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Abstract 

Cantilevers are ultra-sensitive sensors capable of detecting a variety of physical and 

chemical phenomena. Due to the construction of the sensor, the cantilevers are often pre­

bent prior to using them as actual sensors. In order to properly interpret further cantilever 

deflections due to sensing events, it is important to understand the initial states of the 

cantilever. Also it is imperative to establish the initial orientation of the cantilever chip 

with respect to the horizontal. In this work, a new model to measure the initial orientation 

of the chip has been developed using the standard optical beam deflection system. Using 

reference chips inclined at 2°, 3.5°, and 5°, the proposed method was shown to be 

successful. A new method was also developed to measure the initial curvature based 

entirely on the vertical motion of the incident laser. Results compared to optical images 

showed our method to be successful. Lastly, based on our ability to measure the angle of 

inclination of the chip, we have successfully modified the "Rotating Method" developed 

previously in our group. 
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Chapter One: Introduction 

In section 1.1, we describe micro-cantilevers, how they are manufactured, and how they 

are used in our experiments. In section 1.2, we introduce cantilever sensors, how they 

work and the problems associated with the technology. The motivation and the scope of 

this study are presented in sections 1.3 and 1.4 respectively. 



1.1 Micro-cantilevers 

Micro-cantilevers were first introduced by researchers at IBM Research Laboratory and 

Stanford University in 1985 [1] as detection probes for the Atomic Force Microscope 

(AFM), for imaging the surface morphology of both conducting and non-conducting 

samples. There are two basic shapes of cantilevers as shown in figure 1.1: rectangular 

cantilevers, which are of the order of 200-400 ~m long, 30-50 ~m wide and 1 ~m thick, 

and V-shaped cantilevers, which are ofthe order of90-200 ~m long, 40-60 ~m wide, and 

1 ~m thick. 

Fig. 1.1 Rectangular and V -shaped micro-cantilevers 

Most micro-cantilevers are made of silicon or silicon nitride and are manufactured by 

chemical etching and conventional photolithographic techniques. The micromachining 

process starts with a silicon on insulator (SOl) wafer, which has a buried oxide (BOX) 

layer approximately 1 J..li11 below the top surface of the wafer (figure 1.2a). One method 
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of making cantilevers is to pattern the cantilever shape on the top surface of the SOl 

wafer using standard photolithography techniques (figure 1.2b). By etching, the exposed 

Si area is removed to the oxide layer which acts as a natural etch-stop. Following the etch, 

a new layer of silicon oxide is then deposited on the already formed cantilevers up to a 

point just beyond the cantilevers as shown in figure 1.2c. The area not covered by silicon 

oxide is used as an etch window which allows the silicon below the BOX to be removed 

by etching (figure 1.2d). Removing the silicon oxide followed by intensive rinsing 

releases the cantilevers as shown in figure 1.2c (2]. 
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Fig. 1.2 Process of silicon cantilever fabrication 

3 



In the cantilever fabrication process, the surface roughness of the cantilever is highly 

dependent on the solution concentration. Thus, the etched surface becomes rough after 

etching with highly diluted formic acid [2]. As will become apparent in later chapters, the 

roughness of the cantilever surface is important because it affects the reflection of the 

laser spot from the cantilever/chip surface. All of the cantilevers used in this study were 

purchased from MikroMasch Company {Tallinn, Estonia). In figure 1.3, the top and side 

views of the cantilever are shown schematically. The shaded rectangular area 

(3.4mmxl.6mm) is called the chip of the micro-probe, which has six rectangular 

cantilevers suspended from it. All the cantilevers have the same widths but different 

lengths. In this work, only the longest cantilever E (width 35 IJ.m, length 350 IJ.m, and 

thickness l!J.m) was used since this is the most sensitive cantilever. 

-..- - - - - -- - -- - "::· - - -
/ \ ,.,. ·""' . -.., 
I , / - I w , 

/ ! \ 
/I \ 

/I \ 
/ I A B c \ 

~ " / I D E F I '>' 'd" ' I - I""" l 
M ' \ " I 

' \ I 

'~ I 

' / 

' / ..... / 
...... ---- ·- - - - - - ~-- -

0.4 rm, 1.6mm 

Fig. 1.3 MikroMasch CSC12/Tipless/Non-coated micro-probe 
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1.2 Cantilever Sensors 

Besides being used as AFM imaging probes, micro-cantilevers have been used as ultra-

sensitive sensors for a variety of physical and chemical phenomena [3]. Due to their 

small size, micro-cantilevers have a short response time and ultra-small detection range. 

In recent studies, these sensors have been used as chemical sensors [ 4-6], bio-sensors [7-

12] and surface stress sensors [13-15]. These ultra-sensitive cantilever sensors can detect 

quantities in the nanogram (1 o-9
), pictolitre (1 o-12

), femtojoule (1 o-15
) and attomolar (10-18

) 

range, with a short response time on the order of milliseconds [3]. 

'o0 'o • • o• o, I) 

Fig. 1.4: Cantilever sensor detect only the target molecules (circular) though 
reactions with the functionalized layer. 

Cantilever sensors are generally composed of a silicon cantilever on which has been 

deposited a thin gold film. On the Au film, receptor molecules are attached, which react 

specifically with the target molecules to be detected. The general process of how a 

cantilever sensor reacts to target molecules is shown in Fig. 1.4. The Au coated cantilever 

is functionalized with receptor molecules, which only react with specific molecules in the 

surrounding environment. Absorption of the target molecules creates a surface stress on 
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the cantilever causing the latter to deflect. The concentration of target molecules in the 

surrounding media can be estimated by the amount of deflection. 

Generally, gold is chosen as the connection layer for two reasons. First, it is usually 

possible to find receptor molecules that bond strongly to gold. Second, the stable 

character of gold prevents the functionalized layer from coming off the cantilever due to 

oxidation effects. Unfortunately, there are several problems with using Au. One problem 

is that the deposition process sometimes leaves the Au film in a stressed state. The 

amount and kind of stress (tensile or compressive) suffered by the cantilever is still not 

completely understood. For example, figure 1.5 below shows four optical pictures of 

similar cantilevers that were sputter coated with Au all at the same time. It is clear from 

figure 1.5 that two of the cantilevers experienced tensile stress while two of the 

cantilevers are in compression. Another problem with having Au on one side of the lever 

is that the lever becomes highly susceptible to changes in temperature due to the 

bimetallic effect. 

/ 
I 

Fig. 1.5 Side view of different cantilever curvatures 
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1.3 Motivation 

In order to obtain high precision cantilever sensor measurements, it is important to 

understand the initial conditions of the cantilever. In a recent paper by Beaulieu et al. 

[ 16] it was shown how to quantify the cantilever deflection based on the signal measured 

by an optical beam deflection system. However, in their work the authors assumed that 

the initial state of the cantilever was un-deflected and perfectly horizontal. As shown in 

figure 1.5 the deposition of Au on micro-cantilevers can leave them in a highly stressed 

state. Moreover, attaching the receptor molecules to the Au coated cantilever can further 

induce a surface stress resulting in increased cantilever deflections. Once the cantilever 

is deflected it is not possible to infer further deflections of the cantilever from the 

position sensitive detector signal unless the initial curvature is first obtained. Also it is 

imperative to establish the initial orientation of the cantilever chip with respect to the 

horizontal in order to obtain the direction of the surface normal of the cantilever as the 

lever bends. The surface normal of the cantilever is critical since it dictates the direction 

of the reflected beam. 

1.4 Scope of this Thesis 

In this thesis we will derive a method for determining the initial orientation of the nano­

probe with respect to the horizontal and develop a method for determining the initial 
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curvature of the cantilever. Chapter Two of this thesis will discuss the sample 

preparation, the experimental setups, and the software used to process images and collect 

data. The experimental techniques developed in this study will be described in Chapter 

Three, combined with the data analysis and results. The conclusion and future work will 

be given in Chapter Four. 
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Chapter Two: 

Sample Preparation and Experimental Setup 

In this chapter we discuss the experimental setup used in this work. In section 2.1, the 

preparation of the micro-cantilevers is described in detail. In section 2.2, the setup 

components are presented. Finally in section 2.3, we discuss the method used to acquire 

optical images and the software written to control the hardware and analyze the data. 
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2.1 Cantilever Sample Preparation 

When gold is deposited on micro-cantilevers, the resulting film often leaves the 

cantilevers in a state of tensile or compressive stress. For example, the cantilevers shown 

in Fig. 1.5 were all coated at the same time, yet they all show different degrees of stress. 

Therefore, there is a need to find the proper deposition parameters to control the stress in 

the gold film. 

In our experiments, micro-cantilevers were prepared as follows. First, the cantilevers "D" 

and "F" (see Fig. 1.3) were removed to allow the central lever "E" to be viewed from the 

side. Then the cantilevers were immersed in a Piranha solution (H2S04:H202=3: 1) for 10 

minutes to remove any residue on the surface. The levers were then washed twice with 

de-ionized water to completely remove the Piranha solution. The cleaning process was 

performed very gently and carefully so as to not break the cantilever. To minimize the 

chance of damaging the levers, the micro-probes were held by tweezers when immersed 

in and out of the solutions. After rinsing, the levers were dried with nitrogen gas in a 

direction along the length of the cantilever. 

Thin gold films were deposited on the cleaned cantilever samples by sputtering 

deposition at 150 W, with a gas flow rate of 20 SCCM (Standard Cubic Centimeters per 

Minute) for 10 mins. 
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2.2 Experiment Setup 

The schematic diagram in Fig. 2.1 shows an overview of the complete experimental setup 

used in this work. A laser focuser and a position sensitive detector (PSD), the most 

essential components of the optical beam deflection system (OBDS), were mounted in a 

straight line to analyze the change in cantilever curvature. With a precision current source 

(d) used to power the laser diode (e), the laser beam was excited and focused on the 

cantilever and then reflected onto the PSD. By rotating the laser incident angle with the 

laser holder arm, or moving the laser point position on the cantilever with a 12 V DC 

motor (g), the laser position on the PSD changed correspondingly. The movement of the 

laser beam, in other words, the movement of the laser focuser holder, was measured with 

a digital indicator (j). The indicator was connected to the lab computer with an input 

device (k), and controlled by a pulse generator (I) to read position information at regular 

intervals. The impinging beam on the PSD surface caused a current to develop in the PSD 

which was converted into a voltage signal by an amplifier board (c). The voltage data was 

collected by the Data Acquisition (DAQ) Board (b) and gathered by the lab computer (a). 

11 
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c e) Laser 

Diode 

Fig. 2.1 Overall view of experiment setups 

2.2.1 Optical Beam Deflection System (OBDS) 

This section focuses on the essential parts of the OBDS: the laser focuser, the PSD, and 

the cantilever. As shown in figure 2.2, an optical beam is focused at an incident angle 8, 

which reflects into a PSD held at an angle rp. The distance from the laser point on the 

cantilever to the chip is D. The distance from the laser point on the cantilever to the laser 

point on the PSD is L
0

• 
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Laser 
Focuser 

Cantilever 

Fig. 2.2 Schematic graph of OBDS 

While the laser spot moves along the length of the cantilever, the laser spot on the PSD 

moves correspondingly. In our system, it is crucial to measure the value of L
0 
accurately. 

Consider a deflected cantilever shown in figure 2.3 with different values of L
0

• For a 

given deflection each PSD will give a different signal. It is clear that M is smaller 

than M', hence causing L
0 
to act as an amplifier factor in the OBDS. 

Chip/Cantilever 
... ............... 

---~ ...... ___ .. , 
... _, 

Fig. 2.3 Effect of the value of different L
0 
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2.2.2 The Laser and the Laser Arm 

In this study, a precision current source (LDX-3412, ILX Lightwave Corp.) was used as 

the current source for the laser diode (FMXL112-00, Claire Lasers). The laser diode was 

mounted on a special temperature control holder and controlled by a temperature 

controller (LDT-5412, ILX Lightwave Corp.). For this system, a 10 Kn setting on the 

temperature controller corresponds to a temperature of 25 °C, while the 40.6 rnA on the 

precision current source corresponds to a laser power of 1 m W. The laser beam was 

focused on the cantilever using optical focusers (LPF-Ol-635-4/125-S-2.4-15-4.7GR-40-

3S-1-2, OZ Optics). 

To control the incident angle of the laser beam, a laser arm was designed by Ye Tian [17]. 

Figure 2.4 contains a photograph of the laser arm with the laser focuser fixed on the laser 

holder (a), the 3D view (b) and the side view (c) of the laser arm, and a 3D side view (d) 

and the side view (e) of the laser holder. The rotating arc of the holder has the inner and 

outer radius of 39.0 mm and 46.5 mm respectively. There are 26 positions on the arc that 

allow the laser focuser to be positioned from 40° to 90°. The laser focuser was secured to 

the holder with a small screw on the backside. 

14 
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a) Photograph or Laser Focuser Assembly b) 30 View c) Side View 

d) 30 View a) Side Views 

Fig. 2.4 Laser focuser holder assembly: a) photograph of the laser focuser assembly; b) 
3D view of the laser arm; c) side view of the laser arm; d) 3D view of the laser holder; 
e) side views of the laser holder. 

2.2.3 Position Sensitive Photo Detector 

The PSD is made of a photo-sensitive semiconductor material. When light hits the highly 

sensitive laminar semiconductor, a photo-electronic current is generated which is divided 

into two output currents Y1 and Y2 (as shown in the figure 2.5). 
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Fig. 2.5 Graph of PSD 

Defining the length of the effective PSD surface as L, the relationship between the 

position Y of the incident light and the currents is given by: 

Y -~-~ L - X-
~+~ 2 

(2.2) 

The maximum power density of the PSD surface is 3 W/cm2
, with a maximum power of 

1 mW. The laser source used in this work has a power of 1 mW. After reflecting from the 

cantilever, the diameter of the laser spot on the PSD surface is approximately 2 mm 

which gives a laser power density of approximately 0.03 W/cm2 well below the 

maximum. 

In our experiments, the PSD signal was sent to an amplifier board, transferred to a 

voltage signal and then read by a data acquisition board (PCI6036E, National 

Instruments). The transfer ratio between the PSD voltage signal and the position of the 

laser spot on the PSD surface was determined by the maximum and minimum values of 

PSD output voltage. 
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2.2.4 DC motor and Translation Stage 

In our experiments, a 12V DC motor with a rotation speed of 1 RPM was used to control 

the movement of the laser beam. To eliminate mechanical vibrations, the DC motor was 

isolated from the laser mount. The design of the DC motor control mount was improved 

several times. 

First, the DC motor was connected directly to the laser mount through the motor rotation 

axis. In this configuration, the laser point shifted from left to right continuously, causing 

the laser point to move in an elongated S-shape track. This was caused by the rotation of 

the DC motor axis which forced the laser mount to shift around its original position. To 

avoid this, the connection between the DC motor and the laser mount was redesigned. 

After several iterations we arrived at our current design. 

In the final incarnation (shown in figure 2.6), the DC motor was mounted onto aU-shape 

aluminum platform. A new connecter was designed to link the DC motor and the laser 

mount. This connection mount transferred the rotating motion of the DC motor to the 

linear motion of the laser mount. When the motor rotates, it turns a brass screw and 

drives a brass dowel forward. A groove is machined in the brass dowel to prevent the 

latter from rotating. This design ensured a linear movement of the laser point along the 

cantilever. 
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Fig. 2.6 Schematic graph of DC motor mount and laser mount 

Lastly, three single axis translation stages were used to control the position of the laser 

focuser and the PSD. 
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2.3 Image Collecting System 

A Computer Controlled Display (CCD) camera (CV-S3200N, JAI Company) connected 

to a telescope was mounted above the system for collecting images of the cantilever 

during the experimental process. Using the CCD camera, monochrome images of the 

cantilever (800x600 in pixels) were acquired in real time (Fig. 2.7). According to the 

different shade of each pixel on every image, a Visual Basic program written by us was 

used to recognize and distinguish the background, the chip, and the cantilever. Using a 

series of images, the change in position of the laser point on the cantilever was calculated 

and saved into a data file. 

Fig. 2. 7 Image analysis by the Visual Basic program 
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Initially, the VB program was modified to calculate and identify the changing position of 

the laser point as it moved along the cantilever. However, it was found that some of the 

positions were improperly identified. The reason for this was because the surface of the 

chip was not perfectly smooth after it had been coated with an Au film, which distorted 

the laser spot at some points. In these cases, the program could not recognize the position 

of the laser point. Also, when the program was set to analyze the scanning area, a few 

seconds was needed to finish the calculations. Even when the program was changed to 

analyze a smaller moving area (SQxSQ pixet2 for example), it still took too much time 

compared to the motion of the laser point. Therefore, the program was modified to collect 

and save optical images while reading and saving the digital indicator text information. 

When the experiment was stopped, the program reloaded all the images and analyzed 

them one at that time. This method saved the time of analyzing images, guaranteed the 

accuracy of laser position movement, and was efficient enough to finish the calculation. 
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Chapter Three: 

Model, Results, and Analysis 

In this chapter we discuss the model used to calibrate the OBDS. In section 3.1, a 

correction to the Rotation Method to include the angle of inclination of the chip is 

presented. In section 3 .2, we show how to measure the angle of inclination of the chip, 

and the method used to verify our model is discussed in section 3.3. In section 3.4, we 

discuss how to determine the initial curvature of a cantilever. The analysis of different 

cantilever curvatures is given in section 3.5. 
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3.1 Rotation Method 

A method to determine L0 , the distance between the laser point on the cantilever and the 

PSD surface, was developed by Ye Tian [17]. By changing the angle of inclination 8 of 

the incident laser beam with a fixed PSD surface angle rp, the reflected laser spot on the 

PSD surface moves causing a change in the PSD voltage signal (see figure 3.1). Using 

simple geometry, the value of La can be related to the change of the incident laser angle 

and the change of the PSD voltage signal by the sine law. 

PSD 
laser 

.. 

D 

Fig. 3.1 Schematic diagram of Optical Beam Deflection System 

For example, by changing the incident angle of the laser beam from 81 to 82 as shown in 

figure 3.1, the position of the laser spot on the PSD surface changes from ~to h2 • The 
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sin(O -8) 
value of L0 is related to 2 1 and Mi. To measure the average value of L0 , the 

sin(82 + ¢>) 

incident angle 8 is changed several times. Plotting the values of Mz vs sin( 82 - 81 ) gtves 
sin(82 + ¢>) 

a straight line with a slope of L0 as shown by 

(3.1) 

When using this rotating method, it is very important for the laser spot on the cantilever 

to be at the same position when varying the angle 8. Before measuring L0 , the position of 

the laser spot needs to be adjusted to ensure that the center of the rotating laser focuser is 

on the cantilever surface. Otherwise the laser spot on the cantilever shifts as the laser 

focuser rotates. Figure 3.2 suggests a relationship between the center of the rotating laser 

focuser and the cantilever surface. If the center of the rotating laser focuser is higher than 

the cantilever surface, the laser spot will move backwards when the incident angle 

increases. In contrast, the laser spot will move forward with increasing incident angle if 

the center of the rotating laser focuser is lower than the cantilever surface. The height of 

the laser focuser is adjusted with a transition stage. 

a) b) 
Fig. 3.2 Sketches of laser focuser position and cantilever surface a) the center of 
rotating laser focuser is higher than the cantilever surface; b) the center of rotating 
laser focuser is lower than the cantilever surface. 
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In this rotating method, it was assumed that the chip of the probe was perfectly leveled. 

Because of the small size of the probe, it was difficult to exam if the chip was leveled. 

Assuming that the chip is inclined at an angle fJ, as shown in figure 3.3, the sine law ratio 

changes from sin( 82 - ~) to sin( 82 - ~) 
sin(82 + ¢) sin(82- fJ + ¢) 

. 

Cantilever 

Fig. 3.3 Schematic graph of the fJ correction 

. PSD 
. . . 
. . ~i::-. 
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3.2 Angle of Inclination of the Chip 

Consider a probe inclined at an angle f3 with respect to the horizontal as shown in figure 

3 .4. This section will discuss a method to obtain f3 . 
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\( 

\ 
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\ 
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/~ 
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'f ( •· •. 
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Fig 3.4 Schematic graph of the inclined chip and cantilever 

In this setup the incident angle of the laser beam and the angle of inclination of the PSD 

are fixed and are given by 8 and rp respectively. Moving the laser focuser from ~ to A 

causes a horizontal position change of~. The reflected laser point on the PSD surface 

also moves from~ I to A 1 
, contriouting to a change in the PSD signal proportional to 6.h . 

We can represent the equations of the reflected laser beam by the vector lines ( 1) and (2) 

as follows: 

~+n · t1 =~
1 , 

~ +n ·t2 =~
1 • 

(1) 

(2) 

25 



where n is the direction vector of the reflected laser beam and t
1 
and t

2 
are scalars. 

Subtracting equation (1) from (2) gives 

-~P+~tn =~P'. 

Writing this equation in terms of x and y components gives 

Rearranging equations (4) and (5) and dividing gives 

nx = ~~-~ 
nY ~~-~ 

n N M 
From figure 3.4 it can be seen that tan( 8- 2/3) = --2:'... and _ x = __ x = tan f3. 

nx NY ~ 

Using the relationships 

and 

tan(0- 2/3) = tan8-tan(2/3) 
1- tan8tan(2/3) 

tan(2/3) = 2 tan f3 
1- tan 2 f3 

We can obtain a cubic equation for tan f3 : 

where the four parameters have following forms: 

AJ =~ 

A2 = (~hx - ~)tan8-~hY -2Mx tan8 

A1 = 2MY tan8-~ +(Mx -~) 

An =~h)' - (~hx -~)tan e. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

26 



These parameters are a combination of the following four variables: ~, M , (/J , and B. 

M.. is the horizontal displacement of the laser spot which is measured with a ceo 

camera!VB program (Section 2.3). M is the change in laser position on the PSD surface 

(which is obtained from the PSD voltage change). (/J is the PSD surface angle, and B is 

the incident laser angle. Both of these two angles are fixed throughout all experiments. 

The only unknown quantity in equation (9) is the angle of the chip fJ. Using a VB 

program written in-house presented in Appendix B, this cubic equation can be solved for 

tan fJ using Vieta's Theorem. This method gives three roots however choosing the right 

root is always clear. 

3.3 fJ Calibration 

In order to validate our model for measuring fJ , three aluminum blocks, as shown in 

figure 3.5, were constructed with inclined planes of 5°, 3.5°, and 2°. A thin mirror was 

mounted on the inclined surface to enhance laser reflection. The blocks were mounted in 

the same position as the cantilevers in our system in a similar manner to the setup shown 

in figure 3.4. Figure 3.6 is a plot of M versus Mx showing the experimental data (points) 

and the expected value (straight line) based on the value of~· From this plot it appears 

that the experimental data is very close to the expected value however fitting the data 

gives a value of~ = 4.7° compared to the expected value of 5.0°. 
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Mirror 
Aluminum 
Block 

Fig. 3.5 Aluminum block with fixed angle of inclination f3 

In these experiments the value of~ is very sensitive to the slope of the experimental data. 

For example, the slope of the expected data shown in figure 3.6 is 0.828. However, the 

slope of the experimental data is 0.8323 which is only slightly different. Other 

experiments using the 2° and 3.5° blocks have given similar results. 

7 

6 

M5 
4 

(m~3 
2 

1 

Measured Data & Calculated Data for p =5° 

y=0.8323x+0.0039 

---+ P= 4.7a 

y=0.828x 

0 ~~--~------~----~----~~----~----~------. 

0 1 2 3 

Mx 
4 

(mm) 
5 6 7 

Fig 3.6: Plot of L1h versus L1Px showing experimental data (points) and expected value 
(solid line) for determining the angle of inclination ofthe chip /3. 
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In order to better understand these results attempts were made to find the sources of 

possible errors in the system that could influence the value of fJ. The first thoughts were 

that the value of f3 could be affected by either the angle of incidence of the laser B or the 

angle of inclination of the PSD ¢. To bring f3 = 4. 7° close to fJ = 5° requires B to be 

changed from 60° to 60.35° which is definitely possible. Another possible source of error 

in obtaining f3 is the conversion factor relating the number of pixels to length used to 

obtain the position of the incident laser spot on the cantilever from the collected optical 

images. The difficulty here lies in obtaining an object of a known an appropriate length 

in the collected optical images. Also in an optical image as shown in figure 2. 7 there are 

only 648 by 480 pixels which also limits the ability to accurately obtain a conversion 

factor from pixels to length. 

3.4 Cantilever Curvature 

Consider a cantilever attached to a chip which is inclined at an angle ~· Because of the 

thin metal film deposited on the probe the cantilever is often initially bent as shown in 

figure 3.7. At t = 0 an optical beam inclined at an angle e with respect to the horizontal is 

focused on the intersection point of the cantilever and the chip defined as the origin of the 

system. At this point the equation of the optical beam is given by YL = tan(6)x. If the 

optical beam is moved horizontally at a constant velocity v then the beam will intersect 

the abscissa at the point x' = P(t) = vt which allows the intersection point between the 

optical beam and the ordinate to be obtained and the line describing the optical beam to 
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be defined as: YL = tan(BXx+P(t)). Using a telescope positioned above, it is possible to 

measure the intersection point between the optical beam and the cantilever M x which can 

be used to find the vertical displacement of the cantilever M Y = tan(BXMx + P(t)). 

Therefore the vector normal Nand the slope (a.) of the cantilever at the point (Mx. M y) 

can be defined as: 

e =tan-'[ tan(U+ dM', +vt)l 

N = (cos(e),sin(e)) 

-t[tan(B+ fJXMx +vt)l a=tan 
M x 

(10) 

(11) 

Telescope 

~.7 .. YL = -tan(8)x 
I 

\\ --+\\ 
'(: YL = tan(8)(P(t)-x) 
\/ 

\ 
\ 
\ 
\ 

X 

Fig. 3. 7 Cantilever curvature with the angle of inclination jJ 
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In these experiments the laser beam was moved horizontally by the DC motor (see 

section ·2.2.4), while its position P(t) was measured by a digital indicator (JD-C112E, 

Mitutoyo ). The data points were collected by the digital indicator at discrete intervals 

(one data point per 0.2 second). Since the data obtained from the digital indicator were 

not necessarily collected at the same time as the optical images used to measure M x, it 

was necessary to fit the data from the digital indicator to get an equation as a function of 

time P(t). A VB program (given in Appendix C) as shown in figure 3.8 was used to fit the 

scattered data points to a fourth order polynomial P(t) in a similar way as a Savitzky-

Golay filter is used to smooth data. More precisely, a continuous function of time was 

created by fitting a fourth order polynomial at every point P using 10 data points on both 

sides of P. Every group of polynomial parameters were then saved and used to represent 

the real position of the laser beam movement along the x direction . 

.. rorm1 r:]Q:IIxl 
FilA+ 8~ + CX'2 + 0"1<"3 + E?<"4~ 
y • 900285.01 2673778 + . 
73462.4303079961. + 
2245.495981 7233S.t2 + . 
3).4712135975502•'3 + 
0.15492881 2771648x' 4 

A I OC0285. 012673778 

B I· 73462. 43J3079961 

c 12245.49598172336 

D 1·3l.471 2135975502 

E 10.15492881 2771 648 

68 

. 4 

· 96 

· 78 

12.1 22.1 

Fig. 3.8 Polynomial fit program panel 

32.2 42.2 52.: 
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3.5 Results and analysis 

Figure 3.9 shows the different cantilever curvatures measurements compared to the real 

curvatures acquired from side view optical images taken with a microscope in our 

laboratory. During these experiments it was often difficult to obtain an accurate measure 

of the laser spot at the free end of the cantilever because of the increase in spot size and 

an increase in scattering. As we can see from these two plots, the measured data 

(scattered points) are close to the solid lines showing the actual cantilever curvatures. 

Curvature Measurements of Cantilever #3 and #4 

y 100 

( ~m) so 

• .... . 
-10U -~ 

• 
200 

--#4 Cantile-.er Curvature 

• #4 Real Measurements 

--#3 Cantile-.er Curvature 

A #3 Real Measurements 

••• 
• • • 
• 250 300 350 

X ( ~m) 

Fig.3.9 Test results of different cantilever curvatures 

As discussed in the previous section, the pixel to length conversion factor is a large 

source of error in these measurements. Increasing the number of pixels would allow us to 
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more accurately identify the position of the laser spot on the cantilever. Also the speed of 

the motor also plays a large role in the accuracy of the measured data. If it were possible 

to slow down the motor and take several data points along the length of the lever it would 

allow us to average the obtained data and reduce the experimental noise shown in figure 

3.9. 
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Chapter Four: Conclusion & Future Work 

4.1 Conclusion 

We have developed a new method for characterizing the initial state of the cantilever. A 

new method was developed to define the angle of inclination f3 of the chip. This method 

was validated by using three aluminum blocks with known inclination angles. Based on 

this, the method for finding L0 , initially found by Ye Tian, was modified to include the 

angle of inclination of the chip f3 . Lastly, a method was derived to determine the initial 

curvature of the cantilever. Experiments conducted using deflected cantilever showed the 

model to be accurate. 
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4.2 Future work 

The work done in this study will allow other researchers to obtain more accurate 

cantilever sensor measurements. This work will also allow future members of our group 

to use the deposition system designed by Ye Tian and Mike Coates (fig. 4.1) to study the 

deposition of Au on Si cantilevers. Using this system will hopefully allow us to develop 

the means of depositing stress free Au films on Si cantilevers. 

Fig.4.1 Deposition system for Au thermal deposition 
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Appendix A: 
Visual Basic Program Code for Data Acquiring 
Process 

'********************************************************************* 
'Analyse the position of laser point after data acquisition 
'>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
'Two results are related together with SYSTEM TIME 
'>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
'Write dial gauge reading to a text box 
'********************************************************************** 

Private Type POINT_TYPE 
x As Long 
y As Long 

End Type 

Private Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, ByVal x As Long, 
ByVal y As Long) As Long 
Private Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long, ByVal x As Long, 
ByVal y As Long, lpPoint As POINT_TYPE) As Long 
Private Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, ByVal x As Long, 
ByVal y As Long) As Long 

Option Explicit 
Private Data() As Double 
Private taskHandle As Long 
Private taskisRunning As Boolean 
Private StopFlag As Boolean 
Private PauseFlag As Boolean 
Private StartTime As Double 
Dim PrevPressure As String 
Dim StartDataPoint As Integer 
Dim StartDataFile As Integer 
Dim StartDataFileText As String 
Dim PointSelect As Integer 
Dim AreaXl, AreaYl, AreaX2, AreaY2 As Integer 
Dim Do TheA verage As Boolean 
Dim PSDaverage, newsystime As Double 
Dim PSDcounts As Integer 
Dim SystemTimeCount As Integer 
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Dim currentxl, currentx2, currentyl, currenty2 As Integer 

Private Sub chkMultiFile _Click() 
IfMe.chkMultiFile.Value = 1 Then 

Me.txtPointsPerFile.Enabled = True 
Else 

Me.txtPointsPerFile.Enabled = False 
End If 

End Sub 

Private Sub AutoScaleTimer _Timer() 

Call GetN ew Image 
Call FindLaserPosition 
Dim xRegion, yRegion, CantiEnd, Fifth YRegion As Integer 
Dim pt As POINT_ TYPE 
Dim retval As Long 
xRegion = Mainform.LaserPositionX.Text 
yRegion = Mainform.LaserPositionY.Text 
CantiEnd = Mainform.CantiEnd. Text 

If SavelmageCheck.Value = 1 Then 
Call Savelmage 
End If 

End Sub 

Public Sub GetNewimage() 

Display.AutoRedraw = False 
'Get the interface name and load the parameters set in 
'the IMAQ Configuration Utility 
CWIMAQl.lnterface = "imgO" 
CWIMAQ l.LoadinterfaceDefaults 

'Acquire asynchronously one buffer 
CWIMAQ l .Acquirelmage 

'Display the most recently acquired picture in a Picture Box 
'Note that it could be done more simply with the CWIMAQViewer object 
'whose demo version is given, see the "Snap in CWIMAQViewer" sample 
CWIMAQl .WindowPlot Display.hWnd 
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End Sub 

Private Sub Clear_ Click() 
CurrentX = 0 
CurrentY = 0 
LeftTop.Caption = "LeftTop:" 
RightBottom.Caption = "RightBottom:" 
PointSelect = 1 
AreaXl = AreaX2 = AreaYl = AreaY2 = 0 
Mainform.MovingLaserPointX.Text = 0 
Mainform.MovingLaserPointY.Text = 0 
Mainform.LaserPositionX.Text = 0 
Mainform.LaserPositionY.Text = 0 
Mainform.Distance.Text = 0 
Mainform.CantiEnd.Text = 0 
Mainform.CantiWidth.Text = 0 
Call GetNewlmage 
End Sub 

Private Sub Load_ Click() 
Call GetN ew Image 
End Sub 

Private Sub PointFound_ Click() 
PointFound.Default = True 
End Sub 

Private Sub PositionAnalysis _Click() 

Dim ImagePath, NewlmagePath, nString, OutputDataPath As String 
Dim TotalNumber, Number As Integer 
Dim LaserDistance, i As Integer 
Dim PI, LASERangle, LaserAnglePrime, PSDangle, Time, Phi, PhiPrime, Delta, 
PSDrange As Double 
Dim DValue(2), VValue(2), TValue(2) 'DValue is distance, VValue is voltage, 
TV alue is time 
Dim DeltaPx, DeltaPy, DeltaU, DeltaH, VDelta, TDelta, LaserX, LaserY, PSDX, PSDY, 
v, LNot, XNotPrime, YNotPrime, Velocity As Double 
Dim tmp, Cantilever Angle, CantileverNormal, Interface, ChipAngle, A verageChipAngle, 
ChipAngleDegree, AverageV As Double 
Dim ChipAngleCount, Vcount As Integer 
Dim AnalyzedData As String 
Dim Origin Voltage, OriginTime, DeltaUSquare As Double 
Dim ChipAngleArrayR(3, 1 00) As Double 
Dim ChipAngleArrayl(3, 1 00) As Double 
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Dim XvalueR(3), Xvaluei(3) As Double 
PI = 4*Atn(1) . 

PSDangle = Val(frmPSDAngle.Text) * PI I 180 'These angles are now in radians 
LASERangle = Val(frmLaserAngle.Text) *PI I 180 'These angles are now in radians 

TotalNumber = Int(Mainform.Interface. Text) 
Number= 0 
ImagePath = SavelmageText.Text 
PSDrange = Val(Mainform.PSDrangeText) 

If SaveDataCheck. Value = 1 Then 
Open OutputDataFile.Text For Input As #8 
i = Len(OutputDataFile.Text) 
OutputDataPath = Left(OutputDataFile.Text, i- 8) & "Output.dat" 
Open OutputDataPath For Output As #9 

i = O 
Do While EOF(8) = False 

lfi = 0 Then 
Input #8, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp 
Write #9, "Interface", "Time", "DValue", "VValue", "Angle", "Normal" 
ChipAngleCount = 0 

Else If i = 1 Then 
Input #8, TValue(2), tmp, tmp, tmp, tmp, tmp, VValue(2), Number 

IfVValue(2) <>"#"Then 

IfNumber < 10 Then 
nString = "00" & CStr(Number) 

Elself Number > 9 And Number < 1 00 Then 
nString = "0" & CStr(Number) 

Else 
nString = CStr(Number) 

End If 

NewlmagePath = ImagePath & nString & ".bmp" 

Display.Picture = LoadPicture(NewlmagePath) 
Me.Caption = "image" & Number 

Call FindLaserPosition 

DValue(2) = Val(Mainform.Distance.Text) 
Write #9, Number, TValue(2), DValue(2), VValue(2)," ", "" 
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DValue(I) = DValue(2) 
VValue(I) = VValue(2) 
TValue( 1) = TV alue(2) 

Else 
i = i- I 

End If 

Else 
Input #8, TValue(), tmp, tmp, tmp, tmp, tmp, VValue(2), Number2 

lfVValue(2) <>"#"And VValue(2) <> 0 And Number < TotalNumber Then 

If Number < 1 0 Then 
nString = "00" & CStr(Number) 

ElselfNumber > 9 And Number< 100 Then 
nString = "0" & CStr(Number) 

Else 
nString = CStr(Number) 

End If 

NewlmagePath = ImagePath & nString & ".bmp" 

Display.Picture = LoadPicture(NewlmagePath) 
Me.Caption = "Image " & Number 

Call FindLaserPosition 

D V alue(2) = Val(Mainform.Distance. Text) 

DeltaPx = DValue(2)- DValue(1) 
VDelta = VValue(2)- VValue(I) 
DeltaH = VDelta * I 0 I PSDrange 'DeltaH in the units of mm 
TDelta = TValue(2)- TValue(1) 

lfDValue(2) <= 0 And DValue(l) <> 0 And DeltaPx <>Empty And DeltaPx 
<> 0 Then 

'laser point on the chip 
'calculate the ChipAngle and Velocity 
'DeltaPy = DeltaPx * Tan(LaserAngle)- 2 * VDelta * Sin(PSDAngle) 
'Cantilever Angle = -Atn(DeltaPy I DeltaPx) 
'CantileverNormal = Atn(-DeltaPx I DeltaPy) 
'A verageChipAngle = A verageChipAngle + Cantilever Angle 
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Call VietaTheoremModule.SolveCubicEquation 

ChipAngleArrayR(l, ChipAngleCount) = XvalueR(l) 
ChipAngleArrayl(l, ChipAngleCount) = Xvaluel(l) 
ChipAngleArrayR(2, ChipAngleCount) = XvalueR(2) 
ChipAngleArrayl(2, ChipAngleCount) = Xvaluel(2) 
ChipAngleArrayR(3, ChipAngleCount) = XvalueR(3) 
ChipAngleArrayl(3, ChipAngleCount) = Xvaluel(3) 

v = DeltaPx I TDelta 
Average V = Average V + v 
V count = V count + 1 
Write #9, Number, TValue(2), DValue(2), VValue(2), _ 
ChipAngleArrayR(l, ChipAngleCount), ChipAngleArrayl(l , 

ChipAngleCount); _ 
ChipAngleArrayR(2, ChipAngleCount), ChipAngleArrayl(2, 

ChipAngleCount); _ 
ChipAngleArrayR(3, ChipAngleCount), ChipAngleArrayi(3, 

ChipAngleCount) 
DValue(l) = DValue(2) 
VValue(l) = VValue(2) 
ChipAngleCount = ChipAngleCount + 1 

ElseifDValue(2) > 0 And DValue(2) <= 350 And DeltaPx <> 0 Then 
'laser point on the cantilever 

consistance 

'when laser point goes on the cantilever, 
'use chip angle value to calculate the cantilever angle. 
IfMainform.frmChipAngle.Text = 1111 Then 

'find the best fit of chip angle in the array 
Call BestFitModule.BestFit(ChipAngleCount) 

ChipAngle = 0 
'ChipAngle is still in radians, on panel we convert it into degrees for 

ChipAngleDegree = 180 * ChipAngle I PI 
Mainform.frmChipAngle.Text = ChipAngleDegree 
'Lnot must be defined before experiments 
LNot = Val(Mainform.frmLNot.Text) 
'calculate the XNotPrime and yNotPrime based on LNot and ChipAngle 
XNotPrime = LNot * Cos(LASERangle- 2 * ChipAngle) 
YNotPrime = LNot * Sin(LASERangle- 2 * ChipAngle) 
'calculate the velocity of laser 
Mainform.frmVelocity.Text = AverageV I Vcount 
'get the DValue and VValue when laser point hit the origin 
Origin Voltage = Val(Mainform.OriginVoltage.Text) 
OriginTime = Val(Mainform.OriginTime.Text) 

End If 
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'incident laser is LaserY=-
tan(Laser Angle )*laserX +tan(LaserAngle )*Velocity*TDelta 

Velocity = Val(Mainform.fnnVelocity.Text) 
TDelta = TValue(2) - OriginTime 
LaserX = DValue(2) 
LaserY = -Tan(LASERangle) * LaserX + Tan(LASERangle) * Velocity * 

TDelta 

YNotPrime 
'PSD equation is PSDY = -Tan(PSDAngle) * (PSDX- XNotPrime) + 

DeltaU = VValue(2)- Origin Voltage 
PSDX = -XNotPrime + Abs(DeltaU) * Cos(PSDangle) 'PSDX>O 
PSDY = -Tan(PSDangle) * (PSDX- XNotPrime) + YNotPrime 

Delta = -Atn((LaserY- PSDY) I (LaserX- PSDX)) 
CantileverNormal = (PI - LASERangle - Delta) I 2 
CantileverAngle = {LASERangle + Delta) I 2 
Write #9, Number, TValue(2), DValue(2), CantileverAngle, 

Cantilever Normal 

Else' DeltaPx=O means DValue(1)= DValue(2) 
i = i- 1 

End If 
End If 

End If 

i = i + 1 

Loop 

Close #8 
Close #9 

End If 

Me. Caption = "Done!!!" 
End Sub 

Private Sub PositionAnalysis _Click() 
Dim Interface, i As Integer 
Dim iTime As Double 
Dim nString, ImagePath, NewlmagePath As String 
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Dim YesNo As Integer 

IfSaveDataCheck.Value = 1 Then 
Open "C:\Documents and Settings\Josh\Desktop\timeimage.dat" For Input As #8 
Open "C:\Documents and Settings\Josh\Desktop\output.csv" For Output As #9 

ImagePath = Mainform.SavelmageText.Text 

i = 0 
Do While EOF(8) = False 

'ReDim Preserve ITime(i) 

Ifi = 0 Then 

Else 

Input #8, iTime, Interface 

If Interface < 1 0 Then 
nString = "00" & CStr(Interface) 

Else If Interface > 9 And Interface < 1 00 Then 
nString = "0" & CStr(Interface) 

Else 
nString = CStr(Interface) 

End If 

NewimagePath = ImagePath & nString & ".bmp" 

Display.Picture = LoadPicture(NewimagePath) 
Me.Caption = "image " & Interface 

Call FindLaserPosition 

YesNo = MsgBox("ls this the right point?", vbYesNo) 
IfYesNo = 6 Then 
ElseifYesNo = 7 Then 
While (PointFound.Default = False) 
Do Events 
Wend 
End If 

PointFound.Default = False 

Write #9, Interface, iTime, Val(Mainform.Distance.Text) 
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Input #8, iTime, Interface 

If Interface < 1 0 Then 
nString = "00" & CStr(lnterface) 

Elself Interface > 9 And Interface < 1 00 Then 
nString = "0" & CStr(lnterface) 

Else 
nString = CStr(Interface) 

End If 

NewlmagePath = ImagePath & nString & ".bmp" 

Display.Picture = LoadPicture(NewlmagePath) 
Me.Caption ="image" & Interface 

Call FindLaserPosition 

YesNo = MsgBox("ls this the right point?", vbYesNo) 
IfYesNo = 6 Then 
ElselfYesNo = 7 Then 
While (PointFound.Default = False) 
Do Events 
Wend 
End If 

PointFound.Default = False 

Write #9, Interface, iTime, Val(Mainform.Distance.Text) 

End If 

i = i + 1 

Loop 

Close #8 
Close #9 

End If 

Me. Caption = "Done!!!" 
End Sub 

Private Sub FindLaserPosition() 
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'analyse every image with program first 
'find the laser point position according to initial position 
Dim points(800, 600) As Long 
Dim xPos, yPos, LaserCenterX, LaserCenterY As Integer 
Dim pt As POINT_ TYPE 
Dim retval As Long 
Dim s As Integer 
Dim SumX, SumY, SumN As Integer 
Dim PointSize, PointSizeNew As Integer 
Dim yMaxGreen, yMinGreen, xMaxGreen, xMinGreen, xLaser, yLaser, yScanMax, 

Origin Y As Integer 
yMaxGreen = -10000 
yMinGreen = 1 0000 
xMaxGreen = -1 0000 
xMinGreen = 1 0000 
Dim Distance, CantiWidth, CantiLength, RealDistance As Integer 
Dim Green Value, BlackValue, Cyan Value As Long 
Green Value = GreenText.Text 
BlackValue = BlackText.Text 
Cyan Value = CyanText.Text 

LaserCenterX = Mainform.MovingLaserPointX.Text 
LaserCenterY = Mainform.MovingLaserPointY.Text 

lfLaserCenterX < 20 Then LaserCenterX = 20 
If LaserCenterY < 20 Then LaserCenterY = 20 

'mask scan area according to teh moving position of laser point 
For xPos = LaserCenterX- 20 To LaserCenterX + 20 

For yPos = LaserCenterY - 20 To LaserCenterY + 20 

points(xPos, yPos) = GetPixel(Display.hdc, xPos, yPos) 

lfpoints(xPos, yPos) >Green Value Then 
points(xPos, yPos) = vbGreen 
PointSize = PointSize + 1 

Elself points(xPos, yPos) >Black Value And points(xPos, yPos) <= 
Green Value Then 

points(xPos, yPos) = vbBlack 
Elselfpoints(xPos, yPos) > CyanValue And points(xPos, yPos) <= BlackValue 

Then 
points(xPos, yPos) = vbCyan 

Elselfpoints(xPos, yPos) <> vbBlack And points(xPos, yPos) <> vbGreen And 
points(xPos, yPos) <> vbCyan Then 

points(xPos, yPos) = vbBlue 

47 



End If 

Next 
Next 

'display the mask or not? 
If Mask. Value = 1 Then 
For xPos = LaserCenterX - 50 To LaserCenterX + 50 

For yPos = LaserCenterY- 50 To LaserCenterY + 50 
Display.PSet (xPos, yPos), points(xPos, yPos) 

Next 
Next 

End If 

'find the laser point 
For xPos = LaserCenterX - 20 To LaserCenterX + 20 

For yPos = LaserCenterY- 20 To LaserCenterY + 20 
lfpoints(xPos, yPos) = vbGreen Then 
SumX = SumX + xPos 
SumY = SumY + yPos 
SumN = SumN + 1 
End If 

Next 
Next 

If SumN <> 0 Then 
'find the laser point center by weighting the x and y coordinates 
xLaser = SumX I SumN 
yLaser = Sum Y I SumN 

IfxLaser > 0 And xLaser < 800 And yLaser > 0 And yLaser < 600 Then 
Mainform.MovingLaserPointX.Text = xLaser 
Mainform.MovingLaserPointY.Text = yLaser 
End If 

Display.Circle (xLaser, yLaser), 5, RGB(255, 0, 0) 

OriginY = Mainform.LaserPositionY.Text 

Distance = LaserCenterY- OriginY 'distance in pixels 
CantiWidth = Mainform.CantiWidth.Text 'in pixels 
'the real width of cantilever is 35 micros 
RealDistance = Distance* 35 I CantiWidth 'in micros 
Mainform.Distance.Text = RealDistance 
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End If 

End Sub 

'Scale within the selected area!!! 

Private Sub Scale_ Click() 

'Call GetN ew Image 

If PointSelect = 1 Then 
MsgBox "Please select the scanning area!!!" 
Else 

Dim points(800, 600) As Long 
Dim xPos, yPos As Integer 
Dim pt As POINT_TYPE 
Dim retval As Long 
Dim So, Sx, Sy, Sxx, Sxy, D, A, B As Double 
Dim s As Integer 
Dim PointSize, PointSizeNew As Integer 

So= 0 
Sx=O 
Sy=O 
Sxx = O 
Sxy=O 

Dim yMaxGreen, yMinGreen, xMaxGreen, xMinGreen, xLaser, yLaser, yScanMax As 
Integer 
yMaxGreen = -1 0000 
yMinGreen = 1 0000 
xMaxGreen = -10000 
xMinGreen = 10000 

Dim Green Value, BlackValue, Cyan Value As Long 
Green Value = GreenText.Text 
BlackValue = BlackText.Text 
Cyan Value = CyanText.Text 

'masking: sets the scale regions to known colours so that we can do the math later. .. 
For xPos = AreaX1 To AreaX2 

For yPos = AreaYl To AreaY2 

points(xPos, yPos) = GetPixel(Display.hdc, xPos, yPos) 
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Ifpoints(xPos, yPos) > GreenValue Then 
points(xPos, yPos) = vbGreen 

Then 
Elselfpoints(xPos, yPos) > BlackValue And points(xPos, yPos) <= Green Value 

points(xPos, yPos) = vbBlack 
Elselfpoints(xPos, yPos) > Cyan Value And points(xPos, yPos) <= BlackValue 

Then 
points(xPos, yPos) = vbCyan 

Elselfpoints(xPos, yPos) <> vbBlack And points(xPos, yPos) <> vbGreen And 
points(xPos, yPos) <> vbCyan Then 

points(xPos, yPos) = vbBlue 
End If 

Next 
Next 

'display the mask? 
If Mask. Value = 1 Then 

For xPos = AreaXl To Area.X2 
For yPos = AreaYl To AreaY2 

Display.PSet (xPos, yPos), points(xPos, yPos) 
Next 

Next 
Endlf 

'lets find the MIN x value where the colour is blue 
'ie: lets describe the line of the edge of the left-most chip 
'but we need to find the horizontal edge first 
Dim xMaxBlue, MaxBlueX, MaxBlueY As Integer 
Dim FindMaxBlue As Boolean 
FindMaxBlue = False 
MaxBlueX = 9999 
MaxBlue Y = 9999 
'search the up-right conner for the most left point of chip 
For xPos = AreaX1 To AreaX1 + 50 

For yPos = AreaYl To AreaY1 + 50 
IfFindMaxBlue = False Then 
'points(xPos, yPos- 2) = vbCyan And And points(xPos + 2, yPos) = vbCyan 
lfpoints(xPos, yPos- 1) = vbCyan And points(xPos, yPos) = vbCyan Then 
Ifpoints(xPos, yPos) = vbCyan And points(xPos + 1, yPos) = vbCyan Then 

MaxBlueX = xPos 
MaxBlueY = yPos 
xMaxBlue = MaxBlueX 
FindMaxBlue = True 'To make sure the first suitable point is the most left point 

of chip 
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End If 
End If 
End If 
Next 

Next 

Mainform.MaxBlue.Caption = "MaxBlue:" & MaxBlueX & "," & MaxBlueY 

'if we need to find the equation of cantilever edge then do the maths as follows 
'lets find the maximum y values on x where the colour is blue 
'ie: lets describe the line of the cantilever chip 

Dim yMaxBlue() As Integer 
Dim CantiLeftEdge() As Integer 
Dim CantiRightEdge() As Integer 

Dim 1 As Integer 
Dim Average As Long 

1 = 0 
Average = 0 

'find the chip's horizontal edge if we need 
For yPos = AreaY1 To AreaY2 

For xPos = xMaxBlue To AreaX2 
' find points on the edge 
lfpoints(xPos, yPos) = vbBlue And points(xPos, yPos- 1) = vbBlue And 

points(xPos, yPos - 2) = vbBlue Then 
Ifpoints(xPos, yPos + 1) <> vbBlue And points(xPos, yPos + 2) <> vbBlue 

And points(xPos, yPos + 3) <> vbBlue Then 
ReDim yMaxBlue(xPos) 
yMaxBlue(xPos) = yPos 
Display.PSet (xPos, yPos), vbRed 

lfyMaxBlue(xPos) <> 0 Then 
So = So + 1 
Sx = Sx + xPos 
Sy = Sy + yMaxBlue(xPos) 
Sxx = Sxx + xPos 1\ 2 
Sxy = Sxy + xPos * yMaxBlue(xPos) 
End If 

End If 
End If 

Next 
Next 
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IfMainform.CheckFindCantiEdge.Value = 1 Then 
'calculate the chip edge 
D = So * Sxx - Sx " 2 
A = (Sxx * Sy - Sx * Sxy) I D 
B = (So * Sxy - Sx * Sy) I D 

'now, the line of the cantilever chip is just y=bx+a 
Dim yO, yM As Double 
yO=A 
'and at xmax 
yM = B * AreaX2 + A 

'define scan regions 
xLaser = Cint(Val(Mainform.LaserPosition.X.Text)) 
yLaser = Cint(Val(Mainform.LaserPosition Y. Text)) 

Dim xLaserO, yLaserO, aPrime, bPrime As Long 
'now, consider that the chip and cantilever are perpendicular 
'two lines are said to be perpendicular if the product of their slopes is -1 

bPrime = -1 I B 
aPrime = yLaser- bPrime * xLaser 

xLaserO = (aPrime- A) I (B- bPrime) 

yLaserO = bPrime * xLaserO + aPrime 
'so the line describing the cantilever is y = bPrime* x+ aPrime 

Display.ForeColor = vbRed 
retval = MoveToEx(Display.hdc, xLaserO, yLaserO, pt) 
retval = LineTo(Display.hdc, xLaser, yLaser) 

Mainform.yMaxBlue.Caption = "yMaxBlue: y=" & B & "*x+" & A & "." 
Else 
Mainform.yMaxBlue.Caption = "yMaxBlue: y= .. . " 
End If 

'To find the cantilever width 
'let's average the difference between the right edge and the left edge on the middle 

canti 
'(take the width of canti as 20) 
Dim CantLeftX As Integer 
Dim CantRightX As Integer 
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Dim xCant, yCant As Integer 
Dim LeftPoint As Integer 
Dim FindLeftEdge, FindRightEdge As Boolean 
Dim CantiEnd As Integer 
Dim Fifth YRegion As Integer 
Dim TempString As String 
Dim xRegion, yRegion As Integer 

xRegion = xLaser 
yRegion = yLaser 

For yPos = yRegion - 20 To yRegion + 90 
FindLeftEdge = False 
FindRightEdge = False 

For xPos = xRegion - 25 To xRegion + 25 
'find the cantilevers' left edges 
lfpoints(xPos- 3, yPos) = vbBlack And points(xPos- 2, yPos) = vbBlack And 

points(xPos- 1, yPos) = vbBlack Then 
lfpoints(xPos, yPos) = vbCyan And points(xPos + 1, yPos) = vbCyan And 

points(xPos + 2, yPos) = vbCyan Then 
ReDim CantiLeftEdge(yPos) 
CantiLeftEdge(yPos) = xPos 
Display.PSet (xPos, yPos), vbWhite 
FindLeftEdge = True 

'if we can find the left edge of canti then we look for the right edge 
For xCant = xPos To xRegion + 25 
lfpoints(xCant + 3, yPos) = vbBlack And points(xCant + 2, yPos) = vbBlack 

And points(xCant + 1, yPos) = vbBlack Then 
Ifpoints(xCant, yPos) = vbCyan And points(xCant- 1, yPos) = vbCyan 

And points(xCant- 2, yPos) = vbCyan Then 
ReDim CantiRightEdge(yPos) 
CantiRightEdge(yPos) = xCant 
Display.PSet (xCant, yPos), vbMagenta 
FindRightEdge = True 

End If 
End If 
Next 

End If 
End If 

Next 

'if we can find both left and right edge points with the same yPos, then calculate the 
width 
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'mark the last yPos as the end of cantilver, and show it on the text box 
If FindLeftEdge = True And FindRightEdge = True Then 
Average = Average + CantiRightEdge(yPos)- CantiLeftEdge(yPos) 
I = I + 1 
CantiEnd = yPos 
Mainforrn.CantiEnd.Text = CantiEnd 
End If 
Next 

End If 

End Sub 

Private Sub Savelmage() 
Dim TempString As String 
Dim kString, path, newpath As String 
Dim systime As Double 
Dim Hour, Minute, Second As String 

IfVal(Interface.Text) < 10 Then 
kString = "00" & Interface. Text 

ElselfVal(Interface.Text) > 9 And Val(Interface.Text) < 100 Then 
kString = "0" & Interface. Text 

Else 
kString = Interface. Text 

End If 

CWIMAQ1.Acquirelmage 

path = SavelmageText.Text 
newpath = path & kString & ".bmp" 

CWIMAQ1 .SavelmageToDisk newpath, CWIMAQ1 .Images(1) 

Interface.Text = Interface. Text + 1 
Display.Picture = LoadPicture(newpath) 

SystemTime.Text = Format(Now, "hh:nn:ss") & "." & Right(Format(Timer, "#0.00"), 2) 
Hour = Val(Left(SystemTime.Text, 2)) * 3600 
Minute = Left(SystemTime.Text, 5) 
Minute = Val(Right(Minute, 2)) * 60 
Second = Val(Right(SystemTime.Text, 5)) 
systime = Hour + Minute + Second 
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If newsystime > systime Then newsystime = systime 

systime = systime - newsystime 

TempString = systime & "," & Interface.Text 
Print #I, TempString 

End Sub 

Private Sub SaveDataYesNo_Click() 
lfSaveDataYesNo.Value = False Then 

Me.optAllData.Enabled = False 
Me.txtScaleFactor.Enabled = False 
Me.optShiftAxis. Value = True 

Else 
Me.optAllData.Enabled = True 
Me.txtScaleFactor.Enabled = True 
Me.optAllData. Value = True 

End If 
End Sub 

Private Sub startCommandButton _Click() 
Dim sampsPerChanRead As Long 
Dim numChannels As Long 
Dim fillMode As DAQmxFillMode 
Dim bufferSize As Long 
Dim numSampsPerChannel As Long 
Dim arraySizelnSamps As Long 
Dim Channels As String 
Dim TempChannel As String 

Dim XMin, YMin, YMax, XMax As Double 
Dim XOrigin, YOrigin As Double 
Dim ScaleX, Scale Y As Double 
Dim XOriginT, YOriginT, ScaleXT, ScaleYT As Double 
Dim XOrigin2, YOrigin2, ScaleX2, ScaleY2 As Double 

Dim count As Long 
Dim i, k As Long 
Dim temp_i As Long 
Dimj As Long 
Dim item As Listltem 
Dim InputData() As Double 
Dim SumVoltage() As Double 
Dim AveVoltage() As Double 
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---------------------------------··--------

Dim PreviousTime, pA VGtime, pA VGvoltage() As Double 
Dim Time, TotalTime As Double 
Dim DeltaV, DeltaT As Double 
Dim n As Integer 
Dim SumTime, AveTime As Double 
Dim Temperature As Double 
Dim FirstRun As Boolean 
Dim ThermType As DAQmxThermocoupleTypel 
Dim PSDIOffset As Double 
Dim PSD20ffset As Double 
Dim Pressure As String 

Mainform.startCommandButton.Enabled =False 

FirstRun = True 

IfMainform.AutoScaleCheck.Value = 1 Then 
Mainform.AutoScaleTimer.Interval = Val(Mainform.AutoScaleText.Text) * 1000 
Mainform.AutoScaleTimer.Enabled = True 
End If 

Do Events 

Me.txtVoltPrecision.Enabled = False 
StopFlag = False 

'Checks to see that all the fields aren't blank. 
If ValidateControlValues Then 

startCommandButton.Enabled = True 
Exit Sub 

End If 

'Tells the program how to list the data in the array. 
'If it is Scan Number, it lists all the first sample points collected from each channel, 
'then the second points from each channel, etc. 
'If it is Channel, it lists all the sample points from Channel 1, then Channel 2, etc. 
lfscanOrderOption.Value = True Then 

fillMode = DAQmx_ Val_GroupByScanNumber 
Else 

fillMode = DAQmx_ Val_GroupByChannel 
End If 

'Tell the program how to collect data samples from the channels. 
'If it is Average, take single samples from each channel, which are 
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'generated very quickly, and then average samples over the time interval. 
'If it is Collect Data every so often, takes a single sample every so many 
'samples which are generated on each channel, and can specify the rate 
'individual samples are generated in Hz. 
bufferSize = 255 
IfChangeOption.Value = True Then 

numSampsPerChannel = 1 
Elself TimeOption. Value = True Then 

numSampsPerChannel = CLng(samplesPerChannelTextBox.Text) 
End If 

'Create the DAQmx task, and a boolean to say it is running. 
DAQmxErrChk DAQmxCreateTask("", taskHandle) 
tasklsRunning = True 

'This is a string of all the channels, which comes from the Function, 
'so we get "Channels= Devl /ai0,Devl/ail,Devl/ai2" and so on. 
Channels = DetermineChannels() 
TempChannel = DetermineTempChannel() 
ThermType = DetermineThermType() 

'Add an analog input channel to the task. 
DAQmxErrChk DAQmxCreateAIVoltageChan(taskHandle, Channels,"", _ 

DAQmx_ Val_Cfg_Default, minValueTextBox.Text, 
maxValueTextBox.Text, _ 

DAQmx_ Val_ VoltageUnitsl_ Volts,"") 
DAQmxErrChk DAQmxCreateAIThrmcplChan(taskHandle, TempChannel, "", 

MinTempYRange.Text, MaxTempYRange.Text, DAQmx_ Val_DegC, 
DAQmx_ Val_ThermocoupleTypel_K_Type_TC, DAQmx_ Val_CJCSourcel_ConstVal, 
lnt(Me.txtCalibTemp.Text), "") 

'Configure task for finite sample acquisition and read in data 
DAQmxErrChk DAQmxCfgSampClkTiming(taskHandle, "OnboardClock", 

frequencyTextBox.Text, DAQmx_ Val_ Rising, 
DAQmx_ Val_AcquisitionType_FiniteSamps, CLng(samplesPerChannelTextBox.Text)) 

DAQmxErrChk DAQmxGetTaskNumChans(taskHandle, numChannels) 
arraySizelnSamps = numSampsPerChannel * numChannels 
ReDim Data(arraySizelnSamps) 

'acquiringLabel.Visible = True 
acquiringLabel.Caption = "Acquiring ... " 

XMin = 0: XMax = 60 

57 



Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin, ScaleX, SealeY, 
XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2) 

i = 0 
ReDim Preserve InputData(numChannels + 1) 'Time, Channel 0, Channel 1, Channel 

3, ... 
ReDim Preserve SumVoltage(numChannels + 1) 
ReDim Preserve AveVoltage(numChannels + 1) 
ReDim Preserve pAVGvoltage(numChannels + 1) 

For j = 2 To numChannels + 1 
InputDataU) = 0 
FirstRun = True 'This indeicates the first time we read data. 

Nextj 

pAVGtime = O 

StartTime = Timer 

If ChangeOption. Value = True Then 

IfSaveDataCheck.Value = 1 Then Open OutputDataFile.Text For Output As #2 
Write #2, "Time", "PSD1 ", "PSD2", "Temp", "Distance", "D", "V", "Interface", 

"Position" 
StartDataFileText = OutputDataFile.Text 
PreviousTime = Timer 

'Here we are saving data when we checked the "Save output Data as?" 
Do While StopFlag =False 

IfSaveDataCheck.Value = 1 And OutputDataFi1e.Text <> StartDataFileText 
Then 

10#, 

Close #1 
Open OutputDataFile.Text For Append As #1 

End If 

Do Events 

InputData(1) =(Timer- StartTime) 

'Read the Data from the DAQ 
DAQmxErrChk DAQmxReadAnalogF64(taskHandle, numSampsPerChannel, 

fillMode, Data(O), arraySizelnSamps, sampsPerChanRead, ByVal 0&) 

'Read the Pressure Data 
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---- ------------------------------------------

Pressure = MSComml.Input 
IfPressure <> lblPressure.Caption Then 

If Pressure = "" Then 
lblPressure.Caption = PrevPressure 

Else 
lblPressure.Caption = Pressure 
PrevPressure = Pressure 

End If 
Else 

lblPressure.Caption = PrevPressure 
End If 

'Here we put the data into an array. 
For j = 0 To numChannels - 1 
k = Data( I) 

InputData(j + 2) = Strings.FormatNurnber(Data(j), 6) 
Nextj 

'This is where we use offset controls to compensate for the 
'different max and min photocurrents put out by the PSDs. 
'It allows us to use a high current for max resolution without going 
'over the +/-lOV limit of the NI-DAQ. 
PSDIOffset = CDbl(txtPSDIOffset.Text) 
PSD20ffset = CDbl(txtPSD20ffset.Text) 
InputData(2) = InputData(2) + PSDIOffset 
InputData(3) = InputData(3) + PSD20ffset 

'This is executed only once at the beginning. 
If FirstRun = True Then 

PreviousTime = InputData(l) 
SumTime = InputData(l) 
Fork = 2 To numChannels + 1 

SumVoltage(k) = InputData(k) 
pAVGtime = 0 
pA VGvoltage(k) = 0 'InputData(k) 
FirstRun = False 

Nextk 
n = l 

Elself(InputData(l)- PreviousTime) < Val(AvgTimelnt.Text) Then 
'This is where we have to alter the program in order to elliminate spikes from 

the data. 
'What we need to do here is to save all the data to an array 
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SumTime = SumTime + InputData(l) 
Fork = 2 To numChannels + 1 

SumVoltage(k) = SumVoltage(k) + InputData(k) 
Nextk 
n = n + l 
'PreviousTime = InputData(l) 

Elself(InputData(l)- PreviousTime) >= Val(AvgTimelnt.Text) Then 
'When we get here we look at the number in the array and remove the data 

points that have a 
'large standard deviation from the rest of the data. 
A veTime = Sum Time I n 
Fork = 2 To numChannels + 1 

AveVoltage(k) = SumVoltage(k) In 
Nextk 

lfSaveDataCheck.Value = 1 Then Call SaveData(AveTime, Ave Voltage, 
numChannels) 

Call PlotData(AveTime, AveVoltage(), pAVGtime, pAVGvoltage(), 
numChannels, XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT, ScaleXT, 
ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2) 

pA VGtime = A veTime 
PreviousTime = lnputData(1) 
SumTime = InputData(1) 
Fork = 2 To numChannels + 1 

pAVGvoltage(k) = AveVoltage(k) 
SumVoltage(k) = lnputData(k) 

Nextk 
n = l 

End If 

If(Me.optAllData.Value = True) And (lnputData(1) * 1.1 > XMax) Then 
XMax = lnputData(l) * CDbl(Me.txtSealeFaetor.Text) 
Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin, 

SealeX, SealeY, XOriginT, YOriginT, ScaleXT, SealeYT, XOrigin2, YOrigin2, SealeX2, 
SealeY2) 

Close #1 
Call RePlotData(XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT, 

ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2) 

As #I 
IfSaveDataCheek.Value = 1 Then Open OutputDataFile.Text For Append 

End If 

If(Me.optShiftAxis.Value = True) And (lnt(InputData(l)) = XMax) Then 
XMax = XMax + CDbl(Me.txtDeltat.Text): XMin = Int(InputData(1)) 
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Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin, 
ScaleX, SealeY, XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, 
ScaleY2) 

Close #1 
'IfSaveDataCheck.Value = 1 Then Open OutputDataFile.Text For Append 

As #I 
IfMainform.startCommandButton.Enabled = True Then Open 

OutputDataFile.Text For Append As #1 
End If 

Loop 
ElseifTimeOption.Value =True Then 

End If 

'Call the StopTask module to stop the DAQmx task. 
Stop Task 

IfSaveDataCheck.Value = 1 Then 
Close #1 
Close #2 
End If 

startCommandButton.Enabled = True 

' Display a message indicating the number of samples per channel read. 
acquiringLabel.Caption ="Stopped!" 

'Analyze the output data. 

Dim LaserDistance As Integer 
Dim PI, LASERangle, LaserAnglePrime, PSDangle, Phi, PhiPrime, Delta, PSDrange As 
Double 
Dim DValue(2), VValue(2), TValue(2) 'DValue is distance, VValue is voltage, 
TValue is time 
Dim DeltaPx, DeltaPy, DeltaU, DeltaH, VDelta, TDelta, LaserX, LaserY, PSDX, PSDY, 
v, LNot, XNotPrime, YNotPrime, Velocity As Double 
Dim tmp, Cantilever Angle, CantileverNormal, Interface, ChipAngle, A verageChipAngle, 
ChipAngleDegree, Average V As Double 
Dim ChipAngleCount, V count As Integer 
Dim AnalyzedData As String 
Dim Origin Voltage, OriginTime, DeltaUSquare As Double 
Dim ChipAngleArrayR(3, I 00) As Double 
Dim ChipAngleArrayi(3, I 00) As Double 
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Dim XvalueR(3), Xvaluei(3) As Double 
Dim Solution(6) As Double 

PI= 4 * Atn(I) 
PSDangle = Val(frmPSDAngle.Text) *PI I I80 
radians 
LASERangle = Val(frmLaserAngle.Text) *PI I I80 
radians 
PSDrange = Val(Mainfonn.PSDrangeText) 

'These angles are now in 

'These angles are now in 

IfSaveDataCheck.Value = I Then Open OutputDataFile.Text For Input As #6 

i = Len(OutputDataFile.Text) 
AnalyzedData = Left(OutputDataFile.Text, i - 8) & "Analyzed.dat" 
Open AnalyzedData For Output As #7 

i = 0 
Do While EOF(6) = False 

Ifi = 0 Then 
Input#6,tmp,tmp,tmp,tmp,tmp,tmp,tmp,tmp 
Write #7, "Interface", "Time", "DValue", "VValue", "XIR", "XII", "X2R", 11X2I", 

"X3R", "X3I11 

Elseif i = I Then 
Input #6, TValue(2), tmp, tmp, tmp, tmp, DValue(2), VValue(2), Interface 
IfDValue(2) <> 11#11 And VValue(2) <> "#11 Then 

Write #7 Interface TValue(2) DValue(2) VV alue(2) 11 11 11 11 11 11 

' ' ' ' ' , ' 
DValue(I) = DValue(2) 
VValue(I) = VValue(2) 
TValue(I) = TValue(2) 

Else 
i = i- I 
ChipAngleCount = I 

End If 
Else 

Input #6, TValue(2), tmp, tmp, tmp, tmp, DValue(2), VValue(2), Interface 
IfDValue(2) <> 11#11 Then 

IfVValue(2) <> "#11 And VValue(2) <> 0 Then 
DeltaPx = DValue(2)- DValue(I) 
VDelta = VValue(2)- VValue(I) 
TDelta = TValue(2)- TValue(I) 
DeltaH = VDelta * 10 I PSDrange 'DeltaH in the units of mm 

IfDValue(2) <= 0 And DValue(I) <> 0 And DeltaPx <> 0 Then 
'laser point on the chip 
'calculate the ChipAngle and Velocity 
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Call VietaTheoremModule.SolveCubicEquation((DeltaPx), (DeltaH), 
(PSDangle), (LASERangle), Solution) 

ChipAngleArrayR{1, ChipAngleCount) = Solution(!) 
ChipAngleArray1(1 , ChipAngleCount) = Solution(2) 
ChipAngleArrayR(2, ChipAngleCount) = Solution(3) 
ChipAngleArrayl(2, ChipAngleCount) = Solution( 4) 
ChipAngleArrayR(3, ChipAngleCount) = Solution(5) 
ChipAngleArray1(3, ChipAngleCount) = Solution(6) 

v = DeltaPx I TDelta 
Average V = Average V + v 
V count = V count + 1 
Write #7, Interface, TValue(2), DValue(2), VValue(2), _ 
ChipAngleArrayR(1, ChipAngleCount), ChipAngleArrayl( 1, 

ChipAngleCount); _ 
ChipAngleArrayR(2, ChipAngleCount), ChipAngleArray1(2, 

ChipAngleCount); _ 
ChipAngleArrayR(3, ChipAngleCount), ChipAngleArrayl(3, 

ChipAngleCount) 
DValue(1) = DValue(2) 
VValue(1) = VValue(2) 
TValue(1) = TValue(2) 

ElselfDValue(2) > 0 And DValue(2) <= 350 And DeltaPx <> 0 Then 
'laser point on the cantilever 

consistance 

'when laser point goes on the cantilever, 
'use chip angle value to calculate the cantilever angle. 
IfMainform.frmChipAngle.Text = ""Then 

'find the best fit of chip angle in the array 
'Call BestFitModule.BestFit(ChipAngleCount) 

ChipAngle = 0 
'ChipAngle is still in radians, on panel we convert it into degrees for 

ChipAngleDegree = 180 * ChipAngle I PI 
Mainform.frmChipAngle.Text = ChipAngleDegree 
'Lnot must be defined before experiments 
LNot = Val(Mainform.frmLNot.Text) 
'calculate the XNotPrime and yNotPrime based on LNot and ChipAngle 
XNotPrime = LNot * Cos(LASERangle- 2 * ChipAngle) 
YNotPrime = LNot * Sin(LASERangle- 2 * ChipAngle) 

'get the DValue and VValue when laser point hit the origin 
Origin Voltage = Val(Mainform.OriginVoltage.Text) 
OriginTime = Val(Mainform.OriginTime.Text) 
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DValue(l) = DValue(2) 
VValue(l) = VValue(2) 
TValue(l) = TValue(2) 

'Mark when laser spot gets on the cantilever 
Write #7, "Interface", "Time", "DValue", "VValue", "Angle", "Normal" 

i = i - I 
End If 

'incident laser is LaserY=-
tan(LaserAngle)*laserX+tan(LaserAngle)*Velocity*TDelta 

Velocity = Val(Mainform.frmVelocity.Text) 
TDelta = TValue(2)- OriginTime 

TDelta 

YNotPrime 

LaserX = DValue(2) 
LaserY = -Tan(LASERangle) * LaserX + Tan(LASERangle) *Velocity* 

'PSD equation is PSDY = -Tan(PSDAngle) * (PSDX- XNotPrime) + 

Del taU = VValue(2) - Origin Voltage 
PSDX = -XNotPrime + Abs(DeltaU) * Cos(PSDangle) 'PSDX>O 
PSDY = -Tan(PSDangle) * (PSDX- XNotPrime) + YNotPrime 

Delta = -Atn((LaserY- PSDY) I (LaserX- PSDX)) 
CantileverNormal = (PI- LASERangle- Delta) I 2 
CantileverAngle = (LASERangle + Delta) I 2 
Write #7, Interface, TValue(2), DValue(2), CantileverAngle, 

CantileverNormal 
DValue(l) = DValue(2) 
VValue(l) = VValue(2) 
TValue(l) = TValue(2) 
Else' DeltaPx=O means DValue(l)= DValue(2) 
i = i- 1 

End If 
ChipAngleCount = ChipAngleCount + I 

End If 
End If 

End If 

i = i + 1 

Loop 
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Close #6 
Close #7 

Exit Sub 

Error Handler: 
If tasklsRunning = True Then 

DAQmxStopTask taskHandle 
DAQmxClearTask taskHandle 
tasklsRunning =False 

End If 
acquiringLabel.Caption = "Stand by .. . " 
startCommandButton.Enabled = True 
MsgBox "Error: " & Err.Number & " " & Err.Description, , "Error" 

End Sub 

Private Sub StopTask() 
'Done! 
Me.txtVoltPrecision.Enabled = True 
DAQmxErrChk DAQmxStopTask(taskHandle) 
DAQmxErrChk DAQmxClearTask(taskHandle) 
tasklsRunning = False 

End Sub 

Private Function ValidateControlValues() 
'This is an error check. if any of the boxes are empty then a message is sent to the user 

ValidateControlValues = 0 

IfmaxValueTextBox.Text = ""Or minValueTextBox.Text = ""Or 
samplesPerChannelTextBox.Text = "" Or frequencyTextBox.Text = "" Then 

MsgBox "Please fill in all empty fields.", , Error 
ValidateControlValues = 1 

End If 
End Function 

Private Sub Form_Load() 
tasklsRunning = False 
acquiringLabel.Caption = "Stand by ... " 
StopFlag = False 

PointSelect = 1 
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'open the commport for pressure 
With MSComm 1 

.CommPort = 1 

.Settings = 119600,N,8, 111 

.PortOpen = True 
End With 
PrevPressure = 110.0011 

PointSelect = 1 

End Sub 

Private Sub startCommandButton ClickO 

newsystime = 1E+26 

CWIMAQ1.Interface = 11img011 

CWIMAQ1 .LoadlnterfaceDefaults 

'TimeTimer.Enabled = True 

IfMainform.AutoScaleCheck.Value = 1 Then 
Mainform.AutoScaleTimer.Interval = Val(Mainform.AutoScaleText.Text) * 1000 
Mainform.AutoScaleTimer.Enabled = True 
End If 
SystemTime.Text = Format(Now, 11hh:nn:ss11

) & 11
•

11 & Right(Format(Timer, 11#0.0011
), 

2) 

Open 11C:\Documents and Settings\Josh\Desktop\timeimage.dat11 For Output As #1 
Open 11C:\Documents and Settings\Josh\Desktop\timereading.dat11 For Output As #2 

End Sub 

Private Sub text1 _keypress(keyascii As Integer) 
Dim newtempstring As String 
Dim length As Integer 
Dim Hour, Minute, Second As String 
Dim systime As Double 

'Ifkeyascii = 13 Then Textl.Text = 11 11 

If keyascii >= 48 Or keyascii <= 57 Then 
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length = Len(Textl.Text) 
Iflength = 5 Then 

SystemTime.Text = Format(Now, "hh:nn:ss") & "." & Right(Format(Timer, 
"#0.00"), 2) 

Hour = Val(Left(SystemTime.Text, 2)) * 3600 
Minute = Left(SystemTime.Text, 5) 
Minute = Val(Right(Minute, 2)) * 60 
Second = Val(Right(SystemTime.Text, 5)) 
systime = Hour + Minute + Second 

systime = systime - newsystime 

newtempstring = systime & "," & Textl.Text 

Print #2, newtempstring 
Textl.Text = "" 

End If 
End If 

End Sub 

' show the mouse_ move in picturebox 
Public Sub Display_MouseMove(Button As Integer, Shift As Integer, mAs Single, n As 
Single) 
CurrentX = m 
CurrentY = n 
Coordinates.Caption = "Coordinates: (" & m & "," & n & ")" 
End Sub 

Private Sub Display_ mouseup(Button As Integer, Shift As Integer, x As Single, y As 
Single) 
If PointS elect = 2 Then 
CurrentX = x 
CurrentY = y 
AreaX2 = x 
AreaY2 = y 
RightBottom.Caption = "RightBottom:(" & AreaX2 & "," & AreaY2 & ")" 

Display.Line (AreaX2, AreaY2)-(AreaX2, AreaYI), vbGreen 
Display.Line (AreaX2, AreaY2)-(AreaX1 , AreaY2), vbGreen 
Display.Line (AreaXI, AreaY1)-(AreaX2, AreaYl), vbGreen 
Display.Line (AreaXl, AreaYl)-(AreaXl , AreaY2), vbGreen 

End If 
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End Sub 

'chose the scaning area 
Private Sub Display_MouseDown(Button As Integer, Shift As Integer, x As Single, y As 
Single) 
Dim yRegion, Distance As Integer 
Dim CantiWidth As Integer 
Dim CantiLength As Integer 
If Button = 1 Then 

If PointS elect = 1 Then 
CurrentX = x 
CurrentY = y 
AreaX1 = x 
AreaY1 = y 
PointSelect = 2 
LeftTop.Caption = "LeftTop:(" & AreaXl & "," & AreaYl & ")" 
ElselfPointSelect = 2 Then 
CurrentX = x 
CurrentY = y 
Mainform.LaserPositionX.Text = CurrentX 
Mainform.LaserPositionY.Text = CurrentY 
Display. Circle (x, y), 1, RGB(O, 255, 0) 
PointSelect = PointSelect + 1 
Else 'manual laser position collection 
CurrentX = x 
CurrentY = y 
Mainform.MovingLaserPointX = x 
Mainform.MovingLaserPointY = y 
yRegion = Val(Mainform.LaserPositionY.Text) 
Distance = y - yRegion 'distance in pixels 
CantiWidth = Val(Mainform.CantiWidth.Text) 'in pixels 
'the real width of cantilever is 35 micros 
CantiLength = Distance* 35 / CantiWidth 'in micros 
Mainform.Distance.Text = CantiLength 
'when distance changes, do the average of voltage 
DoTheAverage = True 
Display.Circle (x, y), 5, RGB(255, 0, 0) 
End If 

Elself Button = 2 Then 'Right_ click means we choose laser position image by image 
IfPointSelect = 3 Then 'define the end of the cantilever 
CurrentX = x 
CurrentY = y 
Display.Circle (x, y), 1, RGB(O, 255, 0) 
Mainform.CantiEnd.Text = y 
PointSelect = PointSelect + 1 
Else 
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CurrentX = x 
CurrentY = y 
Mainform.MovingLaserPointX = x 
Mainform.MovingLaserPointY = y 
Display.Circle (x, y), 5, RGB(255, 0, 0) 
End If 

End If 

End Sub 

Private Function DetermineChannels() 
'This function determines the physical channels to be used when they are selected 
'in the frame. 
Dim i As Integer 
Dim FirstChannel As String 
Dim SecondChannel As String 

DetermineChannels = "" 
FirstChannel = "Devl/ai" & Me.txtFirstVoltage.Text 
SecondChannel = ",Devl/ai" & Me.txtSecondVoltage.Text 

DetermineChannels = FirstChannel & SecondChannel 

End Function 

Private Function DetermineTempChannel() 

DetermineTempChannel = "" 

DetermineTempChannel = "Devl /ai" & Me.txtTemp.Text 

End Function 

Private Sub StartContinuousCapture _Click() 
ConstantCaptureTimer.Interval = Val(ConstantCaptureTime. Text) 
ConstantCaptureTimer.Enabled = True 

End Sub 

Private Sub StopConstantCapture _Click() 
ConstantCaptureTimer.Enabled = False 
End Sub 

Private Sub ConstantCaptureTimer_ Timer() 
Call GetNewlmage 

IfDrawThelineCheck.Value = 1 Then 
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currentx1 = Cint(Val(LineX1Text.Text)) 
currenty1 = Cint(Val(LineY1 Text. Text)) 
currentx2 = Cint(Val(LineX2Text.Text)) 
currenty2 = Cint(Val(LineY2Text.Text)) 
Display. Line ( currentx2, currenty2)-( currentx 1, currenty 1 ), vbGreen 
End If 

End Sub 

Private Sub Stop Botton_ Click() 
StopFlag = True 

If Mainform.AutoScaleTimer.Enabled = True Then 
Mainform.AutoScaleTimer.Enabled = False 
Mainform.Interface.Text = "0" 
End If 

If ConstantCaptureTimer.Enabled = True Then 
ConstantCaptureTimer.Enabled = False 
End If 

Mainform.startCommandButton.Enabled = True 

Close #1 
Close #2 

End Sub 
Private Sub SaveData(AveTime, AveVoltage, numChannels) 
Dim k As Integer 
Dim TempString As String 

TempString = CStr(CDbl(FormatNumber(AveTime, 4))) 

If StartDataPoint = Cint(txtPointsPerFile.Text) + 1 Then 
StartDataPoint = 1 
OutputDataFile.Text = Replace(OutputDataFile.Text, "-" & CStr(StartDataFile) & 

".dat", "-" & CStr(StartDataFile + 1) & ".dat") 
StartDataFile = StartDataFile + 1 

End If 

If chkPressure. Value = 1 Then 
Fork = 2 To numChanne1s + 1 
TempString = TempString & " ," & CStr(CDb1(FormatNumber(AveVoltage(k), 

Int(Me.txtVoltPrecision.Text)))) 
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Nextk 
TempString = TempString & "," & CStr(CDbl(Trim(lblPressure.Caption))) 

Else 
IfDoTheAverage = False Then 

Fork = 2 To numChannels + 1 
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k), 

Int(Me.txtVoltPrecision.Text)))) 
Nextk 

'when the distance is still the same, add the voltage signal 
PSDaverage = PSDaverage + CDbl(AveVoltage(2)) 
PSDcounts = PSDcounts + 1 
TempString = TempString & "," & CStr(Mainform.Distance.Text) & ",#" & ",#" & 

",#" 

Else 

Fork = 2 To numChannels + 1 
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k), 

Int(Me.txtVoltPrecision.Text)))) 
Nextk 

'when we get a new distance, do the math. 
If PSDcounts = 0 Then 
PSDaverage = CDbl(AveVoltage(2)) 
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," & 

CStr(Mainform.Distance.Text) & "," & CStr(PSDaverage) & "," & 
CStr(Mainform.Interface.Text) 

Else 
PSDaverage = PSDaverage I PSDcounts 
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," & 

CStr(Mainform.Distance.Text) & "," & CStr(PSDaverage) & "," & 
CS tr(Mainform.lnterface. Text) 

PSDcounts = 0 
PSDaverage = 0 
End If 

Do TheA verage = False 
End If 

End If 

TempString = TempString & "," & Mainform.Textl.Text 
Print #2, TempString 
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StartDataPoint = StartDataPoint + 1 

'if laser is on Origin point, or distance = 0 
'then load the system time and PSD 1 voltage 
'IfVal(Mainform.Distance.Text) = 0 Then 
'Mainform.OriginVoltage.Text = PSDaverage 
'Mainform.OriginTime.Text = AveTime 
'End If 

End Sub 

Private Sub SaveData(AveTime, AveVoltage, numChannels) 
Dim k As Integer 
Dim TempString As String 

TempString = CStr(CDbl(FormatNumber(AveTime, 4))) 

If StartDataPoint = Cint(txtPointsPerFile.Text) + 1 Then 
StartDataPoint = 1 
OutputDataFile.Text = Replace(OutputDataFile.Text, "-" & CStr(StartDataFile) & 

".dat", "-" & CStr(StartDataFile + 1) & ".dat") 
StartDataFile = StartDataFile + 1 

End If 

If chkPressure. Value = 1 Then 
Fork = 2 To numChannels + 1 
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k), 

Int(Me.txtVoltPrecision.Text)))) 
Nextk 
TempString = TempString & "," & CStr(CDbl(Trim(lblPressure.Caption))) 

Else 
Fork = 2 To numChannels + 1 
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k), 

Int(Me.txtVoltPrecision.Text)))) 
Nextk · 
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," & 

CStr(Mainform.lnterface. Text) 
End If 
Print #2, TempString 
StartDataPoint = StartDataPoint + 1 

End Sub 
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- - ---- -----------------------

Private Sub PlotData(AveTime, AveVol, pAVGt, pAVGvol, numChannels, XOrigin, 
YOrigin, ScaleX, SealeY, XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, 
ScaleX2, Scale Y2) 
Dim PinXPos, PinYpos As Double 
Dim inXPos, inYPos As Double 

Do Events 

'Here we are drawing the PSD voltage signal 
PinXPos = XOrigin + (pA VGt * ScaleX) 
inXPos = X Origin + (A veTime * Seal eX) 
PinYpos = YOrigin- (pAVGvol(2) *SealeY) 
inYPos = YOrigin- (AveVol(2) *SealeY) 
Mainform.PicChart.ForeColor = vbGreen 
Mainform.PicChart.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

'Here we are drawing the PSD2 voltage signal 
PinXPos = XOrigin2 + (pA VGt * ScaleX2) 
inXPos = XOrigin2 + (A veTime * ScaleX2) 
PinYpos = YOrigin2- (pAVGvol(3) * ScaleY2) 
inYPos = YOrigin2- (AveVol(3) * ScaleY2) 
Mainform.PicChart2.ForeColor = vbGreen 
Mainform.PicChart2.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

'Here we are drawing the temperature signal 
PinXPos = XOriginT + (pA VGt * ScaleXT) 
inXPos = XOriginT + (A veTime * Seal eXT) 
PinYpos = YOriginT- (pAVGvol(4) * ScaleYT) 
inYPos = YOriginT- (AveVol(4) * ScaleYT) 
Mainform.TempChart.ForeColor = vbBlue 
Mainform.TempChart.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

End Sub 
Private Function ColorCode(k) As String 

If k = 1 Then ColorCode = "vbRed" 
Ifk = 2 Then ColorCode = "vbGreen" 
If k = 3 Then ColorCode = "vbBlue" 
lfk = 4 Then ColorCode = "vbMagenta" 

End Function 
Private Sub RePlotData(XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT, 
ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2) 
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Dim k, j As Long 
Dim PinXPos, PinYpos As Double 
Dim inXPos, in YPos As Double 
Dim iVoltagel, Voltagel , iVoltage2, Voltage2, iTime, Time, iTemp, Temp As Double 

Do Events 

j = 1 
IfSaveDataCheek.Value = 1 Then 

Do While (EOF(l) = False) 
lfj = 1 Then 

Input #2, iTime, iVoltagel, iVoltage2, iTemp 

j = j + 1 

Else 

Input #2, Time, Voltage}, Voltage2, Temp 

'Here we are drawing the PSD voltage signal 
PinXPos = XOrigin + (iTime * SealeX) 
inXPos = XOrigin + (Time * SealeX) 
PinYpos = YOrigin- (iVoltagel *SealeY) 
inYPos = YOrigin- (Voltage} *SealeY) 
Mainform.PieChart.ForeColor = vbBlaek 
Mainform.PieChart.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

'Here we are drawing the PSD2 voltage signal 
PinXPos = XOrigin2 + (iTime * SealeX2) 
inXPos = XOrigin2 + (Time * SealeX2) 
PinYpos = YOrigin2- (iVoltage2 * SealeY2) 
inYPos = YOrigin2- (Voltage2 * SealeY2) 
Mainform.PieChart2.ForeColor = vbBlaek 
Mainform.PieChart2.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

'Here we are drawing the temperature signal 
PinXPos = XOriginT + (iTime * SealeXT) 
inXPos = XOriginT + (Time * SealeXT) 
PinYpos = YOriginT- (iTemp * SealeYT) 
inYPos = YOriginT- (Temp* SealeYT) 
Mainform.TempChart.ForeColor = vbBlaek 
Mainform.TempChart.Line (PinXPos, PinYpos)-(inXPos, inYPos) 

iTime = Time 
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iVoltagel = Voltage I 
iVoltage2 = Voltage2 
iTemp = Temp 

End If 

Loop 
Close #2 

End If 

End Sub 
Private Function DetermineThermType() As DAQmxThermocoupleTypel 

IfMe.txtThermType.Text = "K" Then DetermineThermType = 
DAQmx _Val_ ThermocoupleType 1_ K _Type_ TC 

IfMe.txtThermType.Text = "B" Then DetermineThermType = 
DAQmx _ Val_ ThermocoupleType 1_ B _Type_ TC 

If Me.txtThermType.Text = "E" Then DetermineThermType = 
DAQmx_ Val_ThermocoupleTypel_E_Type_TC 

IfMe.txtThermType.Text = "J" Then DetermineThermType = 
DAQmx _Val_ ThermocoupleTypel_J _Type_:_ TC 

IfMe.txtThermType.Text = "N" Then DetermineThermType = 
DAQmx_ Val_ThermocoupleTypel_N_Type_TC 

IfMe.txtThermType.Text = "R" Then DetermineThermType = 
DAQmx _Val_ ThermocoupleTypel_ R _Type_ TC 

IfMe.txtThermType.Text = "S" Then DetermineThermType = 
DAQmx_ Val_ThermocoupleTypel_S_Type_TC 

IfMe.txtThermType.Text = "T" Then DetermineThermType = 
DAQmx _Val_ ThermocoupleTypel_ T _Type_ TC 
End Function 

Private Sub TimeTimer _Timer() 
SystemTimeCount = SystemTimeCount + 1 
Mainform.SystemTime.Text = SystemTimeCount I 10 
End Sub 

Public Sub InitiateGraph(XMin, XMax, XOrigin, YOrigin, ScaleX, SealeY, XOriginT, 
YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2) 

Dim inCounter 
Dim inMaxX As Integer 
Dim inMax Y As Integer 
Dim inLmarg As Integer 
Dim inRrnarg As Integer 
Dim inBmarg As Integer 
Dim inTmarg As Integer 
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Dim in.XPos As Integer 
Dim in YPos As Integer 
Dim YLabel, XLabel As Double 
Dim XTicks, YTicks As Double 

Do Events 

YMin = Val(Mainform.minValueTextBox.Text) 
YMax = Val(Mainform.max ValueTextBox. Text) 

Mainform.PicChart.ForeColor = vbBlack 
Mainform.PicChart.AutoRedraw = True 
Mainform.PicChart.ScaleMode = 3 
Mainform.PicChart.Cls 

'Determine the maximum size of chart 
inMaxX = Mainform.PicChart.ScaleWidth 
inMaxY = Mainform.PicChart.ScaleHeight 

'Determine the chart margins, including 
'width for the axis labels 
inLmarg = Mainform.PicChart.TextWidth("lOOOO") 
inBmarg = 1.35 * Mainform.PicChart.TextHeight("5000") 
inRmarg = inMaxX- 0.5 * inLmarg 
inTmarg = 0.25 * inLmarg 
inBmarg = inMax Y - inBmarg 

'Determine scale factors for each axis 
ScaleX = (inRmarg - inLmarg) I (XMax - XMin) 
SealeY = (inBmarg- inTmarg) I (YMax- YMin) 

'Determine the origin of the graph 
If XMin <= 0 Then 

XOrigin = inLmarg + Abs(XMin) * ScaleX 
Else 

XOrigin = inLmarg - XMin * ScaleX 
End If 
YOrigin = inBmarg + YMin *SealeY 

'Draw a blue lines to show the origin 
Mainform.PicChart.ForeColor = vbBlue 
Mainform.PicChart.Line (inLmarg, YOrigin)-(inRmarg, YOrigin) 'This draws the real 
graphical abscissa 
Mainform.PicChart.Line (XOrigin, inTmarg)-(XOrigin, inBmarg) 'This draws the real 
graphical ordinate 
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Mainform.PicChart.ForeColor = vbBlack 
'Draw Axes 
Mainform.PicChart.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the left 
ordinate 
Mainform.PicChart.Line -(inRmarg, inBmarg) 'This draws the bottom 
abscissa 
Mainform.PicChart.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top 
abscissa 
Mainform.PicChart.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the 
right ordinate 

'Draw labels and tic marks for vertical axis 
YTicks = ((YMax - YMin) I 5) 
YLabel = Format(YMin, "#0.0") 
For inCounter = 1 To 6 

Mainform.PicChart.CurrentX = 5 
inYPos = inBmarg- ((inCounter- 1) * YTicks *SealeY) 
Mainform.PicChart.CurrentY = inYPos 
Mainform.PicChart.Print Str(FormatNumber(YLabel, 2, vbUseDefault, vbUseDefault, 

vbFalse)) 
YLabel = YLabel + YTicks 
Mainform.PicChart.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length of 

the tick mark in pixels 
Next inCounter 

'Draw labels and tic marks for horizontal axis 
XTicks = ((XMax - XMin) I 5) 
XLabel = Format(XMin, "#0.0") 
For inCounter = 1 To 6 

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleX) 
Mainform.PicChart.CurrentX = inXPos- Mainform.PicChart.TextWidth("OO") I 2 
Mainform.PicChart.CurrentY = inBmarg + 5 
Mainform.PicChart.Print Str(FormatNumber(XLabel, 1, vbUseDefault, vbUseDefault, 

vbFalse)) 
XLabel = XLabel + XTicks 
Mainform.PicChart.Line (inXPos, inBmarg)-(inXPos, inBmarg - 5) 

Next inCounter 

'*********************************************************************** 
********************************** 
'Now we initialize the temperature chart 
'New variables XOriginT, YOriginT, ScaleXT, ScaleYT 

YMin = Val(Mainform.MinTempYRange.Text) 
YMax = Val(Mainform.MaxTempYRange.Text) 
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Mainform.TempChart.ForeColor = vbBlack 
Mainform.TempChart.AutoRedraw = True 
Mainform.TempChart.ScaleMode = 3 
Main form. TempChart. Cls 

'Determine the maximum size of chart 
inMaxX = Mainform.TempChart.ScaleWidth 
inMaxY = Mainform.TempChart.ScaleHeight 

'Determine the chart margins, including 
'width for the axis labels 
inLmarg = Mainform.TempChart.TextWidth("lOOOO") 
inBmarg = 1.35 * Mainform.TempChart.TextHeight("5000") 
inRmarg = inMaxX- 0.5 * inLmarg 
inTmarg = 0.25 * inLmarg 
inBmarg = inMax Y - inBmarg 

'Determine scale factors for each axis 
ScaleXT = (inRmarg - inLmarg) I (XMax - XMin) 
ScaleYT = (inBmarg- inTmarg) I (YMax- YMin) 

'Determine the origin of the graph 
If XMin <= 0 Then 

XOriginT = inLmarg + Abs(XMin) * ScaleXT 
Else 

XOriginT = inLmarg - XMin * ScaleXT 
End If 
YOriginT = inBmarg + YMin * ScaleYT 

'Draw a blue lines to show the origin 
Mainform.TempChart.ForeColor = vbBlue 
Mainform.TempChart.Line (inLmarg, YOriginT)-(inRmarg, YOriginT) 'This draws 
the real graphical abscissa 
Mainform.TempChart.Line (XOriginT, inTmarg)-(XOriginT, inBmarg) 'This draws 
the real graphical ordinate 

Mainform.TempChart.ForeColor = vbBlack 
'Draw Axes 
Mainform.TempChart.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the 
left ordinate 
Mainform.TempChart.Line -(inRmarg, inBmarg) 'This draws the bottom 
abscissa 
Mainform.TempChart.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the 
top abscissa 
Mainform.TempChart.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the 
right ordinate 
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'Draw labels and tic marks for vertical axis 
YTicks = ((YMax - YMin) I 5) 
YLabel = Format(YMin, "#0.0") 
For inCounter = 1 To 6 

Mainform.TempChart.CurrentX = 5 
inYPos = inBmarg- ((inCounter- 1) * YTicks * ScaleYT) 
Mainform.TempChart.CurrentY = inYPos 
Mainform.TempChart.Print Str(FormatNumber(YLabel, 1, vbUseDefault, 

vbUseDefault, vbFalse)) 
YLabel = YLabel + YTicks 
Mainform.TempChart.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length 

of the tick mark in pixels 
Next inCounter 

'Draw labels and tic marks for horizontal axis 
XTicks = ((XMax - XMin) I 5) 
XLabel = Format(XMin, "#0.0") 
For inCounter = 1 To 6 

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleXT) 
Mainform.TempChart.CurrentX = inXPos- Mainform.TempChart.TextWidth("OO") I 2 
Mainform.TempChart.CurrentY = inBmarg + 5 
Mainform.TempChart.Print Str(FormatNumber(XLabel, 1, vbUseDefault, 

vbUseDefault, vbFalse)) 
XLabel = XLabel + XTicks 
Mainform.TempChart.Line (inXPos, inBmarg)-(inXPos, inBmarg- 5) 

Next inCounter 

'*********************************************************************** 
********************************** 
'Now we initialize the second PSD chart. 
'New variables XOrigin2, YOrigin2, ScaleX2, ScaleY2 

YMin = Val(Mainform.txtPSD2min.Text) 
YMax = Val(Mainform.txtPSD2max.Text) 

Mainform.PicChart2.ForeColor = vbBlack 
Mainform.PicChart2.AutoRedraw = True 
Mainforrn.PicChart2.ScaleMode = 3 
Mainform.PicChart2.Cls 

'Determine the maximum size of chart 
inMaxX = Mainform.PicChart2.ScaleWidth 
inMaxY = Mainform.PicChart2.ScaleHeight 
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'Determine the chart margins, including 
'width for the axis labels 
inLmarg = Mainform.Pi cChart2. Text Width(" 1 0000") 
inBmarg = 1.35 * Mainform.PicChart2.TextHeight("5000") 
inRmarg = inMaxX- 0.5 * inLmarg 
inTmarg = 0.25 * inLmarg 
inBmarg = inMax Y - inBmarg 

'Determine scale factors for each axis 
ScaleX2 = (inRmarg - inLmarg) I (XMax - XMin) 
ScaleY2 = (inBmarg- inTmarg) I (YMax- YMin) 

'Determine the origin of the graph 
If XMin <= 0 Then 

XOrigin2 = inLmarg + Abs(XMin) * ScaleX2 
Else 

XOrigin2 = inLmarg - XMin * ScaleX2 
End If 
YOrigin2 = inBmarg + YMin * ScaleY2 

'Draw a blue lines to show the origin 
Mainform.PicChart2.ForeColor = vbBlue 
Mainform.PicChart2.Line (inLmarg, YOrigin2)-(inRmarg, YOrigin2) 'This draws the 
real graphical abscissa 
Mainform.PicChart2.Line (XOrigin2, inTmarg)-(XOrigin2, inBmarg) 'This draws the 
real graphical ordinate 

Mainform.PicChart2.ForeColor = vbBlack 
'Draw Axes 
Mainform.PicChart2.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the 
left ordinate 
Mainform.PicChart2.Line -(inRmarg, inBmarg) 'This draws the bottom 
abscissa 
Mainform.PicChart2.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top 
abscissa 
Mainform.PicChart2.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the 
right ordinate 

'Draw labels and tic marks for vertical axis 
YTicks = ((YMax- YMin) I 5) 
YLabel = Format(YMin, "#0.0") 
For inCounter = 1 To 6 

Mainform.PicChart2.CurrentX = 5 
inYPos = inBmarg- ((inCounter- 1) * YTicks * ScaleY2) 
Mainform.PicChart2.CurrentY = inYPos 
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Mainform.PicChart2.Print Str(FormatNumber(YLabel, 2, vbUseDefault, vbUseDefault, 
vbFalse)) 

YLabel = YLabel + YTicks 
Mainform.PicChart2.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length 

of the tick mark in pixels 
Next inCounter 

'Draw labels and tic marks for horizontal axis 
XTicks = ((XMax - XMin) I 5) 
XLabel = Format(XMin, "#0.0") 
For inCounter = 1 To 6 

inXPos = inLmarg + ((in Counter - 1) * XTicks * ScaleX2) 
Mainform.PicChart2.CurrentX = inXPos- Mainform.PicChart2.TextWidth("OO") / 2 
Mainform.PicChart2.CurrentY = inBmarg + 5 
Mainform.PicChart2.Print Str(FormatNumber(XLabel, 1, vbUseDefault, vbUseDefault, 

vbFalse)) 
XLabel = XLabel + XTicks 
Mainform.PicChart2.Line (inXPos, inBmarg)-(inXPos, inBmarg - 5) 

Next inCounter 

End Sub 

Public Sub PlotRedLineGraph(Data, TnP, XOrigin, YOrigin, ScaleX, SealeY) 

Mainform.PicChart.ForeColor = vbRed 
Fori = 1 To TnP 

inXPos = XOrigin + (Data(1, i) * ScaleX) 
inYPos = YOrigin- (Data(2, i) *SealeY) 
Ifi = 1 Then 

Mainform.PicChart.CurrentX = inXPos 
Mainform.PicChart.CurrentY = inYPos 

Else 
Mainform.PicChart.Line -(inXPos, inYPos) 

End If 
Next i 
End Sub 

Public Sub PlotGreenLineGraph(Data, TnP, XOrigin, YOrigin, ScaleX, SealeY) 

Mainform.PicChart.ForeColor = vbGreen 
Fori = 1 To TnP 

inXPos = XOrigin + (Data(1, i) * ScaleX) 
inYPos = YOrigin- (Data(2, i) *SealeY) 
Ifi = 1 Then 

Mainforrn.PicChart.CurrentX = inXPos 
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Mainform.PicChart.CurrentY = in YPos 
Else 

Mainform.PicChart.Line -(inXPos, inYPos) 
End If 

Next i 
End Sub 

Public Sub DAQmxErrChk( errorCode As Long) 

' Utility function to handle errors by recording the DAQmx error code 
' and message. 

Dim errorString As String 
Dim bufferSize As Long 
Dim status As Long 

If ( errorCode < 0) Then 
' Find out the error message length. 
bufferSize = DAQmxGetErrorString( errorCode, 0, 0) 
' Allocate enough space in the string. 
errorString = String$(bufferSize, 0) 
' Get the actual error message. 
status = DAQmxGetErrorString(errorCode, errorString, bufferSize) 
' Trim it to the actual length, and display the message 
errorString = Left(errorString, InStr(errorString, Chr$(0))) 
Err.Raise errorCode, , errorString 

End If 

End Sub 

Public Sub BestFit(Run As Integer) ' 
Dim i, j, k As Integer 
Dim ConsistentXvalueR(), ConsistentXvaluel(), ConsistentXvalueModulus, 
XvalueModulus As Double 
Dim Rdifference(3), Idifference(3) As Double 

MsgBox "Got The BEST FIT part!!!" 

For j = l To 3 'SAME COMPARATIONS FOR XI , X2, AND X3 
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Fori = 1 To Run- 1 'SAME COMPARA TION FOR ALL THE OTHER RUNS 
'compare Xvalues of first run with Xvalues of the next run 

Fork = 1 To 3 
Rdifference(k) = ChipAngleArrayR(j, i)- ChipAngleArrayR(k, i + 1) 
Idifference(k) = ChipAngleArrayi(j, i)- ChipAngleArrayl(k, i + 1) 
Next 

'first find out the closest x value in next run by comparing the differences 
'looking for the smallest Rdifference"2+Idifference"2 

'then take the average of two closest x values as consistant value 
'Hope the two closest X values are the exact same X values 

End If 
Next 

Next 

End Sub 

'If we have a cubic equation in form of A3*x"3+A2*x"2+A1 *x+AO=O (A3<>0) 
'then we get following relations according to Vieta's Theorem: 
'x 1 +x2+x3=-A2/ A3 
'x1 *x2+x2*x3+x3*x1 =Al!A3 
'x1 *x2*x3=-AO/A3 

'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$$$$$$$$ 

'Solution for A3*x"3+A2*x"2+A1 *x+AO=O (A3<>0) 

'1 Change it in to special form y"3+p*y+q=O 
I 

'2 Solve y"3+p*y+q=O by y=AC" (l /3)+BC"(ll3) 
I 

'3 Take A and B as roots of a*z"2+b*z+c=O 

'4 Use y=N '{l/3)+8 "(113) and x=y-A2/(3*A3) to solve xl 
I 

'5 Vieta's Theorem in three degree to solve x2 and x3 
'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$$$$$$$$$ 
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Public Sub SolveCubicEquation(DeltaPx As Double, DeltaH As Double, PSDangle As 
Double, LASERangle As Double, Solution) 
Dim A3, A2, A1, AO, p, q, PI, YModulus, YSita As Double 
Dim RealYl, RealY2, RealY3, lmageY1, ImageY2, ImageY3, RealX1, RealX2, RealX3, 
ImageX1, ImageX2, ImageX3 As Double 
Dim uDelta, u1r, uli, u2r, u2i, uModulus, u1Sita, u2Sita, zModulus As Double 

PI = 4 * Atn(1) 

'change microns into mm 
DeltaPx = DeltaPx I 1 000 

'For A3*x"3+A2*x"2+A1 *x+AO=O {A3<>0) 
A3 = DeltaPx 
A2 = -(DeltaH * Sin(PSDangle)- Tan(LASERangle) * DeltaPx- Tan{LASERangle) * 
DeltaH * Cos(PSDangle)) 
A1 = 2 * Tan(LASERangle) * DeltaH * Sin(PSDangle) + DeltaPx- 2 * DeltaH * 
Cos(PSDangle) 
AO = DeltaH * Sin(PSDangle)- Tan(LASERangle) * DeltaPx + Tan(LASERangle) * 
DeltaH * Cos(PSDangle) 

'Debug.Print "*********************" 
If A3 <> Empty And A3 <> 0 Then 

'Substitute x=y-A21(3* A3) to get y"3+p*y+q=O 
p = A 1 I A3 - A2 " 2 I (3 * A3 " 2) 
q = 2 * A2 "3 I (27 * A3 "3)- A1 * A2 I (3 * A3 "2) + AO I A3 
'Debug.Print "p = " & p 
'Debug.Print "q = " & q 
If p = 0 And q = 0 Then 

'y"3=0, 3 real roots of same value. 
' Debug.Print "3 same real roots!" 

RealX1 = -A2 I (3 * A3) 
RealX2 = RealX 1 
RealX3 = Real X 1 
ImageX1 = 0 
lmageX2 = ImageX 1 
ImageX3 = ImageX 1 

Elself p = 0 Then 
'y"3+q=O, only one real root and 2 image roots 
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' Debug.Print "One real root and two image roots! " 
YModulus = CubicRoot( -q) 
RealXl = YModulus- A2 I (3 * A3) 
IrnageXl = 0 

' Debug.Print "One real root is xl =" & RealXl 

If YModulus > 0 Then 
YSita = 2 *PI 
Else 
YSita = PI 
End If 

RealX2 = YModulus * Cos(YSita I 3)- A2 I (3 * A3) 
ImageX2 = YModulus * Sin(YSita I 3) 
RealX3 = RealX2 
IrnageX3 = -ImageX2 
Debug.Print "Two imaginary roots are: " 
Debug. Print "x2 = " & RealX2 & " + " & ImageX2 & "i" 
Debug.Print "x3 = " & RealX3 & "+" & ImageX3 & "i" 

Else 

'To solve y"3+p*y+q=O, use Vieta's substitition y=z-plz 
'y"3+p*y+q=O changes to z"6+q*z"3-p"3127=0 
'with u = z" 3, we have u"2+q*u-p"3127=0 
uDelta = q " 2 + 4 * p " 3 I 27 
If uDelta >= 0 Then 
ulr = -q I 2 + Sqr(uDelta) I 2 
u2r = -q I 2 - Sqr(uDelta) I 2 
uti = 0 
u2i = 0 
uModulus = Sqr(ulr" 2 + uli " 2) 
Else 

Ifq = 0 Then 
ulr = 0 
u2r = 0 
Else 
ulr = -q I 2 
u2r = -q I 2 
End If 

u 1 i = Sqr( -uDelta) I 2 
u2i = Sqr( -uDelta) I 2 
uModulus = Sqr(ulr " 2 + uli " 2) 
End If 
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' Debug.Print "ui =" & uir & " + " & uli & "i" 
' Debug.Print "ui =" & uir & "+" & uii & "i" 

'each u gives three z, use polar form to solve them 
lfuir = 0 Then 

Ifuii > 0 Then 
uiSita = PI I 2 
Elself u I i < 0 Then 
ui Sita =PI* 3 I 2 
End If 

Else If u I r < 0 And u li > 0 Then '2nd 
uiSita = PI+ Atn(uii I uir) 
Elselfuir < 0 And uii < 0 Then '3rd 
uiSita = Atn(uii I uir) +PI 
Elselfuir > 0 And uli < 0 Then '4th 
ulSita = Atn(uli I ulr) +PI* 2 
Else ' u I Sita in the I st phase 
uiSita = Atn(uli I uir) 
End If 

If u2r = 0 Then 
If u2i > 0 Then 
u2Sita = PI I 2 
Elself u2i < 0 Then 
u2Sita = PI * 3 I 2 
End If 

Elself u2r < 0 And u2i > 0 Then '2nd 
u2Sita = PI + Atn(u2i I u2r) 
Else If u2r < 0 And u2i < 0 Then '3rd 
u2Sita = Atn(u2i I u2r) + PI 
Else If u2r > 0 And u2i < 0 Then '4th 
u2Sita = Atn(u2i I u2r) + PI * 2 
Else ' u2Sita in the I st phase 
u2Sita = Atn(u2i I u2r) 
End If 

'we can write ui and u2 in polar forms 
'ul =uModulus*( cos(u 1 Sita)+isin(ul sita)) 
'u2=uModulus*(cos(u2Sita)+isin(u2sita)) 
zModulus = CubicRoot(uModulus) 

' Debug.Print "zl = " & zModulus * Cos(ulSita I 3) & "+" & zModulus * Sin(ulSita I 
3) & "i" 
' Debug.Print "z2 = " & zModulus * Cos(ul Sita I 3 + 2 *pi I 3) & " + " & zModulus * 
Sin(ulSital 3 + 2 *pi I 3) & "i" 
' Debug. Print "z3 = " & zModulus * Cos(u 1 Sita I 3 - 2 * pi I 3) & " + " & zModulus * 
Sin(ul Sita I 3 - 2 * pi I 3) & "i" 
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' Debug.Print 11Z4 = 11 & zModulus * Cos(u2Sita I 3) & 11 + 11 & zModulus * Sin(u2Sita I 
3) & 11i 11 

' Debug.Print 11Z5 = 11 & zModulus * Cos(u2Sita I 3 + 2 *pi I 3) & 11 + 11 & zModulus * 
Sin(u2Sita I 3 + 2 *pi I 3) & 11i 11 

' Debug.Print 11Z6 = 11 & zModulus * Cos(u2Sita I 3- 2 *pi I 3) & 11 + 11 & zModulus * 
Sin(u2Sita I 3 - 2 *pi I 3) & 11i 11 

'with y=z-pl31z, we got six y values 
'y=( zModulus-pl31zmodulus) *cos()+ ( zModul us+pl31zmodulus) * sin()i 

' Debug.Print 11Yl = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3) & II + " & 
(zModulus + p I 3 I zModulus) * Sin(ul Sita I 3) & 11i 11 

' Debug.Print 11Y2 = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3 + 2 *pi I 3) & 11 

+ 11 & (zModulus + p I 3 I zModulus) * Sin(ulSital 3 + 2 *pi I 3) & 11i 11 

' Debug.Print 11 Y3 = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3- 2 *pi I 3) & 11 

+ 11 & (zModulus + p I 3 I zModulus) * Sin(ul Sita I 3 - 2 *pi I 3) & 11i11 

' Debug.Print 11Y4 = 11 & (zModulus- p I 3 I zModulus) * Cos(u2Sita I 3) & 11 + 11 & 
(zModulus +p I 3 I zModulus) * Sin(u2Sita I 3) & 11i 11 

' Debug.Print 11Y5 = 11 & (zModulus- p I 3 I zModulus) * Cos(u2Sita I 3 + 2 *pi I 3) & 11 

+ 11 & (zModulus + p I 3 I zModulus) * Sin(u2Sita I 3 + 2 *pi I 3) & 11i 11 

' Debug.Print 11Y6 = 11 & (zModulus- pI 3 I zModulus) * Cos(u2Sita I 3 - 2 * pi I 3) & 11 

+ 11 & (zModulus +p I 3 I zModulus) * Sin(u2Sita I 3 - 2 *pi I 3) & 11i 11 

'use the three real value of y and the relation x=y-A21(3 * A3) to find x 
'Dim RealYl, RealY2, RealY3, ImageYl, ImageY2, ImageY3, Xvaluel , Xvalue2, 

Xvalue3, Xvaluell, Xvalue2I, Xvalue3I As Double 
RealYl = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3) 
ImageYl = (zModulus + p I 3 I zModulus) * Sin(ul Sita I 3) 
RealY2 = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3 + 2 * PI I 3) 
lmageY2 = (zModulus +pI 3 I zModulus) * Sin(ulSita l 3 + 2 * Pl/3) 
RealY3 = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3 - 2 * PI I 3) 
ImageY3 = (zModulus + pI 3 I zModulus) * Sin(ulSita l 3-2 *PI I 3) 

RealXl = RealYl - A2 I (3 * A3) 
lmageX 1 = Image Y 1 
RealX2 = RealY2 - A2 I (3 * A3) 
ImageX2 = Image Y2 
RealX3 = RealY3- A2 I (3 * A3) 
ImageX3 = Image Y3 

' Debug.Print 11Xl =11 & RealXl & 11 + 11 & ImageXl & 11i 11 

' Debug. Print 11X2 = 11 & Rea1X2 & 11 + 11 & ImageX2 & "i 11 

' Debug. Print 11X3 =11 & RealX3 & 11 + 11 & ImageX3 & "iII 

End If 
End If 
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Solution(l) = RealXI 
Solution(2) = ImageXI 
Solution(3) = RealX2 
Solution( 4) = ImageX2 
Solution(S) = RealX3 
Solution(6) = lmageX3 
'Debug.Print "- THE END--" 
End Sub 
Public Function CubicRoot(Value) 
'Dim value As Double 
If Value < 0 Then 
Value = -Value 
CubicRoot = Value 1\ (1 I 3) 
CubicRoot = -CubicRoot 
Else 
CubicRoot = Value 1\ (I / 3) 
End If 
End Function 
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Appendix B: 
Visual Basic Program Code for Cubic Equation 
Solution 

Private Sub Command! Click() 
Dim a, b, c, d As Double 'These are the coeficients of the cubic equations 
Dim x(3, 2) As Double 'This is the solution to the cubic equation 
Dim InputData(), Data() As Double 
Dim i, j, k, iTnp, Tnp As Integer 
Dim PSD, Time, iDistance As Double 
Dim tmp As Variant 

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\AveragedData.csv" For Input 
As #1 

i = O 
Do While EOF(l) = False 

ReDim Preserve Data(3, i) 
Input #1, Data(l, i), Data(2, i) 

iTnp = i 
i = i + 1 

Loop 
Close #1 

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\outAveragedData.csv" For 
Output As #1 
Fori= 1 To iTnp 

Write #1, Data(l, i), Data(2, i) 
Next i 
Close #1 

Call FitStraightLine(iTnp, Data, m, b) 

'Now we step through the value of deltaPx 
Dim DPx, Dh, Limit As Double 
Dim Phi, Theta, Pi, NewTheta As Double 
Pi = 4 * Atn(l) 
Phi = 30 * Pi I 180 
Theta= 60 *Pi I 180 
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Limit= Abs(Data(l, 1)) 
i = I 

N ewTheta = Theta 

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\output.csv" For Output As #1 
Write #1, "Theta", "Distance", "PSD", "R(x1)", "l(x1)", "R(x2)", "l(x2)", "R(x3)", "I(x3)" 

'For Theta= (60 + 0.5) *Pi 1180 To (60 + 1) *Pi 1180 Step 0.0001 
'For DPx = Limit 1100 To Limit Step Limit 1100 
Fori = 1 To iTnp 

DPx = Data(1, i) 
Dh = Data(2, i) 
'Dh=m * DPx 
dhy = Dh * Sin(Phi) 
dhx = Abs(Dh * Cos(Phi)) 
AlphA = dhx - DPx 
'Tan(Theta + 2 *beta) 
a=DPx 
b = AlphA * Tan(Theta) - dhy + 2 * DPx * Tan(Theta) 
c = -2 * dhy * Tan(Theta) - DPx - 2 * AlphA 
d = dhy- AlphA * Tan(Theta) 

Call Vieta(a, b, c, d, x) 
Write #1, Theta, DPx, Dh, Atn(x(1, 1)) * 180 I Pi, x(1, 2), Atn(x(2, 1)) * 180 I Pi, 

x(2, 2), Atn(x(3, 1)) * 180 I Pi, x(3, 2) 

Next i 
'Next DPx 

'Next Theta 

Close #1 

End Sub 

Public Sub Vieta(AA, BB, CC, DD, x) 

Dim b, c, d, e, f As Double 
Dim AAA, BBB, CCC As Double 
Dim u1(2), u2(2), u1Norm, u2Norm, ul Theta, u2Theta As Double 
Dim z1(2), z2(2), z3(2), z4(2), z5(2), z6(2) As Double 
Dim zlNorm, z2Norm, z3Norm, z4Norm, z5Norm, z6Norm, zlTheta, z2Theta, z3Theta, 
z4Theta, z5Theta, z6Theta As Double 
Dim y1(2), y2(2), y3(2), y4(2), y5(2), y6(2) As Double 
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Dim ylNorm, y2Norm, y3Norm, y4Norm, y5Norm, y6Norm, yl Theta, y2Theta, y3Theta, 
y4Theta, y5Theta, y6Theta As Double 
Dim xtmp(6, 2) As Variant 
'Dim xtmp(3, 2) As Double 
Dim Threshold As Double 
Threshold = 0.00000000000001 

b = BBI AA 
c =CCI AA 
d=DDI AA 

e = c - (b " 2) I 3 
f = (2 * b" 3) I 27- (c *b) I 3 + d 

'At this point we have a quadratic of the form u"2 + fi' u- e"3127 = 0 
'where u = z"3 
'Solve this quadratic 

AAA = l 
BBB = f 
CCC = -e" 3 I 27 

If BBB " 2 - 4 * AAA * CCC < 0 Then 
'If this is the case then we have an imaginary solution 
'Open "C:\Documents and Settings\Luc\My 

Documents\DATA\Mun\Programs\Vieta\temp.txt" For Output As #I 
u1(1) = -BBB I (2 * AAA) 'Real part 
ul(2) = Sqr(Abs(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Imaginary part, 

Positive root 
u2(1) = -BBB I (2 * AAA) 'Real part 
u2(2) = -Sqr(Abs(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Imaginary part, 

Negative root 
' Print #1, "u1(1) = " & u1(1) 
' Print #1, "u1(2) = " & u1(2) 
' Print #1 , "u2(1) = " & u2(1) 
' Print #1 , "u2(2) = " & u2(2) 
' Close #1 

'At this point we have solve for z in z"3 = u 
'Since there are two values ofu, there are six values ofz 
'four of which are complex 
'The best thing to do is to convert u 1 and u2 in to polar form 
ulNorm = Norm(ul(l), u1(2)) 
ulTheta = Angle(u1(2), ul(l)) 
u2Norm = Norrn(u2(1), u2(2)) 
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----- - - ------- ---- --------- --

u2Theta = Angle(u2(2), u2(1)) 

z1(1) = CubeRoot(u1Norm) * Cos(u1Theta I 3) 
z1{2) = CubeRoot(u1Norm) * Sin(u1Theta I 3) 
z2(1) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u1Norm) * Cos(Angle(Sqr(3) I 2, -1 I 2) + 

u1 Theta I 3) 
z2(2) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u1Norm) * Sin(Angle(Sqr(3) I 2, -1 I 2) + 

u1 Theta I 3) 
z3(1) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u1Norm) * Cos(Angle(-Sqr(3) I 2, -1 I 2) 

+ u1 Theta I 3) 
z3(2) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u1Norm) * Sin(Angle(-Sqr(3) I 2, -1 I 2) 

+ ul Theta I 3) 

z4(1) = CubeRoot(u2Norm) * Cos(u2Theta I 3) 
z4(2) = CubeRoot(u2Norm) * Sin(u2Theta I 3) 
z5(1) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u2Norm) * Cos(Angle(Sqr(3) I 2, -1 I 2) + 

u2Thetal 3) 
z5(2) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u2Norm) * Sin(Angle(Sqr(3) I 2, -1 I 2) + 

u2Theta I 3) 
z6(1) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u2Norm) * Cos(Angle(-Sqr(3) I 2, -1 I 2) 

+ u2Theta I 3) 
z6(2) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u2Norm) * Sin(Angle(-Sqr(3) I 2, -1 I 2) 

+ u2Theta I 3) 

Else 
u1(1) = (-BBB + Sqr(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Real part, Positive 

root 
u1 (2) = 0 'Imaginary part 
u2(1) = (-BBB- Sqr(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Real part, Negative 

root 
u2(2) = 0 'Imaginary part 
'At this point we have solve for z in z"3 = u 
'Since there are two values of u, there are six values of z 
'four of which are complex 

z1(1) = CubeRoot(u1(1)) 
z1(2) = 0 
z2(1) = -1 I 2 * CubeRoot(u1(1)) 
z2(2) = 1 I 2 * 3 " (1 I 2) * CubeRoot(u1(1)) 
z3(1) = -1 I 2 * CubeRoot(u1(1)) 
z3(2) = -1 I 2 * 3 " (1 I 2) * CubeRoot(u1(1)) 

z4(1) = CubeRoot(u2(1)) 
z4(2) = 0 
z5(1) = -1 I 2 * CubeRoot(u2(1)) 
z5(2) = 1 I 2 * 3 " (1 I 2) * CubeRoot(u2(1)) 
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z6(1) = -1 I 2 * CubeRoot(u2(1)) 
z6(2) = -1 I 2 * 3 " (1 I 2) * CubeRoot(u2(1)) 

End If 

'At this point we have 6 different solutions for z. 
'We now need to solve for y = z -el(3z) 
'First rewrite every complex z number in polar form 
zlNorm = Sqr(zl(l)" 2 + zl(2)" 2) 
z2Norm = Sqr(z2{1) " 2 + z2(2) " 2) 
z3Norm = Sqr(z3(1) "2 + z3(2) "2) 
z4Norm = Sqr(z4(1) " 2 + z4(2) "2) 
z5Norm = Sqr(z5(1) " 2 + z5(2) " 2) 
z6Norm = Sqr(z6(1) " 2 + z6(2) " 2) 
zl Theta = Angle(z1(2), zl(l)) 
z2Theta = Angle(z2(2), z2(1)) 
z3Theta = Angle(z3(2), z3(1 )) 
z4Theta = Angle(z4(2), z4(1)) 
z5Theta = Angle(z5(2), z5(1 )) 
z6Theta = Angle(z6(2), z6(1 )) 

yl{l) = (zlNorm- e I (3 * zlNorm)) * Cos{zlTheta) 
y1(2) = {zlNorm + e I (3 * zlNorm)) * Sin(zlTheta) 
y2(1) = (z2Norm- e I (3 * z2Norm)) * Cos(z2Theta) 
y2(2) = (z2Norm + e I (3 * z2Norm)) * Sin(z2Theta) 
y3(1) = (z3Norm- e I (3 * z3Norm)) * Cos(z3Theta) 
y3(2) = (z3Norm + e I (3 * z3Norm)) * Sin(z3Theta) 
y4(1) = (z4Norm- e I (3 * z4Norm)) * Cos(z4Theta) 
y4(2) = (z4Norm + e I (3 * z4Norm)) * Sin(z4Theta) 
y5(1) = (z5Norm- e I (3 * z5Norm)) * Cos(z5Theta) 
y5(2) = (z5Norm + e I (3 * z5Norm)) * Sin(z5Theta) 
y6(1) = (z6Norm- e I (3 * z6Norm)) * Cos(z6Theta) 
y6(2) = (z6Norm + e I (3 * z6Norm)) * Sin(z6Theta) 

Call CheckforZeros(yl(l ), Threshold) 
Call CheckforZeros(y1(2), Threshold) 
Call CheckforZeros(y2(1 ), Threshold) 
Call CheckforZeros(y2(2), Threshold) 
Call CheckforZeros(y3(1 ), Threshold) 
Call CheckforZeros(y3(2), Threshold) 
Call CheckforZeros(y4(1 ), Threshold) 
Call CheckforZeros(y4(2), Threshold) 
Call CheckforZeros(y5(1 ), Threshold) 
Call CheckforZeros(y5(2), Threshold) 
Call CheckforZeros(y6( 1 ), Threshold) 
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Call CheckforZeros(y6(2), Threshold) 

'Now we finally get the roots of out cubic equations by solving for 
'x = y- bl3 
'In principal only three of these roots should be unique. 

xtrnp(1, 1) = y1(1)- b 13 
Ify1(2) <> 0 Then 

xtmp(1, 2) = y1(2) '- b 13 
Else 

xtmp(l, 2) = 0 
End If 

xtmp(2, 1) = y2(1)- b 13 

If y2(2) <> 0 Then 
xtrnp(2, 2) = y2(2) '- b 13 

Else 
xtmp(2, 2) = 0 

End If 

xtmp(3, 1) = y3(1)- b 13 

If y3(2) <> 0 Then 
xtrnp(3, 2) = y3(2) '- b I 3 

Else 
xtmp(3, 2) = 0 

End If 

xtrnp(4, 1) = y4(1)- b 13 

If y4(2) <> 0 Then 
xtmp(4, 2) = y4(2) '- b 13 

Else 
xtrnp( 4, 2) = 0 

End If 

xtrnp(5, 1) = y5(1)- b 13 

If y5(2) <> 0 Then 
xtmp(5, 2) = y5(2) '- b I 3 

Else 
xtmp(5, 2) = 0 

End If 
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xtmp(6, 1) = y6(1)- b I 3 

If y6(2) <> 0 Then 
xtmp(6, 2) = y6(2) '- b I 3 

Else 
xtmp(6, 2) = 0 

End If 

k = 1 
Fori = 1 To 6 

lfxtmp(i, 1) <>""And xtmp(i, 2) <>""Then 
x(k, 1) = xtmp(i, 1) 
x(k, 2) = xtmp(i, 2) 
For j = 1 To 6 

lfi <> j Then 
Ifx(k, 1) Like xtmpG, 1) And x(k, 2) Like xtmpG, 2) Then 

xtmpG, 1) = "" 
xtmpG, 2) = "" 

End If 
End If 

Nextj 
k = k+1 
Ifk = 4 Then Exit For 

End If 
Next i 

End Sub 
Public Function CubeRoot(a) As Double 
Dim tmp 
If a>= 0 Then 

CubeRoot = a " (1 I 3) 
Else 

CubeRoot = -Abs(a) " (1 I 3) 
End If 
End Function 
Public Function Norm(a, b) As Double 

Norm = Sqr(a" 2 + b " 2) 
End Function 
Public Function Angle(deltay, deltax) As Double 
Dim Pi As Double 
Pi = 4 * Atn(l) 

If deltax > 0 And deltay = 0 Then 
Angle = 0 

Elself deltax < 0 And deltay = 0 Then 
Angle = Pi 
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Elseif del tax >= 0 And deltay >= 0 Then 
Angle = Atn(deltay I deltax) 

Elseif del tax< 0 And deltay >= 0 Then 
Angle = Atn(Abs(deltax) I deltay) +Pi I 2 

Elseif deltax < 0 And deltay < 0 Then 
Angle = Atn(Abs(deltay) I Abs(deltax)) + Pi 

Elseif del tax >= 0 And deltay < 0 Then 
Angle = Atn(Abs(deltax) I Abs(deltay)) + 3 *Pi I 2 

End If 

End Function 
Public Sub CheckforZeros(a, Threshold) 

If Abs(a) <Threshold Then a= 0 
End Sub 

Public Sub FitStraightLine(iTnp, Data, m, b) 
'This routine assumes that he data has two columns x -> Data(l ,i) y -> Data(2,i) 
'and the tnp is the total number of data points in the array Data() 
'This routine fines the best fit line to the data. 
'The line is y = m*x + b 
Dim S, Sx, Sy, Sxx, Sxy As Double 
Dim Delta As Double 
'Dim m, b As Double 

S = O 
Sx = O 
Sy = O 
Sxx = 0 
Sxy = O 

Fori = 1 To iTnp 
S = S+l 
Sx = Sx + Data(l, i) 
Sy = Sy + Data(2, i) 
Sxx = Sxx + Data(!, i) 1\ 2 
Sxy = Sxy + Data(2, i) * Data( 1, i) 

Next i 
Delta = S * Sxx - Sx 1\ 2 
b = (Sxx * Sy- Sx * Sxy) I Delta 
m = (S * Sxy- Sx * Sy) I Delta 

End Sub 
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Appendix C: 
Visual Basic Program Code for Polynomial Fit 

Option Explicit 
Dim fit As New RegressionObject 

Private Sub Command 1_ Click() 

Dim i, NPT, j, k, q, NewQ, ImageNPT, AllCoeffNPT, PolyPoint, Interface() As Integer 
Dim dataX(), dataY(), ImageDataX(), ImageDataY() As Double 
Dim Time(), Gauge(), Coefill(), Coeffl (), Coeff2(), Coeff3(), Coeff4() As Double 
Dim Origin, DeltaPy, PI As Double 
Dim X#, Xmin#, Xmax#, Ymin#, Ymax#, Y# 
Dim Blue, Green As Integer 

PI = Atn(1) * 4 
fit.Degree = 4 'we want a 4th order polynomial 
Origin= Val(OriginText.Text) 

Open "C:\Documents and Settings\Josh\Desktop\timereading.dat" For Input As #1 
Open "C:\Documents and Settings\Josh\Desktop\ALLCoeffs-" & OriginText.Text & 
".dat" For Output As #2 

'Input timereading.dat as Polynomial fit data 
i = O 
Do While (EOF(1) = False) 
ReDim Preserve dataX(i) 
ReDim Preserve dataY(i) 

Input #1, dataX(i), dataY(i) 'time and position (mm) 
dataY(i) = (dataY(i)- Origin)* 1000 'microns 
i = i + 1 
Loop 

NPT = i- 1 

'*********************************************************************** 
******************************** 
'*********************************************************************** 
******************************** 
Dim inCounter 
Dim inMaxX As Integer 
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Dim inMaxY As Integer 
Dim inLmarg As Integer 
Dim inRmarg As Integer 
Dim inBmarg As Integer 
Dim inTmarg As Integer 
Dim inXPos As Integer 
Dim in YPos As Integer 
Dim YLabel, XLabel As Double 
Dim XTicks, YTicks As Double 
'Dim Xmin, Xmax, Ymin, Ymax As Double 
Dim ScaleX, SealeY As Double 
Dim XOrigin, YOrigin As Double 

Xmin = dataX(O) 
Xmax = dataX(NPT) 
Ymin = dataY(O) 
Y max = data Y(NPT) 

MainForm.Picl .ForeColor = vbBlack 
MainForm.Picl.AutoRedraw = True 
MainForm.Picl.ScaleMode = 3 
MainF orm.Pic 1. Cis 

'Determine the maximum size of chart 
inMaxX = MainForm.Picl.ScaleWidth 
inMaxY = MainForm.Picl .ScaleHeight 

'Determine the chart margins, including 
'width for the axis labels 
inLmarg = MainForm.Picl.TextWidth(" l OOOO") 
inBmarg = 1.35 * MainForm.Picl.TextHeight("5000") 
inRmarg = inMaxX- 0.5 * inLmarg 
inTmarg = 0.25 * inLmarg 
inBmarg = inMaxY- inBmarg 

'Determine scale factors for each axis 
ScaleX = (inRmarg- inLmarg) I (Xmax- Xmin) 
SealeY = (inBmarg- inTmarg) I (Ymax - Ymin) 

'Determine the origin of the graph 
IfXmin <= 0 Then 

XOrigin = inLmarg + Abs(Xmin) * ScaleX 
Else 

XOrigin = inLmarg - Xmin * ScaleX 
End If 
YOrigin = inBmarg + Ymin *SealeY 
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'Draw a blue lines to show the origin 
MainForrn.Pic1.ForeColor = vbBlue 
MainForrn.Pic1.Line (inLmarg, YOrigin)-(inRmarg, YOrigin) 'This draws the real 
graphical abscissa 
MainForrn.Pic1.Line (XOrigin, inTmarg)-(XOrigin, inBmarg) 'This draws the real 
graphical ordinate 

MainForrn.Pic1.ForeColor = vbBlack 
'Draw Axes 
MainForrn.Pic1.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the left 
ordinate 
MainForrn.Pic1.Line -(inRmarg, inBmarg) 'This draws the bottom abscissa 
MainForrn.Pic1 .Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top 
abscissa 
MainForrn.Pic1.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the right 
ordinate 

'Draw labels and tic marks for vertical axis 
YTicks = ((Ymax - Ymin) I 5) 
YLabel = Forrnat(Ymin, "#0.0") 

For inCounter = 1 To 6 

MainForrn.Pic1 .CurrentX = 5 
inYPos = inBmarg- ((inCounter- 1) * YTicks *SealeY) 
MainForrn.Pic1 .CurrentY = in YPos 
MainForrn.Picl .Print Str(ForrnatNumber(YLabel, 2, vbUseDefault, vbUseDefault, 

vbFalse)) 
YLabel = YLabel + YTicks 
MainForrn.Picl.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length of the 

tick mark in pixels 

Next inCounter 

'Draw labels and tic marks for horizontal axis 
XTicks = ((Xmax - Xmin) I 5) 
XLabel = Forrnat(Xmin, "#0.0") 

For inCounter = 1 To 6 

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleX) 
MainForrn.Picl.CurrentX = inXPos- MainForrn.Picl.TextWidth("OO") I 2 
MainForrn.Picl .CurrentY = inBmarg + 5 
MainForrn.Pic 1.Print Str(ForrnatNumber(XLabel, 1, vbUseDefault, vbUseDefault, 

vbFalse)) 
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XLabel = XLabel + XTicks 
MainForm.Picl.Line (inXPos, inBmarg)-(inXPos, inBmarg- 5) 

Next inCounter 

For i = 0 To NPT 

inXPos = X Origin + ( dataX(i) * Seal eX) 
inYPos = YOrigin- (dataY(i) *SealeY) 

Pici .Circle (inXPos, inYPos), I, RGB(O, 0, 0) 

Next i 

'*********************************************************************** 
********************************* 
'*********************************************************************** 
********************************* 

PolyPoint = Clnt(PolyPointText.Text) 

Blue = 0 
Green = 0 

Fori = I To NPT - PolyPoint 

For j = 0 To PolyPoint 
fit.XY Add dataX(i + j), data Y(i + j) 'add data to the fit 

Nextj 

Textl.Text = 11Y = 11 & fit.Coeff(O) & 11 + 11 & fit.Coeff(I) & "x + 11 & fit.Coeff(2) & 
11x"2 +" & fit.Coeff(3) & "x"3 + 11 & fit.Coeff(4) & 11X"4" 

Text3.Text = fit.Coeff(O) 
Text4.Text = fit.Coeff(I) 
Text5.Text = fit.Coeff(2) 
Text6.Text = fit.Coeff(3) 
Text7.Text = fit.Coeff(4) 

Print #2, dataX(i) & "," & dataY(i) & 11
,

11 & fit.Coeff(O) & 11
,

11 & fit.Coeff(I) & ",11 & 
fit.Coeff(2) & ",11 & fit.Coeff(3) & 11

,
11 & fit.Coeff(4) 

'Plot!!!!!!!! 
Xmin = dataX(i) 
Xmax = dataX(i + j- 1) 
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Picl.CurrentX = XOrigin + (Xmin * ScaleX) 
Picl.CurrentY = YOrigin- (fit.RegVal(Xmin) * SealeY) 

For X = Xmin To Xmax 
inXPos = XOrigin + (X * ScaleX) 
inYPos = YOrigin- (fit.RegVal(X) *SealeY) 

If Blue > 51 Then Blue = 51 
If Green > 51 Then Green = 51 

Picl.Line -(inXPos, inYPos), RGB(255, 255- Green* 5, Blue* 5) 
Next X 

'clear for next run 
j=O 
fit.Init 
Blue = Blue + 1 
Green = Green + 1 

Next i 

Close #1 
Close #2 

'Reload All Coeff for calculation 
Open "C:\Docurnents and Settings\Josh\Desktop\ALLCoeffs-" & OriginText.Text & 
".dat" For Input As #3 
Open "C:\Documents and Settings\Josh\Desktop\output.csv" For Input As #4 
Open "C:\Documents and Settings\Josh\Desktop\DeltaPy-" & OriginText.Text & ".dat" 
For Output As #5 

Print #5, OriginText.Text, "Time", "Image", "Gauge", "Fit", "DeltaPy" 

'Input All coeff for Poly fit 
q = O 
Do While (EOF(3) = False) 
ReDim Preserve Time( q) 
ReDim Preserve Gauge( q) 
ReDim Preserve Coef£0( q) 
ReDim Preserve Coeffl ( q) 
ReDim Preserve Coeff2( q) 
ReDim Preserve Coeff3( q) 
ReDim Preserve Coeff4( q) 
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Input #3, Time(q), Gauge(q), CoeffO(q), Coeffl(q), Coeff2(q), Coeff3(q), Coeff4(q) 
q = q+l 
Loop 

AllCoeffNPT = q- 1 

'Input Output.csv as image data 
k = O 
Do While (EOF(4) =False) 
ReDim Preserve ImageDataX(k) 'time 
ReDim Preserve ImageDataY(k) 'distance 
ReDim Preserve Interface(k) 

Input #4, Interface(k), ImageDataX(k), lmageData Y(k) ' time and position (micron) 
k=k+l 
Loop 

ImageNPT = k - 1 

'Do the math when Imagetime falls in the readingtime scale 
Fork= 0 To ImageNPT 

For q = NewQ To AllCoeffNPT- 1 

If ImageDataX(k) <= Time(NewQ) Then 
NewQ=q 
Exit For 
Elself lmageDataX(k) <= Time( q + 1) Then 
NewQ = q + 1 
Exit For 
End If 

Nextq 

X = ImageDataX(k) 
Y = CoefiD(NewQ) + Coeffl(NewQ) *X+ Coeff2(NewQ) *X* X+ Coeff3(NewQ) * 
X * X * X + Coeff4(N ewQ) * X * X * X * X 

DeltaPy = Tan(60 *PI I 180) * (lmageDataY(k)- Y) 

Print #5, ImageDataX(k), ImageDataY(k), Gauge(NewQ), Y, DeltaPy 

Nextk 
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Close #3 
Close #4 
Close #5 
End Sub 

Option Explicit 

Private Const MaxO& = 25 
Private GlobalO& '"Ordnung" = degree of the polynom expected 
Private Finished As Boolean 

Private SumX#(O To 2 * MaxO) 
Private Sum YX#(O To MaxO) 
Private M#(O To MaxO, 0 To MaxO + 1) 
Private C#(O To MaxO) 'coefficients in: Y = C(O)*X"O + C(l)*X" l + C(2)*X"2 + 0 00 

Private Sub GaussSolve(O&) 
'gauss algorithm implementation, 
'following RoSedgewick's "Algorithms inC", Addison-Wesley, with minor modifications 
Dim i&, j&, k&, iMax&, T#, 01# 
01 = 0 + 1 
'first triangulize the matrix 
Fori = 0 To 0 

iMax = i: T = Abs(M(iMax, i)) 
For j = i + 1 To 0 'find the line with the largest absvalue in this row 
IfT < Abs(M(j, i)) Then iMax = j: T = Abs(M(iMax, i)) 

Nextj 
If i < iMax Then 'exchange the two lines 
Fork = iTo 01 
T = M(i, k) 

M(i, k) = M(iMax, k) 
M(iMax, k) = T 

Nextk 
End If 
For j = i + 1 To 0 'scale all following lines to have a leading zero 
T = M(j, i) I M(i, i) 
M(j, i) = 0# 
Fork = i + 1 To 01 
M(j, k) = M(j, k) - M(i, k) * T 

Nextk 
Nextj 

Next i 
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'then substitute the coefficients 
For j = 0 To 0 Step -1 
T = M(j, 01) 
For k = j + 1 To 0 
T = T- M(j, k) * C(k) 

Nextk 
C(j) = T I M(j, j) 

Nextj 
Finished = True 

End Sub 

Private Sub BuildMatrix(O&) 
Dim i&, k&, 01& 
01 = 0 + 1 
Fori = 0 To 0 
Fork = OTo 0 

M(i, k) = SumX(i + k) 
Nextk 
M(i, 01) = SumYX(i) 

Next i 
End Sub 

Private Sub FinalizeMatrix(O&) 
Dim i&, 01& 
01 = 0 + 1 
Fori= 0 To 0 

M(i, 01} = SumYX(i) 
Next i 

End Sub 

Private Sub Solve() 
DimO& 
0 = GlobalO 
IfXYCount <= 0 Then 0 = XYCount- 1 
IfO < 0 Then Exit Sub 
BuildMatrix 0 
On Error Resume Next 

GaussSolve (0) 
While (Err.Number <> 0) And (1 < 0) 

Err.Clear 
C(O) = 0# 
0 = 0-1 
FinalizeMatrix (0) 

Wend 
On Error GoTo 0 

End Sub 
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Private Sub Class_ Initialize() 
Init 
GlobalO = 2 

End Sub 

Public Sub Init() 
Dimi& 
Finished = False 
Fori = 0 To MaxO 

SumX(i) = 0# 
SumX(i + MaxO) = 0# 
Sum YX(i) = 0# 
C(i) = 0# 

Next i 
End Sub 

Public Property Get Coeff#(Exponent&) 
DimEx&,O& 
IfNot Finished Then Solve 
Ex = Abs(Exponent) 
0 = GlobalO 
IfXYCount <= 0 Then 0 = XYCount- 1 
IfO <Ex Then Coeff = 0# Else Coeff = C(Ex) 

End Property 

Public Property Get Degree&() 
Degree= GlobalO 

End Property 
Public Property Let Degree(NewVal&) 

IfNewVal < 0 Or MaxO < NewVal Then 
Err.Raise 6000, "RegressionObject", NewVal & "is an invalid property value! Use 

0<= Degree <= " & MaxO 
Exit Property 

End If 
Init 
GlobalO = NewVal 

End Property 

Public Property Get XYCount&() 
XYCount = CLng(SumX(O)) 

End Property 

Public Function XY Add(ByVal New X#, ByVal NewY#) 
Dim i&, j&, TX#, Max20& 

Finished = False 
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Max20 = 2 * GlobalO 
TX = 1# 
SurnX(O) = SumX(O) + 1 
SumYX(O) = SumYX(O) + NewY 
Fori = 1 To GlobalO 

TX = TX * NewX 
SurnX(i) = SumX(i) + TX 
SumYX(i) = SumYX(i) + NewY * TX 

Next i 
Fori = GlobalO + 1 To Max20 

TX = TX * NewX 
SurnX(i) = SurnX(i) + TX 

Next i 
End Function 

Public Function RegVal#(X#) 
Dimi&, 0& 
lfNot Finished Then Solve 
RegVal = 0# 
0 = GlobalO 
IfXYCount <= 0 Then 0 = XYCount- 1 
Fori = 0 To 0 

RegVal = RegVal + C(i) *X" i 
Next i 

End Function 
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