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Abstract 

The objective was to improve carrying capacity models by providing standardized values 

for clearance, ingestion, filtration and oxygen uptake for cultured and wild, Myti/us edulis 

and M trossulus from Newfoundland. Clearance and ingestion rates of small and large 

M edulis and M trossulus were also compared. 

Measured physiological rates were not significantly different between cultured and wild 

mussels. Myti/us trossu/us demonstrated significantly higher rates of clearance and 

ingestion compared with M edulis. Rates of clearance and ingestion generally increased 

with an increase in food supply. Seasonal patterns were observed for all variables. 

Larger mussels had higher rates of clearance and ingestion than smaller mussels and 

should be socked at lower densities. Smaller mussels should be socked at a lower 

biomass per sock as they have higher clearance per unit biomass. 

Stock size and species proportions, in addition to temperature variability and food 

availability, contribute to the overall stock food demand. Socking and stocking biomass 

and site layouts should be adjusted to minimize the risk of exceeding site carrying 

capacity. 
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Section 1 Introduction 

1.1 A Brief History of the Blue Mussel Industry 

Based upon the discovery of blue mussel shells near primitive dwelling grounds, it is 

believed that blue mussels have been a part of the diets of coastal people since before 

recorded time (Scarratt 1993). The origin of the blue mussel industry in North America 

can been traced to the pickling and canning of wild mussels during the two world wars 

(Lutz 1980). During this time, Newfoundland was the most actively involved region in 

North America, with three commercial canneries in operation and annual landings of 

approximately 1,000 tonnes (Sutterlin eta/. 1981 ). The Canadian blue mussel industry 

eventually crashed due to a variable supply of wild blue mussels and competition from 

other industries offering alternative sources of protein. 

In Canad~ the blue mussel aquaculture industry has shown a steady increase in 

production from only 2,062 tonnes in 1986 to 14,920 tonnes in 1998 (DFO 1999). The 

success of Canadian blue mussel aquaculture can be attributed to an abundant natural 

seed supply, exercising the longline culture method for commercial growout, developing 

markets and dedicated efforts by private owners and operators and various governmental 

support mechanisms (Mallet and Myrand 1995). Collaborative efforts of academi~ 

industry and government have resulted in increased production, and a progressive blue 
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mussel industry. As a result, blue mussel aquaculture continues to be a profitable and 

expanding business venture in Canada. 

1.2 The Economics of Aquaculture 

1.2.1 Trends in Global Aquaculture Production 

The global annual yield of the traditional capture fisheries is estimated to be 

approximately 135 thousand metric tonnes, live weight (DFO 1999). Canadian catch has 

decreased since 1990, and will conceivably continue to decline. Production capacity has 

peaked and many species are at risk. Whether or not the wild fishery can remain 

competitive in the face of advancing technology and increasing demand is questionable, 

but it is clear that the demand for fisheries-related products will continue to increase 

(Heggberget 1997). In 1986, it was estimated that fish contributed about 17 % of animal 

protein supplies, but in many countries, people may have derived as much as 50 % of 

their daily animal protein requirement from fish (e.g., Bangladesh, Indonesia, Japan, 

Philippines, Thailand) (Shang 1986). In 1997, food production experts from around the 

world gathered at the Food and Agricultural Organization of the United Nations (FAO) 

World Food Summit in Rome. A key conclusion of the Summit was that, given declines 

in wild fishery production and the production increases that can reasonably be expected 

from land-based agriculture, world food production will not keep pace with demand 

unless aquaculture production continues its rapid expansion (F AO 2000). 
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The aquaculture industry has become a profit and employment generating industry in a 

number of countries worldwide. In Canada, aquaculture production facilities now operate 

across the country, with activities in all provinces and territories. For instance, the rural

based aquaculture industry of Newfoundland. based primarily on steelhead trout, Atlantic 

salmon and blue mussels, demonstrated further growth in 1998 compared with the 

preceding year and attained an export value of $12.9 million, employing 461 people at 

peak employment (DF A 1999). In Newfoundland, total blue mussel production in 1999 

was estimated to be 1,699 tonnes with a value of$3.7 million. Total blue mussel 

production in 1998 was estimated to be 946 tonnes with a value of$815,000. This 

represents almost a 56 percent increase in production with a 22 percent increase in value 

over one year (DFO 1999). 

1.2.2 Present Status of Blue Mussellndustry 

Today, commercial operations exist throughout the world and aquaculture has become 

one of the fastest growing food production systems on the planet. Between 1984 and 

1996, total world aquaculture production more than tripled in weight, from 10.4 to 34.1 

million metric tonnes (rnmt), and in value, from US$13.1 billion to US$46.5 billion (FAO 

2000). Since 1984, fanned fish and shellfish production has increased at an average 

annual rate of 10.4 percent, compared with only 2.8 percent per year for conventional 

livestock production. Moreover, the F AO has calculated that to maintain current global 

per capita consumption levels, world aquaculture production will need to increase to 62 

mmt by 2035 (F AO 2000). 
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Canadian aquaculture is a growing industry. In 1998, total aquaculture fann-gate 

production from over 600 fanns was worth C$443 million, representing close to 27 

percent of the total landed value of Canadian fish and seafood. In the last decade, the 

growth rate has averaged 14 percent per year in value and 15 percent per year in volume. 

This rate exceeds the annual global rate by more than 40 percent but considerably lags the 

growth of leading countries. 

Myti/us edulis is one of the major species of mussels cultivated worldwide. Currently, 

over twenty countries report regular harvests of fanned mussels. The majority of the 

farmed crop is composed of the various Myti/us species which occur in Europe, Asia and 

North and South America (Gosling 1992). M edulis is the major molluscan species 

cultivated in Canada, and the most rapidly expanding shellfish sector in Canadian 

aquaculture. 

Seafood consumers have a diverse range of products from which to choose, comprised of 

wild and cultured species, supplied by domestic production as well as imports (Wessells 

et a/. 1995). Acceptance and selection are affected by economic factors such as price and 

income, socio-demographic factors such as nationality, household composition and 

location as well as preferences and opinions regarding seafood products and the quality of 

seafood products (Wessells eta/. 1995). Therefore it is imperative that the aquaculture 

industry continue to provide premium seafood products. In order to provide premium 
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products at competitive rates, the industry must also learn to optimize production without 

compromising product quality or growth rates. 

The mussel cultivation industry is currently undergoing a rapid expansion and faces a 

number of constraints ranging from planning and financing to a need for improved 

knowledge of species biology (Heggberget 1997). Rapid expansion has stimulated 

interest in estimating the carrying capacity of a specific culture area (Frechette and 

Bacher 1998; Scholten and Smaal 1998; Newell et al. 1998; Carver and Mallet 1990). 

Carrying capacity is the highest stocking density at which production levels are 

maximized without inhibiting growth (Carver and Mallet 1990). There is concern that 

uncontrolled increases in stock density will eventually result in reduced growth rates and 

environmental disturbance. Continued research is needed in order to determine the most 

cost-effective and time-efficient method of achieving shorter production cycles while 

maintaining high quality meat yields. This is the key to becoming and remaining a 

competitive force in the world blue mussel aquaculture industry. 

1.3 Eeologieal Role of Bivalves 

Ecology may be defined as the scientific study of the interactions that determine the 

distribution and abundance of organisms (Krebs 1994). The adaptability of the organism 

may be defined by its capacity to optimize its physiological processes in a variable 

environment (Bayne eta/. 1985). It is important to undertake ecological research to 

identify the significance of relative distribution patterns and abundance of organisms and 
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to quantify the effects of environmental variability on organisms. This knowledge will 

facilitate the application of ecological research. 

1.3 .I Ecological Applications 

Research directed towards elucidating physiological responses from animals offers a 

range of applications. For instance, bivalves are sedentary filter feeders and have the 

ability to concentrate a broad range of bacteriological pollutants, chemicals and naturally 

occurring toxins from the water column or sediment in which they live (Gosling 1992). 

These suspension feeding bivalves comprise a significant component of the inshore 

marine benthic ecosystems of the world. As a result, blue mussels have become 

important biological indicators. Programs such as the "Mussel Watch' monitoring 

program have been developed to assess the spatial and temporal trends in chemical 

contamination of the environment (Gosling 1992). Many regions and countries ofthe 

world, including the United Kingdom, France, Canada, Australia, Japan, Taiwan, India, 

Mediterranean, South Africa and the fonner USSR have established similar monitoring 

programs (Gosling 1992). 

An experimental approach to measuring the effects of changing environmental factors on 

organisms will not only provide insight on distribution and abundance but will also assist 

in the management of stocks in aquaculture. Bivalves are ideal candidates for ecological 

and physiological studies because there are many documented techniques that can be 

utilized to quantify food supply, food uptake and metaboli~ loss for these animals 
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(MacDonald and Thompson 1985). This, compounded with the wide range of 

applications for blue mussels, has resulted in a large body of literature investigating their 

biology. 

1.3.2 Factors Affecting Production 

Considerable research has been directed towards examining growth profiles of bivalves 

and the factors affecting their growth. Not only does growth vary according to size, age 

and genotype (Dolmer 1998), but environmental factors including temperature. salinity, 

water movement and seston quality and quantity also impact upon growth (Seed and 

Suchanek 1992). Despite the extraordinary volume of literature on bivalve biology, there 

are still many areas of bivalve physiology which are not completely understood. Further. 

bivalve physiology is strongly affected by season and locale, making it very difficult to 

identify consistent spatial/geographic trends in physiological behavior. For instance, 

Thompson (1984) found no clear relationship between oxygen consumption and the 

gametogenic cycle for Mytilus edu/is in Newfoundland, whereas Widdows and Bayne 

(1971) observed high rates of oxygen consumption in M edulis during the winter, and 

attributed the increased rate to gametogenesis. Smaal et a/. ( 1997) suggested no relation 

between clearance rate and reproductive condition throughout the year. In gaining a 

better understanding of physiological processes, for instance, how oxygen consumption 

and feeding patterns relate to the gametogenic cycle, improved estimates of production 

will be attainable. 
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1.3 .2.1 Mussel Origin 

For the purpose of this work and throughout this thesis9 mussel origin is defined as 

whether a mussel came from a wild or cultured population. There are a number of 

differences between wild and cultured mussels, e.g.9 the latter have a rapid growth and 

high meat yield, characteristics that significantly contribute to their quality (Gosling 

1992). The fast growth of blue mussels held in suspension translates into a lighter, 

cleaner shell, and hence a greater number of mussels per unit weight (Lutz 1980). These 

features not only affect the site productivity and yield, but they also affect the 

acceptability of mussel products to buyers. In addition9 cultivated blue mussels allocate 

less than half of their energy budget to reproduction than wild blue mussels in order to 

achieve their rapid growth (Rodhouse eta/. 1984). Mallet and Carver ( 1993) found a 

positive correlation between shell growth and survival for a range of size classes. Fast 

growing blue mussels were found to have a lower risk of mortality compared with slow 

growing blue mussels. Camacho et a/. (1995) observed that seed originating from 

collector ropes had higher growth rates than seed collected from intertidal areas, and 

suggest that this is due to a higher condition index and previous adaptation to rope culture 

conditions. 

Mussels from collector ropes and the rocky shores experience very different feeding 

conditions. Food availability is often higher for mussels from collector ropes, and as a 

consequence they show higher condition indices (Camacho et aJ. 1995 ). Lower tbod 
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levels at the bottom compared to food levels in the water column (MacDonald 1986), 

differential food quality (Rodhouse eta/. 1984), increased suspended sediment levels 

(MacDonald 1986) and increased vulnerability to predation pressures all contribute to the 

slower growth, lower meat yields and thicker shells of wild bivalves grown on the sea 

bottom compared to cultured bivalves grown in suspension. 

1.3 .2.2 Density 

In Newfoundland, cultured mussels are grown out at densities that are often much higher 

than the densities of natural assemblages of wild mussels. Dense aggregations of bivalves 

can locally deplete the water of seston resulting in food limited growth (Pilditch et a/. 

1996). If a mussel sock is stocked too densely, there is an increased risk of mussel loss 

due to a depleting of food and oxygen. In addition, high stocking densities may result in 

reduced juvenile settlement due to a greater accumulation of biodeposits leaving 

relatively less surface area available for larval settlement (Mallet and Carver 1993). 

Mussel fanners must be able to show that they are benign users of coastal water, if they 

are to be allowed to expand to new areas or significantly increase production in existing 

areas (Gosling 1992). Also, pressure from nearby mussels may impair shell gaping. 

Shell gaping is a critical factor in controlling mussel pumping rate, which in turn affects 

food acquisition (Jergensen eta/. 1988). 

Aquaculture sites should be designed to maximize food availability. It is likely that a 

decrease in the supply of seston will occur in the center of a lease if stocking density 
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and/or lease size are increased beyond optimal density (Pilditch eta/. 1996). However, 

increased nutrient regeneration in the vicinity of mussel lines may actually enhance local 

primary production, given that increased stock densities have a positive effect on primary 

production (Carver and Mallet 1990). Such concerns strengthen the argument for 

continued research and development in aquaculture. The importance of the ratio of food 

supply to food demand per individual mussel for a particular site cannot be 

underestimated. Indices of energy acquisition and energy loss define the minimum needs 

for growth and are therefore critical to choosing potential cultivation areas. These 

physiological functions~ when integrated into an ecosystem model, should allow 

predictive modeling of shellfish production of a bay (Bougrier et a/. 1995). 

The teeding behavior of cultivated mussels in response to natural particle assemblages is 

of particular interest for the selection of mussel farm sites and in the calculation of 

carrying capacities for these sites. The manipulation of density is a major tool for a 

mussel farmer to use to increase commercial production (Gosling 1992). Different 

stocking densities of mussels may take variable amounts of time to reach market size 

(Mallet and Carver 1993). For instance, deliberate overcrowding can also be used by a 

mussel farmer to slow growth rates for specific purposes such as to maintain a continuous 

supply of mussels of the desired size for marketing. The fmal market product must be 

taken into consideration when assessing the best or optimal stocking density as different 

products may necessitate a different initial stocking density (Parsons and Dadswell 1992). 

The manipulation of stocking density will become a more useful tool with increasing 
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diversification of the blue mussel market (e.g., mussel salads, individually-quick-frozen 

(IQF) products, vacuum-packed products and ready-made products). 

1.3.2.3 Size 

The market for seafood products demands a year round supply. In order to satisfy these 

demands, farmers must maintain several size classes of mussels. This will ensure 

availability of market size mussels for harvest throughout the year. Assuming that all size 

classes of animals respond in a similar manner to similar environmental conditions may 

jeopardize the reliability of models used to estimate production. For instance, a certain 

size class may have a higher overall food demand than another and will therefore take 

longer to reach market size given similar food availability conditions. Such mussels may 

also consume a disproportionate amount of the available food supply, depriving the other 

mussels. If different size classes of mussels consume different amounts of the available 

food, then this has implications for site design and site layout. 

There is evidence within the literature that animals of different size classes do not always 

respond similarly to environmental conditions. Thiesen ( 1968) concluded that mortality 

in Mytilus edulis is size dependent with a mean annual mortality varying between 68 

percent and 34 percent in mussels of 25 mm and 50 mm shell length, respectively. 

According to Suchanek (1978), Peterson (1979) and Tsuchiya (1983), smaller mussels are 

thought to be especially vulnerable to mortality at high temperatures. Thompson (1984) 

also reported size dependent mortality for M. edulis in Newfoundland. 
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Recent observations support these earlier findings. Temporal patterns of growth and 

survival were independently estimated for three size classes of mytilid mussels from a 

commercial aquaculture fann in Nova Scotia (Mallet and Carver 1993). Temporal 

variations in tissue weight in the two largest size groups were highly correlated9 but were 

significantly different from those observed in the smallest size group. Mallet and Carver 

( 1993) suggest that mussels of different sizes were responding differently to either 

endogenous and/or environmental cues. There have also been differences reported in the 

feeding behavior of small and large bivalves. Smaal eta/. ( 1997) observed that clearance 

rates in smaller cockles (Cerastoderma edule) were reduced at low temperatures 

compared with larger animals. Lu and Blake ( 1997) observed that the weight specific 

clearance rates of juvenile bay scallops (Argopecten irradians concentricus) were 

independent of shell size at greater than 20,000 cellslmL, but decreased \\ith increasing 

shell size at lower cell concentrations. Further9 size..<fependent bioaccumulation of 

hydrophobic organic contaminants in suspension feeding bivalves has been observed to 

be driven by size related differences in uptake rate (Gilek et al. 1996). However9 others 

have observed no significant differences between small and large bivalves. For instance, 

Wildish and Saulnier (1992) observed no significant differences in growth rate between 

individual adult and juvenile giant scallops Placopecten magellanicus at a common water 

velocity of 10 cm/s. 
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It is important to understand the growth patterns of the different size classes of bivalves, 

as well as the underlying physiological and biochemical processes associated with 

growth. If small and large size classes of blue mussels respond differently to similar 

conditions, then this will affect production significantly. It is difficult to ascertain which 

of these processes or combinations thereof affect the perfonnance of blue mussels, but it 

is still necessary to establish how different size classes respond to specific environmental 

conditions (Mallet and Carver 1993). 

1.3.2.4 Species 

Early genetic studies of 1\lytilus populations on the east coast of North America suggested 

that Mytilus edulis was the only species present (Koehn et a/. 1976; Gartner-Kepay et a/. 

1980). Koehn eta/. ( 1984) subsequently provided evidence that the Mytilus populations 

of Atlantic Canada consist of two genetically distinct fonns that occur sympatrically at 

some locations, but with no evidence of interbreeding. These two genetically distinct 

forms, identified as groups II and III by Koehn eta/. (1984) were later confinned to 

belong to the species M. edulis and M trossulus, respectively (Varvio eta/. 1988; 

McDonald eta/. 1991; Bates and Innes 1995; Mallet and Carver 1995; Comesai\a et al. 

1999). Mixed populations of the two species, with a range of proportions, commonly 

occur along the Atlantic coast of Nova Scoti~ in Newfoundland and along the upper 

reaches of the Gulf of St. Lawrence (Mallet and Carver 1995). 
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The situation in Atlantic Canada is similar to that found in southwest England and the 

Atlantic coast of France, where M. edu/is and M. ga/loprovincialis have ove!'lapping 

ranges and are found at some locations to occur sympatrically (Cousteau eta/. 1991). 

Gardner ( 1996) proposed that species of Mytilus adapt to different environments and 

thereby maintain their integrity, despite high dispersal potential and widespread 

hybridization. 

There are very few sharply pronounced distributional differences in Myti/us. According 

to Gardner ( 1996), most differences occur as a shallow cline from one taxon to another. 

However, there is evidence of distributional differences between species on a global scale 

(Gosling 1984; Koehn 1991; Gardner 1992), as well of evidence supporting physiological 

and morphological adaptations to different environments (Tedengren eta/. 1990; Gardner 

and Skibinski 1991; Willis and Skibinski 1992; Hilbish eta/. 1994). For instance, in 

Europe M edulis and M gal/oprovincialis appear to be differentially distributed relative 

to the degree of wave exposure and the level of attachment in the intertidal zone (Gosling 

1992; Comesaila and Sanjuan 1997). M. galloprovinciallis is more likely to be found in 

exposed environments than M. edulis (Gardner and Skibinski 1991; Willis and Skibinski 

1992). In California, M gal/oprovincialis and M trossr~lus exhibit differential 

distribution patterns relative to temperature and salinity profiles (Sarver and Foltz 1993). 

Bates and Innes ( 1995) sampled mussels from the intertidal zone of Newfoundland and 

found a higher frequency of M. trossu/us at the more wave-exposed sites, and a higher 

frequency of M edulis at the more sheltered sites. Comesafta eta/. (1999) also sampled 
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from Newfoundland, but did not find a consistent pattern in the distribution of these 

species relative to wave exposure. However, these samples were collected subtidally 

(Comesaiia eta/. 1999). This is likely a complicating factor in attempting to detect 

differences in distribution related to wave exposure. 

In general, M edulis is characterized as a temperate cold-water mussel which can occur in 

brackish waters, and M trossulus is a cold-water mussel, often found in areas which were 

ice-covered in previous Ice Ages, and is capable of withstanding very low salinities 

(Gardner 1996). If environmental variability plays an important role in maintaining the 

genetic integrity of the species, then it likely that two species may coexist in areas of 

environmental change (ecotones), since neither species is fully adapted to the changing 

(intermediate) environment (Gardner 1996). This is what is observed in Atlantic Canada. 

Mytilus edulis and M trossulus in eastern Canada are located between the cooler Atlantic 

waters of higher salinity (the Boreal or Nova Scotian Province) and the cold sub-polar 

waters oflower salinity (the Arctic Province) (Varvio eta/. 1988; McDonald et al. 1991). 

The coexistence of M edulis and M trossulus in Atlantic Canada is also interesting from 

an aquacultural standpoint. Very little is known about the perfonnance of the species 

relative to each other. Certain fann operators argue that higher production rates could be 

achieved if they could grow a stock of pure M edulis (Mallet and Carver 1995). From 

the information collected at their study site on individual weight, survival and grading 

losses, Mallet and Carver ( 1995) estimated that the economic value of M edulis was 1. 7 

times greater than its congener M trossulus. 
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The literature suggests that similar species may display different adaptations to similar 

environmental conditions. Differential physiological adaptations may contribute 

significantly to the overall carrying capacity of a mussel culture site. Comesana eta/. 

( 1999) have suggested that further studies be conducted to identify the factors responsible 

for maintaining the integrity of each species. Further studies are also needed to quantify 

the species-specific physiological responses of ~l edulis and M trossu/us for 

incorporation into models used to predict blue mussel production. 

1.3.2.5 Concentration of Available Food 

Physiological responses such as changes in clearance rates, ingestion and particle 

selection may change with changing environmental conditions as suspension feeders are 

capable of regulating the quality and quantity of seston they consume (MacDonald and 

Ward 1994). Prins eta/. (1994) observed that individual clearance rates of blue mussels 

decreased with increasing suspended particuhlte matter concentrations and showed a 

positive correlation with chlorophyll-a. 

Food flux, defined as the amount of food per tidal cycle, must be studied in order to 

assess the impact of continually removing nutrients from water systems through 

harvesting (Thompson, 1984; Carver and Mallet 1990). Food flux varies temporally and 

spatially, fluctuating according to a number of factors such as current and phytoplankton 

blooms. Each of these factors affect the amount of food that is actually available to 
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bivalves for consumption. Establishing the relationship between the concentration and 

quality of suspended particulate matter and the uptake of this material by bivalves in 

specific environments is imponant to the understanding of energy flow, not only through 

this major group of marine primary consumers (Kierboe eta/. 1980), but also through the 

benthic community as a whole (MacDonald and Ward 1994 ). 

1.3.2.6 Seasonal Variables 

In order to understand the physiological ecology of suspension feeding animals, it is 

necessary to detennine how they continue to meet their maintenance requirements from a 

diet that varies spatially and temporally in both availability and quality (Kreeger eta/. 

1995). The influence of temperature and food on the growth of bivalves is well 

documented within the literature, especially for mytilids (e.g., Widdows 1978; Bayne and 

Worrall 1980; Kautsky 1982; Sprung 1984). According to Hatcher et a/. ( 1997), food 

availability is a significant control on the seasonally changing metabolism of mussels 

regardless of water temperature. They suggest that observed variability in growth rate of 

ice-covered 1.\t/yti/us edulis is probably a response to differences in food availability rather 

than exposure to low temperatures. The higher temperature and food conditions 

associated with shallow waters in Sunnyside~ Trinity Bay, NF have been shown to be 

more favorable for somatic growth and gamete production in the scallop Placopecten 

magellanicus than deeper waters (MacDonald and Thompson 1986). 
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Compounding this, blue mussels are ectothennic animals. With an increase in the 

environmental temperature, there is a corresponding increase in the metabolic rate. An 

increase in the metabolic rate of an organism implies an increase in the energy (food) 

requirement of that organism in addition to an increase in oxygen expenditure for fueling 

metabolic processes. Therefore it is important to incorporate seasonal differences into 

carrying capacity models. 

1.3.2.7 Reproductive Condition 

Since fecundity in mussels is age-dependent (Kautsky 1982), there will be differences in 

energy expenditure to growth and reproduction between adults and juveniles. Patterns of 

energy storage and usage associated with reproductive cycles in bivalves are well 

documented in the literature. MacDonald and Thompson ( 1986) observed a reduction in 

somatic weight as gamete development proceeded and an increase during periods of 

reduced gametogenic activity, suggesting a close relationship between energy available 

for growth and the reproductive cycle. Positive correlations between oxygen 

consumption and gametogenic activity have been reported for Mytilus edu/is (Bayne and 

Widdows 1978) and Cardium edule (Newell and Bayne 1980). Respiration rates of 

cockles were observed to be significantly related to reproductive condition (Smaal eta/. 

1997). However, Newell et a/. ( 1982) attributed observed differences in the gametogenic 

cycle of seven latitudinally separated populations of M. edulis to temporal and 

quantitative differences among habitats in the energy content of the mussels available 

food supply. 
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Changes in physiological status may also affect feeding. Newell and Thompson (1984) 

found reduced clearance rates in wild mussels for up to five days following prolonged 

periods of spawning. Smaal eta/. ( 1997) found the respiration rates of M. edulis to be 

highest during the reproductive period. 

1.4 Objective 

In Newfoundland,. Mytilus edulis inhabits a unique, subarctic environment that is 

dominated by the Labrador current and characterized by low water temperatures for 

several months of the year and low seston concentrations (Thompson 1984 ). Such 

systems have periods of very low water flow and therefore exhibit localized food 

depletion compared to estuaries, e.g., Carver and Mallet ( 1990). 

The objective of this project was to contribute towards improved models for estimating 

the carrying capacities of blue mussel aquaculture sites in Newfoundland by providing 

empirical values for four physiological processes associated with feeding demand: 

clearance rate, ingestion rate, filtration rate and rate of oxygen consumption. Further, this 

project will provide a comparison of these four processes in two size classes of cultured 

and wild blue mussels, M. edulis and M. trossulus. Size and species proportions on a 

mussel aquaculture site may potentially affect the overall food demand of a particular 

stock of mussels. This, in tum, has direct implications for stocking density and stock 
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perfonnance. Continued research and development in this field is crucial to the 

maintenance and expansion of the blue mussel aquaculture industry in Newfoundland. 

1.4 Hypotheses 

For Mytilus edulis and M trossulus obtained from Reach Run, Newfoundland: 

1. Weight-specific rates of clearance, ingestion, filtration and oxygen consumption differ 

between cultured and wild blue mussels. 

2. Myti/us edulis and M trossu/us demonstrate different physiological responses to 

similar environmental conditions. 

3. Rates of clearance, ingestion, filtration and oxygen consumption increase with an 

increase in the available food concentration in all blue mussels. 

4. Rates of clearance, ingestion, filtration and oxygen consumption follow a seasonal 

cycle in all blue mussels. 
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Section 2 Methods 

2.1 Site 

Mussels used throughout this study were obtained from an aquaculture site (Farewell 

Mussel Fanns Ltd.) at Reach Run, Newfoundland (49° 25' N, 54° 42' W (4531)) 

(Appendix 1 ). The site has ~n characterized as a flow-through system with currents 

averaging 3.4 cmls (Struthers, A., pers-comm., Marine Institute, Memorial University). 

Longlines are anchored to the bottom with boulders and run parallel to the current flow. 

Average depth of the site is 24m (MacNeil, G., pers-comm., Marine Institute., Memorial 

University). Average salinity from the surface to a depth of 15m is 28 ppt (Clemens et 

a/. 2000). 

2.2 Mussel Sto~k 

For the purpose of this study, the term •blue mussels' encompasses the species Mytilus 

edulis and M. trossulus. Approximately 100 unprocessed cultured blue mussels were 

obtained monthly from suspended mussel socks. At the same time, approximately 100 

wild blue mussels were collected along the shoreline of the cultivation site. Mussels were 

obtained from as large a size range of cultured and wild animals as possible, ranging 10-

75 mm shell length (SL). Samples were obtained during the third week of almost every 

month for 17 months between March 1998 and August 1999. Mussels were transported 
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to the Ocean Sciences Centre (OSC), Memorial University of Newfoundland (MUN) in 

Logy Bay, Newfoundland within 12 hours. 

2.3 Laboratory Conditions 

At the OSC, cultured and wild mussels were placed in separate trays of a flow-through 

system; each tray was continuously supplied with coarsely filtered seawater at ambient 

temperature and salinity. Throughout the study salinity ranged between 32 and 34 ppt 

and temperature ranged between 4 oc and 16.5 °C (Figure 1 ). Dissolved oxygen was 

always above 80 percent saturation. 

All mussels were maintained on a batch-fed diet of cultured algae. At the start of the 

project, the dry weight of a random sample of 25 mussels was recorded as well as the dry 

weight of algae per liter. Daily ration was approximately 3 percent of the dry soft body 

weight of the animals. The diet consisted of equal cell concentrations of two species of 

microalgae, the diatom Chaetoceros muelleri and the flagellate /sochrysis ga/bana (clone 

T-ISO), providing a balanced diet for the mussels. Cultures of these two species were 

maintained in logarithmic phase growth in autoclavedft2 medium, at 20 °C, under 

constant illumination (fluorescent cool white lights) and were gently aerated with filtered 

air. Dissolved silica was added to C. muelleri cultures. It has been shown that particles 

approximately 5 ).lm diameter have an important role in the nutrition of mussels since 

particles of this size represent an important fraction of the total particulate organic matter 

naturally available to mussels (V ahl 1972). As well, Mytilus edulis has been shown to 
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retain all particles above 4 J.lm at close to 1 00 percent efficiency (Newell and Shumway 

1993). Larger particles up to 110 J.lm have also been shown to possibly comprise a 

significant portion of the diet of Mytilus edu/is, however, particles of this size were not 

available to the mussels used throughout the present study. 

Mussels were acclimated to laboratory conditions for at least 7 days prior to 

experimentation. 
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2.4 Physiological Working Definitions 

Four physiological variables were measured for all experimental mussels. Clearance rate 

(Lib) was defined as the volume of water cleared of suspended particles greater than 2 tJffi 

in diameter per unit time; in the absence ofpseudofeces, ingestion rate (cells/h) was 

defined as the number of suspended particles greater than 2 J.Lm in diameter removed per 

unit time; filtration rate (mg/h) was defined as the weight of total particulates filtered per 

unit time (Bayne 1976). Oxygen consumption (mL/h) was defined as the estimated rate 

of decrease of the volume of oxygen inside a respiration measurement chamber per unit 

time (Thompson 1984 ). 

2.5 Experimental Apparatus 

The experimental apparatus was an ""octopus set-up", as per MacDonald (1985). The 

octopus set-up (Appendix 2) (octopus set-up A) consisted of a constant volume (7.7-L) 

header tank connected to eight individual feeding chambers. One mussel was placed in 

each of seven feeding chambers. One chamber was used as a control chamber. The size 

and shape of the oblong containers prevented recirculation of the experimental diet. This 

was verified by observing the patterns of colored dyes introduced into the containers. 

The header tank received seawater filtered through a linear arrangement of four filter 

cartridges, a coarse filter, a 10-tJm filter, a 3-tJm filter and a l-J.lm filter. This effectively 

reduced potential variations in the experimental diets due to irregularities in the quantity 
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and quality of suspended seston in the incoming seawater. Seawater was maintained at 

ambient temperature and salinity. Three peristaltic pumps delivered a SO/SO percentage 

mixture by cell numbers of Chaetoceros muelleri and Jsochrysis ga/bana from a 68-L 

food reservoir to the header tank, supplying the header tank with a known concentration 

of food and at known and constant rate. The food reservoir was gently aerated to ensure 

uniform mixing and to prevent particle settlement. In tum, the header tank, also aerated, 

supplied the eight feeding chambers with a known concentration of food at known and 

constant rates. 

Inflow rates, maintained by calibrated flow restrictors into the individual feeding 

chambers, ranged from 130-180 mL/min. It has been determined that clearance rates are 

independent of water flow in this range for scallops (MacDonald 198S). Header inflow 

was such that water flowed continuously through the outflow, thereby providing a 

constant head, which ensured that the flow through each valve varied less than 10 % 

(MacDonald 198S). After the water passed through an inflow valve, it was delivered to 

the bottom of the feeding chamber. A mussel was positioned behind a baftle at the 

bottom of the feeding chamber. Baftles further ensured good mixing within the 

chambers. The overflow exited through a drain near the surface of the chamber. Samples 

were collected from this overflow to measure rates of clearance, ingestion and filtration. 

Mussels were then removed from the feeding chambers and placed in respiration 

measurement chambers to measure rate of oxygen consumption. 
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A second identical octopus set-up (octopus set-up B) was employed as well in order to 

increase sample size. 

2.6 Experimental Design 

About seven to ten trials were conducted per month with each trial lasting three days. For 

each trial, small and large cultured and wild mussels were used. Mussels with a shell 

length (SL) less than or equal to 35 mm were characterized as small and mussels with a 

SL greater than or equal to 50 mm were characterized as large. Mussels were exposed to 

low (<3,500 cells/mL), medium (>3,500 cells/mL, <7~500 cells/mL) or high (>7,500 

cells/mL) food concentrations consisting of a 50/50 percentage mixture of Chaetoceros 

muelleri and lsochrysis ga/bana. Octopus set-ups A and B received the same 

experimental diet. 

On day l of each trial, 14 mussels were selected, 7 cultured (small and large) and 7 wild 

(small and large). All mussels were gently scrubbed to remove any dirt or epibionts. 

Shell lengths and shell heights were recorded (mm) using Vernier calipers. Mussels were 

then placed in the feeding chambers of the octopus set-up already supplied with filtered 

seawater. The food reservoir was prepared and food was pumped from the food reservoir 

to the header tank at a specific rate calculated according to algal density within the food 

reservoir and the flow rate of the incoming filtered seawater supplying the header tank. 
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Once the pumps had been activated, the mussels were left to acclimate to the 

experimental apparatus and diet for approximately 24 hours. Within an hour of placing 

the mussels in the individual feeding chambers, water samples were collected from each 

standpipe and timed the flow so that outflow rate (ml/min) could be determined. 

Clearance Rate 

Any feces present in the feeding chambers were carefully removed with a pipette. This 

ensured that particle counts were representative of the actual number of algal cells that 

had been removed from the water. From octopus set-up A, I 0-mL outflow water samples 

were collected from the drain of each of the eight feeding chambers and 1 0-mL inflow 

water samples were collected from the header tank. Particle concentrations were then 

quantified using a Model II Coulter Multisizer fitted with a 1 00-J.Lm aperture tube. The 

final particle count was a minimum of three consecutive and consistent samples. 

The number of cells/mL was quantified by measuring three 50-J.LL volumes from each 10-

mL sample. Samples were taken at least three times over a time period of approximately 

1 hours, and an average clearance rate was calculated. 

Clearance rates were calculated according to: 

CR = F(C1- Cz) I C1 where: 
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CR = clearance rate (Lib) 

F = flow rate of individual feeding chamber (mL/min) 

C 1 = particle concentration of inflow sample ( cells/mL) 

C2 =particle concentration of outflow sample (cells/mL) 

All measurements were corrected for the control chamber. However, there was no 

significant settlement in the control chamber. 

Ingestion Rate 

Ingestion rates were calculated according to: 

IR =ingestion rate (cells/h) 

CR =clearance rate (L/h) 

IR = (CR • B) - PS where: 

B = Available food concentration ( cells/L) 

PS = rate of pseudo faeces production 

All measurements were corrected for the control chamber. However, there was no 

significant settlement in the control chamber. 
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Filtration Rate 

From the same octopus set-up, 4-L outflow water samples were collected from the drain 

of each of the eight feeding chambers and 4-L inflow water samples were collected from 

the header tank. Samples were taken at least three times over a time period of 

approximately 7 hours, and an average filtration rate was calculated The particulate 

material was gently vacuum filtered onto preweighed and precombusted GF /C filters. 

Filters were then rinsed with 10 mL of 3 percent (isotonic) ammonium formate. 

The filters were then dried to constant weight at 60 °C, combusted in a muffie furnace at 

450 °C for approximately 12 hours, cooled in a dessicator and reweighed. All filters were 

placed in a desiccation chamber for approximately 1 5 minutes prior to weighing to 

correct for any moisture uptake from the air. 

Filtration rates were calculated according to. 

FR = F{l-0) where: 

FR = filtration rate (mglh) 

F = flow rate of individual feeding chamber {L/h) 

I= inflow seston {mg) 

0 =outflow seston (mg) 
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All measurements were corrected for the control chamber. However. there was no 

significant settlement in the control chamber. 

Oxygen Uptake 

Concurrently on Day 2, oxygen uptake rates were measured in those mussels previously 

maintained in octopus set-up B. Mussels were removed from the feeding chambers and 

placed immediately in Plexiglas oxygen uptake measurement chambers filled with a 

known volume (375 or 380 mL) of filtered (to 1 J.Lm) and fully saturated seawater at 

ambient temperature and salinity (Appendix 3 ). Mussels did not feed in the respiratory 

chambers. A respiratory rather than a feeding pumping rate was maintained. Within the 

chambers, mussels were placed on perforated clear glass plates overlying a magnetic stir 

bar. The cover of the chambers had three openings. The center opening was for 

positioning an oxygen electrode. Two holes located on either side of this facilitated 

filling the chambers with seawater as well as expiration of any excess air bubbles. These 

two holes were sealed with rubber stoppers during the oxygen uptake experiments. Up to 

four oxygen uptake chambers were then placed in a temperature control bath (Neslab) 

maintained at ambient seawater temperature. Submersible magnetic stirrers gently 

circulated the water in the respiration chambers. Temperature was maintained within 0.5 

°C of ambient temperature. 
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The oxygen uptake chambers were sealed with an oxygen electrode, and the decline in 

partial pressure of oxygen in the chambers was measured with an OM2000 oxygen meter 

(Cameron Instrument Company, Texas). The oxygen level was never allowed to drop 

below 75% of saturation. Oxygen uptake experiments usually lasted from 1.5 to 3 hours 

per mussel, depending upon water temperature and animal size. Mussels were then 

returned to the octopus set-up. 

Oxygen uptake was calculated using the following equation: 

R=m • c• Vwhere: 

R =oxygen uptake (L/h) 

m = rate of decrease in oxygen (mm Hglh) 

C = conversion factor for converting nun Hg to oxygen solubility in mLIL based upon 

salinity and temperature 

V =volume of the oxygen uptake measurement chamber (L) 

Clearance, ingestion and filttation rates were measured in mussels from octopus set-up B 

and oxygen uptake were measured in mussels from octopus set-up A. 

Once all measurements had been made, the soft body tissues of the mussels were 

removed. A small piece was taken from the adductor muscle or the mantle of each 
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mussel and preserved in 95 o/o ethanol for allozyme and DNA analysis. The remaining 

tissues were dried to constant weight at 60 oc in preweighed aluminum foil boats. 

2. 7 Genetic: ldentifieation of Speeies 

2.7.1 Allozyme analysis 

Horizontal starch-gel electrophoresis was carried out on 11 %gels (Sigma starch) at 4 °C. 

The supernatant was used as the source for 5 enzyme loci that show different levels of 

diagnostic power for the 2 Mytilus taxa. Two loci were used to distinguish between the 

taxa. Esterase-D (Est-D) is a highly diagnostic locus for 1\t/yti/us edu/is and M trossulus, 

and mannose-6-phosphate isomerase (Mpi) is completely diagnostic between these 2 taxa. 

Electrophoretic procedures were conducted following Bates and Innes (1995) for Est-D 

and Vainola and Hvilsom ( 1991) for Mpi (Comesaila et a/. 1999). 

2.7.2 DNA analysis 

Total DNA extraction was performed following procedures outlined in Heath eta/. 

( 1995). Two nuclear markers ( Glu 5 and ITS) and 1 mitochondrial DNA marker (CO III) 

were analyzed after polymerase chain reaction amplification. Glu 5 and ITS are co

dominant DNA markers producing 2 specific Mytilus edulis and M trossulus patterns and 

distinct patterns for hybrids. Similar amplification conditions were provided for both 
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markers. The PCR products were run in a 3 % agarose gel (2 % Sigma and 1 % N uSieve 

GTG agarose ). The 2 allozyme loci (Est-D and Mp1) and the 2 nuclear DNA markers 

(Giu 5 and ITS) were used to classify the mussels as "pure'~ edu/is, "pure" trossu/us or 

hybrids (Comesana eta/. 1999). 

2.8 Standardization of Physiological Rates 

Each physiological rate was examined for each mussel. Sample sizes and weight ranges 

are listed in Tables 2~ 3~ 4a and Sa. The effects of body size can be excluded by 

selecting animals of equivalent size, but it is likely that there will be variation in the dry 

soft body weight (Bayne eta/. 1985). For this analysis, the effects of body size were 

removed according to a standardization procedure described in Bayne et a/. ( 1985). First, 

log value physiological rates were regressed against log value dry weights for each 

sample for each of clearance rate (Lih), ingestion rate (cells/h), filtration rate (mglh) and 

oxygen uptake (mL/h). 

The slopes of the individual regression equations were used as weight coefficients. These 

weight coefficients were then used to correct all physiological rates to a standard animal 

of one gram dry tissue weight using an allometric equation: 

Y = physiological rate 

X = dry body weight (g) 

a = intercept 

where: 
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b = slope (weight exponent) 

The weight exponent of each equation was then used to correct for differences in body 

weight. Rates of clearance, ingestion, filtration and oxygen consumption have been 

corrected to a standard 1 gram animal by means of the equation: 

log a = log Y - b log X 

a = corrected physiological rate 

Y = the uncorrected (measured) physiological rate 

where: 

b = the weight exponent for the physiological rate function 

X = the observed dry weight of the animal 

For comparisons between small and large mussels, small mussels were standardized to 

0.1 gram and large mussels to 1 gram dry weight using the same equation described 

above. For all other comparisons, all rates were standardized for a 1 gram mussel. If the 

weight coefficients obtained from the regressions analyses were significantly different 

from each other, then the standardization analysis was complete. If the slopes were not 

significantly different, then slope elevations were compared using an analysis of 

covariance (ANCOV A). 

35 



2.9 Statistieal Analysis 

According to Sokal and Rohlf(1995), multiway analyses of variance (ANOVAs) were 

perfonned to simultaneously test the significance of each of the independent factors on 

each of the four physiological rates examined. ANOV As were used in order to test for 

differences among sample means as well as differences among linear combinations of the 

means (Sokal and Rohlf 1995). 

All statistical procedures were carried out using the General Linear Model (GLM) 

procedure ofSPSS 9.0 for Windows. The dependent variables were standardized rates of 

clearance (L/h/g), ingestion (cells/h/g). filtration (mglh) and oxygen consumption 

(mL/h/g). The independent variables or factors were mussel origin (cultured or wild), 

mussel species (Mytilus edulis or M trossulus), date and food concentration (low, 

medium or high). Although the relationship between date and temperature is not exactly 

linear, date was selected as an independent factor since the many temperatures would 

have complicated the ANOV A analyses, and as well, the measurements obtained from the 

mussels tested during one date period were subsequently used to develop weight 

exponents. 

Small and large mussels were compared qualitatively and descriptive values only are 

provided, i.e. these groups were not compared in order to demonstrate a statistical 

significance since it is already known that larger mussels have higher feeding rates than 

smaller mussels. 
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Section 3 Results 

3.1 Standardization of Physiological Rates 

All mussels (cultured and wild9 small and large9 Mytilus edulis and M trossulus) were 

pooled for the purpose of calculating slopes for each monthly sampling period because, 

individually, the sample sizes were not always large enough to perfonn regressions. Log 

clearance, log ingestion, log filtration and log oxygen uptake were significantly correlated 

with log dry weight, in most cases. The only exception was in July 1999, log filtration 

rate was not significantly correlated with log dry weight. Weight coefficients ranged 

from 0.130 to 0.529 for clearance rate, 0.194 to 0.578 for ingestion, 0.135 to 0.782 for 

filtration and 0.186 to 0.823 for oxygen uptake (Tables 2b, 3b, 4b and Sb ). For each 

factor, the slopes for each sampling period were compared using an analysis of 

covariance (ANCOV A). All slopes were significantly different (P<O.OO 1 ), therefore no 

further analyses were conducted at this point (Table 1). Elevations were not compared. 

All physiological rates presented in this thesis are the calculated standardized rates for a 

one gram dry weight mussel, unless otherwise indicated. All residuals were examined 

graphically, and followed a nonnal distribution pattern. 
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Table 1: A summary of the analyses of covariance (ANCOVAs) performed to compare 
the weight coefficients (slopes) for each factor, clearance (L/h), ingestion (cells/h), 
filtration (mglh) and oxygen uptake (mL/h) for each sampling period. 

Clearance Ingestion Filtration Oxygen Uptake 
(Lih) (cell/h) (mglb) (mLih) 

R Squared 0.489 0.400 0.622 0.643 
Degrees of Freedom 15, 315 IS, 315 15. 315 14, 313 
F - Statistic 19.16 13.34 32.92 38.41 
P-value < 0.001 <0.001 < 0.001 <0.001 
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Table 2a: A summary of the sample size and the minimum and maximum dry weights 
(W) (g) of the animals (Mytilus edulis and M trossulus) comprising each respective 
sampling period for clearance rate (Lih). 

Month D W•l• w ... 

April98 11 0.02 1.17 
May98 25 0.03 2.51 
June 98 21 0.02 1.91 
July 98 25 0.03 2.82 
August 98 19 0.02 1.29 
September 98 14 0.03 1.70 
October98 30 0.03 1.91 
November98 30 0.10 3.63 
December98 28 0.09 2.69 
January 99 13 0.03 2.75 
March 99 24 0.02 2.95 
May99 IS 0.02 3.72 
June 99 21 0.02 2.09 
July 99 9 0.02 1.45 
August 99 31 0.01 2.19 

Table 2b: Regression analyses for log value physiological rates and log value dry 
weights, following the allometric relationship y = axb, where y =clearance rate (Lih). 

Month a%SE b%SE F p-value 

April98 0.556 ± .040 0.189 ± 0.057 0.50 11.03 0.00891 
May98 0.439 ± .076 0.310 ± 0.10 0.27 9.71 0.00486 
June98 0.424 ± 0.094 0.312 ± 0.091 0.35 11.65 0.00292 
July 98 0.531 ± 0.033 0.130 ± 0.041 0.28 9.84 0.00479 
August 98 0.400 ± 0.10 0.433 ± 0.10 0.50 19.29 0.000398 
September 98 0.374 ± 0.084 0.339 ± 0.098 0.46 11.86 0.00487 
October98 0.427 ± 0.055 0.300 ± 0.058 0.47 26.56 <0.0001 
November98 0.160 ± 0.056 0.276± 0.10 0.18 7.53 0.0105 
December98 0.0232 ± 0.077 0.498 ± 0.13 0.33 14.51 0.000766 
January 99 -0.0174 ± 0.99 0.378 ± 0.13 0.36 7.87 0.0171 
March 99 0.190 ± 0.56 0.237 ± 0.073 0.29 10.57 0.00366 
May99 0.160 ± 0.086 0.379 ± 0.087 0.56 19.05 0.000766 
June 99 0.247 ± 0.068 0.177 ± 0.078 0.17 5.20 0.0342 
July 99 0.090 ± 0.13 0.529±0.20 0.43 7.09 0.0323 
August 99 0.554 ± 0.050 0.252 ± 0.055 0.40 21.12 <0.0001 
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Table 3a: A summary of the sample size and the minimum and maximum dry weights 
(W) (g) of the animals (Mytilus edulis and M trossu/us) comprising each respective 
sampling period for ingestion rate (cells/h). 

Montb 

April98 11 0.02 1.17 
May98 25 0.03 2.51 
June 98 21 0.02 1.19 
July 98 25 0.03 2.82 
August 98 19 0.02 1.29 
September 98 14 0.03 1.70 
October98 30 0.03 1.91 
November98 30 0.1 3.63 
December98 28 0.09 2.69 
January99 13 0.03 2.75 
March 99 24 0.02 2.95 
May99 IS 0.02 3.72 
June99 21 0.02 2.09 
July 99 9 0.02 1.45 
August 99 31 0.01 2.19 

Table 3b: Regression analyses for log value physiological rates and log value dry 
weights, following the allometric relationship y = a:cb, where y = ingestion rate (cells/h). 

Montb a::I:SE b::I:SE F p-value 

April98 4.29 ±0.086 0.276 ± 0.12 0.29 5.10 0.00503 
May98 4.05 ±0.086 0.252 ± 0.11 0.15 5.08 0.0341 
June 98 3.98±0.13 0.350 ± 0.12 0.27 8.23 0.00984 
July 98 4.12 ±0.060 0.194 ± 0.073 0.22 7.11 0.0145 
August 98 4.02 ± 0.18 0.467 ± 0.18 0.24 6.66 0.0194 
September 98 4.05 ± 0.10 0.334 ± 0.12 0.35 8.14 0.0145 
October98 4.05 ±0.12 0.335 ± 0.12 0.18 7.48 0.0107 
November98 3.84±0.059 0.387 ± 0.11 0.29 12.88 0.00125 
December98 3.95 ±0.097 0.509 ± 0.16 0.24 9.63 0.00458 
January99 3.53 ±0.097 0.377 ± 0.13 0.37 8.20 0.0154 
March99 3.66±0.079 0.221 ± 0.10 0.14 4.69 0.0414 
May99 3.85 ±0.18 0.431 ±0.19 0.24 5.35 0.0378 
June 99 4.04±0.081 0.258 ± 0.093 0.25 7.72 0.0120 
July 99 3.57 ±0.19 0.578 ±0.28 0.28 4.15 0.0502 
August99 4. 42 ± 0.069 0.283 ± 0.071 0.33 15.80 0.000428 

40 



Table 4a: A summary of the sample size and the minimum and maximum dry weights 
{W) (g) of the animals (Myti/us edu/is and M trossulus) comprising each respective 
sampling period for filtration rate (mglh). 

Month D W•ill w .. s 

April98 10 0.04 1.05 
May98 22 0.03 1.95 
June 98 22 0.02 1.91 
July 98 26 0.03 2.82 
August 98 17 0.02 1.28 
September 98 14 0.03 1.70 
October 98 44 0.01 1.91 
November98 23 0.1 3.63 
December98 28 0.06 2.69 
January 99 12 0.03 1.48 
March 99 22 0.02 2.95 
May99 12 0.02 3.72 
June 99 19 0.02 1.91 
July 99 8 0.02 1.45 
August 99 26 0.01 2.19 

Table 4b: Regression analyses for log value physiological rates and log value dry 
weights, following the allometric relationship y = axb, where y = filtration rate (mg/h). 

Month A :t:SE b :t:SE F p-value 

April98 0.622 ± 0.078 0.782 ± 0.31 0.34 6.31 0.0332 
May98 -1.90 ± 0.29 0.601 ± 0.38 0.13 4.63 0.0422 
June98 -2.41 ± 0.11 0.222 ± 0.11 0.14 4.48 0.0470 
July 98 -2.47 ± 0.054 0.148 ± 0.063 0.23 5.52 0.0247 
August 98 -2.63 ± 0.13 0.265 ± 0.12 0.18 4.51 0.0508 
September 98 -2.47 ± 0.12 0.424 ± 0.15 0.36 8.38 0.0135 
October 98 -2.41 ± 0.067 0.173 ± 0.071 0.10 5.94 0.0192 
November98 -2.47 ± 0.086 0.331 ± 0.14 0.36 5.07 0.0352 
December98 -2.66 ± 0.037 0.318 ± 0.059 0.50 28.60 <0.0001 
January99 -2.56 ± 0.12 0.455 ± 0.16 0.40 8.21 0.0168 
March99 -2.60 ± 0.089 0.292 ± 0.11 0.38 6.81 0.0168 
May99 -2.50 ± 0.014 0.135 ±0.014 0.89 95.57 <0.0001 
June 99 -2.86 ± 0.10 0.323 ± 0.11 0.30 8.80 0.00864 
July 99 -1.11 ± 0.49 0.356 ± 0.93 -0.06 0.15 0.706 
August 99 -2.75 ± 0.085 0.220 ± 0.087 0.34 6.32 0.0191 
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Table Sa: A summary of the sample size and the minimum and maximum dry weights 
(W) (g) of the animals (Myti/us edulis and M trossulus) comprising each respective 
sampling period for oxygen uptake (mL/h). 

Month 

May98 II 0.04 2.51 
June 98 21 0.02 1.91 
July 98 28 0.03 2.82 
August 98 19 0.02 1.29 
September 98 13 0.03 1.45 
October98 50 0.01 2.04 
November98 34 0.1 3.63 
December98 24 0.09 2.69 
January 99 9 0.03 2.75 
March 99 24 0.02 2.95 
May99 16 0.02 3.72 
June 99 26 0.02 2.09 
July 99 7 0.02 1.45 
August 99 27 0.01 2.19 

Table Sb: Regression analyses for log value physiological rates and log value dry 
weights, following the allometric relationship y = axb, where y =oxygen uptake (mL/h). 

Month a::t:SE b::t:SE ? F p-value 

May98 0.367 ± 0.14 0.823 ± 0.24 0.43 12.31 0.00348 
June 98 -0.246 ± 0.059 0.186 ± 0.060 0.30 9.48 0.00618 
July 98 -0.274 ± 0.047 0.336 ± 0.053 0.60 40.74 <0.0001 
August98 -0.516 ± 0.064 0.464 ± 0.063 0.75 54.30 <0.0001 
September 98 -0.172 ± 0.11 0.450 ± 0.12 0.50 13.02 0.00411 
October 98 -0.188 ± 0.078 0.623 ± 0.082 0.54 57.91 <0.0001 
November98 -0.876 ± 0.083 0.794 ± 0.16 0.41 24.20 <0.0001 
December98 -1.18 ± 0.094 0.370 ± 0.17 0.14 4.78 0.0395 
January 99 -1.63 ± 0.23 0.691 ± 0.28 0.38 5.89 0.0456 
March 99 -1.29 ± 0.077 0.415 ± 0.10 0.41 17.32 0.000406 
May99 -0.431 ± 0.048 0.245 ± 0.045 0.65 29.06 <0.0001 
June 99 -0.4 77 ± 0.073 0.387 ± 0.081 0.46 22.63 <0.0001 
July 99 -0.324 ± 0.039 0.487 ± 0.053 0.93 84.33 0.000257 
August 99 -0.647 ± 0.17 0.655 ± 0.17 0.34 15.28 0.000625 
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3.2 Mussel Origin 

All measured physiological rates for each sample mussel were standardized to 1 gram dry 

tissue weight. Four-way analyses of variance (ANOVAs) were used to test the 

significance of mussel origin~ species, available food concentration and date on 

standardized rates of clearance~ ingestion, filtration and oxygen uptake. The analyses 

revealed no significant differences in the observed rates of clearance (F =: 1.387, d. f. = 1, 

315, P = 0.240) (Table 6), ingestion (F = 3.290. d.f. = 1, 315, P = 0.071) (Table 7), 

filtration (F = 0.250, d. f. = 1, 282, P = 0.61 0) (Table 8) and oxygen uptake (F = 0.030, 

d.f. = 1, 307, P = 0.860) (Table 9) between cultured blue mussels and wild blue mussels. 

Therefore, cultured and wild mussels were pooled and treated as a single group for all 

remaining analyses. 
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Table 6: ANOV A showing no significant difference in clearance rate between cultured 
and wild Myti/us edulis and M trossulus. 

Source Type III Sum df Mean F Sig. 
of Squares Square 

Corrected Model 574.18 110 5.22 3.85 <0.001 

Intercept 1268.50 1 1268.50 935.51 <0.001 

Cultured or Wild 1.88 1 1.88 1.39 0.24 

Species 39.75 1 39.75 29.32 <0.001 

Food Concentration 7.78 2 3.89 2.87 0.06 

Date 173.72 14 12.41 9.15 <0.001 

Cultured or Wild • 0.31 1 0.31 0.23 0.63 
Species 
Cultured or Wild • Food 0.79 2 0.40 0.29 0.75 
Concentration 
Species • Food 5.19 2 2.59 1.91 0.15 
Concentration 
Cultured or Wild • 2.83 2 1.41 1.04 0.35 
Species • Food 
Concentration 
Cultured or Wild • Date 35.00 13 2.69 1.99 0.02 

Species • Date 15.00 14 1.07 0.79 0.68 

Cultured or Wild • 5.54 10 0.55 0.41 0.94 
Species • Date 
Food Concentration • 41.99 20 2.10 1.55 0.07 
Date 
Cultured or Wild • Food 10.32 11 0.94 0.69 0.75 
Concentration • Date 
Species• Food 15.10 13 1.16 0.86 0.60 
Concentration • Date 
Cultured or Wild • 0.48 2 0.24 0.18 0.84 
Species • Food 
Concentration • Date 
Error 277.97 205 1.36 

Total 2998.71 316 

Corrected Total 852.15 315 
R Squared= .674 (Adjusted R Squared = .499) 

44 



Table 7: ANOV A showing no significant difference in ingestion rate between cultured 
and wild Mytilus edulis and M trossulus. 

Source Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 75748293044 110 688620845.86 11.37 <0.001 
Intercept 64769637992 1 64769637991. 1069.47 <0.001 

93 
Cultured or Wild 199275716 1 199275716.02 3.29 0.07 
Species 1056741960 1 1056741959.7 17.45 <0.001 

3 
Food Concentration 17154486135 2 8577243067.2 141.63 <0.001 

6 
Date 9172240889 14 655160063.51 10.82 <0.001 
Cultured or Wild • 5134037.854 1 5134037.85 0.08 0.77 
Species 
Cultured or Wild • Food 154997326.6 2 77498663.30 1.28 0.28 
Concentration 
Species • Food 90018557.4 2 45009278.70 0.74 0.48 
Concentration 
Cultured or Wild • 237686363.7 2 118843181 .87 1.96 0.14 
Species • Food 
Concentration 
Cultured or Wild • Date 2793727553 13 214902119.46 3.55 <0.001 
Species • Date 1089787069 14 77841933.51 1.29 0.22 
Cultured or Wild • 481258106.5 10 48125810.65 0.79 0.63 
Species • Date 
Food Concentration • 14522193685 20 726109684.23 11.99 <0.001 
Date 
Cultured or Wild • Food 3517716708 11 319792427.98 5.28 <0.001 
Concentration • Date 
Species • Food 808754209.1 13 62211862.24 1.03 0.43 
Concentration • Date 
Cultured or Wild • 172066916.8 2 86033458.40 1.42 0.24 
Species • Food 
Concentration • Date 
Error 12415335766 205 60562613.49 
Total 1.64468E+11 316 
Corrected Total 88163628811 315 

R Squared = .859 (Adjusted R Squared= 
.784) 
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Table 8: ANOV A showing no significant difference in filtration rate between cultured 
and wild Myti/us edulis and M trossulus. 

Source Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 931.47 99 9.41 1.33 0.05 
Intercept 1759.18 1 1759.18 249.43 <0.001 

Cultured or Wild 1.80 1 1.80 0.25 0.61 

Species 0.19 1 0.19 0.03 0.87 

Food Concentration 0.66 2 0.33 0.05 0.95 

Date 163.06 13 12.54 1.78 0.05 
Cultured or Wild • 20.00 1 20.00 2.84 0.09 
Species 
Cultured or Wild • Food 29.63 2 14.82 2.10 0.13 
Concentration 
Species • Food 45.86 2 22.93 3.25 0.04 
Concentration 
Cultured or Wild • 8.53 2 4.27 0.61 0.55 
Species • Food 
Concentration 
Cultured or Wild • Date 67.10 11 6.10 0.86 0.58 

Species • Date 91.92 13 7.07 1.00 0.45 

Cultured or Wild • 27.91 10 2.79 0.40 0.95 
Species • Date 
Food Concentration • 116.05 17 6.83 0.97 0.50 
Date 
Cultured or Wild • Food 114.69 10 11.47 1.63 0.10 
Concentration • Date 
Species • Food 92.92 11 8.45 1.20 0.29 
Concentration • Date 
Cultured or Wild • 5.48 3 1.83 0.26 0.85 
Species • Food 
Concentration • Date 
Error 1290.69 183 7.05 

Total 5618.06 283 

Corrected Total 2222.16 282 
R Squared = .419 (Adjusted R Squared = 
.105) 
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Table 9: ANOV A showing no significant difference in oxygen uptake between cultured 
and wild Mytilus edulis and M trossulus. 

Source Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 76.06 100 0.76 3.93 <0.001 

Intercept 49.41 1 49.41 255.57 <0.001 
Cultured or Wild 0.01 1 0.01 0.03 0.86 
Species 0.17 1 0.17 0.87 0.35 
Food Concentration 1.64 2 0.82 4.23 0.02 

Date 41.05 13 3.16 16.33 <0.001 

Cultured or Wild • 0.01 1 0.01 0.05 0.82 
Species 
Cultured or Wild • Food 1.89 2 0.94 4.89 0.01 
Concentration 
Species • Food 0.98 2 0.49 2.53 0.08 
Concentration 
Cultured or Wild • 0.34 2 0.17 0.88 0.42 
Species • Food 
Concentration 
Cultured or Wild • Date 5.68 12 0.47 2.45 0.01 

Species • Date 2.13 13 0.16 0.85 0.61 

Cultured or Wild • 1.64 11 0.15 0.77 0.67 
Species • Date 
Food Concentration • 7.95 15 0.53 2.74 <0.001 
Date 
Cultured or Wild • Food 3.02 II 0.27 1.42 0.17 
Concentration • Date 
Species • Food 2.28 12 0.19 0.98 0.47 
Concentration • Date 
Cultured or Wild • 0.00 I 0.00 0.02 0.87 
Species • Food 
Concentration • Date 
Error 40.02 207 0.19 

Total 198.95 308 

Corrected Total 116.08 307 

R Squared= .655 (Adjusted R Squared = 
.489) 

47 



3.3 Clearanee Rate 

A three-way ANOV A testing the simultaneous effects of mussel species, available food 

concentration and date on clearance rate was performed. Available food concentration 

did not significantly affect clearance rate (F = 0.613, d.f. = 2, 315, P = 0.543) (Table 10). 

Therefore, this variable was pooled for all further analyses involving clearance rate. A 

two-way ANOV A showed that mussel species (F = 46.64, d. f. = I, 315, P < 0.00 I) and 

date (F = 11.08, d.f. = 14, 315, P < 0.00 I) each significantly affected the rates of 

clearance (Table 11 ). Therefore it was necessary to examine the combination of these 

variables over the duration of the study (Figure 2). Mean monthly clearance rates of 

A.fytilus trossulus were consistently higher than those of M edulis. M trossulus had a 

mean overall clearance rate of3.37 Llh and M edulis had a mean overall clearance rate of 

2.07 Llh. A seasonal pattern in clearance rate was apparent for both species. Clearance 

rates were generally higher during the summer compared with rates observed during the 

winter. For instance, M edulis had an average clearance rate of3.57 Llh in July 1998, 

compared to 0.97 Llh in December 1998 and 0.83 Llh in January 1999. In addition, 

clearance rates dropped in August 1998 to 2.65 Llh from 3.57 Lib in July 1998. For 

instance, M trossulus, mean clearance rate decreased steadily from July 1998 to January 

1999, and then began to increase during the spring and summer months. For a summary 

of the sample size, mean values and standard deviations for each of these groups, see 

Appendix4. 
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Table 10: ANOV A showing no significant difference in clearance rate among low 
(<3,500 cells/mL), medium (>3,500 cells/mL, <7,500 cells/mL) and high (>7,500 
cells/mL) food concentrations. 

Souree Type Ill Sum df Mean Square F Sig. 
of Squares 

Corrected Model 494.58 68 7.27 5.02 <0.001 
Intercept 1261.26 1 1261.26 871.24 <0.001 
Species 43.86 1 43.86 30.29 <0.001 
Food Concentration 1.77 2 0.89 0.61 0.54 
Date 183.86 14 13.13 9.07 <0.001 
Species • Food 6.83 2 3.41 2.36 0.10 
concentration 
Species • Date 19.61 14 1.40 0.97 0.49 
Food Concentration • 45.36 20 2.27 1.57 0.06 
Date 
Species • Food 23.30 15 1.55 1.07 0.38 
Concentration • Date 
Error 357.57 247 1.45 
Total 2998.71 316 
Corrected Total 852.15 315 

R Squared = .580 (Adjusted R Squared = 
.465) 
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Table 11: ANOVA showing a significant difference in clearance rate between Mytilus 
edu/is and M. trossu/us over time. 

Source Type III Sum of df Mean Square F Sig. 
Squares 

Corrected Model 397.49 29 13.71 8.62 <0.001 

Intercept 1580.54 1 1580.54 994.21 <0.001 

Species 74.14 1 74.14 46.64 <0.001 

Date 246.58 14 17.61 11.08 <0.001 

Species* Date 27.13 14 1.94 1.22 0.26 

Error 454.67 286 1.59 

Total 2998.71 316 
Corrected Total 852.15 315 

R Squared = .466 (Adjusted R Squared = 
.412) 
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Figure 2: A comparison of clearance rate (Lih per one gram dry tissue mass) in Myti/us 
edulis and M trossulus (P < 0.0001) over time (P < 0.000 l ). Vertical bars = I standard 
error. 
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3.4 Ingestion Rate 

A three-way ANOV A testing the simultaneous effects of mussel species, available food 

concentration and date on ingestion rate was performed. Mussel species (F = 6.206, d.f. = 

1, 315, P = 0.013), the available food concentration (F = 99.922, d.f= 2, 315, P < 0.001) 

and date (F = 8.213, d.f. = 14, 315, P < 0.001) each significantly affected the observed 

rates of ingestion (Table 12). Therefore it was necessary to examine each combination of 

these variables separately over the duration of the study (Figures 3 and 4). 
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Table 12: ANOVA showing a significant difference in ingestion rate between Mytilus 
edulis and M trossulus as well as among low (<3,500 cellslmL), medium (>3,500 
cells/mL, <7 ,500 cells/mL) and high (> 7,500 cellslmL) food concentrations over time. 

Sourc:e Type Ul Sum df Mean Square F Sig. 
of Squares 

Corrected Model 67753905135 68 996380957.87 12.06 <0.001 

Intercept 62625105655 1 62625105655 757.89 <0.001 

Species 512844765.1 1 512844765.08 6.21 0.01 

Date 9500707494 14 678621963.83 8.21 <0.001 

Food Concentration 16513226121 2 8256613060.3 99.92 <0.001 

Species • Date 2295399863 14 163957133.09 1.98 0.02 

Species • Food 100116181.3 2 50058090.66 0.61 0.55 
Concentration 
Date • Food 12389530652 20 619476532.62 7.50 <0.001 
Concentration 
Species • Date • Food 1894233118 IS 126282207.85 1.53 0.10 
Concentration 
Error 20409723676 247 82630460.23 

Total 1.64468E+l1 316 

Corrected Total 88163628811 315 

R Squared = . 769 (Adjusted R Squared = 
.705) 
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Figure 3: A comparison of ingestion rate (cellslh per one gram dry tissue mass) in 
Mytilus edu/is (P = 0.013) at low(<3,500 cells/mL), medium (>3,500 cells/mL, <7,500 
cells/mL) and high (> 7,500 cells/mL) food concentrations (P < 0.0001) over time (P < 
0.0001). Vertical bars= 1 standard error. 
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Figure 4: A comparison of ingestion rate (cellslh per one gram dry tissue mass) in 
Myti/us trossulus (P = 0.013) at low (<3,500 cells/mL), medium (>3,500 cellslmL, <7,500 
cells/mL) and high (> 7,500 cellslmL) food concentrations (P < 0.000 l) over time (P 
<0.0001). Vertical bars= 1 standard error. 
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1\1/ytilus trossulus demonstrated higher mean rates of ingestion (Figure 4) than M edulis 

(Figure 3) at each food concentration. In addition, a positive relationship was observed 

between rate of ingestion and available food concentration. M edulis ingested an average 

of 48,497 cellslh at low food concentrations, 124,613 cellslh at medium food 

concentrations and 323,169 cellslh at high food concentrations. Comparatively, M 

trossulus ingested an average of 1 01 ,958 cells/h at low food concentrations, 183,609 

cells/hat medium food concentrations and 370,844 cellslh at high food concentrations. 

Average rates of ingestion generally increased as the available food concentration 

increased. Rates of ingestion observed at medium and/or high food concentrations were 

consistently higher than rates observed at low food concentrations. However, during 

April 1998 for M trossulus the mean rate of ingestion observed at medium food 

concentrations was higher than the rate observed at the higher food concentration. 

A seasonal pattern in ingestion rate was observed for M edulis and M trossulus. 

Ingestion rates were generally higher during the summer compared with rates observed 

during the winter. For instance, M trossu/us exposed to high food concentrations had an 

average ingestion rate of700,237 cellslh in August 1999, compared to 250,113 cellslh in 

December 1998. In addition, ingestion rates were lower in June 1998 averaging 132,038 

cells/h compared to 158,261 cellslh in July 1998 and 178,406 in August 1998. For a 

summary of the sample size, mean values and standard deviations for each of these 

groups, see Appendix 5. 
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3.5 Filtration Rate 

A three-way ANOV A testing the simultaneous effects of species, available food 

concentration and date on filtration rate showed that mussel species (F = 0.111, d.f. = I, 

282, P = 0. 739) and the available food concentration (F = 0.024, d. f. = 2, 282, P = 0.977) 

did not significantly affect filtration in blue mussels (Table 13). Date, according to this 

three-way ANOV A is not significant (P = 0.075). Since date was significant for all other 

physiological rates, a separate one-way ANOV A was perfonned to test date again. There 

was a high amount of variability associated with filtration rate, and it is likely that this 

interfered with the effect of seasonality on filtration rate. Therefore, mussel species and 

food concentrations were pooled for all further analyses involving filtration. A one-way 

ANOVA showed that date (F = 3.136, d.f. = 13, 282, P < 0.001) significantly affected 

filtration rate in blue mussels (Table 14). However, it is necessary to note that date was 

not a significant factor according to the initial three-way analysis performed. 
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Table 13: ANOV A showing no significant difference in filtration rate between Myti/us 
edulis and M trossulus or among low (<3,500 cells/mL), medium (>3,500 cells/mL, 
<7 ,500 cells/mL) and high (> 7,500 cells/mL) food concentrations. 

Soun:e Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 0.0006 59 1.05E-05 1.47 0.025 

Intercept 0.0016 1 1.62E-03 226.32 0.0001 

Species 0.0000 1 7.98E-07 0.11 0.74 

Date 0.0002 13 1.18E-05 1.64 0.075 

Food Concentration 0.0000 2 1.69E-07 0.02 0.98 

Species • Date 0.0001 13 5.93E-06 0.83 0.63 

Species • Food 0.0001 2 2.77E-05 3.86 0.02 
Concentration 
Date • Food 0.0001 17 4.41E-06 0.61 0.88 
Concentration 
Species • Date • Food 0.0001 11 8.53E-06 1.19 0.30 
Concentration 
Error 0.0016 223 7.18E-06 

Total 0.0056 283 

Corrected Total 0.0022 282 

R Squared = .280 (Adjusted R Squared = 
.089) 
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Table 14: ANOVA showing a significant difference in filtration rate ofblue mussels 
(Myti/us edulis and M trossu/us) over time. 

Souree Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 0.00029 13 2.25E-05 3.14 0.0002 
Intercept 0.00270 l 2.70E-03 376.13 <0.001 
Date 0.00029 l3 2.25E-05 3.14 0.0002 
Error 0.00193 269 7.17E-06 

Total 0.00562 283 
Corrected Total 0.00222 282 

R Squared = .132 (Adjusted R Squared = 
.090) 
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A seasonal pattern was observed in the overall mean filtration rates in this study (Figure 

5)~ although this trend may not be significant. Filtration rates were generally higher 

during the summer compared with rates observed during the winter. For instance~ 

mussels (M. edulis and M. trossulus) demonstrated an average filtration rate of 4.17 mglh 

in June 1998 and 3.78 mglh in July 1998, compared to 2.57 mglh in November 1998 and 

2.40 mglh in December 1998. For a summary of the sample size~ mean values and 

standard deviations~ see Appendix 6. 
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Figure 5: A comparison of filtration (mglh per one gram dry tissue mass) in Mytilus 
edulis and M trossulus over time (P = 0.0002). Vertical bars = l standard enor. 
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3.6 Oxygen Uptake 

A three-way ANOV A showed that mussel species (F = 0.01, d. f. = 1, 308, P = 0.92) and 

the available food concentration (F = 0.52, d.f. = 2, 308, P = 0.60) were not significant 

factors affecting oxygen uptake in blue mussels (Table 1 5). Therefore, mussel species 

and food concentrations were pooled for all further analyses involving oxygen uptake. A 

one-way ANOVA showed that date (F = 15.77, d.f. = 13, 308, P < 0.001) significantly 

affected the rate of oxygen uptake in blue mussels (Table 16). 
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Table IS: ANOV A showing no significant difference in oxygen uptake between Mytilus 
edu/is and M trossu/us or among low (<3,500 cells/mL), medium {>3,500 cells/mL, 
<7 ,500 cells/mL) and high (> 7,500 cells/mL) food concentrations. 

Sour&:e Type III Sum Df Mean Square F Sig. 
of Squares 

Corrected Model 65.22 59 1.11 5.38 <0.001 

Intercept 54.29 I 54.29 264.44 <0.001 

Date 46.39 13 3.57 17.38 <0.001 

Food Concentration 0.21 2 0.11 0.52 0.60 
Species 0.00 1 0.00 0.01 0.92 
Date • Food 2.55 15 0.17 0.83 0.65 
Concentration 
Date • Species 2.96 13 0.23 1.11 0.35 
Food Concentration • 0.80 2 0.40 1.94 0.15 
Species 
Date • Food 8.45 13 0.65 3.17 <0.001 
Concentration • Species 
Error 51.12 249 0.20530937 
Total 198.95 309 
Corrected Total 116.35 308 

R Squared = .561 (Adjusted R Squared = 
.456) 
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Table 16: ANOV A showing a significant difference in oxygen uptake of blue mussels 
(Myti/us edulis and M trossulus) over time. 

Source TypeiUSum df Mean Square F Sig. 
of Squares 

Corrected Model 47.70 13 3.67 15.77 <0.001 
Intercept 67.01 1 67.01 287.98 <0.001 

Date 47.70 13 3.67 15.77 <0.001 

Error 68.65 295 0.23 
Total 198.95 309 
Corrected Total 116.35 308 

R Squared = .410 (Adjusted R Squared = 
.384) 
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A seasonal pattern in oxygen uptake was observed in the mean values for oxygen uptake. 

Rates of oxygen uptake were generally higher during the summer compared with rates 

observed during the winter (Figure 6). Mean oxygen uptake rates generally increased 

from May 1998 through to November 1998, decreasing to 0.097 mL/h in December 1998, 

0.043 mL/h in January 1999 and 0.063 mL!h in March 1999. Rates then proceeded to 

increase, corresponding with the seasonal increase in water temperature. For a summary 

of the sample size, mean values and standard deviations for each of these groups, see 

Appendix 7. 
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Figure 6: A comparison of oxygen uptake (mL/h per one gram dry tissue mass) in 
Mytilus edulis and M trossulus over time (P < 0.0001 ). Vertical bars = 1 standard error. 
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J. 7 Interactions 

For all the analyses perfonned, there were no consistent interactions among any of the 

variables. The interaction between mussel origin and date was significant for clearance 

rate (F = 1.99, d.f. =I, 13, P = 0.02) (Table 6), ingestion rate (F = 3.55, d.f. =I, 13, P = < 

0.001) (Table 7) and oxygen uptake (F = 2.45, d.f. = 1, 12, P = 0.01) (Table 9). This 

interaction was not significant for filtration rate. Although the interactions for clearance, 

ingestion and oxygen uptake were significant, no trend of any sort was obvious after 

plotting cultured and wild rates together according to date. 
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3.8 Dry Weight Comparison 

Log dry soft tissue weight was regressed against log shell length. Regression analyses 

showed that dry weight was significantly, and positively correlated with shell length 

(Table 17). A four-way ANOV A showed that mussel origin (F = 0.68, d.f. = 1, 361, P = 

0.41 ), mussel species (F = 1. 76, d.f. = 1, 361, P = 0.19) and the available food 

concentration were not significant factors affecting the dry weight of the mussels (Table 

18). A one-way ANOVA showed that date did significantly affect the dry weight of the 

mussels (Table 19, Figure 7). For a summary of the sample size, mean values and 

standard deviations for each of these groups, see Appendix 8. 
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Table 17a: A summary of the sample size and the minimum and maximum dry weights 
(W) (g) of the animals (Mytilus edulis and M trossulus) comprising each respective 
sampling period. 

Month 

April98 24 0.02 1.17 
May98 41 0.03 2.51 
June 98 22 0.02 1.91 
July 98 31 0.03 2.82 
August 98 19 0.02 1.29 
September 98 14 0.03 1.70 
October 98 53 0.01 2.04 
November98 39 0.1 3.63 
December 98 29 0.06 2.69 
January 99 13 0.03 2.75 
March99 24 0.02 2.95 
May99 17 0.02 3.72 
June 99 26 0.02 2.09 
July 99 19 0.02 1.45 
August 99 32 0.01 2.19 

Table 17b: Regression analyses for log value dry weight and log value shell length 
(mm), following the allometric relationship y = axb, where y =dry weight of soft body 
tissues (g) and x = shell length (mm). 

Month e1 zSE b:SE F p-value 

April98 -3.19 ± 0.70 1.81 ± 0.45 0.40 16.39 0.000535 
May98 -4.24 ± 0.34 2.53 ± 0.22 0.76 128.27 < 0.0001 
June 98 -3.89 ± 0.40 2.18 ± 0.27 0.75 64.09 <0.0001 
July 98 -3.52 ± 0.45 2.03 ± 0.29 0.61 48.23 <0.0001 
August 98 -4.47 ± 0.14 2.51 ± 0.093 0.97 701.35 <0.0001 
September 98 -4.22 ± 0.61 2.49± 0.40 0.74 37.98 <0.0001 
October98 -4.83 ± 0.32 2.83 ± 0.21 0.78 180.65 <0.0001 
November98 -4.07 ± 0.31 2.41 ± 0.20 0.79 148.21 <0.0001 
December98 -4.21 ±0.18 2.49± 0.11 0.95 530.57 <0.0001 
January99 -3.88 ± 0.89 2.14± 0.54 0.55 15.70 0.00223 
March 99 -4.03 ± 0.78 2.29± 0.47 0.50 23.60 <0.0001 
May99 -4.88 ± 0.11 2.90± 0.073 0.99 1597.64 < 0.0001 
June 99 -5.41 ± 0.096 3.16 ± 0.061 0.99 2708.97 <0.0001 
July 99 -4.85 ± 0.28 2.81 ± 0.17 0.94 261.58 <0.0001 

I August99 -'-
.., ., -'-

.., 
1 -4.58 .._ 0.4.~.. 1 .... 59.- 0 .... 7 7 Q") I 0 .• 4 I 8 .... -0 < 0.0001 

69 



Table 18: ANOV A showing no significant difference in dry weight between cultured 
and wild, Mytilus edulis and M trossulus or among low (<3,500 cells/mL), medium 
(>3,500 cells/mL, <7,500 cells/mL) and high (>7,500 cellslmL) food concentrations. 

Sour(:e Type Ill Sum of df Mean Square F Sig. 
Squares 

Corrected Model 127.51 114 1.12 1.89 <0.001 
Intercept 149.71 1 149.71 252.39 <0.001 
Cultured or Wild 0.40 1 0.40 0.68 0.41 
Species 1.04 l 1.04 1.76 0.19 
Food Concentration 0.11 2 0.05 0.09 0.91 
Date 23.23 14 1.66 2.80 <0.001 
Cultured or Wild • 0.01 1 0.01 0.02 0.89 
Species 
Cultured or Wild • 4.64 2 2.32 3.91 0.02 
Food Concentration 
Species • Food 1.35 2 0.68 1.14 0.32 
Concentration 
Cultured or Wild • 0.40 2 0.20 0.33 0.72 
Species • Food 
Concentration 
Cultured or Wild • 17.29 13 1.33 2.24 0.01 
Date 
Species • Date 10.51 14 0.75 1.27 0.23 
Cultured or Wild • 14.69 12 1.22 2.06 0.02 
Species • Date 
Food Concentration • 18.14 20 0.91 1.53 0.07 
Date 
Cultured or Wild • 8.29 11 0.75 1.27 0.24 
Food Concentration • 
Date 
Species • Food 9.31 15 0.62 1.05 0.41 
Concentration • Date 
Cultured or Wild • 5.48 4 1.37 2.31 0.06 
Species • Food 
Concentration • Date 
Error 146.51 247 0.59 
Total 542.52 362 
Corrected Total 274.02 361 

R Squared= .465 (Adjusted R Squared= 
.219) 
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Table 19: ANOVA showing a significant difference in dry weight in blue mussels 
(Mytilus edu/is and M. trossulus) over time. 

Souree Type III Sum df Mean Square F Sig. 
of Squares 

Corrected Model 24.45 14 1.75 2.67 <0.001 
Intercept 245.44 1 245.44 374.95 <0.001 
Date 24.45 14 1.75 2.67 <0.001 
Error 253.98 388 0.65 
Total 551.88 403 

Corrected Total 278.43 402 
R Squared = .088 (Adjusted R Squared = 
.055) 
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3.9 Shell Analysis 

The weights of eighty-five sets of blue mussel shells were compared. This random 

sample was comprised of 35 cultured Mytilus edulis, 31 wild M edulis, 11 cultured M 

trossulus and 8 wild M trossulus (right and left valves). A one-way analysis of 

covariance (ANCOV A) was performed in order to determine whether mussel type, 

defined as cultured M edulis, cultured A/. trossulus, wild M edu/is or wild M trossulus, 

significantly affected the relationship between shell weight and shell length. The analysis 

revealed that mussel type (F = 230.49, d.f. = 3, 84, P < 0.001) significantly affected the 

relationship between shell weight and shell length (Table 20). From this analysis, mean 

shell weight was lowest for cultured M trossulus, and second lowest for cultured M 

edulis. Wild M trossulus had the highest mean shell weight, and wild M edulis had the 

second highest mean shell weight. Overall, cultured M edulis and M. trossu/us had 

significantly lower mean values for shell weight compared with wild M edulis and M 

trossu/us (Figures 8, 9, 10 and 11). For a summary of the sample size, mean values and 

standard deviations for each of these groups, see Appendix 9. A two-way ANOV A 

testing the significance of mussel origin and mussel species could not be performed due 

to a limiting number of degrees of freedom. A one-way ANCOV A showed that mussel 

origin is a significant factor affecting shell weight (F = 63.515, d.f. = 1, 84, P < 0.0001) 

(Table 21). For a summary of the sample size, mean values and standard deviations for 

each of these groups, see Appendix 10. A separate one-way ANCOV A showed that 

mussel species is also a significant factor affecting the relationship between shell weight 

and shell length (F = 63.515, d.f. = l, 84, P < 0.0001} (Table 22). For a summary of the 
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sample size, mean values and standard deviations for each of these groups, see Appendix 

II. 
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Table 20: ANCOV A showing a significant difference in the relationship between shell 
weight and shell length according to mussel species, Mytilus edulis and M trossulus. 

Source Type UI Sum of df Mean Square F Sig. 
Squares 

Corrected Model 50.56 4 12.64 438.05 <0.001 
Intercept 22.12 I 22.12 766.57 <0.001 
Log Shell Length 28.80 I 28.80 998.14 <0.001 
Species 19.95 3 6.65 230.49 <0.001 
Error 2.31 80 0.03 
Total 67.25 85 
Corrected Total 52.87 84 

R Squared= .956 (Adjusted R Squared = 
.954) 
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Figure 8: A comparison of the relationship between log shell weight (g) and log shell 
length (nun) for cultured Myti/us trossulus (P < 0.0001 ). 
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Figure 9: A comparison of the relationship between log shell weight (g) and log shell 
length (mrn) for cultured Mytilus edulis (P < 0.0001). 
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Figure 10: A comparison of the relationship between log shell weight (g) and log shell 
length (mm) for wild Myti/us trossulus (P < 0.0001 ). 
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Figure II: A comparison of the relationship between log shell weight (g) and log shell 
length (nun) for wild Alytilus edulis (P < 0.0001 ). 
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Table 21: ANCOVA showing a significant difference in the relationship between shell 
weight and shell length according to mussel origin. 

Source Type III Sum of Dl Mean Square F Sig. 
Squares 

Corrected Model 40.32 2 20.16 131.80 <0.001 
Intercept 22.10 1 22.10 144.44 <0.001 
Log Shell Length 29.04 1 29.04 189.81 <0.001 
Cultured or Wild 9.72 l 9.72 63.51 <0.001 
Error 12.54 82 0.15 
Total 67.25 85 
Corrected Total 52.87 84 

R Squared= .763 (Adjusted R Squared= 
.757) 
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Table 22: ANCOV A showing a significant difference in the relationship between shell 
weight and shell length according to mussel species, Mytilus edu/is and M. trossu/us. 

Source Type III Sum of Df Mean Square F Sig. 
Squares 

Corrected Model 40.32 2 20.16 131.80 <0.001 
Intercept 22.10 1 22.10 144.44 <0.001 
Log Shell Length 29.04 I 29.04 189.81 <0.001 
Species 9.72 1 9.72 63.51 <0.001 
Error 12.54 82 0.15 
Total 67.25 85 
Corrected Total 52.87 84 

R Squared = . 763 (Adjusted R Squared = . 757) 
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3.10 Size Comparison 

Standardized physiological rates were compared in small and large Mytilus edulis and M 

trossulus. Small mussels were characterized as having a shell length less than or equal to 

25 mm and large mussels were characterized as having a shell length of greater than or 

equal to 50 mm. Most physiological rates are scaled to dry tissue weight. As the animals 

grow, physiological rates such as feeding and oxygen consumption change in relation to 

the dry weight with varying exponents (Newell and Shumway 1993). In order to compare 

mean rates of clearance and ingestion, physiological rates of small mussels were 

standardized for a 0.1 gram dry weight mussel and those of large mussels for a 1.0 gram 

dry weight mussel. These theoretical values are realistic estimates of the average size of 

the small and large mussels used throughout this study. 

Standardized rates of clearance and ingestion, in both species, were higher for large 

mussels than for smaller mussels (Table 23, Figures 12, 13, 14 and 15). For small M 

edulis, clearance rate was 1.1 Llh compared to 2.06 Llh for large M. edulis. For small M 

trossulus, clearance rate was 1.66 Llh compared to 3.01 Llh for large M. trossulus. For 

small M. edulis, ingestion rate was 55,273.6 cellslh compared to 101,964.6 cellslh for 

large M. edu/is. For small M. trossulus, ingestion rate was 92,044.0 cellslh compared to 

194,720.5 cellslh for large M. trossulus. 
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Table 23: A summary of the mean standardized clearance rates (Lih) (CR) and ingestion 
rates (cells/h) (IR) for small (0.1 g) and large (1.0 g) Mytilus edulis and M. trossu/us over 
time. 

Small Mytilus Large Mytilus Small Mytilus Large Mytilus 
edulis edulis /rOSS IIIIlS trossulus 

Date CR IR CR IR CR IR CR IR 
Apr-98 0.35 12213.4 0.75 26419.9 0.72 24718.1 1.93 266090.1 

May-98 0.78 25369.6 1.40 47524.5 1.54 60719.9 1.88 128837.1 
Jun-98 2.21 114898.3 4.07 93325.4 2.45 112386.4 3.52 173389.11 
Jul-98 1.18 54654.9 1.61 87937.1 2.07 107475.8 4.11 189628.4 

Aug-98 1.21 44276.3 2.56 112819.8 2.05 78472.6 3.55 240123.1 
Sep-98 2.65 78361.4 3.44 140641.2 2.71 118702.3 3.81 114815.4 
Oct-98 0.98 53686.6 2.77 168476.2 1.76 101279.2 5.02 300742.1 

Nov-98 1.03 58282.0 2.06 88969.9 1.72 71654.3 3.31 96189.1 
Dec-98 0.95 37639.9 1.91 57374.5 2.01 129501.0 3.94 171278.0 
Jan-99 0.73 32011.4 1.26 68920.7 1.17 39764.3 2.14 67463.1 

Mar-99 0.31 27560.2 0.90 76331.2 0.60 62453.1 1.64 67518.3 
May-99 0.70 73439.0 1.36 123803.6 1.01 140014.5 2.39 376853.8 

Jun-99 1.01 65598.2 1.65 114095.3 1.88 93110.3 2.78 212020.2 
Jul-99 0.45 19254.4 1.61 60315.2 0.48 10237.0 0.55 11631.0 

Aug-99 1.92 131859.1 3.51 262514.1 2.76 230170.7 4.60 504228.6 

Mean 1.10 55273.6 2.06 101964.6 1.66 92044.0 3.01 194720.5 
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Figure 12: A summary of the mean clearance rates in small (Lih per 0.1 gram dry tissue 
mass) and large (Lib per one gram dry tissue mass) Mylilus edulis over time. 
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Figure 13: A summary of the mean clearance rates in small (Lib per 0.1 gram dry tissue 
mass) and large (Lib per one gram dry tissue mass) Mytilus trossu/us over time. 
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Figure 14: A summary of the mean ingestion rates in small ( cells/h per 0.1 gram dry 
tissue mass) and large (cellslh per one gram dry tissue mass) Mytilus edulis over time. 
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Figure IS: A summary of the mean ingestion rates in small (cellslh per 0.1 gram dry 
tissue mass) and large (cellslh per one gram dry tissue mass) Mytilus trossulus over time. 
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Section 4 Discussion 

4.1 Comparison of Weight Exponents 

Weight exponents for physiological rate functions for the present study were comparable 

with values reported in the literature (Thompson 1984; Bayne eta/. 1989; Bougrier et a/. 

1995; Smaal et al. 1997), although reported weight coefficients are quite variable (Smaal 

et a/. 1997; J0rgensen 1990; Jones et a/. 1992). Thompson (1984) reported weight 

coefficients ranging from 0.233 to 0.512 for clearance rate in wild Mytilus edulis. Newell 

and Thompson (1984) reported weight exponents ranging from 0.413 to 0.514 for 

clearance rate in M edulis. Bayne eta/. (1989) reported a weight coefficient of0.67 for 

all measures of feeding and Smaal eta/. ( 1997) reported allometric weight coefficients of 

0.5 for clearance rate in both M edulis and Cerastoderma edu/e. MacDonald and Ward 

(1994) obtained a weight exponent of0.68 for feeding in Placopecten magellanicus. In 

the present study, weight coefficients ranged from 0.13 to 0.53 for clearance rate, 0.19 to 

0.58 for ingestion and 0.14 to 0. 78 for filtration. Weight coefficients for oxygen uptake 

are, in general, higher than the coefficients reported for feeding. Smaal et al. ( 1997) 

reported values of 0. 7 for respiration in both M. edulis and C. edule. Bayne et a/. ( 1989) 

obtained weight coefficients of0.75 for respiration in blue mussels. Thompson (1984) 

published weight coefficient values of0.280 to 1.109 for oxygen uptake in M. edu/is. For 

the present study, weight coefficients for oxygen uptake were, generally, higher than the 

weight coefficients for clearance rate, ingestion rate and filtration rate, ranging from 0.19 
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to 0.82, but were comparable with published values. The lower weight exponents were 

observed during the spawning period of these mussels. Spawning may have affected the 

rate of oxygen consumption, thereby affecting the weight exponents. Thompson ( 1984) 

reported weight coefficients ranging from 2.51 to 3.34 for shell length (versus dry weight) 

in wild M edulis. Similar values were observed for the present study, ranging from 1.81 

to 3.16 for both cultured and wild blue mussels. All rates discussed are standardized 

rates. 

4.2 The lnftuenee of Investigated Fadon on Produdion 

4.2.1 Mussel Origin 

The results did not support the hypotheses that rates of clearance, ingestion, filttation, and 

oxygen consumption differed between cultured and wild blue mussels. These findings 

imply that cultured and wild mussels demonstrate similar feeding patterns, as well as 

respiration patterns, if they are exposed to similar environmental conditions. This is 

supported by previous studies that suggest that variation in the ingestion rate of mussels 

results from adaptations to distinct regional differences in quantitative and qualitative 

seston conditions (Bayne et al. 1984; Navarro et al. 1991 ). Mallet and Carver (1989) also 

found that spatial distribution (site) was the main factor accounting for differences in 

growth in transplanted juvenile Nova Scotian mussels. This again supports the 

observation that wild and cultured blue mussels display similar physiological responses 

when maintained in similar environments. 
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Although increased rates of growth and higher meat yields have been observed in 

cultured blue mussels compared with wild mussels (Gosling 1992)9 this is likely an 

environmental influence. Cultured and wild blue mussels normally occur in different 

microenvironments. Cultivated blue mussels are commonly grown in suspension culture, 

which offers a three-dimensional food supply9 whereas wild blue mussels inhabit the 

subtidal and intertidal zones, which offers only a two-dimensional tbod supply. It is 

likely that the surrounding water flow patterns are also different for these two groups of 

mussels. In addition, blue mussels growing in the subtidal or intertidal zone are subject to 

an increased risk of predation. As a defensive response to this increased risk of predation9 

blue mussels have to direct more energy towards shell thickness (Rodhouse eta/. 1984). 

According to this study, wild Mytilus edulis and wild M trossulus have significantly 

higher mean values for shell weight than cultured M edulis and cultured M trossu/us. 

The intertidal zone is also a high-energy environment requiring an increased amount of 

energy being directed towards byssal attachment. Finally, periodic aerial exposure in the 

intertidal zone causes mussels to close their valves in order to prevent desiccation. 

Periodic aerial exposure also means that mussels have to deal with a reduced feeding 

period, "repayment,. of an oxygen debt and continual readjustments between aerobic and 

anaerobic metabolism (Thompson 1984 ). In response to their ambient environment, it is 

likely that wild blue mussels direct more energy towards survival, rather than meat 

growth. Similarly, MacDonald and Bayne (1993) have observed that wild scallops 

"sacrifice'' fecundity for maintenance when food resources are limited. This implies that 

the redirection of energy flow is a natural response of bivalves, regardless of being wild 
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or cultivated. In Nova Scotia, mussel growers have experienced problems with eider 

ducks, which can strip mussel lines bare during their migration seasons. It would be 

interesting to test whether shell thickness will increase, over time, in these mussels as a 

natural response to predation. 

According to Rodhouse et al. ( 1984 ), cultivated blue mussels allocate less than half of 

their energy budget to reproduction as do wild blue mussels. Again, this may be a 

consequence of environmental circumstances. The results of the present study showed 

that there were no significant differences in feeding demand or oxygen consumption 

between cultured and wild blue mussels, but it is possible that cultured and wild blue 

mussels demonstrate differential patterns of energy allocation, which was not investigated 

in this study. 

Further, in Newfoundland the blue mussel culture industry relies upon wild spat 

collection, so the initial larval blue mussel population is largely comprised of wild blue 

mussels. Therefore, it is reasonable to conclude that observed differences between 

cultivated and wild blue mussels are due to adaptations to environmental factors rather 

than to genetic differences between these two groups. A one-way ANOVA (P<O.OOI) 

showed that the species composition between cultured and wild mussels was not 

significantly different. The continued success of the blue mussel industry in 

Newfoundland, based upon wild spat collection, validates the argument that observed 

differences between cultured and wild mussels are primarily the result of adaptations to 

environmental conditions. 
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The results obtained from the present study are based upon observations of cultured and 

wild blue mussels from only one location in Newfoundland. Caution should be exercised 

in extrapolating these results to other mussel cultivation sites within Newfoundland. It is 

important to conduct additional research to compare the responses of cultured and wild 

blue mussels from other locations in Newfoundland. 

4.2.1.1 Shell Analysis 

According to the shell analyses performed, cultured mussels have lower shell weight to 

shell length ratios than wild mussels. Cultured Mytilus trossulus had a lower shell weight 

to shell length ratio than M edulis. Wild mussels probably have much heavier shells 

since they live in a more extreme environment than do cultured mussels, directing more 

energy towards shell thickness, which offers protection from high energy wave action and 

from predation pressures. In addition, the increased rate of growth observed in cultured 

mussels results in a thinner and lighter shell. 

4.2.2 Species 

The results support the hypothesis that Mytilus edulis and M. tross11lus demonstrate 

different physiological responses to environmental circumstances. M trossulus displayed 

higher rates of clearance and ingestion than M edulis. This result corresponds with 

recent observations in the literature wbich suggest that difterent mytilid species exhibit 
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different physiological and morphological adaptations to similar environmental 

conditions (Tedengren eta/. 1990; Gardner and Skibinski 1991; Willis and Skibinski 

1992; Hilbish eta/. 1994). For instance, Shumway eta/. (1997) found significant 

differences in the rate at which individual algal species were cleared among three species 

of scallops. Patinopecten yessoensis had the highest overall rate and Placopecten 

magel/anicus the lowest. Clearance rates for Argopecten irradians were intennediate 

compared with P. yessoensis and P. magel/anicus. 

Species-specific differences have also been observed within a genus. In Mytilus, for 

instance, Bates ( 1992) found an increased frequency of M edulis in the larger size 

classes, and an increased frequency of M trossulus in the smaller size classes in eastern 

Newfoundland. This observation is supported by Comesana eta/. ( 1999) who found 

higher growth and survival of wild M edulis compared with M trossulus. They 

postulated that higher growth and survival rates of M edulis might explain the increase in 

frequency of M edulis with increased shell length observed in Newfoundland 

populations. Different genotypes have been associated with various fitness levels (Koehn 

eta/. 1984). It is reasonable to assume that M. edulis and M. trossulus, although 

obviously similar in appearance and even sympatric, employ different biological 

strategies to maximize survival. 

The results of the present study suggest that M edulis and M trossulus are 

physiologically distinct species. Specifically, the results show that kl trossu/us has a 

significantly higher rate of clearance and ingestion than M. edulis. This result has direct 
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implications for socking density and stocking density on a blue mussel culture site, 

analogous to the observed differences in small and large size classes of blue mussels. 

Since M. trossulus displays a higher overall food demand relative to M edulis, the species 

proportions of a mussel stock of these two species need to be considered when calculating 

optimal stocking density. The adequacy of site food flux should also be considered if 

there is a higher percentage of M trossulus stock. With an increase in the ratio of M. 

trossu/us toM. edulis, there should be a correspondent decrease in the socking and 

stocking density to compensate for the elevated food demand of the M. trossulus portion 

of the stock. Consider the following example based upon the present study and the 

observed differences between clearance rates for M. edulis and M. trossulus: 

Example lA: 

Average clearance rate for 1 gram dry tissue weight of M. edulis: 2.07 Llh 

Sock dimensions: diameter= 0.10 m; height= 2.5 m 

Assume velocity of 0.1 0 m/s 

Volume=~h 

= 1t(O.OS m)2(2.S m) 

=0.0196 m3 

Thus~ 0.0196 m3 is the volume of water passing through the sock every second. 
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Assume a constant food concentration of 5,000,000 cells/L, and that this entire food 

concentration is available to the mussels for clearance, then: 

5,000,000 cells/L x 1000 L/m3 = 5,000,000,000 cells/m3 

0.0196 m3 /sec x 5,000,000,000 cells/m3 = 98,000,000 cells/sec moving through the sock. 

If M edu/is have an average weight-specific clearance rate of2.07 L/h, then: 

2.07 Lib x 5,000,000 cells/L = 10,350,000 cellslh = 2,875 cells/s 

Assuming SO% clearance, then: 

98,000,000 cells/s x 0.50 I 2,875 cells/s = 17,043 individual 1 g mussels 

Thus, for a given sock diameter and height and a given available food concentration and 

• current, approximately 17 kg of 1 gram M edulis can be supported. 

Example 18: 

Average clearance rate for 1 gram dry tissue weight of M trossu/us: 3.37 Llh 

Sock dimensions: diameter= 0.10 m; height= 2.5 m 

Assume velocity of0.10 m/s 

Volume = n~h 

= n(O.OS m)2(2.5 m) 
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=0.0196 m3 

Thus, 0.0196 m3 is the volume of water passing through the sock every second. 

Assume a constant food concentration of 5,000,000 cells!L, and that this entire food 

concentration is available to the mussels for clearance, then: 

5,000,000 cells!L x 1000 Llm3 = 5,000,000,000 cellslm3 

0.0196 m3/s x 5,000,000,000 cellslm3 = 98,000,000 cells/s moving through the sock. 

If M trossu/us have an average weight-specific clearance rate of3.38 Llh, then: 

3.38 Llh x 5,000,000 cells/L = 16,900,000 cells/h = 4.694 cells/s 

Assuming SO % clearance, then: 

98,000,000 cells/sec x 0.50 I 4,694 cells/sec = 10,439 individual 1 g mussels 

Thus, for a given sock diameter and height and a given available food concentration and 

current, approximately 10.4 kg of 1 gram M trossulus can be supported. 
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Therefore, all other factors being equal, 1.63 times more M edu/is can be supported than 

M trossulus. Similarly, Mallet and Carver (1995) estimated the economic value of M 

edulis to be 1.7 times higher than M trossulus. 

Very little is known about the performance of M edulis relative toM trossu/us. Certain 

mussel tarm operators argue that higher production rates could be achieved if they could 

grow a stock of pure M edulis. Mallet and Carver (1995) observed that M trossulus had 

a significantly lower tissue weight during the summer than M edulis and was eliminated 

at a significantly higher rate during commercial grading trials than Nl edulis. From this, 

they estimated that the economic value of M. edulis was 1. 7 times higher than M. 

trossulus. The results of the present study agree with the observations of Mallet and 

Carver (1995). Blue mussels are cultivated extensively, so there is no increased food cost 

associated with the elevated food demand observed in M trossulus. However, there 

would be greater space requirements to meet the elevated food demand of M trossulus. 

Since higher rates of growth and survival in M edulis compared with M trossulus have 

been observed (Comesai\a et al. 1999), M. edulis may direct more energy towards growth 

and survival than M trossulus. However, M trossulus may simply be an easier prey 

target with thinner sheUs or have lower thermal tolerance. Further research in this area is 

necessary for a more complete understanding of the observed patterns. 

As expected, the results of the present study also showed that dry weight was 

significantly correlated with shell length. With an increase in shell length, there was a 

corresponding increase in dry weight. Therefore, if, as according to the present study, M 
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edulis does have an overall greater shell length than M trossulus, it is possible that it will 

also have a higher meat yield. Observations of an increased frequency of M edulis in the 

larger size classes of mussels and an increased frequency of M trossu/us in the smaller 

size classes of mussels (Bates 1992) support the idea that M edulis may have a higher 

economic value than M trossu/us. If M edu/is displays a higher overall rate of growth 

and survival than M. trossulus, even though M. trossu/us displays a higher feeding rate, 

then it is possible that M edulis is a more efficient feeder than M. trossulus. However, it 

is important to note that shell growth and meat yields are not necessarily coupled. Hilbish 

( 1986) observed that rates of growth in shell and soft tissue do not occur simultaneously. 

In general, M edu/is has been characterized as a temperate cold-water mussel which can 

occur in brackish waters, and M trossu/us has been characterized as a cold-water mussel, 

often found in areas which were ice-covered in previous Ice Ages, and is capable of 

withstanding very low salinities (Gardner 1996). Newfoundland has been characterized 

as a sub-arctic marine environment. This implies that M trossu/us may actually be better 

adapted to Newfoundland waters than M edulis. However, additional research directed 

towards identifying how M trossu/us allocates the additional food energy will be 

instructive in determining which species, if either, is actually a superior candidate for 

aquaculture in Newfoundland. This is especially true since no significant difference was 

observed in the rates of filtration or oxygen uptake between M. edulis and M. trossulus. 

A simple growth study with the two species grown out side by side would also be very 

helpful in determining whether one species is more suitable for culture. 
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Mytilus edulis and M. trossulus did not differ in the rates of filtration or oxygen uptake. 

Although the same trends were observed, there was a higher degree of variability 

associated with these two variables. A larger sample size and further experimentation is 

necessary in order to determine whether the trends observed with these variables would 

correspond with the observations for clearance and ingestion in M. edulis and M. 

trossulus. 

The results of the present study support the suggestion in the literature that M. edulis and 

M. trossu/us are physiologically distinct. Differential physiological adaptations may 

significantly contribute to the overall carrying capacity of a blue mussel cultivation site. 

Efforts should be made to ascertain species proportions of a stock. Allozyme and DNA 

markers are the most reliable methods of species determination. If the species 

proportions of a stock are unknown, estimates of secondary production may be biased. 

According to Dickie et a/. ( 1984 ), genotype is a major determinant of mortality effects in 

blue mussels. If more than one species is present in a stock of mussels, species 

proportions and associated physiological differences should be incorporated into models 

used to predict blue mussel production. Species-specific physiological differences will 

affect the overall food demand and performance of a stock of blue mussels. Incorporating 

this information into such models will greatly improve the reliability of predicted 

production estimates. 
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4.2.2.1 Shell Analysis 

There are significant differences in the shell weight to shell length ratio between cultured 

Myti/us edu/is and cultured M trossu/us. If M trossulus has a lighter shell weight (for a 

given size), then it is possible that this species will be more easily damaged during 

harvesting and processing procedures. This suggests that M trossu/us may be an inferior 

candidate for aquaculture and agrees with the findings of Mallet and Carver (1995) 

stating that M edu/is has a higher economic value than M trossu/us. However, it is also 

possible that a lighter shell weight for a comparable size of mussel may be due to 

morphometric differences rather than shell thickness. In this case, such a mussel may not 

be more susceptible to breakage. Therefore it is important to compare shell 

morphometries as well as shell thickness in order to detennine with confidence which 

shells would be more susceptible to damage or breakage during processing. 

4.2.3 Food Availability 

Clearance rate was not significantly affected by the available food concentration. Low 

food availability was characterized as a food concentration of <3,500 cell/mL, and 

medium food availability was characterized as > 3,500 cells/mL, <7 ,500 cells/mL. The 

narrow range of the available food concentration used in this study likely does not affect 

clearance rate, since clearance rate eventually peaks in relation to increasing food 

concentration, whereas ingestion plateaus in relation to increasing food concentration, 

until very high concentrations are reached (Dabinett, P ., pers.-comm., Memorial 
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University). The results of the present study support the hypothesis that rates of feeding 

(ingestion) increase with an increase in the available food concentration for all blue 

mussels. Mean ingestion rates were consistently higher at the high food concentrations 

compared to the mean rates of ingestion observed at the low food concentration. For 

April 1998, the overall mean ingestion rate at medium food concentration was higher than 

the mean rate at the high food concentration. There was a relatively small gap separating 

these two levels of food availability. More distinct levels of food availability may have 

allowed for more consistency among the months. Despite this, overall mean ingestion 

rates of increased rates of feeding with an increased available food supply were observed. 

The results of this study support recent published studies. Larval and juvenile bay 

scallops (Argopecten irradians concentricus (Say)) showed higher ingestion rates of 

Jsochrysis ga/bana at higher algal concentrations (Lu and Blake 1997). Furthermore, 

Hatcher eta/. ( 1997) studied the effects of winter ice cover and nutritive stress on the 

metabolism of cultured M edulis. They observed that food availability is a significant 

control on the seasonally changing metabolism of mussels, regardless of water 

temperature. MacDonald and Ward (1994) reported that clearance rates in Placopecten 

magellanicus were positively correlated with the total amount of chlorophyll-containing 

particles in the surrounding water and ingestion increased with increasing concentration 

of total suspended particulate matter. Bayne et a/. ( 1993) report similar observations for 

M edu/is. 

Filtration rates were not significantly affected by food availability. Again, there was a 

higher amount of variability associated with this variable, which may explain why 
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filtration results were not consistent with the other measures of feeding. Oxygen 

consumption was not significantly affected by food availability. Likewise, Widdows et 

a/. (1979) found that rates of oxygen consumption were not significantly affected by 

changes in seston concentration. However, metabolic rate is controlled by a number of 

interrelated variables. It is difficult to quantify the interacting effects of temperature, 

reproductive condition and food availability. 

In addition, there are several references in the literature to the effect of food quality on 

bivalve feeding physiology. In this study, mussels were fed a diet that consisted of equal 

amounts of two species of microalgae, the diatom Chaetoceros muelleri and the flagellate 

Isochrysis galbana (clone T-ISO). The purpose of providing a diatom and a flagellate 

was to try to provide a balanced diet for the mussels. Physiological acclimation has been 

observed in M. edulis across several levels of experimental food quality. Relevant 

mechanisms of compensation include increased rates of ingestion, increased absorption 

efficiency and an apparent increase in digestive capacity (gut fullness) (Bayne et al. 

1984). Mussels were observed to increase absorption rates for organics primarily by 

increasing absorption efficiency. Therefore, it is not likely that the type of food provided 

to the mussels throughout this study inhibited feeding activity. 

4.2.4 Seasonal Variables 

The results of this study indicate that rates of clearance, ingestion, filtration and oxygen 

uptake follow a seasonal cycle in all blue mussels examined. The intluence of 
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temperature and food on the growth of bivalves is well documented within the literature, 

especially for mytilids (e.g., Widdows 1978; Bayne and Worrall 1980; Kautsky 1982; 

Sprung 1984). Seasonal variation in bivalve physiology is usually related to intrinsic 

factors such as body size and reproductive condition as well as to extrinsic factors such as 

temperature and food availability (Smaal et al. 1997). Rates of clearance, oxygen uptake 

(Foster-Smith 1975) and filtration (Winter 1978) have been observed to exhibit 

endogenous and exogenous controls. Jergensen eta/. (1990) showed a relation between 

reduced pumping rates of blue mussels and the higher water viscosity at low 

temperatures. However. according to Thompson and Newell (1985) it is inappropriate to 

define, absolutely, a particular set of physiological responses to temperature as 

characteristic of a given species, in a species as ubiquitous and diverse of habitat as 

ft,fytilus edulis. 

Bayne and Widdows ( 1978) have demonstrated in M edulis and Cerastoderma edule that 

reproductive condition (defined by a complex interaction among temperature, food 

availability and hormonal cycles) can explain the seasonal variation in oxygen 

consumption to a greater extent than temperature. Widdows ( 1985) found that oxygen 

consumption in blue mussels was independent of temperature. MacDonald and 

Thompson ( 1986) observed that oxygen uptake and clearance rate in scallops varied 

seasonally in relation to ambient temperature and food conditions, which appeared to be 

intricately connected with the energy demands of gametogenesis. Spawning is stressful 

for mussels (Bayne et al. 1978), and mussels have often been observed to resort to protein 
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catabolism for energy because their carbohydrate reserves have been exhausted by 

vitellogenesis (Bayne et a/. 1976). 

Significant seasonal cycles were associated with rates of clearance, ingestion, filtration 

and oxygen consumption in the present study. Physiological rates seemed to be affected 

by ambient seawater temperatures. Physiological rates generally corresponded to ambient 

seawater temperatures, increasing during the spring and summer, and decreasing during 

late autumn and winter. Reproductive condition also significantly affected blue mussel 

physiology. In the present study, rates of clearance, ingestion, filtration and oxygen 

consumption were depressed during spawning, which corresponds to Newell and 

Thompson's ( 1984) observation of a decrease in clearance rates in M. edulis following 

gametogenesis. 

The interactive effects of season and reproductive condition on the seasonal cycles of 

blue mussels were evident. Throughout late spring and early summer of 1998 and 1999, 

intenninent spawning patterns were observed, however, most of the spawning occurred in 

June. Newell and Thompson (1984) observed depressed clearance rates in M. edulis 

during an extended, late summer period of spawning. During this extended spawning, 

mussels were observed to have a very pronounced shell gape that prevented the fonnation 

of siphons. This effectively reduced efficiency in the fonnation of feeding currents and 

therefore feeding efficiency. The decreases in clearance, ingestion, filtration and oxygen 

consumption during the late spring and summer months observed in this study correspond 

to the mussel spawning periods. The sharp increases sometimes observed tollowing 
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depressed feeding activity agree with the observations of Smaal et a/. ( 1997), who have 

suggested that feeding rate may increase to provide energy for gametogenesis. The 

spawning period also corresponds to the observed spawning in mussels from Trinity Bay, 

Newfoundland, which takes place during late July (Thompson 1984). 

The effect of food availability on physiological rates further complicates the 

interpretation of the seasonal and reproductive condition data obtained from this study. 

Experimental mussels were fed predetennined diets (low, medium or high food 

concentrations) which did not match ambient seasonal food levels. Winter and Langton 

( 1975) observed that growth (defined as an increase in the dry tissue weight) is a direct 

function of the quantity of food ingested up to an optimal level. Similarly, Riisgard 

(1991) observed that clearance rate (mL/min) peaks and gradually decreases at very high 

algal concentrations(> 15,000 cells/mL). He proposed that unnaturally high algal 

concentrations commonly used in laboratory studies may lead to valve closure, reduced 

metabolism and reduced growth. Food concentrations used in this study were generally 

not unnaturally high~ although, experimental mussels were exposed to low, medium and 

high food concentrations. Exposure to high food concentrations during some of the 

colder winter months may have not been representative of what the mussels would have 

experienced in their natural environment during colder periods. 

It is important to acknowledge the inherent difficulty associated with separating the 

effects of temperature, reproductive condition and food availability. These variables are 

intricately related and it is very difficult to establish the exact effect of either temperature, 
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reproductive condition or food availability on rates of clearance, ingestion, filtration or 

oxygen consumption in blue mussels. Since there is a strong interaction among these 

variables, the overall effect of temperature and reproductive condition should be 

considered in blue mussel cultivation. These effects will likely have less influence on 

socking and stocking densities and carry more weight in deciding upon the optimal time 

to harvest or handle market-size mussels. lf food intake is elevated prior to spawning, 

better meat yields may be achieved if mussels are harvested just prior to spawning, as 

long as harvesting does not result in gamete release prior to consumption. It is definitely 

best not to harvest immediately after spawning since mussel meat yields at that time will 

be minimal. 

4.2.5 Size and Density 

To consider the relative feeding rates of small and large mussels, standardized rates of 

clearance and ingestion were examined for small mussels standardized to 0.1 gram dry 

tissue weight and large mussels to 1.0 gram dry tissue weight. The implications of 

socking densities for the two size classes are illustrated in the following example based 

upon the observed differences between clearance rates for small and large blue mussels 

from the present study. 

Example 2A: 

Average clearance rate for 0.1 gram dry tissue weight of small blue mussels: 1.51 Llh 

Sock dimensions for small blue mussels: diameter= 0.10 m; height = 2.5 m 
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Assume a current velocity ofO.IO m/s 

Volume=~h 

= 1t(0.05 m)2(2.5 m) 

=0.0196 m3 

Since the velocity is equal to 0.10 m/s, it will take one second for water to be replaced in 

the sock. Thus, 0.0196 m3 is the volume of water passing through the sock every second. 

Assuming a constant food concentration of 5,000,000 cells/L and that this entire food 

concentration is available to the mussels for clearance, then: 

5,000,000 cells/L x 1,000 L/m3 = 5,000,000,000 cells/m3 

0.0196 m3/s x 5,000,000,000 cells/m3 = 98,000,000 cells/s 

Thus 98,000,000 cells are passing through the sock every second. 

If small blue mussels have an average clearance rate of 1.51 Lib, then: 

1.51 Lib x 5,000,000 cells/L = 7,550,000 cellslh = 2,097 cells/s 
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lf98,000,000 cells pass through the sock every second and 2,097 cells are consumed 

every second by 0.1 gram dry weight of small blue mussels, and assuming SO % 

clearance, then: 

98,000,000 cells/s x 0.50 /2,097 cells/s = 23,367 individual 0.1 g mussels 

Thus, for the given sock dimensions and a given available food concentration and current, 

approximately 2.3 kg dry weight ofO.l g (small) blue mussels can be supported. 

Example 28: 

Average clearance rate for 1 gram dry tissue weight of large blue mussels: 2.32 Lib 

Sock dimensions for large blue mussels: diameter = 0.1 0 m; height = 2.5 m 

Volume=nrh 

= 1t(0.05 m)2(2.5 m) 

=0.0196 m3 

Assume a velocity of 0.10 m/s and a flux equal to that for the smaller mussels of 0.0 196 

m3/s. 

Assuming a constant food concentration of 5,000,000 cells/L and that this entire food 

concentration is available to the mussels for clearance, then: 
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5,000,000 cells!L x 1,000 L/m3 
= 5,000,000,000 cells/m3 

0.0196 m3/sec x 5,000,000,000 cells!m3 = 98,000,000 cells/s 

Thus 98,000,000 cells are passing through the sock every second. 

If large blue mussels have an average clearance rate of 2.32 Lib, then: 

2.32 Lib x 5,000,000 cells!L = 11,600,000 cells/h = 3,222 cells/s 

lf98,000,000 cells pass through the sock every second and 3.222 cells are consumed 

every second by 1 gram dry weight of large blue mussels, and assuming SO % clearance, 

then: 

98,000,000 cells/sec x 0.50 I 3,222 cells/s = 15,208 individual I g mussels 

Thus, for the given sock dimensions and a given available food concenttation and curren~ 

approximately I 5 kg dry weight of I gram (large) blue mussels can be supported. 

Therefore, the values obtained from the present study indicate that larger mussels should 

be maintained at a much lower stocking density than smaller mussels, but can be 

maintained at a higher biomass per sock compared to smaller mussels. This is illustrated 
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in the following example. An equivalent dry weight~ e.g., 1 kg dry weight of small 

mussels will clear (and ingest) more than 1 kg dry weight of large mussels. 

Example 3: 

Mean dry weight of one small mussel = 0.1 g 

Mean dry weight of one large mussel = 1.0 g 

1 kg = 10,000 small mussels 

1 kg = 1 ,000 large mussels 

Given the mean clearance rate of small mussels is 1.51 Lib and the mean clearance rate of 

large mussels is 2.32 Lib, then 1 kg of small mussels will clear 15,100 L/h and 1 kg of 

large mussels will clear 2,320 Lib. 

If a mussel sleeve is beyond optimal biomass, then growth rates may become depressed 

due to competition for food (Frechette and Bourget 1985; Mallet and Carver 1993). 

Dense aggregations of bivalves can locally deplete the water of seston resulting in food

limited growth (Pilditch eta/. 1996). With such dense aggregations, the literature 

suggests that there is an increased risk of mussel drop-off due to an insufficient 

availability of oxygen, as well as reduced juvenile settlement due to a greater 

accumulation of biodeposits which effectively leaves less surface area for larval 

settlement (Mallet and Carver 1993). 
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Also, pressure from other mussels may impede shell opening and the formation of 

siphons. Shell opening is a critical factor in controlling mussel pumping rate, which, in 

turn, will affect acquisition of food (Jergensen eta/. 1988). Socking at optimal density 

will lessen the risk of food and oxygen deprivation, and ultimately mussel loss. 

Similarly, it is important to consider the size distribution of a mussel stock when deciding 

upon optimal site stocking density and longline placement. Strategic density management 

can be a major tool for a mussel farmer to use to increase commercial production 

(Gosling 1992). For instance, if the goal is to attain market-size mussels in the shortest 

time, then smaller size classes should be stocked in an area with maximal accessibility to 

the available food resources. This will be dependent upon site characteristics including 

site type (flow-through or embayment) and site-specific food flux patterns. Food supply 

is influenced by a number of factors, varying temporally and spatially, such as season, 

water flow, mixing of the water column, upwellings, wind speed and direction, 

sedimentation/erosion characteristics and depletion by benthic filtration (Smaal and Haas 

1997). Tidally dominated systems, for example, have periods of very low water flow and 

are therefore more vulnerable to localized food depletion, whereas in other systems food 

supply may not be as closely coupled to the tidal cycle (Carver and Mallet 1990). In large 

bays, primary production may constitute the primary food source (Carver and Mallet 

1990). In Newfoundland, most of the available food supply is from primary production. 

Several studies have emphasized the importance of currents in maintaining a constant 

supply of food to suspension feeders (Incze eta/. 1980; Rosenberg and Loo 1983; 
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Frechette and Bourget 1985). However, too strong a current may actually limit food 

acquisition. Filtration by blue mussels may be inhibited at flow rates exceeding 25 cm/s 

(Wildish and Miyares 1990). Wildish and Miyares ( 1990) hypothesize that as ambient 

seawater pressure at the inhalant siphon exceeds the mussel's ability to effectively 

remove food particles from the water, the ciliary pumping rate is decreased, and pumping 

becomes intermittent, exploratory and/or concerned with basal respiration. Although 

current flow rates rarely exceed 25 crnls in Newfoundland, it is still important to consider 

flow rates. In addition, mussel orientation will also affect food intake. Wild mussels are 

benthic, and are generally perpendicular in orientation to current flow, whereas socked 

cultured mussels range in orientation from perpendicular to parallel to directly facing a 

current. Food flux and all factors affecting food flux must also be given due 

consideration when calculating optimal stocking density. 

In Mutsu Bay, Japan, overstocking in the mid-seventies resulted in substantial growth 

reduction and mortality in the scallop, Patinopecten yessoensis (Ventilla 1982). ln 

Newfoundland, Atlantic Ocean Farms (AOF) was one of the first commercial blue mussel 

cultivation companies, incorporated in 1981. AOF chose their sites based upon the 

abundance of natural mussel beds (Ward, J. pers-comrn., AOF, St. John's, NF). 

However, the tirst 25,000 socks of mussels placed in the harbour did not grow. "'It was 

years before we discovered we had overstocked the site, and it also had poor flushing and 

was unable to circulate nutrients" (DF A 1999). Identification and quantification of 

differences in the feeding demand and oxygen consumption patterns of small and large 

blue mussels is critical. When applied to an ecosystem model, such values wiH 
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strengthen the reliability of models used to predict carrying capacity and site production, 

thereby minimizing the possibility of overstocking. 

The final market product should also be considered when evaluating optimal stocking 

density, since different end products may require a different initial stocking density 

(Parsons and Dadswell 1992). For instance, deliberate overcrowding can be used by a 

mussel fanner to slow growth rates for specific purposes such as to maintain a continuous 

supply of mussels of the desired size for marketing (Gosling 1992). This 'A-ill become a 

more useful tool with increasing diversification of the blue mussel market (e.g., mussel 

salads, individually-quick-frozen (IQF) products, vacuum-packed products and ready

made products). 

In addition to adjusting stocking density, a mussel fanner has other options to 

accommodate the observed differences in feeding and oxygen consumption between 

small and large blue mussels. Small and large mussels can be maintained on separate 

sites. Ideally, larger mussels should be maintained in an area offering maximal food flux. 

This will optimize growth for both the small and large mussels. Furthermore, whether 

separate sites are available or not, mussel lines should be oriented so that they are parallel 

to the current, instead of perpendicular. A parallel orientation will also optimize the 

available food supply to the mussels. 
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Section S Conclusion 

5.1 Conclusions 

With respect to the mussels used throughout this study, obtained from Reach Run, 

Newfoundland: 

1) There were no significant differences in the observed rates of clearance, ingestion, 

filtration or oxygen uptake between cultured and wild blue mussels, M edulis and M 

trossu/us. 

2) Atlytilus trossulus had, on average, higher rates of clearance and ingestion than kl 

edulis. 

3) Ingestion rates increased with an increase in the available food concentration for 1\J. 

edulis and M trossulus. 

4) Rates of clearance, ingestion, filtration and oxygen consumption varied seasonally for 

M edulis and M trossulus. 

5.2 Recommendations Pertaining to Blue Mussel Cultivation 

I) Ideally, small and large mussels should be maintained on separate sites in order to 

maximize the available food concentration for large blue mussels. 

2) If it is not possible to maintain different size classes on separate sites, then larger 

mussels should be maintained in an area offering maximal food flux, or a larger 

number of smaller mussels can be grown out. 
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3) For any site, mussel lines should be oriented so that they are paraUel to the current, 

not perpendicular, thereby optimizing the food supply to the mussels. 

4) The adequacy of site food flux should also be reconsidered if there is a higher 

percentage of Myti/us trossu/us stock, in which case the overall sock and site density 

should be lowered in order to ensure that there is a sufficient supply of food available 

to each mussel. 

5) In designing carrying capacity models for blue mussel cultivation, it is important to 

incorporate size and species proportions, as well as food flux and season into the 

models, since each of these factors affect blue mussel feeding and respiratory 

physiology. 
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Appendix 1: A map of Reach Run. Newfoundland (49° 25' N, 54° 42' W (4531)) 
obtained from the Environment Canada Shellfish Classification internet 
site (1999) . 

Web address: 

http://www.atl.ec.gc.ca/epb/sfish/maps/nf/high/f070304h.jpg 
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Appendix l: A schematic drawing of the octopus set-up as per MacDonald (1985). 
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Appendix 3: A schematic drawing of the respiration set·up. 
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Appendix 4: A summary of the mean values, standard deviations and sample sizes for 
the standardized values of clearance (Lih) for Mytilus edulis and M trossu/us over time. 
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Species Date Mean Std. Deviation Sample Size 
Mytilus edulis Apr-98 3.42 0.57 3 

May-98 2.44 1.84 13 
Jun-98 2.48 1.25 12 
Jul-98 3.57 0.83 11 

Aug-98 2.65 1.28 16 
Sep-98 2.26 1.01 10 
Oct-98 1.89 0.57 14 

Nov-98 1.39 0.72 19 
Dec-98 0.97 0.51 14 
Jan-99 0.83 0.46 8 

Mar-99 1.34 0.47 16 
May-99 1.67 1.25 13 
Jun-99 1.52 0.58 12 
Jul-99 1.53 0.62 6 

Aug-99 3.43 1.60 19 

Total 2.07 1.32 186 

Myti/us trossulus Apr-98 3.77 0.91 8 
May-98 4.23 1.35 12 
Jun-98 4.23 3.08 9 
Jul-98 3.65 1.19 14 

Aug-98 4.80 0.51 3 
Sep-98 3.77 1.67 4 
Oct-98 4.00 1.52 16 

Nov-98 2.22 0.72 11 
Dec-98 1.89 1.54 14 
Jan-99 1.71 0.78 5 

Mar-99 2.65 1.08 8 
May-99 2.39 0.43 2 
Jun-99 2.84 1.45 9 
Jul-99 1.63 1.89 3 

Aug-99 4.94 1.62 12 

Total 3.38 1.76 130 

Total Jan-99 1.17 0.73 13 

Mar-99 1.78 0.95 24 
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Species Date Mean Std. Deviation Sample Size 
Apr-98 3.68 0.82 11 

May-98 3.30 1.83 25 
Jun-98 3.23 2.33 21 
Jul-98 3.62 1.03 25 

Aug-98 2.99 1.43 19 
Sep-98 2.69 1.36 14 
Oct-98 3.02 1.58 30 

Nov-98 1.69 0.81 30 
Dec-98 1.43 1.22 28 
May-99 1.77 1.19 15 
Jun-99 2.08 1.22 21 
Jul-99 1.56 1.07 9 

Aug-99 4.01 1.75 31 

Total 2.61 1.64 316 
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Appendix 5: A summary of the mean values, standard deviations and sample sizes for 
the standardized values of ingestion (cells/h) for Mytilus edulis and M trossulus at low 
(<3,500 celVmL), medium (>3,500 cells/mL, <7,500 cell/mL) and high (>7,500 cells/mL) 
food concentrations over time. 

135 



Species Food Date Mean Std. Sample 
Concentntion Deviation Size 

Mytilus edulis Low Apr-98 93325.4 I 
May-98 78226.8 39576.2 7 
Jun-98 58147.0 24580.0 10 
Jul-98 87957.0 46532.2 8 

Aug-98 25788.4 19115.7 6 
Sep-98 64521.9 33844.8 4 

Oct-98 36379.2 15477.2 9 
Nov-98 54633.1 31966.9 II 
Dec-98 1698.2 1 
Jan-99 29180.2 16193.1 8 

Mar-99 31440.1 20710.2 10 
May-99 36162.5 27658.0 8 
Jun-99 48970.0 25109.1 3 
Jul-99 27939.0 11492.8 4 

Total 48497.1 33273.3 90 

Medium Apr-98 234422.9 1 
May-98 126023.1 140015.8 4 

Jul-98 160845.5 18292.3 2 
Aug-98 158796.2 33215.8 6 
Sep-98 166606.4 68172.2 6 
Oct-98 110529.5 32510.9 4 

Nov-98 109474.0 65591.3 8 
Dec-98 60305.0 9769.8 8 
Mar-99 61015.9 26576.8 6 

May-99 68315.5 29200.5 3 
Jun-99 97469.2 12273.9 5 

Aug-99 181010.7 81796.5 13 
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Species Food Date Mean Std. Sample 
Concentration Deviation Size 

Total 124613.6 73880.0 66 

High Apr-98 316227.8 1 
May-98 115681.9 31616.9 2 
Jun-98 303998.8 49278.7 2 
Jul-98 331131.1 1 

Aug-98 350963.3 14210.4 4 
Oct-98 371535.2 1 
Dec-98 152884.7 90898.3 5 

May-99 1037951.3 672614.1 2 
Jun-99 198593.5 89016.2 4 
Jul-99 163731.2 31788.0 2 

Aug-99 411800.4 157719.0 6 

Total 323169.1 266386.5 30 

Total Apr-98 214658.7 112757.8 3 
May-98 98695.7 79429.0 13 
Jun-98 99122.3 99363.7 12 
Jul-98 123316.2 84556.2 11 

Aug·98 156960.1 132099.6 16 
Sep-98 125772.6 75780.9 10 
~t-98 81504.7 92362.8 14 

Nov-98 77724.0 54905.9 19 
Dec-98 89183.0 72500.8 14 
Jan-99 29180.2 16193.1 8 

Mar-99 42531.0 26673.4 16 
May-99 197703.7 421356.0 13 
Jun-99 119052.5 78628.1 12 
Jul-99 73203.1 72101.0 6 

Aug-99 253891.6 153356.3 19 

Total 119808.1 150872.8 186 

Mytilus Low Apr-98 97723.7 l 
tross11/11S 

May·98 127573.5 50524.8 5 
Jun-98 143496.0 122971.4 6 
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Species Food Date Mean Std. Sample 
Concentration Deviation Size 

Jul-98 131062.8 41942.0 6 
Aug-98 91201.1 1 
Sep-98 133789.9 67677.7 3 
Oct-98 113457.9 47117.5 6 

Nov-98 93803.7 23429.7 8 
Jan-99 59203.8 26692.9 5 

Mar-99 43213.3 9765.8 2 
Jun-99 78830.0 30721.6 5 
Jul-99 38862.5 47354.5 3 

Total 101958.3 60629.9 51 

Medium Apr-98 269153.5 I 
May-98 237147.7 79580.5 7 

Jul-98 199628.2 85341.1 6 
Sep-98 218776.2 1 
Oct-98 150351.1 45144.2 3 

Nov-98 105430.6 65415.5 3 
Dec-98 79308.4 20268.0 4 
Mar-99 119955.4 49425.8 6 
May-99 77624.7 I 
Jun-99 261412.9 67340.1 2 

Aug-99 253925.6 73272.3 7 

Total 183609.1 88717.4 41 

High Apr-98 223053.2 84308.9 6 
Jun-98 240784.2 25784.1 3 
Jul-98 307945.2 54859.7 2 

Aug-98 393576.2 6407.8 2 
Oct-98 477934.0 189597.4 7 
Dec-98 250113.0 225397.7 10 

May-99 676083.0 1 
Jun-99 302203.7 175893.9 2 

Aug-99 700236.5 175564.1 5 

Total 370843.6 228327.9 38 
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Species Food Date Mean Std. Sample 
Coneentntion Deviation Size 
Total Apr-98 213149.6 86675.1 8 

May-98 191491.8 86984.0 12 
Jun-98 175925.4 109470.0 9 
Jul-98 185716.9 86462.0 14 

Aug-98 292784.5 174635.1 3 
Sep-98 155036.5 69707.8 4 
Oct-98 279833.7 219385.2 16 

Nov-98 96974.7 35631.4 11 
Dec-98 201311.7 204153.8 14 
Jan-99 59203.8 26692.9 5 

Mar-99 100769.9 54959.6 8 
May-99 376853.8 423173.9 2 
Jun-99 169042.6 128680.1 9 
Jul-99 38862.5 47354.5 3 

Aug-99 439888.5 258753.1 12 

Total 206307.0 176809.9 130 

Total Low Apr-98 95524.6 3110.1 2 
May-98 98787.9 49277.5 12 
Jun-98 90152.9 84995.8 16 
Jul-98 106430.9 48296.4 14 

Aug-98 35133.1 30261.7 7 
Sep-98 94208.2 58909.8 7 
Oct-98 67210.7 49573.0 15 

Nov-98 71126.0 34292.8 19 
Dec-98 1698.2 1 
Jan-99 40727.7 24931.8 13 

Mar-99 33402.3 19508.9 12 
May-99 36162.5 27658.0 8 
Jun-99 67632.5 30956.2 8 
Jul-99 32620.5 29113.9 7 

Total 67834.1 51780.6 141 

Medium Apr-98 251788.2 24558.2 2 
May-98 196738.8 113245.2 11 

139 



Species Food Date Mean Std. Sample 
Concentration Deviation Size 

Jul-98 189932.5 74648.0 8 
Aug-98 158796.2 33215.8 6 
Sep-98 174059.2 65281.6 7 
Oct-98 127595.9 40754.0 7 

Nov-98 108371.2 62217.0 11 
Dec-98 66639.5 16134.5 12 
Mar-99 90485.7 48773.8 12 
May-99 70642.8 24292.2 4 
Jun-99 144310.3 85180.0 7 

Aug-99 206530.9 84819.2 20 

Total 147219.4 84543.1 107 

High Apr-98 236363.9 84637.7 7 
May-98 115681.9 31616.9 2 
Jun-98 266070.0 46242.1 5 
Jul-98 315673.8 41036.5 3 

Aug-98 365167.6 24771.0 6 
Oct-98 464634.1 179518.6 8 
Dec-98 217703.6 193057.7 15 
May-99 917328.5 519475.1 3 
Jun-99 233130.3 117493.6 6 
Jul-99 163731.2 31788.0 2 

Aug-99 542907.7 217844.9 11 

Total 349810.7 245099.4 68 

Total Apr-98 213561.1 88329.9 11 
May-98 143237.8 94134.1 25 
Jun-98 132037.9 108353.7 21 
Jul-98 158260.6 89598.0 25 

Aug-98 178406.0 143247.2 19 
Sep-98 134133.7 72700.1 14 
Oct-98 187280.1 197094.9 30 

Nov-98 84782.6 48969.2 30 
Dec-98 145247.4 160804.3 28 
Jan-99 40727.7 24931.8 13 
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Species Food Date Mean Std. Sample 
Concentration Deviation Size 

Mar-99 61944.0 46581.1 24 

May-99 221590.4 411026.4 15 

Jun-99 140476.8 103277.9 21 

Jul-99 61756.2 64066.6 9 

Aug-99 325890.4 217121.4 31 

Total 155393.1 167297.5 316 
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Appendix 6: A summary of the mean values, standard deviations and sample sizes for 
the standardized values of filtration (mglb) in blue mussels (Mytilus edulis and M. 
trossulus) over time. 
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Date Mean Std. Sample 
Deviation Size 

May-98 4.94 3.89 10 
Jun-98 4.17 2.20 22 
Jul-98 3.78 1.73 26 

Aug-98 3.56 4.53 17 
Sep-98 4.52 3.27 14 
Oct-98 4.99 3.78 44 

Nov-98 2.57 2.65 23 
Dec-98 2.40 1.10 28 
Jan-99 3.57 2.79 12 

Mar-99 3.27 1.99 22 
May-99 3.20 0.31 12 
Jun-99 1.81 1.43 19 
Jul-99 2.50 1.54 8 

Aug-99 2.45 2.22 26 

Total 3.46 2.81 283 
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Appendix 7: A summary of the mean values, standard deviations and sample sizes for 
the standardized values of oxygen uptake in blue mussels (Mytilus edulis and M 
trossulus) (mL/h) over time. 
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Date Mean Std. Sample 
Deviation Size 

May-98 1.91 1.33 11 
Jun-98 0.62 0.25 21 
Jul-98 0.60 0.39 28 

Aug-98 0.34 0.16 19 
Sep-98 0.86 0.71 13 
Oct-98 0.93 0.75 50 

Nov-98 0.18 0.12 34 

Dec-98 0.10 0.07 24 
Jan-99 0.04 0.04 9 

Mar-99 0.07 0.05 24 
May-99 0.39 0.13 16 
Jun-99 0.42 0.28 26 
Jul-99 0.48 0.09 7 

Aug-99 0.52 0.58 27 

Total 0.52 0.61 309 
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Appendix 8: A summary of the mean values. standard deviations and sample sizes for 
the standardized values of log dry weight (g) of blue mussels (Mytilus edu/is and M 
trossulus) over time. 
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Date Mean Std. Sample 
Deviation Size 

Apr-98 -0.38 0.44 24 
May-98 -0.38 0.49 41 
Jun-98 -0.73 0.71 22 
Jul-98 -0.45 0.75 31 

Aug-98 -0.71 0.74 19 
Sep-98 -0.50 0.72 14 
Oct-98 -0.64 0.71 53 

Nov-98 -0.27 0.50 39 
Dec-98 -0.16 0.61 29 
Jan-99 -0.38 0.66 13 

Mar-99 -0.27 0.74 24 
May-99 -0.56 0.94 17 
Jun-99 -0.47 0.78 26 
Jul-99 -0.29 0.43 19 

Aug-99 -0.62 0.76 32 

Total -0.45 0.68 403 
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Appendix 9: A summary of the mean values, standard deviations and sample sizes for 
log shell weight (covariate log shell length) comparing cultured and wild Mytilus edulis 
and M. trossu/us. 
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Mussel Type Mean Std. Deviation Sample Size 

Cultured Mytilus edulis 0.291 0.625 35 
Wild Mytilus edu/is 0.651 0.727 31 
Cultured Mytilus trossu/us -0.610 0.399 11 
Wild Mytilus trossu/us 1.410 0.245 8 

Total 0.411 0.793 85 
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Appendii 10: A summary of the mean values, standard deviations and sample sizes for 
log shell weight (covariate log shell length) comparing cultured and wild blue mussels. 
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Cultured or Wild Mean Std. Deviation Sample Size 
Cultured 0.0758 0.693 46 

Wild 0.8071 0.725 39 

Total 0.4113 0.793 85 

151 



Appendix 11: A summary ofthe mean values, standard deviations and sample sizes for 
log shell weight (covariate log shell length) comparing Mytilus edulis and M trossulus. 
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Species Mean Std. Deviation Sample Size 
Mytilus edu/is 0.0758 0.693 46 

Mytilus trossu/us 0.8071 0.725 39 

Total 0.4113 0.793 85 
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