

Characterizing the Initial State of Cantilever Sensors

STJOHN'S

by

©MengXu

A thesis submitted to the
Department of Physics and Physical Oceanography

in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Physics and Physical Oceanography
Memorial University of Newfoundland

October 2008

NEWFOUNDLAND

Abstract

Cantilevers are ultra-sensitive sensors capable of detecting a variety of physical and

chemical phenomena. Due to the construction of the sensor, the cantilevers are often pre­

bent prior to using them as actual sensors. In order to properly interpret further cantilever

deflections due to sensing events, it is important to understand the initial states of the

cantilever. Also it is imperative to establish the initial orientation of the cantilever chip

with respect to the horizontal. In this work, a new model to measure the initial orientation

of the chip has been developed using the standard optical beam deflection system. Using

reference chips inclined at 2°, 3.5°, and 5°, the proposed method was shown to be

successful. A new method was also developed to measure the initial curvature based

entirely on the vertical motion of the incident laser. Results compared to optical images

showed our method to be successful. Lastly, based on our ability to measure the angle of

inclination of the chip, we have successfully modified the "Rotating Method" developed

previously in our group.

Acknowledgement

I would like to thank the following people who support me and my project during the two

years in MUN:

• My supervisor, Prof. Luc Beaulieu for his endless time, support and patience.

• My colleague, Mike Coates for sharing his experience working in our lab.

• Our mechanic Gordon Whelan for his excellent works.

• Prof. Mike Morrow for keeping my project focused throughout the entirety study.

11

Table of Contents

Abstract

Acknowledgement

List of Symbols

List of Figures

Chapter One: Introduction

ii

v

viii

1

1.1 Micro-cantilevers 2

1.2 Cantilever Sensors 5

1.3 Motivation 7

1.4 Scope of the Thesis 7

Chapter Two: Sample Preparation and Experimental Setup 9

2.1 Cantilever Sample Preparation 1 0

2.2 Experiment Setup 11

2.2.1 Optical Beam Deflection System 12

2.2.2 The Laser and the Laser Arm ... 14

2.2.3 Position Sensitive Photo Detector 15

2.2.4 The DC Motor and the Translation Stage 17

2.3 Image Collecting System 19

Chapter Three: Model, Results, and Analysis 21

3.1 Rotation Method 22

3.2 Angle ofinclination of the Chip 25

3.3 f3 Calibration 27

lll

3.4 Cantilever Curvature 29

3.5 Results and Analysis 32

Chapter Four: Conclusion and Future Work 34

4.1 Conclusion 34

4.2 Future Work 35

Reference 36

Appendix A: Visual Basic Program Code for Data Acquiring Process 38

Appendix B: Visual Basic Program Code for Cubic Equation Solution 89

Appendix C: Visual Basic Program Code for Polynomial Fit 97

IV

List of Symbols

(By order of Appearance)

• AFM: Atomic Force Microscopy.

• Jlm: I Micron; 10-6 meters.

• SOl: Silicon-on-insulator.

• BOX: buried oxide.

• BHF: Buffered hydrofluoric.

• nm: I Nanometer; 10-9 meters.

• PSD: Position Sensitive Detector.

• SCCM: Standard Cubic Centimeters per Minute.

• OBDS: Optical Beam Deflection System.

• DAQ: Data Acquisition Board.

• 8: Angle of incidence of the incoming laser beam with respect to the XY plane.

• <p: Angle of the inclination of the PSD surface with respect to the XY plane.

• D: Distance from the laser spot on the chip/cantilever to the conjunction point of the

chip and the cantilever.

• L0 : Distance from the laser spot on the chip/cantilever to the PSD surface.

• Lo ': Distance from the laser spot on the chip/cantilever to the PSD surface of different

position of PSD surface.

• !:J.h: Voltage signal change ofPSD caused by different cantilever curvatures.

v

• !::.h ':Voltage signal change ofPSD caused by different cantilever curvatures with a

different L0 '.

• Y 1: Output current of a photo-electronic current caused by a .

• Y 2: The other output current of a photo-electronic current.

• L: Length of the effective PSD surface.

• Y: Position of the incident light on the PSD surface.

• RPM: Rotation per Minute.

• CCD: Computer Controlled Display camera.

• VB: Visual Basic Program.

• fJ1: Initial incident laser angle of the rotation method.

• fJ2: Rotated incident laser angle of the rotation method.

• h 1: Initial PSD position of the rotation method.

• h2: Rotated PSD position of the rotation method.

• p: Angle of the inclination of the chip with respect to the horizontal.

• P 1: Initial position of the laser spot on the chip/cantilever.

• P2: Moved position of the laser spot on the chip/cantilever.

• M x: Horizontal displacement of the laser spot on the chip/cantilever.

• !::.Py: Vertical displacement of the laser spot on the chip/cantilever.

• P 1 ': Initial position of the laser spot on the PSD surface.

• P2 ' : Moved position of the laser spot on the PSD surface.

• n : Direction vector of the reflected laser beam.

• t 1: Scalar of the initial reflected laser beam.

• t2: Scalar of the moved reflected laser beam.

Vl

• M : Position change of the laser spot on the chip/cantilever in XY plane.

• M': Position change of the laser spot on the PSD surface in XY plane .

• ~t: t2-t(.

• nx: X component of the direction vector of the reflected laser beam.

• n1 : Y component of the direction vector of the reflected laser beam.

• ~:X component of the position change of the laser spot on the chip/cantilever.

• ~: Y component of the position change of the laser spot on the chip/cantilever.

• M'x : X component of the position change of the laser spot on the PSD surface.

• M'Y: y component of the position change ofthe laser spot on the PSD surface.

• Nx: X component of the surface normal vector.

• N1 : Y component of the surface normal vector.

• ~hx: X component of the PSD voltage signal change.

• ~h1: Y component of the PSD voltage signal change.

• Ax: Parameters of the cubic equation for tanfJ.

• P(t) : Position of laser spot read by digital indicator.

• t: Time scale of the movement of the laser spot.

• e: Angle of the surface normal vector with respect to horizontal.

• a: Slope of the cantilever curvature.

Vll

List of Figures

Chapter One

1.1 Rectangular and V -shaped micro-cantilevers 2

1.2 Process of silicon cantilever fabrication 3

1.3 MikroMasch CSC12ffipless/Non-coated micro-probe4

1.4 Cantilever sensor detection of target molecules 5

1.5 Side view of different cantilever curvatures 6

Chapter Two

2.1 Overall view of experiment setups 12

2.2 Schematic graph of OBDS 13

2.3 Affect from different L0 • • •• • • • • ••• • •• •• •• •• • • •••• •• ••••••••••••••••• •••• • ••• •• • • ••••• • •••• • • •••• •••• .• •• •••• •• •••••••• 13

2.4 Laser focuser holder assembly 15

2.5 Graph ofPSD l6

2.6 Schematic graph of DC motor mount and laser mount.. .. 18

2. 7 Image Analysis by the Visual Basic program 19

Vlll

Chapter Three

3.1 Schematic diagram of Optical Beam Deflection System 22

3.2 Sketches oflaser focuser position and cantilever surface 23

3.3 Schematic graph ofthe f3 correction 24

3 .4 Schematic graph of the inclined chip and cantilever 25

3.5 Aluminum block with fixed angle of inclination p 28

3.6 Plot of L1h versus lJPx·· 28

3.7 Cantilever curvature with the angle ofinclination,B 30

3.8 Polynomial fit program panel. 31

3.9 Test results of different cantilever curvatures 32

Chapter Four

4.1 Deposition system for Au thermal deposition 35

IX

-- ----- -----------

Chapter One: Introduction

In section 1.1, we describe micro-cantilevers, how they are manufactured, and how they

are used in our experiments. In section 1.2, we introduce cantilever sensors, how they

work and the problems associated with the technology. The motivation and the scope of

this study are presented in sections 1.3 and 1.4 respectively.

1.1 Micro-cantilevers

Micro-cantilevers were first introduced by researchers at IBM Research Laboratory and

Stanford University in 1985 [1] as detection probes for the Atomic Force Microscope

(AFM), for imaging the surface morphology of both conducting and non-conducting

samples. There are two basic shapes of cantilevers as shown in figure 1.1: rectangular

cantilevers, which are of the order of 200-400 ~m long, 30-50 ~m wide and 1 ~m thick,

and V-shaped cantilevers, which are ofthe order of90-200 ~m long, 40-60 ~m wide, and

1 ~m thick.

Fig. 1.1 Rectangular and V -shaped micro-cantilevers

Most micro-cantilevers are made of silicon or silicon nitride and are manufactured by

chemical etching and conventional photolithographic techniques. The micromachining

process starts with a silicon on insulator (SOl) wafer, which has a buried oxide (BOX)

layer approximately 1 J..li11 below the top surface of the wafer (figure 1.2a). One method

2

of making cantilevers is to pattern the cantilever shape on the top surface of the SOl

wafer using standard photolithography techniques (figure 1.2b). By etching, the exposed

Si area is removed to the oxide layer which acts as a natural etch-stop. Following the etch,

a new layer of silicon oxide is then deposited on the already formed cantilevers up to a

point just beyond the cantilevers as shown in figure 1.2c. The area not covered by silicon

oxide is used as an etch window which allows the silicon below the BOX to be removed

by etching (figure 1.2d). Removing the silicon oxide followed by intensive rinsing

releases the cantilevers as shown in figure 1.2c (2].

(lll

(bl

fc)

(dJ

(cl

~ ; I

L.:-=.__ ----- _ I

r-:J = =

c=------,

Siliwn
c.liollidc

ltcl1 Window

Bottom of
channel

.. 1'[£\'D Silicon
dioxiJ.,

Fig. 1.2 Process of silicon cantilever fabrication

3

In the cantilever fabrication process, the surface roughness of the cantilever is highly

dependent on the solution concentration. Thus, the etched surface becomes rough after

etching with highly diluted formic acid [2]. As will become apparent in later chapters, the

roughness of the cantilever surface is important because it affects the reflection of the

laser spot from the cantilever/chip surface. All of the cantilevers used in this study were

purchased from MikroMasch Company {Tallinn, Estonia). In figure 1.3, the top and side

views of the cantilever are shown schematically. The shaded rectangular area

(3.4mmxl.6mm) is called the chip of the micro-probe, which has six rectangular

cantilevers suspended from it. All the cantilevers have the same widths but different

lengths. In this work, only the longest cantilever E (width 35 IJ.m, length 350 IJ.m, and

thickness l!J.m) was used since this is the most sensitive cantilever.

-..- - - - - -- - -- - "::· - - -
/ \ ,.,. ·""' . -..,
I , / - I w ,

/ ! \
/I \

/I \
/ I A B c \

~ " / I D E F I '>' 'd" ' I - I""" l
M ' \ " I

' \ I

'~ I

' /

' / /
...... ---- ·- - - - - - ~-- -

0.4 rm, 1.6mm

Fig. 1.3 MikroMasch CSC12/Tipless/Non-coated micro-probe

4

1.2 Cantilever Sensors

Besides being used as AFM imaging probes, micro-cantilevers have been used as ultra-

sensitive sensors for a variety of physical and chemical phenomena [3]. Due to their

small size, micro-cantilevers have a short response time and ultra-small detection range.

In recent studies, these sensors have been used as chemical sensors [4-6], bio-sensors [7-

12] and surface stress sensors [13-15]. These ultra-sensitive cantilever sensors can detect

quantities in the nanogram (1 o-9
), pictolitre (1 o-12

), femtojoule (1 o-15
) and attomolar (10-18

)

range, with a short response time on the order of milliseconds [3].

'o0 'o • • o• o, I)

Fig. 1.4: Cantilever sensor detect only the target molecules (circular) though
reactions with the functionalized layer.

Cantilever sensors are generally composed of a silicon cantilever on which has been

deposited a thin gold film. On the Au film, receptor molecules are attached, which react

specifically with the target molecules to be detected. The general process of how a

cantilever sensor reacts to target molecules is shown in Fig. 1.4. The Au coated cantilever

is functionalized with receptor molecules, which only react with specific molecules in the

surrounding environment. Absorption of the target molecules creates a surface stress on

5

the cantilever causing the latter to deflect. The concentration of target molecules in the

surrounding media can be estimated by the amount of deflection.

Generally, gold is chosen as the connection layer for two reasons. First, it is usually

possible to find receptor molecules that bond strongly to gold. Second, the stable

character of gold prevents the functionalized layer from coming off the cantilever due to

oxidation effects. Unfortunately, there are several problems with using Au. One problem

is that the deposition process sometimes leaves the Au film in a stressed state. The

amount and kind of stress (tensile or compressive) suffered by the cantilever is still not

completely understood. For example, figure 1.5 below shows four optical pictures of

similar cantilevers that were sputter coated with Au all at the same time. It is clear from

figure 1.5 that two of the cantilevers experienced tensile stress while two of the

cantilevers are in compression. Another problem with having Au on one side of the lever

is that the lever becomes highly susceptible to changes in temperature due to the

bimetallic effect.

/
I

Fig. 1.5 Side view of different cantilever curvatures

6

1.3 Motivation

In order to obtain high precision cantilever sensor measurements, it is important to

understand the initial conditions of the cantilever. In a recent paper by Beaulieu et al.

[16] it was shown how to quantify the cantilever deflection based on the signal measured

by an optical beam deflection system. However, in their work the authors assumed that

the initial state of the cantilever was un-deflected and perfectly horizontal. As shown in

figure 1.5 the deposition of Au on micro-cantilevers can leave them in a highly stressed

state. Moreover, attaching the receptor molecules to the Au coated cantilever can further

induce a surface stress resulting in increased cantilever deflections. Once the cantilever

is deflected it is not possible to infer further deflections of the cantilever from the

position sensitive detector signal unless the initial curvature is first obtained. Also it is

imperative to establish the initial orientation of the cantilever chip with respect to the

horizontal in order to obtain the direction of the surface normal of the cantilever as the

lever bends. The surface normal of the cantilever is critical since it dictates the direction

of the reflected beam.

1.4 Scope of this Thesis

In this thesis we will derive a method for determining the initial orientation of the nano­

probe with respect to the horizontal and develop a method for determining the initial

7

curvature of the cantilever. Chapter Two of this thesis will discuss the sample

preparation, the experimental setups, and the software used to process images and collect

data. The experimental techniques developed in this study will be described in Chapter

Three, combined with the data analysis and results. The conclusion and future work will

be given in Chapter Four.

8

Chapter Two:

Sample Preparation and Experimental Setup

In this chapter we discuss the experimental setup used in this work. In section 2.1, the

preparation of the micro-cantilevers is described in detail. In section 2.2, the setup

components are presented. Finally in section 2.3, we discuss the method used to acquire

optical images and the software written to control the hardware and analyze the data.

9

2.1 Cantilever Sample Preparation

When gold is deposited on micro-cantilevers, the resulting film often leaves the

cantilevers in a state of tensile or compressive stress. For example, the cantilevers shown

in Fig. 1.5 were all coated at the same time, yet they all show different degrees of stress.

Therefore, there is a need to find the proper deposition parameters to control the stress in

the gold film.

In our experiments, micro-cantilevers were prepared as follows. First, the cantilevers "D"

and "F" (see Fig. 1.3) were removed to allow the central lever "E" to be viewed from the

side. Then the cantilevers were immersed in a Piranha solution (H2S04:H202=3: 1) for 10

minutes to remove any residue on the surface. The levers were then washed twice with

de-ionized water to completely remove the Piranha solution. The cleaning process was

performed very gently and carefully so as to not break the cantilever. To minimize the

chance of damaging the levers, the micro-probes were held by tweezers when immersed

in and out of the solutions. After rinsing, the levers were dried with nitrogen gas in a

direction along the length of the cantilever.

Thin gold films were deposited on the cleaned cantilever samples by sputtering

deposition at 150 W, with a gas flow rate of 20 SCCM (Standard Cubic Centimeters per

Minute) for 10 mins.

10

2.2 Experiment Setup

The schematic diagram in Fig. 2.1 shows an overview of the complete experimental setup

used in this work. A laser focuser and a position sensitive detector (PSD), the most

essential components of the optical beam deflection system (OBDS), were mounted in a

straight line to analyze the change in cantilever curvature. With a precision current source

(d) used to power the laser diode (e), the laser beam was excited and focused on the

cantilever and then reflected onto the PSD. By rotating the laser incident angle with the

laser holder arm, or moving the laser point position on the cantilever with a 12 V DC

motor (g), the laser position on the PSD changed correspondingly. The movement of the

laser beam, in other words, the movement of the laser focuser holder, was measured with

a digital indicator (j). The indicator was connected to the lab computer with an input

device (k), and controlled by a pulse generator (I) to read position information at regular

intervals. The impinging beam on the PSD surface caused a current to develop in the PSD

which was converted into a voltage signal by an amplifier board (c). The voltage data was

collected by the Data Acquisition (DAQ) Board (b) and gathered by the lab computer (a).

11

- - - -- --- - ---

c e) Laser

Diode

Fig. 2.1 Overall view of experiment setups

2.2.1 Optical Beam Deflection System (OBDS)

This section focuses on the essential parts of the OBDS: the laser focuser, the PSD, and

the cantilever. As shown in figure 2.2, an optical beam is focused at an incident angle 8,

which reflects into a PSD held at an angle rp. The distance from the laser point on the

cantilever to the chip is D. The distance from the laser point on the cantilever to the laser

point on the PSD is L
0

•

12

Laser
Focuser

Cantilever

Fig. 2.2 Schematic graph of OBDS

While the laser spot moves along the length of the cantilever, the laser spot on the PSD

moves correspondingly. In our system, it is crucial to measure the value of L
0
accurately.

Consider a deflected cantilever shown in figure 2.3 with different values of L
0

• For a

given deflection each PSD will give a different signal. It is clear that M is smaller

than M', hence causing L
0
to act as an amplifier factor in the OBDS.

Chip/Cantilever
...

---~ ___ .. ,
... _,

Fig. 2.3 Effect of the value of different L
0

13

2.2.2 The Laser and the Laser Arm

In this study, a precision current source (LDX-3412, ILX Lightwave Corp.) was used as

the current source for the laser diode (FMXL112-00, Claire Lasers). The laser diode was

mounted on a special temperature control holder and controlled by a temperature

controller (LDT-5412, ILX Lightwave Corp.). For this system, a 10 Kn setting on the

temperature controller corresponds to a temperature of 25 °C, while the 40.6 rnA on the

precision current source corresponds to a laser power of 1 m W. The laser beam was

focused on the cantilever using optical focusers (LPF-Ol-635-4/125-S-2.4-15-4.7GR-40-

3S-1-2, OZ Optics).

To control the incident angle of the laser beam, a laser arm was designed by Ye Tian [17].

Figure 2.4 contains a photograph of the laser arm with the laser focuser fixed on the laser

holder (a), the 3D view (b) and the side view (c) of the laser arm, and a 3D side view (d)

and the side view (e) of the laser holder. The rotating arc of the holder has the inner and

outer radius of 39.0 mm and 46.5 mm respectively. There are 26 positions on the arc that

allow the laser focuser to be positioned from 40° to 90°. The laser focuser was secured to

the holder with a small screw on the backside.

14

-- ~ ------

a) Photograph or Laser Focuser Assembly b) 30 View c) Side View

d) 30 View a) Side Views

Fig. 2.4 Laser focuser holder assembly: a) photograph of the laser focuser assembly; b)
3D view of the laser arm; c) side view of the laser arm; d) 3D view of the laser holder;
e) side views of the laser holder.

2.2.3 Position Sensitive Photo Detector

The PSD is made of a photo-sensitive semiconductor material. When light hits the highly

sensitive laminar semiconductor, a photo-electronic current is generated which is divided

into two output currents Y1 and Y2 (as shown in the figure 2.5).

15

Fig. 2.5 Graph of PSD

Defining the length of the effective PSD surface as L, the relationship between the

position Y of the incident light and the currents is given by:

Y -~-~ L - X-
~+~ 2

(2.2)

The maximum power density of the PSD surface is 3 W/cm2
, with a maximum power of

1 mW. The laser source used in this work has a power of 1 mW. After reflecting from the

cantilever, the diameter of the laser spot on the PSD surface is approximately 2 mm

which gives a laser power density of approximately 0.03 W/cm2 well below the

maximum.

In our experiments, the PSD signal was sent to an amplifier board, transferred to a

voltage signal and then read by a data acquisition board (PCI6036E, National

Instruments). The transfer ratio between the PSD voltage signal and the position of the

laser spot on the PSD surface was determined by the maximum and minimum values of

PSD output voltage.

16

2.2.4 DC motor and Translation Stage

In our experiments, a 12V DC motor with a rotation speed of 1 RPM was used to control

the movement of the laser beam. To eliminate mechanical vibrations, the DC motor was

isolated from the laser mount. The design of the DC motor control mount was improved

several times.

First, the DC motor was connected directly to the laser mount through the motor rotation

axis. In this configuration, the laser point shifted from left to right continuously, causing

the laser point to move in an elongated S-shape track. This was caused by the rotation of

the DC motor axis which forced the laser mount to shift around its original position. To

avoid this, the connection between the DC motor and the laser mount was redesigned.

After several iterations we arrived at our current design.

In the final incarnation (shown in figure 2.6), the DC motor was mounted onto aU-shape

aluminum platform. A new connecter was designed to link the DC motor and the laser

mount. This connection mount transferred the rotating motion of the DC motor to the

linear motion of the laser mount. When the motor rotates, it turns a brass screw and

drives a brass dowel forward. A groove is machined in the brass dowel to prevent the

latter from rotating. This design ensured a linear movement of the laser point along the

cantilever.

17

, I
! . - ~--~ . -- ~---- -~ -----·

L---·

-- ·-· . -1
-------·---------~--

Fig. 2.6 Schematic graph of DC motor mount and laser mount

Lastly, three single axis translation stages were used to control the position of the laser

focuser and the PSD.

18

2.3 Image Collecting System

A Computer Controlled Display (CCD) camera (CV-S3200N, JAI Company) connected

to a telescope was mounted above the system for collecting images of the cantilever

during the experimental process. Using the CCD camera, monochrome images of the

cantilever (800x600 in pixels) were acquired in real time (Fig. 2.7). According to the

different shade of each pixel on every image, a Visual Basic program written by us was

used to recognize and distinguish the background, the chip, and the cantilever. Using a

series of images, the change in position of the laser point on the cantilever was calculated

and saved into a data file.

Fig. 2. 7 Image analysis by the Visual Basic program

19

Initially, the VB program was modified to calculate and identify the changing position of

the laser point as it moved along the cantilever. However, it was found that some of the

positions were improperly identified. The reason for this was because the surface of the

chip was not perfectly smooth after it had been coated with an Au film, which distorted

the laser spot at some points. In these cases, the program could not recognize the position

of the laser point. Also, when the program was set to analyze the scanning area, a few

seconds was needed to finish the calculations. Even when the program was changed to

analyze a smaller moving area (SQxSQ pixet2 for example), it still took too much time

compared to the motion of the laser point. Therefore, the program was modified to collect

and save optical images while reading and saving the digital indicator text information.

When the experiment was stopped, the program reloaded all the images and analyzed

them one at that time. This method saved the time of analyzing images, guaranteed the

accuracy of laser position movement, and was efficient enough to finish the calculation.

20

Chapter Three:

Model, Results, and Analysis

In this chapter we discuss the model used to calibrate the OBDS. In section 3.1, a

correction to the Rotation Method to include the angle of inclination of the chip is

presented. In section 3 .2, we show how to measure the angle of inclination of the chip,

and the method used to verify our model is discussed in section 3.3. In section 3.4, we

discuss how to determine the initial curvature of a cantilever. The analysis of different

cantilever curvatures is given in section 3.5.

21

3.1 Rotation Method

A method to determine L0 , the distance between the laser point on the cantilever and the

PSD surface, was developed by Ye Tian [17]. By changing the angle of inclination 8 of

the incident laser beam with a fixed PSD surface angle rp, the reflected laser spot on the

PSD surface moves causing a change in the PSD voltage signal (see figure 3.1). Using

simple geometry, the value of La can be related to the change of the incident laser angle

and the change of the PSD voltage signal by the sine law.

PSD
laser

..

D

Fig. 3.1 Schematic diagram of Optical Beam Deflection System

For example, by changing the incident angle of the laser beam from 81 to 82 as shown in

figure 3.1, the position of the laser spot on the PSD surface changes from ~to h2 • The

22

- - - - ---- - ------

sin(O -8)
value of L0 is related to 2 1 and Mi. To measure the average value of L0 , the

sin(82 + ¢>)

incident angle 8 is changed several times. Plotting the values of Mz vs sin(82 - 81) gtves
sin(82 + ¢>)

a straight line with a slope of L0 as shown by

(3.1)

When using this rotating method, it is very important for the laser spot on the cantilever

to be at the same position when varying the angle 8. Before measuring L0 , the position of

the laser spot needs to be adjusted to ensure that the center of the rotating laser focuser is

on the cantilever surface. Otherwise the laser spot on the cantilever shifts as the laser

focuser rotates. Figure 3.2 suggests a relationship between the center of the rotating laser

focuser and the cantilever surface. If the center of the rotating laser focuser is higher than

the cantilever surface, the laser spot will move backwards when the incident angle

increases. In contrast, the laser spot will move forward with increasing incident angle if

the center of the rotating laser focuser is lower than the cantilever surface. The height of

the laser focuser is adjusted with a transition stage.

a) b)
Fig. 3.2 Sketches of laser focuser position and cantilever surface a) the center of
rotating laser focuser is higher than the cantilever surface; b) the center of rotating
laser focuser is lower than the cantilever surface.

23

- - - -----------

In this rotating method, it was assumed that the chip of the probe was perfectly leveled.

Because of the small size of the probe, it was difficult to exam if the chip was leveled.

Assuming that the chip is inclined at an angle fJ, as shown in figure 3.3, the sine law ratio

changes from sin(82 - ~) to sin(82 - ~)
sin(82 + ¢) sin(82- fJ + ¢)

.

Cantilever

Fig. 3.3 Schematic graph of the fJ correction

. PSD
. . .
. . ~i::-.

24

3.2 Angle of Inclination of the Chip

Consider a probe inclined at an angle f3 with respect to the horizontal as shown in figure

3 .4. This section will discuss a method to obtain f3 .

... ,
\ \

~-~\
\ \
\(

\

Chip/Cantilever

\
\
\

\
\
\
\
\

\ '+""
/

" "

/~

"" P' / 2 . . .
J,. :i ..
'f (•· •.
.. :=t. :~.

Fig 3.4 Schematic graph of the inclined chip and cantilever

In this setup the incident angle of the laser beam and the angle of inclination of the PSD

are fixed and are given by 8 and rp respectively. Moving the laser focuser from ~ to A

causes a horizontal position change of~. The reflected laser point on the PSD surface

also moves from~ I to A 1
, contriouting to a change in the PSD signal proportional to 6.h .

We can represent the equations of the reflected laser beam by the vector lines (1) and (2)

as follows:

~+n · t1 =~
1 ,

~ +n ·t2 =~
1 •

(1)

(2)

25

where n is the direction vector of the reflected laser beam and t
1
and t

2
are scalars.

Subtracting equation (1) from (2) gives

-~P+~tn =~P'.

Writing this equation in terms of x and y components gives

Rearranging equations (4) and (5) and dividing gives

nx = ~~-~
nY ~~-~

n N M
From figure 3.4 it can be seen that tan(8- 2/3) = --2:'... and _ x = __ x = tan f3.

nx NY ~

Using the relationships

and

tan(0- 2/3) = tan8-tan(2/3)
1- tan8tan(2/3)

tan(2/3) = 2 tan f3
1- tan 2 f3

We can obtain a cubic equation for tan f3 :

where the four parameters have following forms:

AJ =~

A2 = (~hx - ~)tan8-~hY -2Mx tan8

A1 = 2MY tan8-~ +(Mx -~)

An =~h)' - (~hx -~)tan e.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

26

These parameters are a combination of the following four variables: ~, M , (/J , and B.

M.. is the horizontal displacement of the laser spot which is measured with a ceo

camera!VB program (Section 2.3). M is the change in laser position on the PSD surface

(which is obtained from the PSD voltage change). (/J is the PSD surface angle, and B is

the incident laser angle. Both of these two angles are fixed throughout all experiments.

The only unknown quantity in equation (9) is the angle of the chip fJ. Using a VB

program written in-house presented in Appendix B, this cubic equation can be solved for

tan fJ using Vieta's Theorem. This method gives three roots however choosing the right

root is always clear.

3.3 fJ Calibration

In order to validate our model for measuring fJ , three aluminum blocks, as shown in

figure 3.5, were constructed with inclined planes of 5°, 3.5°, and 2°. A thin mirror was

mounted on the inclined surface to enhance laser reflection. The blocks were mounted in

the same position as the cantilevers in our system in a similar manner to the setup shown

in figure 3.4. Figure 3.6 is a plot of M versus Mx showing the experimental data (points)

and the expected value (straight line) based on the value of~· From this plot it appears

that the experimental data is very close to the expected value however fitting the data

gives a value of~ = 4.7° compared to the expected value of 5.0°.

27

Mirror
Aluminum
Block

Fig. 3.5 Aluminum block with fixed angle of inclination f3

In these experiments the value of~ is very sensitive to the slope of the experimental data.

For example, the slope of the expected data shown in figure 3.6 is 0.828. However, the

slope of the experimental data is 0.8323 which is only slightly different. Other

experiments using the 2° and 3.5° blocks have given similar results.

7

6

M5
4

(m~3
2

1

Measured Data & Calculated Data for p =5°

y=0.8323x+0.0039

---+ P= 4.7a

y=0.828x

0 ~~--~------~----~----~~----~----~------.

0 1 2 3

Mx
4

(mm)
5 6 7

Fig 3.6: Plot of L1h versus L1Px showing experimental data (points) and expected value
(solid line) for determining the angle of inclination ofthe chip /3.

28

In order to better understand these results attempts were made to find the sources of

possible errors in the system that could influence the value of fJ. The first thoughts were

that the value of f3 could be affected by either the angle of incidence of the laser B or the

angle of inclination of the PSD ¢. To bring f3 = 4. 7° close to fJ = 5° requires B to be

changed from 60° to 60.35° which is definitely possible. Another possible source of error

in obtaining f3 is the conversion factor relating the number of pixels to length used to

obtain the position of the incident laser spot on the cantilever from the collected optical

images. The difficulty here lies in obtaining an object of a known an appropriate length

in the collected optical images. Also in an optical image as shown in figure 2. 7 there are

only 648 by 480 pixels which also limits the ability to accurately obtain a conversion

factor from pixels to length.

3.4 Cantilever Curvature

Consider a cantilever attached to a chip which is inclined at an angle ~· Because of the

thin metal film deposited on the probe the cantilever is often initially bent as shown in

figure 3.7. At t = 0 an optical beam inclined at an angle e with respect to the horizontal is

focused on the intersection point of the cantilever and the chip defined as the origin of the

system. At this point the equation of the optical beam is given by YL = tan(6)x. If the

optical beam is moved horizontally at a constant velocity v then the beam will intersect

the abscissa at the point x' = P(t) = vt which allows the intersection point between the

optical beam and the ordinate to be obtained and the line describing the optical beam to

29

be defined as: YL = tan(BXx+P(t)). Using a telescope positioned above, it is possible to

measure the intersection point between the optical beam and the cantilever M x which can

be used to find the vertical displacement of the cantilever M Y = tan(BXMx + P(t)).

Therefore the vector normal Nand the slope (a.) of the cantilever at the point (Mx. M y)

can be defined as:

e =tan-'[tan(U+ dM', +vt)l

N = (cos(e),sin(e))

-t[tan(B+ fJXMx +vt)l a=tan
M x

(10)

(11)

Telescope

~.7 .. YL = -tan(8)x
I

\\ --+\\
'(: YL = tan(8)(P(t)-x)
\/

\
\
\
\

X

Fig. 3. 7 Cantilever curvature with the angle of inclination jJ

30

- - ---------

In these experiments the laser beam was moved horizontally by the DC motor (see

section ·2.2.4), while its position P(t) was measured by a digital indicator (JD-C112E,

Mitutoyo). The data points were collected by the digital indicator at discrete intervals

(one data point per 0.2 second). Since the data obtained from the digital indicator were

not necessarily collected at the same time as the optical images used to measure M x, it

was necessary to fit the data from the digital indicator to get an equation as a function of

time P(t). A VB program (given in Appendix C) as shown in figure 3.8 was used to fit the

scattered data points to a fourth order polynomial P(t) in a similar way as a Savitzky-

Golay filter is used to smooth data. More precisely, a continuous function of time was

created by fitting a fourth order polynomial at every point P using 10 data points on both

sides of P. Every group of polynomial parameters were then saved and used to represent

the real position of the laser beam movement along the x direction .

.. rorm1 r:]Q:IIxl
FilA+ 8~ + CX'2 + 0"1<"3 + E?<"4~
y • 900285.01 2673778 + .
73462.4303079961. +
2245.495981 7233S.t2 + .
3).4712135975502•'3 +
0.15492881 2771648x' 4

A I OC0285. 012673778

B I· 73462. 43J3079961

c 12245.49598172336

D 1·3l.471 2135975502

E 10.15492881 2771 648

68

. 4

· 96

· 78

12.1 22.1

Fig. 3.8 Polynomial fit program panel

32.2 42.2 52.:

31

3.5 Results and analysis

Figure 3.9 shows the different cantilever curvatures measurements compared to the real

curvatures acquired from side view optical images taken with a microscope in our

laboratory. During these experiments it was often difficult to obtain an accurate measure

of the laser spot at the free end of the cantilever because of the increase in spot size and

an increase in scattering. As we can see from these two plots, the measured data

(scattered points) are close to the solid lines showing the actual cantilever curvatures.

Curvature Measurements of Cantilever #3 and #4

y 100

(~m) so

•
-10U -~

•
200

--#4 Cantile-.er Curvature

• #4 Real Measurements

--#3 Cantile-.er Curvature

A #3 Real Measurements

•••
• • •
• 250 300 350

X (~m)

Fig.3.9 Test results of different cantilever curvatures

As discussed in the previous section, the pixel to length conversion factor is a large

source of error in these measurements. Increasing the number of pixels would allow us to

32

more accurately identify the position of the laser spot on the cantilever. Also the speed of

the motor also plays a large role in the accuracy of the measured data. If it were possible

to slow down the motor and take several data points along the length of the lever it would

allow us to average the obtained data and reduce the experimental noise shown in figure

3.9.

33

Chapter Four: Conclusion & Future Work

4.1 Conclusion

We have developed a new method for characterizing the initial state of the cantilever. A

new method was developed to define the angle of inclination f3 of the chip. This method

was validated by using three aluminum blocks with known inclination angles. Based on

this, the method for finding L0 , initially found by Ye Tian, was modified to include the

angle of inclination of the chip f3 . Lastly, a method was derived to determine the initial

curvature of the cantilever. Experiments conducted using deflected cantilever showed the

model to be accurate.

34

4.2 Future work

The work done in this study will allow other researchers to obtain more accurate

cantilever sensor measurements. This work will also allow future members of our group

to use the deposition system designed by Ye Tian and Mike Coates (fig. 4.1) to study the

deposition of Au on Si cantilevers. Using this system will hopefully allow us to develop

the means of depositing stress free Au films on Si cantilevers.

Fig.4.1 Deposition system for Au thermal deposition

35

Reference:

[1] G. Binning, CH. Gerber, and C.F. Quate, Atomic Force Microscope, Phys. Rev. Lett.
1986.56:p.930-933.

[2] A. Gupta, D. Akin, and R. Bashir, Single Virus Particle Mass Detection Using
Microresonators with Nanoscale Thickness, Appl. Phys. Lett. 2004. 84: p. 1976-1978.

[3] E. A. Wachter and T. Thundat, Micromechanical Sensors for Chemical and
Physical Measurements, Rev. Sci. Instrum., 1995. 66(6): p. 3662-3667.

[4] F. M. Battiston, et al., A chemical sensor based on a microfabricated cantilever array
with simultaneous resonance-frequency and bending readout. Sens. Actuators B, 2001.
B76 (1-3): p. 393-402.

[5] H. F. Ji and T. Thundat, In situ detection of calcium ions with chemically modified
microcantilevers. Biosens. Bioelectron., 2002. 17(4): p. 337-343.

[6] Yang, Y., H. F. Ji, and T. Thundat, Nerve agents detection using a Cu2+/L-cysteine
bilayer coated microcantilever.]. Am. Chern. Soc., 2003. 125: p. 1124-1125.

[7] Bottomley, L.A., et al., Microcantilever apparatus and methods for detection of
enzymes. 2002, Protiveris Inc.

[8] C. Grogan, et al., Characterisation of an antibody coated microcantilever as a
potential immuno-based biosensor. Biosens. Bioelectron., 2002. 17(3): p. 201-207.

[9] K. S. Hwang, et al., Dominant surface stress driven by biomolecular interactions in
the dynamical response of nanomechanical microcantilevers, Korea Institute of Science
and Technology: Seoul. p. 15.

[10] M. Su, S. Li, and V. P. Dravid, Microcantilever resonance-based DNA detection
with nanopartical probes. Appl. Phys. Lett., 2003. 82(20): p. 3562-3564.

[11] A. Subramanian, et al., Glucose biosensing using an enzyme-coated
microcantilever. Appl. Phys. Lett., 2002. 81(2): p. 385-387.

[12] T. Thundat, Microcantilever biosensors. Scanning, 2001. 23(2): p. 129.

36

[13] D. W. Dareinga, and T. Thundat, Simulation of adsorption-induced stress of a
microcantilever sensor. f. Appl. Phys., 2005. 97.

[14] M. Godin, et al., Quantitative surface stress measurements using a microcantilever.
Appl. Phys. Lett., 2001. 79(4): p. 551-553.

[15] Z. Hu, T. Thundat, and R. J. Warmack, Investigation of adsorption and
absorption-induced stresses using microcantilever sensors.]. Appl. Phys. , 2001. 90(1): p.
427-431.

[16] L. Y. Beaulieu, M. Godin, 0. Laroche, V. Tabard-Cossa, P. Griitter, A Complete
Analysis of the Laser Beam Deflection Systems Used in Cantilever-based Systems,
Ultramicroscopy, 107 (2007) 422-430.

[17] Ye Tian, A System for Studying Surface Stress Suffered by Cantilevers during
Thermal Deposition, Honours Thesis, Department of Physics and Physical
Oceangraphy.2006, Memorial University ofNewfoundland: StJohn's.

37

Appendix A:
Visual Basic Program Code for Data Acquiring
Process

'***
'Analyse the position of laser point after data acquisition
'>>>
'Two results are related together with SYSTEM TIME
'>>>
'Write dial gauge reading to a text box
'**

Private Type POINT_TYPE
x As Long
y As Long

End Type

Private Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, ByVal x As Long,
ByVal y As Long) As Long
Private Declare Function MoveToEx Lib "gdi32" (ByVal hdc As Long, ByVal x As Long,
ByVal y As Long, lpPoint As POINT_TYPE) As Long
Private Declare Function LineTo Lib "gdi32" (ByVal hdc As Long, ByVal x As Long,
ByVal y As Long) As Long

Option Explicit
Private Data() As Double
Private taskHandle As Long
Private taskisRunning As Boolean
Private StopFlag As Boolean
Private PauseFlag As Boolean
Private StartTime As Double
Dim PrevPressure As String
Dim StartDataPoint As Integer
Dim StartDataFile As Integer
Dim StartDataFileText As String
Dim PointSelect As Integer
Dim AreaXl, AreaYl, AreaX2, AreaY2 As Integer
Dim Do TheA verage As Boolean
Dim PSDaverage, newsystime As Double
Dim PSDcounts As Integer
Dim SystemTimeCount As Integer

38

Dim currentxl, currentx2, currentyl, currenty2 As Integer

Private Sub chkMultiFile _Click()
IfMe.chkMultiFile.Value = 1 Then

Me.txtPointsPerFile.Enabled = True
Else

Me.txtPointsPerFile.Enabled = False
End If

End Sub

Private Sub AutoScaleTimer _Timer()

Call GetN ew Image
Call FindLaserPosition
Dim xRegion, yRegion, CantiEnd, Fifth YRegion As Integer
Dim pt As POINT_ TYPE
Dim retval As Long
xRegion = Mainform.LaserPositionX.Text
yRegion = Mainform.LaserPositionY.Text
CantiEnd = Mainform.CantiEnd. Text

If SavelmageCheck.Value = 1 Then
Call Savelmage
End If

End Sub

Public Sub GetNewimage()

Display.AutoRedraw = False
'Get the interface name and load the parameters set in
'the IMAQ Configuration Utility
CWIMAQl.lnterface = "imgO"
CWIMAQ l.LoadinterfaceDefaults

'Acquire asynchronously one buffer
CWIMAQ l .Acquirelmage

'Display the most recently acquired picture in a Picture Box
'Note that it could be done more simply with the CWIMAQViewer object
'whose demo version is given, see the "Snap in CWIMAQViewer" sample
CWIMAQl .WindowPlot Display.hWnd

39

End Sub

Private Sub Clear_ Click()
CurrentX = 0
CurrentY = 0
LeftTop.Caption = "LeftTop:"
RightBottom.Caption = "RightBottom:"
PointSelect = 1
AreaXl = AreaX2 = AreaYl = AreaY2 = 0
Mainform.MovingLaserPointX.Text = 0
Mainform.MovingLaserPointY.Text = 0
Mainform.LaserPositionX.Text = 0
Mainform.LaserPositionY.Text = 0
Mainform.Distance.Text = 0
Mainform.CantiEnd.Text = 0
Mainform.CantiWidth.Text = 0
Call GetNewlmage
End Sub

Private Sub Load_ Click()
Call GetN ew Image
End Sub

Private Sub PointFound_ Click()
PointFound.Default = True
End Sub

Private Sub PositionAnalysis _Click()

Dim ImagePath, NewlmagePath, nString, OutputDataPath As String
Dim TotalNumber, Number As Integer
Dim LaserDistance, i As Integer
Dim PI, LASERangle, LaserAnglePrime, PSDangle, Time, Phi, PhiPrime, Delta,
PSDrange As Double
Dim DValue(2), VValue(2), TValue(2) 'DValue is distance, VValue is voltage,
TV alue is time
Dim DeltaPx, DeltaPy, DeltaU, DeltaH, VDelta, TDelta, LaserX, LaserY, PSDX, PSDY,
v, LNot, XNotPrime, YNotPrime, Velocity As Double
Dim tmp, Cantilever Angle, CantileverNormal, Interface, ChipAngle, A verageChipAngle,
ChipAngleDegree, AverageV As Double
Dim ChipAngleCount, Vcount As Integer
Dim AnalyzedData As String
Dim Origin Voltage, OriginTime, DeltaUSquare As Double
Dim ChipAngleArrayR(3, 1 00) As Double
Dim ChipAngleArrayl(3, 1 00) As Double

40

Dim XvalueR(3), Xvaluei(3) As Double
PI = 4*Atn(1) .

PSDangle = Val(frmPSDAngle.Text) * PI I 180 'These angles are now in radians
LASERangle = Val(frmLaserAngle.Text) *PI I 180 'These angles are now in radians

TotalNumber = Int(Mainform.Interface. Text)
Number= 0
ImagePath = SavelmageText.Text
PSDrange = Val(Mainform.PSDrangeText)

If SaveDataCheck. Value = 1 Then
Open OutputDataFile.Text For Input As #8
i = Len(OutputDataFile.Text)
OutputDataPath = Left(OutputDataFile.Text, i- 8) & "Output.dat"
Open OutputDataPath For Output As #9

i = O
Do While EOF(8) = False

lfi = 0 Then
Input #8, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp
Write #9, "Interface", "Time", "DValue", "VValue", "Angle", "Normal"
ChipAngleCount = 0

Else If i = 1 Then
Input #8, TValue(2), tmp, tmp, tmp, tmp, tmp, VValue(2), Number

IfVValue(2) <>"#"Then

IfNumber < 10 Then
nString = "00" & CStr(Number)

Elself Number > 9 And Number < 1 00 Then
nString = "0" & CStr(Number)

Else
nString = CStr(Number)

End If

NewlmagePath = ImagePath & nString & ".bmp"

Display.Picture = LoadPicture(NewlmagePath)
Me.Caption = "image" & Number

Call FindLaserPosition

DValue(2) = Val(Mainform.Distance.Text)
Write #9, Number, TValue(2), DValue(2), VValue(2)," ", ""

41

DValue(I) = DValue(2)
VValue(I) = VValue(2)
TValue(1) = TV alue(2)

Else
i = i- I

End If

Else
Input #8, TValue(), tmp, tmp, tmp, tmp, tmp, VValue(2), Number2

lfVValue(2) <>"#"And VValue(2) <> 0 And Number < TotalNumber Then

If Number < 1 0 Then
nString = "00" & CStr(Number)

ElselfNumber > 9 And Number< 100 Then
nString = "0" & CStr(Number)

Else
nString = CStr(Number)

End If

NewlmagePath = ImagePath & nString & ".bmp"

Display.Picture = LoadPicture(NewlmagePath)
Me.Caption = "Image " & Number

Call FindLaserPosition

D V alue(2) = Val(Mainform.Distance. Text)

DeltaPx = DValue(2)- DValue(1)
VDelta = VValue(2)- VValue(I)
DeltaH = VDelta * I 0 I PSDrange 'DeltaH in the units of mm
TDelta = TValue(2)- TValue(1)

lfDValue(2) <= 0 And DValue(l) <> 0 And DeltaPx <>Empty And DeltaPx
<> 0 Then

'laser point on the chip
'calculate the ChipAngle and Velocity
'DeltaPy = DeltaPx * Tan(LaserAngle)- 2 * VDelta * Sin(PSDAngle)
'Cantilever Angle = -Atn(DeltaPy I DeltaPx)
'CantileverNormal = Atn(-DeltaPx I DeltaPy)
'A verageChipAngle = A verageChipAngle + Cantilever Angle

42

Call VietaTheoremModule.SolveCubicEquation

ChipAngleArrayR(l, ChipAngleCount) = XvalueR(l)
ChipAngleArrayl(l, ChipAngleCount) = Xvaluel(l)
ChipAngleArrayR(2, ChipAngleCount) = XvalueR(2)
ChipAngleArrayl(2, ChipAngleCount) = Xvaluel(2)
ChipAngleArrayR(3, ChipAngleCount) = XvalueR(3)
ChipAngleArrayl(3, ChipAngleCount) = Xvaluel(3)

v = DeltaPx I TDelta
Average V = Average V + v
V count = V count + 1
Write #9, Number, TValue(2), DValue(2), VValue(2), _
ChipAngleArrayR(l, ChipAngleCount), ChipAngleArrayl(l ,

ChipAngleCount); _
ChipAngleArrayR(2, ChipAngleCount), ChipAngleArrayl(2,

ChipAngleCount); _
ChipAngleArrayR(3, ChipAngleCount), ChipAngleArrayi(3,

ChipAngleCount)
DValue(l) = DValue(2)
VValue(l) = VValue(2)
ChipAngleCount = ChipAngleCount + 1

ElseifDValue(2) > 0 And DValue(2) <= 350 And DeltaPx <> 0 Then
'laser point on the cantilever

consistance

'when laser point goes on the cantilever,
'use chip angle value to calculate the cantilever angle.
IfMainform.frmChipAngle.Text = 1111 Then

'find the best fit of chip angle in the array
Call BestFitModule.BestFit(ChipAngleCount)

ChipAngle = 0
'ChipAngle is still in radians, on panel we convert it into degrees for

ChipAngleDegree = 180 * ChipAngle I PI
Mainform.frmChipAngle.Text = ChipAngleDegree
'Lnot must be defined before experiments
LNot = Val(Mainform.frmLNot.Text)
'calculate the XNotPrime and yNotPrime based on LNot and ChipAngle
XNotPrime = LNot * Cos(LASERangle- 2 * ChipAngle)
YNotPrime = LNot * Sin(LASERangle- 2 * ChipAngle)
'calculate the velocity of laser
Mainform.frmVelocity.Text = AverageV I Vcount
'get the DValue and VValue when laser point hit the origin
Origin Voltage = Val(Mainform.OriginVoltage.Text)
OriginTime = Val(Mainform.OriginTime.Text)

End If

43

-------------- ~~---

'incident laser is LaserY=-
tan(Laser Angle)*laserX +tan(LaserAngle)*Velocity*TDelta

Velocity = Val(Mainform.fnnVelocity.Text)
TDelta = TValue(2) - OriginTime
LaserX = DValue(2)
LaserY = -Tan(LASERangle) * LaserX + Tan(LASERangle) * Velocity *

TDelta

YNotPrime
'PSD equation is PSDY = -Tan(PSDAngle) * (PSDX- XNotPrime) +

DeltaU = VValue(2)- Origin Voltage
PSDX = -XNotPrime + Abs(DeltaU) * Cos(PSDangle) 'PSDX>O
PSDY = -Tan(PSDangle) * (PSDX- XNotPrime) + YNotPrime

Delta = -Atn((LaserY- PSDY) I (LaserX- PSDX))
CantileverNormal = (PI - LASERangle - Delta) I 2
CantileverAngle = {LASERangle + Delta) I 2
Write #9, Number, TValue(2), DValue(2), CantileverAngle,

Cantilever Normal

Else' DeltaPx=O means DValue(1)= DValue(2)
i = i- 1

End If
End If

End If

i = i + 1

Loop

Close #8
Close #9

End If

Me. Caption = "Done!!!"
End Sub

Private Sub PositionAnalysis _Click()
Dim Interface, i As Integer
Dim iTime As Double
Dim nString, ImagePath, NewlmagePath As String

44

Dim YesNo As Integer

IfSaveDataCheck.Value = 1 Then
Open "C:\Documents and Settings\Josh\Desktop\timeimage.dat" For Input As #8
Open "C:\Documents and Settings\Josh\Desktop\output.csv" For Output As #9

ImagePath = Mainform.SavelmageText.Text

i = 0
Do While EOF(8) = False

'ReDim Preserve ITime(i)

Ifi = 0 Then

Else

Input #8, iTime, Interface

If Interface < 1 0 Then
nString = "00" & CStr(Interface)

Else If Interface > 9 And Interface < 1 00 Then
nString = "0" & CStr(Interface)

Else
nString = CStr(Interface)

End If

NewimagePath = ImagePath & nString & ".bmp"

Display.Picture = LoadPicture(NewimagePath)
Me.Caption = "image " & Interface

Call FindLaserPosition

YesNo = MsgBox("ls this the right point?", vbYesNo)
IfYesNo = 6 Then
ElseifYesNo = 7 Then
While (PointFound.Default = False)
Do Events
Wend
End If

PointFound.Default = False

Write #9, Interface, iTime, Val(Mainform.Distance.Text)

45

Input #8, iTime, Interface

If Interface < 1 0 Then
nString = "00" & CStr(lnterface)

Elself Interface > 9 And Interface < 1 00 Then
nString = "0" & CStr(lnterface)

Else
nString = CStr(Interface)

End If

NewlmagePath = ImagePath & nString & ".bmp"

Display.Picture = LoadPicture(NewlmagePath)
Me.Caption ="image" & Interface

Call FindLaserPosition

YesNo = MsgBox("ls this the right point?", vbYesNo)
IfYesNo = 6 Then
ElselfYesNo = 7 Then
While (PointFound.Default = False)
Do Events
Wend
End If

PointFound.Default = False

Write #9, Interface, iTime, Val(Mainform.Distance.Text)

End If

i = i + 1

Loop

Close #8
Close #9

End If

Me. Caption = "Done!!!"
End Sub

Private Sub FindLaserPosition()

46

'analyse every image with program first
'find the laser point position according to initial position
Dim points(800, 600) As Long
Dim xPos, yPos, LaserCenterX, LaserCenterY As Integer
Dim pt As POINT_ TYPE
Dim retval As Long
Dim s As Integer
Dim SumX, SumY, SumN As Integer
Dim PointSize, PointSizeNew As Integer
Dim yMaxGreen, yMinGreen, xMaxGreen, xMinGreen, xLaser, yLaser, yScanMax,

Origin Y As Integer
yMaxGreen = -10000
yMinGreen = 1 0000
xMaxGreen = -1 0000
xMinGreen = 1 0000
Dim Distance, CantiWidth, CantiLength, RealDistance As Integer
Dim Green Value, BlackValue, Cyan Value As Long
Green Value = GreenText.Text
BlackValue = BlackText.Text
Cyan Value = CyanText.Text

LaserCenterX = Mainform.MovingLaserPointX.Text
LaserCenterY = Mainform.MovingLaserPointY.Text

lfLaserCenterX < 20 Then LaserCenterX = 20
If LaserCenterY < 20 Then LaserCenterY = 20

'mask scan area according to teh moving position of laser point
For xPos = LaserCenterX- 20 To LaserCenterX + 20

For yPos = LaserCenterY - 20 To LaserCenterY + 20

points(xPos, yPos) = GetPixel(Display.hdc, xPos, yPos)

lfpoints(xPos, yPos) >Green Value Then
points(xPos, yPos) = vbGreen
PointSize = PointSize + 1

Elself points(xPos, yPos) >Black Value And points(xPos, yPos) <=
Green Value Then

points(xPos, yPos) = vbBlack
Elselfpoints(xPos, yPos) > CyanValue And points(xPos, yPos) <= BlackValue

Then
points(xPos, yPos) = vbCyan

Elselfpoints(xPos, yPos) <> vbBlack And points(xPos, yPos) <> vbGreen And
points(xPos, yPos) <> vbCyan Then

points(xPos, yPos) = vbBlue

47

End If

Next
Next

'display the mask or not?
If Mask. Value = 1 Then
For xPos = LaserCenterX - 50 To LaserCenterX + 50

For yPos = LaserCenterY- 50 To LaserCenterY + 50
Display.PSet (xPos, yPos), points(xPos, yPos)

Next
Next

End If

'find the laser point
For xPos = LaserCenterX - 20 To LaserCenterX + 20

For yPos = LaserCenterY- 20 To LaserCenterY + 20
lfpoints(xPos, yPos) = vbGreen Then
SumX = SumX + xPos
SumY = SumY + yPos
SumN = SumN + 1
End If

Next
Next

If SumN <> 0 Then
'find the laser point center by weighting the x and y coordinates
xLaser = SumX I SumN
yLaser = Sum Y I SumN

IfxLaser > 0 And xLaser < 800 And yLaser > 0 And yLaser < 600 Then
Mainform.MovingLaserPointX.Text = xLaser
Mainform.MovingLaserPointY.Text = yLaser
End If

Display.Circle (xLaser, yLaser), 5, RGB(255, 0, 0)

OriginY = Mainform.LaserPositionY.Text

Distance = LaserCenterY- OriginY 'distance in pixels
CantiWidth = Mainform.CantiWidth.Text 'in pixels
'the real width of cantilever is 35 micros
RealDistance = Distance* 35 I CantiWidth 'in micros
Mainform.Distance.Text = RealDistance

48

End If

End Sub

'Scale within the selected area!!!

Private Sub Scale_ Click()

'Call GetN ew Image

If PointSelect = 1 Then
MsgBox "Please select the scanning area!!!"
Else

Dim points(800, 600) As Long
Dim xPos, yPos As Integer
Dim pt As POINT_TYPE
Dim retval As Long
Dim So, Sx, Sy, Sxx, Sxy, D, A, B As Double
Dim s As Integer
Dim PointSize, PointSizeNew As Integer

So= 0
Sx=O
Sy=O
Sxx = O
Sxy=O

Dim yMaxGreen, yMinGreen, xMaxGreen, xMinGreen, xLaser, yLaser, yScanMax As
Integer
yMaxGreen = -1 0000
yMinGreen = 1 0000
xMaxGreen = -10000
xMinGreen = 10000

Dim Green Value, BlackValue, Cyan Value As Long
Green Value = GreenText.Text
BlackValue = BlackText.Text
Cyan Value = CyanText.Text

'masking: sets the scale regions to known colours so that we can do the math later. ..
For xPos = AreaX1 To AreaX2

For yPos = AreaYl To AreaY2

points(xPos, yPos) = GetPixel(Display.hdc, xPos, yPos)

49

Ifpoints(xPos, yPos) > GreenValue Then
points(xPos, yPos) = vbGreen

Then
Elselfpoints(xPos, yPos) > BlackValue And points(xPos, yPos) <= Green Value

points(xPos, yPos) = vbBlack
Elselfpoints(xPos, yPos) > Cyan Value And points(xPos, yPos) <= BlackValue

Then
points(xPos, yPos) = vbCyan

Elselfpoints(xPos, yPos) <> vbBlack And points(xPos, yPos) <> vbGreen And
points(xPos, yPos) <> vbCyan Then

points(xPos, yPos) = vbBlue
End If

Next
Next

'display the mask?
If Mask. Value = 1 Then

For xPos = AreaXl To Area.X2
For yPos = AreaYl To AreaY2

Display.PSet (xPos, yPos), points(xPos, yPos)
Next

Next
Endlf

'lets find the MIN x value where the colour is blue
'ie: lets describe the line of the edge of the left-most chip
'but we need to find the horizontal edge first
Dim xMaxBlue, MaxBlueX, MaxBlueY As Integer
Dim FindMaxBlue As Boolean
FindMaxBlue = False
MaxBlueX = 9999
MaxBlue Y = 9999
'search the up-right conner for the most left point of chip
For xPos = AreaX1 To AreaX1 + 50

For yPos = AreaYl To AreaY1 + 50
IfFindMaxBlue = False Then
'points(xPos, yPos- 2) = vbCyan And And points(xPos + 2, yPos) = vbCyan
lfpoints(xPos, yPos- 1) = vbCyan And points(xPos, yPos) = vbCyan Then
Ifpoints(xPos, yPos) = vbCyan And points(xPos + 1, yPos) = vbCyan Then

MaxBlueX = xPos
MaxBlueY = yPos
xMaxBlue = MaxBlueX
FindMaxBlue = True 'To make sure the first suitable point is the most left point

of chip

50

End If
End If
End If
Next

Next

Mainform.MaxBlue.Caption = "MaxBlue:" & MaxBlueX & "," & MaxBlueY

'if we need to find the equation of cantilever edge then do the maths as follows
'lets find the maximum y values on x where the colour is blue
'ie: lets describe the line of the cantilever chip

Dim yMaxBlue() As Integer
Dim CantiLeftEdge() As Integer
Dim CantiRightEdge() As Integer

Dim 1 As Integer
Dim Average As Long

1 = 0
Average = 0

'find the chip's horizontal edge if we need
For yPos = AreaY1 To AreaY2

For xPos = xMaxBlue To AreaX2
' find points on the edge
lfpoints(xPos, yPos) = vbBlue And points(xPos, yPos- 1) = vbBlue And

points(xPos, yPos - 2) = vbBlue Then
Ifpoints(xPos, yPos + 1) <> vbBlue And points(xPos, yPos + 2) <> vbBlue

And points(xPos, yPos + 3) <> vbBlue Then
ReDim yMaxBlue(xPos)
yMaxBlue(xPos) = yPos
Display.PSet (xPos, yPos), vbRed

lfyMaxBlue(xPos) <> 0 Then
So = So + 1
Sx = Sx + xPos
Sy = Sy + yMaxBlue(xPos)
Sxx = Sxx + xPos 1\ 2
Sxy = Sxy + xPos * yMaxBlue(xPos)
End If

End If
End If

Next
Next

51

IfMainform.CheckFindCantiEdge.Value = 1 Then
'calculate the chip edge
D = So * Sxx - Sx " 2
A = (Sxx * Sy - Sx * Sxy) I D
B = (So * Sxy - Sx * Sy) I D

'now, the line of the cantilever chip is just y=bx+a
Dim yO, yM As Double
yO=A
'and at xmax
yM = B * AreaX2 + A

'define scan regions
xLaser = Cint(Val(Mainform.LaserPosition.X.Text))
yLaser = Cint(Val(Mainform.LaserPosition Y. Text))

Dim xLaserO, yLaserO, aPrime, bPrime As Long
'now, consider that the chip and cantilever are perpendicular
'two lines are said to be perpendicular if the product of their slopes is -1

bPrime = -1 I B
aPrime = yLaser- bPrime * xLaser

xLaserO = (aPrime- A) I (B- bPrime)

yLaserO = bPrime * xLaserO + aPrime
'so the line describing the cantilever is y = bPrime* x+ aPrime

Display.ForeColor = vbRed
retval = MoveToEx(Display.hdc, xLaserO, yLaserO, pt)
retval = LineTo(Display.hdc, xLaser, yLaser)

Mainform.yMaxBlue.Caption = "yMaxBlue: y=" & B & "*x+" & A & "."
Else
Mainform.yMaxBlue.Caption = "yMaxBlue: y= .. . "
End If

'To find the cantilever width
'let's average the difference between the right edge and the left edge on the middle

canti
'(take the width of canti as 20)
Dim CantLeftX As Integer
Dim CantRightX As Integer

52

Dim xCant, yCant As Integer
Dim LeftPoint As Integer
Dim FindLeftEdge, FindRightEdge As Boolean
Dim CantiEnd As Integer
Dim Fifth YRegion As Integer
Dim TempString As String
Dim xRegion, yRegion As Integer

xRegion = xLaser
yRegion = yLaser

For yPos = yRegion - 20 To yRegion + 90
FindLeftEdge = False
FindRightEdge = False

For xPos = xRegion - 25 To xRegion + 25
'find the cantilevers' left edges
lfpoints(xPos- 3, yPos) = vbBlack And points(xPos- 2, yPos) = vbBlack And

points(xPos- 1, yPos) = vbBlack Then
lfpoints(xPos, yPos) = vbCyan And points(xPos + 1, yPos) = vbCyan And

points(xPos + 2, yPos) = vbCyan Then
ReDim CantiLeftEdge(yPos)
CantiLeftEdge(yPos) = xPos
Display.PSet (xPos, yPos), vbWhite
FindLeftEdge = True

'if we can find the left edge of canti then we look for the right edge
For xCant = xPos To xRegion + 25
lfpoints(xCant + 3, yPos) = vbBlack And points(xCant + 2, yPos) = vbBlack

And points(xCant + 1, yPos) = vbBlack Then
Ifpoints(xCant, yPos) = vbCyan And points(xCant- 1, yPos) = vbCyan

And points(xCant- 2, yPos) = vbCyan Then
ReDim CantiRightEdge(yPos)
CantiRightEdge(yPos) = xCant
Display.PSet (xCant, yPos), vbMagenta
FindRightEdge = True

End If
End If
Next

End If
End If

Next

'if we can find both left and right edge points with the same yPos, then calculate the
width

53

'mark the last yPos as the end of cantilver, and show it on the text box
If FindLeftEdge = True And FindRightEdge = True Then
Average = Average + CantiRightEdge(yPos)- CantiLeftEdge(yPos)
I = I + 1
CantiEnd = yPos
Mainforrn.CantiEnd.Text = CantiEnd
End If
Next

End If

End Sub

Private Sub Savelmage()
Dim TempString As String
Dim kString, path, newpath As String
Dim systime As Double
Dim Hour, Minute, Second As String

IfVal(Interface.Text) < 10 Then
kString = "00" & Interface. Text

ElselfVal(Interface.Text) > 9 And Val(Interface.Text) < 100 Then
kString = "0" & Interface. Text

Else
kString = Interface. Text

End If

CWIMAQ1.Acquirelmage

path = SavelmageText.Text
newpath = path & kString & ".bmp"

CWIMAQ1 .SavelmageToDisk newpath, CWIMAQ1 .Images(1)

Interface.Text = Interface. Text + 1
Display.Picture = LoadPicture(newpath)

SystemTime.Text = Format(Now, "hh:nn:ss") & "." & Right(Format(Timer, "#0.00"), 2)
Hour = Val(Left(SystemTime.Text, 2)) * 3600
Minute = Left(SystemTime.Text, 5)
Minute = Val(Right(Minute, 2)) * 60
Second = Val(Right(SystemTime.Text, 5))
systime = Hour + Minute + Second

54

If newsystime > systime Then newsystime = systime

systime = systime - newsystime

TempString = systime & "," & Interface.Text
Print #I, TempString

End Sub

Private Sub SaveDataYesNo_Click()
lfSaveDataYesNo.Value = False Then

Me.optAllData.Enabled = False
Me.txtScaleFactor.Enabled = False
Me.optShiftAxis. Value = True

Else
Me.optAllData.Enabled = True
Me.txtScaleFactor.Enabled = True
Me.optAllData. Value = True

End If
End Sub

Private Sub startCommandButton _Click()
Dim sampsPerChanRead As Long
Dim numChannels As Long
Dim fillMode As DAQmxFillMode
Dim bufferSize As Long
Dim numSampsPerChannel As Long
Dim arraySizelnSamps As Long
Dim Channels As String
Dim TempChannel As String

Dim XMin, YMin, YMax, XMax As Double
Dim XOrigin, YOrigin As Double
Dim ScaleX, Scale Y As Double
Dim XOriginT, YOriginT, ScaleXT, ScaleYT As Double
Dim XOrigin2, YOrigin2, ScaleX2, ScaleY2 As Double

Dim count As Long
Dim i, k As Long
Dim temp_i As Long
Dimj As Long
Dim item As Listltem
Dim InputData() As Double
Dim SumVoltage() As Double
Dim AveVoltage() As Double

55

---------------------------------··--------

Dim PreviousTime, pA VGtime, pA VGvoltage() As Double
Dim Time, TotalTime As Double
Dim DeltaV, DeltaT As Double
Dim n As Integer
Dim SumTime, AveTime As Double
Dim Temperature As Double
Dim FirstRun As Boolean
Dim ThermType As DAQmxThermocoupleTypel
Dim PSDIOffset As Double
Dim PSD20ffset As Double
Dim Pressure As String

Mainform.startCommandButton.Enabled =False

FirstRun = True

IfMainform.AutoScaleCheck.Value = 1 Then
Mainform.AutoScaleTimer.Interval = Val(Mainform.AutoScaleText.Text) * 1000
Mainform.AutoScaleTimer.Enabled = True
End If

Do Events

Me.txtVoltPrecision.Enabled = False
StopFlag = False

'Checks to see that all the fields aren't blank.
If ValidateControlValues Then

startCommandButton.Enabled = True
Exit Sub

End If

'Tells the program how to list the data in the array.
'If it is Scan Number, it lists all the first sample points collected from each channel,
'then the second points from each channel, etc.
'If it is Channel, it lists all the sample points from Channel 1, then Channel 2, etc.
lfscanOrderOption.Value = True Then

fillMode = DAQmx_ Val_GroupByScanNumber
Else

fillMode = DAQmx_ Val_GroupByChannel
End If

'Tell the program how to collect data samples from the channels.
'If it is Average, take single samples from each channel, which are

56

'generated very quickly, and then average samples over the time interval.
'If it is Collect Data every so often, takes a single sample every so many
'samples which are generated on each channel, and can specify the rate
'individual samples are generated in Hz.
bufferSize = 255
IfChangeOption.Value = True Then

numSampsPerChannel = 1
Elself TimeOption. Value = True Then

numSampsPerChannel = CLng(samplesPerChannelTextBox.Text)
End If

'Create the DAQmx task, and a boolean to say it is running.
DAQmxErrChk DAQmxCreateTask("", taskHandle)
tasklsRunning = True

'This is a string of all the channels, which comes from the Function,
'so we get "Channels= Devl /ai0,Devl/ail,Devl/ai2" and so on.
Channels = DetermineChannels()
TempChannel = DetermineTempChannel()
ThermType = DetermineThermType()

'Add an analog input channel to the task.
DAQmxErrChk DAQmxCreateAIVoltageChan(taskHandle, Channels,"", _

DAQmx_ Val_Cfg_Default, minValueTextBox.Text,
maxValueTextBox.Text, _

DAQmx_ Val_ VoltageUnitsl_ Volts,"")
DAQmxErrChk DAQmxCreateAIThrmcplChan(taskHandle, TempChannel, "",

MinTempYRange.Text, MaxTempYRange.Text, DAQmx_ Val_DegC,
DAQmx_ Val_ThermocoupleTypel_K_Type_TC, DAQmx_ Val_CJCSourcel_ConstVal,
lnt(Me.txtCalibTemp.Text), "")

'Configure task for finite sample acquisition and read in data
DAQmxErrChk DAQmxCfgSampClkTiming(taskHandle, "OnboardClock",

frequencyTextBox.Text, DAQmx_ Val_ Rising,
DAQmx_ Val_AcquisitionType_FiniteSamps, CLng(samplesPerChannelTextBox.Text))

DAQmxErrChk DAQmxGetTaskNumChans(taskHandle, numChannels)
arraySizelnSamps = numSampsPerChannel * numChannels
ReDim Data(arraySizelnSamps)

'acquiringLabel.Visible = True
acquiringLabel.Caption = "Acquiring ... "

XMin = 0: XMax = 60

57

Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin, ScaleX, SealeY,
XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2)

i = 0
ReDim Preserve InputData(numChannels + 1) 'Time, Channel 0, Channel 1, Channel

3, ...
ReDim Preserve SumVoltage(numChannels + 1)
ReDim Preserve AveVoltage(numChannels + 1)
ReDim Preserve pAVGvoltage(numChannels + 1)

For j = 2 To numChannels + 1
InputDataU) = 0
FirstRun = True 'This indeicates the first time we read data.

Nextj

pAVGtime = O

StartTime = Timer

If ChangeOption. Value = True Then

IfSaveDataCheck.Value = 1 Then Open OutputDataFile.Text For Output As #2
Write #2, "Time", "PSD1 ", "PSD2", "Temp", "Distance", "D", "V", "Interface",

"Position"
StartDataFileText = OutputDataFile.Text
PreviousTime = Timer

'Here we are saving data when we checked the "Save output Data as?"
Do While StopFlag =False

IfSaveDataCheck.Value = 1 And OutputDataFi1e.Text <> StartDataFileText
Then

10#,

Close #1
Open OutputDataFile.Text For Append As #1

End If

Do Events

InputData(1) =(Timer- StartTime)

'Read the Data from the DAQ
DAQmxErrChk DAQmxReadAnalogF64(taskHandle, numSampsPerChannel,

fillMode, Data(O), arraySizelnSamps, sampsPerChanRead, ByVal 0&)

'Read the Pressure Data

58

---- --

Pressure = MSComml.Input
IfPressure <> lblPressure.Caption Then

If Pressure = "" Then
lblPressure.Caption = PrevPressure

Else
lblPressure.Caption = Pressure
PrevPressure = Pressure

End If
Else

lblPressure.Caption = PrevPressure
End If

'Here we put the data into an array.
For j = 0 To numChannels - 1
k = Data(I)

InputData(j + 2) = Strings.FormatNurnber(Data(j), 6)
Nextj

'This is where we use offset controls to compensate for the
'different max and min photocurrents put out by the PSDs.
'It allows us to use a high current for max resolution without going
'over the +/-lOV limit of the NI-DAQ.
PSDIOffset = CDbl(txtPSDIOffset.Text)
PSD20ffset = CDbl(txtPSD20ffset.Text)
InputData(2) = InputData(2) + PSDIOffset
InputData(3) = InputData(3) + PSD20ffset

'This is executed only once at the beginning.
If FirstRun = True Then

PreviousTime = InputData(l)
SumTime = InputData(l)
Fork = 2 To numChannels + 1

SumVoltage(k) = InputData(k)
pAVGtime = 0
pA VGvoltage(k) = 0 'InputData(k)
FirstRun = False

Nextk
n = l

Elself(InputData(l)- PreviousTime) < Val(AvgTimelnt.Text) Then
'This is where we have to alter the program in order to elliminate spikes from

the data.
'What we need to do here is to save all the data to an array

59

SumTime = SumTime + InputData(l)
Fork = 2 To numChannels + 1

SumVoltage(k) = SumVoltage(k) + InputData(k)
Nextk
n = n + l
'PreviousTime = InputData(l)

Elself(InputData(l)- PreviousTime) >= Val(AvgTimelnt.Text) Then
'When we get here we look at the number in the array and remove the data

points that have a
'large standard deviation from the rest of the data.
A veTime = Sum Time I n
Fork = 2 To numChannels + 1

AveVoltage(k) = SumVoltage(k) In
Nextk

lfSaveDataCheck.Value = 1 Then Call SaveData(AveTime, Ave Voltage,
numChannels)

Call PlotData(AveTime, AveVoltage(), pAVGtime, pAVGvoltage(),
numChannels, XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT, ScaleXT,
ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2)

pA VGtime = A veTime
PreviousTime = lnputData(1)
SumTime = InputData(1)
Fork = 2 To numChannels + 1

pAVGvoltage(k) = AveVoltage(k)
SumVoltage(k) = lnputData(k)

Nextk
n = l

End If

If(Me.optAllData.Value = True) And (lnputData(1) * 1.1 > XMax) Then
XMax = lnputData(l) * CDbl(Me.txtSealeFaetor.Text)
Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin,

SealeX, SealeY, XOriginT, YOriginT, ScaleXT, SealeYT, XOrigin2, YOrigin2, SealeX2,
SealeY2)

Close #1
Call RePlotData(XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT,

ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2)

As #I
IfSaveDataCheek.Value = 1 Then Open OutputDataFile.Text For Append

End If

If(Me.optShiftAxis.Value = True) And (lnt(InputData(l)) = XMax) Then
XMax = XMax + CDbl(Me.txtDeltat.Text): XMin = Int(InputData(1))

60

Call GraphingModule.InitiateGraph(XMin, XMax, XOrigin, YOrigin,
ScaleX, SealeY, XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2,
ScaleY2)

Close #1
'IfSaveDataCheck.Value = 1 Then Open OutputDataFile.Text For Append

As #I
IfMainform.startCommandButton.Enabled = True Then Open

OutputDataFile.Text For Append As #1
End If

Loop
ElseifTimeOption.Value =True Then

End If

'Call the StopTask module to stop the DAQmx task.
Stop Task

IfSaveDataCheck.Value = 1 Then
Close #1
Close #2
End If

startCommandButton.Enabled = True

' Display a message indicating the number of samples per channel read.
acquiringLabel.Caption ="Stopped!"

'Analyze the output data.

Dim LaserDistance As Integer
Dim PI, LASERangle, LaserAnglePrime, PSDangle, Phi, PhiPrime, Delta, PSDrange As
Double
Dim DValue(2), VValue(2), TValue(2) 'DValue is distance, VValue is voltage,
TValue is time
Dim DeltaPx, DeltaPy, DeltaU, DeltaH, VDelta, TDelta, LaserX, LaserY, PSDX, PSDY,
v, LNot, XNotPrime, YNotPrime, Velocity As Double
Dim tmp, Cantilever Angle, CantileverNormal, Interface, ChipAngle, A verageChipAngle,
ChipAngleDegree, Average V As Double
Dim ChipAngleCount, V count As Integer
Dim AnalyzedData As String
Dim Origin Voltage, OriginTime, DeltaUSquare As Double
Dim ChipAngleArrayR(3, I 00) As Double
Dim ChipAngleArrayi(3, I 00) As Double

61

Dim XvalueR(3), Xvaluei(3) As Double
Dim Solution(6) As Double

PI= 4 * Atn(I)
PSDangle = Val(frmPSDAngle.Text) *PI I I80
radians
LASERangle = Val(frmLaserAngle.Text) *PI I I80
radians
PSDrange = Val(Mainfonn.PSDrangeText)

'These angles are now in

'These angles are now in

IfSaveDataCheck.Value = I Then Open OutputDataFile.Text For Input As #6

i = Len(OutputDataFile.Text)
AnalyzedData = Left(OutputDataFile.Text, i - 8) & "Analyzed.dat"
Open AnalyzedData For Output As #7

i = 0
Do While EOF(6) = False

Ifi = 0 Then
Input#6,tmp,tmp,tmp,tmp,tmp,tmp,tmp,tmp
Write #7, "Interface", "Time", "DValue", "VValue", "XIR", "XII", "X2R", 11X2I",

"X3R", "X3I11

Elseif i = I Then
Input #6, TValue(2), tmp, tmp, tmp, tmp, DValue(2), VValue(2), Interface
IfDValue(2) <> 11#11 And VValue(2) <> "#11 Then

Write #7 Interface TValue(2) DValue(2) VV alue(2) 11 11 11 11 11 11

' ' ' ' ' , '
DValue(I) = DValue(2)
VValue(I) = VValue(2)
TValue(I) = TValue(2)

Else
i = i- I
ChipAngleCount = I

End If
Else

Input #6, TValue(2), tmp, tmp, tmp, tmp, DValue(2), VValue(2), Interface
IfDValue(2) <> 11#11 Then

IfVValue(2) <> "#11 And VValue(2) <> 0 Then
DeltaPx = DValue(2)- DValue(I)
VDelta = VValue(2)- VValue(I)
TDelta = TValue(2)- TValue(I)
DeltaH = VDelta * 10 I PSDrange 'DeltaH in the units of mm

IfDValue(2) <= 0 And DValue(I) <> 0 And DeltaPx <> 0 Then
'laser point on the chip
'calculate the ChipAngle and Velocity

62

Call VietaTheoremModule.SolveCubicEquation((DeltaPx), (DeltaH),
(PSDangle), (LASERangle), Solution)

ChipAngleArrayR{1, ChipAngleCount) = Solution(!)
ChipAngleArray1(1 , ChipAngleCount) = Solution(2)
ChipAngleArrayR(2, ChipAngleCount) = Solution(3)
ChipAngleArrayl(2, ChipAngleCount) = Solution(4)
ChipAngleArrayR(3, ChipAngleCount) = Solution(5)
ChipAngleArray1(3, ChipAngleCount) = Solution(6)

v = DeltaPx I TDelta
Average V = Average V + v
V count = V count + 1
Write #7, Interface, TValue(2), DValue(2), VValue(2), _
ChipAngleArrayR(1, ChipAngleCount), ChipAngleArrayl(1,

ChipAngleCount); _
ChipAngleArrayR(2, ChipAngleCount), ChipAngleArray1(2,

ChipAngleCount); _
ChipAngleArrayR(3, ChipAngleCount), ChipAngleArrayl(3,

ChipAngleCount)
DValue(1) = DValue(2)
VValue(1) = VValue(2)
TValue(1) = TValue(2)

ElselfDValue(2) > 0 And DValue(2) <= 350 And DeltaPx <> 0 Then
'laser point on the cantilever

consistance

'when laser point goes on the cantilever,
'use chip angle value to calculate the cantilever angle.
IfMainform.frmChipAngle.Text = ""Then

'find the best fit of chip angle in the array
'Call BestFitModule.BestFit(ChipAngleCount)

ChipAngle = 0
'ChipAngle is still in radians, on panel we convert it into degrees for

ChipAngleDegree = 180 * ChipAngle I PI
Mainform.frmChipAngle.Text = ChipAngleDegree
'Lnot must be defined before experiments
LNot = Val(Mainform.frmLNot.Text)
'calculate the XNotPrime and yNotPrime based on LNot and ChipAngle
XNotPrime = LNot * Cos(LASERangle- 2 * ChipAngle)
YNotPrime = LNot * Sin(LASERangle- 2 * ChipAngle)

'get the DValue and VValue when laser point hit the origin
Origin Voltage = Val(Mainform.OriginVoltage.Text)
OriginTime = Val(Mainform.OriginTime.Text)

63

DValue(l) = DValue(2)
VValue(l) = VValue(2)
TValue(l) = TValue(2)

'Mark when laser spot gets on the cantilever
Write #7, "Interface", "Time", "DValue", "VValue", "Angle", "Normal"

i = i - I
End If

'incident laser is LaserY=-
tan(LaserAngle)*laserX+tan(LaserAngle)*Velocity*TDelta

Velocity = Val(Mainform.frmVelocity.Text)
TDelta = TValue(2)- OriginTime

TDelta

YNotPrime

LaserX = DValue(2)
LaserY = -Tan(LASERangle) * LaserX + Tan(LASERangle) *Velocity*

'PSD equation is PSDY = -Tan(PSDAngle) * (PSDX- XNotPrime) +

Del taU = VValue(2) - Origin Voltage
PSDX = -XNotPrime + Abs(DeltaU) * Cos(PSDangle) 'PSDX>O
PSDY = -Tan(PSDangle) * (PSDX- XNotPrime) + YNotPrime

Delta = -Atn((LaserY- PSDY) I (LaserX- PSDX))
CantileverNormal = (PI- LASERangle- Delta) I 2
CantileverAngle = (LASERangle + Delta) I 2
Write #7, Interface, TValue(2), DValue(2), CantileverAngle,

CantileverNormal
DValue(l) = DValue(2)
VValue(l) = VValue(2)
TValue(l) = TValue(2)
Else' DeltaPx=O means DValue(l)= DValue(2)
i = i- 1

End If
ChipAngleCount = ChipAngleCount + I

End If
End If

End If

i = i + 1

Loop

64

Close #6
Close #7

Exit Sub

Error Handler:
If tasklsRunning = True Then

DAQmxStopTask taskHandle
DAQmxClearTask taskHandle
tasklsRunning =False

End If
acquiringLabel.Caption = "Stand by .. . "
startCommandButton.Enabled = True
MsgBox "Error: " & Err.Number & " " & Err.Description, , "Error"

End Sub

Private Sub StopTask()
'Done!
Me.txtVoltPrecision.Enabled = True
DAQmxErrChk DAQmxStopTask(taskHandle)
DAQmxErrChk DAQmxClearTask(taskHandle)
tasklsRunning = False

End Sub

Private Function ValidateControlValues()
'This is an error check. if any of the boxes are empty then a message is sent to the user

ValidateControlValues = 0

IfmaxValueTextBox.Text = ""Or minValueTextBox.Text = ""Or
samplesPerChannelTextBox.Text = "" Or frequencyTextBox.Text = "" Then

MsgBox "Please fill in all empty fields.", , Error
ValidateControlValues = 1

End If
End Function

Private Sub Form_Load()
tasklsRunning = False
acquiringLabel.Caption = "Stand by ... "
StopFlag = False

PointSelect = 1

65

'open the commport for pressure
With MSComm 1

.CommPort = 1

.Settings = 119600,N,8, 111

.PortOpen = True
End With
PrevPressure = 110.0011

PointSelect = 1

End Sub

Private Sub startCommandButton ClickO

newsystime = 1E+26

CWIMAQ1.Interface = 11img011

CWIMAQ1 .LoadlnterfaceDefaults

'TimeTimer.Enabled = True

IfMainform.AutoScaleCheck.Value = 1 Then
Mainform.AutoScaleTimer.Interval = Val(Mainform.AutoScaleText.Text) * 1000
Mainform.AutoScaleTimer.Enabled = True
End If
SystemTime.Text = Format(Now, 11hh:nn:ss11

) & 11
•

11 & Right(Format(Timer, 11#0.0011
),

2)

Open 11C:\Documents and Settings\Josh\Desktop\timeimage.dat11 For Output As #1
Open 11C:\Documents and Settings\Josh\Desktop\timereading.dat11 For Output As #2

End Sub

Private Sub text1 _keypress(keyascii As Integer)
Dim newtempstring As String
Dim length As Integer
Dim Hour, Minute, Second As String
Dim systime As Double

'Ifkeyascii = 13 Then Textl.Text = 11 11

If keyascii >= 48 Or keyascii <= 57 Then

66

length = Len(Textl.Text)
Iflength = 5 Then

SystemTime.Text = Format(Now, "hh:nn:ss") & "." & Right(Format(Timer,
"#0.00"), 2)

Hour = Val(Left(SystemTime.Text, 2)) * 3600
Minute = Left(SystemTime.Text, 5)
Minute = Val(Right(Minute, 2)) * 60
Second = Val(Right(SystemTime.Text, 5))
systime = Hour + Minute + Second

systime = systime - newsystime

newtempstring = systime & "," & Textl.Text

Print #2, newtempstring
Textl.Text = ""

End If
End If

End Sub

' show the mouse_ move in picturebox
Public Sub Display_MouseMove(Button As Integer, Shift As Integer, mAs Single, n As
Single)
CurrentX = m
CurrentY = n
Coordinates.Caption = "Coordinates: (" & m & "," & n & ")"
End Sub

Private Sub Display_ mouseup(Button As Integer, Shift As Integer, x As Single, y As
Single)
If PointS elect = 2 Then
CurrentX = x
CurrentY = y
AreaX2 = x
AreaY2 = y
RightBottom.Caption = "RightBottom:(" & AreaX2 & "," & AreaY2 & ")"

Display.Line (AreaX2, AreaY2)-(AreaX2, AreaYI), vbGreen
Display.Line (AreaX2, AreaY2)-(AreaX1 , AreaY2), vbGreen
Display.Line (AreaXI, AreaY1)-(AreaX2, AreaYl), vbGreen
Display.Line (AreaXl, AreaYl)-(AreaXl , AreaY2), vbGreen

End If

67

End Sub

'chose the scaning area
Private Sub Display_MouseDown(Button As Integer, Shift As Integer, x As Single, y As
Single)
Dim yRegion, Distance As Integer
Dim CantiWidth As Integer
Dim CantiLength As Integer
If Button = 1 Then

If PointS elect = 1 Then
CurrentX = x
CurrentY = y
AreaX1 = x
AreaY1 = y
PointSelect = 2
LeftTop.Caption = "LeftTop:(" & AreaXl & "," & AreaYl & ")"
ElselfPointSelect = 2 Then
CurrentX = x
CurrentY = y
Mainform.LaserPositionX.Text = CurrentX
Mainform.LaserPositionY.Text = CurrentY
Display. Circle (x, y), 1, RGB(O, 255, 0)
PointSelect = PointSelect + 1
Else 'manual laser position collection
CurrentX = x
CurrentY = y
Mainform.MovingLaserPointX = x
Mainform.MovingLaserPointY = y
yRegion = Val(Mainform.LaserPositionY.Text)
Distance = y - yRegion 'distance in pixels
CantiWidth = Val(Mainform.CantiWidth.Text) 'in pixels
'the real width of cantilever is 35 micros
CantiLength = Distance* 35 / CantiWidth 'in micros
Mainform.Distance.Text = CantiLength
'when distance changes, do the average of voltage
DoTheAverage = True
Display.Circle (x, y), 5, RGB(255, 0, 0)
End If

Elself Button = 2 Then 'Right_ click means we choose laser position image by image
IfPointSelect = 3 Then 'define the end of the cantilever
CurrentX = x
CurrentY = y
Display.Circle (x, y), 1, RGB(O, 255, 0)
Mainform.CantiEnd.Text = y
PointSelect = PointSelect + 1
Else

68

CurrentX = x
CurrentY = y
Mainform.MovingLaserPointX = x
Mainform.MovingLaserPointY = y
Display.Circle (x, y), 5, RGB(255, 0, 0)
End If

End If

End Sub

Private Function DetermineChannels()
'This function determines the physical channels to be used when they are selected
'in the frame.
Dim i As Integer
Dim FirstChannel As String
Dim SecondChannel As String

DetermineChannels = ""
FirstChannel = "Devl/ai" & Me.txtFirstVoltage.Text
SecondChannel = ",Devl/ai" & Me.txtSecondVoltage.Text

DetermineChannels = FirstChannel & SecondChannel

End Function

Private Function DetermineTempChannel()

DetermineTempChannel = ""

DetermineTempChannel = "Devl /ai" & Me.txtTemp.Text

End Function

Private Sub StartContinuousCapture _Click()
ConstantCaptureTimer.Interval = Val(ConstantCaptureTime. Text)
ConstantCaptureTimer.Enabled = True

End Sub

Private Sub StopConstantCapture _Click()
ConstantCaptureTimer.Enabled = False
End Sub

Private Sub ConstantCaptureTimer_ Timer()
Call GetNewlmage

IfDrawThelineCheck.Value = 1 Then

69

currentx1 = Cint(Val(LineX1Text.Text))
currenty1 = Cint(Val(LineY1 Text. Text))
currentx2 = Cint(Val(LineX2Text.Text))
currenty2 = Cint(Val(LineY2Text.Text))
Display. Line (currentx2, currenty2)-(currentx 1, currenty 1), vbGreen
End If

End Sub

Private Sub Stop Botton_ Click()
StopFlag = True

If Mainform.AutoScaleTimer.Enabled = True Then
Mainform.AutoScaleTimer.Enabled = False
Mainform.Interface.Text = "0"
End If

If ConstantCaptureTimer.Enabled = True Then
ConstantCaptureTimer.Enabled = False
End If

Mainform.startCommandButton.Enabled = True

Close #1
Close #2

End Sub
Private Sub SaveData(AveTime, AveVoltage, numChannels)
Dim k As Integer
Dim TempString As String

TempString = CStr(CDbl(FormatNumber(AveTime, 4)))

If StartDataPoint = Cint(txtPointsPerFile.Text) + 1 Then
StartDataPoint = 1
OutputDataFile.Text = Replace(OutputDataFile.Text, "-" & CStr(StartDataFile) &

".dat", "-" & CStr(StartDataFile + 1) & ".dat")
StartDataFile = StartDataFile + 1

End If

If chkPressure. Value = 1 Then
Fork = 2 To numChanne1s + 1
TempString = TempString & " ," & CStr(CDb1(FormatNumber(AveVoltage(k),

Int(Me.txtVoltPrecision.Text))))

70

Nextk
TempString = TempString & "," & CStr(CDbl(Trim(lblPressure.Caption)))

Else
IfDoTheAverage = False Then

Fork = 2 To numChannels + 1
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k),

Int(Me.txtVoltPrecision.Text))))
Nextk

'when the distance is still the same, add the voltage signal
PSDaverage = PSDaverage + CDbl(AveVoltage(2))
PSDcounts = PSDcounts + 1
TempString = TempString & "," & CStr(Mainform.Distance.Text) & ",#" & ",#" &

",#"

Else

Fork = 2 To numChannels + 1
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k),

Int(Me.txtVoltPrecision.Text))))
Nextk

'when we get a new distance, do the math.
If PSDcounts = 0 Then
PSDaverage = CDbl(AveVoltage(2))
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," &

CStr(Mainform.Distance.Text) & "," & CStr(PSDaverage) & "," &
CStr(Mainform.Interface.Text)

Else
PSDaverage = PSDaverage I PSDcounts
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," &

CStr(Mainform.Distance.Text) & "," & CStr(PSDaverage) & "," &
CS tr(Mainform.lnterface. Text)

PSDcounts = 0
PSDaverage = 0
End If

Do TheA verage = False
End If

End If

TempString = TempString & "," & Mainform.Textl.Text
Print #2, TempString

71

StartDataPoint = StartDataPoint + 1

'if laser is on Origin point, or distance = 0
'then load the system time and PSD 1 voltage
'IfVal(Mainform.Distance.Text) = 0 Then
'Mainform.OriginVoltage.Text = PSDaverage
'Mainform.OriginTime.Text = AveTime
'End If

End Sub

Private Sub SaveData(AveTime, AveVoltage, numChannels)
Dim k As Integer
Dim TempString As String

TempString = CStr(CDbl(FormatNumber(AveTime, 4)))

If StartDataPoint = Cint(txtPointsPerFile.Text) + 1 Then
StartDataPoint = 1
OutputDataFile.Text = Replace(OutputDataFile.Text, "-" & CStr(StartDataFile) &

".dat", "-" & CStr(StartDataFile + 1) & ".dat")
StartDataFile = StartDataFile + 1

End If

If chkPressure. Value = 1 Then
Fork = 2 To numChannels + 1
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k),

Int(Me.txtVoltPrecision.Text))))
Nextk
TempString = TempString & "," & CStr(CDbl(Trim(lblPressure.Caption)))

Else
Fork = 2 To numChannels + 1
TempString = TempString & "," & CStr(CDbl(FormatNumber(AveVoltage(k),

Int(Me.txtVoltPrecision.Text))))
Nextk ·
TempString = TempString & "," & CStr(Mainform.Distance.Text) & "," &

CStr(Mainform.lnterface. Text)
End If
Print #2, TempString
StartDataPoint = StartDataPoint + 1

End Sub

72

- - ---- -----------------------

Private Sub PlotData(AveTime, AveVol, pAVGt, pAVGvol, numChannels, XOrigin,
YOrigin, ScaleX, SealeY, XOriginT, YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2,
ScaleX2, Scale Y2)
Dim PinXPos, PinYpos As Double
Dim inXPos, inYPos As Double

Do Events

'Here we are drawing the PSD voltage signal
PinXPos = XOrigin + (pA VGt * ScaleX)
inXPos = X Origin + (A veTime * Seal eX)
PinYpos = YOrigin- (pAVGvol(2) *SealeY)
inYPos = YOrigin- (AveVol(2) *SealeY)
Mainform.PicChart.ForeColor = vbGreen
Mainform.PicChart.Line (PinXPos, PinYpos)-(inXPos, inYPos)

'Here we are drawing the PSD2 voltage signal
PinXPos = XOrigin2 + (pA VGt * ScaleX2)
inXPos = XOrigin2 + (A veTime * ScaleX2)
PinYpos = YOrigin2- (pAVGvol(3) * ScaleY2)
inYPos = YOrigin2- (AveVol(3) * ScaleY2)
Mainform.PicChart2.ForeColor = vbGreen
Mainform.PicChart2.Line (PinXPos, PinYpos)-(inXPos, inYPos)

'Here we are drawing the temperature signal
PinXPos = XOriginT + (pA VGt * ScaleXT)
inXPos = XOriginT + (A veTime * Seal eXT)
PinYpos = YOriginT- (pAVGvol(4) * ScaleYT)
inYPos = YOriginT- (AveVol(4) * ScaleYT)
Mainform.TempChart.ForeColor = vbBlue
Mainform.TempChart.Line (PinXPos, PinYpos)-(inXPos, inYPos)

End Sub
Private Function ColorCode(k) As String

If k = 1 Then ColorCode = "vbRed"
Ifk = 2 Then ColorCode = "vbGreen"
If k = 3 Then ColorCode = "vbBlue"
lfk = 4 Then ColorCode = "vbMagenta"

End Function
Private Sub RePlotData(XOrigin, YOrigin, ScaleX, SealeY, XOriginT, YOriginT,
ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2)

73

Dim k, j As Long
Dim PinXPos, PinYpos As Double
Dim inXPos, in YPos As Double
Dim iVoltagel, Voltagel , iVoltage2, Voltage2, iTime, Time, iTemp, Temp As Double

Do Events

j = 1
IfSaveDataCheek.Value = 1 Then

Do While (EOF(l) = False)
lfj = 1 Then

Input #2, iTime, iVoltagel, iVoltage2, iTemp

j = j + 1

Else

Input #2, Time, Voltage}, Voltage2, Temp

'Here we are drawing the PSD voltage signal
PinXPos = XOrigin + (iTime * SealeX)
inXPos = XOrigin + (Time * SealeX)
PinYpos = YOrigin- (iVoltagel *SealeY)
inYPos = YOrigin- (Voltage} *SealeY)
Mainform.PieChart.ForeColor = vbBlaek
Mainform.PieChart.Line (PinXPos, PinYpos)-(inXPos, inYPos)

'Here we are drawing the PSD2 voltage signal
PinXPos = XOrigin2 + (iTime * SealeX2)
inXPos = XOrigin2 + (Time * SealeX2)
PinYpos = YOrigin2- (iVoltage2 * SealeY2)
inYPos = YOrigin2- (Voltage2 * SealeY2)
Mainform.PieChart2.ForeColor = vbBlaek
Mainform.PieChart2.Line (PinXPos, PinYpos)-(inXPos, inYPos)

'Here we are drawing the temperature signal
PinXPos = XOriginT + (iTime * SealeXT)
inXPos = XOriginT + (Time * SealeXT)
PinYpos = YOriginT- (iTemp * SealeYT)
inYPos = YOriginT- (Temp* SealeYT)
Mainform.TempChart.ForeColor = vbBlaek
Mainform.TempChart.Line (PinXPos, PinYpos)-(inXPos, inYPos)

iTime = Time

74

iVoltagel = Voltage I
iVoltage2 = Voltage2
iTemp = Temp

End If

Loop
Close #2

End If

End Sub
Private Function DetermineThermType() As DAQmxThermocoupleTypel

IfMe.txtThermType.Text = "K" Then DetermineThermType =
DAQmx _Val_ ThermocoupleType 1_ K _Type_ TC

IfMe.txtThermType.Text = "B" Then DetermineThermType =
DAQmx _ Val_ ThermocoupleType 1_ B _Type_ TC

If Me.txtThermType.Text = "E" Then DetermineThermType =
DAQmx_ Val_ThermocoupleTypel_E_Type_TC

IfMe.txtThermType.Text = "J" Then DetermineThermType =
DAQmx _Val_ ThermocoupleTypel_J _Type_:_ TC

IfMe.txtThermType.Text = "N" Then DetermineThermType =
DAQmx_ Val_ThermocoupleTypel_N_Type_TC

IfMe.txtThermType.Text = "R" Then DetermineThermType =
DAQmx _Val_ ThermocoupleTypel_ R _Type_ TC

IfMe.txtThermType.Text = "S" Then DetermineThermType =
DAQmx_ Val_ThermocoupleTypel_S_Type_TC

IfMe.txtThermType.Text = "T" Then DetermineThermType =
DAQmx _Val_ ThermocoupleTypel_ T _Type_ TC
End Function

Private Sub TimeTimer _Timer()
SystemTimeCount = SystemTimeCount + 1
Mainform.SystemTime.Text = SystemTimeCount I 10
End Sub

Public Sub InitiateGraph(XMin, XMax, XOrigin, YOrigin, ScaleX, SealeY, XOriginT,
YOriginT, ScaleXT, ScaleYT, XOrigin2, YOrigin2, ScaleX2, ScaleY2)

Dim inCounter
Dim inMaxX As Integer
Dim inMax Y As Integer
Dim inLmarg As Integer
Dim inRrnarg As Integer
Dim inBmarg As Integer
Dim inTmarg As Integer

75

Dim in.XPos As Integer
Dim in YPos As Integer
Dim YLabel, XLabel As Double
Dim XTicks, YTicks As Double

Do Events

YMin = Val(Mainform.minValueTextBox.Text)
YMax = Val(Mainform.max ValueTextBox. Text)

Mainform.PicChart.ForeColor = vbBlack
Mainform.PicChart.AutoRedraw = True
Mainform.PicChart.ScaleMode = 3
Mainform.PicChart.Cls

'Determine the maximum size of chart
inMaxX = Mainform.PicChart.ScaleWidth
inMaxY = Mainform.PicChart.ScaleHeight

'Determine the chart margins, including
'width for the axis labels
inLmarg = Mainform.PicChart.TextWidth("lOOOO")
inBmarg = 1.35 * Mainform.PicChart.TextHeight("5000")
inRmarg = inMaxX- 0.5 * inLmarg
inTmarg = 0.25 * inLmarg
inBmarg = inMax Y - inBmarg

'Determine scale factors for each axis
ScaleX = (inRmarg - inLmarg) I (XMax - XMin)
SealeY = (inBmarg- inTmarg) I (YMax- YMin)

'Determine the origin of the graph
If XMin <= 0 Then

XOrigin = inLmarg + Abs(XMin) * ScaleX
Else

XOrigin = inLmarg - XMin * ScaleX
End If
YOrigin = inBmarg + YMin *SealeY

'Draw a blue lines to show the origin
Mainform.PicChart.ForeColor = vbBlue
Mainform.PicChart.Line (inLmarg, YOrigin)-(inRmarg, YOrigin) 'This draws the real
graphical abscissa
Mainform.PicChart.Line (XOrigin, inTmarg)-(XOrigin, inBmarg) 'This draws the real
graphical ordinate

76

Mainform.PicChart.ForeColor = vbBlack
'Draw Axes
Mainform.PicChart.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the left
ordinate
Mainform.PicChart.Line -(inRmarg, inBmarg) 'This draws the bottom
abscissa
Mainform.PicChart.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top
abscissa
Mainform.PicChart.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the
right ordinate

'Draw labels and tic marks for vertical axis
YTicks = ((YMax - YMin) I 5)
YLabel = Format(YMin, "#0.0")
For inCounter = 1 To 6

Mainform.PicChart.CurrentX = 5
inYPos = inBmarg- ((inCounter- 1) * YTicks *SealeY)
Mainform.PicChart.CurrentY = inYPos
Mainform.PicChart.Print Str(FormatNumber(YLabel, 2, vbUseDefault, vbUseDefault,

vbFalse))
YLabel = YLabel + YTicks
Mainform.PicChart.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length of

the tick mark in pixels
Next inCounter

'Draw labels and tic marks for horizontal axis
XTicks = ((XMax - XMin) I 5)
XLabel = Format(XMin, "#0.0")
For inCounter = 1 To 6

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleX)
Mainform.PicChart.CurrentX = inXPos- Mainform.PicChart.TextWidth("OO") I 2
Mainform.PicChart.CurrentY = inBmarg + 5
Mainform.PicChart.Print Str(FormatNumber(XLabel, 1, vbUseDefault, vbUseDefault,

vbFalse))
XLabel = XLabel + XTicks
Mainform.PicChart.Line (inXPos, inBmarg)-(inXPos, inBmarg - 5)

Next inCounter

'***

'Now we initialize the temperature chart
'New variables XOriginT, YOriginT, ScaleXT, ScaleYT

YMin = Val(Mainform.MinTempYRange.Text)
YMax = Val(Mainform.MaxTempYRange.Text)

77

Mainform.TempChart.ForeColor = vbBlack
Mainform.TempChart.AutoRedraw = True
Mainform.TempChart.ScaleMode = 3
Main form. TempChart. Cls

'Determine the maximum size of chart
inMaxX = Mainform.TempChart.ScaleWidth
inMaxY = Mainform.TempChart.ScaleHeight

'Determine the chart margins, including
'width for the axis labels
inLmarg = Mainform.TempChart.TextWidth("lOOOO")
inBmarg = 1.35 * Mainform.TempChart.TextHeight("5000")
inRmarg = inMaxX- 0.5 * inLmarg
inTmarg = 0.25 * inLmarg
inBmarg = inMax Y - inBmarg

'Determine scale factors for each axis
ScaleXT = (inRmarg - inLmarg) I (XMax - XMin)
ScaleYT = (inBmarg- inTmarg) I (YMax- YMin)

'Determine the origin of the graph
If XMin <= 0 Then

XOriginT = inLmarg + Abs(XMin) * ScaleXT
Else

XOriginT = inLmarg - XMin * ScaleXT
End If
YOriginT = inBmarg + YMin * ScaleYT

'Draw a blue lines to show the origin
Mainform.TempChart.ForeColor = vbBlue
Mainform.TempChart.Line (inLmarg, YOriginT)-(inRmarg, YOriginT) 'This draws
the real graphical abscissa
Mainform.TempChart.Line (XOriginT, inTmarg)-(XOriginT, inBmarg) 'This draws
the real graphical ordinate

Mainform.TempChart.ForeColor = vbBlack
'Draw Axes
Mainform.TempChart.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the
left ordinate
Mainform.TempChart.Line -(inRmarg, inBmarg) 'This draws the bottom
abscissa
Mainform.TempChart.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the
top abscissa
Mainform.TempChart.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the
right ordinate

78

'Draw labels and tic marks for vertical axis
YTicks = ((YMax - YMin) I 5)
YLabel = Format(YMin, "#0.0")
For inCounter = 1 To 6

Mainform.TempChart.CurrentX = 5
inYPos = inBmarg- ((inCounter- 1) * YTicks * ScaleYT)
Mainform.TempChart.CurrentY = inYPos
Mainform.TempChart.Print Str(FormatNumber(YLabel, 1, vbUseDefault,

vbUseDefault, vbFalse))
YLabel = YLabel + YTicks
Mainform.TempChart.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length

of the tick mark in pixels
Next inCounter

'Draw labels and tic marks for horizontal axis
XTicks = ((XMax - XMin) I 5)
XLabel = Format(XMin, "#0.0")
For inCounter = 1 To 6

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleXT)
Mainform.TempChart.CurrentX = inXPos- Mainform.TempChart.TextWidth("OO") I 2
Mainform.TempChart.CurrentY = inBmarg + 5
Mainform.TempChart.Print Str(FormatNumber(XLabel, 1, vbUseDefault,

vbUseDefault, vbFalse))
XLabel = XLabel + XTicks
Mainform.TempChart.Line (inXPos, inBmarg)-(inXPos, inBmarg- 5)

Next inCounter

'***

'Now we initialize the second PSD chart.
'New variables XOrigin2, YOrigin2, ScaleX2, ScaleY2

YMin = Val(Mainform.txtPSD2min.Text)
YMax = Val(Mainform.txtPSD2max.Text)

Mainform.PicChart2.ForeColor = vbBlack
Mainform.PicChart2.AutoRedraw = True
Mainforrn.PicChart2.ScaleMode = 3
Mainform.PicChart2.Cls

'Determine the maximum size of chart
inMaxX = Mainform.PicChart2.ScaleWidth
inMaxY = Mainform.PicChart2.ScaleHeight

79

'Determine the chart margins, including
'width for the axis labels
inLmarg = Mainform.Pi cChart2. Text Width(" 1 0000")
inBmarg = 1.35 * Mainform.PicChart2.TextHeight("5000")
inRmarg = inMaxX- 0.5 * inLmarg
inTmarg = 0.25 * inLmarg
inBmarg = inMax Y - inBmarg

'Determine scale factors for each axis
ScaleX2 = (inRmarg - inLmarg) I (XMax - XMin)
ScaleY2 = (inBmarg- inTmarg) I (YMax- YMin)

'Determine the origin of the graph
If XMin <= 0 Then

XOrigin2 = inLmarg + Abs(XMin) * ScaleX2
Else

XOrigin2 = inLmarg - XMin * ScaleX2
End If
YOrigin2 = inBmarg + YMin * ScaleY2

'Draw a blue lines to show the origin
Mainform.PicChart2.ForeColor = vbBlue
Mainform.PicChart2.Line (inLmarg, YOrigin2)-(inRmarg, YOrigin2) 'This draws the
real graphical abscissa
Mainform.PicChart2.Line (XOrigin2, inTmarg)-(XOrigin2, inBmarg) 'This draws the
real graphical ordinate

Mainform.PicChart2.ForeColor = vbBlack
'Draw Axes
Mainform.PicChart2.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the
left ordinate
Mainform.PicChart2.Line -(inRmarg, inBmarg) 'This draws the bottom
abscissa
Mainform.PicChart2.Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top
abscissa
Mainform.PicChart2.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the
right ordinate

'Draw labels and tic marks for vertical axis
YTicks = ((YMax- YMin) I 5)
YLabel = Format(YMin, "#0.0")
For inCounter = 1 To 6

Mainform.PicChart2.CurrentX = 5
inYPos = inBmarg- ((inCounter- 1) * YTicks * ScaleY2)
Mainform.PicChart2.CurrentY = inYPos

80

Mainform.PicChart2.Print Str(FormatNumber(YLabel, 2, vbUseDefault, vbUseDefault,
vbFalse))

YLabel = YLabel + YTicks
Mainform.PicChart2.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length

of the tick mark in pixels
Next inCounter

'Draw labels and tic marks for horizontal axis
XTicks = ((XMax - XMin) I 5)
XLabel = Format(XMin, "#0.0")
For inCounter = 1 To 6

inXPos = inLmarg + ((in Counter - 1) * XTicks * ScaleX2)
Mainform.PicChart2.CurrentX = inXPos- Mainform.PicChart2.TextWidth("OO") / 2
Mainform.PicChart2.CurrentY = inBmarg + 5
Mainform.PicChart2.Print Str(FormatNumber(XLabel, 1, vbUseDefault, vbUseDefault,

vbFalse))
XLabel = XLabel + XTicks
Mainform.PicChart2.Line (inXPos, inBmarg)-(inXPos, inBmarg - 5)

Next inCounter

End Sub

Public Sub PlotRedLineGraph(Data, TnP, XOrigin, YOrigin, ScaleX, SealeY)

Mainform.PicChart.ForeColor = vbRed
Fori = 1 To TnP

inXPos = XOrigin + (Data(1, i) * ScaleX)
inYPos = YOrigin- (Data(2, i) *SealeY)
Ifi = 1 Then

Mainform.PicChart.CurrentX = inXPos
Mainform.PicChart.CurrentY = inYPos

Else
Mainform.PicChart.Line -(inXPos, inYPos)

End If
Next i
End Sub

Public Sub PlotGreenLineGraph(Data, TnP, XOrigin, YOrigin, ScaleX, SealeY)

Mainform.PicChart.ForeColor = vbGreen
Fori = 1 To TnP

inXPos = XOrigin + (Data(1, i) * ScaleX)
inYPos = YOrigin- (Data(2, i) *SealeY)
Ifi = 1 Then

Mainforrn.PicChart.CurrentX = inXPos

81

Mainform.PicChart.CurrentY = in YPos
Else

Mainform.PicChart.Line -(inXPos, inYPos)
End If

Next i
End Sub

Public Sub DAQmxErrChk(errorCode As Long)

' Utility function to handle errors by recording the DAQmx error code
' and message.

Dim errorString As String
Dim bufferSize As Long
Dim status As Long

If (errorCode < 0) Then
' Find out the error message length.
bufferSize = DAQmxGetErrorString(errorCode, 0, 0)
' Allocate enough space in the string.
errorString = String$(bufferSize, 0)
' Get the actual error message.
status = DAQmxGetErrorString(errorCode, errorString, bufferSize)
' Trim it to the actual length, and display the message
errorString = Left(errorString, InStr(errorString, Chr$(0)))
Err.Raise errorCode, , errorString

End If

End Sub

Public Sub BestFit(Run As Integer) '
Dim i, j, k As Integer
Dim ConsistentXvalueR(), ConsistentXvaluel(), ConsistentXvalueModulus,
XvalueModulus As Double
Dim Rdifference(3), Idifference(3) As Double

MsgBox "Got The BEST FIT part!!!"

For j = l To 3 'SAME COMPARATIONS FOR XI , X2, AND X3

82

Fori = 1 To Run- 1 'SAME COMPARA TION FOR ALL THE OTHER RUNS
'compare Xvalues of first run with Xvalues of the next run

Fork = 1 To 3
Rdifference(k) = ChipAngleArrayR(j, i)- ChipAngleArrayR(k, i + 1)
Idifference(k) = ChipAngleArrayi(j, i)- ChipAngleArrayl(k, i + 1)
Next

'first find out the closest x value in next run by comparing the differences
'looking for the smallest Rdifference"2+Idifference"2

'then take the average of two closest x values as consistant value
'Hope the two closest X values are the exact same X values

End If
Next

Next

End Sub

'If we have a cubic equation in form of A3*x"3+A2*x"2+A1 *x+AO=O (A3<>0)
'then we get following relations according to Vieta's Theorem:
'x 1 +x2+x3=-A2/ A3
'x1 *x2+x2*x3+x3*x1 =Al!A3
'x1 *x2*x3=-AO/A3

'$$$
$$$$$$$$

'Solution for A3*x"3+A2*x"2+A1 *x+AO=O (A3<>0)

'1 Change it in to special form y"3+p*y+q=O
I

'2 Solve y"3+p*y+q=O by y=AC" (l /3)+BC"(ll3)
I

'3 Take A and B as roots of a*z"2+b*z+c=O

'4 Use y=N '{l/3)+8 "(113) and x=y-A2/(3*A3) to solve xl
I

'5 Vieta's Theorem in three degree to solve x2 and x3
'$$$
$$$$$$$$$

83

Public Sub SolveCubicEquation(DeltaPx As Double, DeltaH As Double, PSDangle As
Double, LASERangle As Double, Solution)
Dim A3, A2, A1, AO, p, q, PI, YModulus, YSita As Double
Dim RealYl, RealY2, RealY3, lmageY1, ImageY2, ImageY3, RealX1, RealX2, RealX3,
ImageX1, ImageX2, ImageX3 As Double
Dim uDelta, u1r, uli, u2r, u2i, uModulus, u1Sita, u2Sita, zModulus As Double

PI = 4 * Atn(1)

'change microns into mm
DeltaPx = DeltaPx I 1 000

'For A3*x"3+A2*x"2+A1 *x+AO=O {A3<>0)
A3 = DeltaPx
A2 = -(DeltaH * Sin(PSDangle)- Tan(LASERangle) * DeltaPx- Tan{LASERangle) *
DeltaH * Cos(PSDangle))
A1 = 2 * Tan(LASERangle) * DeltaH * Sin(PSDangle) + DeltaPx- 2 * DeltaH *
Cos(PSDangle)
AO = DeltaH * Sin(PSDangle)- Tan(LASERangle) * DeltaPx + Tan(LASERangle) *
DeltaH * Cos(PSDangle)

'Debug.Print "*********************"
If A3 <> Empty And A3 <> 0 Then

'Substitute x=y-A21(3* A3) to get y"3+p*y+q=O
p = A 1 I A3 - A2 " 2 I (3 * A3 " 2)
q = 2 * A2 "3 I (27 * A3 "3)- A1 * A2 I (3 * A3 "2) + AO I A3
'Debug.Print "p = " & p
'Debug.Print "q = " & q
If p = 0 And q = 0 Then

'y"3=0, 3 real roots of same value.
' Debug.Print "3 same real roots!"

RealX1 = -A2 I (3 * A3)
RealX2 = RealX 1
RealX3 = Real X 1
ImageX1 = 0
lmageX2 = ImageX 1
ImageX3 = ImageX 1

Elself p = 0 Then
'y"3+q=O, only one real root and 2 image roots

84

' Debug.Print "One real root and two image roots! "
YModulus = CubicRoot(-q)
RealXl = YModulus- A2 I (3 * A3)
IrnageXl = 0

' Debug.Print "One real root is xl =" & RealXl

If YModulus > 0 Then
YSita = 2 *PI
Else
YSita = PI
End If

RealX2 = YModulus * Cos(YSita I 3)- A2 I (3 * A3)
ImageX2 = YModulus * Sin(YSita I 3)
RealX3 = RealX2
IrnageX3 = -ImageX2
Debug.Print "Two imaginary roots are: "
Debug. Print "x2 = " & RealX2 & " + " & ImageX2 & "i"
Debug.Print "x3 = " & RealX3 & "+" & ImageX3 & "i"

Else

'To solve y"3+p*y+q=O, use Vieta's substitition y=z-plz
'y"3+p*y+q=O changes to z"6+q*z"3-p"3127=0
'with u = z" 3, we have u"2+q*u-p"3127=0
uDelta = q " 2 + 4 * p " 3 I 27
If uDelta >= 0 Then
ulr = -q I 2 + Sqr(uDelta) I 2
u2r = -q I 2 - Sqr(uDelta) I 2
uti = 0
u2i = 0
uModulus = Sqr(ulr" 2 + uli " 2)
Else

Ifq = 0 Then
ulr = 0
u2r = 0
Else
ulr = -q I 2
u2r = -q I 2
End If

u 1 i = Sqr(-uDelta) I 2
u2i = Sqr(-uDelta) I 2
uModulus = Sqr(ulr " 2 + uli " 2)
End If

85

' Debug.Print "ui =" & uir & " + " & uli & "i"
' Debug.Print "ui =" & uir & "+" & uii & "i"

'each u gives three z, use polar form to solve them
lfuir = 0 Then

Ifuii > 0 Then
uiSita = PI I 2
Elself u I i < 0 Then
ui Sita =PI* 3 I 2
End If

Else If u I r < 0 And u li > 0 Then '2nd
uiSita = PI+ Atn(uii I uir)
Elselfuir < 0 And uii < 0 Then '3rd
uiSita = Atn(uii I uir) +PI
Elselfuir > 0 And uli < 0 Then '4th
ulSita = Atn(uli I ulr) +PI* 2
Else ' u I Sita in the I st phase
uiSita = Atn(uli I uir)
End If

If u2r = 0 Then
If u2i > 0 Then
u2Sita = PI I 2
Elself u2i < 0 Then
u2Sita = PI * 3 I 2
End If

Elself u2r < 0 And u2i > 0 Then '2nd
u2Sita = PI + Atn(u2i I u2r)
Else If u2r < 0 And u2i < 0 Then '3rd
u2Sita = Atn(u2i I u2r) + PI
Else If u2r > 0 And u2i < 0 Then '4th
u2Sita = Atn(u2i I u2r) + PI * 2
Else ' u2Sita in the I st phase
u2Sita = Atn(u2i I u2r)
End If

'we can write ui and u2 in polar forms
'ul =uModulus*(cos(u 1 Sita)+isin(ul sita))
'u2=uModulus*(cos(u2Sita)+isin(u2sita))
zModulus = CubicRoot(uModulus)

' Debug.Print "zl = " & zModulus * Cos(ulSita I 3) & "+" & zModulus * Sin(ulSita I
3) & "i"
' Debug.Print "z2 = " & zModulus * Cos(ul Sita I 3 + 2 *pi I 3) & " + " & zModulus *
Sin(ulSital 3 + 2 *pi I 3) & "i"
' Debug. Print "z3 = " & zModulus * Cos(u 1 Sita I 3 - 2 * pi I 3) & " + " & zModulus *
Sin(ul Sita I 3 - 2 * pi I 3) & "i"

86

' Debug.Print 11Z4 = 11 & zModulus * Cos(u2Sita I 3) & 11 + 11 & zModulus * Sin(u2Sita I
3) & 11i 11

' Debug.Print 11Z5 = 11 & zModulus * Cos(u2Sita I 3 + 2 *pi I 3) & 11 + 11 & zModulus *
Sin(u2Sita I 3 + 2 *pi I 3) & 11i 11

' Debug.Print 11Z6 = 11 & zModulus * Cos(u2Sita I 3- 2 *pi I 3) & 11 + 11 & zModulus *
Sin(u2Sita I 3 - 2 *pi I 3) & 11i 11

'with y=z-pl31z, we got six y values
'y=(zModulus-pl31zmodulus) *cos()+ (zModul us+pl31zmodulus) * sin()i

' Debug.Print 11Yl = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3) & II + " &
(zModulus + p I 3 I zModulus) * Sin(ul Sita I 3) & 11i 11

' Debug.Print 11Y2 = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3 + 2 *pi I 3) & 11

+ 11 & (zModulus + p I 3 I zModulus) * Sin(ulSital 3 + 2 *pi I 3) & 11i 11

' Debug.Print 11 Y3 = 11 & (zModulus- p I 3 I zModulus) * Cos(ulSita I 3- 2 *pi I 3) & 11

+ 11 & (zModulus + p I 3 I zModulus) * Sin(ul Sita I 3 - 2 *pi I 3) & 11i11

' Debug.Print 11Y4 = 11 & (zModulus- p I 3 I zModulus) * Cos(u2Sita I 3) & 11 + 11 &
(zModulus +p I 3 I zModulus) * Sin(u2Sita I 3) & 11i 11

' Debug.Print 11Y5 = 11 & (zModulus- p I 3 I zModulus) * Cos(u2Sita I 3 + 2 *pi I 3) & 11

+ 11 & (zModulus + p I 3 I zModulus) * Sin(u2Sita I 3 + 2 *pi I 3) & 11i 11

' Debug.Print 11Y6 = 11 & (zModulus- pI 3 I zModulus) * Cos(u2Sita I 3 - 2 * pi I 3) & 11

+ 11 & (zModulus +p I 3 I zModulus) * Sin(u2Sita I 3 - 2 *pi I 3) & 11i 11

'use the three real value of y and the relation x=y-A21(3 * A3) to find x
'Dim RealYl, RealY2, RealY3, ImageYl, ImageY2, ImageY3, Xvaluel , Xvalue2,

Xvalue3, Xvaluell, Xvalue2I, Xvalue3I As Double
RealYl = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3)
ImageYl = (zModulus + p I 3 I zModulus) * Sin(ul Sita I 3)
RealY2 = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3 + 2 * PI I 3)
lmageY2 = (zModulus +pI 3 I zModulus) * Sin(ulSita l 3 + 2 * Pl/3)
RealY3 = (zModulus- p I 3 I zModulus) * Cos(ul Sita I 3 - 2 * PI I 3)
ImageY3 = (zModulus + pI 3 I zModulus) * Sin(ulSita l 3-2 *PI I 3)

RealXl = RealYl - A2 I (3 * A3)
lmageX 1 = Image Y 1
RealX2 = RealY2 - A2 I (3 * A3)
ImageX2 = Image Y2
RealX3 = RealY3- A2 I (3 * A3)
ImageX3 = Image Y3

' Debug.Print 11Xl =11 & RealXl & 11 + 11 & ImageXl & 11i 11

' Debug. Print 11X2 = 11 & Rea1X2 & 11 + 11 & ImageX2 & "i 11

' Debug. Print 11X3 =11 & RealX3 & 11 + 11 & ImageX3 & "iII

End If
End If

87

Solution(l) = RealXI
Solution(2) = ImageXI
Solution(3) = RealX2
Solution(4) = ImageX2
Solution(S) = RealX3
Solution(6) = lmageX3
'Debug.Print "- THE END--"
End Sub
Public Function CubicRoot(Value)
'Dim value As Double
If Value < 0 Then
Value = -Value
CubicRoot = Value 1\ (1 I 3)
CubicRoot = -CubicRoot
Else
CubicRoot = Value 1\ (I / 3)
End If
End Function

88

Appendix B:
Visual Basic Program Code for Cubic Equation
Solution

Private Sub Command! Click()
Dim a, b, c, d As Double 'These are the coeficients of the cubic equations
Dim x(3, 2) As Double 'This is the solution to the cubic equation
Dim InputData(), Data() As Double
Dim i, j, k, iTnp, Tnp As Integer
Dim PSD, Time, iDistance As Double
Dim tmp As Variant

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\AveragedData.csv" For Input
As #1

i = O
Do While EOF(l) = False

ReDim Preserve Data(3, i)
Input #1, Data(l, i), Data(2, i)

iTnp = i
i = i + 1

Loop
Close #1

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\outAveragedData.csv" For
Output As #1
Fori= 1 To iTnp

Write #1, Data(l, i), Data(2, i)
Next i
Close #1

Call FitStraightLine(iTnp, Data, m, b)

'Now we step through the value of deltaPx
Dim DPx, Dh, Limit As Double
Dim Phi, Theta, Pi, NewTheta As Double
Pi = 4 * Atn(l)
Phi = 30 * Pi I 180
Theta= 60 *Pi I 180

89

Limit= Abs(Data(l, 1))
i = I

N ewTheta = Theta

Open "C:\Documents and Settings\Josh\Desktop\Beta Data\output.csv" For Output As #1
Write #1, "Theta", "Distance", "PSD", "R(x1)", "l(x1)", "R(x2)", "l(x2)", "R(x3)", "I(x3)"

'For Theta= (60 + 0.5) *Pi 1180 To (60 + 1) *Pi 1180 Step 0.0001
'For DPx = Limit 1100 To Limit Step Limit 1100
Fori = 1 To iTnp

DPx = Data(1, i)
Dh = Data(2, i)
'Dh=m * DPx
dhy = Dh * Sin(Phi)
dhx = Abs(Dh * Cos(Phi))
AlphA = dhx - DPx
'Tan(Theta + 2 *beta)
a=DPx
b = AlphA * Tan(Theta) - dhy + 2 * DPx * Tan(Theta)
c = -2 * dhy * Tan(Theta) - DPx - 2 * AlphA
d = dhy- AlphA * Tan(Theta)

Call Vieta(a, b, c, d, x)
Write #1, Theta, DPx, Dh, Atn(x(1, 1)) * 180 I Pi, x(1, 2), Atn(x(2, 1)) * 180 I Pi,

x(2, 2), Atn(x(3, 1)) * 180 I Pi, x(3, 2)

Next i
'Next DPx

'Next Theta

Close #1

End Sub

Public Sub Vieta(AA, BB, CC, DD, x)

Dim b, c, d, e, f As Double
Dim AAA, BBB, CCC As Double
Dim u1(2), u2(2), u1Norm, u2Norm, ul Theta, u2Theta As Double
Dim z1(2), z2(2), z3(2), z4(2), z5(2), z6(2) As Double
Dim zlNorm, z2Norm, z3Norm, z4Norm, z5Norm, z6Norm, zlTheta, z2Theta, z3Theta,
z4Theta, z5Theta, z6Theta As Double
Dim y1(2), y2(2), y3(2), y4(2), y5(2), y6(2) As Double

90

Dim ylNorm, y2Norm, y3Norm, y4Norm, y5Norm, y6Norm, yl Theta, y2Theta, y3Theta,
y4Theta, y5Theta, y6Theta As Double
Dim xtmp(6, 2) As Variant
'Dim xtmp(3, 2) As Double
Dim Threshold As Double
Threshold = 0.00000000000001

b = BBI AA
c =CCI AA
d=DDI AA

e = c - (b " 2) I 3
f = (2 * b" 3) I 27- (c *b) I 3 + d

'At this point we have a quadratic of the form u"2 + fi' u- e"3127 = 0
'where u = z"3
'Solve this quadratic

AAA = l
BBB = f
CCC = -e" 3 I 27

If BBB " 2 - 4 * AAA * CCC < 0 Then
'If this is the case then we have an imaginary solution
'Open "C:\Documents and Settings\Luc\My

Documents\DATA\Mun\Programs\Vieta\temp.txt" For Output As #I
u1(1) = -BBB I (2 * AAA) 'Real part
ul(2) = Sqr(Abs(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Imaginary part,

Positive root
u2(1) = -BBB I (2 * AAA) 'Real part
u2(2) = -Sqr(Abs(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Imaginary part,

Negative root
' Print #1, "u1(1) = " & u1(1)
' Print #1, "u1(2) = " & u1(2)
' Print #1 , "u2(1) = " & u2(1)
' Print #1 , "u2(2) = " & u2(2)
' Close #1

'At this point we have solve for z in z"3 = u
'Since there are two values ofu, there are six values ofz
'four of which are complex
'The best thing to do is to convert u 1 and u2 in to polar form
ulNorm = Norm(ul(l), u1(2))
ulTheta = Angle(u1(2), ul(l))
u2Norm = Norrn(u2(1), u2(2))

91

----- - - ------- ---- --------- --

u2Theta = Angle(u2(2), u2(1))

z1(1) = CubeRoot(u1Norm) * Cos(u1Theta I 3)
z1{2) = CubeRoot(u1Norm) * Sin(u1Theta I 3)
z2(1) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u1Norm) * Cos(Angle(Sqr(3) I 2, -1 I 2) +

u1 Theta I 3)
z2(2) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u1Norm) * Sin(Angle(Sqr(3) I 2, -1 I 2) +

u1 Theta I 3)
z3(1) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u1Norm) * Cos(Angle(-Sqr(3) I 2, -1 I 2)

+ u1 Theta I 3)
z3(2) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u1Norm) * Sin(Angle(-Sqr(3) I 2, -1 I 2)

+ ul Theta I 3)

z4(1) = CubeRoot(u2Norm) * Cos(u2Theta I 3)
z4(2) = CubeRoot(u2Norm) * Sin(u2Theta I 3)
z5(1) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u2Norm) * Cos(Angle(Sqr(3) I 2, -1 I 2) +

u2Thetal 3)
z5(2) = Norm(-1 I 2, Sqr(3) I 2) * CubeRoot(u2Norm) * Sin(Angle(Sqr(3) I 2, -1 I 2) +

u2Theta I 3)
z6(1) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u2Norm) * Cos(Angle(-Sqr(3) I 2, -1 I 2)

+ u2Theta I 3)
z6(2) = Norm(-1 I 2, -Sqr(3) I 2) * CubeRoot(u2Norm) * Sin(Angle(-Sqr(3) I 2, -1 I 2)

+ u2Theta I 3)

Else
u1(1) = (-BBB + Sqr(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Real part, Positive

root
u1 (2) = 0 'Imaginary part
u2(1) = (-BBB- Sqr(BBB " 2- 4 * AAA *CCC)) I (2 * AAA) 'Real part, Negative

root
u2(2) = 0 'Imaginary part
'At this point we have solve for z in z"3 = u
'Since there are two values of u, there are six values of z
'four of which are complex

z1(1) = CubeRoot(u1(1))
z1(2) = 0
z2(1) = -1 I 2 * CubeRoot(u1(1))
z2(2) = 1 I 2 * 3 " (1 I 2) * CubeRoot(u1(1))
z3(1) = -1 I 2 * CubeRoot(u1(1))
z3(2) = -1 I 2 * 3 " (1 I 2) * CubeRoot(u1(1))

z4(1) = CubeRoot(u2(1))
z4(2) = 0
z5(1) = -1 I 2 * CubeRoot(u2(1))
z5(2) = 1 I 2 * 3 " (1 I 2) * CubeRoot(u2(1))

92

z6(1) = -1 I 2 * CubeRoot(u2(1))
z6(2) = -1 I 2 * 3 " (1 I 2) * CubeRoot(u2(1))

End If

'At this point we have 6 different solutions for z.
'We now need to solve for y = z -el(3z)
'First rewrite every complex z number in polar form
zlNorm = Sqr(zl(l)" 2 + zl(2)" 2)
z2Norm = Sqr(z2{1) " 2 + z2(2) " 2)
z3Norm = Sqr(z3(1) "2 + z3(2) "2)
z4Norm = Sqr(z4(1) " 2 + z4(2) "2)
z5Norm = Sqr(z5(1) " 2 + z5(2) " 2)
z6Norm = Sqr(z6(1) " 2 + z6(2) " 2)
zl Theta = Angle(z1(2), zl(l))
z2Theta = Angle(z2(2), z2(1))
z3Theta = Angle(z3(2), z3(1))
z4Theta = Angle(z4(2), z4(1))
z5Theta = Angle(z5(2), z5(1))
z6Theta = Angle(z6(2), z6(1))

yl{l) = (zlNorm- e I (3 * zlNorm)) * Cos{zlTheta)
y1(2) = {zlNorm + e I (3 * zlNorm)) * Sin(zlTheta)
y2(1) = (z2Norm- e I (3 * z2Norm)) * Cos(z2Theta)
y2(2) = (z2Norm + e I (3 * z2Norm)) * Sin(z2Theta)
y3(1) = (z3Norm- e I (3 * z3Norm)) * Cos(z3Theta)
y3(2) = (z3Norm + e I (3 * z3Norm)) * Sin(z3Theta)
y4(1) = (z4Norm- e I (3 * z4Norm)) * Cos(z4Theta)
y4(2) = (z4Norm + e I (3 * z4Norm)) * Sin(z4Theta)
y5(1) = (z5Norm- e I (3 * z5Norm)) * Cos(z5Theta)
y5(2) = (z5Norm + e I (3 * z5Norm)) * Sin(z5Theta)
y6(1) = (z6Norm- e I (3 * z6Norm)) * Cos(z6Theta)
y6(2) = (z6Norm + e I (3 * z6Norm)) * Sin(z6Theta)

Call CheckforZeros(yl(l), Threshold)
Call CheckforZeros(y1(2), Threshold)
Call CheckforZeros(y2(1), Threshold)
Call CheckforZeros(y2(2), Threshold)
Call CheckforZeros(y3(1), Threshold)
Call CheckforZeros(y3(2), Threshold)
Call CheckforZeros(y4(1), Threshold)
Call CheckforZeros(y4(2), Threshold)
Call CheckforZeros(y5(1), Threshold)
Call CheckforZeros(y5(2), Threshold)
Call CheckforZeros(y6(1), Threshold)

93

Call CheckforZeros(y6(2), Threshold)

'Now we finally get the roots of out cubic equations by solving for
'x = y- bl3
'In principal only three of these roots should be unique.

xtrnp(1, 1) = y1(1)- b 13
Ify1(2) <> 0 Then

xtmp(1, 2) = y1(2) '- b 13
Else

xtmp(l, 2) = 0
End If

xtmp(2, 1) = y2(1)- b 13

If y2(2) <> 0 Then
xtrnp(2, 2) = y2(2) '- b 13

Else
xtmp(2, 2) = 0

End If

xtmp(3, 1) = y3(1)- b 13

If y3(2) <> 0 Then
xtrnp(3, 2) = y3(2) '- b I 3

Else
xtmp(3, 2) = 0

End If

xtrnp(4, 1) = y4(1)- b 13

If y4(2) <> 0 Then
xtmp(4, 2) = y4(2) '- b 13

Else
xtrnp(4, 2) = 0

End If

xtrnp(5, 1) = y5(1)- b 13

If y5(2) <> 0 Then
xtmp(5, 2) = y5(2) '- b I 3

Else
xtmp(5, 2) = 0

End If

94

xtmp(6, 1) = y6(1)- b I 3

If y6(2) <> 0 Then
xtmp(6, 2) = y6(2) '- b I 3

Else
xtmp(6, 2) = 0

End If

k = 1
Fori = 1 To 6

lfxtmp(i, 1) <>""And xtmp(i, 2) <>""Then
x(k, 1) = xtmp(i, 1)
x(k, 2) = xtmp(i, 2)
For j = 1 To 6

lfi <> j Then
Ifx(k, 1) Like xtmpG, 1) And x(k, 2) Like xtmpG, 2) Then

xtmpG, 1) = ""
xtmpG, 2) = ""

End If
End If

Nextj
k = k+1
Ifk = 4 Then Exit For

End If
Next i

End Sub
Public Function CubeRoot(a) As Double
Dim tmp
If a>= 0 Then

CubeRoot = a " (1 I 3)
Else

CubeRoot = -Abs(a) " (1 I 3)
End If
End Function
Public Function Norm(a, b) As Double

Norm = Sqr(a" 2 + b " 2)
End Function
Public Function Angle(deltay, deltax) As Double
Dim Pi As Double
Pi = 4 * Atn(l)

If deltax > 0 And deltay = 0 Then
Angle = 0

Elself deltax < 0 And deltay = 0 Then
Angle = Pi

95

Elseif del tax >= 0 And deltay >= 0 Then
Angle = Atn(deltay I deltax)

Elseif del tax< 0 And deltay >= 0 Then
Angle = Atn(Abs(deltax) I deltay) +Pi I 2

Elseif deltax < 0 And deltay < 0 Then
Angle = Atn(Abs(deltay) I Abs(deltax)) + Pi

Elseif del tax >= 0 And deltay < 0 Then
Angle = Atn(Abs(deltax) I Abs(deltay)) + 3 *Pi I 2

End If

End Function
Public Sub CheckforZeros(a, Threshold)

If Abs(a) <Threshold Then a= 0
End Sub

Public Sub FitStraightLine(iTnp, Data, m, b)
'This routine assumes that he data has two columns x -> Data(l ,i) y -> Data(2,i)
'and the tnp is the total number of data points in the array Data()
'This routine fines the best fit line to the data.
'The line is y = m*x + b
Dim S, Sx, Sy, Sxx, Sxy As Double
Dim Delta As Double
'Dim m, b As Double

S = O
Sx = O
Sy = O
Sxx = 0
Sxy = O

Fori = 1 To iTnp
S = S+l
Sx = Sx + Data(l, i)
Sy = Sy + Data(2, i)
Sxx = Sxx + Data(!, i) 1\ 2
Sxy = Sxy + Data(2, i) * Data(1, i)

Next i
Delta = S * Sxx - Sx 1\ 2
b = (Sxx * Sy- Sx * Sxy) I Delta
m = (S * Sxy- Sx * Sy) I Delta

End Sub

96

Appendix C:
Visual Basic Program Code for Polynomial Fit

Option Explicit
Dim fit As New RegressionObject

Private Sub Command 1_ Click()

Dim i, NPT, j, k, q, NewQ, ImageNPT, AllCoeffNPT, PolyPoint, Interface() As Integer
Dim dataX(), dataY(), ImageDataX(), ImageDataY() As Double
Dim Time(), Gauge(), Coefill(), Coeffl (), Coeff2(), Coeff3(), Coeff4() As Double
Dim Origin, DeltaPy, PI As Double
Dim X#, Xmin#, Xmax#, Ymin#, Ymax#, Y#
Dim Blue, Green As Integer

PI = Atn(1) * 4
fit.Degree = 4 'we want a 4th order polynomial
Origin= Val(OriginText.Text)

Open "C:\Documents and Settings\Josh\Desktop\timereading.dat" For Input As #1
Open "C:\Documents and Settings\Josh\Desktop\ALLCoeffs-" & OriginText.Text &
".dat" For Output As #2

'Input timereading.dat as Polynomial fit data
i = O
Do While (EOF(1) = False)
ReDim Preserve dataX(i)
ReDim Preserve dataY(i)

Input #1, dataX(i), dataY(i) 'time and position (mm)
dataY(i) = (dataY(i)- Origin)* 1000 'microns
i = i + 1
Loop

NPT = i- 1

'***

'***

Dim inCounter
Dim inMaxX As Integer

97

Dim inMaxY As Integer
Dim inLmarg As Integer
Dim inRmarg As Integer
Dim inBmarg As Integer
Dim inTmarg As Integer
Dim inXPos As Integer
Dim in YPos As Integer
Dim YLabel, XLabel As Double
Dim XTicks, YTicks As Double
'Dim Xmin, Xmax, Ymin, Ymax As Double
Dim ScaleX, SealeY As Double
Dim XOrigin, YOrigin As Double

Xmin = dataX(O)
Xmax = dataX(NPT)
Ymin = dataY(O)
Y max = data Y(NPT)

MainForm.Picl .ForeColor = vbBlack
MainForm.Picl.AutoRedraw = True
MainForm.Picl.ScaleMode = 3
MainF orm.Pic 1. Cis

'Determine the maximum size of chart
inMaxX = MainForm.Picl.ScaleWidth
inMaxY = MainForm.Picl .ScaleHeight

'Determine the chart margins, including
'width for the axis labels
inLmarg = MainForm.Picl.TextWidth(" l OOOO")
inBmarg = 1.35 * MainForm.Picl.TextHeight("5000")
inRmarg = inMaxX- 0.5 * inLmarg
inTmarg = 0.25 * inLmarg
inBmarg = inMaxY- inBmarg

'Determine scale factors for each axis
ScaleX = (inRmarg- inLmarg) I (Xmax- Xmin)
SealeY = (inBmarg- inTmarg) I (Ymax - Ymin)

'Determine the origin of the graph
IfXmin <= 0 Then

XOrigin = inLmarg + Abs(Xmin) * ScaleX
Else

XOrigin = inLmarg - Xmin * ScaleX
End If
YOrigin = inBmarg + Ymin *SealeY

98

'Draw a blue lines to show the origin
MainForrn.Pic1.ForeColor = vbBlue
MainForrn.Pic1.Line (inLmarg, YOrigin)-(inRmarg, YOrigin) 'This draws the real
graphical abscissa
MainForrn.Pic1.Line (XOrigin, inTmarg)-(XOrigin, inBmarg) 'This draws the real
graphical ordinate

MainForrn.Pic1.ForeColor = vbBlack
'Draw Axes
MainForrn.Pic1.Line (inLmarg, inTmarg)-(inLmarg, inBmarg) 'This draws the left
ordinate
MainForrn.Pic1.Line -(inRmarg, inBmarg) 'This draws the bottom abscissa
MainForrn.Pic1 .Line (inLmarg, inTmarg)-(inRmarg, inTmarg) 'This draws the top
abscissa
MainForrn.Pic1.Line (inRmarg, inTmarg)-(inRmarg, inBmarg) 'This draws the right
ordinate

'Draw labels and tic marks for vertical axis
YTicks = ((Ymax - Ymin) I 5)
YLabel = Forrnat(Ymin, "#0.0")

For inCounter = 1 To 6

MainForrn.Pic1 .CurrentX = 5
inYPos = inBmarg- ((inCounter- 1) * YTicks *SealeY)
MainForrn.Pic1 .CurrentY = in YPos
MainForrn.Picl .Print Str(ForrnatNumber(YLabel, 2, vbUseDefault, vbUseDefault,

vbFalse))
YLabel = YLabel + YTicks
MainForrn.Picl.Line (inLmarg, inYPos)-(inLmarg + 5, inYPos) '5 is the length of the

tick mark in pixels

Next inCounter

'Draw labels and tic marks for horizontal axis
XTicks = ((Xmax - Xmin) I 5)
XLabel = Forrnat(Xmin, "#0.0")

For inCounter = 1 To 6

inXPos = inLmarg + ((inCounter- 1) * XTicks * ScaleX)
MainForrn.Picl.CurrentX = inXPos- MainForrn.Picl.TextWidth("OO") I 2
MainForrn.Picl .CurrentY = inBmarg + 5
MainForrn.Pic 1.Print Str(ForrnatNumber(XLabel, 1, vbUseDefault, vbUseDefault,

vbFalse))

99

XLabel = XLabel + XTicks
MainForm.Picl.Line (inXPos, inBmarg)-(inXPos, inBmarg- 5)

Next inCounter

For i = 0 To NPT

inXPos = X Origin + (dataX(i) * Seal eX)
inYPos = YOrigin- (dataY(i) *SealeY)

Pici .Circle (inXPos, inYPos), I, RGB(O, 0, 0)

Next i

'***

'***

PolyPoint = Clnt(PolyPointText.Text)

Blue = 0
Green = 0

Fori = I To NPT - PolyPoint

For j = 0 To PolyPoint
fit.XY Add dataX(i + j), data Y(i + j) 'add data to the fit

Nextj

Textl.Text = 11Y = 11 & fit.Coeff(O) & 11 + 11 & fit.Coeff(I) & "x + 11 & fit.Coeff(2) &
11x"2 +" & fit.Coeff(3) & "x"3 + 11 & fit.Coeff(4) & 11X"4"

Text3.Text = fit.Coeff(O)
Text4.Text = fit.Coeff(I)
Text5.Text = fit.Coeff(2)
Text6.Text = fit.Coeff(3)
Text7.Text = fit.Coeff(4)

Print #2, dataX(i) & "," & dataY(i) & 11
,

11 & fit.Coeff(O) & 11
,

11 & fit.Coeff(I) & ",11 &
fit.Coeff(2) & ",11 & fit.Coeff(3) & 11

,
11 & fit.Coeff(4)

'Plot!!!!!!!!
Xmin = dataX(i)
Xmax = dataX(i + j- 1)

100

Picl.CurrentX = XOrigin + (Xmin * ScaleX)
Picl.CurrentY = YOrigin- (fit.RegVal(Xmin) * SealeY)

For X = Xmin To Xmax
inXPos = XOrigin + (X * ScaleX)
inYPos = YOrigin- (fit.RegVal(X) *SealeY)

If Blue > 51 Then Blue = 51
If Green > 51 Then Green = 51

Picl.Line -(inXPos, inYPos), RGB(255, 255- Green* 5, Blue* 5)
Next X

'clear for next run
j=O
fit.Init
Blue = Blue + 1
Green = Green + 1

Next i

Close #1
Close #2

'Reload All Coeff for calculation
Open "C:\Docurnents and Settings\Josh\Desktop\ALLCoeffs-" & OriginText.Text &
".dat" For Input As #3
Open "C:\Documents and Settings\Josh\Desktop\output.csv" For Input As #4
Open "C:\Documents and Settings\Josh\Desktop\DeltaPy-" & OriginText.Text & ".dat"
For Output As #5

Print #5, OriginText.Text, "Time", "Image", "Gauge", "Fit", "DeltaPy"

'Input All coeff for Poly fit
q = O
Do While (EOF(3) = False)
ReDim Preserve Time(q)
ReDim Preserve Gauge(q)
ReDim Preserve Coef£0(q)
ReDim Preserve Coeffl (q)
ReDim Preserve Coeff2(q)
ReDim Preserve Coeff3(q)
ReDim Preserve Coeff4(q)

101

Input #3, Time(q), Gauge(q), CoeffO(q), Coeffl(q), Coeff2(q), Coeff3(q), Coeff4(q)
q = q+l
Loop

AllCoeffNPT = q- 1

'Input Output.csv as image data
k = O
Do While (EOF(4) =False)
ReDim Preserve ImageDataX(k) 'time
ReDim Preserve ImageDataY(k) 'distance
ReDim Preserve Interface(k)

Input #4, Interface(k), ImageDataX(k), lmageData Y(k) ' time and position (micron)
k=k+l
Loop

ImageNPT = k - 1

'Do the math when Imagetime falls in the readingtime scale
Fork= 0 To ImageNPT

For q = NewQ To AllCoeffNPT- 1

If ImageDataX(k) <= Time(NewQ) Then
NewQ=q
Exit For
Elself lmageDataX(k) <= Time(q + 1) Then
NewQ = q + 1
Exit For
End If

Nextq

X = ImageDataX(k)
Y = CoefiD(NewQ) + Coeffl(NewQ) *X+ Coeff2(NewQ) *X* X+ Coeff3(NewQ) *
X * X * X + Coeff4(N ewQ) * X * X * X * X

DeltaPy = Tan(60 *PI I 180) * (lmageDataY(k)- Y)

Print #5, ImageDataX(k), ImageDataY(k), Gauge(NewQ), Y, DeltaPy

Nextk

102

Close #3
Close #4
Close #5
End Sub

Option Explicit

Private Const MaxO& = 25
Private GlobalO& '"Ordnung" = degree of the polynom expected
Private Finished As Boolean

Private SumX#(O To 2 * MaxO)
Private Sum YX#(O To MaxO)
Private M#(O To MaxO, 0 To MaxO + 1)
Private C#(O To MaxO) 'coefficients in: Y = C(O)*X"O + C(l)*X" l + C(2)*X"2 + 0 00

Private Sub GaussSolve(O&)
'gauss algorithm implementation,
'following RoSedgewick's "Algorithms inC", Addison-Wesley, with minor modifications
Dim i&, j&, k&, iMax&, T#, 01#
01 = 0 + 1
'first triangulize the matrix
Fori = 0 To 0

iMax = i: T = Abs(M(iMax, i))
For j = i + 1 To 0 'find the line with the largest absvalue in this row
IfT < Abs(M(j, i)) Then iMax = j: T = Abs(M(iMax, i))

Nextj
If i < iMax Then 'exchange the two lines
Fork = iTo 01
T = M(i, k)

M(i, k) = M(iMax, k)
M(iMax, k) = T

Nextk
End If
For j = i + 1 To 0 'scale all following lines to have a leading zero
T = M(j, i) I M(i, i)
M(j, i) = 0#
Fork = i + 1 To 01
M(j, k) = M(j, k) - M(i, k) * T

Nextk
Nextj

Next i

103

'then substitute the coefficients
For j = 0 To 0 Step -1
T = M(j, 01)
For k = j + 1 To 0
T = T- M(j, k) * C(k)

Nextk
C(j) = T I M(j, j)

Nextj
Finished = True

End Sub

Private Sub BuildMatrix(O&)
Dim i&, k&, 01&
01 = 0 + 1
Fori = 0 To 0
Fork = OTo 0

M(i, k) = SumX(i + k)
Nextk
M(i, 01) = SumYX(i)

Next i
End Sub

Private Sub FinalizeMatrix(O&)
Dim i&, 01&
01 = 0 + 1
Fori= 0 To 0

M(i, 01} = SumYX(i)
Next i

End Sub

Private Sub Solve()
DimO&
0 = GlobalO
IfXYCount <= 0 Then 0 = XYCount- 1
IfO < 0 Then Exit Sub
BuildMatrix 0
On Error Resume Next

GaussSolve (0)
While (Err.Number <> 0) And (1 < 0)

Err.Clear
C(O) = 0#
0 = 0-1
FinalizeMatrix (0)

Wend
On Error GoTo 0

End Sub

104

Private Sub Class_ Initialize()
Init
GlobalO = 2

End Sub

Public Sub Init()
Dimi&
Finished = False
Fori = 0 To MaxO

SumX(i) = 0#
SumX(i + MaxO) = 0#
Sum YX(i) = 0#
C(i) = 0#

Next i
End Sub

Public Property Get Coeff#(Exponent&)
DimEx&,O&
IfNot Finished Then Solve
Ex = Abs(Exponent)
0 = GlobalO
IfXYCount <= 0 Then 0 = XYCount- 1
IfO <Ex Then Coeff = 0# Else Coeff = C(Ex)

End Property

Public Property Get Degree&()
Degree= GlobalO

End Property
Public Property Let Degree(NewVal&)

IfNewVal < 0 Or MaxO < NewVal Then
Err.Raise 6000, "RegressionObject", NewVal & "is an invalid property value! Use

0<= Degree <= " & MaxO
Exit Property

End If
Init
GlobalO = NewVal

End Property

Public Property Get XYCount&()
XYCount = CLng(SumX(O))

End Property

Public Function XY Add(ByVal New X#, ByVal NewY#)
Dim i&, j&, TX#, Max20&

Finished = False

105

Max20 = 2 * GlobalO
TX = 1#
SurnX(O) = SumX(O) + 1
SumYX(O) = SumYX(O) + NewY
Fori = 1 To GlobalO

TX = TX * NewX
SurnX(i) = SumX(i) + TX
SumYX(i) = SumYX(i) + NewY * TX

Next i
Fori = GlobalO + 1 To Max20

TX = TX * NewX
SurnX(i) = SurnX(i) + TX

Next i
End Function

Public Function RegVal#(X#)
Dimi&, 0&
lfNot Finished Then Solve
RegVal = 0#
0 = GlobalO
IfXYCount <= 0 Then 0 = XYCount- 1
Fori = 0 To 0

RegVal = RegVal + C(i) *X" i
Next i

End Function

106

