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Abstract 

Chemical process industries are often prone to undesired incidences and accidents. 

Release of toxic chemicals is one of such incidences which may lead to human health 

hazard resulting in potential loss in process facility. In order to prevent these un­

wanted health effects process safety management programmes (PSM) are adopted. 

Process safety management involves a systematic evaluation of hazards and neces­

sary measures to mitigate them. Continuous monitoring and effective approaches 

for risk modeling may prevent these catastrophic situations. The present study is 

conducted by developing the methodology to assess the human health risk in process 

facility using quantitative methods, available data and standards. 

Quantitative Risk Assessment (QRA) is a process of identifying and evaluating the 

risk. The application of QRA in process facility involves development of methods 

and techniques to assess and minimize the risk as well as to help analyzing the unde­

sired incidences together with the related consequences. Two types of approaches of 

QRA are presently being used for human health risk assessment. One is determinis­

tic approach and the other is probabilistic approach. Probabilistic approach provides 

better estimates in certain cases where uncertainties are involved. 
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Probabilistic Risk Assessment (PRA) is a reliable method to quantify human health 

risk. This involves characterization of human health risk considering the uncertainty 

and variability of exposure parameters. Probabilistic analysis allows to gather infor­

mation about the range and likelihood of exposure and helps decision makers to take 

further decision. In addition to that, Bayesian probability analysis has also been used 

for developing a risk model to characterize the human health risk. 

In this thesis an integrated approach to assess human health risk is described and 

applied for past and current exposure data directly extracted from secondary sources. 

First, the hazards were identified and represented based on chronic studies. Again, 

the mixed chemical exposure is analyzed using two established statistical methods 

and available epidemiological information. Two exposure-response models are devel­

oped applying these data. Subsequently, the toxicity of the chemicals are assessed 

applying BMD approach to derive the toxicity values, the toxicity score of the chem­

icals as well as a safe exposure level for workplace using experimental animal data. 

And, finally a risk model has been developed to quantify the human health risk ap­

plying the Bayesian Monte Carlo Analysis. This risk model predicts risk using past 

and current exposure data. The past exposure data is the mortality data of worker 

from the Clydach Wales nickel refinery and the current exposure considers the high 

risk operations (High temperature operations and feed preparation) in process facil­

ity. The risk model compares the human health risks from past and present nickel 
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exposure. The sensitivity report is represented using the risk models and Advanced 

Monte Carlo Simulation of Latin Hypercube Sampling (LHS) which describes the 

relative importance of exposure parameters quantifying risk. 
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Chapter 1 

Introduction 

1.1 Introduction 

Process facilities often have the possibilities of releasing toxic, flammable or process 

chemicals, causing fire and explosion and many other operational disruption. To 

control t hese undesired events, process safety management programmes are adopted 

for the protection of employee and public health as well as to restrict environmental 

damage. A systematic identification and evaluation of these hazards can minimize 

the risk and can determine the potential of catastrophe in the workplace. Process 

safety management is an integral part of chemical risk assessment and safety in the 

workplace. 

Workplaces impose variety of health effects to workers from the exposure to toxic 

chemicals. Workers may suffer from different types of acute and chronic diseases, 

such as, respiratory diseases, neurological effects, reproductive and birth defects, can­

cer etc. from occupational exposure to toxins. Some regulatory agencies are involved 

in minimizing the risk from these kinds of exposure. However, still, there remains 

some excess risks to worker's health. Risk assessment and occupational health are 
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very much interrelated. Several risk assessment methods have been developed to 

identify and minimize the health risk at workplaces. 

1.2 Background and scope of the study 

This study is focused on the health risk assessment of workers involved in process 

facility. The cancer and non- cancer effects from chronic exposure to chemicals have 

been examined. The occupational health risk related to nickel exposure is studied 

based on some epidemiological evidences from literature within the context of past 

and present exposure scenarios. The case studies focusing on worker's exposure to 

nickel have been discussed below (NAS,1975); 

The case study considered here is the Clydach nickel refinery which has been in 

operation since 1900. The refinery workers have reported evidence of mortality due 

to lung cancer and respiratory disease. The ratio of observed and expected death 

from lung cancer are 10.1:1, 6.2:1 and 1.3:1 during the year of 1900 -1915, 1915-1929 

and 1925-1944 respectively. Some studies show that the average time interval between 

first joining to work and first tumor detection was 27 years and some others suggested 

that this interval ranged from less than 5 years to more than 40 years. In the Clydach 

nickel refinery, the number of observed deaths from lung cancer were 15 in process 

workers and 1 in non- process workers during 1929.The respiratory disease resulted 

in about 13 deaths in process workers and 10 in non- process workers. The number 

of deaths from heart disease and cerebral hemorrhage were 15 in process workers and 
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Table 1.1: Past exposure to nickel compounds in refineries (Source: Seilkop and 
Oller,2003) 

Cohort Exposure Employees Lung Soluble Ni sub- Ni 
Year Number Cancer Ni Sulfide Oxide 

SMR (mgjm3 ) (mgjm3 ) (mgjm3 ) 

Clydach, 1902-1930 1348 394 ~ 10 ~ 15 ~50 
Wales 

Ontario 1926-1972 3769 261 > 1 >10 >10 
Sinter Plant 

Kristiansand, 1916-1983 4764 300 >0.5 > 0.5 >2 
Norway 

Harjavalta, 1945-1985 1388 212 0.2-0.8 0.06-0.4 
Finland 

*SMR = Standard Mortality Ratio. 

17 in non- process workers. Again, the ratio of observed and expected risk was 13.8 

during 1938-1947. The percentage of death from lung cancer in process workers has 

been higher than that of non- process workers. Some reports showed that 58% of 

deaths which occurred during 1938-1947 and 23% which occurred before 1944 were 

from lung cancer in process workers. 

Another nickel refinery named Port Colborne situated in Ontario, Canada has started 

their production of nickel from sulfidic ore during 1918-1928. This refinery has also 

reported some evidence of mortality from nickel exposure. Epidemiological studies 

reported that the observed risk of lung cancer had been 2.2 times higher than the 

expected during 1930-1957. Evidences from literature showed that the workers from 

electrolysis has the lowest risk of death from lung cancer as the ratio of observed to 

expected has been 0.8:1 and the workers from furnace operation had the highest risk 
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Table 1.2: Present exposure to nickel compounds in refineries (Source: Seilkop and 
Oller,2003) 

Cohort Exposure Employees Lung Soluble Ni sub- Ni 
Year Number Cancer Ni Sulfide Oxide 

SMR (mgjm3 ) (mgfm3
) (mgfm3

) 

Falconbridge, 1946-1984 11567 128 < 0.3 < 0.5 <0.5 
Ontario 
INCO, 1914-1984 37117 111 < 0.3 < 0.5 < 0.5 
Ontario 

High Nickel 1956-1988 31165 113 0.01-0.3 
Alloys, USA 

Clydach, 1931-1984 1173 124 > 1 >5 
Wales 

*SMR = Standard Mort ality Ratio. 

with the Standard Mortality Ratio (SMR) value 7. Some studies characterized the 

mortality in relation to the different types of industrial operation and age group of 

the workers. These studies report ed t hat t he mortality is higher in 40-49 year age 

group of male workers for smelting and preparation and drying processes. For the 

age group > 50 year the roasting and reduction and other refinery processes have been 

highly risky areas to work. The results have also been t he same for female workers 

except in the smelting and roasting process. 

The nickel exposure in todays workplace has became lower t han t he past. The em-

phasis was given to the inhalation of nickel particles and different respiratory effects 

by regulatory agencies. The main focus of these studies have been to ident ify the 

association between respiratory effect and exposure to nickel particles. Currently the 

highly exposed workers are mainly involved in feed preparation and high temperature 
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operations. The exposure level is high for nickel oxide in high temperature operations 

and for nickel subsul:fide in feed preparation. Table-1 and Table-2 show some epidemi­

ological evidence of past and present nickel exposure in refineries. Present approaches 

of risk assessment have greatly reduced the hazards related to occupational chemical 

exposure. These approaches can be divided into two categories; the first one uses 

the risk assessment methods for low level of occupational exposures to estimate the 

risks and the other one is mainly concerned with the collection of occupational data 

and validation and development of risk assessment methods. The application of risk 

assessment techniques in regulatory agencies has been a common practice. Based on 

this type of study chemical safety standards are set for different ergonomics, exposure 

and medical surveillance programs. 

The applications of risk assessment in occupational environment has been useful to 

identify the occupational health risks, get the attention of regulatory authorities, en­

force the standards of occupational setting, minimize the risks, guide the training 

programs for worker safety, and finally involve some new technology to minimize the 

risk. However, the drawback is that the currently available risk assessment methods 

and techniques sometimes result in overestimates of risks and higher permissible ex­

posure level for workplaces. 

New approaches for risk assessment provide framework for identification of occu­

pational health risks. These approaches are important for establishing components 
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of occupational standard setting, including, hazard communication and controlling 

technologies etc. The risk assessment methodologies help in reduction of risks by 

targeting the significant risk areas and optimizing the performance. Further,it helps 

to determine whether the current health standards from technical aspects and control 

strategies are appropriate for protecting worker health. 

1.3 Objective of the research 

This study is focused on the current occupational exposure level, exposure scenarios 

and comparative evaluation between past and present workplace exposure as well as 

risk assessment. The primary objective of the study is to examine whether t here 

is any excess risk in todays nickel workplace for both cancer and non-cancer effects 

and evaluat ion based on past and present occupational health risks for standards and 

data. The secondary objective of this study is to do quantitative uncertainty analysis 

of exposure parameters. 

1.4 Organization of the thesis work 

The organization of t his thesis includes eight chapters. The first chapter is focused on 

the background, scope and objective of the study. Chapter-2 discusses some selected 

risk assessment models, different approaches and applications in occupational health 

risk assessment and finally the role of regulatory agencies in setting occupational 

standard. 
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Chapter-3 discusses the methodology applied to this research and hazard identifi-

cation. The exposure sources, pathways, level of exposure are discussed for nickel 

refinery workers in Chapter-4. Chapter-5 is focused on the toxicity of the chemicals 

identified from Benchmark Dose (BMDS) software and setting of recommended ex­

posure level. 

Chapter-6 includes the development of risk models based on probabilistic risk as­

sessment (PRA) methods and comparison of finally estimated risk. In Chapter-7, 

sensitivity analysis for exposure parameters has been done using probabilistic anal­

ysis (Monte Carlo Simulation) and finally the last chapter discusses the conclusion 

of the study and further recommendations to manage risks for occupational chemical 

exposure. 



Chapter 2 

Literature Review 

2.1 Introduction 

Effective application of quantitative or qualitative risk assessment approaches can 

improve the present risk analysis and process safety management programme. The 

Quantitative Risk Analysis (QRA) is basically two types: deterministic and proba­

bilistic. Deterministic approach is mainly based on some conservative estimates of 

inputs which provides no information about the uncertainty related to risk estimates 

and sources of that uncertainty. However, this approach is comparatively cheap, easy 

and simple and can serve when the time is limited. In contrast, the probabilistic 

approaches are emphasized both for variability and uncertainty related to exposure 

estimates. It provides further knowledge about the range and likelihood of predicted 

risk which helps decision makers to assess the exposure scenarios more precisely. This 

chapter discusses about the qualitative and quantitative approaches and risk assess­

ment models presently available for risk assessment. 

8 



9 

2.2 Present approaches and applications of occupational health risk as­

sessment 

The distinction between risk assessment and risk management should be well under­

stood. Risk management is basically concerned with the reduction of risk in work­

places. On the other hand, risk assessment involves evaluation of risk. There have 

been two types of approaches for assessing risk: quantitative and qualitative. These 

approaches are discussed below; 

2.2.1 Qualitative approach 

Qualitative approach involves,(i) qualitative risk characterization, evaluation of po­

tential hazards or categorizing carcinogens,(ii) ranking of chemicals and (iii) setting 

of safe exposure level based on some semi-quantitative approaches (Benchmark dose 

or no observed adverse effect level approaches). The qualitative approaches have 

sometimes been more useful than quantitative approaches for different regulatory 

agencies. 

2.2.2 Quantitative approach 

Quantitative Risk Assessment (QRA) basically identifies and estimates the risk of 

occupational diseases or injury using several useful statistical measures from expo­

sure to toxins or many physical agents. In earlier days QRA was basically used in 

biostatistics or epidemiological fields. Subcommittee on Environmental Health and 
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Related Programs(SEHRA) first introduced application of QRA to this field of re-

search in 1985 (Smith et al,1995). Today QRA has been an established method for 

assessing human health risk. The basic four steps of QRA are as follows (Smith 

et al,1995):(i) Hazard ident ification,(ii) Hazard evaluation,(iii) Exposure and dose 

response assessment and ( iv) Risk characterization. Hazard identification involves 

the reviewing of undesired health effects from certain chemical exposure. The haz­

ard evaluation discusses about the sources of exposure, magnitude of exposure, the 

exposed population, exposure/dose response assessment determines the association 

between the exposure and the response (unwanted health effect). Characterization 

of risk includes the estimation of risk from the chemical exposure. The QRA is more 

scientific and reliable than qualitative risk assessment. Data availability from epi­

demiology and animal or mechanistic applications are used to quantify human health 

risks with uncertainty factors. The result may be different from different studies de­

pending on the assumpt ions and data uncertainty. However, they still fall within the 

same order of magnitude. 

2.2.3 Regulatory agencies 

The regulatory agencies involved in setting occupational standards and enforcement at 

federal level are mainly Occupational Safety and Health Administration (OSHA) and 

National Institute for Occupational Safety and Health (NIOSH) . NIOSH is involved 

in providing, developing and recommending safety standard and OSHA is responsible 

for the proper assessment of risks for worker health. Another group also working in 
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this area is American Conference of Governmental Industrial Hygienists (ACGIH). 

The responsibility of ACGIH is similar as NIOSH. OSHA basically marks a qualitative 

risk assessment for determining the toxic potential of a chemical. Both qualitative and 

quantitative approaches have been adopted from time to t ime by these regulators for 

the determination of occupational health risks. NIOSH's 'Recommended Exposure 

Level' (REL) are mainly derived from animal and epidemiological data. This REL 

is similar to the PEL (Permissible Exposure Level) for OSHA and Mine Safety and 

Health Administration (MSHA) . The qualitative and quantitative methods used by 

this agencies need some improved techniques and analytical methods for providing 

more precise result to set health standards. The present approaches are discussed 

below (Smith et al.,1994); 

2.2.3.1 NIOSH's approach to risk assessment 

Qualitative: NIOSH mainly use qualitative approach to set their REL values. 

The principles they follow for the assessment are: ( i) Hazard identification focusing on 

risk factors and exposure for occupational diseases. ( ii) Hazard evaluation e.g. deter­

mining the dose, the exposed population and exposure scenario. (iii) Determination 

exposure level. ( iv) Appropriate design and analysis of health data. 

Quantitative: The NIOSH's quantitative approach includes: (i) QRA based on 

animal or human data. Human data is more preferable than animal data. (ii) Best 

appropriate methods for risk assessment to assess the exposure-response data. (iii) 
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Assumptions for statistical methods and models. (iv) Uncertainty and sensitivity 

analysis for assumptions. 

Acceptable risk: NIOSH has preferred t he zero risk level at which no worker will 

suffer. Approach for defining acceptable risk is different for different regulatory agen­

cies. The EPA has identified safe exposure level as one in million risk level. OSHA 

and MSHA have set some PEL which exceeded the risk level of one in thousand. 

2.2.3.2 OSHA's approach to risk assessment 

The principles of risk assessment methods of OSHA includes; ( i) data evaluation, 

(ii) Exposure/dose response assessment based on animal and epidemiological studies 

including the low dose effects, and (iii) risk characterization. 

2.2.4 Exposure response modeling 

The appropriate utilizat ion of epidemiological data is useful to predict human health 

risk. Risk models based on epidemiological data mainly require modeling of Standard 

Mortality Ratios (SMRs). There have been several statistical methods for modeling 

SMRs. These models are of two types: linear or additive risk model and multiplicative 

risk model. Additive risk models add the background rate of risk and multiplicative 

risk models multiplies the background risk. Several studies have been reported us­

ing these modeling methods. In 1992 National Institute for Occupational Safety 
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and Health (NIOSH) has conducted such case study for cadmium exposed popula-

tion(Smith et al,1994). It was also analyzed by OSHA and EPA in separate studies. 

This cohort studies for cadmium exposure were mainly based on fitting the data to 

following risk models(Smith et al,1994); 

Additive Risk Model: 

.\(x) = .Ao + x,B (2.1) 

Relative Risk Model: 

.\(x) = -Ao(1 + x,B) (2.2) 

Here, .\ ( x) is predicted hazard rate, x is exposure level, ,8 is regression (slope) pa­

rameter and .\0 is background hazard rate. These models were fitted to the cadmium 

cohort data using SAS NLIN program. This study included about 606 workers who 

have been employed for at least six months between 1940 and 1969 at a cadmium 

refinery. 

2.2.5 Dose response modeling 

Dose response modeling has widely been used to evaluate hazards and determine the 

permissible exposure limits for chemicals. In absence of epidemiological information 

on exposure to toxic substances risk analyst has to rely on the controlled experiments 

in laboratory animals to predict human health risk. Statistical models have com­

monly been used to derive permissible exposure limit from existing quantitative data. 

There are two types of dose response models for risk assessment: Mechanistic models 

and Tolerance distribution models. Mechanistic models assume that the probability 
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of developing cancer or any adverse effect is a mathematical function of the exposure 

dose. This type includes, one hit , multi hit and multistage model. In contrast, toler­

ance distribution models assume that a certain threshold level has to be exceeded for 

an adverse response. This includes:log-probit model,logit model,weibull model,etc. 

These models are generally based on several assumptions. 

Zhao et al (2005) has conducted a study related to the risk assessment of chloropyri­

fos. Epidemiological evidences prompted to revise the toxicity values and critical ef­

fects. This study incorporated the epidemiological and experimental animal data and 

risk assessment of chloropyrifos using dose response modeling. The method included 

three steps for deriving RID using BMD analysis. In first step the critical effects 

for the chemical have been identified. Secondly,the choice of appropriate species and 

finally the RID was derived using appropriate uncertainty factor using supporting 

documents. 

2.2.6 Human health risk considerations 

Risk estimates using QRA in occupational exposure situation results in overestimation 

of predicted risk. The considerations t hat should be taken into account while assessing 

human health risk are discussed below; 

Interspecies variability: The selection of animal species is an important consider­

ation. The sensitivity of all species to a certain chemical may not be the same. It 

also depends on the chemical type that the animal is exposed. Human are sometimes 
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more sensitive than the test species and sometimes less. So, appropriate animal to 

human conversion factor should be used to derive the human equivalent dose. The 

conversion factors are based on some reliable data. In absence of data, conversion 

formula can be used to derive t he human equivalent dose. 

I ntraspecies variability: Different human may react differently from the exposure 

to same toxic substance. So, the dose response curve for each individual differs from 

healthy to sensitive human. Researchers have examined this human heterogeneity 

of variation in response from in vivo and in vitro studies from time to time. So, 

the heterogeneity of human is an important consideration in risk assessment. This 

obviously plays a significant role in occupational health and safety to protect worker 

health. 

Epidemiology: The results from animal studies and epidemiological data should be 

coincided with each other. Sometimes, the results from animal studies could lead to 

a wrong decision. So, it should be validated using epidemiological data. 

2.3 Human health risk modeling 

The aspects of risk assessment framework can be discussed under the the following 

headings. ( i) Risk assessment framework developed by the American Society for Test­

ing and Materials (ASTM),(ii) Preliminary Exposure Assessment (PEA) by the State 

of California, (iii) Risk assessment framework of US EPA and (iv) Probabilistic risk 

assessment. The current human health risk modeling frameworks are described below 
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(Ricci, 2006); 

2.3.1 The ASTM/Risk-based corrective action framework 

The ASTM's Risk-Based Corrective Action framework (RBCA) has adopted two basic 

risk models for both carcinogenic and non-carcinogenic end point; 

Rcancer = ADI[mgjkg- day]* CSF[probabilityjmgjkg- day]-1 

ADI[mgjkg- day] 
H Incm-carcinogens = Rj D[mg jkg _day] 

(2.3) 

(2.4) 

where, R is risk, ADI is average lifetime daily intake, CSF is cancer slope factor, 

HI is hazard index and Rf D is reference dose. The cancer slope factor and reference 

dose can be found in IRIS database. 

2.3.2 The state of California Preliminary Exposure Assessment(PEA) 

framework 

This framework is similar to the RBCA framework for assessing risk. The methods 

assess the risks from various pollutant from various exposure pathways. The risk 

model for all pathways is given below; 

Rcancer = L (SF * ADI) 

~Intake 
HI nan-carcinogens = L......t Rj D 

(2.5) 

(2.6) 

where, SF is slope factor, ADI is average daily intake and Rf D. The intake is 

calculated by the following equation. 

( C * I R * EF * ET * ED) 
Intake[mgjkg- day]= (BW *AT) (2.7) 
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where, C is concentration in exposed medium [mg/ m3], I R is inhalation/ingestion 

rate, ET is exposure time [hours /day], EF is frequency of exposure [days j year], ED 

duration of exposure [years] and BW body weight [kg]. 

2.3.3 US EPA risk assessment framework 

The US EPA risk assessment framework follows the following steps; (i) data collec-

tion and evaluation, (ii) exposure assessment, (iii) toxicity assessment and (iv) risk 

characterization. The equation they adopted to calculate Intake is, 

I _ (C * CR * EFD) 
- (BW * AlT) 

(2.8) 

where, I is intake, C is concentration, C R is contact rate, EF D is exposure frequency 

and duration, BW is body weight and AT average time. 

2.3.4 Probabilistic Risk Assessment (PRA) 

Probabilistic risk assessment is useful for exposure assessment of maximally exposed 

population and important tool for decision makers to identify risk. It is also important 

to quantify the uncertainty and variability into the model input parameters. There 

are various methods of propagating uncertainty and variability,i.g. numerical meth-

ods, analytical methods etc. The present approaches for probabilistic risk assessment 

are (i) Dimensional Monte-carlo Analysis (DMCA), (ii) Micro Exposure Event Anal-

ysis (MEE) and (iii) Geospatial Statistics and Bayesian Analysis (US EPA, 2001). 

The PRA approaches explain more about the uncertainty and variability in the risk 

estimates. It requires sufficient data collection, resources and time. PRA provides 
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confidence bounds (upper and lower) for the risk estimates and finally gives more reli-

able estimate than traditional deterministic approaches. USEPA has preferred tiered 

approach for Human Health Risk Assessment (HHRA). Figure-2-1 shows an example 

of the tired approach; 

Tier-I 

Tier-II 

Calculation of point 
estimate for risk 

Obtain more data 

Yes 

Tier-Ill 

Quantative uncettainity 
analysis 

Figure 2.1: Example of tired approach for probabilistic risk assessment 



Chapter 3 

Human Health Risk Assessment 

3.1 Int roduction 

Several quantitative approaches have been used for the assessment of human health 

risk in occupational environment. Extensive studies were carried out based on epi­

demiological and animal information for chemicals. However, still, there remains some 

uncertainties related to past exposure, mixed exposure to chemicals and insufficient 

effort to estimate small risks. This study is an attempt to reduce the uncertainties 

related to risk assessment considering past drawbacks with available data. This chap­

ter describes the methodology adopted for this research to assess human health risk 

in process facility. 

3.2 Methodology 

The human health risk assessment is a step by step process where the risk is quantified 

by some established statistical methods. The basic steps involved in risk assessment 

process for occupational environments which have been demonstrated in this research 

are discussed below; 

19 
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Hazard identification: Hazard identification is the first step in the risk assessment 

process. It includes evidence from epidemiological studies, animal studies and some 

up to date exposure data. This step identifies the adverse effect due to exposure to 

toxic substances. 

Ex posure assessment: Exposure assessment determines the relationship between 

unwanted health effect and t he magnitude of exposure. This describes the magnitude 

and significance of exposures, potential sources of exposure, level of exposure and 

exposure pathways. Usually, data from epidemiological studies are used for assessing 

the exposure in workplaces. 

Toxicity assessment: Toxicity assessment describes the biological effect of toxic 

dose in t he target organ. Typically, the dose response models involve probability of 

unwanted health effect resulted from the chemical substances. This is mainly based 

on some animal data and principles of toxicology. 

Risk characterization: Risk characterization integrates the results from hazard 

identification, exposure assessment and toxicity assessment. This step further evalu­

ates the estimated risk. The evaluation of estimated risk based on acceptance criteria 

could help minimize the unacceptable risk to an acceptable level. 
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Uncertainty and sensitivity analysis: Sometimes quantitative approaches give 

biased estimate which can be reduced by the uncertainty analysis. Sensitivity anal-

ysis describes the significance of t he exposure parameters considered into the risk 

estimates. 

The flow chart (Figure-3.1) shows the steps adopted for this research. 

Regression 
analysis 

Multi Variate 
analysis 

exposure level 

InputPDFs r for concentration~ 
Prior risk Posterior risk 

L Comparison of riskj 

Setting PDFs for 

Exposure estimate 
and sensivity analysis 

Uncertanity in 
concentration 

(boocalnpapproch) 

Figure 3.1: Risk assessment methodology 

3.3 Chronic exposure to nickel by inhalation and health effects 

The exposure to nickel compounds may cause several health effects followed by their 

different routes of exposure. The major routes of exposure are inhalation, oral and 
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dermal. The discussion mainly involves the effects of chronic exposure (365 days or 

more) from the inhalation of nickel compounds. Most of the evidence based on human 

studies are chronic occupational nickel exposure. Those studies are concerned with 

the toxicity of nickel compounds by estimating t he relative risk, standard mortality 

ratios and incidences of cancer related deaths. These studies revealed an increased 

risk of lung and nasal cancer risk of nickel exposed workers. Table-3.1 summarizes 

the toxicological evidence from several human and animal studies. Table-3.1 describes 

different types of health effects related to the inhalation of nickel compounds. 

3.4 Toxicity and carcinogenesis of nickel compounds 

The discussion in this section has been compiled from several literatures and depicted 

below. The toxicity of nickel compound depends on its solubility to water. The soluble 

compounds are more toxic than the less soluble compounds whereas the less soluble 

compounds are more carcinogenic in nature. Again, the principal health effects are 

associated mainly with their major routes of exposure. 'Nickel sulfate is the most 

toxic compound as its solubility is higher than other nickel compounds. In contrast 

nickel oxide or nickel subsulfide is less toxic but they are more carcinogenic in nature' 

(ATSDR,2005). The lung cancer risk has not been the same for the exposure to all 

forms of nickel. From the dose response relat ionship based on some animal studies 

and epidemiological evidence, it has been identified t hat the oxidic and sulfidic nickel 

as complete carcinogen and soluble nickel as t umor promoter. From t hese experimen­

tations, nickel subsulfide was identified as the strongest carcinogen for respiratory 
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cancer risks. EPA has classified nickel refinery dust and nickel subsulfide as group A 

carcinogens for lung and nasal cancers. 

Based on several studies and assessment of nickel compounds, such as, epidemio­

logical studies, carcinogenicity studies in experimental animals, and several types of 

other relevant data, it is now established that nickel compounds can generate nickel 

ions at critical sites in their target cells. According to IRIS data, Nickel compounds 

are carcinogenic to humans (Group 1) . Metallic nickel is possibly carcinogenic to 

humans (Group 2B) . Based on adequate evidence from animal and epidemiological 

studies, the nickel sulfate, and of the combinations of nickel sulfides and oxides en­

countered in the nickel refining industry are the known human carcinogens. Nickel 

subsulfide has been identified as the strongest carcinogen for respiratory cancer risks 

(ATSDR,2005). Chronic exposure to nickel subsulfide, nickel oxide and nickel sulfate 

has been reported in different animal studies. The results of t hese studies showed in-

creases in lung tumors, e.g., Adenomas, adenocarcinomas, squamous cell carcinomas, 

and fibrosarcoma from the exposure to nickel subsulfide (ATSDR,2005). 

3 .5 Summary 

This chapter describes the methodology adopted for this research and the major 

steps involved in it. It further discusses about the hazard identification step based on 

the evidence from literature. Hazard identification includes the chronic studies from 

literature describing the unwanted health effects from nickel exposure. 
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Table 3.1: Chronic exposure by inhalation to nickel and health effects (Source: 
ATSDR,2005) 

Health Exposed Exposure duration LOAEL* Chemical 
effect species mglm3 

Death Rat 21 months;4-5dlwk;6hrld 15 Metallic 
Rat 78 months;5dlwk;6hrld 0.7 Subsulfide 
Rat 31 months;7dlwk;23hrld 0.06 Oxide 

Mouse 21 months;4-5dlwk;6hrl d 15 Metallic 
Gn pig 21 months;4-5dlwk;6hrl d 15 Metallic 

Renal Human occupational 0.75 Sulfate, 
chloride 

Respiratory Rat 2 months;5dlwk;6hrld 0.5 Oxide 
Rat 2 months;5dlwk;6hrld 0.11 Subsulfide 
Rat 2 months;5dlwk;6hrld 0. 11 Sulfate 
Rat 78 months;5dlwk;6hr ld 0.7 Subsulfide 
Rat 31 months;7dlwk;23hrld 0.06 Oxide 
Rat 12 months;5dl wk;7hrld 0.2 Oxide 

Mouse 2 months;5dlwk;6hr I d 1 Oxide 
Mouse 2 months;6dlwk;5hrld 0.44 Subsulfide 
Mouse 2 months;5dlwk;6hrld 0.11 Sulfate 

Immuno Rat 2 months;5dlwk;6hrld 0.5 Oxide 
Rat 2 months;6dlwk;5hrld 0.11 Subsulfide 
Rat 2 months;5dlwk;6hrld 0.11 Sulfate 

Cancer Human occupational 10 SoLand less sol. 
forms combined 

Human occupational 1 Soluble 
Rat 2 months;5dlwk;6hr I d 1 Oxide 
Rat 2 months;6dlwk;5hrld 0.73 Subsulfide 
Rat 78 months;5dl wk;6hrld 0.7 Subsulfide 

*LOAEL = lowest-observed-adverse-effect level. 



Chapter 4 

Exposure Assessment 

4 .1 Int roduction 

Exposure response models for risk assessment are important to assess the relationship 

between the exposure and associated adverse effect. The exposure response models 

show the specific magnitude of exposure. In this study two damage function have 

been developed based on the available past and present exposure data. The exposure­

reponse models used in this chapter can be written as, 

R = j(X, Y, Z ......... ) (4.1) 

where, X,Y,Z are exposure parameters and R represents risk. The dependent and 

independent variables were assumed to be non-negative continuous variables. The 

most common and established methods for developing relationship between depen­

dent and independent variables are; classical multiple linear regression analysis and 

multivariate analysis. These two methods have been used to describe the relationship 

between exposure and response. Steps involved in statistical model development are 

introduced in Figure-4.1. 
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Expert Opinion 

Data Collection 

Multivariate Analysis 

Exposure Response Model 

Figure 4.1: A step by step process for exposure response model development 

4.2 Inhalation and absorption of nickel in human 
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Absorption of nickel in human lung depends on it's solubility. It has been assumed 

that approximately 20-35% (ATSDR,2005) of inhaled nickel is absorbed into the blood 

system. The remaining is expected to be swallowed and the absorbed nickel is excreted 

with urine. The deposition of nickel particles in upper and lower respiratory tract 

and absorption to blood stream depends on it's particle size. The larger the particle 

size the less the deposition. Large particles (5-3011-m)remains in nasopharygeal area 

with initial impact; smaller particles (1-511-m) enter into the trachea and bronchiolar 

region and deposits by sedimentation;the smallest particles (111-m) deposits into alve­

olar region of the lungs by diffusion and electro-static precipitation (ATSDR,2005). 

Some studies indicate that less soluble compounds tend to remain in nasal mucosa 

and soluble compounds deposit into lung region. However, this process also depends 

on the concentration levels of nickel compounds. Again, it was suggested that the 
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absorbed nickel level in serum or urine is almost same for sensitive and healthy in­

dividual. Animal studies indicate that the retention rate is higher for less soluble 

compounds in lung. Nickel retention has been 6-10 times higher for such less soluble 

as nickel subsulfide than the soluble compounds (ATSDR,2005). Some earlier studies 

investigated the retention of nickel in human body. It has been reported that approx­

imately 75% calculated intake is retained within the body and the remaining 25% 

expired depending on the particle size (NAS,1975). 

4.3 Exposure to dust particles in nickel refineries 

Exposure to nickel and nickel containing compounds mainly occur through airborne 

dust particles in refineries. The present operations involved in producing nickel 

are concentrating, roasting, smelting, converting and refining. These are basically 

called pyrometallurgical processes. These pyrometallurgical operations are high tem­

perature operation which produces huge amount of dust particles. The Figure-4.2 

(NAS,1975) shows basic steps involved in a nickel refining process. The major com­

pounds that remain in dust particles of nickel refinery are nickel sulfate, nickel sub­

sulfide and nickel oxide. The Table-4.1 describes compounds of typical refinery dust. 

4.4 Nickel exposure to refinery workers 

The past and present exposure data have been gathered to identify the past and 

present exposure scenarios, level of exposure and to estimate maximum exposure 
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Nickel Copper Concentre 

Cooling of Malte 

Magnetic Separation 

Electrolytic Process 

Floatation 

Figure 4.2: A nickel refining process 

4.4.1 Exposure scenario 
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Epidemiological studies revealed the past exposure scenario of nickel workers. The 

respiratory risk tends to be associated with the specific operation from refining pro­

cess. Earlier roasting and conversion of nickel sulfide to nickel oxide were identified 

as hazardous operations for developing cancers (NAS, 1975) . Now the improved tech­

nologies have diminished the associated cancer risks. 

Today the nickel exposure has been lower than the past. Several epidemiological and 

animal studies were carried out to examine the cancer risk associated with low level 
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Table 4.1: Dust particle from refineries mainly consists of following compounds 
(Source: NAS,1975) 

======~====~============~~ 
Compound Fraction (%) 

Cupric oxide, CuO 3.4 
Nickel sulfate, Ni804 .6H20 20.0 

Nickel subsulfide, Ni3S2 57.0 
Nickel oxide, NiO 6.3 
Cobalt oxide, CoO 1.0 

nickel exposure. In Canada, the nickel workers mainly exposed through milling, feed 

preparation and high temperature operation. The exposure may vary from opera-

tion to operation,with nickel concentration level,with particle size distribution etc. 

However, the particle size in the Canadian operations is smaller like, respiratory or 

thoracic size. The high risk workers are mainly involved in high temperature op-

eration and feed preparation where t he oxidic nickel concentration is high in the 

high temperature operat ions and the concentration of sulfidic nickel is higher in feed 

preparation (Sivulka et al., 2007). In the later part of refining process oxidic nickel 

concentration becomes low. The concentration of metallic nickel is high at the end 

stage of these processes where the packing and shipping is carried out. The soluble 

nickel level is not much higher in Canada than compared to other countries (Sivulka 

et al., 2007). 

4.4.2 Level of exposure 

The level of exposure is described by the past and present exposure data ( see 

Appendix-A). The present exposure has been characterized by the mean inhalable 

nickel refinery dust levels and nickel species from high temperature operations and 
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feed preparation. Past exposure data were taken from the Clydach ,Wales refinery 

worker's mortality data. Two exposure -response models have been developed based 

on these data. The unit for exposure is mgjm3 considered for this analysis. Before 

developing model , the exposure data were analyzed to characterize the exposure re-

sponse relationship. The following analysis of the exposure and response variables 

have been carried out using the software package Minitab version-15. 

4.4.2.1 Exposure-response model-1 

The nickel dust was taken as the dependent variable and the four forms of nickel e.g, 

metallic, soluble, oxidic, sulfidic considered as independent variables. The descriptive 

statistics for the variables are introduced in the Table-4.2. 

The cluster analysis for the variables were performed to rank the variables. The clus-

Table 4.2: Descriptive statistics of nickel concentration (Source: Sivulka et al, 2007) 
Variable Mean StDev Minimum Median Maximum 
Ni dust 0.448 0.291 0.208 0.371 1.000 
Metallic 0.032 0.016 0.013 0.031 0.060 
Soluble 0.026 0.011 0.012 0.026 0.040 
Oxidic 0.271 0.226 0.055 0.192 0.680 
Sulfidic 0.119 0.094 0.0230 0.099 0.240 

ter analysis (Figure-4.3) shows that the sulfidic nickel exposure can be represented as 

separate variable as the level of similarity is less than the other variables. Figure-4.3 

shows that the metallic, soluble and oxidic have the same level of similarity. Table-4.3 

represents how the clusters are joined in three steps. 

Paired T-test has been performed to analyze the independent variables more pre-
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Figure 4.3: Dendrogram of exposure variables vs similarity 

Table 4.3: Correlation coefficient distance, average linkage amalgamation steps 
Step Number of Similarity Distance Clusters New No. of obs. 

Clusters Level Level joined Clusters in Clusters 
1 3 90.5869 0.1882 2 3 2 2 
2 2 75.8452 0.4830 1 2 1 3 
3 1 68.9629 0.6207 1 4 1 4 

cisely. 

Ho : /-td = ~-to vs Ha : /-td =I ~-to 

where, /-td is the population mean of t he differences and p,0 is the hypothesized mean 

of the differences. The confidence interval for the mean difference between t he two 

Table 4.4: Paired T for metallic - oxidic 
Mean StDev SE Mean 

Metallic 0.0322 0.0169 0.0069 
Oxidic 0.2713 0.2265 0.0925 

Difference -0.2392 0.2219 0.0906 

*95%. CI for mean difference: (-0.4721, -0.0063) 

*T-Test of mean difference= O (vs =f. 0) : T - Value = - 2.64, P - Value = 0.046 
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exposures does not include zero, which suggests a difference between t hem. The P-

value (P=0.046) further suggests that t he data are inconsistent with H0 : J.ld = 0, that 

is, the exposures are not equal. Specifically, oxidic nickel exposure (mean=0.2713) is 

higher than exposure to metallic nickel (mean=0.0322). And, thus, this test shows 

that oxidic exposure would be a preferable variable to use t han metallic. 

The results from paired T test for metallic and soluble nickel exposure is given below; 

Ho : J.ld = P,o vs Ha : J.ld =J P,o 

where, J.ld is the population mean of the differences and p,0 is the hypothesized mean 

of the differences. The P-value (P=0.248) shows that the data are consistent with 

Table 4.5: Paired T for metallic- soluble 
Mean StDev SE Mean 

Metallic 0.0321 0.0168 0.0068 
Soluble 0.0260 0.0116 0.0047 

Difference 0.0061 0.0115 0.0047 

*95 perc. CI for mean difference:(-0.00597, 0.01830) 

*T-Test of mean difference= O(vs# 0): T- Value= 1.31, P- Value= 0.248 

H0 : P,dd = 0, that is, the exposures are equal. 

The best subset is derived in Table-4.6 to see the best suited exposure variables for 

the response variable as nickel dust. The best subset is selected based on the lowest 

Cp value and highest R- sq value (the highlighted ones in Table-4.6). The better 

model for the response variable would be either with the metallic, oxidic and sulfidic 

exposure or with the soluble, oxidic and sulfidic exposure as independent variables. 

Multiple regression analysis has been used to derive a regression model for expressing 
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Table 4.6: Stepwise regression analysis results 
Vars R-sq R-sq(adj) Mallows Cp s Met. Sol. Oxi. Sul. 

1 88.6 85.8 14390.5 0.1097 X 
1 64.6 55.8 44727.1 0.1934 X 
1 40.1 25.2 75732.6 0.2517 X 
1 24.0 5.0 96146.4 0.2836 X 
2 99.5 99.2 612.4 0.02613 X X 
2 93.2 88.6 8631.8 0.09813 X X 
2 89.1 81.8 13804.0 0.1241 X X 
2 82.9 71.5 21668.0 0.1554 X X 
3 100.0 100.0 7.1 0 .0029332 X X X 
3 100.0 100.0 13.2 0.0043339 X X X 
3 98.7 96.7 1689.2 0.0531 X X X 
3 98.3 95.7 2177.1 0.0603 X X X 

*Met.=Metalic, Sol.= Soluble, Oxi.= Oxidic and Sul.=Sulfidic 

Table 4.7: Results of exposure-response model-1 
Parameter Estimate Standard error P value 

Background -0.0109 0.0053 0.179 
Soluble 2.94 0.2842 0.009 
Oxidic 0.931 0.0149 0.000 
Sulfidic 1.09 0.0219 0.000 

the relationship between the exposures and the response variables. The exposure-

response model is, 

Nidust = - 0.0109 + 2.94 *(Soluble)+ 0.931 *(Oxidic)+ 1.09 *(Sulfidic) (4.2) 

The P-value (Table-4. 7) shows that the oxidic, soluble and sulfidic nickel exposure 

is significantly related to the response variable. 

4.4.2.2 Exposu re-response model-2 

The relationship between SMR and nickel compounds is developed based on lung 

cancer mortality data which has been taken from ATSDR,2005 and the page numbers 
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are marked in the Appendix -A. The SMR were taken as dependent or response 

variable and the nickel compounds as independent or exposure variables. Before 

deriving the regression model, multivariate analysis has been carried out to see the 

significance of the independent variables. 

Multivariate analysis is a statistical method to analyze the relative importance of 

Table 4.8: Descriptive statistics of nickel concentration and SMR (Source: 
ATSDR,2005) 

Variable Mean StDev Minimum Median Maximum 
SMR 5.016 2.954 1.330 5.230 11.400 

Sulfidic 11.250 3.873 7.500 11.250 15.000 
Oxidic 37.50 12.91 25.00 37.50 50.00 
Soluble 7.500 2.582 5.000 7.500 10.000 
Metallic 11.250 3.873 7.500 11.250 15.000 

the variables. This has been done for the independent or exposure variables of the 

second exposure response model. Table-4.10 gives a summary of the decomposition 

of variables. The column labeled with Inertia is the x2 jn value accounted for by each 

component. The inertia of 1, 26.79%, 26.79%, 26.79% and 19.64% are account ed for 

by the first through fourth exposure variables, respectively. In Table-4.10 the column 

labeled Qual, or quality, is the proportion of the column inertia represented by the all 

calculated components. The sulfidic nickel exposure (high,low) are best represented 

by the two component breakdown with Qua =0.731, while the metallic exposure is 

the least represented with Qual= 0.001. The column labeled Mass is the proportion 

of the class in the whole data set and the column labeled Inert is the proportion of 

inertia contributed by each column. In the data set, all of the exposure variables show 
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Table 4.9: Analysis of indicator matrix 
Axis Inertia Proportion Cumulative 

1 0.2679 0.2679 0.2679 
2 0.2679 0.2679 0.5357 
3 0.2679 0.2679 0.8036 
4 0.1964 0.1964 1.0000 

Total 1.0000 

Table 4.10: Column contributions 
Comp. 1 Comp. 2 

ID Name Qual Mass Inert Coord Corr Contr Coord Corr Contr 
sul high 0.731 0.133 0.117 -0.699 0.559 0.243 0.388 0.172 0.075 
sul low 0.731 0.117 0.133 0.799 0 .559 0.278 -0.443 0.172 0.086 
oxi high 0.714 0.117 0.133 0.003 0.000 0.000 0.903 0.714 0.356 
OXl low 0.714 0.133 0.117 -0.003 0.000 0.000 -0.791 0.714 0.311 
sol high 0.696 0.133 0.117 0.669 0.511 0.223 0.403 0.185 0.081 
sol low 0.696 0.117 0.133 -0.764 0.511 0 .254 -0.460 0.185 0.092 
met high 0.001 0.117 0.133 -0.038 0.001 0.001 0.000 0.000 0.000 
met low 0.001 0.133 0.117 0.033 0.001 0.001 -0.000 0.000 0.000 

the same result for these two categories. For each of the two components (axes); The 

column labeled Coord gives the column coordinates. Low sulfidic nickel exposure has 

the largest absolute coordinates for component 1 and high oxidic exposure has the 

largest absolute coordinate for component 2. The column labeled Corr represents the 

contribution of the respective component to the inertia of the row. Here, Component 

1 accounts for the highest value of low sulfidic nickel exposure and high + low oxidic 

nickel exposure gives the highest value for component 2. Contr, the contribution of 

the row to the axis inertia, shows low sulfidic and soluble nickel exposure contributing 

the most to Component 1 (Contr=0.278 and 0.254, respectively). Component 2, on 

the other hand accounts for highest value of low and high oxidic nickel exposure. 
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As the contribution values for Component 1 indicate, high sulfidic,oxidic and soluble 

nickel exposure are most distant from the origin. Low exposure to sulfidic ,oxidic 

and soluble nickel are near to the origin of component 1. High sulfidic and low oxidic 

exposures are near the origin of component 2 and High oxidic and low exposures are 

sulfidic distant from the origin of component 2. 
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Figure 4.4: Column plot 

The exposure-response model is; 

2 • 

.I 
1.0 

log(SMR) = -0.347 + 0.657 *(Sulfidic)+ 0.591 *(Soluble) (4.3) 

Based on the analysis, we can conclude that t he lung cancer standard mortality ratio 

is significantly related to sulfidic and soluble nickel exposure. Exposure to oxidic and 

metallic nickel is not significantly related to t he response variable. 

For this analysis, a 2k-factorial Design was performed where 1 represents low and 
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Table 4.11: Results of exposure-response model-2 
Parameter Est imate Standard error P value 

Background -0.347 0.5799 0.561 
Sulfidic 0.657 0.2631 0.028 
Soluble 0.591 0.2631 0.044 

2 represents high exposure level. The interaction plot (Figure-4.5) shows that there 

has been an interaction between oxidic and soluble nickel at low level of exposure. The 

main effect plot (Figure-4.6) shows that t he sulfidic and soluble nickel exposure in-

creases the SMR with t he increasing level of exposure. The SMR is high for low 

level oxidic nickel exposure and low for high level oxidic exposure. For metallic nickel 

exposure the SMR remains same for both level of exposure. 
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Figure 4.5: Interaction plot of exposure variables 
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Main Effects Plot for SMR 
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Figure 4.6: Main effect plot of exposure variables 

4.4.3 Quantification of exposure 
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Any kind of exposure assessment needs quantificat ion of the exposure dose or to which 

the people are exposed. The exposure dose has been calculated both for cancer and 

non cancer effect of maximum exposure level using t he following equat ion; 

ED= C*IR*EF 
BW 

(4.4) 

where, ED, exposure dose, C concentration, I R inhalation rate, EF, exposure factor 

and BW, body weight. The non-cancer exposure dose has been estimated for one year 

of exposure and cancer dose is for lifetime exposure. Table-4.12 gives the exposure 

dose for non-cancer effect and Table-4.13 shows the exposure dose for cancer effect. 

The assumed values for exposure parameters were taken from US EPA,1991 given in 

the appendix-A. 



Table 4.12: Exposure dose for non-cancer effect 
Chemical Max. Concentration Target Exposure Dose 

mgjm3 (ATSDR,2005) organ mgjkgjday* 
Soluble nickel 10 Lung 4.865 
(NiS04.6H20) 

Nickel Subsulfide 15 Lung 7.298 
Nickel Oxide 50 Lung 24.328 
Soluble nickel 10 Renal 4.865 

(NiS0)4.6H20) 
Nickel Subsulfide 15 Renal 7.298 

Nickel Oxide 50 Renal 24.328 

*For 1 year of exposure 

Assumptions for exposure dose calculation: 

Body weight ( BW)=75 kg; 

Concentration ( C)=maximum concentration; 

Inhalation rate (I R)=20m3 /day*8hrs/ day=6.66m3 /8hrs per day. 

For non cancer effect, 

EF = 5days per week* 8hrs. per week* 50week per yr. = 
0

_23 
1yr. * 365days 

And, for cancer effect, 
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(4.5) 

EF = 5days per week* 8hrs. per week* 50week per yr. = 3_26E _ 3 (4_6) 
70yrs. * 365days 

4 .5 Summary 

This chapter depicted the past and present exposure scenerio, level of exposure and 

maximum daily exposure dose for the nickel compounds. The exposure variables 

represented the exposed concentration level for the nickel species and the risk has 

been characterized by t he exposed dust particle levels and the standard mortality 
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Table 4.13: Exposure dose for cancer effect 
Chemical Max. Concentration Target Exposure Dose 

mgjm3 (ATSDR,2005) organ mgjkgjday* 
Soluble nickel 10 Alveolar 0.0695 
(NiS04.6H20) proliferations 

Nickel Subsulfide 15 Alveolar 0.1042 
proliferations 

Nickel Oxide 50 Alveolar 0.3476 
proliferations 

Soluble nickel 10 Adrenal 0.06953 
(NiS04.6H20) proliferations 

Nickel Subsulfide 15 Adrenal 0.1042 
proliferations 

Nickel Oxide 50 Adrenal 0.3476 
proliferations 

*For a lifetime exposure 

ratios. From this analysis, it can be sumarized that the health risk is higher from the 

insoluble forms of nickel for low level of nickel exposure whereas the soluble form can 

also be accountable in the case of high level of nickel exposure or concentration. 



Chapter 5 

Toxicity A ssessment 

5.1 Introduct ion 

In order to ensure worker's health and safety, there has to be a recommended ex­

posure level for every toxic substances. This safety assessment need toxicological 

data to derive the safe dose for workplace. Once hazard identification and exposure 

assessment are done the next step in risk assessment process is toxicity assessment 

which includes dose response modeling based on human or animal data. Safe dose 

and toxicity values are derived from the biologically based dose response models. 

Dose response models describe the adverse outcome from specific dose of toxins us­

ing mechanistic foundation and stochastic (probabilistic) process. The derivation of 

safe dose from dose response modeling sometimes has been the objective of the risk 

assessment for regulatory agencies. 

Principle health effects are not only dependent on the toxicity of substances but also 

depend on the solubility, route of exposure and the amount of exposure. In present 

study, the nickel sulphate is soluble compound and whereas nickel oxide and nickel 

subsulfide are insoluble or less soluble. This chapter describes the process of deriv­

ing the safe dose and toxicity values for soluble and insoluble or less soluble nickel 
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Criteria (AIC). 

Global Measurement of Fitness: The significance level or the P-value is 0.1. P­

value greater than 0.1 indicated that the model fitted the data well and P-value of 

1.0 is consider as a perfect fit. 

Local Measurement of Fitness: Scaled residuals are considered to be an absolute 

value and less than 2.0. The scaled residuals should be near to the Benchmark 

Response (BMR) value. 

Visual Interpretation: This also gives some idea about the high dose region and 

fitness of the low dose region. 

BM DL Value: The lowest BMDL can be considered as the Point of Departure 

(POD) as conservation estimate. 

Akaike Information Criteria (AIC) : Models from same family and different fam­

ily are compared. AIC choses the less complex model. The less the AIC value the 

better the fitness. 

Figure 5.2 depicts the steps involved in deriving toxicity values and toxicity score for 

chemicals. 



Evaluation of BMD Response Level 

Select a Model, Set the parameters 
and Run the Model 

Figure 5.2: Steps involved in BMD approach 

5.2 Comparison of BMD and NOAEL/LOAEL approach 
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Tradit ionally, threshold dose has been determined by the no observed adverse effect 

level or lowest observed effect level. In this approach, NOAEL or LOAEL are deter-

mined based on statistically significant response. This depends on the sample size and 

the selection of dose etc. NOAEL/LOAEL approach is relatively simple which does 

not consider the uncertainty related to dose response estimation. It might not give 

an accurate estimation for NOAEL as it focuses only on the data points which are 
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related to NOAEL or LOAEL and not on the entire data set. In contrast, in BMD ap-

proach the entire data set is fitted to mathematical models with specific benchmark 

response level. BMD approach also calculates the reference dose and slope factor. 

However, by reducing the uncertainty of traditional approach, it develops an occu-

pational exposure level for workplaces. BMD approach uses 10% response level for 

non-carcinogenic and carcinogenic endpoints. The BMR level can be changed based 

on the risk assessment perspective. 

5.3 Identification of critical effects based on chronic studies 

For this analysis, four critical endpoints were selected based on toxicological chronic 

studies of nickel exposure. These are, death, renal effect, respiratory effect and can-

cer. For dose response modeling , the animal doses are usually used to assess the 

toxicological response. The animal doses can be converted to human dose through 

allometric formula (Ricci,2006). The allometric formula is presented in equation (5.1); 

D (
Human Body Weight)! 

Human Dose = Animal ose 3 
Animal Body W eight 

(5.1) 

Homogeneity of the animal species is assumed in this formula. Four critical effects 

are discussed below for (1)soluble ,(2) sulfidic and (3)oxidic nickel exposure. Histori-

cally, chronic exposure to soluble and insoluble nickel compounds in refinery cohorts 

resulted in mortality of workers. Most of the human studies have been focused on 

the occupational nickel exposure. The studies were concerned with the estimation of 



45 

standard mortality ratio from cancer , respiratory effects from exposure and analysis 

of toxicity of the nickel compounds (ATSDR,2005). There has been a significant asso­

ciation between respiratory and renal effects and the increased risk of non-malignant 

disease in cohorts of nickel exposed workers. Past studies show that the increased 

nickel level in urine and urinary bita- microglobulin level of refinery workers are sig­

nificantly related to each other (ATSDR,2005). Epidemiological evidence examined 

the carcinogenic risk for workers involved in process facility by assessing the carcino­

genic effects of nickel. The evidence show that the nickel exposure has elevated the 

risk of lung cancer (ASTDR,2005). Figure-5.3 compares the No Observed Adverse 

Level ( NOAEL) of animal species with human. The human equivalent NOAELs are 

compared with rat and mouse. It is observed from the figure that the most sensitive 

species is mouse for all critical effects. Further, the graphs in Figure-5.3 show that 

the sensitivity of rat is comparable than mouse to human. 

5.4 Reference dose calculation using BMDS 

The reference doses (RID) or the safe exposure level has been derived based on some 

experimental animal data taken from literature using BMDS dose response model­

ing. EPA recommended 10% response level was taken to model the non-cancer dose 

response data. 
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Figure 5.3: Identification of critical effects (a) death (b) renal effects (c) respiratory 
effects and (d) cancer 
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5.4.1 Comparative evaluation of Dose Response Models (DRMs) 

The first step for deriving the Rfd is the comparative evaluation of dose response 

models based on the model fitness criteria for the data. The dichotomous models, 

weibull, gamma multi hit, log-probit, probit showed better fit to the data based on 

the selected criteria of BMD analysis. Comparative evaluation also considered the 

best fitted DRMs from the male and female rat dose response data. 

Table 5.1: Selected dose response models after evaluation for non-cancer endpoint 
Model Chi-square P-value AIC BMD Chemical Target organ 

Weibull 0.00 1.00 11.95 0.12 NiSo4 .6H20 , respiratory 
(power~ 1) (soluble) 

Weibull 1.35 0.24 108.08 0.55 Nickel subsulfide, respiratory 
(power~ 1) (insoluble) 

Gamma 3.38 0.18 92.68 0.27 Nickel oxide respiratory 
Multi hit (insoluble) 
Weibull 0.64 0.72 96.084 1.44 NiSo4 .6H20 , renal 

(power~ 1) (soluble) 
Log-probit 0.03 0.86 134.96 0.13 Nickel subsulfide, renal 

(insoluble) 
Probit 1.21 0.54 296.56 0.63 Nickel oxide, renal 

(insoluble) 

5.4.2 Determination of Point of Departure (POD) 

The 'Point of Departure' (POD) is the lowest limit of the observable range of doses. 

So, it is mainly described as the No Observed adverse effect level(NOAEL)/ Lowest 

Observed adverse effect Level (LOAEL). For this study, the POD has been considered 

as the NOAEL. The table-5.2 shows the No observed adverse effect level for the 

chemicals at each critical endpoints. 



48 

Table 5.2: NOAEL for ~hemicals 
Chemicals Animal (rat) dose Target organ POD/NOAEL 

(mgjm3 ) (mgjm3 ) 

(ATSDR,2005) 
NiSo4 .6H20, 0 Respiratory 0.11 

(Soluble) 0.03 
0.06 
0.11 

Nickel subsulfide 0 Respiratory 0.27 
(insoluble) 0.11 

0.73 
Nickel oxide 0 Respiratory 0.17 
(insoluble) 0.5 

1 
2 

NiSo4 .6H20, 0 Renal 0.11 
(Soluble) 0.03 

0.06 
0.11 

Nickel subsulfide 0 Renal 0.10 
(insoluble) 0.11 

0.73 
Nickel oxide 0 Renal 0.37 
(insoluble) 0.5 

1 
2 

5.4.3 Calculation of RID 

In the process of estimating 'Reference dose' (RID) , the determination of suitable 

uncertainty factor is an important consideration. , The maximum uncertainty factor 

which EPA usually apply in RID calculation is 3000. A default value of 10 is used for 

interspecies variability if information is limited about the animal to human extrap-

alation. Another 10 fold factor is used for the intra species or the extrapolation of 

sensitive to average population' (Zhao et al., 2006). The following equation has been 



used to estimate RID; 

RFC= NOAEL 
UF*MF 
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(5.2) 

Table-5.3 shows the NOAEL, uncertainty factor and modifying factor used to calcu-

late RfC/RfD for each critical effect. An uncertainty factor of 100 has been used for 

interspecies and intra species extrapolations. 

Table 5.3: RfC for chemicals 
Chemicals POD/ NOAEL Critical Uncertainty Modifying RfC/ RfD 

(mgjm3 ) Effect Factor (UF) Factor (MF) 
NiSo4.6H20, 0.11 Respiratory 100 10 1.12E-04 

(Soluble) 
Nickel subsulfide 0.27 Respiratory 100 10 2.72E-04 

(insoluble) 
Nickel oxide 0.17 Respiratory 100 10 1.71E-04 
(insoluble) 

NiSo4.6H20, 0.11 Renal 100 10 1.15E-04 
(Soluble) 

Nickel subsulfide 0.10 Renal 100 10 l.OOE-04 
(insoluble) 

Nickel oxide 0.37 Renal 100 10 3.76E-04 
(insoluble) 

5.4.4 Ranking of chemicals based on toxicity score 

The toxicity score for the chemicals have been derived for each critical effect. The 

equation used to estimate toxicity score is given below; 

Maximum Dose 
Toxicity Score = R f D 

e erence ose 
(5.3) 

According to the toxicity score, the most harmful chemical in terms of non-cancer 

respiratory effect, has been nickel oxide. Table-5.4 shows the results derived for 
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toxicity scores of chemicals. The ranking is not much different for renal effect too. 

Nickel subsulfide is ranked as number 1 and nickel oxide as number 2 for adverse 

effect . Table-5.5 depicts the results for toxicity score for renal effect; 

Table 5.4: Toxicity score of chemicals for respiratory effect 
Chemicals Max. Cont. Critical RFC Toxicity Rank Percent. to 

total score 
NiSo4 .6H20, 

(Soluble) 
Nickel subsulfide 

(insoluble) 
Nickel oxide 
(insoluble) 

(mgjm3 ) Effect (mgfm3 ) Score 
10 Respiratory 1.12E-04 8.87E+04 

15 Respiratory 2. 72E-04 5.51E+04 

50 Respiratory 1.71E-04 2.91E+05 

Table 5.5: Toxicity score of chemicals for renal effect 
Chemicals Max. Cont. Critical RFC Toxicity Rank 

NiSo4 .6H20, 
(Soluble) 

Nickel subsulfide 
(insoluble) 

Nickel oxide 
(insoluble) 

(mgfm3 ) Effect (mgjm3
) Score 

10 Renal 1.15E-04 8.66E+04 

15 Renal l.OOE-04 1.50E+05 

50 Renal 3.76E-04 1.33E+05 

5.5 Cancer slope factor calculation by using BMDS 

3 

1 

2 

2 

3 

1 

20.4 

12.67 

66.92 

Percent. to 
total score 

23.43 

40.58 

35.98 

In order to derive the Cancer Slope Factor ( CSF) for each chemical, the data were 

run applying the multistage cancer model using Benchmark Dose software (BMDS) . 

The Multistage cancer model fits the data well at the low doses. The Benchmark 

Response Level (BMR) has been taken as 1 percent for cancer risk because the slope 

factor is assumed given between 0 percent to 1 percent. 
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5.5.1 Comparative evaluation of Dose Response Models (DRMs) 

A comparative evaluation was done for selecting t he best fitted model. The multistage 

cancer model was run for 1st, 2nd and 3rd degree of polynomial to choose the best 

fitted model to t he data for both alveolar and adrenal proliferations. Before fitting 

the data to the model the animal dose was converted to human equivalent dose using 

the allometric formula (equation 5.1). The table for selected DRM has been depicted 

below; 

Table 5.6: DRM for cancer slope factor 
Model Chi- P-value AIC BMD Chemicals Critical 

square Effect 
Multi hit 0.18 0.98 12.29 0.11 NiSo4 .6H20, Alveolar 

(degree=3) (Soluble) proliferation 
Multi hit 5.18 0.02 100.37 0.04 Ni subsulfide, Alveolar 

(degree=2) (insoluble) proliferation 
Multi hit 3.37 0.18 92.68 0.33 Nickel oxide Alveolar 

(degree=3) (insoluble) proliferation 
Multi hit 0.64 0.72 96.08 0.16 NiSo4 .6H20 Adrenal 

(degree=2) (Soluble) proliferation 
Multistage 4.59 0.03 194.8 0.008 Ni subsulfide, Adrenal 
(degree=2) (insoluble) proliferation 
Multi hit 0.28 0.86 295.64 0.89 Nickel oxide Adrenal 

(degree=3) (insoluble) proliferation 

5.5.2 Determination of cancer slope factor 

Cancer slope factor can be described as the unit cancer risk from the risk agent. 

Comparative evaluation of DRMs is done to select the best fitted model from male 

and female rat's dose response data. Table-5.6 shows the results from the BMD 

analysis for cancer slope factor. It is noticed from the Table-5. 7 that the unit cancer 
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risk is high from the nickel subsulfide both for alveolar and adrenal proliferations. 

Table 5. 7: Cancer slope factor for chemicals 
Chemicals Animal dose Human equivalent Critical Cancer 

(mglm3
) dose (mglkglday) Effect Slope 

(ATSDR,2005) Factor( mg I kg I day )- 1 

NiSo4.6H20, 0 0 Alveolar 0.236 
(Soluble) 0.03 0.036 proliferation 

0.06 0.072 
0.11 0.132 

Ni subsulfide, 0 0 Alveolar 0.397 
(insoluble) 0.11 0.17 proliferation 

0.73 1.12 
Nickel oxide, 0 0 Alveolar 0.057 

(insoluble) 0.11 0.17 proliferation 
0.5 0.76 
1 1.53 
2 3.06 

NiSo4.6H20, 0 0 Adrenal 0.710 
(Soluble) 0.03 0.036 proliferation 

0.06 0.072 
0.11 0.132 

Ni subsulfide, 0 0 Adrenal 1.692 
(insoluble) 0.11 0.17 proliferation 

0.73 1.12 
Nickel oxide, 0 0 Adrenal 0.197 

(insoluble) 0.5 0.76 proliferation 
1 1.53 
2 3.06 

5.5.3 Ranking of chemicals based on toxicity score 

The ranking of chemicals was done by the Toxicity Score calculated. The equation 

(5.4) is given for calculation of Toxicity Score; 

Toxicity Score = CSF * Maximun dose (5.4) 
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Here, the CSF is the Cancer Slope Factor. Table-5.8 and 5.9 show that t he ranking 

is high for the insoluble nickel forms. The percentage contribution to total score is 

more than 50 percent for nickel subsulfide and ranked as number 1 in the chemicals 

for both alveolar and adrenal proliferations. Nickel oxide is ranked as number 2 for 

both of the endpoints. 

Table 5.8: Toxicity score for chemicals for alveolar proliferations 
Chemicals Critical Cancer Toxicity Rank Percentage 

NiSo4.6H20, 
(Soluble) 

Ni subsulfide 
(insoluble) 

Nickel oxide 
(insoluble) 

Effect Slope Score to Total 

Alveolar 
proliferation 

Alveolar 
proliferation 

Alveolar 
proliferation 

Factor(mgjkgjday)- 1 Score 
0.236 16.28 3 21.14 

0.397 39.7 1 53.34 

0.057 19.95 2 25.53 

Table 5.9: Toxicity score for chemicals for adrenal proliferations 
Chemicals Critical Cancer Toxicity Rank Percentage 

NiSo4.6H20, 
(Soluble) 

Ni subsulfide 
(insoluble) 

Nickel oxide 
(insoluble) 

Effect Slope Score to Total 

Adrenal 
proliferation 

Adrenal 
proliferation 

Adrenal 
proliferation 

Fact or(mgjkg jday)-1 Score 
0. 710 48.99 3 16.77 

1.692 169 1 59.95 

0.197 68.95 2 23.27 

5.6 Setting of Occupational Exposure Level (OEL) 

For a long term low dose exposure, the derivation of No Observed Adverse Effect 

Level (NOAEL) can be useful to define the Acceptable Daily Intake (ADI) for toxic 
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chemicals. Historically, regulatory agencies considered conventional approach to de-

clare the threshold of toxicity for a chemical. This approach includes NOAEL values 

from different chronic studies and uncertainty factor to describe the Acceptable Daily 

Intake (ADI) or the safe level of exposure. In BMD approach, the threshold value 

is derived from more scientific dose response modeling . This has been a practical 

way of deriving the safe exposure level. In this analysis, it is assumed that the BMD 

calculated from 10% increased risk is comparable to the NOAEL (Galli et al. 2008). 

However, the BMD10 has been derived for the nickel workplace and recommended 

as the safe exposure level for chemicals. Table-5.10 describes the recommended safe 

dose/ acceptable daily intake or the threshold value of toxicity for chemicals along 

with their critical effect. 

Table 5.10: Acceptable daily intake for chemicals 
Chemicals Critical ADI/Safe dose/Safe 

NiSo4.6H20 , (soluble) 
Ni subsulfide, (insoluble) 
Nickel oxide, (insoluble) 
NiSo4.6H20, (soluble) 

Ni subsulfide, (insoluble) 
Nickel oxide,(insoluble) 

Effect Concentration (mgjm3) 

Respiratory 1.12E-04 
Respiratory 2. 72E-04 
Respiratory 1. 71E-04 

Renal 1.15E-04 
Renal l.OOE-04 
Renal 3.76E-04 



Chapter 6 

Risk Characterization and Uncertainty Analysis 

6.1 Introduction 

This chapter deals with the characterization and evaluation of the risk of the exposed 

population. Risk characterization has been carried out using probabilistic approach. 

Probabilistic approach quantifies risk considering the uncertainties related to expo­

sure estimates. The analysis involves uncertainty and variability in input parameters. 

Variability can be defined as the heterogeneity in the exposure parameters and un­

certainty refers to the lack of knowledge about the parameter. However,Probabilistic 

Risk Assessment (PRA) determines the sources of uncertainty in risk quantification 

in order to obtain more data in related area. 

There have been several numerical simulation methods for the propagation of mo­

ments or distribution of model inputs. The commonly used numerical methods are; 

Monte Carlo simulation and Latin Hypercube sampling (LHS) . Monte Carlo simu­

lation performs same calculation repeatedly for different values of input parameters. 

The input parameters are defined by the Probability Density Function (PDF) or prob­

ability models. The Latin Hypercube sampling of Monte Carlo simulation includes 
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sampling of input variables by dividing it into ranges of equal probabilities from Cu­

mulative Density Function (CDF) . It divides CDF into equal intervals, selects median 

from each interval and then performs the simulation repeatedly. In LHS, the values 

taken from the distribution are proport ional to the probability density of the distribu­

tion (Cullen and Frey,1999). LHS is more reliable method t han random Monte Carlo 

simulation because the statistical fluctuation is less in this method. Experiments 

showed that LHS allows more accurate representation of CDF when the sample size 

is small (Cullen and Frey, 1999). 

The U.S. EPA has issued some criteria for Monte Carlo analysis which has been 

reproduced below (U.S. EPA,1997); 

• The purpose and scope of the assessment should be clearly articulated in a 

problem formulation section. 

• The methods used for the analysis (including models, data and assumptions) 

should be clearly documented and easily located in the report . 

• The results of sensitivity analysis should be presented and discussed in t he 

report. 

• The presence or absence of moderate to strong correlations and dependencies 

between the input variables should be discussed and accounted for , along with 

the effect these have on the output distribution. 
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• Tabular and graphical representation of the distributions of input and output 

including statistics and percentiles of special interest should be provided. Vari­

ability and uncertainty should be differentiated. 

• The numerical stability of the central tendency and higher end (i.e., tail) of the 

output distribution should be investigated and discussed. 

• Deterministic calculations should be provided for comparison with Monte Carlo 

output. 

• The consistency and appropriateness of the metric used for the exposure esti­

mates and that of available toxicity information, should be discussed. 

6.2 R isk characterization 

Probabilistic approaches for risk characterization involves two types of interpreta­

tion of probability. This includes; frequentest view of probability and subjective or 

Bayesian view of probability. The frequentest or conventional approach interprets the 

risk with probability distribution that is dependent on the dataset. This is an empir­

ical approach of deriving risk where the data needs to be collected in random order 

from a population. The probability distribution with parameters are taken from this 

sample dataset. But in absence of data it is not possible to have a probability distri­

bution for the parameters. In contrast, the event occurrence can be taken from prior 

knowledge, data and expert judgment in Bayesian approach. This approach is more 

appropriate when data are limited and gives a better estimate than the conventional 
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approach in absence of data. However, the classical theory of probability is based on 

random phenomena and in Bayesian theory, the event occurrence can be considered 

as more general or dependent on certain conditions. 

Bayesian approach can create prior distribution based on current ly available data 

for unknown parameters of risk model. The prior distribution is then updated using 

subsequently collected data and the likelihood function is taken based on assump­

tions. The updated distribution is called posterior distribution which reduces the 

uncertainty related to the new data. 

The unknown parameter in risk model can be quantified by deriving the posterior 

density function for the parameter using Bayes theorem. Bayes t heorem can easily 

be applied for continuous random variable. If x and y be the continuous random 

variables, then the Bayes theorem can be expressed as; 

p(x/y, c) ex p(x/c) * p(yjx, c) (6.1) 

Here, p(x/c) is the prior density function containing the prior information about the 

parameter. The p(xjy, c) is the posterior density function representing the current 

information about the parameter. The p(y/x, c) is the likelihood function which 

relates x and y with the available information. The prior density can be taken from 

the same class of distribution from posterior density when the information is limited. 

This is called conjugate prior. The posterior expected values or moments for the 
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distribution can be derived by integrating the values for unknown parameter x along 

with the posterior density function. 

6.2.1 Development of the risk model 

The development of risk model has been done in four steps. First, the risk was 

estimated using deterministic approach and then the prior distribution for risk was 

derived using Monte Carlo simulation of Latin hypercube sampling method. Finally, 

the posterior distribution for risk was derived using Bayesian Monte Carlo analysis. 

The unknown input parameters or the exposure for probabilistic approach have been 

taken as uniformly distributed random variable within a minimum and maximum 

concentration level of past and present exposure data. The likelihood remained same 

for past and present exposure for the analysis. The posterior distribution (g(p,jdata)) 

is the product of the prior distribution (g(p,)) and the likelihood of the exposure. 

Finally, the posterior normal distribution is derived from uniform prior as this is the 

conjugate prior. The posterior normal mean (m) and Standard Deviation (s) have 

been estimated based on the following formula; 

m = J p,g(p,jdata)dp, (6.2) 

And 

s2 = j (p,- m)2g(p,jdata)dp, (6.3) 

For the posterior normal distribution, the values are assumed to be non negative and 

p, is the current mean exposure. And finally, the posterior risk has been estimated 
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Figure 6.1: Steps involved in developing Risk model 
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using Monte Carlo Simulation of Latin hypercube sampling for the estimated poste-

rior normal distribution for concentration by subjectively truncated from minimum-

maximum value (O,max). This has repeatedly drawn positive values for risk from the 

distribution. The flow diagram in figure- 6.1 depicts the steps involved in development 

of risk modeL 

6.2.2 R isk estimation and comparison of estimated risk 

The cancer and non-cancer risk estimation has been carried out using U.S. EPA 

recommended risk equations. The unknown input parameters in the risk equations 

were quantified using available data. From the past exposure data, the probability 
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distribution of concent ration was provided using halfway substitution method from 

given maximum concentration. The posterior normal distribution for the concen-

tration were derived for Soluble nickel: normal (mean=2.3E-7, st.d=7.7E-5) , Nickel 

subsulfide: normal (mean=O.OOl, st.d=0.02) and nickel oxide: normal (mean=0.001, 

st.d=0.029). Before the analysis, the distribution or assumed values for the parame-

ters were gathered. The values of other parameters were assumed based on U.S. EPA 

standards. It has been assumed that there is no correlation between the input param-

eters for the simplicity of the analysis. The Exposure factor has been calculated for 

one year (365 days) of exposure for non-cancer risk and for lifetime exposure of cancer 

risk. The Estimated Exposure Dose were calculated using the following equation; 

EED = C * I R * EF 
BW 

(6.4) 

In the equation-6.4, EED refers to the Estimated Exposure Dose, C, concentration 

or exposure, IRis Inhalation Rate, EF is Exposure Factor, and BW is Body Weight. 

The process of risk quantification is depicted in section 6.2.2.1 and 6.2.2.2. 

6.2.2.1 Non-cancer risk 

The following risk equations were used to calculate the non-cancer risk or Hazard 

Index (HI); 

HI= EED 
RfD 

(6.5) 

In equation-6.5, the HI is Hazard Index, Rf D is the Reference Dose which was 
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Table 6.1: Input parameters for non-cancer risk quantification 
Variable Value Unit Parameter Type of 

Mean ST.D distribution 
Concentration of 5-10 (min.-max.) mgj m3 7.5 2.582 Uniform 

Soluble nickel 
Concentration of 7.5-15 (min.-max.) mgjm3 11.25 3.873 Uniform 
Nickel subsulfide 
Concentration of 25-50 (min.-max.) mgj m3 37.5 12.91 Uniform 

Nickel oxide 
Inhalation Rate (IR) 6.66 (min.-max.) m3 / 8hrsjday NA NA Assumed value 
Exposure factor(EF) 0.23 NA NA NA Assumed value 
Body Weight(BW) 75 kg NA NA Assumed value 

derived in chapter 5 for the chemicals. The input parameters, values,units and prob-

ability models used for the estimation of risks are given in the Table-6 .1. The HI 

Table 6.2: Comparison of prior and posterior non-cancer risk for chemicals 
Chemical Target Risk (Det- Prior risk Prior risk* Posterior risk Posterior 

organ deterministic (95% Confi- Evaluation (95% Cred- risk* 

approach) dence Interval) ible Interval) Evaluation 

Soluble Lung 2.79E-01 0.19 - 0.36 Acceptable 0.007 - 0.034 Acceptable 

Sulfidic Lung 1.73E-01 0.12- 0.23 Acceptable 7.7E-4- 0.014 Acceptable 

Oxidic Lung 9.16E-01 0.63- 1.21 Not Acceptable 0.004- 0.2 Acceptable 

Soluble Renal 2.72E-01 0.18 - 0.36 Acceptable 0.007- 0.03 Acceptable 

Sulfidic Renal 4.72E-01 0.32- 0.62 Acceptable 0.002 - 0.036 Acceptable 

Oxidic Renal 4.18E-01 0.28- 0.55 Acceptable 0.002 - 0.087 Acceptable 

**HI is very high as the acceptable limit is < 1 

value for each chemical were estimated using deterministic and probabilistic approach 

and the risks were compared based on acceptance criteria . Non- cancer risks were 

calculated for two different t arget organs for their toxicity values. For respiratory 

effect , it has been assumed that the chemicals are deposited 100% of the calculated 

intake and for renal effect the 35% of dose is deposited into the target organ. 

From this analysis , it has been depicted that the non-cancer risk level is within the 
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acceptable limit for the chemicals except the prior risk value for respiratory effect 

which is predicted high for the nickel oxide and about 75th, 90th and 95th percentiles 

are showing above the acceptable risk level. Table-6.2 and 6.3 describes the values 

for estimated prior and posterior non-cancer risks and percentile values of risk for 

chemicals respectively; 

Table 6.3: Prior non-cancer respiratory risk for nickel oxide 
Chemical Target 50th percentile 75th percentile 90th percentile 

Organ value for risk value for risk value for risk 
Nickel oxide Lung 0.91 1.06 1.16 

6.2 .2.2 Cancer risk 

95th percentile 
value for risk 

1.19 

The process for deriving risk has been same for both cancer and non-cancer effect. 

Here, the EF is considered for lifetime exposure in the calculation. The following risk 

equation is used to calculate the cancer risk; 

Cancer Risk= EED * CSF (6.6) 

The results show that the prior risk for all chemicals are above the acceptable limit 

and the posterior risk has been predicted high from the insoluble forms of nickel. The 

50th, 90th and 95th percentiles show that the population is within the unacceptable 

region of prior risk. Again,it is seen that 90th and 95th percentile values for posterior 

lung cancer risk from nickel subsulfide are within an unacceptable range. However, 

for renal effect, the risks are predicted higher compared to the respiratory effect. The 
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Table 6.4: Input parameters for cancer risk quantification 

Variable Value Unit Parameter Type of 

Mean ST.D distribution* 
Concentration of 5-10 (min.-max.) mgjm3 7.5 2.582 Uniform 

Soluble nickel 
Concentration of 7.5-15 (min.-max.) mg/m3 11.25 3.873 Uniform 
Nickel subsulfide 
Concentration of 25-50 (min.-max.) mg/m3 37.5 12.91 Uniform 

Nickel oxide 
Inhalation Rate (IR) 6.66 (min.-max.) m 3 /8hrsjday NA NA Assumed value 
Exposure factor(EF) 3.26E-3 NA NA NA Assumed value 
Body Weight(BW) 75 kg NA NA Assumed value 

*The uniform distribution has been taken from the halfway substitution method from given 
maximum concentration. 

*CSF (mg/kg/day)- 1 derived from chapter 5 and EED(mg/kg/day) derived from chapter 4. 

25th, 50th, 75th, 90th and 95th percentiles are higher than the acceptable level for 

exposure to nickel subsulfide. The 90th and 95th percentiles are higher for nickel 

oxide exposure. This means that about 90-95 percent of observation will be equal or 

below the acceptable range which again violates the acceptable criteria for risk. The 

results were presented in Table-6.5, 6.6, 6. 7 and 6.8. [ht] [ht] 

Table 6.5: Comparison of prior and posterior cancer risk for chemicals 

Chemical Target Risk (Det- Prior risk Prior risk* Posterior risk Posterior 
organ deterministic (95% Confi- Evaluation (95% Cred- risk* 

approach) dence Interval) ible Interval) Evaluation 
Soluble Lung 5.1E-4 3.5E-4- 6.7E-4 Not acceptable 5.78E-11- 4.13E-9 Acceptable 
Sulfidic Lung 1.2E-3 8.85E-4- 1.7E-3 Not acceptable 2.62E-8 - 1.8E-6 Not acceptable 
Oxidic Lung 6.2E-4 4.2E-4- 8.1E-4 Not acceptable 5.49E-9 - 3.82E-7 Acceptable 
Soluble Renal 1.54E-3 lE-3- 2E-3 Not acceptable 1.73E-10- 1.24E-8 Acceptable 
Sulfidic Renal 5.5E-3 3.7E-3 - 7.2E-3 Not acceptable l.lE-7- 7.8E-6 Not acceptable 
Oxidic Renal 2.1E-3 1.5E-3 - 2.8E-3 Not acceptable 1.8E-8- 1.32E-6 Not acceptable 

**Acceptable Cancer risk is <1 *10-6 . 



Table 6.6: Prior cancer risk for chemicals 
Chemical Target 90th percentile 50th percentile 95th percentile 

Organ value for risk value for risk value for risk 
Soluble Nickel Lung 6.49E-04 5.12E-04 6.66E-04 

Nickel subsulfide Lung 1.63E-03 1.29E-03 1.68E-03 
Nickel oxide Lung 7.83E-04 6.18E-04 8.04E-04 

Soluble Nickel Renal 1.95E-03 1.54E-03 2.00E-03 
Nickel subsulfide Renal 6.97E-03 5.51E-03 7.16E-03 

Nickel oxide Renal 2.70E-03 2.13E-03 2.78E-03 

Table 6. 7: Percent ile values for posterior lung cancer risk 
Percentile value 

for risk 
Posterior risk value 
for nickel subsulfide 

5% 
25% 
50% 
75% 
90% 
95% 

5.25E-08 
2.65E-07 
5.58E-07 
9.47E-07 
1.34E-06 
1.60E-06 

Table 6.8: Percentile values for posterior cancer risk for renal effect 
Percentile value 

for risk 
5% 

25% 
50% 
75% 
90% 
95% 

Posterior risk value 
for Nickel subsulfide 

2.23E-07 
1.13E-06 
2.38E-06 
4.03E-06 
5.74E-06 
6.83E-06 

Posterior risk value 
for Nickel oxide 

3.78E-08 
1.91E-07 
4.02E-07 
6.82E-07 
9.72E-07 
1.15E-06 
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Chapter 7 

Sensitivity Analysis 

7.1 Introduction 

Sensitivity analysis can be classified into two classes; deterministic analysis and prob­

abilistic analysis. Probabilistic analysis involves statistical methods for sensitivity 

analysis of exposure parameters. This is done by running simulation for each input 

in relation to output. Distributions are assigned to the parameters and run the simu­

lations. Simulations can be run using techniques, like, Monte Carlo simulation, Latin 

hypercube sampling and some other common methods. The examples of statistical 

method include, regression analysis, analysis of variances, response surface methods, 

Fourier amplitude sensitivity test, and mutual information index (Frey and Patil, 

2002). Regression analysis is a powerful tool for independent random samples. The 

input and output parameters can be compared using regression coefficients, standard 

error of regression coefficients and the level of significance of regression coefficient 

(Frey and Patil, 2002). Regression coefficients are ranked to identify the nominal 

range of sensitivity of input parameters to the output. Usually the values of the 

coefficients are ranged from -1 to 1. 
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This chapter deals with the sensitivity analysis of exposure parameters in risk quan-

tification. Risk models often require sensitivity analysis to determine the important 

exposure parameters in order to mitigate the risk. This also plays a significant role in 

further study or data collection. In this chapter, the regression coefficients are used 

to relate importance of each input parameters with the output which helps evaluating 

the impact of input parameters on the output or the results. 

7.2 Characterizing variability and uncertainty in exposure parameters 

The probability models for exposure concentration were generated using bootstrap 

approach. Bootstrap method generates the empirical distribution from the original 

data set drawn at a random (with replacement) order. The steps involved in gen-

erating bootstrap probability model are; ( i) arranging observed random sample in 

an ascending order; ( ii) development of probability model based on observed data 

; (iii) computation of bootstrap probability model from the number of independent 

samples (N); ( iv) generation of sought statistics. Table 7.1 shows the statistics of 

probability distribution generated by bootstrap method. Probability distribution for 

Table 7.1: Nickel refinery dust exposure (after replacement) 
Variable Mean SE Mean St. Dev Minimum Median Maximum 
Sulfidic 0.120 0.001 0.035 0.030 0.121 0.216 
Oxidic 0.270 0.003 0.082 0.081 0.261 0.517 
Soluble 0.026 0.0001 0.004 0.014 0.026 0.038 

other exposure parameters were generated for sensitivity analysis mainly based on 

literatures. Table-7.2 shows the values considered for each input parameter. 
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Table 7.2: Input parameters for sensitivity analysis 
Parameter Description Units Distribution Estimate Reference 

c Concentration mgjm3 Normal 

IR Inhalation m3 /day Uniform Min:5.04 Dawoud& 

rate Max:17.76 Purucker, ( 1996) 

EF Exposure Days jyr Triangular Min:180 Dawoud & 
frequency Max:365 Purucker,(1996) 

Most likely:345 

ED Exposure Y ear Uniform Min:50 Judgment 

duration Max:70 

BW Body Kg logNormal G.Mean:4.34 Dawoud & 

weight G.St.dev:0.17 Purucker,(1996) 

AT Average Days Uniform Min:365 Judgment 

time Max:1825 

RR Retention Dimension V1 

rate less 

ABS Absorption Dimension 1 

factor less 

ET Exposure Days jyr Triangular Min:5.7E-4 Judgment 

time Max:l.4E-3 

Most likely:9.1E-4 

7.3 Sensitivity analysis of exposure parameters by ranking 

The sensitivity analysis has been done using Monte Carlo Simulation of Latin Hyper-

cube Sampling method. First, the forms of nickel has been identified for generating 

dust (see chapter-4). The results in table-7.3 shows the sensitivity of output to its 

input variables (oxidic, soluble and sulfidic) . The regression coefficients show the 

ranking of the variables. Nickel oxide has been ranked as number one for generating 

dust. The percentile plot (Figure-7.1) and the percentage change graph (Figure-7.2) 

depict that there is a sharp increase in dust level with the increase in oxidic nickel. 

Soluble nickel has little or no impact on the output. The tornado graph (Figure-7.3) 
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shows the exposure to oxidic nickel varies with the output more than the other expo-

sure variables. 

The sensitivity report shown in table-7.4 suggests that the average time of exposure 
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Table 7.3: Rank of input for dust exposure 
Name 

Oxidic 
Sulfidic 
Soluble 

Description 

Normal(0.269,0.0816) 
Normal(0.119,0.0352) 
Norma1(0.0259,0.0043) 

Regression coefficient 

0.882 
0.445 
0.147 

Mean of dust vs Input Distribution Percentile 

- soluble De 
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Figure 7.1: Percentile graph for dust exposure 

and the level of exposure are the important parameters to be considered for cancer 

risk. The percentile graph (Figure-7.4) and the percentage change graph of cancer 

risk (Figure-7.5) shows that the exposure time and level of exposure are increasing 

with the increase in risk. The tornado graph (Figure-7.6) represents the variation of 

input with the output. 
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Table 7.4: Rank of input for output cancer risk 
Name Description 

Average t ime (days) Uniform(365,1825) 
Oxidic(mg/m3) Normal(0.269,0.0186) 

Exposure t ime (daysjyr) Triang( 0. 0005 7, 0. 00091,0.0014) 
Body weight(kg) Lognorm2( 4.34,0.17) 

Exposure frequency( days/ yr) Triang(180,345,365) 
Exposure duration(year) Uniform(50,70) 

Mean of CR vs Input Distribution Percentile 
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Figure 7.4: Percentile graph for cancer risk 
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Regression 
coefficient 

-0.646 
0.442 
0.26 
-0.24 
0.209 
0.151 
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Chapter 8 

Conclusion and Recommendations 

8.1 Summary and conclusion 

Present approaches for Human Health Risk Assessment (HHRA) have been studied , 

discussed and a new approach for assessing human health risk for chemical exposure 

in process facility is proposed. Considerations have been given for high risk operations 

in process facility for occupational hazards from nickel exposure through inhalation. 

The risk assessment framework includes four steps; ( i) hazard ident ification ; ( ii) 

Exposure-response analysis; (iii) Toxicity assessment; ( iv) Risk characterization and 

uncertainty analysis. Hazards were ident ified based on the past evidence from lit­

eratures and secondary sources have been used to confirm identified hazards. First , 

occupational nickel exposure were analyzed using two established statistical methods 

to identify the significant exposure parameters related to risk. Multivariate analysis 

was used to assess the exposure and exposure response models were developed us­

ing regression analysis. In the next step, Benchmark Dose (BMD) analysis has been 

carried out to find out the toxicity values for nickel compounds and Occupational Ex­

posure Level (OEL) in the workplace. BMD approach considered the entire dataset 

to derive the toxicity results for nickel compounds using dose response modeling. In 
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the risk characterization step, a probabilistic risk model is developed to quantify the 

health risk from the exposure to nickel compounds. The prior risk (risk from past 

exposure) was updated using Bayesian approach to derive posterior risk ( risk from 

current exposure) . And, finally, The developed risk models were applied in sensitivity 

analysis and discussed to identify the relative importance of the exposure parameters 

for the risk. 

Historically, process facilities have been hazardous place to work with. Epidemiologi­

cal evidence shows a clear view of occupational chemical exposure in process facility. 

Several case studies related to occupational nickel exposure have been carried out and 

published. Past exposure in nickel refinery showed an increased risk of lung cancer. 

Occupational diseases or cancer have been detected after prolong exposure to the 

compounds. The present study proposes risk model for nickel workplace exposure. 

The exposure to soluble and insoluble forms of nickel have been analyzed and the 

insoluble forms have been found more toxic in terms of both carcinogenic and non­

carcinogenic responses. The results from epidemiological evidences and the toxicolog­

ical assessment of nickel converged to same conclusion. The results from risk model 

showed that the risk from soluble form has been in an acceptable range. However, the 

cancer risks were predicted above acceptable range for workplace from the exposure 

to insoluble forms of nickel. The sensitivity report suggested that the exposure level 

(dose) and the exposure time have significant impact on the risk computations. 
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8.2 Recommendations 

On the basis of present study, the following recommendations related to risk reduct ion 

and improvement in methodology of risk assessment have been suggested; 

8.2.1 Recommendations related to risk reduction 

• Regular air sampling and nickel speciation analysis should be done in high risk 

operations , like , high temperature operations and feed preparation. 

• Special considerations should be given to high risk areas for dust control and 

ventilation in process facility. 

• Routine health checkup for the exposed workers must be carried out in order 

to ensure worker health and safety. 

• The number of workers should be minimized as far as possible in high risk areas. 

• Appropriate design and control strategies should be taken into consideration to 

minimize the risk and release of carcinogens. 

• Raising awareness of the workers about the safety issues. 

• The recommended Occupational Exposure Limit (OEL) or the safe dose should 

be maintained and the exposure level should be minimized as far as possible or 

technologically feasible. 
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• Personal protective measures should be provided for the employees and enforced 

to be used in the working hours. 

8.2.2 Recommendations related to future improvements in method­

ology 

• More epidemiological studies need to be carried out to collect more relevant 

data in the area. 

• Risk assessment data should be made more available to the risk assessors and 

managers. 

• More scientific toxicological data are required in the area related to reliable 

animal experimentation. 

• Approaches to qualitative risk assessment needs to be given more emphasis as 

the quantitative approaches required more accuracy and precision. 

• Exposure scenarios needs to be described more elaborately describing the present 

workplace exposure. 

• The workplace exposure data should be made more accessible for the researchers 

which will give more precise, accurate and validated risk assessment method­

ologies for Human Health Risk Assessment (HHRA) in process facility. 
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Appendix A: The First appendix 

A.l Appendix: Data collection 

A.l.l Sources of data 
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1. Dawoud, E. A. and Purucker, S. T ., February 1996, Quantitative Uncertainty 

Analysis of Superfund Residential Risk Pathway Models for Soil and Groundwater: 

White Paper, Environmental Restoration Risk Assessment Program, U.S. Depart­

ment of Energy, Office of Environmental Management, 6-9. 

2. EPA/540/R-92/003 ,1991, Risk Assessment Guidance for Superfund: Volume I­

Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary 

Remediation Goals) , Office of Research and Development, U.S. Environmental Pro­

tection Agency, Washington, DC, 21-30. 

3. (NAS, 1975) , Medical and Biological Effects on Pollutants, Division of Medical Sci­

ences, National Research Council, National Academy of Sciences, Washington D.C, 

97-128,144-188. 

4. Sivulka, D. J. , Conard, B. R. , Hall, G. W. and Vincent, J . H., 2007, Species-specific 

89 



90 

inhalable exposures in the nickel industry: A new approach for deriving inhalation 

occupational exposure limits, Regulatory Toxicology and Pharmacology, 48, 23-24. 

5. (ATSDR, 2005) , Toxicological Profile for Nickel, August 2005, U.S. Department 

of Health and Human Services, Public Health Service, Agency for Toxic Substances 

and Disease Registry, 25-28, 47-58, 82-85, 88-89. 

6. Zhao Q., Dourson M., Gadagbui B. , 2007, A review of the reference dose for 

chlorpyrifos, Regulatory Toxicology and Pharmacology 44, 111-124 . 

.I 



Appendix B: The Second appendix 

B .l Appendix: Commands used for risk modeling and sensit iv ity analysis 

B .l.l Minitab commands 

1. The following Minitab commands were used to derive the posterior density; 

Random 2002 cl ;[generates uniformly distributed random numbers] 

Uniform min max. 

Let c4=c2*c3 [gives g(J.L/data); c2= g(J.L) ; c3=likelihood] 

Let c5= cl *c4 [gives J.L *g(J.L/data) ; cl= J.L; ] 

%tintegral.mac cl c5; Output kl c6. [gives posterior mean ] 

Let c6=(cl-k1)**2*c4 

%tintegral.mac c1 c6; Output k2 c7. [gives posterior variance ] 

Let k3=sqrt(k2) [gives posterior St.Dev. ] 

Print kl-k3. 

2. The gmacro used for sensitivity analysis is given below; 

gmacro 

bootexl 
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do k1=1:999 

sample 16 cl c6; 

replace 

let c7(kl)=mean(c6) 

sort c6 c8 

end do 

let k2=c7(50) 

let k3= c7(950) 

print k2-k3 

descr c7 

endmacro 

92 








