighted moment estimator in (4.1) is a consistent cstimator.
This is because it was obtained by solving the unbiased estimating equation
Sw — E(Sy) = 0. This estimator, unlike the WGQL estimator of 3, may
not, however, be highly efficient. By exploiting the WGQL approach for o?
estimation, we may obtain a highly efficient estimator which will be more
complicated and has been omitted from the present discussion. In Section
4.3, we will also examine the performance of the weighted method of moments

(WMM) estimator of o2 through a simulation study.
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4.2 SRS Design wased Estimation

Under a PPS sampling design, we selected a sample of K clusters from the
finite population with N clusters based on the probability for the selection
of the 7th cluster with z; = m;/m,. Now, to choose a simple random sample
of size K for the same finite population, we need to use m; = m, say, for all
i=1,...,N so that z; = mi/ZiN=1 m; = 1/N. Consequently, when the SRS
design is used to choose a  nple from an unbalanced clustered p-  ulation.
the weights do not contribute towards the estimation of the parameter. Thus,

we can simply use the GQL estimating equation

KOUT
=S (g — ) =0
L gy i

to solve for 3, which is the  ne equation as (3.6) in Chapter 3. Similarly,
by solving (3.16) we may obtain the SRS estimator for 2. Note, however,
that there is a big difference between the samples considered here and those
of Chapter 3. This is because in Chapter 3, the random sample was taken
from an infinite population consisting of clusters with equal size, whereas in
this section, we are dealing with SRS from the finite population of N clusters

with unequal sizes.

4.3 Relative Performance of the Approaches:
A Simulation Study

Our objective is to compare the estimation performance of the GQL es-
timate for 3 obtained by (4.2) usih  the PPS s © schen and its coun-

terpart obtained by using SRS. For the comparison of the estimates of o2, we
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use equation (4.10) under PPS sampling and its counterpart SRS sampling

as discussed in subsection 4.2.

We are using the same p=2-dimensional covariates as we did in section

3.4, which are given as

Tyj1 =

T =

for the first covariate.

the binary distribution

{O forj=1,i=1, .,%

1 forj=2,1=1,...,%

—1 forj=1,1 %ﬁ—l, ,%

-1 forj=2,1 F’+1, 37

1 forj= ,zzil—(+1, ,3—1"
L _ K 3K

1 forj=4,i=%3+1,...,5¢

The second covariate was randomly generated from

and is given as

Tize ~ b(0.3) for j 1,1':1,._,,%
T2 ~ b(0.5) for j = 2, i=1,..,5%

Tyje ~ b
Tij2 ~ b
Tijo ~ b

Tij2 ~ b

.’L'z‘jz ~ b
Tijp ~ b

l'ijg ~b

(O forj=1,i=%+1,... 3K
(0.3)for j=2,i=+1,...,%

o K 3K
(0.5) for j=3,1=7+1,...,5F

. . K 3K
(0.7) for]:4,z:f+1,...,JT‘
(02 forj=1i=2K+1.. K

(05) for j=2,i=3%+1,... K
(0.8) for j 3,i=3f+1,...,K




We arc also considering the same cluster sizes as given in (3.17). For
cach simulation, we generate these clusters with size m,, wherei =1,... N,
drawn from a finite population of N = 200 and 300 under either the SRS or
PPS sampling scheme. For the SRS case, the clusters are selected at random,
with replacement, irrespective of their sizes. The estiination of 3 is done by
using the GQL estimation equation (3.6). and ¢? is estimated by the method
of moments using (3.16). Under the SRS scheme, the results for the GQL
estimation of the 3 parameter and the MM estimation of the ¢? parameter
are displayed in Tables 4.1 and 4.2 for N = 200 and 300, respectively.

For PPS, we consider two scenarios. Under the first scenario, K clusters
are chosen from N clusters based on the PPS sampling scheme but we use
equal weights, z; = 1/N in (4.2) in estimating /3, and in (4.10) in estimating
o%. Under the second scenario, we use weights, w; = 1/z;, in the estimating
equations proportional to the size of the cluster, where z;, = m,;/m, and
M, = Z,{il m; as described in section 4.1.1 for the estimation of 3 and
section 4.1.2 for the estimation of ¢2. The results for the GQL estimation for
3 and the MM estimation of o2 under equally weighted PPS schieme (first
scenario) are shown in Tables 4.3 and 4.4 for N = 200 and 300, respectively.
Similarly, for the des” -based we” ™ :ed PPS (WPPS) case (second scenario),
the results are shown in Tables 4.5 and 4.6, respectively. These results are
given for sample clusters K = 40, 60,80, 100 uuder population N = 200 and
K = 60,80, 100, 140 for N' = 300.

Note that for sonie selected values of the parameters, the iterative teeh-
nique did not converge. Hence, no estimate was obtained. These are denoted

by "= in Tables 4.1 throt "1 4.6.
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Table 4.1: GQL Estimates and associated standard errors for 8 = (3, 5,)7
and the moment estimate of o2 and its standard error, using a Simple Ran-
dom Sample of size K clusters from a finite population containing N = 200

clusters of unequal sizes based on 1000 simulations.

Estimate
K True o2 R ASSEN A(SSE) o2( QSN
40 0.01 0.99190.100y)  v.4v24(0.13v0;  0.05401u.v01u)
0.09  0.9889(0.1198) 0.4859(0.1572) 0.1179(0.1411)
0.25  0.9930(0.1242) 0.4720(0.1788) 0.2500(0.2205)
0.5625 0.9865(0.1369) 0. 4530(0 2142) 0.5042(0.3801)
0.81
60 0.01 0.9955(0.0962) 0.4883(0.1178) 0.0486(0.0784)
0.09  0.9886(0.1058) 0.4895(0.1376) 0.1092(0.1246)
0.25  0.9866(0.1105) 0.4764(0.1563) 0.2561(0.2109)
0.5625 0.9891(0 1210) 0. 4489(0 1837) 0.50"° (() 330
0.81
80 0.01 0. 9910(0 0892) 0.4970(0.1122) 0.0435(0.0675)
0.09  0.9940(0.0910) 0.4855(0.1200) 0.1043(0.1143)
0.25  0.9951(0.0983) 0.4768(0.1379) 0.2502(0.1854)
0.5625 0. 9845(0 1114) 0. 4778(0 1653) 0. 5067(0 3241)
0.81
100  0.01 0.9933(0.0827) 0.4963(0.1079) 0.0408(0.0598)
0.09  0.9974(0.0901) 0.4880(0.1211) 0.1093(0.1069)
0.25  0.9939(0.0897) 0.4750(0.1313) 0.2419(0.1668)
0.5625 0.9893(0.1065) 0.4732(0.1471) 0.5187(0.3238)
0.81 N ARANIN TNIRY N ARGRIN TRREY N 74730 ARAN
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Table 4.2: GQL Estimates and associated standard errors for 8 = (3, 32)7
and the moment estimate of o2 and its standard error, using a Simple Ran-
dom Sample of size K clusters from a finite population containing N = 300

clusters of unequal sizes based on 1000 simulations.

Estimate

K Treo?  (,(SSE) B2(SSE) 0%(SSE)

60  0.01  0.9900(0.1084) 0.4947(0.1338) 0.0442(0.0703)
0.09  0.9900(0.1127) 0.4912(0.1475) 0.1079(0.1261)
025  0.9842(0.1283) 0.4800(0.1748) 0.2529(0.2079)
0.5625 0.9887(0.1360) 0.4521(0.1893) 0.5007(0.3258)
0.81 — — —

80  0.01  0.9978(0.1027) 0.4944(0.1203) 0.0424(0.0661)
0.09  0.9940(0.1028) 0.4832(0.1385) 0.1097(0.1254)
0.25  0.9875(0.1165) 0.4831(0.1514) 0.2510(0.1896)
0.5625 0.9845(0.1228) 0.4689(0.1843) 0.5084(0.3397)
0.81 — — —

100 0.01  0.9913(0.0927) 0.5002(0.11v4) 0.0396(0.0580)
0.09  0.9960(0.0995) 0.4912(0.1289) 0.1038(0.1071)
0.25  0.9905(0.1091) 0.4818(0.1500) 0.2497(0.1797)
0.5625 0.9894(0.1088) 0.4721(0.1665) 0.5249(0.3289)
0.81  0.9819(0.1318) 0.4702(0.1852) 0.7176(0.4504)

140 0.0  0.9500J.0896) 0.4973(0.1037) 0.u-+:9({0.0609)
0.09  0.9938(0.0918) 0.4912(0.1209) 0.1018(0.0968)
0.25  0.9922(0.0989) 0.4875(0.1347) 0.2486(0.1617)
0.5625 0.9958(0.1080) 0.4711(0.1514) 0.5347(0.2950)
0.81  NORE8(0.1111) 0.4614(0.1742) 0.7394(0.4109)
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Table 4.3: Equal Weights based GQL estimates and associated standard
errors for 8 = (61,5:)7 and the moment estimate of ¢? and its standard
error, using a sample of size K clusters chosen based on the Probability
Proportional to Size sampling scheme from a finite population containing

N = 200 clusters of unequal sizes based on 1000 simulations.

Estimate

K Trueo?  Ai(SSE) A (SSE) 02(SSE)

40 0.01  0.9872(0.1039) v.4v59(0.1211) 0.0550(0.0917)
0.09  0.9908(0.1062) 0.4845(0.1374) 0.1141(0.1264)
0.25  0.9900(0.1090) 0.4779(0.1511) 0.2463(0.1971)
0.5625 09847(0 1221) 0.4639(0.2133) 0.5075(0.3640)
0.81 — —

60  0.01  1.0002(0.0874) 0.4891(0.1035) 0.0436(0.0631)
0.09 0.9954(0.0822) 0.4912(0.1118) 0.1022(0.1076)
0.25  0.9915(0.0958) 0.4832(0.1286) 0.2533(0.1854)
0.5625 0.9889(0.0974) 0.4655(0.1439) 0.5182(0.3266)
0.81  1.0083(0.5774) 0.4598(N 1559) 0.7106(0.4574)

80  0.01  0.9946(0.0794) 0.4959(u.u393) 0.0392(0.0565)
0.09  0.9978(0.0796) 0.4873(0.1064) 0.1084(0.1017)
0.25  0.9932(0.0854) 0.4876(0.1180) 0.2526(0.1703)
0.5625  0.9905(0.0909) 0.4747(0.1310) 0.5128(0.2994)
0.81 0.9925(0.0941) 0.4626(0.1563) 0.7438(04420\

100 0.0  0.99...0.0711) 0.4945(0.0847) 0.0357(.
0.09  0.9995(0.0780) 0.40...0.0994) 0.1013(0.0870)
0.25  0.9965(0.0803) 0.4855(0.1108) 0.2505(0.1583)
0.5625 0.9990(0.0834) 0.4780(0.1177) 0.5177(0.2927)
0.81  0.9957/0.0830) 0.4777(0.1264) 0.7389 .3942)
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Table 4.4: Equal Weights based GQL estimates and associated standard
errors for 8 = (31,0;)7 and the moment estimate of 0% and its standard
error, using a sample of size A clusters chosen based on the Probability
Proportional to Size sampling scheme from a finite population containing

N = 300 clusters of unequal sizes based on 1000 simulations.

Estimate
K Trueo?  5(SSE) B (SSE) o2(SSE)
60 0.0  0.9959(0.0853) 0.4977(0.0978) 0.0371(0.0535)
0.09  0.9955(0.0857) 0.4891(0.1083) 0.1026(0.1020)
0.25  0.9946(0.0935) 0.4811(0.1272) 0.2556(0.1701)
0.5625  0.9923(0.0964) 0.4759(0.1433) 0.5419(0.3381)
0.81 0_99451{(\ NA2RY N A7NR(NO 1590Q) ().7")‘)’{((\ ARARY
80 0.01 1.00lv\v.uiiv)  vaovsivuoru) J.004s1u.u400)
0.09  0.9933(0.0762) 0.4922(0.0951) 0.0972(0.0865)
0.25  0.9980(0.0821) 0.4786(0.1109) 0.2561(0.1564)
0.5625  0.9909(0.0830) 0.4780(0.1216) 0.5434(0.3009)
0.81 N.GRGRIN NRIAY (). 4714(() 1321%  N7AARMND AN
100 001  uv.998uv.uuey 0.4928(0.07v1) u.Gorou.uaia)
0.09  0.9990(0.0696) 0.4892(0.0832) 0.0994(0.0824)
0.25  0.9931(0.0762) 0.4889(0.0971) 0.2501(0.1452)
0.5625 0.9936(0.0749) 0.4815(0.1085) 0.5351(0.2630)
0.81  0.9979(0. 0727) 0.4777(0.1168)  0,7352(N RAR)
140 0.01  1.0002(0. 10) 0.4953(0.070%, v.0331 v.uzu;
0.09  1.0003(0.0619) 0.4897(0. 0805) 0.0959(0.0725)
0.25  0.9973(0.0662) 0.4889(0.0832) 0.2560(0.1326)
0.5625 0.9978(0.0702) 0.4786(0.1049) 0.5385(0.2483)
0.81  0.9937(0.0701) 0.4845(0.1133) 0.7527(0.3643)
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Table 4.5: Design Weights based GQL estimates and associated standard
errors for 3 = (3;,08;)7 and the moment estimate of 6% and its standard
error, using a sample of size K clusters chosen based on the Probability
Proportional to Size sampling scheme from a finite population containing
N = 200 proportionally weighted clusters of unequal sizes based on 1000
simulations.

Estiinate

K Trueo?  Bi(SSE) B:(SSE) 02(SSE)

10 0.0  0.9862(0.1073) 0.4958(0.1232) 0.0530(0.0881)
0.09  0.9910(0.1095) 0.4850(0.1401) 0.1103(0.1184)
0.25  0.9902(0.1122) 0.4800(0.1554) 0.2453(0.1897)
0.5625 0.9872(0.1227) 0.4592(0.1889) 0.5084(0.3493)
0.81 — —

60  0.01  0.9998(0.0880) 0.4907(0.1037) 0.0427(0.0604)
0.09  0.9953(0.0902) 0.4929(0.1130) 0.0998(0.1016)
0.25  0.9927(0.0994) 0.4833(0.1325) 0.2528(0.1793)
0.5625  0.9889(0.0986) 0. 4666(0 1444) 0. 5202(0 3172)
0.81

80  0.01  0.9941(0.0799) 0.4975(0.0998) 0.0374(0.0525)
0.09  0.9973(0.0805) 0.4882(0.1017) 0.1065(0.0975)
0.25  0.9946(0.0868) 0.4874(0.1203) 0.2527(0.1625)
0.5625 0.9904(0.0936) 0.4755(0.1327) 0.5125(0.2910)
0.81  0.9902(0.0982) 0.4667(0.151R) N.7471(0.4337)

100 0.0  0.0998(0.L._9) 0.4937(0.0865, u-.0348(0.040.,
0.09  0.9993(0.0786) 0.4878(0.0999) 0.0994(0.0826)
0.25  0.9975(0.0818) 0.4846(0.1118) 0.2498(0.1520)
0.5625  0.9898(0.0850) 0.4811(0.1183) 0.5202(0.2813)
0.81  0.9956(0.0848) 0.4786(0.1265) 0.7420(0.3855)
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Table 4.6: Design Weights based GQL estimates and associated standard
errors for 8 = (f3;,5;)7 and the moment cstimate of ¢? and its standard
error, using a sample of size K clusters chosen based on the Probability
Proportional to Size sampling s 2me from a finite population containing
N = 300 proportionally weighted clusters of unequal sizes based on 1000

simulations.

Estimate

K True o2 B,(SSE) G2(SSE) 0%(SSE)
60 0.0  0.9955(0.0872) 0.4991(0.0990) 0.0363(0.0516)
0.09  0.9962(0.0878) 0.4894(0.1112) 0.1016(0.0980)
0.25  0.9955(0.0947) 0.4822(0.1291) 0.2533(0.1630)
0.5625 0.9930(0.0981) 0.4766(0.1457) 0.5416(0.3251)
0.81  0.9952(0.0947) 0.4733(0.1975) 0.7210(0.4079)
80  0.01  1.0011(0.0769) 0.4896(0.0872) 0.0340(0.0472)
0.09  0.9938(0.0785) 0.4922(0.0976) 0.0963(0.0836)
0.25  0.9978(0.0831) 0.4811(0.1120) 0.2547(0.1519)
0.5625 0.9908(0.0840) 0.4782(0.1237) 0.5442(0.2936)
0.81  0.9898(0.0855) 0.4712(0.1344) 0.7328(0.3888)
100 0.01  0.9972(0.0674) 0.4955(0.0780) 0.0311(0.0391)
0.09  0.9985(0.0707) 0.4906(0.0856) 0.0984(0.0797)
0.25  0.9930(0....4) 0.4906(0.0994) 0.2500(0.1391)
0.5625 0.9940(0.0769) 0.4829(0.1100) 0.5383(0.2542)
0.81  0.9976(0.0733) 0.4794(0.1179) 0.7372(0.3582)
140 0.01  1.0003(0.0608) 0.4958(0.0718) 0.0325(0.0406)
0.09 0.9999(0.0630) 0.4910(0.0815)  0.0942(0.0688)
0.25  0.9979(0.0681) 0.4886(0.0854) 0.2556(0.1271)
0.5625 0.9983(0.0715) 0.4793(0.1054) 0.5419(0.2418)
0.81  0.9935(0.0757) 0.4857(0.1102) 0.7604(0.3569)
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4.3.1 Comparison of SRS and Equal Weights based
PPS Sampling

The results given in Tables 4.1 an 4.2 for the SRS case and in Tables 4.3
and 4.4 for the equally weighted I S case show that the later scheme pro-
duces much better estimates for the 8 and o? parameters. For example,
when a sample of size K = 60 or &' = 100 is chosen from the finite pop-
ulation with size N = 200, the estimates for 8; = 1.0 and 5, = 0.5 for,
say, 02 = 0.25, and the associated standard errors in parentheses, were
found as follows. Under SRS when K = 60, we have 3, = 0.9866(0.1105),
B, = 0.4764(0.1563) and 6% = 0.2561(0.2109). Similarly, for & = 100, we
have 3, = 0.9939(0.0897), B, = 0.4750(0.1313) and 42 = 0.2419(0.1668). For
the analogous equally weighted PPS cases we have estimates using ' = 60 as
follows: 8, = 0.9915(0.0958), By = 0.4832(0.1286) and 62 = 0.2533(0.1854).
Similarly, for K = 100, we have B, = 0.9965(0.0803), By = 0.4855(0.1108)
and 62 = 0.2505(0.1583). We can e that within either of the techniques,
the estimates as well as their standard errors improve (estimates approach
true values and standard errors decrease) as sample size increases from 60
to 100. We also notice that those estimates under equally weighted PPS are
better than ™ e ler the SRS scheme. As an illustration, for K = 60,
the 8, value under SRS is 0.9866(0.1105), while it is 0.9915(0.0958) under
cqually weighted PPS, a much closer estimate with a sinaller standard er-
ror. This comparative performace is not surprising. This is because the PPS
scheme allows larger sized clusters to be included in the sample with more
probability, and hence more information was included in the sample. These
estimates also improve with increased population size.

For population N = 300, we see similar results as with the N = 0 case.
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Suppose we compare the results for K = 80 and K = 140 for ¢? = 0.09 from
Tables 4.2 and 4.4. For SRS, we report the estimates and their standard
errors as follows. For K = 80, 8, = 0.9940(0.1028), 3, = 0.4832(0.1385) and
62 = 0.1097(0.1254). For K’ = 140, 3, = 0.9938(0.0918), 3, = 0.4912(0.1209)
and % = 0.1018(0.0968). We again see that with increased sample size,
we get improved estimates with smaller errors. For tle equally weighted
PPS case, for K = 80 we have 8; = 0.9933(0.0762), 3, = 0.4922(0.0951)
and 62 = 0.0972(0.0865), and for K = 140, By = 1.0003(0.0619), 3y =
0.4897(0.0805) and 62 = 0.0959(0.0725). It is evident that equally weighted

PPS outperforms SRS in all cases.

4.3.2 Comparison of SRS and WPPS Sampling

In a similar comparison as given in the previous subsection, we can see that
Design-Based Weighted PPS (WPPS) also performs better than SRS. We
compare the results for SRS given in the previous subsection to those of
WPPS. Specifically, we compare the results for ' = 60 and K = 100 v
N = 200 from Tables 4.1 and 4.5. For SRS with K = 60, we have [31 =
0.9866(0.1105), B> = 0.4764(0.1563) and ° = 0.2561(0.2109). Similarly,
for K 100, we have B, = 0.99: 0.0897), /}2 = 0.4750(0.1313) and 62 =
0.2419(0.1668), as recorded in the previous subsection. For WPPS K =
60, we have ﬁl = 0.9927(0.0994), ﬁAz = 0.4833(0.1325) using the WGQL
estimating technique, and 6% = 0.2528(0.1793) using WMM. For K = 100,
we have 3, = 0.9975(0.0818). 3, = 0.4846(0.1118) and 62 = 0.2498(0.1520).
In both cases, WPPS gives estimates with smaller biases and standard errors.

Using the same SRS cases where N = 300, K = 80 and 140, and

0% = 0.09, we can compare with WPPS for the same cases from Table 4.6.
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These results for SRS were given in the previous section, and are not re-
peated here. Under WPPS for K = 80, we found [31 = 0.9938(0.0785),
By = 0.4922(0.0976) and 42 = 0.0963(0.0836). Likewisc, for K = 140, we
have 3 = 0.9999(0.0630), £, = 0.4910(0.0815) and 62 = 0.0942(0.0688).
Though the 3 estimates do not change much, their standard errors are smaller

and the estimate of ¢? improves, giving more accurate results.

4.3.3 Comparison of Equally Weighted PPS and WPPS

Using the same examples as given in the previous two subsections from Ta-
bles 4.3 and 4.4, for N = 200 and K = 60 under equally weighted PPS we
found f; = 0.9915(0.0958), s = 0.4832(0.1286) and 62 = 0.2533(0.1854).
Similarly, for K = 100, we have B, = 0.9965(0.0803), By = 0.4855(0.1108)
and 62 = 0.2505(0.1583). For the design based weighted case, WPPS, Ta-
ble 4.5 reports for K = 60, 4, = 0.9927(0.0994), f, = 0.4833(0.1325)
and 62 = 0.2528(0.1793). For K 100, we have Bl 0.9975(0.0818),
By = 0.4846(0.1118) and 62 = 0.2498(0.1520). In each case, WPPS produces
slightly better estiinates than the equally weighted PPS scheme.

Under the equally weighted PPS scheme for N = 300 for K = 80, we get
81 = 0.9933(0.0762), B, = 0.4922(0.0951) and 6%  0.0972(0.0865), and for
K = 140, B, = 1.0003(0.0619), 3, = 0.4897(0.0805) and 62 = 0.0959(0.0725)
from Table 4.4. Under WPPS, we acquire the estimates for K = 80 as [31 =
0.9938(0.0785), B, = 0.49: "0.0976) and &2 = 0.0963(0.0836). For K = 140,
we have 8, = 0.9999(0.0630), A, = 0.4910(0.0815) and 6% = 0.0942(0.0688)
from Table 4.6.

We find that under both scenarios, PPS performs much better than that

of SRS. WPPS scems to give very similar results to that of equally weighted
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PPS. Most notably, we can see that the estimate of o2 improves slightly with
the addition of weights to the estimating equations.

Overall, we can see that the estimates tend to be more precise with a
larger sample relative to the population size, and they exhibit smaller values
of the variance parameter. The estiinates become even more precise using
a sampling scheme that takes the sizes of the clusters into account, such as

WPPS.
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Chapter 5

Concludine Remarks

There does not appear to be adequate discussion on the estimation of the
parameters of the clustered regression models for the count data under the
finite population setup. For a d ussion on the estimation of regression
parameters in such a finite population setup, one may refer to Thompson
(1997, Chapter 6).

The main contribution of the practicum is to develop an estimation
methodology for consistent estimation of both the regression effects and the
variance paramenter of the random effects for a clustered regression model
under the finite population setup. It was found that when cluster/family sizes
were different, the use of the PPS sampling scheme provided better cstimates
of the parameters, as opposed to the use of the SRS scheme. These results
are, in general, in agreement with those discussed by Binder (1983) and Pf-
effermann (1993). Note, however, that Binder (1983) discussed longitudinal
cluster data analysis under the finite population, whereas we have discussed a
Poisson mixed model, that is. a familial clustered regression model for count

data, under the finite population. The noun-regression cases were also studied
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in the beginning of the practicum. This study showed the usefulness of the

application of the PPS scheme for the purpose of estimation of the finite
population total.

We remark that in the practicum, we have used the GQL approach for
regression estimation and the moment approach for the variance parameter
estimation under the finite population setup. One may also attempt to use
the GQL approach, instead of the method of moments approach to increase
the efficiency of the variance estimate, which can be a future project. We
also remark that the estimating equations based results of this practicum
should be highly useful to statistical agencies such as Statistics Canada for

the inferences on familial count data.
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Appendix

Fortran Program to Generate a Simple Random Sample
integer i,j,k,N,it :d,nl,n2,n3,n
integer m(N),y1(N/4,n1),y2(N/2,n2)
integer y3(N/4,n3)
integer y(N),ir1(nl1),ir2(n2),ir3(n3)
parameter (N=100,n :,n. ,n3=5,1 20)

real mul,mu2,mu3,y(n)
real r(n),z(n)

[comment: N is the population cluster number and n is the samr e clust
external rnpoi,rnset,rnun
open(10,file=’srs.out’,statu new’)

isee 345678

call set (
mul=2
mu2=4
mu3=3
do i=1,N/4
call rnpoi(ni,mul,iri)
do j=1,n1
y1(i,j)=ir1(j)
end do
id do
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do i=1,N/2

call rnpoi(n2,mu2,ir2)
do j=1,n2
y2(1i,j)=1r2(j)

end do

end do

do i=1,N/4

call rnpoi(n3,mu3,ir3)
do j=1,n3
y3(i,j)=ir3(j)

end do

end do

do i=1,N/4
y(1)=0

do j=1,nl
y(1)=y(i)+y1(i,j)
end do

end do

do i=N/4+1,N/4%3

y(i )

do j=1,n2

y  T=y(i)+y2(i-N/4,3)
end do

end do

do i=N/4x%3+1,N
y(1)=0

do j=1,n3
y(1)=y(i)+y3(i-N/4%3,3)
end do

end do

do i=1,N/4
m(i)=ni

end do

do = 1/4+1,N/4%3
m(i 12

end do

do i=N/4*3+1,N
m(i 3

end do
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end

call rnun(n,r)

do j=1,n
z(j)=y(int(r(j)*100))
end do

close(10)
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Fortran Program to Generate a Sample using Probability Proportional to
Size

integer i,j,k,N,iseed,nl,n2,n3,n
parameter (N=100,n :,n2=6,n3=5,n=20)

integer m(N),y1(N/4,n1),y2(N/2,n2)
integer y3(N/4,n3)

integer y(N),ir1(n1),ir2(n2),ir3(n3)
integer T,c(N),nr(n)

integer yf(n),mf(n)

r¢ . mul,mu2,mu3

real d(N),r1(N),dd(N),rT,r(n)
real yn(n),absdf(N),z(n),rn
real q(n),df(N),sal ‘N)

external rnpoi,rnset,rnun
open(10,file=’p] out’,status=’new’)

iseed=2345678
call rnset(iseed)

mul=2
mu2=4
mu3=3

rn=n

do i=1,N/4

call rnpoi(nl,mul,iril)
do j=1,nl
y1(i,j)=1ir1(j)

end do

end do

do i=1,N/2

call rnpoi(n2,mu2,ir2)
do j=1,n2

y2(i,j r2(3)
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end do
end do

do i=1,N/4

call rnpoi(n3,mu3,ir3)
do j=1,n3
y3(i,j)=1r3(j)

end do

end do

do i=1,N/4
y(1)=0

do j=1,ni
y(i)=y(1)+y1(i,])
end do

end do

do i=N/4+1,N/4x3
y(1)=0

do j=1,n2
y(1)=y(i)+y2(i-N/4,j)
end do

end do

do i=N/4x*3+1,N

y(i,

do . ,n3
y(i)=y(i)+y3(i-N, ¢3,j)
end do

end do

do i=1,N/4

m(i

end do

do i=N/4+1,N/4x%3
m(i 12

end do

do i=N/4*3+1,N
m(i)=n3

end do

T=N/4*n1+N/2*n2+N/4*n3
rT=T
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c(1)=m(1)
d(1)=c(1)/rT

do i=2,N
c(i)=c(i-1)+m(i)
end do

do i=2,N
d(i)=c(i)/rT
end do

call rnun(n,q)

do j=1,n

do i=1,N

df (i)=q(j)-d(i)

absdf (i)=abs(df (i))

end do

call svrgn(N,absdf,sabsdf)
do i=1,N

if (sabsdf (1) .eq. (1*df (1)) .or.sabsdf (1) .eq. (-1*df (i)))then
nr(j)=i

end if

end do

end do

do j=1,n
yf(j)=y(nr(3))
nf(j.  (nr(j))
end do

clo: [10)

end
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