
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author' s Permission)

Design and Implementation of
A Digital Neural Processor
for Detection Applications

by

© Balamurugan Balasubramanian, B. Eng.

A thesis submitted to the School of Graduate

Studies in partial fulfillment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

January 1999

St. John's Newfoundland Canada

Abstract

The main focus of this research is to develop a digital neural network (processor)

and hardware (VLSI) implementation of the same for detection applications, for ex­

ample in the distance protection of power transmission lines. Using a hardware neural

processor wi.ll improve the protection system performance over software implementa­

tions in terms of speed of operation, response time for faults etc. The main aspects

of this research are software design! performance analysis! hardware design and hard­

ware implementation of the digital neural processor. The software design is carried

out by developing an object oriented neural network simulator with backpropagation

training using C++ language. A preliminary analysis shows that the inputs to the

neural network need to be preprocessed. Two filters have been developed for this

purpose, based on the analysis of the training data available. The performance anal­

ysis involves studying quantization effects (determination of precision requirements)

in the network.

The hardware design involves design of the neural network and the preprocessors.

The neural processor consists of three types of processing elements (neurons): input.

hidden and output neurons. The input neurons form the input layer of the processor

which receive input from the preprocessors. The input layer can be configured to

directly receive external input by changing the mode of operation. The output layer

gives the signal to the relay for tripping the line under fault. Each neuron consists of

datapath and local control unit. Data path consists of the components for forward and

backward passes of the processor and the register file. The local control unit controls

the flow of data within a neuron and co-ordinates with the global control unit which

controls the flow of data between layers. The neurons and the layers are pipelined for

improving the throughput of the processor. The neural processor and the filters are

implemented in VLSI using hardware description language (VHDL) and Synopsys I
Cadence CAD tools. All the components are individually verified and tested for their

functionality and implemented using 0.5 p. CMOS technology.

i

Acknowledgements

I am deeply indebted to my supervisor Dr. R. Venkatesan for his invaluable

guidance, discussions and useful criticisms during the course of my research and help

in preparing this manuscript. I express my sincere thanks to Dr. R. Venkatesan, the

Faculty of Engineering and Applied Science and ~lemorial University of Newfound­

land for the financial support provided to me during my ~1. Eng. program.

I thank Dr. R. Seshadri, Dean of Faculty of Engineering and Applied Science,

Dr. M. R. Haddara, .Associate Dean for Graduate Studies, the faculty members and

the CCAE staff for their support during my study.

I express my gratitude to Dr. B. Jeyasurya for useful discussions and help

in obtaining simulation data. I sincerely thank Dr. Paul Gillard, Head of the De­

partment of Computer Science and Mr. Michael Rendell, Department of Computer

Science for help regarding VLSI CAD tools. I thank my fellow graduate students

for their moral support and encouragement throughout the course of my study in

Canada.

Finally, I thank my parents Mr. & ~Irs. R. Balasubramanian, my brother

~lr. B. Balagurunathan and my sister Ms. M. Aruna Rajeshwari for their constant

encouragement and support during my study.

ii

Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Symbols and Abbreviations

1 Introduction and Literature Survey

1.1 Introduction to Neural Networks

1.2 Classification of Neural Networks

1.2.1 Basic Model of a Neuron .

1.2.2 Neural Network Architectures

1.2.2.1 Feedforward Neural Architectures .

1.2.2.2 Feedback Neural Architectures

ill

ii

iii

viii

xiii

xiv

1

1

2

3

6

7

9

1.2.2.3 Self Organizing Neural :\rchitectures

1.2.3 Learning Schemes

1.2.3.1 Least Squares Method

1.2.3.2 Delta Rule

1.2.3.3 Backpropagation with Gradient Descent

1.2.3.4 Cumpetiti ve Learning . . .

1.3 Performance Evaluation of Neural Networks

1.3.1

1.3.2

Evaluation of Neural Algorithms

Evaluation of Neural Hardware

lA Applications of Neural Networks .

1.4.1 Classification Applications

1.4.1.1 Classification of SONAR Signals

1.4.2 Detection Applications

1.4.2.1 Applications in Power Systems

1.4.3 Estimation and Prediction Applications .

1.4.4 Control Applications

1.5 Motivation for the vVork

1.6 Organization of Thesis .

2 Hardware Neural Network Architectures

2.1 Introduction

iv

10

11

12

13

14

15

17

17

19

21

21

22

22

23

24

25

27

29

30

30

2.2 Hardware Neural Networks

2.3 Classification of Hardware Neural Networks

2.3.1 Analog Implementations

2.3.2 Digital Implementations

2.3.2.1 VLSI Chips

2.3.2.2 ~eural Accelerators and Neuro Computers .

2.3.3 Hybrid Implementations

2.4 Example Architectures

2.4.1 ETANN from Intel Corporation

2.4.2 L-Neuro 1.0 from Philips .

2.4.3 HNC100 Chip from HNC .

2..1.4 N64000 Chip from Adaptive Solutions

2.4.5 MANTRA 1 from EPFL

2.4.6 HiPNeT-1 from ICSI

2.-l. 7 Neural ASICs

31

32

35

36

37

31

39

39

40

42

43

44

46

-!8

49

2.4. 7.1 Neural ASIC for real-time classification . 49

2.-l. 7.2 Neural ASIC for supervision of water pollution 50

2.4. 7.3 A Single Chip ASIC for Image Processing

2.5 Classification of DIANNE-01.0

2.6 Summary

v

51

53

54

3 Problem Description, Software Design and Performance Analysis 55

3.1 Introduction

3.2 Distance Protection of Transmission Lines

3.3 Problem Description and Method of Solution .

3.-1 Data Analysis and Feature Extraction

3.5

3.6

3.-1.1

3.4.2

Fault Identification ...

Fault Zone Identification

Software Design and Simulation of the ANN

3.5.1

3.5.2

Software Design . .

Simulation Results

Quantization and Performance Analysis .

3.7 Summary

4 Hardware Design, VLSI Implementation and Testing

4.1

4.2

4.3

4.4

Introduction

Design Cycle and Environment

Overview of the Architecture . .

4.3.1

4.3.2

Pipelining of Layers in DIANNE .

Design of the Preprocessors

DIANNE-Dl.O- Datapath Design

4.4.1 Forward Pass Unit

vi

55

56

59

60

63

67

69

70

72

75

78

79

79

80

81

83

85

86

87

4.4.1.1 Input Buffers

4.4.1.2 Multiply Accumulate Unit .

4.4.1.3

4.4.1.4

Activation Function

Hold Registers

4.4.1.5 Output Buffer .

4.-1.2 Register File

4.4.3 Backward Pass Unit

4.4.3.1

4.4.3.2

4.4.3.3

Compute Local Gradient Unit .

vVeight Adjust Unit

Compute Backpass Sum Unit

4.5 DIANNE-Dl.O- Control Unit Design

4.5.1 The Local Control Unit . ..

4.5.1.1

4.5.1.2

Description of Control Signals .

Description of the Sequencer .

4.5.2 Global Control Unit

4.5.2.1 Description of Control Signals .

4.6 Testing the Design

4.6.1 Functional Verification

4.6.2 Integrated Random Testing

4.6.3 Exceptions Testing

vii

89

90

90

91

92

93

94

95

96

97

97

98

99

102

104

104

107

107

114

119

4.7 Features of the Design

4.8 Summary

5 Conclusion and Suggested Future Work

5.1

5.2

5.3

5.4

Contributions of the Thesis

Improvements over the Hardware design

Future \,York on the Software Design

Critical Assessment and Conclusion .

References

viii

119

122

123

124

125

126

127

129

List of Figures

1.1 The Biological ~euron [3] 3

1.2)l!odel of a Perceptron [3] 4

1.3 ~lodel of a Neuron 5

l...l Some Activation Functions . 6

1.5 Classification of Neural Architecture [1] . i

1.6 Single Layered Feedforward Neural Network [2] 8

1.7 ~lultilayered Fully Connected Neural Network [2] 8

1.8 .Ylultilayered partially Connected Neural ~etwork [2] 9

1.9 A Feedback Network without self-feedback [2] 10

1.10 Ta.xonomy of Learning process [2] . . 11

1.11 Comparison of Learning Schemes (1] 18

1.12 Convergence of Conventional(cc) and Neuro(hw) computers [8] 20

1.13 General Model of a Neural Controller 26

2.1 Computational Capabilities Vs. Requirements (24] . . 31

2.2 Classification of Digital Neural Hardware (30] 33

ix

2.3 Classification of 0Ieural Hardware 34

2.4 Architecture of ETANN chip [26] -ll

') -_ . .) L-Neuro 1.0 Processing Element [35] 42

2.6 HNClOO Processing Element [30] 44

2.7 SNAP system architecture [30] .. 45

2.8 Architecture of ~64000 processing element (30} . -15

2.9 CNAPS Inter-chip Communication [30} 46

2.10 The MANTRA 1 Architecture [30] -li

2.11 The Genes IV Architecture (30} .. 47

2.12 Architecture of HiPNeT-1 Neuron (38] 49

2.13 Neural ASIC architecture for classification [39] 50

2.14 ASIC architecture for supervision of water pollution . 51

2.15 Architecture of NeNEB (46} 52

3.1 Transmission line system 56

3.2 Voltage and Currents at fault condition . 57

3.3 Fault voltage and current plot 62

3.4 Plot of V-I Difference . 63

3.5 Plot of the transformed V-1 difference signal 65

3.6 Conflict region in the transformed signal 65

3.7 SADI Filtered Signal 66

X

3.8 Plot of the SIGADI function results . 68

3.9 Verification of SIGADI 69

3.10 Class Hierarchy of the ANN Simulator 71

3.11 Plot of ANN performance with LR variation 73

3.12 Simulation results with final data set 74

:3.13 Structure of ANN used 75

3.14 Verification of Fi.xed point with Floating Point Simulations 76

3.15 Comparison of performance with various bits . ..,. ...
I I

3.16 Performance with different weight bits 77

4.1 Flow chart of Design Flow 80

4.2 Block Diagram of DIANNE-Dl.O 82

4.3 Pipeline stages of test mode .. . 84

Pipeline stages of training mode . 84

4.5 Block Diagram of SAD! . 86

4.6 Block Diagram of SIGADI 87

-1 .7 Datapath of a general neuron 88

4.8 Forward Unit- Input neuron 88

-1.9 Symbolic diagram of Input Buffer 89

4.10 Schematic of Multiply Accumulate Unit. 90

4.11 Block diagram of the Activation Function Block 91

xi

4.12 Schematic of HOLD registers .

4.13 Schematic of the Output Buffer

4.14 Schematic of the Register file .

4.15 Schematic of the Compute Local Gradient Unit

4.16 Schematic of the \Veight Adjust unit

4.17 Schematic of the Compute Back Pass sum unit

4.18 Symbolic diagram of the Local control Cnit

4.19 State diagram of the local control unit ...

4.20 Illustration of Computation of Backpass sum .

4.21 Global Control unit .. :

4.22 State diagram of global control unit .

4.23 Simulation results of SADI . .

-1.24 Simulation results of SIGADI

4.25 Simulation results of Global Control Unit .

-1.26 Simulation results of Local Control Unit

4.27 Illustration of modes of operation .

4.28 Simulation results of the sequencer

-1.29 Simulation results of HOLD register .

4.30 Simulation results of Function lookup .

4.31 Simulation results of forward pass unit

xii

92

93

94

95

96

97

98

99

102

105

105

108

108

110

111

112

113

113

114

115

4.32 Simulation results of Backward pass unit .

4.33 Simulation results of a single neuron . . .

4.34 Simulation results of complete integrated test

4.35 Simulation results under RESET condition ..

4.36 Simulation results under OVERFLO\.Y condition .

xiii

116

117

118

120

121

List of Tables

2.1 ~eural Accelerator Cards and ~eurocomputers [31} 38

4.1

4.2

-1.3

-1.4

State Descriptions- Local Control Unit .

Order of sequence - Input neurons . .

Order of sequence - Hidden neurons .

State descriptions- Global Control unit .

xi.v

100

103

104

106

List of Symbols and Abbreviations

o : Learning rate parameter of the ANN.

z-t : Unit delay element.

~w : Delta weight (to be added with the weight to be modified) .

E : Objective function of the learning algorithm.

6 : Local gradient parameter of the ANN.

: Momentum parameter of the ANN.

w : vVeight value of a synaptic connection in an ANN.

ANN : Artificial Neural Network.

ASIC : Application Specific Integrated Circuit.

CMOS : Complementary Metal Oxide Semiconductor.

C~lOSIS5 : CMOS Insulated Silicon 0.5JL process technology.

CC"PS : Connection Updates Per Second.

DC : Design Compiler.

DO F : Degree of Freedom.

FFT : Fast Fourier transform.

XV

GCPS : Giga Connections Per Second.

GCU : Global Control Unit.

GCUPS : Giga Connection Updates Per Second.

KCUPS : Kilo Connection Updates Per Second.

LCC : Local Control Unit.

LR : Learning Rate .

.\ICPS : .\lega Connections Per Second .

.\!CuPS : .Mega Connection Updates Per Second.

MFLOPS : .\(ega FLoating point Operations Per Second .

.\1LP : .\1 ulti Layered Perceptron.

RlSC : Reduced Instruction Set Computing.

RO .\1 : Read Only .\{emory.

SIMD : Single Instruction Multiple Data Stream.

SONAR : SOund Navigation And Ranging.

VHDL : Very high speed integrated circuit Hardware Description Language.

VLSI : Very Large Scale Integrated circuits.

VSS : VHDL System Simulator.

xvi

Chapter 1

Introduction and Literature Survey

1.1 Introduction to Neural Networks

Artificial neural networks (ANNs) form a class of systems that are inspired by bi­

ological neural networks. Artific~al neural networks have proved to be a vital tool

for solving problems that cannot be approached by traditional methods. ~lcCulloch

and Pitts introduced the concept of neurons in 1942 [L 2, 3]. Since then several

contributions have been made to the field of artificial neural networks. Due to their

capabilities for modeling and solving complex problems, the applications of A:'-iNs

are many. The applications include classification problems, vision. speech, signal pro­

cessing, time series prediction, modeling and control, robotics, optimization, e.."'<pert

systems and financial applications (1, 4, 5).

It can be stated that the evolution of the field of neural networks is characterized

by a number of ups and downs. There was a period of hibernation, for about 25 years,

from 1969 to 1982, after some initial developments in the area. This is due to the fact

that neural networks without hidden layers were considered at that time and they were

1

not able to learn the well known XOR problem. Then a major breakthrough came

with the introduction of multilayered perceptrons. These neural network structures

will be discussed in detail in the following sections. From then until now, research

in artificial neural networks has been blooming, as witnessed by the existence of

several international neural network societies and international conferences. Progress

is continuously being made to the theoretical and practical aspects of the field. As a

result, the area of applications has also extended into many fields, like AT).l scheduling

[6] , one of the new concepts in telecommunication.

1.2 Classification of Neural Networks

The artificial neural network architectures were formed resembling the biological neu­

ral architecture. The brain consists of about 10 billion neurons and 16 trillion synaptic

junctions or synapses. The biological neuron (nerve cell) is shown in Figure 1.1. The

figure shows the major components of a typical nerve cell in the central nervous

system [2]. The synapses connect the axon of one neuron to various parts of other

neurons. Depending on the stimuli at the synapses, which when exceed the activa­

tion potential (threshold potential), the neuron produces an output potential. The

output potential acts as stimulus for other neurons to which it is connected. The

axon carries the output of the neuron to other neurons. The artificial neurons have

similar structll!'e and functionality. The artificial neural network consists of small

processing elements, called neurons, interconnected with each other. The synapses

2

Figure 1.1: The Biological Neuron [3}

are represented by interconnection weights and the activation potential of the biolog-

ical neuron is represented by the activation function. The first model of an artificial

neuron was introduced by McCulloch and Pitts in 1942, which was a static nonlinear

model. Later Rosenblatt [7) introduced the perceptron model, the most commonly

used basic artificial neuron, in 1962. The perceptron model is shown in Figure 1.2.

In the figure. ;p are the inputs to the neuron and cr are the synaptic weights.

1.2.1 Basic Model of a Neuron

In mathematical terms. the basic model of a neuron is given by the equation 1.1 ilS.

(1.1)

where rp is the activation function of the neuron; x1, x2, ... Xn are the inputs; w 1, w2,-

•.. Wn are the interconnection weights and 8 is the threshold. The schematic represen-

3

Retina

Figure 1.2: Model of a Perceptron [3]

Threshold
condition

tation of the equation is given in Figure 1.3. The activation function of the artificial

neurons can be one of many, ranging from simple threshold functions to sigmoidal

functions. The mathematical representation of some activation functions are as fol-

lows.

1. Threshold Function

<p(x) = {
0
1 ifx ?:: 0

ifx < 0

2. Piecewise-Linear Function

{

1 x?::5
<p(x) = 0(0.1x + 0.5) 5 > X > -5

X~ -5

4

(1.2)

(1 .3)

.r,
Activation
Function

Input .}'.!

Signals 11 .;(.) y

Summing
.r,. Junction

Synaptic
Weights

fl

Threshold

Figure 1.3: Model of a Neuron

3. Sigmoidal Function

1
ip(X) = '

1 + exp(-ax)
(1.-!)

where a is the gain parameter.

Some of the activation function plots are shown in Figure 1..!. The choice of the

activation function depends on the application for which the neural network is used .

.-\11 existing artificial neural networks are formed using the basic artificial neuron.

They are classified based on the way they are interconnected i.e. the architecture of

the neural network [1}. Although these categories are based on different philosophies,

all neural networks are capable of learning, a process by which a neural system ac-

quires the ability to map a set of inputs to a set of outputs by modifying its internal

parameters according to a scheme. The set of input/output patterns are called the

5

;p(x)

X

Figure 1.4: Some Activation Functions

training sample. The learning schemes are classified as Supervised and Unsupervised.

In the following sections, neural network architectures and the learning schemes are

discussed.

1.2.2 Neural Network Architectures

Existing artificial neural network architectures are classified into three major cat-

egories, Feedfon.uard, Feedback and Self Organizing neural networks. Figure 1.5 [1]

shows the classification of neural architectures. Feedforward networks are most widely

used architectures. The implementation of these architectures can be in software or

hardware. The work explained in this thesis uses a Multilayered perceptron with

backpropagation training. The work includes implementation of the neural network

in hardware as well. The following sections discuss the categories of neural architec-

tures in detail.

6

I Artificial :'-leural Networ"1l

t
1 reed-forward 11 l reed-back ll j Self-organi:ting n

1

I Linear ll l Nonlinear n Hopfield Bolt:tmann feature ,.-\fiT ll
Model ~lachine ~laps

l 1
Supen·ised n I U nsuperYised n

Figure 1.5: Classification of Neural Architecture [1]

1.2.2.1 Feedforward Neural Architectures

Feedforward neural networks consist of one or more layers of the basic artificial neuron,

the processing elements. The neurons of the neighboring layers are interconnected by

synaptic weights. The output of each neuron feeds the next layer of the network. This

can be seen as a system transforming a set of input patterns into a set of output pat-

terns . .Ylultilayered feedforward networks consists of one or more hidden layers. The

hidden layers increase the ability of the neural network to acquire higher order statis-

tics. Multilayered networks can be fully connected or partially connected. Schematic

representations of single layer, fully connected multi layer and partially connected

multi layer neural architectures are shown in Figures 1.6, 1. 7 and 1.8 respectively.

7

Figure 1.6: Single Layered Feedforward ~eural Network [2]

Input layer
ofsaun:e

nodes

Layer of
hidden
ncutoiiS

Layer of
output
neurons

Figure 1.7: Multilayered Fully Connected Neural Network [21

8

Input layer
of source

nodc5

l..i&ycr of
hidden
neui"'nS

1...1yer of
output
neurons

Figure 1.8: Multilayered partially Conneeted Neural Network (2]

1.2.2.2 Feedback Neural Architectures

Feedback neural architectures differ from the feedforward architectures by the feedback

loop. They are also called recurrent networks. A feedback neural network may consist

of a single layer of neuron feeding its output to all other neurons, as illustrated in

Figure 1.9. The figure illustrates only a layer and not the complete network. The

presence of a feedback loop has an impact on the learning capability of a neural

network and on its performance . .Moreover, the feedback loops involve the use of unit-

delay elements (denoted by z-l in the figure), which result in nonlinear dynamical

behavior of the neuron. Some of the feedback neural network models are

• Brain-State-in-a-Box Model

• Hopfield ~lodel

• Boltzmann ~lachine

9

r-"::lr"'::l'"":!,.._~ Unii-.Jclay
....,.~~.~ ~ llfiCQIIIft

Figure 1.9: A Feedback Network without self-feedback [2J

• Recurrent Backpropagation Networks.

These models are discussed in detail in [2).

1.2.2.3 Self Organizing Neural Architectures

Human brain has the unique ability to use past experience to adapt to unpredictable

changes in the environment. Such adaptation with no involvement of an external

teacher is called Self Organization. Two of the self organizing neural networks are

• Kohonen's Feature Map

• Adaptive Resonance Theory (ART).

These networks follow the counter propagation or competitive learning scheme in which

neighboring cells compete in their activation by means of mutual lateral interaction

and develop into specific detectors of different signal patterns. Self Organizing feature

maps are used for application like pattern recognition, robotics and process control.

10

Learning Algorithms (rules)

Enor- Bolumann Thorndike Hebbian Competitive Supervised
CorTection l..caming Law of l..caming L.eavning l...caming
l..caming Effect

Learning Paradigms

Reinforccmcnt Self-Organizing
Learning cCnsuperviscd)

l..caming

Figure 1.10: Taxonomy of Learning process [2]

1.2.3 Learning Schemes

Learning is the process of acquiring the ability to map a set of inputs to a set of

outputs by adjusting the internal parameters of the system, such as synaptic weights,

learning rate etc. The method followed for this process is called the learning scheme.

vVhen an external teacher is used to determine the training and learning process it is

called Supervised Learning. When learning does not involve an external teacher it is

called Unsupervised learning. Haykin [2] provides a ta.xonomy of the learning process

which is shown in Figure 1.10. Generally supervised learning is used in the case

of applications requiring specific outputs, like detection or control, and unsupervised

learning is used in the case of some classification applications where the neural network

determines the classification based on the input patterns.

11

1.2.3.1 Least Squares Method

This learning scheme, also called outer-product role or correlation training, is among

the earliest training schemes. It is not an optimal training scheme in any sense.

The major advantage of this scheme is its simplicity. Section 1.3.1 discusses the

performance of this learning scheme in comparison with some other learning schemes

developed later. This scheme is based on the well known least squares method.

Considering an output of a single layered neuron fhk = x;wi = wixk; w• and x•

are transpose of weight and input matrices respectively, i is number of neuron, k is

number of input, the optimal estimate of the synaptic weights is given by,

Vi = 1, 2 no, (1.5)

where E is the objective function [1]. It can be easily verified that wi is the solution

of the set of linear equations

Vi = 1, 2, ... no, (1.6)

where Xm is a matrix of Xk and y:,m = [Yi.l, Yi,2 1 ••• Yi,m]· On simplifying the linear

equation for an optimal estimate, the synaptic weight matrLx solution is

(1.7)

12

where ni is the number of inputs in a set of input patterns.

1.2.3.2 Delta Rule

Although this ru1e is widely used in adaptive filtering, its simplicity and flexibility

made it attractive for training neural networks. However, this learning rule is char-

acterized by slow convergence, and in some situations, can lead to local minima.

This rule is based on the observation that the minimization of the objective function

E = Lk=l Ek (k is the number of iterations) can be performed by sequentially min-

imizing Ek = t l:~~ 1 (Yi,k- Yi ,k) 2 for k = 1, 2, . .. m using the Delta rule. Based on

this the synaptic weight is updated as

(1.8)

where p is the synapse number , o is a positive real number. called the learning rate

and

(1.9)

The network is trained until a predetermined minimum for E is obtained with the

synaptic weights updated using the ru1e specified in equation 1.8.

13

1.2.3.3 Backpropagation with Gradient Descent

This is the most commonly used learning scheme for Multilayered Perceptrons (i'wlLP) .

The objective of this method is to start at some arbitrary point in the error plane,

by having a random synaptic weight matrLx, and moving in the direction of steepest

descent. The scheme consists of two distinct passes of computation called the forward

pass and the backward pass.

In the forward pass, the synaptic weights remain unaltered throughout the network

and the function signals are computed on a neuron-by-neuron basis. The output of a

neuron j is computed as

p

Yj(n) = cp L w11 (n)y1(n) (1.10)
i=O

u1 (n)

where pis the total number of inputs, n is the number of iteration, y1(n) is the output

of previous layer and w is the weight matri.x.

In the backward pass, the error at the output neuron is propagated from the

output to the hidden layers and from the hidden layers to the input layers. The

weights and the parameters are modified based on the input received from the next

layer. The weight update is performed as

14

(
weight) (learning) (local) (input)

correction = rate · gr~dient · signal .
~Wij(n) n ~,(n) y,(n)

{1.11)

The local gradient 8i(n) depends on whether the neuron is an output node or hidden

node.

1. If the neuron is an output node, 8i(n) equals the product of the derivative

<p'(v,(n)) and the error signal e,(n) = d,(n) - y,(n) associated with that neuron.

2. If the neuron is a hidden node, 6,(n) equals the product of the associated

derivative ;p'(vi(n)) and the weighted sum of the IS 's computed for neurons in the

next (hidden or output) layer that are connected to that neuron.

The rate of learning is increased by introducing a parameter called momentum. The

weight update is modified as

(1.12)

where n is the momentum.

1.2.3.4 Competitive Learning

In this learning scheme, as the name implies, the output neurons of a neural network

compete among themselves for being the one to be active. This type of learning is

useful in classification applications where a particular feature of a set of input patterns

15

may be used to activate a particular neuron. The basic elements of competitive

learning are

• .-\. set of neurons that are all same except for some randomly distributed synaptic

weights should respond differently to a given set of inputs.

• A limit imposed on the strength of each neuron.

• A mechanism allows the neurons in a group to compete with each other, so that

only one neuron is active at a time. That neuron is called the winner-takes-all

neuron.

The synaptic weights are distributed among the inputs of a neuron i as

n

L Wij = 1.
j=l

The synaptic weight update is given by

w~:+l - wt + ~Wij IJ

~wt { a (xi- wt) if neuron i wins
-

0 if neuron i loses,

where Xi is input the neuron i.

16

(1.13)

(1.14)

1.3 Performance Evaluation of Neural Networks

Artificial neural networks, being emulators of human brain, have proved to be excel­

lent performers in many application over traditional approaches. As mentioned in the

earlier section, artificial neural networks are implemented in software or hardware and

the performance evaluation metrics differ between these two methods of implemen­

tations. The performance of software neural networks are limited by the efficiency of

the neural algorithm and the computational capability of the conventional computers

that run them. Hardware neural networks enhance the performance of the neural

algorithms with special hardware for implementing those algorithms. In this case

the speed of execution improves many fold and the limiting factor is the cost. The

efficiency of solving a problem improves dramatically as we move from traditional

methods to special hardware for neural networks.

1.3.1 Evaluation of Neural Algorithms

The performance of neural networks is determined by their capacity and generalization

ability or robustness. Generalization is the property of a trained neural network

to classify an input correctly even if it is not a member of the training set. The

capacity of the neural network is determined by the amount of information that the

neural network can hold. The performance of the neural networks depends on the

architecture and learning schemes employed. According to studies in the past, neural

networks trained using the outer-product rule are characterized by low generalization

17

0 0.1 G.2 Q.l 0.4 (U 0.6 0.1

NORMALIZED HAMMING DISTANCE

Figure 1.11: Comparison of Learning Schemes (1]

ability and low capacity (1] . The efficiency of these networks in real applications is

even lower than predicted.

In [1], experimental results justifying the effect of learning schemes on the gener-

alization ability of the neural network have been presented. The results are for the

comparison of an optimally trained neural network to other neural networks of similar

size and structure. The results are shown in Figure 1.11. The graphs corresponding

to L = 0 represent a neural network training using output-product rule and L = oo

represent an optimally trained network. The intermediate graphs represent neural

networks with approximated· synaptic weights of the optimally trained network. The

Hamming distance is the difference between the input set of the test pattern and

the input set of the training pattern or the stored pattern. The value of Hamming

distance reflects the amount of difference between the testing and training patterns.

18

The results illustrate that the generalization ability of the neural network degrades as

the Hamming distance increases. It also shows that, as the learning scheme changes

from optimal to output-product rule, robustness of the network to difference in input

patterns degrades. Similar results are presented in the literature for the capacity of

the neural network as well.

1.3.2 Evaluation of Neural Hardware

Hardware neural networks are evaluated based on their performance over conventional

computers and among the neural architectures. Hardware implementation of neural

networks faces constraints due to cost considerations.

In [8], the authors evaluate the performance of digital neuro computers over the

conventional computers. They also discuss the constraints on the hardware for integer

arithmetics, pipelining, discretization of evolution of learning parameters etc. They

discuss the cost associated in changing the learning parameters of a neural network

in hard ware realizations. They suggest methods for approximating these parameters

to fewer values thus reducing the cost. These analyses have a profound impact on the

design of the neural network discussed in this thesis. Discussions related to this aspect

are done in Chapter 3. The comparison of the convergence speed of training between

the conventional computers the neural network hardware is shown in Figure 1.12.

In this figure, E is the adequate metric of convergence for a neural network model

.M and Eo is some predetermined metric of convergence; tee is the time required by

19

E

EO
I •

!
I

tee
l(S)

Figure 1.12: Convergence of Conventional(cc) and Neuro(hw) computers [8]

the conventional computer to reach the convergence metrics £ 0 , and thw is the time

required by the neuro computer to reach that value. This figure clearly illustrates

the improvement in performance when special hardware is used. The authors also

propose a formula for calculating speedup in this case as

(1.15)

In [9], comparison of digital neural architectures is discussed. Different classes of

digital neural implementations are compared quantitatively proposing some perfor-

mance indices as reconfiguration ability, virtualization ability [9] etc. Hardware con-

straints with respect to implementation of backpropagation algorithm is discussed

in [10]. The effect of limited weight resolution, range limitations and steepness of

activation function are described. The impact of these parameters on the design of

the hardware is discussed in detail in Chapter 3.

20

1.4 Applications of Neural Networks

).ieural networks are being used in a wide variety of applications. The applications

range from biological to process control applications. In a broader sense, neural

network applications can be classified as detection applications, classification applica­

tions, estimation applications and control applications. In case of control applications

neural networks are used along with fuzzy logic evolving into the field of neuro-fuzzy

control [5}. In the following sections, some applications of neural networks are dis­

cussed.

1.4.1 Classification Applications

The application of neural networks to classification problems is conceptually most

consistent with their structure and functionality. The objective of a classification

application is to assign a random sample from a set of samples to one of finite output

states or classes with minimum probability of error. Each sample is described by

a set of parameters which form a vector, usually referred to as the feature vector.

The development of such a classification system can be achieved by training a neural

network to provide an output corresponding to one of the classes, when the input

sample belongs to that class. The justification for use of neural networks in classifica­

tion applications depends on the existence of evidence that neural network classifiers

are more efficient than the alternate tools. An example classification application is

described in the following subsection.

21

1.4.1.1 Classification of SONAR Signals

A neural network developed for classification of SONAR targets is described in [llJ.

The authors of this paper have analyzed the effect of hidden layers in the classification

of SONAR targets. A similar application is described in [12}, where the authors test

the effect of finite precision calculation on the performance of the neural network.

1.4.2 Detection Applications

Detection applications are a degenerate of classification where a set of input belongs to

one of two classes. Applications include pattern recognition, fault detection. medical

imaging, quality control etc. One example of detection applications is presented in

[13]. The authors describe the use of artificial neural networks in detecting known

signals in non-Gaussian noise [13]. Another example is presented in [14]. This paper

describes an application of artificial neural networks in medical signal processing.

The authors describe the training and performance of a multilayered perceptron using

backpropagation training for detection random signals in medical signal processing.

The authors also compare the performance with other classical techniques for the

same application. One more detection application in medicine is presented in [15]

which is EEG spike detection using neural networks.

Artificial neural networks for fault detection is explained in [16]. This paper

describes a neural network approach for the problem of sensor failure detection and

identification for a flight control system without any sensor redundancy. Detection of

22

soft contaminants using neural networks is discussed in [17]. This paper describes a

neural network based image analysis system that detects foreign objects that might be

present in bags of frozen com kernels which are not visible to a conventional camera.

The following subsection discusses some of the applications in power systems, the

application area of the work presented in this thesis.

1.4.2.1 Applications in Power Systems

Neural networks play a vital role in applications related to power systems due to

the non-linearity of the system. A survey of the literature shows the use of neural

networks in many areas of power system like distance protection, load forecasting,

stability analysis, economic dispatch, security assessment etc. Contributions to the

field vary from neural algorithms to dedicated hardware implementations.

Coury and Jorge [18] suggest an artificial neural network approach to distance

protection of transmission lines. They describe ANN as a pattern classifier, being

able to recognize the changing power system conditions and consequently improving

the performance of ordinary relays. They use a Multilayered perceptron (MLP) for

this purpose, with magnitude of phase voltages and currents as inputs to the ANN

and a trip/ no-trip as the output of the ANN. They claim improved performance of

ANNs over the conventional approaches. Similar approach has been described in [19]

using frequency components as inputs to the ANN instead of magnitudes of voltages

and currents. Improvement in learning and convergence rate has been reported. The

23

work described in these papers is closely related to this thesis. Further explanation
'

about these papers and analysis are presented in Chapter 3.

Cornu et al. [20] present a Kohonen feature map algorithm for security monitoring

in power transmission systems. They describe the implementation of the algorithm

in parallel hardware. They describe the development of a SIMD (Single Instruction

l\Jultiple Data Stream) array dedicated to the impiementation of the algorithm. This is

one of the examples of dedicated neural hardware for applications in power systems.

~lore explanation on the development of hardware neural networks is given in the

following Chapter.

1.4. 3 Estimation and Prediction Applications

A large portion of scientific research is devoted to the development of systems for pre-

diction such as weather forecasting, medical diagnosis, financial predictions, lightning

strike prediction etc. Neural networks are suitable candidates for the development

of systems predicting such events, due to their nonlinear structure and generaliza-

tion ability. The application of neural networks to prediction application requires the

determination of the parameters of the system under consideration, that most likely

affect the the events or developments of interest. Provided that such a set of pa-

rameters is chosen, the network can be trained using the history of the system under

consideration. After the training, the neural network must be able to use the most

recent parameters in order to predict the future events or developments. The use of

24

neural networks for such application is based on the hy·pothesis that the future events

or developments depend exclusively on the history of the system. Although this is

the case in many systems, this hypothesis is not always true. A classical application

of neural networks to weather forecasting by vVidrow et al. is presented in [1]. They

used artificial neural networks to predict the occurrence of rainfall on the following

day on the basis of fluctuations in the barometric pressure in the two preceding days.

The percentage of successful predictions was comparable to those predicted by the

official weather prediction agency, which used a large set of parameters for forecasting.

1.4.4 Control Applications

Artificial neural networks, mimicking the human brain have demonstrated to be an

.lttractive solution for control applications requiring some intelligent control. The

application of neural network control ranges from control of electric drives to control

of communication systems. Use of neural networks for the identification and control of

nonlinear dynamical systems is described in (21] by Narendra and Parthasarathy. This

is one of the pioneer works in the field of control using neural networks. The authors

of this paper explain the practical feasibility of neural networks in identification and

adaptive control schemes. The authors introduce models in which multilayer and

recurrent neural networks are interconnected in novel configurations.

Neuro-fuzzy control [5] is another popular approach for intelligent control applica­

tions. It refers to the design methods for fuzzy controllers that employ neural network

25

Desired Set

~ Plant
Plan

,---..

t Output

Neural Control

Feedback

Figure 1.13: General ~'lodel of a Neural Controller

techniques. Some advantages of neural control over traditional controllers are:

1. Learning ability

2. Parallel Operation

3. Structured Knowledge representation and

-l. Better integration with otlier control design methods .

.-\.general model of a neural network controller is shown in Figure 1.13 . .-\.n example of

application of neural network control for robotic manipulator control is presented in

[22). The experimental development of a trajectory tracking neural network controller

based on the theory of sliding motor control is shown. The authors have implemented

the controller on a 3 DOF PUMA robot. They have also compared the performance

of the neural control with that of computer torque method control and continuous

sliding motor control with PI-estimator.

Another e.."Cample of ANN based control is presented in [23). This is for the control

of communication system. The authors suggest that the neural networks appear well

suited to applications in the control of communication systems for two reasons, adap-

26

tivity and high speed. They describe the application of nell!al network control to two

problems: admission control~ selective admission of a set of calls from a number of in­

homogeneous call classes which may have different characteristics and switch control,

the service policy used by a switch controller in transmitting packets. They address

su~microsecond optimization of these problems based on the scheme suggested.

1.5 Motivation for the Work

The earlier sections described the application of neural networks in a wide variety of

applications. Different methods of implementations of artificial neural networks. soft­

ware and hardware, were discussed. The performance of hardware neural networks

in comparison to software implementations on conventional computers was also dis­

cussed. The advantage of using hardware neural networks is very clear from these

discussions. :'vloreover. conventional computers do not exploit the inherent parallelism

in the neural algortihms except for optimizations at the compiler level. A dedicated

neural network hardware for a particular application would definitely increase the

speed of a system. This would also increase the reliability of the system. So, a

dedicated neural network hardware with novel design features would be a major con­

tribution to the field of artificial neural networks. This would also be a contribution

to the field of large scale integration and system on a chip research.

As discussed in section 1.4.2.1, neural networks are a vital tool in distance pro.

tection of transmission lines. As discussed in the literature, use of artificial neural

27

networks improve the efficiency of the protection system. If the distance protection

using artificial neural networks could be implemented in a single application specific

integrated circuit (ASIC), it would improve the protection system performance many

fold. The paper by Coury et al. (18] , explained in section 1.4.2.1, uses a software

implementation of an artificial neural network. The authors present a learning time

of 2 CPU hours and convergence at 80,000 cycles. The results of the implementa­

tion, though better than conventional approaches, are not attractive with the low

convergence rates. The paper by Zahra et al. [19], mentioned in section 1.4.2.1,

also uses software implementation of the ANN based approach to protective relay­

ing. The speed of operation in these cases will be less when compared to a hardware

implementation of the same.

The distance protection problem needs to be analyzed in detail to identify proper

preprocessing methods and a suitable neural network structure, which would be fea­

sible for implementation in hardware. A software neural network simulator which

resembles the hardware implementation would acomplish this purpose. A hardware

complexity optimization analysis also has to be done using the software simulation.

In summary, a neural processor that is optimized (at the same time possessing ad­

equate generality for application to similar problems) for this application has to be

designed with proper preprocessors.

28

1.6 Organization of Thesis

In this chapter, the basics of neural networks, the classification of neural architectures

and the different learning schemes were discussed. A brief description of the work

done in this thesis and the motivation and background for this work were described.

This chapter also discussed some applications of neural networks.

Chapter 2 discusses hardware neural networks in detail, with emphasis on VLSI

neural network architectures. A survey of recent development in VLSI neural networks

is given and they are classified into different categories. The chapter discusses in brief

the neural network designed for this work with respect to the categories described.

Chapter 3 describes the the distance protection problem in detail. The method of

solving the problem is discussed and the simulator developed for this purpose is also

explained. The results of the simulation are discussed in detail and their relation to

the hardware design is explained.

Chapter 4 describes the hardware design process and explains the implementation

in detail. The overview of the architecture is discussed and the design is discussed in

detail. Salient features of the design are described and justified.

Chapter 5 summarizes and concludes the work. The main contributions of this the­

sis are described. Some improvements to the current software and hardware designs

are discussed. Critical assessment of the work is done and the method of approach is

justified.

29

Chapter 2

Hardware Neural Network
Architectures

2.1 Introduction

Neural networks are a promising computational technology due to their capabilities

in modeling and solving problems hardly approachable by traditional methods. As

the field of neural networks matures, a strong need for fast, efficient and applica­

tion specific hardware for neural networks arises. In the previous chapter, basics of

ANNs were discussed. Classifications of ANNs and application of ANNs were also dis­

cussed. Some literature on the performance of ANNs and methods of evaluation were

described. This chapter discusses the hardware neural networks and their categories

in detail with emphasis on VLSI architectures. Recent trends and developments in

hardware ANNs are discussed. A brief explanation on the digital neural processor

designed for this thesis is given and some features of the design are presented.

30

I tor-----~~-r~~~~--~~----~
e
~ tMr-----~-------+~------r-----~
""

tK

....
IM

S'rORAOE Clmcn:anna:u)

IG

l: PC/AT

2: SUN 3
3:VAX

4: SYMBOUCS
S: IINlJo.

6: DEl.TAl
7: TRANSPUTER
I: MARK III. V
9: 00YSSEY

10: MX-1/16
II: CM-2 (64K)

12: WARP (10)

13: Blm'ERFL Y C6&l
!4: CRAYXMPI-2

Figure 2.1: Computational Capabilities Vs. Requirements [24J

2.2 Hardware Neural Networks

Neural computing requires a tremendous number of computations and communica-

tions. The response and characteristics of the present models of ANN are primarily

investigated by simulations run on workstations, special co-processors or transputer

arrays. The fundamental drawback of such simulators is that the spatio-temporal

parallelism that is inherent to ANNs is lost completely or partly. The computational

capabilities of ANN simulators and the computational requirements of some ANN

applications is illustrated in. Figure 2.1 [24J . This figure clearly shows that general

purpose computing machines do not meet the computational requirements for most of

the applications. An appreciable reduction in computing time becomes possible with

special neural hardware enabling execution of large tasks in real-time. Apart from

31

the improvement in execution time, special neural hardware reduces the size of equip­

ment compared with simulators for the same task. The special neural hardware can

be general purpose neuro computers, computers specially designed for executing neu­

ral algorithms, or dedicated custom processors, which are special hardware optimized

for particular applications. The implementation methods for the neural hardware is

classified as Direct Design and Indirect Design (25}. Direct Design is mapping the

structure of a ANN model directly into hardware and indirect design is mapping

ANN models into existing array processors, thus reducing the hardware complexity

over single chip direct designs. The following section discusses these categories in

detail.

2.3 Classification of Hardware Neural Networks

The widespread interest in hardware neural networks resulted in a number of imple­

mentations that are hard to overlook. Several books and survey papers on hardware

neural networks have been published in the recent years (26, 27, 28, 29, 30, 31]. Each

reference describes a different method of classifying the existing hardware implemen­

tations of neural networks. In general, the classification of hardware neural networks

are analog, digital and hybrid, based on implementation. In [30], the authors classify

the digital neural networks based on five criteria which are

• Type of system

• Numerical representation

32

CliJIIj - .. -

... -· .,_ - ,.._
a.o~ ..

..:-=·== Ce -
- •••• c:::zl IS d -......... ,._, .,._, _, ,, ... _,

Figure 2.2: Classification of Digital Neural Hardware (30]

• Typical neural network partition per processor

• Inter-processor communication network

• Degree of parallelism.

The classification is illustrated in Figure 2.2.

In [31], the authors use a different classification based on the dedication of the

hardware. They classify neural network hardware as VLSI chips. accelerator boards

and multi-board neural computers, Most of the commercially available neural hard-

ware are general purpose, programmable, reconfigurable implementations with lim-

ited number of processing elements (26}. Based on the classifications presented in

the literature, the neural hard ware can be classified as illustrated in Figure 2.3. As

the classification shows, the indirect design methods use the existing parallel pro-

cessors to implement neural algorithms. These implementations are mostly general

33

Neural Hardware

Direct Design Indirect Design

General Purpose Custom Design Array Processors Parallel Computers

Analog Digital Hybrid
(General Purpose I Application Specific)

Neuro Computers Neural Accelerators VLSI Chips

Fixed Point Aoating Point

Cascadable Chips Single Integrated Chips
{Mostly Application Specific l

Figure 2.3: Classification of Neural Hardware

purpose neurocomputers, though they exhibit less reduction in hardware complexity

than application specific designs! provide good improvement in execution times when

compared to the simulators. Custom design techniques involve more design issues

like precision requirements, speed of operation etc. In the following sections, more

e.xplanation on the custom design of neural hardware with emphasis on digital im-

plementation is given. Some example architectures, including commercially available

architectures~ are discussed. A compilation of some commercially available architec-

tures and their features, with respect to the classifications discussed above, is given

in (29, 28, 31].

Dedicated neural hardwares are naturally affected by the implementation tech-

nologies, discussed earlier in the section. Both analog and digital design techniques

have demonstrated some degree of success in their areas of application. To select be-

34

tween digital and analog implementation techniques for neural hardware. many issues

like storage and transfer of analog signals [25}, the speed and precision achievable,

as well as adaptivity and programmability, need to be better understood. A survey

of trends in implementation techniques reveals transition from analog techniques to

digital techniques. In [29], published in 1992, the authors review developments in

electronic neural nets in North America during that period. In their review, they

mention that analog implementations are more prevalent than digital implementa­

tions. Out of over 40 chips they have referred, only 8 are exclusively digital. In

(28], published in 1993, the author mentions that the analog approach is dominant

in the United States and digital techniques are preferred in Europe and Japan. This

trend of analog implementations seems to have moved towards digital implementa­

tions during the recent years. The review in (27, 31), confirms this transition, where

the authors mention that digital implementations are widely used and a significant

fraction of neural hardware uses digital implementation. This view is supported by

the architectural survey of digital neuro computers in (30].

2.3.1 Analog Implementations

Features of analog design are speed, low precision and small scale systems (single pro­

grammable interconnectable neurons or small ASICs). For dedicated applications, a

neuron can be easily implemented by a differential amplifier [32, 25], with the synaptic

weights implemented via resistors. This way, many neurons can be fit into one single

35

chip. The asynchronous updating properties of analog devices can provide extremely

high speed computations that are qualitatively different from those of any digital

computer [25]. Analog circuits also offer inherent advantage on the computation of

sum of weighted inputs by currents or charge packets and the nonlinear effects of the

de ices facilitating realization of a sigmoid type function. Although analog circuits

are more attractive for the biological-type neural networks. they are more suscepti­

ble to noise, cross talk, temperature effects, power supply variations etc. In general.

analog circuits are limited to low precision implementations.

2.3.2 Digital Implementations

Digital implementation is suitable for dedicated connectionist type neural networks

(33]. Digital techniques offer some desirable features such as design flexibility, learn­

ing, expandable size and accuracy. Digital designs have overall advantages in sys­

tem level performance. ~Ioreover, digital implementations provide more flexibility

in precision than the analog techniques. Development of CAD technology also helps

convenient building of modular designs with digital techniques. The disadvantages

of digital implementations are: larger chip area, relatively low speed of operation~

especially in the sum of weighted inputs, and conversion of analog inputs to digital

form. As illustrated in Figure 2.3, the digital implementations are classified into VLSI

chips, neural accelerator boards and neurocomputers.

36

2.3.2.1 VLSI Chips

Digital implementations of this category can be a single processing element which is

cascadable or multiprocessor chips, which contain many processing elements on one

chip. Based on the number of processing elements in a chip, the chips can be coarse

grained, medium grained, fine grained or massively parallel. The advantage of this

implementation is that. generally they are optimized for a particular application and

hence have a high speed and a good accuracy. The disadvantage is their custom design

as they cannot adapt to changes in neural algorithms or they give poor performance

for newer, improved algorithms (provided it can be programmed for accommodating

different algorithms). Some example architectures are discussed in Section 2.4.

2.3.2.2 Neural Accelerators and Neuro Computers

Very large networks can be achieved by specialized neural hardware. \Vhile large

general purpose parallel machines provide sufficient performance, alternatives are

available with accelerators for conventional computers. Neuro computers also pr~

vide better performance with extensive software environments. Some of the available

neural accelerators and neurocomputers, as provided in [31], are listed in Table 2.1.

Several of these accelerator cards use fast RISC chips or DSP based c~processors to

speed up the network processing. These cards usually come with software that in­

clude several neural network algorithms. A disadvantage of these c~processor cards,

as explained in [31], is that they do not allow signals directly to the card but over the

37

II Type I Name I Chip I Performance II
PC Accelerators AND HNet Transputer T 400 Not Available

Transputer
BrainMaker Tl TMS320C25 DSP 40MC. 500MF
Current Tech. 2048 PE I Chip 4.9MC, 2.5MCU
NlM32k
HN C Balbo 860 Intel i860 80MF
IBM ZISC ISA IBM ZISC036 800k pat/sec
Neural Tech Tl TMS320C20 DSP 2MC
NT6000
N eurodynamX. Intel i860 45MC
XR50
Nestor NilOOO :"'estor NilOOO 40k pat/sec
Rapid Imaging Intel ETANN 2GC
0491El
Telebyte 1000 properietary 140MC
NeuroEng.
Vision Harvest Intel i860 30MC, lOOMF
NeuroSim.
Ward Sys. 50MHz RISC 25MF
NeuralBoard

Neurocomputer Adaptive Sol. !nova N64000 5. 7GC, 1.5GCU
CNAPS
HNC SNAP HNC 100 NAP 500MC, 128MCU
Siemens Siemens MA-16 800MC
SYNAPSE-1

~lC - MCPS, MCU - MCUPS, MF - MFLOPS, GC - GCPS ancl GCU - GCUPS

Table 2.1: Neural Accelerator Cards and Neurocomputers (31]

38

slow PC bus. This reduces the advantage of using such cards for real-time processing.

~lore discussion on some of the neurocomputers is provided in section 2.4.

2.3.3 Hybrid Implementations

Hybrid designs combine the best of analog and digital techniques. Typically the

external inputs and outputs are digital to facilitate integration with other digital

systems, while internally some or all of the processing is analog. The AT & T A~N A

(Artificial Neural Network ALl!) [34] is an e..xample of a hybrid implementation. This

chip is externally digital but uses capacitor charge, periodically refreshed by DA.Cs,

to store the weights. Some other hybrid designs use digital weights but the processing

is done in analog.

2.4 Example Architectures

Some of the commercially available hardware neural networks and some architectures

developed by research groups and academic institutions are presented in this section.

The commercial architectures are general purpose, programmable and cascadable

implementations while the designs from research groups are mostly application specific

implementations. The discussions on these examples give only an overview of the

architecture of the hardware. Intrinsic details of the designs are given in the respective

references.

39

2.4.1 ETANN from Intel Corporation

ETANN, the Electrically Trainable Analog ~eural Network (80170N\V) is the first

commercial chip implementation for the general purpose application of neural net­

works (26]. The architecture of the ETANN chip is shown in Figure 2.4. It consists of

64 neurons and 10,240 synapses. A total of 160 synapses is connected to each output

neuron. There are 128 configurable inputs available in the chip. The neuron also per­

forms the sigmoid function for dot product between the input signal and the weight

value from the synapse array. High performance is achieved through full-fledged

parallel processing. The chip has feedforward processing rate of 2 GCUPS and it

can support 100I(CUPS learning rate for the individually addressable weight update.

Learning is implemented by an off-chip approach for maximizing flexibility in order

to support various learning algorithms such as the backpropagation and competitive

learning. The off-chip learning is also a disadvantage. The chip has to be used in

conjuction with a host station for learning and downloading the weights. This chip

also has the disadvantage of analog implementation which restricts the resolution of

signals. Typical resolution of the output signal is around 6 bits which is much less

when compared to many other chips reported. The chip is used mostly in pattern

recognition and image processing applications.

40

reset

hold

Analog
inputs

vren

clock

resetf

vrefo vgain Neuron Analog output/
enable feedback

Figure 2.4: Architecture of ETANN chip [26]

41

Synapse
weight
output

Single
summing
node output/

Single
sigmoii
output

-~~-'!"!~----·-······ ··--·- -···-········· · ············· ··· ···· ·

- -~~~~ ·- ;.-----11'----'
I '

Figure 2.5: L-Neuro 1.0 Processing Element [35]

2.4.2 L-Neuro 1.0 from Philips

L-Neuro 1.0 [35] is an example of chips for sigmoid networks. The structure of the

processing element of L-Neuro 1.0 is shown in Figure 2.5. In this architecture, the

weights of each neuron are stored on-chip. On kilobyte of memory is arranged as 8

bit weights for 64 neurons with 16 inputs each. The design of this architecture allows

reconfiguration of weights to be 4 bit weights for 256 neurons. Double precision

is used for the learning process and the ma.ximum number of neurons in this case

reduces to 32. In the forward phase, a single serial-parallel multiplier performs the

product and sums for a matrbc vector product. Each neuron is processed sequentially,

producing a single output at a time so that the external nonlinear function (a look up

table} can be used by each neuron. Operation for Hebbian learning (Delta Rule) is

implemented, but not the complete backpropagation algorithm. This has to be done

42

in the host processor, thus considerably reducing the backpropagation performance.

The chip is cascadable but networks whose weights exceed the size of the on-chip

memory cannot be implemented due to the low bandwidth from external memory

to the internal storage. This chip is suited for small embedded applications along

with traditional microcontrollers. Due to the absence of direct memory interface and

limited parallelization, conventional microprocessors of future generations can easily

outperform this design. An improved version of L-Neuro 1.0, called the L-Neuro 2.3 is

presented in [36] , overcomes the major limitations of its predecessor. It consists of an

array of twelve DSPs. The new chip is able to perform 2 Giga arithmetic operations

per second and has a throughput of 1.5 Gigabytes per second.

2.4.3 HNClOO Chip from HNC

HNC's processing element (30, 25] has some features of traditional processors like

floating point computations and its structure is simple and orthogonal. The HNClOO

processing element is shown in Figure 2.6. The core of the processing element is a

32 bit floating point multiplier and a 32 bit ALU, handling both floating point and

integer operands. There are data registers, instruction registers and status registers

around these functional units. The number of processing elements per chip is limited

to four due to the floating point implementation. The communication between mem­

ory and processing elements is performed through bidirectional datapaths between

local memory and processing elements, global memory and processing elements and

43

UlaJS

Figure 2.6: HNClOO Processing Element [30]

between neighboring processing elements. Many HNClOO chips are connected in a

systolic ring structure to form the SNAP (SIMD ~eurocomputer Array Processor)

system [25]. The architecture of the SNAP system is shown in Figure 2.7. A complete

SNAP system consists of 16 to 64 processing elements on several boards.

2.4.4 N64000 Chip from Adaptive Solutions

This chip is one of the examples of parallel neuro computers using programmable cus-

tom processing elements. Adaptive Solutions CNAPS [37) is one of the first cornmer-

ciallarge neuro computers. This uses the regularity of the broadcast bus architecture

[9) to reconfigure faulty elements (by bypassing) and improve yield. The architecture

of the N64000 processing node is shown in Figure 2.8 and the CNAPS Inter-chip

communication is illustrated in Figure 2.9. As the figure illustrates, the connectivity

between processing elements is reduced. This gives the advantage of expansion by

44

Figure 2. 7: SNAP system architecture [30}

I

Figure 2.8: Architecture of N64000 processing element (30]

45

.
.... iJ .. PnCmd : "''"'"

lrbus

•
Figure 2.9: CNAPS Inter-chip Communication [30]

simple addition of ~64000 chips on the bus and reduction of packaging and mounting

costs. The processing element is similar to a very simple DSP and each PE (denoted

by PNO to PN64 in the figure) holds a row of the weight matrLx and accumulates the

products of the inputs and internal elements of the matrLx. The weight update in error

backpropagation is achieved by duplicating the weight matrLx in the processors and

both matrices are updated one after the another. The performances as reported by a

study in [30], is 9.671 GCPS and 2.379 GCUPS. The great advantage of the C~APS

architecture is the versatility of the processing elements and good programmability.

2.4.5 MANTRA 1 from EPFL

This is an architecture from the research institute EPFL (Ecole Polytechnique Feder-

ale De Lausanne) in Lausanne. Switzerland. MANTRA 1 [30] is a systolic mesh

processor for implementing neural algorithms. This design attains one more degree

of parallelism by assigning up to one processing element per synapse. The advantage

46

----·------------- ··-------- -------- ---··· ,__

Ftfttlan
oiY
Unl

I

• • • • ·-----------···-------------------------------

Figure 2.10: The MANTRA 1 Architecture (30]

Figure 2.11: The Genes IV Architecture [30)

of this method is, higher degree of parallelization and hence higher throughput and

a better PE utilization. The computational heart of this system is a bidimensional

mesh of custom processing elements called GENES IV (30). The structure of the

processor is shown in Figure 2.10. The structure of the Genes IV processing element

is shown in Figure 2.11. All the input and output operations are performed by the

processing elements located in the North-West to South-East diagonal. The authors

explain that the processing element implements a few general primitives sufficient for

47

backpropagation, Hopfield nets, Kohonen feature maps etc. They claim that 100%

utilization rate is achieved. in normal conditions. The array implemented in MA:"'TRA

1 can contain up to 40 x 40 PEs running at 8 MHz. The system is controlled by a Texas

TMS320C40 processor, which takes care of the SIMD part, instruction dispatching

and input/output management. The processor also controls communication with the

host computer.

2.4.6 HiPNeT-1 from ICSI

The International Computer Science Institute (ICSI) at University of California.

Berkeley, presents a highly pipelined neural network architecture called the HiPNeT-

1 in (38]. The authors claim that the system sustains a learning rate of one pattern

per clock cycle. At a clock rate of 20MHz each neuron performs 200 MCUPS. Mul­

tiple such neurons are integrated onto a single VLSI chip. The architecture of the

HiPNeT-1 neuron is shown in Figure 2.12. The pipeline operates in two basic modes.

forward and update modes. In the forward mode, weight values are read from memory

in one cycle and added to the accumulator in the ne.xt. In the update mode, value of

delta weight ~Wij is read from the error input latch and stored in the accumulator.

Each weight is read from the memory, added to the update and written back to the

memory. But a read after write pipeline hazard is ignored assuming backpropaga­

tion learning does not cause this hazard. The authors justify this assumption with

simulations showing that the performance is not affected.

48

Figure 2.12: Architecture of HiPNeT-1 Neuron [38]

2.4.7 Neural ASICs

The architectures discussed in the earlier sections are general purpose, massively

parallel architectures for neural algorithms. In this section, two custom designed

architectures for specific applications are discussed.

2.4.7.1 Neural ASIC for real-time classification

A neural ASIC architecture for real-time dassification is presented in [39J. The au-

thors have designed a digital ASIC module which is run-time reconfigurable. The

ASIC module is a multilayered perceptron (MLP) and a tree of MLPs are formed

by connecting two of these modules. The authors state that the design combines

high speed and precision. The architecture is presented for variable precisions and

VLSI implementation is done using 8 bit integer arithmetic. The design is based

on the MLP algorithm and is optimized for parallel execution. This is achieved by

49

':::* {<
.

~ -I W
.. ,_ ·- !Jaau __

~ .. - ~ ..
~ I ~

our .. ~ ...,
ASIC MODULE --- ASIC MODULE .,.!!!!.

CDmiQ
..,_

~ .:.{ .. II&D ====; ROOT :"" tCII'W1Ial LEAF
II 1l' II 1l'

D II

a
u ~~9-

~ •
~

51 l= -:-'ll=j :.J ,...
1~ i i i

Figure 2.13: Neural ASIC architecture for classification (39]

interchanging instructions of the algorithm to attain maximum parallelism and im-

plementing it in hardware. The disadvantage of this design is that it implements

only the forward phase of the MLP algorithm and does not constitute learning. The

learning has to be performed in software. The architecture is shown in Figure 2.13.

2.4.7.2 Neural ASIC for supervision of water pollution

The design of a neural ASIC that implements a system for low cost supervision of

water pollution is presented in [40]. A trainable multilayer perceptron is designed

which estimates the parameter to estimate the water quality. The architecture in-

eludes weight multipliers, product sum, sigmoid function and backpropagation. The

architecture of the neuron is shown in Figure 2.14. The design has 8 neurons in the

first layer and one neuron for the output layer. The design is implemented using 0.7 J.L

C:VlOS technology and 8 bit integer arithmetic. More general purpose and application

50

Figure 2.14: ASIC architecture for supervision of water pollution

specific designs are presented in [30, 41, 42, 25 , 43, 44, 451, for further reference.

2.4.7.3 A Single Chip ASIC for Image Processing

A digital implementation of the recall phase (after training) of a backpropagation

neural network for real-time image classification is presented in (46]. This implemen-

tation is application adjustable and has been implemented using similar procedures

followed in this thesis. The authors claim that a network with up to 65536 inputs,

8 hidden neurons and 32 output neurons is possible. The input data range is ::::::::

0.0 ,1.0 with 8 bit resolution. The architecture of the chip, ~eNEB is shown in

Figure 2.15. This design is used for a real-time image classification application and

uses fixed point representation for the inputs and weights. The design uses external

weight storage scheme, i.e. the training is done offtine and the final set of weights are

loaded for use with external inputs. The design has been verified for its functionality

51

-·--

Figure 2.15: Architecture of NeNEB (46]

in comparison with the results of software simulation using a program in C language.

The design is mostly suited for applications that would require low resolution. This

restricts the area of application of this design.

Different commercially available and academic research level architectures of hard­

ware neural networks were discussed in tb.e earlier sections. Most of the commer­

cially available, chip level architectures consisted of complex neurons that can be

programmed for different applications. The hardware complexity of these designs

were very large and they had very few neurons on one chip. On the other hand, some

other designs had many neurons, as many as 1024, in a single chip but they were

simple and can be used for only limited applications. The neuro computers that were

discussed are mainly for huge applications that would require massive parallelism in

their execution. But for the problem addressed in this thesis, a single chip that is

52

optimized for the chosen application would be most suitable. This is possible only

with a custom designed neural processor chip that meets all the requirements of the

application. Moreover, new ideas can be incorporated in the design which would im­

prove the overall system efficiency. Besides, this would be a good contribution to the

research in hardware neural networks.

2.5 Classification of DIANNE-Dl.O

DIANNE-01.0 (Digital Artificial Neural Network- Detector, Version 1.0), the digital

neural processor developed for this thesis is a custom designed architecture with on­

chip learning. Although the design is focused towards detection applications, it can

be used for other applications which require similar structure and size. The partition

per processing element of this design is a neuron, i.e a neuron forms a processing

element. Eleven such neurons form the processor with four neurons in the input

layer, si-x neurons in the hidden layer and one neuron in the output layer. The

design includes an on-chip preprocessor for the example application chosen, distance

protection of power transmission lines. The device can be configured to bypass the

preprocessor and receive external inputs directly. The processor can be configured to

learning mode implementing backpropagation algorithm or test (run) mode with the

stored weights. The architecture is an interleaved pipeline structure so that all the

neurons function simultaneously in real-time. The layers are pipelined so that the

throughput is increased. The design is implemented using 0.5 J1. CMOS technology.

53

More explanation on the architectural design of DIANNE is provided in Chapter 4.

2.6 Summary

In this chapter, hardware neural networks were discussed in detail. The need for

hardware neural networks and the advantages and disadvantages of different methods

of implementation of hardware neural networks were explained. :\ classification of

hardware neural networks compiled from the literature survey was presented. A brief

discussion on the digital neural processor designed for this thesis was presented and

the features of the design were specified. Some of the commercially available neural

network hardware and other interesting application specific designs were explained. A

compilation of alternatives for massively parallel neural hardware was also presented.

54

Chapter 3

Problen1 Description, Software
Design and Performance Analysis

3.1 Introduction

In the preceding chapters. basics of AN.Ns and evolution of hardware ANNs were intr~

duced. Different categories of architectures, methods of implementations and training

schemes were discussed. Some of the commercially available hardware neural chips,

neural accelerators and neural computer boards were presented. Performance evalua-

tion of hardware ANNs and methods of analysis were presented. A brief description of

the neural processor developed for this thesis was given. In this chapter, the problem

chosen for implementation is described. Discussion on the software design of the ANN

and the preprocessing methods used on the inputs to the ANN are described. De-

tailed explanation on the simulator developed for simulation of the ANN used for this

work is given. The performance analysis of the ANN using the software simulator is

presented and quantization analysis which would affect the hardware implementation

is addressed.

55

---+ Zone of Relay B
.·-

·······t!.··········-~·-······· .····· ································ ············.
~ Bus~~ ~
~ -® :® ~ ®+-
\.. :(<.~-~~~~-~->~~~!.~.\ . . Relay C:

---+Zone of Rei a~· A·~-·'::::::::::::::::::::::::::::::::::::::
Zone of Relay C

Figure 3.1: Transmission line system

3.2 Distance Protection of Transmission Lines

As explained in the earlier chapters, the objective of this work is to design and imple-

ment a digital neural processor for detection applications. As an example application,

the distance protection of transmission lines (47, 48] is chosen. Detailed explanation

on the problem is described in the following section. Distance protection of trans-

mission lines is to protect the power system from transmission line faults by isolating

(tripping) the line(s) under fault. The line diagram of a transmission line system is

shown in Figure 3.1.

The faults in a transmission line are categorized as

• Line to Line faults

• Line to Ground faults.

Under each category there are single line, two line and three line faults. For each

fault condition the fault signal is different and the protection system should be able

to isolate the fault under all conditions. Apart from these, there could be conditions

56

CDr---------------------~
3111

!: t 0 +-\--1-~+-<
0 ·111:1
>.aa:a

.3CX)

~~--------------------~

3r-----------------------~
2 1\ l'

- - J \ I i f\
~ I : \ (\ l \ f \ f \ I

!o V · 1 · , ' 1 ' , ~·I cu8.J t a.at i ~ria(\0·?1
.a I=IIUIV V V
~L-----~0=~~,·~-~----------~

c ,

Figure 3.2: Voltage and Currents at fault condition

in which the faults are momentary, for which the system should not isolate the system

even though it identifies the fault in the system. The protection system should be

able to differentiate between momentary and sustained faults. The protection system

should also be capable of isolating only the part of the system that is faulty. This

allows other parts of the transmission system to operate without any interruption.

The zones of operation, for a protection system of a transmission line is illustrated

in the Figure 3.1. The conventional method is to use relays like impedance relays,

over-current relays or over-voltage relays.

The relays operate based on the behavior of the system under fault. A typical

behavior of the voltages and the currents in a transmission system under fault is shown

in Figure 3.2. The voltages decrease and the currents increase, resulting in the fault

impedance to decrease. Over-current relays identify the increase the current and the

impedance relays identify the change in the fault impedance. The fault impedance for

different fault conditions are significantly different. The relays are set to identify the

57

fault impedance that signifies a fault in the system, thereby tripping the line under

fault. The momentary faults in the system are taken care by incorporating a delay

in the operation of the relays, which would avoid the tripping in case of momentary

faults. The disadvantage of using conventional relays is that they operate on fixed

settings and have to be reset for changes in the network configuration. Changes

in network condition can also affect the operation of the relays. This affects the

performance of the relays to a large extent. ANNs, as explained in the previous

chapters, have evolved to be an excellent tool for adapting to the changing network

conditions and configurations, and provide excellent performance.

Coury et al. [18} has described an ANN solution for the protection system de­

scribed above. A brief e..xplanation on this work was presented in Chapter l. The

authors have presented a two layered MLP architecture with magnitudes of currents

and voltages as inputs and a trip / no trip signal as the output. They have used

backpropagation algorithm for training the ANN and have used 2000 sets of training

data for different fault conditions. They claim the ANN improves the protection sys­

tem efficiency very much. They have mentioned a training time of 2 CPU hours. The

solution, though attractive in terms of improvement in efficiency, has a long train­

ing time. Moreover, the implementation has been done in software which makes the

protection system less reliable. A hardware realization with proper modification in

the learning methodology and the proper analysis and preprocessing of training data

58

would improve the learning rate , performance efficiency and the reliability by many

fold.

3.3 Problem Description and Method of Solution

As described in the previous section, ANN is a better tool for the distance protection

application. The objective of the thesis is to identify an .\NN structure which is

optimized for this application and implement it in hardware. The details available

about the fault conditions are the simulation data obtained from power system fault

simulation [47]. The data available for analysis are the instantaneous magnitudes of

voltages and currents of the three phases for different fault conditions. A neural net­

work simulator has been designed using C++ language to identify the ANN structure

required for the training using the data available. A preliminary simulation analysis

of the data shows that the data requires preprocessing instead of direct feeding to the

AN~. The approach to the design of the ANN hardware for this application consists

of four distinct phases. They are

I. Data Analysis and Feature Extraction

II. Software Design and Simulation

III. Quantization and Performance Analysis

IV. Hardware Design and Implementation.

The first three phases of the work are explained in the following sections in detail.

These involve detailed analysis of the data to identify the inputs to the ANN and to

59

identify the structure and size of the ANN required for this application. The main

focus of the analysis is to arrive at a set of preprocessing methods that would make

the training data friendlier to the ANN, reducing the learning time and the size of

the ANN, and identifying the optimum learning method for the application. This

also involves quantization analysis. analyzing the optimum number of bits required

to represent and store the parameters of the :\N N such as the learning rate, momen­

tum, inputs, weights, outputs etc. A detailed discussion on the software design of

the C++ simulator and the results of the simulation are presented in the second and

the third parts. The fourth phase, hardware design and implementation, is explained

in the next Chapter. This includes the design of the hardware neural network, the

main objective of the work and the VLSI implementation. The part also discusses

the functional verification and testing of the hard ware ANN in detail.

3.4 Data Analysis and Feature Extraction

As mentioned in the previous section, the data available for analysis are the instan­

taneous magnitudes of phase voltages and currents for different conditions. Each set

of data consists of two cycles of pre-fault condition and three cycles of post-fault

condition. The data set is obtained from simulation of a single line to ground fault

on a transmission line. The data is sampled at 66 samples per cycle, i.e. 330 sample

data points for one condition of fault. The fault simulation has been conducted for

different fault impedences and different fault inception angles. The simulation also

60

includes faults at different locations of transmission line as seen by a relay at one end

of the transmission line. The locations include 40%! 60%, 80%! 85%, 87%, 89%, 90%!

91%. 93% and 95% of distance from one end of the line. For each of these locations

three sets of values (voltages and currents) for different fault impedance and fault

inception were obtained. Of these fault locations, values within 80% are considered

to be within the fault zone of the relay and values beyond 80% are considered to

be outside the fault zone. These values were divided into two sets. one for training

and one for testing. This amounts to 2500 sets of data for training and 600 sets of

data for testing. The analysis is focused on single line to ground faults, under the

assumption that the preprocessing required for all kinds of faults would be similar,

based on the preliminary analysis of data. The preliminary analysis shows that the

general behavior of voltage signal under single and three line fault are similar. though

intrinsic details are different. This holds the preprocessor assumption good for the

analysis. A plot of the data for a single line to ground fault with zero fault impedance

is given in Figure 3.3. The figure illustrates that the voltages decrease and the cur­

rents increase after the fault . It can also be seen that the voltage signals have more

harmonics than the current signals. From the figure it can be seen that the voltage

varies significantly more than the current, which has a smooth variation. A simula­

tion of the neural network justified the requirement of a preprocessor for the data.

The results of the simulation are discussed in the next section. This section addresses

61

3Dr-------------------------~
3

t\ (\ (\ I\ ! \

I \ I \
! \ i I \

i \ClcR \ f04 \ J Cl05 QCB c 1

\ I v I I \ I
\J v -3D

~~------------------------~

Figure 3.3: Fault voltage and current plot

the process followed to arrive at the preprocessing methods used on the data.

A closer analysis of the data, shows that two separate preprocessors are required,

one for significantly separating the fault from the normal signal and other for sepa-

rating the fault within the relay zone from the fault outside the relay zone. As it can

be seen from the fault data plot, there are points of data which have similar magni-

tude but require conflicting outputs, as illustrated in the Figure 3.2, which further

strengthens the necessity for a preprocessor that would eliminate the conflicts thus

making the input friendly to the ANN for learning. As hardware implementation is

the main focus of the thesis, hardware complexity of the preprocessing methods are

given importance. Standard transforms and filters like the Fast Fourier Transform

(FFT), due to their high hardware complexity are avoided, though they might solve

the problem. The approach is to arrive at a preprocessor which uses the minimum

hardware and provides an output which could be learned by the ANN with the least

difficulty. This rules out use of many multiplications and divisions as they involve

62

0.6 ~------------------------..

~
~
n;

0.4

0.2

0
>

.1:: -0.2
c:
~

~ -0.4
CL

-0.6

-0.8

-1 ._----------------------~
Time (ms)

Figure 3.4: Plot of V-I Difference

high hardware complexity. Apart from the hardware complexity, the number of data

points to be used before the fault could be identified should be minimum, for e."Cample ,

less than half a cycle (33 sample points). This also reduces the possibility of using

FFTs for preprocessing as they require at least a cycle of information for a proper

analysis. Following subsections discuss the methods of analysis for the preprocessors

mentioned earlier in the section.

3.4.1 Fault Identification

A closer look at the Figures 3.3 and 3. 2 indicates that the difference between current

and voltage remains constant before the fault and increases significantly after the

fault . A plot of the V-I difference is shown in Figure 3.4. The plot illustrates that

the V-I difference increases significantly after the fault with many oscillations in the

63

signal. The signal is similar to the voltage signal but the oscillation is magnified due

to the difference signal which adds to the significance in the variation. This justifies

using the V-I difference instead of voltage signal alone. But just the V-I difference

does not significantly differentiate the fault signal from the normal, it just magnifies

the variation. The V-I signal before the fault occurrence is a proper sinusoid which

means the rate of change of magnitude varies steadily. Post-fault V-I difference signal

exhibits strong oscillations with the oscillations degrading towards zero. An averaged

difference on the V-I difference would result in a waveform that would differentiate

the part with oscillations, post-fault signal, from the normal signal. The function that

was used for this is shown in equation 3.1. where t't is the ith value of the resultant

signal and .Xi is the ith value of the input signal, the V-I difference.

(3.1)

A plot of the transformed result is shown in Figure 3.5. The figure illustrates that

in the transformed signal, the post-fault region is clearly different from the normal

region. The ANN would be able to learn this differentiation very quickly when com­

pared to the original raw signal. The simulation results are discussed later in the

chapter. The transformed signal still has a region of conflict a.s illustrated in Figure

3.6. This could be solved by accumulating points together which would eliminate

the spurious points. From the equation 3.1, the accumulated version of the function,

64

0.5 ,....------------------------,

en

0.4

0.3

~ 0.2

~ 0.1
.'t::

:5 0 +------------.11
~-o.1 I
..- Fallt

-0.2 Occunance

-0.3
-0.4 ...~.....-____________________ ___,

Time

Figure 3.5: Plot of the transformed V-I difference signal

0.5 ,....----------------------,

0.4

0.3

~ 0.2
:2

~ 0.1
:t:: :5 0 ---==~~--=-:::::::::llfto

I ...
~-0.1

-0.2

-0.3

-0.4 "'-----------------------l
Time

Figure 3.6: Conflict region in the transformed signal

65

2
1.8
1.6

en 1.4 CD
:l
(ij 1.2
>
.t= 1 c:
~ 0.8
8!. 0.6

0.4
0.2

0

Time

Figure 3.7: SADI Filtered Signal

named as SADI (Sum of Averaged Differences), is given in equation 3.2, where Fi is

the ith value of the SADI filtered signal.

i+5

F, = L abs (rj) (3.2)
j=i-5

The SAD! filtered signal is illustrated in Figure 3. 7. The plot shows that the fault

signal is clearly differentiated from the normal signal. The neural network would be

able to learn this very quickly. The following subsection discusses the preprocessor

for the separation of the fault within the relay zone and the fault outside the relay

zone.

66

3.4.2 Fault Zone Identification

This part of analysis involves detailed statistical analysis of the fault data. The differ­

ence in the fault zone identification is that the voltage and current signals for different

fault locations are very similar. Analysis of the data indicates that the oscillations

with respect to different fault locations are distinct to some extent. This suggests

domination of different harmonics in the signals corresponding to a fault location.

Csing a FFT [49, 50] and analyzing the frequency components [51] would solve the

problem but that would increase hardware complexity very much. This would also

be a slow process, as data has to be collected for atleast one full cycle. An approach

similar to the SADI approach is required to solve this. Detailed statistical analysis

on half a cycle of post fault and half a cycle of pre fault data shows that absolute

differences, difference of absolute values of successive signal variations (as illustrated

in equation 3.3), differentiates the signals corresponding to different harmonics. To

reduce the hardware complexity further, the sign of the absolute differences signal

is alone considered. The resultant signal shows clear differences among different fre­

quency components and exhibits different duty cycles for different fault locations.

This binary signal can be easily transformed into a signal differentiating faults within

the relay zone and the faults outside the relay zone, as they have distinct difference

in the mix of harmonics. This preprocessor is named SIGADI (SIGn of Absolute Dif­

ferences). The absolute differences and the SIGADI function are given in equations

67

FiLla~ ; Falttt4'J%DB'aa
i 1.2 12

I
1 r"" n r--, M M n n r--1 ~ ~ II n rl r-----,

08
I as
I

Q6 06

Q4 04

02 02

0
l

0

Figure 3.8: Plot of the SIGADI function results

3.3 and 3.4.

(3.3)

F.· = { 0 l'i < 0
' 1 l'i2:0

(3.4)

The results of the SIGADI function are illustrated in Figure 3.8.

To verify the operation of SIGADI function, a pure sinusoidal signal was mLxed

with known harmonics and applied with SIGADI. The results encourage the use of

this approach. The plots of that analysis are shown in Figure 3.9. Modification of

the resultant signal to a signal differentiating faults of different zones is achieved by

simple binary polynomial transforms [52) . With these two preprocessed signals the

inputs to the ANN are the three SADI filtered signals corresponding to each phase

68

1.5 -r------------------------1

1

0.5

0

-0.5

1

-1::1...._ ____ l=_~tt:S_Signa_l ------i
. Ttme

Figure 3.9: Verification of SIGADI

and the SIGADI signal for determining the fault region. The preprocessing makes

the input to be ANN-friendly and hence improves the learning time dramatically.

The results of the simulation and the software design are discussed in the following

section.

3.5 Software Design and Simulation of the ANN

The results of the data analysis explained in the previous section were further studied

for the performance with the ANN to identify the learning rate and the structure of

the ANN. The objective of this analysis is to identify the optimum structure and

size of the ANN corresponding to a set of filtered data and to identify methods of

improving the preprocessing to minimize the size of the ANN, hence reducing the

69

hardware complexity of the final implementation. In the following subsections, the

software design of the ANN and the results of the simulation at each stage of data

analysis are discussed in detail.

3.5.1 Software Design

The analyzed data has to be used to determine the ANN size and structure. The

hardware complexity analysis has also to be done. Though the available commercial

versions of A:-.I'N simulators, like ~lATLAB and Brainmaker, allow different struc­

tures and sizes of ANNs, they have many restrictions over the number of layers and

the training procedures. Moreover, they do not allow simulation using fi...xed point

arithmetic for different bits. This makes it necessary to develop a simulator that

would be flexible and can be used for Boating point as well as fi...xed point analysis.

The ANN Simulator was developed using C++ programming language (53, 54], in

an object oriented manner. The simulator consists of two modes of simulations, one

using the floating point arithmetic and the other using the fixed point arithmetic.

The floating point simulation is used for identifying the optimum ANN structure for

the application and the fixed point simulation is used for quantization analysis, which

is explained in the next section. The current simulator design consists of four classes,

input neuron, hidden neuron, output neuron and the multiple precision. Multiple

precision class is used only in the case of fixed point analysis. The class hierarchy is

shown in Figure 3.10. The current design is not fully object oriented, as the main fo-

70

Figure 3.10: Class Hierarchy of the ANN Simulator

cus was to determine the hardware requirements and the performance metrics, which

the simulator satisfies. Improvements to the current design are discussed in Chapter

5.

All the neuron classes are modularized, same as the hardware modules present

in the respective neurons. The input neuron class receives input from the external

sources, in this case a input file. The hidden and output neurons receive inputs from

the input and hidden neurons respectively. All the three classes of neurons have

similar structure except some functional differences like the backpropagation and

computing of backpass sums. The ANN is integrated in the main module which uses

user information to determine the network structure and the network parameters and

the learning measures. The main module also acts as an interface between different

layers of neurons and for file handling and error handling. The simulator uses the

71

backpropagation algorithm for the learning and learning is done in cycles of train and

test, i.e. after each training pass a set of data is tested and the percentage of test set

correctness is calculated. The test set correctness is used as the measure of learning.

3.5.2 Simulation Results

As explained in the previous section, this section addresses the simulation results at

different stages of data analysis, but only for the floating point simulations. The fi."Xed

point simulation results are discussed in the next section. A preliminary simulation

of the available raw data had a poor performance. This is due to the fact that similar

data points required conflicting outputs. This gives oscillations in the sum of square of

errors as the number of passes increases. The simulation showed that the :\.NN never

settles and takes more than 3000 passes of the input set of data, which is expected

based on the data analysis. The simulation at each stage also involves identifying

the internal parameters for the data set. It should be identified by simulation with

a different set of parameters. The parameters include the learning rate, momentum,

delta weight, initial weights etc. The learning rate could be different at every neuron

and it could be varied for each pass. ln this application the learning rate was decided

to be constant owing to the fact that incorporating variation of learning rate for each

pass would increase the hardware complexity. Moreover, with proper preprocessing,

as explained in the earlier sections, it would require very few iterations for the ANN

to learn. The ANN parameters would not vary very much in these few iterations. So,

72

Sum Square Error

No. Of Pao;ses

Learning rate

Figure 3.11: Plot of ANN performance with LR variation

it would not be required to implement the hardware for these parameter variations.

A plot of the performance of the ANN with different learning rates is given in Figure

3.11. It can be seen from the plot that the variation in performance for learning rates

between 0.75 and 1.5 is very low. Learning rate of 1.0 was taken to be optimum

for convenience in representation as well ease of arithmetics. The ANN was trained l

and tested using data sets from every level of preprocessing (including the data sets

preprocessed using the intermediate equations like, just the V-I differences) to analyze

the performance. The final data analysis yielded an ANN-friendly data set. The data

set prior to the final set (prior to summing) was also learnt by the ANN within 20

passes, which is a great improvement in performance over the initial simulation results.

73

120.---~

100

Q) 80
C)
«S

i 60
~
Q)

a.. 40
'

-Sum Squa"e Error I
-%of Test Set Correct I

20 ~

0 ~0----~~--~--~2~==~3~--~4----~5----~6~--~~1
Passes .

Figure 3.12: Simulation results with final data set

But those data points also had spurious points that required conflicting output values

for similar inputs which resulted in oscillations in the ANN learning. The final data

set preprocessed using the complete SADI filter eliminated the conflicting points, and

the ANN was able to learn within 6 passes of the set of inputs, with a percentage

of test set correctness at 99.8% (of the 600 data sets for test). The plot of the

simulation results are shown in Figure 3.12. It can be noted that the convergence

is fast and smooth without any oscillations. The ANN structure was decided to be

a 4-6-1 multilayered perceptron after simulations with the preprocessed and the raw

data on a trial and error basis. The ANN structure is shown in Figure 3.13.

74

Output

Hidden Liyet

Figure 3.13: Structure of ANN used

3.6 Quantization and Performance Analysis

This section discusses the simulation results of the quantization analysis, which is

fi.xed point simulation analysis to determine the optimum bits required to represent

the inputs, outputs and the parameters of the ANN. The multiple precision class

mentioned in the software design is used to achieve this. The inputs, weights, outputs

and the parameters were initially represented in 32 bits, containing 16 bits of integer

and 16 bits of fraction. The ANN was simulated with data of this representation to

verify the results of simulation in correspondence with the floating point simulation.

The results are shown in Figure 3.14. The number of bits was reduced for all the

parameters and the performance was noticed to degrade below 14 bits (4 bits for the

integer, 9 bits for the fraction and 1 sign bit). The results are shown in Figure 3.15.

75

120

100

~ 80 8
QS

60 en
c;; i Q) - 40 i
0 I
~ --floating point I 0 20

- Filced point !
0

~I 0 1 2 3 4 5 6
Passes

Figure 3.14: Verification of FLxed point with Floating Point Simulations

The data set appears to be representable in fewer number of bits than 14 bits. The

reason for the seemingly higher number of bits required for representation is that

the backpropagation needs more resolution than other learning algorithms. This is

because, the error value gets very small as it propagates from the output to input

layer and correspondingly the number of bits required to represent the small changes

are higher. It can be noted from the figure that when the number of fraction bits is

reduced below 9, the performance degrades considerably. Further reduction can be

done in the bits required for inputs as the variation of weights and parameters at the

output are coarser and hence can be accommodated in fewer number of bits. The

results corresponding to the simulation with variable weight bits is given in Figure

3.16. The simulation showed that the reduction in parameters (momentum etc.) can

76

120

100 a -_ .. ·-----
/\ •

~eo - lr-.....
Ll\ J ~ / .0J "-- T 'l _..._7

I ao ~

j : -110111"9 PQII'II

';I. .a

\
I --M--np16b.rr.:1eo

I
I • • • lli:ll6bJr ac9b

20
I -D;)6b.lrac8b

• - ~ J] ~up&b.lradib -
__._ap3b,lr~

0

0 5 10 15 20 25
No. of paae.

Figure 3.15: Comparison of performance with various bits

12Q '"'"'""""'"' """"''" "'''"' '"-•••••••--·•-••••••••-••••n••••••-••••-•••••••••••••-••••••••••••••u••••••••••••••••••oo•••••""''""'"""'"""'""

J~
CiS eo
(/)

~
;!
ot40

3)

0
0 2 4 8 8

No. of Passes
tO

-<>--Wtex6fr9

-o-Wtex4fr9

...-wtex3fr9

-M-Wtex4fr7

12

Figure 3.16: Performance with different weight bits

77

30

t4

be two bits further making it 14 bits for the weights and 12 bits for other values like

inputs, parameters etc. But to maintain generality of the hardware implementation,

the number of bits was decided to be 16 bits for all, 9 bits for the fraction, 6 bits for

the integer and 1 bit for sign. The hardware design aspects are discussed in the next

chapter.

3.7 Summary

This chapter discussed in detail, the problem, the solution and the method of air

proach. The software design of the simulator was discussed in detail explaining the

phases of simulation. The results of the simulation were explained in detail and the

relation of the results with the hardware implementation was emphasized. The quan­

tization analysis was discussed and the performance of the ANN for different bits

was presented and the results for the same were provided. Detailed explanation on

the data analysis and the method of preprocessing were presented. In the following

chapter. the hardware design aspects of the ANN are discussed.

78

Chapter 4

Hardware Design, VLSI
lrnpleinentation and Testing

4.1 Introduction

In the earlier chapters, the basics of ANN and some reported methods of ANN imple-

mentation and known hard ware VLSI neural networks were discussed. In the previous

chapter, the selected detection application, namely the protection of transmission line

system, was discussed in detail. The software design of the neural network simulator

developed for the analysis was described and the results of the simulation were pre-

sented and discussed. The methods of preprocessing and the results of the analysis

were presented. The quantization analysis, the results and verification of the results

were also explained. Based on the results obtained in the simulation, the hardware

design of DIANNE, the Digital Artificial Neural NEtwork, will be addressed in this

chapter. The overview of the architecture and the details of the design are explained

in detail. The chapter discusses the datapath and control units of the design and

the issues related to the design. The testing of the design and the features of the

79

I VHDL Modal

I
+

Synthesis I_ RTL Simulation
I

(Synopsys DC) j (Synopsys VSS) l

i

Gate Laval Simulation

I

Natlist Import, ORC, l
Place & Route, Stream

(Synopsys VSS) Fila Generation I
(Cadence Tools} i

Figure 4.1: Flow chart of Design Flow

design are also described. Some of the implementation constraints and the methods

of solution are also explained.

4.2 Design Cycle and Environment

The design How and the development environment are described in this section. :\s

explained in the previous sections, VHDL was used to simulate and synthesize the

components of the neuro processor. The design How was provided by the Canadian

~licroelectronics Corporation (CMC) [55}. A flowchart illustrating the design How

is given in Figure 4.1. As the figure shows, the design is coded using VHDL and

analyzed for functionality using the Synopsys VHDL System Simulator (VSS) . The

waveform viewer helps in visualizing the functionality of the circuit designed. The

waveforms corresponding to specific components are presented when the components

are described in later sections. The next phase of the design flow is synthesis in which

80

Synopsys design analyzer is used for synthesizing the individual components. This

involves optimization and mapping of components to specific cell libraries, CMOSIS5

in this case, and creating netlists. These netlists are tested and verified for function­

ality again (shown as gate level simulation in the figure). The verified netlists are

then imported to the Cadence tools for VLSI design. This involves Verilog XL inte­

grated simulation, placement and routing, Design Rule Checking (ORC) and stream

file creation. The steps are illustrated in the figure.

4.3 Overview of the Architecture

:\s described briefly in Chapter 2, DIANNE is a custom VLSI neural processor with

the typical partition per processing element being the neuron. The neural processor

is a 16 bit architecture with integer arithmetic owing to the results of the integer

arithmetic simulation explained in the previous chapter. The block diagram of DI­

ANNE is shown in Figure 4.2. As the figure shows, there are two distinct parts of the

design, the preprocessors and the neural processor. The preprocessors are the SADI

and SIGADI filters explained in the previous chapter. The preprocessors are opti­

mized for the protection application and can be used for applications requiring similar

preprocessing. The preprocessors could be bypassed by configuring the initial control

settings if the application does not require these preprocessors. The details of the

control settings will be described in later sections. The design was carried out using

VHDL (Very High Speed Integrated Circuit Hardware Description Language) [56],

81

Neural Processor Unit

lnlerconnecllon NeiWart

Preprocessor
Multiplexers

GCU

Figure 4.2: Block Diagram of DIANNE-01.0

82

and functionally verified and synthesized using the CAD tools Synopsys and Cadence

[57, 58]. The architecture was partitioned into neurons as mentioned before: input,

hidden and output neurons. The layers of DIANNE operate in a pipelined fashion.

The neurons in the layer are a mix of pipelined and multicycle implementation (59].

These implementation methods reduce the hardware complexity and increase the

speed of operation. The following section describes the pipeline of DIANNE layers.

4.3.1 Pipelining of Layers in DIANNE

As mentioned in the previous sections, DIANNE can be configured to be operated

in two modes, the training mode and the test mode. The training mode uses the

backpropagation unit for modifying the weights and the test mode uses only the

forward pass unit. The test mode is the real-time operation mode prior to which

the training has to be done and the weights stored on the on-chip registers. The

number of stages of pipeline differs depending on the mode of operation. Figures

4.3 and 4.4 show the different stages of pipeline in test mode and training mode of

operation respectively. The stages FPLl to 3 are the forward pass stages and the

BPLl to 3 are the backpropagation stages. As it can be seen from the figures the test

mode has only the forward pass operation as no backpropagation needs to carried

out. In the training mode, it can seen that the backpropagation and the forward pass

operations overlap. Moreover, for the error to be calculated for a set of inputs, they

have to pass over all the forward pass stages before the first backpropagation could

83

Cycle 1

lnput1
Forward
Layar1

lnput2

lnput3

Cycle 1

lnput1 Forward
Layer!

lnput2

lnput3

Cycle 2

:

~
Forward

~ Layer2

:

Forward
~ Layar1

Cycle 3

Forward
Layar3

Forward
Layar2

Forward
Layer1

Cycle 4

-
:outp

~

ut

Forward
Layar3

Forward
Layer2

Figure 4.3: Pipeline stages of test mode

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Forward
Layer2

Forward
Layert

Forward I
Layer I

Cycle 5

...
G>utput

Forward
Layer3

Clutput ...__ ___ _,

Cycle 7 Cycle 8

BackPro
Layer!

Figure 4.4: Pipeline stages of training mode

84

begin. This introduces a delay in the adjustment of weights which interferes with

the following forward pass operations. But the design has been done neglecting the

delay due to the fact that backpropagation is an iterative process and the delay in

modification of weights would be adjusted with more iteration steps. This design step

has been verified in the software simulation for the correctness and the delay does

not affect the convergence rate of the neural network for this application. This might

affect the performance in case of applications that require more accurate updates

of weights. But this trade-off is better than restricting to the sequential nature of

backpropagation algorithm.

The design method within one neuron is a multicycle implementation which can

be called an interleaved pipeline. More explanation on the architecture of each of

the class of neurons is explained in the following sections. The following subsection

describes the implementation of the preprocessors.

4.3.2 Design of the Preprocessors

The previous chapter explained the method by which the preprocessors were &rived

at. It was stated that the preprocessor consists of SADI filter and SIGADI filter. The

block diagrams for the filters are given in Figure 4.5 and Figure 4.6. The outputs of

the preprocessors are fed to the neural network block for training. The preprocessors

consist of delay block and adder blocks as shown in the Figures 4.5 and 4.6. The delay

blocks allow points of the cycle to be stored and processed to indicate any faults in

85

Arithmetic Block

rJ
Input

Final Adder Block
and

Latches Output Latch

Sh•fter Block f---..\

-""
y

r--v

Figure 4.5: Block Diagram of SADI

real-time. This avoids the use of any external fault identifier. The filter functions

explained in the previous chapter were implemented using VHDL. The preprocessors

were simulated and tested for the functionality using test benches in VHDL. The

results of the simulation are discussed in the section 4.6.

4.4 DIANNE-Dl.O - Datapath Design

The data path of the processor consists of three classes of neurons. They are the input,

hidden and output neurons. Each neuron consists of a datapath and a local control

unit. The design of the local control unit will be discussed in the section 4.5. The

datapath consists of three units called the forward pass unit, the backward pass unit

and the register file unit. The functions of the units and the design are explained in

86

Output (tS bits)

~ H Combinational
Input ' Aritllmatic Block Logic: and

Latcllu
~ H Output Latches

Inputs

Single b1l Signal

IU ~...----~11

Figure 4.6: Block Diagram of SIGADI

the following subsections. The block diagram of the datapath of a general neuron is

shown in Figure 4. 7.

4.4.1 Forward Pass Unit

The function of the forward pass unit is the same in all classes of neurons. The

forward unit computes the weighted sum of inputs and outputs the sigmoidal func-

tion equivalent of the weighted sum. The block diagram of the computational part

of forward unit is given in Figure 4.8. As the figure illustrates the forward unit re-

ceives input from the external source or the preprocessors based on the initial control

settings. This unit has an input buffer to store the inputs until the sum is com-

puted. The computation is done in a pipelined fashion which reduces the hardware

complexity of the design. The forward unit also holds the inputs to the unit for the

87

- -

Forward Unit ~

IP Register OP
Buf File Buf

~
'r--1

BP Unit

.....___
'---

Figure 4. 7: Data path of a general neuron

:Ju tou tEn a a i eD+---_.. ________ _
i I

accu~ulatarC l ear

ac:u~ulatarEnable

L">IU t Ll 5 . i!--~---­

Lnput2 _ t s : a...._~--. ! PBu f

LnputLlS a
! nput4_l5 : a...._~--....

LnputE ,., aole

inpu tSe lee L l ·a
ue igh L ~rol'l_reg_l5 · a1=:;~===~

Figure 4.8: Forward Unit- Input neuron

88

Output

c l ock

tnput2_15 : 0_

i neJ '.J 7.3_1 5: ~-

i np u t4_1S : 2]_

; ~n · ~ +- o~~h 1 o
.... ~~ ... -- · ----

: 0_

. l. ' J: ~ 1np u l. _t:Ju , r er

Figure 4.9: Symbolic diagram of Input Buffer

backward pass unit functions. The blocks of the forward pass unit are input buffer,

multiply-accumulate, function lookup, output buffer and the hold registers.

4.4.1.1 Input Bu.ffers

The function of the input buffers is to receive the inputs from external or previous

layers and hold them for the multiply-accumulate unit to process. These are simple

registers with clear and enable inputs. The output of the registers are given to a

multiplexer, whose size is determined by the number of inputs. The multiplexer

receives a select input from the local control unit. The select input determines the

input to be processed and the sequence of selection varies among the neurons in

different layers to facilitate the concurrent processing of all neurons. A symbolic

diagram of the input buffer is given in Figure 4.9. The numbers of inputs handled

by the input buffers at different layers differ. With the current design the input layer

89

accu~ulata~Clear

accu~~latorEnable

"'"-•">:u~Out-lS: a_..___.-~

-e i 5" ~- f'" :::l"'-- eg_l s: a=~·--....J
c: l oc:lc

Figure 4.10: Schematic of ~lultiply Accumulate Unit

has four inputs, the middle layer has four inputs and the output layer has sL-x inputs.

4.4.1.2 Multiply Accumulate Unit

The function of the multiply-accumulate unit is to calculate the weighted sum of

inputs. The schematic of the multiply-accumulate unit is given in Figure 4.10. :\s

the figure shows the multiply-accumulate unit has a multiplier and an accumulator

with enable. The adder is a 16bit adder synthesized from the CMOSIS5 libraries. The

multiplier is also a library synthesized component, which is a 16bit x 16bit integer

multiplier, modified to do fi..xed point multiplication. The timing specifications and

other features will be discussed in the section 4.7. The block receives weights from

the register file and the inputs from the input buffer. The control unit provides the

signals for selecting the proper weights and inputs. This block remains the same in

all neurons unlike the input buffer.

4.4.1.3 Activation Function

This block represents the activation function of a neuron designed as a table lookup.

The function lookup is for the sigmoidal activation function. The block receives the

90

\ 1\

I Input Address Translation ~ Table Lookup Output

1/ V'

Figure 4.11: Block diagram of the Activation Function Block

16 bit input from the multiply accumulate unit and gives the sigmoidal function

equivalent of the input. The function lookup is implemented using the ROM blocks

of the CMOSIS5 libraries. The schematic is given in Figure 4.11. Each neuron has

one function lookup in their datapath. This reduces the number of interconnections

when compared to a central function lookup as in [35).

4.4.1.4 Hold Registers

The HOLD registers are used to hold the input values for the use of backpropagation

block. The backpropagation algorithm requires that the error at the output for a

set of inputs/weights has to propagated back to the input layer for modification of

the weights. This restricts the operation of pipeline as the neuron has to wait for

the error to be calculated at the output for a set of inputs and propagated back to

the input layer. The hold registers are used to eliminate this restriction by holding

91

~ I Input

-v
f\ Buffer

~ Block ~ Hold Latches MUXs Output

I
I

v

l I
ontro s

I I I

Figure 4.12: Schematic of HOLD registers

the inputs while allowing the pipeline to operate without delay. This increases the

hardware complexity by a few registers but increases the speed of operation and hence

the performance many folds. Each input neuron has a 5 x 4 register (to hold five

sets of four inputs) and each hidden neuron has a 3 x 4 register (to hold three sets

of four inputs). The schematic is given in Figure 4.12.

4.4.1.5 Output Buffer

Output buffer stores the output of the function lookup to be passed on to the next

layer for processing. It receives the output enable from the local control unit. The

schematic diagram is shown in Figure 4.13. The output buffer design is the same in

all the neurons as only one output is passed from each neuron.

92

c l ock

enable output_l5 : 0_

Figure 4.13: Schematic of the Output Buffer

4.4.2 Register File

Register files are used to store the neural network parameters (learning rate, momen-

tum etc.) and the weights required for the computation. The schematic represen-

tation of the register file is shown in Figure 4.14. The register file includes a set of

register to store the weights, which are readable and writable and can be initialized

to a particular value before processing. Each register has read and write enable sig-

nals which are issued by the local control unit and the sequence of read and write is

different among the neurons depending on their position in the layer to ensure proper

computation and concurrent processing. The other register in the register file are

the delta weight register, momentum register and learning rate register. These are

not modified after the first write, when the processor is initialized. The register file

also allows concurrent read and write operations on a weight through dual latches.

This allows the backpropagation modification and the forward pass computation to

93

Lle l tai.l", gn ti..,_lS · a-1:>-----r--,
\...ear,Rate!n_ t S :a-a::>------t

:....acalGradient!n_tS B..C>------t

~eadDeltaw.,,gnt

~eadLacalGradient

:...r 1 teOe l ta..-e •gntl".:>------1

~r,te~acalGradl!!nt

~cCI.o!!igntin_:S <!.....___,-,

~eacMcdt..le i gh t_3. 8 _ __,,.....

.... . - ~ ~e:--::::....:e ~;~ ~-~ e _ __,,.....
c:lcc:~

MUX

'"'e i gn t Se l e c t _ 1 a -C>..!:==::!.-t __ j

Figure 4.14: Schematic of the Register file

proceed concurrently. The operation verification is explained in the testing section.

4.4.3 Backward Pass Unit

The function of this block of the neural processor is to implement the backpropaga-

tion algorithm. This is a parallel pipeline which consists of three functional units:

Compute Local Gradient Unit, Weight Adjust Unit and Compute Back Pass sum

Cnit. This operates in parallel with the forward pass unit. As explained in the

previous subsection, the modification of weights and the forward pass computation

proceed concurrently. The functional units of the block are described in the following

sections.

94

acc"~u i a tarC l ear

accu"u la torEnabl

I'U. T
LATCH

Figure 4.15: Schematic of the Compute Local Gradient unit

4.4.3.1 Compute Local Gradient Unit

This unit computes the local gradient for each neuron. The design of the unit differs

with the number of weights used in the neuron. The schematic diagram of the unit is

shown in Figure 4.15. This unit consists of a derivative of activation function lookup,

accumulate register, multiplier, adder and latches. The multipliers and adders are

the same as the ones in the forward pass unit. The derivative lookup is the same as

the function lookup in the forward pass unit but the function here is the derivative of

the sigmoidal function. The unit implements the function given in the equation 4.1.

-z n

LocalGradient = e -z 2 L BPSUj.Vfi
(1 + e) i=l

95

(4.1)

Figure 4.16: Schematic of the \Veight Adjust Unit

In this equation, x is the intermediate sum calculated in forward pass unit and the

BPSU.\1 is the back pass sum computed for each neuron in the previous layer. n

is the number of neurons in the previous layer. The back pass sum computation is

explained in the section 4.4.3.3.

4.4.3.2 Weight Adjust Unit

The weight adjust unit modifies the weights in a neuron and writes them to the

register file for computation of neuron output in the next pass. The schematic of the

weight adjust unit is shown in Figure 4.16. The weight adjust unit reads the weights

from the register file and modifies them based on the parameter register values and

the error propagated from the output layer. This unit implements the function given

in equation 1.12. The design of the unit differs among different layers with respect to

the number of weights associated with the neuron.

96

5?s~~-se : ect_l a~~--;:;;;;:;~
:_ o:: a t Grad_ 1 S : 0_~------.

Weigr.t:n_ts 8

MUX
8ac~?ass0ut!l_ts : a_

~~~Bac~PassO~tl2_~S : 0_ 

8ackPass0ut L 3-~S a_ 
8ack?ass0ut l 4_:s . a_ 

Figure 4.17: Schematic of the Compute Back Pass sum Unit 

4.4.3.3 Compute Backpass Sum Unit 

This unit computes the back pass sums for passing to the previous layer for compu-

tation of delta weight, the value to be added to the weights. The schematic of the 

compute back pass sum unit is given in Figure 4.17. The sequence of computation 

differs among neurons in different layers which is controlled by the local control unit. 

This is done to make sure all the neurons in the previous layers get the back pass 

sums in the same number of cycles which prevents any neuron from waiting for the 

back pass sum values. This ensures concurrent processing in all the neurons. The 

process will be explained in detail in the design of the control unit. 

4.5 DIANNE-Dl.O - Control Unit Design 

The control unit of DIANNE is split into two parts. One is the global control unit 

which controls the data flow between layers and the external inputs and outputs. 

The local control unit controls the flow of data between components in a neuron and 

97 



3P5Y~5el•ct!"Lt-l a_ 
Co .. guteOane 

G 1 ata•Liilea• t 

~LaC• L Sta,. t 

MaceOpe,. 

c i oc:llt 

Fu_o~cc:C ~ e<lr 

ru_.cc:E~"'~aa t e 

lte1dOel t•We a. gl'lt 

~••oLocal~'•d~•"t 

Re•dMod~eag~t-l a_ 

wrLteMccWR1gnt_J a_ 
c;a~nt~esetS~ g 

c:a~.~nt"• ! -2 a_ 
~~"'~C'-'tE"atlla 

,npvtSeLtc:t-t a_ 
a"'tpw~E,..•etLe 

~tot-.~·l•g-2 a_ 
~••ghtSe!act_: a_ 

Figure 4.18: Symbolic diagram of the Local control Unit 

communicates with the global control unit to ensure synchronized processing. The 

control units are finite state machines. A Mealy machine was used to implement the 

design. The following sections describe the design in detail. 

4. 5.1 The Local Control Unit 

The local control unit is specific to a neuron. This unit communicates and gets initial-

ization information from the global control unit. The local control unit also ensures 

synchronization between neurons through the global control unit. The symbolic clia-

gram of the local control unit is given in Figure 4.18. The state diagram explaining 

the function of the local control unit is given in Figure 4.19. The states of the local 

control unit and the corresponding group of signals associated with the state are given 

in table 4.1. The state diagram shows some signals which are not mentioned here. 

98 



GlobAJRnet • o 

Figure 4.19: State diagram of the local control unit 

These are the intermediate signals generated from the internal counters or signals 

derived from the main inputs to the control unit. As ilustrated by the state diagram 

and state description, the local control unit controls the forward and backward pass 

operations of a neuron based on the initial settings received from the global control 

unit. The following section describes the function of each group of control signals. 

4.5.1.1 Description of Control Signals 

GlobalStart, GlobalReset and LocalReset are the resetting signals. GlobalStart 

is used only in the first operation cycle after all the neurons are initialized. These are 

active low signals. 

BPSumlnit, LearnRateSet and MomentumSet are the initializing signals. BP­

Sumlnit is a two bit signal and the other two are 16 bit words. These signals are set 

to certain values based on the initialization controls obtained from the global control 

99 



State Associated Signals Description 
START Loca!Reset Used when Globa!Reset is asserted. 

Globa!Reset Nat used in normal operation. 
RESET Loca!Reset 

G lobalReset All the accumulators are cleared 
FU _accClear All the registers are cleared 
BP _CLG_accClear Outputs are disabled 
outputEnable 

INITIALIZE GlobalStart 
BPSumlnit The parameter registers and the 
LearnRateSet weight registers are initialized 
~lomentumSet 

TESTMODE FU _accClear · Weighted sum of inputs is calculated 
inputEnable and the output is passed to next layer 
inputSelect This is used in real time operation 
weightSelect and in test mode 

TRAIN MODE all FP signals 
ReadMod Weight 
ReadDelta \Vt This is the training mode state 
ReadLocalGrad Along with forward pass, weight 
WriteMod Weight modification is done in backward pass 
\VriteLocalGrad 
BP -CLG-EnableAdd 
BP _CLG_accEnable 
BPSumSelect 

HOLD SignalForGCU Checks for exceptions and holds values 

Table 4.1: State Descriptions- Local Control Unit 

100 



unit. 

BPSumSelect, InputSelect, and WeigbtSelect are select control signals to the 

buffers with multiplexers corresponding to Backpass sum, inputs and weights. These 

are two bit or three bit (depending on the number of weights and inputs to the neu­

ron) signals that are binary coded to represent the selection. 

inputEnable and outputEnable are the input output control signals. These are 

active high single bit signals. 

ReadModWeigbt, ReadDelta Wt, and ReadLocalGrad are the signals used in 

the training mode when weight modification are to be done using the network pa­

rameters such as the local gradient. All of these are four bit signals that are binary 

coded. 

WriteModWeight, WriteLocalGrad and WriteDeltaWt are the signals to write 

to the parameter registers. These are similar to the Read signals. 

FU _ace Clear and FU ..a.ccEnable are the clear and enable signals for the forward 

unit accumulator. These signals are active high signals. 

BP_CLG...accClear, BP_CLG...accEnable and BP_CLG-EnableAdd are the 

signals for clearing the corresponding intermediate registers and enabling computa­

tion of local gradient operation. These are also active high signals as the previous 

signals. 

One important aspect of the control unit is the sequencer which allows for con-

101 



Input 
Neuron 1 

Input 
Neuron 2 

Input 
Neuron 4 

BPSum 

Output 
Neuron 

From Output 10 Hidden 
Layer 

Figure 4.20: Illustration of Computation of Backpass sum 

current processing in all neurons. The sequencer is described in the next subsection. 

4.5.1.2 Description of the Sequencer 

The backpropagation algorithm requires computation of back pass sums in each neu-

ron which is a product of local gradient and the synaptic weight. This back pass sum 

is passed to the neuron in the previous layer which is connected to the computing 

neuron. Each neuron in a layer receives such back pass sum from all the neurons in 

the previous layer to which it is connected. This is illustrated in the Figure 4.20. As 

the figure shows, a neuron in the first layer will receive six back pass sums that will 

102 



Cycle Neuron 1 Neuron 2 Neuron 3 Neuron 4 
I vV1H1 & vV2H2 vVaHa vV-tH-t 

W1Hs + W1Hs 
II ace+ v~'1H2 ace+ vV2Ha & ace+ vVaH-t ace+ vV-tHl 

vV2Hs + W2Hs 
Ill ace+ vV1H3 ace+ vV2H.t ace + nrJH 1 & ace+ vV4 H2 

W3Hs + vVaHs 
IV ace+ VJl1H4+ ace+ vV2H1 + & ace+ vV3H2+ ace+ vV-tH3+ 

vV1Hs + vft"tHs W2Hs + vV2Hs vVaHs + vVaH6 vVtHs + vV-tHs 

Table 4.2: Order of sequence- Input neurons 

be used in the neuron for delta weight computation. If all the neurons compute with 

the same sequence, say starting from the first weight, at the end of first clock cycle, 

only the first neuron will have the back pass sums and other neurons need to wait 

for their values to arrive. Moreover, the number of back pass sums passed between 

layers differs among layers as the number of neurons in each layer is different. This 

also causes delay in processing. To eliminate these delays and to ensure synchronized 

concurrent processing a sequencer is required in each neuron. 

The sequencer is a part of each local control unit. The sequencer receives an 

initial value from the control unit which is different for different neurons in a layer. 

The sequencer steps through the computation of back pass sum, output of neuron 

and the modification of weights based on the initial value. This allows for concurrent 

processing of all the neurons and eliminates any delay due to unavailable data. Tables 

4.2 and 4.3 shows the order of computation in hidden and input neurons of DIANNE. 

It can be seen from the tables that the order of computation of back pass sum in 

103 



Cycle Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 
I ~VtHt ~V2H2 W3H3 ~V-tH-t ~VtHs ~VtHs 

II ~V-tHt ~V1H2 ~V2H3 ~V3H" ~V2Hs ~V2Hs 

III W3H1 ~V-tH2 ~VtH3 ~V2H" ~V3Hs ~V3Hs 
IV n ,.2Hl ~V3H2 ~V4H3 ~V1H4 ~V4H5 ~Vo~Hs 

Table 4.3: Order of sequence - Hidden neurons 

hidden neurons corresponds to the order of computation in the input neurons. U/ 

corresponds to the weights and H corresponds to the hidden neuron's Local gradient 

value. 

4.5.2 Global Control Unit 

The function of the global control unit is to control the flow of data between the neuron 

layers and to synchronize the operation of different neurons in a layer. The global 

control takes care of the initialization, mode of operation and exception handling as 

well. The symbolic diagram of the global control unit is shown in Figure 4.21. The 

global control unit is also a state machine similar to the local control unit. The state 

diagram is shown in Figure 4.22. The descriptions of the different states and the 

associated signals are given in Table 4.4. 

4.5.2.1 Description of Control Signals 

The signals described here are a group of signals that are identified under one common 

name. These signals are actually connected to all the neurons in the neural processor. 

104 



Ealllesel 

!"ltlalCa"dLt t ans 

~Cd80f0~•~•~•on_l · l_ 

Signelfa~ccu_ol 

SigrTalfa~ccu_,l 

S i gn• I farGCU_,2 
Slg,.•l fcrGCU-"l 

Signalfc~GCU-"4 

s, gnal fa~GCU-1'15 
S i gnal fc~ccu_,6 

Signal fcrGCU-11 
Sign•lfo~GCU-12 

S;g,.elfc~GCU-Ll 

s • g"•' fc~ccu_ • 4 
r:lcr:• 

Gl abelR•••t 

GlabeiSta~t 

Ocar- • t u~nMode 

'~•'racas•orSelect 

lla~cy 

TesUn<JOn 

r~u"' "90" 
st•tYsFieg_l I!_ 

Figure 4.21: Global Control unit 

ExtReset .o 

Figure 4.22: State diagram of global control unit 

105 



STATE Associated Signals Description 
RESET GlobalResP.t This is a starting state and 

Exceptions exception handling state 
INITIALIZE BPSumSelectlnit This state is used for initializing 

Ready mode of operation and the 
Initial Conditions parameter registers 
~lodeOfOperation 

OPERATE TestingOn This state is main operation 
TrainingOn state and is mainly controlled 
Exceptions by the respective LCUs 

ERROR Exceptions Exception handling state 

Table 4.4: State descriptions - Global Control unit 

GlobalReset is a reset signal that is an external input which can be used to reset 

the whole processor. This would reset all the neurons and bring it to a fresh start 

state. This is an active low signal. 

BPSumSelectlnit, ModeOfOperation, InitialConditions are the set of sig-

nals for initializing the different neurons of their BP Sum sequencer, mode of operation 

and the parameter registers. These are internal signals generated by the global control 

unit and are passed to the local control units. 

Ready, TestingOn, TrainingOn are the flag signals that indicate the operation 

status. These are e..xternal outputs of the processor. 

Exceptions is a signal that indicates an exceptional condition in the processor. 

This would also initiate a global reset of all the neurons. 

106 



4.6 Testing the Design 

DL-\.NNE was tested for functionality and features at all levels of design. This section 

describes all the testing methods and provides the results and discussions on the 

results. Although the section provides most of the test results, some of the more 

evident test results, for example those of smaller components like the adder, multiplier 

and flipflops are not provided. The testing consists of three parts which are feature 

or functional verification, integrated random testing or global testing and exceptions 

testing. The test results reported for the Integrated random testing are for the 'Vfest 

Ylode" of DIANNE. The "Train Mode" of DIANNE in the Integrated random test 

has not been thoroughly verified, but the individual components of the Train .Mode 

have been verified for their functionality. In the simulation results, the waveform 

viewer provides decimal equivalents of the hexadecimal valaues of the signals. But 

these signals are to be interpreted in the fi..xed point representation described in the 

previous chapter. 

4.6.1 Functional Verification 

Functional verification includes verifying the functionality of individual components 

and the features of the component. All the tests were carried out using the vhdlan 

CAD tool with a test clock period of 20 ns. The preprocessors that were explained 

in a earlier section were tested for the functionality and the test results are provided 

in Figures 4.23 and 4.24. From these figures it can be seen that the preprocessors 

107 



~ so 100 150 lOO 250 300 350 
I Ill. II • • I. I I. II I I •••• II II I ••• f • • I I ll I .t ••• 111111 It I ll I I' I' • ••• ',, ••• t II I It 

.,. ISAOI_ TESTNIOIFF(1 ... 3280! l~a· ~a· ~a· ~·· ·32r ~g· j329• ~9·!~9"!m· ~· ~9"j~g· · 32975 l329"pw\3" 

.,. ISADI_TEST.OUTPU ... ~ 0 37 58 7!5 ! M 113 132 151 l11o itag 208 190 

ISAOI_ TESTICLOCK u I n__n__n_rulJlJlJlJlJUUlJlJ UlJUlJ 
ISAOI_ TEST/OUT _EN .•. ?Q.~ - ~·AU ... :\ ........--

750 800 850 900 950 1000 1050 1100 
r ••••••••• 1 •• ,,, •••• 1 • • ,.,,,,. , , , , , • , ••• 1 ••• ,., ••• 1., •• ,, • • ,,,,,,, , •• • 1 ••••• 

:( 33 132rl 83 184 I 1341 54 l11 l32a•j32a·j23l 2 (32rl 32884 §9· 
. 330 lc7a 828 nc 922 101 1oe 118 12!5 9!51 las• 797 887 537 558 457 370 

Figure 4.23: Simulation results of SADI 

0 50 100 150 lOO l50 300 350 UO ........... .. ···· ·········· ..• ... ... ... '· ·· ···· · ···· ········· ....... ·'····· ........ . 
... ISIGADI_TEST.1NP\JT.. o I H haai272'3"cl40:zl"'" ·"7oj.a1lc7a[.asi4o63141IJ392 37013531 :).W l353j37opre 
.,. ISIGAOI_TEST.<lUTP... 0 I 512 0 

ISIGADI_TESTICI.OCK u L u _11_ u. JL lJ1I1JlJ1 w-m uulJUul 
ISIGAOI_TESTISINGL. I 

Figure 4.24: Simulation results of SIGADI 

108 



provide filtered values of the external input signals. SAD! gives a value close to zero 

(in the figure, values less than 210) for all the inputs before the fault condition and 

a value close to 2 (in the figure, values more than 512) when a fault occurs at the 

inputs. SIGADI also gives output as expected. 

The most important part of the neural processor is the control unit. The local 

and the global control units were tested for the functionality. The results are shown 

in Figures 4.25 and 4.26. From the figures it can be seen that the control units are 

working as expected. It can be verified from the state signals that change correspond­

ing to the respective state diagrams. The test verifies the functionality and hence it 

is assumed that there are no exceptions at this point of operation. The exception 

case is discussed at a later section. The global control unit goes through all the states 

except the ERROR state that is mentioned in the description of global control unit. 

The local control unit test is for the training mode that includes the forward and 

backward pass operations. This makes sure that both the operations are verified for 

functionality. The switch between modes of operation is illustrated in Figure 4.27. 

The figure shows only those signals that are necessary to verify the operation. Other 

signals are asserted as illustrated in the regular operational simulations. 

Another part of the control unit is the sequencer that sequences the computation 

in the neurons based on the settings from the global control unit. The test shows the 

functionality of the sequencer for different initial settings. The results are shown in 

109 



CLOCK 

... MOOEOFOPERA TION(1 :0) 

INITIALCONOITIONS 

EXT RESET 

... BPSUMSELECTINIT _11 (1 :0) 

... BPSUMSELECTINIT _12(1 :0) 

... BPSUMSELECTINIT _13(1 :0) 

... BPSUMSELECTINIT _1.(1 :0) 

~ BPSUMSELECTINIT _H1 (1 :0) 

~ BPSUMSELECTINIT _H2(1 :0) 

... BPSUMSS..ECTINIT _H3(1 :0) 

... BPSUMSELECTINIT_fU(1 :0) 

~ BPSUMSELECTINIT _H5(1 :0) 

~ BPSUMSELECTINIT _H6( 1 :0) 

OPERA TlONMOOE 

GLOBAL RESET 

GLOBALSTART 

COMPUTEOONE 

PREPAOCESSORSELECT 

~ EXCEPTIONS(1 :0) 

TRAININGON 

TESTINGON 

READY 

STATUSFLAG . . .................................................. : :[ :~~:~ ~:t::: ::. i .......................................................................... :?~~ ~.=:.~~~ ·'· := ........ .. . 

Figure 4.25: Simulation results of Global Control Unit 

110 



11PCTRL._ TEST/CLOCK 

11PCmt._ TESTIGLOBALRESET 

11PCTRL_TESTIGLOBALSTART 

• 11PCmt._ TESTIBPSUMSELECT1NIT(1 :0) 

11PCTRL_TESTICOfoo4PUTeDONE 

.1PCTRL_ TESTIMODeOPER 

IIPCTRL_ TESTIINPUTENASLE 

• 11PCTRL_TEST/INPUTSELECT(1 :0) 

11PCTRL_ TESTIOUTPUTENABLE 

11PCTRL_ TEST~U_ACCENASLE 

IIPCTRL_TEST~_ACCCLEAR 

• IIPCTRL_ TESTIWEIGHTSELECT(1 :0) 

• 11PCTRl_TESTIREACMODWeiGHT(3:G) 

nPCTRL_ TESTISETREGISTERS 

• IIPCTRL_TESTICOUNTVAL(1 :0) 

IIPCTRL_TESTICOUNTRESETSIG 

I'IPCTRL._ TESTISTATUSF\.AG resTMCQE 

Figure 4.26: Simulation results of Local Control Unit 

111 



... ..., ... 

........ , 

wa arm 
_, w 

Figure 4.27: Illustration of modes of operation 

Figure 4.28. It can be seen that the sequencer accepts input from the initialization 

signal and rotates it through the sequence that is specific to that neuron. It is gener-

ally anti clockwise rotation from the initial setting. The HOLD registers mentioned 

in the earlier sections are also essential part of the design which helps in concurrent 

operation of all neurons and in maintaining correlation between modification weights 

and the inputs. Figure 4.29 illustrates the functionality of the hold registers. The test 

shown is for the hold registers of the input neurons which is 5 x 3 register. This also 

verifies the other hold registers as they are smaller versions of the same. Functional 

verification of the function lookup is given in Figure 4.30. Similar verification was 

done for the derivative lookup as well. 

112 



~ 50 100 150 lOO lSO 
I I II •• I I I I. I I I I . I I I I. I. I I t I I I I. t I I It II I I'. I I t I. I I Itt • 

... INITIAL_VAWE(1 :0) 0 2 I 
CLOCK u u'lJ'uUuLJuUuu'LrlJl_ 
AESETSIG I J 

.,. OUTPVT(1 :0) 

.., ... 
.. ~·u•• ... _,.,.. 
... _,. ... 
... ~ .. ,.. 

Figure 4.28: Simulation results of the sequencer 

1 

~-~~--_.------~--~~~~--_.--~--~--~~~~~~~~~ ·~ zm 

Figure 4.29: Simulation results of HOLD register 

113 



TEST/INPUT(15:0) 

TEST/INTEGERVAL 

100 lOO 300 400 500 6 

13FF 
. . -············-·-······-··· 

:-j <)<1 ; 5, 2 \ ~ 09u : 5 ~ 1 9 
..... ..... ~---. --·-.... - ~--··· ......... :.. ... · · ······· -~- - ···-················· .. . 

258 i 272 ! 374 
I : 

512 

Figure -1.30: Simulation results of Function lookup 

4.6.2 Integrated Random Testing 

This test involves integration of smaller components to form the sub blocks of the 

design and to test them for their correctness as a block. The integrated random test 

was conducted for the forward pass unit, backward pass unit, single neuron and the 

neural processor. vVhile testing the individual sub blocks, the other blocks are assumed 

to be working without any fault. The results of the testing of forward pass unit is given 

Figure -1.31. The control signals were generated as designed and the unit generates 

output as expected. The simulation results of the backward pass unit is given in 

Figure 4.32 . The backward pass unit also works as expected. The register file is just 

a set of registers which receives modified weights from the backpropagation unit and 

stores them for the next pass. The register file was also tested for its functionality and 

it works as expected. A full integrated test of a single neuron was conducted assuming 

114 



100 150 200 250 300 350 • · ~~rlJtn_ru~JutrtrL.rr_hJI_j 
. 

Q.CCIC 

• NIUT1(1S., 31 5D 31 

• ..ul1(11.,. 2D D1 • 
• WVT3(tS~) 11 :Ia Q 

• N'UT'CtS., lt2 0 112 

• WEIQKr .. RICM .. AIEG(1S., lOCO( I • - mix. lCQOC -- 1:11 - lCODt 

INPUT'ENM&.E l .h 
• NIUTIILICTU., U~~ 0 1 z I , z 4- 0 t 2 , z 

OUT1IU11NMU \ ~ 'I h 
&CCI M. *:f'O'Iflt&l J ' ' "" 
.ace' M' •TOACLEM ..j 

.. ..._IIPUf'OUT(tl., zzzz I 31 2D ,, 1 ~ta zzzz - 3:17 :Ia 0 zzzz 
·~(1·~ 0 Q 7 I • IJ~~~ ta JI7Q 0 ID .. ~tz 

• CUTN1'(1S~ uuuu '.., rt 1ft -• NIUT_......ut.OUTC1SSII zzzz I 31 2D 11 I s12 zzzz l• m XI 0 zzzz 
• IRA. TlPUIR .. OUT(tS., "'"I .. - " , ... ""' -mn ... 31711 ""' 
• AICICIMUfCR .. OUT(tS., 0 • , I • ,... JS7Q 0 151 .. •n 
.. ADCIEA .. OUT(tl~) 0 I • 7 • l•a JS7Q ma -~ -

.. •n •n 
• ACTI'n_F\N:TlCN_OUTt1L - -_,_ 

l1 2 2!1 G) - -

Figure 4.31: Simulation results of forward pass unit 

115 



50 100 150 200 250 300 350 400 

CLOCK J11thrtJiTITh1rt~H~tt' ~ JlJtrtHJ1'.h~~~:r 
.... INTERSUMIN(15:0) 1 2 - - --- - .. ·--··------------- - -.... BPSUMINH1_ 4(15:0) 75 54 

- .. -- -.... BPSUMINH5(15:0) 9 5 

.... BPSUMINHe( 15 :0) 12 32771 

.... WEIGHTIN(15:0) 3 32776 .. 

.... LOCALGRAOIN(15:0) 4 
-···- - -- -.... LEARNRATEIN(15:0) 512 

.. - .. --- ----- -·--.... NN_INPUTIN(15:0) 4 

... MOMENTUMIN(15:0) 512 

.... DEl T AWEIGHTIN(15:0) 5 

CLG_ENABLEADD _ _n_ n - · -
CLG_ACCENABLE =f CLG_ACCCLEAR n :-·1 

.... LOCALGRAOOUT(15:0) ·I 0 I 56 t 41 

.... DEl TAWEIGHTOUT(15:0) 5 

.... MODIFIEOWEIGHT(15:0) 8 32771 - -- -

Figure 4.32: Simulation results of Backward pass unit 

116 



CI.DCX 

• ~I(IUII .. ...vn(tS.CII - ~1S.'CII - ~oi(IS:CII 

lll.o&IUIOCT 

lll.o.AUTA#fr 

IIIXKONII - ~(15:111 

ITAT\JUUO 

IINmiAIU - IIIPUrSIUCTI1 'CII 

~ 

JU_•CCSN••r 

"'_ACCQ.IAII - W~I1"CII .. ...... D'l'lbllfY!HI -~ 
Figure 4.33: Simulation results of a single neuron 

that other neurons pass values as e.xpected. The results are shown in Figure 4.33. 

The neural processor as a whole was also tested for its functionality. The results 

are shown in Figure 4.34. As it can be seen from the figure , four sets of inputs are 

passed to the neural processor, which are the same as those used in the software 

simulator. The intermediate results as well as the final outcome of the processor are 

exactly the same as that obtained in software simulation. The figure illustrates the 

different states of the processor (shown by signal STATUS) and individual neurons 

(shown by signals statusflags) at each cycle of operation. The output is shown by 

signal ~P-OUTPUT. The initial"UUUU" results are due to the fact that in the first 

few cycles the processor is initialized and then the values are passed between neurons. 

The actual outputs are available only after 590 ns. The values obtained before 590 ns 

117 



CLOCK 

... INPUT_NP1(15:0) 

.,.. INPUT _NP2(15:0) 

.,.. INPUT_NP3(15:0) 

... INPUT _NP4(15:0) 

.,.. MODEOFOPERATIO .•• 

EXTAESET 

.,.. EXCEPTIONS(1 :0) 

TRAJNINGON 

TESTINGON 

READY 

.,.. NP _OUTPUT(15:0) 

STATUS 

FINALSIG 

STATUSFLAG 

STATUSFLAG 

statusftag 

20 337 80 ao 
16 343 43 43 

512 0 51 

rr=================================~=========F======== 

256 

OPERATE 

RESET INI·' TESTMCOE ' H" ' TESTMODE . H" • TESTMOOE TESTMOOE; W • 
:.·: ·::::·:::.·:::::: ·:::::::.·:.·::::::::.·:·::::.~::.:::::::::::::::::::::;:::::.""::::::::.-:::::.-.7::::::::~···~· ··::::.:.~·::::::::.·::::::.-::::::.·:::.·:::::.·:::::-:.::::::::::::.·:.·:::~·:::.·:.·.·::::: :::: ::: :::::::: . :: . .:::::.:::: . ::::: ... ::::.: . .. 

RESET ~Nt"j TESTMOOE TESn.40DE . H" ; TESTMOOE TESTMODE; H" . 
• • · • •••• • ~--•••-•• • • ••••• .;..,,, , ,, ,,=, ,,,,, , , ,, ,,,,,n o --••••••••••• • ••• • ••••••••-·•••••••·•H-·i ~ooo- •~••• • ·• •••• • •" ''' ''''''' " ' '' ' ''' ' ' ''" ''''' '' ' ' ' ''' '' - ••• • •.,. ••·•o.•.;.••-•• • • •• •"• •••• , •· •••••" • • •• ...... Res·!iT · · ·· ··· · ·· rN;:r· ··· · · · · · ·· · · ·· ·:res.MoE···-····-·· ·-:·H~T·· ··· · · ····· ·:resr~10oe· · ··· · ·· · .... ; ;:;:·r··resrMcoE rEsrMooE~-H~·- ·· 

... .................... ,. ___ ;. ··-···-··-· ................ - ............. ···-··---·-·--.... :. .... -.l.......... .. . ... --............................ ..... ....... .......... .... ..... ..... _ .. ..... . 

Figure 4.34: Simulation results of complete integrated test · 

118 



400 sol 600 700 aoo 900 100• 1100 
H llLJlfUlJI I I I I I I J:1' n· I ·n_· J1SUUI I I I I HLJll I ~nmul I I I I lnml I I HLIUlJI II I ; ~. :n_· :lJlfUll I ' I I . llJLJll . ·n: ~nJI irul I 'nJI H llllll I IUlJUll I I I I ' . 
I l . f 1 ! 1 I ! ; ; ; I i i i I l ! ! i 

.. ~ I ' • L......J. ';.,__,; . ~ ~ • ' :_.; ' 

39 39 728 l 
=======F~===========--==-=-=,-:::::=.-.:::::::::::.::c .. = ... ===·==!-'-·~::;-;:: ....... - .. .. 

80 80 429 

43 43 441 

512 512 

-::::::.:======--==t==============--====::===--::.-:..·.-:::;::::::::== ::=-==-= · ·:::::::::::;:::.:-:-::: ... -=====::..-= 

z 

294 294 3 I 492 I 3 3 i 5 

OPERATE 
.. .. .............................. . ... . .. .. . ....... .. ............................. ..................... ............. F ... ·;.:;;· .. ;.;.:;· .. -;.:;; .. ·;.;.:; .... ;.:;; .. ·.:;,;;·--·;;;;·· =-"~=...;.:.:.;;=--.;;;....;.;;., 

. . .......................... ...... -~ -~··· · ":"· · ···-- ·-······· ······· · ·· · ··· · · ····· .. ···················:········:··-····················- ······ 
H· • TESTMOOE fESTMODEl H" . TESTMOOE • H• . TESTMODE H" TESTMODE TESTMODE ...................... _, ____ __ __ __ _ ..... ... .............. , .. _______ __ ___ _ _ . . . - ---- - . ·: ·:::::±::::::;;.-:.·::::::::::::::::.-::-:::::.:.::::.-::::::::::.--:::::::::::::.:::::~·:::::.::::·:::.·::::::.·:::·:::::::::: · .. ·:.:·:;:::: .. :::::::.:::::..:::; ·····-············---··-···· .. .. .. ................ .. .. --........ . 

H" : TESTMCOE TESTMODE! W : TESTMOOE • H• • TESTMCDE ' W ' TESTMOOE TESTr-.r • 1-1 .. ' TESTMOOE ... .......... ......... -........ -. ... ... ..... .................... . . ......... .. ..... . _;·::; :::::::::::::::::::::::.;::::::::::::.:::::::::::::::::::::::::: :::::::::·:::: .. . ::. : :: -- : : : -:::::::::~-:::::::: . ·- · ·········-::::::::::.--:::::::::=::::2: 

· f-i• • TESTMODE I'ESn.;1Qo;:• H • . TESTMOOE : H" • TESTMODE H" TESrMQOE fESTM"' 1-1 .. : TESTMOOE 
... . .. ..... .... ... ... ..... ........ _ , ____ , .. , ..................... -........ . 

····· 



are values due to initializing of accumulators and other registers. This is because of 

the pipelined nature of the processor. The output neuron receives the actual inputs 

only in third cycle. From then on, outputs are obtained every eight dock cycles. 

These eight clock cycles are due to the multicycle implementation of the neurons. 

The operation of the pipeline was explained in an earlier section. The inputs are 

shown as decimal values but in fact they are fi...xed point representations. The reason 

is that the waveform viewer does not support viewing of custom representations. 

4.6.3 Exceptions Testing 

This method of testing is to observe the function of the processor under exceptions. 

One of the conditions is the asynchronous reset condition at the global control unit. 

This should generate a global reset and clear all the registers and bring the processor 

to a fresh start state. The results are shown in Figure 4.35. Another exception 

condition is the occurrence of overflow in any of the neurons. This should generate 

a local reset and should send a signal to the global control unit about the problem. 

The results of the test are shown in Figure 4.36. The following section discusses the 

main features of the design and the speed of operation. 

4. 7 Features of the Design 

The main features of the design are the on-chip preprocessor and the on-chip training 

function. This design also allows multimodal operation, meaning that more than one 

119 



~ M ··~~Sit 

~ ......ucTNT_11(1Sit 

~ ~-HIUS!t 

.............. 

AI_ACCQUI' 

ITAtwiUG 

~--~===-=-=---==--==-===========~--------

INIT!" : TUTUCL'E ~"TE!'TWOCE: AUET 
-·-······- -···· .. ····· ·····- ... ·-·-·-··- --- ···-· --··-··-···-···--·· -·---··· ··- · . . 

Figure 4.35: Simulation results under RESET condition 

120 



c:ux:ac 

• ~Ao\TICN(1 il) 
EXTAaET 

IICINALfOAQCU_11 

SIONo\LFOAOCU_01 

OPERA TICNWCOii 

Ckaw.AtEKT 

QL08ALITART 

COMPUT£l)(WE 

PAEPtiXI;~ ECT 

• DC€P'T10NI('~ 

TAAMHOQN 

TDTIGCN 

READY 

ITAlUII=UG 

Figure 4.36: Simulation results under OVERFLOW condition 

mode of operation is possible. The design allows operation of the neural processor 

unit with or without the use of preprocessors. The design also supports training and 

test modes of operation. The design supports concurrent forward and backward pass 

operations which is not supported in most of the designs reported to date [46, 40, 39]. 

Some of the design features are the speed of operation and the gate count. The 

input data range for the processor is~ -63.99, ... ,+63.99 with a resolution as 6 bits of 

exponent and 9 bits of fraction. As mentioned in the earlier sections the design was 

carried out using CMOSIS5 technology which is CMOS 0.51-' design technology. With 

this technology the gate count of the whole design is close to 260,000 gates. The large 

number of gates is due to the large number of arithmetic components like adders and 

multipliers used in the design. The gate count with respect to each component is 

given in the following table. 

121 



Component Gate Count 
forward unit 5632 

back pass unit 16800 
register file 2808 

local control unit 720 
global control unit 620 

Preprocessors 10000 

vVith the CMOSIS5 technology and a 40 ~1Hz clock speed, the connection updates 

per second of the design is 2G i.e. speed of operation is 2 GCCPS. This favourably 

compares to most of the reported speeds of operation. 

4.8 Summary 

This chapter discussed the hardware design of DIANNE in a detailed manner. The 

design issues and the decision trade-off's related to the design were explained in de-

tail. Each block and subunit of the processor was explained for its features and its 

functionality. The design cycle and the features of the design were discussed. The 

testing of the processor was discussed elaborately. The results of the testing were 

presented and discussed. Some features of the design specific to the technology of 

implementation were presented. 

122 



Chapter 5 

Conclusion and Suggested Future 
Work 

In the earlier chapters, the design and implementation process of a digital neural 

processor, DIANNE, for detection applications was discussed. A survey of similar 

designs was presented and related works were presented and analyzed. An elaborate 

discussion and description of the problem was presented in Chapter 3. The method of 

solution was discussed in detail. The design of the preprocessors for the application 

and the justification of the design method was also presented. The previous chapter 

discussed the hardware design aspects of the neural processor and the testing of the 

design. The main features of the design and the results of hardware simulation were 

also explained. This chapter summarizes the work and concludes the thesis. The 

following sections discuss some of the main contributions of the thesis and possible 

future work in different aspects of the thesis are mentioned. A critical assessment of 

the work done is presented and the thesis is concluded in the final section. 

123 



5.1 Contributions of the Thesis 

There are three main contributions of the thesis as well as several minor contributions 

and novel design ideas. The main contributions are 

• The hardware design of the digital neural processor, DIANNE. A. complete 

mnltimodal 16 bit integer arithmetic digital neural processor with 11 neurons 

was designed based on the results of the simulation. 

• The preprocessors are the main contribution towards the application. The 

method reduces the size of the artificial neural network required for the ap­

plication and it enables real-time operation unlike other published solutions. 

• A. software simulator which supports fle..xible construction of an artificial neu­

ral network with backpropagation training algorithm has been developed. The 

simulator resembles the hardware design to identify the hardware requirements 

of the design through simulation. The simulator is object oriented and also 

supports different training methods. The simulator also supports fLxed point 

simulation for studying quantization effects and identifying the bus width re­

quirements. 

Some other minor contributions are some of the design ideas like the back pass 

sum sequencer and the hold registers that would eliminate the sequential nature of the 

backpropagation algorithm. The simulator and the design are modular and fle.xible 

124 



so that future additions can be done with minor modifications to the code. 

5.2 Improvements over the Hardware design 

Hardware design of DIANNE was done as efficiently as possible with the current 

resource constraints. Still there is room for modifications and improvements to the 

current design which would make DL-\.='INE a better neural processor. One of the de­

sign components that can be improved is the interconnection and interface between 

similar chips or other chips that support similar algorithms. Current design is self­

contained and cannot be connected to other similar chips except for e.xpanding the 

size of the network. ~loreover, it has only eleven neurons that are enough for this 

application but may not be suited for similar detection applications, as the processor 

can be used for other detection applications. So the design could be improved to 

accommodate interconnections through interconnection buffers. The reason for not 

supporting this part in the design is the availability of limited input/output pins. 

This can be overcome by serial in parallel out or parallel in serial out sort of inter­

connections. This would allow more chips to be connected on a board level design 

for applications that would require neural networks larger than eleven neurons. The 

current design does not support loading of registers with pre-determined weights ex­

cept for initialization. The training has to be done online. This can be modified to 

read weights from external sources. But the input/output pins could be a limitation 

in this case as well. 

125 



There could be some improvement over the design of the single neuron too. The 

current design is a multicycle implementation with a mi.x of interleaved pipelining. 

This could be modified to yield a completely pipelined design for better performance. 

The current design had hardware complexity limitations which restricted the com­

plete pipelining. vVith the new technologies such as the CMOSP35 which are available 

now, the hardware complexity limitations could be overcome. Another area for im­

provement is the exception handling. In the current design exceptions only reset the 

system in case of errors. This could be modified to stall the processor in case of ex­

ceptions and correct the error or prompt manual intervention. Hardware complexity 

is the limitation here as welL 

5.3 Future Work on the Software Design 

The current software design is object-oriented but it has some constraints. The 

object oriented nature of the simulator could be improved further to accommodate 

more training algorithms, more user friendliness and different types of neurons. The 

current version supports fixed point simulation as a separate module. Current design 

of the software simulator was designed taking into account the specific application and 

hence not optimized for the use of memory. This could be modified to accommodate 

different applications. The commercial versions of ANN simulators do not facilitate 

fixed point simulation or flexibility over the structure or size of the network. Therefore 

an enhanced version of this simulator could prove to be useful to other researchers. 

126 



5.4 Critical Assessment and Conclusion 

The earlier sections discussed some of the possible improvements over the current 

design. The main objective of the thesis is to design a digital neural processor for 

detection applications. The application chosen for analysis is the protection of trans­

mission lines that has been explained in earlier chapters. A survey of known methods 

in solving the distance protection using artificial neural network reveals the use of 

complex filters and external fault identifiers. Upon proper analysis of the data, the 

preprocessors were designed which reduced the hardware complexity to a minimum 

and eliminated the use of external fault identifiers. From the design of the preproces­

sors, it can be stated that, if properly processed. the solution for distance protection 

would not require a large neural network. It can even be concluded that neural 

networks could be avoided in solving the problem. 

A single transmission line was simulated to obtain the fault data. Strictly speak­

ing, the whole power grid should be simulated, using complex simulation softwares, 

and the resulting fault data should be used to design the detector. Based on the 

nearly disjoint clusters obtained after preprocessing the data (derived from a single 

transmission line) it can be projected that an artificial neural network is not necessary 

for this application. Instead a well-designed preprocessor followed by a simple com­

parator could accomplish this task. Even if this cannot be concluded as stated above, 

it is very much clear that complex filters and large neural networks are not required 

127 



for this application. Fault location has not been studied in this thesis. However, it 

may be predicted that only a simple ANN will be, if at all, required for locating the 

fault, provided a good preprocessor is introduced. But the use of neural networks 

may be justified for larger problems like control or estimation. 

128 



References 

[1j N. 8. Karayiannis and A. :'i. Venetsanopoulos, Artificial Neural Netwo·rks: Learn­

ing Algorithms, Performance Evaluation and Applications. Kluwer Academic 

Publishers, 1993. 

[2] S. Haykin, Neural Networks: A Comprehensive Foundation. IEEE Press, Macmil­

lan College Publishing Company, Inc., 1994. 

(3] J. A. Freeman and D . .M. Skapura, Neural Networks: Algorithms, Applications 

and Programming Techniques. Addison-'Nesley Publishing Company, Inc., 1992. 

[4] .J. A. K. Suykens, J. P. L. Vandewalle, and B. L. R. De Moor, Artificial Neural 

Networks for Modelling and Control of Non-Linear Systems. Kluwer Academic 

Publishers, 1996. 

[5] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence. Prentice-Hall, 

Inc., 1997. 

129 



[6] D. Guo and G. Parr, "Applying Neural Networks to ATM Cell Scheduling in 

~lultistage Switches," in The Proceedings of the 1998 Symposium o-n Performance 

Evaluation of Computer and Telecommunication Systems{SPECTS '98}, pp. 37-

41 , 1998. 

[7] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of 

Brain .~!echanisms. Spartan Books, 1962. 

[8] T. Cornu and P. Ienne, "Performance of Digital )ieuro-Computers!" in Pro­

ceedings of the Fou:rl.h International Conference on Microelectronics for Neural 

Networks and Fuzzy Systems, pp. 87-93, 1994. 

[9] P. Ienne, "Quantitative Comparison of Architectures for Digital Neuro Comput­

ers." in Proceedings of the International Joint Conference on Neural Networks , 

val. II, pp. 1987-1990, 1993. 

[lOj L. ~L Reyneri and E. Filippi, "An Analysis on the Performance of Silicon Im­

plementations of Backpropagation Algorithms for Artificial Neural Networks," 

IEEE Transactions on Computers, val. 40, pp. 138Q-1389, December 1991. 

[11] R. P. Gorman and T. J. Sejnowski, "Learned classification of sonar targets using a 

massively parallel network," IEEE Transactions on Acoustics, Speech and Signal 

Processing, vol. 36, pp. 1135-1140, 1988. 

130 



[12] J. Hwang and J. Holt, "Finite Precision Error Analysis of Neural Network Elec­

tronic Hardware Implementation," in The Proceedings of the 1991 International 

Joint Conference on Neural Networks(IJCNN '91), vol. I, pp. 519-526, 1991. 

(13] P. P. Gandhi and V. Ramamurthy, "Neural networks for signal detection in non­

Gaussian noise," IEEE Transactions on Signal Processing, vol. 45, pp. 2846-

2851, November 1997. 

[14] N. Muthuswamy and R. S. Blum, "Neural detectors for medical signal process­

ing," in The Proceedings of the First Regional Conference of IEEE Engineering 

in fo.tfedicine and Biology Society, pp. 4/31-4/32, 1996. 

[15] F. Vaz and J. C. Principe, "Neural networks for EEG signal decomposition and 

classification," in The Proceedings of the IEEE 17th Annual Conference of En­

gineering in Medicine and Biology Society, vol. 1, pp. 793-794, 1995. 

(16] G. Sylvestri, F. B. Verona, M. Innocenti, and M. Napolitano, "Fa11lt detection 

using neural networks," in The Proceedings of the 1994 IEEE International Con­

ference on Neural Network.s, val. 6, pp. 3796-3799, 1994. 

[17] D. Patel, I. Hannah, and E. R. Davis, "Soft contaminant detection using neural 

networks: tech...uques and limitations," in The Proceedings of the 1994 IEEE 

International Conference on Neural Networks, vol. 7, pp. 4316-4320, 1994. 

131 



[18] D. V. Coury and D. C. Jorge, "Artificial Neural Network Approach to Dis­

tance Protection of Transmission Lines," IEEE Transactions on Power Delivery, 

vol. 13, pp. 102-108, January 1998. 

[19] F. Zahra, B. Jeyasurya, and J. E. Quaicoe, "Artificial Neural Network Based 

Transmission Line Protective Relaying," in Proceedings of the 30th North Amer­

ican Power Symposium, October 1998. 

(20] T. Cornu, P. Ienne, D. Niebur, and M. A. Viredaz, "A Systolic Accelerator for 

Power System Security Assessment," Proceedings of the International Confer­

ence on Intelligent System Application to Power Systems, vol. 1, pp. 431-438, 

September 1994. 

(21] K. S. :"--arendra and K. Parthasarathy, ~'Identification and Control of Dynamical 

Systems 'Using Neural Networks," IEEE Transactions on Neural Networks, vol. 1, 

pp. 4-27, March 1990. 

[22] R. Safaric, K. Jezemik, M. Pee, and I. J. Rudas, "Implementation of neural net­

work sliding-mode controller for DO robot," in Proceedings of the IEEE Inter­

national Conference on Intelligent Engineering Systems (INES '91), pp. 83-88, 

1997. 

[23] R. J. T. Morris and B. Samadi, "Neural network control of communications 

systems," IEEE Transactions on Neural Networks, vol. 5, pp. 639--650, July 

132 



1994. 

[24] U. Ramacher and U. Ruckert, VLSI Design of Neural Networks. Kluwer Aca­

demic Publishers, 1991. 

[25] K. 'vV. Przytula and V. K. Prasanna, Parallel Digital Implementations of Neural 

Networks. Prentice-Hall. Inc., 1993. 

[26] B. J. Sheu and J. Choi, Neural Information Processing and VLSI. Kluwer .Aca­

demic Publishers, 1995. 

[27] A. Konig, "Survey and Current Status of Neural Network Hardware,'' in Proceed­

ings of the International Conference on Artificial Neural Networks, pp. 391-410, 

October 1995. 

[28] Y. Hirai, "Recent VLSI Neural Networks in Japan,'' Journal of VLSI Signal 

Processing, vol. 6, pp. 7-18, 1993. 

[29] H. P. Graf, E. Sackinger, and L. D. Jackel, "Recent Developments of Elec­

tronic Neural Nets in North America," Journal of VLSI Signal Processing, vol. 5, 

pp. 19-31, 1993. 

(30} P. Ienne, T. Cornu, and G. Kuhn, "Special-Purpose Digital Hardware for Neural 

Networks: An Architectural Survey," Journal of VLSI Signal Processing, val. 13, 

pp. 5-25, 1996. 

133 



[31] C. S. Lidsey and T. Lindblad, "Review of Hardware Neural Networks: A User's 

Perspective/' International Journal of Neural Systems! vol. 6, pp. 215-224, 1995. 

(32] C. Mead, Analog VLSI and Neural Systems. Addison-\Vesley Publishing Com­

pany, Inc.! 1989. 

[33] P. Ienne, "Digital Connectionist Hardware: Current Problems and Future Chal­

lenges," Biological and Artificial Computation: From Neuroscience to Technol­

ogy, Lecture Notes in Computer Science, val. 1240, pp. 688-713, 1997. 

[34] B. E. Boser, E. Sackinger. J. Bromley, Y. LeCun, and L. D. Jackel, "Hardware 

Requirements for Neural Network Pattern Ciassifers: A Ca.se Study and Imple­

mentation/' IEEE Micro, pp. 32-40, February 1992. 

[35] :"J . .\-landuit, M. Duranton, J. Gobert, and J.-A. Sirat, "LNeurol.O: A piece of 

hardware LEGO for buliding neural network systems," IEEE Transactions on 

Neural Networks, val. ~N-3, pp. 414-422, ~lay 1992. 

[36] ~L Duranton, "L-Neuro 2.3: a VLSI for Image Processing by Neural Networks," 

in Proceedings of the Fifth International Conference on Microelectronics for Neu­

ral Networks and Fuzzy Systems {MicroNeuro '96}, pp. 157-160, February 1996. 

[37] D. Hammerstrom, "A Highly Parallel Digital Architecture for Neural Network 

Emulation," in VLSI for Artificial Intelligence and Neural Networks (J. G. 

134 



Delgado--Frias and vV. R. Moore, eds.), pp. 357-366, Plenum Press, :--Iew York, 

1991. 

[38] K .. -\sanovic, 8. E. D. Kingsbury, N. Morgan, and J. vVawrzynek, "HiPNeT-

1: A Highly Pipelined Architecture for Neural Network Training," Technical 

Reports of International Computer Science Institute , University of California at 

Berkeley, California, USA. October 1991. 

(39] D. D. Caviglia and M. Marchesi, "A Neural .-\SIC Architecure for Real-Time 

Classification," in Proceedings of the 21st EURO/ti!ICRO Conference (EUROfltfl. 

CRO '95}, pp. 632-638, September 1995. 

(40] V. Tryba, "Neuro--ASIC for Low Cost Supervision of Water Pollution," in Pro­

ceedings of the International Workshop on Neural Networks for Identification, 

Control, Robotics and Signal/Image Processing, pp. 111-116, August 1996. 

[41] U. Ramacher, J. 8eichter, and N. Briils, "A General-Purpose Signal Processor 

Architecture for Neurocomputing and Preprocessing Applications," Journal of 

VLSI Signal Processing, vol. 6, pp. 45-56 , 1993. 

[42] W.-C. Fang, G. Yang, B. Pain, and 8. J. Sheu, "A Low Power SMART Vi­

sion system Based on Active Pixel Sensor Integrated with Programmable Neural 

Processor," in Proceedings of the IEEE International Conference on Computer 

135 



Design: VLSI in Computers and Processors (ICCD '97), pp. 429-434, October 

1997. 

(43] K. Asanovic, J. Beck, B. E. D. Kingsbury, and P. Kahn, "SPERT: A Neuro­

Microprocessor/' in VLSI for Neural Networks and Artificial Intelligence (J. G. 

Delgado-Frias and vV. R. Moore , eds.), pp. 103-108, Plenum Press, New York, 

September 1994. 

[44] vV. Fornaciari and F. Salice, "A Low Latency Digital Neural Network Archite­

cure," in VLSI for Neural Networks and Artificial Intelligence (J. G. Delgado­

Frias and vV. R. Moore, eds.), pp. 81-92, Plenum Press, New York, September 

1994. 

[45} J . G . Delgado-Frias, S. Va~siliadis, G. G. Pechanek, vV. Lin, S. M. Barber, and 

H. Ding, "A VLSI Pipelined Neuroemulator," in VLSI for Neural Networks and 

Artificial Intelligence (J. G. Delgado-Frias and W. R. ~loore, eds.), pp. 71-80, 

Plenum Press, New York, September 1994. 

[46] L. Larsson, S. Krol, and K. Lagemann, "NeNEB - An Application Adjustable 

Single Chip Neural Network Processor for Mobile Real Time Image Processing," 

in Proceedings of the International Workshop on Neural Networks for Identi­

fication, Control, Robotics and Signal/Image Processing, pp. 154-162, August 

1996. 

136 



[47] A. \Vright and C. Christopoulos~ Electrical Power System Protection. Chapman 

& Hall Inc.. 1991. 

[48] The Electricity Training Association, ed., Power System Protection, vol. 2 & 4. 

London, United Kingdom: The Institution of Electrical Engineers, 1995. 

[49] N. R. Shanbhag and K. K. Parhi, Pipelined Adaptive Digital Filters. Kluwer 

Academic Publishers. 1994. 

[50] T. vV. Parks and C. S. Burrus, Digital Filter Design. John \.Yiley & Sons, Inc., 

1987. 

[51] F. Zahra, "Artificial Neural Network Approach to Transmission Line Relaying," 

~l.Eng. thesis. ~lemorial University of Newfoundland, 1998. 

[52] S. Agaian, J. :\.stola, and K. Egiazarian, Binary Polynomial Tronsforms and 

Nonlinear Digital Filters. Marcel Dekker, Inc., 1995. 

(53] H. Schildt, C++: The Complete Reference . .\lcGraw-Hill, Inc., 1995. 

[54) 8. Stroustrup, The C++ Programming Language. Addison- \Vesley Publishing 

Company, Inc., 1991. 

[55] Canadian Microelectronics Corporation, Ontario, Canada, Basic DigitallC De­

sign Flow Instruction, November 1997. 

137 



[56} Z. Navabi, VHDL: Analysis and ftllodeling of Digital Systems. McGraw-Hill, Inc., 

1998. 

[57] Synopsys, Inc., California, United States of America, VHDL Compiler Reference 

1\t/anual, November 1992. 

(58} Cadence Design Systems, Inc. , California, United States of America, Integrated 

IC Design System: Design Synthesis Reference !vlanual, ~larch 1989. 

[59] D. A. Patterson and J. L. Hennessey, Computer Architecture A Quantitative 

Approach. ~lorgan Kaufmann Publishers, Inc. , 1996. 

138 








