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Figure 13

Removal of external calcium completely blocks the amplitude increase

after HFS.

Figure 14
STP does not require NMDA

Figure 15

:eptors or postsynaptic calcium.

HFS-induced large mEPSCs have faster rise times.

Figure 16

A fraction of the cells showing an extended ampSTP showed evic

multiquantal transmitter release.
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reach the threshold for action potent  firit  Thisisin ta graded response, meaning
that the m«  hyperpolarized the initial memb e potent  of the neuron, the longer the

latency to threshold (Shibata, et al., 2000).
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amplitude potentiation which has been revealed here is1 :ly a physiol¢ “cally relevant

form of synaptic plasticity and warrants further investig: on.
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Figure 2: Short-term potentiation (STP) in the SON. A)V:i age-clamp trace from a repres-

entative cell held at -80 mV shows that HFS (50 Hz for | s) of the excitatory afferents to

the SON results in potentiation of ~s which persists for several minutes. Arrow de-

notes time of HFS delivery. B, C, & D) Expanded voltage clamp traces from the same

cell as above illustrate the frequency and amplitude of mEPSCs during the control period,

2 minutes following and 6 minutes following HFS.
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Figure 4: Basal mEPSC frequency a
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:ts the response to F.. 3. A) Scatter-plot with linear

regression analysis reveals that the basal mEPSC frequency is negatively related to the

percent change of frequency to HFS (p < 0.01; n = 21; each circle denotes a single MCN).

B) Scatterplot showir that the percent change of mE  _ frequency is positively cor-

21).C) Scat . ot showing that

related to how long the mse lasts (p <0.02; ¢

there is no direct relationship betw 1 basal mEPSC frequency to the duration of the

response to HFS. Dotted lines signify the line of best fit.
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Figure 5: HFS to excitatory afferents results in an increase in mEPSC amplitude. A) Time-
effect plot of amplitude shows that a 50 Hz stimulus once for | s or 100 Hz twice for 2 s
results in a statistically similar increase in mEPSC amplitude which gradually approaches
baseline (HFS given at time zero). B & C) Amplitude distribution histograms from two
representative MCNs reveal that over the course of 5 minutes before stimulation the ma-
jority of mEPSCs are bet :n 15 and 25 pA (B-I and C-I). During the first minute imme-
diately after HFS (B-II and C-II) there is an increase in the number of larger amplitude
mEPSCs. In 76% of cells, amplitude histograms appe: 1 to show multiple peaks immed-

iately after HFS (C-II).
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Figure 6: Basal mEPSC ampl le affec the response to HFS. A) Scatter-plot with linear
regression analysis reveals that the basal ~ ZPSC amplitude is negatively related to the
percent change of amplitude to HFS (p  0.01; n = 21; each circle denotes a single MCN).
B) Scatterplot showing that the percent ~ - of mEPSC amplitude is positively cor-
related to how long the response lasts (p <0.01; n 1). C) Scatter | ot showing that there
is no direct relationship between basal mEPSC amplitude and the duration of the response

to HFS. Dotted lines signify the line of best fit.
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Figure 7: mEPSC frequency and amplitude increase following HFS are dissociated. A)
Scatter-plot with linear regression analysis shows that the time courses of mEPSC fre-

quency and : )litude increase fol gHFSa 1otre’  “(r'=0.03263;n 3; each
circle denotes a single MCN). B) Scatter-plot shows that the percent change of mEPSC
frequency and amplitude are also not related (r'=0.01031; n = 21). Dotted lines denote

the line of best fit.
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Figure 9: MCN showir

an extended ampSTP. A) Volta

clamp traces taken from a rep-

resentative MCN held at -80 mV during control (1), the first minute following HFS (II),

and 5 minutes after frequency had returned to baseline

el (I11). B & C) Time-effect

plots for both amplitude and frequency taken from the same cell as in (A). The red arrows

indicate the time of stimulation while the blue arrows 1

is back to baseline.
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Figure 10: Amplitude histograms for the MCN shown in Figure 9. A) Time-effect plot of amplitude.

The red arrow indicates time of stimulation, the blue arrow indicates the point where frequency has

recovered. B, C, & D) Amplitude distribution histogram for mEPSCs during baseline (B), imme-

diately following HFS (C), and when frequency has recovered (D). Before stimulation almost all

of the events are between 10 and 20 pA, but after HFS about half of the events are between 40 and

80 pA and this increase is sustained even after frequency has returned to baseline.
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Figure 11: Whether a MCN expresses an extended freqSTP or an extended ampSTP does
not depend on the phenotype of the MCN or the stimulation protocol employed. A & B)
Both putative OT MCNss as well as putative AVP MCNs showed extended freqSTP and
extended ampSTP. C & D) The type of p  :wasinc | :ndent of whether a 50 or 100

Hz stimulation protocol was used.
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Figure 12: Removal of external calcium completely blocked the frequency increase after

HFS. A) Time-effect plot of a repre

tative MCN showing that in the absence of calcium

mEPSC frequency does not increase in response to ... 3. After 10 minute application of

2 mM calcium, STP occurred followi

HFS. B) Voltage clamp trace from a representa-

tive MCN shows that without calcium, the evoked response is blocked. C) Voltage clamp

trace from a representative MCN in zero calcium befo

D) Time effect plot of the overall
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bup data (n = 5).

(top) and after HFS (bottom).
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Figure 15: HFS-induced large mEPSCs have faster rise times. A) Comparison of 10-90%
rise times shows that the large mEPSCs occurring once frequency recovers have faster
rise times as compared to control (n  8; p<0.05). B)1 - graph showing there was no
change in the decay time. C) Sc/  atic of mEPSC illu; ating how rise and decay times

were generated.

61



A oas- B o0.15-

=i
.2
g = 0.10 -
w
2 2
= 0.05 4
']
-3 —
J ]
. 0.00 4+
0 10 20 30 40 S50 60 70 8O 0 10 20 30 40 S50 60 70 8O
Amplitude (pA) Amplitude (pA)
C 015
c
.2
S 0.10 7
8
S5
L
2
% 0.05 1
-4
0.00

0 10 20 30 40 50 60 70 KO
Amplitude (pA)

Figure 16: A fraction of the cells showing an extended ampSTP showed evidence of
multiquantal transmitter release. A, B, & C) Amplitude istribution histograms show the
different time points from a MCN dur  control (A), mediately following HFS (B),
and once frequency had recovered, which clearly shov evidence of multiple peaks,

indicative of multiquantal transmitter release (C).
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