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Concurrency in DES nd A Class of Hybrid Systems:
T 2ory And Computation

by

Seyed Mchdi Fatemi Booshehri

Abstract

This thesis explaius the general concurrency of discrete event systems (DES), and
then extends it to hybrid syvstems. To this end. firstly, a theoretical extension with
n-ary structure is considered for the concurrency of a group of DES in the presence
of specifications. A new concept (called map) is then introduced to meet a particular
class of specifications, which are based upon both events and states. The map will
be used to develop the n-arv synchronous product composition to a new composition
rule, called accommodating _ nchronous product (ASP), which can implement the
mentioned class of specifications.

Morcover, the DES cone s will be extended to a class of hybrid dynamical
systems, whose concurrency is @« d to happen exclusively in the logical part. In
such systems. a continuous dynamics (a physical behaviour) generates an event which
then is passed to a DES to cause a transition (if any).

In the last part, a M...  AB-based software has been developed as the testbed
for the theory and algorithms described throughout the thesis. The software has

been designed with the consideration of object-oriented design, vectorization, and

i\



compatibility with standard DES software. Based on its structure and a variety of
different methods, it can be used for mmanipulating and exploring both concurrent
DES and concurrent hybrid systems. Finally, the concepts presented in the the

will be demonstrated in an extensive computational examiple solved by the software.
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required before introducing the de ed object-oriented design.

As a natural extension, a set of continuous dynamics can he added to this n-ary
view of DIES, as the source of event generation. This will shape a simple class of
hybrid systems which are allowed to have synchronization only in the logical level of
abstraction. This class can be explained by the existing theory of hybrid automata,
which shapes the last part of this work.

In this thesis, the basic theoretical concepts and required definitions are first
considered. We then extend the th vy to computation by introducing software which

has been designed during this research.,

1.2 Problem St-*er >nt

1.2.1 Motivation

Discrete event systems and sup  sisory control are well-developed arcas. whicl have
received considerable attention and rescarch for  ore than two decades. However,
when dealing with a group of DES, two issues are still remained to be addressed

properly:

1. The DIS theory, for the most part, has been constructed upon the binary
formalism. It is still requirc  to have standard definitions and methodologies
dealing with a set of DIES «  the arbitrary cardinality n > 2. Note that, thanks
to the commutativity and the associativity properties, the binary formalism can
be generalized to an n-ary version; however, for the sake of software develop-
ment, it is more convenient to have a complete n-ary formalism at the theory

stage.

o

The existing theory and con utational enviromments tackle only specifications
which are solely event-based; it is required to meet the specifications based also

on the states of cach DISS in the group.



3.

Such a framework can also be extended to a limited class of hybrid systems,

having synchronization only in the DES level of abstraction.

1.2.2 Problem Statement

1.

o

Suppose that a number of systems working together, cach modeled as a DES,
and a set of specifications (in the most basic way can be stated in natur: - lan-
guage words) which perfectly define both the individually and the concurren

desired behaviour, are given. An n-ary framework is required to capture the
mentioned tvpes of specifications. which can be modeled using both events and

states, while the framework also allows for an object-oriented design.

It is desirable to have the framework extended to a lmited class of “system
of hybrid systems” (more tl 1 one). having synchronization only in the DIES
lovel of abstraction. Such a class of hybrid systems can he used to model a
group of systems which are working concurrently, while only share their logical

behaviours (their generated events).

1.3 Contributions

The very basic idea behind this research is the implementation. Thus, the work. in

hoth the theoretical and the comp  ational parts, is done with the idea of possibility

of an object-oriented design. The contributions are as follows:

1.

The theory of automata is extended with the goal of designing an n-ary con-

current system ol DES:

e to meet a particidar ¢ s of specifications, which are based upon both

events and states. a new concept (called map) is introduced,









IEEE Stanc rd Diction of ectrical and Electronic Terms: A combina-
tion of components that act together to perform a funetion not possible wi

any of the individual parts (Radatz 194, .

There also exist definitions for specific types of systems or for the usage in a

specific field of study, among which:

Biology (Wikipedia): A system is a group of organs that work together to perform
a certain task. Conmmon sy ms. such as those present in mammals and ot her
animals. seen in Ihnunan anatomy, are those such as the circulatory system, the

respiratory svstem, the nervous system. ete. {Wikipedia.org 2009).
1 AR A 1 2

Biomedical and cognitive (F :eton WordNet): A group of physiologically or

anatomically related organs or parts (Princeton University 2009).

Thermodynamics (Wikipedia): A thermodynamic system, originally called a work-
ing substance. is defined as at part of the universe that is under considera-
tion. A real or imaginary boundary separates the syvstem from the rest of the
universe, which is referred to as the enviromment, surroundings, or reservoir

(Wikipedia.org 2009).

In the fields of science and engineering, these definitions imply the need for: first,
modeling of e part of the world der consideration (study and harness of natural
phenomena governed by physical laws in general); and second, cousidering the in-
put/output behaviour (which is necessary for concurrency and control). Both these
constituents can be addressed by e coneept of state-space modeling. However. a
state of a system which is normally one (or a set of) variable(s) indicating the exact
condition of the system uniquely-can evolve over time ecither as a direct or indirect
function of time itself {time dependent). a function of some specific events (time in-
dependent), or a combination of those two (hybrid). As a result, a general high-level
classification can be considered for all svstems based on the natural behaviowrs and

regardless of what the arca of study is:



1. Time-driven Syvstems

2. Discrete Event Svstems

(™)

. Hybrid Systems

In the next sections. we deseril  these classes i1 more detail.

2.2 Time-driven Sy :ems
Time-driven systems (TDS) are characterized by two important attributes:

1. state variables arve cor  wous over R, that is, accept any real number as their

value.
2. slate variables are functions of time.

Regarding the first property, time-driven systems are also known as continuous
systems (Millan 2006). This type of system can be then distinguished (Luenberger
1979) in two sub-branches of discrete-time and continior  ime systems which nor-
mally lead into difference equations and differential equations respectively. However,
to model real-world systems, computational techniques are sometimes necessary due
to complexity issues (Cellier 1991), (Pichler and Moreno-Diaz 1990). Different control
techniques 1 e also been developed for such syvstems botlr analytically and compu-
tationally (Ogata 2001). (Khalil 2 2).

A general state-space formulation for the continuous-time is of the form

I f(l i, f) J'(to) = Iy (21)

Where, ¥ € &' C R” is the state vector, ry is the initial state. v € 4 € R™ is the

control (input) vector, y € ¥ = R” is the output vector, and 1 denotes the continuous



time. Functions [ and ¢ are both considered to be Lipschitz continuous for the
sake of exist ce and uniqueness (locally) of the solutions (Fouseca and Leoni 2007),
(Freeman and Kokotovic 2008), and (IXhalil 2002).

In discrete-time systems,  odeling is quite similar, only in the form of difference

equations instead (Luenberger 1979):

for k € {0,1.2,...}. This form, in general. is computationally more convenient for
implementation, especially when dealing with stochastic properties (Kalman 1960).
Other classifications liave also been widely applied (linear and non-linear systeins

for example); however, such classifications are not of concern in this thesis.

2.3 Discrete Event Systems

Althongh most of the work doue in the systems control arca is about time-driven
systems, there still exist systems which cannot be described by the theories and
framnework presented in the previous section. The reason is that these systems intrin-
sically show  flerent behaviours r arding both their state space and state evolution
(Cassandras and Lafortune 19¢ . Th  class of stems, as opposed to time-driven

systems, is characterized by two attributes of
1. state variables accept discrete values,

2. state variables are no longer functions of time, rather, they jumyp through their

different possible values only as a result of the occurrence of an event.

Tangibly, this class of syst  sis ¢i ed Discrete Event Systems (DES). Mathematical
definitions for such systems are quite different from those of time-driven systems,

regarding the fact that continuous mathematics is no longer applicable in this arca.

8



Indecd, diverse approaches have been developed to address the modeling of DES
(Cassandras and Lafortune )99), among which the theory of automata! is considered
in this thesis because of its explicitness of events and states, aud computational
privileges. Exploration of other mo ling theories (Petri Nets, for example) is beyond

the scope of this thesis.
Example 2.1
Consider a machine including four states as the following (Millan 20006):

1. Working

o

. Down
3. Scrap
1. Idle
Also consider the following six events for such a systems:
e a: the machine starts workit  Idle to Working,
e b: completes its work and returns to the Idle state, Working to Idle,

¢: breaks down, going to the own state, Working to Down,

d: gets repaired, returning to the Idle state, Down to Idle,

e: gets repaired, returning to the Working state, Down to Working,
e [: is scrapped, moving to the Scrap state, Down to Scrap.

The DES abstraction for this machine is illustrated in Figure 2-1 using IDES

software?. The machine is initially at the Idle state (illustrated by a small arrow

TAlso called state machines.
2IDES (Integrated Discrete-Event Systems) is a Java-based software developed by The Open-
Symphony Group at Queen's university . under the supervision of K. Rudice {Rudie 2008).

9



¢

Figure 2-1: An antomaton  Hdel for example 2.1 using IDES software.

next to state 4). It starts, working at the occurrence of event a. Then, by event b
it goes back to Idle or by event ¢ it goes to the Down state, and so lorth. States 1
and 4 are marked (desired) states, illustrated by double circling, and all the events
except event f are controllable?, illustrated by a short dash on the corresponding
arrows. One may observe that if this system goes to state 3, it will then comyp tely
stop rmuming. Such states are ¢ ed deadlock (Cassandras and Lafortune 1999); one
goal of control synthesis for DES's can be avoiding the deadlocks.

Mathematical details of the automata theory will be provided in Chapter 3.

2.3.1 Supervisory Cont: 1

A specification is typically a set of logical policies to be applied to a machine, a
mechanisi, or a behavic | 1 1 in turn be modeled at a logical (un-timed) level
of abstraction (Cassandras and Lafortune 1999). To achieve the desired behaviour
neeting the provided specifications, a closed-loop controller can be defined to ¢ able
specific controllable events when required. A control synthesis paradigin known as
supervisory control theory (SCT) was developed by Ramadge and Wonham (1987) for

DES. Nore detail about the implementation of supervisory control can be found m

31n the context of DES, an event is called controllable if it can be prevented from happening, or
it can be disabled by a supervisor (Cassandras and Lafortune 1999).

10



(Wonhaimn 2009). However, it should be noted that the standard supervisory control
only deals with the specifications defined on the events. In this thesis, the model for
specifications are considered on the basis of bhoth states and cvents.

The basic SCT has been developed in different divections, including decentral-
ized supervisory coutrol (Rudie and Wonham 1992), supervision of infinite behaviour
(Thistle and Wonham 1994), supervisory control under partial observation (Lin and
Wonliam 1993), and supervisor reduction (Su and Wonham 2004). Li (1997) explains
the problemn of svnthesizing deadlock-free modular supervisory. Otlier endeavors by
O’Young (1991) and Brandin and Wonham (1994) resulted in extending SCT to timed
autonata (will be explained in Section 2.4.1). Nore recently, a descriptive work by
Lafortune (2007) explains how supervisory control can be extended to the problems
where local controllers caunot ¢ licitly commuunicate with cach other in real-time.

A more computational work done by Ledue, Lawford and Dai (2006) describes
how to cope with the problem due to exponential growth of state-space in large-
scale practical systems such as manufacturing systems. It suggests a “hicerarchical
interface-based™ supervisory control for svstems with a natural master-slave structure.
In another work done by Gaudi  and Marchand (2005), the supervisory control and
deadlock avoidance problem is discussed for concurrent discrete event systems. The
work implies its emphasis on viewing the problem as the entire collection. instead of
adding up 1" rv behaviours. Regarding this view, the work done by Gaudin and

Marchand (2005) can be compared in part. to our view in this rescarch.

2.4 Hybrid Systems

Since a class of hybrid systems is also addressed in this thesis. this section provides
a briel explanation of these systems and how they are conuected to the previously
explained systems.

Hybrid systems are the integration of TDS and DES, and therefore cannot be

11



modeled by ecither of TDS or DES modeling alone. In the literature, diverse mod-
cling approaches have been developed to address inconsistency of the two tvpes of

modelings.

2.4.1 Timed Automata

By definition. an automaton is a model for DES, and therefore dose not include
the concept of time. However, due to the fact that most logically-behaving systems
require time for measurement and syachronization, the concept of time appears to he
necessary in the modeling and control of real-world applications. It was first added
to the automata as integer clock events, called ticks. (O'Young 1991) which can be
cousidered as a formal step towards hybrid system modeling.  The coarse-timing,
however. does not meet the real-world requirements; as a result. a set of real-valued
clocks added to the theory of antoniata by Alur and Dill (1994). The supervisory
control for such systems was then explained by Brandin and Wonham (1994).

The theory of timed automata has been implemented mostly in the real-time
computing applications, such as on-line transaction processing systems (Kourkouli
and Hassapis 2005): however, it has not been widely used in the systems and control

conununity.

2.4.2 Hybrid Automata

While timed automata theory has achieved promising results (Saadatpoor 2004), it
still does not include the concept of time-driven dynamics. In othier words, any phyvs-
ical systems with logical constraints (more generallv. with logical hehaviours) cannot
be modeled by timed automata. = is notion shaped the idea of hybrid automatea.
The theorv of hybrid auton  a was first developed by Alur, Courcoubetis, Hen-
zinger and Ho (1993) and Henzinge  (1996). It has then evolved through a wide range
of work done by different researchers including Lyvgeros. Tomlin and Sastry (1999),

Lynch, Segala and Vaandr v (2001), and Cassandras and Lygeros (2006).

12



The formal definition of hivbrid automata will be presented in Chapter 3 (Section

3.6). where more relevant references will also be provided.
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(intra-systems) desired behaviour.  For a given problem one or both of the above
specifications can be applied.

As we will see, an event-based specification is normally a separate automaton
added to the group. with events from the event set(s) of the svstem(s) to be controlled,
and the states which are not from the state set(s) of the main svstem(s). This type
of specification has been well-developed in the context of supervisory control.

For a state/event-based specification. a set of local functions is proposed in this
thesis to locally translate an ev  t. generated by other systems of the group. into
an “owned” cvent while being in a specific state. This type of specification becomes
more important in the implement:  on of real-world applications, where, due to the
engineering considerations such as information hiding. the state of a DES is as imp
tant as its generated langt . Additionally, when a DES 1s a model for a part of a
larger system. cach state of the can bear a physical concept in behind. regarding
the cutive system. As a result, a specification may be set up once the DES is in a

specific state.
Remark 3.1: (Theory vs. Ii lementation)

Generally speaking. in systems theory and control. there is alimost always a distinetion
between the theory, which is pure athematical explanations, and the implementa-
tion, which is the way that is preferred because of computational and/or engineering
considerations. From the mathematical point of view, different mod ng methods
may be considered as “equal” provided they generate the same results. However,
from the implementation point of view, those methods may be cousidered as “com-
pletely different.” because of the reasons ranging from the physical meanings belind
the constituents of a model, to the computational complexity (and even possibility).
For example, in the context of continuous systemns theory, it is said that the state-
space model is not unique, which is true. However. engineers prefer to use a model

that matches each state variable w1 a physical concept (say in a high-level modeling

15
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Figure 3-1: Two DES with different topology, which generate and mark the same languages.
The one at the right has infinite nuinber of states, thus can not be hmplemented.

of a car. the state variables can be the car's location. velocity, ete. instead of sheer
mathematical variables so that the  combinations provides the car's location, ete.).
Likewise, in the context of DES. from the mathematical point of view, as long as
we are ouly concerned about the generated and marked languages, the result would
not be different from that when we consider implementation issues such as an object-
oriented design. Figure 3-1 illustrates two DES, both of which generate and mark
the same languages, while only the one on the left can be implemented using a finite
amownt of memory; behaviourally, these two automata are identical, hut only one
cant be implemented.

Mathematically, it is alwavs po ible to “edit” a DES by changing its topology to
achicve a desired hehaviour. . acrelore, hoth types of specifications can be performed
by re-labeling, and/or augmenting. and/or omitting the edges of the main sy s,
instead of introducing a separate DES and /ot Heal functions. However, in practice, to
have an object-oriented design (tlierefore. benefit from the ideas such as information
hiding, hierarchical design, and reuse), a basic prewise is not to allow for the change
of a model (hidden information) after the very first stage of design. This premise
puts forward only method: Hgies which permit this “hiding” and “interface-design™
for both types of mentioned Hecifications.

Figure 3-2 suimarizes the theoretical concepts which will be presented in this
chapter.  We begin with the formal modeling of discrete event systems (which is
the concept of “automaton™). ‘e then extend the modeling of one single systemn

to a finite sct of systeins having niteraction explicitly by sceing cach others’ events,

16






3.1 DES Concep 3 And Methodologies

Definition 3.1.1 (Automata) An automaton® (Cassandras and Lafortunc 1999) is

a six-tuple

G = (Q=S~55P7(1()\ Q‘m) (31)

where:

e () is a set of discrete states,

Y is the finite sct of coents associated with transitions in G,

§: Q) x ¥ — Q s the transition function, which is generally a partial function

on its domain,

[:Q — 2% is the active ev. ., function; T'(q) is the sct of cvents o, for which

8(q, ) is defined, and is called the active event set of G al q,

qo is the initial state,

Qm C Q is the set of markc states.

For the sake of convenience (Cassandras and Lafortune 1999), 4 is always extended

. . 5 . . . . 9
from domain Q x ¥ to domain @ x X* in the following recursive manner=:

5(g,€) =, (3.2)

8(q,s0)  8(d(q,8),0), for s € ¥* and 0 € X, (3.3)

IThe terms automaton and finite automaton will be used interchangeably through out this text,
but both are distinguished from hybrid automaton. Additionally, automata theory is a methodology
to model DES; however, in this text, automata and DES are both being referred to as in the definition
3.1.1.

2Through out this text, the symbol © means “by definition is equal to.”

18



where, € is the empty string. Also. it is important to note that we allow the transitic

function ¢ to be partially defined over its domain which is a standard definition
in DES area (but a variation over the automata theory in the computer s mnce
literature). This definition allows for blocking. which is a basic concept in the DES

arca (Cassandras and Lafortune 1999).

Definition 3.1.2 (Languages Generated And ! wrked) The language gencrated
by G =(Q.%,0.T.qu, Q) 1s

L(G) = {s € X" | 5(qo.s) is defined.} (3.4)

The language marked by G is

L(G) {s€L(G)]dqgo.s) € Qu}. (3.5)

By definition. two automata Gy and Gy are said to be cquivalent and shown as
G, = Gy if and only if they generate and mark the same languages.  Also, the
reader may note that, in the DES arca. it is usually more desirable to construct the
definitions based on the gener. and marked languages instead of the automata
themselves (see for example the text by Wonham (2009)). However, in this thesis,
the theory will preferably be built upon the antomata definition. due to the role that
states play i the real-world applications (the reader will observe that each state can
carry a physical meaning, rather than being a sheer name, especially in the  brid

systems arca).
Example 3.1: (Automaton)

Consider the machine explained in example 2.1, the automaton for this machine would

be defined as
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G = (Q’Z-dF;QOme)
Q  {1,2,3.4},
¥ ={a,b.c.de, [},

d 1s defined as:

§(L,0) = 4,
5(1,¢) = 2,
5(2,¢) =1,
3(2,d) = 4,
(2, f) =3,
d(4,a) = 1.

and T 1s defined as:

I'(3) =0,

L(4) = {a},
=1,

Qmn (1,1}

where,

(3.9)
))
)

(3.1(
(3.11

(3.13)

(3.14)

Let us now extend the sii ~>system architecture to a multi-system one, where cach

DES is supposed to be modeled as  stand-alone automaton (that is, we are nol going

to let the entire system be flattened).



Remember that for a system of more than one DES, the specifications are ac-
cepted iun two different wavs: event-based and state/event-based. The idea behind
the implementation of a state/event-based specification is to encode the event-based
interaction of multi-DES in local functious called map, so that the topology of cach
DES remains unchanged to preserve information hiding and promote reuse. Consider

the following definition:

Definition 3.1.3 (Map) Given a sel of n DES, {G1,....G,}, and ¥ = U;:I X, M
is called the map for the i-th DES and defined as 3:

par

M Qy x (X\E) — Xy, such that (3.21)
l\[,'((],‘,()‘) =g = c F,-(f],‘)\ U EJ'. (322)

For ¢; € Q;, 0 € ¥\¥;, and o’ € T';(¢g;)\ Uﬁéi X M(gi. o) = o' provides a translation
of event ¢ o event o', which can cause a local transition (d,(g;, ') in system .
Therefore, inside a group of DES, a map can be thought of as a local, one-sided
interface of a DES to the rest of the group. Thus. a map hides its DES details.
We have not yet talked about the composition rules, which are the formal ways of
constructing a new DES from a set of given DES. However, note that a given map
(say M,) only preserves the local translation of events, and does not directly affect the
transition function of the corresp system (6;). The transition [unction should
then be defined separately by a ¢ position rule, which can take advantage of these
lo lv translated eveuts (for example, if the translated event (0') is Dlocked by an
event-based specification, which is oue of the DES in the group, then no transition
will oceur). We will explain it con  letely in Section 3.3. Now, consider the following

example:

3 pry pa. . . .
3 The symbol —— indicates the range of a function as p  al.
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Figure 3-3: Schematic of two warchouses, cach has two states of door-open (O;) and door-
close (Cy); in addition to the two events of product-arrival (o) and product-departure (43;),
and the event w; which is not shown. The warchouses are working i series, so that the
product-departure event of 1171 (1)) is mapped to the product-arrival event of 175 () once
Wy is in the state Cs.

Example 3 °~ (Two-warehouse System)

As an examy -, consider two warehouses each of which has two states of door-opened
(O) and door-closed (C); and three events of product-arrival (), product-departure
(3), and time-off (w) (sce Figr » 3-3). Suppose these warehouses can be modeled
by the automata 1V, and 1y, shown in Figure 3-4. Consider the case that these
warchouses are wor’ ~ 7 in series, namely, the product departed from 117 is sent to
Wy (see Fig ¢ 3-3). At this point, we are not going to model the compositional
behaviour as a single DIES, ra  or we are interested in modeling the system as a
group of two stand-alone DES, cach of which has a map.

For ¥; = {a;,fi,w;}, 1 = 1,2, let us define the following maps to encode the

in-group behaviour:

My (Cy, ) = e, and Al is not defined. (3.23)



O, 0,

—(©) @

)

Figure 3-4: Two warehouses of Exan ¢ 3.2, W and Wy, in which W accommodates the
event vy of Wy through its own event 3.

It means that using Ay, VW translates 3 into o, while it is in state 5. Whereas, 11
does not perform any translation. With such a definition, the concurrent hehaviour

is accurately captured without the nced to re-model cach system from scratel. m

Having a stand-alone model w  wout having to think of its synchronization with
other automata (Figure 3-5) encourages an object-oriented approach to modeling.
Indeed. the maps are the local interface between automata, thus the basic object-
oriented concepts such as re-use and da hiding can be taken advauntage of, while
the maps preserve the in-group information (that is, state/cevent-based specifications)

of the modeled systems. Let us summarize the characteristics of a map:

1. it allows for encoding spe  ic mteractions among a set of DES without having

to modify cach DES model ¢ cctly,
2. the input event of a m » can still be blocked by an event-based specification,

3. it is local, thus it is able to+ code non-symmetric translations,
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T [y

Figure 3-5: A group of DES with both state/event-based and cvent-based specifications,
which are indicated by the set of maps {A1. ..., M, } and the set of automata {S1,....5,}
respectively.

4. it is also defined over the loc  (owned) states, thervefore it provides the ability

to specify the states for which a translation is required,

(2]

it 1s not defined over the state of other systems: therefore, the state of cach
system s still local (hidden from the group), and the result is an event-based

concurrency,

6. it is linited in the sense that © rresult of a map is restricted only to the exclusive

cevents i the active event set of the current state.

n the next section, we utilize these concepts to establish a eeneral composition rule
In the next section wtilize the 1cepts to establish a general cor tion rul

which in turn allows for the desired hierarchical — -ucture design.

3.2 Concurrent JE€“

Ouce a group ol LESisgir 1, along with required information of how cach single DES
locally translates the events from other DES, each DES can be promoted Dy its map

to include those state/event-based specifications. Consider the following definition:

Definition 3.2.1 (Map-Auto ata) Given a set of n DES, {Gy,...,G,}, and a

map M; for each, o map-auton on G; is a tuple

Gi = i,]‘[i), 1= 1, Ny (324)



which is defined for cach automaton G, wside the  Hup.

Therefore, a map-automaton consists of two entities: an automaton. which is normally
not allowed to be changed at the run-time; and a map that can be changed (up-dated)
if required. T is encourages the main thread of hiding (encapsulation) and interface

design in object-oriented programming. See the following example:
Example 3.3: (Three-warehou System)

Let us extend the previous example (Example 3.2) to three warehouses. As illustrated
in Figure 3-6, consider the case that the third warchouse (1175) receives products de-
3 3

parted from both ) and Wy, wl e W, only receives products from 1. Additionally,

IV] does not receive products which are departed from the other warchouses (1H, and
1 2

1175). To avoid the conceptw  incc  istencey in the case that a product departs from
3 A

7 (thus, should be received by both 1, and 1Y), asswne cach product departed

from 117 is a bundle which has two parts each can be sent to a different warchouse

as an arrival product. The corre ¢ ling autonata are illustrated in Figure 3-7. The

maps for this case will then be defined as:

]\[2((‘2. /31) = (Y9, (325)
My(Cy, 1) g, (3.20)
A‘[;;(C;. /32} (¥3, (327)

Al AL, ALy are ot defined for all other events.
For the group of three warchouses, the three map-automata cau then be defined as:
W= (W, ML), = (W, M), and 1y = (15, ML), (3.28)

where, Al is defined as null or emply, meaning that there is no translation local to
system Wy, m

In 7 75 example, while ;s encode  1e local translations, the modelit — of 1 and 115

|8
1
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Figure 3-7: Thiree warchouses of Ex  iple 2, 117, Wy, and 13, in which both Wy and 15y
translate the event @) of Wy into their own events oy d ay respectively. In addition, 1y
also translates the event ;35 of 1, to its own event ay.

(the automata of example 1) has left unchanged, that is no re-labeling is required.
As mentioned before, this property is an important characteristic since it allows for
abstraction and encapsulatic i object-oriented progranining. We will return to this
basic advantage in the next chapter.

Now, inside a larger group « 59, let us collect cach set of map-automata as a

DES collection. Formally,

Definition 3.2.2 (DES Collecti 1) Given a sel of automata {G,....,G,,}, the set
C:={Gy,...,Gn} (3.29)

18 called a DES collection, where G; = (G;, M) is the map-automaton corresponding

to G; with the map M, defined for the sct {G,...,Gn}.

Therefore, a given set of DES can  » partitioned into a finite number of smaller sets
of (possibly one-element) DES, car form a DES collection, provided that inside cach

set, any DES is defined with a map (pos Hly empty). See the following example:
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Figure 3-8: Discrete abstraction of two-mode liquid tanks of example 3.4.

Example 3.4: (DES Collectior

Suppose we have n two-mode liquid tanks, which are supposed to be at cither the
filling (F) mode or the rest (R) mode. Each tank is equipped with a two-mode tap,
which defines whether the tank is in For in R by two events of tap open («) and
tap closed (;3). The automaton corresponding to the i-th tauk is then defined as (sce

Figure 3-8):

Gi=(Qi, %, 0, Ty, goi, Qi) (3.30)
where,
Qi = {F, Ri}, (3.31)
¥ = {3}, (3.32)
(S,j . (Si(F‘iv/’j)i) = {R,‘}, (Si(Rj,(Y;: {E}, (333)
Fi : Fi(}:‘i) == {/ji}, I\,’(Ri) = {(Y.,‘}. (334)

Let these tanks be arranged in two groups (with the cardinality of m; and ny, my +
my, = n), where all the tanks of each group have to share a single tap. Suppose
each tap is single-user, that is it can only fill one tank at a time, and therefore
each tank has to transit to its rest mode (say R;) once any other tank in the group

goes to filling mode (say F;). In other words, inside each group, each tank shoul
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have a translation of all other fillings to its own rest. Formally, if the set of indices
I = {1,...,n} is partitioned into two scts, Iy and I, corresponding to the indices of

automata in cach groups, we have
Mi(Fia;) =3, fori,j€ i, i# j,aud ke {1,2}. (3.35)

Aggregating these ni s and the original automata forms two collections representing

the two groups (see Figure 3-9):

for k=1,2,

C. ={G: | Gi=(G;. ML), for i € I;}. (3.36)

3.3 Composition Rules

It would be natural to thin ~ of thiematical n-ary composition rule over a given
DES collection. Such a rule, as  : as this thesis is concerned, should result in a
new DES. Additionally, to the est of our knowledge, the composition rule should
satisfy basic mathematical propert  to be “cousistent” and “useful,” while still heing
considered as a gencral rule!. > then make use of such a rule (as a general term)
to define a hierarchical design. Consider the following definition (Cassandras and

Lafortune 1999):

Definition 3.3.1 (Acce ble . anction) The accessible part of an automaton G

*1t 1s open to Uiscussion what “consistent”™ and “useful” are, while it can be compromising that
such basic properties are more intuitive than based on a firin reasoning. In this text, these properties
are mostly influenced by the standard ions in the existing literature.






(Q,%,9,T,q0,Qn) is denoted by Ac(G) and defined as

AG)  (Quer 3 baes Tacs 0> Quen)s where (3.37)
Que={0€ Q|3 €5 (3(g0,5) = )} (3.38)
Quemn = QO O Ques (3.39)
o = 0| Que X B = Ques (3.40)
=T Qu 2% (341)

The notation ¢ | Qge X X Que 1 s that § is restricted to the smaller domain of

the accessible states Qque, and so is I'. Let us now define the n-ary composition rule:

Definition 3.3.2 (N-ary Cor »osition Rule (NCR)) For a given DES collec-
tion C = (él,...,ém), a function x which is defined over every scquence of the

mapped-automata of C as:

is an n-ary composition rule (NCR) if the following three axioms hold:
1. (DES closure) G is an automaton,
2. (Accessibility) G = Ac(G),

3. (In-group commutativity) . *...*Gi*...*Gj*...*ém = él*...*GJ-*...*G,;*...*G,,L,
foralli.je{1,....,m}.

G is called the resulting ' 77

As a result, each composition rule depends also upon how the local maps are

defined (because it is defined over e set of map-automata rather than the automata
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themselves). In general. the resulting transition function of a rule takes the form of:
3((q1s e qn), o) = (01(q1,0). . 00 (qn. ). for ¢; € Qi and o € T, (3.43)

where, 6/(¢;, o) is a local ruled-transition function and is defined based on the selected
rule (which uses the local1 p AL). However, the use of maps is not a necessity in the
design of a composition rule: an arbitrary composition rule can be defined over a set
of automata alone. We will observe hiow standard product and synchronous product
composition operators (which are defined over a set of automata) are composition
rules.

Here, a number of composition rules are presented. Special attention will also be
placed on the n-ary version of standard operations to be considered as composition

rules.

3.3.1 Product Composition

Definition 3.3.3 (Product Composition(Cassandras and Lafortune 1999))

The product of Gy....,G,, is the aulomaton

T

Gix o x Gy = Ac(Qr % oo x 7 [0 0, T, (Gos -oor Qon)s Qo X oo X Q) (3.44)

=1

where,

L0 OGO if o g 5
SU(qrs e qn),0) = (1.9) (@) foen () (3.45)

undefined otherwise.
'Tl]US, F((Il, Ty (171) = ﬂ;lzl Fi(qi)'
By definition, product composition holds the first two axioms. And, by re-labeling,
it is also verifiable that it is commutative (see (Cassandras and Lafortune 1999)).

Therefore,




Lemma 3.3.4 Product composition (x ) is an NCR.

3.3.2 Synchronous Product Composition

Let us begin with the standard binary operation:

Definition 3.3.5 (Synchronous Product Op« tion) The synchronous product®
operation (binary) (by Wonham (2009) and Cassandras and Lafortune (1999)) of

G, G5 is the aulomaton

GIHGQ = :1('(Q1 X (22 Sl U 22,5. I, (([()1, (]()g). le X ng). where

)
(1(qr o). da(q2.0))  if o € Ti(q) N Talqa).
(5 (. A EF E-),

5 ).0) = ( 1({1 7). q2) /.fo @)\ 2 (3.46)
(q1.02(q2.0)) if o € Ta(@)\X1,
undefined otherwise.

Therefore, U'((gr.q2)) = [I'1(q1) N (g2)] U [L1{g)\Z2] U Do (g2)\ 1] In the literature,
the synchronous product is normally defined as a binary operation. Because it is
verifiable that the binary synchronous product is both conumnutative and associative
(sce (Wonham 2009) and (Cassandras and Lafortune 1999)). it can be generalized
to an n-ary version without expericncing any inconsistency, which is desired for our
purpose.

The core idea behind the presented n-ary definition is to observe that for a given
event o € |J, £;, there would be a transitic  only when all the antomata to which
o belongs, enable it too. In that « e, all those automata have their local transition
0i(¢i. o). In other words, there w  be no transition (namely, o will be blocked) if

i e{l,..,n} | o€ ;A ¢&Ti(g) Let us define a set of indexes €, if all the

5Also called paraitet com ndras and Lafortune 1999).
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automata to which o belor 3, also enable it; such that £ contains the indexes of all

those automata: for a given event o € | J_; &,

Q={vie{l,..n}|(ce€X;=0ecliq))} (3.47)

Note that € can be an empty set (if o belongs to some automata, but not all of
those automata enal : o simultancously). Therefore, if € is non-empty then there
will be a local transition in all Gy, i € Q. Let us now re-write the preceding fornn

including the logical condition of (¢ € X; = ¢ € TI'i(¢g;)) in an algebraic form of

for defining the n-ary synchronous coduct composition, and then explain the formal

justification of this definition:

Definition 3.3.6 (Synchr 10 . Product Composition) The synchronous prod-

uct of Gy, ....G, is the aut. 1aton

G| )|Gr = Ac( £,0,T.qo. Qm), where

Q = Ql X ..o X Qvu (3—18)
Y= sz’ (3.49)
i=1
qo = (qolv ceey q()n)a (3:)())
Qm = Qi1 X oo X Qmpn, and (3.51)
5(qu, o q2)),0) = (0 (1 4oy 00 (Gn.0)), in which (3.52)
8 (gi,0) = (3.53)
O-i((],', 0') '1f 30 e of{l,...n} ‘ teQlNT € [ﬂkESl Fk((]k)] \ [Uk¢S2 Ek] .
q‘i lfaﬂ E -, n} | 7, ¢ Q/\O’ E [ﬂke” Fk(qk)] \ [Ul\éf - ‘:|7
undefined otherwise.

and 0 is undefined if any one of the &' is undefined.
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Therefore,

C(que - qn) U ﬂrk(Qk)\UEk : (3.51)

0 Lk kg2

Consider the following theorem:

.aeorem 3.3.7 Given a set of aulomata {G,...G,}.

1. [Gh]1GY] = [G1[|G]

n—ary binary

2. [GGa]- |Gl gy = [(C GG NGl pinary

See Appendix A for the proof. In addition that this theorem proves the n-ary def-
inition as the generalization of the binary definition. this is an important theorem
since, firstly, it provides a formal justification for using an n-ary synchronous product
instead of a flattened binary one. Secondly, it brings the advantages of the binary syn-
chronous product. For example, using the commutativity and associativity properties

of binary synchronous product, we can write:
G1]|G2||Gs = (GGG (Go||G1)||Gy = Gl|GilIGs. (3.59)

Therefore, it is straight forward to show that the third axiom of NRC holds under
the synchronous product compe  tion. Also, similar to the product composition, by

definition, synchronous product composition holds the first two axiows. Thus,

Lemma 3.3.8 Synchronous product composition (||) is an NCR.

The generated and marked langt jes of synchronous product composition can be

found using the b" ry counterparts (which are deseribed by (Wonham 2009) and



(Cassandras and Lafortune 1999)). Formally,

L(G1NG) = [V PTILG)) (3.56)
Lu(Gill- NG = [ B HEm(G)). (3.57)

where P71() is the inverse of projection map, P,. for system i (see (Wonham 2009)

and (Cassandras and Lafortune 1999)). defined as:
P (| JE) =%, fori=1,..u. (3.58)
j=1

Most importantly, Wonham “~)09) explains how to apply an event-based specification
using synchronous product. S 1e following example for the implementation of

synchronous product:
Example 3.5: (An event-based Specification)

In example 3.3, say for the reason that the second warchouse is full, the specification
is “to prevent product arrival ¢ 1e second warchouse (1175).” For the moment. let us
assume that the warchouses are not in series (we will return to the complete version
of this example later). The prer  se here is to define this specification by an automa-
ton and then have a syvnchronous product of the main system and this automaton.
Let the specification be character  »d by the automaton Sy (Figure 3-10). This au-
tomaton has ounly one event s which belongs to system 1V, while the states have
no connection to the state of the warchouses (however, they can still be thought of
“good’ state and “bad” state for 17 and “27 respectively). The specification S sim-
ply shows that the event s goes  an un-marked state, thus it is undesirable. The
marked langnage of the synchronous product will then be our desired hehavionr. An
alternative automaton is Sy shown in Figure 3-10 with Xgy = X = Xy U X0 U Xypg.

Here, we have all the events in the self-loop, except for . Because oy still belongs
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Figure 3-10: Event-based specification of Exan le 3.5: the event-based specification Si,
which affects the marked language, and the event-based specification Sa. which affects the
language of G = W1 ||IWa|[1Vs.

to Sga, this supervisor blo s all the a, of the main system. Now, the language of
the synchronous product is our desired behaviour. m

Indeed, synchronous product is  powerful mathematical tool in implementing super-
visory control. Now, let us extend the concept of synchronous product composition,

using the systems’ maps.

3.3.3 Accommodating ¢ nchronous Product (ASP) Compo-
sition
Definition 3.3.9 (Accommoda 1g Synchronous Product (ASP) Composition)

The accommodating synchronous product of Gy, ..., Gy, which shape a DES collection

C={(G, M),.(G,, M)} = {Gl,....én} is the automaton

GiL..1Gyi=Ac(Q,%,0.T.q0, Qum),



Q:Ql X ... XQru (359)
n=J (3.60)
i=1
go = ((]017 cees q0n)7 (361)
Qm = le X ... X Qmm and (362)
5((q1y -, q2)), 0) := (81(q1, 0), ... 0, (gn, 7)), in which (3.63)
8i(qi,0) = (3.64)
{
di(qi, o) if 30 e 20 i e QA € [Niea Lrla)] \ [Upga Ex)
ai e i g QAo € [MicaTra0)] \ [Urga ¥

and M;(q;,0) 1s not dcfined,

5i(qi Mi(gi0)) A et | ig Qo € (Mo Trlan)] \ [Urgo Sl
and M(g;, o) is defined,

k undefined otherwise.

and & is undefined if any one of the §' is undefined.

Therefore,

C((q1, ) = | {ﬂ Crlan)\ | zk] : (3.65)

@ Lrcs kg2

As a result, for each DES, the ASP composition exactly works as the synchronous
product does, unless when the ev L 1s an “exclusive” event of another (or another
set of) DES, and at the same time, a map is defined for it. In such a case, the DES
will perform a transition (namely, (g:, M;(gi.))) based on the translated version of

o (which is M;(gi,)). Also, note at (g1, ..., ¢») is not changed.
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For the case of only two syvstems, the transition function of the above definition is

reduced to the following (see Appendix B for the proof):

6(((117%),0) 1= (3.66)
(51 q1,0),02(q2,0)) if o € T1(q1) NTa(q2).
(01(q1,0), 02(q2, Ma(qz,0)))  if o € Ti()\Ex and Ay(g2. o)
(01(q1,0).q2) if 0 € T1(q1)\E2 and Ma(gz.0)

(01(q, Mi(q1,0)),02(q2. ) if o € Ta(g2)\1 and My(gi. o) is defined,
(¢1:82(g2,0)) if 0 € Ta(g2)\E1 and ALy (q1.0)

is defined,

is not defined,

is not defined,

L undefined otheruise,

and, T((q1,¢2)) = [[1(q1) N Ta(g2)] U [Ti(@)\E2] U [T2(g2)\X4].
Lemma 3.3.10 Accommodating « chronous product (L) is an NCR.

Proof. Similar to the previous compositions. by definition, ASP holds the first two
axioms of NCR. As for the third axiom. intuitively, since each DES is on its own, the
order in the composition is not important. Formally, we can prove the commutativity
property by re-labeling:

Let G, and G, represent any two DES in the set {G....,G,}, and suppose G' =
G1LGsy and G" = G,1Gy. S ce Y(qi,q;) € Q1 x Qa, Igj.q:)) € Q2 X Qy, we
can relabel both (g, q;) in G" and (g;,¢;) in G with a unique new name Ay, k €
{1,..,1Q1] x |Qa|}. Thercfore, the state-space of both G" and G” are equivalent to
A={ | ke{l,..,|Qi x|Q}}. Also, rq) € Q and q; € Q2 let us perform the

following substitution:

&1(qi, 9) = q; and 8(q;,9) = ¢},
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then. we can write:

dcr (M 9) = der (96 q5)5 9) = (01(qi, 9).05(q5,9)) = ((I;JI}) 2 N (3.67)

SNy g)  Sen((gy ), a) = (03(a5.9), 81 (ai. 9)) = (¢}, ) = N (3.68)

As a result, dar(Ar,g) = dgr( M. g). Therefore, under this relabeling and because
Yo = Der = X1 U, and also qaro = (q1.0,q20) = Ny € A and garo = (g20. q10) =
Ny € A, both G' and G” gencrate the same languages. On the other hand, in G,
Meom = (Gions @jm). and in G”, Ay, = (¢jum: Gi,m), that is our introduced relabeling
can be extended to the ma >d states. Thus, since the transition function of G’ and
G” are equivalent, they gene e the same marked language as well, and therefore G'

and G” are equivalent. m

Remember, a given map (say ;) only preserves the local translation of events
(which is state/cvent-based specifications), but does not directly affect the trans-
tion function of the corresponc” ; system (d;). Thus, if the trauslated event (o)
is blocked by an event-based spec ation (which is characterized by an added DES
in the group), then no transition will occur. This cnables “blocking” to be used.
Blocking is one of the basic 1d important concepts in the DES literature for applyv-
ing control. The following « .ensive example demonstrates the case of having both

state /event-based and event-based specifications at the same time. All the derivations

are presented in detail.
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Example 3 : (ASP Composition)

Let us again return to the warchouses of Examples 3.3, but this time we assume
that the warchouses are in series (as explained in the Example 3.3). As explained
in Example 3.3, we encode the state/event-based specification by maps M. M, and
M, corresponding to cach warchouse. Now, we would like to analytically find the

resulting DES, namely

Cy = {17, 15, 115, (3.69)

Gr=WiLH LIy =(Q.%,8.T.qo. Qo) (3.70)
First of all, note that Q = Q; x Qa x Q4: therefore. Q = {q1.....qx} with

¢ = (C1.Cy, Cy)
g2 = (01.Cy, C),
4 = (C1. 0. Cy),

)

1. O2.03).

)
2
Il

Also (because the event sets are ¢ oint),

Y= U i ={aaz. 3.3, 5. Fy, wyowa, ws b

i=1,2,3

41



For each state ¢q; € Q, T'(g;) can ¢ found directly:

[q) =T((Ch, C2, Cy))
= MO\ (B2 U )] U [Ca(C2)\(E1 U Sy)] U [Ta(Cu)\ (S U 2)]
=T1(C1) UTa(Co) UT3(Cy)
= {1} U {aa} U {as}

= {0170’2,03}-
Likewise, we have

{jl Wi, (¥3, (13}
:{11 ij) wa, (\3}

= { 1, W1, ‘32,w2,a3},

qs) = {31, w1, az, ¥ w3}

= { 1 /3‘2,(4}2,}33,(4}3}%

I'(qr

((18

2) =
3)
)
(5) = {a1- a2, By, Wi},
(96)
)
) =

{ di,wi, Fa, wa, »‘33-“13}-

The transition function can ther e found exhaustively. Consider the following deriva-

tions for state ¢, and all the even in I'(qy):

3(qr, a1) = 6((C1, G2, C), vy)
= (81(C1, ). 05(Ca, 1), 85(C, 1))
= (8,(C1, 1), Ca, Cy)
(01, C2,C3) = g2,



o(gr-a2)  3({Ch,Co, C), a2
= (61(Cr, @2). 35(Ca, @r2), 85(Cy, 2))
= (Cy,02(Ca, 2), Cs)
= (C1,02,Cs) = g3,

5(qu,a3)  O((Ch, O, Cy), a3)
= (07(Ch, a3), 05(Ca, v3), 05(C, a3))
= (Cy,Ca,85(C3, )
= (Cy,Cs,03) = ¢5.

For g», and events in I'(¢gz) we have:

8(q2, %) = 6((01,C2,C3), )
= (81(01, 1), 05(C, 1), 95(Cs. 1))
= (01(O1, 1), 02(Ca, Mia(Co, 1)), 05(Ca, Mis(Cs, 1))
= (C1,82(Ca, v2), 05(Cls, v3))
= (C1,02,03) = 41,

(g2, w1) = 0((O1, Cs, C3), 1)
= (61(O1,w1), 85(Ca, w1), 85(Cs, wi))
= (01(O1,w1), G2, Cs)
= (C1,C,C3)

3(g2, a2) = 0({O1, C2, Cs), )
= (61(O1, a2), 65(Ca, a2), 65(Cs, a2))
= (C1,02(Ca, a2), C3)
= (C1,02,C3) a3,
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Maz, ) 0((01,C2,Cy). ay)
(61(01, a3), 85(Ca, a3). 64(C3, 3))
(C1, C5.03(Cs, ae3))
= (C1,C2,03) = gs.

Similarly, the transition function for all other states and the events in their corre-
sponding active event sets can be derived exhaustively.

Finally, for ¢y and @,, we can write:

Qm = {((Iiaqj-,(]k) l € Ql,'m A qj € Q‘l.m A Qr € Q3,7n}
= {(01702,03)} = {(11}-

do = ((11,0,(12.0, Q3.0) = (Cl» Cy, C:s) =q-

]
Remark 3.2: (Map-dependent Violation of Blocking)

When an event o € 5, of G; is blo.  « by a supervisor (an event-based specification),
by the definition of ASP  >finition 3.3.9). any mapped version of o will also be
blocked (because it falls into the category of “undefined”). Similarly, because the
range of maps is defined as the « ‘' ely - wed « ts (not in the alphabets of
other DES in the collection), any event can be blocked by a supervisor without the
fear that it will be violated by a map.

Consider the case that in Definition 3.1.3, the range of a map is defined over
its complete active event set (rather than its exclusive subsct), namely A, : Qi x
(Z\¥;) — T,. Then, if an event o € X; of G; is blocked by a supervisor and at
the same time o exists as the output of a map for another event ¢’ ¢ ¥; generated
by another DES in the collection, then the occurrence of ¢’ can cause the transition

6i(qi, Mi(qi,0')) = d;(g;.0) in system G, which must have been blocked. In other
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Figure 3-11: Three automata of example 3.7. The only defined map is Ma(ga, a) = b (for
G2 € Qg)

words, a “badly-designed” map can cancel t : effect of a supervisor once the DES
is in some specific states for which the map has been defined. Despite this adverse
effect, a map with such a definition is generally more expressive, because it is free to
be defined all over the I'y(g;) set.

The following example shows 1] case that a shared event is required to be in the
range of a specific map. For simplicity, no supervisor (event-based specification) is

presented in this example.
Example 3.7: (ASP Composition with Non-safe Maps)

Consider the ASP composition of  ree automata, Gy, Ga, G, with:

¥y = {a,b}, (3.71)
= = {b,c}, (3.72)
¥y = {b,d}, and, (3.73)
V=35, U3U Sy, (3.74)

and let only one map be defined for Gy as Ma(ga,a) = b (for gz € Q2). Note that,
this map is not legitimate by Defii ion 3.1.3, since b is not an exclusive event of Gy.

Also, assume that after a given string s € £%, the current state of each automaton is



q1, g2, and g3 respectively, where:

Li(q1) = {a,0}, (3.75)
FZ((]‘Z) = {b’ C}7 (376)
Cs(q3) = {b,d}. (3.77)

The case is illustrated in Figure 3-11. Let us investigate the occurrence of events a
and b separately.
For a, notice a € ['1{¢)\[E2U 7] and at the same time M;(qo, a) is defined and

M;(qs, a) is not defined. Thus, by definition, we can write

6-L<<(117 q2, q3)7 (l) = (6/1((]170’)3 6{2((12’ (l), 5.13((].37 (L)) (378)
= (01(qr,0), 02(q2, Ma2(g2, @), 43) (3.79)
= (), 42 93)- (3.80)

It is important to note that when ASP composition is used, by definition, the map
M, (g2, a) only changes the consequence of the occurrence of event {a} in G,, and the
result of A»(gz,a) (which is b) will not cause any transition in Gy and G.

For b, observe that b € [['y(q;) N Ta(gq2) N T3(gs)]. Therefore,

5J_(((117q27 (13)’ b) = (6/1 ((117 b)7 6;(6{27 b)i (Si,j(q."h b)) (381)
= (51((113b)752(q23b)163(q37b)) (3-82)
= (¢}, 42, 45)- (3.83)

If ¢ or d occurs, since they exclusively belong to one automaton and “no” map is
defined for them at the other aute  ita, the transition will only occur at the owned

automaton, while the other two automata stay on their current states.
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M,

Cnewl

e

Cnew2

Figure 3-12: Two possibilities of adding a new automaton to a given collection. Onu the
top, an n-ary composition is shown, where the new automaton is added to the group while
the existing automata are p  rved by updating their maps; and at the bottoni, a binary
composition is shown, where the new automata is added to the resulting DES of the cxisting
group (G).

In this example, if b € 3, but b & I'3(g3), then it must be blocked. However, one

can observe that the occurrence of  zan cause d2(qz, b), which violates the blocking. =

Remark 3.3: (N-ary vs. Binary)

The set of maps, {My, ..., M,}, is defined in the group of automata, {G,,...,Gn},
before introducing any composition rule. ..ie automata along with their correspond-
ing maps. then shape a collection (C) over which a specific composition rule can be
defined. If a new DES (G,41) requires to be added to the group with “the same”

composition rule, as shown in F~ 1re 3-12, there will be two possibilitics:
1. Cnmul = {(Gla ]\[1)1 tey (Gn; ]\In)y (Gni 1 ]\[nﬁ l)}»

2. Cn(’w? = {(gv ]\Il)v (Gn+17 ]\[711‘}*1)}'

Where, after addition, in the first line the domain of each Af; (i € {1,...,n+ 1})

is QQ; X ﬂ?zlyj# ¥; (sec Figure 3-"7". In the second line, G is the resulting DES of

47



collection C and the given composition rule; A/’ is the map for G when G, is added:
and M, is the map for G, ;1 when it is added to G. To distinguish the difference
between the two cases, ob  ve that case (1) is an n-ary composition, while case
(2) is a binary one: in Cpewr. Gryq 1s added by introducing its own map along with
augmenting the required translations to each iitial map, while in Cpep2. G, 41 18 added
to the flattened result G (with the new state and event sets @ and ) by introducing
M, and A’ The point is that, in general, C,eqq and Cpeyz are not equivalent.
M, 1 and A/}, are equivalent beeause both are defined as @, x X — X, and
thev are cousistent. Whereas, . does not have the same effect as the modification
of the set {M,..... M} does. The reason is that in Cp. if for a given event of GG, 1y
(say o € 3,11) we have a  fined translation for each of GGy through G, (while they
arc in their current states), then to have the same effect in G2, we should have a
“string” of those translations (a concatenation of all those events) as the translation
of o, which is incon ent with = : definition (by definition. an event can only be
translated to a single event, not a string of cevents). Indeed. C,ppq 18 more general
since all the information of } »vic s DES are still in place. The following example

demonstrates this issue.

Example 3.8: (Augmenting A New DES to A Given Group: “N-ary” vs.
“Binary”)

Consider the three automata Gy, Go, and Gy sh in Figure 3-13 (left side) with:
S,‘ = {Qisfii}s fori € {1,23} (384)

Let Gy and Gy be grouped together with empty maps (no translation of events).

Therefore, G' = G’l L ég would 1 a shuffle of G; and G5 as shown in Figure 3-13

18



Figure 3-13: Two DES of G and G are grouped together with elupty maps. Then, the third
DES, Gj is supposed to be added to the group as an n-ary addition (without {lattening),
with the maps Mj(1,a3) = a1, Aa(l,a3) = az, and My = 0. G' = G; L G, shows the
resulting automaton of GG; and G4 before adding G3.
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(right side). Now, let us explore the addition of G to the n-ary group with the maps:

M1 ay) = oy, (3.85)
4‘[‘2(1 (13) = vy, (386)

Since there is no shared e t, no blocking will occur. For all the events in ¥ =
3 . .

Ui, Zi. except for ay, the resulting automaton is a shuffle of the three automata.

Thus, say G. Ga. and Gy are all in state 1, and ag occurs. Because ag € Ty(1)\ (£, U

¥,). cach DES will perform the Hllowing transition:

G1: Guewr = 01(1.M(1,03)) =1 (L.ay) = 2. (3.88)
Gg : G ,2:62(1..\[2(1,(13)) :(52(1,(12) =2, (389)
Gy news = 65(1 (1'3) =2 (39())

Therefore. it is identical to say that G must go from the state ¢' = (1.1) to the state
¢’ = (2,2) by the event ay. Let us probe if there exist a map so that the addition of
G3 to G’ can have the same  ult as the prer s case of being at the state ((1.1).1)
an  ay occurs. It is obvious th re are at least two transitions required in G7 to
travel from (1) to (2, 2); therefore, it is ider cal to the result of the n-ary composi-

tion. As a result, as mentioned before, the map M/’ (the map for G) should trauslate

avy to the string of either “ay 35" or “ag, 91" which is inconsistent with the definition. m

In this rescarch. due to the goal of having an object-oriented design, it is preferred

(=] o
to preserve (and hide the inforimation of) each DES as a separate entity. Thus, when
a new automaton is added to a collection, we prefer to modify the initial maps. rather

than flattening the initial collection (we prefer to use Ciepn).



As a final remark, given a set of automata. if we let maps be cmpty for all the
automata, then the result of AY will simply reduced to the standard synchronous

procuct. composition (it is directly resulted fronr the definition):

Proposition 3.3.11 Synchronous product composition is a special case for ASP.

3.4 Reachability of G ( 1he Resulting DES)

Let us first epitomize a DES collection by a given composition rule:

Definition 3.4.1 (DES Ruled-collection) A DES collectionC = {(;‘1 (;',,,} and

an n-ary composition rule over it, shape a DES ruled-collection C as

C = (C. ). (3.91)

In DES context, when there is no fear of confusion, it can be simply called ruled-
collection. Therefore, a rul  collection always results in an automaton which is the
resulting DES of the correspond ; composition rule (G under Definition 3.3.2).
The reachable state set (and the possible transition triplets Q@ x ¥ x Q) of the
resulting DES of a ruled-collection (using any arbitrary composition rule) can be

found by the following recursive, exhaustive algorithm:




ALZOrIUIILL O, 1. [tcacnaniniyg ATonra]ll

input : P — (a muluLogic object), ps < (the present state), A — @ (the
set of visited state)

output: S (the set of transitions)

1 Function Reach(P, ps):

2 if ps € A then

3 ‘ Return;

4 else

5 ‘ A AU {ps}
6 end

7 foreach o€ I'(ps) do

8 ns «— nextState (P .ps.0);
9 S —SU{(ps.o.ns)};

10 Reach(P. ns):

11 end

12 return S;

In which. the function 1 S :e(P.ps.o) evaluates dp(ps.o) for the sclected
composition rule. For the sake of visnalization, this algorithm can also be used to
construct the resulting autc  ton of a ruled-collection. using a graphical-sketceh gen-
erator. As an example, using this reachability algorithm, Figure 3-14 illustrates the
resulting antomaton of the three v -chiouses of Example 3.6 with the ASP composi-
tion rule. To generate this | the following renaming has been used: the events
a; with i1, 4, with /2, and w; with /3. For example, 32 mecans J3. Additionally,
in the product state, the door-closed and door-opened states are shown as 1 and 2
respectively. For examiple, {2 2) means 117 is in door-closed. W is in door-opened.
and Wy is also in door-opened. The details of the software and how to use it, will be

provided in the next chapter.
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Figure 3-14: The resulting automaton of the three warehouses of Example 3.6, using the reachat
The cyan hexagon illustrates the i 1 state.

ty algorithm (Algorithin 3.1).




3.5 Hierarchical Composition Structures of DES

In this section, the previous concepts are extended to have a set of ruled-collections
which are arranged in a hierarchical structure. Although the theory is explained and
highlighted by an example, the softwarce implementation of DES hierarchy is bevond

the scope of this thesis, and will be left as a future work.

Definition 3.5.1 . ..3 Hierarchy) Given a set of DES, M = {G,.....G,,}. a DES
hierarchy is a finite number of levels (with the cardinality of P), where in cach level
the cristing set is partitioned inlo n, (pis the level index) number of sels, cach shapes
a ruled-collection with the cardina y of m? (i is the inder of ruled-collection in a

level). P is called the order of the DES hierarchy. and by definition, np = 1.

Therefore, using NCR. a DES ] chy defines a hierarchical structure for a finite
number of DES, grouped together. Figure 3- 5 exemplifies  simple DES hierarchy.
The result of the p™ level is r¢ 1cing n, number of DES to n,;; < n, number of

DES. Let us denote the " DES ruled-collection in the p™ level by C?. By definition,

m? = |C?). (3.92)
Where, |.| denotes the cardinality operation. It is then straight forward to show
123}
N© m: n, (3.93)
=1
ol =n,, p=2,..P (3.94)
i=1

Now, consider the following exa ple which illustrates how to construct and modify

a DES hierarchy.






Example 3.9: (A Simple Hierarchical Design)

Returning to example 3.4, we would like to shape a hierarchy of order three. At the
first level of hierarchy, we have two collections, ruled by AST composition to satisfy the
concurrent behaviour after the mentioned tap-unification. Then, at the second level,
we would like to add a supervisor (an cvent-based specification) to the first collection
to block system Gy, (1 < b < my) from going > its filling state (F},) (say. because of
some technical problems in that tank). Clearly, here the choice is the synchronous
product composition (though it can also be performed by ASP composition). Finally,
at the third level. we would like to have a shuffle of the resulting automata. Therclore,
the choice would be a synchronous product composition (notice since the resulting
automata of level two do not sl e any event, the synchronous product composition
results in a shuffle composition).

To capture the hierarchical naming, let us call the collections C; and Cy of Example

3.4 by C], C1. Their ruled-collectic C711 and C:i are defined as:
Cl=(Cl.L) fori=1,2 (3.95)

The result of each ruled-collection of level one will then be a new antomaton (say G/,
i =1,2). Now, at the sccond level of hicrarchy, we need a product composition of €}

and the following supervisor:

S:=(Qs 5,05 qos. Qums). such that, (3.96)

QS = Qm,S = {(]5'}7 (397)
m

s U7 (3.98)
i=1

Qos = s, (3.99)

Vo € ¥s\ay, ds(gs,0) = qs. (3.100)



That is, S is a single-state supervisor with a self-loop including all the events of the

collection except for aa, and at e same time, as € ¥y, Consequently,

Gl = (Gl.0). (3.101)
S =(S.0), (3.102)
C?={Gl.S}. (3.103)
Y=(ck. (3.104)
2=cl (3.105)

The last line emphasis the fact that the second ruled-collection of level two is that of
level one without any change (an exact copy). Computationally, we may need only
to make a reference to C3 instead of overloading it. Again, let us call the resulting

automata of these ruled-collectic s as G2, i = 1.2, and finally, at the third level,

Gl =(G;.0). i=12 (3.100)
cl ={Gi.G3}. (3.107)
¢t (3.108)

Let us emphasize the fact that once a DES hicrarchy is designed, (1) a DES cau be
added to and/or deleted from cach ruled-collection at any level of hierarchy provided
that the maps are updated if required; (2) both the event-based specifications and the
maps are allowed to be changed; (3) once a DES collection is defined, from the rest
of hicrarchy it is exclusively considerc as its resulting DES. Figure 3-16 summarizes
the entire design process. 1+ nputational implementation ane algorithm design

for this structure will be explained in Ch:  ter 1.
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* A Set of DES

* event-based > new automata —» N-ary map-automata ———
* Specifications
s state/event-based > local maps

[lierarchy €—— Ruled-collection ¢—— Composition Rule <«—— DES Collection -

Figure 3-16: A high-level structure of  multi-DES system including two types of specifica-
tions.

3.6 A Class of __ybrid Systems

In this section, we briefly extend the results of the previous sections to a class of
hybrid systems. A hybrid system is a multi-] ased physical plant which is expected
or allowed to follow logical behaviours through jumping among its phases. These
logical attributes originate from either physical restrictions or our control objectives
(or disturbance), and can be best described by the discrete event system (DES)
theory. On the other hand, the | ysical b aviours of a hybrid systenn are often
explained with differential or difference equations, typically derived from physical
laws governing the dynamics of the systemn under consideration. Thus, the interaction
between physical and logical behar wrs  sul  in " incorporation of discrete and
continuous mathematics and modc 1g issues. To address this challenge, a number of
different approaches have heen proposed including the theory of hybrid automata by
Henzinger {1996); Tomlin, Lygeros and Sastry (2000); and Cassandras and Lygeros
(2006), and e switched continuous model by Millan (2006).



3.6.1 Hybrid Automata

In this thesis, a deterministic hybrid automaton (as opposed to stochastic hybrid

automaton) is considered as follows:

Definition 3.6.1 (Deterministic Hybrid Automata) A dclerministic hybrid aw-

tomaton s a septuple

H:= X, [, Don,rx,d), (3.109)

which characlerizes the evolution of continuous stale variables x € X C R", and

discrete state variables ¢ € Q (of cardinality |Q = n) by means of fowr enlilies
o q vector field f - Q x X — X,
o a domain map Dom : Q — 2%,

o discrele cvent set T, which characterizes a collection of functionals with unique

alphabetical name (can be in  rer numnbers). and
o a reset functionr: Q xQ x X — X.

Therefore. a hybrid automaton is a system with discrete modes  (of cardinality
|Q| = n) and discrete events 3. W denote f as the set of continuous dynanics given
by the functions f;, with i {1,...,n}. Each mode ¢; € Q has dynamics & = f;(r), in
whicli the continuous state is + € .X. The transition function ¢ is deterministice, and
indicates the evolution of the discrete state when a transition occurs: g1 = 0(qr. ).
The set of events which can enable or force the hiybrid system to transition between
modes is indicated by ¥. The events in ¥ fall into one of three categories (Oishi 2003):
they can be controlled, disturbance, or automatic (deterinined by conditions on the
continuous states). In this thesis, however, we only consider automatic events. The
map Dom(q) provides the cont 10us domain of the discrete state g. The nitial set

is (go,.ro). which will then be reset after cach transition by the reset function 7.
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The modeling framework uscd here is a simplification of that presented in (Tomlin
et al. 2000) and (Cassandras and Lygeros 2006). Basic introductions to Livbrid systems
and Lybrid automata can be found in (Branicky 1994) and (Lygeros, Tomlin and
Sastry 2008).

Let us separate a hybrid automaton into two entities of physical behaviowrs (titne-
driven and continuous dynamics) 1d logical behaviours (event-driven and diserete

dynamics). Namely, a hybrid automaton can be re-written as:

H:= | G), where (3.110)
P:="" X, f,Dom,r), and (3.111)
G (Q,%.9). (3.112)

The physical entity, P, is called a time-driven system model (TSM), and is a collection
of continuous systems, each is labeled by a discrete state, and the logical entity, G, is
a DES whose event set 3 s defined from the “automatic™ guards (events). The details
of partitioning the state-space in order to define the automatic guards, is explained
in (Millan 2006). Basically, the s c-space of cach mode of operation (represented
by a discrete state) can be partitioned through a set of functionals. Then, zero-
crossing of each functional in a ) ific direction (either from greater values (1), or
from lower values (1), or bo ) will generate an event, which is called as guards 0
We do not go much throt  the details of this well-developed theory; instead, we are
interested in deploying the theore al structure designed in the previous sections for
the logical entity of hybrid automata. The following example explains a primitive
modeling problem using hybrid automata theory, which helps the understanding of

basic concepts before we proceed  :h the computational desigu.

6 Also known as output events.
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Examj :4.1: (Bouncing Ball)

As an example, consider a bouncing ball, which has two discrete states of falling
(q5), and jumping (q;). Let there be no input defined. For the continmious state-space,
let us assume that with the ball’s vertical position from the floor (2) and the ball’s

velocity (h) we can capture the physical dynamics completely. Thus,

Q Har i}, (3.113)
B .’Tfl-| h
X = =1 |. (3.11
£ h

Using the physical laws of motion, the vector fields corresponding to cach discrete

state will be driven as:

. fl;l ) T
fi: X = = , (3.115)
Y I
. x T
f: X H o= ’ , (3.116)
&) —g— 2

where, ¢ is the acceleration 1e to gravity, c¢g > 0 is the drag cocflicient (due to air
resistance), and m is the mass of the ball. We will also use a second index to indicate
the initial and final values of each s e variable (nawmely, 2 ¢ and g, y demonstrate the
initial and final values of thie k-th s e variable respectively). Note that the dynamics
of both modes are identical in this state-space model. However, to capture the logical
(switching) behaviour of the ball, it is more convenient to have two separate discrete
states corresponding to falling an  jumping (for the modeling by only one discrete
state with a self-loop see (Lygeros et al. 2008)). Then, in each discrete switching, the
initial value of velocity (z20) shor | be reset to the negative of its final value from

the last mode (—z2 f). Therefore, the initial value for each discrete state comes from
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the reset function:

x
b ,form#ne{f,j}, (3.117)

L2 €Taf —L2 f
where, 1 5 and xy 5 are the final va > of the continuous states in the previous discrete
state.  Note that, for simplicily, the energy lost due to restitution has not been
considered.

Now, we introduce the [c wing guards:

op: ry =0, [, (3.118)

oy =0, |. (3.119)

Where, the downward arrows indicates that the gnard considered as an “event” o1 -
when the value of z; reaches zere o positive values. Therefore, ¥ = {a). a2}, where,
oy indicates the event of reaching the floor, while oy indicates the event of reaching
the maximum height. The following automaton indicates the logical behaviour of the

ball:

G =(0Q,%,68,qy, Q). with (3.120)
Q  Qun={a54} (3.121)
5 = {0).0,}, (3.122)
G qr. (3.123)
0 Oap,on) = a5 0(q;,02) = gr. (3.124)

We assumed that the initial physical behaviour is falling, and also that both modes of
physical behaviours arc considered 1 “desired,” thus, both discrete states are marked.
This siinple automaton effectively captures the logical hehaviours of our system. NMore

importantly, it allows for applying a  eccification. As an example for an event  ased
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specification, let us assume that at some point, the floor moves out of the way so
that the ball no longer has the physical limit. To apply this new constraint without
“changing” the main model, it i3 adequate to add a new DES with the synchronous
product to block ¢ (see Chapter 3, Example 3.5). The specification can be defined

by the following DES:

S = (QSw ES, 653 qos, QmS), with (3125
Qs = Qs = {4s}, (3.126
Y =1, (3.127

dos = qs; (3.128

og:  ds(qs,02) = gs- (3.129)

We mentioned that in this view of the hybrid antomata, the plysical entity is the
source of event generation, while the logical entity modifies the transitions effectively.
Now, consider a set of hybrid automata {Hj,..., H,}, which are grouped together
by allowing communication only in their logical level of abstraction. As a result, the
plysical entities are supposed t¢ nerate the events independently (without accessing
to the state-space and dynamics of other systems), while the event names can be the
same (that is, in the logical levi of abstraction, different systems can have shared
events in their event sets). Thus, we have a set of DES, {Gy, ..., G, }, which can shape
ruled-collections and hierarchy as explained in the previous sections. Also, note that
additional hybrid automata with roper physical entity can be added to the group for
event-based specifications, and m: s can also be defined to encode the state/event-
based specifications. This will be clarified by an example in the next chapter (under

Section 4.6).
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As a final remark, in order for the software development to be performed cfficiently,
we need also to consider issues such as parallel computation once solving ordinary
differential equations. The computational implementation of this new look to ivbrid

automata is discussed in the next - apter.
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Chapter _

Computational Design

In this rescarch, a software package has been developed as a testbed for the theories
introduced in Chapter 3. The core structure exactly follows the preseuted definitions.
For the sake of software reliability and reusability, an object-oriented design has
been considered, in addition to ¢ Hloying standard technologies such as XML as
the data transmission format to standard DES software. All the algorithms and
platform design are implemented in MATLAB with the consideration of vectorization

(as opposed to traditionally scalar software design).

4.1 General Structure

The soltware integrates two main  tities of &t 577 Hgic and Generator as its main
“classes,” which represent the two main entities of logical and physical hehaviours

respectively, as explained in the previous chapter. Technically:,
e cach autornaton is represented as an object of the Logic class.

e The Logics together with their maps then form a DES colleetion defined by an
object of the multiLlogic class. As a DES collection, multiLlogic cncapsulates
the entire logical part aud manages the concurrency of multi-systent problems

in a memory-eflicient manner.



e The composition rules (product, synchronous product, and ASP) are applied as

the methods of the multiLogic class.
o A ruled-collection is also characterized by the class multiLogic.
e For hvbrid systems of the form explained in Section 3.6:

— A the entities regarding the time-driven behaviours of the hybrid svs-
tem along witlt managing simulations and parallel computations of multi-
system problems, are encapsulated in the Generator class. An object
of the ( 1erator class 1s a collection of TSN as explained in Chapter 3
(Section 3.6).

— MultiLogic and Generator are then collected as two objects in a general
class called HySys which in turn applies all the required functionalities by

alling the corresponding methods.

This structure allows for both DES and hybrid systems to be added to or deleted [rom
the current n-ary collection, as the theory suggests. In HySys (the class representing
hybrid syste s), the sync oniza m only occurs in the logical part. which is the
multilogic compoucent. Figure 4-1 highlights the object-oriented structure of the
software as explained here. The execution process starts by running the Generator
from an initial value up to reachii  a guard (an automatic event defined as a parti-
tioning functional over the state-sp  e) by any of the physical sub-systems. Then, this
guard will be passed to the mu. .Logic to be passed properly to cach Logic. Each
Logic then specifies a transition  auy) based on its pre-defined transition matrix
(called transArray), which can come from  XML-file, and the entive composition
rule, which can be either of synchronous product, ASP, product, or shuffle. Fi-
nally, the result transition whic is selected by the multiLogic will be fed back into
the Generator, and the process will be repeated by resetting the Generator to a
new mode ol operation (with prc er initial value inherited from the last mode of

operation).
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For pure ES problems (problems involving only DES without any continuous
dynamics behind), the mul L ic class can also be used separately. In such a
case, again, cach DES can be introduced either by an XML file or by a MATL/
script to shape a Logic, then collected together as a multiLogic object. A set
of various methods are available for manipulating them (for exanple, checking for
deadlock states) in addition to different composition rules as defined in the previous

chapters.

4.2 Logical Entity

The software offers a set of different methods for handling a collection of DES as an

n-ary. Two main issues have to be considered:
1. the capability of importing ¢ a from the standard DES software,

2. memory-usage efficiency in concurrent systenis.

4.2.1 Import from standard DES software

Most of the current existing DES software (such as [IDES! and JFLAP?) use the
Extensible AMarkup Language (XML) as the format to save information (state nanies,
event names, transitions, properties, and  phical structure). As a result, XML has
been selected in our software as the standard for importing of external data (of an
antomaton model). However, once the XML-files generated by an external so  vare
arc imported to our software, they will be reformatted to a new data structure, while

the graphical/structural informmation w  be ignored.

'IDES (Integrated Discrete-Event Systems) is a Java-based software developed by The Open-
Symphouy Group at Queen’s university d under the supervision of I{. Rudie (Rudie 2008).

2JIFLAP is a package of graphical tools which can be used as an aid in learning the basic concepts
of Formal Languages and Automata T ory and is under the support of The National Scicence
Foundation (NSI'). JFLAP is licensed under a Creative Commons Attribution-NonConnuercial-
ShareAlike 2.5 License (Rodger and Finley 2006) and (Rodger 2009).
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For the tests and examples of this chapter IDES has been selected. Any alterna-
tive software can also be used as long as it supports the standard XML 1.0 format.
For parsing the XML file, a free-shared package called xrmi-tree is used, which helps

nuporting XML files in MATLAB environment.

4.2.2 Memory-usage Efficiency in Concurrent Systems

Once a new system is added to the current system, the straight-forward method
is to perform the composition operation first and then save the resulting flattened
antomaton. In such a case, the number of states and transitions (and as a result the
required memory to hold the information) will be increased dramatically. In this work.
in addition to the object-oriented  sign (which was counted as the main premise in
this thesis). for the sake of efficieney in memory-usage, each antomaton (can he read
from an XNL-file) is managed independently in a class called Logic. Then, all the
objects of the Logic class will be managed together in the main multiLogic class
with appropriate methods. Becanse, at the end of the day, the entive DES collection
of a multiLogic object with a given composition rule should be treated as a single
DES (regardless of its non-flattened structure), a convention has been introduced as a
standard to nmmbering the states ¢ the new system (the composition of old systeims).
This standard is implemented by the private mcthods multiLogic.new201d() aud

multilogic.old2new(), whosc algorithms are provided in Appendix C.

4.2.3 Class Structure of The Logical Entity

Each single logical constitnent, wl  h is described by an antomaton, is encapsulated
by the class Logic. The main components of this class are illustrated in Figure 4-2.
The properties of a Logic object are normally read from an XML-1  directly (they
can also be modified by a MATLAB script). In such a case, the XML-file should be
compatible with the IDES software standard. Then, all the Logic objects are encap-

sulated in the class multile .c o ly for an n-ary composition. The components of
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Log:

+eventSet
+currState
+initState
+numStates
+numGuards
+numGamma
+NumTrans

+transArray

+Logic()
+nextState ()
+transition ()
+isDeadlock ()

Figure 4-2: Class diagramn of

.c and multiLogic classes (in UML standard).
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multilogic

+eventSet

+currState
+initState
+numStates
+numGuards
+numSubsys

+subSys

+multilogic ()
+addLogic ()
lLogic()
+sync ()
+asp()
+product ()
+transition()
+.  eadlock()
-old2new ()
-new2eld()




Logic and multiLogic are illustrated in Figure 1-2.

A multiLogic cousists of at least one Logic object inside its subSys property.
In the case of having more than one Logic object, it should also be modified with
the map vectors for each new Logic object. For more details see Section 4.6, The

algorithms implementing the main methods are as follows:

4.2.4 Class: Logic, method: nextStat

Axgorithm 4.1: nexrtdStare methan Qr (ne 1.0me rlacy

input : G — (a DI ect). eventiName €

output: resultState € (Q V {False})

1 Function nextStal [G,cver Vame):
2 if event Name € I'(G.currentState) then
3 ‘ resultStale «— GitransA 1y(G.current State, cvent Namne):

4 else

resultState «— False;
6 end

7 return resultStale;

This method evaluates what the next state is for cach antomaton (which is

3i(qi, o)) (abstracted in a Le - Lc object); however, it does not perform a transition.

4.2.5 Class: Logic, method: transition

This method implements  + transitions of each single DES (abstracted in a Logic

object).
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A]gor“‘hrn A D rramerrinn MO DA ol TRO Lame claca

input Yy «— (a UL object), eventiName € L

output: G

1 Function transition(G,cventName);
2 temp — nextS1 :e(G,cventName);

3 if lemp # False then

4 G.current State — temp:

end

41}

6 return G,

Algorithi C LOGLe crass

input @y « (a UEd opject), stateName € (J

output: result

1 Function : X lloc G, Name);
2 if G.numGamma(stateName) () then
3 ‘ result — False;

1 else

5 ’ result — True;

6 end

7 return result;




4.2.6 Class: Logic, metl d: i Deadlock

This method evaluates if a ‘ven state is a deadlock state in each single DES (ab-

stracted in a Logic object).

4.2.7 Class: _1ltil jic, method: transition

Algorl]_’,nn] 4'41: CICLTRSEL v Ve Ty a3 LI TIPHEE AHTHE T 1ARS

input : G « (amultiLogic object), state/Name € () (new)

output: G — (a multilogic ohject)

1 Function transition  stc Name);

2 nerxtState — G.nethod(cvent Name);,

3 G.currState — nextStale:

4 nextStates — Gnew.  _d(nextState);

5 foreach i € {1,...,G.numSubsys} do

6 G.subsys.logic{i}.currState — nexrtStates(i);
7 end

8 return G;

This method performs a transition in a multiLogic object based on a given

method which can he one of sync, asp, and product.

4.2.8 Class: multilogic, mc 10d: i Jeadlc ¢

This method cevaluates if o state is a deadlock state in a multilogic object

regardless of the existing maps.



AlgUI‘ILlI'" A fo % ’IQI)I’I)'I!IIII’A' matinnan l\i 1 rés ’IH"{[/[”I’II.I)II’II’ M1ake

10

11

12

13

14

input '-L), .s‘ta,{m ame € -(J (11(‘\\')
output: result € {0,1,2}:  means not deadlock, 1 means deadlock, 2

niecans some subsystemns are at. deadloch.

Function isDeadlock (G, stalicName);
stateSet «— new20ld( ™ stateName);
temp «— zeros (G.numSubsys) ;

foreach i € {1,...,GnumSubsys} do

temp(i) — G.subsys.logic{i}.is] dlock(stateSet(i));
end
if sum({emp) = length({emp) then

result « 1;
else if sum(/cmp) = 0 then
result « 0

else

result «— 2:
end

return result,
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4.3 Physical Entity

In this entity, parallel simulation and resetting of a set of physical systems (with con-
tinuous dynamics coming from ext 1al w-files) are performed. Each phyvsical system
(a time-driven svstem model (TS? | and its guard generator) is characterized by a
pair of m-files representing a TSN and its corresponding Guard. Each guar  can
have access to only its own TSM (as a local information), that is, by definition, no
synchronization/communication is allowed to occur in the physical level of abstrac-
tion. Similar to the class mult ic, all the constituents of the physical entity is
encapsulated in a class called Generator. The main role of Generator is to generate
events from a given continuous dynamical models. This class reads the continuous
dynawmics from separate pairs of m-files corresponding to cach physical system and
its guard. For example, if we have three physical systems we must have three m-files
for the TSNI’s and three others for the corresponding guards. The main components
of Generator arc shown in F 3. Note that a Generator object does not select
its current mode of operation: it will perform the appropriate simulations base on a
“selected”™ mode of operation an  a proper initial value vector. A simulation can he
done by calling the method simu. e, for which the mode of operation, start time,
and initial value should be provided as the input argumnents. A Generator object
can be reset by the method Ger ;or.reset (so that the new initial value will be

the last value of the state vector, obtained from the last use of simulate method).

4.4 Class HySys: Modeling of Hybrid Systems

Both the physical (Generator) and the logical (multiLogic) entities are collected
m the class HySys. Thus, cach object of the class HySys is a DES collection with
the corresponding physical systemns as the source of event generation. This class has
proper methods for adding new hybrid systems, deleting previous hybrid systems, and

running the entire system to sce the results. It also manages the interface hetween









To the liquid supply

Controlling Tay

.ranl_» 1 % 1'11“.(3

} Sensor | &;m\g h, _¢_ __________
.
Sensor 2
To Plant 1 To Plant 3 N
¢ Tank parameters

To Plant 2

(a) (b)

Figure 4-4: Multi-tank example: (a) schematic of the problem, and (b) state variable and
other parameters.

to illustrate the simplicity and power of object-oriented algorithin design.

4.6.1 Problem De: ript n

Consider n quid tanks (n 2). each of which is connected to a plant that consumes
the Liquid from its corresponding tank with a known non-lincar flow with the draining
factor g, for the /th tank, while ¢ consumption (draining) time is unpredictable
(Figure 4-4). Each tank is equipped with a sensor that shows whether or not the
tank is in the consumption mode. There 1s only one tap filling all the tanks one al
a time with a known const. t {lc  of u. It is also assumed that the filling rate is
always adequate to fill at least one of the tanks regardless of what the consumption
rate is. For simplicity, it is  su ¢ that the tap can be either on or off and it takes
no time to switch to a new tank position (otherwise it has to be defined with new
modes of operation for cach intermediate case). The only state variable for cach tank

is its level of liquid (z;). Different  odes of operation are then as follows:
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e mode 1: (filling), the tap is filling this tank, while the corresponding plant is

off (based on the tank sensor): & = u. 1y,

e mode  (filling, consumption), the tap is filling this tank and the correspond-

ing plant is on (based on the tank sensor); & = — /T, + u, roy;

e mode 3: (consumption), the tap is off. while the corresponding plant is on

(based on the tank sensor): &; = —p;/x;, 2o
e mode 4: (rest), both the tap and the plant are off: & = 0, rq,.

[t is poss le that at any time one tank is added to or deleted from the systenn.
The goal is to keep all the tank le s Detween a minimum and a maxinnun level (A;

and 1} respectively) all the times.

4.6.2 Solution and Rest s

To model this problem, sin cach 1k is a multi-phased system. it has to be modeled
as a hybrid system with four discrete states corresponding to cach mode of operation.
This system then follows a logical behaviour when controlled. However, to capture
the behaviour of the sensor, we a to add another state variable r ;. which accepts
two values of {0,1} regard g whether or not there is consmption. Note that @,
does not have any dynamics, rath it receives its value from a sensor with a specific
sampling time. Once the valie of r,; changes, the tank must switch to another mode
of operation; as a result, x,; will remain constant during one mode of operation

(£,.; = 0). Based on this state-sp: . four guards are defined for each tank:

Ei = {916, 91 e i} o

Definitions of these guards are provided in Tables 4.1 and 4.2, Consequently, the log-
ical behaviour of a tank based on both our control objectives and physical constraints

(the sensor behaviour) can be intre uced by an automaton shown in Figure 4-5. This
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gr

(R).

Figure 4-7: The explicit specification for a single sensor with two states of consumption (C)
and non-consumption (N).

Considering a set of n ks with only one tap, the specification is that if tank ¢
transits to Filling mode (that is, if g; of a given tank is ¢ rated). and at the same
time tank j has also been in its Filling mode, then tank j must exit its Filling mode.
This state/event-based specification can be captured by introducing the following

maps:

Vi, j € {l,...n},and i # j
M;(Fj, q91.0) = 915 (4.2)

M((F/C)j,910) = g1 (4.3)

These maps encode the enforc  synchronization among tanks using a single tap,
meaning that each tank will see the g, of other tanks as its own gy, which then

automatically results in a desired transition. The logical behaviour is then given by
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the ASP composition. These explanations can be written formally as:
Gi=(Qi. S0, T, qgoi.Qui).for i = 1.....n. (1

where, 9; and I'; are as defined in Figure 4-5, ¢o; = R;. and Q,,,; = Q;. +.¢ collection

and ruled-collection are as follows:

C = {(Gr, M) ..., (Gn. M)}, (4.5)
C (C.1). (1.6)

Here, a t: ical case for n = 3 is excmplified:

G (the resulting DES of C) is 1wn in Figure 4-8. For generating this graph,
the reachability algorithm of Chapter 3 (Algorithm 3.1) has been used to gencrate
a DOT-file v ich then be plott  using Graphviz®. In this figure, cach node on the
graph (illustrated by an ellipse) is a product state. The initial state is distinguished
by the cvan hexagon on the lower-right part. The parameters for cach tank are
provided in Table 4.3. The system conunences with the first tank for 25 seconds.
During this time, a speeification, ¢ wn in Figure 1-5, will he applied to the systems
at the logical layer. Then, another tank is added to the system and both are kept
controlled for another 45 seconds, during which the two tanks will accommodate cach
other for ha' g only one tap (i.c. once one of them requires to be filled, it receives
the tap flow, and as a result if the other tank is in the filling mode at the same time,
it accommodates the filling of the other tank by going to its appropriate non-fitling
mode). Based on the problem spec  ations, the filling priority always goes to the first
tank. Afterwards, the third tank would be added and three of them will be controlled

for another 30 seconds (again, d ing this time all three tanks will accommodate cach

other). Fina -, the last tank wi deleted from the system and the remaining two
3Grag alization software developed by AT&T. It has been dis-
tributed (CPL). which can be reached on-line.










if temp <= threshold
consum] ion 1;
elseif temp == threshol

% a random selection of {1,0}, most likely to be {0}:

consumption = fix(r 1+.. ;

else

consumption = O;
end

end % end of function

This function will then be ca by each TSN appropriately. The ni-files repre-
senting the TSN and guard for tankl are shown in Figures 4-9 and 4-10 respectively.
A sample user-code for final imple entation is also shown i Figure 4-11.

The results for this implementation is plotted in Figure 4-12. The vellow globes
on the first trajectory ind te icks of five seconds (which is an event generated
by the first tauk in every five seconds to demonstrate the time evolution), the red
squares demonstrate when the level of liquid exceeds its prescribed levels (h;, and
n%), and the green diamonds show when the sensor status of cach tank is changed.
Note that. when r; exceeds 27 (its maximum level). the controller stops filling, by
specification: however, since there is no control on the draining. it is possible that at
the sanie time the corresponding plant is off, and thercfore @; stays at the exceeded
level (in a margin which comes [rom computational time steps) for ayv ™ e, then start
decreasing. Other than this. at all the times. e liquid level in all the working tanks

have been properly kept between  eir allowed linits.













liquid level {meter)

I | 1 1 1 L J

1
0 1u 20 30 “u o 60 70 80 90 100 110 120 130
Time (second)

Figure 4-12: Simulation results for 1irce concurrent tauks controlled by one tap. The yellow
circles on the first trajectory indicate ticks of five seconds, the red squares demonstrate
when the level of liquid exceeds its prescribed levels (h;, and h}), and the green diamonds
show when tlie sensor status of each tank is changed.
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Figure 4-13: An automaton representing the specification to block gy ».

Let us now extend this example by assuming that at the time { = 101 sec., due
to a technical problem, the second tank should be prevented from filling. Therefore,
two steps should be done: (1) if tI  second tank is in its state F or F/C it should be
forced to transition to R or C resp ively, and (2) the event g o of the second tank
should be blocked (disabled) by a 1pervisor (an event-based specification) in order
for the second tank to stay in the {R,C} subset of its discrete state-space. Figure
4-13 demonstrates the auto  wton which characterizes this specification. The event ¢
will be mapped to the event g; ., while the second tank is in R or €. Thus, after the
ASP composition, once y occurs, it will cause the second tank to have the desired
transition. Additionally, note that g; » belongs to the event set of this specification,
but not to the active event set of its current state (g2 ¢ I's(2)); thercfore, this
specification always blocks g 2. We also nced a physical system to generate o in the
desired time. This physical systein can be formed by a simple dynamics and a guard
to fire at the req ed t . 71 is physical system and the automaton ol Figure
4-13 will then shapc a hybrid system to be added to our existing HySys object.

Figure 4-14 shows the entire simulation from the beginning. This time, the new
mentioned specification will be adc  Lin the time ¢ 101 sec (in real-time), before the
third system is deleted. The entire system continues running for another 35 seconds.
1t can be observed that once the second tar  reaches the height of 2 meters, it 1o
longer switches to its filling mode. After this 35 seconds, the specification is deleted

and it can be seen that the secon tank immediately switches to the filling mode.
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Figure 4-14: Simulation results for three concurrent tanks controlled by one tap. The vellow
globes on the first trajectory indicate ticks of five seconds, the red squares demonstrate
when the level of liquid exceeds its preseribed levels (. and h%), and the green diamonds
show when the sensor status of each tank is changed. The horizontal green aud cvan thick
lines represent the minimum allow: e levels. Additionally, the two vertical black thick lines
show the time of adding and deleting the supervisor S.

The system keeps runming for ¢ Hther 30 seconds.
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Chapter — -

Conclusions

5.1 Summary

After a high-level descriptic — in Chapter 2, which is mostly meant for a reader with
lmited background in DES and hybrid systems arcas, Chapter 3 has provided the
required theory in detail. In this chapter, the concepts of map and ASP have been in-
troduced with the goal of implementing the state/cevent-based specifications properly.
The reachability of the resulting I 5 of a ruled-collection (using any arbitrary com-
position rule) was also derived through an exhaustive, recursive algorithm. All the
details were also clarified by shmple and related examples. Moreover, DES hierarchy
has been explained in this chapter. Finally, the DES concepts have been extended
to a class of hybrid systems which are allowed to have synchronization only at the
logical level of abstraction.

Because of the importance of implementation, the idea of using object-oriented
concepts (such as information hiding) has been maintained through out the thesis. As
explained in Chapter 4, in this thesis, a NJATLAB-based software package has been
developed, which implements the coretical coucepts. The chapter has discussed
the object-oriented structu  of tl software. Efficient methods and algorithms to

overcome miemory overflow have also beert ¢ cussed in Chapter 4. Fiually, an ex-




tensive example, which demonstrates the basic concepts targeted in this research,
was introduced. Additionally, this example highlighted how both mentioned types of
specifications (namely, event-based and state/event-based) can be applied together

in concurrent systems.

5.2 Contributions

As explained in Chapter 1, 1e work presented in this thesis contributes in the fol-

lowing two items:

1. The cxisting theory of DES has been developed to meet the computational

requirements for an n-ary concurrent system design (Chapter 3):

e The concept of map has been introduced to capture the specifications
which are definc  Dasc on both events and states (called state/eveut-

based specifications).

e An n-ary composition le, ci ed accommodating synchronous product
(ASP), has also been introduced to formally address the state /event-based
specifications. This rule is an extension of the n-ary version of the standard
synchironous product, ¢ 1 is reduced to synchronous product when the

maps are set to be empty.
2. Software has also been designed as a testbed for the theory (Chapter 4):

e MNain properties:
— Encompassing the concepts of the theory

— Object-oriented str ture

Importing data from standard DES software

[

The ability of real- ne addition/deletion of new system(s) to/from a

given collection
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hybrid systems. Therefore, a fre 1ework that formally formulates the concurrency of
such systems would be of great importance and can be developed in most applica-
tions which  volve logical interaction among more than one discrete-event or hybrid

system.
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Case 1: 0 = {1}

e (=i=1): §(q,0)=0d(q.0) il oel(q)\S. (A.3)

g (=i=2): 8(q0)=q il oeT{g)\Ss. (Ad)

Case 2: O = {2}

i€ (=i=2): 8(q,0)=70(q o) i o€ Dy(@p)\S. (A.5)

i¢Q (=i=1): §qa,0)=n il o e\ (A.0)

Case 3: Q= {1,2}

1 €Q:
(i=1): &{q.0)=0h(q.0) if o€ Ty(q)NTag)]. (A7)
(1=2): &g, 0)=0d:(q2.0) if o€ [T{q)NTag)l. (A.8)

I ¢ € ot possible.

Otherwise (none of the above cases which defined for all the possible choices of €2).
both § and &) are undefined, by the definition.
Combining equations A.3 an  A.4; equations A.5 and A.6; and equations A.7 and

A8, results

(01(qr.0),0(q1,0)) = (81(q,7), 42) if oeli(@)\E:. (A.9)
(01(q1.0),05(q1,0)) = (q1-02(q2, 7)) if oelag)\Z1.  (A.10)

(01 (qr.0),0(qr,0)) = (01(q1,0),02(q2. 0)) if o€Ti{q)NTag) (A7)



For the I', by definition:

(g1, Gn) = U [ﬂ T (ae)\ U Ek:| :

Q Lken kg

Again, if n = 2, then Q € 2002 = {{1}, {2}, {1. ""}. Thus,

F(qlw-w(hl): ﬂ Fk((Ik)\ U 2l\:

ke{1} kg{1}
Ul ) Tela\ U =
| ke{2} kg {2}

U | Fk((lk)\ U 2

| ke{1,2} k¢ {1,2}

= [C1(q)\E2) U [C2(g2)\ 1] U [T1(g1) N Ta(g2)] -

which completes the proof.

A.2 Part II:

For the sake of simplicity and clarity let us introduce the following notations:

e ¢;:= the current state of G;, € Y,

¢V = GIG -G,
o I, :=Ti(g;) 1ctive event set of the current state of Gi,

o IV :=T¢ . 16,(q1 - q)),

o B0 = Taya; = Uler Sk

00 = by i, = (81, 8o s ).
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We prove the second part of the theorem vy induction: given the correct case of
P I g

n=2 GM and T, we show G is equivalent to Gy = GG, 1, and Lo

is equivalent to Lgong,,,,- The base of induction (n = 2) was proved in the first part

of the theorem. Also,

En('w = EG(”) U En+1 (A]:))
MUY, (A.16)
UJsiuza (A.17)
i=1
nil

= Jz =t (A.18)
i=1

ifoeT™AT,,,
ifo e F<n)\SIHl

)
)

(¢"™ 6n41) ifo €T \Sm
d

5G(rl)||(:n+l = (Alg)
unde fine otherwise.
On tlie other hand, using the n-ary definition we have:
Seanryy i= 0D = (88060 ) = (8,60, 1), in which (A.20)
O = (A.21)
Sni1(qnar, o) if 3 € 2t 4 1 € X Ao € N Ui\ Uigar X
Ini1 if 30 € 20-m4 0 | 41 ¢ Q' Ao € Vo e\ Urgar s
unde fined otherwise.

We used the symbol ' to distinguish this case from the case of n, where we used €2.

Thus, 60+ = (6(M 4’ , ) should be evaluated for different possibilities of §2': having
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0 e 2{bn} e should show that first, for each case, there exists a specific ' for

which equation A.20 results in equation A.19, and second, the union of all the €7 is

(A.22)
Now, let us investigate cach case separately:

Case 1: ' =QU {n+1}

kcq kY Kk k¢ Quk#nt1

- (ﬂ n,)\ U =) |nTun (A.24)

kcS kg Qk#£n+1

= F(n) N Fnl Iy (A:ZS)

which is the condition in the first line of equation A.19. In the second equality, we
have used the fact that (Ar \C = (A\C)NB . For this case, since ' = {n+1}UQ,

from equation A.21 we have &/, 6, ; therefore from equation A.20 we have:
gD = (6™, 0,,0) (0 8u ), (A.20)

which is identical to the first line of the transition function of GM™||G, 41 (equation

A.19).

Tt can be simply proved as: (ANBN\C = (ANB)NC=(ANC)N D = (A\C)NB.
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Case 2: V' =Q

= [ﬂ FA] \ [U EA} = [T\ UEA}
ACyy kg LhC2 K@)
= m [ \ . U Y UL, il
LAkCS2 g hFEn+l

.

hkCQ

U =

kg S ksEnd 1

[0n)

=T\, 0,

which is the condition in the sccond line of equation A.19. In the th

have used the fact that AAN(BUC)  (A\B)\C % For this case, fron

we have: o, = ¢, 1. Therefore,

sn+1 (n) 57
0 ’OnJrl

= ((5 ) = (6(7])~(1n|1)'

\Sn [

(A.29)
(A.30)
ird equality. we

1 equation AL21

(A.31)

whichi is identical to the second line of the transition function of G(”)HG,, /1 (equation

A.19).

Case 3: (V' ={n 1}

:Fn+1\ U Xy

k#n+1

= Fn}l\ U Zﬂ: = F" | 1\\2(“)’

heQ)

ket

RIS

21t can be proved using De Morgan's law:

A(BUC)=AN(BUC) = AN(B NCT) = (ANB)YNC = (A\B) N
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which is the condition in the third line of equation A.19. For this case, since Q' =

n+1=0¢|J, %, inother words, o ¢ ¥, fori 1,.. n, by definition we have:

:H—l = (ST!+17 (A34)
(5(") = ((5; FRRER! 5:1) = ((117 ~-~,(]n) = (1(71)’ (ABS)

therefore,
SN = (3 60 ) = (" 1), (A.36)

which is identical to the third line of the trausition function of GU||G, ;1 (cquation

A.19).

Case 4: ' =1

= rk} \ [U a} = (A.37)

kesy

= no {ransition is allowed, (A.38)

which is corresponding to the forth line of the transition function of G™||G,, 1 (equa-
tion A.19).
The validity of I = _ ;e q,,, also foll the same arguments of the four

described cases above.
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Appendix — S

-

Proof of Cons'ste: zy of pinary and N-ary

Accommodating ¢ ynchronous Product

By definition,

Similar to Appendix A, for n = 2 in the definition 3.3.9, ¢ and I' could be derived.

3(qrs s q2)), ) = (01 (q1, @)y oo 0, (g, 7)), in which (B.1)
8i(gi o) = (B.2)
8:(gi,0) if 30 € 200" | i € QAo € [Nyen Trlar) N\ Unga i,
qi if 30 e i@ QAo € (Mo Trl@)\NUiga 2l

and M;(g;,0) is defined,

\ undefined otherwise.

and ¢ is undefined if any one of t7 ¢ is undefined.

3i(qi, M;(qi, o)) it 30 e i ¢ QAo e [N Trlae)\" I;gzsz i)

If n = 2, then Q € 2012} = {{1},{2},{1,2}}. Each possibility of € makes a

unique condition for o:
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Case 1: Q2 = {1}

ieQ (si=1): d(q.o)=0d(qn,0) if oelg)\E, (B.3)

i1 ¢ Q (=i=2)and My(¢, 0) is undefined : (B.1)
0(qz,0) = q@ if o €Ti(q)\Xz,

i¢Q (= i=2)and My(qs, o) is defined : (B.5)

05(qa, o) = 0a(qa, I (q2.0)) i o€l (q)\Z2.

Case 2: = {2}

i€Q (=2i=2): 8(q.0)=70(q,0) if oeTyq)\Z, (B.G)

i1g¢Q (=i=1)and (q,o0)is undefined : (B.7)
01(q1,0) = @ o € Ta(q2)\Z1,

i¢Q (=i=1)and M(q1,0) is defined : (3.8)

o(qi, o) = o(q, Mi(qr,0)) if o €Ta(g)\Er.

Case 3: 0 = {1,2}

1€
(i=1): {q,0)=7d{q,0) if o€ [[1(q)NTa(e)l, (B.9)
(1=2): d(q2,0)=0d2q20) if o€ [li(q)NTag)], (B.10)

i ¢ 1 not possible.

Otherwise (none of the above - s which d 7 d for all the possible choices of §2).
both 47 and 9} are undefined, by 2 definition.

Combining equations B.3 and B.4; equations B.3 and B.5; equations B.6 and B.7;
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equations B.6 and B.8; and equations B.9 an  B.10 respectively, results in:

6((q, q2). 0) == (B.11)
(01 (a1, ) 2) if o € T'1(q1)\Z2 and Ma(ga. o) is not defined,
(01(q1, 0), 02(q2, Ma(q2, 0))) il o € T'1(q1)\22 and AMy(q, o) is defined,

¢ (g, (q> 7)) if o € [a(q2)\21 and AL (q1,0) is not delined,
(01(qr, Mi(q1, ), 02(q2.0)) il 0 € Ta(g2)\Er and Mi(qr, @) is defined,

\ (61(q1, ), 62(q2. 0)) if o € Ty(q) NTa(ge).

The proof of I" is identical to that of synchronous product. By definition:

(g1, s Gn) —U {’] Te(qx) \Uz} (B.12)

0 Lreq kg

Again, if n = 2, then € 2002 = ({1}, {2}, {1,2}}. Thus,

]
(g, .- qn) = ﬂ T (an)\ U XkJ (B.13)

_re(l} kg {1}
U ﬂ Ty (gi)\ U Yk
| ke{2} kg {2}
Ul [ Tela)\ U Lk
| kefrz} kg{1,2} J
= [ (q)\E2J U [P2(g2)\ELJ U [Ta(qn) ©x 2(g2)] - (B.14)

which completes the proof.
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output: newState € QQ

Function oldnew(G.oldStatc):
ncwStale — oldStaler
newNumState «— 1;

foreach i € {1,...,G.numSc sys—1} do

newNumStale  newNumSlale x G.subsys.logic{i} numStalcs;
newState « (oldState(i + 1) — 1) s newNumState + newStalce:
end
return ncwStatc;
















