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Abstract 

In this thesis. a singlc-phas~ voltag~-soun.:e uninterruptible pmver supply {LPS) for 

t10Hz and -lOO 1-{; applications is discussed. Two control stratt:gies. namdy a two-loop 

controller and a thr~c-iL)op controlkr arc '.kvdopcd. The control systems Jcveitlpcd in 

this thesis ha\·e the ti.lllowing features: (I) stable operation at t10Hz and -lOOHz. (2) no 

need 1)f an external current signal. (3) high output quality. and H) fast Jynamic response . 

To meet these speci ti.cations. dynamic models which take into consideration the tct:Jback 

variables and switching function :1re developed. Two suitable PI controllers t()r the 

current and , ·nltagc loops arc selected according to frequency response analysis . 

\lteanwhilc. second-order feedback titters :1re designed to guarantee a pafc~.:t output 

wavdi.mn . As :1 result. the two-loop controller cmploys the output titter capacitnr current 

and the lo:1d \ ·ultage as tcedback variables while the thrcc-loop controller uses the 

inverter output current as the third feedback variables. 

SIMLLINK models of the proposed controllers are implemented. and the steady­

state and dynamic response. THO of the output voltage and voltage utilization are 

presented at the two standard frequencies of 60Hz and -lOOHz. It is shown from the 

simulation results that the performance of the controllers mel.!ts the requirements. 

\ltoreover. computer simulation results of the output voltage waveform. the total 

harmonic distortion. voltage utilization and dynamic response show that the three-loop 

controller has a better pertonnance. 
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Chapter 1 

Introduction 

L'PS is the a~ronym tor uninterruptiblc power supply. w·hich is used tor keeping 

po\\'Cr ~lmtinuously supplied to communications sy::;tems. ~omputcrs. mcdi~al systems. 

and data processing systems. They arc the solution to many power problems including 

transient m ·cn·t)ltagc and undervoltag\;!, pcriodi~ distortions of wavdlxms. L)S~illatory 

transients. de. The major function of a L'PS is to provide a high quality ( lmv total 

ham1oni~..: distortion value) output wavcfonn. a fast dynamic response and the capability 

of ~arrying any load t~l~lors. L:rs arc widdy used in industries. Parallel oO Hz and .tOO 

Hz output stati~ UPS systems arc used to provide power ti.1r the peripherals and the 

~cntral pro~essors in large brewery factories. Flight simulators arc typically energized by 

120 V oO Hz single-phase UPS. Today. LPS is also widely used in hanks. hospitals. and 

tood-pro~cssing and airline industries. A wide variety of approaches have been reported 

in the literature tor UPS appli~ations [ 11 [2]. 

Two ~ontrol schemes are available tor UPS systems: s\vit~hing control schemes 

and system control schemes. 

1.1 Switching Control Schemes 

Switches are used in various approaches such as tl1rced-commutated thyristors. GTO 

(gate on and off) thyristors. power transistors and IGBT {insulated gate bipolar 

transistors). Two techniques are mainly used in switching control schemes: 
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• quasi-resonant technique: and 

• pulse-width-modulated (PWM) technique 

The quasi-resonant technique basically employs a conventional semiconductor 

power-switching device \vith a LC tank circuit in...:orporated into a circuit to shape either 

the voltage across the dc\·ice or current t1mving through it from rectangular pulses into a 

sinusoidal wa\·etl.mn. Quasi-resonant technique c~m he applied at /enH.:urrcnt-s\vitching 

and ;ero-\·nltage-switching. A system wi II have ;.m excellent perti.mnance '.vhen the 

voltage utilization is higher [3] [41 [5]. However. these techniques arc v~:ry sensitive to 

load variations. 

Pulse-width-modulated technique is a...:hievcd by companng a high-rrcquency 

triangular ...:amer wave \'.·ith a sinusoidal reference signal at the fundamental output 

rrcquency. According to the types of the frequencies. this technique is divided into two 

tields. the variable frequency PWM technique and tixed trcqucncy PWM technique. 

Even though the variabk frequency application has an excellent perfonnancc. the varying 

switching frequencies otten cause unpredictable electromagnetic interference [6]. The 

fixed frequency PWM application is popular because it does not have the same problem 

as the variable rrequency PWM technique and it is easy to implement by commercially 

available inte.brrated circuits. 

1.2 System Control Schemes 

ln a practical control. the control schemes are classitied into two areas by the 

choice of using a current-source or a voltage-source. 
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The principle of current-source inverter operation is that the inverter is fed from a 

cum.:nt source with a smoothing reactor connected to it in series in the de line. The 

application can eliminate the harmonic components instead of increasing the valut: of the 

remaining harmonics (7] [8 ]. 

There are three types of control strategies tor voltage source l 'PS systems: 

• 

• 

• 

state-spuct: feedback control 

sliding mode.: cnntrul 

currcnh:ontrol 

The state-spacl! control strategy providt:s :.1 uni fonn and powerful rl!prescntation 

in the time domain [9] [I 0]. The main drawback of this control systt:m is the assumption 

that the statt: variablt.! is measurablc and availabk t(Jr regulation . In a practical system. it 

is difticult to measure all ofthesl! state variables. 

The theory of sliding mode is used to constrain the state trajectories nf a system to 

a suitable surface (known as the switching or sliding surface) in a state space. It is shown 

that the control scheme is t1exible in design. robustness and invariancc to bounded 

disturbances [II]. However. a disadvantage of the sliding mode controllers is the 

chattering dynamic that are produced. The chattering is aggravated by small time delays 

in the control system. 

Current control strategies employ the instantaneous current control loop [ 12] [ 13 ]. 

The current-controlled voltage-source is very popular since it has extremely good 

dynamics, nearly sinusoidal waveform except tor the hannoni~s which are basically 

I inkt!d to the switching frequency [ 14] [ 151 [ 16]. 



Abdcl Rahim [ I6J proposed a current cuntrol scheme for UPS application \vhich 

provided improved perti:mnance over other system control schemes. The proposed 

scheme employed proportional mntrollers in both current and voltage loops. and thus had 

signi ticant phase error. In addition. external current command was used to achieve high 

lJUality l)Utput wavdi.)rm. However. the external current command is diftkult to 

implement. Finally. the proposed scheme ...:ould only operate at one standard fn:quency 

( f=60Hz). The performance of the current control schemes at higher frequencies have not 

been reported . 

The purpose of this study is to develop a universal cnntrol schemt.: \vhi...:h ~:an 

overcome the limitations of the existing current ..:ontrnl schemes. 

1.3 The Objective of the Thesis 

The ohjectivt.: of the thesis is tl) develop an UPS control system with multiple 

t~edhack loops. Tht.: ..:ontrol system is ..:ailed a universal control syst~.:m sine~.: it is 

designed to adapt the output frequency to an input command. Since many applications arc 

fultilled at 60Hz and 400Hz. the goal is to develop a universal ..:ontrol scheme that 

satisties the specification of high quality of output voltage. low THO. fast dynamic 

n:sponse. high voltage utilization. negligibly phase error. \vide power factor load 

conditions and stable operation under wide variations in parameters at 60Hz and 400Hz. 

1.4 Organization of Thesis 

UPS applications require that load current and voltage follo\v the sinusoidal 

wavetorrn with the resistive-inductive load. Many applications in power electronics also 
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require stable sinusoidal output at 60 Hz and 400 Hz. This thesis presents the 

development of a multiple tcedback control system for UPS applications. 

In chaptt!r two. a SIMULINK model of the basic UPS system is dt!veloped. The 

basic model employs a proportional controller in the torward path. The performance of 

the basic system is examined at the standard frequency uf 60Hz and at a higher 

trcqucncy . A moditicd control system is developed in the chapter. \vhcrc PI controllers 

arc introduced in the t{H"\vard and feedback channels. Although this ITILlditication does not 

snh·c tht: problem of instability at tht: high tre4ucncy condition. it showt:d improvemt:nt 

in the 4uality of the output voltage waveform. 

In chapter three. state-space analysis of the UPS system IS devdoped. Using 

Fourier analysis. the discontinuous model of the UPS system 1s converted into a 

continuous model. Small signal models of the P\VM inverter. tilter and load. and the 

controlled variables are employed to obtain the transfer functiLms of the controlled 

variables . The frequency response characteristics of three possible PI controllers arc 

discussed. Based on the steady state error produced. a PI controlkr is selected. Latt:r. a 

voltage loop PI controller and feedback compensator are selectc.:d to reach the goal of 

minimizing the steady-state error. 

The development of the proposed control systems is introduced in chapter tour. A 

two-loop control system with inner capacitor current loop and outer capacitor voltage 

loop is implemented in SIMULINK. Based on the simulation results. it is found that the 

control system is not able to operate reliably at both 60Hz and 400Hz. The limitations of 

the control scheme are discussed in the chapter. A moditied two-loop control strategy is 



proposed to overcome the limitations of the basic two-loop control strat~:gy . From the 

output voltage and current wavdl.1rrns. it is found that the tWt)-Inop control system is 

feasible. Realizing that the inductor current impacts the wavdl.mn quality and the 

pert(mnancc of the system. a three-loop control system which incorporates the inductor 

current as a second inner current loop is proposed. Its output results also satisfy the 

requirements of high quality output voltage wavdl.)rms. 

The perfonnances of the above control systems are presented in chapter tive. 

Simulation results of the output voltage. capacitor current and inductor current. THO 

values of the output voltage. dynamic resptmse and phase error at the standard 

frequencies l)f 60Hz and 400Hz tor the contml strategies arc prcst!nted. From these 

results. it is t(mnd that the three-loop control strategy provides an improvement in the 

quality of the output voltage. voltage utilization and dynamic response. The three-loop 

control stratt.:gy is therdore selected t()r further investigation. It is shown that the three­

loop system has an excellent pertt)rmancc during pov .. ·cr factor change. and it maintains 

high voltage utilization and high quality nutput voltage \vavdi.mn at both 60Hz and 

400Hz. 

Finally. the signi ticant properties of the proposed control system and the 

contribution of this work art! emphasized and further studies are suggested in chapter six. 
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Chapter 2 

SIMULINK Model of the Basic UPS System 

2.1 Introduction 

In this 4..:haptcr. the basil: two-loop 4..:ontrol strategy t(Jr a single-phase voltagt:­

source unintcrruptiblc power supply (UPS) system is dcs4..:ribcd. For this. a SIML'LI0JK 

model of the 4..:0ntrol scheme is developed to study the pertunnance of the hasic L'PS 

system . It is shown that the model is capable of providing stable and high quality load 

voltage at the standard frequency of oOHz by comparing the results in Rdercncc 3~. but 

the system appears to be unstable towards higher fn:qucn4..:ies. It is demonstrated through 

this preliminary study that using the capacitor current as the inner teedback loop variable 

and capacitor voltage as the outer feedback loop is a feasible contml approach. It is also 

shmvn that the pcrt(.mnancc of the control scheme can be improved hy modif-Ying the 

linear controllers in the inner current loop. 

2.2 The UPS System 

Typically. UPS systems are static converters. although currently some systems are 

made using rotating machinery in combination with solid-state conversion. There are 

mainly three contigurations of UPS systems: line-preferred. inverter-preferred and line­

interactive. All UPS systems contain a storage battery. 
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A line-preferred system includes a rectifier charger, a static inverter and a static 

automatic transfer switch [32]. Normally, power flows directly from line to load through 

a transfer switch, and therefore the system does not have the feature of continuous line 

conditioning. In some systems, however, a regulator is installed in the downstream of the 

static switch to overcome this problem. In the event of incoming power outage, the 

critical load is transferred through a static switch to a phase-synchronized static inverter, 

which is operated by a floating storage battery to provide uninterrupted power. 

/ 
Static 

Switch~ 

Rectifier Inverter 

Power ~ l2<l Line -

---L-.j =- _j_ 1- f----------' 

Ground 

Critical 
Load 

Figure 2.1 Structure of the line-preferred UPS system 
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An inverter-preferred system has the same standard configuration as the line-

preferred system. The system is often used for critical equipment when the equipment 

needs to be fully isolated and equipped with power conditioning [32]. Its mode of 

operation should not be changed during a power failure. During the ac power failure, 

power would be supplied to the equipment by a battery through the inverter. There is 

absolutely no power interruption during the power transfer to the battery. Long-term 

protection is also available by adding an automatic-starting engine generator, which feeds 

the load through an inverter to provide conditioned power. After the restoration of the ac 

line, the charger supplies power to the inverter and recharges the battery automatically, 

restricting excess peak demands. Various rates of battery recharge may be set, depending 

upon the application. Since full inverter load must be provided continuously as well as 

battery recharging, it needs a larger rectifier charger than that of the line-preferred 

system. 

Rectifier Inverter 

Line Power Xi 
-----'---- - - J f-------;--1 ----; 

Battery 
Storage 

~Ground 

Static 

Switch~ 
Critical 
Load 

Figure 2.2 Structure of the inverter-preferred UPS system 
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Like the line-preferred system, a line-interactive system is used for smaller, less 

critical computer systems [32]. It can provide more power conditioning than a line-

preferred system but is inherently less reliable than an inverter-preferred system. 

Normally, power flows through a single-throw static switch and an inductor to the critical 

load and to the converter. In this case, the converter acts as a battery charger. However, 

the failure of the converter at any time would result in a total loss of the output. Once the 

failure of ac line occurs, the static switch is opened and the function of the converter is 

changed to an inverter to deliver power. The system is somewhat vulnerable because the 

loss of output may occur if failure of the converter occurs at any time. Changing a new 

converter during the service is by no means a bumpless operation. These problems do not 

exist with the inverter-preferred system. An inductor is used to prevent overcurrents, 

especially in the case of a short circuit in a inverter or loads. 

__ PL_~~_e_er--+~-~-+-----~----~----cL_~-t~-~-1-+ 

Static 
Switching 

Inverter 
Charger 

Ground 

Figure 2.3 The structure of the line-interactive UPS system 
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In generaL the inverter-preferred system provides smooth pmver conditioning and 

is the prett!rred contiguration for UPS system. In this thesis. the inverter-prcterred system 

is investigated. 

2.3 Simulation with SIMULINK 

SIMULI~K [34] is the sothvare for dynamic system simulations. It is widely used 

in many tidds because it can do most types of simulations tl.x industrial applications. 

Cumpanic.!s and research institutions such as Jt:t Propulsion Laboratory. General "lotor. 

.-\88-lndustrial System and Hydro Quebec choose SlML'Ll-:\K as :.1 rcsean::h tool tl.1r 

modding and simulation of a wide variety of dynamic sysh:ms. induding linear. 

nonlinear. discrete-time. continuous-time and hybrid systems. With the assistance nf 

"lA TLAB sottware. SlMLJLlNK runs in a powerful environment. Other sottwarc 

language such as M-tiles. C and Fortran can be incorporated into SIMULINK fix 

analysis. This makes SIMLJLINK even more powerful. In this study. SIMLJLINK is used 

to investigate the performance of the various control schemes. and to develop and 

optimize the UPS system. 

2.4 Equivalent Circuit of the UPS System 

The block diagram of a half-bridge inverter-preterred UPS system is shown in 

Fig. 2.4. The inverter. which converts de power to ac power, supplies the power to a 

resistive-inductive load L1-R1• This inverter is powered by an ac to de converter with LF 

and CF tilter in the de circuit. The capacitance of the capacitor, CF. is chosen to be large 
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enough to obtain adequate low voltage impedance to the alternating current component in 

the de circuit The capacitor C F acts as a de power source to the invener. The input 

voltage to the inverter. 2YJ.:. is divided by the two tilter capacitors Cn and Cr;;. Thus. the 

average voltage of the common terrninal of the capacitor filters is V J.:· The resistive­

inductive load L 1-R1 is connected to the common tenninal of the two identical capacitor 

filters . C11 and Cc. Two anti-parallel diodes (known as feedback diL)<..ks) arc connected in 

parallel \Vith the switches ( torced-commutated thytistors. GTO thyristors nr power 

transistors) 01 and o~. The current in the opposite din:ction of the voltage \.Vould pass 

through the feedback diodes. In each half of one switching cycle. alternatively turning on 

and off the switching transistors. 01 and o~. results in an alternating vnltage to the load . 

Henct:. an altt:mating current with the same frcqucn~.:y as tht: s\vitching is provided by C1. 

2.5 Basic Control Scheme for the UPS System 

A novel multiple t~edback control scheme for the UPS systt:m was developed by 

~ . Ahdci-Rahim [37J. The stmcturc of the control scheme is shown in Fig.2.5 . 

For successful operation of the single-phase voltage-source UPS system. the 

control scheme consists of an inner capacitor current feedback loop and an outer 

capacitor voltage feedback loop. Two proportional controllers arc employed in both 

current and voltage loops when the voltage feedback signal is compared with reference 

waveforrn. the error signal ev is produced through a proportional controller. The voltage 

error signal e" is summed with the difference between the actual capacitor current and a 

reference capacitor current signal. The current error signal e.: is conditioned by a 
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proportional controller in the ~,;urrent loop to produce the error signal e. The error signal e 

is compared with a tixcd-frequency triangular wavetonn. The resulting PWM signal is 

used to control the inverter s\vitching devices in order to produce the n:quircd sinusoidal 

waveform [37]. 

vdc 
I 

cr, 

I LF Lr 

~ 
/VV\ YV\ 

~~ 
c-L L: I F c,I f Rl 

I I 

vdc cr2 

Source & 
Rectifier 

DC filter Half bridge inverter ac filter 1 Load 

Figure 2.4: Equivalent circuit of the inverter-preferred UPS 
system 
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Figure 2.5: The structure of the basic multiple feedback control scheme for the UPS system [37] -A 
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The block diagram representation of the basic control scheme is shmvn in tigure 

2.6. In this tigure. the input command is established by some means t!Xtemal to and 

independent of the feedback control system. and is a replica L1f the required output 

voltage. The reference input is derived from the input command as the actual input signal 

to the system. The controlled variable (load voltage) can be directly measured. and its 

feedback signal is obtained via a proportionality device. The primary variable error is 

obtained by subtracting the primary feedback variable from the reference input through a 

comparison device. :\ secondary teedback variable (capacitor current) and secondary 

variable command are subtracted from the primary variable error and conditioned by the 

linear controller2 to prodt~~.:e the control signal. which is converted to the actuating signal 

through a switching cnntrolh:r. A power conv~:rter (in this case. an inverter) is then used 

to transtixm the actuating signal to the manipulated variable. The manipulated variable is 

generally at a higher energy level than the actuating signal. It may also be moditied in 

form. 

2.6 Basic SIMULINK Model of the Control Scheme 

In this section. the development of the models of the individual blocks in the 

control scheme for SIMULINK implementation is discussed. 



Command Reference input 
• conversion 

A 

J 

Primary variable 
error 

!secondary 
variable h 
command I 

Secondary 
variable error Control signal actuating signal 

Secondary feedback ~ 
---i variable 

capacitor current b 

II 
Primary feedback 

Manipulated variable 
inverter voltage ~ 

Controlled 
1> system 

filter& load 

----------------- variable ~ -- --------- - ------

load voltage v, 

L --------' 

Figure 2.6: Block diagram of the basic control scheme 
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2.6.1 Model of the controlled system (ac filter and load) 

L___ -- - - - ------- ---

Figure 2.7: Model of the AC Filter 

Figure 2. 7 shows the LrCr filter model with feedback signals. It is assumed that 

the resistor Rr is so small that it can be ignored in the analysis. Generally, the feedback 

variables are output signals which are functions of controlled variables. By continuously 

subtracting the output signals from the reference input signals, actuating signals can be 

obtained. In this model, the filter is connected to a resistive-inductive load. The output 

variables of the LrCr filter in terms of the controlled current and voltage are chosen as 

the feedback variables. 

Three feedback subsystems can be derived from the filter-load system shown in 

figure 2. 7. In the first feedback sub-system, the capacitor voltage of the LrCr which 
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represents the load voltage is chosen as a feedback variable. The block diagram for this 

sub-system is shown in figure 2.8. 

~-

--t 
Figure 2.8: Capacitor voltage as a feedback variable 

The corresponding transfer function can be derived as 

Vc(s) V; 

Vi(s) = L.r Ct 
(2.1) 

When the capacitor current is chosen as a feedback variable, the feedback system 

can be represented by the block diagram shown in figure 2.8. The corresponding transfer 

function can be derived as 
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---~+ 

Figure 2.9: Capacitor current as a feedback variable 

The third subsystem uses the filter inductor current as the feedback variable. The 

block diagram for this sub-system is shown in Figure 2.9, and the corresponding transfer 

function is obtained as 

lc(s) V; {s+~~J 
~~)=Lr_3 __ R_,-2---l~(~l--l~)-----R-,-

s + s + - + - s+ 
L, C.r L.r L, L, L.r Cr 

(2.2) 
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r 
I L --

Figure 2.10: Inductor current as a feedback variable 

2 Rr 1 

() 
s + - s+--

/is V; Lr CrLJ 

Vi (s) = L 1 3 R1 2 1 [ I 1 J Rr s + s + - +- s+ - -
Lr C1 Lr L1 LrCr Lr 

(2.3) 

2.6.2 Model of the switching controller and inverter 

The technique of modulating the duration of ON/OFF pulses applied to the 

switching transistor (forced-commutated thyristors, GTO thyristors, power transistors) is 

called pulse-width modulation (PWM). The purpose of pulse-width modulation is to 

change the duty cycle, d. According to the formula, d= ton fs = ton I ( ton + 1:off ), the duty 

cycle, d, can be changed by modulating either ton or toff or both. Commonly, there are two 
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schemes of P\VM: 1) the variabl~ frequency s~h~me and 2) the tixed frequency scheme. 

In the variable-frequency scheme, PWM is achieved by keeping t,,n tixed and ~hanging 

t,,1r. However, there is a problem with the variable-frequency PWM. which results in 

unpredictable ele~tromagnetic interferen~e (EM[) du~ to varying s\vitching frequencies. 

In the tixed-frcquen~y scheme, on the other hand. P\VM is achieveJ by ~hanging both t,n 

and t, 1r duration but maintaining a constant s\vitching period. This PW\11 scheme is the 

most popular one because of its c.::ase of implementation by using ~ommcrcially available 

integrated-cin:uit controllers and also because of its easily managed EM I tiltering. 

Depending on the control signals required to a~hieve the pulsc-\vidth modulation. 

t\vo modes of PWM. the voltage-mode and the cum:nt-mode. can be selected. The 

voltage-mode PWM derives its control signal trom the output voltage 1.)f a switching 

invener. Th~: current-mode PWM derives its control signal trom the output current 

voltage of the switching invertt:r, but it is somewhat ditlicult to implc.:mcnt. ~o 

intcgrated-cin.:uit current-modt: controller is commercially available yet. In the control 

scheme used t\.)r the UPS system. the duty cycle of the switching invener is determined 

by the current error signal in the secondary feedback variable. The error signal is 

constantly compared \vith a triangular carrier at a tixed fn:qucncy to produ~e the PWM 

signal for driving the invener switches. 

Figure 2.1 l illustrates a typical PWM waveform. In the tigurc. the reference 

wave is sinusoidal. The carrier wave is a triangular wavefonn with a constant frequency . 

The frequency of the reference wave may change, depending on the frequency of the 

output voltage [ 14 ]. 
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In the basic control scheme, the current error signal constitutes the modulating 

signal. To keep up \Vith the sinusoidal modulation. the signal is compared with a 

synchronized triangular carrier signal in the comparator which generate signals s_ and s_ 

for control of the inverter switches. 0 1 and 02 respectively. 

In addition to the nonlinear switching controllers. there arc also linear controllers 

which operate in asso~.:iation with the error signals. The control mechanism uses a linear 

proportional ~.:ontrollt.:r to condition the voltage and current errors. The usc nf a PI 

controllt.:r makes it possible. \Vithin a tinite fre4ucncy hand. to minimize the magnitude of 

the error in the output voltage. Even though the advantages n~· using PI wntrollers arc 

known, proportional controlkrs arc uscd in this preliminary study to develop the 

SIMULINK model ofthc basic control scheme. 

The model of the inverter is obtained hy assuming that the switches are ideal. ln 

this case. the output of the inverter is an amplification of the PWM signal generated by 

the switching controller. The SIMULINK model of the switching Clmtrollcr and tht: 

inverter with an input de voltage, V J~ of I OOV is shown in tigure 2.12. In the block 

diagram. the input I represents the current t!rror signaL K 1 =2 and K~== I provide bipolar 

output. switch I and switch 2 represent the transistors 01 and 02- The output represents 

the manipulated variable V 1• K=-1 ensures that switch l and S\vitch 2 do not conduct at 

the same time. The bipolar de voltage ± V J.: (±I OOV) is represented hy constant l and 

constant 2 respectively. 
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Constant 1 
Constant2 

Switch 2 

Set value 

Gain 

Figure 2.12: The model of switching controller and inverter 

2.6.3 SIMULINK model of the basic control scheme 

The SIMULINK model of the individual blocks in the basic control scheme are 

connected together to give the complete model of the basic control scheme as shown in 

figure 2.15. Two filters are used in the feedback paths to attenuate unwanted signals from 

the feedback variables. A small filter and proportional gain are used to condition the 
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primary variable error. To optimize the output voltage value, P controllers are used with 

higher gain. To match the performance of the controllers, different filter values are 

adjusted in the basic SIMULINK model. As a result, the combination of Lf and Cf is 

different from the previous study [38]. The following model parameters were used. The 

load consists of a series R-L circuit: R1=20n, L1=l6mH. The ac filter values are 

LF7.5mH, CF130J.!F. The proportional gain of the linear controller !(function 1) is 

Kpv=3.02V and for linear controller 2, the gain, Kpc=2.6. The switching frequency of the 

PWM2 block is f5=4.2KHz. The inverter input de voltage (V de) is 1 OOV and the reference 

voltage and current command are 2V and 0.8V respectively. 

Current Command 

0.0045 

0.016s+1 

feedback2 

0.045 

2.3e-4s+1 

feedback1 

0 u 13 r---t-----, 

Filter 

Figure 2.13: SIMULINK model of the basic control scheme 
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2.7 Validation of the SIMULINK Results 

In this research. the output is simulated by a computer software SIMLLI~K. To 

veritY the tidelity of the model. Bode diakrram of the open-loop transfer function is made 

to compare with the published results [371[38] . Figure 2.14 sho\\'S tht: results presented in 

Reference ~~ Figure 2.15 -:hnw' the results nf rhe rresent mndd as repre,ented hy 

equation 2.2. Using the sam~: purameters such as the tilter values t)f L 1= 5mH.C=10t) ~tF. 

the load of Z,=8.8 nand the voltage source of VJ-:=100 Y. and proportional controller 

K11,=2. pf=0.7 {lagging). the present model has produced similar results in comparison 

\Vith Rdcrencc 38 . The system is also built stable in this research because its 8t1dl.! 

diagram has the phase.! margin greater than 30" and gain margin largl.!r than 8 dB as shmvn 

in Figure 2. 15. 

Furthermore. a SIMULINK run of the basic model with the same parameters as 

described betorc is pcrtormed. The results are shown in Figure 2.17 . In the meamvhik. 

the results of Reference 38 are shown in Figure 2.16. 

As it can be seen. the outputs of SIMULINK model. in tcnns of output voltage 

and capacitor current. exhibit similar wavetorms. magnitude and frequency as compared 

to the experimental results obtained in Reference 38. In conclusion. the basic SIMULINK 

model is reliable. 
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Figure 2.14: Bode diagram of the open-loop transfer function of the 
inner current loop of the UPS system in Reference 38: 
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Bode Diagrams 
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Figure 2.15: Bode diagram of the open-loop transfer function of the inner 
current loop of the basic SIMULINK model: Lt=5.0 mH, 
Ct=lOO.O J-LF, Z1=8.8 n ,Vdc=lOO V, Kpc=2.0 and pf=0.7(lagging) 
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Figure 2.16: Capacitor voltage and current wavcfonns at 60Hz 
(Experimental results in Reference JX) 
Z1=8.8D., L1=5mH, C F I OO~lF. V c~c = I OOV. K.r.:=2 .0 
Pf=0.7 (lagging) 
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Figure 2.17: Output voltage and capacitor current waveforms at 60Hz 
(SIMULINK model used in validation) 
Z1=8.8 n, Lt=5 mH, Ct=lOO J.!F, Vdc=lOO V, Kpc=2.0 
Pf=O. 7 (lagging) 

30 



31 

2.8 Performance of the Basic UPS Control Scheme 

The pcrfonnan~:c of the basic CPS control scheme is investigated through 

simulation using the SIMUUNK model developed in the previous section. One of the 

objectives of the study is to investigate the possibility of operating the L'PS at a higher 

frequency { e.gAOOHz) . :\s such. the preliminary study simulated the pert(•rmance r\f the 

basic control scheme at the standard frequency l)f 60 Hz and at a higher frequency of 

I OOHz. 

Figure 2. 1 ~ shows the output Vl)\tagc and capacitor current wavdorms at 60H1. 

Tht: \Vavct"lmns illustrate that the basic control scheme can produce sinusoidal lnad 

voltage at 60Hz. For the same parameters. the model is simulated at a higher frequency of 

I OOHz. Figure 2.19 shows the output voltage and capacitor curn.:nt wavct"lmns. It is 

c.:vident from the waveforms that the steady state load voltage is unstahlc. 

Figure 2.20 shmvs the output voltages with respect to the output voltage refen:ncc 

signals at 60Hz and I OOHz. The wavet'llnns show that although the load voltage at 60Hz 

is sinusoidal. and it tracks the reference voltage. a steady state phase error of about 2-3" 

exists. The steady-state phase error is pronounced at I OOHz. Tht: results show the basic 

limitations of the tixed proportional controllers. 
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Figure2.20 (a) Output voltage with respect to reference signal at f=60Hz 
(b) Output voltage with respect to reference signal at f= 1OOHz 
(Basic control scheme) 
(Rt=20Q) Lt=16mH, LF7.5mH, CF130j.!F, Yctc= IOOV, 
fs=4.2kHz) 
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In order to improve the perfonnance of the basic control scheme. a PI controller is 

introduced in the current k)op. As a tirst step in investigating the performance of the basic 

control scheme with a PI controller. a PI controller of the torn1 Kp..: .... K". s. where Kp,=2 .6 

and K,c= I 090 is chosen. All other system parameters are unchanged. 

Figure 2.21 shows the stable lmtput 3t f=oOHz. The signal has a pertcct sinusoidal 

\vavet(mn. Figure 2.22 shmvs that the steady-state output signal is still unstable at a 

frequency l)f l OOHz. Figure 2.23 shows that the phase error is decreased at f=60Hz. 

However. the output voltage at f= I OOHz indicates that although modi tied system has 

improved the phase error of the controlled variahle. the output voltage remains unstahlc. 

The results of the preliminary study of thc.:st: basic models have shmvn that ti.)r an 

UPS systt:m. a PI controller can signiticantly aftcct the perti.mnancc l)f the control 

system. Therefore. more detailed analysis will be carried out in the tollowing chapter to 

improve the pcrti.1nnance of the UPS system. 



tOO : 

: ("\ 

~ ·)t \ 
•n I 
0 
> 
~ ),-

ttl 

0 
> 

~) -

. II)') 

;) 0 5 

I) J 

~ 
E 
c( 

c:: 
~ 
'5 
0 

. ~ 

. 1 J 
0 1)5 

0 U !p IJ t IJo ltJ ~ f 

/\ If\ (\ f\ (\, J I 
/ \ I ' i ! \ I 
I \ .t \ I 

I \ 
I \ I \ , 

I I . \ J \ I i : \ I 
I 1 I I \ I I I \ l \ i \ \ I I I \ 
\ I ! \ I ' I \ I I I ~ 

I \ \ I \ i I I I 
\ I I \ I \ I I , 

_j \j \ . \) I I \.) ' I I \.J v 

•j JO j 1)1 I) •J8 ) JQ I) 1 l) 1 ~ ) 1" •) 1; •) H 

T.m ~ ') '! •:!l n .j ; 1 

·: JP.Jt: /I Jr (,pr !!nt 

•) J 0 •1 07 I) 08 •J OQ 1) 1 0 11 ) I 2 0 13 c 14 

i1m <! i i tC On ·ji I 

Figure 2.21 :Output voltage and capacitor current wavctonns at 60Hz 
(Moditied basic UPS control scheme) 
(R1==20n. L1=l6mH. Lt=7.5mH. Ct=I30~F. V,~c==IOOV. 
t~=4.2kHz) 

3o 



•o o .----~------.------...---.----.------.----r------, 

~ A /~ 0 0 A J~.. 10, 
5 1) ~ \ I I, \ I \ I \ / ', 

~ I \ /1 \ / \ I '\ lj \\ ,tl \ l \ I \ il 
io •:J 't \ ' \ I \ / \ / \ I \ i \,, il 

\ 

11 

I \ j \ I I ~ \ I I / \ I I 
> 

5 0 
\ I \JI 

1

\ f \ } \ I \ \ .: \ I l 
IOJ \j \) v v \) v \j I 

•) 0 '5 I) 07 ·j I) 8 0 0 9 •J I •) I 1 

T 1m ~ I S~ ~ ·) n •1s 1 

~ 
J 

~ ' 

\ 

I 

I) 1) 4 I) 0 5 0 06 0 0 7 0 08 o og 0 1 0 11 

Figure 2.2.2: Output voltage and capacitor current wavetonns at l OOHz 
(Modified basic UPS control scheme) 
(R1=200. L1==l6mH, L,=7.5mH. C 1=l30~F. VJ~:= IOOV . 

t:=4.2kHz) 

,..., 
.) , 



Output Voltage 
150,-------.-------.--------.-------.-------.-------. 

-50 

-100 

-150L-------~------~-------L-------L------~------~ 
0 0.02 0 .04 0 . 06 0 .06 0 .1 0 .12 

100 .· 
; '. 

50. 

0 

-50 

.. 
': .. ~ 

'. : 
-100 

0 0 .02 0 .04 

Time( seconds) 

(a) 

Output Voltage 

0 .06 
Time( seconds) 

(b) 

: 

.. -.. 

; 

" 

0.06 

·. : 

. . 
'. 

0 .1 0 .12 

Figure2.23: (a) Output voltage with respect to reference signal at f0 =60Hz 
(b) Output voltage with respect to reference signal at f0 = 1OOHz 
(Modified basic control scheme) 
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2.9 Summary 

The basi~ UPS system. \Vhich employs outer voltage and inn~.:r cap~citor current 

feedback signals to produce sinusoidal output voltage is presented in this chapter. A basic 

SIMULINK model L)f the control scheme is developed. Moreover. Validation is 

impkment~..?d to pmof the rdi:1bi!ity of the b:1sic Sl:'vtl' Ll~K rrwdel. The rert<_,rrn~mce t'f 

the system is investigated at a standard output frequency of 60 Hz ~md at a higher 

frequency. The results of the SIMULINK simulation show that the basic control scheme 

produces sinusoidal output voltage at 60Hz. However. at I OOHz. the output voltage is 

unstable. In order to improve the: steady-state pc:rt'lmnance of the basic CLmtrol scheme. a 

PI controller is introduccd in the t()rward path of the: inner current loop. The pertonnanct: 

is slightly improvc:d. Thc:sc preliminary studies show that the basic control schc:mc: is 

capable of producing sinusoidal output voltage at higher freqw.:n~.:ies. However. a careful 

selection of the system parameters is required. In the next chapter. the detailed analysis of 

the system is ~arried out and suitable parameters are sdected with a view to developing 

control strategies that will overcome the limitation of the basic control scheme. 
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Chapter 3 

Transfer Functions of the UPS Systems 

3.1 Introduction 

This ~.:hapter presents the transfer functions of a single-phase voltage-source 

L'PS systl.!m . ln this study. a tixcd-frequency current-controlled half-bridge inverter 

contiguration is considered . 

. ·\ small-signal model is developed to establish the transfer functions of the 

control variables. The model is at ti1st repn:scntcd by a set of equations invol ving 

discontinuous functions. The discontinuous t\.mctions arc a result of the s\vitching a~.:tion 

of the inverter. :\ccording to Fourier analysis. a discontinuous signal cunsists of low­

frequency and high-frequency continuous components. The high-frequency components 

arc eliminated through signal modulation. Finally. a small signal model of the system is 

developed using perturbation analysis. 

Studies in the previous chapter found out that proportional controllers do not 

satisfy the requirement of stable output voltage waveform over a wide frequency range. 

Theretore. in this chapter. suitable PI controllers with good performance in both current 

and voltage control loops are selected. Along with the controlled objects. frequency 

responses of PI controllers, as well as the calculation of steady-state error. are 

presented. Based on the results. suitable PI controllers are chosen. and titters in the 
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feedback paths are selected for the development of multiple feedback control strategies 

for UPS application. 

3.2 State-Space Analysis of the UPS System 

Figure 3.1 shows the equivalent circuit of the inverter supplying the filter-load 

combination. The system described in figure 3.1 contains the three basic components: 

the inverter, and the Lr-Cf filter and the R-L load. The three feedback variables chosen 

are the inductor current, capacitor current and capacitor voltage (load voltage). The 

state-space expression will therefore contain three variables (i~, ic, vc). 

To 
Current~ 

Loop 

To~ Current -
Loop 

+ 

Volta~~ I ___ v_c ______ _J 

Loop~ 

Figure 3.1 Equivalent circuit of the inverter-filter-load combination 



As shown in the tigure. the output voltage of the inverter. vi is a PWM 

wavctonn. The resulting variables in the circuit will theretore be discontinuous in 

nature. But. a dis<.:ontinuous signal can be expressed as a series of continuous signals 

according to Fourier analysis . Generally. any function can be r.::xpressed as a Fourier 

time series in the tonn of[l8] . 

1 X 
t'( \\'() = !I I) - ~ !I II S j 11 II Ill f ~ ~ f, II COS II(!) t 

n=l n==l 
(3 . 1) 

In P\VM swit~.:hing. the controlled output signal has a low frequency. but the 

s\vitching trequcncy is much higher than that nf the output signal. Therefore. the 

modulating wave can be ~!X pressed in terms of the duty cycle. d. The: coefticients in the 

Fourier series of equation (3.2) arc given by [29]. 

l+dt Tt 

au = ~ . ~ j 
2it 

l•d!c.l)s t)=dt (3 .2) 

1-dl it 

an=O (3.3) 

11 2 . i ', 
h = ( -l) • - sm I n c11 :r : 
n n~ , ' 

(3 .-f) 

Accordingly. the switching function can be expressed as 

. , 
D . =d,+L. (-1)'• -=-- sin(n d , :r)cos(n(.I.L t) (3.5) 

' I II it 

where d 1 is the time average or the duty cycle of the switching. and m~ is the angular 

switching frequency. 
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The switching function includes both low and high frequency components. In a 

UPS application where the switching frequen~y is much higher than the output 

frequency. the components of the switching function can be neglected. Hence. only the 

fundamental frequency component is considered. State-space;: analysis is applied to 

controlled variables in a direct or indirect control. The state-space function reveals the 

relationship between these controlled variables and voltage source. 

The half-bridge inverter has two switches. the upper one Q 1 and IO\ver one Q~. 

The two switches conduct altemately. When Q1 is ON. Q~ is OFF. and vice versa. 

:"Jeglecting the higher frequency components. the output voltage of the inverter can be 

expressed in a continuous t't1rm as (37] . 

(3.6) 

The state-space analysis of the circuit shown in tigurc 3.1 results in the general 

state space representation . 

.\7=.-l X + B u (3.7) 

y=C x+Du ( 3.8) 

where the constant matrices. A, B, C. D are obtained as 



- Rr l i 1 
0 I Lr Lll 
Rt l 

,.j= 0 
Lt I 

(3 .9) 
Lt 

I I 
0 

J Ct Ct 

,{ 

! 
() () ( 3.10) s = .. . --

L ( 

c=[o () I] ( 3. I 1 ) 

n = [o I (3 . 12) 

The state variable. x represents the indu~tor ~urrcnt. output current i.lnd the capacitor 

,. 
\' ] 

L' 
(3 . 13) 

and u presents the inverter output voltage. From equation 3.6. the u expression ~an be 

given by: 

(3.14) 

The system output variable y is given by 

(3 . 15) 



45 

3.2.1 Small signal model of the inverter-filter load combination 

In real-time control systems, there exist many disturban~:es that can int1uence the 

controlled variables. Disturbances can be caused by many factl1rs such as load shifts. 

uncertain input signals and environment eftccts. These disturbances may drive the 

signal components of a control system to become worse. r:spccially upon s\vih.:hing. The 

effects of those unwanted factors on the dynamic performance of the system ::>hould be 

studied. For this. equations are developed to determine which tccdback-controlled 

variable \Vould result in a successful operation of the system. .-\cceptable feedback 

variables should be chosen in the comrol regulator scheme. In the L PS system under 

consideration. it is assumed that the load voltage is to b~: maintained constant for 

variations in the load. Hence. a load current variable will not be suitable as a tcedback 

variable. The disturbance signals are assumed to be superimposed on the steady-state 

\'ariables and are expressed hy a vector .r. Thus equation ( 3.13) can be expressed as 

x+.~=[lt+~ l(}+i() r·L'+vl'] (3.16) 

\vhere lt. 1., and V.; represent the steady-state variables. 

m=2d1-l 
(3.17) 

A modulating sibrnal m corresponding to the duty cycle is expressed as [3 7) 

Incorporating the small-signal variations in equation 3.14 gives 

(3.18) 
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ln equations 3.l6 and 3.18 the disturbance signals are denoted by··-". When the 

above equations in vector form are written in algebraic forms. the disturbance signals 

exist in ea~h algebraic equation. The equations become even more complex when the 

load disturbance and load current are considered. and it is almost impossible to solve 

these equations analytically. 

The small-signal model of the invene::r-tilter-load combinatilm is obtained by 

setting the: steady-state variahles to zero. The resulting small-signal model 

representation of the combination is given by the state-space equation. 

-~=A, .. ~ + B, iii (3 . 19) 

3.2.2 Transfer functions of the inverter-filter-load combination 

From equation 3.19. the Laplace transform of the state-space vector in rdation to the 

modulating signal ~an be obtained as the following equations: 

(3 .20) 

From equation 3.20 the transfer functions of the feedback variables are obtained as : 

~.(s) 
m(s) 

(3 .21) 
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(3.22) 

vc(s) Vdc 

iii(s)=Lt Ct 
3 R, 2 1 [ 1 1 J __ R--=1'-----s +- s + - - + - s+ -

L, Ct L r L, L,LrCt 

(3.23) 

As expected, the small signal transfer functions are the same as the transfer 

functions obtained in chapter 2. 

3.3 Selection of PI Controllers 

3.3.1 Frequency-Response of PI Controllers 

As indicated in the previous chapter, the P-type linear controller results in 

steady-state error in the output voltage waveform. A PI-type controller is selected to 

modify the control system, and hence, improve the steady-state performance. 

Consider the simple control system shown in figure 3.2. Formally, the design 

procedure for the cascade compensator Gc( s) is more direct than that for the feedback 

compensator, Hc(s). 
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R(s) C(s) 
+ Gc(s) GP(s) 

-
II-

Hc(s) 

Figure 3.2: Basic control system 

In UPS applications, the signal flow in the forward path goes from low to high 

energy level, while the signal goes back from high to low energy level in a feedback 

loop. Thus the forward path generally requires an amplifier for gain and/or isolation. 

The noise can be reduced by a greater amplifier gain in the forward compensator. The 

system developed in this thesis has a multiple loop control. The advantage of the 

multiple loop control is the capability of isolating a portion of a control system from the 

whole system. Also, some of the variables can be used to enforce stability. The control 

scheme under investigation has a current loop, which provides rapid changes during 

dynamic operation. Accurate and stable operation of the control system requires a 

proper compensator in the forward path. 

The PI controller is less affected by small steady-state error since its value 

continues to increase with the existence of error, while the proportional controller 

cannot eliminate the steady-state error. When the input and output become equal in a PI 

controller, the error is to become zero. 
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Controller type 1 is the standard PI controller. 

(3.24) 

Controller type II is the second order PI controller. 

(3.25) 

Controller type III is a cascade of two second order PI controllers 

(3.26) 

In a conventional control system, one technique used to measure the 

performance of the system is frequency response. The frequency response reflects the 

control system's behavior in the frequency-domain. Based on the frequency response, 

the noise will be removed to improve the performance of the control system. To 

reproduce the true signal and attenuate the noise, the compensators are designed to be 

band-pass or low-pass. 

Figure 3.3 shows the characteristics for controller type I in the frequency-

domain. The figure shows that the frequency bandwidth is narrow and the system is 

stable. 

Figure 3.4 shows the characteristics for the controller type II in the frequency-

domain. The figure shows that the controller is suitable for a wide frequency range with 

higher gain. And the phase value is between ±90° that can protect the control system 

from instability. Because of the wide range of frequency bandwidth, it is easy for noise 
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to invade the control system; feedback with other controllers is needed to minimize this 

nmse. 

Figure 3.5 shows the frequency-response for the controller type III. There is a 

wide frequency with a low-gain. In the designed control system, other compensators are 

needed to help in preventing the noise entrance by increasing the signal-to-noise ratio. 

The gain could be increased by adding a proportional controller K, which results in a 

multiplier factor corresponding to the gain of the controller and need a compensator for 

phase margin. 
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The steady-state errors of the various controllers are examined, and based on the 

results, a suitable controller is selected. The steady-state error is calculated for the 

combined transfer function, consisting of the transfer functions of the controller and the 

inverter-filter load combination, assuming the worse-case condition of a unit-step input. 

The steady-state error is calculated as follows, assuming unity feedback (i.e. 

Hc(s)=1) 

[ 
1 ] 1 e =lims -

ss s -too 1+G{s) s 
(3.27) 

The following parameters are used in the calculation: Lr =3.8mH, Ct=83.3 J..!F, 

LI=9.5mH, R1=16n, Yctc=100 volts, f= 200Hz. The combined transfer function G(s) is 

given by. 

(3.28) 

(3.29) 

(3.30) 
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where Gc(s) represents the transfer function of the various controllers defined in 

equations 3.24 to 3.26. 

The steady-error is calculated using Maple [27] correspond to vc (s )/ m(s), 

fc (s)/m(s), ~(s)jm(s). These values are shown in Table 3.1 

Table 3.1: Steady-state error of different controllers 

Controllers vc (s)/m(s) fc(s)/m(s) ~(s)jm(s) 

Controller Type I 0 0.052 0 
at=l.23, bt=1091 

Controller Type II 0.14*10-/ 1 0.22*10-o 
a2=5.93e-5,b2=0. 7974,c2=3.952e+7, 
d2=3.6499e+5 

Controller Type III 0.0012 1 0.019 
a3=6.6e-12, b3=4.43e-7, c3=2.2e-6, d4=4.22 
~=4.15e-11, b4=2.74e-7, c4=3.58e-6 

Based on the results of Table 3.1, controller type I produces the lowest value of 

steady-state error. However, the gain and bandwidth of the controller are small. 

Controller type II has very small steady-state errors for inductor current and capacitor 

voltage transfer functions. Since the controller has high gain and wide bandwidth, it is 

chosen as the PI Controller for the UPS system. 
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The parameters of the controller are chosen as: 

As shown in Table 3.1, the steady-state error of this controller for capacitor 

current transfer function is rather high. This will be further investigated. 

Controller type II is also chosen for the forward path of the outer voltage control 

loop in order to further minimize the amplitude and phase errors in the output voltage. 

The transfer function of the controller is expressed as 

(3.31) 

These parameters in the expression are selected as: a5=6.6*10-5
, b5=0.44015, c5=1.6575, 

ds=107.5. 

The open-loop transfer function of inner current loop can be written as 

(3.32) 

where ~(~; is transfer function of output part and Gcz (s) represents the transfer 

function of PI controller II. 

The stability feature of this inner-loop is shown in Figure 3.6. It can be seen that 

the open-loop system has sufficient stability margin as: gain margin> 8 dB and phase 

margin > 30°. In particular, the bandwidth is expanded, which facilitates passing higher 

frequency signals. These parameters of the system are LF 3.8 mH, Cf =83.3 J.lF, Z1=20 

nand Vdc=IOO V. 
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3.3.3 Selection of feedback compensators 

The choice of a feedback compensator is based on the complexity of the basic 

system, the accessibility of insertion points, the form of the signal being fed back, the 

signal being compared, and the desired improvement. In this study, the feedback 

channels mainly consist of filters. A suitable type of feedback filter which improves the 

performance of the control system is discussed below. 

The need to determine the number of differentiating terms in the feedback 

compensator is permitted in the numerator of Hc(s) in the feedback loop with lag-lead 

compensator. The lag compensator can attenuate the high frequency signal and noise 

and improve the steady-state accuracy. The lead compensator can improve the stability 

of the system. The lag-lead compensator results in good steady-state response. It has a 

large increase in the undamped natural frequency. 

As a result, the feedback compensator can be expressed in a general form as 

(3.33) 

As shown in Table 1, the steady state error of tc(s)/m(s) in controller II is 

high. In this section, the steady-state error is calculated by considering the transfer 

functions of the feedback compensator, the PI controller and the inverter-filter-load 

combination (plant). These transfer functions are denoted as Hc(s), Gc(s), Gp(s) in figure 

3 .2. The transfer function of the control system shown in figure 3.2 is given by [24]: 
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C(s) G(s) 
R(s) 1+G(s )Hc(s) 

(3.34) 

(3.35) 

The steady-state error of the system is given by 

. 1+G(sXHc(s)-1) 
e ss = lrm s x ( ) ( ) s~O 1+Gs He s 

(3.36) 

where G( s) is the transfer function of the compensator and the plant. 

Table 2 shows the effect of the feedback compensator parameters on the steady-

state error for the plant transfer function, fc(s)/m(s). The parameters of the PI 

controller are given in Table 3.1. The parameters of the transfer function G(s) and the 

feedback compensator H5(s) are used in equations 3.36 to calculate the steady-state 

error. Maple is used to compute the results. 
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Table 3.2 Steady-state error \Vith feedback compensator for ~· (s) / in (s) 

Feedback compensator parameters Steady-state error 

a11 =6. 72e-8. ho~7 .69e-5. en= I. d" ::: I. e11=0. -1 7.2 

I 
I a,., =-6 . 72t.:-8. b~> c:: 7.69c-5. ct>=4 .99e-5. do = I. I 0.052 I I 

c,.,= I 
ah=o. 72e-~. h,=7 .69e-5. c(,=O. dn=3. e6= I -1.57 

,.\s shown in Table J.2. the steudy state error ti.)r certain controller paramt.:ters is 

kss than unity \vhen the feedback compensator is considered. The following parameters 

are scle..:ted for the feedback compensator. 

., - r:.. 7'1* I!)-~ b - 7 ~9* l o·5 ,. -4 119* I {)'5 d - t ' -I U ()- lJ . - ., h - . lJ "''-t)- .'/ ., tl- "t_;t)- • 

3.4 Summary 

ln this chapter. a general and dynamic model l)f the inverter-tilter-load 

combination ( phmt) is developed using the state-space analysis techniques. The model 

is used to ()btain the transfer functions of the plant in terms of three possible feedback 

variables. namcly capacitor current, capacitor voltage (output voltage) and tilter-

inductor current. 

ln order to se~ed a suitable PI controllt:r for the control of the UPS system, the 

frequency response characteristics of three-types of controllers are examined. Also the 
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steady-state error of the compensators with the three transfer functions of the plant arc 

investigated. It is shown that the second order PI controller results in a wide frequency 

handv.-·idth and negligible small steady-state error for the output voltage and inductor 

current transfer functions . Suitable parameters of the PI controller are selected and used 

in conjunction with the transfer functions of the capacitor ~urrent and a second order 

feedback compensator tilter to examine the steady- state error. It is shown that using a 

second order controller in the feedback path signiticantly reduces the steady-state error 

associated with the capacitor current transfer function. 

The models and contigurations of the PI controllers and feedback compensators 

an: used tn devdl1p various control strategies for the UPS system in the next chapter. 
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Chapter 4 

Control Strategies for the UPS System 

4.1 Introduction 

In this ~haptcr. thn:e ~ontrol strategies that provide sinusoidal nutput voltage 

\vavcfonns arc presented. The basi~ di ffcrcnccs between the ~ontrol strategies are 

dis~ussed by comparing the outputs at different frequencies. The t~asibility of the 

strategies is demonstrated by simulation using SIMULINK. and their inhcrent features 

are dis~ussed. 

4.2 Two-Loop Control Strategy 

The basic two-loop control scheme presented in chapter 2 is moditied to include P 

controllers and feedback compensators. The structure of the control strategy is shown in 

Fig. 4.1. It consists of an inner capacitor current loop which includes a feedback 

compensator and a PI controller in the forward path. The load voltage constitutes the 

outer loop. which contains a teedback compensator and a second order compensator in 

the torward path. The strategy also incorporates a current command. The details of the 
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SIMULINK model and the parameters of the individual blocks in the control strategy are 

given in Appendix A, and the simulation procedure is exhibited in Appendix C. 

Voltage 
input 

Current 
input 

PI 
Controller 

__ , 

PWM 
Inverter 

Feedback 1 
I, 

Filter 

L_ _______ ---[ __ Fe_ed_~:_ck_2 _ _j~----__j 

Figure 4.1: The structure of the two-loop control strategy 

Load 

The control strategy is simulated at two different frequencies, f=60Hz and 

f=400Hz for the following inverter-filter-load parameter, Vdc = 100 Volts, Lr = 7.5 mH, 

Cr = 71.4 ~F, R1 = 16 n, L1 = 4.7 mH. PI controllers are used in this two-loop control 

model. Again, Lr and Cr value need to be adjusted to yield the optimum output 



n3 

pertonnance. Compared with the basic SlMULINK model. Cr value is reduced to 71.-+ ~tF 

allowing the passing of the high frequency signals. 

Figure 4.2 shows the output voltage and capacitor current wa\·et()nns at f=60Hz. 

It is observed that both the output voltage and capacitor current waveforms are highly 

distorted. The wavetonns show that ti.1r the :.->elected parameters. the perti.1nnance of the 

control strategy is poor. 

Figure -+ .3 shO\vs the output Vllltage and capacitor current \VJ\cforms at f=400Hz. 

\Vith the introduction llf PI controllers and feedback compensators. the wavdi.)rms 

indicate that stable llperation Jt higher frequencies is feasiblt:. The quality of the 

wa\'di.lrms arc improved at this trcquency. 

The nutput voltage waveforms at the two frequencies indicate that the voltage 

utilization factor Llf the control strategy U,. (detined as the peak value llf the llUtput 

voltage expressed as a percentage of the de voltage V Jc). is v~.:ry low. For f=60Hz. 

L.!, =74.3°·u. and tor f=400Hz. Uv-= 51.9°·~ . This indicates that the eftkicncy of the control 

strategy is very low. 

The quality of wavetorms at f=60Hz can be improved by changing the parameters 

of the L·C tilter. Figures -+.4 and 4.5 show the output voltage and capacitor current 

wavetonns at f=60Hz and f=400Hz respectively for L1=3 .8mH and C,=83.3~F. It is seen 

that the voltage utilization at f=60Hz is improved from U_.=74.3°·o to Uv~75.7° /o, while 

the quality of the waveforms at f=400Hz is degraded and the voltage utilization is 

improved from Uv=51.9% to Uv=71.8%. Hence. changing the parameters of the L·C 

tilter only is not enough to achieve an improved performance at the two frequencies. It 



may be necessary to adjust the parameters of the controllers to achien~ acceptable 

performance :.lt the t\VO frequencies. 
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Figure 4.2: Output voltage and capacitor current wavctonns at 60Hz 
(Basic two-loop control) 
(Rt=l6f2. L1=4.7mH. L,=7.5mH. C1=7l.4J.!F. YJ~:=IOOY. 
t:=4.2kHz) 
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4.3 The Modified Two-loop Control Strategy 

The simulation for the previous two-loop wntrol strategy has shl)\'in that only 

:.1djusting L-C tilter values (.;annot achieve optimum output at both frcquen~:y ends (60 Hz 

and -WO Hz) \vhich suggest that controllers have to be changed in order to optimize tht! 

p~.!rlt.mnum:c . Fur thi~ r~<.bllll. PI ~utllrulh:r~ '" ith high~.!r ~ain Jnd banJv ... idth us~J in th~ 

moditicd t\vo-Ioop control strategy as shown in Figure -U) . The strategy includes PI 

controllers in the torward path of the output voltage and capacitor current loops. The 

details of SIML!LI0JK model are shown in Appcndix A. Unlike the basi(.; two-loop 

cuntrol strategy. this :-;chemc docs not employ an external current signal tor the tollowing 

reasons : 

I . Although the external current wmmand can help the control svstcm to 

provide a high quality output voltage. it is not easy to implement. 

When the input voltage command and the external current command are 

derived from the same signal. the external current command arrives at the 

input of the inner current loop earlier that the compensated error signal from 

the outer voltage loop. The delays caused by the Pl controller causes steady­

state phase errors in the output. 
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Figure 4.6: The structure of modified two-loop control strategy 
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Again, since different controllers are employed, a new set of L-C filter of 

SIMULINK is tried out as follows. 

Z1=20 n (load impedance as same in following part) 

Yctc=lOO V, f5=4.2 kHz, 

Lr= 3.8mH, Cr=83.3~F, 

L1 = 31.85mH, (f=60Hz) 

L1 =4.8 mH, (f=400Hz) 

The details of the SIMULINK model and the parameters of the individual blocks 

and given in Appendix A 
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The control strategy is simulated at two frequencies. f==60Hz and f==400Hz. 

Figures 4.3 and 4.9 show the output voltage and capacitor current \vavcfonns at f=60Hz 

and f:::.+OOHz respectivdy. The \vavefonns reveal that the control strategy produces high 

quality output voltage waveforms at the two frequem:ies. In addition. the control strategy 

results in a higher uniti.lml voltage utilization at the two frequencit!s ( L , =~8. 3° ;, t()r 

4.4 The Three-Loop Control Strategy 

The chnicc presented in chapter 3 showcJ that it is possiblc to t!mploy the threc 

variables associated with the load tiltcr in a control strategy to improve the performance 

of the L' PS system. The structure of the three-loop control stratcgy is shown in Fig 4. 7. 

The strategy uses the tilter inductor current as a second inncr current loop in addition to 

thc inner capa~..:itor current loop and the output voltage loop. Hen~..:e the tem1. three-loop 

control strategy . The strategy :.1lso incorporates PI controllers in the tixward path of the 

current loops and the voltage loop. as well as feedback compensators. The details of the 

Sll'vtlJLINK model and the parameters of the ~o.:ontrol strategy are given in Appendix A. 
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Figure 4.7: The structure of three-loop control strategy 
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The control strategy is simulated at two frequencies, f=60Hz and f=400Hz for the 

same load impedance of Z1=200. The following parameters of the inverter-filter-load 

circuit of the control strategy are used for the SIMULINK simulation. 

f5=4.2 kHz, 

Lf=3.8mH, 

L1 = 31.85mH, (f=60Hz) 

L1 = 4.7mH, (f=400Hz) 

Figures 4.10 and 4.11 show the output voltage and capacitor current waveforms at 

f=60Hz and f=400Hz respectively. The waveforms reveal that the control strategy 

produces high quality output voltage waveforms at the two frequencies. The voltage 

utilization factors are Uv=100 % for f=60Hz and Uv=99.6% for f=400Hz. Additional 



waveforms for ditt~rent load parameters are given tn Appendix B. These waveforms 

continn the t~asibility of the three-loop control strategy and its robustness for variations 

in load parameters. 
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4.5 Summary 

[n this ~hapter. the feasibility of three control strategies for the UPS system was 

demonstrated through SIMULINK simulation. The basic t\vo-loop ~ontrol strategy 

needtxl an external ~urrent to achieve a high quality voltage wavct'tm11. although the 

str:.1tcgy could r.ut prm ide uniform perform:.1nce ~lt the tWt' st:md:m! frequencie~ t'f hnH/ 

;.md -tOUHz. In addition. the control strategy required a large l)Utput tilter to achieve a 

high quality output vnltage wavdorrn and the voltage utilization was t'tmnd to he poor. 

The modi tied t\vo-loop control strategy provided performance impn)\'l.!ment in voltage 

utilization and reduced tilter rating. Further improvements \Vcre obtainl.!d in the three­

loop wntrol stratt:gy . These improvements were achit:n:d at the expense nf an additional 

curn:nt sensor. The.! performance of the rnoditied and three-loop control strategies ts 

investigated further in the next ~hapter. 
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Chapter 5 

Performance Evaluation of the UPS System 

5.1 Introduction 

In l.:haptcr -L three ~o:ontrol strategies for the LPS system \VCrc developed. and their 

feasibility was demonstrated at the two standard frequencies. This chapter fncuses on the 

pcrti.mnanl.:c of t\vo of the control models. The goal is to achieve a control strategy 

l.:apablc of operating at a high tTcqucncy with rapid dynamic response. To reach this goal. 

the operation of the control modds at various fn:quencies and the characteristics of the 

l.:ontrol models under steady stat~.! and dynamic operations arc studied in this chapter. In 

addition. the cfti.-!cts of the control parameters on the pertormancc of the modi tied two­

loop and three-loop control strategies are in\'estigated. The models of the control 

strategies arc implemented in SIMULINK. The results of the simulation arc presented in 

the chapter. It is shown from the results that the three-loop control strategy has a robust 

perfom1ance. 
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5.2 Simulation Set-up 

Figure 5.1 shows the general structure l)f a n:ultiple feedhack control system for 

LPS. The control system consists of the following components : a current loop and a 

\nltage lnop ( tix the three-loop control strategy. an inductive loop is added as the third 

loop (represented by dashed line). a PI controller tor voltage adjustment (PI,). a PI 

controller tor current adjustment ( PU. a comparator, a voltage-source PWM inverter. a L,-

-C,- tilter. a resistive-inductive load R1 - L1 and tiltcrs F 1, F 2 and F, in the inductor. 

capacitor current and load \"l)ltage feedback paths respectively . The SI\HJ LI"\IK models 

of the individual blocks in the system have been discussed in the previous chapters. A 

typkal SlMULINK model of the system is given in Appendix A. 

The simulation results for steady state operation arc ohtained for a tixed load of 

Z 1=200 at a power factor of 0.8 lagging for the two standard frequencies. For f=60Hz. 

tilter parameters are Yt~.:= I OOV. t> 4.2kHz and L1=3.RmH. C,=83 . 3~tF. 

5.3 Performance of the Modified two-loop Control 
Strategy 

In this section, the simulation results tor the output voltage and capacitor current. 

THD values, and dynamic responses at the two frequencies (f=60Hz and f=400Hz) in the 
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moditied two-loop control strategy t()r a linear R-L load are presented. The 

characteristics of the two-loop control scheme arc demonstrated . 

5.3.1 Output Voltage and Capacitor Current Waveforms 

Figures 5.2 and 5.3 show the wavef(mns of the inner-loop cum!nt and the outer­

loop voltage at f=60Hz and f=400Hz. respectively . The CLmtrol system operared 

successfully at these standard frequencies. The voltage utili..t.atinn was found to he SH.J<l o 

Jt f=60IIz and SX.6°·1) at f=400Hz. It is found that th~o:rl.! is a larger pe:l1~-pcak variJtion in 

the indu~.:tor current. This can cause higher current stress on the s\vitching lkvices and 

produce voltage Joss . 

Figures 5.-+ and 5.5 show the load voltage wavet(1nns with respect to the reference 

signals at f=60Hz and f=400Hz. The a<..lditilm of PI controllers has reduct.:d the phase 

error to less than 0. 1 degrees at f=601-lz and f=400HL. However, there is an appreciablt.: 

amplitude error. 
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Figure 5.1: The general structure of the multiple feedback control system 
for UPS 
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t~=4.2kHz) 
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Figure 5.4: The load voltage with respect to the reference signal at f=60Hz 
(Modified two-loop control) 
(R1=l6.Q, LI=31.85rnH, LF3.8rnH, CF83.3J.!F, Vdc=lOOV, 
f5=4.2kHz) 
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5.3.2 Total harmonic distortion and voltage utilization 

The THD value is a measure of the quality of a waveform. Normally, waveforms 

with THD less than 5% are acceptable [ 18]. The THD for the output voltage waveform is 

defined as [ 18]. 

THD(%) 
( ~ v2) 

h=2 h xlOO 
vl 

(5.5) 

where V h is the rms value of the harmonic voltage and V 1 is the rms value of the 

fundamental component. 

Figure 5.4 shows the THD values as a function of the output frequencies which 

include the standard frequencies. It can be seen that at any frequency the THD of the 

output voltage waveform is less than 4%. At the standard frequencies, the THD values 

are less than 2.2%. Hence, it is shown that the unwanted components in the output 

waveform have been almost eliminated and the output voltage can be considered as a 

sinusoidal signal. The figure also shows that the control scheme is capable of maintaining 

constant output voltage at the two standard frequencies. However, the system exhibits a 

significant increase in THD and a decrease in the voltage utilization for frequencies 

above 420 Hz. 
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5.3.3 Dynamic Response 

The transient response is investigated ut the two standard frequ.:nti6 to verify the 

perfonnan~e of the tnntrol syst.:m under varying load. 

Figur.:s 5. 7 and 5.X shnw rcspe~tiwly the dynamic responses L)f th.: ll)ad current 

and load \ ll I tage at f=60 Hz f(.)[ a I 00° o step thangc in load . .-\s shown in the ti gur.:s. the 

transient response lasts fur abllUt half nf the cyd.: hdi.1r.: reaching the st.:ady stat.:. The 

control strategy thercti1re provides a fast transi.:nt resplmse tl) !tJad changes. As well. the 

load voltL!ge is maintained almost wnstant during the load changes indicating that the 

L. PS system \)perates as a stiff \nitage source at 60Hz. 

Figun:s 5.9 and 5.10 .:.xhihit the dynamic responses to the loading and unloading 

at f=-l-00 Hz. Figure 5.9 shnws the case ofunk)ading (removing the load fmm the control 

system 1. The adjusting time of the control system \Vas ti.)und to he 23ms (trom 0.042 

seconds to 0.065 seconds). When the load was rcmuved fwm the system. the nut put 

\nltage ,.,.·as suddenly increased. The control system \Vas ahlc tn adjust the.: output 

immcJiatdy until the output voltage reached the steady state. Figure 5.10 shmvs the tasc.: 

nf loading (applying a load to the control system). The adjusting time nf the.: control 

system was found to be only 7ms ( trom 0.042 seconds to 0.049 seconds). When the load 

\vas appl ic.:d to the control scheme. the output voltage dropped. However. it recovered its 

steady state value after 3 cydes. These test results indicate that the.: control system ts 

capable of delivering and maintaining the desired output following load changes at 

400Hz. However. a careful scrutiny of Figures 5.9 and 5.10 reveals that the dynamic 



responses arc slightly different upon applying and removing a load. The re~ovcry time 

tl.1llowing the n:m'-)val of load is longer than the sudden application of load. 
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5.4 Performance of the Three-Loop Control Strategy 

In this section. the simulation results tor the output voltage and capacitor current. 

THO values. and dynamic responses at the two frequencies (f=60Hz and f=400Hz) in the 

three-klOp control strategy for a linear R-L load are pn:st:nted. The chaructt:ristics of the 

three-loop contwl scheme are demonstrated. 

5.4.1 Output voltage, capacitor current and inductor 
current waveforms 

Figures 5. 1 I and 5.12 show the waveforrns of the control variables: load , ·oltage. 

capacitor current and induetl)r current at 60Hz and 400Hz rt:spe..:tin:ly. The , ·oltage 

utilizatitm is t()und tn he 100°'n at f~60Hz and 99.61~i. at f=-+OOHz. There is a slight 

reduction in the current variation at the peak of the inductor current. and at near the zero 

crossings of the capacitor current. This results in a decrease in the stresses lm the 

switching devices. 

Figurt!s 5. 13 and 5.1-+ show the wavetorrns of the load voltage with respect to 

rett!rence signals at f==60Hz and f=400Hz. The resulting output voltage waveform has 

negligible phase and amplitude errors. 
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(Three-loop control) 
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5.4.2 Total Harmonic Distortion and Voltage Utilization 

Figure 5.15 shows the THD values in the frequency bandwidth which includes 

the standard frequencies. The THD values for the three-loop system are found to be less 

than 1. 7%. In addition, the figure shows that the three-loop control scheme is capable of 

maintaining constant voltage at the two standard frequencies. The system presents a low 

THD value and higher voltage utilization for frequencies above 400Hz at the system 

parameters used. 
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5.4.3 Dynamic Response 

Figures 5.16 and 5. 17 show the transient responses of the three-loop control 

system for a I 00° ;) step ~hange in load. The transient period is a little kss than half of a 

..:y..:l~. hct(.)rC the ~~y stcm reaches the stead:/ stat~:. Tht: t:ontrol :>tratcgy tht:n:fore prm·ides 

a fast transknt response to load changes. :\.s \vel!. the load \·oltage is maintained almost 

constant during the load changes. 

Figures 5. 18 and 5.19 show the transient responses at f=400 Hz ti.1r step changes 

in load . Figure 5. 1 S shows the case of removing the 1Ln1d from the system. The adjusting 

time of the control system \Vas ti.)und to be 22ms (from 0.042 secnmls to 0.064 secomis). 

It is shown in tigure 5.19 that the transient period is oms (0 .042 seconds to 0.048 

seconds). When the load was app\icd to the system. the output voltage dropped but steady 

state was reached after three cycles. As shown. the transient time of the three-loop system 

decreased slightly in comparison with that of the two-loop system. These tigurcs 

demonstrate that. when load is applied and removed at any time. the control system can 

adjust the parameters immediately to meet the steady-state requirements and maintaining 

the desired output. In fact. the dynamic responses are slightly different upon applying and 

removing 100% step change in load. The recovery time following the removal of load is 

longer than that for the sudden application of load. 



\(\ 
I 
I 

1CO r f\ 

\ ~ so~/ \ 
: o~ \ I 
. .,.. II · I 

~ -50~ v 
-1001 1 

I I 

03 

03 

Output Voltage (fu ll load to no load) 

1\ 1\ (\ (\ !\ i\ /\ (\ ~ 

I
I\ /1\ /\\ I\ (\ f\ j\ n, 
\;I,) ~ II\/ \;/\/ \;1 
' \; ,v ~ v, \; ' \j ' v j 

0 ~ 0 34 0 36 0 3S 0 4 0 42 0 44 
T1me (.sP.conds) 

Output Current (full load to no load) 

i 

l 

032 0 34 0 36 0 3B 04 042 044 

Time (seconds) 

Figure 5.16: Dynamic response (from full load to no load) at 60Hz 
(Three-loop control) 
(R1= 16Q, L,=3l.85mH. L1=3.8mH, C1=83.3!1F. Y J.:=l OOV. 
t~=4.2kHz) 
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(Three-loop control) 
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Figure 5.18: Dynamic response (full load to no load) at 400Hz 
(Three-loop control) 

0 065 

(R1=I6.0, Ll=4.8mH, L1=3.8mH. C1=83.3!JF. V~k=IOOV. 
t:=4.2kHz) 

101 



Output Voltage (no load to tul l !cadi 

~50 
! 

~.. ~ 00 ~ :r' (\I f\ (\ r, •\ (\ ,, 
' I I I t (\ I \ . ' / \ f I ! \ I \ 
~ 50 l \\, IIi \\ 1/ \ J/ \ / \ I \ ,/ \\ / \ I \. 

f\i 
I \ 

o/ ·\;I, ,I\ I\ . \ ;·,/ • 

i -~:: i \J \) ,j v 'V \J v \J \J 
I I 

-150 

10 

5 -:n 
a. 
E 
~ 

0 
~ 
'5 

0 
-5 

- 10 

004 0 045 005 0 055 0 06 
T1me (seconds) 

Ou tput Current (no :oad to tullload) 

\ 

1, 1(\\ (\\ 
1
r\ /\ ,/\\ ,/\ /'\ 1/\ 

(\,\ II' I \ J \ 
1----------1 I I\/\ I \IJ \/\/ 

\jV )V,\)\J \)V 

004 0 045 005 0 055 
Time (seconds) 

Figure 5.19: Dynamic response (full load to no load) at 400Hz 
(Three-loop control) 
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5.5 Effect of System Parameters on The Performance 
of The Three-Loop Control Strategy 

103 

The results of the previous sections indicate that the three-loop control strategy 

results in improYed performance. In this section. the performance nf the three-loop 

cnntrol strategy is funher investigated by examining the t:ffects of load power factor 

\·ariation and switching frequency on the THO and voltage utilization of the UPS system. 

Figures 5.20 and 5.21 shO\v the THO and the \iOltage utilization as a function of 

the ll1ad power t~H.:tor at 60Hz and 400Hz respectively. The tigurcs shnw that the output 

\'l)ltage remains constant as the load power t~1ctor varies trom pf.-=0.6 (lagging) w 

pf==0.9( lagging) . Fm 60Hz operation. the THO is IO\v ( 1.1 ° 'n) and changes slightly ti.)r the 

range of power factor. At 400Hz. the THO is worse ( l.S3°·o) at low pmver t~1ctms but 

deaeases steadily with increasing power ta~o:tor . 

Funhennore. the effect of switching trequency ts studied for the three-loop 

control system. Three switching frequencies of t~ =4.2kHz. (=3.2kHz and t>2.2kHz 

\Vere selected. It is shown in tigurc 5.22 that higher switching tTequencics improve the 

quality of the output voltage. Nunnally. the switching frequency is much higher than the 

output trcquency. When the switching frequency is decreased. the output harmonics 

would im:n:ase because the PWM cannot remove the harmonics which arc too large 

compared to the fundamental trequencies. However. in an application. the switching 

frequency cannot be chosen to be too high because of the increased losses in the inverter 

devices at higher switching trequencies. Figure 5.23 shows the effect of the switching 
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frequency on the output voltage. It is shown that the output voltage is not affected by the 

switching frequency. 

THD and Output voltage 
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Figure 5.20: THD and peak value of output voltage as a function of power 
factor frequency at f=60Hz 
(Three-loop control scheme) 
(Vdc=lOOV, f5=4.2kHz, LF3.8mH, CF83.3J..LF, Z1=200) 
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Figure 5.21: THD and peak value of output voltage as a function of power 
factor frequency at f=400Hz 
(Three-loop control scheme) 
(Vdc=lOOV, fs=4.2kHz, LF3.8mH, CF83.3~F, Z1=200) 
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Figure 5.22: THD value for comparison at different switching frequency 
(Three-loop control scheme) 
(Vctc=lOOV, fs=4.2kHz, Lt=3.8mH, Ct=83.3J--LF, Z1=200) 
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Figure 5.23: Peak output voltage for comparison at different switching 
frequency 
(Three-loop control scheme) 
(Vdc=IOOV, fs=4 .2kJlz, Lr=3.8mH, CF83.3J.!F, Zt=20!.1) 
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5.6 Summary 

In this chapter. the characteristics of the basic and moditied two-loop and three­

ll)Op control strategies arc presented. The steady-state and dynamic performances of the 

two control stratc~ies an: imcstigatt!d through simulation performance measures. such as 

steady statl: ouLput \ultagc. capaciLur cu1T~lll anJ inJudur cUITcrH \\<l\cfunns. THD. 

voltage utilization anJ dynamic response. It is shown that the Clmtrol strategies can 

ddin:r and maintain the desired output. 

The n..:sults of the simulation indicate that the proposed three-loop control strategy 

pro\·ides improved pcrfonnancc in terms of high quality of the output \ ·oltagc \vavetiJm1. 

higher voltage uti lizatinn and faster dynamic response. 
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Chapter 6 

Conclusions and Further Studies 

Computer simulation~ of mu!tipk feedback control schemc.:s ti.)r an CPS system 

using SIML' LINK are performed and the results are presented in th~.: th~.:sis tn d~.:scribc the 

pcrt(xmance of th~.: various strategies. 

In on.lt.!r to inn:stigatt! the steady-state and dynamic behavior l)f th~.: LPS system. 

models and transfer functions of the feedback variables. the inverter. the tilter and load 

were dcvell)ped. L:sing Fourier analysis and through PWM. the initial discrete model 

(representing the switching fun..:tion) was converted into a continuous model where only 

the low-fr~.:quen~.:y components were considered. In the dynamic modeL the feedback 

variables were chosen and expressed in the state-space equation. 

Normally. there are t\VO types of controllers that are used m power electronic 

systems: proportional controller and PI controllers. Proportional controllers are easy to 

build and implement. However. in most applications. the chosen gain is not large enough 

to boost the dynamic response. In addition. the gain of the proportional controller is tixed 

to a certain frequency . It is shown from the results obtained from the control system with 

proportional controllers (the basic control strategy) that it is difticult to achieve a stable 

and high quality output voltage over a wide frequency range. Compared to the 
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proportional controller. the PI controller is more desirable because it has the potential tor 

achieving stable operation and minimizing the steady-state error over a wide frequency 

range. Therefore. PI controlkrs were used in the proposed l:ontrol strategies. 

Frequency response analysis was presented for three-possible PI controllers. as 

well as the steady-state error analysis . Based on the criteria of wide frequency operation 

and minimum steady-state error. the second-order PI controller was selected as the PI 

controller. :\ second-order type tcedback controller was also selected to improve the 

signal to noise ratio nf the tecdback variables. Appropriate compensator parameters 

which result in stable operation and high quality output waveti.)rn1s \Vere sckctcd after 

several simulation trials . 

The basic two-loop control strategy consisting of an inner capacitor current loop. 

an output capacitor voltage loop. a PI controller in the current loop. titters in the feedback 

loop. and a reterence current command was investigated. It was found that the control 

system could work \veil at f=400 Hz. but did not perform rdiably at f=60Hz. The basic 

control strategy was moditied to include PI controllers in both current loop and voltJge 

loop with no reference current command. A three-loop control strategy consisting of 

inner capacitor current loop. an inner inductor current loop and an outer voltage loop was 

proposed . 

The features of the proposed control strategies were investigated. It is shown that 

the three-loop control strategy is feasible. Moreover. based on the simulation results. the 

proposed strategy is capable of achieving 100% voltage utilization. high quality output 
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\ 'Oitage with very low THO. fast transient response. negligible steady-state error. and 

constant ~..mtput voltage at the two standard frequencies of 60Hz ~:md 400Hz. 

The major contributions and achievements of this thesis an~: 

I . The dcvdopment of analytical models of the individual blocks for SIMULINK 

implementation of multipk feedback control schemes tl)r voltage sources UPS 

systems. 

1 The implementation of PI controllers in the forward path and tilters in the feedback 

paths of the UPS system. 

3. The success till development of high performance control strategies capable of 

operating at 60 Hz and 400 Hz. The control system can he control h:d by an input 

voltage command without an external current command. 

4. The presentation of simulation results which provide insight into the features of the 

Jift~rent control strategies under steady-state and dynami~.: operation. 

6.1 Suggestions for Future Studies 

The goal of this thesis was to develop control strategies to obtain high quality output 

voltage and fast dynamic response at the standard frequency f=60Hz and f=400Hz. The 

proposed two-loop control strategy and three-loop control strategy have been 

demonstrated to be feasible and to meet the objectives. Further work is suggested to be 

carried in the following three areas. 

• A single-phase UPS system was considered in this study. Further work is required for 

three-phase systems. 
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• An experimental implementation of the UPS system is required to validate the 

proposed control strategies. 

• A fuzzy-logic based system is expected to improve the performance of the UPS 

system. Further work is required to implement a tuzzy-logic based model of the UPS 

system. 
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Appendix A 
SIMULINK Models of the Control Strategies 

The detailed SIMULINK models of the various control strategies are presented in this 

Appendix. 

A.1 The two-loop control strategy 

PWM2 ln2 Out2 

FI111Br 

L___ _____ ------j,Out1 ln1!4--------' 

Feedback Block 1 

L___-------------l0ut1 ln114--------------' 

Feedback BlOck 2 

~ 
Clock nme 

Figure A.l: The structure of basic two-loop control strategy 

The transfer functions and parameters of the individual blocks are as follows: 

Compensator 2.2xl0-6 s+4.22 3.58xl0-6 s+l 
-----------X------------

6.6x}Q-l2 s 2 +4.43xl0-7 s+l 4.15x10-ll s 2 +2.74xl0-7 s+l 

PI controller: Feedback Block I: 

Varlable2 

PI = 2.626xl0-3 s+l 

c 9.162x10-4 s 
4.99xl0-5 s+l fi = ----------

6.72xlo-10 s 2 +7.69xl0-5 s+l 
Feedback Block2: 

f 
_ 4.99xlo-5 s+l 

2-
8.4x10-ll s 2 +9.6xl0-6 s+0.125 
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A.2 The modified two-loop control strategy 

rrn r--

l!...!!l ~~ r- ,---Voltage input _1_L___,. + r- -,-----. u+ ~ j ln1 Out1 65e+~ f-t 20Qe+
3f----t ln1 Out1----t 

1 !r--* ln1 Out1f---f 1-t---+--' 

~r j- 1 10e+3 ~ ln2 Out2f-

.---------'l s'um rHlStOr1 PI Controller 1 resistor2 ,.- - PI Controller2 PWM2 Filter 
'--

Sum 

.-------., 

1 
16----10ut1 ln114-----' 

10e+3 

resistor3 Feedback Block 1 

1 ~--------Out1 ln11~--------------------------~ 
65e+3 

resistor4 Feedback Block 2 

Figure A.2: The structure of modified two-loop control strategy 

The transfer functions and parameters of the individual blocks are as follow : 

PI Controller 1: 

1.657 5s+ 1 07 5 
PI = -----=------------c--

v 6.6x 10-5 s2 +4.4015x 10-l s+ 1 

Feedback Block 1: 

4.99xlo-5 s+l 

PI Controller 2: 

PI _ 3.952x 107 s+3.6499x 105 

c- 5.93x 10-5s2 +0.7974s+1 

Feedback Block 2: 

117 

4.86-35+16 

Load 

11 
6.72x10-10 s 2 +7.69x10-5 s+1 

f 
4.99x10-5 s+1 

2- -------
8.4xl o-11 s 2 +9.6xl o-6 s+0.125 

The resistor blocks are used to scale the various signals in the control system. 
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A.3 The three-loop control strategy 

OJt11--~-...:....._-f-_J 

4.~16 

I..Dad 

OJt4.1--+-+~ 

Filler 

FNdback Block 2 

~---.,0Jt1 ln1~-------------' 

Rulstor6 FHdback Block 1 

Figure A.3: The structure of three-loop control strategy 

The transfer functions and parameters of the individual blocks are as follow : 

PI Controller 1: PI Controller 2: 

1.6575s+ 107 5 
PI = ------------

v 6.6x 10-5 s 2 +4.4015x 10-1 s+ 1 
PI _ 3.952x 107 s+3.6499x 105 

c-
5.93x 10-5 s2 + 0.7974s+ 1 

Feedback Block 1: Feedback Block 2: 

fi 
_ 4.99x10-5 s+l 

1- ------
6.72x10-10 s 2 + 7.69xl0-5 s+l 

4.99xl0-5 s+1 

8.4xl o-11 s 2 +9.6x1 o-6 s+0.125 

Feedback Block 3: 

f 
4.99x10-5 s+1 4.99xl0-5 s 

3= X 
6.72x10-10 s 2 +7.69x10-5 s+l 6.72x10-10 s 2 +7.69x10-5 s+l 

The resistor blocks are used to scale the various signals in the control system. 
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These parameters applied in a two-loop system can provide normal output of 

60Hz. However. it ~an not provide 400 Hz output. To satisfy the requirement of this 

approach. these parameters were changed in the modified two-loop system presented in 

Chapter 5. As a result of this change. the band\vidth of the \vhole system is expanded and 

hence a high frequency of 400Hz is provided. In Cl)tnparison with the modi tied two-loop 

~ystcm. the three-loop ~ystem developed in Chapter 5 pn.H.iuces less \·nltal:!e loss and 

higher 4uality of output waveform. This improvement was achieved hy adding an 

inductor current loop \Vhich would decrease the intluence of harmonics and cum.:nt 

stress. 
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Appendix B 

Additional Waveforms for the Three-Loop Control 
Strategy 

The wavctonns tor Ji fferent load paramcters are shown in tigure B. I to B.-+ at 

standard trequendes of f=oOHz and f=-lOOHz with Z1::.:o !50 and Z1=250. Based nn these 

tigurcs. it is shmvn that the three-loop control system is insensitive to loaJ parameters 

change. 
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B. I: Output voltage. capacitor current and inductor current wavefonns 
at 60Hz 
(Three-loop control) 
(R1=l2Q. L,=23.87mH, L,=3.8mH. C,=83.3~F. YJ.:=lOOV. 
t:=4.2kHz) 
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8 .2: Output voltage. capacitor current and inductor current \vavcfonns 
at 400Hz 
(Three-loop control) 
(R,= 12n. L,=3 .58mH. L1=3 .8mH. C 1=83.3~tF. VJ~= 1 OOV. 
t~=4.2kHz) 
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8 .3: Output voltage, capacitor current and inductor current waveforms 
at 60Hz 
(Three~loop control) 
(R,=20n. L1=39.7mH. L,=3.8mH. C1=83.3!lf. V,k=lOOV. 
t~=4.2kHz) 
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8.4: Output voltage. capacitor current and inductor current waveforms 
at 400Hz 
(Three-loop control) 
(R1=20n. Ll=5.97mH. L,=3 .8mH. C,=83.3~tF. YJ.:=IOOV. 
t~':::4.2kHz) 



Appendix C 

Simulation Procedure 

12-t 

In this appendix. a structured window application. supported by :vtATLAB [3Rl 

and m-tiles. is introduced to show the simulation procedure graphically. It starts with a 

central window. Figun.:s C'.l and C.2. which includes all components of the design. A 

user can directly input control command from the input window and get the output trom 

the running windmv. Other components of the design such as the system bloeks. 

::-> imulation. adaptive system. dynamic n:sponsc and trcquency response can be viewed by 

clicking the corresponding icon . The most useful window is the overview window. which 

links a general \vindow to various windows tor the display of the system wavefonns and 

features. as shmvn in Fig.C.3-C .5 . 



Sirnulink Blocks Editor 

LIMINCHENG 
Supervisor: Dr. J. Quaicoe 

Faculty of Engineering 
Mernorial University of Newfoundland 

Input Signal Running Systern 

Systern Blocks SIMULATION Adaptive Systern 

Figure C.l: Part of center window 
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System Blocks Adaptive System 

overview 

Dynamic Response Frequency Response 

0 
(Double click here 

see more information) 

Call the general window on the next page 

Figure C.2: The main window (Cont.) 

Double click 
here for 

SIMULINK Help 
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Figure C.3: The general window 



(a) 

Figure C.4 (a) Simple models window (b) Proposed control 
strategies with Models 
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load pt3 
plot(t2,cu); 
axis([0.06 0.1 -10 1 0]) 

Figure C.5: Output voltage and capacitor current waveforms at 60Hz 
(Modified two-loop control) 
(R1=l6.0, LI=31.85mH, LF3.8mH, CF83.3J..1F, Vdc=lOOV, 
fs=4.2kHz) 
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Figure C.6: Dynamic response (full load to no load) at 400Hz 
(Three-loop control) 
(RI=160, LI=4.8mH, LF3.8mH, CF83.3!J.F, Vdc=IOOV, 
f 5=4.2kHz) 
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