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Abstract 

A diverse. well preserved macrofloral assemblage (herein termed the Blanche 

Brook Assemblage), which is characterized by large tree petrifactions of cordaitean 

affinity and an array of ad pressed foliage that includes lycopsids, sphenopsids, ferns, 

pteridosperms and cordaiteans, has been recovered ti·om coal-bearing strata of the Upper 

Carboniferous Barachois Group of the Bay St. George Basin. southwestern 

Newfoundland. The locality constitutes part of the northernmost onshore extent of the 

Maritimes Basin of eastern Canada, which developed on the southern margin of 

paleoequatorial Laurentia and is included in the Europe Paleoarea of the Euramerian 

Paleokingdom. Although the fossi I site was initially investigated in the late 1800's, the 

present study comprises the tirst comprehensive taxonomic description and 

biostratigraphic correlation of the macro floral assemblage, and provides an interpretation 

of the depositional environment and paleoecological conditions under which the tlora 

flourished. 

Recovery of very well preserved cuticles exhibiting fine epidermal cellular details 

from adpressed cordaitean and pteridosperm foliage reflects the fact that fossiliferous 

strata have experienced very I ittle deformation or burial metamorphism, and supports 

earlier claims that rocks in the northern pan of the Bay St. George Basin and on Port au 

Port Peninsula are thermally immature. Paleoecological evidence and homotax.ial 

biostratigraphic comparison of selected ad pressed macro flora with other localities in the 

Europe Paleoarea (e.g., Maritimes Basin, western and central Europe, midcontinental 

II 



North America) indicates that the assemblage is middle to late Bolsovian in age, which 

corroborates ages determined earlier from palynological studies. 

Fossiliferous and associated rocks in the stratigraphic succession are here 

subdivided and assigned to one of seven sub lithofacies, each of which represents a 

distinct depositional environment characterized by its sedimentology and stratigraphy. 

vertical and lateral relationships with other sublithofacies. and plant fossil assemblages. 

The strata appear to record sediment accumulation in a coarse grained meandering stream 

system that occupied a narrow alluvial plain and was characterized by poorly developed 

leveelbacklevees that were consequently overtopped or breached during frequent flood 

events. The distribution and relative abundances of taxa within each sublithofacies. 

including miospores recorded from associated coal seams, have been integrated with 

previously interpreted habitat preferences known for tlora represented at the fossil site. 

This has resulted in construction of a working paleoenvironmental model tor the Blanche 

Brook Assemblage, which indicates that there was considerable habitat partitioning and 

even competition tor ecological niches between members of the tive main plant groups in 

response to ecological preferences of each taxa. In particular. there is evidence tor 

interspecific habitat partitioning within the medullosan pteridosperms occupying the 

floodplains and levee/backlevees, while competition may also may existed betwet:n 

certain medullosan pteridosperms and sigillarian arborescent lycopsids for drier edaphic 

substrates in these habitats. Likewise, clastic swamps were inhabited by an array of flora. 

the composition of which depended on the rate of peat versus clastic sediment 

accumulation that resulted from frequent incursions of sediment-laden floodwaters . 
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Chapter l - Introduction 

Coal-bearing strata along "Riviere Blanche" just nonh of Stephenville, 

Newfoundland were initially investigated over 125 years ago by A. Murray and J.P. 

Howley of the Geological Survey of Newfoundland during a ieconnaissance survey to 

determine the economic potential of coal seams recorded in Carboniferous strata of the 

area. Although they concluded, with dejection, that coal seams were of poor quality and 

limited thickness, they did remark on their discovery of a horizon of bluish clay above a 

coal seam ·· . . filled with most beautiful impressions of fossil ferns. in an admirable state 

ofpreservation·· (Howley 1917, p. 21) . Additionally, they noted that associated 

sandstones contained abundant well preserved, prostrate trees complete with trunks. limbs 

and branches " . . . so that. as seen from a little distance. the appearance of the ground 

reminds one of a windfall or drift of modern wood upon a beach of sand' (Murray and 

Howley 188 I. p. 327). They must have collected representative specimens of .. wood" and 

''ferns" and submitted them to Sir. J.W. Dawson for identification. as shonly thereafter 

Dawson ( 1891; seep. 14. 15) published the first (and only) brief descriptive account of 

macroflora from Blanche Brook (present geographical name). Although Bell ( 1948) 

examined and figured macroflora and fauna from Lower Carboniferous strata of 

southwestern Newfoundland, plant fossils from Upper Carboniferous rocks along Blanche 

Brook were not included in his study. 

The macrofloral assemblage described in this study (hereafter reterred to as the 

Blanche Brook Assemblage- BBA) was recovered from these same rocks that Murray 



and Howley first recorded in the late 1800's. In present lithostratigraphic terms, the 

fossiliferous beds represent the uppermost strata of the coal-bearing ··undivided Barachois 

Group" of Knight ( 1983 ), and constitute the youngest rocks within the Bay St. George 

Basin of southwestern Newfoundland. This basin is part ofthe northernmost onshore 

extent of a larger network of basins. collectively termed the Maritimes Basin (Fig. 1. 1 ). 

that extended over much of Atlantic Canada during the Upper Paleozoic. Like several 

other fossil localities within the Maritimes Basin, in particular the Sydney Basin of 

northern Nova Scotia (Fig. L 1 ), the excellent quality of preservation of specimens studied 

herein results from their preservation in essentially undefonned and thermally immature 

sedimentary rocks. 

Interestingly. the brief observations of Murray and Howley ( 1881 ), Howley ( 1917) 

and Dawson ( 1891) are the last published documentation of the BBA. Recent 

reinvestigations by the author revealed that, in addition to the aforementioned .. bluish 

clay" unit of Howley ( 1917), diverse adpression assemblages can be found in at least four 

other mudstone or siltstone horizons. Throughout this century the fossil locality has 

apparently been visited by a variety of geologists, including university students and local 

amateurs: it is. therefore, somewhat surprising that no further work has been carried out to 

determine the diversity, preservational modes, and biostratigraphic and paleoecological 

implications of this well preserved and potentially significant macrofloral assemblage. 
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Figure 1.1. Maritimes Basin of eastern Canada, showing distribution of major faults, 
basins and adjacent highlands, and study area. Note position of the Cape Breton­
Newfoundland Ridge and overall drainage direction. Data from Knight (1983), Sanford 
and Grant (1990), Gibling et al. (1992), Hyde (1995) and van de Pollet al. (1995). 
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1.1 Maritimes Basin (Regional Geological Setting) 

The Late Devonian to Early Permian Maritimes Basin (Williams 1974) of eastern 

Canada (Fig. 1. I) is a large (ca. 148 000 km\ composite successor basin (St. Peter 1993) 

that developed in a paleoequatorial position (Murthy 1985) on the southern margin of the 

paleocontinent of Laurentia (Fig. 1.2) (Scotese and McKerrow 1990). The basin 

constitutes a structurally complex network of northeast-trending grabens or intramontane 

basins separated by discrete ridges or topographic highs that often formed sediment 

sources (Fig. 1. 1) (Belt 1968a. 1969). These basins and intervening arches developed as 

the combined result of post-orogenic subsidence (Howie and Barss 197Sa., b) after the 

Salinic and Acadian orogenies. followed by dextral strike slip faulting associated with 

collision between Laurentia and the northern margin of Gondwana (Fig. 1.2 .~ Poole 1967: 

Webb 1969: Bradley 1982: Langdon and Hall 1994). It is apparent from considerable 

evidence [e.g .. basement structure contouring (Wade et al. 1975): geophysical surveys 

(Watts 1972: Haworth 1975: Langdon and Hall 1994): and lithostratigraphy (Howie and 

Barss 1975a. b)] that one such arch ofuplifted pre-Carboniferous basement rock extended 

across Cabot Strait between southwestern Newfoundland and northern Nova Scotia. This 

major topographic high, termed the Cape Breton-Newfoundland Ridge (Fig. 1.1; Watts 

1972 }, evidently separated the Maritimes Basin throughout much of its development into 

the Sydney Basin on the east and a larger depocentre, variously termed the "'Fundy Basin" 

(Belt 1965, 1968a. b), "'Fundy Epieugeosyncline" (Hacquebard 1972; Howie and Barss 

1975a. b) or ··st. Lawrence Basin" (Geldsetzer 1979), on the west. 

Paleobotanical or paleophytogeographical evidence indicates that the Maritimes 

.J 



Figure 1.2 Global reconstruction demonstrating the distribution ofUpper Carboniferous 
paleophytogeographical units (phytochoria). Paleokingdoms separated by solid lines, 
and comprise paleoareas separated by dashed lines. Eurameria Paleokingdom comprises 
Oregon, Cordillera, Europe and Cathaysia paleoareas; Angara Paleokingdom contains 
Kuznetsk and Kazakhstania paleoareas. Base map adapted from Scotese and McKerrow 
(1990); distribution ofphytochoria from Cleal and Thomas (1991). 
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Basin is part of the Europe Paleo area of the paleoequatorial Euramerian Paleokingdom 

(Fig. 1.2) (Chaloner and Meyen 1973: Cleal and Thomas 1991). More precisely, 

Pfefferkorn and Gillespie ( 1980) indicated that the basin was part of the ''Acadian Floral 

Province", which was separated from the "Interior-Appalachian Floral Province" of 

midcontinental North America by the northern Appalachian Mountains during the Upper 

Paleozoic . 

Studies verity that an enormous quantity (perhaps 12 to 16 km) of now partially 

exhumed strata accumulated in the Maritimes Basin between the Late Devonian and Early 

Permian (Sanford and Grant 1990; Ravenhurst et al. 1990; Ryan and Zentilli 1993; Grist et 

al. 1995). This implies that a thick blanket of sediment once covered much (ifnot all) of 

Atlantic Canada plus adjacent parts of U.S.A. and western and central Europe (Ryan et al. 

1991 a~ Ryan and Zentilli 1993 ). Regional scale paleo flow data suggest a predominantly 

northeast directed movement of sediment, and imply that the central and northern 

Appalachians of the eastern United States were a major drainage source during the Late 

Carboniferous and Early Permian (van de Poll 1973~ Gibling et al. 1992). After traversing 

the network of subbasins within the composite Maritimes Basin, drainage likely continued 

eastward (Gibling et al. 1992) to debouch into the Variscan Foreland Basin Complex of 

western Europe (Fig. 1. 1) (Cleal 1997). 

Subdivision of the thick sedimentary package of the Maritimes Basin was first 

attempted by Bell (1929, 1938, 1944), who recognized six distinct and regionally 

correlative stratigraphic units based primarily on rnacropaleontological evidence. Further 

work involving palynological and lithotacies distributions (e.g., Hacquebard 1972: Howie 
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and Barss 1975a. b) have resulted in important emendations~ of particular significance are 

the recent lithostratigraphic revisions proposed by Ryan et al. (1991 b) . Figure 1.3 

demonstrates correlation between lithostratigraphic units of mainland Canada and those of 

the Bay St. George Basin, and provides a brief summary of the lithologies and 

paleoenvironmental setting of deposition for each unit. 

As detined by van de Poll et al. ( 1995), and as applied in this manuscript, the 

"'Maritimes Basin" represents the onshore and offshore, and structural and erosional 

remnants of a once much more extensive cover sequence of Upper Paleozoic rocks in the 

Appalachian region of Atlantic Canada. 

1.2 Bay St. George Basin 

1.2.1 Geological and Tectonic Setting 

The Bay St. George Basin of southwestern Newfoundland (Fig. l.4A) forms part 

of the northernmost onshore extent ofthe Maritimes Basin. and constitutes a northeast­

trending, fault-bounded. pull apart basin that resulted from wrenching and dextral strike 

slip movements adjacent to the Long Range Fault (Bradley 1982~ Knight 1983: Hyde et al. 

1988) Elevated regions surrounding the basin, such as the Port au Port Ridge and 

Newfoundland Uplands (Fig. 1.1 ). contributed up to 10 000 m of predominantly 

terrigenous detritus to the depocentre between the Late Devonian(?) and Late 

Carboniferous (Baird and Cote 1964~ Knight 1983 ). and likely separated the Bay St. 

George Basin from the contemporaneous Deer Lake Basin to the northeast (Knight 1983: 

Hyde 1995). 
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and Bird 1994; Wightmann et al. 1994) 

• warm, humid, tropical paleoclimate with 
pronounced dry season (Chandler 1998) 

Namurian ? • return to fluvial or fluviolacustrine 

-e Canso Gp. 
81---------t---z 

Mabou Gp. sedimentation (Belt 1965, 1968b) 

Searston F~ • increasingly humid paleoclimate 

'7 r------7-------r--------------+---~~--~~--~--~--~----~ 
• episodic marine incursions into saline, 

Visean 
WindsorGp. 

Codroy Gp. 

r------?--------1 r-----------1 r--------------1 

Tournaisian 

Horton Gp. 

L. Devonian 

Windsor Gp. 

Horton Gp. 

deep lake (Loch Macumber of Schenk et al. 
1994a, b) instigated deposition of 
carbonates, evaporites and fluviodeltaic 
redbeds 

• warm, semi-arid or arid paleoclimate 

• initial basin-infilling comprising 
predominantly terrigenous sedimentary 
rocks (rare volcanic rocks) deposited in 
piedmont to fluviolacustrine 
paleoenvironment (Howie and Barss 
1975a, b) 

• warm, semi-humid to humid paleoclimate 

Figure 1.3. Generalized stratigraphy for Maritimes Basin of eastern Canada (including 
interpretation of paleoenvironmental setting during deposition of each lithostratigraphic 
unit) and correlation with strata of Bay St. George Basin, southwestern Newfoundland. 
Chart modified from Hyde (1995), with additional data from Gibling (1995) (other 
authors quoted within figure.) 
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Figure 1. 4. A. Geology of the Bay St. George Basin, southwestern Newfoundland, 
showing distribution of lithostratigraphic units, major structural features and uplifted 
basement rocks. After Knight (1983). B. Geology of study area- a small subbasin 
bounded by Table Mountain and Indian Head Promontory. Note that exposure is 
limited in northern parts of Bay St. George Basin due to thick cover of Quaternary glacial 
deposits. Geology represents compilation of Riley (1962), Knight (1983), Williams 
(1985) and Williams and Cawood (1989). 
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Geophysical data (e.g., Peavy 1985; Kilfoil 1988; Miller et al. 1990; Langdon and Hall 

1994) and the presence of isolated outcrops rimming Port au Port Peninsula [Fig. 1.4 A; 

see Williams et al. (1996) and references therein] indicate that much of St. George ' s Bay 

is underlain by Carboniferous strata. implying that the Bay St. George Basin was once 

considerably more extensive. Although the Bay St. George Basin probably was separated 

from Sydney Basin by the Cape Breton-Newfoundland Ridge (Fig. 1. 1) during much of its 

evolution, lithostratigraphic (Howie and Barss l975a.. b) and paleobotanical evidence 

(Bashforth 1997 ~ Bashforth et al . 1997) indicates that these contemporaneous basins were 

likely in sedimentary connection during the Late Westphalian. 

1.2.2 StratigraphJ' 

The Barachois Group records the final phase of basin infilling in the Bay St. 

George Basin, and overlies older strata of the Anguille Group (Late Devonian(?) to 

Tournaisian tluviolacustrine rocks) and Codroy Group (Visean saline ·'lacustrine" to 

fluviodeltaic redbeds) (Figs. 1.3, 1.4A; Knight 1983). The Barachois Group can be 

informally subdivided into three sedimentary successions that are spatially and (at least in 

part) temporally distinct (Figs. 1.3, 1.4A)- in ascending order they are the Searston 

Formation. .. undivided Barachois Group" of St. George's Coalfield, and "undivided 

Barachois Group'' at Blanche Brook (study area) . 

The Searston Formation (Bell 1948; Knight 1983) constitutes an approximately 

2 500 m thick section of meandering stream deposits that are likely equivalent to the 

Mabou Group ofNova Scotia(sensu Ryan et al. l99lb) (Fig. 1.3}. Bell (1948) inferred a 
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Namurian A age for the formation based on the presence of Lepidodendron 

volkmannia/mm Sternberg, Diplotmema adiantoides (Schlotheim) and Adiantites 

tenuifolius (Geppert); this age was corroborated by recovery of Namurian A miospore 

assemblages from the formation by Utting (1965, 1987, in Knight 1983). 

The St. George's Coalfield (Fig. l.4A) is a doubly plunging syncline that contains 

approximately 1 200 to 1 600 m (Hayes and Johnson 1938: Peavy 1985: Solomon and 

Hyde 1985) of coal-bearing, fluviolacustrine strata of the "undivided Barachois Group" of 

Knight ( 1983). According to Hyde ( 1995), the entire stratigraphic succession is a fining 

upward megasequence comprising a lower ''coarse" and an upper ·'fine" unit (Fong 1976: 

Solomon 1986). Bell (in Hayes and Johnson 1938) suggested that the rocks were 

Langsettian in age based on the presence of Sphenopteris hoeninghausi Brongniart . 

Recovery of Langsettian miospore assemblages from the same strata (Hacquebard et al. 

1961 : Solomon 1986: Hyde et al. 1991) supports this conclusion, and suggests correlation 

with the Lower Cumberland Group (Fig. 1.3) (sensu Ryan et al. 199lb). However, both 

macrotloral (Bell 1948. 1960) and palynological (Solomon 1986) evidence reveals that 

basal portions of the .. undivided Barachois Group'' may in fact be Namurian in age, thus 

fanning a chronostratigraphic continuum with the underlying Searston Formation 

(Solomon 1986 ). 

Based on maceral, geochemical and spore composition data from coal seams 

within St. George ' s Coalfield, Hyde et al. (1991) inferred that most ofthe peats in wet, 

forested tracts occupying lowlying interfluves subject to sediment influxes. 
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1.3 "Undivided Barachois Group" at Blanche Brook (Study Area) 

1. 3.1 Local Geological Setting 

The uppermost rocks ofK.night's (1983) "undivided Barachois Group", which 

constitute the study section, comprise an approximately 165 metre thick section of 

subhorizontal, gently warped and thermally immature fluvial sedimentary rocks exposed in 

the northernmost part ofthe Bay St. George Basin near the town of Stephenville. located 

on the north shore of St. George's Bay (Figs. 1.3. 1.48, 1.5). Despite the fact that much 

of the area is covered by a thick blanket of Quaternary glacial deposits (Brookes 1974; 

Grant 1 991 ). small. scattered outcrops of essentially undeformed, plant fossil-bearing 

strata are exposed on the banks and within the stream bed of Blanche Brook (Fig. 1.5). 

The area of outcropping extends from within Stephenville (UTM 83757875. Map Sheet 

12 B/10) to approximately 4700m (measured along stream bed) north of town (UTM 

83 1819). The rocks presumably accumulated in a small subbasin bounded by precursors 

of the Indian Head Promontory to the southeast and Table Mountain to the northwest 

(Fig. 1.4: Bashforth in Williams et al. 1996). The strata may onlap directly (with angular 

unconformity) on Precambrian or Lower Paleozoic rocks of the Humber 

Tectonostratigraphic Zone (Riley 1962; Williams 1985; Williams and Cawood 1989). 

Conversely, strata in some parts of the subbasin (e.g., near Cold Brook and upper reaches 

of Blanche Brook) may lie conformably(?) above a thin layer ofCodroy and/or Anguille 

Group sedimentary rocks (see limestone conglomerate of Riley 1962, p. 3 5). 
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Figure 1.5. Schematic illustration of Blanche Brook, showing distribution of outcrop localities, bedding attitudes, main sites 
containing macroflora described herein, and paleocurrent orientations measured from trough cross strata and tree petrifactions. 
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1.3.2 Previous Pa/eomologica/ and Paleoenvironmental Studies 

In addition to remarking on the well preserved "ferns" and prostrate tree 

petrifactions along Blanche Brook, Murray and Howley ( 1881) and Howley ( 1917) briefly 

documented the preservational mode of the large tree petrifactions, and noted the 

presence of Stignwria underclays beneath thin, uneconomic coal seams (or poorly 

developed coaly. carbonaceous horizons). As previously mentioned, Dawson ( !891) 

described numerous tree petrifactions and adpressed foliage specimens from undisclosed 

localities within the Barachois Group (Fig. 1.6). Unfortunately, although much ofhis 

material almost cenainly was collected from Blanche Brook, some specimens. such as 

~phenupteris hoeninghausi (Fig. 1.6. see also p. 11 ), presumably were collected from 

older strata of the St. George's Coalfield. Dawson ( 1891) concluded that petrifactions of 

both conifer and cordaitean affinity were present in his collection. and he described and 

figured several lycopsids (some specimens likely were not collected from Blanche Brook). 

ln addition. Dawson ( 1891) provided a list of sphenopsids. ferns and pteridosperrns that 

he identified in the collection (Fig. 1.6). 

Hacquebard et at. ( 1961) collected miospores from strata at Blanche Brook. and 

considered the assemblage equivalent to Bell's (1938) Linopteris ob/iqua Biozone of the 

middle Pictou Group (=Marien Group) in Sydney Coalfield. Bell (1938) considered the L. 

ob/iqua Biozone to be Bolsovian in age (prior to formal definition of the Westphalian D). 

but it has since been redefined as Westphalian Din age based on evidence from microflora 

(Hacquebard et al. 1961) and macroflora (Zodrow and McCandlish 1978). During a study 

of the Codroy Group on Pan au Port Peninsula, macrofloral specimens 
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Lycopsids: 

Sphenops1ds: 

Fems: 

Pteridosperms: 

Lepidodendron murrayanum sp. nov.; Lepidophy/lum tJiangulare: Lepidophyl/um lancealatum: 
lycopsid leaves; Stigmaria ficoides 

Calamites sucl<ovii (sic): Calamites cistii; Calamites cannaefcrmis(?)(sic); 
Annu/aria sphenophyHoides; Annu/aria /ongifolia(?) 

Pecopteris abbreviate: Pecopteris oreopteroides; P. arlJorescens (fertile); 
Sphenopteris (Cheilanthites) hoeninghausr• : Sphenopteris sp.: Psaronius sp. 

Neuropteris rarineMS; Neuropterls aurlcutata: Alethopteris /onchitica: Dictyopteris sp. 

Other Gymnosperms: Cordaites barassifolia; petrifactions identified as Dadoxylon materiarium (from Walchia) 
and Cordaioxyton sp. (from Cordaites) 

Figure 1.6. List ofmacroflora collected by A. Murray and J.P . Howley from Upper 
Carboniterous rocks in the Bay St. George Basin and submitted to Sir J .W. Dawson 
( 1891) for identitication. Many of the specimens likely were recovered from strata along 
Blanche Brook. although some(**) presumably were collected from older rocks. 

were collected from Blanche Brook by Dix ( 1982), who suggested the strata were 

Bolsovian (middle Pennsylvanian) in age (Forbes in Dix 1982, p. 122). More recently, a 

palynomorph assemblage collected by Hyde et al. ( 1991) corroborated this Bolsovian age. 

Solomon and Hyde ( 1985) briefly described two coal seams (localities BB-29 and 

BB-30 of present study. Fig. 1.5) from Blanche Brook. They concluded that intrinsic 

conditions were unfavorable for the generation of thick peats; bogs either were drowned 

when shallow lakes developed (rising water table), or were buried and choked off by 

crevasse splay deposition shortly after inception. The maceral, geochemical and 

palynomorph compositions of these same two coal seams were analyzed in detail by Hyde 

et al. ( 1991 ). These authors suggested that peats were dominated by herbaceous 

vegetation, and developed in a very wet, relatively unwooded fen type environment 

characterized by frequent incursions of flood water. It is important to note that this 
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paleoenvironmental reconstruction was based primarily on differing proportions of coal 

macerals within each coal seam (e.g., tissue preservation and gelification indices), which 

have been used by some workers to assess and interpret depositional environments (e.g .. 

Diessel 1982. 1986; Harvey and Dillon 1985; Kalkreuth et aL 1991 )_ Regardless. 

DiMichele and Phillips ( 1994) have strongly cautioned against using coal petrography and 

maceral ratio indices alone to deduce hydrologic conditions and parent vegetation of 

coals. 

Based on the sedimentology and spatial distribution of lithofacies in the 

fossiliferous section. Bashforth (in Williams et al . 1996) suggested the strata accumulated 

in a meandering stream depositional environment_ Preliminary identification of the 

adpression assemblage was given by Bashforth ( 1997) and Bashforth et aL ( 1997), who 

suggested the BBA was late Bolsovian or early Westphalian Din age based on 

paleoecological evidence and homotaxial biostratigraphic correlation with other localities 

within the Europe Paleoarea of the Euramerian Paleokingdom (Fig. 1.2)_ Based on 

homotaxial correlation of the BBA with macroflora of the Morien Group in the Sydney 

Basin and the Mabou Mines Section (Inverness Formation) in the Mabou Basin (Fig. l . l ), 

Bashforth ( 1997) and Bashforth et al . ( 1997) argued that a thin veneer of sediment was 

deposited over the Cape Breton-Newfoundland Ridge during the Late Westphalian_ 

/.3.3 Thermal !vfaturity 

Upper Carboniferous strata in the northern part of the Bay St. George Basin have 

very low thermal maturities based on vitrinite reflectance, clay mineral assemblages and 
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illite crystallinity measurements (Hyde et aL 1985. 1991 ). Similarly, the Codroy Group 

(Hyde et al. 1985: Utting 1987) and underlying Lower Paleozoic basement rocks (Nowlan 

and Barnes 1987: Williams et al. in press) on the Port au Port Peninsula also have low 

thermal maturities. 

Coal seams from along Blanche Brook have vitrinite reflectance measurements 

between 045 and 0.56% (mean Ro 111.1.'{: Hacquebard and Donaldson 1970: Hyde et al. 

1991 ). implying coal ranks of subbiturninous 8 to high volatile bituminous C based on the 

geochemical stages of coalification proposed by Teichmuller and Teichmuller ( 1982). 

These low vitrinite retlectance data indicate that the strata have only been heated to 

temperatures at or near the oil window ( Staplin 1982 ). Given the lack of deformation of 

the fossiliferous strata. it can be inferred that rocks of the study area have been buried only 

slightly since accumulation in the Bolsovian- this lack of burial metamorphism accounts 

for the excellent quality of preservation evident in macro floral specimens collected from 

Blanche Brook. 

1.4 Aims of Present Study 

Despite the admirable state of preservation and potential significance of the 

macrofloral assemblage from Blanche Brook. studies at the site (except those of the 

previous century) have concentrated on the lithostratigraphy of the strata; age 

determinations based on miospore assemblages; and rank. distribution and 

paleoenvironmental inferences from associated coal seams. Consequently, the present 

thesis offers the first comprehensive taxonomic description and biostratigraphic correlation 
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of both the ad pression and tree petrifaction assemblages, and provides an interpretation of 

the depositional environment and paleoecological conditions under which the flora once 

flourished. More specifically. the aims of this study are: 

• To document each taxon recovered, and where possible. to refer specimens to 

previously established genera or species. 

• To examine the mode and quality of preservation ofthe macroflora (especially the 

ad pression assemblage) in order to assess the potential for future cuticular 

investigations at the site. and to substantiate earlier claims of low thermal maturity in 

the area 

• To determine the age of the site through biostratigraphic correlation (i .e .. homota.xial 

comparison) of significant taxa with macrotlora from better established localities 

within the Maritimes Basin and Europe Paleoarea. and to compare the age with those 

previously determined using miospores. 

• To describe the sedimentology. stratigraphy. and lithofacies distribution of 

fossiliferous and associated sedimentary rocks in order to infer the depositional 

environment within which the macrot1ora lived. 

• To construct a working paleoenvironmental model for the Blanche Brook Assemblage, 

which involves documentation of the relative abundance of various taxa within each 

depositional setting, and homotaxial comparison with previously published 

interpretations of the paleoecological preferences of taxa represented at Blanche 

Brook. 
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Chapter 2 - Study Methods 

2.1 Fieldwork 

Macrofloral specimens described in the present study were collected from 

outcrops along Blanche Brook over a period of ca. 2.5 weeks during the summers of 

1994. 1996 and 1997 Concurrent with exploration for and recovery of plant fossils. the 

lithology. sedimentology, orientation and vertical distribution of fossiliferous and 

associated strata at 36 outcrops (Fig. 1.5) were measured and described in detail. 

Bedding attitudes were measured only from fine grained units with essentially parallel 

and originally horizontal bounding surfaces (i .e., those which accumulated by vertical 

accretion>; dip angles range between 04 and 25° (ave. 10°, n = 37). Paleocurrent 

orientations were measured parallel to the long a..xis of individual troughs within trough 

cross-stratitied sandstones and conglomerates. while down dip lineations (trend and 

plunge) were measured from numerous large tree petrifactions enclosed within these 

same coarse grained strata (Fig. 1.5). Computer generated rose diagrams were produced 

using the Thompson & Thompson Rose 1.0 software program. 

While in the tield, an attempt was made at lateral and vertical correlation of strata 

in adjacent outcrops in order to establish the vertical thickness of the entire stratigraphic 

succession. Unfortunately, the lack of continuous outcrop, sub horizontal attitude of the 

beds. and laterally heterogeneity of contemporaneous strata (i.e., sublithofacies. see 

below) strongly hampered such efforts at correlation. 
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2.2 Definition of Lithofacies, Sublithofacies, Blanche Brook Assemblage and 

Subassemblages 

As used in the present study, the concept of a "lithofacies" encompasses a distinct 

package of sedimentary rocks that can be distinguished by its lithology, sedimentology, 

and vertical and lateral relationship with other lithofacies. During the course of 

investigation. rocks comprising the stratigraphic succession at Blanche Brook were 

determined to belong to either a .. coarse (channel) lithofacies" or ·'fine (overbank} 

lithofacies·· . Ln order to better determine the paleoenvironmental setting within which the 

BBA flourished. these lithofacies were further retined and separated into distinct 

··sublithotacies .. . each of which constitutes a vertically and laterally restricted sequence of 

rocks deposited under specific environmental conditions (e.g., point bar. floodplain) . 

The vast majority of macro floral specimens described in this study were 

recovered from grey to greenish grey mudstones or siltstones from five outcrops along 

Blanche Brook <Fig. 1.5). In the present study, the unique macrofloral assemblage 

recovered from each of these important outcrops is herein referred to as a 

.. subassemblage'· In contrast, some localities (e.g., 88-29, 8B-34c) yielded only single 

specimens or very low diversity plant assemblages. Taken together. the Blanche Brook 

Assemblage (BBA) can be defined as the combination of these five macrofloral 

subassemb I ages. the tree petrifactions found in channel deposits, and any other 

macrofloral remains recovered during collection from localities along Blanche Brook. 
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2.3 Preparation and Analysis of Adpressions 

Each fossiliferous slab was appropriately catalogued and labeled. An example of 

the labeling system is: BB-96-30-177, which translates as "'slab 177 collected from 

Blanche Brook in 1996 from locality 30". Note that for the sake ofsimplicity, and 

because all specimens described in this study were collected from Blanche Brook, the 

same slab will hereafter be referred to as 30-177. 

All specimens on all slabs were examined with a Zeiss low magnification 

binocular retlected light microscope using a Volpi Intralux 5000 fiber optic light source. 

Many slabs and contained fossils were covered with and obscured by heavy limonite 

staining (rust) . which likely resulted from oxidation of pyrite nodules. It was discovered 

that much of this limonite could be removed by dousing affected parts of the slab with 

concentrated Schulze ' s Reagent (Appendix l) for up to 30 to 45 minutes. When part of 

an adpression was still embedded within the slab matrix. the specimen was degauged 

using stainless steel dental tools with picks of various shapes. Certain specimens. 

particularly those with well preserved venations, or adpressions preserved on a dark 

colored background (i .e., those which were difficult to photograph), were traced using a 

camera Iucida setup attached to the binocular microscope. The fine details of venation 

were much enhanced on certain decarbonized neuropteroid adpressions (i .e., impressions) 

by making latex peels of them with Lewiscraft rubbertex compound darkened with black, 

waterproot: fast drying India ink. These latex peels were far more informative than the 

original ad press ions. as they were easier to observe, trace and photograph. 
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Well preserved devolatilized adpressions of several taxa were prepared (in part by 

E.L Zodrow of University College of Cape Breton, Nova Scotia~ Appendix 1) to 

determine whether or not cuticular material was retained within the coalified 

phytolemmas. Fortunately, very well preserved cuticles were procured from foliage of 

several di tTerent pteridosperms. Details of epidermal cell impressions on prepared 

cuticles were examined both with a Zeiss Photomicroscope Ill, and with a Hitachi S570 

Scanning Electron Microscope (SEM) at an accelerating voltage of20 kV. 

2.4 Preparation and Analysis of Tree Petrifactions 

Several tree petrifaction samples were thin sectioned in the transverse plane (i.e .. 

perpendicular to long axis of tree) before examination and identification with a Zeiss 

Photomicroscope l II under cross-nicols and plane polarized light. Furthermore. a single 

puck-shaped hand sample was cut (slabbed in transverse plane) and polished in order to 

ascenain the process(es) and preservational modes ofthe petrifactions. Two procedures 

were used to identify the agent responsible for permineralization of the petrifactions: 

• two uncovered thin sections (i .e., without coverslips) were stained for carbonate 

composition using the Alizarin red S and potassium ferricyanide procedure 

(Appendix 2) recommended by Dickson ( 1965, 1966). Unfortunately, this method 

proved ineffectual for determination of the permineralizing mineral(s), although it is 

not certain why: 

• a tiny sample t < 0.5 g) was shaved from a petrifaction and prepared for analysis 

(Appendix 3) by X-ray diffraction (XRD) at l OOmA and 40 k, using CuKa. radiation, 

and a scan from 5° to 70°26. 
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2.5 Preparation and Analysis of Spores 

Megaspores. which were found in abundance as small, flattened circular bodies 

adhering to fossiliferous slabs from locality BB-32, were easily but carefully detached 

from the slabs with stainless steel dental picks and added to a vial filled with distilled 

water ..:orHaining thrt!t! drops of 1% phenol. Megaspores were briefly added to 

hydrotluoric acid ( HF) to remove any clinging matrix material before treatment with 

concentrated Schulze· s Reagent to macerate the specimens until clean of coalified 

material. Samples were initially examined with a Zeiss binocular reflected light 

microscope. and were subsequently analyzed and secondary electron images attained 

using a Hitachi S5 70 SEM. Megaspores were tentatively identified by the author before 

sending specimens to J.-P . Laveine at Universite des Sciences et Technologies de Lille. 

Lille, France tor contirmation of identification. 

Detailed examination of slab 30-17 revealed that well preserved sporangia 

(comprising tour sari arranged in an Asterotheca-type fructification) were preserved on 

the abaxial pinnule surfaces of a fertile specimen tentatively identified as Lobatopteris sp. 

A. Three sori were carefully teased from the pinnules before being macerated in a glass 

petri dish with concentrated Schulze's Reagent for ca. 1.5 to 2 hours. Although 

maceration removed much of the coalified matter from the sari, segregation and isolation 

of the comained miospores was accomplished only by mechanical breaking up of the 

fructification with a dental pick. Disintegrated organic remains were pi petted off and 

added to a small test tube filled with distilled water. The test tube was added to a 

Damon/IEC clinical centrifuge and spun on high in four intervals of 2 minutes each; the 
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test tube was decanted and filled with distilled water between each interval in order to 

rinse the sample of Schulze's Reagent. A drop of 1% polyvinyl, a water soluble fixer, 

was smeared "vith a toothpick onto a glass coverslip. Then the palynomorph/water 

mixture was pipetted from the test tube and smeared into the polyvinyl before heating the 

coverslip at ca. -+8 oc in a Fisher slide warmer to evaporate all remaining water (ca. 15 to 

20 minutes ) Cnder a fume hood, a single drop of elvacite glue was added to a glass 

microscope slide before the dried coverslip was carefully laid down: the elvacite glue was 

allowed to dry and harden overnight in a fume hood. 

Prepared slides were examined and palynomorphs investigated at high 

magnitication "vith a Zeiss Photomicroscope III. Although preliminary descriptions and 

tentative identitications were attempted, slides were afterward sent to J.-P. Laveine in 

France, an ex pen in examination of pecopterid miospores isolated from sporangia (e.g., 

Laveine !969. 1970 ). for more confident taxonomic assignment. 

2.6 Photography 

The vast majority of macrofossils were photographed dry under high intensity 

yellow illumination using either an Olympus OM2 camera fitted with a macro lens. It 

was found necessary to immerse some fossils under a solution of water and 95% ethanol 

before photographing- this helped to enhance tine morphological features such as 

venation or hairs without the problem of reflection. Very small specimens and cuticles 

prepared on slides were photographed with a Wild Photomicroscope M400 using low 

angle fiber optic lights. High magnification photographs of cuticles, thin sections oftree 



petrifactions. and spores isolated from Lobatopteris sp. A fructifications were taken with 

a Zeiss Photomicroscope III. 

All photographs of both macro- and microfossils were taken using Kodak Trv£X 

100 black and white print film; an exception were SEM images produced using Polaroid 

665 Professional Positive/Negative Instant Pack film . Developing and printing was done 

by the author in the darkroom facilities of the Department of Earth Sciences at Memorial 

University of Newfoundland, and involved the use of a Durst Laborator 1200 Enlarger. 

Kodak TMX Developer. Kodak Rapid Fixer. and Kodak and Agfa glossy variable 

contrast black and white photopaper. 
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Chapter 3- Modes of Preservation 

Bateman ( 1991) introduced a novel scheme for classifying plant fossils based on 

their mode of preservation which combines aspects of progressive compositional change 

(organic components remaining) versus change in shape (degree of compression). This 

classitication. which is used in the present thesis and summarized in Figure 3. 1, is 

especially useful because it eliminates confusion between the process and product of 

fossilization (Bateman 1991 ). 

3.1 Adpressions 

The vast majority of ad pressed macrotlora examined. particularly those recovered 

from greyish mudstones and siltstones of the fine (overbank) lithofacies, can be classified 

as devolatilized or decarbonized adpressions (i.e .. compressions or impressions. 

respectively ~ Fig 3. I) Some fossils. such as axes referable to Stigmaria spp .. Calamites 

spp. or .\-~rdoxylon spp . are (at least partially) preserved as decarbonized petrifactions 

(Fig. 3.1) .-\t some localities (especially BB-14 and BB-25). adpressions are distinctly 

yellowish brown and plastic. and are best referred to as "naturally macerated" volatilized 

adpressions 1 Fig 3. I) . These tossils are frequently (but not invariably) associated with 

either disseminated pyrite or a thin coating of very fine grained pyrite. Such an 

association seems to indicate that oxidation and devolatilization of organic components 

during the initial stages of coalification were largely inhibited because fossilization took 

place under markedly anoxic and reducing diagenetic conditions. Preferential 
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D pith parenchyma (left), intracellular spaces (right) 
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D enclosing sedimentary matrix 
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Figure 3.1. Classification of preservational modes of plant fossils based on comparison 
of shape change and chemical composition. Modified from Bateman (1991), 
incorporating classification of Schopf (1975) and data from Barthel (1962). 
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pyritization of cenain pans of devolatilized adpressions, particularly vascular tissues of 

axes or laminae. is also quite common. Moreover, partial pyritization of a single 

neuropterid pinnule on slab 30-190 has resulted in the exceptional preservation of fine 

epidermal cellular details of the lamina (Fig. 3.2.1). 

Not surprisingly. fossils entombed in mudstones are considerably better preserved 

than those recovered from siltstones or fine grained sandstones. This differential 

preservation emphasizes the necessity for potential fossils to be buried rapidly and under 

anoxic conditions so that oxidation and bacterial or fungal biodegradation of plant tissues 

is inhibited or m1nimized (Schopf 1975: Bateman 1991 ). Oxidation (and eventual 

destruction) of potential plant fossils is accelerated in coarser grained sediments because 

of a corresponding increase in exposure to oxidizing mediums (Retallack 1990). 

Kryshtotovich < 19-i-i) coined the term ·'phytoleim" to describe the black. brittle. coalified 

and compressed tissue that typifies devolatilized adpressions. Phytolemmas are typically 

internally :lmorphl.)US. although when entombing sediments are thermally immature and 

less than 72 °o of volatiles have been driven off(Barthel 1962). a resistant cuticular 

envelope persists <Fig. 3 1 ). A fossil cuticle constitutes a thin but comparatively very 

durable mixture of the biopolymer cutan plus waxes that enveloped the plant. and hence 

represents a taxonomically meaningful replica of the external cellular morphology of the 

epidermis ( Banhel 1962: Bateman 1991: Tegelaar et al. 1991 ). It is worthwhile noting at 

this point that the presence of cuticular material, which comprises volatiles, within 

.. devolatilized·· adpressions calls into question the validity of the terminology used in 

Bateman· s ( I 99 I ) plant tossi I classification (Fig. 3. 1) - it is evident that a more 
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(previous page) Figure 3 .2. ( 1.) Excellent preservation of fine epidermal cellular details 
by partial pyritization of Neuropteris semireticulata pinnu1e (30-190) (x 22). (2 .) 
Transmitted light microphotograph of adaxial cuticle of Cordaites sp. leaf demonstrating 
details of epidermal cell morphologies (x 270); stomatal rows (sr) and stomata (s). (3.) 
SEM image of abaxial cuticle of Cordaites sp. leaf(30-228) (x 300); stomata (arrow). 
(4.) Adaxial cuticle (30-228) (x 350); stomata (arrow) and spongy sclerotic tissue (st). 

appropriate term is necessary for those "devolatilized" adpressions that have actually 

retained volatiles in the term of cuticles. 

Recent studies of cuticles, particularly of medullosan pteridosperms but including 

Cordaites spp. and sphenophylls, have been monumental in establishing the taxonomic 

position and paleoecology of numerous taxa (e.g., Barthel 1962, 1997: Reihman and 

Schabilion 1978: Mickle and Rothwell 1982: Schabilion and Reihman 1985: Cleal and 

Zodrow 1989: Cleal et al. 1990; Cleal and Shute 1991, 1992; Kerp and Banhel 1993: 

Zodrow and Cleal 1993: Simunek, in press). Given that strata at Blanche Brook 

evidently have very low thermal maturities, reconnaissance attempts were made to 

determine the quality of preservation of cuticles that presumably exist within coalified 

phytolemmas (Appendix l)- samples were taken from devolatilized adpressions of 

previously identified pteridosperm, cordaitean and pecopterid foliage collected from 

localities BB-14, BB-25 and BB-30. Similarly, yellowish brown ··naturally macerated" 

volatilized neuropteroid adpressions from locality BB-14 were prepared by the same 

method to either validate or negate the postulation that these fossils simply constitute 

cuticular material that has experienced limited coalification. It must be noted, though, 

that descriptions and taxonomic identification of recovered cuticles based on epidermal 
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Figure 3.3. Neuropteris semireticulata pinnules that have been macerated in Schulze ' s 
Reagent, but not yet treated with ammonium hydroxide (see Appendix 1) (x 8) . 

Figure 3 .4. Sandstone infilled pith (p) in tree petrifaction from locality BB-23 . 
Notebook ca. 17.8 em long. 
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characteristics was not intended, as such an investigation is well beyond the scope of the 

present study. 

The results of this test have been very encouraging. Very well preserved cuticles 

showing considerable detail of external, epidermal morphologies were procured from 

devolatilized adpressions of Neuropteris semireticu/ata Josten (Fig. 3.3; Pl. 23 . Fig. 9) 

and Cordaites spp. (Figs. 3.2.2. 3.2.3 & 3.2.4; Pl. 25, Fig. 6) from locality BB-30 . 

Somewhat less well preserved cuticles were recovered from devolatilized adpressions of 

Laveineupteris rarinervis (Sunbury) Cleal et al. (Pl. 19, Fig. 4) and ··naturally macerated" 

volatilized adpressions of cf Laveineupreris tenuifo/ia (Sternberg) Cleal et al. (Pl. 20. 

Fig. 4) . Conversely. and similarly to other localities within the Euramerian 

Paleokingdom, pecopterids yielded only poorly preserved, fragmentary and unidentifiable 

cuticle fragments [see Zodrow ( L993) for fuller discussion]. This differential 

preservation may in fact be related to the original (i.e., prior to fossilization) chemical 

composition ofthe cuticles. For example. Tegelaar et al. (1991) suggested that cuticles 

with a signi ticant component of the biopolymer cutan in their original cuticular matrix 

will endure diagenetic processes better than those predominated by the biopolyester cutin. 

In most cases. pteridosperm and cordaitean leaf cuticles are well enough 

preserved that both adaxial (upper) and abaxial (lower) surfaces can be teased apart. 

Examination of these cuticles by both SEM and transmitted light microscopy revealed 

that considerable detail of epidermal cells, including stomatal apparatuses, and sclerotic 

tissues is preserved on both upper and lower cuticle surfaces (Figs. 3.2.3 & 3.2.4). 
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The excellent quality of preservation of cuticles from adpressed pteridosperm and 

cordaitean foliage substantiates earlier conclusions, based on vitrinite reflectance 

(Hacquebard and Donaldson 1970; Hyde et al. 1991 ). clay mineral assemblages and illite 

crystallinity (Hyde et al . 1985), that strata of the "undivided Barachois Group" in the 

northern part of the Bay St. George Basin are thermally immature (i .e., at least 28% of 

volatile components are retained in phytolemmas). Preliminary analyses of cuticles by 

SEM and transmitted light microscopy certainly indicate that further cuticular studies at 

Blanche Brook are warranted. As a case in point, the opportunity for further 

investigation was seized by E.L. Zodrow of University College of Cape Breton. Nova 

Scotia, who has included cordaitean leaf cuticles recovered from the BBA in ongoing 

studies (with the author) involving cuticle-based taxonomy and chemotaxonomy of 

Cordaites spp . leaves from various localities within the Maritimes Basin. 

3.2 Tree Petrifactions 

Large tree petrifactions contained within conglomerates and sandstones of the coarse 

(channel) lithofacies are preserved as light to dark (and sometimes slightly purplish) 

brown, volatilized petrifactions that generally are partially compressed but may be 

essentially unflattened (Figs. 3 .4, 6.1 0). The three dimensionality indicates that mineral 

enriched fluids infilled intracellular spaces within the waterlogged trees very soon [only a 

few months according to Schopf ( 1975, p. 34)] after rapid burial under anoxic conditions. 

When the central pith is preserved, it typically is infilled with sandstone or pebbly 

sandstone (Fig. 3.4), or less commonly, with irregularly shaped, nodular pyrite (Fig. 

3.5. 1). XRD analysis, combined with examination ofthin sections under cross-nicols, 
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(previous page) Figure 3.5. (1.) Slabbed and polished tree petrifaction (Dadoxylon sp.) cut 
in transverse plane showing results of plastic-type deformation during compression of 
secondary xylem (wood). Also note large pyrite nodule infilling pith (pn), fracture within 
nodule infilled by moderately coarse grained calcite (c), and smaller fractures (f) infilled by 
very fine grained calcite (x 1 ). (2.) Progressive loss of intracellular space in tracheids (t) 
resulting from compression, bending and eventual breakage of cell walls (23-2) (x 125). 
(3.) Very fine grained pyrite within wood (23-1), showing that some subhedral to euhedral 
grains evidently grew within intracellular spaces prior to enclosure by later stage calcite 
permineralization (arrows) (x 125). (4.) Complete collapse of cell walls oftracheids due to 
intense compression. Brittle deformation resulted in fractures in wood infilled with coaly 
matter (23-1) (x 125). 

20000 -

Specimen BB-97-23-2 (Dadoxylon sp.) 
15000 -

Analysis run at 100 mA, 40 kV 
Start 5 2-theta; stop 70 2-theta 

Calcite standard in blue 

10000 -

5000 -

i j 1\. ll JJ.... l ... . . 0 
20 30 50 80 

2-theta 

Figure 3.6. X-ray diffraction spectrum from sample of tree petrifaction (Dadoxylon sp.), 
which is entirely compatible with calcite standard. This demonstrates that fine cellular 
details have been pervasively permineralized by calcite - the lack of backscatter indicates 
that little organic matter has been retained. 
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revealed that calcite is the predominant permineralizing agent responsible for 

fossilization of these tree petrifactions (Fig. 3.6). The lack ofbackscatter on the XRD 

plot suggests that very little amorphous, organic volatiles are present in the sample. 

However, transmitted light microscopy clearly indicates that at least some brown. organic 

material has been retained within cell walls, which justifies calling these fossils 

volatilized petrifactions (sensu Bateman 1991; Fig. 3. l ). 

Analysis of four thin sections from three petrifactions and a polished hand sample 

ofpycnoxylic wood (secondary xylem referable to Dadoxylon sp. and very likely of 

cordaitean atlinity, see p. 127 -129) indicates that fossilization probably occurred in at 

least tive stages. Although such ·'degrees of fossilization" are not discrete. and may 

actually be in part contemporaneous, an attempt has been made to arrange the stages in 

chronological order: 

l. Very soon after burial, waterlogged trees were differentially compressed and 

deformed somewhat plastically, with the consequent loss of intracellular space 

varying considerably (0 to 100%) even within a single thin section. With increasing 

compaction, cell walls oftracheids (initially circular or equidimensional in cross 

section; Fig. 3.5.2) were first distorted by bending and then eventually broke before 

completely collapsing onto adjacent tracheids (Fig. 3. 5.4 ). 

2. Pyrite evidently crystallized very quickly under anoxic conditions in irregularly 

shaped blotches or as nodules (generally on mm but occasionally on em scale) that 

either completely replaced patches of wood (Fig. 3.5.1), or infilled intracellular 

spaces without disrupting cell walls (see Matten 1973). Extremely fine pyrite grains, 
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some of which are euhedral to subhedral, are also disseminated throughout the wood 

(Fig. 3.5.3). 

3. Light to medium brown cell walls of both tracheids and vascular ray cells (Fig. 3.5.2) 

were permineralized and embedded in extremely fine grained (cryptocrystalline?) 

calcite. 

4. Intracellular spaces of tracheids and vascular ray cells(?) were pervasively (>99%) 

infilled by colorless to yellowish. very fine grained calcite. The timing of pyrite 

versus calcite crystallization can be contidently established because pyrite nodules 

may be crosscut and fractured by medium to coarse grained calcite cement (Fig. 

3. 5. 1 ). and because euhedral pyrite grains within intracellular spaces are completely 

enclosed by later stage calcite permineralization (Fig. 3. 5. 3) . 

5. Fractures that crosscut permineralized wood likely resulted from continued 

compression and brittle deformation, and either contain black, blocky coaly material 

(Fig. 3.5.4) or were infilled by fine grained calcite (Fig. 3.5.1) or pyrite. 
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Chapter 4 - Descriptive Taxonomy 

4.1 A Note on Synonymy Lists 

The synonymy lists preceding systematic descriptions of many taxa in this chapter 

represent a list of illustrations (either line drawings, artistic renditions or photographs) of 

specimens from other localities. in whatever literature was available to the author. which 

are morphologically identical to (or at least compare very closely with) material from the 

Blanche Brook Assemblage. Comparisons that are more tentative or doubtful are marked 

with an asterisk ( •) after the publication date. 

4.2 Division LYCOPHYTA 

Order LEPIDODENDRALES 

Form-genus Cyperites Lindley and Hutton, 1833 

cf. Cyperites bicarinatus Lindley and Hutton, 1833 

Pl. 1, Figs. 1 to 6 

1944 Lepidophyllum sp .. BelL pp. 96-97; pl. 59, fig. 2. 

1983 C)perites bicarinatus, Rex, pp. 81-82; pl. 4. figs . l. 2. 

MATERIAL AND OCCURRENCE - Abundant isolated leaf fragments from BB-30 and 

BB-32 preserved as (occasionally partially pyritized) devolatilized adpressions. 

DESCRIPTION - Leaves linear. tapering slightly distally, up to 17 em long (bases nor 

apices preserved), 1.4 to 9.0 mm wide, abaxial surface carinate. adaxial surface with 

median furrow, lateral margins entire; median furrow (Pl. l , Figs. 5, 6) 0.4 to 0.6 mm 
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wide, bordered laterally by rounded, longitudinal ridges or grooves; carinae (Pl. 1, Figs. 2 

to 4) prominent, longitudinally striated, trapezoidal and truncate to slightly rounded, 0.2 

to 0.5 mm wide, carina:leafwidth ratio 0.09 to 0.27 (ave. 0.16, n=15). 

REMARKS- Although vertical sections could not be made to determine whether leaves 

have the characteristic "butterfly" shape (in transverse section) that Rex ( 1983) maintains 

are diagnostic of c:vperites sp., the exclusively isolated linear lycopsid leaves otherwise 

conform to her emended diagnosis. The entire lateral margins on all specimens of the 

BBA strongly suggests reference to C. bicarinatus, rathl!r than to C. ciliatus, which has 

ciliated margins (Crookall 1966). 

Arborescent lycopsid debris at BB-32 is entirely of sigillarian origin, which 

suggests that markedly (and consistently) broader specimens of cf Cyperite.•; bicarinallls 

from that locality (Pl. L Figs 5, 6) represent leaves of Sigillaria; narrow leaves from BB-

30 (Pl. 1, Figs. 1 to 4) are associated only with "Lepidodendron" sp. cf ·•[." hretonense. 

Lepidodendron Sternberg, 1820 

"'·Lepidodendron" sp. cf. ~'L" bretonense Bell., 1962 

Fig. 4.1.1 (p. 42 ); Pl. 2. Figs. 1 to 9 

193 8 Lepidodendron dichotomum var. bretonensis, Bell, pp. 92-93; pl. 95, figs . 5-9; pl. 

96, fig. 1; pl. 97, fig. 4. 

1940* Lepidodendron dichotomum, Bell, p. 122; pl. 7, fig .4. 

1944 Lepidodendron dichotomum var. bretonensis, Bell, p. 89; pl. 45, fig . 3. 

1962 Lepidodendron bretonense, Bell, pp. 53-54; pl. 47, figs. 5, 6; pl. 48, figs. 4, 6. 
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1966 Lepidodendron hretonense, Bell~ pl. 21, fig. 5. 

1980 Lepidodendron hretonense, Zodrow and McCandlish, p.80; pl. 116, fig. 1; pl. L 18, 

figs. 1 ?, 2. 

1985* Lepidodendron hretonense, Wnuk, pp . 169-173; pl. 2, figs . 7, 8. 

MATERIAL A ... T\ffi OCCURRENCE- Ten thin axial fragments from BB-30 preserved as 

devolatilized and decarbonized adpressions. 

DESCRIPTION - A. xes up to 15.5 em long and 3. 1 em wide, straight to gently curved. 

distal portions may dichotomize (Pl. 2, Fig. 5); leaf cushions asymmetrical, 5. 1 to 10.2 

mm long, 2.3 to 3.8 wide, L:W ratio 1.44 to 3.45, outlines variable depending on maturity 

of stem; immature cushions (Pl. 2, Figs. 3, 4, 6, 9) contiguous, crowded, quadrilateral, 

rhomboidal or napiform (i .e .. L:W ratio ca. 1 ), lateral margins obtusely rounded to 

curved. upper angles acutely or obtusely pointed (rarely rounded), lower angles acutely 

pointed. slightly curved to adjoin underlying cushion; mature cushions (Pl. 2, Figs. 7. 8) 

elongate, fusiform (i .e .. increasing L:W ratio), lateral margins gently curved, upper and 

lower angles more acute and oppositely curved, separated by 0.4 to 1.2 mm wide, 

wrinkled or longitudinally striated interareas (Pl. 2, Fig. 7); leaf scars nearly 

equidimensional, situated in upper half of cushion (occasionally closer to one side), 1.4 to 

2.2 mm long, 1.6 to 2.4 mm wide, L:W ratio 0.70 to 1.36 (ave. 0.96, n=L6), upper and 

lower angles obtusely rounded, lateral angles narrowly rounded~ cicatricules (Fig. 4.1.1 ; 

Pl. 2, Fig. 9) occupy lower half ofleaf scar, with centrally located, elliptical vascular 

trace (ca. 0.4 mm long, 0.3 mm wide) either in line with or slightly lower than laterally 
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located, circular foliar parichnos traces (ca. 0.3 nun diameter)~ upper corner of upper field 

occupied by flat, triangular depression (Pl. 2, Fig. 4~ Fig. 4.1. 1 ), remainder of upper field 

elevated, with upper side of leaf scar more inflated than lower resulting in leaf scar that is 

inclined somewhat downward (Pl. 2, Fig. 4 )~ lower field usually smooth but sometimes 

with faint keel (Pl. 2, Fig. 8) (especially in more mature cushions). 

REMARKS- Most specimens in the BBA represent immature, thin axes. and thus most 

closely resemble immature stems or determinate branches described by Bell ( l938, p. 92-

93) and Wnuk ( 1985); more mature stem fragments, characterized by narrow striated 

interareas, are not common and are poorly preserved. 

Despite the quality of preservation, none of the leaf cushions examined exhibited 

a ligule pit above the leaf scar or infrafoliar parichnos traces below the leaf scar. The 

absence of infrafoliar parichnos excludes the stem fragments from true Lepidodendron 

(sensu DiMichele l983, 1985), and rather they conform fully to the diagnosis of the 

genus Diaphorodendrun introduced by DiMichele ( 1985) for a distinct group of 

arborescent lycopsids preserved as petrifactions. No formal name has yet been 

introduced for equivalent fossils preserved as adpressions, and following the lead of 

DiMichele and Phillips ( 1994, p. 59), the material described herein is referred to 

·'Lepidodendron'' bretonense . According to these authors, "L." bretonense likely 

represents the adpression equivalent of the petrifaction Diaphorodendron scieroticum. lt 

should be noted that in the Diaphorodendraceae the ligule aperture opens behind the leaf 

scar and is partially covered by a plication (DiMichele 1981 ), which explains the 

apparent absence of ligule pits in material from the BBA . 
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1 2 

Figure 4. 1. Schematic line drawings of lycopsid leaf attachment structures. ( 1.) 
Immature leaf cushions of"Lepidodendron" sp. cf "L." bretonense with flat, triangular 
shaped depression occupying upper comer of upper field (arrow) and faint keel in lower 
field~ central vascular cicatrix in lower half of leaf scars flanked by foliar parichnos 
cicatrices; BB-94-30-6, x5. (2.) Ovate leaf scars of Sigillaria sp. with inflated central 
vascular cicatrix flanked by lunate, foliar parichnos cicatrices; BB-96-32-16, x2. 

Bell ( 1938, p. 93; 1944, p. 89; Bell 1962, p. 55) observed in the Maritimes Basin 

the frequent association of" L." bretonense with the sporophyll Lepidostrobophyllum 

triangulare ( =? Lepidostrobus mintoensis of Bell 1962) , and considered that the cone-

scales and axes likely belonged to the same plant. The fact that L. triangulare makes up 

pan of the BBA supports reference of axial fragments to ••L." bretonense, and 

corroborates Bell's earlier assumptions regarding whole-plant affinities. Additionally, 

Lepidostrobophyllum spp. sporophylls are thought to have been derived from the 

desegregation of the cone Achlamydocarpon varius. (Liesman and Phillips 1979; Phillips 

1979; Stewart and Rothwell 1993 ), which occupied lateral branches that arose near the 

tips of vegetative branches of Diaphorodendron spp. (DiMichele 1981, 1983, 1985). 
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This provides further support for the affinity of"L." bretonense (=Diaphorodendron 

sc/eroticum) and L. triangulare. 

Form-genus Lepidostrobophyllum (Hirmer) Allen, 1966 

Lepidostrobophyllum alatum Boulter, 1968 

Pl. 1, Figs. 7 to 12, 14 

1938* Lepidostroboph_vllum lanceolatum var. constrictum, Bell, pp. 97-98; pl. 98, figs. 

7, 10. ll('J) . 

1968 Lepidostrobophyllum alarum, Boulter. pp. 448-450; text-figs. l, 2 (p. 446); pl. 83, 

tigs. l-4: pl. 84. tigs. l-5 . 

MATERIAL AND OCCURRENCE - Abundant isolated sporophylls from BB-30 

preserved as (occasionally partially pyritized) devolatilized and decarbonized 

adpressions: one devolatilized specimen represents cone fragment with attached 

sporophylls (Pl. l, Fig. 8). 

DESCRIPTION - Sporophyll laminae lanceolate, subovate or elongate-triangular, l 0.3 to 

30.5 mm long (ave. 23 .7 mm, n=34), 5.1 to 9.7 mm wide (ave. 7.4 mm, IF36). widest at 

contact with pediceL lateral margins entire, straight to slightly convex, either gradually 

approaching each other or parallel sided to approximately halfway up blade before 

converging to acuminate point, infrequently shallowly constricted about l/4 distance up 

lamina (Pl. l, Figs. 9, 12 ); lateral angles acute, rounded and flush with pedicel, but 

occasionally hastate and project outwards: midvein (rib on adaxial surface, furrow on 

abaxial) extends entire length ofblade, may have faint longitudinal striations, ca. 0.2 to 
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0.9 mm wide (ave. 0.6 mm, lr-19) at proximal edge, narrowing distally; pedicels 

subovate to subtriangular or cuneate with convex lateral margins, 5.4 to 9. 0 mm long 

(ave. 7.7 mm, n=27), 3.6 to 8.3 mm wide (ave. 6.7 mm, ~r-26), widest at contact with 

blade, narrowing proximally; abaxial surface with prominent carina, 0.1 to 0.8 mm wide 

at proximal end, expanding distally; edges of pedicel alate, alations hair-like, ca. 0.8 to 

1.4 mm long. 

REMARKS- The majority of isolated sporophylls in the BBA can be referred to 

Lepidostrobuphy//um aiatum based on the diagnostic alate rim (Pl. 1, Fig. 1 1 ) around the 

pedicel for which it is named (Boulter 1968, pl. 84, fig. 4 ), and in part on overall 

sporophyll morphology (Boulter 1968; Cleal and Thomas 1994). Specimens from 

Blanche Brook bear a striking resemblance to the reconstruction by Phillips ( 1979. fig. 

1. D, p. 245) of a megasporangium-bearing sporophyll from the monosporangiate cone 

Achiamyduc:arpon varius, which was borne by Diaphorodendron spp. trees (DiMichele 

1983, 1985). According to Leisman and Phillips ( 1979), sporophylls from A. varius had 

alate pedicels and a very prominent heel on the abaxial side of the pedicel/lamina contact, 

which conforms fully with the present material. 

Blades of L. aiatum are considerably larger and longer than those of L. 

trianguiare, the other sporophyll recovered from Blanche Brook. Additionally, pedicels 

of the former generally are subovate, while those of L. triangulare are smaller, distinctly 

cuneate with straight lateral margins, and lack alate rims. 



Lepidostrobophyllum triangulare (Zeiller) Bell, 1938 

Pl. l, figs. 10, 13, 15, 16 

1938 Lepidostrobophy/lum triangulare, Bell. pp. 95-96; pl. 97, figs . 5, 6. 

1966 Lepidostrobophyl/um triangulare , Bell, pl. 3 5, fig. l. 

1966 * Lepidostrohophyllum mintoensis, Bell, pl. 19, fig . 3 _ 

1966 Lepidostrohus triangularis, Crookall, pp. 511-512; text-fig. l45f (p. 497); pl. 102. 

fig . II . 

MATERIAL AND OCCURRENCE - Moderately abundant isolated sporophylls from 

BB-30 and BB-32 preserved as devolatilized and decarbonized adpressions ; one 

specimen represents cone fragment with attached sporophylls. 

DESCRIPTION- Cone axis ca. ll.O mm in diameter. bearing overlapping cone scales; 

sporophylllaminae triangular or cuneate, somewhat hastate, 8.4 to 11 .8 mm long (ave. 

10.0 mm, n=l4), 5.2 to 7.4 mm wide at base (ave. 6.6 mm, IF14); lateral margins 

essentially straight, diverging rapidly to acute apex; lateral angles acute or acutely 

rounded, project beyond blade/pedicel contact, may be turned inward to point proximally; 

midvein not prominent, ca. 0.3 to 0.6 mm wide at base, narrowing distally; pedicels 

cuneate, straight lateral margins, 2.2 to 7.8 mm long (ave. 5.5 mm, n=l2), 1.8 to 5.1 mm 

wide (ave. 3.1 mm. IF12), widest at contact with blade, narrowing proximally; abaxial 

surface with carina ca. 0. 1 mm wide at proximal end, expanding distally to 0.6 mm near 

contact with blade. 
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REMARKS- The cone fragment (Pl. 1. Fig. 13) is tentatively referred to L. triangulare 

based primarily on size and morphology of attached sporophyll blades. A sporophyll 

figured as Lepidostrobophyllum mintoensis by Bell ( 1966) compares closely with L. 

triangulare ( conspecitic?). although Bell ( 1962) noted that L. mintoensis had narrower 

and shorter pedicels and lacked projecting lateral angles. Boulter ( 1968) noted 

similarities between L. triangulare and small adpressions of L. alatum (see pl. 84. fig. 5 ). 

but concluded they were not synonymous based on differences of the pedicel. 

Two specimens (30-18 and 32-11) have blades with distinctly convex lateral 

margins and more acutely pointed apices than most specimens of L rriangulare . They 

may compare more closely with specimens of Lepidostrobophyllumjennyi (see Bell 

193 8. pl. 98, tigs . 2. 3: Lepidustrobus alllhemis of Crookall 1966, p. 508), or 

Lepidostrohusguudei {Crookall1966, text-figs. 1451, m; pl. 101, fig. 12). However. Bell 

( 1940) noted that L. triangulare and L. jennyi compare closely and may in fact be 

conspecific. 

Bell ( 1962) considered that L. mintoensis (=L. triangulare ::;ensu Bell 1938. p. 96) 

sporophylls may have been derived from .. Lepidodendron" bretonense trees, which 

probably are the ad pression equivalents of Diaphorodendron scleroticum petrifactions 

(DiMichele and Phillips 1994). The affinity between ·'L." bretonense and L. triangulare 

is supported by the assertion of Di~lichele ( 1983. 1985) that Diaphorodendron spp. trees 

bore monosporangiate cones (A. varius) that desegregated to form Lepidostrobophyllum 

spp. sporophylls (Stewart and Rothwell 1993 ). 
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It is worth noting that, despite the obvious morphological differences between L. 

a/atum and L. triangulare, both species are purported to have made up the cone A. varius. 

This apparent heteromorphy could be explained by the fact that two forms of the taxon 

are known from the fossil record- a megasporangiate (female) cone bearing 

Cystmporites varius megaspores on comparatively large sporophylls, and a 

microsporangiate (male) cone with Cappasporites distortus microspores and relatively 

small sporophylls (Courvoisier and Phillips 1975~ Leisman and Phillips 1979; Phillips 

1979). Hence, it is possible that L. alalllm was derived from the megasporangiate cones 

of A. varius. while L. triangulare represents smaller sporophylls from microsporangiate 

cones. 

Sigillaria Brongniart, 1822 

Sigillaria sp. 

Fig. 4.1.2 (p. 42); Pl. 3, Figs. 4, 5 

MATERIAL AND OCCURRENCE- Single axis fragment from BB-32 preserved as 

devolatilized adpression. 

DESCRIPTION - A.xis tlattened, ca. 4.0 em wide, ca. 11.0 em long; surface 

characterized by convex ribs and intervening straight to slightly undulate shallow 

furrows; ribs finely striate, ca. 12.2 to 12.8 mm wide, bearing leaf scars 2. 1 to 2.8 mm 

apart (top of scar to base of next higher scar), 10.7 to 13.2 mm apart (cicatrix to cicatrix); 

leaf scars slightly elevated from stem surface, ovate, oval or nearly equidimensional (i.e., 

semicircular), bases fairly flat to bluntly rounded, apices obtusely rounded, lateral 



margins convex, 8.7 to 10.5 mm long, 7.2 to 8.5 mm wide (broadest l/3 to l/2 way from 

base), L:W ratio 1.09 to 1.42; foliar cicatricules (Fig. 4. 1.2; Pl. 3, Fig. 5) punctiform, 

situated between l/2 to 2/3 way from scar base~ central vascular cicatrix elevated, ca. 

0.48 to 0.65 mm in diameter; lateral parichnos cicatricules lunate, somewhat elevated. 1.5 

to 2. 1 mm long. 

REMARKS - The single specimen upon which this description is based is small and not 

particularly well preserved. and thus several taxonomically significant, morphological 

features could not be discerned. However, in comparison with the non-biological 

classification proposed for Sigillaria based entirely on external morphology of bark (see 

excellent summary in Crookall 1966, p. 357-359; also Josten 1991. fig. 92, p. 157), the 

specimen can confidently referred to the Eusigillariae, a category characterized by ribbed 

stems. More specifically. the specimen likely can be included in the Eurhytidolepis 

subsection of the Rhytidolepis section; the Eurhytidolepis subsection is characterized by 

leaf scars disposed on vertical ribs that have essentially straight lateral margins. 

Form-genus Sigillariostrobus (Schimper) Feistmantel, 1876 

Sigillariostrobus rhombibracteatus Kidston, 1897 

Pl. 3, Figs. 6, 7 

1966 Sigi/lariostrobus rhombibracteatus, Crookall, pp. 542-544; pl. I 03, figs. 11. 12. 

MATERIAL AND OCCURRENCE- Single isolated sporophyll from BB-32 preserved 

as devolatilized adpression. 
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DESCRIPTION- Sporophyll rhomboidallanceolate, ca. 7.8 mm long, 3 .8 mm wide at 

broadest point. base rhomboidal, apex acute and elongate~ lateral margins concave, 

bearing enations or "cilia" in near base~ enations short, stout. 73 to 94 Jlffi long, 52 to 59 

~m wide at base. apices bluntly rounded. 

REMARKS - The isolated sporophyll can be confidently referred to the form-genus 

Sigillariostrohws, which represents sigillarian cone fragments, based on the rhomboidal 

lanceolate shape and ciliate lateral margins (Pl. 3, Fig. 7) of the sterile bract . The 

specimen closely resembles isolated S. rhomhibracteatus sporophylls figured by Crookall 

t 1966 ), and conforms well to his description. The fact that abundant megaspores 

referable to Tuherculati~porites mamillarius were recovered from the same locality (BB-

32) strongly supports assignment of the sporophyll to S. rhombibracrearus. as these same 

megaspores were successfully isolated by Chaloner ( 1953) from cones assigned to S. 

rhomhibracteurus. 

Form-genus Stigmaria Brongniart, 1822 

Stigmariaficoides (Sternberg) Brongniart, 1822 

Pl. 3, Figs. 1, 2 

1938 Stigmaria ficoides, Bell, p. 103 ~ pl. 105, fig. 8. 

1962 Stigmariajicoides, Bell, p. 56. 

1966 Stigmariaficoides, Bell, pl. 9, fig. 2. 

1966 Stigmariaficoides, Crookall, pp. 549-556; text-fig. 156 (p. 555)~ pl. lOS, figs . 1, 

2. 
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1966 Stigmaria sp., Crookall, pl. 104, fig. 4~ pl. 105, fig. 3. 

1969 Stigmariaficoides, Darrah, p. 81; pl. 27, fig. 3. 

1977 Stigmariaficoides, Remy and Remy, p. 344~ fig. 208b (p. 345). 

1991 Stigmariaficoides, Josten, p. 189~ table 11(p. 188)~ pl. 75, figs. l, 1a~ pl. 76, fig. 

l. 

MATERIAL AND OCCURRENCE - Seven rhizophore fragments collected from BB-

14, BB-30 and 88-32 (but ubiquitous taxon. particularly in grey coal-bearing strata). 

some with attached lateral appendages, preserved as devolatilized or decarbonized 

adpressions. or as partially decarbonized petrifactions. Attached or isolated lateral organs 

preserved as devolatilized adpressions. often with partially pyritized midveins. 

DESCRIPTION- Rhizophores flattened. 4.5 to 8.6 em wide. not exceeding 19.9 em 

long; axial surfaces more or less smooth, occasionally with somewhat irregular, low 

relief. longitudinal ribs 0.9 to 1.6 mm apart, with spirally arranged rows of elevated 

surface scars; scars circular. ca. 1.2 to 5.9 mm in diameter. with raised rim surrounding 

circular depression. cored by single elevated vascular cicatrix (0.3 to l .O mm diameter); 

lateral organs (appendages) isolated or emanate from surface scars perpendicular to 

rhizophore, ribbon like and unbranched, infrequently fork distally (Pl. 3, Fig. 2), 2.5 to 

6.5 mm wide (gradually tapering distally), entire but undulatory lateral margins, with 

single more or less centrally positioned midvein 0.3 to 0.6 mm wide. 

REMARKS - Stigmaria ficoides is a widely recognized taxon that represents 

subterranean rooting organs of arborescent lepidodendroid lycopods (Thomas 1978), 
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although this stigmarian system may be exclusive to members of the Lepidodendraceae 

(Frankenberg and Eggert 1969). The typically smooth rhizophore surface and spiral 

distribution of surface scars closely resembles specimens of S. Jicoides described and 

figured by numerous authors. 

Low reliet: longitudinal ribs on the surface of some specimens (Pl. 3. Fig. l) are 

thought to represent imprints of radially(?) arranged internal structures of the axes. such 

as sclerenchymatous bands in the outer cortex (Crookall 1966; see also Eggen 1972, fig . 

l, p. 96). Alternatively the ribs may in fact demonstrate wrinkling of the axial surface, a 

feature exhibited by S. ficoides var. rugosa (see Crookall 1966. pl. 104, fig. 2) or S. 

n1gulosa (see Josten 1991, pl. 76, fig . 2), although the ribbing on these taxa is far more 

irregular and discontinuous. 

Tuberculatisporite~· mamillarius (Bartlett) Potonie and Kremp 1955 

Fig. 4.2 (p. 52) 

1953 Triletes mamillarius. Chaloner. pp. 882-884, 896; figs. 1, 2 (p. 882). 

1987 Tuberculatisporites mamillarius, Banram; fig 3f, p. 192. 

1988* Tuberculati~porites mamillarius, Traverse. fig. l.l (ab) (p. 3) 

1996 Tuberc.:ulati~porites mammillarius, Scott and Hemsley, pl. 2, fig . 15 . 

MATERIAL AND OCCURRENCE - Abundant isolated, flattened megaspores adhering 

to surfaces of slabs collected from BB-32. 

DESCRIPTION- Megaspores circular, conate (terminology of Playford and Dettmann 

1996), 1.6 to 2.4 mm in diameter; contact area distinct with elevated curvatura perfecta 
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Figure 4.2. Tuberculatisporites mamillarius megaspores of sigillarian affinity; abundant 
conae comprise prominent curvatura perfecta (arrow), which separates granulate to finely 
conate contact area from conate proximal surface. 

(Fig. 4.2), granulate to finely co nate (or even reticulate?), laesurae of Y -mark slightly 

thickened and elevated; conae of contact area randomly disposed, ca. 12 to 17 11m in 

diameter; conae of distal and proximal surfaces randomly disposed but markedly 

abundant at curvatura perfecta, ca. 19 to 3 8 11m in diameter, 7 to 29 11m long, acuminate 

to acutely rounded . 

REMARKS- Megaspores recovered from BB-32 are morphologically identical to those 

isolated by Chaloner (1953 , 1986) from Sigillariostrobus rhombibracteatus, a cone of 

sigillarian affinity. 
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Lycopsid cone 

Pl. 3, Fig. 3 

MATERIAL AND OCCURRENCE - Single poorly preserved cone fragment in radial 

section from BB-32 preserved as partially devolatilized adpression. 

DESCRIPTION- Cone 8.9 em long, 2.8 em wide; sporophylls overlapping. ca. 7.0 mm 

long, 0.6 to 0.8 mm wide in radial section. 

REMARKS - Despite poor preservation. this specimen clearly represents a lycopsid cone 

fragment . No attempt was made to identify the adpression, as generic assignment 

depends primarily on whether the cones are monosporangiate (Lepidostrohus) or 

bisporangiate (Fiemingites) (see Brack-Hanes and Thomas 1983. p. 131 ); a cone of 

greater length is necessary to determine whether it is homosporous or heterosporous. 

Isolated lycopsid sporangia 

Pl. 2, Figs. l 0, ll 

1966 Isolated lycopod sporangia. Crookall, pp. 522-523; pl. 99. figs . 7, 8. 

1969* Lepidocystis. Darrah. p. 181; pl. 5 l, fig. 2. 

MATERIAL AND OCCURRENCE- Two devolatilized adpressions from BB-25 . 

DESCRIPTION- Sporangia subrectangular to subtrapezoidal, angles rounded, ca. 15 .2 

to 16.0 mm long, 10.3 to 13.1 mm wide, one end markedly narrower; surface 

superficially smooth, actually with superfine granulate texture (Pl. 2, Fig. 10). 
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REMARKS - These plant organs have been included in the form-genus Lepidocystis. 

which Darrah ( 1969) considered to represent isolated lepidodendrid sporangium 

containing megaspores. 

4.2 Division SPHENOPHYT A 

Order SPHENOPHYLLALES 

Sphenophyllum Brongniart. 1822 

Sphenophyllum emarginatum (Brongniart) Brongniart. 1828 

Fig. 4.3.1 (p. 57); Pl. 4. Figs. l to 9; Pl. 5, Figs. 1 to 7 

1938 Sphenophyllum emarginatum. Bell. p. 89; pl. 93. figs. l, 2, 3. 

1958 S'phenophy/lum emarginalllm, Abbott, pp. 339-342; chart 3 (pp. 332-333 ); pl. 38. 

fig . 29: pl. 44. tigs. 66. 68; pl. 45. tig. 72. 

1962 S'phenophyllum emarginatum. BelL pp. 46-47; pl. 44, figs . l-4; pl. 56. fig. 1. 

1966 Sphenophyllum emarginatum. Bell, pl. 29. fig. 2: pl. 36. figs. 5. 6. 

1966 Sphenoph_vllum emarginatum. Storch, pp. 277-287; figs. 1, 15, 16e-g. 25; pl. 5. 

fig. 3: pl. 14. tigs. 3. 4; pl. 15. figs . l, 2; pl. 16. fig. 1, 2; pis. 17-22; pl. 23. tig. 1-

.., 
.l. 

1969 S'phenophyl/um emarginatum. Crookall, pp. 586-591; text-fig. 164 (p. 589); text-

fig. l71b (p. 608); pl. 107, fig. 6. 

1969 Sphenophyllum emarginatum, Darrah, pp. l 77-178; pl. 55, fig. I. 

1977 Sphenophy//um emarginatum, Batenburg, pp. 81-95; text-fig. 4 (p. 89); text-fig. 5 

(p. 91 ); pl. 2, figs. 3-6; pis. 3-6. 
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1977 Sphenophyllum emarginatum. Remy and Remy, pp. 386-387; pl. 237, figs . la-d. 

1980 Sphenophy/lum emarginatum, Storch, pp. 172-176; text-fig. 1 (p. 173); pl. 1, figs . 

l-4; pl. 2, figs . l , 2, 5, 6; pl. 3, fig. l ; pl. 4, figs. l, 3; pl. 11 , fig . 7. 

1989 ~'phenophyllum emarginatum, Zodrow, pp. 323-326; text-fig. 13 (p. 325); pl. 3. 

fig . 2: pl. 6 , fig . l . 

1991 Sphenophyllum emarginmum. Josten. pp . 114-115; text-fig. 63 (p. 114); pl. 39. 

figs . l, I a. 2, 2a. 

MATERIAL AND OCCURRENCE- Numerous specimens from BB-30 containing 

isolated whorls or occasionally branching axes [main, large and twigs (in descending 

order of ramification)]; preserved as devolatilized adpressions, or less commonly. as 

decarbonized or .. naturally macerated" volatilized adpressions. 

DESCRIPTION- Extremely heterophyllous, with morphologically dissimilar whorls of 

leaflets arising tram main axes. large branches and twigs (described separateiy) . 

Main axes: Axes articulate. longitudinally striated. but smoother than large 

branches, bearing one (most common) or two (rare) twigs from any given node; 

internodes of similar dimensions throughout axis, 18.3 to 30.2 mm long, 3.2 to 5. 7 mm 

wide; nodes slightly swollen, 4.2 to 6.8 mm wide, bearing whorls comprising 

indeterminate number of leaflets: leaflets linear (Pl. 4, Figs. 5, 9), undivided or divide 

once (or twice?) shortly after arising from node to form two (or four?) lobes. not 

exceeding 16.8 mm long, ca. 0.4 to 0.6 mm wide, containing single vein ca. 0.2 mm 

wide, terminating in acuminate or "hooked" arista (Pl. 4, Fig. 3) . 
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Large branches: Axes articulate, with high amplitude longitudinal ribs 0.5 mm 

apart, single twig arising from any given node: internodes 2.0 to 2.9 mm wide, 5.3 to 12.4 

mm long, shorten both to base and apex ofbranch; nodes slightly swollen. 2.7 to 3.2 mm 

wide, bearing whorls of indeterminate number of leaflets (at least 9 in one whorl); leaflets 

bipartite (Pl. 4. Fig. 9), morphologically akin to those on main axes, becoming 

successively less incised distally. 

Twigs: A.xes articulate, with longitudinal ribs ca. 0.5 to 0.8 mm apart, rarely with 

small , straight to apically curved, acuminate hairs ca. 0.3 mm long and 751-lm wide at 

base; internodes 0.9 to 2.2 mm wide. 3.3 to 13 .5 mm long, shorten both to base and apex 

of twig: nodes slightly swollen, 1.6 to 2.4 mm wide. each bearing whorl comprising 6 to 

9 (rarely 10) morphologically similar leaflets of approximately equal length~ leatlets of 

proximal verticils (Pl. 4. Fig. 1; Pl. 5, Fig. 7) stiff, arise decurrently, with single vein. ca. 

6.6 mm long, 0.7 mm wide. broadest near middle, L:W ratio ca. 10.2; leatlets of distal 

verticils laminar. cuneate. 5.3 to 12.8 mm long, l.l to 6.3 mm wide at distal margin, L:W 

ratio 1.6 to 6.4 (ave. 3.4. n=53): lateral margins straight to slightly concave or convex: 

distal margins straight or slightly convex, finely dentate with 2 to 14 teeth: teeth 

semicircular or obtusely rounded, separated by acute sinuses. 70J.1m to 0.5 mm long, 0.1 

to 1.3 mm wide, L:W ratio 0.1 to 3.0 (ave. 0.8, n=37), becoming shorter and more alike 

in size in larger leaflets: midclefts (Fig. 4.3 .1; Pl. 5, Fig. 2) prominent in broad leaflets, 

obtusely pointed, incised 0.2 to 1.6 mm deep, resulting symmetrical (occasionally 

assymetrical) lobes may be incised by shallower, obtusely pointed or rounded secondary 

clefts 0.3 to 0.6 mm deep: single vein divides shortly after entering base of individual 
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Figure 4.3. Schematic line drawings of sphenophyllleaflets. ( 1.) Broad leaflets of 
Sphenophy/Jum emarginatum incised by midcleft (MC) and secondary clefts (SC), with 
each vein ending at terminus of rounded tooth; BB-94-30-22, x2. (2.) Symmetrical 
(lower) and asymmetrical (upper) leaflets of Sphenophyl/um sp. cf. S. zwickaviense 
incised by midcleft (MC) and secondary clefts (SC), with each vein terminating as sharp 
point of acute-triangular tooth; BB-96-30-73, x3. 

leaflet, subsequently dichotomises 2-3 times with increasing distance between successive 

dichotomies, each branch terminates at distal end of single tooth (Fig. 4.3 .1; Pl. 5, Fig. 2). 

REMARKS- Although material recovered from Blanche Brook is morphologically 

diverse and represents at least 2 if not 3 orders of branching, much of it matches 

remarkably well with vegetative segments of the reconstruction of S. emarginawm 

established by Batenburg ( 1977). (i) Main axes recovered from Blanche Brook have 

dimensions comparable to his "main axes" and foliage most closely resembles his .. first" 

and ··second type" linear leaflets (see pl. 5, figs. 2, 4, p. 86, 87); in accordance with 

Batenburg's plant reconstruction (fig. 5, p. 91), main axis specimens in the BBA 

probably represent proximal portions of main axes of S. emarginatum; (ii) large branches 

of the BBA parallel Batenburg's "larger branches" and foliage most closely resembles 
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bipartite leaflets (pl. 6, figs. 1, 2, p. 88, 89) that he considers to belong to proximal 

portions of larger branches of S. emarginatum. Although not found in organic connection 

in the BB.A, large branches almost certainly arise (singly?) from nodes of main axes; and 

(iii) twigs from the BBA are identical to "twigs" described by Batenburg (p . 87, 90), even 

with regard to the variability of shape and number of teeth (i .e .. more teeth. more 

cuneiform) on leaflets (Pl. 4. Fig. 6) depending on the point of insertion on axes. 

Some notable differences exist, however. between vegetative elements of S. 

emarginatum described in this study and previously published material. Batenburg 

( 1977) was the first to describe perpendicular hairs up to l mm long arising from some 

axes, and considered that they were relatively common features . However only one twig 

axis from Blanche Brook exhibited such hairs (Pl. 5, Fig. 5). In contrast to Storch ( l966), 

who stated that no known specimens of S. emarginatum bore more than a single branch at 

any given node, one specimen (Pl. 4. Fig. 8) clearly demonstrates two foliated twigs 

arising from the same node of a main axis. Similarly, Zodrow (1989, pl. 6. p. 324) shows 

this same feature. and Batenburg ( 1977. pl. 5, fig. 2) figured a main axis node bearing 

two young branches. Batenburg (1977) suggested that twigs were spirally (dextrorsally) 

arranged on larger branches. with a twig arising at every third node from one of three ribs 

on the axis (see his pl. 4, tig. 1, p. 84). However, this must not always be the case. as one 

specimen shows two twigs springing from adjacent nodes of a large branch (Pl. 4. Fig. l ). 

In addition, numerous authors described S. emarginatum as having whorls comprising six 

to nine cuneiform leat1ets, but a whorl recovered from the BBA clearly contains ten (Pl. 

4, Fig. 4). 
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Sphenophyllum sp. cf. S. zwickaviense Storch~ 1966 

Fig. 4.3.2 (p. 57); Pl. 6~ Figs. l to 4 

1966 Sphenophyllum ::wickaviense, Storch, pp. 303-305; figs. 34, 35 ; pl. 23. fig. 4; pl. 

24, figs . 1-4; pl. 25, figs. 1-6. 

1977 Sphenophyllum ::wickaviense, Batenburg, pp. 70-76; text-fig. 1 (p . 74 ); pl. l. fig. 

1-4. 

1980 Sphenophyllum ::wickaviense. Storch, pp. 181-183; pl. 8, fig. 2? 

1986 Sphenophyl/um ::wickaviense. Zodrow. pp. 310-312; text-fig. 8 (p. 312): pl. 5 

1989a Sphenophyllum ::wickav1ense, Zodrow, pp. 318-322; text-figs. 10-12 (p . 318); 

table 3 (p. 304); table 4 (p. 322); pl. L fig. 6; pl. 5. 

MATERIAL AND OCCURRENCE - Six isolated leaflet fragments from 88-30 

preserved as "naturally macerated" volatilized adpressions (veins coalified). 

DESCRIPTION- Leaflets cuneate. >9.4 to >13 .9 mm long, >3 .6 to 10.7 mm wide at 

distal margin (approximate measurements as full length and width? generally not 

preserved), L:W ratio> l.2; lateral margins straight; distal margins slightly convex, 

dentate with ca. 11 to 14 teeth; teeth acute-triangular, separated by obtusely pointed 

sinuses, 0 .5 to 1.4 mm long, 0.5 to 0.8 mm wide, L:W ratio 1.0 to 2.2; midcleft incised 

> 1.2 to ca. 2.9 mm resulting in two (often asymmetrical) lobes each with 4 to 7 teeth; 

secondary clefts incised >0. 7 to ca. 1.1 nun into lobes; single vein divides shortly after 

entering base of leaflet, subsequently dichotomises 2 to 3 times with increasing distance 
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between successive dichotomies, each vein ca. 50 J.lm wide terminates as sharp point at 

distal end of single tooth (Fig. 4.3 . 2~ Pl. 6, Fig. 1 ). 

REMARKS- Although material is rather fragmentary, enough pertinent morphological 

information was obtained to tentatively refer the leaflets to S. ::wickaviense . Some 

notable differences exist, however, between specimens from Blanche Brook and better 

preserved material described from Germany and Sydney Coalfield (Storch 1966, 1980: 

Batenburg 1977, 1981; Zodrow 1986, 1989a). ln particular. leaflets of S. ::wic:kaviense 

typically are divided into asymmetrical lobes by a main cleft that reaches l/3 to l/2 the 

length of the leaflet (Batenburg 1977). ln contrast. rare leatlets from Blanche Brook are 

divided into symmetrical lobes by a relatively shallow midcleft (ca. l/11 the length of 

leaflet) (Fig. 4.3.2; Pl. 6. Fig. l), although abrasion ofthe distal end ofthe leaflet 

precludes accurate measurement. 

S. ::wic:kaviense can be distinguished from S. emarginatum, which is considerably 

more common at Blanche Brook and characterized by semi-circular or obtusely-rounded 

teeth, by having acute-triangular teeth and larger. (generally) asymmetrical leaflets that 

are incised by a deeper midcleft and secondary clefts (compare Figs. 4.3.1 and 4.3.2). 

Order EQUISETALES 

Form-genus Annularia Sternberg, 1821 

Annularia sphenophyl/oides (Zenker) Gutbier, 1837 

Pl. 6, Figs. 5, 7 to 10; Pl. 7, Fig. l 

1938 Annularia sphenophylloides, Bell, p. 84; pl. 85, fig. 3 ~ pl. 87, fig. l. 
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1958 Annul aria sphenophylloides, Abbott, pp. 319-321: chart 2 (p. 307): pl. 3 5, fig. 6: 

pl. 41, fig. 55 . 

1962 Annularia sphenophylloides, Bell, p. 51 ; pl. 44. fig . 7. 

1966 Ammlaria sphenophylloides, Bell, pl. 3 5, fig. 2. 

1969 Annularia sphenophylloides, CrookalL pp. 733-739; text-fig. 215 (p. 737); pl . 

149. tig. I . 

1969 Annularia ~phenophylloide.•i, Darrah. p. 172: pl. 33. figs . l. 2; pl. 43. fig . 7. 

1977 Ammlaria sphenophylloides, Remy and Remy, p. 372; fig . 227, a-d. 

1991 Amm/,lria sphenophylloides. Josten, pp. 78-80: text-fig. 36 (p . 79); table 4 (pp. 

84-85); pl. 22. tigs . l . 1a, 2. 

MATERIAL AND OCCURRENCE - Abundant isolated verticils with less common 

ultimate or penultimate axes from BB-30 preserved as (occasionally ··naturally 

macerated") volatilized or decarbonized adpressions. 

DESCRIPTION- Penultimate axes articulate, longitudinally striate. with verticils and 

oppositely paired. distichous ultimate branches borne from nodes. rarely with slightly 

curved, thin hairs 0.5 mm long,: ultimate axes articulate. faintly longitudinally striate. not 

exceeding 0. 9 mm wide, thinning distally to ca. 0. 1 mm, verticils borne from nodes: 

internodes 7.8 to 13.5 mm apart, regularly spaced but length decreases considerably near 

apices: verticils typically distant but contiguous or overlapping next higher verticil near 

apices of axes. markedly symmetrical. comprise 10 to 15 leaflets per whorl radiating 

from tiny sheath that encircles axis: sheath (Pl. 6, Fig. 7) inconspicuous, circular, usually 
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<0.5 mm but up to l. 9 mm in diameter; leaflets spatulate with broad mucronate tips (Pl. 

6, Fig. 9) (often obtusely rounded because tip embedded in matrix), 2.4 to 7.4 mm long, 

0.5 to 2.8 mm wide at widest point ca. 4/5 to 5/6 up leaflet, L:W ratio 2.4 to 6. 7 (ave 4.0, 

n= 111 )~ lateral margins straight, approximately parallel to and distant, contiguous or 

overlapping adjacent leaflets; single midvein 0. l to 0.4 mm wide (ave. 0.2 mm. IF41 ). 

occupies ca. l/5 leaflet width, flares at distal margin (terminal expansion) before 

protruding as acuminate tip. 

REMARKS- A few specimens in the BBA exhibit a terminal expansion of the midvein 

near the distal leaflet margin (Pl. 6, Fig. 7); this feature is well demonstrated by a transfer 

preparation of A. ~phenophylloides figured by Crookall ( 1969. text-fig. 215. p. 737). His 

figure also shows hairs or hair bases on the leaflet, and Bell ( 1962. p. 51) suggested that 

specimens of A. ~phenophyl/oides from Westphalian strata of New Brunswick had villous 

leaves with hairs mainly attached to midveins. ln contrast, no hairs were observed on any 

leaflets studied herein, and Abbott ( 1958) found no evidence for such hairs. 

The relatively large sheath size (up to 1.9 mm) on some whorls (Pl. 6, Fig. 10) 

does not conform to Abbott's ( 1958) criteria for A. sphenophylloides (sheath size 0.3 to 

0.5 mm). Hence either the whorls may in fact be referable to A. mucronata. or the 

apparent disagreement may be related to taphonomic distortion. 

Annularia stellata (Schlotheim) Wood, 1861 

Pl. 7, Fig. 6 

1938 Ammlaria ste/lata forma mucronata, Bell, p. 85; pl. 90, figs. 1,2. 
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1944 Annularia stellata forma /ongifolia, Bell, p. l 02; pl. 70. fig. 5. 

1958 Anmtlaria ste/lata, Abbott, pp. 321-326; chart 2 (p. 307); pl. 3 5, fig. 1; pl. 41, fig. 

58; pl. 49, fig. 87. 

1966 Annularia stellata, Bell, pl. 28, fig. 6. 

1969 Annularia ste/lata, Crookall. pp. 717-725; text-fig. 209 (p . 721 ); pl. 149. fig . 3. 

1969 Annularia stellata, Darrah, p. 172; pl. 37, fig. 1. 

1977 Amw/aria stellata, Remy and Remy, pp. 369-371; text-tig. 22Sa-c (p. 370). 

1991 Annularia stellata, Josten, pp. 69-72; text-figs. 29, 30; table 4 (p. 84-85); pl. l 5; 

pl. 16, tigs. l-3; pl. 17 

MATERIAL AND OCCURRENCE- Part (devolatilized adpression) and counterpart 

(decarbonized adpression) of single very poorly preserved specimen from 88-30 

comprising two whorls attached to axis. 

DESCRIPTION- Axis articulate. ca. 2.0 mm wide, with obscure longitudinal ridges, 

bearing verticils from nodes ca. 21 .0 mm apart; verticils asymmetrical, overlapping, 

decreasing in diameter distally, comprising 14 to 19 leaflets radiating from elliptical 

sheath ca. 1.6 x 2.1 mm in diameter; leaflets oblanceolate to spatulate-lanceolate, slightly 

arched or concave-convex in cross section, apices obtusely rounded or subacutely to 

bluntly pointed with sharp mucronate tip, 1. 9 to 3.2 mm wide at broadest point (ca. l/2 to 

3/5 up leaflet), 15.0 to 26.4 mm long (including distal spine like point up to 1.2 mm 

long), lateral leaflets lying approximately normal to axis conspicuously longer, L: W ratio 
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6.7 to 11.9 (ave. 8.8, n=lO)~ single midvein 0.2 to 0.6 mm wide, occupying ca. 1/9 to liS 

leaflet width, extrudes from apex as stiffened mucronate tip. 

REMARKS- Although criteria of Abbott ( 1958) indicates that leaflets of A. stellata lack 

mucronate tips, which she suggests permits distinction from A. mucronata, the specimen 

from Blanche Brook clearly has leaflets with sharp, stiffened mucronate tips (Pl. 7. Fig. 

6). Similarly, Bell ( 1938) described mucronate tips on leatlets of A. ste/lata forma 

mucronata from Sydney Coaltield. Thus both taxa probably have mucronate tips. 

although apices often appear obtusely rounded when tips are partially or completely 

concealed in the matrix as a result ofinrolling ofthe laminae' s outer margins. 

Accordingly, distinction between A. stel/ata and A. mucronata likely is more suitably 

based on leaflet size and shape [widest near middle and 14 to 75 mm long ~ widest near 

apex and 4 to 25 mm long, respectively - measurements from Abbott ( 1958)]. With 

these criteria, the specimen from Blanche Brook clearly is referable to A. stellata. 

Although Bell ( 1938) apparently observed hairs measuring about 1 mm long 

arising from axes and adaxial leaflet surfaces of A. stellata, no hairs were observed in the 

specimen from Blanche Brook (although it is poorly preserved). Similarly, Abbott 

( 1958) was unable to detect any hair on the lamina, axis or sheath. 

Form-genus Asterophyllites Brongniart, 1822 

Asterophyllites equisetiformis (Sternberg) Brongniart, 1828 

Pl. 7, Figs. 2, 4 

1938 Asterophyllites equisetiformis, Bell, p. 86~ pl. 87, figs. 3, 4~ pl. 88, fig. 1. 



1944 Asterophyllites equisetiformis, Bell. p. 103 ~ pl. 70, fig. 2 ~ pl. 71 , fig . 3. 

1958 Asterophyllites equisetiformis, Abbott, pp. 299-302; chart 1 (p. 297); pl. 35, fig. 4; 

pl. 39, figs. 46, 47, 49, 50. 

1966 Asterophyilites equisetiformis, Bell, pl. 28, fig. 7; pl. 29. fig. 4; pl. 36, fig. 3. 

1969 Asterophy/lites equisetiformis forma typica. Crookall , pp. 695-700; text-tig. 203 ; 

pl. 142, fig. 3. 

1969 Asterophy/lites equisetiformis. Darrah. p. 173; pl . 40, figs. 3. 4 . 

1977 Asterophy//ires equisetiformis var. jongmansi, Remy and Remy. p. 377; text-fig. 

229a-c (p . 375). 

1991 Asterophyllites equisetiformis formajongmansi , Josten, pp. 89-9 L text-tig. 43 (p . 

90); table 5 (98-99); pl. 26 ; pl. 27 . 

MATERIAL AND OCCURRENCE- Two devolatilized adpression fragments from BB-

30. 

DESCRIPTION - Axes articulate. with distinct pattern of longitudinal grooves and ridges 

ca. 0.8 mm apart; internodes 0.4(?) to 1.3 mm wide, 1.7 to 6 .2 mm long. dimensions 

decreasing distally: nodes swollen, 0 .6(?) to 1.9 nun wide, bearing verticils; whorls 

comprise at least 12 leaflets of approximately equal length, decrease in diameter apically, 

overlap and crowd next higher verticil (particularly near apices of axes); leaflets fused by 

proximal ends into sheath cupped about axis, linear-lanceolate, with sharply pointed 

acuminate apices, parallel lateral margins, attached to axis at ca. 10 to 80°, extend straight 
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but curve upwards in apical verticils, ca. 10.8 mm long, 0.2 to 0.7 mm wide, L:W ratio 

ca. 21.0; single midvein ca. 0.13 mm wide, occupies ca. liS leaflet width. 

REMARKS - Leaflet dimensions are only approximate because part of the whorls and 

leaflets typically are embedded in the matrix. Two similar forms of A. equiseliformis that 

differ in width, length and arrangement of leaflets in a whorl were recognized by 

Jongmans and Kukuk (1913 ; cited in Crookall 1969). Based on comparisons with tigured 

material and criteria outlined by Josten (1991, table 5, p. 98-99), material from Blanche 

Brook clearly belongs to var. jongmansi of Remy and Remy (1977) ( = forma typica of 

Jongmans and Kukuk 1913). 

cf. Asterophyllites sp. 

Pl. 7, Figs. 3. 5, 9 

MATERIAL AND OCCURRENCE - Five devolatilized adpressions from BB-19 with 

up to three orders of branching. 

DESCRIPTION - Primary axes articulated. with longitudinal striae superimposed on ribs 

0.4 mm apart. 0.7 to 1.9 mm wide, breadth decreasing distally; internodes 6.5 to >18 .2 

mm long~ nodes slightly swollen, 1.0 to 1.6 mm wide, bearing distichous secondary axes 

and/or verticil of indeterminate number of leaflets that cup axis; leaflets stiff, stout, 

acuminate, with single nerve, 2.6 to 3.5 mm long, ca. 0.4 mm wide, broadest at base, 

proportionately shorter and thinner near apices; secondary axes articulate, with faint 

longitudinal striae, 0.4 to 0.8 mm wide~ internodes 3.4 to 6.6 mm long, longest near 
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middle of axis; nodes slightly thickened. 0.4 to 0.6 mm wide, bearing distichous tertiary 

axes and/or indeterminate number ofleaflets; leaflets 1.6 to 2.5 mm long. 0.2 to 0.4 mm 

wide; tertiary axes articulate, 0.2 to 0.4 mm wide, proportionately shorter and thinner in 

apical portions of secondary a.xes. culminate in bud like structure sitting atop short stalk ~ 

internodes 0.9 and 2.5 mm long. length decreasing distally; nodes unthickened. bearing 

verticils; whorls cup like around axis. generally distant but overlapping adjacent verticil 

near apices; leat1ets linear. acuminate, 1.5 to 2.9 mm long, 0.2 to 0.4 mm wide; "bud" (Pl. 

7, figs . 3. 5) oval to elliptical, enclosed by sterile bracts identical to those further down 

axis, 0.8 to 0.9 mm wide. 1.1 to 1.6 mm long. 

REMARKS -The articulate axes. longitudinal ribbing, and whorls of thin leaflets arising 

from each node clearly indicates affinity of these specimens with the sphenopsid group. 

In particular. the fragments likely represent the distal portions of branching foliage that 

arose from a calamitean plant. and most closely resemble the linear leaflets of the form­

genus Asterophy/lites. This interpretation is supported by the association of Calamites 

sp. impression fragments in the assemblage at locality BB-19. Plant fragments resemble 

Asterophy/lites charaeformis (see Bell 1940, pl. 10. fig. 3 ~Josten 1991. pl. 31, figs. 2. 2a) 

and A. pa/eaceus (Josten 1991 , pl. 3 l, figs . 3, 3 a), although apparently branches of these 

taxa simply end in subacuminate tips. 

Calamites Suckow ex Brongniart, 1828 

Calamites sp. A 

Pl. 7, Fig. 8; Pl. 8, Fig. 3 
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MATERIAL AND OCCURRENCE- Single decarbonized adpression fragment BB-30. 

DESCRIPTION- Axis cylindrical, articulate, longitudinally ribbed, 15 .5 em long, 6.7 

em wide; nodes at least 12.5 em apart, with ribs alternate; ribs convex., with irregular 

longitudinal striae. separated by shallow furrows ca. 2.6 to 3.1 mm apart. terminate as 

obtusely rounded apices at nodes where alternate, apices occupied by oval to semicircular 

scars (infranodal canals; Pl. 7. Fig. 8) 0. 9 to l.l mrn long and 0.4 to 0.8 mm wide. 

REMARKS- The genus Calamites typically has ribs that alternate at nodes. and thus this 

specimen likely can be included in this taxon (Pl. 7. Fig. 8). However. small Calamites 

sp. stem fragments are nearly impossible to identify, particularly when only a small 

portion of the total axis and a single node are preserved. because species are 

differentiated based on a combination of internodal and nodal features (Crookall 1969). 

Calamites sp. 8 

Pl. 7, Fig. 7 ~ Pl. 8. Fig. 4 

MATERIAL AND OCCURRENCE - Single axial fragment BB-25 preserved as 

devolatilized (part) and decarbonized adpression (counterpart). 

DESCRIPTION- Axis cylindrical, articulate, longitudinally ribbed. 14.7 em long, 5.4 

em wide; nodes slightly swollen, at least 12.4 em apart; ribs moderately well defined, 

convex., with irregular longitudinal striae, separated by furrows ca. 0. 7 to l.O mm apart, 

pass directly through nodes (i.e., not alternating). 
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REMARKS- In contrast to many species within the genus Calamites. this specimen has 

longitudinal ribs that pass directly through (Pl. 7, Fig. 7) rather than alternating at nodes 

(Crookall 1969). 

Form-genus Myriophyllites Artis, 1825 

cf. i\tlyriophyl/ites gracilis Artis, 1825 

Pl. 8, Figs. 1, 2 

1969* fvfyriophyllites gracilis. Crookall, pp. 781-783 ; text-fig. 224 (p . 783 ); pl. 150. fig . 

6. 

1991* fvfyriophyllitesgraci/is, Josten, p. 109; pl. 37, fig. l. 

MATERlAL AND OCCURRENCE- Single specimen from 88-29 comprising at least 

three orders of branching; preserved as ··naturally macerated" volatilized adpression. with 

conspicuous devolatilized (coalified) vascular strands. 

DESCRIPTION- Main root axis branching irregularly (in several planes). divided 

longitudinally into rounded ridges and furrows. ca. 12.5 em long, 8.0 mm wide, thinning 

distally to abrupt, obtusely rounded apex. covered with irregularly disposed rootlets 

(especially near apex); secondary root axes morphologically identical to main root, 5.5 

mm wide; tertiary root axes 2.0 mm wide; rootlets linear. hair like, rarely branching (Pl. 

8, Fig. 2), ca. 0.75 mm wide; vascular strands evident as longitudinal lines parallel to 

long axis of roots (Pl. 8. Fig. 2), ca. 0.3 mm wide, comprise entirety of rootlets. 
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REMARKS- Myriophyllites gracilis is the monotypic adpression form-genus of root 

structures that almost certainly belong to Calamites (Crookall 1969). Although there are 

no distinct differences between Myriophy//ites and Pinnularia, the former subdivides 

much more irregularly in more than one plane and has definite longitudinal ribs that 

evince its affinities with Calamites (Crookall 1969). 

Form-genus Paracalamostachys Weiss, 1884 

Paracalamostachys sp. Weiss, 1884 

Pl. 8, Fig. 5 

1969* Calamostachys caiathifera, Crookall, pp. 756-757; pl. 109, fig. 7. 

MATERIAL AND OCCURRENCE - Single slab from BB-30 containing devolatilized 

adpressions of nine nearly complete cones. 

DESCRIPTION- Fructifications cylindrical, not exceeding 2.8 em long, 4.7 to 6. 1 mm 

broad, apices broadly rounded but slightly pointed; internodes < 1.4 to 3. 0 mm apart, 

decreasing in length distally, separated by nodes bearing verticils; whorls comprise sterile 

bracts, cup a"<is, slightly curved inward near tops, typically overlap bases of next higher 

verticil but completely enclose adjacent whorls near apices; bracts stiff. stout. acuminate. 

ca. 2.9 mm long, ca. 0.6 mm wide at base. 

REMARKS - These fiuctifications are slightly smaller than but otherwise strongly 

resemble specimens ofCaiamostachys calathifera figured and described by Crookall 

( 1969). However, because the cones are not well enough preserved to determine the 
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number and position of sporangiophore insertion between verticils. the cones are better 

referred to Paracalamostachys (see Good 1975 for criteria) . 

Sterzel ( 1882, cited in Crookall 1969) demonstrated that C. ca/athifera represents 

the fructification of a calamitean plant bearing Atmu/aria sphenophy/loides toliage. The 

abundance of A. !lphenophy/loides fragments together with the cones on a single slab (Pl. 

8, Fig. 5) strongly suggests reference ofthe material to C. ca/athifera. and corroborates 

earlier evidence of whole plant affinities. 

Form-genus Pinnularia Lindley and Hutton, 1834 

Pinnularia capillacea Lindley and Hutton, 1834 

Pl. 6, Fig. 6 

1969 Pinnu/aria capil/acea, Crookall. pp. 778-780: text-fig. 223 (p. 779): pl. 109. fig. 

8. 

1978 Pimm/aria capillacea. Boersma, p. 65: pl. 7. fig. 2. 

1991 Pimzularia capillacea. Josten. p. 110: pl. 37. figs . 2. 2a. 3. 

MATERIAL AND OCCURRENCE- Single slab from 88-30 containing devolatilized 

adpressions of two branching axes. 

DESCRIPTION- Axes (secondary roots?) slender, ca. 1.0 mm wide. lacking nodes, with 

faint longitudina! striae. bearing rootlets in single plane at fairly regular intervals ca. 4.0 

to 6.0 mm apart: rootlets linear, narrow, ca. 0.5 mm wide. 
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REMARKS- Although Pimmlaria is often thought of as the form-genus of Calamites sp. 

root structures. the organs likely belonged to a variety of unrelated plants (Crookall 1969: 

Darrah 1969). These specimens probably represent distal portions of secondary roots 

bearing capillary rootlets. 

4.3 Division PTERIDOPHYTA 

Order FILICALES 

Pecopteris (Brongniart) Brongoiart, 1828 

Pecopteris plumosa (Artis) Broogoiart, 1832 

Fig. 4.5.5 {p. 82); Pl. 15, Figs. 1 to 4~ Pl. 16, Figs. 1, 2, 4, 5, 7 

1938 Dactylothec:aplumosa formadenrata, Bell. pp. 76-77: pl. 73. fig. 3: pl. 77. figs . 3. 

4(?): pl. 80. fig. 1. 

1944* Pecopteris (Senftenhergia) plumosa forma crenata, Bell, pp . 84-85: pl. 38. tigs. 1-

4: pl. 39, tigs. 5. 6. 

1951 Pecopteris (Senftenhergia) plumosa-dentata. Corsin. pp. 199-208: text-fig. 42a-c 

(p . 201);pl. 112.figs. 1-3;pl.113.fig.2;pl.114,figs. 1-4; pl.115.tigs. 1-4: pl. 

116: pl. 117, figs. 1-3a; pl. 118, tig. 2. 

1951 Pecopteris Bioti, Corsin, pp. 208-210; text-fig. 43 (p . 209); pl. 196. tigs. 2, 2a. 

1960 Pecopteris (Senjtenbergia) p/umosa-dentata, Dalinval, pp. 51-82; text-fig. 7a, b 

(p. 56); text-fig. 9(?) (p. 70); text-fig. 10 (p. 73); text-fig. 11 (p. 77): pl. 5, figs . 1-

3: pl. 6, figs . 1-2a~ pl. 7, figs. 2, 2a; pl. 8, figs . 1-Ja: pl. 9, figs. l-2a; pl. 10, figs. 

1, 1a; pl. 13, figs. 1-lc: pl. 14, fig. 1. 
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1960 Pecopteris plumosa-dentata forma Bioti, Dalinval, p. 72~ text-fig. lO, p. 73: pl. 

10, fig. 1a~ pl. 15, figs. 3, 3a. 

1966* Senjtenbergia plumosa, Bell, pl. 5, fig. 18. 

1969 Pecopteris plumosa, Darrah, pp. 127-128; pl. 13, fig. 4 . 

1977 Pecopteris plumosa, Remy and Remy, pp. 232-233; text-fig. 116a, b (p. 232). 

1991 Pecopteris (Senftenhergia) plumosa, Josten, pp. 283-284: text-figs. 180a, b & 

l8la, b (p. 283): table 19 (p. 289); pl. 151, figs. L 1a: pl. !52, figs. 1-2a. 

MATERIAL AND OCCURRENCE- Numerous specimens from 88-30 comprising 

devolatilized and .. naturally macerated" volatilized adpressions of ultimate and 

penultimate pinnae, and an antepenultimate pinna. 

DESCRIPTION- Antepenultimate rachis (Pl. 15. Fig. 4) faintly striate. ca. 3.2 mm wide. 

with irregularly spaced punctae 228 to 269 J.lm in diameter; racheis of penultimate pinnae 

often curved apically, slightly flexuous, smooth or with irregular longitudinal striae, 

usually with punctae 47 to 228 J.lm in diameter. up to 2.2 mm wide at base; penultimate 

pinnae (Pl. 15. Figs. 1 to 4; Pl. 16, Figs. l, 2, 4, 5, 7) alternate, arise obliquely at 35 to 

45°, decurrent, linear-lanceolate to elongate-triangular, up to 16.4 em long, 7.2 em wide, 

broadest point between base and l/4 up pinna: lateral margins straight to somewhat 

concave, gradually converge from widest point to acutely rounded, lobate apex. 

Racheis of ultimate pinnae prominent, longitudinally striate, 0.1 to 0.6 mm wide 

at base, extend directly to apex or bifurcate just beforehand; ultimate pinnae opposite, 

sub-opposite or alternate, arise obliquely at 50 to 90° (angle increasing proximally), 
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slightly overlapping to distant, Iinear-lanceolate, straight to gently curved, of various 

dimensions depending on insertion point on frond~ lateral margins either gradually 

converge or remain essentially parallel to l/2 or 2/3 up pinna before gradually converging 

to summit~ apex subtriangular to elongate-triangular, acutely to broadly rounded, lobate; 

distal ultimate pinnae (Fig. 4.4.E; Pl. 15, Figs. l to 3) 6.0 to 13.9 mm long, 2.2 to 5.0 mm 

wide, broadest at base; proximal ultimate pinnae with entire pinnules (Fig. 4.4.F; Pl. 15, 

Figs. l, 3, 4; Pl. 16, Figs. l. 2, 4, 5, 7) 10.9 to 38.8 mm long, 3.8 to 7.8 mm wide, 

broadest near middle; proximal ultimate pinnae with pinnatifid pinnules (Fig. 4.4.G; Pl. 

15, Fig. 1) up to 60 mm long, ca. 14.9 mm wide, broadest in lower half. 

Pinnules alternate. arise oblique to rachis at 45 to 75° (ave. 60 to 70°), adjoin 

rachis with entirety of base, contiguous or united with bases of adjacent pinnules. 

sub triangular or linguaeform, semicircular when small (Pl. 15, Figs. l. 2; Pl. 16, Fig. 4 ). 

subfalcate and curved apically with increasing size (Pl. 15. Fig. 1: Pl. 16. Fig. 1). apices 

narrowly or broadly rounded and somewhat pointed. laminae thin. of various dimensions 

depending on insertion point on frond; lateral margins curved (often convex). entire or 

pinnatifid; entire pimm/es of ultimate pinnae (Fig. 4.4.E, F) 0.9 to 5.7 mm long, 0.8 to 2.9 

mm wide, L:W ratio 1.12 to 2.38: entire pinnu/es near apices of pemtltimate pinnae (Fig. 

4.4.H; Pl. 15. Figs. 2, 3) ca. 5.8 mm long, 2.8 mm wide, L:W ratio ca. 2.07; pinnatifid 

pimmles on proximal ultimate pinnae (Fig. 4.4.G; Pl. 15, Fig. 1) or near apices of 

pem1ltimate pinnae (Fig. 4.4.J; Pl. 15, Figs. 2, 3) 4.2 to 9.4 mm long, 1.7 to 3.4 mm wide. 

L:W ratio 1.67 to 2.76, lobes 0.8 to 1.5 mm apart. 
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Midveins prominent, abrupt to markedly decurrent (Pl. 15, Fig. l), slightly 

fasciculate, typically flexuous but straight in larger pinnules, l 06 to 3 12 11m wide at base, 

extend directly to apex or bifurcate just beforehand~ lateral veins (Fig. 4.5.5; Pl. 16, Figs. 

2, 5, 7) prominent, arise at open angle ( 40 to 75°, ave. 45 to 55°), 28 to 103 Jlm wide, 

may be somewhat flexuous, extend nearly straight or arch gently to reach lateral margin 

at 45 to 90°. unbranched in small pinnules. with increasing development dichotomize 

once at open angle (ca. 20°) 1/3 to l/2 way between midvein and lateral margin (Fig. 

4.5.5). 

REMARKS- Much of the material in the BBA especially resembles Pecopteris 

plumosa-dentata forma Bioti of Dalinval ( 1960). which is synonymous with Pecopteri.\· 

Bioti of Corsin ( 1951 ). This variety has relatively small. subtriangular to linguaeform 

pinnules that have more broadly rounded (but often still slightly pointed) apices in 

comparison with other forms of the species. P. plumosa is rather easily distinguished 

from other pecopteroids in the BBA by the subtriangular and often subfalcate habit of its 

pinnules. The ta.xon could, however, be mistaken for Pecopteris pennaeformis- a case in 

point is a specimen identified as P. (Senftenbergia) pennaeformis by Bell ( 1962, pl. 26, 

fig. 2) that more closely resembles forma bioti of P. plumosa. However, pinnules ofP. 

pennaeformis lack a subtriangular habit, are inserted perpendicular to the rachis, and have 

more prominent and less flexuous veins that generally dichotomize more than once 

(Dalinval 1960). 

Although P. plumosa has conventionally been included in the form-genus 

Pecopteris (Order Marattiales), the taxon is generally regarded as a member of the extinct 
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family Tedeleaceae (Order Filicales) because its sporangia (Senftenhergia) are very 

similar to sporangia of the Tedeleacean Ankyropteris (Jennings and Eggert 1977; Mickle 

1980). 

Order MARA TTIALES 

Form-genus Aphlebia Presl, 1838 

Aphlebia sp. 

Pl. 9, Fig. 8 

MATERIAL AND OCCURRENCE- Two pinnatifid pinnae tragments from BB-30 

preserved as devolati1ized adpression and "naturally macerated" volatilized adpression 

(with coalified veins) . 

DESCRIPTION - Pinnae membranous. elongate-triangular. incised to form lobes. 

dissection decreasingly deep distally. apex acute. not exceeding 29 .5 mm long, 11.1 to 

18.5 mm wide; rachis prominent. straight to gently flexuous. ca. 0.4 to 0.5 mm wide. 

broadly winged by laminae ca. 1.9 to 3.4 mm wide; lobes membranous. elongate­

triangular. arise alternately and decurrently at ca. 30 to 50°, shallowly incised resulting in 

secondary lobes, 5. 1 to 11.2 mm long. 1.3 to 6.5 mm wide; secondary lobes acutely 

triangular. better developed on proximal lobes; mid veins extend entire length of lobe. ca. 

0.2 mm wide near base; lateral veins unbranched, arise alternately and obliquely from 

midvein at ca. 20 to 25°. extend straight or curve slightly before terminating at distal end 

of secondary lobe. 
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REMARKS- This material is morphologically similar to A. go/denbergi, a species with a 

prominent. branching mid vein (see Crookall 1976, text-fig. 248, p. 860~ pl. 158, fig. 3 ). 

The form-genus Aphlebia is poorly defined and includes anomalous or modified foliage 

that grew near the base of primary pinnae of Pecopteris and Sphenopteris fronds 

(Crookall 1976). Unfortunately. the specific parent plant of most morphological species 

of Aphlebia is equivocal (Darrah 1969). 

Form-genus Lobatopteris Wagner, 1958 

Lobatopteris sp. A 

Figs. 4.5.1 to 4.5.3 (p. 82); Pl. 9, Figs. 1 to 7; Pl. 10; Pl. 11, Figs. 1 to 5; Pl. 12, Figs. 1 
to 5; Pl. 13, Figs. l to 4; Pl. 14, Figs. 1 to 10 

MATERIAL AND OCCURRENCE- Abundance of specimens from 88-30 and BB-32 

comprising penultimate and ultimate pinnae preserved as devolatilized, decarbonized and 

··naturally macerated" (occasionally partially pyritized) volatilized adpressions. Cuticles 

fragmentary and poorly preser..·ed. 

DESCRIPTION- Exceedingly polymorphous leaves. with various forms of foliage 

depending on point of insertion on original frond. To simplify description, material has 

been separated into '"distal elements" (i.e., positioned near apices of frond or branch) and 

.. proximal elements" (i .e., positioned in interior of frond or branch). Figure 4.4 

demonstrates assumed positions of frond fragments described in text. Expectedly, 

gradation exists between distal and proximal foliar end members. 
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antepenultimate 
rachis 

c 

A distal penultimate pinna 
B proximal penultimate pinna 
C apex of antepenultimate pinna 
D/E distal ultimate pinnae 
F proximal ultimate pinnae (entire pinnules) 
G proximal ultimate pinna (pinnatifid pinnules) 
H/1 entire pinnules near apices of 

penultimate pinnae 
J/K pinnatifid pinnules near apices 

of penultimate pinnae 

Figure 4.4. Schematic reconstruction of the architecture of a hypothetical 
antepenultimate pinna and constituent floral elements, showing defmitions of elements as 
used in descriptions in the text of both marattialean tree fern and pteridosperm foliage. 
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Racheis of penultimate pinnae ribbed to longitudinally striate, occasionally punctate (Pl. 

12, Fig. 3) but rarely with attached hairs, 2.4 to 5.6 mm wide, thinning distally to 0.7 mm 

wide~ hairs linear, acuminate, 0.1 mm wide at base, not exceeding 1. 7 mm long; distal 

pemtltimate pinnae (Fig. 4.4.A; Pl. 9, Figs. l, 2, 5, 7: Pl. 1l, Figs. L 3, 4) linear­

lanceolate(?). slightly overlapping to distant. not exceeding 7.8 em long or 6.5 em wide. 

widest at or below midpoint: lateral margins straight, more or less parallel throughout 

much of length. converging very abruptly close to summit to form acutely rounded (Pl. 

ll, Fig. 3, 4) to subtriangular blunt apex (Pl. 9, Fig. ?);proximal penultimate pmnae (Fig. 

4.4.8. C?: Pl. 10: Pl. 12. Figs. I to 3: Pl. 13 , Fig. 1: Pl. 14, Fig. 4) elongate-triangular. up 

to 34.5 em long and 20.5 em wide: lateral margins straight to slightly concave. 

converging rapidly to form narrowly rounded, sub-triangular. lobate apex 1.3 mm long 

and l . 7 mm wide. 

Racheis of ultimate pinnae arise abruptly to decurrently (panicularly in distal 

pinnae: Fig. 4.4.0 , E: Pl. 9. Fig. 7), straight to slightly flexuous, repressed but prominent, 

fasciculate to longitudinally striated, may be punctate with attached hairs. 0 l to 2.0 mm 

wide near base, extend either directly to summit or bifurcate just beforehand: punctae ca. 

75 ).1m diameter: hairs (Pl. 12. Fig. 4) linear, sharply acuminate, up to 0.6 mm long, 56 to 

100 1-1m wide at base: ultimate pinnae linear-lanceolate, straight to gently curved, usually 

alternate but infrequently sub·opposite in distal positions. arise obliquely at 45 to 80° 

(ave. ca. 70°, angle decreasing distally), may overlap rachis with pan of base, distant. 

contiguous or overlapping adjacent pinnae (increasingly distant proximally, Fig. 4.4.F), 

morphologies and dimensions differing considerably depending on insenion point on 
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frond; distal ultimate pinnae (Fig. 4.4.0 , E; Pl. 9, Figs. 1 to 5, 7; Pl. 1 0 ; Pl. 1 L Figs. 1. 3, 

4) 7.6 to 34 mm long, 4.0 to 8.5 mm wide, broadest at base or at 1/2 to 2/3 up pinna; 

lateral margins either gradually converge throughout length. or parallel or diverge 

gradually to widest point before converging abruptly to summit; apex lobate, 

subtriangular to blunt or truncate. narrowly or obtusely rounded. ca. 0.8 to 1.2 mm long, 

2.0 to 2.4 mm wide; proximal ullimale pinnae comprising entire pimntles (Fig. 4.4.F; Pl. 

10; Pl. 11. Fig. 2; Pl. 12. Figs. 1. 2. 4, 5; Pl. 13 , Figs. 1, 3; Pl. 14, Fig. 4). 21.0 to 123.0 

mm long, 7.0 to 25 .9 mm wide; lateral margins uneven or parallel tbr ca. l/2 to 213 up 

pinna before gradually converging to summit; apex obtusely or narrowly rounded. 

subtriangular. lobate. may culminate as tiny. elliptical apical pinnule ca. 1.9 mm long and 

3. 1 mm wide; proximal ultimate pinnae comprising pimzatifid pinnules (Fig. 44.G: Pl. 9. 

Fig. 6; Pl. 10; Pl. 11. Fig. 5; Pl. 12. Fig. 3; Pl. 13. Figs. 2. 4; Pl. 14. Fig. 4) 120.0 to 127.3 

mm long. 26.6 to 33 .8 mm wide. broadest at ca. 112 to 213 up pinna; lateral margins 

straight, diverge gradually to widest point before constricting abruptly at summit; apex 

obtusely to broadly rounded. somewhat truncate, lobate. 

Pinnules alternate, markedly decurrent, particularly when small (Pl. 9, Fig. l to 4; 

Pl. 12, Fig. 2. 4). arise oblique (rarely normal) to axis at 35 to 90° (ave. ca. 55 to 70°, 

angle increasing proximally), broadly attached by basiscopic side, acroscopic side may be 

slightly incised (Pl. 9, Figs. 3. 6; Pl. 11 . Figs. 2. 3; Pl. 13. Fig. 3), may be confluent with 

base of adjacent pinnules. distant, contiguous or overlapping, adaxial surfaces frequently 

with scaly to roughened texture because covered by dense mass of tiny hairs that conceal 

venation. abaxial surfaces rarely with sori that obscure venation, pinnule morphologies 
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and dimensions differing considerably depending on insertion point on frond; pinnules of 

distal ultimate pinnae (Fig. 4.4.0, E; Pl. 9, Figs. 1 to 5, 7; Pl. 11, Figs. 1. 3, 4) 

subrectangular to linguaeform. semicircular when very small, asymmetrical and curved 

(because strongly decurrent), apices broadly rounded. 1.3 to 4 .6 rnm long. l.O to 2.5 mm 

wide, generally broadest near middle. L: W ratio l. 12 to 2 . 56: pinnules of proximal 

ultimate pinnae (Fig. 4.4 .F. G) linguaeforrn or less commonly linear (Pl. 13, Figs. 3, 4; 

Pl. 14. Fig. 4 ). broadly to acutely rounded apex. straight to slightly curved. infrequently 

with thin compression margin ca. I 03 to 122 Jlm wide; lateral margins entire to 

pinnatifid; pimmles with elllire margins (Fig. 4.4.F: Pl. 10: Pl. II. Fig. 2; Pl. 12. Figs. I. 

2, 4; Pl. 13, Figs. I. 3) 2. 1 to 12.2 mm long, 1.4 to 3.8 mm wide, L:W ratio 1.24 to 5.54: 

pinnules with pinnatifid margins (Fig. 4.4.G: Pl. 9, Fig. 6: Pl. 10: Pl. ll. Fig. 5: Pl. 12. 

Fig. 3; Pl. 13 . Figs . 2. 4: Pl. 14, Fig. 4) 6.4 to 17.7 mm long, 3.0 to 5.7 mm wide, L:W 

ratio 1.80 to 5.23 . lobes ca. 0.8 to 2. 1 mm apart; elllire pinnules near apices of 

penultimate pinnae (Fig. 4.4 .H. 1: Pl. 9, Fig. 7: Pl. 11. Figs. 3, 4) linguaeform, broadly 

rounded apex, straight to slightly curved. 1.9 to 10.6 mm long, 1.3 to 3.8 mm wide. L:W 

ratio 1.17 to 2. 79: pinnatifid pimmles near apices of pemtltimate pinnae (Fig. 4.4.1. K: Pl. 

9 , Fig. 7 : Pl. 11 , Fig. L 3. 4) elongate-linguaeform. 5.8 to 15 . 1 mm long, 3.0 to 5.2 mm 

wide, L:W ratio 1.74 to 3 .52, lobes 0.8 to 2.1 mm apart. 

Midveins markedly decurrent (Pl. 9, Figs. I to 4; Pl. 12, Fig. 2. 4), may 

preferentially occupy basiscopic side of pinnule, curved to straight, bifurcate very near 

summit, often fasciculate. occasionally punctate with attached hairs, 88 to 760 Jlffi wide 

at base; hairs (Pl. 12, Fig. 4) linear, acuminate, straight to curved, up to 2. 9 mm long, 50 
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Figure 4.5 . Schematic line drawings showing pinnule morphology and venation of ferns 
in BBA. ( l.) Small pinnules of Lobatopteris sp. A~ lateral veins either unbranched or 
dichotomize once with increasing size~ BB-97-30-253, x3 . (2.) Large, entire pinnules of 
Lobatopteris sp. A:, lateral veins either once-dichotomized or, with increasing pinnule 
size, forming three-fold venation pattern (arrow) characteristic of form-genus; 88-96-30-
170, x3. (3 .) Increasingly developed venation (arrow) in pinnatifid pinnules of 
Lobatopteris sp. A (cf Fig. 2); BB-97-30-245, xJ. (4.) Pecopteris sp. cf P. herdii 
pinnules with confluent bases; BB-97-30-247, x5. (5.) Ultimate pinna of Pecopteris 
plumosa; veins either unbranched or dichotomize once with increasing pinnule size~ BB-
97-30-239, x3 . (6.) Pinnules of Pecopteris sp. cf P. cyathea, with lateral veins generally 
unbranched but erratically dichotomizing (arrow); BB-96-30-129, x3. (7.) Penultimate 
pinna ofpteridosperrn(?) affinity, with ultimate pinnae adjoining striate rachis with 
basiscopic side (B) ofbase, while acroscopic side free (arrow)~ BB-96-30-126, x2. 
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to 94 J.LID wide at base: lateral veins curved. 28 to 212 J..Lm wide, arise at 15 to 50° (ave. 

ca. 25 to 35°), arch to reach lateral margin at 35 to 90°. nearly straight and unbranched in 

small pinnules. increasingly arched and with characteristic pattern of bifurcation with 

increasing pinnule size (Figs. -t5 1 to 4 5 3 ). 

Sari (Pl. 14. Figs 1 to 3) situated ca. 1/2 way between midvein and lateral margin. 

equally spaced along pinnule length. ca. 1.0 to l . l mm in diameter. comprising four 

sporangia: sporangia arranged in star. ovate to tear drop shaped. 0.48 to 0.65 mm long. 

0.35 to 0.78 mm \Vide. Spores (Pl. 14. Figs. 5 to 10) circular to elliptical. monolete with 

inconspicuous laesurae. laevigate. thin walled but often with part of exine of distal 

surface markedly thickened . .2~ to 40 ~m long (diameter or long dimension: ave. 28 ~m. 

n= 14). 

REMARKS- Although distal and proximal elements of this rather polymorphous taxon 

typically are found separately. a large penultimate pinna frond (Pl. 10) demonstrates 

morphological gradation between distal and proximal portions of the original frond. and 

justifies the interpretation that the elements once were in organic connection. It is worth 

noting that although no complete antepenultimate pinnae were recovered. many of the 

frond fragments described herein may represent smaller portions of antepenultimate 

pinnae. 

Material has tentatively been referred to the form-genus Lobatopteris. which 

Wagner ( 1958) detined for pecopteroid foliage ofCorsin ' s ( 195 l) Pecopteris miltoni 

Group. Pinnules within this group are characterized by a habit of graduallobing (i .e .. 
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becoming increasingly pinnatifid), a diagnostic venation scheme, and the presence of 

Asterotheca-type fruct i ti cations 

Distal elements described from Blanche Brook are fully in accord with the .. lobed 

fragments" of Wagner ( 1958 ). which comprise smalL laterally fused pinnules with 

decurrent midveins and curv·ed lateral veins that either are simple or bifurcate once. 

Similarly. proximal elements compare very closely with Wagner' s ( 1958) --well 

developed or ·normal" pinnules ... \.Vhich are broadly attached, have perpendicular or only 

slightly decurrent midveins. and are linear or subtriangular in shape with broadly or 

obtusely rounded tops Venation in these better developed fragments·· . . in its most 

simple form consists of only once biturcated nervules. of which the upper branch 

dichotomizes mostly as wdl. so as to provide a characteristically threefold nervation. 

Afterwards. the middle branch of each nervurary group dichotomizes. which example is 

then followed by the lower and upper branches . . . " (Wagner 1958. p. 22; see also fig . 2. 

p. 10). Venation schemes in material from Blanche Brook conform fully with this 

diagnosis for Lohawpten.,· (see Figs 4.5 I to 4 5.3). 

Two specimens of Lobatopteris. sp. A (Pl. 14. Figs. 1 to 3) possess star shaped 

fructifications that closely resemble A.werorheca-type sori [see Dalinval ( 1960). pl. 40. 

figs. 2a, 3a; =('"') ( ~n.uhoL·,wpus of Mosbrugger ( 1983)], which lends further support to 

inclusion of the foliage in the form-genus Lohatopteris. 

According to J-P . Laveine ( 1969. 1970. personal communication Oct. 1998), the 

laevigate, monolete spores recovered from three sori closely resemble Torispora-type 

miospores that have previously been isolated from several different pecopterid species. 



Those spores characterized by having a thickened exine on the distal surface ( Torispora 

or Crassospurites contigurations) (Pl. 14. Figs. 6, 7. 10) apparently matured near the 

periphery of the mass of spores within the sporangia. while unomamented spores devoid 

of this thickening (Laevi;:atfHporites) (Pl. 14. Figs. 5. 8. 9) evidently resided near the 

centre of the mass of spores ( Laveine 1969. 1970). 

Distal frond elements from the BBA closely resemble what Corsin ( 195 1) and 

Dalinval ( 1960) referred to as Pl!r..:optens mi/toni [=Lohatopteris mi/toni ofWagner 

( 1958); see especially Corsin ( 1951 ). pl. 154. tigs. 2-3a: pl. 155. fig . 2: Dalinval ( 1960). 

pl. 33, fig . L pi 3-L tigs I a. Ja: pi 36. tigs. 1-4a: pi 40, fig . l]. Nevertheless. C. J. Cleal 

(personal communication. Feb 1999) cautions that Corsin · s material is misidentified (L. 

mi/toni does not actually occur in the central European intramontane basins!). while 

Dalinval may have included more than one species in his description of L. miltoni . The 

holotype of this taxon. an antepenultimate pinna. was recently redescribed and figured by 

Shute and Cleat ( 1989: pl. I). and pinnatitid pinnules (or distal ultimate pinnae?) of the 

type specimen strongly resembl~ distal elements from Blanche Brook. 

Proximal frond elements from Blanche Brook do not compare as closely to 

equivalent pinnae fragments of!.. milwm illustrated by Dalinval ( 1960; pl. 34. fig . 2: pl. 

35, figs. 2, 2a: pl. 37. tigs . 2. 2a: pl. 39. tig. l, Ia). although this dissimilarity is to be 

expected if much of Dalinvat ' s material was misidentified. Likewise, proximal pinnae on 

the holotype [see Shute and Cleat C 1989): pl. 1: pl. 3, fig . 1] only partially resemble 

proximal elements from the BBA. although the type specimen ·• .. . is not entirely 

representative of the species and does not reflect the range of variation" (C. J. Cleat, 
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personal communication. Feb. 1999). Several ofthe proximal ultimate pinnae look 

similar to material from New Brunswick that Bell ( 1962, p. 30) assigned to Pecopteris 

(Asterothec:a) acac.lica Bell (see Bell 1966, pl. 21. fig. 4). Zodrow and McCandlish 

( 1980, p. 59) considered P. acadica to be synonymous with Asterotheca miltoni, although 

P. acadica is now thought to be a later synonym of L. camertonensis rather than L. 

miltoni (C. J. Cleal. personal communication. Feb. 1999). Some pinnae also compare 

closely with specimens tigured by Bell ( 1938. especially pl. 68) from Sydney Coalfield 

as Asterotheca milt()/11 forma ahhreviata. which he noted had more elongate pinnules 

than typical of.-t. mdtom . 

Despite the obvious difticulties in distinguishing between members ofCorsin's 

( 1951) P. mil toni Group. combined with a lack of reliable published documentation of the 

group, it is concluded that the material described herein compares most closely with L. 

miltoni. This species can be distinguished from similar taxa. such as Pecopteris houro=ii 

Dalinval. Pecopteris lohulata Dalinval and Lohatopteris camertonensis (Kidston) 

Wagner. by having proximal penultimate and ultimate pinnae with markedly more blunt 

apices. and more robust pinnules \Vith conspic•.:ous epidermal hairs and strongly 

decurrent mid veins ( Dalinval 1960: Shute and Cleal 1989: C. J. Cleal, personal 

communication. Feb . 1999). 

Pecopteris (Brongniart) Brongniart, 1828 

Pecopteris sp. cf. P. cyathea (Schlotheim) 

Fig. -&.5.6 (p. 82 ); Pl. 17, Figs. l to 3 

1938* Eupecopteris (Asterotheca) L}'athea. Bell, p. 75~ pl. 76, fig. 2. 
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1951* Pecopteris '-}'athea. Corsin, pp. 330-333: text-fig. 87b (p. 331 ); pl. 174, figs. 2-3; 

pl.175,tigs. l.2.2a:pL I76.tigs. 1-lb:pl.l77,fig.l. 

1977 Asterutheca (al Pecopteris) L}'Clthea. Remy and Remy. p. 235; text-fig. 120a. b 

(p. 236) . 

1990 Pecopteris t..yc.tthl!a. Zodrow. pp. 25-34: text-fig. 13 (p. 27); text-fig. 14a (p. 28); 

pl. 1. fig. L pI. pl. 2 .. tig. J'>: pl . 5. tig . 1: pl. 6. figs . I. 2: pl. 7. figs. l, 2: pl. 8. tig. 

3. 

MATERIAL AND OCCURRENCE- Two ultimate pinnae from BB-30 preserved as 

devolatilized and "naturally macerated'" volatilized adpressions. 

DESCRIPTION - Rae he is of ultimate pinnae repressed. ribbed or longitudinally striate. 

irregularly punctate. I. I to I. 2 mm wide at base: ultimate pinnae linear-lanceolate. up to 

77 mm long, 14.7 to 18 3 mm wide: lateral margins parallel to 2/3 up pinna, then 

converge gradually before constricting abruptly to wide but acutely rounded apex: 

pinnules alternate. adjoin rachis with entirety of base. arise obliquely at 65 to 85° (to 50° 

near apices), slightly distant to slightly overlapping, elongate, oblong to linguaeform. 

obtusely rounded apices. 3 8 to 8.9 mm long, 2.2 to 3.2 mm wide, L:W ratio 1.73 to 3. 18; 

iateral margins parallel. straight. entire: mid veins very prominent, arise abruptly. 0.3 to 

0.5 mm wide near base. extend straight directly to summit or divide just beforehand: 

lateral veins very prominent. widely spaced. arise at 40 to 50°, 166 to 300 11m wide, 

extend straight or barely curving to reach lateral margin at 45 to 60°, typically simple. 
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may fork once (erratically) near midvein (Fig. 4 .5.6): sporangia (Pl. 17. Fig. 2) may 

occupy abaxial surface. ca. 0. 7 mm long, 0 .6 mm wide. arrangement indeterminate. 

REMARKS- Specimens share several morphological features with members of the 

Pecopteris arhoresu.!ns Group recently revised by Zodrow ( 1990). These include slightly 

inclined. distant pinnules with entire. parallel lateral margins: strictly nondecurrent. 

straight mid veins that extend to or branch just prior to reaching the pinnule apex: and 

straight or slightly indined lateral veins that are simple or bifurcate once. Although 

pecopterid fragments are notoriously difticult to determine. the material most closely 

resembles P. r..:varhea. a taxon characterized by relatively large pinnules with a 

combination of irregularly distributed simple and once-bifurcated lateral veins [Zodrow 

( 1990). table 3. p l 1}. 

Although pinnule protiles of P sp cf P. c.}·athea are nearly identical to pinnules 

borne on proximal ultimatt: pinnae of /.ohutopteri.•; sp A. the former can be distinguished 

based on the strictly non-decurrent. straight midveins and comparatively prominent. 

straight and generally unbranched habit ofthe lateral veins (compare Fig. 4 .5.6 with Figs. 

4.5.1 to 4 .5.3) . 

Pecopteris sp. cf. P. herdii Bell~ 1938 

Fig. 4.5.-t (p. 82 ); Pl. 17, Figs. 4 to 6, 9 

1938* Asterothent herdi. Bell. pp. 72-74; pl. 70. tigs. 2. 4, 5: pl. 71, figs. 2, 4 . 

L 980* Asterutheca herdi. Zodrow and McCandlish, p. 57: pl. 69, fig. l. 

1982 Pecopteris herdii. Gastaldo and Zodrow, p. 196; text-fig. Jh (p. 195). 
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1986* Pecopteris herdii. Zodrow and Vasey. p. 22L text-figs. 13.2 & 13.3 (p . 222). 

MATERIAL AND OCCL'RRENCE- Five small penultimate and ultimate pinnae 

fragments from 88-30 preserved as devolatilized and decarbonized adpressions. 

DESCRIPTION - Racheis of penultimate pinnae (PL. 17, Fig. 4) ca. 4. 1 mm wide. rather 

smooth, irregularly striate. \Vith sparse punctae 216 to 325 IJm in diameter: racheis of 

ultimate pinnae arise abruptly to slightly decurrently. longitudinally striate. 0.6 to 1. 1 mm 

wide; ultimate pinnae alternate. arise obliquely at 65 to 75°. linear-lanceolate. up to 28.2 

mm long; lateral margins essentially parallel. converge very rapidly near summit to very 

broadly rounded apex : pinnules alternate. adjoin rachis with entirety of base. nearly 

perpendicular to axis. generally contiguous. incised only 3/4 to 4/5 pinnule length and so 

united to base of adjacent pinnules (PI 17. Fig. 6). linguaeform. apices markedly broadly 

rounded. 2.5 to 7 I mm long. l b to 2.8 mm wide. L:W ratio 1.47 to 2.54: lateral margins 

usually entire. parallel. straight. may be somewhat concave (due to inrolling into matrix) 

or falsely crenulate: midveins weakly decurrent. straight to slightly tlexuous. 109 to 244 

IJm wide at base. bifurcate near apex : lateral veins <Fig. 4 .5.4: Pl . 17. Fig. 5) markedly 

delicate, ca. 25 to 84 IJm \vide. arise at 20 to 30°. extend short distance then fork at open 

angle ( 40 to 50°} before turning abruptly to reach lateral margin at 70 to 90°; intersection 

with lateral margins may result in falsely crenulate or tinely lobate margin (Pl. 17. Fig. 

9); hairs on abaxial(')) pinnule surfaces (Pl. 17. Fig. 6) linear. sharply acuminate, up to 

0.89 mm long. 28 to 50 ~Lm wide at base. 



REMARKS- Morphology of the pinnules (esptcially arrangement of lateral veins) is 

strikingly similar to a schematic illustration of Pec.:opteris herdii pinnules by Gastaldo 

and Zodrow ( 1982) Similarities include: pinnule outline (broadly rounded apices. 

occasionally falsely crenulate or concave lateral margins). nervation pattern, and presence 

of abaxial('>) hairs. indicating that specimens may at least have affinity with P. herdii . 

Although fragmentary. fJ sp . cf P. herdii can be distinguished from Lohawpreris 

sp. A based on the essentially perpendicular attachment and confluent bases of pinnules. 

and comparatively delicate and tlexuous venation (see Fig. 4.5.4) . 

Pecopteri.~ sp. A 

Pl. 17. Figs. 8. I 0, 11: Pl. 18, Figs. l, 2 

MATERIAL AND OCCCRRENCE- Seven specimens from 88-25. 88-30 and 88-32 

comprising penultimate and ultimate pinnae preserved as devolatilized and decarbonized 

adpressions . 

DESCRIPTIOI\i- Racheis ofpenultimate pinnae (Pl. 17. Figs. 10. 11) up to 2.5 mm 

wide, with elevated punctae ca . 75 to 375 11m in diameter. up to 2.5 mm wide; 

penultimate pinnae of indeterminate morphology or dimensions. lateral margins near 

apex initially converge very rapidly before constricting more gradually to narrowly 

rounded(?) apex (imparting convex then concave protile) . 

Racheis of ultimate pinnae arise abruptly. fasciculate, 0.2 to 0.9 mm wide at base. 

extend very close to apex: ultimate pinnae alternate. arise obliquely at 50 to 90° (ave. ca. 

65 to 75°}, distant. linear-lanceolate with narrowly rounded. lobate apex, curve gently 
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apically; distalulrimate pinnae (Fig. 4.4 .E: Pl. 17. Figs. 10, l L Pl. 18, Fig. 1) 10.8 to 

14.4 mm long. 3.0 to 3 8 mm wide. broadest at base. lateral margins converge gradually; 

proximal ultimate pinnae (Fig. 4 .4 F: Pl. 17. Figs. 8, 11: Pl. 18. Fig. 2) up to 45 .3 mm 

long, 3.9 to 8.8 mm wide. broadest at base. lateral margins strikingly parallel. 

Pinnules alternate. increa::;ingly decurrent and oblique (60 to 90°) when smalL 

adjoin rachis with entirety of base. distant near tops. bases contiguous or confluent with 

adjacent pinnules. subtriangular to sublinguaetorm. semicircular to subrectangular when 

small (Pl. 17. Figs. l 0. II: PI 18. Fig. I). straight or subfalcate and curved apically with 

increasing size (Pl. l 7. Figs 8. I I . Pl. 18. Fig. 2 ). may be strongly vaulted with 

inconspicuous compressiun margin ca. I 03 to 156 1-1m wide; lateral margins subparallel. 

gently curved to straight. entire or rarely pinnatitid. converge gradually to narrowly or 

obtusely rounded summits: l!lllirf! p1111111les cif ultimate pinnae (Fig. 4.4 .E. f) 1. 1 to 4.4 

mm long, 0.9 to 1.9 mm \vide. L \V ratio 1.08 to 3.63: ell/ire pmnules near aptces of 

pemtltimate pmnae tFig. 4 . ~ H: Pl . 17. Fig. 10: Pl. 18. Fig. l) 2.3 to 3.5 mm long. 1.0 to 

1.6 mm wide. L W ratio I 74 to 2 30: pinnatijiJ pimmles near apices ofpenu/timate 

pinnae (Fig. 4-l.J) 3 6 to 9 7 mm long. 1.6 to 2.7 mm wide. L:W ratio 2.19 to 3.69. lobes 

0.6 to 1.2 mm apart . 

Midveins repressed. slightly fasciculate. abrupt but increasingly decurrent and 

broadly curved in small pinnules. ca. 125 to 412 ~Lm wide at base. extend directly to apex 

(in small pinnules) or bifurcate(') just beforehand: lateral veins arise at ca. 25 to 45°, arch 

gently to reach lateral margin at ca. 55 to 70°. simple or dichotomize immediately after 

arising from midvein. 



REMARKS - Although distal frond elements have not been found in organic connection 

with more proximal elements. that they were originally intimately associated on the same 

plant is assumed because ( i) entire pinnules near the terminus of penultimate pinnae (Fig. 

4.4.H: Pl. 17. Fig. I 0~ Pl. 18. Fig. I) are morphologically identical to those of proximal 

ultimate pinnae (Fig ~ ~ F. Pl I 7 . Figs 8. II: Pl. 18. Fig. 2); and (ii) tiny pinnules on 

distal ultimate pinnae (Fig ~ -l E ~ Pl. 17. Fig. I 0: Pl. 18. Fig. I) are morphologically 

identical to those near the apices of proximal ultimate pinnae (Fig. 4.4 .F: Pl. 17. Fig. II. 

Pl. 18. Fig. :2). and to those on distal ultimate pinnae near the apices of penultimate 

pinnae (Pl. 17. Fig 10: Pl. IS . Fig. 2) . 

The pattern of rapid lobing or ditl"erentiation of entire pinnules near apices of 

penultimate pinna to torm pinnatitid then distal ultimate pinnae bears some resemblance 

to rather abrupt patterns of klbing characteristic of the form-genus Lobatopteris (Wagner 

1958). In particular. apical penultimate pinnae are morphologically similar to and may 

have affinity with l.ohatopren.,· mrL.nmulwni. a species with somewhat decurrent, 

semicircular to linguaet"lxm. and relatively small pinnules (see Corsin 195 l. pl. 160). 

However, pinnules of proximal ultimate pinnae from Blanche Brook are less comparable 

with L micrumiltom. as they are attached to the racheis far less decurrently, and are more 

subtriangular and elongate than those tigured by Corsin ( 1951 ). Alternatively, Pecopteris 

sp. A may in fact be a member of the Pecopteris arhorescens Group, a notoriously 

difficult group of pecopterids recently revised by Zodrow ( 1990). 

The subtriangular and somewhat apically curved pinnules on proximal ultimate 

pinna bear some superticial resemblance to pinnules of Pecopteris p/umosa. However. 



these taxa are quite easily ditTerentiated because P. plumosa has conspicuously 

subtriangular pinnules \.Vith wider bases and a more open, flexuous venation pattern (Fig. 

4 .5 .5). 

Sphenopteris (Brongninrt) Sternberg, 1825 

.\'pllenopteris sp. A 

Pl. 18. Fig. 5 

MATERIAL AND OCCLRRE~CE- Single penultimate pinna fragment from BB-30 

preserved as devolatdized adpression. with vascular strand of rachis pyritized. 

DESCRIPTION - Penultimate pinna -C 5 mm long. ca. 37 .5 mm wide: rachis delicate. 

straight to slightly tlexuous. \Vith t~1int longitudinal striae. ca. 1.0 mm wide. central 

vascular strand ca 0 .2 mm v .. ide. ultimate pinnae with short stalk, alternate, perpendicular 

or slightly oblique at 70-90". distant. linear-lanceolate with narrowly rounded apex, 11 .2 

to 18 .9 mm long. 5 I) to 7 9 mm \vide: racheis straight. 0.3 to 0 .5 mm wide near base: 

pinnules with tiny but dis(ernible stalks near base of pinnae. more broadly attached 

apically. decurrent and oblique at 35 to 70°. distant. subovate. 1.2 to 3.6 mm long, 0 .8 to 

1.1 mm wide. laminae moderatdy incised by thin. acuminate sinuses resulting in terminal 

lobe and up to three pairs of lateral lobes: lateral lobes broadly attached. either broadly 

rounded. triangular and squat. or somewhat lanceolate with pointed apices. 

REMARKS -The morphology of foliage and presence of stalked pinnae and pinnules 

indicates possible atlinity with the foliar form-genus Sphenopteris. 



cf . . \'plle~topteris sp. 

Pl. 17, Fig. 7 

MATERIAL AND OCCL'RRENCE- Single apical fragment of ultimate('') pinna from 

BB-25 preserved as ··naturally macerated'' volatilized adpression (veins coalified). 

DESCRIPTION -Pinna subtriangulac rachis 04 mm wide. bordered by thin wing of 

lamina. terminus of ra~his comparatively robust. stiffened. longitudinally striated; 

pinnules stalked. alternate to sub-opposite. decurrent. inserted obliquely at ca. 20 to 30°, 

membranous with thin laminae. cuneiform to fan like. 3.9 to 5.9 mm long. 1.2 to 2.9 mm 

wide, broadest at distal margin. lateral margins entire. straight; distal margins somewhat 

convex. digitate or dentate. divided into 2 to 7 ··teeth": teeth obtusely rounded. ca. 0.4 

mm wide. separated by deeply incised. narrowly pointed sinuses. longest near middle of 

distal margin. decrease in number in api~al pinnules; midveins strongly decurrent. 106 to 

145 j.lm wide. dichotomize I to 4 times at acute angles (20 to 40°), each vein extending 

nearly straight before terminating at distal end of single tooth. 

REMARKS- The taxonomic position of this specimen is impossible to ascertain without 

larger. better preserved material Given that pinnules are stalked. the specimen is 

tentatively included in the heterophyllous foliage form-genus Sphenopteris. In particular, 

the specimen bears some resemblance to .)'phenopteris coemansii illustrated by 

Brousmiche ( 1983. p 3 l I. pi 8-L tigs l-4) and Josten ( 199 L p. 215, pl. 98. figs. l-2a), 

and may represent the apical end of this or an affine taxon. The stiffened rachis which 

terminates the specimen may represent a strobilus(?) (Pl. 17, Fig. 7). 



Fern frond racheis 

Pl. 16, Figs. 3, 6 

MATERIAL AND OCCCRRE~CE- Abundant stem fragments from 88-30 preserved 

as (occasionally partially pyritized) devolatilized or decarbonized adpressions. 

DESCRIPTlO"i\; - Racheis unbranched. up to 22.0 ern long. 5.5 to 28.0 mm wide. 

irregularly punctate. occasionally pubescent. longitudinal striae inconspicuous and 

discontinuous~ punctae circular. U l to 0 5 mm in diameter (ave. 0.2 mm): hairs 

acuminate. straight to slightly curv~::d. stitTC1
). 0.5 to 3.6 mm long. 

REMARKS- Ra\:heis are int!:!rpreted as isolated. pubescent and punctate axes of 

Pecopreris and l .ohatofJit.!ns fronds .\pparently no form-genus name exists for 

adpressed stems. but when anatomically preserved as petrifactions they are referred to as 

Psaroniu.•; (Stidd 1971 . Stewart and Rothwell 1993 ). Psaronius fronds can be very large 

and have multiple orders of branching. which confounds efforts to determine from which 

part of the frond each specimen \•;as derived. lt is sutlice to note that wider axes 

represent racheis from proximal parts ofthe frond . 

~A Division PTERIDOSPERMOPHYTA 

Ordea· MEDULLOSALES 

...tletlwpteri.tt Sternberg, 1825 

cf. Alethopteris sp. 

Pl. 18, Fig. ~ 
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MATERIAL AND OCCLrRRENCE- Single pinnule fragment from BB-30 preserved as 

devolatilized adpression 

DESCRIPTION- Pinnule tO 6 mm long (base nor apex preserved). 4.4 mrn wide. 

strongly vaulted~ lateral margins straight. parallel. converge slightly towards apex: 

midvein prominent. strongly repressed. longitudinally striate. 0.2 mm wide: lateral veins 

prominent. arise nearly perpendi(:ular to midvein. arch slightly to reach lateral margin at 

ca. 90°. ca. 90 ~·m wide. ~qu idistant. ca. 0 2 mm apart. unbranched or dichotomize once 

at very low angle near midvein . 

REMARKS -The dense. nearlv perpendicular venation. repressed midvein. and strongly 

vaulted lamina are all (:luuacteristics of the form-genus Alethopteris. 

Form-genus (rdupteris Brongniart, 1828 

(rclopteri.'i spp.(?). 

Pl. 18. Figs. 3. 7, 8 

MATERIAL AND OCCLRRE~CE - Three specimens (two pinnules) from BB-30 and 

BB-32 preserved as decarbonized. devolatilized or ··naturally macerated" (occasionally 

partially pyritized) volatilized adpressions 

DESCRIPTION- Pinnules isolated. laminae delicate. often asymmetrical, orbiculate. 

ovate or semicircular. bases truncate. margins entire. 22 .2 to 35 .6 mm long, 18.8 to >37.0 

mm wide. broadest at base or near middle~ veins prominent. longitudinally striate. 

nonflexuous. distant. ca 0.3 mm wide at base. enter near middle ofbase. extend apically 



and arch gently or broadly (radiate) to reach lateral margin at 70-90°, dichotomize five to 

seven times at very lmv angles (I O-l5c). nervation density 23 to 33/cm. 

REMARKS- According to criteria ofCieal and Zodrow ( 1989), Cleat et al. ( 1990) and 

Cleat and Shute ( 1995 ). large. orbiculate pinnules referred to Cyclopteris sp . are attached 

to primary racheis ,Jf l.di . ._' IJIO.:ufJ/r..' l"i.' bdu\v the main bifurcation (see Cleal and Shute 

1995, figs . -+. 5: Laveint: ILJLJ7. tig -l ). lt is. however. very difficult to refer isolated 

cyclopterid pinnule adpressions to species unless intimately associated with identifiable 

"normal" lateral pinnules or torma ITII{Jar-type pinnules 

Pinnules probably have at1inity with ( ~n.:lopteris orbicularis (see Cleal and 

Thomas 1994. pl. 17. tig II Thev resemble pinnules tigured by Bell (l962, pl. 32. tigs . 

3, 4) that he postulated might have been attached to stems bearing Neuropteri.•; 

(=Laveineuprens) fr.!IIUJ/ulia tO!iage .-\ single pinna comparable to this taxon was 

recovered from BB-30. hut/ .. tr.:niiJ{olw forms much ofthe plant litter at BB-14. 

Additionally. pinnules compare with cyclopteroid-type pinnules that Bell ( 1938. pl. 52. 

fig. 2) attributed to .Vt!uropt!!n.' ( o:::.. \!acronellropleris) sc:heuch:eri. although material 

from Blanche Brook lacks anv evidence of the hairs that Bell used to establish this 

affinity. 

The radiating. gently to broadly arching. and non-flexuous habit of veins within 

the material differentiates them from cyclopteroid-type (i.e .. not .. true" Cyclopteris sp.) 

pinnules interpreted as having atlinity with Neuropteris semirelicu/ata (Fig. 4.8.6 and 

4.8.8; Pl. 18. Fig. 6. PI 23. Figs. b . 8 ). 
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Laveilleopteri."i Cle<tl, Shute and Zodrow ( 1990) 

Lllveineopteris rarillervi."i (Bunbury) Cleat, Shute and Zodrow, 1990 

Fig. 4.6.1 to -&.6.3. 7. 8 ( p. 101 ): Pl. 18, Figs. 9 to 13~ Pl. 19, Figs. 1 to 4, 9 

1930 Neurupteris .Yikolau.''· Benrand. pp. 21-23~ pl. 8. figs . 1-2a; pl. 8 bis. figs . 1-2. 

1938 New·otJierr.,· ntmlt:ITJs. Bell. pp 58-59 ~ pl. 52. tig. 3~ pl. 53. figs. l. 2. 

1953 Nettroptr.!ns ant!llltaht. Havlena. pp. 133-140~ pl. l. tigs . 1-5; pl. 2. figs. 1-3 

1953 Neuroptens rurlllf.!IT/s. Havlena. pi I. tig . 6 

1959 Neumprt!n.' rurlllt!ITI_, _ Cmokall. p 122-127 ~ text-tigs. 43 (p. 124 ). 44 (p. 126), 

64g. h ( p. 197 l. pi 3U_ tigs 1-3. pi 31. tigs 1-3 

1962 Neuroptr.!ns ranna\'1_,_ Bdl. pp 43-44 ~ pi 32. figs . l. 2: pl. 35: pl. 36, figs. L 3. 

1966 Neuropll!n.,· ranna\'fs. Bdl. pi 30. tigs . 7. 8: pl. 32. tigs . l, 2: pl. 33, fig. 7_ 

1967 Neuroptat.,ramJc.:rl'ls_ Laveine. pp . 181-190: text-tig. 31a-i (p. 183): pl. G. figs . 

2, 2a: pi :\ . tig -la. pi 0 . tigs 1. I a. I b: pi 40. tigs. 1-4a: pl. 41. tigs. 1-4a; pl. 

42. tigs . l-3a. pi -lJ . tigs 1-3 . pi 44. tigs. 1-Sa: pl. 45. figs . 1-2a. 4-5a: pl. 46. 

figs . l-2a. pi l-oa 

1969 Neuroplats rart!IL'IT/_,-_ Darrah. pp . I 01-102: pi 20. fig. 2. 

1975 Neuropten_, rartiiL''"''-'- Duubinger and Germer. pp. 9-1 O: text-fig. 5 (p. 9); pl. 3. 

tig. 4 

1977 Neumptens al/eJwuta. Remy and Remy. p. 255: pl. 136, figs. a-d (p. 254). 

1986 Neurupteris rarllten-Js. ZodrO\v and Vasey, p. 213: text-fig. 5 (p. 212). 

1991 Neuroprr.!n' LlffC:IIItuTLt. Justen. pp . 323-324~ text-fig. 209 (p. 324); table 22 (p. 

""'""'" ...... ""') · I I '"'8 t
9 

I I I b __,__, __ _,_,_, . p . o . tgs _ a. _ 



1994 Laveinevplau rarmern., . Cleat and Thomas, p. 112: text-fig. 53 (p . 113); pl. 17, 

fig. 4 (p . Ill) 

MATERIAL .-\NO OCCL'RRE:'\CE- .·\bundant isolated pinnules and penultimate and 

ultimate pinnae fragments from BB-1-l preserved as devolatilized and decarbonized 

adpressions Cuticles \veil preser,·ed 

DESCRIPTION - Ra~heis of penultimate pinnae (Pl. 19. Fig. 2) ca. l .0 mm wide. with 

longitudinal striae or ribs ca o 2 mm apart: ultimate pinnae (Fig. 4 .6 . I. 3. 8: Pl. 18. Figs. 

9, 11, 12: Pl. 19. Figs I. l) l linear-lanceolate. obtusely rounded apex. distant, contiguous 

or slightly overlapping. I 5 tu 2 2 ~m long. 5 .8 to 8 .8 mm broad. bearing lateral pinnules 

and culminating in terminal pinnule . racheis (PI 19. Fig l) 0 .5 to 0.9 mm wide. 

longitudinally striate\\ ith ribs ~a -:' 1J to I 56 11m apart. end as .. mid vein" of terminal 

pinnule: lateral pinnulcs stalked but increasingly sessile apically (Fig. 4 .6 . 1. 3. 8; Pl. 19, 

Fig. l ), alternate to sub-opposite. arise obliquely. contiguous or overlapping, 

linguaeform. subovate to subre~tangular. coriaceous. 2. 8 to 11.8 mm long. often longer 

on acroscopic side l)f pinna. I - tl) 49 mm wide. L. W ratio \.53 to 2 .65. ratio higher in 

proximal pinnules. bases semicordate with basiscopic and acroscopic auricles. acroscopic 

auricle commonly overlapping rachis. frequently with prominent "compression margin" 

comprising striae arranged oblique to lateral margin (Pl. 19, Fig. 9); lateral margins 

nearly straight. undulate \vhen pinnule very slightly pinnatitid or auricles well developed: 

midveins prominent. t~tsc1culate. somewhat tlexuous. 0 .2 to 0 .5 mm wide at base, 

extending ca. 3/4 to -l/ 5 up pinna before bifurcating; lateral veins prominent, widely 



spaced, fasciculate. slightly tlexuous. 56 to 125 ~m wide, arise at 25 to 3 5°, extend nearly 

straight or arch to reach lateral margin at -lO to 80° (angle decreasing apically) where they 

curve apically to merge \\ith ··(ompression margin". unbranched (near tops of pinnules) 

or bifurcate I to 3 (rarely -+ 1 times at \vide angles. nervation density 19 to 3 5/cm 

(decreasing apically) : in broadly attached. decurrent pinnules near apices thin subveins 

arise directly from ra(hi s and enter basi scopic side of pinnule (Fig 4 .6. L Pl. 19. Fig. l ); 

terminal pinnules (Fig. -+ () 3. X. PI l ~ - Fig. II) trapezoidal to hastate. pinnatifid near 

base, with undulate lateral margins that converge to broadly or obtusely rounded apices. 

REMARKS - \laterial \Vithin the BBA is characterized by very small pinnules that 

strongly resemble .Veiii"Uflh'l'l.' llllc.:rutJhylla. which was synonymized with N rarinervis 

by Laveine ( 196 7 l In add itilln . pinnult:s are characterized by fasciculate lateral veins 

that curve apically just be;: fore terminating (Fig. -l .6 7) and merging with prominent 

·'compressions margins· · cumpri sing llblique "striations·· {Pl. 19. Figs. l , 9). Similar 

observations wert: made h\· <kstr\·-Stidd 1 1979. p 38) from anatomically preserved 

specimens. who \vrote that ··tradlt:ids art: cantoned where the veins end at the pinnule 

margin and resemble;: tht: bundle;: strw.:ture ofhydathodes.·· (Hydathodes are water­

excreting epidermal st ru(tures . J .-\lthough this '"compression margin" could be a very 

useful in identification L1f /. . rannt.'ITI.'i. it apparently has yet to be recognized (or at least 

documented) in adpresst!d specimens 

Lateral margins of some don gate pinnules \Vith comparatively high nervation 

densities are pinnatifid(")) \\ith fairly regular undulations that may represent initial stages 

of lobing (Fig. 4 6 2. PI IS_ Fig~ I 0. I 3: see also Remy and Remy 1977, fig. l36d, p. 
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(previous page) Figure 4.6. ( L) Ultimate pinna of Laveineopteris rarinervis, with sparse 
venation characteristic of taxon: note small sub veins entering basi scopic side of 
uppermost (sessile) pinnules directly from rachis rather than arising from midvein; BB-
96-14-44, x5 . (2.) Isolated, mature pinnule of L rarinervis with comparatively dense 
venation~ left (acroscopic?) lateral margin slightly lobate; BB-96-14-21, x5. (3 .) Apex of 
ultimate pinna of L rarinervis: BB-96-14-18, x5 . (4.) Pinnule fragment ofcf 
Laveineopteris tenuifolia with dense, gently arching venation; BB-96-14-24, x5 _ ( 5 _) 
Small pinnule ofcf L. tenuifolia; BB-96-14-9, x5 . (6.) Large. elongate pinnule ofcf L 
temtifolia; compression margin (arrow); BB-96-14-45. xS . (7 .) Isolated pinnule ofL. 
rarinenis: note lateral veins curve apically upon reaching lateral margin: BB-96-14-4:!b. 
x5 . (8.) Apex of ultimate pinna ofL. rarinervis; pinnules increasingly sessile apically: 
BB-96-14-16. xS . 

254). These pinnules may have been inserted near apices of penultimate pinnae (cf Fig. 

4.4.1: see also Crookall 1959. tig. 43. p. 124: Bell 1966, pl. 30. fig . 7: Laveine 1967, pl. 

44, figs . 4. 4a). Alternatively, they may have been inserted near the base of proximal 

ultimate pinnae (cf. Fig. 4.4.G; see also Laveine L 967, pl. 42. figs. 2. 2a). 

cf. Lllveineopteris tenuifolia (Sternberg) Cleat, Shute and Zodrow, 1990 

Fig. 4.6.4 to 4.6.6 (p. 10 l ); Pl. 19, Figs. 5 to 8; Pl. 20, Figs. l, 2, 4, 5 

1930 Neuropteris tenuifo/ia. Bertrand. pp. L 8-20; pl. L. fig . l; pl. 2. figs. L. 2; pl. 3. figs . 

L. 2: pl. 4. figs. L-Ib : pl. 5. tigs. 1-lb; pl. 6. figs . l-3 . 

1938 Neuropteris tenuifolia. Bell, p. 54; pl. 47. figs . l-3 . 

1953 Neuropteris tenuifo/ia. Havlena, pp. 145-147; pl. 3. figs. 3-6; pl. 6, fig. 3: pl. 7. 

figs. 3. 4 . 

1959 Neuropteris tenuifolia, Crookall, p. 117-121; text-figs. 42 (p. 119), 63f. k (p. 196): 

pl. 29. figs . l-4. 

1962 Neuropteris tenuifolia, Bell, p. 42~ pl. 34, figs. 3, 4; pl. 36, fig. 2. 

1966 Neuropteris tenuifolia, Bell, pl. 13, fig. 7; pl. 14. fig. 9; pl. 17, fig. 1. 
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1967 Neuropteris tenuijolia. Laveine, pp. 166-176~ text-fig. 29a-e (p. 168); pl. 8, figs . 

2, 2a; pl. N, tig. 1, 2?, 2a?; pl. 30, figs . 1-4a; pl. 31, figs . 1-5; pl. 32, figs. 1-4; pl. 

33, figs . 1-2a, 4-6; pl. 34, figs. 1-5a. 

1969 Neurupteris tenuifolia, Darrah, pp. 100-10 L pl. 45. figs. 3-4. 

1975 Neuropteris tenuifolia, Doubinger and Germer, p. 5; pl. 1, figs. 1. 2. 

1977 Neurupteris tenuifolia, Remy and Remy, p. 252; text-fig. 135, figs. a-c (p . 253) . 

1986 Neurupteris tenuifulia. Zodrow and Vasey, p. 213; text-fig. 6-l, 2. 3-8 (p. 214). 

text-tig. 7 (p. 215). 

1991 Neuropteris tenuifolia, Josten, pp. 316-318, text-fig. 203 (p. 317); table 22 (p . 

332-333); pl.l8l , tigs. l.la; pl.182.figs. l,la, lb . 

1994 Laveineopterh; tenuifolia. Cleal and Thomas, p. 114: text-fig. 53 a (p. llJ ); pl. 17. 

fig . 5 (p. Ill). 

MATERIAL AND OCCURRENCE- Abundant isolated pinnules from BB-14 preserved 

as decarbonized. devolatilized or "naturally macerated" (occasionally panially pyritized) 

volatilized adpressions; single incomplete ultimate pinna from BB-30 preserved as 

devolatilized adpression. Cuticles well preserved. 

DESCRIPTION - Ultimate pinna (Pl. 20, Fig. 1) linear-lanceolate, 8.4 em long (base nor 

apex preserved). ca. 3. I em wide, lateral margins straight and parallet rachis ca. 1.84 mm 

wide, with longitudinal striae and prominent ribs ca. 0.2 mm apan; lateral pinnules 

stalked but increasingly sessile apically, alternate, slightly oblique at 75 to 80°, ca. 45° 

apically, distant, straight to subfalcate, round or subovate to linguaeform or elongate-
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triangular, 5.2 to 25.4 mm long, 3.0 to 8.6 mm wide, broadest at base, L:W ratio 1.26 to 

3 .08, ratio highest in proximal pinnules, bases cordate to semi cordate, basiscopic auricles 

increasingly prominent with maturity (Pl. 19, Fig. 6; Pl. 20, Fig. 1 ); compression margin 

(Fig. 4.6.6; Pl. 20, Figs. 2, 4) prominent, ca. 0.1 to 0.2 mm wide, smooth; lateral margins 

parallel, converge slightly near broadly to obtusely rounded apex. with diagnostic 

shallow indentation l/4 to l/2 up pinnule (Fig. 4.6.4 to 4.6.6: Pl. 19, Fig. 6: Pl. 20, Figs. 

1, 2, 5); midveins inconspicuous. repressed, tinely striate, 0.2 to 0.6 mm wide at base. 

straight, extend ca. 3/5 to 9/l 0 (ave. 4/5) pinnule length; lateral veins dense but distant, 

distinct, 75 to 100 J.lm wide at lateral margin, arise at 10 to 25°, ascend straight before 

gently arching to reach lateral margin at 50 to 90° (ave. 75°) where they merge with 

compression margin, divide very near midvein, subsequently dichotomize at very low 

angle 1 to 3 (rarely 4) more times, nervation density 32 to 47/cm. 

REMARKS - With the exception of a single ultimate pinna fragment, specimens are 

recovered only as detached pinnules. Although this trait may be paleoecologically 

significant in demonstrating the caduceus nature of this species, it does complicate 

accurate taxonomic assignment. Many specimens are characterized by a prominent and 

fairly diagnostic smooth. compression margin (Fig. 4.6.6: Pl. 20, Figs. 2, 4). Although 

this feature can be recognized in tigures of L. tenuifo/ia by several authors ( eg. Bell 1962, 

pl. 36, fig. 2; Cleat and Thomas 1994, pl. 17. fig. 5), surprisingly only Bell ( 1938, p. 42) 

has acknowledged its existence. 

Although the material from Blanche Brook has tentatively been referred to cf. L. 

tenuifo/ia, some specimens bear semblance to Neuropteris bourozii Laveine (see Laveine 
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1967, p. 152, pis. 23 to 25), a rare species restricted to lower Duckmantian strata of 

western Europe (Cleal and Shute 1995). Cuticles recovered from adpressions of cf L. 

tenuifolia from Blanche Brook were briefly examined and, on pretiminary analysis, are 

identical to cuticles of L. telluifo/ia described by Barthel ( 1962). Cuticles have not been 

described from N. bouro=ii ( Cleal and Shute 1995 ). so cuticular comparison is not yet 

possible. 

Form-genus Linopteris Presl, 1838 

Linopteris 11europteroicles (Gutbier) Zeiller, 1899 

Fig. -t7.l nnd 4.7.2 (p. 107); Pl. 20, Figs. 3, 6 to It; Pl. 21, Figs. 1, 5 

1930* Linopteris neuropterotde ... · var. minor, Bertrand, pp. 32-34; pl. 16, figs. 1-3: pl. 17. 

figs. 1-3: pl.l8. tigs. 1 a-b. 

193 8 Linopreris neuropteroides var major. Bell, p. 66; pl. 61, figs. 1-4. 

1959 Linopteris neuropteroides, Crookall. p. 209-211; text-figs. 71 (p. 210), 72d (p. 

212); pl. 48, tig. 4. 

1966 Linopteris neuropteroides var. major. Bell, pl. 14, figs. 4, 5. 

1967 Linopteris neuropteroides. Laveine, pp. 279-284: text-fig. 45a-c (p. 280); pl. 79, 

tigs . 1a-10: pl. 83, tigs. 3. 3a. 

1977 Linopteris neuropteroides var. major, Remy and Remy, p. 268; pl. 147, figs. a-b 

(p. 269). 

1977* Linopteris neuropteroides var. neuropteroides, Remy and Remy, p. 268~ pl. 148, 

figs. a-b (270-271 ). 
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1991 Linopteris neuropteroides. Josten, pp. 341-343; text-figs. 220 (p. 342), 221 (p . 

342); table 24 (p. 346); pl. 205. figs . 1-2a; pl. 206, figs. l-4a. 

MATERIAL AND OCCURRENCE - Numerous isolated pinnules from 88-19 preserved 

as devolatilized and decarbonized adpressions. 

DESCRIPTION- Pinnules caduceus. typically arcuate or subfalcate. occasionally 

straight and rotund or sublinguaeform to subovate, bases truncate to slightly cordate. 9. 1 

to 25 .2 rnm long (ave. 18.3. n=l9). 5.9 to 9.8 mrn wide (ave. 8.1. n=27). broadest 

between base or l/2 up pinnule. L:W ratio 1.53 to 2.86 (ave. 2.32. n=19), may have 

subtle compression margin 94 !liD wide. rarely with punctae(?) or hairs on lamina 

surface; lateral margins entire. subparallel near base. one or both curve inward near 

summit to broadly or (intrequently) narrowly rounded apex: punctae(?) (Pl. 21. Fig. 1) 35 

!lffi in diameter. hairs (Pl. 21, Fig. 5) straight to slightly bent. ca. 150 f.liD long, oriented 

oblique to lateral margin; rnidveins repressed and somewhat inconspicuous. with taint 

longitudinal striae. 0.1 to 0.3 rnm wide near base. extend ca. 2/3 to 3/4 up pinnule: lateral 

veins thin. typically 50 but up to I 00 !lm wide, arise at 8-15 o. arch to reach lateral margin 

at 60 to 90° (ave. ca. 75-85°), anastomose to form meshwork of elongate. thin, acutely 

pointed areolae (Fig. 4.7. 1, 2.; Pl. 21. Figs. 1, 5) that decrease in size upon approaching 

lateral margin. nervation density ca. 53/ern. 

REMARKS - Paripinnate pteridosperm foliage (including Paripteris and Linopteris) 

frequently is recovered as only isolated pinnules. attesting to the caduceus nature of the 

group. As these taxa have a diverse array ofpinnule morphologies depending on the 
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Figure 4. 7. Schematic line drawings of Linopteris neuropteroides. ( 1.) Isolated, 
sub falcate pinnule with anastomosing venation characteristic of taxon~ BB-96-19-40, x3 . 
(2.) Isolated pinnule tentatively referred to L. neuropteroides; venation slightly more 
flexuous than typical ofpinnules from BBA (see discussion in text); BB-96-19-24, x3 . 

insertion point on the original frond (see especially Laveine 1967, pl. 79), it is perhaps 

expected that pinnules with variable profiles from Blanche Brook have been included in 

L. neuropteroides. 

Material within the BBA compares most closely with L. neuropteroides var. 

minor described by Potonie (1904; 15 to 22 nun long, 6 to 8 nun wide, straight or only 

slightly arched). Apparently Bell ( 193 8, 1966) only identified pinnules of var. major in 
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Sydney Coalfield. although some figured specimens ( eg. Bell 193 8, pl. 61 . fig . 1) more 

closely resemble L. neuropteroides var. minor. 

One very well preserved pinnule (Fig. 4 .7.2; Pl. 20, Fig. 6: Pl. 21. Fig. 5) has 

markedly thicker veins that seem slightly more flexuous than those of all other 

specimens. Although these differences may justify inclusion within another taxon. it is 

significant to note that this specimen is the only one found preserved in mudstone. while 

all others are preserved in siltstone. Thus taphonomic factors may in fact be responsible 

for the apparent ditTerences . 

.\Jacroneurvpteris Cleat, Shute and Zodrow, 1990 

lt,facroneurvpteris sclzeuch:.eri (Hoffmann) Cleal, Shute and Zodrow 1990 

Pl. 21, Figs. 3, 4 

193 0 Neurupteris Sc:heuch=eri. Bertrand. pp. 24-29: pl. 9: pl. 10, figs . l, 2; pl. I 1. figs. 

1-3 : pl. 12. tigs. l. Ia. 

1938 Neuropteris sc:heuch=eri. Bell. pp. 57-58: pl. 51. figs . 2-4: pl. 52. fig. 1. 

1938 Neuropteris scheuc:h=eri forma angustifolia. Bell; pl. 50. fig . 3: pl. 51. tig. 5. 

1959 Neuropteri!:i Scheuc:h=eri, Crookall, pp. 178-188: text-figs. 57 (p. 181 ). 58 (p . 

183 ), 59 (p. 184 ). 65a. b (p. 198); pl. 41, figs . 1, 2. 

1962 Neuropteris !:ic:heuc:h::eri forma angustifo/ia, Bell, p. 44; pl. 37, figs. 1, 2, 5. 

1966 Neuropteris scheuc:h::en. BelL pl. 26, fig . 10; pl. 33, fig. 2. 

1967 Neuropteris sc:heuch::eri, Laveine, pp. 237-246; text-fig. 41 a-c: pl. F, figs . 1, la, 

2, 2a; pl. J, tigs. 1, 1 a; pl. N, fig. 3: 

1977 Neuropteris scheuc.:h::eri, Remy and Remy, p. 261 ; pl. 140, figs. b-d (p. 260). 
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1991 Neuropteris scheuchzeri, Josten, p. 331; text-fig. 215 (p. 331); table 22 (p. 332-

333); pl. 197, tigs. I, la, 2; pl. 198, figs . l, la. 

1994 Macroneuropteris scheuchzeri. Cleal and Thomas, text-fig. 50a (p. 107); pl. 18. 

fig. 2 (p. 117). 

MATERIAL A~ro OCCURRENCE- Fragment of single pinnule from BB-14 preserved 

as devolatilized (part) and decarbonized (counterpart) adpressions. 

DESCRIPTION- Pinnule very elongate. slightly curved. 35.7 mm long (base nor apex 

preserved), ca. 6.4 mm wide. L:W ratio >5 .6. villous: lateral margins entire. curved but 

parallel; mid veins repressed. indistinct. straight, e1ctending much of pinnule length: lateral 

veins very dense, 3 5 to 60 1.1m wide. arise at ca. 10 to 15", arch broadly to reach lateral 

margin at 70 to 85°. dichotomise 3 to 4 times, nervation density ca. 39/cm; villi (Pl. 21, 

Fig. 3) abundant. scattered. stiff. 0 .9 to 1.8 mm long, oriented more or less apically. 

REMARKS - The dense venation. pinnule dimensions and presence of abundant. stiff 

villi on the pinnule surface clearly indicates reference to Jvl scheuchzeri. 

Neuropteris (Brongniart) Sternberg, 1825 

Neuropteris semireticu/ata Josten, 1962 

Figs. 4.8.1 to 4.8.8 (p. 112)~ Pl. 18, Fig. 6~ Pl. 21, Figs. 6, 7: Pl. 22, Figs. 1 to 13: Pl. 23, 
Figs. 1 to 10 

1962 Neuropteris semireticu/ata, Josten, pp. 39-40; text-fig. 4f-k (p. 3 7)~ pl. 3, figs. 2-

S. 
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1967 Neuropterissemireticulata, Laveine, pp. 211-215 ~ text-fig. 36 (p. 212}~ pl. 57, 

figs . 1-6a. 

1967* Neuropteris parvifolia. Laveine, pp. 207-211 ; text-fig. 35 (p. 208); pl. 56, figs. 1-

4a. 

1977 Neuropteris semireticulata, Remy and Remy, p. 255; text-fig. l38a. b. c? (p . 257) . 

1991 H . . . I j .,'?8 .,')9 f- '?l'J '?l., ( .,'J7) bl aeuropterrs sermreiJCUtaW. osten. pp . ., __ _,_ : text- 1g. _ -· _ -' p. -'- . : ta e 

22(pp. 332-333); pl. 194. tigs. 1-2a; pl.195, fig . l. 

MATERIAL AND OCCURRENCE- Abundant isolated pinnules (including "normal" 

lateral pinnules. forma impur-type and cyclopteroid-type) and ultimate pinnae from BB-

25 and 88-30 preserved as decarbonized, devolatilized and "naturally macerated" 

(occasionally partially pyritized) volatilized adpressions. Cuticles well preserved. 

DESCRIPTION- ··Normal" lateral pinnules: Ultimate pinnae imparipinnate. straight to 

slightly curved. linear-lanceolate to elongate-triangular. 4.2 to 9.0 em long, ca. 15 .0 to 

24.5 mm wide. broadest near base ~ lateral margins nearly parallel or gradually converging 

to acutely or obtusely rounded apices; racheis longitudinally striate, 0.6 to 1.8 mm wide. 

culminate _as .. midvein'· of terminal pinnule; lateral pinnules stalked, increasingly sessile 

apically (Pl. 21. Figs. 6. 7: Pl. 22. Figs. 5. 13 ), alternate to sub-opposite, arise 

perpendicular but increasingly oblique and decurrent apically, generally distant but 

sometimes contiguous. linguaetorm to subovate or subtriangular (Pl. 22, Fig. 13 ), 5.2 to 

18.2 mm long, 2.8 to 8.4 mm wide. perhaps longer and narrower on one side of pinna, 

L:W ratio 1.31 to 3.46 (ave. 1.92, n=126), ratio highest proximally, bases semicordate, 
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with prominent acroscopic auricle overlapping rachis (Fig. 4.8. 1; Pl. 22, Figs. 1, 5, 1 0), 

basiscopic auricle contiguous with or underlies(?) rachis: lateral margins straight to 

slightly curved apically in elongate pinnules, parallel or constrict gradually throughout 

length before converging to broadly or obtusely rounded: midveins prominent, 

fasciculate, very tlexuous. 0.3 to 0.6 mm wide at base, extend ca. 3/4 to 9/ lO (ave. 4/5) up 

pinnule: lateral veins prominent. fasciculate. 44 to 190 ~m wide. arise at open angles (ca. 

20 to 30°), extend apically before arching to reach lateral margin at 70 to 90°. 

conspicuously tlexuous to pseudo-reticulate. approach very close to but almost never 

touch adjacent veins (Fig. 4 8. ), bifurcate at open angles l to 4 times, 24 to 34/ em (ave. 

ca. 31): terminal pinnule (PI 22. Figs. 2 to 5. 9, 13: Pl. 23. Fig. 9) rhombic to deltoid. 

pinnatitid near base. either short and blunt with broadly rounded apex or elongate with 

narrowly rounded apex. 

Forma impar-type pinnules: Racheis up to l.8 mm wide, with longitudinal striae 

or ribs ca. 0.4 mm apart: pinnule stalks longitudinally striate. short, ca. 0.6 to 0.8 mm 

wide. arising nearly perpendicular or oblique (up to 50°) to rachis: pinnules (Fig. 4.8.3 to 

4.8.5: Pl. 22, Figs. 6. 8. ll. 12: Pl. 23 , Figs. l to 4. 7), of various profiles, typically 

curved apically and asymmetrical with larger basiscopic side. hastate. subtriangular to 

subovate, apices narrowly to broadly rounded. bases semicordate with prominent 

auricle(s), 18.6 to 35 .2 mm long, 9.1 to 17 mm wide, L:W ratio 2.05 to 2.35: midvein 

somewhat flexuous. broadly curved, extends 4/5 to very near pinnule summit where ca. 

0.3 mm wide: lateral veins fasciculate or longitudinally striate, arise at lO to 25° where 

170 to 290 ~m wide, arching broadly to reach lateral margin at 80 to 90° where 47 to 162 
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Figure 4.8. Schematic line drawings of Neuropteris semireticulata. ( l.) Lateral pinnules 
of ultimate pinna with flexuous to pseudo-reticulate venation diagnostic of taxon ~ BB-96-
25-38, x3 . (2.) Isolated "normal" lateral pinnule; BB-94-30-53, x2.5 . (3 .) Forma impar­
type pinnule demonstrating that venation on acroscopic side (A) considerably more dense 
and less flexuous than on basiscopic side (B); BB-96-30-89, x2.5. (4.) Apex of large 
forma impar-type pinnule; BB-96-30-133, x3. (5.) Forma impar-type pinnule with dense 
venation; BB-97-30-181, x3 . (6.) Fragment ofcyclopteroid-type pinnule; slightly 
flexuous venation hints at affinity with N. semireticulata; BB-96-25-29, x3. (7.) Isolated 
"normal" lateral pinnule; BB-96-30-66, x2.5. (8.) Cyclopteroid-type pinnule with 
slightly flexuous venation; BB-94-30-49, x2. 
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11m wide, dichotomize 2 to 5 times (ave. 3 to 4) at low angle, nervation density 27 to 

33/cm, conspicuously flexuous to pseudoanastomosing and widely spaced on basiscopic 

side, far less flexuous, denser and more broadly arching on acroscopic side. 

Cyclopteroid-type pinnules: Pinnules (Fig. 4.8.6. 4.8.8; Pl. 18, Fig. 6; Pl. 23. 

Figs. 6. 8) isolated. asymmetrical. orbicular or approximately pentagonaL apex broadly or 

narrowly('J) rounded. base cordate with prominent auricles, ca. 32.0 to 40.0 mm long, 

30.1 to 62.0 mm wide, broadest between l/4 way up and summit: 3 to 4 longitudinally 

striate to fasciculate veins 0.2 to 0 5 mm wide enter pinnule near middle of base, extend 

apically before arching broadly to reach lateral margin at 50 to 90° and between 112 to 

200 11m wide. tlexuous but di.-tant. dense but distinct. dichotomize four to eight times at 

acute angles (ca. :we). nervation density ca. 27 to 32/cm. 

REMARKS- Josten ( 1962) and Laveine ( 1967) documented a transition in venation 

habit during the Westphalian from Neuropteris ob/iqua (open)-N parvifo/ia (slightly 

flexuous)-N. semirericulala (flexuous or pseudoanastomosing)-Reticu/opteris 

muensteri (fully reticulate) Zodrow and Cleat ( 1993) suggested that increasing 

flexuosity with time may have been a tloral response to intensifying drier (climatic or 

edaphic) conditions during the Duckmantian and Bolsovian. Increased vein sinuosity 

would have enhanced tracheid-mesophyll contact to effectively make the plant more 

efficient at water distribution (Zodrow and Cleal 1993 ). 

Compound tronds of Neuropteris sensu stricto are "bifurcate semi pinnate" (sensu 

Laveine 1997), with tri- or rarely quadripinnate branches borne from a main bifurcation 

of the primary rachis (Zodrow and Cleal 1988; Cleal et aL 1990; Cleal and Shute 1995, 
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Laveine 1997). ··Normal" lateral pinnules were inserted on ultimate pinnae (culminate in 

terminal pinnules) above the main bifurcation. while conspicuously larger, somewhat 

asymmetrical pinnules were inserted on the primary rachis below the main bifurcation 

either on uni- or bipinnate axes (forma impar-type). or directly to the primary rachis 

(cyclopteroid-type) (Laveine 1997. tig. 19. p. 179). 

The majority of .. normal" lateral pinnules from Blanche Brook clearly conform to 

the concept of N. semireuculata. with semi-cordate bases, tlexuous mid veins and 

pseudoanastomosing lateral veins that nearly bw almost never touch adjacent veins. 

However, specimens with slightly less tlexuous lateral veins may compare more closely 

with N. parv~lulia (see Laveine 1967). N. ohliqua also resembles N. semireticulata. but 

pinnules of the former often are attached to the rachis by part of their base (i .e .. not point­

attached), and are characterized by broadly arching. open lateral veins (Josten 1962. 

Laveine 1967. Cleat and Shute 1992) 

The tlexuous to pseudo-reticulate venation of six forma impar-type pinnules 

support assignment to ,\/. senureticulata (cf. Laveine 1967, pl. 57. tigs. 5. Sa). Lateral 

veins on acroscopic sides of pinnules (Fig. 4.8 .3; Pl. 22. Fig. 8; Pl. 23. Figs. 2, 7) 

typically are more broadly arching. more dense and far less flexuous than those on the 

basiscopic side (Fig. 4. 8 3; Pl. 22. Fig. 12: Pl. 23 . Figs. 3. 7), and hence can be difficult to 

discern from N. obliqua. Three large cyclopteroid-type pinnule fragments similarly have 

flexuous venation (Fig. 4.8.6 and 4.8.8: Pl. 18. Fig. 6: Pl. 23. Fig. 6, 8), and inclusion in 

this taxon is strengthened by close association of the cyclopteroid-type pinnule on the 

same slab with "normal" lateral and forma impar-type pinnules of N. semireticulata. 
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Apparently N. semireticulata has not yet been recorded from the Maritimes Basin, 

although specimens identitied as R. muensteri from the Mabou Basin by Zodrow and 

Vasey ( 1986 ~ eg. fig . 8, p. 216) may in fact fall within the limits of variability of N. 

semireticulata (K.-H. Josten in Zodrow and Vasey 1986). 

Pteridosperm frond racheis 

Pl. 21. Fig. 2 

MATERIAL AND OCCURRENCE- Five axial fragments recovered from 88-14 

preserved as devolatilized and partially decarbonized adpressions or petrifactions. 

DESCRIPTION- Stems up to 8.0 em wide, adpressed surface smooth to wrinkled, 

superimposed by longitudinally ··tibrous" texture: wrinkles longitudinally to transversely 

disposed. erratically undulate. may anastomose, ca. 0. 1 to 0.5 mm wide: tibers 

devolatilized. extremely dense. contiguous or overlapping(?). ca. 12 to 42 11m wide. 

REMARKS- Aulacupteris is the form-genus introduced by Grand'Eury for adpressed 

pteridosperm racheis. while A{velox.vlun Brongniart is the form-genus for anatomically 

preserved stems that represent detached petioles of lvledu/losa fronds (Taylor and Taylor 

1993). Aulac.:opteris (impressions oflv~veloxylon) is fairly easily identified by the 

presence of transverse and/or longitudinaL irregularly disposed wrinkles and longitudinal 

"fibers" that may in fact represent long, linear spines (E.L. Zodrow, personal 

communication. :\.ug. 1997) 
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Thin coal lenses ca. 3 to 4 mm thick found adjacent to decarbonized stem 

adpressions at BB-14 almost certainly represent the devolatilized remains of compressed 

Aulacopteris (lv~veloxylon) axes. 

Folinge of pteridosperm(?) affinity 

Fig. -tS. 7 (p. 82 ); Pl. 8, Fig. 6 

MATERIAL AND OCCURRENCE - Single specimen from BB-30 representing apical 

fragment of penultimate pinna preserved as devolatilized ad pression . 

DESCRIPTION- Penultimate pinna 34.5 mm long, ca. 15.4 mm wide; rachis with 

inconspicuous longitudinal striae. 1.81 mm wide near base. thinning distally; ultimate 

pinnae adjoin rachis by basiscopic side ofbase. acroscopic side free. arise sub­

oppositely(?) and obliquely at ca. -+0-50°. pinnatitid. linguaeform .. apices broadly 

rounded. lateral margins contiguous to slightly overlapping, not exceeding 11 .9 mm long. 

5.0 to 6.0 mm wide. racheis repressed: pinnules broadly adjoin rachis with entirety of 

base, alternate. semicircular to subtriangular with obtusely rounded apices. not exceeding 

3.5 mm wide. 

REMARKS- The broad (i .e .. unstalked) attachment ofpinnatifid ultimate pinnae to the 

penultimate pinna rachis (Fig. 4 5. 7) suggests that it may represent foliage of a 

callistophytalean pteridosperm. such as ( 'al/istophyton sp. (see Rothwell 1981 ). The 

foliage also resembles the form-genus !vlariopteris (Boersma 1973) or Fortopteris 

(Boersma 1969). One criterion for separating these two taxa (see Boersma 1969, p. 69) is 
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longitudinal striations on axes of the latter, which is the case for the specimen from 

Blanche Brook, although this character alone does not warrant confident reference to the 

form-gemts Forwpceris. 

4.5 Division CONIFEROPBYTA 

Order CORDAITALES 

Form-genus Cordaittmtlrus Feistmantel, 1876 

Cordtzitantlrus sp. A 

Fig. 4.9.1 (p. 119)~ Pl. 26, Fig. 4 

MATERIAL AND OCCURRENCE- Single apical('7) fragment of fructification from 

BB-30 preserved as devolatilized adpression~ secondary axes less compressed. 

DESCRIPTION- Strobilus 21 . ~ mm long; main axis ca. 1.1 mm wide at base. faintly 

longitudinally striate. bearing distichous sterile bracts~ bracts sub-opposite. increasingly 

alternate apically. arise decurrently at 40 to 60°. linear-lanceolate, acute(?) apices, curved 

apically, with thin midvein. up to 11.8 mm long, ca. 360 1-1m wide at base. bearing single 

secondary axis from axils ~ secondary axes supported by short. thick stalk, ovate. 3.2 to 

4.4 mm long, I. 9 to 2.4 mm wide. comprise helically(?) arranged vegetative scales 

enclosing vaulted (i .e .. uncompressed) .. ovulate structure"(?); structure tear drop shaped. 

surface smooth to granular. 1.8 to 2.3 mm long, 1.5 to 1.7 mm wide: longitudinally 

striate, filamentous processes arise from apices of secondary axes, ca. 3.6 to 5.8 mm long, 

ca. 0.4 mm wide at base. expand to ca. 0.8 to l.O mm wide at truncate, slightly fimbriate 

distal margin. 
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REMARKS- This specimen likely represents a female fructification referable to the 

form-genus Cordaitamhus. Ovules or seeds (now detached) might have been attached to 

the distal end of the long. filamentous processes or stalks that arise from swollen. 

secondary axes (Fig. 4 9 L Taylor and Millay 1979: Rothwell 1988). Alternatively. the 

vaulted '"o\ulate structures .. apparently enclosed by sterile scales might actually represent 

uncompressed. developing seeds. Filamentous processes might then be functionally 

equivalent and similar to stigma-like structures described from Cordaitanthus 

flagellibrac:leallls by Crookall ( 1970. p. 833) . 

Cortltzitantlrus sp. B 

Fig. 4.9.2 (p. 119): Pl. 26, Fig. I 

MATERIAL AND OCCURRENCE- A single fructification fragment from 88-30 

preserved as devolatilized (part) and decarbonized (counterpart) adpressions. 

DESCRIPTION -Strobilus 2 5 em long: main axis I 8 mm wide. surface with very 

finely granulate. irregular. transverse elevations. bearing distichous sterile bracts: bracts 

opposite, nearly perpendicular at 80 to 90c. linear. acuminate(?) apices, gently curved 

apically, up to 3 7 mm long. 0 4 to 0. 5 mm wide at base. with single fertile secondary 

axis nestled in axils: secondary axes sessile. cupped by sterile bract, may overlap main 

axis slightly. flattened. outer surface smooth. ovaL 3.7 to 4.1 mm long, ca. 2.9 mm wide. 

REMARKS- This specimen may represent a male fructification of cordaitean affinity. 

Flattened, fertile secondary axes (fig. 4.9.2: Pl. 26. Fig. I) may represent microsporangia. 
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Figure 4.9. (I.) Cordaitanthus sp. A:, secondary axes (SA) with central "ovate" body 
(arrow) sit atop short stalk and arise from axils of long, sterile bracts (B); filamentous 
processes (FP) arise from distal ends of secondary axes; BB-96-30-108, x3. (2.) 
Cordaitanthus sp. B, with secondary axes (SA) sessile and cupped by short, sterile bracts; 
note faint transverse markings on axis; BB-97-30-209, x2. 

although pollen producing organs of Cordaitanthus typically are arranged as a ring of 

pollen sacs at the tip of vegetative scales (Delevoryas 1953; Rothwell 1988). The 

specimen differs from Cordaitanthus sp . A by the thicker. somewhat ornamented axis. 

much shorter sterile bracts, flattened rather than vaulted secondary axes. and lack of 

filamentous processes at the distal ends of secondary axes. 

cf. Cordaitanthus sp. 

Pl. 26, Fig. 10 

MATERIAL AND OCCURRENCE - Single apical(?) fragment of fructification from 

BB-30 poorly preserved as devolatilized adpression. 

119 



DESCRIPTION- Strobilus 4.6 em long, main axis essentially smooth. ca. 1.0 mm wide, 

bearing distichous sterile bracts; bracts opposite. increasingly alternate apically, nearly 

perpendicular but increasingly decurrent apically, linear, acuminate apices. ca. 5.4 to 7.2 

mm long, extend at least 3/4 distance of secondary axis, ca. 290 Jlm wide near base, 

curve apically very slightly; secondary axes nestled in axils, sessile, flattened. outer 

surface smooth. oval. up to ca. 7.2 mm long, ca. 3.8 mm wide. 

Cordaites Unger, 1850 

Cordaites sp. cf. C borassifolia (Sternberg) Unger, 1850 

Fig. 4.10 (p. 123 ): Pl. 24, Figs. l to 4, 7 

1970 Cordaites horas.,·ifolius. Crookall. pp. 807-810; text-fig. 231; pl. 153. figs. 3. Ja. 

1991 Cordaites horassifolius.Josten. pp. 348-349: table 25 (p. 349); pl. 209, figs. 2. 3: 

pl. 210, tig. 2. 

MATERIAL AND OCCURRENCE -Abundant leaf fragments from 88-30 preserved as 

decarbonized. devolatilized and "naturally macerated" volatilized adpressions; cuticles 

preserved. Cuticles well preserved. 

DESCRIPTION - Leaves linear-lanceolate. thick. coriaceous, not exceeding 11.7 em 

long (bases nor apices preserved). 6.5 to 31.4 mm wide, width increasing distally; lateral 

margins entire. straight, subparallel; primary veins prominent, paralleL bifurcate at 

extremely low angle, 94 to 150 Jlm wide (ave. 114 Jlffi. IF6) near leaf centre, 0.43 to 0.81 

mm distant (ave. 0.57 mm. n=36), frequency of 12.3 to 23.0/cm (ave. 16.9/cm, n=33), 

32.2 and 41.7/cm near lateral margin; space between primary veins flat to vaulted, 
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occupied by single intermediate sclerotic strand (Pl. 24. Figs. 4, 7); strands distinct but 

less prominent than primary veins. 24 to 88 11m wide. centrally located, may arise from 

area of primary veins (Pl. 24. Fig. 7); space between primary veins very rarely occupied 

by intermediate sclerotic strand bordered by 2 to 4 very tine sclerotic strands in otherwise 

typical leaf 

REMARKS - These leaves are characterized by a single intermediate sclerotic strand 

between primary veins and thus compare very closely with Cordaites borassifolia. 

However. the abaxial surface of Cordaites principalis is also typified by a single 

intermediate strand (Fig. 4. 10). and thus specimens may actually belong to the latter 

species (seep. 124 for full discussion of taphonomic etfects). The rare occurrence of2 to 

4 sclerotic strands in the space between two primary veins in otherwise typical leaves 

does not conform to the concept of C ·. borassifolia, and sup pons the contention that at 

least some of these specimens may indeed represent C. principalis (i .e. most intermediate 

sclerotic strands not preserved.) 

Cordaites sp. cf. C principalis (Germar) Geinitz, 1855 

Fig. 4.10 (p. 123); Pl. 24, Figs. 5, 6, 8, 9; Pl. 25, Figs. 1 to 3, 6 

1938 Cordaites princ:ipalis. Bell, p. l 03 ; pl. 105. tig. 1; pl. 106, fig. 1. 

1961 Cordaitesprinc:ipa/is. Harms and Leisman. p. 1046, pp. 1048-1057; text-fig. 2 (p. 

1 049); text-fig. 3 (p. l 051 ); pl. 125, fig. 5. 

1962 Cordaites principalis, Bell, p. 59; pl. 55, fig. 2. 

1966 Cordaites principalis. Bell, pl. 21, fig. I . 
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1970 Cordaitesprincipalis, Crookall, pp. 799-804; text-fig. 227; pl. 151 , fig. l; pl. 152, 

figs. 1, Ia; pl. 153 , fig. 6. 

1977 Cordaites principal is, Remy and Remy, p. 134; text-fig. 40a-c. 

1991 Cordaites principalis, Josten, p. 348; table 25 (p. 349); pl. 209, fig. l. 

MATERIAL A ... "'JD OCCURRENCE - ~'1ost abundant floral component within BBA. 

comprising leaf tragments tram BB-14 and BB-30 preserved as decarbonized, 

devolatilized and .. naturally macerated" volatilized adpressions; cuticles very well 

preserved. 

DESCRIPTION - Leaves thick. coriaceous. linear-lanceolate, not exceeding 20.4 em 

long (apices not preserved), down to 6.5 mm wide at base, basal attachment structure 

swollen and thickened (Pl. 24. Fig. 6), expanding distally up to 27.5 mm wide, lateral 

margins entire. straight. subparallel; primary veins prominent, parallel, bifurcate at 

extremely low angle (Pl. 25 . Fig. 2), 140 to 230 J.Lm wide (ave. 169 ~Jm, n=4) near leaf 

centre. 0 .38 to 0 .94 mm distant (ave. 0.54 mm, n=80), frequency of 10.6 to 26.3/cm (ave. 

20.9/cm, n=20.9) near leaf centre. 27 .8 to 79.4/cm near lateral margin (Pl. 24, Fig. 5; Pl. 

25, Fig. l ), frequency often inversely proportional to leaf width; space between primary 

veins flat to vaulted (Pl. 24. Figs. 8. 9), occupied by 0 to 6 (usually 3 to 5) intermediate 

sclerotic strands; strands 41 to 901Jm wide, 57 to 160 !Jffi distant. central strand on 

abaxial cuticle often thicker and comparatively prominent (Pl. 24, Fig. 8, 9; Pl. 25, Fig. 

6). 
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trace of intermediate 
sclerotic strand 

hypodermal sclerotic tissue 

bundle sheath of primary •1ein 

A 

intermediate 
sclerotic strands 
preserved only on 
adaxial surface 

adaxial and abax1al 
Intermediate sclerotic strands 

B 

1ntermed1ate 
sclerotic strands 
preserved only on 
abax1al surface 

c 

Intermediate 
sclerotic strands 
preserved on both 
adax1al and abaxial 
surfaces 

D 

intermediate 
sclerotic strands 
neither preserved on 
adax1al nor abaxial 
surfaces 

Figure 4. 10. Hypothetical schematic cross-section of Cordaites princ:ipa/is leaf (after 
Harms and Leisman 1961) demonstrating complications in accurate identification of 
adpressed cordaitean foliage resulting from taphonomic biases introduced by differential 
preservation of intermediate sclerotic strands . Although scenarios A and C result in 
fossils that conform to the ( ·. principalis concept for adpressed foliage, scenario B 
conforms more closely to the C. horassijolia concept. Likewise, scenario D results in a 
fossil conforming to the ( '. palmaefi.Jrmis concept for ad pressed leaves (see Crookall 
1970). 
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REMARKS - Specific determination of ad pressed cordaitean foliage relies heavily on the 

size and shape of leaves, and distribution and relationship between primary veins and 

intermediate sclerotic strands. Unfortunately, foliar polymorphism and taphonomic 

factors often confound accurate determination. As Harms and Leis man ( 1961) pointed 

out, leaf form and .. ribbing" of Cvrdaites vary depending on which part and side (abaxial 

or adaxial) of the leaf is preserved (and size and age of the foliage), while preservation of 

intermediate strands is too strongly controlled by conditions of fossilization for them to 

be dependable taxonomic indicators. 

The material conforms most closely with ( 'urdaites principalis. a species with 

vein frequencies of 11 to 26/cm (cf 13 to 28/cm, Harms and Leisman 1961 , p. 1050), and 

variations ofO to 6 intermediate sclerotic strands between primary veins (cf 0 to 5, 

Harms and Leis man 1961 . p. I 050: cf. 1 to 6 Crookall 1970, p. 801 ). However. as Harms 

and Leisman (1961. text-tig. 3. p. 1051) demonstrated. only the adaxial side ofthe leaf 

has a variable number of strands. while the abaxial surface is characterized by a single 

prominent sclerotic strand (Fig. 4. 1 0). Accordingly. the presence of a thicker, more 

prominent. central intermediate sclerotic strand between less prominent strands suggests 

superposition of adaxial and abaxial cuticles (Fig. 4. 10; Pl. 24, Figs. 8. 9; Pl. 25. Fig. 6 ). 

Suppose though that only the abaxial leaf surface was preserved - the material could 

easily be misidentified as C. borassifulia (Fig. 4.10; cf Pl. 24, Figs. 4, 7) . Alternatively, 

if neither abaxial nor adaxial sclerotic strands were preserved, spaces between primary 

veins would be empty, and adpressions would be morphologically identical to Cordaites 

sp. A (Fig. 4. 10; cf Pl. 24, Fig. 4). It is apparent then that several vein/strand patterns are 
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possible for C. principalis depending on the degree of preservation and whether abaxial 

or adaxial (or both) surfaces are preserved. 

Cordaites sp. A 

Fig. 4.10 (p. 123)~ Pl. 25, Figs. 4, 5, 8 

MATERIAL AND OCCURRENCE- Four leaf fragments from BB-30 preserved as 

devolatilized or .. naturally macerated" volatilized adpressions. 

DESCRIPTION - Leaves linear-lanceolate. thick. coriaceous. 8.2 to II. 9 mm wide; 

lateral margins entire. straight. subparallel; primary veins prominent. parallel. 100 to 160 

~m wide, 0 .25 to 0.62 mm distant (ave. 0.47 mm, n=l6), vein frequency 16.0 to 40.0/cm 

(ave. 22. 5/cm. n== 16 ), frequency greatest near lateral margins: space between primary 

veins flat to vaulted. characteristically absent of intennediate sclerotic strands (Pl. 25, 

Fig. 4 ), single strand rarely preserved in otherwise typical leaf. 

REMARKS -The absence of intermediate sclerotic strands between primary veins bears 

resemblance to Cordaites palnwefurmis. which is characterized by broad (up to I 0 em) 

leaves with acutely or bluntly pointed apices (see Crookall 1970, p. 812. pl. 154, fig. 1 ). 

Unfortunately. no apices are preserved in the BBA to aid specific identification. 

lntennediate sclerotic strands between primary veins initially may have existed 

but simply were not preserved (see full discussion, p. 124, Fig. 4.10). The rare 

occurrence of a single intermediate strand between primary veins ( cf C. borassifolia or 

abaxial surfaces of C. principa/is) in otherwise typical leaves supports the contention that 
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specimens assigned to Cordaites. sp. A may simply represent differentially preserved 

leaves of one of these taxa. 

Cordaites sp. 8 

Pl. 25, Fig. 7: Pl. 26, Figs. 2, 3 

MATERIAL AND OCCURRENCE- Several leaf fragments from BB-25 and BB-34c 

preserved as devolatilized adpressions; leaves from BB-34c mechanically degraded and 

split. Cuticles poor to moderately well preserved. 

DESCRIPTION- Leaves thick. coriaceous, surfaces smooth. up to 15.2 em long (bases 

nor apices preserved). 17 5 to 45 .0 mm wide: lateral margins entire. straight, subparallel, 

acutely rounded in transverse section: smoothness of leaf surface hinders differentiation 

of primary veins from intermediate sclerotic strands; .. ribbing'' parallel. irregularly 

spaced. 21 to 94 ~lm wide. 56 to 153 ~m distant ... rib'' frequency 65.4 to 178.6/cm: 

prominent ribs or furrows (trace of primary veins") (Pl. 25. Fig. 7) superimposed on 

surface of some leaves, equidistant, ca. 0.35 to 0.47 mm apart, vein frequency 18 .5 to 

28.6/cm. 

REMARKS -This taxon is typified by leaves with comparatively smooth surfaces 

(ribbing often nearly invisible without magnification) and irregular "ribbing". which 

serves to separate specimens from other Cordaites in the BBA. Leaves compare quite 

well with Cordaites crasszts. a species with unusually smooth leaf surfaces~ variable, 
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irregularly spaced ribbing; and a vein frequency of 15 to 40/cm (Harrns and Leisman 

1961 ). 

Form-genus Dadoxylon Endlicher, 1847 

Dadoxylon sp. 

Fig. 4.11 (p. 128): Pl. 26, Fig. 11 

MATERIAL AND OCCURRENCE - Abundant axial fragments preserved as volatilized 

petrifactions collected from channel Jag and point bar sublithofacies at numerous 

localities. Description based on four thin sections tram three petrifactions made in 

transverse plane (i .e .. perpendicular to growth axis of tree) . 

DESCRIPTION- Secondary xylem (wood) pycnoxylic. comprising axial system of 

axially elongated tracheids. and ray system of radially elongated vascular rays (Fig. 

4. 11 ); tracheids arranged in ca. 1 to 7 (ave. 3. n=35) radially. irregularly disposed rows 

between vascular rays. circular to equidimensional (before compaction) in transverse 

plane, 27 to 70 1.1m in diameter (ave. 47 1.1m. n = 62}, longitudinal dimensions 

indeterminate: cell walls only l.2 to 2.8 1.1m thick (ave. 1.9 J.lm. n = 22): secondary cell 

wall thickenings developed on radial walls. form closely spaced, alternately(?) disposed, 

biseriate rows of dome shaped bordered pits that project into cell cavity (Fig. 4.11; PI 26, 

Fig. ll); vascular rays uniseriate, 10 to 48 J.Lm wide (ave. 25 1.1m. n=35) in transverse 

section, representing thickness of single vascular ray cell. 
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Figure 4.11 . Schematic reconstruction of secondary xylem (wood) of Dadoxylon sp . 
(presumably of cordaitean affinity) recovered from Blanche Brook. 
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REMARKS - This wood came from large volatilized petrifactions interpreted to be the 

remnants of large forest-forming trees of cordaitean affinity (Eu-Cordaites sensu 

Grand'Eury 1877). In order to correctly refer anatomically preserved stem petrifactions 

of cordaitean affinity to established form genera ( eg. !vlesoxylon, Cordaixy/on or 

Pennsy/vanioxylon), axes must be sutliciently well preserved that relationships within 

and between primary and secondary phloem and xylem can be observed (Rothwell and 

Warner 1984: Costanza 1985 . Trivett and Rothwell 1985. 1988). However. when 

fragments only constitute dense. pycnoxylic wood (secondary xylem), as is the case with 

material described here. specimens are better referred to the Paleozoic wood form-genus 

Dadoxylon (Vogellehner 1964 ~ Taylor and Taylor 1993 ). 

The presence of circular. alternately arranged bordered pits on radial walls of 

tracheids (Fig. 4. II: Pl. 26. Fig. II) helps to ditferentiate Dadoxylon from wood of the 

nearly indistiquishable Araucarioxylon type. which belongs to Mesozoic conifers and 

have cell walls with bordered pits that either are uniseriate and flattened or polyseriate 

and polygonal (Stewart and Rothw·ell 1993 ). 

Form-genus Samaropsis Goppert, 1864 

Scmmropsi.tt spp. 

Pl. 26, Figs. 5, 6, 9 

MATERIAL AND OCCURRENCE - Five isolated seeds from BB-30 preserved as 

decarbonized or devolatilized adpressions. 
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DESCRIPTION- Seeds platyspermic. comprise central nucellus surrounded by narrow. 

membranous wing (sarcotesta). nearly circular. outer surface smooth or reticulate(?), 

bases flattened, apices slightly pointed. 6 6 to 7.2 mm long, 6.0 to 7.6 mm wide, L:W 

ratio 0.95 to 1.15; micropyles (Pl. 26. Fig. 5) ca. 26 11m wide; central nucellus nearly 

circular, surface smooth to tinely granulate. -ll to 5.6 mm in diameter. perhaps slightly 

wider than long. 

REMARKS -All specimens possess a narrow. membranous wing or sarcotesta (Pl. 26, 

Figs. 5, 6, 9) that characterizes the (adpressed) cordaitean ovule Form-genus Samaropsis 

(Rothwell 1988} Specific differentiation ofthis taxon is difficult because: (i) the size 

and shape of a specimen is controlled by maturity of the seed; and (ii) the diagnostic 

membranous wing may be very narrow or become detached. resulting in inaccurate 

inclusion of the specimen in the form-genus< 'ordaic.:wpu.•; (Crookall 1976. p. 909). One 

speci11~en (Pl. 26, Fig. 9) has a reticulate( ')) textured surface. indicating that more than 

one seed species may be included in this designation. 

Axis of cordnitean(?) nffinity 

Pl. 26, Figs. 7, 8 

MATERIAL AND OCCURRENCE - Single stem fragment from BB-25 preserved as 

decarbonized adpression. 

DESCRIPTION- Axis 7. 1 em wide, longitudinally wrinkled (Pl. 26. Fig. 7), 

superimposed upon which are helically arranged rows of elevations or swellings (Pl. 26, 
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fig. 8)~ rows 5.2 to 5.6 mm apan; swellings lenticular. ca. 5.2 to 5.7 mm apan within 

single row, 3.6 to 4.9 mm long. 0.9 to ll mm wide. broadest in middle. tapering 

laterally. 

REMARKS - This axis imprint is of unknown affinity. although the smalL helically 

arranged elevations supertkially resemble leaf scars found on cordaitean stems (eg. 

Crookall 1970. pl. 157. tigs. 3. -k Rothwell 1988. tig. 6.2c. p. 276). 
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PLATE 1 

Figs. l to 6.- cf. Cyperites hi carinatus Lindley and Hutton, 1833 

1. Devolatilized adpressions of lepidodendrid(?) origin; BB-96-30-15 7. x 1 
2. Abaxial surface; devolatilized adpression, 88-96-30-132, x2 
3. Carina on abaxial surface; decarbonized adpression, 88-94-30-33, x2 
4. Carina on abaxial surface; decarbonized adpression, 88-96-30-123a, x2 
5. Median furrow and longitudinal grooves on adaxial surface; of sigillarian(?) origin~ 

devolatilized ad pression, 88-96-32-25, x 1 
6. Enlargement of Fig. 4, x2 

Figs. 7 to 9, 11, 12, 14.- Lepidostrobophyllum alarum Boulter, 1968 

7. Adaxial surface with midrib; decarbonized adpression, BB-30-96-69, x2 
8. Transverse view of cone fragment; devolatilized adpression, BB-96-F-2, x2 
9. Slight constriction ca. l/4 way up blade of sporophyll; devolatilized adpression. 88-

96-30-121, x2. 
11. Imprint of hair-like alations rimming pedicel of sporophyll (arrow); devolatilized 

ad pression, 88-94-30-10, x8 
12. Slight constriction ca. 1/4 way up blade of sporophyll; devolatilized adpression, BB-

96-30-147, x2 
14. Lateral view; devolatilized adpression, BB-96-30-111, x2 

Figs. 10, 13, 15, 16.- Lepidostrobophyllum triangulare (Zeiller) Bell, 1938 

10. Compare with sporophyll of L. alarum (la); devolatilized adpressions, BB-96-30-69, 
xl 

13. Transverse view of cone fragment; devolatilized adpression, BB-96-30-156, x2 
15. Devolatilized adpression, BB-96-30-134, x2 
16. Adaxial surface; devolatilized adpression, BB-96-30-70, x2 
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PLATE2 

Figs. I to 9.- "Lepidodendron" sp. cf. "L." bretonen.se Bell, 1962 

1. Interior bark surface; decarbonized adpression, BB-96-30-123a, xl 
2. Exterior bark surface; decarbonized adpression, BB-94-30-6, x1 
3. Enlargement of Fig. 2; keel (k) in lower field of immature cushions; x2 
4. Latex peel of immature cushions; flat, triangular surface occupies upper comer of 

upper field (arrow); leaf scars inflated and inclined downward; BB-96-30-123a, x2 
5. Immature cushions; distal dichotomy; devolatilized adpression, BB-96-30-141, x 1 
6. Enlargement of Fig. 1; irregular longitudinal striations on immature cushions; x2 
7. Mature cushions separated by wrinkled interareas (arrow); decarbonized adpression, 

BB-96-30-132, x2 
8. Mature cushions with keel in lower field; decarbonized adpression, BB-96-30-132. x2 
9. Enlargement of Fig. 1; leaf scars with cicatricules, central vascular trace flanked by 

foliar parichnos traces; x8 

Figs. 10, 11.- Isolated lycopsid sporangia 

10. Devolatilized adpression, BB-96-25-6, x2 
11. Devolatilized adpression, BB-96-25-3, x2 
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PLATE3 

Figs. I, 2.- Stigmaria fico ides (Sternberg) Brongniart, I822 

I. Interior(?) rhizophore surface with low relief longitudinal ribs and attached lateral 
appendages~ partially decarbonized adpression, BB-94-30-I 0, x 1 

2. Dichotomy in lateral appendage; devolatilized adpression, BB-96-14-2, xI 

Fig. 3- Lycopsid cone 

3. Radial section; partially decarbonized adpression, 88-96-32-2, xi 

Figs. 4, 5 - Sigillaria sp. 

4. Partially decorticated exterior bark surface; partially decarbonized adpression, BB-
96-32-16, xi 

S. Enlargement of Fig. 4; slightly inflated leaf scars with central vascular trace flanked 
by foliar parichnos traces (arrow); x2 

Figs. 6, 7- Sigillariostrobus rhombibracteatus Kidston, 1897 

6. Devolatilized adpression, 88-96-32-14, x3 
7. Enlargement of Fig. 6; ciliate margin (arrow); xi2 
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PLATE4 

Figs. 1 to 9. - Sphenophyllum emarginatum (Brongniart} Brongniart, 1828 

1. Large branch bearing linear leaflets and two twigs from adjacent nodes; devolatilized 
adpression, 88-96-30-102, x1 

2. Twig with leaflets; devolatilized adpression, 88-96-30-104, x2 
3. Enlargement ofFig.8; uncate arista (hook) at terminus of linear leaflet of main 

axis(?); xlO 
4. Whorl comprising 10 leaflets; partially decarbonized adpression, BB-94-30-39, x1.5 
5. Main axis with linear, undivided leaflets; partially decarbonized adpression, BB-96-

30-111, x2 
6. Enlargement of Fig. 8; leaflets on twig becoming more cuneate and with 

corresponding increase in number of teeth at distal margin (i.e. increasingly more 
mature; 1, 2, 3, 4 =number of teeth); x2 

7. Main axis; partially decarbonized adpression, 88-96-30-125, x0.8 
8. Main axis bearing two twigs from same node; devolatilized ad pression, BB-94-30-31, 

xl 
9. Enlargement of Fig. 8; large branch (lb) bearing bipartite leaflet (bl); undivided linear 

leaflets (ul) arising from node of main axis; devolatilized ad pression, x2 
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PLATES 

Figs. 1 to 7.- Sphenophyllum emarginatum (Brongniart) Brongniart, 1828 

1. Mature leaflets on twigs; "naturally macerated" volatilized adpressions, BB-94-30-22, 
x2 

2. Enlargement of Fig. 1; single vein terminates in each semicircular tooth; midcleft 
(me); secondary cleft (sc); x10 

3. Twig with leaflets; devolatilized adpression, BB-94-30-7, x2 
4. Twig with leaflets; devolatilized adpression, BB-96-30-152, x2 
5. Enlargement of Fig. 4; hairs (arrows) on axis; xlO 
6. Mature leaflets; devolatilized adpression, BB-94-30-44, x2 
7. Main axis and immature twig; devolatilized adpression, BB-94-30-49, xl 

140 





PLATE6 

Figs. 1 to 4. - Sphenophyllum sp. cf. zwickaviense Storch, 1966 

1. Enlargement of Fig. 3; sharp point terminates acute-triangular teeth; leaflets either 
symmetrical (lower) or asymmetrical (upper) depending on position of midcleft (me); 
secondary cleft (sc ); x5 

2. Teeth on distal leaflet margin; "naturally macerated" volatilized adpressions, BB-94-
30-73, x2 

3. "Naturally macerated" volatilized adpression, BB-94-30-73, x2 
4. Asymmetrical leaflet; midcleft (me); secondary cleft (sc); "naturally macerated" 

devolatilized adpression, BB-96-30-133, x2 

Figs. 5, 7 to 10. -Annul aria sphenophylloides (Zenker) Gutbier, 1837 

5. "Naturally macerated" volatilized adpression, BB-30-96-160, x2 
7. Whorls of leaflets arising from inconspicuous, circular sheath (s); terminal expansion 

(te) at leaflet terminus; ··naturally macerated" volatilized adpression, BB-96-30-160. 
x2 

8. Branching axis; leaflets with single vein ending as terminal expansion at mucronate 
tip (arrow); BB-96-30-173, xl.S 

9. Enlargement of Fig. 1 0; mucronate tips on leaflets; x8 
10. Branching axis; sheaths (s) considerably larger than average (cf. Fig. 7); devolatilized 

adpression, BB-96-30-73, x 1 

Fig. 6. - Pinnularia capillacea Lindley and Hutton, 1834 

10. Devolatilized adpression, BB-96-30-89, x2 
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PLATE 7 

Fig. l.- Annul aria sphenophylloides (Zenker) Gutbier, 1837 

1. Branching axes; devolatilized and "naturally macerated" volatilized adpressions, BB-
96-30-173, X 1 

Figs. 2, 4. - Asterophyllites equisetiformis (Sternberg) Brongniart, 1828 

2. Devolatilized adpression, BB-30-96-145, x2 
4. Devolatilized adpression, BB-30-96-92, x2 

Figs. 3, S, 9. - cf. Asterophyl/ites sp. 

3. Enlargement of Fig. 9; bud-like structure (arrow) atop tertiary axis; x6 
5. Enlargement of Fig. 9; stiff leaflets in whorl cupping tertiary axis which is terminated 

by bud-like structure; x 10 
9. Primary (p), secondary (s) and tertiary (t) branches, culminating in bud-like 

structures; devolatilized adpressions, BB-96-19-1, x2 

Fig. 6.- Annularia stellata (Schlotheim) Wood, 1861 

6. Whorls comprising leat1ets ending in sharp, mucronate tips (m); devolatilized 
adpression, BB-96-30-172, x 1 

Fig. 7. - Calamites sp. B 

7. Enlargement of Pl. 8, fig. 4; narrow ribs pass directly through node (cf. Fig. 8); 
decarbonized adpression, BB-96-25-39, x2 

Fig. 8. - Calamites sp. A 

8. Enlargement of Pl. 8, fig. 3; ribs alternate at node (cf. Fig. 7); imprints ofinfranodal 
canals (ic); decarbonized adpression, BB-96-30-109, x2 
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PLATES 

Figs. 1, 2.- cf. Myriophyllites gracilis Artis, 1825 

1. "Naturally macerated" volatilized adpression (vascular strands coalified), BB-96-29-
1, x0.8 

2. Enlargement of Fig. I; longitudinal vascular strands (vs) parallel to root axes 
terminate as hair-like rootlets (r); x2 

Fig. 3. - Calamites sp. A 

3. Decarbonized adpression, BB-96-30-109, xl 

Fig. 4. - Calamites sp. B 

4. Decarbonized adpression, BB-96-25-39, xl 

Fig. S.- Paracalamostachys sp. Weiss, 1884 

5. Devolatilized adpressions, BB-96-30-73, x2 

Fig. 6.- Foliage of pteridosperm(?) affinity 

6. Ultimate pinna adjoins rachis by basiscopic side (b) of base, acroscopic side (a) free; 
devolatilized adpression, BB-96-30-126, x2 
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PLATE9 

Figs. 1 to 7. - Lobatopteris sp. A 

1. Distal penultimate pinna with decurrent pinnules arising from ultimate pinnae; 
devolatilized adpression, BB-94-30-42, x 1.5 

2. Distal penultimate pinna; "naturally macerated" volatilized adpression, BB-97-30-
242, xl.5 

3. Distal ultimate pinna with decurrent pinnules and midveins; acroscopic side of 
pinnules markedly incised (arrow); "naturally macerated" volatilized adpression, BB-
96-30-70, x2 

4. Distal ultimate pinna; .. naturally macerated" volatilized adpression, BB-97-30-253, 
xl.5 

5. Distal penultimate pinna; devolatilized ad pression, BB-94-30-33, x 1 
6. Proximal ultimate pinna with decurrent, pinnatifid pinnules; devolatilized adpression, 

BB-94-30-22, X 1.5 
7. Distal penultimate pinna with blunt, subtriangular apex; devolatilized adpression, BB-

30-96-111, xl.5 

Fig. 8. -Aphlebia sp. Presl, 1838 

8. "Naturally macerated" volatilized adpression, BB-96-30-89, x2 
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PLATE tO 

Fig. 1. - Lobatopteris sp. A 

1. Elongate-triangular proximal and distal penultimate pinnae - note close similarity 
between uppermost ultimate pinnae on proximal penultimate pinna (mpp) and 
lowermost ultimate pinnae on distal penultimate pinna (ipp) (cf. Pl. 11, Fig. 4), 
demonstrating morphological gradation between and suggesting affinity of the frond 
fragments; lowermost ultimate pinnae of proximal penultimate pinna comprise 
pinnatifid pinnules (p); devolatilized adpression, BB-96-30-177, x0.7 
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PLATE 11 

Figs. l to S. - Lobatopteris sp. A 

1. Distal penultimate pinnae; devolatilized adpressions, BB-96-F -1, x 1 
2. Proximal ultimate pinna; acroscopic side of pinnules markedly incised; devolatilized 

adpression, BB-97-30-229, x 1 
3. Acutely rounded, elongate-triangular apex of distal penultimate pinna; note 

morphological similarity between entire and pinnatifid pinnules with those pinnules 
comprising proximal ultimate pinnae [pinnatifid pinnules ( cf. Fig. 5; Pl. 12, Fig. 3; Pl. 
13, Fig. 2), entire pinnules (cf. Fig. 2, Pl. 10, Fig. 1; Pl. 12, Figs. 1, 2, 4. 5; Pl. 13, Fig. 
1 )], suggesting affinity of distal and proximal frond elements; acroscopic side of 
pinnules markedly incised; devolatilized adpression, BB-96-30-JC-1, x2 

4. Enlargement of Pl. 10, Fig. l; acutely rounded, elongate-triangular apex of distal 
penultimate pinna; partially "naturally macerated" volatilized adpression, BB-96-30-
177, xl.5 

5. Proximal ultimate pinna comprising pinnatifid pinnules; note venation (arrow) (cf. 
Fig. 4.5.3); partially "naturally macerated" volatilized adpression, BB-97-30-245, x2 
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PLATE 12 

Figs. l to S. - Lobatopteris sp. A 

1. Proximal penultimate pinna; "naturally macerated" volatilized adpression, BB-96-30-
170, x0.7 

2. Enlargement of Fig. 1; decurrent mid veins and pinnules throughout length of ultimate 
pinnae; x2 

3. Proximal ultimate pinnae comprising pinnatifid pinnules; punctae (arrow) on rachis of 
penultimate pinna; decarbonized ad pression, BB-94-30-33, x l 

4. Proximal ultimate pinna; midveins markedly decurrent (arrow); acuminate hairs 
arising from pinna rachis and pinnule midveins; decarbonized adpression, BB-94-30-
51, x2 

5. Obtusely rounded apex of proximal ultimate pinna; devolatilized adpression, BB-96-
30-158, xl.S 
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PLATE13 

Figs. 1 to 4. - Lobatopteris sp. A 

1. Proximal penultimate pinna; "naturally macerated" volatilized adpression, 88-96-30-
177, xl 

2. Proximal ultimate pinna comprising pinnatifid pinnules; note similarity between these 
pinnules and pinnatifid pinnules near apices of distal penultimate pinnae (cf. Pl. 9, 
Fig. 7; Pl. 11, Figs. 1, 3, 4); devolatilized ad pression, 88-96-30-177, x 1 

3. Proximal ultimate pinna; acroscopic side of pinnules markedly incised; devolatilized 
adpression, 88-96-30-158, xl.5 

4. Proximal ultimate pinnae comprising dense, very elongate pinnules; pinna in 
northeast quadrant comprising pinnatifid pinnules; devolatilized adpression, BB-96-
30-175, x1 
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PLATE14 

Figs. 1 to 4. - Lobatopteris sp. A 

1. Fertile ultimate pinna; devolatilized adpression, BB-94-30-17, x2 
2. Enlargement of Fig. 1; Asterotheca-type fructifications on base of pinnules (arrow); 

x6 
3. Fertile ultimate pinna; devolatilized adpression, BB-94-30-31, x2 
4. Proximal penultimate pinna fragment with thick rachis (r); devolatilized adpression, 

BB-96-30-175, x0.7 

Figs. 5 to 10.- miospores isolated from Asterotheca-type fructification (BB-94-30-17; 
Figs. 1, 2) 

5. Laevigatosporites-type, monolete(?), laevigate spores with thin exines; x790 
6. Torispora- or Crassosporites-type, monolete(?), laevigate spore with part of exine 

distinctly thickened; x630 
7. Torispora- or Crassosporites-type spore; x600 
8. Laevigatosporites-type spore; x1140 
9. Laevigatosporites-type spore; x1095 
10. Torispora- or Crassosporites-type spore; x 1130 
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PLATE IS 

Figs. 1 to 4.- Pecopteris plumosa (Artis) Brongniart, 1832 

1. Enlargement of Fig. 4; increasingly proximal pinnae demonstrating morphological 
gradation from distal penultimate pinna (ipp) consisting of distal ultimate pinnae with 
decurrent racheis and small, semicircular pinnules-+proximal ultimate pinnae (mup) 
consisting of large, subfalcate, decurrent, pinnatifid pinnules-+proximal ultimate 
pinna (mue) comprising entire pinnules; x2 

2. Apex of penultimate pinna; "naturally macerated" volatilized adpression, BB-97-30-
236,x2 

3. Acutely rounded, elongate-triangular apex of penultimate pinna; "naturally 
macerated" volatilized adpression, BB-97-30-237, x1 

4. Antepenultimate pinna; partially '"naturally macerated" volatilized adpression, BB-
96-30-174, x0.7 
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PLATE 16 

Figs. l, 2, 4, 5, 7.- Pecopteris plumosa (Artis) Brongniart, 1832 

1. Proximal ultimate pinnae with large subfalcate pinnules; partially ••naturally 
macerated" volatilized adpressions, BB-96-30-150, x 1 

2. Proximal penultimate pinna; decarbonized adpression, BB-97-30-234, xl 
4. Enlargement of Pl. 15, Fig. 4; distal penultimate pinna with small, semicircular 

pinnules on distal ultimate pinnae~ ••naturally macerated" volatilized adpression, BB-
96-30-174, x2 

5. Proximal penultimate pinna; pinnule mid veins slightly flexuous, lateral veins 
dichotomize once or unbranched near pinnule summit; "naturally macerated" 
volatilized adpression, BB-97-30-239, x2 

7. Proximal penultimate pinna; partially "naturally macerated" devolatilized adpression. 
BB-97-30-238, xl 

Figs. 3, 6.- Fern frond racheis 

3. Punctate rachis; decarbonized adpression, BB-96-30-123a, x2 
6. Devolatilized adpression, BB-94-30-35, x2 
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PLATE17 

Figs. 1 to 3. -Pecopteris sp. cf. P. cyathea (Schlotheim) 

1. Fertile ultimate pinna; (see venation on Fig. 4.5.6); partially "naturally macerated" 
volatilized adpression, BB-96-30-129, xl.5 

2. Same as Fig. 1; oblique illumination to enhance fructifications; x 1.5 
3. Apex of ultimate pinna; pinnules with prominent, simple venation; ••naturally 

macerated" volatilized adpression, BB-96-3 0-106, x 1.5 

Figs. 4 to 6, 9.- Pecopteris sp. cf. P. herdii Bell, 1938 

4. Penultimate pinna with thick, sparsely punctate rachis; decarbonized adpression, BB-
97-30-246, x2 

5. Ultimate pinna; delicate lateral veins on uppermost pinnules (see Fig. 4.5.4); 
decarbonized adpression, BB-97-30-247, x2 

6. Ultimate pinnae; base of pinnules confluent (arrow); note fine hairs arising from 
pinnule surface; decarbonized adpression, BB-97-30-214, x2 

9. Ultimate pinna; falsely crenulate lateral pinnule margin (arrow); devolatilized 
adpression, BB-94-30-8, x2 

Fig. 7.- cf. Sphenopteris sp. 

7. Apical frond element; robust terminus (t; now partially decarbonized) representing 
strobilus(?); ••naturally macerated" volatilized adpression, BB-96-25-1 0, x2 

Fig. 8, 10, 11.- Pecopteris sp. A 

8. Ultimate pinna; pinnules markedly vaulted; partially decarbonized adpression, BB-
94-30-27, x1.5 

10. Apex of penultimate pinna; entire pinnules nearest top morphological identical to 
entire pinnules of proximal ultimate pinnae ( cf. Figs. 8, 11; Pl. 18, Fig. 2), suggesting 
affinity of frond elements; decarbonized adpression, BB-94-30-20, x2 

11. Penultimate pinna with morphological gradation between proximal and distal ultimate 
pinnae; tiny, distal pinnules (on uppermost ultimate pinnae, arrow) morphologically 
identical to those on distal ultimate pinnae near base of penultimate pinnae (Fig. l 0; 
Pl. 18, Fig. 2}, suggesting affinity of disparate frond elements; rachis distinctly 
punctate; partially decarbonized adpression, BB-94-30-36, x2 
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Laveineopteris rarinervis (cont.) 

13. Isolated pinnule; undulate lateral margin (arrow); decarbonized adpression, BB-96-
14-21 
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PLATE IS 

Figs. l, 2. -Pecopteris sp. A 

1. Apex of penultimate pinna; decarbonized adpression, BB-96-25-1 0, x2 
2. Proximal ultimate pinnae; decarbonized adpressions, BB-94-30-48, xl.5 

Figs. 3, 7, 8. - Cyclopteris spp(?) 

3. Compare fine, broadly arching venation with more flexuous venation of cyclopteroid­
type pinnules attributed to Neuropteris semireticulata (cf. Fig. 4.8.6 and 4.8.8; Fig. 6; 
Pl. 23, Figs. 6, 8); "naturally macerated" devolatilized adpression, BB-96-30-133, 
xl.5 

7. Devolatilized adpression, BB-96-30-79, xl.5 
8. Devo1ati1ized adpression, BB-96-32-2, x 1.5 

Fig. 4. - cf. Alethopteris sp. Sternberg, 1825 

4. Pinnule fragment~ devolatilized adpression, BB-94-30-10, x2.5 

Fig. S. - Sphenopteris sp. A 

5. Penultimate pinna pinnules stalked near base of ultimate pinnae; devolatilized 
adpression, BB-96-30-90, x2 

Fig. 6. - Neuropteris semireticuiata Josten, 1 962 

6. Cyclopteroid-type pinnule with gently flexuous venation, hinting at affinity with N. 
semireticulata ( cf. Figs. 3, 7, 8); ••naturally macerated" volatilized adpression, BB-94-
30-49, xl.5 

Figs. 9 to 13. - Laveineopteris rarinervis (Sunbury) Cleat, Shute and Zodrow, 1990 

9. Ultimate pinna; decarbonized adpression, BB-96-14-44, x2 
10. Isolated pinnule; slightly undulate lateral margin (arrow); decarbonized adpression, 

BB-96-14-18, x2 
ll. Terminal pinnule on summit of ultimate pinna; decarbonized adpression, BB-96-14-

16, x2 
12. Ultimate pinnae fragments; devolatilized adpression, BB-96-14-33, x2 
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PLATE19 

Figs. 1 to 4, 9. - Laveineopteris rarinervis (Bunbury) Cleal, Shute and Zodrow, 1990 

1. Enlargement of Pl. 18, Fig. 11; uppermost pinnules sessile, with basiscopic side 
occupied by thin subvein which arises directly from rachis (arrow); venation slightly 
flexuous, fasciculate, widely spaced; decarbonized ad pression, BB-96-14-16, x 12 

2. Penultimate pinna; partially decarbonized adpression, BB-96-14-32, x2 
3. Isolated pinnule (r); decarbonized adpression, BB-96-14-18, x2 
4. Cuticles (abaxial and adaxial adjoined); macerated with Schulze's Reagent; x15 
9. Fasciculate lateral veins curve apically and merge with "striate compression margin" 

(arrows) upon reaching lateral margin; partially decarbonized adpression. BB-96-14-
35, x15 

Figs. 3, S to 8.- cf. Laveineopteris tenuifolia (Sternberg) Cleal, Shute and Zodrow. 1990 

3. Isolated pinnule (t); decarbonized adpression, BB-96-14-18, x2 
5. Isolated pinnule fragment; gently arching lateral veins dense but distant; "naturally 

macerated" volatilized adpression, B B-96-14-46a, x 1 0 
6. Isolated pinnule; well developed basiscopic auricle (b); shallow indent ca. l/3 up 

pinnule (arrow) diagnostic of taxa; devolatilized adpression, BB-96-30-133, xl.S 
7. Isolated pinnule fragment; "naturally macerated" volatilized adpression, BB-96-14-

31, x2 
8. Isolated pinnule fragment; ''naturally macerated" volatilized adpression, BB-96-14-

24b,x2 

169 





PLATE20 

Figs. 1, 2, 4, 5.- cf. Laveineopteris tenuifo/ia (Sternberg) Cleal, Shute and Zodrow, 1990 

1. Ultimate pinna; diagnostic shallow indent ca. 1/4 to 1/3 up lateral margin; well 
developed basiscopic auricles in lowermost pinnules; partially decarbonized 
adpression, BB-96-30-67 /68, x 1.5 

2. Isolated pinnule; gently arching lateral veins; shallow indent of lateral margin; 
prominent compression margin (arrow); "naturally macerated" volatilized adpression, 
88-96-14-9, x9 

4. Cuticles (abaxial and adaxial adjoined); compression margin (arrow); macerated with 
Schulze's Reagent; x 12 

5. Enlargement of Pl. 19, Fig. 8; "naturally macerated" volatilized adpression, 88-96-
14-24, x6 

Figs. 3, 6 to 11.- Linopteris neuropteroides (Gutbier) Zeiller, 1899 

3. Isolated subfalcate pinnule; decarbonized adpression, 88-96-19-16, x2 
6. Isolated pinnule; thicker, more flexuous veins than typical of the taxa, possibly 

because fine details better preserved in mudstone; decarbonized adpression, 88-96-
19-25, x2 

7. Isolated subfalcate pinnule fragment; partially decarbonized ad pression, 88-96-l9-
33,x2 

8. Isolated pinnule; well preserved venation; decarbonized adpression, 88-96-19-40, x2 
9. Isolated rotund pinnule; decarbonized adpression, BB-96-19-22, x2 
10. Isolated sub falcate pinnule; decarbonized adpression, BB-96-19-4, x2 
11. Isolated subfalcate pinnule; partially decarbonized adpression, BB-96-19-27, x2 

171 





PLATE21 

Figs. 1, 5.- Linopteris neuropteroides (Gutbier) Zeiller. 1899 

1. Enlargement of Pl. 20, Fig. 8; anastomosing venation; tiny pits on pinnule surface 
may represent punctae(?); decarbonized adpression. BB-96-19-40. x5 

5. Enlargement of PI. 20. Fig. 6; slightly flexuous. anastomosing venation; tiny. hairs 
(arrows) on pinnule surface; decarbonized adpression, BB-96-19-25. x7 

Fig. 2. - Pteridosperm frond rachis 

2. Faint, longitudinal striae superimposed on wrinkled surface; decarbonized adpression. 
BB-96-14-7. xl 

Figs. 3, 4.- Macroneuropteris scheuchzeri (Hoffman) Cleal, Shute and Zodrow. 1990 

3. Enlargement of Fig. 4; longitudinally oriented hairs on pinnule surface; x8. 7 
4. Isolated, elongate, villous pinnule with dense venation; devolatilized adpression. BB-

96-14-35, x3.4 

Figs. 6, 7.- Neuropteris semireticulata Josten, 1962 

6. Ultimate pinna; pinnules increasingly sessile apically; latex peel. BB-96-30-123a, 
xl.S 

7. Ultimate pinna; flexuous to pseudoanastomosing venation; latex peel, BB-96-30-69, 
xl.S 
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PLATE22 

Figs. 1 to 13.- Neuropteris semireticulata Josten, 1962 

1. Ultimate pinna; rachis overlapped by acrozcopic auricles of pinnules; well preserved 
pseudoanastomising venation; "naturally macerated" volatilized adpression, BB-96-
25-38, x2 

2. Rhombic terminal pinnule; decarbonized adpression, BB-96-25-23, x2 
3. Rhombic terminal pinnule fragment; devolatilized adpression. BB-96-25-24, x2 
4. Apex of ultimate pinna; latex peel, BB-96-30-96, x2 
5. Apex of ultimate pinna; rachis overlapped by acroscopic auricles, but pinnules 

increasingly sessile apically; terminal pinnule deltoid or elongate-triangular; 
decarbonized adpression, BB-96-30-125. x 1.5 

6. Large forma impar-type pinnule fragment with flexuous venation (see Fig. 4.8.5); 
decarbonized adpression, BB-97-30-181, x2 

7. Ultimate pinna fragment; latex peel, BB-94-30-6, xl.5 
8. Apex of large, subtriangular forma impar-type pinnule; venation on acroscopic side 

less flexuous, more dense and more broadly arching than that ofbasiscopic side (cf. 
Fig. 12); latex peel, BB-96-30-133, x2 

9. Apex of ultimate pinna; "naturally macerated" devolatilized adpression, BB-97-30-
262, xl.5 

10. Ultimate pinna; rachis overlapped by acroscopic auricles (arrow); latex peel, BB-94-
30-49, xl.5 

11. Hastate, forma impar-type pinnule with prominent auricle and flexuous venation; 
devolatilized adpression, BB-96-30-115, x2 

12. Same as Fig. 8; venation on basiscopic side more flexuous and widely spaced; x2 
13. Apex of ultimate pinna; subtriangular pinnules with flexuous venation; devolatilized 

ad pression, BB-30-96-1 0 I, x 1.5 
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PLATE23 

Figs. 1 to 10.- Neuropteris semireticulata Josten, 1962 

1. Asymmetrical, curved, forma impar-type pinnules arising from striate rachis; latex 
peel, BB-96-30-72, x1.5 

2. Forma impar-type pinnule; venation on acroscopic side less flexuous, more dense and 
more broadly arching than that ofbasiscopic side (cf. Fig. 3); partially decarbonized 
adpression, BB-96-30-89, x2 

3. Same as Fig. 2; venation on basiscopic side more flexuous and widely spaced, x2 
4. Flexuous venation of forma impar-type (fi) and "normal" lateral pinnules; "naturally 

macerated" volatilized adpressions, BB-96-25-32, x2 
5. Elongate-linguaeform "normal" lateral pinnules; devolatilized adpression, BB-94-30-

53,x2 
6. Cyclopteroid-type pinnule with gently flexuous venation; decarbonized adpression, 

BB-96-30-72, X 1.5 
7. Forma impar-type pinnules arising from striate rachis; venation on acroscopic side 

(ac) less flexuous, more dense and more broadly arching than that ofbasiscopic side; 
latex peel, BB-96-30-144, x2 

8. Fragment of cyclopteroid-type pinnule with gently flexuous venation (see Fig. 4.8.6); 
"naturally macerated" devolatilized adpression, BB-96-25-29, x2 

9. Cuticles (adaxial and abaxial adjoined) of terminal pinnule; macerated with Schulze's 
Reagent; x8 

10. Linguaeform, .. normal" pinnules; devolatilized ad pression, BB-96-30-66, x2 
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PLATE24 

Figs. 1 to 4, 7.- Cordaites sp. cf. C. borassifolia (Sternberg) Unger, 1850 

1. Single, prominent intermediate sclerotic strand between primary veins (arrow); 
decarbonized adpression, BB-94-30-6, x 1 

2. Devolatilized adpression, BB-96-30-71, xl.5 
3. Devolatilized adpression, BB-96-30-72, x1 
4. Enlargment of Fig. 3; single, intermediate sclerotic strand between primary veins, x8 
7. Well preserved intermediate sclerotic strands; strand arising from area of primary 

vein(?) (arrow); ''naturally macerated" volatilized adpression, BB-94-30-23, x8 

Figs. 5, 6, 8, 9.- Cordaites sp. cf. C. principalis (Germer) Geinitz, 1855 

5. Frequency of primary veins increasing at lateral leaf margin (arrow); partially 
decarbonized adpression, BB-96-30-123a, x1 

6. Leaf widening distally from swollen leaf base (b); decarbonized adpression, 88-96-
30-151, x2 

8. Space between primary veins flattened (cf. Fig. 9), and occupied by prominent central 
intermediate sclerotic strand and less conspicuous lateral sclerotic strands; partially 
decarbonized adpression, BB-96-30-151, x8 

9. Space between primary veins vaulted (cf. Fig. 8); more prominent intermediate 
sclerotic strand (arrow); decarbonized adpression, BB-94-30-18, x8 
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PLATE25 

Figs. 1 to 3, 6.- Cordaites sp. cf. C. principalis (Germer) Geinitz, 1855 

1. Frequency of primary veins increasing at lateral margin (arrow); partially 
decarbonized adpressions, BB-94-30-5, x1 

2. Very low angle bifurcation of primary veins; devolatilized adpression, BB-94-30-35. 
xl 

3. Spaces between primary veins flattened and occupied by well preserved central and 
intermediate sclerotic strands; "naturally macerated" volatilized adpression, BB-96-
30-151, x8 

6. Cuticles (abaxial and adaxial superimposed); prominent central intermediate sclerotic 
strand and less conspicuous lateral sclerotic strands; x6 

Figs. 4, 5, 8.- Cordaites sp. A 

4. Enlargement of Fig. 5; spaces between primary veins absent of sclerotic strands; x8 
5. Devolatilized adpression, BB-96-30-113, x2 
8. Very low angle bifurcation of primary veins; devolatilized adpression, BB-94-30-11, 

x1.5 

Fig. 7.- Cordaites sp. B 

7. Enlargement of Pl. 26, Fig. 3; comparatively smooth but longitudinally ''striate" leaf 
surface; more prominent ribs (arrow) may represent primary veins; devolatilized 
ad pression, BB-96-34c-l, x8 
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Fig. 11.- Dadoxylon sp. Endlicher, 1847 

11 . Thin section in transverse plane (i.e. perpendicular to growth axis); vascular rays (vr) 
comprise vascular ray cells; tracheid (t) cell walls slightly contorted by compression; 
biserial, dome-shaped bordered pits (arrows) project into cell cavity; volatilized 
petrifaction, BB-97-23-2, x200 
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PLATE26 

Fig. 1. - Cordaitanthus sp. B 

1. Devolatilized adpression, BB-97-30-209, x2 

Figs. 2, 3. - Cordaites sp. B 

2. Wide leaf, split longitudinally; devolatilized adpression, BB-96-34c-3, x1 
3. Leaf split by mechanical abrasion(?); devolatilized ad pression, 8B-96-34c-l, x 1 

Fig. 4. - Cordaitanthus sp. A 

4. Uncompressed, "ovate" secondary axes (sa) arise from axils of elongate sterile bracts 
(b); filamentous processes (fp) arising from secondary axes; devolatilized adpression. 
88-96-30-108, x6 

Figs. 5, 6, 9.- Samaropsis spp. 

5. Micropyle (arrow); decarbonized adpression, 88-96-30-184, x2 
6. Smooth surface; imprint of sarcotesta enveloping seed; decarbonized adpression, 88-

96-30-108, x2 
9. Reticulate surface; imprint ofsarcotesta (arrow); devolatilized adpression, 88-96-30-

119, x2 

Figs. 7, 8.- Axis of cordaitean(?) affinity 

7. Longitudinally wrinkled or striate axis; decarbonized adpression, 88-96-25-40, x1 
8. Same as Fig. 7; different illumination to show helically disposed rows on lenticular 

swellings; x 1 

Fig. 10.- cf. Cordaitanthus sp. Feistmantel, 1876 

7. Large, fertile secondary axis (sa) nestled between short sterile bracts; devolatilized 
adpression, BB-96-30-116, x2 
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Chapter 5- Biostratigraphic Correlation and Age Determination 

Western Newfoundland evidently was part of the Europe Paleoarea (Cleal and 

Thomas 1991) of the Euramerian Paleokingdom (Chaloner and Meyen 1973) during the 

Late Carboniferous (Fig. 1.2}. Accordingly, it is reasonable to attempt biostratigraphic 

correlation of the macro floral assemblage recovered from Blanche Brook with better 

established assemblages from other parts of the Europe Paleoarea. In particular, 

homotaxial comparisons with adpressed macro flora from localities in the Maritimes 

Basin and western and central Europe will either confirm or contradict the previously 

proposed Bolsovian (Hyde et al. 1991) or Westphalian Dages (Hacquebard et al. 1 q61) 

based on evidence from miospore assemblages. 

Comparisons with macroflora in midcontinental North America may be less 

reliable, as it has long been recognized (e.g., Dawson 1891; Bell 1929, 1944) that the 

northern Appalachian mountains formed a partial barrier to faunal and (in part) tloral 

migration between the ;·Acadian Province" (sensu Pfefferkorn and Gillespie 1980, 

includes Maritimes Basin) and the .. Interior-Appalachian Province" of midcontinental 

North America. However, despite these restrictions to migration and consequent 

endemism, there are several cosmopolitan taxa occurring in both phytochoria that permit 

some comparison between the BBA and macro flora of midcontinental North America. 

Based on the limited thickness of the stratigraphic section at Blanche Brook (ca. 

165m), it is postulated that all of the macrofloral subassemblages that constitute the BBA 

accumulated in a very short span of geological time, probably on the order of thousands 

to hWldreds of thousands of years. As such, the entire BBA represents a temporally 
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restricted fossil assemblage, within which there is no record of first or last appearances of 

taxa. This makes biostratigraphic correlation somewhat uncertain, although Cleal ( 1991, 

p.183-184) reassures that at least tentative correlations can be made if the assemblage has 

a reasonable taxonomic diversity. 

5.1 Established Macrofloral Biostratigraphic Classifications 

5. 5. 1 Maritimes Basin 

Extensive investigations ofmacroflora from the Marien Group of Sydney 

Coalfield led Bell ( 1938) to establish three consecutive macro floral zones (Lonchopteris 

eschwei/eriana, Linopteris ob/iqua and Ptychocarpus unitus biozones; Fig. 5.1) that 

facilitated correlations with localities in western Europe, eastern U.S.A., and eastern 

Canada [e.g., Stellarton Basin (Bell 1940), Cumberland Basin (Bell 1944 ), New 

Brunswick Platform (Bell 1962); summarized in Lyons and Zodrow (1995)]. The ages of 

Bell's (1938) biozones were redefined by Hacquebard et al. (1961) based on 

palynological evidence; Zodrow and McCandlish ( 1978) accordingly eliminated the P. 

unitus Biozone by extension of the L. obliqua Biozone. Biostratigraphic ranges have 

since been further refined in Sydney Coalfield by E.L. Zodrow and colleagues (Gastaldo 

and Zodrow 1982; Zodrow 1982, 1986, 1989a, b, 1990), which has permitted comparison 

with contemporaneous strata of western Europe (Zodrow and Cleal 1985) and the Mabou 

Basin of western Cape Breton Island (Zodrow and Vasey 1986). 
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Figure 5.1 . Biostratigraphic ranges of selected taxa from the Blanche Brook Assemblage as determined in the Sydney Basin 
(Marien Group) andMabou Basin (Inverness Formation) . 



5.1.2 Western and Central Europe 

By far the most comprehensive biostratigraphic classification of Carboniferous 

adpressed macroflora was assembled by Wagner (1984), who recognized sixteen distinct 

(assemblage) biozones. Although this classification was based primarily on data from 

western and central Europe, it was intended to facilitate biostratigraphic correlation 

within the entire paleoequatorial belt. Refinement of the biostratigraphic scheme (Fig. 

5.2) has significantly improved its resolution, in particular the recognition and delineation 

of several sub biozones by Cleal ( 1984, 1991 ). 

5.1.3 Midcontinental North America 

The most significant biostratigraphic classification for Upper Paleozoic strata of 

U.S.A. was introduced by Read (in Moore et al. 1944) and Read and Mamay (1964), and 

comprises fifteen macrofloral zones. In addition, Darrah (1969, p. 65) recorded the 

distribution of major plant taxa within lithostratigraphic units of the Appalachian region. 

and attempted chronostratigraphic correlation of Midcontinental North American 

chronozones with those of Europe (see also Pfefferkorn and Gillespie 1980, p. 1 02). 

More recently, Gillespie et al. (1995) have produced an emended classification (Fig. 5.3) 

providing correlation between: (i) lithostratigraphic units of the Appalachian region; (ii) 

chronostratigraphic units of the North American Midcontinent and western and central 

Europe; and (iii) Read and Mamay' s ( 1964) floral zones. 
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Figure 5.2. Biostratigraphic ranges of selected taxa from the Blanche Brook Assemblage as determined in western and central 
Europe. 
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5.2 Selection of Biostratigraphically Significant Macro flora 

Nine foliar form-taxa- four sphenopsids (Sphenophyllum emarginatum, S. sp. cf. 

S. zwickaviense, Annularia sphenophylloides, A. stellata), one fern (Pecopteris plumosa) 

and four pteridosperms (Laveineopteris rarinervis, cf. L. tenuifolia, Linopteris 

neuropteroides, Neuropteris semireticulata)- were selected from the BBA for 

comparison with macrofloral assemblages of the Sydney and Mabou basins of the 

Maritimes Basin (Fig. 5.1 ), western and central Europe (Fig. 5.2), and midcontinental 

North America (Fig. 5.3). Selection was based on these criteria: that specimens (i) are 

sufficiently abundant in the BBA and/or well enough preserved that they could be 

confidently determined to the specific level~ (ii) are not endemic species. but rather have 

a wide biogeographic distribution throughout much of the Europe Paleoarea; and (iii) 

have well established biostratigraphic ranges in other parts of the Europe Paleoarea. 

5.3 Age Determination from Biostratigraphic Correlation 

5. 3.1 Maritimes Basin 

Homotaxial comparison of the selected taxa (i.e., together as a group) from 

Blanche Brook with macro flora of the Morien Group of the Sydney Basin and the Mabou 

Mines Section (MMS) of the Mabou Basin indicates that the BBA may be equivalent to 

an interval within a range extending from the upper L. eschweileriana Biozone to lower 

(or middle?) L. obliqua Biozone (Fig. 5.1 ). According to Zodrow and McCandlish 

(1978), this biostratigraphic interval is correlative with the late Bolsovian through early 

(or middle?) Westphalian D stages of Europe. In particular, L. neuropteroides may be a 
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very useful biostratigraphic indicator, as it is recorded in the Sydney Basin from only a 

short interval in the lower L. obliqua Biozone(= early Westphalian D). 

It is worth noting that biostratigraphic studies in the Sydney Basin, especially in 

recent years, have primarily involved Westphalian D strata (i.e., rocks above Tracy Seam, 

Fig. 5.1 ). Accordingly, more intense investigation of older (Bolsovian) strata (especially 

below Shoemaker Seam) may reveal that the bottom ranges of these and other taxa are in 

fact lower (and thus older) than is presently assumed. If so, the BBA could in fact be 

slightly older than can presently be inferred from homotaxial comparison with the 

Sydney Basin. 

N. semireticulata, which characterizes the BBA, is apparently absent at other 

localities within the Maritimes Basin. However, the stratigraphic range of Reticulopteris 

muensteri in the Mabou Basin has been included in Figure 5.1 because it is considered 

that at least some specimens of R. muensteri recorded by E.L. Zodrow from the MMS 

may actually represent N. semireticulata (K.-H. Josten in Zodrow and Vasey 1986, p. 

217). 

5.3.2 Western and Central Europe 

Comparison of biostratigraphic ranges of selected taxa in western and central 

Europe (Fig. 5.2) clearly demonstrates that the BBA is equivalent to part of the Paripceris 

linguae folia Biozone of Wagner's ( 1984) classification, which en vel opes the entire 

Bolsovian. This conclusion is supported by recent work of Cleal and Shute ( 1995), who 

showed that N. semireticulata, L. rarinervis and L. tenuifolia are most abundant in 

Bolsovian strata of the Franco-Belgian Basin (based on data from Laveine 1967). 
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Because range limits of taxa cannot be attained within the section at Blanche Brook, it is 

neither practical (nor justifiable) to attempt further refinement of the age of the BBA by 

attempting to determine a correlative subbiozone within the P. linguaefolia Biozone. 

However, the presence of L. rarinervis in combination with A. stellata does suggest 

inclusion in the A. serlii Subbiozone, which is correlative with the late Bolsovian. 

5.3.3 !vlidcontinental North America 

Although S. emarginatum, A. sphenophylloides, A. stellata and P. plumosa are 

azonal species in midcontinental North America, L. rarinervis and L. renuifolia both are 

biostratigraphically diagnostic taxa. The distributions of these neuropteroids (Fig. 5.3) 

indicate that the BBA probably correlates with an interval within a range spanning the 

entire Floral Zone 8 (N. tenuifo/ia Biozone) to lower part of Floral Zone 9 (N. rarinervis 

Biozone) of Read and Marnay (1964). According to stratigraphic correlations of 

Gillespie et al. ( 1995), this interval is equivalent to the entire Atokan and early 

Desmoinesian Series of Midcontinental North America, and to the entire Bolsovian to 

early Westphalian D stages of western and central Europe. 

5.4 Biostratigraphic Implications of Pecopterids in Assemblage 

A considerable number of authors have noted changes in diversity and dominance 

patterns between different pecopterid groupings at or very near the 

Bolsovian/Westphalian D boundary at numerous localities within the Europe Paleoarea 

(e.g., Bell 1938, 1944; Read and Marnay 1964; Darrah 1969; Gillespie and Pfefferkorn 

1979; Gastaldo and Zodrow 1982; Wagner 1984; Zodrow 1990). In general, pecopterids 
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are rather uncommon elements of adpression assemblages of Bolsovian or older age 

(Pfefferkorn and Thomson 1982), and when present, often are members ofCorsin's 

( 195 l) Pecopteris plumosa-dentata (e.g., P. plumosa) and P. miltoni (e.g., Lobatopteris 

miltoni, ••p_ abbreviata") Groups. At or near the Westphalian D boundary, however, 

pecopterids seem to have diversified rapidly, particularly taxa belonging to Corsin's P. 

arborescens Group (e.g., Cyathocarpus cyathea, Cyathocarpus arborescens; see range of 

Cyathocarpus ex group arborescens on Fig. 5.2). 

Although pecopterids are very common elements of the BBA, they are oflimited 

diversity and are characterized by P. plumosa and a taxon (Lobatopteris sp. A) that is 

interpreted as a representative of the P. miltoni Group of Corsin ( 1951 ). In comparison, 

taxa of the P. arborescens Group are very rare at the site, and are represented by only two 

ultimate pinnae tentatively identified asP. sp. cf. P. cyathea (seven small frond 

fragments identified as Pecopteris sp. A may also be members of the group). As such, 

biostratigraphic evidence deduced from pecopterid distribution and abundance indicates 

that the BBA likely is Bolsovian in age (or at least older than Westphalian D). 

5.5 Paleoecological Considerations in Age Determination 

Major climatic shifts during the Late Carboniferous that resulted in broad 

increasingly wetter or drier intervals have been recognized by recording variations in 

abundance of coal swamp inhabiting vegetation (Fig. 5.4; e.g., Phillips 1979, 1981; 

Phillips and Peppers 1984; DiMichele et al. 1985; Phillips et al. 1985). Similarly, 

although far more difficult, it has also been possible to detect these same broad changes 
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in floral composition in clastic substrate inhabiting plants (e.g., Pfefferkorn and Thomson 

1982; Cleal and Shute 1995). Accordingly, recognition of particular floral associations in 

the BBA that have previously been documented as the product of either major drying or 

wetting trends will certainly aid in establishing the age of the locality. 

The Duckrnantian and Bolsovian climate was apparently dry in comparison with 

preceding and succeeding stages [Fig. 5.4~ see also ;•first dry interval" of DiMichele et al. 

(1985) on Fig. 5.2]. This dryness was reflected in changes in floral morphologies and 

assemblage compositions, including: (i) expansion and migration of cordaiteans, 

especially of the Mesoxylon-type, into peat forming swamps from their more usual well 

drained, clastic substrate habitats (DiMichele et al. 1985; Phillips et al. 1985; Raymond 

1988); and (ii) appearance and expansion of neuropteroids adapted to drier edaphic 

conditions, including laveineopterids with elongate pinnules (L. tenuifolia group) and 

neuropteroids with flexuous to reticulate venation (e.g .• N. semireticu/ata, Reticu/opteris 

sp.) (Zodrow and Cleal 1993; Cleal and Shute 1995). Increasingly wetter conditions at 

the Bolsovian/Westphalian D boundary resulted in the decline and extinction of 

laveineopterids and neuropteroids with reticulate venation, and the sudden replacement of 

these fonns with neuropterids allied toN. ovata (Fig. 5.2; Cleal and Shute 1995). 

Comparison of these "paleoecological indicators" with the BBA corroborates 

earlier conclusions regarding the age of the fossil locality, and helps to establish that the 

assemblage was thriving during a short interval of the "first dry interval", likely in the 

upper part of the Bolsovian Stage. In particular, the BBA is: (i) dominated by Cordaites 

spp. foliage, much of which apparently was derived from clastic swamp-fringing plants 
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(see Chapter 7), and contains abundant large forest-fonning trees (Dadoxylon sp.) of 

presumed cordaitean affinity; (ii) characterized by neuropteroids adapted to drier 

conditions, such as N semireticulata. a fonn with flexuous veination, and cf. L. 

tenuifolia, a fonn with markedly long pinnules; and (iii) contains no neuropterids allied to 

N. ovata. which typify Westphalian D assemblages. 
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Chapter 6 -Depositional Environment 

Paleoecological interpretations involving paleobotanical assemblages are much 

enhanced by a competent understanding of the depositional environment within which 

the plant communities lived and died. Accordingly, this chapter is a compilation of 

sedimentological and stratigraphic descriptions of strata from 36 outcrops along Blanche 

Brook, and provides an interpretation of the environment of deposition of the strata based 

on the characteristics and distribution of lithofacies and constituent sublithofacies. As 

previously defined, each sublithofacies represents a unique depositional environment 

characterized by its sedimentology, stratigraphy (vertical and lateral relationships with 

other sublithofacies), and plant fossil subassemblage. Stratigraphic sections of the five 

outcrops that yielded the main macro floral subassemblages described in this study are 

given in Figs. 6.1 through 6.6 (see Fig. 1.5 for geographic position of localities). 

6.1 Coarse Lithofacies 

6././ General Description 

Coarse units are entirely contained within the basal portions of large channels. 

and are gradational with finer grained rocks of the overlying fine lithofacies. Channels 

have shallowly concave and variably erosive bases that downcut into underlying 

sediments, usually of the fine lithofacies (Figs. 6. 7, 6.17). Strata are ubiquitously trough 

cross-stratified, and include micaceous sandstones, granular or pebbly sandstones, and 

pebble conglomerates. Pebbly sandstones and conglomerates are more common near the 

base of channels, while medium to fine grained sandstones dominate the top. Most rocks 
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Figure 6.1. Legend for lithostratigraphic sections (Figures 6.2 through 6.6). Note that 
colours used in figure representative of true rock colours. 
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Figure 6.2. Lithostratigraphic section of outcrop at locality BB-14. Note gradational 
boundaries between some sub lithofacies (e.g. point bar and levee/backlevee ). 
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Figure 6.3. Lithostratigraphic section of outcrop at locality BB-19. 
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Figure 6.4. Lithostratigraphic section of outcrop at locality BB-25. 

203 



point bar 

channel lag 

T 
proximal or medial 

crevasse splay (I'J 

1 
ponded water 

I 
clastic swamp 

r 
floodplain 

crevasse splay(?) 

1 

~ -Q) 

E 

SUBLITHOFACIES 

4 

3 

2 

0 

channel fines upward 

-~ 

clay silt vt f m c vc gran peb 
L sand __j 

Figure 6.5. Lithostratigraphic section of outcrop at locality BB-30. 
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Figure 6.6. Lithostratigraphic section of outcrop at locality BB-32. Note gradational 
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Figure 6.7. Shallowly concave erosive contact (arrow) between overlying coarse 
(channel) lithofacies and underlying fine (overbank) lithofacies (coarsening upwards 
sublithofacies?) at locality BB-29. 

are light brown to greenish or bluish grey in color, with purplish to reddish brown 

coloration being far less common. Brown sandstones and pebbly sandstones are often 

characterized by a "spotty" appearance due to the presence of scattered, mm- to em-scale, 

bleached blotches (Fig. 6.8). The sand component (including conglomerate matrix), 

which dominates the strata, generally is medium to coarse grained, contains abundant 

muscovite, and can be categorized as a feldspathic litharenite based on the classification 

ofMcBride (1963) . 

Individual trough cross-strata are defined by em-scale stringers, lenses or basal 

lag deposits of granules, extra- or intraformational clasts, or parallel-laminated, greenish 
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Figure 6.8. Bleached blotches in brown, trough cross-stratified sandstone of the point bar 
sub lithofacies at locality BB-31 , with laminae defined by granule concentrations. 

to medium grey, micaceous siltstone or very fine sandstone. Troughs (up to 2.0 m thick) 

occasionally consist entirely of extraformational pebble conglomerates. Laminae within 

sand-dominated troughs are recognized by concentrations of: granules, micaceous or 

heavy minerals, comminuted, devolatilized plant fragments, or medium to dark grey 

(carbonaceous) mudstone. 

Extraformational clasts within both the pebbly sandstones and conglomerates are: 

subangular to rounded, average between 0.7 and 2.5 em (long diameter), generally are 

matrix supported, and are predominantly derived from white vein quartz or igneous or 

metamorphic rocks. Intraformational clasts are: subangular to rounded, 3 to 7 em in 
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diameter (exceptionally up to 40 em), and comprise greenish grey, dark grey 

(carbonaceous) or (rarely) red to purplish siltstone or mudstone. Devolatilized plant 

matter typically occurs as comminuted, unidentifiable and randomly oriented fragments 

making up laminae of trough cross-strata, although elongate stem fragments (some 

identifiable as Calamites sp., Sigillaria sp. or Lepidodendron sp.) may be oriented 

parallel to the scour direction of the trough within which they are preserved (Fig. 6.9). 

Figure 6.9. Devolatilized stem fragments aligned parallel to trough scour direction in 
trough cross-stratified sandstone of the point bar sublithofacies. Photograph taken from 
outcrop along Blanche Brook within Stephenville. Scale bar in em intervals. 
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6.1.2 Tree petrifactions 

Perhaps the most conspicuous attribute of the coarse lithofacies is the presence of 

abundant, large volatilized tree petrifactions (Figs. 6.10, 6.11), some reaching up to 4.8 m 

in length and to 1.9 min width (measured at base oftrunk). Several specimens are 

essentially uncompressed, cylindrical axes, although the majority of trees are at least 

partially flattened . Bifurcating roots may be preserved at the base of some fossil logs. 

Axial fragments typically are preserved unbranched, although most trees have scars along 

their length that represent the attachment point of previously existing lateral branches. 

Figure 6.10. Oblique view ofuncompressed, drifted, volatilized tree petrifaction (ca. 4.8 
m long) contained within trough cross-stratified, extraformational conglomerate to pebbly 
sandstone (channel lag sublithofacies) at locality BB-17. Note that the prostrate axis 
plunges gently away from the slightly elevated root mass. Notebook 17.8 em long. 
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Figure 6.11 . Uncornpressed, upright, drifted, volatilized tree petrifaction preserved 
within pebbly sandstone of the channel lag sublithofacies at locality BB-23. Notebook 
17.8 ern long. 

In general, the fossil logs are lying nearly horizontal (dipping between 00 and 27°, 

ave. 7.3°, n = 131) within trough cross-stratified, clast-supported conglomerate, although 

a single specimen is preserved upright (Fig. 6.11 ). When sub horizontally oriented trees 

are preserved with roots, log axes plunge away from the slightly elevated root mass (Fig. 

6.1 0). Occasionally, it can be demonstrated that the long axis of an individual tree fossil 

is aligned nearly parallel or perpendicular to the scour direction of the trough cross-strata 

within which it is entombed. At outcrops where tree petrifactions are especially 

abundant, they are randomly oriented and may occasionally be in contact. 
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6.1. 3 Interpretation 

6.1.3 .1 Channel lag sublithofacies- On the whole, the coarse lithofacies is 

interpreted as channel deposits of a mixed-load meandering stream. Trough cross­

stratified pebble conglomerates, pebbly and granular sandstones, and associated large 

volatilized tree petrifactions that directly overlie shallowly concave, erosive surfaces 

(Fig. 6. 7) are interpreted as thin channel lag deposits. The light brown to greenish grey 

coloration of sediments, which reflects an abundance of diagenetic chlorite containing 

reduced iron, and presence ofpyrite nodules in tree petrifactions (Fig. 3.5.1) implies that 

reducing conditions were prevalent during deposition of the channel lag sub lithofacies. 

Trees are thought to represent waterlogged drift that preferentially accumulated at 

the base of channels within clast-supported conglomerates. Speculatively, loosely 

aggregated, prostrate, drifted trees that are in contact may represent ancient ··tog jams". 

As well, the single vertically disposed stump at locality BB-23 (Fig. 6.11) almost 

certainly represents transported drift rather than an in situ stump in growth position [see 

criteria of Fritz and Harrison ( 1985) for differentiating transported tree stumps from those 

buried in growth position]. The very large size of some petrifactions indicates that 

channels at least periodically contained very high energy flow capable of entraining and 

transporting waterlogged trees. Trees probably grew in channel fringing habitats and 

were added to the fluvial system by channel avulsion. or due to bank undercutting and 

subsequent collapse that resulted from lateral migration of the meandering stream 

(Scheihing and Pfefferkorn 1984). 

211 



6.1.3.2 Point bar sublithofacies- Successions of progressively finer grained, 

trough cross-stratified sandstones (Figs. 6.8, 6.9) with relatively fewer granular or pebbly 

horizons are interpreted as fining upward point bar deposits that accumulated above basal 

channel lags as a result of channel migration. This is entirely consistent with the 

simplified fining upward model proposed by Allen ( 1970) for meandering stream 

deposits. The light brown to greenish or bluish grey coloration (diagenetic chlorite, see 

above) and abundance of devolatilized, comminuted plant debris in the deposits suggests 

that sediment pore waters were reducing ( -Eh) during accumulation. Bleached spots (Fig. 

6.8) within light brown sandstones have been interpreted as reduction spots that may have 

formed in response to anaerobic decay of small particles of organic matter within the 

sandstone (Retallack 1990). Although purplish to reddish brown point bar deposits are 

comparatively scarce within the section, their presence indicates that accumulation 

occasionally occurred under oxidizing, well drained conditions, probably during intervals 

when the water table was comparatively low. 

The abundance of trough cross-strata that either are entirely filled with or contain 

mudstone to very fine sandstone laminae indicates that disequilibrium existed between 

the aqueous flow and sediment surface (Fielding 1986). As such, deposition likely 

occurred in a regime of variable discharge, perhaps influenced by frequent (flash) 

flooding and/or bank instability. 

The marked amount of intraformational clasts in this sublithofacies indicates that 

bank undercutting and collapse of partially lithified overbank strata into the migrating 

channel was a very common event. The abundance of devolatilized plant remains 
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indicates that channel fringing habitats laterally adjacent to (and being eroded by) the 

channel were fully capable of supporting vegetation. The fragmented and unidentifiable 

nature of most debris indicates that it was mechanically abraded during transport. Plants 

might have entered the channel system when banks collapsed, or alternatively, smaller 

fragments may have been blown into the stream (Ferguson 1985; Spicer and Greer 1986; 

Gastaldo 1988). 

6.1.4 Paleocurrent Data 

The combined data from tree petrifaction orientations, trough scour directions, 

extraformational clast and matrix composition, and the assumed paleotopographical 

setting all evince a general paleo flow trend from the northeast towards the southwest. A 

composite rose diagram (Fig. 1.5) of scour directions measured from trough cross-strata 

demonstrates highly variable paleocurrents throughout the succession, although a 

predominant northeast or southwest paleoflow direction is evident (vector mean= 

232.2°). Conversely, down dip lineation trends measured from tree petrifactions 

illustrates a strong preferential southeast orientation, with a weaker northeast-southwest 

alignment (Fig. 1.5). Hence, although many trees are oriented parallel to the dominant 

paleoflow direction (as determined by trough scour orientations), many of the trees are 

oriented essentially perpendicular to the presumed paleoflow (cf. Fritz and Harrison 

1985). 

According to L. Quinn (personal communication, June 1994), the majority of 

extraformational pebbles likely were derived from Grenvillian (Precambrian) basement 

(see also Knight 1983; Solomon 1986), which comprises igneous and metamorphic rocks 

213 



that are presently exposed east and northeast of Blanche Brook (Williams 1985; Williams 

and Cawood 1989). This interpretation is supported by the prevalence of muscovite 

within most sediments, which implies that at least part of the source terrain comprised 

metamorphic rocks. These paleocurrent and provenance data are consistent with the 

postulation that strata were deposited in a narrow. northeast-southwest trending subbasin 

that was open to the southwest but otherwise confined by paleotopographical highs to the 

northwest (Table Mountain), northeast, and southeast (Indian Head Promontory) (Fig. 

1.4). Streams would have flowed and transported sediment southwestward towards 

topographically lower areas of the Maritimes Basin (see Gibling et al. 1992). 

6.2 Fine (Overbank) Lithofacies 

6.2.1 General Description 

The fine lithofacies includes a diverse assemblage of fine grained siliciclastics 

that (without exception) are gradational with rocks of the underlying coarse lithofacies. 

Essentially then, these strata represent the culmination of fining upward channel 

sequences that were in turn erosively truncated during avulsion by a succeeding channel 

(Figs. 6.7, 6.12, 6.17). A complete gradation exists from medium grained sandstone to 

siltstone to mudstone, with coal horizons being rare. The majority of strata are either 

greenish to bluish grey (abundant diagenetic chlorite, see above) or medium to dark grey 

(when carbonaceous), while reddish to purplish brown strata are less common. 

The fining upward succession can be generalized as an upward decrease in grain 

size from micaceous, rooted, medium or fine grained sandstones to rubbly, phytoturbated 

and/or mottled mudstones. When this sequence is dominated by greyish strata (which is 

214 



Figure 6.12. Outcrop at locality BB-30, showing typical succession of sub lithofacies 
from levee/backlevee(?) (1)----+floodplain (t)-+clastic swamp (s) with thin coal seam 
(arrow)-+crevasse splay (cs)-+succeeding channel (ch). Note the crevasse splay deposit, 
which has a sharp, slightly erosive base, is in turn erosively truncated by overlying 
channel. Backpack ca. 50 em tall. 

most commonly the case), carbonaceous mudstones in the section often contain mm-

thick coal lenses, frequently contain fragmentary but very well preserved floral 

adpressions, may be stained by iron oxides, and may be associated with thin (3.5 to 12 

em, ave. 4 to 5 em), laterally discontinuous, high ash (Hyde et al. 1991) coal seams (Figs. 

6.12, 6.13) that may be split by carbonaceous mudstone horizons (Solomon and Hyde 

1985). 
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Figure 6.13 . Outcrop at locality BB-14, with succession of sublithofacies from 
floodplain (f)---j-cJastic swamp---j-coarsening upwards unit ( cu). Grey floodplain deposits 
contain abundant slickensides and stigmarian rootlets. Very dark grey, carbonaceous 
shale containing mm-scale coaly horizons characterizes the clastic swamp sublithofacies, 
which is in turn gradationally overlain by the coarsening upwards sublithofacies. Scale 
bar in em intervals. 

Mudstones and coal-bearing rocks within the generalized fining upward 

successions are subsequently overlain either gradationally or sharply by coarsening 

upward units of micaceous siltstone to fine sandstone. Units with gradational bases (Fig. 

6.13) occasionally have parallel, wavy, trough and/or planar cross-laminations composed 

of comminuted plant debris, reddish or dark grey (carbonaceous) mudstone, or coarse 

grained sandstone. Conversely, sharp-based successions (Fig. 6.12) may exhibit faint 
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Figure 6.14. Large Stigmaria sp. rhizophore (see circular, helically arranged surface 
scars at arrow) with attached lateral organs within rubbly, heavily phytoturbated, grey 
floodplain sub lithofacies which is essentially devoid of primary sedimentary structures. 
Locality BB-30. 

trough cross-stratification, and may contain well preserved plant fossils along with mm-

scale pyrite nodules. 

Perhaps the most marked characteristic of the fine lithofacies is the abundance of 

beds containing in situ plant roots . The majority of root-bearing rocks are characterized 

by a rubbly or blocky texture with abundant slickensided surfaces, and otherwise lack 

sedimentary structures (Figs. 6.13 , 6.14) . Within greyish units, mm-scale rootlets are 

preserved as unidentifiable, black, devolatilized adpressions or white, branching traces. 

Conversely, rootlets in reddish, phytoturbated mudrocks frequently are abundant but 

217 



Figure 6.15. Bluish grey blotches (reduction spots) cored by devolatilized organic matter 
(remnants of plant rootlets) within reddish floodplain sublithofacies at locality BB-5 . 

poorly preserved as decarbonized traces. Stigmaria sp. rhizophores with attached lateral 

organs (Fig. 6.14) are especially common in greenish to bluish grey mudstones or muddy 

siltstones associated with coaly horizons and/or plant-bearing mudstones. 

Reddish, phytoturbated mudstones frequently are mottled by mm- to em-scale, 

greenish to bluish grey, irregularly shaped blotches that typically have a core of 

devolatilized organic matter (Fig. 6.15). These blotches may be confined to a single 

bedding plane but often crosscut bedding. Although rare, some red mudstones contain a 

network of circular and irregular, vertical fractures infilled with calcium(?) carbonate 

(Fig. 6.16). Bluish grey mudstones intimately associated with red mudstones may 
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Figure 6 .16. Network of carbonate (CaC03 ?)-infilled, circular and vertical fractures in 
reddish floodplain deposits at locality BB-5 . Fractures with circular outline (arrows) may 
represent replaced plant stems consisting of hollow piths surrounded by thin, woody axis 
(cf. Calamites(?) sp.). 

contain semicircular, em-scale concretions comprising radiating, greyish, calcareous 

mudstone (Fig. 6.17). 

6.2.2 Interpretation 

Strata of the fine lithofacies are interpreted as overbank deposits that accumulated 

laterally adjacent to the active meandering stream channel. Deposition in overbank areas 

occurred when sediment-laden floodwaters either incised or rose above channel banks. 

In general, more coarsely grained deposits formed proximal to the channel (e.g. , 

levee/backlevees or crevasse splays), while mudstones and coal-bearing rocks developed 
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Figure 6.17. Radiating, calcareous(?) mudstone concretions within bluish grey floodplain 
sublithofacies at locality BB-5, possibly representing ferruginous or ferralitic paleosol 
(see text). Floodplain deposits erosively truncated by channel lag sublithofacies of 
succeeding channel. Scale bar in em-intervals. 

in more distal positions (e.g., floodplains or clastic swamps) . 

6.2.2.1 Levee/backlevee sub lithofacies - Phytoturbated, rooted, rubbly 

mudstones (with uncommon Stigmaria spp. in grey sediments) and parallel-laminated 

siltstones to very fine sandstones that directly overlie deposits of the point bar 

sub lithofacies are interpreted as levee/backlevee deposits that formed along channel 

margins. Sediments of this sub lithofacies are conspicuously thin and very poorly 

developed within the succession, which seems to indicate that channel banks were not 

elevated very far above the water table. Significantly, this also implies that water flow 
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probably was poorly confined by channel margins. It is apparent from the limited 

development of levees that much of the fine sandstone/siltstone component comprising 

typical levee deposits (Fielding 1984b; Collinson 1996) was removed from the channel 

system before it could accumulate on levees. Instead, it is postulated that these sediments 

were preferentially deposited in crevasse splay systems, thus effectively bypassing rather 

than adding to levee deposits. 

The presence of roots and phytoturbation indicates that levee tops and flanks were 

well vegetated. Levee/back levee deposits are gradational with (and very difficult to 

differentiate from) vertically and laterally adjacent floodplain deposits. 

6.2.2.2 Floodplain sublithofacies- This sublithofacies is characterized by rubbly. 

rooted and heavily phytoturbated mudstones otherwise devoid of sedimentary structures. 

Most strata compare very closely with the .. simple alluvial paleosols" of Kraus and 

Asland (1993). Strata accumulated by vertical accretion when sediment laden 

floodwaters overtopped levees - sands and silts would have been deposited close to the 

channel, while clays would have settled from suspension in more distal parts of the 

floodplain. 

Grey floodplain deposits may be carbonaceous and pyritiferous (now oxidized to 

iron oxides), may contain well preserved but quite fragmentary (partly allochthonous?) 

macrofloral subassemblages, and generally contain abundant in situ stigmarian 

rhizophores (Fig. 6.14). It is interpreted that these grey strata were permanently 

waterlogged and accumulated under reducing conditions. This assumption is supported 

by the presence of a bleached, rubbly mudstone horizon directly beneath carbonaceous, 
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coaly mudstones (clastic swamp sublithofacies) at locality BB-29. This bleached 

mudstone is similar to the "gley paleosol" described by Kraus and Asian (1993), which 

apparently indicates soil formation in very poorly drained, reducing, hydromorphic 

conditions where the water table is permanently high (Kraus and Asian 1993; Collinson 

1996). Blocky or rubbly textures (Fig. 6.13) and slickensides (Fig. 6.12) may be partially 

attributed to alternating wet and dry conditions that resulted from inconsistent inundation 

by floodwaters (Gustavson l991 ). This interpretation is substantiated by recent 

paleoclimatic work in the Maritimes Basin by Chandler ( 1998), who concluded that the 

climate in the region during the Westphalian was tropical and seasonal with a pronounced 

dry season. 

Phytoturbated. mottled mudstones characterized by a reddish coloration and 

virtual absence of plant fossils very likely accumulated under comparatively well drained 

and oxidizing ( +Eh) edaphic conditions. Carbonate-infilled vertical fractures with 

circular outlines within red mudstones (Fig. 6.16) are interpreted as the remnants of plant 

stems (Klappa 1980) with hollow piths surrounded by a thin layer of woody(?) tissue 

(perhaps cf. Calamites sp.). Similarly, greyish blotches containing vertical, devolatilized 

cores within red, heavily bioturbated mudstones (Fig. 6.15) almost certainly represent 

root traces (Retallack 1990), and indicate that even subaerially exposed floodplains were 

capable of supporting prolific plant growth. Calcareous(?) concretion-bearing, bluish 

grey mudstones (Fig. 6.17) that directly overlie redbeds likely represent ferruginous or 

ferralitic paleosols (Duchaufour 1982), which apparently are indicative of a fluctuating 

water table and warm climatic conditions (Duchaufour 1982; Collinson 1996). 
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6.2.2.3 Clastic swamp sublithofacies- This sublithofacies is characterized by 

thin coal seams (Fig. 6.12), and by thoroughly phytoturbated, medium to dark grey 

(carbonaceous) mudstones (Fig. 6.13) that generally contain mm-scale coaly horizons, 

small pyrite nodules, and very well preserved but fragmentary plant adpressions. Clastic 

swamps seemingly developed in the topographically lowest areas on the distal side of and 

laterally adjacent to floodplains; sedimentological (and ecological) gradients likely 

existed between clastic swamps and the distal portions of floodplains that flanked them. 

Peats record the prolific growth and accumulation of vegetable matter under 

reducing, acidic and periodically standing water at or very near the level of a permanently 

high water table, especially when sediment suspended in floodwaters was excluded by 

the baffling effect of plants growing around the swamp margin (Fielding 1984a; McCabe 

1984; Collinson 1996). However, the rarity and both spatially and temporally restricted 

nature of coal seams along Blanche Brook indicates that peats developed under 

conditions that were far from ideal. The fact that coals are high in ash, very thin, and 

may be split by carbonaceous mudstone horizons strongly indicates that nutrient-rich 

floodwaters frequently incurred on the swamp, which hindered and (soon after inception) 

choked off peat development. Likewise, carbonaceous mudstones containing only thin 

coal seams likely record clastic swamp deposition in which the rate of sediment 

introduction far exceeded the accumulation rate of plant matter. It is envisioned that mud 

settled out of suspension after being introduced to the clastic swamp when far reaching 

floodwaters containing abundant suspended sediment overtopped levees. Silty, 
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fossiliferous horizons within the clastic swamp sublithofacies at BB-14 very likely record 

exceptional and more vigorous flood events. 

The upper ems of clastic swamp deposits at localities BB-14 (Figs. 6.2, 6.13) and 

BB-30 (Figs. 6.5, 6.12) both constitute finely laminated, fissile, unrooted, highly 

carbonaceous shales. It is interpreted that these laminated and unbioturbated sediments 

formed by slow settling of suspended sediment within small, stagnant (anoxic) ponds 

(Fielding 1984b; Solomon and Hyde 1985; Solomon 1986) that were fairly shallow but 

just deep enough to impede the growth of most plants. So, although it is equivocal 

whether or not clastic swamps were permanently submerged, it is evident that the final 

developmental stages of some swamps were characterized by standing water that 

probably drowned most peat-forming vegetation. 

6.2.2.4 Crevasse splay sub lithofacies- Coarsening upward successions with 

sharp bases (Fig. 6.12) are interpreted as proximal or medial crevasse splays. These 

deposits formed during flood events when channel levees were breached and a slurry of 

sediment-laden water was transported onto the floodplain via a crevasse channel. The 

sharp (perhaps slightly erosive) bases, presence of trough cross-stratification, and 

variable orientation of macro floral remains within greyish deposits attest to the rapidity 

and energy of sedimentation. However, the excellent preservation and comparatively less 

fragmented nature of the plant fossils within this sub lithofacies may indicate a minimal 

distance of transport. Although plants may have been sampled from anywhere between 

the (breached) levee and their final resting place atop floodplain or clastic swamp 

deposits, studies of modem coal swamp analogues (Gastaldo et al. 1987; Scheihing and 
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Pfefferkorn 1984) suggest that much of the debris was derived from vegetation growing 

on levees upstream from the breach site. The grey color, excellent preservation of 

adpressed macro flora, and presence of pyrite nodules provides evidence that most 

crevasse splays were deposited under reducing conditions. 

6.2.2.5 Coarsening upwards sublithofacies - Siltstone and very fine sandstone­

dominated, coarsening upward successions that gradationally overlie floodplain or clastic 

swamp deposits (Fig. 6.13) are interpreted as either small deltas that fanned at the distal 

end of crevasse splays that encroached and eventually infilled clastic swamps, or simply 

represent comparatively coarse grained floodplain deposits. The increase in grain size 

attests to the gradual approach of an active channel and/or associated crevasse splays due 

to channel migration across the floodplain. The paucity of rootlets or bioturbation within 

these successions indicates that sedimentation was constant enough that plants were 

unable to colonize the exposed sediment surface. Exceptional flood events may be 

represented in the upper part of these coarsening upward sequences by fine to medium 

grained sandstone laminae and beds within siltstones, and by trough cross-stratified 

sandstones. 

6.2.3 Implications of Crevasse Splay and Coarsening Upwards Sublithofacies 

Coarsening upward successions, whether with gradational or sharp lower 

boundaries, generally are erosively truncated by channel lag deposits of a succeeding 

channel (Figs. 6.7, 6.12) rather than being overlain by finer floodplain deposits. 

According to Fielding ( 1984a, p. 920), this implies that channel avulsion was common 

and at least partly initiated by crevassing of channel banks. However, the small thickness 
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of avulsion-related deposits between successive, downcutting channel sandstones 

suggests that active channels had limited area for lateral migration, and alludes to the fact 

that the floodplain was relatively narrow (Bridge and Leeder 1979; Collinson 1996). 

6.3 Summary of Depositional Environment 

Strata from along Blanche Brook are interpreted as the deposits of relatively 

coarse grained, mixed-load, meandering streams that flowed in a general southwesterly 

direction across a narrow floodplain that occupied a northeast-southwest trending 

subbasin in the northern extreme of the Bay St. George Basin (Figs. 1.4; 6.18). Evidence 

suggests that channel waters were rather poorly confined and thus frequently overtopped 

or breached channel levees during flooding events. Recurrent incursions of sediment­

laden floodwaters onto the floodplain occurred in part because: (i) channel bounding 

levees seemingly were poorly developed and of low elevation; (ii) the avulsion belt 

through which streams flowed was very narrow and thus in proximity to the floodplain; 

and (iii) repeated crevassing of channel banks initiated channel avulsion and lateral 

migration. 

The majority of overbank strata, which accumulated by vertical accretion when 

floodwaters overtopped levees, were deposited under waterlogged, reducing conditions at 

or very near the water table level (which generally was quite high). However, red 

colored rocks within both the coarse and fine lithofacies indicate that some strata were 

deposited above the water table where they were well drained and heavily oxidized, 

suggesting that the rate of basin subsidence(?) and/or water table was fluctuating. The 

prevalence of rootlets and phytoturbation in leveelbacklevee and floodplain deposits, 
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regardless of whether waterlogged or well drained, indicates that paleosols supported a 

profusion of plants. The vast majority of plant fossils and debris very likely were 

transported some distance via water or wind before deposition. 

Distal and topographically lowest parts of the floodplain were occupied by clastic 

swamps within which peat development was strongly influenced and laterally and 

temporally restricted by frequent incursions of nutrient-rich floodwaters. As active 

channels migrated and approached the swamps, peat development was effectively choked 

off by crevasse splay deposits or more proximal (i.e., increasingly more coarse grained) 

floodplain sediments. Alternatively, plants inhabiting the clastic swamp may have been 

drowned by shallow, stagnant water that ponded during late stages of swamp 

development. Regardless of the reason(s) for the demise of the clastic swamps, 

observations from this study corroborate conclusions of Solomon and Hyde ( 1985) that 

peat within clastic swamps of the Barachois Group developed under intrinsically 

unfavorable conditions, and either were drowned by standing water or smothered by 

sediment encroachment shortly after inception. 
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Chapter 7- Paleoecology 

7.1 Defmition of Floral Habitats 

During the Late Carboniferous (Westphalian and Stephanian Epochs), terrestrial 

environments of Eurameria were characterized by extensive topographically low-lying 

alluvial. deltaic and coastal plains surrounded by comparatively elevated slopes. The 

poorly drained plains, or "lowland-wetlands", were basinal areas of net deposition, and 

included a variety of edaphically distinct depositional environments, each of which 

provided an ecologically distinct habitat for the establishment and growth of diverse and 

unique floral assemblages. In the present study, the lowland-wetlands are defined as 

encompassing all of the sublithofacies described in Chapter 6, including channel 

sediments, leveelbacklevee complexes, floodplains, and clastic swamps (Fig. 6.18). 

The narrow alluvial plain at Blanche Brook probably was surrounded by 

topographically higher regions of net erosion that may have sustained edaphically 

restricted floral assemblages. Slopes of gentle to moderate grade that likely existed 

directly adjacent to the depositional plain are termed "extrabasinallowlands" (Fig. 6.18; 

sensu Pfefferkorn 1980), while the term ''extrabasinal uplands" (sensu Pfefferkorn 1980, 

non Chaloner 1958) is restricted to mountainous terrain with steep, rocky slopes; Table 

Mountain and the Indian Head Promontory presumably represent the erosional remnants 

of these Late Carboniferous mountains. 
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7.2 Interpretation of Paleoecology of Blanche Brook Assemblage 

The effects of taphonomy, particularly biostratinomic factors, have often 

destroyed many of the indicators required to make conclusive deductions about the 

original paleoecological and paleoenvironmental settings of plant fossil communities. As 

a consequence, formulation of an accurate paleoenvironmental model for Blanche Brook 

must rely heavily on homotaxial analogies with paleobiological and paleoecological 

preferences and amplitudes that have been previously interpreted for representatives of 

the five main plant groups found at the site (lycopsids, sphenopsids, ferns, pteridosperms 

and cordaites). The following discussion will also consider the influence of broad 

fluctuations in plant dominance and diversity patterns that occurred throughout the Late 

Carboniferous as a result of changing climatic conditions and consequent speciation and 

extinctions (Fig. 5.4 ). As well, the paleobotanical affinities of miospores recovered by 

Hyde et al. (1991) from coal seams at localities BB-29 and BB-30 (Fig. 7.1) will be 

incorporated into construction of a working paleoenvironmental model for the BBA. 

7.2. 1 Lycopsids 

Arborescent lycopsids centered in clastic-influenced habitats were relatively short 

lived, monocarpic plants with a basic pole-type architecture and a leaf- and cone-bearing, 

forked or dendritic crown that typically grew for reproductive purposes (rather than for 

light capture) just prior to death of the plant (DiMichele and Phillips 1985; DiMichele et 

al. 1992; Phillips and DiMichele 1992). Other polycarpic (i.e., continuous reproduction) 

forms had rows of deciduous, cone-bearing lateral branches along the length of the trunk. 
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Miospore 

Arborescent Lycoosids 
Apiculatisporltes spp.< 
(=Cappasporites spp.) 
Crassispora kosanke1 • 
Lycospora pusilla • 
Lycospora noctuina • 

Herbaceous Lycopsids 
Cirratriradites saturnt 
Enaosponres spp .' 

Ferns 
Acanthotnletes sp. • 

Convo/utispora sp. • 
CycJogranisporites spp(?)• 
Dicryotriletes sp. n • 

Granulatispontes sp . • 
Laev1gatospontes spp." 
Leiotriletes sp. n 

Lophotriletes spp(?) . ' 
Punctatospontes spp " 

Raistnck1a spp ' 

Tortspora secuns' 

Sphenoosids 
Ca/amospora spp." 

Vestispora spp. = 

Gvmnosperms 
Dictyotriletes sp • • 
Flon·mtes spp• 

Unknown affin1tv 
Latosporttes sp. • 
Microreticu/atisporttes spp . ' 
Trtquitrltes spp. • 

•round only at locality BB-29 
•round only at locality BB-30 
•round at both localities 

Paleobotanical Affinity 

Diaphorodendron 

Sigillana 
Lepidodendron hickii 
Lepidodendron (?) 
Lepidophloios (?) 
Para/ycopodites (?) 

Sellagmellites 
cna/onena 

Fern {Filicales) 

Tree fern (Marattiales) 
Vanous ferns 
Fern (Filicales) 

Fern (Fihcales) 
Tree fern (Marattiales) 
Vanous ferns 

Fern (Filicales) 
Tree fern (Marattiales) 

Vanous ferns 

Tree fern (Maraniales) 

Calamites 
Sphenophyllum 
Calamites 
Sphenophyllum 

Ptendosperm 
Cordaites 

"of both Fern and Ptendosperm(?) affin1ty 

Authority 

DiMichele (1 985) 

Chaloner ( 1953) 
Willard ( 1989) 
Chaloner (1953) 
DiMichele (1979) 
DiMichele {1980) 

Hoskins and Abbott ( 1956) 
P1gg and Rothwell (1983) 

Reference Source(s)• 

Phillips et al. (1985); 
Phillips (1979) 
Bartram ( 1987) 
Willard (1989) 
Smith ( 1962) 
Phillips et al. (1985) 
Bartram (1987) 

Bartram (1987) 
Bartram (1987) 

Good {1979) Traverse ( 1988) 
Millay and Taylor (1982) 
Laveine ( 1969) Traverse (1988) 
Remy and Remy (1955) Sm1th {1962) 
Hamer and Rothwell (1983); Traverse (1988) 
Scott et al. (1985) 
Scott ( 1978); Good {1979) Traverse {1988) 
Lave1ne (1969) Traverse (1988) 
Knox {1938); Mamay (1950); Smith (1962) 
Remy and Remy (1960) 
Good {1979) Traverse (1988) 
Lave1ne (1969) ; Lesnikowska Traverse (1988) 
and Millay (1985) 
Remy and Remy (1955); Sm1th {1962) 
Laveme ( 1969); Mickle ( 1980) Traverse ( 1988) 
Laveme (1969) Traverse (1988) 

Hartung ( 1933) 
Remy and Remy (1955) 
Good (1977) 
Ravn (1983) 

Benson {1904) 
Flonn ( 1936. 1938-1940) 

Sm1th (1962) 
Sm1th ( 1 962) 
Traverse (1988) 
Traverse (1988) 

Sm1th ( 1 962) 
Smith {1962) 

•tor bibliographic information. see Reference Source(s) 

Figure 7. l. Paleobotanical affinities of miospore genera recovered by Hyde et al . ( 1991) 
from coal seams at localities BB-29 and BB-30 (=Blanche Brook South and North of 
Hyde et al. 1991. respectively). Information on affinities in part from Calder (1993). 
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Figure 7.2. Distribution and relative abundances of taxa of Blanche Brook Assemblage within interpreted sublithofacies. 



A thick rind of decay- and water-resistant bark supported and protected aerial 

components of the trees, which may have reached 40 m in height and over 1 m in basal 

diameter (Wnuk 1985; DiMichele and DeMaris 1987). In comparison, smaller lycopsids 

similar to the extant Selaginella (Thomas 1997) were represented by such forms as 

Chaloneria sp., which consisted of an unbranched stem only ca. 1 to 2 metres tall and ca. 

l 0 em in diameter (DiMichele et al. 1979; Pigg and Rothwell 1983). Extensive but 

shallow rhizophores of the Stigmaria ficoides-type served to anchor arborescent 

Lepidophloios-Lepidodendron-Diaphorodendron trees to the substrate, while rooting 

organs of Sigillaria sp. had a distinctly different internal morphology (Eggert 1972). 

7 .2.1.1 Stigmaria spp. - Stigmarian rhizophores, which had helically arranged. 

water-absorbing lateral appendages ("rootlets"), were characterized by large lacunae or 

air chambers that permitted root growth at or under the water table level. Stigmaria 

ficoides is extremely abundant at Blanche Brook, and the taxon was recorded in situ in 

sediments that accumulated under reducing conditions in the tloodplain and clastic 

swamp sublithofacies (Fig. 7.2). Rhizophores of S. ficoides found in a crevasse splay 

deposit at locality BB-30 presumably are allochthonous debris. while stigmarian organs 

of unknown affinity were found in the leveelbacklevee sub lithofacies at locality 88-32. 

Stigmariaficoides is especially prevalent in "simple alluvial paleosols" of the 

floodplain sublithofacies (Fig. 6.14 ), which signifies that arborescent lepidodendrid trees 

were well established on wet (reducing), clastic soils of the floodplain (Fig. 7.3). 

Autochthonous stigmarian rhizophores within the clastic swamp sublithofacies at locality 

BB-30 (Fig. 7.2) indicate that lycopsids also comprised part of the biomass in some (but 
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not all, e.g., BB-14) waterlogged, nutrient-rich clastic swamps (Fig. 7.3)- the abundance 

of lycopsid taxa represented by miospores from coal seams (Fig. 7.1) indicates several 

possible parent plants to these root structures. Lycopsids apparently also occupied some 

slightly better drained leveelbacklevee habitats (Fig. 7.3; e.g., BB-32), although it is 

difficult to ascertain whether the trees were of lepidodendrid or sigillarian origin without 

knowing the internal morphology of the rhizophores. 

7.2.1.2 Diaphorodendron sp.- iviost species of this arborescent lycopsid 

(DiMichele 1985) apparently favored exposed to partially submerged, saturated and 

occasionally flooded peat substrates of coal swamps (DiMichele 1981, 1983; DiMichele 

and Phillips 1985, 1994). However, evidence of Diaphorodendron sp. from clastic 

swamp or floodplain sediments (Wnuk 1985; Wnuk and Pfefferkorn 1987) indicates that 

some species could also tolerate living on mineral-enriched substrates. Diaphorodendron 

spp. existed and became increasingly diverse (taxonomically) throughout the Westphalian 

(DiMichele 1981, 1983; DiMichele et al. 1985; Phillips et at. 1985), but were rare in 

peat-forming swamps during the "first dry interval" (Duckrnantian and Bolsovian; see 

Fig. 5.4). 

Plant organs of''Lepidodendron" sp. cf. ''L." bretonense (=Diaphorodendron 

scleroticum, see DiMichele and Phillips 1994, p. 59) were recovered from the crevasse 

splay and clastic swamp sublithofacies at Blanche Brook (Fig. 7.2). The tree is 

represented by decorticated bark and/or small, determinate branches, sporophylls 

(Lepidostrobophyllum triangu/are) from disaggregated Achlamydocarpon varius cones, 

Apiculatisporites spores (=Cappasporites) from coal seams (Fig. 7.1 ), and probably by 
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some of the very abundant, linear leaves referable to cf. Cyperites bicarinatus. Abundant 

sporophylls referred to Lepidostrobophyllum alatum from the crevasse splay 

sublithofacies at locality BB-30 may represent desegregated cones of A. varius from 

another species of arborescent Diaphorodendron. However, given that only aerial 

branches of"L." sp. cf. "L." bretonense exist at this locality, it is more plausible that both 

L. triangulare and L. alarum sporophylls are derived from the same tree. 

It is postulated that "Lepidodendron" sp. cf. "L." bretonense inhabited the clastic 

swamps and possibly some floodplains (Fig. 7.3), based on previously interpreted 

ecological preferences and the presence of abundant autochthonous Stigmaria fico ides­

type rhizophores within these habitats. The preference of peat substrates for most species 

of Diaphorodendron suggests that "L." sp. cf. "L." bretonense may have dominated the 

clastic swamps at Blanche Brook during those times when peat accumulation exceeded 

clastic input. However, the reconstruction by Wnuk ( 1985) of very tall (up to 25 to 35 

m), determinate trees of"Lepidodendron" bretonense growing within clastic substrate 

swamps (Wnuk 1985) or paleosols of frequently flooded accretionary floodplains (Wnuk 

and Pfefferkorn 1987) suggests that •• L." sp. cf. •• L." bretonense may also have tolerated 

growth on the floodplains and in clastic swamps during times of high nutrient input. 

Oddly, no aerial plant parts of the taxon were recorded from the floodplain lithofacies 

itself. Given that •• L." bretonense was an exceedingly tall tree that likely towered above 

associated vegetation (Wnuk 1985), aerial organs might have been differentially affected 

by wind and consequently blown from floodplain inhabiting plants by high velocity 

winds. Some of these aerial components (e.g., leaves, cone sporophylls, determinate 
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branches) could have been deposited atop accumulating crevasse splays (e.g., BB-30), or 

even blown into clastic swamps. In contrast, aerial organs found in the clastic swamp 

sublithofacies may simply represent litter derived from the lycopsid canopy above or 

peripheral to the swamp, with organ loss resulting from normal physiological processes. 

Devolatilized or decoalified adpressions of decorticated lepidodendrid bark, 

representing either Diaphorodendron or true Lepidodendron, found within the coarse 

lithofacies are poorly preserved owing to mechanical abrasion during transport. However. 

their presence is significant because it hints that at least some lepidodendrid trees were 

growing proximal to the channel. Scheihing and Pfefferkorn ( 1984, p. 219) have noted 

that large trees within modem distributary channels are almost invariably derived from 

adjacent levees, and are introduced to the fluvial system by bank undercutting during 

channel migration. 

7.2.1.3 Sigillaria sp.- Evidence suggests that Sigillaria spp. preferred living on 

slightly better drained, clastic substrates than did Lepidodendron spp. and 

Diaphorodendron spp., although the trees were often contemporaneous in habitats such 

as clastic swamps, floodplains, and levee/backlevees fringing channels (Bartram 1987; 

Gastaldo 1987; DiMichele et al. 1985; DiMichele and Phillips 1994, see especially 

fig.7D, p. 55). In addition, sigillarian litter is often found in high diversity plant 

assemblages (DiMichele and Phillips 1994), indicating growth in habitats where 

physiological stress was minimal and thus able to support other plant groups. Similarly 

to lepidodendrids, sigillarians rarely dominated clastic substrate assemblages during the 

Westphalian (Pfefferkorn and Thomson 1982), although they may have become more 
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common in the Stephanian. In peat-forming swamps, Sigillaria spp. was the dominant 

arborescent lycopsid genera to survive the major Westphalian/Stephanian extinction (Fig. 

5.4), and their subsistence may be attributed to prior adaptations to live in mesic, non­

swamp areas of the lowland-wetlands (DiMichele et al. 1985; Phillips et al. 1985). 

Sigillarian litter is uncommon within the fine (overbank) lithofacies, and is 

represented only in one subassemblage at locality 88-32 (Fig. 7 .2). A single decorticated 

bark fragment was recovered from floodplain deposits, while muds of the overlying poorly 

developed clastic swamp sublithofacies contained, together with marattailean tree fern 

foliage, a single cone sporophyll (Sigillariostrobus sp. cf. S. rhombibracteatus), 

moderately abundant, linear leaves (cf. Cyperites bicarinatus), and abundant, isolated 

megaspores referable to Tubercu/atisporites mami//arius. Additionally, it is possible that 

a considerable portion of the stigmarian rhizophores recorded from the leveelbacklevee 

and floodplain sublithofacies at 88-32 were anchor systems of sigillarian trees (Fig. 7.3 ). 

Representation of sigillarian litter at only a single locality where diaphorodendrid 

debris is virtually absent (L. triangulare sporophylls are uncommon at the site) poses 

interesting questions as to the ecological preferences and relationship between these taxa. 

Significantly, locality 8B-32 is the only plant-bearing site along Blanche Brook that 

records thick accumulation of the leveelbacklevee and (to some extent) floodplain 

sublithofacies (Fig. 6.6), while clastic swamp deposits at the locality are poorly 

developed and likely were comparatively dry. Thick sediment accumulation and the 

presence of subterranean rooting organs indicates that these habitats at locality BB-32 

were better established. more elevated and thus probably drier than leveelbacklevees and 
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floodplains at other plant-bearing localities along Blanche Brook. Hence, through 

integration of sedimentological evidence and previous interpretations of ecological 

preferences, it is postulated that sigillarian lycopsids preferred living on well established, 

better drained levee/back levees and floodplains where diaphorodendrid and 

lepidodendrid lycopsids were less common or even absent (Fig. 7.3). The relatively dryer 

character of substrates in these habitats could explain the lack of aerial litter from plants 

that grew on them, as increased oxidation and root development would have augmented 

the potential for chemical and biological degradation of aerial organs. This interpretation 

is supported by research in modern deltaic environments by Scheihing and Pfefferkorn 

(1984) who noted that, due to intense oxidation. modem levees are virtually devoid of 

aerial plant parts derived from levee-inhabiting plants. 

Preservation of abundant megaspores and leaves within clastic swamp deposits at 

locality 88-32 suggests that sigillarian trees may also have been growing in 

comparatively dry, poorly developed clastic swamps (Fig. 7.3). This supposition is 

substantiated by the occurrence of miospores attributed to Sigillaria spp. (Crassispora 

kosankei) within coal seams at localities 8B-29 and B8-30 (Fig. 7.1 ). Likewise, Bartram 

(1987) considers the presence ofT. mamillarius megaspores (among others) indicative of 

.. non-coal swamp" habitats. An alternative hypothesis is that crown litter could have been 

transported to the clastic swamps via wind from peripheral floodplains, or from even 

better drained areas flinging the active channel. 

Discovery of decorticated sigillarian bark within the channel lag and point bar 

sublithofacies (Fig. 7 .2) provides further evidence that sigillarian lycopsids grew on 
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A Cha/oneria sp. 
(after Pigg and Rothwell 1983) 

B D 
c C Sigillaria sp. 

(after Hirmer 1927) 

B "Lepidodendron" sp. cf. "L." bretonense 
(=Diaphorodendron sc/eroticum) 
(after Wnuk 1985) 

D Lepidodendron hickii [reconstruction 
of Lepidodendron sp. from Stewart 
and Rothwell (1993)] 

Figure 7.3. Hypothetical paleoenvironmental reconstruction with interpreted habitat preferences of lycopsids recovered from 
Blanche Brook superimposed on meandering stream depositional environment. See Figure 6.18 for labelled distribution of 
sub lithofacies. 



leveelbacklevees flanking channels, and might have been introduced into the fluvial 

system by bank undercutting and subsequent collapse. 

7 .2.1.4 Other lycopsids- Miospore assemblages recovered from coal seams 

along Blanche Brook indicate that several lycopsid genera (Fig. 7 .l ), which are not 

represented by adpressed flora, were living within or peripheral to the clastic swamps. 

Lycopsids of comparatively short stature are represented by Cha/oneria sp. and 

Sellagine/lites sp. According to DiMichele and Phillips (1994), the former genus 

occupied high nutrient, more open portions of peat-forming swamps (Fig. 7.3), while 

Sellaginellites sp. grew as understory elements beneath lycopsid forests or in open moor 

communities of coal swamps (Thomas 1997). 

Although the parent plant of Lyco~pora noctuina spores recovered from coal 

seams is equivocal (Fig. 7.1 ), the presence of Lycospora pusi//a spores indicates that 

Lepidodendron hickii (Willard 1989a) was part of the flora at Blanche Brook. L. hickii 

was an arborescent form that favored growth on clastic substrates of floodplains and 

clastic swamps (DiMichele 1983; DiMichele et al. 1985; Willard 1989b; DiMichele and 

Phillips 1994 ), possibly within tree fern and pteridosperm-dominated assemblages 

(DiMichele 1983). Accordingly, it is plausible that this taxon accounts for many of the 

autochthonous stigmarian rhizophores present within the floodplain sublithofacies at 

Blanche Brook. Additionally, L. hickii probably overlapped with .. L." sp. cf. .. L." 

bretonense in the clastic swamps, particularly when clastic accumulation hindered peat 

formation. 
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7.2.2 Sphenopsids 

Late Carboniferous lowland-wetlands vegetation included two major evolutionary 

lineages of sphenopsids, Calamites spp. and Sphenophyllum spp., both of which were 

characterized by rhizomatous, vegetative propagation. Calamiteans were jointed, 

somewhat woody, arborescent trees (up to 45 em wide at base and metres tall) or subtrees 

with foliage that comprised small whorls of leaflets known as Annularia sp. or 

Asterophyllites sp. (Good 1971, 1975, 1976; Barthel 1980). Sphenophylls were 

characterized by delicate verticils of heterophyllous leaflets that radiated from nodes 

along thin. woody stems. Sphenophylls growing on clastic substrates have been 

interpreted as ascending, climbing, ground-cover plants that formed dense, highly 

branching thickets (Batenburg 1977, 1981 ), while coal swamp species apparently 

comprised aerial branching shoots that arose from prostrate, rooting main axes 

(Batenburg 1982). 

7.2.2.1 Calamites sp.- Some arborescent calamiteans occupied subaerially 

exposed and/or nutrient-rich portions of some coal swamps (DiMichele et al. 1985; 

DiMichele and Phillips 1994). However, these hydrophytic plants seemingly preferred 

living in loosely consolidated, unstable, wet (or even submerged) sediment more suited to 

its clonal growth habit, such as shifting substrates found in point bars, levee/backlevees, 

frequently-flooded floodplains, and swamp margins (Scott 1977, 1978, 1979; Gastaldo 

1987; DiMichele et al. 1985, 1992). According to Pfefferkorn and Thomson (1982), 

calam.itean stems and foliage were co·dominants (with pteridosperms) in the majority of 
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late Namurian through middle Westphalian D adpression plant assemblages recovered 

from clastic substrate habitats. 

By far the most abundant and best preserved (although quite fragmented) 

calamitean plant remains were recovered from crevasse splay deposits at locality BB-30 

(Fig. 7.2). These organs include axes, tiny rootlets (Pinnularia capillacea), 

fructifications (Paracalamostachys sp.), and (frequently articulated) foliage referable to 

Annularia sphenophylloides, A. stellata and Asterophyllites equisetiformis. In addition. a 

large rooting structure comparable to Myriophyllites gracilis was the only identifiable 

plant organ recovered from a crevasse splay at BB-29. Unfortunately, plant organs 

within crevasse splay deposits may have been incorporated into the sublithofacies from 

various habitats (Gastaldo et al. 1987), which confounds interpretations of provenance. 

Devolatilized and decarbonized adpressions and petrifactions of calamitean axes 

are rather common as debris within the channel lag and point bar sub lithofacies along 

Blanche Brook (Fig. 7.2). Although these stems have been transported (Fig. 6.9) and 

somewhat mechanically abraded, they are thought to have comprised part of the riparian 

flora growing on poorly developed levees or even on laterally accreting point bars (Fig. 

7 .4; see also Scott 1978, 1979). That calamiteans grew in these channel margin habitats 

is supported by the recovery of thin axial fragments and delicate, typically articulated, 

branches of foliage identified as cf. Asterophy/lites sp. from what are interpreted as 

leveelbacklevee deposits at locality BB-19. Despite articulation of the branches, the 

foliage likely are not autochthonous, but rather was somewhat fragmented during a short 

episode of transport before deposition and burial. In comparison, Gastaldo ( 1987) 
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recorded an in situ macrofloral assemblage from backlevee deposits within which lateral 

branches and Asterophyllites sp. foliage still remained attached to calamitean stems. By 

induction, it is interpreted that calamitean litter at locality BB-19 was derived from 

riparian vegetation growing on point bars and/or levees, and that the plant organs 

probably were transported to backlevees when minor flood events overtopped channel 

banks. 

Vertical, carbonate-infilled fractures with circular outlines observed in red, 

bioturbated mudstones of the floodplain sublithofacies at locality BB-5 (Fig. 6.16) are 

interpreted as replaced plant stems, possibly of Calamites sp. (see p. 222). In addition, a 

single axial fragment (Calamites sp. B) was recovered from floodplain deposits at 

locality BB-25, although the stem may have been transported to the site. It is possible 

then that calamiteans may also have grown as an understory plant on floodplains (Fig. 

7.4 ), as has been interpreted at other sites by Scott ( 1978, 1979) and Wnuk ( 1985), 

although evidence from Blanche Brook is only speculative at best. 

It is significant to note that absolutely no adpressed calamitean litter was found in 

any clastic swamp deposits at Blanche Brook (Fig. 7.2). However, recovery of miospores 

of calamitean affinity in coal seams (Fig. 7.1) indicates that the plants may in fact have 

inhabited parts of this depositional setting (Fig. 7.4), although wind or water may have 

transported some miospores to the clastic swamps. 

7 .2.2.2 Sphenophvllum sp. -A crevasse splay deposit at BB-30 contains a 

significant number of isolated whorls and articulated branches of Sphenophyllum 

emarginatum, while leaflet fragments of S. sp. cf. S. zwickaviense are quite rare. Rare 
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fragments of S. emarginatum have also been recovered in association with pteridospenn 

foliage from silty layers within the clastic swamp sublithofacies at locality BB-14. 

Unfortunately, the potentially allochthonous nature of fossils from both sublithofacies 

(see discussion of clastic swamp flora at locality 88-14 on p. 251) precludes inferences 

of the provenance or paleoecology of parent plants. 

Both S. emarginatum and S. zwickaviense evidently inhabited clastic substrates 

and probably were xerophytes (Storch 1966) or more likely mesophytes (Batenburg 

1981) that lived on unsubmerged (except during floods), well drained soils of floodplains 

or channel margins (Scott 1979; DiMichele et al. 1992). The presence of sphenophyll 

thickets in these habitats at Blanche Brook can neither be confirmed nor denied. The 

recovery of miospores attributed to sphenophylls from coal seams at localities 88-29 and 

BB-30 (Fig. 7.1) suggests that some plants may have been growing peripheral to or even 

within the clastic swamps at Blanche Brook (Fig. 7 .4). 

7.2.3 Tree Ferns 

Axes of herbaceous and homosporous marattialean tree ferns (dominated by 

Psaronius sp.) were rather "cheaply" constructed and comprised a thin, somewhat fleshy 

stem mantled by a thick layer of aerenchymatous, adventitious, supporting roots (Morgan 

1959; Stidd 1971; Pfefferkorn 1976; Ehret and Phillips 1977; Mickle 1984; Millay 1997). 

Stems attained heights of ca. I 0 m and widths of ca. 1 m (Taylor and Taylor 1993), and 

were topped by an umbrella-like crown of pinnate fronds of Pecopteris-type foliage. 

Fronds attained several metres in length (Stewart and Rothwell 1993) and contained 

taxonomically distinct sporangia on the abaxial pinnule surfaces (Millay 1979). 
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Figure 7.4. Hypothetical paleoenvironmental reconstruction with interpreted habitat preferences of sphenopsids recovered 
from Blanche Brook superimposed on meandering stream depositional environment. See Figure 6.18 for labelled distribution 
of sub lithofacies. 



Aerenchymatous roots supposedly permitted marattialean tree ferns to survive in 

various clastic and peat substrate habitats that may have been strongly influenced by 

fluctuating water tables or even temporary submergence during flood events (DiMichele 

and Phillips 1994). These authors have shown tree ferns growing in nutrient-rich and 

aerially exposed parts of coal or clastic swamps, and also on well drained levees (fig. 7B, 

C, p. 54-55; fig. 11 B, p. 66). Scott ( 1978, 1979) suggested that ferns may have been co­

dominant with pteridosperms on floodplains. 

Palynological and macrofloral (adpression) evidence indicates that marattialean 

tree ferns were centered in mesic lowland settings where they had low but increasing 

diversity during Langsettian through middle Westphalian D time (Figs. 5.4; Phillips 

1979; Pfefferkorn and Thomson 1982; DiMichele et al. 1985). However, above the 

middle Westphalian D, Pecopteris spp. and ··rem" species of Sphenopteris spp. 

dominated adpression assemblages (Pfefferkorn and Thomson 1982). In coal swamps. a 

shift from lycopsid to marattialean tree fern dominance is observed somewhat later at the 

onset of the .. second drier interval" (Westphalian/Stephanian boundary; Fig. 5.4) 

(DiMichele et al.1985; Phillips et al. 1985). 

Pecopterids are a subdominant component of the whole BBA, comprising at least 

five species, while sphenopterids are very rare. The crevasse splay deposit at locality 

BB-30 contains an abundance of foliar fragments identified as Lobatopteris sp. A, with 

less common Pecopteris plumosa and Pecopteris sp. A (Fig. 7.2), among others. 

Although part of an allochthonous assemblage, the relatively large size (up to 34.5 em 

long) and comparatively less fragmented, articulated nature of these frond fragments, 
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which are rather delicate organs, suggests they were not transported far before burial. It 

is possible then that some pecopterids were growing peripheral to or even within the 

clastic swamp (Fig. 7.5), and could have been incorporated into the erosively based 

crevasse splay as it passed over and essentially infilled the swamp/pond. The presence of 

Lobatopteris sp. A and Pecopteris sp. A together with sigillarian litter within the clastic 

swamp sub lithofacies at locality BB-32 (Fig. 7 .2, Fig. 7 .5) supports interpretations of a 

clastic swamp habitat for several pecopterid species. This hypothesis is further 

strengthened by the occurrence of a number of miospore genera in coal seams that belong 

to foliage of various marattialean and filicalian tree ferns (Fig. 7.1 ). 

An alternative hypothesis is that some tree ferns grew on levees and floodplains 

as part of the subcanopy with medullosan pteridosperms and possibly calamitean trees, as 

has been previously reconstructed by Scott (1978, 1979). Accordingly, it is possible that 

tree fern foliage was incorporated into crevasse splays when they breached the well 

vegetated levees (e.g., Scheihing and Pfefferkorn 1984; Gastaldo et al. 1987). The 

essential absence of tree fern debris from the levee and floodplain sublithofacies (only the 

floodplain sublithofacies at localitj BB-25 yielded very rare and very fragmentary 

pecopterid and sphenopterid(?) litter) could be explained by preferential oxidation of 

aerial components in these better drained habitats. It must also be considered that crown 

frond fragments and miospores were traumatically removed by violent winds from 

floodplain and levee inhabiting tree ferns and transported a short distance either to clastic 

swamps or the crevasse splay surface. 
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Marattialean tree ferns and filicalean ferns 
[(reconstruction of Psaronius sp. 
after Morgan (1959)] 

Figure 7.5. Hypothetical paleoenvironmental reconstruction with interpreted habitat preferences ofmarattialean tree ferns and 
filicalean ferns recovered from Blanche Brook superimposed on meandering stream depositional environment. Note that the 
Psaronius sp. (Marattiales) reconstruction is meant to represents both marattialean and filicalean ferns (Filicales ). See 
Figure 6.18 for labelled distribution of sublithofacies. 



Importantly, the growth ofmarattialean and/or filicalean tree ferns in or peripheral 

to clastic swamps implies that the swamp substrate upon which they grew was wet but 

not submerged, as tree ferns require an exposed surface for completion of their free­

sporing life cycle (DiMichele and Phillips 1994). It is also noteworthy that, although 

filicalean ferns are an uncommon component of the entire BBA (with the exception of 

Pecopteris plumosa), paleobotanical affinities of miospores from coal seams indicates 

that a considerable number of other filicalean ferns inhabited some clastic swamps and/or 

peripheral habitats. 

7.2.4 Pteridosperms 

Seed-producing pteridosperms of tree habit (anatomically preserved stems 

referred to Medullosa sp. or Sutcliffia sp.) had monoaxial stems comprising bundles of 

vascular tissue embedded in a dense cortical groundmass (Delevoryas 1955~ Stewart and 

Delevoryas 1956). Two tree morphologies existed- some were free standing (up to 5 m 

in height), while others were lax and supported by neighboring plants (up to 10m) 

(Pfefferkorn et al. 1984; Wnuk and Pfefferkorn 1984). Fronds arising from near the top 

of axes often were massive (several metres in length, see Laveine 1986), rather robust, 

bore large seeds and pollen organs, and constituted pinnate laminae. Adpressed foliage is 

referred to, among others, Linopreris sp. (belonging to Sutcliffia sp. stems), or 

Neuropteris sp. sensu /ato and Alethopteris sp. (belonging to Medullosa sp.stems) (Taylor 

and Taylor 1993). Upon death, fronds may have folded back against the axis to form a 

"skirt" of decaying foliage that supported the stem (Pfefferkorn et al. 1984). 
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7.2.4.1 Medullosan pteridosperms- Medullosan trees growing in clastic substrate 

habitats apparently encompassed a wide range of ecological strategies, with different 

preferences for soil moisture and nutrient content and sun and wind intensities 

demarcated along generic or even specific lines (e.g., Reihman and Schab ilion 1978; 

Phillips 1981; Mickle and Rothwell 1982; Wnuk and Pfefferkorn 1984; Schabilion and 

Reihman 1985; C1eal and Zodrow 1989; Zodrow and C1eal 1993; DiMichele and Phillips 

1994). The trees seemingly had similar ecological preferences to contemporaneous tree 

ferns, and favored moist but unsubmerged. clastic substrates that were comparatively 

nutrient-rich and well drained (Phillips 1981 ). Suitable habitats that have previously 

been inferred include leveelbacklevees, floodplains, clastic swamps and nutrient 

enriched, subaerially exposed parts within or peripheral to peat-forming swamps (e.g. , 

Scott 1977, 1978, 1979; Phillips 1981 ; Wnuk and Pfefferkorn 1984, 1987; DiMichele et 

al. 1985; Gastaldo 1985, 1987; Wnuk 1985; Zodrow and Cleal 1988; DiMichele and 

Phillips 1994; Phillips and DiMichele 1998). 

That medullosan seed ferns likely diversified outside peat-forming environments 

is evident from studies of Pfefferkorn and Thomson (1982) which show pteridosperm 

(Neuropteris sp. sensu lato and Alethopteris sp.) dominance in nearly all adpression 

assemblages recovered from late Namurian through middle Westphalian D strata. Peat 

substrate-inhabiting medullosans apparently were very rare from the Langsettian through 

Bolsovian, with expansion and diversification occurring throughout the Westphalian D 

"wet interval" before co-dominance with tree ferns during the Stephanian (Fig. 5.4; 

Phillips 1981; DiMichele et aL 1985; Phillips et al. 1985). 
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Floodplain (BB-25) and crevasse splay deposits (BB-30) both contain a 

considerable quantity of isolated pinnules and pinnae fragments referable to Neuropteris 

semireticulata, while other medullosan foliage form-genera are conspicuously rare or 

even absent. The increasingly flexuous venation pattern that typifies pinnules of N 

semireticu/ata and its rather closely related evolutionary descendant Reticulopteris 

muensteri (see p. 113 for discussion) have been correlated by Zodrow and Cleal ( 1993) 

with the increasingly drier climatic conditions that transpired in Duckmantian through 

Bolsovian time (''first dry interval" in Fig. 5.4). These paleoecological data. in 

combination with sedimentological evidence, suggest that N. semireliculata preferred to 

inhabit reasonably well drained, comparatively dry substrates on leveelbacklevee 

complexes and possibly proximal floodplains (Fig. 7.6). It is important to note, however, 

that evidence garnered from anatomical studies of R. muensteri suggests that this species, 

and by analogy its ancestor N. semireticulata, still lived under moist, high humidity 

conditions (Reihman and Schabilion 1978), perhaps growing as a shaded understory 

beneath large cordaitean trees (Schabilion and Reihman 1985). 

Discrete, greyish green silt horizons interspersed within carbonaceous shales of 

the clastic swamp sublithofacies at locality BB-14 invariably contain highly fragmented 

neuropteroid foliage (isolated pinnules or less frequently pinnae fragments) referable to 

Laveineopteris rarinervis and cf. Laveineopteris tenuifolia. These comparatively coarser, 

fossiliferous bands are thought to represent deposition resulting from periodic flood 

events (concurrent with violent winds?) that sampled vegetation from several wetland 

habitats. 
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Investigations of anatomically preserved L. rarinervis foliage (Reihman and 

Schabilion 1978; Oestry-Stidd 1979) indicates that the taxon preferred high humidity, 

moist habitats, perhaps living under shaded conditions (Schabilion and Reihman 1985), 

or occupying topographically lower areas of floodplains where the water table was at or 

near the soil surface (Wnuk and Pfefferkorn 1984). Conversely. Barthel (1962) 

considered that L. tenuifolia was adapted to growing under physiologically stressed (i.e .. 

drier) conditions. Although morphological adaptations to physiological drought may 

result from living in a truly edaphically-drier setting, they may also be adapted by plants 

growing in nitrogen-deficient habitats (e.g., in acidic, peat-forming environments), under 

intense sunlight (Shields 1950; Mickle and Rothwell 1982), or in open canopies exposed 

to intense wind (C1eal and Zodrow 1989). As there is no evidence for nitrogen-deficient, 

extensive, peat-forming habitats at Blanche Brook, it is instead postulated that cf. L. 

tenuifolia lived on edaphically-drier clastic substrates (under comparatively more intense 

sunlight? and/or wind?), perhaps on the floodplain or even levees (Fig. 7.6). Meanwhile, 

L. rarinervis might have lived peripheral to the clastic swamp on wetter portions of the 

distal floodplains under slightly more humid, moist (and more shaded?) conditions (Fig. 

7 .6), although there almost certainly would have been an ecological coalescence between 

these habitats and their flora. The interpretation that cf. L. tenuifolia lived further from 

the clastic swamp (and thus was transported further) is supported by the fact that its litter 

at locality BB-14 invariably consists of isolated pinnules, while L. rarinervis debris from 

the same siltstone horizons is generally preserved as less degraded pinnae fragments. 

252 



With the exception of N semireticulata, and perhaps cf. L. tenuifolia, there is 

otherwise a scarcity within the BBA of medullosan pteridospenns that evidently lived 

under physiologically drier conditions, such as Macroneuropteris scheuchzeri and some 

alethopterids. For example, M scheuchzeri is represented only by a single pinnule 

ad pression from clastic swamp deposits at locality BB-14 (Fig. 7 .2), while a single 

aJethopterid(?) pinnule fragment was recovered from the crevasse splay sublithofacies at 

locality BB-30. Wnuk and Pfefferkorn (1984) inferred that both taxa lived on 

(micro)topographically higher, better drained portions of floodplains or swamps(?), while 

Schabilion and Reihman ( 1985) considered the foliage to represent .. sun leaves" that 

apparently lived under intense sunlight. Alternatively, Cleal and Zodrow ( 1989) asserted 

that xeromorphic features of M scheuchzeri reflect adaptations to living under more 

exposed and consequently windier conditions. Regardless of the reason(s) for 

development of xeromorphic characteristics, it is worth considering the possibility that 

these taxa are absent from Blanche Brook because their ecological niche was instead 

occupied by N. semireticulata (Fig. 7.6). 

It is significant that no medullosan pteridosperm foliage (except a single 

Cyclopteris sp. pinnule of equivocal affinity) was recovered from clastic swamp deposits 

at locality BB-32. It is important to recall that this is the same site where the associated 

levee/backlevee, floodplain and clastic swamp sublithofacies were comparatively well 

developed and likely better drained, and may have supported stands of arborescent 

sigillarians (seep. 237-238). Hence, it is possible that pteridospenns interpreted to have 

preference for well drained substrates, such as N semireticulata, M scheuchzeri and 

253 



some alethopterids, may have competed with and only occasionally coexisted with 

arborescent Sigillaria sp. (Fig. 7 .6), a taxon that preferred living in the same ecological 

niche. Alternatively, edaphic conditions at the site may have been too dry to support 

pteridosperms, indicating that sigillarians could withstand conditions of considerable 

water stress. 

Evidence of fairly strict, physiological and ecological preferences of medullosan 

pteridospenns recovered from strata at Blanche Brook substantiates previous assertions 

(e.g., Reihman and Schabilion 1978; Phillips 1981; Wnuk and Pfefferkorn 1984; 

Schabilion and Reihrnan 1985) that ecological partitioning was the rule rather than 

exception between genera and species within the pteridospenns. lt is also plausible that 

there was competition for particular niches between pteridospenns and members of the 

other major Late Carboniferous plant groups. 

7.2.4.2 Sutc/iffia sp.- Pinnules assigned to Linopteris sp. are characterized by 

finely anastomosing venation and represent the paripinnate and caducous foliage of the 

pteridospenn Sutcliffia sp. (Stidd et al. 1975). Linopterids are quite rare within the BBA, 

represented only by isolated pinnules of Linopteris neuropteroides within the 

leveelbacklevee sublithofacies at locality BB-19 (Fig. 7 .2). Sphenopsid litter associated 

with the pinnules was previously interpreted (p. 242-243) as having been derived from 

flora growing on point bars or channel levees. It is postulated in accordance that small 

Sutcliffia sp. trees also inhabited channel fringing levees, with the caducous pinnules 

which characterize the group transported to the back levee either by wind or flood events. 
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7. 2. 5 Cordaiteans 

Cordaiteans constitute a diverse group of comparatively slow growing and long 

lived, seed-producing plants that were structurally similar to modem conifers and had 

extremely variable growth habits. In general, the group was characterized by pycnoxylic 

(dense) wood, strap-shaped, coriaceous leaves with thick cuticle and abundant 

sclerenchyma, axillary branching, and wind dispersed, platyspermic seeds (DiMichele et 

al. 1986, 1992; Rothwell 1988; DiMichele and Phillips 1994). Three main cordaitean 

stems genera have been established- Cordaixylon sp .• Mesorylon sp. and 

Pennsylvanioxylon sp. - although considerable contention presently exists as to which 

anatomical stem features are taxonomically robust (e.g., Rothwell and Warner 1984: 

Costanza 1985; Trivett and Rothwell 1985, 1991; Trivett 1992). As such, rather than 

discuss the paleoecology and temporal distribution of each taxon, '"extrabasinal and 

upland" inhabitors will be discussed separately from clastic or peat swamp inhabitors. 

7.2.5.1 Swamp inhabitors- There is limited paleoecological data pertaining to 

cordaiteans living in clastic swamps, although some inferences likely can be made by 

comparison with those which occupied peat-forming swamps. These cordaiteans were 

both biologically and ecologically variable, and included mangrove-like forms up to 5 m 

tall with adventitious, aerenchymatous, stilt-like roots (Cridland 1964; Raymond and 

Phillips 1983; Costanza 1985; Raymond 1988), and small, thicket-forming, understory 

shrubs (Rothwell and Warner 1984; Costanza 1985). As a group, the swamp-dwelling 

forms apparently encompassed a broad spectrum of ecological tolerances, including 

growing within and peripheral to swamps on substrates that either were subaerially 
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exposed, waterlogged, or periodically or permanently inundated with fresh, brackish or 

even saline waters (Cridland 1964; Wartmann 1969; Eggert and Phillips 1982; Raymond 

and Phillips 1983; Costanza 1985; Trivett and Rothwell 1985; Raymond 1988; Calder 

1993 ). Cordaiteans were especially important components of peat-forming swamps 

during the "first dry interval" (Duckmantian!Bolsovian), and during the first part of the 

increasingly wetter interval that characterized the Westphalian D (Fig. 5.4) (DiMichele et 

al. 1985; Phillips et al. 1985). 

On the whole, cordaitean leaves are the most abundant floral element of the B8A. 

and constitute the dominant or a subdominant component of plant debris from clastic 

swamp deposits at locality 88-14, and from the clastic swamp and crevasse splay 

sublithofacies at locality 88-30 (Fig. 7.2). Cordaites sp. cf. C. principalis adpressions 

are extremely abundant in dark grey, very carbonaceous, pyritic and typically parallel 

laminated shales that comprise the majority of the clastic swamp sublithofacies at 

localities 88-14 and 88-30. [Cordaites sp. cf. C. borassifolia leaves are only rare in 

clastic swamp deposits at locality 88-30, and may in fact represent differentially 

preserved examples of C. sp. C. principalis (seep. 124 for discussion)]. 

Sedimentological evidence (e.g .• high organic content, parallel laminae, pyrite nodules) 

suggests that these leaves accumulated in nutrient- and oxygen-deficient, standing water 

within the clastic swamps and succeeding anoxic ponds. In contrast to pteridosperm 

foliage recovered from silt horizons in the clastic swamp sublithofacies at locality 88-14, 

which are interpreted as deposits of short lived storm events, it is reasonable to induce 

that cordaitean leaves were steadily being added to the clastic swamp under "normal" or 
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non-storm conditions. This suggests that the parent plant of C. sp. cf. C. principa/is (and 

of C. sp. cf. borassifo/ia, if different) was growing within and/or directly surrounding 

some of the clastic swamps and succeeding ponds (Fig. 7. 7). Leaves might have been 

lost either through physiological or traumatic processes, and deposited very close to their 

site of growth [hypoautochthonous or parachthonous litter sensu Gastaldo ( 1988) and 

Bateman ( 1991 ), respectively]. This interpretation is strengthened by the reconstruction 

by Costanza (1985) of C. principa/is leaves attached to small (up to 5 m), mangrove-like 

trees referred to Pennsylvanioxylon birame [=Cordaixylon birame ofTrivett (1992)), a 

form which inhabited frequently flooded swamps containing anoxic and acidic but fresh 

water (Eggert and Phillips 1982; Costanza 1985). [Note that Trivett and Rothwell ( 1991) 

and Trivett ( 1992) demonstrated that C. principalis leaves were instead borne by the plant 

Cordaixylon iowensis, not C. birame, but gave no paleoecological interpretation of the 

whole plant]. Recovery by Hyde et al. (1991) from coal seams (Fig. 7.1) of Florinites 

spp. pollen, which are attributed to mangrove-like or scrambling, shrub-like, swamp­

inhabiting Pennsylvanioxylon spp. (Trivett 1992; DiMichele and Phillips 1994), lends 

further considerable support to the interpretation that clastic swamps, or swamp 

peripheries, might have been inhabited by cordaitean plants (probably Pennsylvanioxylon 

spp?; Fig. 7.7). Furthermore, DiMichele and Phillips (1994) noted the frequent 

association of subcanopy, woody, scrambling cordaiteans with arborescent swamp­

dwelling Diaphorodendron lycopsids at other fossil localities, which provides additional 

evidence that cordaiteans formed a subcanopy beneath .. L." sp. cf. "L." bretonense in the 

clastic swamps at Blanche Brook. 
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It is worth mentioning Schabilion and Reihman's (1985) conclusions that 

xeromorphic features observed in many cordaitean leaves (e.g., thick cuticles, extensive 

aerenchymatous mesophyll, papillate lower epidermis) represent adaptations to living 

under intense sunlight ("sun leaves'). [tis possible though, at least for those cordaiteans 

at Blanche Brook that are interpreted as clastic swamp-dwelling plants, that such 

adaptations resulted from physiological drought, and reflect growth under nitrogen- and 

oxygen-deficient conditions. 

lnterestingly, poorly preserved but moderately abundant fragments of C. sp. cf. C. 

principalis foliage were also recorded in the floodplain sublithofacies at locality BB-25. 

This suggests that although the parent plant of C. sp. cf. C. principalis (perhaps C. 

iowensis or C. birame) may have been centered in clastic swamps, it may also have 

tolerated living on slightly better drained parts of the distal floodplain. 

The crevasse splay sublithofacies at locality BB-30 contains a profusion of 

cordaitean foliage (Fig. 7 .2) referable to C. sp. cf. C. principa/is and C. sp. cf. C. 

borassifolia, particularly in the lowest ems of the unit, with fructification fragments, 

platyspermic seeds and Cordaites sp. A foliage being rare. Similarly to much of the tree 

fern foliage, this cordaitean debris is interpreted to have been incorporated into the 

crevasse splay as it passed over the clastic swamp and entrained litter or living organs of 

the parent plants. Moreover, some of the litter, particularly seeds and leaves, may have 

been blown onto the crevasse splay surface. 

7 .2.5.2 Inhabiters of "extrabasinal and upland" habitats -Large (up to 1 Os of 

metres tall), many branched, forest-forming trees apparently grew on well drained or 
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even dry clastic substrates of levee/backlevees, stable parts of floodplains, and even 

coetaneously with conifers in "upland" areas (Grand'Eury 1877; Chaloner 1958; Scott 

1979; Mapes and Gastaldo 1986; Rothwell 1988). Although cordaitean trees likely lived 

in these clastic substrate habitats from earliest Late Carboniferous (Leary 1981) through 

Stephanian and early Permian time (Lyons and Darrah 1989), they dominate very few 

Late Carboniferous adpression assemblages (Pfefferkorn and Thomson 1982). 

One of the most distinctive features of the channel lag and point bar sub lithofacies 

at Blanche Brook is the presence of abundant, very large, volatilized tree petrifactions 

referable to Dadoxylon sp. (petrifactions up to 4.8 m long and with basal diameters near 

2.0 m). These trees are interpreted to represent the remains of large forest-forming 

cordaitean trees (Eu-Cordaites sensu Grand'Eury 1877). These permineralized trees 

almost certainly are allochthonous, based on their current aligned, almost invariably 

prostrate disposition in trough cross-stratified channel sandstones and gravels, although it 

is not possible to ascertain the distance of transport. It is postulated that many of the trees 

grew on well drained leveelbacklevees flanking the channel where they formed a very 

high, shading canopy above contemporaneous vegetation (Fig. 7. 7). Trees would have 

been added to the fluvial system by lateral stream migration and consequent bank 

undercutting and collapse, and logs may have floated some distance before becoming 

waterlogged and sinking to become buried in the channel lag and point bar deposits 

(Scheihing and Pfefferkorn 1984). It must also be considered that tall Dadoxylon sp. (Eu­

Cordaites) trees might have inhabited forests on dry clastic soils of elevated slopes of the 

extrabasinal uplands comprising the catchment area surrounding the narrow floodplain 
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(Fig. 7.7). It is not clear how such large trees would be brought to the river system, 

although transport may have occurred during exceptional mass wasting events affecting 

the otherwise poorly vegetated(?) slopes. 

Cordaites sp. 8 leaves that show evidence of mechanical degradation (i.e., 

longitudinal splitting) due to transport are moderately common elements of point bar 

sandstones at locality 88-34 and the floodplain sublithofacies at locality 88-25. The 

leaves are considerably more broad and have a distinctly different venation pattern than 

C. sp. cf. C. principalis-type foliage borne on comparatively shorter trees that evidently 

lived within or surrounding clastic swamps and succeeding ponds. It is postulated that 

Cordaites sp. B leaves represent the foliage of the large Dadoxylon sp. (Eu-Cordaites) 

trees that presumably inhabited channel margins and perhaps elevated slopes. Given the 

exorbitant height of some of the interpreted parent trees, it is not difficult to envision 

some of the leaves being blown from the canopy into the stream, where by virtue of their 

coriaceous and robust construction (Mapes and Gastaldo 1986), they were able to survive 

fluvial transport and deposition on point bars. As well, some leaves may have been 

stripped by water currents from trees that collapsed into the river. Leaves within the 

floodplain sublithofacies at locality 88-25 probably were also wind transported, with 

aerial organ loss associated with either physiological or traumatic processes. The 

hypothesis that Cordaites sp. 8 leaves were derived from Dadoxylon sp. (Eu-Cordailes) 

trees fringing the channel is greatly strengthened by the complete absence of the foliage 

in the more distal clastic swamp sublithofacies at all localities. 
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Figure 7.7. Hypothetical paleoenvironmental reconstruction with interpreted habitat preferences of cordaiteans recovered from 
Blanche Brook superimposed on meandering stream depositional environment. See Figure 6.18 for labelled distribution of 
sublithofacies. 



As mentioned earlier, Schabilion and Reihman (1985) suggested that xeromorphic 

characters preserved in anatomically preserved cordaitean leaves represent adaptation of 

the foliage to growing under intense sunlight (i.e., "sun leaves"). This is consistent with 

the assumption that Dadoxylon sp. (Eu-Cordaites) trees growing along channel margins 

at Blanche Brook were very tall, canopy-forming trees exposed to considerable light. As 

well though, xeromorphic adaptations may also have reflected differential exposure to 

drying winds, or growth of the trees on comparatively dry substrates. 

7.3 A Paleoenvironmental Model for the Blanche Brook Assemblage 

Construction of a paleoenvironmental model for the fossil locality involves 

integration of interpreted habitat preferences of taxa within the Blanche Brook 

Assemblage with various sublithofacies that composed the depositional environment. It 

is imperative to state that this .. working" model represents only one interpretation. and is 

subject to change with additional data. The following is a summary of the 

paleoenvironmental model illustrated in Figure 7.8. 

Shifting substrates of the rather inhospitable point bars likely were devoid of 

plants except rhizomatous calamiteans, some of which presumably bore cf. 

Asterophyllites sp. foliage. In comparison, very diverse plant assemblages probably 

inhabited channel-flanking leveelbacklevee complexes that evidently were of low 

elevation and consequently were frequently breached or overtopped by flood waters. The 

riparian flora interpreted to grow on this slightly elevated but comparatively well drained 

habitat apparently was dominated by very tall, woody, canopy-forming trees of 

cordaitean affinity (Dadoxylon sp. or Eu-Cordaites). These long lived trees likely 
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Figure 7.8. Composite hypothetical paleoenvironmental reconstruction incorporating interpreted habitat preferences of five 
major Late Carboniferous plant groups represented at Blanche Brook (Figs. 7.3 to 7.7) superimposed on meandering stream 
depositional environment. Refer to Figs. 7.3 to 7.7 for key to plant identifications. See Figure 6.18 for labelled distribution of 
sublithofacies. 



towered above and shaded a subcanopy consisting of medullosan pteridosperms (bearing 

Neuropteris semireticulata and possibly cf. Laveineopteris tenuifolia foliage), Sutcliffia 

sp. (producing paripinnate and caducous fronds of Linopteris neuropteroides), some 

marattialean and filicalean tree fern species, and possibly calamitean subtrees. Ground 

cover might have consisted of dense. branching thickets of sphenophylls, such as 

Sphenophyllum emarginatum and S. sp. cf. S. zwickaviense. Comparatively more 

elevated and consequently drier leveelbacklevees probably supported stands of 

arborescent sigillarians. 

Predominantly grey, thoroughly phytoturbated and rooted floodplain deposits 

within the succession indicate that alluvial paleosols formed at or very near the water 

table and must have supported profuse stands of vegetation. It is postulated that 

medullosan pteridosperms, calamitean subtrees (bearing Annularia sphenophylloides, A. 

stellata and Asterophyllites equisetiformis foliage) and tree ferns(?) formed a dense 

subcanopy on the floodplain, while Lepidodendron hickii and possibly ·•Lepidodendron" 

sp. cf. ••L." bretonense might have formed a tall but non-shading canopy; sphenophylls 

might have formed a dense ground cover. There is some evidence for strong interspecific 

ecological habitat partitioning within the medullosan pteridosperms occupying the 

floodplains. In particular, it is possible that trees bearing Laveineopteris rarinervis 

foliage grew on comparatively wet, topographic lows peripheral to clastic swamps and in 

distal portions of floodplains, while cf. Laveineopteris tenuifolia occupied substrates with 

drier edaphic conditions on proximal floodplains and some levees. Meanwhile, trees 

bearing N. semireticulata foliage, along with rare Macroneuropteris scheuchzeri-
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producing trees, might also have preferred slightly more elevated and better drained 

substrates more proximal to the active channels. This slightly dryer ecological niche on 

well developed floodplains and levees likely was also occupied by arborescent 

sigillarians, although evidence suggests that these lycopsids grew only at localities where 

medullosan pteridosperms were uncommon or even absent. 

Clastic swamps evidently were heavily vegetated by a diversity of plant groups, 

although temporal and spatial ecological gradients likely existed depending on whether 

peat accumulation exceeded clastic input, or vice versa. Data from miospore 

assemblages indicate that a considerable number of lycopsids grew within most of the 

clastic swamps, although they may have been absent from some swamps. It is postulated 

that arborescent trees, such as Lepidodendron hickii, coexisted with Sigillaria sp. and 

marattialean and filicalean tree ferns (bearing pecopterid and lobatopterid foliage) when 

substantial clastic influx from frequent flood incursions resulted in relatively drier (but 

still wet), exposed clastic substrates. Conversely, it is inferred that arborescent forms 

such as '"Lepidodendron" sp. cf. '"L." bretonense (=Diaphorodendron sc/eroticum) 

inhabited the wetter, more submerged, peat substrate intervals of swamp development. 

The lycopsids Chalone ria sp. and Sellaginellites sp. may have formed an understory 

during these wet phases, or may have occupied more open areas of the swamp. 

Evidence suggests that cordaitean plants, probably mangrove- or shrub-like 

Pennsylvanioxylon spp(?) trees bearing Cordaites principalis-type foliage, comprised 

much of the biomass within, and likely directly peripheral to, the clastic swamps. These 

cordaiteans, along with some marattialean tree ferns, ficialean ferns and calamiteans, 
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presumably formed part of the subcanopy beneath taller arborescent lycopsids. Like in 

other habitats, swamp-dwelling sphenophylls might have formed a dense undergrowth 

beneath the subcanopy. 

Although it is not possible to ascertain the vegetation (if any) of comparatively 

dry extrabasinal lowlands surrounding the lowland-wetlands, it is inferred by analogy that 

these somewhat elevated, well drained substrates might have been occupied by large, 

woody, forest-forming trees represented by Dadoxylon sp. petrifactions (Eu-Cordaites 

trees). 
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Chapter 8- Conclusions 

• The Blanche Brook Assemblage, which includes an array of macro flora representing 

each of the major Late Carboniferous plant groups (lycopsids, sphenopsids, ferns, 

pteridosperms and cordaiteans), flourished on the southern margin of paleoequatorial 

Laurentia as part of the Europe Paleoarea of the Euramerian Paleokingdom. More 

precisely, the assemblage forms part of the Acadian Floral Province, which was 

separated from the Interior-Appalachian Floral Province of midcontinental North 

America by the northern Appalachian Mountains. 

• Foliage is predominantly preserved as devolatilized adpressions, although "naturally 

macerated" volatilized adpressions of certain taxa were recovered. Enormous and 

often uncompressed trees of cordaitean affinity are preserved as volatilized 

petrifactions. 

• Paleoecological evidence and homotaxial biostratigraphic correlation of selected taxa 

with macro flora from other localities in the Maritimes Basin of eastern Canad~ 

western and central Europe, and midcontinental North America establishes that the 

Blanche Brook Assemblage is Middle to Late Bolsovian in age, which confirms 

previous age determinations based on miospore assemblages. 

• Recovery of cuticles with very well preserved epidermal details from foliage of 

Cordaites spp. and several medullosan pteridospenns indicates that at least 28% of 

volatile components remain within adpressions. This corroborates earlier conclusions 

that rocks in the northern part of Bay St. George Basin and on Port au Port Peninsula 
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are thermally immature, and verifies that further cuticular investigations of 

macroflora from Blanche Brook are warranted. 

• Fossiliferous strata accumulated in a coarse grained, mixed-load meandering stream 

system that flowed southwestward down the axis of a narrow alluvial plain occupying 

a small subbasin in the northern extreme of the Bay St. George Basin. Channel flow 

was poorly confined by topographically low levee/backlevee complexes that were 

consequently overtopped or breached during frequent flood events. Overbank 

sediments are characterized by grey floodplain paleosols and coal-bearing clastic 

swamp deposits, which attest to accumulation under waterlogged, reducing 

conditions. However, the presence of some reddish channel and floodplain strata 

indicates occasional deposition under well drained conditions, and suggests 

fluctuations in the water table or rate of basin subsidence. 

• Integration of interpreted habitat preferences of taxa with the meandering stream 

depositional environment has resulted in a reconstructed working paleoenvironmental 

model for the Blanche Brook Assemblage. Riparian floras included calamiteans on 

some point bars, whereas levee/backlevee complexes were inhabited by a towering 

canopy of Eu-Cordaites trees that shaded a subcanopy of medullosan pteridosperms 

(N. semireticulata), Sutcliffia sp. (L. neuropteroides), filicalean and marattialean tree 

ferns, and possibly calamitean subtrees; sphenophylls (S. emarginatum and S. sp. cf. 

S. zwickaviense) may have formed dense thickets of ground cover. Higher and better 

drained leveelbacklevees evidently supported stands of arborescent sigillarian 

lycopsids. The subcanopy on floodplains likely comprised calamiteans (A. 
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sphenophylloides, A. stellata, A. equisetiformis), medullosan pteridosperms and 

perhaps some tree ferns, with a tall but non-shading canopy of Lepidodendron hickii 

and possibly "Lepidodendron" sp. cf. "L." bretonense (=Diaphorodendron 

scleroticum); sphenophylls may have provided ground cover. Evidence of 

interspecific habitat partitioning within the pteridosperms suggests that N. 

semireticulata and cf. L. tenuifolia occupied drier, more proximal floodplains and 

levees, while L. rarinervis may have inhabited wetter, more distal floodplains 

peripheral to clastic swamps. Competition may have existed between N. 

semireticulata and arborescent sigillarians for occupation of the better drained 

proximal floodplains and levees. Clastic swamps were inhabited by a diverse flora. 

the composition of which depended on the rate of peat versus clastic sediment 

accumulation. L. hickii and sigillarian lycopsids likely coexisted on the drier, clastic 

substrates, whereas '"L." sp. cf. ""L." bretonense and the smaller forms Chalone ria sp. 

and Sellaginellites sp. inhabited the wetter, partially submerged peat substrates. 

Other significant subcanopy flora in the clastic swamps included mangrove- or shrub­

like Pennsylvanioxylon spp(?), marattialean tree ferns (Lobatopteris spp. and 

Pecopteris spp.), filicalean ferns and some sphenopsids. Similarly to the well drained 

leveelbacklevees, extrabasinal lowlands may have supported stands of tall, forest­

forming Dadoxylon sp. (Eu-Cordaites) trees. 
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Appendix l - Procedure for Cuticle Preparation 

The procedure described here is only one of several methods used in cuticle preparation 

from phytolemmas; more extensive reviews of these techniques are given by Barthel 

(1961, 1962) and Kerp (1990). 

• Place small fossiliferous slab in shallow plastic bowl or tray and add 48 to 50 % 

hydrofluoric acid (HF) just until specimen covered. 

• Extreme caution should be exercised when using HF, as it is frighteningly caustic. Always 
wear rubber gloves, apron and goggles, and work under a fume hood using plastic equipment. 

• Let sample stand until entire phytoleim dislodged; occasional gentle agitation of HF 

helps to isolate the adpression from matrix. 

• Remove adpression to slightly acidified (i.e. containing a few drops of HF) distilled 

water and discard partially digested slab to proper acid disposal bin. 

Mix concentrated Schulze's Reagent. an oxidizing solution that macerates and softens coalified 
matter from the phytoleim, under fume hood: 

• Combine approximately two scoops potassium chlorate to ISO mL 70% nitric acid. 

• Schulze 's Reagent should not exposed to skin and fomes should not be breathed in. 

• Remove all of slightly acidified water from sample before adding ca. 10 to 20 mL of 

Schulze's Reagent to petri dish under a fume hood. Maceration times are variable 

and depend on taphonomy and taxon prepared, but the maceration process should 

generally result in a light to rusty brown cuticle after approximately 1 to 2 hours. 
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• Once cuticles properly macerated, add drops of less concentrated Schulze's Reagent 

to the sample, then eventually drops of distilled water in order to rinse specimen of 

oxidizing agent. (This should be done slowly because violent reactions occur 

between the reagent and water, resulting in destruction of cuticles). 

Mix alkaline solution, a basic aqueous solution that removes remaining softened coalified matter 
and rinses specimen of any oxidizing solution: 

• Combine ca. 15-16 mL 28% ammonium hydroxide into 300 mL distilled water 

• Decant most of water from petri dish before adding drops of alkaline solution. Gently 

agitate cuticles and dark brown plumes should form around specimens as they are 

rinsed of softened coalified matter. Cuticles may automatically partly separate into 

an upper and lower cuticle during this process. (Alkaline solution should be added 

only a drop at a time because violent reactions occur between the solution and 

coalified matter, resulting in destruction of cuticles). 

• Rinse specimen with water until free of alkaline solution. 

• In water filled petri dish, tease apart abaxial (lower) and adaxial (upper) cuticles using 

needles or dental tools with very fine points. 

• Using pipette, remove cuticle(s) from water and place on slide. Attempt to orient 

specimen flat, then slowly evaporate water from slide by placing in intervals on hot 

plate (without burning cuticle). 

Prepare glycerin jelly for slide mount: 

• Add tiny pinch of Safran in 0 dye to given amount of heated (i.e. less viscous) glycerin jelly 
and stir until completely dissolved. 

• Let stand for ca. l week in test tube in water filled beaker on hot plate to slowly remove any 
bubbles. 
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• Add tiny drop of stained glycerin jelly to slide and slowly lower cover slip onto slide. 

Appendix 2- Procedure for Staining for Carbonate Composition 

This procedure represents a summary of the technique devised by Dickson (1965, 1966) 

for staining of a carbonate sample to determine which minerals are present- calcite has a 

variable stain color from very pale pink to red; dolomite will not be stained. 

Mix etching solution under fume hood: 

• Combine 15 mL 36% hydrochloric acid (HCI) into 500 mL distilled water before topping up 
solution to 1000 ml with distilled water. 

+ HCI should not exposed to skin and .fumes should not be breathed in. 

Mix three (A, B & C) staining solutions: 

• Solution A- Dissolve 0.2 g Alizarin redS powder in 100 mL 1.5% HCI solution (12.5 mL 
36% HCI in 237.5 mL distilled water) 

• Solution B- Dissolve 2.0 g Potassium Ferricyanide crystals in 100 mL 1.5% HCI solution. 
(Note that solution B must be prepared fresh for each staining session.) 

• Solution C- Combine 3 parts Solution A with 2 parts Solution B. (Note this combined 
staining solution lasts only for one staining session.) 

• Immerse uncovered thin section in etching solution for 10 to 15 seconds at ca. 20°C 

before bathing the thin section in dish of warm water to avoid inhaling dangerous 

fumes. 

• Immerse thin section in warm (combined) staining solution for 30 to 45 seconds. 

• Gently wash thin section in bath of distilled water for a few seconds before removing 

and quickly drying slide surface under stream of warm air (e.g. hair dryer). 
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Appendix 3- Sample Preparation for X-ray Diffraction (XRD) 

Prior to analysis of a single tree petrifaction sample (23-2), the specimen was prepared 

for XRD by the following method: 

• Extract tiny sample ( < 0.5 g) from specimen with stainless steel blade and add to 

agate mortar. 

• Add small amount of methanol to mortar and crush sample into very fine slurry with 

agate pestle. 

• Remove part of slurry with pipette and mount very thin blanket (ca. 4 cm2
) of mixture 

on clean, dry, glass slide. After methanol rapidly evaporates, specimen is ready for 

analysis. 

297 








