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Abstract 

The main focus of this research is to develop a digital neural network (processor) 

and hardware (VLSI) implementation of the same for detection applications, for ex­

ample in the distance protection of power transmission lines. Using a hardware neural 

processor wi.ll improve the protection system performance over software implementa­

tions in terms of speed of operation, response time for faults etc. The main aspects 

of this research are software design! performance analysis! hardware design and hard­

ware implementation of the digital neural processor. The software design is carried 

out by developing an object oriented neural network simulator with backpropagation 

training using C++ language. A preliminary analysis shows that the inputs to the 

neural network need to be preprocessed. Two filters have been developed for this 

purpose, based on the analysis of the training data available. The performance anal­

ysis involves studying quantization effects (determination of precision requirements) 

in the network. 

The hardware design involves design of the neural network and the preprocessors. 

The neural processor consists of three types of processing elements (neurons): input. 

hidden and output neurons. The input neurons form the input layer of the processor 

which receive input from the preprocessors. The input layer can be configured to 

directly receive external input by changing the mode of operation. The output layer 

gives the signal to the relay for tripping the line under fault. Each neuron consists of 

datapath and local control unit. Data path consists of the components for forward and 

backward passes of the processor and the register file. The local control unit controls 

the flow of data within a neuron and co-ordinates with the global control unit which 

controls the flow of data between layers. The neurons and the layers are pipelined for 

improving the throughput of the processor. The neural processor and the filters are 

implemented in VLSI using hardware description language (VHDL) and Synopsys I 
Cadence CAD tools. All the components are individually verified and tested for their 

functionality and implemented using 0.5 p. CMOS technology. 
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Chapter 1 

Introduction and Literature Survey 

1.1 Introduction to Neural Networks 

Artificial neural networks (ANNs) form a class of systems that are inspired by bi­

ological neural networks. Artific~al neural networks have proved to be a vital tool 

for solving problems that cannot be approached by traditional methods. ~lcCulloch 

and Pitts introduced the concept of neurons in 1942 [L 2, 3]. Since then several 

contributions have been made to the field of artificial neural networks. Due to their 

capabilities for modeling and solving complex problems, the applications of A:'-iNs 

are many. The applications include classification problems, vision. speech, signal pro­

cessing, time series prediction, modeling and control, robotics, optimization, e.."'<pert 

systems and financial applications (1, 4, 5). 

It can be stated that the evolution of the field of neural networks is characterized 

by a number of ups and downs. There was a period of hibernation, for about 25 years, 

from 1969 to 1982, after some initial developments in the area. This is due to the fact 

that neural networks without hidden layers were considered at that time and they were 
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not able to learn the well known XOR problem. Then a major breakthrough came 

with the introduction of multilayered perceptrons. These neural network structures 

will be discussed in detail in the following sections. From then until now, research 

in artificial neural networks has been blooming, as witnessed by the existence of 

several international neural network societies and international conferences. Progress 

is continuously being made to the theoretical and practical aspects of the field. As a 

result, the area of applications has also extended into many fields, like AT).l scheduling 

[6] , one of the new concepts in telecommunication. 

1.2 Classification of Neural Networks 

The artificial neural network architectures were formed resembling the biological neu­

ral architecture. The brain consists of about 10 billion neurons and 16 trillion synaptic 

junctions or synapses. The biological neuron (nerve cell) is shown in Figure 1.1. The 

figure shows the major components of a typical nerve cell in the central nervous 

system [2]. The synapses connect the axon of one neuron to various parts of other 

neurons. Depending on the stimuli at the synapses, which when exceed the activa­

tion potential (threshold potential), the neuron produces an output potential. The 

output potential acts as stimulus for other neurons to which it is connected. The 

axon carries the output of the neuron to other neurons. The artificial neurons have 

similar structll!'e and functionality. The artificial neural network consists of small 

processing elements, called neurons, interconnected with each other. The synapses 
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Figure 1.1: The Biological Neuron [3} 

are represented by interconnection weights and the activation potential of the biolog-

ical neuron is represented by the activation function. The first model of an artificial 

neuron was introduced by McCulloch and Pitts in 1942, which was a static nonlinear 

model. Later Rosenblatt [7) introduced the perceptron model, the most commonly 

used basic artificial neuron, in 1962. The perceptron model is shown in Figure 1.2. 

In the figure. ;p are the inputs to the neuron and cr are the synaptic weights. 

1.2.1 Basic Model of a Neuron 

In mathematical terms. the basic model of a neuron is given by the equation 1.1 ilS. 

(1.1) 

where rp is the activation function of the neuron; x1, x2, ... Xn are the inputs; w 1, w2,-

•.. Wn are the interconnection weights and 8 is the threshold. The schematic represen-
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Retina 

Figure 1.2: Model of a Perceptron [3] 

Threshold 
condition 

tation of the equation is given in Figure 1.3. The activation function of the artificial 

neurons can be one of many, ranging from simple threshold functions to sigmoidal 

functions. The mathematical representation of some activation functions are as fol-

lows. 

1. Threshold Function 

<p(x) = { 
0
1 ifx ?:: 0 

ifx < 0 

2. Piecewise-Linear Function 

{

1 x?::5 
<p(x) = 0(0.1x + 0.5) 5 > X > -5 

X~ -5 

4 

(1.2) 

(1 .3) 



.r, 
Activation 
Function 

Input .}'.! 

Signals 11 .;( . ) y 

Summing 
.r,. Junction 

Synaptic 
Weights 

fl 

Threshold 

Figure 1.3: Model of a Neuron 

3. Sigmoidal Function 

1 
ip(X) = ' 

1 + exp(-ax) 
( 1.-!) 

where a is the gain parameter. 

Some of the activation function plots are shown in Figure 1..!. The choice of the 

activation function depends on the application for which the neural network is used . 

.-\11 existing artificial neural networks are formed using the basic artificial neuron. 

They are classified based on the way they are interconnected i.e. the architecture of 

the neural network [1}. Although these categories are based on different philosophies, 

all neural networks are capable of learning, a process by which a neural system ac-

quires the ability to map a set of inputs to a set of outputs by modifying its internal 

parameters according to a scheme. The set of input/output patterns are called the 
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;p(x) 

X 

Figure 1.4: Some Activation Functions 

training sample. The learning schemes are classified as Supervised and Unsupervised. 

In the following sections, neural network architectures and the learning schemes are 

discussed. 

1.2.2 Neural Network Architectures 

Existing artificial neural network architectures are classified into three major cat-

egories, Feedfon.uard, Feedback and Self Organizing neural networks. Figure 1.5 [1] 

shows the classification of neural architectures. Feedforward networks are most widely 

used architectures. The implementation of these architectures can be in software or 

hardware. The work explained in this thesis uses a Multilayered perceptron with 

backpropagation training. The work includes implementation of the neural network 

in hardware as well. The following sections discuss the categories of neural architec-

tures in detail. 

6 



I Artificial :'-leural Networ"1l 

t 
1 reed-forward 11 l reed-back ll j Self-organi:ting n 

1 

I Linear ll l Nonlinear n Hopfield Bolt:tmann feature ,.-\fiT ll 
Model ~lachine ~laps 

l 1 
Supen·ised n I U nsuperYised n 

Figure 1.5: Classification of Neural Architecture [1] 

1.2.2.1 Feedforward Neural Architectures 

Feedforward neural networks consist of one or more layers of the basic artificial neuron, 

the processing elements. The neurons of the neighboring layers are interconnected by 

synaptic weights. The output of each neuron feeds the next layer of the network. This 

can be seen as a system transforming a set of input patterns into a set of output pat-

terns . .Ylultilayered feedforward networks consists of one or more hidden layers. The 

hidden layers increase the ability of the neural network to acquire higher order statis-

tics. Multilayered networks can be fully connected or partially connected. Schematic 

representations of single layer, fully connected multi layer and partially connected 

multi layer neural architectures are shown in Figures 1.6, 1. 7 and 1.8 respectively. 
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Figure 1.6: Single Layered Feedforward ~eural Network [2] 

Input layer 
ofsaun:e 

nodes 

Layer of 
hidden 
ncutoiiS 

Layer of 
output 
neurons 

Figure 1.7: Multilayered Fully Connected Neural Network [21 

8 



Input layer 
of source 

nodc5 

l..i&ycr of 
hidden 
neui"'nS 

1...1yer of 
output 
neurons 

Figure 1.8: Multilayered partially Conneeted Neural Network (2] 

1.2.2.2 Feedback Neural Architectures 

Feedback neural architectures differ from the feedforward architectures by the feedback 

loop. They are also called recurrent networks. A feedback neural network may consist 

of a single layer of neuron feeding its output to all other neurons, as illustrated in 

Figure 1.9. The figure illustrates only a layer and not the complete network. The 

presence of a feedback loop has an impact on the learning capability of a neural 

network and on its performance . .Moreover, the feedback loops involve the use of unit-

delay elements (denoted by z-l in the figure), which result in nonlinear dynamical 

behavior of the neuron. Some of the feedback neural network models are 

• Brain-State-in-a-Box Model 

• Hopfield ~lodel 

• Boltzmann ~lachine 
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r-"::lr"'::l'"":!,.._~ Unii-.Jclay 
....,.~~.~ ........ ~ llfiCQIIIft 

Figure 1.9: A Feedback Network without self-feedback [2J 

• Recurrent Backpropagation Networks. 

These models are discussed in detail in [2). 

1.2.2.3 Self Organizing Neural Architectures 

Human brain has the unique ability to use past experience to adapt to unpredictable 

changes in the environment. Such adaptation with no involvement of an external 

teacher is called Self Organization. Two of the self organizing neural networks are 

• Kohonen's Feature Map 

• Adaptive Resonance Theory (ART). 

These networks follow the counter propagation or competitive learning scheme in which 

neighboring cells compete in their activation by means of mutual lateral interaction 

and develop into specific detectors of different signal patterns. Self Organizing feature 

maps are used for application like pattern recognition, robotics and process control. 
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Learning Algorithms (rules) 

Enor- Bolumann Thorndike Hebbian Competitive Supervised 
CorTection l..caming Law of l..caming L.eavning l...caming 
l..caming Effect 

Learning Paradigms 

Reinforccmcnt Self-Organizing 
Learning cCnsuperviscd) 

l..caming 

Figure 1.10: Taxonomy of Learning process [2] 

1.2.3 Learning Schemes 

Learning is the process of acquiring the ability to map a set of inputs to a set of 

outputs by adjusting the internal parameters of the system, such as synaptic weights, 

learning rate etc. The method followed for this process is called the learning scheme. 

vVhen an external teacher is used to determine the training and learning process it is 

called Supervised Learning. When learning does not involve an external teacher it is 

called Unsupervised learning. Haykin [2] provides a ta.xonomy of the learning process 

which is shown in Figure 1.10. Generally supervised learning is used in the case 

of applications requiring specific outputs, like detection or control, and unsupervised 

learning is used in the case of some classification applications where the neural network 

determines the classification based on the input patterns. 
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1.2.3.1 Least Squares Method 

This learning scheme, also called outer-product role or correlation training, is among 

the earliest training schemes. It is not an optimal training scheme in any sense. 

The major advantage of this scheme is its simplicity. Section 1.3.1 discusses the 

performance of this learning scheme in comparison with some other learning schemes 

developed later. This scheme is based on the well known least squares method. 

Considering an output of a single layered neuron fhk = x;wi = wixk; w• and x• 

are transpose of weight and input matrices respectively, i is number of neuron, k is 

number of input, the optimal estimate of the synaptic weights is given by, 

Vi = 1, 2 .... no, (1.5) 

where E is the objective function [1]. It can be easily verified that wi is the solution 

of the set of linear equations 

Vi = 1, 2, ... no, (1.6) 

where Xm is a matrix of Xk and y:,m = [Yi.l, Yi,2 1 ••• Yi,m]· On simplifying the linear 

equation for an optimal estimate, the synaptic weight matrLx solution is 

(1.7) 
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where ni is the number of inputs in a set of input patterns. 

1.2.3.2 Delta Rule 

Although this ru1e is widely used in adaptive filtering, its simplicity and flexibility 

made it attractive for training neural networks. However, this learning rule is char-

acterized by slow convergence, and in some situations, can lead to local minima. 

This rule is based on the observation that the minimization of the objective function 

E = Lk=l Ek (k is the number of iterations) can be performed by sequentially min-

imizing Ek = t l:~~ 1 (Yi,k- Yi ,k) 2 for k = 1, 2, . .. m using the Delta rule. Based on 

this the synaptic weight is updated as 

(1.8) 

where p is the synapse number , o is a positive real number. called the learning rate 

and 

(1.9) 

The network is trained until a predetermined minimum for E is obtained with the 

synaptic weights updated using the ru1e specified in equation 1.8. 
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1.2.3.3 Backpropagation with Gradient Descent 

This is the most commonly used learning scheme for Multilayered Perceptrons (i'wlLP) . 

The objective of this method is to start at some arbitrary point in the error plane, 

by having a random synaptic weight matrLx, and moving in the direction of steepest 

descent. The scheme consists of two distinct passes of computation called the forward 

pass and the backward pass. 

In the forward pass, the synaptic weights remain unaltered throughout the network 

and the function signals are computed on a neuron-by-neuron basis. The output of a 

neuron j is computed as 

p 

Yj(n) = cp L w11 (n)y1(n) (1.10) 
i=O 

u1 (n) 

where pis the total number of inputs, n is the number of iteration, y1(n) is the output 

of previous layer and w is the weight matri.x. 

In the backward pass, the error at the output neuron is propagated from the 

output to the hidden layers and from the hidden layers to the input layers. The 

weights and the parameters are modified based on the input received from the next 

layer. The weight update is performed as 
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( 
weight ) ( learning ) ( local ) ( input ) 

correction = rate · gr~dient · signal . 
~Wij(n) n ~,(n) y,(n) 

{1.11) 

The local gradient 8i(n) depends on whether the neuron is an output node or hidden 

node. 

1. If the neuron is an output node, 8i(n) equals the product of the derivative 

<p'(v,(n)) and the error signal e,(n) = d,(n) - y,(n) associated with that neuron. 

2. If the neuron is a hidden node, 6,(n) equals the product of the associated 

derivative ;p'(vi(n)) and the weighted sum of the IS 's computed for neurons in the 

next (hidden or output) layer that are connected to that neuron. 

The rate of learning is increased by introducing a parameter called momentum. The 

weight update is modified as 

( 1.12) 

where n is the momentum. 

1.2.3.4 Competitive Learning 

In this learning scheme, as the name implies, the output neurons of a neural network 

compete among themselves for being the one to be active. This type of learning is 

useful in classification applications where a particular feature of a set of input patterns 
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may be used to activate a particular neuron. The basic elements of competitive 

learning are 

• .-\. set of neurons that are all same except for some randomly distributed synaptic 

weights should respond differently to a given set of inputs. 

• A limit imposed on the strength of each neuron. 

• A mechanism allows the neurons in a group to compete with each other, so that 

only one neuron is active at a time. That neuron is called the winner-takes-all 

neuron. 

The synaptic weights are distributed among the inputs of a neuron i as 

n 

L Wij = 1. 
j=l 

The synaptic weight update is given by 

w~:+l - wt + ~Wij IJ 

~wt { a (xi- wt) if neuron i wins 
-

0 if neuron i loses, 

where Xi is input the neuron i. 
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1.3 Performance Evaluation of Neural Networks 

Artificial neural networks, being emulators of human brain, have proved to be excel­

lent performers in many application over traditional approaches. As mentioned in the 

earlier section, artificial neural networks are implemented in software or hardware and 

the performance evaluation metrics differ between these two methods of implemen­

tations. The performance of software neural networks are limited by the efficiency of 

the neural algorithm and the computational capability of the conventional computers 

that run them. Hardware neural networks enhance the performance of the neural 

algorithms with special hardware for implementing those algorithms. In this case 

the speed of execution improves many fold and the limiting factor is the cost. The 

efficiency of solving a problem improves dramatically as we move from traditional 

methods to special hardware for neural networks. 

1.3.1 Evaluation of Neural Algorithms 

The performance of neural networks is determined by their capacity and generalization 

ability or robustness. Generalization is the property of a trained neural network 

to classify an input correctly even if it is not a member of the training set. The 

capacity of the neural network is determined by the amount of information that the 

neural network can hold. The performance of the neural networks depends on the 

architecture and learning schemes employed. According to studies in the past, neural 

networks trained using the outer-product rule are characterized by low generalization 
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Figure 1.11: Comparison of Learning Schemes (1] 

ability and low capacity (1] . The efficiency of these networks in real applications is 

even lower than predicted. 

In [1], experimental results justifying the effect of learning schemes on the gener-

alization ability of the neural network have been presented. The results are for the 

comparison of an optimally trained neural network to other neural networks of similar 

size and structure. The results are shown in Figure 1.11. The graphs corresponding 

to L = 0 represent a neural network training using output-product rule and L = oo 

represent an optimally trained network. The intermediate graphs represent neural 

networks with approximated· synaptic weights of the optimally trained network. The 

Hamming distance is the difference between the input set of the test pattern and 

the input set of the training pattern or the stored pattern. The value of Hamming 

distance reflects the amount of difference between the testing and training patterns. 
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The results illustrate that the generalization ability of the neural network degrades as 

the Hamming distance increases. It also shows that, as the learning scheme changes 

from optimal to output-product rule, robustness of the network to difference in input 

patterns degrades. Similar results are presented in the literature for the capacity of 

the neural network as well. 

1.3.2 Evaluation of Neural Hardware 

Hardware neural networks are evaluated based on their performance over conventional 

computers and among the neural architectures. Hardware implementation of neural 

networks faces constraints due to cost considerations. 

In [8], the authors evaluate the performance of digital neuro computers over the 

conventional computers. They also discuss the constraints on the hardware for integer 

arithmetics, pipelining, discretization of evolution of learning parameters etc. They 

discuss the cost associated in changing the learning parameters of a neural network 

in hard ware realizations. They suggest methods for approximating these parameters 

to fewer values thus reducing the cost. These analyses have a profound impact on the 

design of the neural network discussed in this thesis. Discussions related to this aspect 

are done in Chapter 3. The comparison of the convergence speed of training between 

the conventional computers the neural network hardware is shown in Figure 1.12. 

In this figure, E is the adequate metric of convergence for a neural network model 

.M and Eo is some predetermined metric of convergence; tee is the time required by 
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Figure 1.12: Convergence of Conventional(cc) and Neuro(hw) computers [8] 

the conventional computer to reach the convergence metrics £ 0 , and thw is the time 

required by the neuro computer to reach that value. This figure clearly illustrates 

the improvement in performance when special hardware is used. The authors also 

propose a formula for calculating speedup in this case as 

(1.15) 

In [9], comparison of digital neural architectures is discussed. Different classes of 

digital neural implementations are compared quantitatively proposing some perfor-

mance indices as reconfiguration ability, virtualization ability [9] etc. Hardware con-

straints with respect to implementation of backpropagation algorithm is discussed 

in [10]. The effect of limited weight resolution, range limitations and steepness of 

activation function are described. The impact of these parameters on the design of 

the hardware is discussed in detail in Chapter 3. 
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1.4 Applications of Neural Networks 

).ieural networks are being used in a wide variety of applications. The applications 

range from biological to process control applications. In a broader sense, neural 

network applications can be classified as detection applications, classification applica­

tions, estimation applications and control applications. In case of control applications 

neural networks are used along with fuzzy logic evolving into the field of neuro-fuzzy 

control [5}. In the following sections, some applications of neural networks are dis­

cussed. 

1.4.1 Classification Applications 

The application of neural networks to classification problems is conceptually most 

consistent with their structure and functionality. The objective of a classification 

application is to assign a random sample from a set of samples to one of finite output 

states or classes with minimum probability of error. Each sample is described by 

a set of parameters which form a vector, usually referred to as the feature vector. 

The development of such a classification system can be achieved by training a neural 

network to provide an output corresponding to one of the classes, when the input 

sample belongs to that class. The justification for use of neural networks in classifica­

tion applications depends on the existence of evidence that neural network classifiers 

are more efficient than the alternate tools. An example classification application is 

described in the following subsection. 
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1.4.1.1 Classification of SONAR Signals 

A neural network developed for classification of SONAR targets is described in [llJ. 

The authors of this paper have analyzed the effect of hidden layers in the classification 

of SONAR targets. A similar application is described in [12}, where the authors test 

the effect of finite precision calculation on the performance of the neural network. 

1.4.2 Detection Applications 

Detection applications are a degenerate of classification where a set of input belongs to 

one of two classes. Applications include pattern recognition, fault detection. medical 

imaging, quality control etc. One example of detection applications is presented in 

[13]. The authors describe the use of artificial neural networks in detecting known 

signals in non-Gaussian noise [13]. Another example is presented in [14]. This paper 

describes an application of artificial neural networks in medical signal processing. 

The authors describe the training and performance of a multilayered perceptron using 

backpropagation training for detection random signals in medical signal processing. 

The authors also compare the performance with other classical techniques for the 

same application. One more detection application in medicine is presented in [15] 

which is EEG spike detection using neural networks. 

Artificial neural networks for fault detection is explained in [16]. This paper 

describes a neural network approach for the problem of sensor failure detection and 

identification for a flight control system without any sensor redundancy. Detection of 
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soft contaminants using neural networks is discussed in [17]. This paper describes a 

neural network based image analysis system that detects foreign objects that might be 

present in bags of frozen com kernels which are not visible to a conventional camera. 

The following subsection discusses some of the applications in power systems, the 

application area of the work presented in this thesis. 

1.4.2.1 Applications in Power Systems 

Neural networks play a vital role in applications related to power systems due to 

the non-linearity of the system. A survey of the literature shows the use of neural 

networks in many areas of power system like distance protection, load forecasting, 

stability analysis, economic dispatch, security assessment etc. Contributions to the 

field vary from neural algorithms to dedicated hardware implementations. 

Coury and Jorge [18] suggest an artificial neural network approach to distance 

protection of transmission lines. They describe ANN as a pattern classifier, being 

able to recognize the changing power system conditions and consequently improving 

the performance of ordinary relays. They use a Multilayered perceptron (MLP) for 

this purpose, with magnitude of phase voltages and currents as inputs to the ANN 

and a trip/ no-trip as the output of the ANN. They claim improved performance of 

ANNs over the conventional approaches. Similar approach has been described in [19] 

using frequency components as inputs to the ANN instead of magnitudes of voltages 

and currents. Improvement in learning and convergence rate has been reported. The 
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work described in these papers is closely related to this thesis. Further explanation 
' 

about these papers and analysis are presented in Chapter 3. 

Cornu et al. [20] present a Kohonen feature map algorithm for security monitoring 

in power transmission systems. They describe the implementation of the algorithm 

in parallel hardware. They describe the development of a SIMD (Single Instruction 

l\Jultiple Data Stream) array dedicated to the impiementation of the algorithm. This is 

one of the examples of dedicated neural hardware for applications in power systems. 

~lore explanation on the development of hardware neural networks is given in the 

following Chapter. 

1.4. 3 Estimation and Prediction Applications 

A large portion of scientific research is devoted to the development of systems for pre-

diction such as weather forecasting, medical diagnosis, financial predictions, lightning 

strike prediction etc. Neural networks are suitable candidates for the development 

of systems predicting such events, due to their nonlinear structure and generaliza-

tion ability. The application of neural networks to prediction application requires the 

determination of the parameters of the system under consideration, that most likely 

affect the the events or developments of interest. Provided that such a set of pa-

rameters is chosen, the network can be trained using the history of the system under 

consideration. After the training, the neural network must be able to use the most 

recent parameters in order to predict the future events or developments. The use of 
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neural networks for such application is based on the hy·pothesis that the future events 

or developments depend exclusively on the history of the system. Although this is 

the case in many systems, this hypothesis is not always true. A classical application 

of neural networks to weather forecasting by vVidrow et al. is presented in [1]. They 

used artificial neural networks to predict the occurrence of rainfall on the following 

day on the basis of fluctuations in the barometric pressure in the two preceding days. 

The percentage of successful predictions was comparable to those predicted by the 

official weather prediction agency, which used a large set of parameters for forecasting. 

1.4.4 Control Applications 

Artificial neural networks, mimicking the human brain have demonstrated to be an 

.lttractive solution for control applications requiring some intelligent control. The 

application of neural network control ranges from control of electric drives to control 

of communication systems. Use of neural networks for the identification and control of 

nonlinear dynamical systems is described in (21] by Narendra and Parthasarathy. This 

is one of the pioneer works in the field of control using neural networks. The authors 

of this paper explain the practical feasibility of neural networks in identification and 

adaptive control schemes. The authors introduce models in which multilayer and 

recurrent neural networks are interconnected in novel configurations. 

Neuro-fuzzy control [5] is another popular approach for intelligent control applica­

tions. It refers to the design methods for fuzzy controllers that employ neural network 
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techniques. Some advantages of neural control over traditional controllers are: 

1. Learning ability 

2. Parallel Operation 

3. Structured Knowledge representation and 

-l. Better integration with otlier control design methods . 

.-\.general model of a neural network controller is shown in Figure 1.13 . .-\.n example of 

application of neural network control for robotic manipulator control is presented in 

[22). The experimental development of a trajectory tracking neural network controller 

based on the theory of sliding motor control is shown. The authors have implemented 

the controller on a 3 DOF PUMA robot. They have also compared the performance 

of the neural control with that of computer torque method control and continuous 

sliding motor control with PI-estimator. 

Another e.."Cample of ANN based control is presented in [23). This is for the control 

of communication system. The authors suggest that the neural networks appear well 

suited to applications in the control of communication systems for two reasons, adap-
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tivity and high speed. They describe the application of nell!al network control to two 

problems: admission control~ selective admission of a set of calls from a number of in­

homogeneous call classes which may have different characteristics and switch control, 

the service policy used by a switch controller in transmitting packets. They address 

su~microsecond optimization of these problems based on the scheme suggested. 

1.5 Motivation for the Work 

The earlier sections described the application of neural networks in a wide variety of 

applications. Different methods of implementations of artificial neural networks. soft­

ware and hardware, were discussed. The performance of hardware neural networks 

in comparison to software implementations on conventional computers was also dis­

cussed. The advantage of using hardware neural networks is very clear from these 

discussions. :'vloreover. conventional computers do not exploit the inherent parallelism 

in the neural algortihms except for optimizations at the compiler level. A dedicated 

neural network hardware for a particular application would definitely increase the 

speed of a system. This would also increase the reliability of the system. So, a 

dedicated neural network hardware with novel design features would be a major con­

tribution to the field of artificial neural networks. This would also be a contribution 

to the field of large scale integration and system on a chip research. 

As discussed in section 1.4.2.1, neural networks are a vital tool in distance pro. 

tection of transmission lines. As discussed in the literature, use of artificial neural 
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networks improve the efficiency of the protection system. If the distance protection 

using artificial neural networks could be implemented in a single application specific 

integrated circuit (ASIC), it would improve the protection system performance many 

fold. The paper by Coury et al. (18] , explained in section 1.4.2.1, uses a software 

implementation of an artificial neural network. The authors present a learning time 

of 2 CPU hours and convergence at 80,000 cycles. The results of the implementa­

tion, though better than conventional approaches, are not attractive with the low 

convergence rates. The paper by Zahra et al. [19], mentioned in section 1.4.2.1, 

also uses software implementation of the ANN based approach to protective relay­

ing. The speed of operation in these cases will be less when compared to a hardware 

implementation of the same. 

The distance protection problem needs to be analyzed in detail to identify proper 

preprocessing methods and a suitable neural network structure, which would be fea­

sible for implementation in hardware. A software neural network simulator which 

resembles the hardware implementation would acomplish this purpose. A hardware 

complexity optimization analysis also has to be done using the software simulation. 

In summary, a neural processor that is optimized (at the same time possessing ad­

equate generality for application to similar problems) for this application has to be 

designed with proper preprocessors. 
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1.6 Organization of Thesis 

In this chapter, the basics of neural networks, the classification of neural architectures 

and the different learning schemes were discussed. A brief description of the work 

done in this thesis and the motivation and background for this work were described. 

This chapter also discussed some applications of neural networks. 

Chapter 2 discusses hardware neural networks in detail, with emphasis on VLSI 

neural network architectures. A survey of recent development in VLSI neural networks 

is given and they are classified into different categories. The chapter discusses in brief 

the neural network designed for this work with respect to the categories described. 

Chapter 3 describes the the distance protection problem in detail. The method of 

solving the problem is discussed and the simulator developed for this purpose is also 

explained. The results of the simulation are discussed in detail and their relation to 

the hardware design is explained. 

Chapter 4 describes the hardware design process and explains the implementation 

in detail. The overview of the architecture is discussed and the design is discussed in 

detail. Salient features of the design are described and justified. 

Chapter 5 summarizes and concludes the work. The main contributions of this the­

sis are described. Some improvements to the current software and hardware designs 

are discussed. Critical assessment of the work is done and the method of approach is 

justified. 

29 



Chapter 2 

Hardware Neural Network 
Architectures 

2.1 Introduction 

Neural networks are a promising computational technology due to their capabilities 

in modeling and solving problems hardly approachable by traditional methods. As 

the field of neural networks matures, a strong need for fast, efficient and applica­

tion specific hardware for neural networks arises. In the previous chapter, basics of 

ANNs were discussed. Classifications of ANNs and application of ANNs were also dis­

cussed. Some literature on the performance of ANNs and methods of evaluation were 

described. This chapter discusses the hardware neural networks and their categories 

in detail with emphasis on VLSI architectures. Recent trends and developments in 

hardware ANNs are discussed. A brief explanation on the digital neural processor 

designed for this thesis is given and some features of the design are presented. 
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Figure 2.1: Computational Capabilities Vs. Requirements [24J 

2.2 Hardware Neural Networks 

Neural computing requires a tremendous number of computations and communica-

tions. The response and characteristics of the present models of ANN are primarily 

investigated by simulations run on workstations, special co-processors or transputer 

arrays. The fundamental drawback of such simulators is that the spatio-temporal 

parallelism that is inherent to ANNs is lost completely or partly. The computational 

capabilities of ANN simulators and the computational requirements of some ANN 

applications is illustrated in. Figure 2.1 [24J . This figure clearly shows that general 

purpose computing machines do not meet the computational requirements for most of 

the applications. An appreciable reduction in computing time becomes possible with 

special neural hardware enabling execution of large tasks in real-time. Apart from 
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the improvement in execution time, special neural hardware reduces the size of equip­

ment compared with simulators for the same task. The special neural hardware can 

be general purpose neuro computers, computers specially designed for executing neu­

ral algorithms, or dedicated custom processors, which are special hardware optimized 

for particular applications. The implementation methods for the neural hardware is 

classified as Direct Design and Indirect Design (25}. Direct Design is mapping the 

structure of a ANN model directly into hardware and indirect design is mapping 

ANN models into existing array processors, thus reducing the hardware complexity 

over single chip direct designs. The following section discusses these categories in 

detail. 

2.3 Classification of Hardware Neural Networks 

The widespread interest in hardware neural networks resulted in a number of imple­

mentations that are hard to overlook. Several books and survey papers on hardware 

neural networks have been published in the recent years (26, 27, 28, 29, 30, 31]. Each 

reference describes a different method of classifying the existing hardware implemen­

tations of neural networks. In general, the classification of hardware neural networks 

are analog, digital and hybrid, based on implementation. In [30], the authors classify 

the digital neural networks based on five criteria which are 

• Type of system 

• Numerical representation 
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Figure 2.2: Classification of Digital Neural Hardware (30] 

• Typical neural network partition per processor 

• Inter-processor communication network 

• Degree of parallelism. 

The classification is illustrated in Figure 2.2. 

In [31], the authors use a different classification based on the dedication of the 

hardware. They classify neural network hardware as VLSI chips. accelerator boards 

and multi-board neural computers, Most of the commercially available neural hard-

ware are general purpose, programmable, reconfigurable implementations with lim-

ited number of processing elements (26}. Based on the classifications presented in 

the literature, the neural hard ware can be classified as illustrated in Figure 2.3. As 

the classification shows, the indirect design methods use the existing parallel pro-

cessors to implement neural algorithms. These implementations are mostly general 
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Figure 2.3: Classification of Neural Hardware 

purpose neurocomputers, though they exhibit less reduction in hardware complexity 

than application specific designs! provide good improvement in execution times when 

compared to the simulators. Custom design techniques involve more design issues 

like precision requirements, speed of operation etc. In the following sections, more 

e.xplanation on the custom design of neural hardware with emphasis on digital im-

plementation is given. Some example architectures, including commercially available 

architectures~ are discussed. A compilation of some commercially available architec-

tures and their features, with respect to the classifications discussed above, is given 

in (29, 28, 31]. 

Dedicated neural hardwares are naturally affected by the implementation tech-

nologies, discussed earlier in the section. Both analog and digital design techniques 

have demonstrated some degree of success in their areas of application. To select be-
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tween digital and analog implementation techniques for neural hardware. many issues 

like storage and transfer of analog signals [25}, the speed and precision achievable, 

as well as adaptivity and programmability, need to be better understood. A survey 

of trends in implementation techniques reveals transition from analog techniques to 

digital techniques. In [29], published in 1992, the authors review developments in 

electronic neural nets in North America during that period. In their review, they 

mention that analog implementations are more prevalent than digital implementa­

tions. Out of over 40 chips they have referred, only 8 are exclusively digital. In 

(28], published in 1993, the author mentions that the analog approach is dominant 

in the United States and digital techniques are preferred in Europe and Japan. This 

trend of analog implementations seems to have moved towards digital implementa­

tions during the recent years. The review in (27, 31), confirms this transition, where 

the authors mention that digital implementations are widely used and a significant 

fraction of neural hardware uses digital implementation. This view is supported by 

the architectural survey of digital neuro computers in (30]. 

2.3.1 Analog Implementations 

Features of analog design are speed, low precision and small scale systems (single pro­

grammable interconnectable neurons or small ASICs). For dedicated applications, a 

neuron can be easily implemented by a differential amplifier [32, 25], with the synaptic 

weights implemented via resistors. This way, many neurons can be fit into one single 
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chip. The asynchronous updating properties of analog devices can provide extremely 

high speed computations that are qualitatively different from those of any digital 

computer [25]. Analog circuits also offer inherent advantage on the computation of 

sum of weighted inputs by currents or charge packets and the nonlinear effects of the 

de .... ices facilitating realization of a sigmoid type function. Although analog circuits 

are more attractive for the biological-type neural networks. they are more suscepti­

ble to noise, cross talk, temperature effects, power supply variations etc. In general. 

analog circuits are limited to low precision implementations. 

2.3.2 Digital Implementations 

Digital implementation is suitable for dedicated connectionist type neural networks 

(33]. Digital techniques offer some desirable features such as design flexibility, learn­

ing, expandable size and accuracy. Digital designs have overall advantages in sys­

tem level performance. ~Ioreover, digital implementations provide more flexibility 

in precision than the analog techniques. Development of CAD technology also helps 

convenient building of modular designs with digital techniques. The disadvantages 

of digital implementations are: larger chip area, relatively low speed of operation~ 

especially in the sum of weighted inputs, and conversion of analog inputs to digital 

form. As illustrated in Figure 2.3, the digital implementations are classified into VLSI 

chips, neural accelerator boards and neurocomputers. 
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2.3.2.1 VLSI Chips 

Digital implementations of this category can be a single processing element which is 

cascadable or multiprocessor chips, which contain many processing elements on one 

chip. Based on the number of processing elements in a chip, the chips can be coarse 

grained, medium grained, fine grained or massively parallel. The advantage of this 

implementation is that. generally they are optimized for a particular application and 

hence have a high speed and a good accuracy. The disadvantage is their custom design 

as they cannot adapt to changes in neural algorithms or they give poor performance 

for newer, improved algorithms (provided it can be programmed for accommodating 

different algorithms). Some example architectures are discussed in Section 2.4. 

2.3.2.2 Neural Accelerators and Neuro Computers 

Very large networks can be achieved by specialized neural hardware. \Vhile large 

general purpose parallel machines provide sufficient performance, alternatives are 

available with accelerators for conventional computers. Neuro computers also pr~ 

vide better performance with extensive software environments. Some of the available 

neural accelerators and neurocomputers, as provided in [31], are listed in Table 2.1. 

Several of these accelerator cards use fast RISC chips or DSP based c~processors to 

speed up the network processing. These cards usually come with software that in­

clude several neural network algorithms. A disadvantage of these c~processor cards, 

as explained in [31], is that they do not allow signals directly to the card but over the 
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II Type I Name I Chip I Performance II 
PC Accelerators AND HNet Transputer T 400 Not Available 

Transputer 
BrainMaker Tl TMS320C25 DSP 40MC. 500MF 
Current Tech. 2048 PE I Chip 4.9MC, 2.5MCU 
NlM32k 
HN C Balbo 860 Intel i860 80MF 
IBM ZISC ISA IBM ZISC036 800k pat/sec 
Neural Tech Tl TMS320C20 DSP 2MC 
NT6000 
N eurodynamX. Intel i860 45MC 
XR50 
Nestor NilOOO :"'estor NilOOO 40k pat/sec 
Rapid Imaging Intel ETANN 2GC 
0491El 
Telebyte 1000 properietary 140MC 
NeuroEng. 
Vision Harvest Intel i860 30MC, lOOMF 
NeuroSim. 
Ward Sys. 50MHz RISC 25MF 
NeuralBoard 

Neurocomputer Adaptive Sol. !nova N64000 5. 7GC, 1.5GCU 
CNAPS 
HNC SNAP HNC 100 NAP 500MC, 128MCU 
Siemens Siemens MA-16 800MC 
SYNAPSE-1 

~lC - MCPS, MCU - MCUPS, MF - MFLOPS, GC - GCPS ancl GCU - GCUPS 

Table 2.1: Neural Accelerator Cards and Neurocomputers (31] 
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slow PC bus. This reduces the advantage of using such cards for real-time processing. 

~lore discussion on some of the neurocomputers is provided in section 2.4. 

2.3.3 Hybrid Implementations 

Hybrid designs combine the best of analog and digital techniques. Typically the 

external inputs and outputs are digital to facilitate integration with other digital 

systems, while internally some or all of the processing is analog. The AT & T A~N A 

(Artificial Neural Network ALl!) [34] is an e..xample of a hybrid implementation. This 

chip is externally digital but uses capacitor charge, periodically refreshed by DA.Cs, 

to store the weights. Some other hybrid designs use digital weights but the processing 

is done in analog. 

2.4 Example Architectures 

Some of the commercially available hardware neural networks and some architectures 

developed by research groups and academic institutions are presented in this section. 

The commercial architectures are general purpose, programmable and cascadable 

implementations while the designs from research groups are mostly application specific 

implementations. The discussions on these examples give only an overview of the 

architecture of the hardware. Intrinsic details of the designs are given in the respective 

references. 
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2.4.1 ETANN from Intel Corporation 

ETANN, the Electrically Trainable Analog ~eural Network (80170N\V) is the first 

commercial chip implementation for the general purpose application of neural net­

works (26]. The architecture of the ETANN chip is shown in Figure 2.4. It consists of 

64 neurons and 10,240 synapses. A total of 160 synapses is connected to each output 

neuron. There are 128 configurable inputs available in the chip. The neuron also per­

forms the sigmoid function for dot product between the input signal and the weight 

value from the synapse array. High performance is achieved through full-fledged 

parallel processing. The chip has feedforward processing rate of 2 GCUPS and it 

can support 100I(CUPS learning rate for the individually addressable weight update. 

Learning is implemented by an off-chip approach for maximizing flexibility in order 

to support various learning algorithms such as the backpropagation and competitive 

learning. The off-chip learning is also a disadvantage. The chip has to be used in 

conjuction with a host station for learning and downloading the weights. This chip 

also has the disadvantage of analog implementation which restricts the resolution of 

signals. Typical resolution of the output signal is around 6 bits which is much less 

when compared to many other chips reported. The chip is used mostly in pattern 

recognition and image processing applications. 
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Figure 2.5: L-Neuro 1.0 Processing Element [35] 

2.4.2 L-Neuro 1.0 from Philips 

L-Neuro 1.0 [35] is an example of chips for sigmoid networks. The structure of the 

processing element of L-Neuro 1.0 is shown in Figure 2.5. In this architecture, the 

weights of each neuron are stored on-chip. On kilobyte of memory is arranged as 8 

bit weights for 64 neurons with 16 inputs each. The design of this architecture allows 

reconfiguration of weights to be 4 bit weights for 256 neurons. Double precision 

is used for the learning process and the ma.ximum number of neurons in this case 

reduces to 32. In the forward phase, a single serial-parallel multiplier performs the 

product and sums for a matrbc vector product. Each neuron is processed sequentially, 

producing a single output at a time so that the external nonlinear function (a look up 

table} can be used by each neuron. Operation for Hebbian learning (Delta Rule) is 

implemented, but not the complete backpropagation algorithm. This has to be done 
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in the host processor, thus considerably reducing the backpropagation performance. 

The chip is cascadable but networks whose weights exceed the size of the on-chip 

memory cannot be implemented due to the low bandwidth from external memory 

to the internal storage. This chip is suited for small embedded applications along 

with traditional microcontrollers. Due to the absence of direct memory interface and 

limited parallelization, conventional microprocessors of future generations can easily 

outperform this design. An improved version of L-Neuro 1.0, called the L-Neuro 2.3 is 

presented in [36] , overcomes the major limitations of its predecessor. It consists of an 

array of twelve DSPs. The new chip is able to perform 2 Giga arithmetic operations 

per second and has a throughput of 1.5 Gigabytes per second. 

2.4.3 HNClOO Chip from HNC 

HNC's processing element (30, 25] has some features of traditional processors like 

floating point computations and its structure is simple and orthogonal. The HNClOO 

processing element is shown in Figure 2.6. The core of the processing element is a 

32 bit floating point multiplier and a 32 bit ALU, handling both floating point and 

integer operands. There are data registers, instruction registers and status registers 

around these functional units. The number of processing elements per chip is limited 

to four due to the floating point implementation. The communication between mem­

ory and processing elements is performed through bidirectional datapaths between 

local memory and processing elements, global memory and processing elements and 
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Figure 2.6: HNClOO Processing Element [30] 

between neighboring processing elements. Many HNClOO chips are connected in a 

systolic ring structure to form the SNAP (SIMD ~eurocomputer Array Processor) 

system [25]. The architecture of the SNAP system is shown in Figure 2.7. A complete 

SNAP system consists of 16 to 64 processing elements on several boards. 

2.4.4 N64000 Chip from Adaptive Solutions 

This chip is one of the examples of parallel neuro computers using programmable cus-

tom processing elements. Adaptive Solutions CNAPS [37) is one of the first cornmer-

ciallarge neuro computers. This uses the regularity of the broadcast bus architecture 

[9) to reconfigure faulty elements (by bypassing) and improve yield. The architecture 

of the N64000 processing node is shown in Figure 2.8 and the CNAPS Inter-chip 

communication is illustrated in Figure 2.9. As the figure illustrates, the connectivity 

between processing elements is reduced. This gives the advantage of expansion by 
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Figure 2. 7: SNAP system architecture [30} 

I 

Figure 2.8: Architecture of N64000 processing element (30] 
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simple addition of ~64000 chips on the bus and reduction of packaging and mounting 

costs. The processing element is similar to a very simple DSP and each PE (denoted 

by PNO to PN64 in the figure) holds a row of the weight matrLx and accumulates the 

products of the inputs and internal elements of the matrLx. The weight update in error 

backpropagation is achieved by duplicating the weight matrLx in the processors and 

both matrices are updated one after the another. The performances as reported by a 

study in [30], is 9.671 GCPS and 2.379 GCUPS. The great advantage of the C~APS 

architecture is the versatility of the processing elements and good programmability. 

2.4.5 MANTRA 1 from EPFL 

This is an architecture from the research institute EPFL (Ecole Polytechnique Feder-

ale De Lausanne) in Lausanne. Switzerland. MANTRA 1 [30] is a systolic mesh 

processor for implementing neural algorithms. This design attains one more degree 

of parallelism by assigning up to one processing element per synapse. The advantage 
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Figure 2.10: The MANTRA 1 Architecture (30] 

Figure 2.11: The Genes IV Architecture [30) 

of this method is, higher degree of parallelization and hence higher throughput and 

a better PE utilization. The computational heart of this system is a bidimensional 

mesh of custom processing elements called GENES IV (30). The structure of the 

processor is shown in Figure 2.10. The structure of the Genes IV processing element 

is shown in Figure 2.11. All the input and output operations are performed by the 

processing elements located in the North-West to South-East diagonal. The authors 

explain that the processing element implements a few general primitives sufficient for 
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backpropagation, Hopfield nets, Kohonen feature maps etc. They claim that 100% 

utilization rate is achieved. in normal conditions. The array implemented in MA:"'TRA 

1 can contain up to 40 x 40 PEs running at 8 MHz. The system is controlled by a Texas 

TMS320C40 processor, which takes care of the SIMD part, instruction dispatching 

and input/output management. The processor also controls communication with the 

host computer. 

2.4.6 HiPNeT-1 from ICSI 

The International Computer Science Institute (ICSI) at University of California. 

Berkeley, presents a highly pipelined neural network architecture called the HiPNeT-

1 in (38]. The authors claim that the system sustains a learning rate of one pattern 

per clock cycle. At a clock rate of 20MHz each neuron performs 200 MCUPS. Mul­

tiple such neurons are integrated onto a single VLSI chip. The architecture of the 

HiPNeT-1 neuron is shown in Figure 2.12. The pipeline operates in two basic modes. 

forward and update modes. In the forward mode, weight values are read from memory 

in one cycle and added to the accumulator in the ne.xt. In the update mode, value of 

delta weight ~Wij is read from the error input latch and stored in the accumulator. 

Each weight is read from the memory, added to the update and written back to the 

memory. But a read after write pipeline hazard is ignored assuming backpropaga­

tion learning does not cause this hazard. The authors justify this assumption with 

simulations showing that the performance is not affected. 
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Figure 2.12: Architecture of HiPNeT-1 Neuron [38] 

2.4.7 Neural ASICs 

The architectures discussed in the earlier sections are general purpose, massively 

parallel architectures for neural algorithms. In this section, two custom designed 

architectures for specific applications are discussed. 

2.4.7.1 Neural ASIC for real-time classification 

A neural ASIC architecture for real-time dassification is presented in [39J. The au-

thors have designed a digital ASIC module which is run-time reconfigurable. The 

ASIC module is a multilayered perceptron (MLP) and a tree of MLPs are formed 

by connecting two of these modules. The authors state that the design combines 

high speed and precision. The architecture is presented for variable precisions and 

VLSI implementation is done using 8 bit integer arithmetic. The design is based 

on the MLP algorithm and is optimized for parallel execution. This is achieved by 
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Figure 2.13: Neural ASIC architecture for classification (39] 

interchanging instructions of the algorithm to attain maximum parallelism and im-

plementing it in hardware. The disadvantage of this design is that it implements 

only the forward phase of the MLP algorithm and does not constitute learning. The 

learning has to be performed in software. The architecture is shown in Figure 2.13. 

2.4.7.2 Neural ASIC for supervision of water pollution 

The design of a neural ASIC that implements a system for low cost supervision of 

water pollution is presented in [40]. A trainable multilayer perceptron is designed 

which estimates the parameter to estimate the water quality. The architecture in-

eludes weight multipliers, product sum, sigmoid function and backpropagation. The 

architecture of the neuron is shown in Figure 2.14. The design has 8 neurons in the 

first layer and one neuron for the output layer. The design is implemented using 0.7 J.L 

C:VlOS technology and 8 bit integer arithmetic. More general purpose and application 
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Figure 2.14: ASIC architecture for supervision of water pollution 

specific designs are presented in [30, 41, 42, 25 , 43, 44, 451, for further reference. 

2.4.7.3 A Single Chip ASIC for Image Processing 

A digital implementation of the recall phase (after training) of a backpropagation 

neural network for real-time image classification is presented in (46]. This implemen-

tation is application adjustable and has been implemented using similar procedures 

followed in this thesis. The authors claim that a network with up to 65536 inputs, 

8 hidden neurons and 32 output neurons is possible. The input data range is :::::::: 

0.0 ... . ,1.0 with 8 bit resolution. The architecture of the chip, ~eNEB is shown in 

Figure 2.15. This design is used for a real-time image classification application and 

uses fixed point representation for the inputs and weights. The design uses external 

weight storage scheme, i.e. the training is done offtine and the final set of weights are 

loaded for use with external inputs. The design has been verified for its functionality 

51 



-·--

Figure 2.15: Architecture of NeNEB (46] 

in comparison with the results of software simulation using a program in C language. 

The design is mostly suited for applications that would require low resolution. This 

restricts the area of application of this design. 

Different commercially available and academic research level architectures of hard­

ware neural networks were discussed in tb.e earlier sections. Most of the commer­

cially available, chip level architectures consisted of complex neurons that can be 

programmed for different applications. The hardware complexity of these designs 

were very large and they had very few neurons on one chip. On the other hand, some 

other designs had many neurons, as many as 1024, in a single chip but they were 

simple and can be used for only limited applications. The neuro computers that were 

discussed are mainly for huge applications that would require massive parallelism in 

their execution. But for the problem addressed in this thesis, a single chip that is 
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optimized for the chosen application would be most suitable. This is possible only 

with a custom designed neural processor chip that meets all the requirements of the 

application. Moreover, new ideas can be incorporated in the design which would im­

prove the overall system efficiency. Besides, this would be a good contribution to the 

research in hardware neural networks. 

2.5 Classification of DIANNE-Dl.O 

DIANNE-01.0 (Digital Artificial Neural Network- Detector, Version 1.0), the digital 

neural processor developed for this thesis is a custom designed architecture with on­

chip learning. Although the design is focused towards detection applications, it can 

be used for other applications which require similar structure and size. The partition 

per processing element of this design is a neuron, i.e a neuron forms a processing 

element. Eleven such neurons form the processor with four neurons in the input 

layer, si-x neurons in the hidden layer and one neuron in the output layer. The 

design includes an on-chip preprocessor for the example application chosen, distance 

protection of power transmission lines. The device can be configured to bypass the 

preprocessor and receive external inputs directly. The processor can be configured to 

learning mode implementing backpropagation algorithm or test (run) mode with the 

stored weights. The architecture is an interleaved pipeline structure so that all the 

neurons function simultaneously in real-time. The layers are pipelined so that the 

throughput is increased. The design is implemented using 0.5 J1. CMOS technology. 
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More explanation on the architectural design of DIANNE is provided in Chapter 4. 

2.6 Summary 

In this chapter, hardware neural networks were discussed in detail. The need for 

hardware neural networks and the advantages and disadvantages of different methods 

of implementation of hardware neural networks were explained. :\ classification of 

hardware neural networks compiled from the literature survey was presented. A brief 

discussion on the digital neural processor designed for this thesis was presented and 

the features of the design were specified. Some of the commercially available neural 

network hardware and other interesting application specific designs were explained. A 

compilation of alternatives for massively parallel neural hardware was also presented. 
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Chapter 3 

Problen1 Description, Software 
Design and Performance Analysis 

3.1 Introduction 

In the preceding chapters. basics of AN.Ns and evolution of hardware ANNs were intr~ 

duced. Different categories of architectures, methods of implementations and training 

schemes were discussed. Some of the commercially available hardware neural chips, 

neural accelerators and neural computer boards were presented. Performance evalua-

tion of hardware ANNs and methods of analysis were presented. A brief description of 

the neural processor developed for this thesis was given. In this chapter, the problem 

chosen for implementation is described. Discussion on the software design of the ANN 

and the preprocessing methods used on the inputs to the ANN are described. De-

tailed explanation on the simulator developed for simulation of the ANN used for this 

work is given. The performance analysis of the ANN using the software simulator is 

presented and quantization analysis which would affect the hardware implementation 

is addressed. 
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Figure 3.1: Transmission line system 

3.2 Distance Protection of Transmission Lines 

As explained in the earlier chapters, the objective of this work is to design and imple-

ment a digital neural processor for detection applications. As an example application, 

the distance protection of transmission lines (47, 48] is chosen. Detailed explanation 

on the problem is described in the following section. Distance protection of trans-

mission lines is to protect the power system from transmission line faults by isolating 

(tripping) the line(s) under fault. The line diagram of a transmission line system is 

shown in Figure 3.1. 

The faults in a transmission line are categorized as 

• Line to Line faults 

• Line to Ground faults. 

Under each category there are single line, two line and three line faults. For each 

fault condition the fault signal is different and the protection system should be able 

to isolate the fault under all conditions. Apart from these, there could be conditions 
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Figure 3.2: Voltage and Currents at fault condition 

in which the faults are momentary, for which the system should not isolate the system 

even though it identifies the fault in the system. The protection system should be 

able to differentiate between momentary and sustained faults. The protection system 

should also be capable of isolating only the part of the system that is faulty. This 

allows other parts of the transmission system to operate without any interruption. 

The zones of operation, for a protection system of a transmission line is illustrated 

in the Figure 3.1. The conventional method is to use relays like impedance relays, 

over-current relays or over-voltage relays. 

The relays operate based on the behavior of the system under fault. A typical 

behavior of the voltages and the currents in a transmission system under fault is shown 

in Figure 3.2. The voltages decrease and the currents increase, resulting in the fault 

impedance to decrease. Over-current relays identify the increase the current and the 

impedance relays identify the change in the fault impedance. The fault impedance for 

different fault conditions are significantly different. The relays are set to identify the 

57 



fault impedance that signifies a fault in the system, thereby tripping the line under 

fault. The momentary faults in the system are taken care by incorporating a delay 

in the operation of the relays, which would avoid the tripping in case of momentary 

faults. The disadvantage of using conventional relays is that they operate on fixed 

settings and have to be reset for changes in the network configuration. Changes 

in network condition can also affect the operation of the relays. This affects the 

performance of the relays to a large extent. ANNs, as explained in the previous 

chapters, have evolved to be an excellent tool for adapting to the changing network 

conditions and configurations, and provide excellent performance. 

Coury et al. [18} has described an ANN solution for the protection system de­

scribed above. A brief e..xplanation on this work was presented in Chapter l. The 

authors have presented a two layered MLP architecture with magnitudes of currents 

and voltages as inputs and a trip / no trip signal as the output. They have used 

backpropagation algorithm for training the ANN and have used 2000 sets of training 

data for different fault conditions. They claim the ANN improves the protection sys­

tem efficiency very much. They have mentioned a training time of 2 CPU hours. The 

solution, though attractive in terms of improvement in efficiency, has a long train­

ing time. Moreover, the implementation has been done in software which makes the 

protection system less reliable. A hardware realization with proper modification in 

the learning methodology and the proper analysis and preprocessing of training data 
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would improve the learning rate , performance efficiency and the reliability by many 

fold. 

3.3 Problem Description and Method of Solution 

As described in the previous section, ANN is a better tool for the distance protection 

application. The objective of the thesis is to identify an .\NN structure which is 

optimized for this application and implement it in hardware. The details available 

about the fault conditions are the simulation data obtained from power system fault 

simulation [47]. The data available for analysis are the instantaneous magnitudes of 

voltages and currents of the three phases for different fault conditions. A neural net­

work simulator has been designed using C++ language to identify the ANN structure 

required for the training using the data available. A preliminary simulation analysis 

of the data shows that the data requires preprocessing instead of direct feeding to the 

AN~. The approach to the design of the ANN hardware for this application consists 

of four distinct phases. They are 

I. Data Analysis and Feature Extraction 

II. Software Design and Simulation 

III. Quantization and Performance Analysis 

IV. Hardware Design and Implementation. 

The first three phases of the work are explained in the following sections in detail. 

These involve detailed analysis of the data to identify the inputs to the ANN and to 
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identify the structure and size of the ANN required for this application. The main 

focus of the analysis is to arrive at a set of preprocessing methods that would make 

the training data friendlier to the ANN, reducing the learning time and the size of 

the ANN, and identifying the optimum learning method for the application. This 

also involves quantization analysis. analyzing the optimum number of bits required 

to represent and store the parameters of the :\N N such as the learning rate, momen­

tum, inputs, weights, outputs etc. A detailed discussion on the software design of 

the C++ simulator and the results of the simulation are presented in the second and 

the third parts. The fourth phase, hardware design and implementation, is explained 

in the next Chapter. This includes the design of the hardware neural network, the 

main objective of the work and the VLSI implementation. The part also discusses 

the functional verification and testing of the hard ware ANN in detail. 

3.4 Data Analysis and Feature Extraction 

As mentioned in the previous section, the data available for analysis are the instan­

taneous magnitudes of phase voltages and currents for different conditions. Each set 

of data consists of two cycles of pre-fault condition and three cycles of post-fault 

condition. The data set is obtained from simulation of a single line to ground fault 

on a transmission line. The data is sampled at 66 samples per cycle, i.e. 330 sample 

data points for one condition of fault. The fault simulation has been conducted for 

different fault impedences and different fault inception angles. The simulation also 
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includes faults at different locations of transmission line as seen by a relay at one end 

of the transmission line. The locations include 40%! 60%, 80%! 85%, 87%, 89%, 90%! 

91%. 93% and 95% of distance from one end of the line. For each of these locations 

three sets of values (voltages and currents) for different fault impedance and fault 

inception were obtained. Of these fault locations, values within 80% are considered 

to be within the fault zone of the relay and values beyond 80% are considered to 

be outside the fault zone. These values were divided into two sets. one for training 

and one for testing. This amounts to 2500 sets of data for training and 600 sets of 

data for testing. The analysis is focused on single line to ground faults, under the 

assumption that the preprocessing required for all kinds of faults would be similar, 

based on the preliminary analysis of data. The preliminary analysis shows that the 

general behavior of voltage signal under single and three line fault are similar. though 

intrinsic details are different. This holds the preprocessor assumption good for the 

analysis. A plot of the data for a single line to ground fault with zero fault impedance 

is given in Figure 3.3. The figure illustrates that the voltages decrease and the cur­

rents increase after the fault . It can also be seen that the voltage signals have more 

harmonics than the current signals. From the figure it can be seen that the voltage 

varies significantly more than the current, which has a smooth variation. A simula­

tion of the neural network justified the requirement of a preprocessor for the data. 

The results of the simulation are discussed in the next section. This section addresses 
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Figure 3.3: Fault voltage and current plot 

the process followed to arrive at the preprocessing methods used on the data. 

A closer analysis of the data, shows that two separate preprocessors are required, 

one for significantly separating the fault from the normal signal and other for sepa-

rating the fault within the relay zone from the fault outside the relay zone. As it can 

be seen from the fault data plot, there are points of data which have similar magni-

tude but require conflicting outputs, as illustrated in the Figure 3.2, which further 

strengthens the necessity for a preprocessor that would eliminate the conflicts thus 

making the input friendly to the ANN for learning. As hardware implementation is 

the main focus of the thesis, hardware complexity of the preprocessing methods are 

given importance. Standard transforms and filters like the Fast Fourier Transform 

(FFT), due to their high hardware complexity are avoided, though they might solve 

the problem. The approach is to arrive at a preprocessor which uses the minimum 

hardware and provides an output which could be learned by the ANN with the least 

difficulty. This rules out use of many multiplications and divisions as they involve 
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Figure 3.4: Plot of V-I Difference 

high hardware complexity. Apart from the hardware complexity, the number of data 

points to be used before the fault could be identified should be minimum, for e."Cample , 

less than half a cycle (33 sample points). This also reduces the possibility of using 

FFTs for preprocessing as they require at least a cycle of information for a proper 

analysis. Following subsections discuss the methods of analysis for the preprocessors 

mentioned earlier in the section. 

3.4.1 Fault Identification 

A closer look at the Figures 3.3 and 3. 2 indicates that the difference between current 

and voltage remains constant before the fault and increases significantly after the 

fault . A plot of the V-I difference is shown in Figure 3.4. The plot illustrates that 

the V-I difference increases significantly after the fault with many oscillations in the 
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signal. The signal is similar to the voltage signal but the oscillation is magnified due 

to the difference signal which adds to the significance in the variation. This justifies 

using the V-I difference instead of voltage signal alone. But just the V-I difference 

does not significantly differentiate the fault signal from the normal, it just magnifies 

the variation. The V-I signal before the fault occurrence is a proper sinusoid which 

means the rate of change of magnitude varies steadily. Post-fault V-I difference signal 

exhibits strong oscillations with the oscillations degrading towards zero. An averaged 

difference on the V-I difference would result in a waveform that would differentiate 

the part with oscillations, post-fault signal, from the normal signal. The function that 

was used for this is shown in equation 3.1. where t't is the ith value of the resultant 

signal and .Xi is the ith value of the input signal, the V-I difference. 

(3.1) 

A plot of the transformed result is shown in Figure 3.5. The figure illustrates that 

in the transformed signal, the post-fault region is clearly different from the normal 

region. The ANN would be able to learn this differentiation very quickly when com­

pared to the original raw signal. The simulation results are discussed later in the 

chapter. The transformed signal still has a region of conflict a.s illustrated in Figure 

3.6. This could be solved by accumulating points together which would eliminate 

the spurious points. From the equation 3.1, the accumulated version of the function, 
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Figure 3.7: SADI Filtered Signal 

named as SADI (Sum of Averaged Differences), is given in equation 3.2, where Fi is 

the ith value of the SADI filtered signal. 

i+5 

F, = L abs (rj) (3.2) 
j=i-5 

The SAD! filtered signal is illustrated in Figure 3. 7. The plot shows that the fault 

signal is clearly differentiated from the normal signal. The neural network would be 

able to learn this very quickly. The following subsection discusses the preprocessor 

for the separation of the fault within the relay zone and the fault outside the relay 

zone. 
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3.4.2 Fault Zone Identification 

This part of analysis involves detailed statistical analysis of the fault data. The differ­

ence in the fault zone identification is that the voltage and current signals for different 

fault locations are very similar. Analysis of the data indicates that the oscillations 

with respect to different fault locations are distinct to some extent. This suggests 

domination of different harmonics in the signals corresponding to a fault location. 

Csing a FFT [49, 50] and analyzing the frequency components [51] would solve the 

problem but that would increase hardware complexity very much. This would also 

be a slow process, as data has to be collected for atleast one full cycle. An approach 

similar to the SADI approach is required to solve this. Detailed statistical analysis 

on half a cycle of post fault and half a cycle of pre fault data shows that absolute 

differences, difference of absolute values of successive signal variations (as illustrated 

in equation 3.3), differentiates the signals corresponding to different harmonics. To 

reduce the hardware complexity further, the sign of the absolute differences signal 

is alone considered. The resultant signal shows clear differences among different fre­

quency components and exhibits different duty cycles for different fault locations. 

This binary signal can be easily transformed into a signal differentiating faults within 

the relay zone and the faults outside the relay zone, as they have distinct difference 

in the mix of harmonics. This preprocessor is named SIGADI (SIGn of Absolute Dif­

ferences). The absolute differences and the SIGADI function are given in equations 
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Figure 3.8: Plot of the SIGADI function results 

3.3 and 3.4. 

(3.3) 

F.· = { 0 l'i < 0 
' 1 l'i2:0 

(3.4) 

The results of the SIGADI function are illustrated in Figure 3.8. 

To verify the operation of SIGADI function, a pure sinusoidal signal was mLxed 

with known harmonics and applied with SIGADI. The results encourage the use of 

this approach. The plots of that analysis are shown in Figure 3.9. Modification of 

the resultant signal to a signal differentiating faults of different zones is achieved by 

simple binary polynomial transforms [52) . With these two preprocessed signals the 

inputs to the ANN are the three SADI filtered signals corresponding to each phase 
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Figure 3.9: Verification of SIGADI 

and the SIGADI signal for determining the fault region. The preprocessing makes 

the input to be ANN-friendly and hence improves the learning time dramatically. 

The results of the simulation and the software design are discussed in the following 

section. 

3.5 Software Design and Simulation of the ANN 

The results of the data analysis explained in the previous section were further studied 

for the performance with the ANN to identify the learning rate and the structure of 

the ANN. The objective of this analysis is to identify the optimum structure and 

size of the ANN corresponding to a set of filtered data and to identify methods of 

improving the preprocessing to minimize the size of the ANN, hence reducing the 
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hardware complexity of the final implementation. In the following subsections, the 

software design of the ANN and the results of the simulation at each stage of data 

analysis are discussed in detail. 

3.5.1 Software Design 

The analyzed data has to be used to determine the ANN size and structure. The 

hardware complexity analysis has also to be done. Though the available commercial 

versions of A:-.I'N simulators, like ~lATLAB and Brainmaker, allow different struc­

tures and sizes of ANNs, they have many restrictions over the number of layers and 

the training procedures. Moreover, they do not allow simulation using fi...xed point 

arithmetic for different bits. This makes it necessary to develop a simulator that 

would be flexible and can be used for Boating point as well as fi...xed point analysis. 

The ANN Simulator was developed using C++ programming language (53, 54], in 

an object oriented manner. The simulator consists of two modes of simulations, one 

using the floating point arithmetic and the other using the fixed point arithmetic. 

The floating point simulation is used for identifying the optimum ANN structure for 

the application and the fixed point simulation is used for quantization analysis, which 

is explained in the next section. The current simulator design consists of four classes, 

input neuron, hidden neuron, output neuron and the multiple precision. Multiple 

precision class is used only in the case of fixed point analysis. The class hierarchy is 

shown in Figure 3.10. The current design is not fully object oriented, as the main fo-
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Figure 3.10: Class Hierarchy of the ANN Simulator 

cus was to determine the hardware requirements and the performance metrics, which 

the simulator satisfies. Improvements to the current design are discussed in Chapter 

5. 

All the neuron classes are modularized, same as the hardware modules present 

in the respective neurons. The input neuron class receives input from the external 

sources, in this case a input file. The hidden and output neurons receive inputs from 

the input and hidden neurons respectively. All the three classes of neurons have 

similar structure except some functional differences like the backpropagation and 

computing of backpass sums. The ANN is integrated in the main module which uses 

user information to determine the network structure and the network parameters and 

the learning measures. The main module also acts as an interface between different 

layers of neurons and for file handling and error handling. The simulator uses the 
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backpropagation algorithm for the learning and learning is done in cycles of train and 

test, i.e. after each training pass a set of data is tested and the percentage of test set 

correctness is calculated. The test set correctness is used as the measure of learning. 

3.5.2 Simulation Results 

As explained in the previous section, this section addresses the simulation results at 

different stages of data analysis, but only for the floating point simulations. The fi."Xed 

point simulation results are discussed in the next section. A preliminary simulation 

of the available raw data had a poor performance. This is due to the fact that similar 

data points required conflicting outputs. This gives oscillations in the sum of square of 

errors as the number of passes increases. The simulation showed that the :\.NN never 

settles and takes more than 3000 passes of the input set of data, which is expected 

based on the data analysis. The simulation at each stage also involves identifying 

the internal parameters for the data set. It should be identified by simulation with 

a different set of parameters. The parameters include the learning rate, momentum, 

delta weight, initial weights etc. The learning rate could be different at every neuron 

and it could be varied for each pass. ln this application the learning rate was decided 

to be constant owing to the fact that incorporating variation of learning rate for each 

pass would increase the hardware complexity. Moreover, with proper preprocessing, 

as explained in the earlier sections, it would require very few iterations for the ANN 

to learn. The ANN parameters would not vary very much in these few iterations. So, 
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it would not be required to implement the hardware for these parameter variations. 

A plot of the performance of the ANN with different learning rates is given in Figure 

3.11. It can be seen from the plot that the variation in performance for learning rates 

between 0.75 and 1.5 is very low. Learning rate of 1.0 was taken to be optimum 

for convenience in representation as well ease of arithmetics. The ANN was trained l 

and tested using data sets from every level of preprocessing (including the data sets 

preprocessed using the intermediate equations like, just the V-I differences) to analyze 

the performance. The final data analysis yielded an ANN-friendly data set. The data 

set prior to the final set (prior to summing) was also learnt by the ANN within 20 

passes, which is a great improvement in performance over the initial simulation results. 

73 



120.---------------------------------------------~ 

100 

Q) 80 
C) 
«S 

i 60 
~ 
Q) 

a.. 40 
'

-Sum Squa"e Error I 
-%of Test Set Correct I 

20 ~ 

0 ~0----~~--~--~2~==~3~--~4----~5----~6~--~~1 
Passes . 

Figure 3.12: Simulation results with final data set 

But those data points also had spurious points that required conflicting output values 

for similar inputs which resulted in oscillations in the ANN learning. The final data 

set preprocessed using the complete SADI filter eliminated the conflicting points, and 

the ANN was able to learn within 6 passes of the set of inputs, with a percentage 

of test set correctness at 99.8% (of the 600 data sets for test). The plot of the 

simulation results are shown in Figure 3.12. It can be noted that the convergence 

is fast and smooth without any oscillations. The ANN structure was decided to be 

a 4-6-1 multilayered perceptron after simulations with the preprocessed and the raw 

data on a trial and error basis. The ANN structure is shown in Figure 3.13. 
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3.6 Quantization and Performance Analysis 

This section discusses the simulation results of the quantization analysis, which is 

fi.xed point simulation analysis to determine the optimum bits required to represent 

the inputs, outputs and the parameters of the ANN. The multiple precision class 

mentioned in the software design is used to achieve this. The inputs, weights, outputs 

and the parameters were initially represented in 32 bits, containing 16 bits of integer 

and 16 bits of fraction. The ANN was simulated with data of this representation to 

verify the results of simulation in correspondence with the floating point simulation. 

The results are shown in Figure 3.14. The number of bits was reduced for all the 

parameters and the performance was noticed to degrade below 14 bits (4 bits for the 

integer, 9 bits for the fraction and 1 sign bit). The results are shown in Figure 3.15. 
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Figure 3.14: Verification of FLxed point with Floating Point Simulations 

The data set appears to be representable in fewer number of bits than 14 bits. The 

reason for the seemingly higher number of bits required for representation is that 

the backpropagation needs more resolution than other learning algorithms. This is 

because, the error value gets very small as it propagates from the output to input 

layer and correspondingly the number of bits required to represent the small changes 

are higher. It can be noted from the figure that when the number of fraction bits is 

reduced below 9, the performance degrades considerably. Further reduction can be 

done in the bits required for inputs as the variation of weights and parameters at the 

output are coarser and hence can be accommodated in fewer number of bits. The 

results corresponding to the simulation with variable weight bits is given in Figure 

3.16. The simulation showed that the reduction in parameters (momentum etc.) can 
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be two bits further making it 14 bits for the weights and 12 bits for other values like 

inputs, parameters etc. But to maintain generality of the hardware implementation, 

the number of bits was decided to be 16 bits for all, 9 bits for the fraction, 6 bits for 

the integer and 1 bit for sign. The hardware design aspects are discussed in the next 

chapter. 

3.7 Summary 

This chapter discussed in detail, the problem, the solution and the method of air 

proach. The software design of the simulator was discussed in detail explaining the 

phases of simulation. The results of the simulation were explained in detail and the 

relation of the results with the hardware implementation was emphasized. The quan­

tization analysis was discussed and the performance of the ANN for different bits 

was presented and the results for the same were provided. Detailed explanation on 

the data analysis and the method of preprocessing were presented. In the following 

chapter. the hardware design aspects of the ANN are discussed. 
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Chapter 4 

Hardware Design, VLSI 
lrnpleinentation and Testing 

4.1 Introduction 

In the earlier chapters, the basics of ANN and some reported methods of ANN imple-

mentation and known hard ware VLSI neural networks were discussed. In the previous 

chapter, the selected detection application, namely the protection of transmission line 

system, was discussed in detail. The software design of the neural network simulator 

developed for the analysis was described and the results of the simulation were pre-

sented and discussed. The methods of preprocessing and the results of the analysis 

were presented. The quantization analysis, the results and verification of the results 

were also explained. Based on the results obtained in the simulation, the hardware 

design of DIANNE, the Digital Artificial Neural NEtwork, will be addressed in this 

chapter. The overview of the architecture and the details of the design are explained 

in detail. The chapter discusses the datapath and control units of the design and 

the issues related to the design. The testing of the design and the features of the 
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Figure 4.1: Flow chart of Design Flow 

design are also described. Some of the implementation constraints and the methods 

of solution are also explained. 

4.2 Design Cycle and Environment 

The design How and the development environment are described in this section. :\s 

explained in the previous sections, VHDL was used to simulate and synthesize the 

components of the neuro processor. The design How was provided by the Canadian 

~licroelectronics Corporation (CMC) [55}. A flowchart illustrating the design How 

is given in Figure 4.1. As the figure shows, the design is coded using VHDL and 

analyzed for functionality using the Synopsys VHDL System Simulator (VSS) . The 

waveform viewer helps in visualizing the functionality of the circuit designed. The 

waveforms corresponding to specific components are presented when the components 

are described in later sections. The next phase of the design flow is synthesis in which 
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Synopsys design analyzer is used for synthesizing the individual components. This 

involves optimization and mapping of components to specific cell libraries, CMOSIS5 

in this case, and creating netlists. These netlists are tested and verified for function­

ality again (shown as gate level simulation in the figure). The verified netlists are 

then imported to the Cadence tools for VLSI design. This involves Verilog XL inte­

grated simulation, placement and routing, Design Rule Checking (ORC) and stream 

file creation. The steps are illustrated in the figure. 

4.3 Overview of the Architecture 

:\s described briefly in Chapter 2, DIANNE is a custom VLSI neural processor with 

the typical partition per processing element being the neuron. The neural processor 

is a 16 bit architecture with integer arithmetic owing to the results of the integer 

arithmetic simulation explained in the previous chapter. The block diagram of DI­

ANNE is shown in Figure 4.2. As the figure shows, there are two distinct parts of the 

design, the preprocessors and the neural processor. The preprocessors are the SADI 

and SIGADI filters explained in the previous chapter. The preprocessors are opti­

mized for the protection application and can be used for applications requiring similar 

preprocessing. The preprocessors could be bypassed by configuring the initial control 

settings if the application does not require these preprocessors. The details of the 

control settings will be described in later sections. The design was carried out using 

VHDL (Very High Speed Integrated Circuit Hardware Description Language) [56], 
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and functionally verified and synthesized using the CAD tools Synopsys and Cadence 

[57, 58]. The architecture was partitioned into neurons as mentioned before: input, 

hidden and output neurons. The layers of DIANNE operate in a pipelined fashion. 

The neurons in the layer are a mix of pipelined and multicycle implementation (59]. 

These implementation methods reduce the hardware complexity and increase the 

speed of operation. The following section describes the pipeline of DIANNE layers. 

4.3.1 Pipelining of Layers in DIANNE 

As mentioned in the previous sections, DIANNE can be configured to be operated 

in two modes, the training mode and the test mode. The training mode uses the 

backpropagation unit for modifying the weights and the test mode uses only the 

forward pass unit. The test mode is the real-time operation mode prior to which 

the training has to be done and the weights stored on the on-chip registers. The 

number of stages of pipeline differs depending on the mode of operation. Figures 

4.3 and 4.4 show the different stages of pipeline in test mode and training mode of 

operation respectively. The stages FPLl to 3 are the forward pass stages and the 

BPLl to 3 are the backpropagation stages. As it can be seen from the figures the test 

mode has only the forward pass operation as no backpropagation needs to carried 

out. In the training mode, it can seen that the backpropagation and the forward pass 

operations overlap. Moreover, for the error to be calculated for a set of inputs, they 

have to pass over all the forward pass stages before the first backpropagation could 
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begin. This introduces a delay in the adjustment of weights which interferes with 

the following forward pass operations. But the design has been done neglecting the 

delay due to the fact that backpropagation is an iterative process and the delay in 

modification of weights would be adjusted with more iteration steps. This design step 

has been verified in the software simulation for the correctness and the delay does 

not affect the convergence rate of the neural network for this application. This might 

affect the performance in case of applications that require more accurate updates 

of weights. But this trade-off is better than restricting to the sequential nature of 

backpropagation algorithm. 

The design method within one neuron is a multicycle implementation which can 

be called an interleaved pipeline. More explanation on the architecture of each of 

the class of neurons is explained in the following sections. The following subsection 

describes the implementation of the preprocessors. 

4.3.2 Design of the Preprocessors 

The previous chapter explained the method by which the preprocessors were &rived 

at. It was stated that the preprocessor consists of SADI filter and SIGADI filter. The 

block diagrams for the filters are given in Figure 4.5 and Figure 4.6. The outputs of 

the preprocessors are fed to the neural network block for training. The preprocessors 

consist of delay block and adder blocks as shown in the Figures 4.5 and 4.6. The delay 

blocks allow points of the cycle to be stored and processed to indicate any faults in 

85 



Arithmetic Block 

rJ 
Input 

Final Adder Block 
and 

Latches Output Latch 

Sh•fter Block f---..\ 

-"" 
y 

r--v 

Figure 4.5: Block Diagram of SADI 

real-time. This avoids the use of any external fault identifier. The filter functions 

explained in the previous chapter were implemented using VHDL. The preprocessors 

were simulated and tested for the functionality using test benches in VHDL. The 

results of the simulation are discussed in the section 4.6. 

4.4 DIANNE-Dl.O - Datapath Design 

The data path of the processor consists of three classes of neurons. They are the input, 

hidden and output neurons. Each neuron consists of a datapath and a local control 

unit. The design of the local control unit will be discussed in the section 4.5. The 

datapath consists of three units called the forward pass unit, the backward pass unit 

and the register file unit. The functions of the units and the design are explained in 

86 



Output (tS bits) 

~ H Combinational 
Input ' Aritllmatic Block Logic: and 

Latcllu 
~ H Output Latches 

Inputs 

Single b1l Signal 

IU ~...----~11 

Figure 4.6: Block Diagram of SIGADI 

the following subsections. The block diagram of the datapath of a general neuron is 

shown in Figure 4. 7. 

4.4.1 Forward Pass Unit 

The function of the forward pass unit is the same in all classes of neurons. The 

forward unit computes the weighted sum of inputs and outputs the sigmoidal func-

tion equivalent of the weighted sum. The block diagram of the computational part 

of forward unit is given in Figure 4.8. As the figure illustrates the forward unit re-

ceives input from the external source or the preprocessors based on the initial control 

settings. This unit has an input buffer to store the inputs until the sum is com-

puted. The computation is done in a pipelined fashion which reduces the hardware 

complexity of the design. The forward unit also holds the inputs to the unit for the 
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Figure 4.9: Symbolic diagram of Input Buffer 

backward pass unit functions. The blocks of the forward pass unit are input buffer, 

multiply-accumulate, function lookup, output buffer and the hold registers. 

4.4.1.1 Input Bu.ffers 

The function of the input buffers is to receive the inputs from external or previous 

layers and hold them for the multiply-accumulate unit to process. These are simple 

registers with clear and enable inputs. The output of the registers are given to a 

multiplexer, whose size is determined by the number of inputs. The multiplexer 

receives a select input from the local control unit. The select input determines the 

input to be processed and the sequence of selection varies among the neurons in 

different layers to facilitate the concurrent processing of all neurons. A symbolic 

diagram of the input buffer is given in Figure 4.9. The numbers of inputs handled 

by the input buffers at different layers differ. With the current design the input layer 
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has four inputs, the middle layer has four inputs and the output layer has sL-x inputs. 

4.4.1.2 Multiply Accumulate Unit 

The function of the multiply-accumulate unit is to calculate the weighted sum of 

inputs. The schematic of the multiply-accumulate unit is given in Figure 4.10. :\s 

the figure shows the multiply-accumulate unit has a multiplier and an accumulator 

with enable. The adder is a 16bit adder synthesized from the CMOSIS5 libraries. The 

multiplier is also a library synthesized component, which is a 16bit x 16bit integer 

multiplier, modified to do fi..xed point multiplication. The timing specifications and 

other features will be discussed in the section 4.7. The block receives weights from 

the register file and the inputs from the input buffer. The control unit provides the 

signals for selecting the proper weights and inputs. This block remains the same in 

all neurons unlike the input buffer. 

4.4.1.3 Activation Function 

This block represents the activation function of a neuron designed as a table lookup. 

The function lookup is for the sigmoidal activation function. The block receives the 
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16 bit input from the multiply accumulate unit and gives the sigmoidal function 

equivalent of the input. The function lookup is implemented using the ROM blocks 

of the CMOSIS5 libraries. The schematic is given in Figure 4.11. Each neuron has 

one function lookup in their datapath. This reduces the number of interconnections 

when compared to a central function lookup as in [35). 

4.4.1.4 Hold Registers 

The HOLD registers are used to hold the input values for the use of backpropagation 

block. The backpropagation algorithm requires that the error at the output for a 

set of inputs/weights has to propagated back to the input layer for modification of 

the weights. This restricts the operation of pipeline as the neuron has to wait for 

the error to be calculated at the output for a set of inputs and propagated back to 

the input layer. The hold registers are used to eliminate this restriction by holding 
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the inputs while allowing the pipeline to operate without delay. This increases the 

hardware complexity by a few registers but increases the speed of operation and hence 

the performance many folds. Each input neuron has a 5 x 4 register (to hold five 

sets of four inputs) and each hidden neuron has a 3 x 4 register (to hold three sets 

of four inputs). The schematic is given in Figure 4.12. 

4.4.1.5 Output Buffer 

Output buffer stores the output of the function lookup to be passed on to the next 

layer for processing. It receives the output enable from the local control unit. The 

schematic diagram is shown in Figure 4.13. The output buffer design is the same in 

all the neurons as only one output is passed from each neuron. 
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4.4.2 Register File 

Register files are used to store the neural network parameters (learning rate, momen-

tum etc.) and the weights required for the computation. The schematic represen-

tation of the register file is shown in Figure 4.14. The register file includes a set of 

register to store the weights, which are readable and writable and can be initialized 

to a particular value before processing. Each register has read and write enable sig-

nals which are issued by the local control unit and the sequence of read and write is 

different among the neurons depending on their position in the layer to ensure proper 

computation and concurrent processing. The other register in the register file are 

the delta weight register, momentum register and learning rate register. These are 

not modified after the first write, when the processor is initialized. The register file 

also allows concurrent read and write operations on a weight through dual latches. 

This allows the backpropagation modification and the forward pass computation to 
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Figure 4.14: Schematic of the Register file 

proceed concurrently. The operation verification is explained in the testing section. 

4.4.3 Backward Pass Unit 

The function of this block of the neural processor is to implement the backpropaga-

tion algorithm. This is a parallel pipeline which consists of three functional units: 

Compute Local Gradient Unit, Weight Adjust Unit and Compute Back Pass sum 

Cnit. This operates in parallel with the forward pass unit. As explained in the 

previous subsection, the modification of weights and the forward pass computation 

proceed concurrently. The functional units of the block are described in the following 

sections. 
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4.4.3.1 Compute Local Gradient Unit 

This unit computes the local gradient for each neuron. The design of the unit differs 

with the number of weights used in the neuron. The schematic diagram of the unit is 

shown in Figure 4.15. This unit consists of a derivative of activation function lookup, 

accumulate register, multiplier, adder and latches. The multipliers and adders are 

the same as the ones in the forward pass unit. The derivative lookup is the same as 

the function lookup in the forward pass unit but the function here is the derivative of 

the sigmoidal function. The unit implements the function given in the equation 4.1. 

-z n 

LocalGradient = e -z 2 L BPSUj.Vfi 
(1 + e ) i=l 
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Figure 4.16: Schematic of the \Veight Adjust Unit 

In this equation, x is the intermediate sum calculated in forward pass unit and the 

BPSU.\1 is the back pass sum computed for each neuron in the previous layer. n 

is the number of neurons in the previous layer. The back pass sum computation is 

explained in the section 4.4.3.3. 

4.4.3.2 Weight Adjust Unit 

The weight adjust unit modifies the weights in a neuron and writes them to the 

register file for computation of neuron output in the next pass. The schematic of the 

weight adjust unit is shown in Figure 4.16. The weight adjust unit reads the weights 

from the register file and modifies them based on the parameter register values and 

the error propagated from the output layer. This unit implements the function given 

in equation 1.12. The design of the unit differs among different layers with respect to 

the number of weights associated with the neuron. 
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Figure 4.17: Schematic of the Compute Back Pass sum Unit 

4.4.3.3 Compute Backpass Sum Unit 

This unit computes the back pass sums for passing to the previous layer for compu-

tation of delta weight, the value to be added to the weights. The schematic of the 

compute back pass sum unit is given in Figure 4.17. The sequence of computation 

differs among neurons in different layers which is controlled by the local control unit. 

This is done to make sure all the neurons in the previous layers get the back pass 

sums in the same number of cycles which prevents any neuron from waiting for the 

back pass sum values. This ensures concurrent processing in all the neurons. The 

process will be explained in detail in the design of the control unit. 

4.5 DIANNE-Dl.O - Control Unit Design 

The control unit of DIANNE is split into two parts. One is the global control unit 

which controls the data flow between layers and the external inputs and outputs. 

The local control unit controls the flow of data between components in a neuron and 
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Figure 4.18: Symbolic diagram of the Local control Unit 

communicates with the global control unit to ensure synchronized processing. The 

control units are finite state machines. A Mealy machine was used to implement the 

design. The following sections describe the design in detail. 

4. 5.1 The Local Control Unit 

The local control unit is specific to a neuron. This unit communicates and gets initial-

ization information from the global control unit. The local control unit also ensures 

synchronization between neurons through the global control unit. The symbolic clia-

gram of the local control unit is given in Figure 4.18. The state diagram explaining 

the function of the local control unit is given in Figure 4.19. The states of the local 

control unit and the corresponding group of signals associated with the state are given 

in table 4.1. The state diagram shows some signals which are not mentioned here. 
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GlobAJRnet • o 

Figure 4.19: State diagram of the local control unit 

These are the intermediate signals generated from the internal counters or signals 

derived from the main inputs to the control unit. As ilustrated by the state diagram 

and state description, the local control unit controls the forward and backward pass 

operations of a neuron based on the initial settings received from the global control 

unit. The following section describes the function of each group of control signals. 

4.5.1.1 Description of Control Signals 

GlobalStart, GlobalReset and LocalReset are the resetting signals. GlobalStart 

is used only in the first operation cycle after all the neurons are initialized. These are 

active low signals. 

BPSumlnit, LearnRateSet and MomentumSet are the initializing signals. BP­

Sumlnit is a two bit signal and the other two are 16 bit words. These signals are set 

to certain values based on the initialization controls obtained from the global control 
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State Associated Signals Description 
START Loca!Reset Used when Globa!Reset is asserted. 

Globa!Reset Nat used in normal operation. 
RESET Loca!Reset 

G lobalReset All the accumulators are cleared 
FU _accClear All the registers are cleared 
BP _CLG_accClear Outputs are disabled 
outputEnable 

INITIALIZE GlobalStart 
BPSumlnit The parameter registers and the 
LearnRateSet weight registers are initialized 
~lomentumSet 

TESTMODE FU _accClear · Weighted sum of inputs is calculated 
inputEnable and the output is passed to next layer 
inputSelect This is used in real time operation 
weightSelect and in test mode 

TRAIN MODE all FP signals 
ReadMod Weight 
ReadDelta \Vt This is the training mode state 
ReadLocalGrad Along with forward pass, weight 
WriteMod Weight modification is done in backward pass 
\VriteLocalGrad 
BP -CLG-EnableAdd 
BP _CLG_accEnable 
BPSumSelect 

HOLD SignalForGCU Checks for exceptions and holds values 

Table 4.1: State Descriptions- Local Control Unit 
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unit. 

BPSumSelect, InputSelect, and WeigbtSelect are select control signals to the 

buffers with multiplexers corresponding to Backpass sum, inputs and weights. These 

are two bit or three bit (depending on the number of weights and inputs to the neu­

ron) signals that are binary coded to represent the selection. 

inputEnable and outputEnable are the input output control signals. These are 

active high single bit signals. 

ReadModWeigbt, ReadDelta Wt, and ReadLocalGrad are the signals used in 

the training mode when weight modification are to be done using the network pa­

rameters such as the local gradient. All of these are four bit signals that are binary 

coded. 

WriteModWeight, WriteLocalGrad and WriteDeltaWt are the signals to write 

to the parameter registers. These are similar to the Read signals. 

FU _ace Clear and FU ..a.ccEnable are the clear and enable signals for the forward 

unit accumulator. These signals are active high signals. 

BP_CLG...accClear, BP_CLG...accEnable and BP_CLG-EnableAdd are the 

signals for clearing the corresponding intermediate registers and enabling computa­

tion of local gradient operation. These are also active high signals as the previous 

signals. 

One important aspect of the control unit is the sequencer which allows for con-
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Figure 4.20: Illustration of Computation of Backpass sum 

current processing in all neurons. The sequencer is described in the next subsection. 

4.5.1.2 Description of the Sequencer 

The backpropagation algorithm requires computation of back pass sums in each neu-

ron which is a product of local gradient and the synaptic weight. This back pass sum 

is passed to the neuron in the previous layer which is connected to the computing 

neuron. Each neuron in a layer receives such back pass sum from all the neurons in 

the previous layer to which it is connected. This is illustrated in the Figure 4.20. As 

the figure shows, a neuron in the first layer will receive six back pass sums that will 
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Cycle Neuron 1 Neuron 2 Neuron 3 Neuron 4 
I vV1H1 & vV2H2 vVaHa vV-tH-t 

W1Hs + W1Hs 
II ace+ v~'1H2 ace+ vV2Ha & ace+ vVaH-t ace+ vV-tHl 

vV2Hs + W2Hs 
Ill ace+ vV1H3 ace+ vV2H.t ace + nrJH 1 & ace+ vV4 H2 

W3Hs + vVaHs 
IV ace+ VJl1H4+ ace+ vV2H1 + & ace+ vV3H2+ ace+ vV-tH3+ 

vV1Hs + vft"tHs W2Hs + vV2Hs vVaHs + vVaH6 vVtHs + vV-tHs 

Table 4.2: Order of sequence- Input neurons 

be used in the neuron for delta weight computation. If all the neurons compute with 

the same sequence, say starting from the first weight, at the end of first clock cycle, 

only the first neuron will have the back pass sums and other neurons need to wait 

for their values to arrive. Moreover, the number of back pass sums passed between 

layers differs among layers as the number of neurons in each layer is different. This 

also causes delay in processing. To eliminate these delays and to ensure synchronized 

concurrent processing a sequencer is required in each neuron. 

The sequencer is a part of each local control unit. The sequencer receives an 

initial value from the control unit which is different for different neurons in a layer. 

The sequencer steps through the computation of back pass sum, output of neuron 

and the modification of weights based on the initial value. This allows for concurrent 

processing of all the neurons and eliminates any delay due to unavailable data. Tables 

4.2 and 4.3 shows the order of computation in hidden and input neurons of DIANNE. 

It can be seen from the tables that the order of computation of back pass sum in 
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Cycle Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 
I ~VtHt ~V2H2 W3H3 ~V-tH-t ~VtHs ~VtHs 

II ~V-tHt ~V1H2 ~V2H3 ~V3H" ~V2Hs ~V2Hs 

III W3H1 ~V-tH2 ~VtH3 ~V2H" ~V3Hs ~V3Hs 
IV n ,.2Hl ~V3H2 ~V4H3 ~V1H4 ~V4H5 ~Vo~Hs 

Table 4.3: Order of sequence - Hidden neurons 

hidden neurons corresponds to the order of computation in the input neurons. U/ 

corresponds to the weights and H corresponds to the hidden neuron's Local gradient 

value. 

4.5.2 Global Control Unit 

The function of the global control unit is to control the flow of data between the neuron 

layers and to synchronize the operation of different neurons in a layer. The global 

control takes care of the initialization, mode of operation and exception handling as 

well. The symbolic diagram of the global control unit is shown in Figure 4.21. The 

global control unit is also a state machine similar to the local control unit. The state 

diagram is shown in Figure 4.22. The descriptions of the different states and the 

associated signals are given in Table 4.4. 

4.5.2.1 Description of Control Signals 

The signals described here are a group of signals that are identified under one common 

name. These signals are actually connected to all the neurons in the neural processor. 
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Figure 4.21: Global Control unit 

ExtReset .o 

Figure 4.22: State diagram of global control unit 
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STATE Associated Signals Description 
RESET GlobalResP.t This is a starting state and 

Exceptions exception handling state 
INITIALIZE BPSumSelectlnit This state is used for initializing 

Ready mode of operation and the 
Initial Conditions parameter registers 
~lodeOfOperation 

OPERATE TestingOn This state is main operation 
TrainingOn state and is mainly controlled 
Exceptions by the respective LCUs 

ERROR Exceptions Exception handling state 

Table 4.4: State descriptions - Global Control unit 

GlobalReset is a reset signal that is an external input which can be used to reset 

the whole processor. This would reset all the neurons and bring it to a fresh start 

state. This is an active low signal. 

BPSumSelectlnit, ModeOfOperation, InitialConditions are the set of sig-

nals for initializing the different neurons of their BP Sum sequencer, mode of operation 

and the parameter registers. These are internal signals generated by the global control 

unit and are passed to the local control units. 

Ready, TestingOn, TrainingOn are the flag signals that indicate the operation 

status. These are e..xternal outputs of the processor. 

Exceptions is a signal that indicates an exceptional condition in the processor. 

This would also initiate a global reset of all the neurons. 
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4.6 Testing the Design 

DL-\.NNE was tested for functionality and features at all levels of design. This section 

describes all the testing methods and provides the results and discussions on the 

results. Although the section provides most of the test results, some of the more 

evident test results, for example those of smaller components like the adder, multiplier 

and flipflops are not provided. The testing consists of three parts which are feature 

or functional verification, integrated random testing or global testing and exceptions 

testing. The test results reported for the Integrated random testing are for the 'Vfest 

Ylode" of DIANNE. The "Train Mode" of DIANNE in the Integrated random test 

has not been thoroughly verified, but the individual components of the Train .Mode 

have been verified for their functionality. In the simulation results, the waveform 

viewer provides decimal equivalents of the hexadecimal valaues of the signals. But 

these signals are to be interpreted in the fi..xed point representation described in the 

previous chapter. 

4.6.1 Functional Verification 

Functional verification includes verifying the functionality of individual components 

and the features of the component. All the tests were carried out using the vhdlan 

CAD tool with a test clock period of 20 ns. The preprocessors that were explained 

in a earlier section were tested for the functionality and the test results are provided 

in Figures 4.23 and 4.24. From these figures it can be seen that the preprocessors 

107 



~ so 100 150 lOO 250 300 350 
I Ill. II • • I. I I. II I I •••• II II I ••• f • • I I ll I .t ••• 111111 It I ll I I' I' • ••• ',, ••• t II I It 

.,. ISAOI_ TESTNIOIFF(1 ... 3280! l~a· ~a· ~a· ~·· ·32r ~g· j329• ~9·!~9"!m· ~· ~9"j~g· · 32975 l329"pw\3" 

.,. ISADI_TEST.OUTPU ... ~ 0 37 58 7!5 ! M 113 132 151 l11o itag 208 190 

ISAOI_ TESTICLOCK u I n__n__n_rulJlJlJlJlJUUlJlJ UlJUlJ 
ISAOI_ TEST/OUT _EN .•. ?Q.~ - ~·AU ... :\ ........--

750 800 850 900 950 1000 1050 1100 
r ••••••••• 1 •• ,,, •••• 1 • • ,.,,,,. , , , , , • , ••• 1 ••• ,., ••• 1., •• ,, • • ,,,,,,, , •• • 1 ••••• 

:( 33 132rl 83 184 I 1341 54 l11 l32a•j32a·j23l 2 (32rl 32884 §9· 
. 330 lc7a 828 nc 922 101 1oe 118 12!5 9!51 las• 797 887 537 558 457 370 

Figure 4.23: Simulation results of SADI 

0 50 100 150 lOO l50 300 350 UO ........... .. ···· ·········· ..• ... ... ... '· ·· ···· · ···· ········· ....... ·'····· ........ . 
... ISIGADI_TEST.1NP\JT.. o I H haai272'3"cl40:zl"'" ·"7oj.a1lc7a[.asi4o63141IJ392 37013531 :).W l353j37opre 
.,. ISIGAOI_TEST.<lUTP... 0 I 512 0 

ISIGADI_TESTICI.OCK u L u _11_ u. JL lJ1I1JlJ1 w-m uulJUul 
ISIGAOI_TESTISINGL. I 

Figure 4.24: Simulation results of SIGADI 
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provide filtered values of the external input signals. SAD! gives a value close to zero 

(in the figure, values less than 210) for all the inputs before the fault condition and 

a value close to 2 (in the figure, values more than 512) when a fault occurs at the 

inputs. SIGADI also gives output as expected. 

The most important part of the neural processor is the control unit. The local 

and the global control units were tested for the functionality. The results are shown 

in Figures 4.25 and 4.26. From the figures it can be seen that the control units are 

working as expected. It can be verified from the state signals that change correspond­

ing to the respective state diagrams. The test verifies the functionality and hence it 

is assumed that there are no exceptions at this point of operation. The exception 

case is discussed at a later section. The global control unit goes through all the states 

except the ERROR state that is mentioned in the description of global control unit. 

The local control unit test is for the training mode that includes the forward and 

backward pass operations. This makes sure that both the operations are verified for 

functionality. The switch between modes of operation is illustrated in Figure 4.27. 

The figure shows only those signals that are necessary to verify the operation. Other 

signals are asserted as illustrated in the regular operational simulations. 

Another part of the control unit is the sequencer that sequences the computation 

in the neurons based on the settings from the global control unit. The test shows the 

functionality of the sequencer for different initial settings. The results are shown in 
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Figure 4.25: Simulation results of Global Control Unit 
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Figure 4.26: Simulation results of Local Control Unit 
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Figure 4.27: Illustration of modes of operation 

Figure 4.28. It can be seen that the sequencer accepts input from the initialization 

signal and rotates it through the sequence that is specific to that neuron. It is gener-

ally anti clockwise rotation from the initial setting. The HOLD registers mentioned 

in the earlier sections are also essential part of the design which helps in concurrent 

operation of all neurons and in maintaining correlation between modification weights 

and the inputs. Figure 4.29 illustrates the functionality of the hold registers. The test 

shown is for the hold registers of the input neurons which is 5 x 3 register. This also 

verifies the other hold registers as they are smaller versions of the same. Functional 

verification of the function lookup is given in Figure 4.30. Similar verification was 

done for the derivative lookup as well. 
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Figure 4.29: Simulation results of HOLD register 
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Figure -1.30: Simulation results of Function lookup 

4.6.2 Integrated Random Testing 

This test involves integration of smaller components to form the sub blocks of the 

design and to test them for their correctness as a block. The integrated random test 

was conducted for the forward pass unit, backward pass unit, single neuron and the 

neural processor. vVhile testing the individual sub blocks, the other blocks are assumed 

to be working without any fault. The results of the testing of forward pass unit is given 

Figure -1.31. The control signals were generated as designed and the unit generates 

output as expected. The simulation results of the backward pass unit is given in 

Figure 4.32 . The backward pass unit also works as expected. The register file is just 

a set of registers which receives modified weights from the backpropagation unit and 

stores them for the next pass. The register file was also tested for its functionality and 

it works as expected. A full integrated test of a single neuron was conducted assuming 
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Figure 4.33: Simulation results of a single neuron 

that other neurons pass values as e.xpected. The results are shown in Figure 4.33. 

The neural processor as a whole was also tested for its functionality. The results 

are shown in Figure 4.34. As it can be seen from the figure , four sets of inputs are 

passed to the neural processor, which are the same as those used in the software 

simulator. The intermediate results as well as the final outcome of the processor are 

exactly the same as that obtained in software simulation. The figure illustrates the 

different states of the processor (shown by signal STATUS) and individual neurons 

(shown by signals statusflags) at each cycle of operation. The output is shown by 

signal ~P-OUTPUT. The initial"UUUU" results are due to the fact that in the first 

few cycles the processor is initialized and then the values are passed between neurons. 

The actual outputs are available only after 590 ns. The values obtained before 590 ns 
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are values due to initializing of accumulators and other registers. This is because of 

the pipelined nature of the processor. The output neuron receives the actual inputs 

only in third cycle. From then on, outputs are obtained every eight dock cycles. 

These eight clock cycles are due to the multicycle implementation of the neurons. 

The operation of the pipeline was explained in an earlier section. The inputs are 

shown as decimal values but in fact they are fi...xed point representations. The reason 

is that the waveform viewer does not support viewing of custom representations. 

4.6.3 Exceptions Testing 

This method of testing is to observe the function of the processor under exceptions. 

One of the conditions is the asynchronous reset condition at the global control unit. 

This should generate a global reset and clear all the registers and bring the processor 

to a fresh start state. The results are shown in Figure 4.35. Another exception 

condition is the occurrence of overflow in any of the neurons. This should generate 

a local reset and should send a signal to the global control unit about the problem. 

The results of the test are shown in Figure 4.36. The following section discusses the 

main features of the design and the speed of operation. 

4. 7 Features of the Design 

The main features of the design are the on-chip preprocessor and the on-chip training 

function. This design also allows multimodal operation, meaning that more than one 
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Figure 4.35: Simulation results under RESET condition 
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Figure 4.36: Simulation results under OVERFLOW condition 

mode of operation is possible. The design allows operation of the neural processor 

unit with or without the use of preprocessors. The design also supports training and 

test modes of operation. The design supports concurrent forward and backward pass 

operations which is not supported in most of the designs reported to date [46, 40, 39]. 

Some of the design features are the speed of operation and the gate count. The 

input data range for the processor is~ -63.99, ... ,+63.99 with a resolution as 6 bits of 

exponent and 9 bits of fraction. As mentioned in the earlier sections the design was 

carried out using CMOSIS5 technology which is CMOS 0.51-' design technology. With 

this technology the gate count of the whole design is close to 260,000 gates. The large 

number of gates is due to the large number of arithmetic components like adders and 

multipliers used in the design. The gate count with respect to each component is 

given in the following table. 
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Component Gate Count 
forward unit 5632 

back pass unit 16800 
register file 2808 

local control unit 720 
global control unit 620 

Preprocessors 10000 

vVith the CMOSIS5 technology and a 40 ~1Hz clock speed, the connection updates 

per second of the design is 2G i.e. speed of operation is 2 GCCPS. This favourably 

compares to most of the reported speeds of operation. 

4.8 Summary 

This chapter discussed the hardware design of DIANNE in a detailed manner. The 

design issues and the decision trade-off's related to the design were explained in de-

tail. Each block and subunit of the processor was explained for its features and its 

functionality. The design cycle and the features of the design were discussed. The 

testing of the processor was discussed elaborately. The results of the testing were 

presented and discussed. Some features of the design specific to the technology of 

implementation were presented. 

122 



Chapter 5 

Conclusion and Suggested Future 
Work 

In the earlier chapters, the design and implementation process of a digital neural 

processor, DIANNE, for detection applications was discussed. A survey of similar 

designs was presented and related works were presented and analyzed. An elaborate 

discussion and description of the problem was presented in Chapter 3. The method of 

solution was discussed in detail. The design of the preprocessors for the application 

and the justification of the design method was also presented. The previous chapter 

discussed the hardware design aspects of the neural processor and the testing of the 

design. The main features of the design and the results of hardware simulation were 

also explained. This chapter summarizes the work and concludes the thesis. The 

following sections discuss some of the main contributions of the thesis and possible 

future work in different aspects of the thesis are mentioned. A critical assessment of 

the work done is presented and the thesis is concluded in the final section. 
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5.1 Contributions of the Thesis 

There are three main contributions of the thesis as well as several minor contributions 

and novel design ideas. The main contributions are 

• The hardware design of the digital neural processor, DIANNE. A. complete 

mnltimodal 16 bit integer arithmetic digital neural processor with 11 neurons 

was designed based on the results of the simulation. 

• The preprocessors are the main contribution towards the application. The 

method reduces the size of the artificial neural network required for the ap­

plication and it enables real-time operation unlike other published solutions. 

• A. software simulator which supports fle..xible construction of an artificial neu­

ral network with backpropagation training algorithm has been developed. The 

simulator resembles the hardware design to identify the hardware requirements 

of the design through simulation. The simulator is object oriented and also 

supports different training methods. The simulator also supports fLxed point 

simulation for studying quantization effects and identifying the bus width re­

quirements. 

Some other minor contributions are some of the design ideas like the back pass 

sum sequencer and the hold registers that would eliminate the sequential nature of the 

backpropagation algorithm. The simulator and the design are modular and fle.xible 
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so that future additions can be done with minor modifications to the code. 

5.2 Improvements over the Hardware design 

Hardware design of DIANNE was done as efficiently as possible with the current 

resource constraints. Still there is room for modifications and improvements to the 

current design which would make DL-\.='INE a better neural processor. One of the de­

sign components that can be improved is the interconnection and interface between 

similar chips or other chips that support similar algorithms. Current design is self­

contained and cannot be connected to other similar chips except for e.xpanding the 

size of the network. ~loreover, it has only eleven neurons that are enough for this 

application but may not be suited for similar detection applications, as the processor 

can be used for other detection applications. So the design could be improved to 

accommodate interconnections through interconnection buffers. The reason for not 

supporting this part in the design is the availability of limited input/output pins. 

This can be overcome by serial in parallel out or parallel in serial out sort of inter­

connections. This would allow more chips to be connected on a board level design 

for applications that would require neural networks larger than eleven neurons. The 

current design does not support loading of registers with pre-determined weights ex­

cept for initialization. The training has to be done online. This can be modified to 

read weights from external sources. But the input/output pins could be a limitation 

in this case as well. 
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There could be some improvement over the design of the single neuron too. The 

current design is a multicycle implementation with a mi.x of interleaved pipelining. 

This could be modified to yield a completely pipelined design for better performance. 

The current design had hardware complexity limitations which restricted the com­

plete pipelining. vVith the new technologies such as the CMOSP35 which are available 

now, the hardware complexity limitations could be overcome. Another area for im­

provement is the exception handling. In the current design exceptions only reset the 

system in case of errors. This could be modified to stall the processor in case of ex­

ceptions and correct the error or prompt manual intervention. Hardware complexity 

is the limitation here as welL 

5.3 Future Work on the Software Design 

The current software design is object-oriented but it has some constraints. The 

object oriented nature of the simulator could be improved further to accommodate 

more training algorithms, more user friendliness and different types of neurons. The 

current version supports fixed point simulation as a separate module. Current design 

of the software simulator was designed taking into account the specific application and 

hence not optimized for the use of memory. This could be modified to accommodate 

different applications. The commercial versions of ANN simulators do not facilitate 

fixed point simulation or flexibility over the structure or size of the network. Therefore 

an enhanced version of this simulator could prove to be useful to other researchers. 
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5.4 Critical Assessment and Conclusion 

The earlier sections discussed some of the possible improvements over the current 

design. The main objective of the thesis is to design a digital neural processor for 

detection applications. The application chosen for analysis is the protection of trans­

mission lines that has been explained in earlier chapters. A survey of known methods 

in solving the distance protection using artificial neural network reveals the use of 

complex filters and external fault identifiers. Upon proper analysis of the data, the 

preprocessors were designed which reduced the hardware complexity to a minimum 

and eliminated the use of external fault identifiers. From the design of the preproces­

sors, it can be stated that, if properly processed. the solution for distance protection 

would not require a large neural network. It can even be concluded that neural 

networks could be avoided in solving the problem. 

A single transmission line was simulated to obtain the fault data. Strictly speak­

ing, the whole power grid should be simulated, using complex simulation softwares, 

and the resulting fault data should be used to design the detector. Based on the 

nearly disjoint clusters obtained after preprocessing the data (derived from a single 

transmission line) it can be projected that an artificial neural network is not necessary 

for this application. Instead a well-designed preprocessor followed by a simple com­

parator could accomplish this task. Even if this cannot be concluded as stated above, 

it is very much clear that complex filters and large neural networks are not required 
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for this application. Fault location has not been studied in this thesis. However, it 

may be predicted that only a simple ANN will be, if at all, required for locating the 

fault, provided a good preprocessor is introduced. But the use of neural networks 

may be justified for larger problems like control or estimation. 
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