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Abstract

Coarse grained reconfigurable architecture (C A) is a reconfigurable architec-
ture that uses word-width processing elements, ar provides custom designed recon-
figurable datapath units (rDPUs) as basic logic units. It combines some strength of
both softwarc and hardware to provide an casy tc  cvelop, and highly efficient plat-
form. In this thesis, I make contributions to the development of an object oriented
language, HARdware Parallel Object Language (HARPO/L) , which is suitable to
describe the parallel execution of hardware, and hence can be comp d directly to
CGRA platform.

This thesis will mainly con itrate on the front-end of the HARPO/L compiler,
to address technical issues arising from some of the unique characteristics of our lan-
guage. This thesis will develop a formal mathemat  representation for HARPO/L.
to help verify the semantics of the lang1 ze. It wil  so develop a met d to identily
synchronization problems in sh riable access, and to simplify e implementa-
tion of atomicity in language. Furthermore, in adc ion to the research work in this
thesis, a compiler front-end is also implemented in JAVA to compile the plain text
source code to typed abstract syntax tree (AST). We will also discuss some techniques

involved in implementing such a compiler front-end.
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Chapter 1

Int oduction and Background

1.1 Introduction to Reconfigurable Arcl tecture

When solving a specific problem using digital computing technol 7, there are two
conventional methods: hardware and software. One of the most pi ular solutions of
hardware implementation is Application-Specific Integrated Circuits (ASIC). ASICs
are hardware chips built to solve a specific problem, hence they are very efficient
when dealing with the probl  they are designed for. Despite its high cfficiency,
ASIC has two major drawbacks: long development time and low flexil ity. Designing
and optimizing an ASIC circuit usually takes a lot of time, and once the circuit is
fabricated, modification to any part of the circuit - the target application itself will
result in a redesign of the whole circuit.

The second method is using software. Software utilizes micr rocessors, which
can perform a number of different operations d  nding on the instruction. This

solution is very flexible because the major part  the system, the microprocessor,



remains unchanged from application to application. The user only needs to change
the instructions to make the ¢ cm suitable for ¢ arent applications. However, the
efficiency of such a solution is far lower than that of ASIC, because the processor needs
to perform a series of extra operations, such as instruction fetching and decoding, to
execute a single instruction. Moreover, the datapath in this solution is much longer
than hardware implementations that are optimize for the specific problem.

Reconfigurable computing is intended to fill t  gap between hardware and soft-
ware, achieving potentially much higher perfornis e than software, 1ile maintain-
ing a higher level of flexibility than hardware[l]. Reconfigurable devices contain a
number of logic blocks that can be configured to perform different tasks and a set
of eonfigurable routing resources to connect logic blocks together. Hencee, a custom
circuit can be mapped into a configuration specifying the function of logic blocks and
the wiring between them.

One of the most popular reconfigurable architectures is Ficld-Programmable Gate
Array (FPGA) [12], which is a fine-grain reconfigurable architecture that combines
several layers of AND-OR gates to implement its gic. Although this technique can
be used to develop very cfficient circuits, it also has some major drawbacks comparing
to coarse-grained approaches.

Coarse-Grained Reconfigurable Architectures (CGRA) are reconfigurable archi-
tectures with datawidth greater than 1 bit.[4] CGRAs provides custom designed re-
configurable datapath units (rDPUs) as basic lo : units. So instead of working on
gate level configuration for basic computations in PGA, the programmer can utilize
these rDPUs to implement the application. Because these custom  signed rDPUs

have higher performance, area and energy efficiency than computation units assem-



bled from single bit Configurable Logic Blocks (CLB) in FPGA, the whole circuit
built in this way will also be inore cfficient than the fine grain implementation.

The other major advantage of CGRA is that the placenient and routing problenis
are greatly simplified by reducing the number of reconfigurable units. This will also
result in a massive reduction of configuration memory and configuration time. Our
goal in the HARPO project is to define a harc e development method that is
as easy to code and configure as software solutions that produces high performance

circuits. Therefore, we find CGRAs to be a very suitable class of target architectures.

1.2 Introduction to HARPO/L

HARPO stands for HARdware Parallel Objects Language. HARPO/L is an object
oriented language that can be used to create I dware configurations [8]. When
creating a hardware configu ion, instead of wo ing on electronic circuits directly
or using some Hardware Description Language (DSL), the user can choose to use
HARPO/L, which is a high level, object oriented language similar to C. This solution
brings the simplicity of software coding into the otherwise cumbersome hardware
configuration de- opment.

Although there are approaches that exist to compile high level languages such
as C[7][14] and Java|3] into reconfigurable architectures, most of them suffer from
the same problem(2]: the source language, which is designed to describe sequential
program running on microprocessors, is not suitable for describing the behavior of
hardware effectively.

HARPO/L is hence a 1 lage designed to fulfill this task. As a result of this






in parallel. With this new feature, the code in the above example can be written as:

(co ilength do array[i] := array[i]+1 co)

This line of code indicates that different iteration of the loop body “arrayli] :=
array[i]+1” will not interfere with each other and asks the compiler to execute these
instructions in parallel if possible. With this extra information provided, the compiler
can utilize a much higher level of parallelisin to significantly improve the perforinance
of the hardware configuration generated.

The second difference between hardware and  ftware is the representation of ob-
jects. In software, an object is a block of memory that contains the value of all the
fields for the object. Objects can be dynamically stantiated by s cating a block of
memory at run time. However, in hardware, an object is a concrete block of gates and
instruiments, which must be created by the time the hardware configuration is gen-
erated. In typical object oriented languages, objects can be defined and instantiated
dynamically, this can be implemented without any difficulty by memory operations.
However, this is not possible for h.  lware implementation.

This difference also causes problem in object ‘erence. In software, object can be
accessed by its reference, which is a pointer to the address where the object is located
in memory. References can also be assigned to - nt to another object with a same
type. This behavior is also not possible in hardw ¢ implementation, where access to
a logic block must be carried out by actual wirih ~ The connection on board cannot
be modified once the configuration is generated. -.iis constraint re ires all objects

in HARPO/L to be instantiated at compile time, and that object references can not



be assigned once initialized.

The implementation of function call in HARPO/L is a 1 different from typical
programming language. In sc vare, a class may ¢ tain a number of different func-
tions. Multiple functions can be called at the same time, and one function can be
called by scveral different threads at the same time. Morcover, one  mction can call
itself for recursive algorithms. This is not easy in hardware because, in hardware, a
function call is a set of instruments containing the necessary units and wiring for the
body of the function, these instruments can not be utilized by multiple threads at the
same time. This fact also makes the structure of HARPO/L classes and functions
very different from typical programr *~ ; language.

In addition to these characteristics that come from the nature of hardware, HARPO/L

also contains a number of other features worth mentioning:

¢ HARPO/L " Hws implicit type definition that permits type inforination to be
omitted from the object definition. This feature improves the flexibility of
programming by allowing operations to be performed on different data types

using same block of code.

e HARPO/L employs a generic mechanism to provide polymorphisms for class
definitions. This feature further enhances the flexibility of programming by
bringing in polymorphism, which will also greatly reduce the work involved in

dealing with different data types.

o HARPO/L also supports explicit indication of atomicity. Instead of having to

write a number of ¢« plex program controls such as semaphore and monitor,



the user can write a si  : statement to req st a block of code to be executed

atomically.

1.3 Structure of :IARPO/L roject

A compilation system is also being implemented for HARPO/L.
HAF

co

Intermediate Rey  entation

ac d

C, a code CGRA Configuration

Figure 1.1: ..ie overall structure of HARPO/L proje

As shown in the figure above, the HARPQO/L system mainly ¢ sist of 3 parts:
compiler’s front end, software back-end and hardware back-end. As 1y typical com-
pilation system, the HARPO/L compiler takes the plain text HARPO/L code de-
fined in language design[8] as input to the syste:  The front-end then makes lexical
analysis based on the language design to verify if the source code is using correct
HARPO/L grammar. The front-end also performs semantic analysis according to
language semantics(9] to find the meaning of the © Hut code, and verify if the mean-

ing is legal in language d ~ ition.



The output of the compiler front-end is an intermediate representation, called
an object graph. The object graph is a data s cture reflecting all information
contained in the source code, with additional info ation such as variable type and
execution flow being derived from context and added to their correspouding position.
This intermediate representation is platform independent, and can be used alone to
generate executable code, once the information ak  t target platform is available.

The HARPO project targets two platforms: software an hardware. The hard-
ware back-end is the major objective of this project. Used in combination with the
front-end, it is capable of compiling programs w ten in HARPO/L directly onto
reconfigurable architectures such as CGRA. The software back-end is used to gener-
ate code in languages with available compiler such as C. Results generated by this
back-end can be used to debug and verify the correctness of the source code without
having to first download it onto hardware boards.

The rest of this thesis is organized as follows: chapter 2 gives a detailed introduc-
tion on HARPO/L language design. Chapter 3 us¢ 1 mathematical representation —
the Petri Net — to describe this la: 1age. Chapter 4 will discuss a way of analyzing
the safeness of shared variable access. The techniques employed in the implementa-
tion of the front-end will be discussed in chapter =~ Chapter 6 conc des the thesis

and provides future research directions.



Chapter 2

Lai guage De.ign

2.1 Meta notation

This chapter used a number of meta notations to

which are explained as follows:

N — E Nonterminal N can be an E

(E) Groups the enclosed content
K ¢ o or more Es

E*F Zero or more separated by F's
E* One or more Es

E*F One or  re separated by I
E’ Zero or one Es

[E] Zero or one Es, samce cffect

E|F Choice ¢ zither E or F'

Note that underlines are added to par  hes

describe the lang ge grammar,

ito one item

above mecta notation

and brackets here to distinguish



them from their normal occurrence. So for example, when parenth s without un-
derlining is encountered in the grammar rules, it means there should be literally a

“()" pair in source code.
p

2.2 Type system

A HARPO/L program is a set of class, interface and object declarations. Each object

in HARPO/L is characterized by its type.

2.2.1 Primitive type

Primitive types are predefined basic types that are used to represent values. They
are the only types in HARPO/L that can be ass ied to after bei ; initiated.
Primitives type includes 3 major cat ries: integer, real and boolean. Integer
and real types also have a number  subtypes with different precision. For example,
an int16 is an integer value that is represented by a 16 bit bit-vector (16 bit precision)

in hardware configuration. A complete list of pr itive types is shown as follows:
¢ int8, intl6, int32, int64, int
e reall6, real32, real64, real
e bool

The declaration of a primitive variable should be in the following form:

(obj | cor ) Name [ : Type] := Ezp (2.1)

10



where Name is a string that contains letters, digits and underlines and starts with

a letter, used to represent the name of the object. Fzp is a compile time constant
pression that is assignable to the type of this variable.

To be compile time constant means the value of such v able or expression can

be determined at compile time. The constantness of expr sions is determined by the

following rule:

e Literals are constant. Literals are piece of data that are t en literally as a

value, such as 10, 12.5, false.

e Variables defined by keyword const are cor  ant. As shown in (2.1), instead of
using obj keyword, the user can use const keyword to indi- .e the iable is

constant thus can not be assigned to once initiated.

e Expressions formed by constant variables and expressions only are also constant,

since their value can be computed from their constant sub-expressi

The type information in (2.1) can be omitted. 1 this case, the type of the variable
is the primitive type with smallest precision that can take the value. For example,

for integers, have followir rules:

{-128, ..., +127} € int8
{=2%5, .., 42" — 1} € int16 (2.2)
{(=2%,... -1} € int32
As a result, the initiation expression
obj length = 512

11



causes variable length to have type intl6, because according to the integer typing

rule, int16 is the integer with the smallest precision that can take value 512.
Furthermore, a primitive type with lower precision is subtype of primitive type

with higher precisions st ain (2.3), the <: ope: ion indicates the former type is a

subtype of later. Subtyping is trausitive and reflc ¢, but not conmmutative.
mnt8 < intlb mtle < nt32

reall6 <: real32 reall  <: int64 (2.3)

This rule means a primitive type with lower precision can be assigned to those with
higher precision, but not the opposite. When a binary op tor involves operands
with a different precision, the lower one must be widened to be the same with the
other operand. This fact ceffectively mcans thie outcome of an expression is determined

by the operand with the highest precision.

2.2.2 Array
Arrays are lists of objects which can be declared in following form:
obj Name [: .ype] := (for Name : B nds do InitEzp | ]_) (2.4)
e Bounds is a compile time constant integer expression.

e InitErp can be a simple expression, an array initial expression, or a new object

creation(discussed in section 2.2.4).

Multi-dimensional array can be declared by nested array initial e ressions. The

following example defines a 10*10 array.
obj array2D (fori:10do (forj:1 doix10+ jfor) for)

12



Array items can be accessed by Name|Indez], where Index is an integer expression
with value less than Bounds of the array. The typ of the array items acquired this
way is the type of its InitExp, and can only be ai gned by values with type being

subtype of InitEzxp if it is assignable (being primitive type).

2.2.3 Interface

An interface is the definition of an abstract class v hout implementation. An inter-

face can be defined in following form:

(inter :e Nume GParams’ (extends Type™)" (IntMember)"

[interface [Name])) (2.5)

e GParams are parameters used for generic ex asion, which will be discussed in

section 2.4.

e Type is the interface this interface extends. An interface can only extend other

interfaces.

e IntMember is the member of the interface, which can be either a field or a
method declaration.

A field is an object meinber declared inside a ¢l 5 or interface. A field declaration

is an object declaration plus an access keyword specifying that it is a public or private

field.

Access ¢~ Name]| : Type]  InitExp

Access — private | public (2.6)

13



A method declaration is a declaration of method parameters without its imple-
mentation. The implementation should be inside a thread structure of each class that
implements this interface. Thread and method implementation wi be discussed in

section 2.2.4.

Access proc Name((Direction [Name : | Type)™)

Direction  in | out (2.7)

keyword in declares input  ameter while out declares output.
For example, the following code block declares an interface with o public meth-

ods:

(interface Queue
public proc deposit(in vali : int)
public proc fetch(out value : int)

interface)

2.2.4 Class

A class is a uscr defined structure that specifics  family of types. A class can be

defined in following form:

(class Name GParams’® (im) 'ments Type™)’ constructor’ ~Par™)

(ClassMember)” [class [Namel]]) (2.8)

14



o ClassMember is the content of the class. In addition to method and field already
discussed in section 2.2.3, it can also contain thread compon . Thread will

be discussed in section 2.3.

e GParams are parameters used in generic expansion. Gen c¢ classes will be

discussed in section 2.4.

e Each Type is an interface this class imple ts. A class mu implement all

methods from all interfaces it implements.

e CPar are the constructor parameters the ss. A constructor parameter can

be either a constant or an object.

obj Name : Type | in Name : Type (2.9)

in parameters are treated as constant value in class body, so the corresponding
argunment must also be compile time constant. Object parameters are objects
connected to new object of this class in ir alization. It will be known inside

class body as Name.

A new object of a class can hence be declared as:
obj Name  Type] := Type(CArg™) (2.10)

CArg is the argument corresponding to CPar in class definition.

15



2.2.5 Conditional Initiation

In addition to initialization statement for primitive ray and object, HARPO/L also

contains a special form of conditional initialization.

obj Name [ : Type] := (if Ezp then InitEzp (else if Ezp InitEzp)’ s InitExp [if])

(2.11)
e Ezrp must be a compile e constant boolea =xpression.

e [nitEzp can be initiation expression for any type. Multiple InitEzp in a same

conditional initiation do not have to be the ne type.

2.3 Statement

Statements are the basic elements of executable cc . Statements must be embedded

within a thread in HARPO/L  ammar.

2.3.1 Thread

A thread is the executable part of class. A class may contain ro or more threads;
all threads are executed « ently. Parallelism can be achieved by having multiple

threads in a class.

(thread Block [thre 1) (2.12)

where the Block is just a sequence of statements:

(Statement | ;)" (2.13)
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2.3.2 Variation of statements

e Local variable declaration
Local variable declaration is exactly the same as global variables discussed in

last section, except the scope of the variable is the block it is declared.

e Assignment

Objectld (, Objectld)" := Ezpression (, Erpression)” (2.14)

The number of Objectld must be the same as the Ezpression, the type of Objec-
t/d can only be primitive. The Ex;  sions e assigned to their corresponding

Objectlds cording to the order they appear in the sequence.

The Objectid can be either a variable, an array index, or a field reference.

Name | ObjectId[Ezpressi || ObjectId.Name (2.15)

e Sequential control flow

(if Ezpression then ..uck (else if Exp  sion Block) (else Blockl? _[if]_)
| (wh Ezpression do Block _[wh]_)

| (for Name : Bounds do Block _[forl) (2.16)

Sequential control flow in HARPO/L is the same as in typical high level lan-

guages.
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e Parallelism

(co Block (|| Block)” [co])

| (co Name : _ »unds do Block _[co]_) (2.17)

As discussed in chapter 1, HARPO/L utilizes co statement to support explicit
parallelism. The compiler will execute cc  blocks within co structure con-
currently. Ensuring the code blocks can be executed safely in arallel without
shared variable conflict or synchronization problem is the res  sibility of the
programmer. The former form is used for I cks with distinct content, the lat-
ter form is for parallel execution of loop i  itions such as for loop in typical

high level language.

Sequential consistency

(atomic Block omic]_) (2.18)

The block inside atomic structure must be executed as if atomically. That
means, it can only be either fully executed or not executed at  |in other thread’s
point of view, but not partly  :cuted. This property requires the system to
employ some special mechanism for sequential consistency, which may seriously
affect the systemn perforimance if not implemnented carcfully. Detailed discussion

about techniques involved in this problem 1l be discussed in chapter 4.
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o Method implementation.

(accept MethodImp (| MethodImp)* _[accept]_)
MethodImp — Name( " "irection Name : Type)™ ) [Guard] Blocky [then Block]

Guard — when Ezpression (2.19)

The method parameters must match the declaration in class body.
— Guard is a boolean expression.

— The block after keyword then will | executed after t called thread

returns output parameters to the calling thread.

Each method can only be implemente once in class body.

Although the syntax is similar, method implementation in HARPO/L is very
different from that of typical high level languages. While threads can call meth-
ods of other threads at any time, the met d call will not be handled unless
the sequential execution flow of the called thread reaches the corresponding ac-
cept structure. A thread which reaches an accept statement will wait until
the method is called and Guard expression is true. ...e thread will then select
one call to one of the method and serve it.

The special behavior of HARPO/L method implementatic is to initate the
behavior of hardware, where a thread is a concrete block of devices, which can

only serve one request at a time. T™~ fact ©~ roduces some special property of

HARPO/L method call that should be noticed:

— A thread can not call a method implemented by itself, as this will inevitably

cause a deadlock.

19



— The number of method calls and serv: will be bala ed, unless the
system deadlocks, each call will be matched by one execution of an accept

statement.

— As the servicing thread will only accept calls when Guard expression is
true, failing to meet this requirement may also cause the calling thread to

wait indefinitely.

e Method call

Objectld. Name(Args) |  wme(Args) (2.20)

A method call can be a call to method of an object it knows, as in the former
form; or a call to method of the same object as in the latter. As discussed in
method implementation, a call of the latter form must call a method that is

implemented in a different thread of this class.

2.4 enericity

HARPO/L employes a generic approach to archive polymorphism. A generic pa-
rameter(the GParams discus in 2.2.3 and 2.2  should be written in following

form:

(type Name [extends Type])™ (2.21)

e When generic argument(a specific type) is - «d in, this type will be known

inside the generic class or inte .ce body as  me.

e The Type after keyword extends is the bound of this generic parameter, the

argument passed in when creating specialize class must extend this Type.
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The object inheritance rule is:

Each interface is a subtype of the interface it extends (as in section 2.2.3).

Each class is a subtype of the interface it ex 1ds (as in section 2.2.4).

Each primitive type has its own inheritance rule as discussed in section 2.2.1.

Subtyping is transitive and reflexive.

2.5 Example

An example of HARPO/L code is shown as follows:

(class FIFO {type T extends primitive}

constructor(in cap 1y : int)

public proc deposit(in vali : T)

public proc fetch(out » 2 T)

private obj a : T(capacity)
private obj front := 0

private obj size := 0

(the d

(wh true
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(accept
deposit( in value : T ) when size < capacity
a[ (front + size] % capacity ) := value

size := size + 1

fetch( out  ue: T ) when size > 0
value := afront]
front  (front + 1) % cap ty
size  size-1
accept)

wh)
thread)

class)

This is a HARPO/L class that represents a bounded FIFO queue. It has a generic
parameter (type T bounded by primitive), and a constructor parameter (variable
capacity of type int). It also has two me ™ 1ds deposit and fetch, and a thread to
implements both of the threads. When executing, the FIFO will loop serving fetch
and deposit calls coming from other classes.

Detailed doct  :ntation of language design[8] and semantics [9] will be included

in the appendix.
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Chapter 3

Colored Petri Net representation

of HARPO/L

3.1 Motivation

After defining the language, a behavioral model of the language is also developed.

The major reasons for developing such a model are listed as follows [5]:

e The behavioral model is a formal description of the language. In addition to the
languages scmantics, the model can be used as both a e ication to specify
the behavior of the system corresponding > the code wri n in HARPO/L,
and a representation to show the meaning: the code. With this model, we can
investigate the systemn to sce if it satisfies our goal, and discover design flaws in

the language before actually constructing the compiler.

e This behavioral model can be analyzed by either simulation tools or formal
analysis methods to sce if it satisfies certain properties, so the  rogrammer can
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ensure the system under development will work as intended.

e Asii "arb "~ vioral del can so be developed for the produ : of the com-
piler, such as intermediate representation or hardware configuration, to see if
models of t1 : products still satisfy properties of the initial model. This pro-
cess can be used to make sure the meaning of the language remains the same

after a number of conversions.

e Constructing such a model will dramatically improve our understanding of the
language itself. We can intuitively see the effect of different language compo-

nents and examine if they behave according  our intention.

Among various types of behavioral models, we chose Colored Petri Nets (CPNs) to

be the modeling tool. Colored Petri Nets fit our requirement extremely well because:

o CPNs are graphically represented. This feature ikes  very intuitive to un-
derstand. They resemble the flow g >hs that are commonly used to analyze

conmputer programs.

e CPNs have well defined ‘:mantics that des bes the behavior of the system
without ambiguity. This fact  kes it possible to develop simula n and formal

analysis tools for it.

e CPNs are state and action oriented at the same time. We can examine both

the state of the system, and the actions taken  this system when necessary.

e CPNs are built on concurrency, instead of interleaving. . .ais fact Tt

suitable for describing the concurrent behavior of HARPO/L program.
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e CPNs offer hierarchical descriptions; we can construct large an  complex nets
by connecting smaller nets together. This ch icteristic is very similar to classes

and subroutines in high-level programming.

3.2 introduction to Colored etri Net

3.2.1 Petri Net

Petri Nets [11] are among the most popular formal mathematical representations for
discrete distribu . systems. They graphically « »ict the struct e of distributed
systems. Petri Nets are also known as place/transition nets because they are formed
by a set of places and a set of transitions. An example of a simple Petri Net is shown

in Figure 3.1:

D"

P1 T1 )\\ T2

P3

P4

Figure 3.1: A simple petri net.

A Petri Net contains the following information:

e Places, represented by circles in diagrams. Places are locations used to hold

tokens.

e Transitions, represented by rectangles. T 1sitions are used to indicate the
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possible actions in the systen.

e Arcs, represented by directed arrows. Arcs are used to connect places and
transitions, to indicate the flow of tokens in 1e systen. Arcs can only connect
a place with a transition or a transition with a place, but not two nodes with a

same type.

e Arc weights, represented by the number on arcs. Arc weights denote the number
of tokens consumed froni a place or produced to a place by a transition. Arc

weights which are identical to 1 are omitted from the ams.

e Tokens, represented by  id black dots. T ens are used to represent the re-
sources or control flows of the sys . A distribution of tokens among the places
of the system is called a marking. The initial distribution of e tokens is called

wnitial marking.

A place with a direct arc to a transition is called an input place to that transition.
If in a marking, all input places of a transition have sufficient tokens (number of
tokens required accor” ; to arc ights, which will be 1 in all nets in this chapter)
in them, this transition is said to be enabled in tk  marking. In . .gure 3.1, transition
T1 is enabled because the input place PI has 1 token in it; but 7 is not enabled
because P2 does not contain tokens to be consur L.

When a transition is enabled, it may fire at any timec. The cffect of a firing of a
transition is that tokens are  noved from the i: ut places and put into the output
plac (plac tl transition has directed arc pointed to). The number of tokens

added /removed is specified by the arc weight.
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It should be noticed that the execution of Petri Net is nondeterministic; multi-
ple transitions cnabled i a marking can be fired in any order, or not fired at all.
This behavior makes Petri Net very suitable for r deling the concurrent behavior of

distributed system.

3.2.2 Colored Petri Nets

Colored Petri Nets (CPNs) [6] are extension to o1 nary Petri Nets with the addition
of token colors. In standard Petri Net, tokens are indistinguishable. CPN associates
tokens with an attached data value. This value can be a predefined, arbitrarily
complex type. Places in CPNs can only contain tokens of the same type.

CPN adds a number features into the or<’" ary Petri Nets, which includes:

e CPN includes a declaration part that contains the declaration of the color set.
A color declaration contains the name of the color, and the data type that this

color is based on. So for example,
color ctrl = int

declares a color named ctrl based on integer type, so 1e ¢ r can have value

of any integer.

e The places in CPN is a multi-set of its conn  onding color. Because the tokens
in a place is no longer identical to each other. The use of multi-set instead of

set is to permit multiple token of same value being added into the place.

e Inst 1 of arc weight, arcs in CPN can  w have arc expressions, which can be

a fixed token value, a mathematical expression, or an if-clse expression.
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Other than these differences, CPN preserves all the characteristics and notations of
the ordinary Petri nets.

This characteristic of CPN is exactly the s.  :as the use of types  programming
language. CPN combines the strength of ordinary Petri Nets with the strength of
high-level programming languages, hence it is ve  suitable for modeling a language
that emphasizes the utilization of concurrent execution of distributed systems, such

as HARPO/L.

3.3 Basic elements of the CPN representation of

HARPO/™

This section will introduce a number of basic elements of the CPN representation of

HARPO/L, which include a token color set, and a set of basic trasitions.

3.3.1 Token color sets for the representation

The tok colors involved in ~ '3 representation are shown as follows:

e A set of primitive colors:

— color int = int
— color real real
— color bool = bool
e Each thread will have a ctrl token with a unique value corr o1 = 1 to thread
ID:
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— color ctrl = int

e Each method call will also have a specific to. 1 type cousisting of a ctrl token

and tokens for all in pa ueters:

— color call = reco ctrl: ctrl ¥ Name; : Type, * Name, : Type, * ... %

Name,, : Type,

The keyword record nieans that the color declared is an ordered list of {name,
color} pair. The returnii  token of a method call is also of the same form, with

a ctrl token and tokens for all out paramete

e Classcs donot have asp  fic token color asso  wted with them, since in HARPO/L,

objects can not be assigned to each other.

3.3.2 _Lasic trar ‘tion types

The CPN representation consists of several differ t types of transition, each with
its specific usage. A specific program can then be converted to a number of different
places and such transitions linked together. Most transitions can be contro. by
ctrl token, with a cirl token passed in from the . tput place of last transition and
put a ctrl token into the input place of the next transition. The arc consuming and
producing the cirl token is omitted from the grapl in this section for simplicity. The
list of transition types involved in the CPN representation of HARPO/L is shown as

follows:

e Switch transition
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A switch transition takes one token A of any type and an int token ¢ as input,

and distributes token A to an output according to the value of i

<

P e - f;
Qe "
81&

AN

P}

W

Figure 3.2: Switch tri sition

Specially, a token of bool type can also be used as i. In 1is case, the switch will
have two outgoing arcs, one corresponding to ¢ = true and one corresponding
to 1 = false. Moreon  a ctrl token can a . be used as 1, since it is also int

based.

Copy tra ‘tion
A copy tr:  tion reads in a token A of any type and distributes a copy of that

token into all i output places.

Merge transition
A merge transiti is the opposite to a copy transition, it takes a token A (which
must be with same type and value) from all its input places and produces only

one A token on the ou’ ing arc.

e Product transition
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lA
Copy

l’*l lA

Figure 3.3: Copy transition

Figure 3.4: Merge transition

A product transition takes a sequence of tokens of any type and combines them
to a record containing all the tokens as its fields; for examnple, group one ctrl

token and tokens rep  nting the paramet s into a call token.

LYREY An

Product l
fﬂ, Ao A

Figure 3.5: Product transition

e Split transition
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A split transition is the opposite of a Product transition, it takes a record token
as input, scparates it, and distribute the parts on different outgoing arcs. For
instance, it can be used to break down the returning token of a method call into

several corresponding tokens of various types.

‘l{A,,A;“.An]

| Split
lﬂglf\;:” A,

Figure 3.6: Split transition

Operator transition
An operator transition reads in two operanc A and B, and produces C = A op
B on the outgoing arc. It is used to represent operations such as add or multiply.

Moreover, this transition may have only one input arc for unary operators.

A B

Operator

Figure 3.7: Operator transition
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¢ Read transition
A read transition is a transition that is usced specifically for variable reading. It
is the same as a two output arc copy trausiti ., only with a different naine for

readability.

o Write transition
A write transition is slightly different from a merge transition, it has two input
arcs, an Agq and an A,.,. The output value of this transition will be the same
as A,ew. Details about variable reading and writing will be discussed in later

sections.

F ire 3.8: Write tra ition

We can construct a CPN for any HARPO/L program by a combination of these

simple transitions.

3.4 Control flow of CPN rep:1 sentation of HA..PO/L

The control flow of CPN is ¢ rmined by the ctrl token. When a thread is initialized,

a ctrl token is created; the ctrl will be passed through the statements, and destroyed

if

" when the thread t nates.
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3.4.1 Sequential control flow

The sequential order of statements is ensured by passing a ctrl token from one state-

ments to the next, which is illustrated as the following gra)

Figure 3.9: Sequential execution of statements

Each thread will have one and only one ctrl token, the firing of all transitions
within the thread is controlled by this ctrl token. This fact makes sure each thread
has only one statement under execution at any given time. The tr sition in figure

3.9 may be of various types, and will consume other tokens in addi n to cirl.

3.4.2 Branch cc :rol flow

Implementing the branch control flow in HARPO/L, the if statem t, is quite straight
forward. We first evaluate the guard expression & | store the result for the expression
into a temp variable, and then distribute the incoming ctrl token according to the
value of the temp variable usii  Switch  nsition.

For example, for HARPO/L state nt: “(i > dthenXelseYif)”, we have fol-
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shown as figure 3.11. The si. = operator transition in this figure can be replaced by

an arbitrarily complex combination of transitions to represent a more complex guard

expression.

Ifi=true) ctrl olse i=fe :trl else &

ctirl
Loop body

Figure 3.11: Loop control flow

A for loop can be rewritten as a while loop, and rep :nted in a same way as

the if loop structure. For example, the statement (for Name:Bounds Block for) can

be rewritten as:

obj Name :=0

obj B := Bounds

(while Name < ~

Block
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Name := Name + 1

while)

3.4.4 Parallelism

co statement can be implemented by producing wltiple ctrl tokens using a Copy
transition, and distributing one token to each of the parallel block. At the end of co
statement, a Merge transition can be used to me : all finished ctrl tokens back to

one thread ctrl token. This is shown in Figure 3.12.

Figure 3.12: Parallel control flow

3.5 Variable operation

A progr ne " toacc variabll top | either reads or wri B: don the

scope and usage, one variable operation can be handled in one of the several following
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ways.

3.5.1 Temp variable

Temp variables that are written and read by only ne transition respectively can be
represented by a single place. For instance, the CPN representation of the expression

a + b+ c is shown as in figure 3.13. Multiple ter  variables of a same type can be

ctrt,

ctri

Figure 3.13: Example of using a temp variable in expression a + b+ ¢

combined into a single place, providing they will ot be accessed  a same time.

3.5.2 Local variable

Local variables are variab  that are local to  particular thread. Because each
thread will only have one e  uting statement at any giv  time, there will not be

any simultaneous accesses to the the variable. A local variable can be represented as
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a subpage shown as in Figure 3.14.

Write
ctrl
ctrl
¥ A
Write
A A A A

it

ctrl int
Ctrl
out
-~

] Pout

Figure 3.14: Local variable subpage

The local variable subp has two input pr s and two output ports. A read
action puts a ctrl token in tI read-ctrl port, and waits on the value-out port for the
value, while a write action puts a ctrl token in the write-ctrl port, as well as a A
token in the value-in port, and waits for the ctrl token being returned from ctrl-out
port.

An example of read and write action as the statement C := A + B is shown as
Figure 3.15.

When an operator transition with local var )le as incoming arc is reached, we

also insert a copy transition before it, which distributes one ctrl token to the ctrl arc
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writing, the appropriate ordering is important to make the execution result of the
program correct.

The special requirement of shared variable write comes from the requirement of
sequencial consistency, where the exec ion of all tI :ad should be the same as if
all operations are executed in some sequencial order, in which operations from all
threads preserve the sequencial order of the program.

This requirements requires that when returning a ctrl token to a{ ead, the ctrl-
out port needs to return it correctly to the thread w ch provic the value that has
just been written. Otherwise the thread incorrectly received the token will assume
the writing has finished while in fact it did not, and break the sequential consistency
requirement.

Figure 3.16 shows the representation for the writing of shared va »>le(variable

side):
) [cert, A'}
: —— @ lel in :
. . cert', A'l .
E gtﬂ :
: - J < ﬂ{ﬁr) :

Figure 3.16: Writi: of sh¢ . variable
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Instead of taking the values and ctrl tokens separately, the shared variable writing
requires them to be united into a record token, so the writing proc  will not associate
the value and ctrl tokens from different threads. The writing process also has its local
ctrl token that provides mutual exclusion between write from different threads. After
finishing the writing, the writing process returns the incoming cérl token to its original
thread according to its ctrl ID.

The local part of the shared variable writing is shown as the following graph:

|Shared varaible ctrl ! Mnrge
ut ctrl
LUt e *(RB:I:’D l

Figure 3.17: Local part of the shar  variable writing

Because there may be multiple places in a thread that access a same shared
variable, and the ctrl token is returned only bas on the thread ID of ctrl token,
the shared variable will not be able to return the cirl to exactly the same line that
performs the write. Hence a local copy of ctrl in a thread is needed to indicate which
part of the thread is perfc  ng the writi  The Merge transition  ving the local

ctrl token will wait for the shared v. able to ret | the: ctrl t- >n and merge
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at one reading, only one value token will be put into the output port, with the value
corresponding to the index value.

The writing procedure will be quite similar to the reading procedure, which will
switch the incoming value and ctr! token, and collect the returning cirl token at a
single output port.

This mechanism works for local array because there will be only one read operation
on local variable at any given time, so an local array can be represented as a sequence
of local variables grouped together. However, for shared array, we have to ensure that
the ctrl token and value token are consumed correctly in pair. Moreover, because the
access to different items of an array will not confli with each other, we will only

need to ensure the sequential consistency of each item of the array.

3.6 Method calls

Method call can be represented by passing the cirl token betw  the calling thread
and called thread. For example, on called thread side, an accept statement:
(accept put(in value:int) guard Block — get() Block accept)

can be represented by Figure 3.19.

When the control flow reaches this accept sta  nent (indicated in diagram by
putting a local citrl token into the ctrl-in place), the thread waits for either of the
place for method parameter received an input. It will remove the <en from the
input place and test it against the guard. If the guard is not satisfied, the local ctrl
token and call parameter will be returned back to their i1 place; otherwise the

call parameter is passed = o the call body for execution. After the 1 is finished,
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Figure 3.19: Called thread part of method call

the remote ctrl token is returned to the calling th 1id according to the ctri ID, and
local ctrl token is passed on to the next statement of the thread.

The calling thread part of the m: 10d call is in fact quite similar to the local part
of shared variable writing (Figure 3.17). The thread will have only one return place
for one kind of method call. When the call is performed, the calling thread copies
the ctrl token, passing one to the called thread, and use the other to wait and merge
with the returned ctrl token to determine the place where the thread will continue

execution.
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3.7 Atomic blocks

A special mechanism is needed in the CPN representation to implement atomic blocks.
An extra place is added to the graph to hold a token that represents exclusive access.

In CPN representation for HARPO/L code that cc  ains atomic block, in addition
to the ctrl token, we will add an arc consuming or producing an atomic token to both
input and output respectively. So any transition will require the atomic token to
fire, and put the token back after firing. An atomic block, on the other hand, will
consume the atomic token at the beginning, and only put the token back when the
whole block finished execution.

A example for the code block:

(thread
(co
(atomic
x
y
atomic)
]
m
n
co)
th  d)
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can be shown as figure 3.20

ctrl

ctrl ctrl

- |

o atomic atomic | ctrl

atornic i
mic
/ atomic

ctrt )
ctrl ctrt

ctr

atamic

atomic ot

Figure 3.20: CPN representation for atomic block

Initially, the atomic place contains one token, so only one atomic section can

possess atomic token and eligible for firing at a same time.

This implementation requires atomic sections  be mutually exclusive with each
other, which makes the concurrent system to become interleaving- sed. We will

report on better implementations for omic block in Chapter 4.
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Chapter 4

safety of fission

4.1 Motivation

When compiling a HARPO/L program, we someti :s wish to determine if a block
of code may be atomic to other blocks. The atomicity property is useful in code
optimization. If this property is true, we can perform sequential code optimization
techniques that otherwise would not be valid to the code block. Moreover, when im-
plementing the atomic keyword, atomicity chieck may greatly improve the cfficiency
of configuration generated.

Beii atomic means a certain block of code can only be either not executed at
all, or fully executed in other threads’ point of view. We use a () pair or (atomic )

block to indicate that the enclosed code block is atomic. For example:

(thread

obja:=0
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semaphore s .= 1

thread 0 {

a:=10

}

This method requires us to enclose - _ single s ement in thread 1 by a pair of
P() and V() operation. For lo1 r code blocks, this method can be very costly as it
adds two extra semaphore operations to every stat ent of thread 1. Alternatively,
we can enclose the thread 1 inasii "e P() and V()| r, but using this: thod means
the concurrency of the co structure is completely

This method is based on the assu; Htion that all statements in atomic block must
be executed together without interleaving with any statement from other threads.

However, this is usually not true. Shown as follows:
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G = (b:=10; a := ¢)

A careful examination of the code blocks shows 1at any interleaving of block
F’ and G will produce a result that is same as some interleaving of F and G. The
implementation may satisfy the atomicity requirement even if no special mechanism
is employed to ensure it. If we can identify such ¢ 1ation in more coniplex code
blocks, we can partition the atomic blocks into smaller atomic blocks 1at can be
implemented without complex synchronization method such as semaphore. We can
continue this process until we identify the miinimum blocks of statements that will
interfere with tlie atowmicity property, then we can only implement code flow control
for only these blocks, and thus achieve a much more «  -ient implementation.

In this section, we will develop a method to de ‘mine if an atomic block code
can be safely partitioned into ) arate parts and to identify the portion of code that

niakes the partition not valid if this operation can not be performed safely.

4.2 Introduction to trace thec_y

In order to describe the behavior of different interleaving of multiple thread blocks,
we employ trace theory [13] as the mathematical t |
We can view a block of code as a sequence of different operations. Because we are

only mterested in how differ threads access sh :d variables, we divide different
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operations into three categories: operations that re: from a shared variable, oper-
ations that write to a shared variable and operatior that do not perform variable
access.

We use identifier W to  >resent a write operation and R to represent a read;
moreover, a superscript is used to indicate the name of the shared variable and a
subscript is used to specify the thread this operation elongs to. Hence, R} is a read
for shared variable a from thread T; W} is a write  variable b from thread U; Or
is an operation in T that does not perform shared variable access.

Each of these identifiers of an operation is called a symbol. An alphabet is then a
finite set of symbols. Because of the nature of threads, we define that an alphabet
representing a thread T" should contain access to all shared variables from this thread
plus the symbol for no shared variable access @r. An alphabet of a thread T is
denoted by aT.

A trace is a finite-length secquence of symbols from some alphabet. | our case, a
trace is the sequence of operations corresponding to a possible executic of a threa
A trace set is a set of traces. The trace set of thread T is denoted by ¢T". The thread
T is then denoted by a trace structure, which is the pair (a7, tT). V  will write such

a trace structure as T for simplicity for the remaining part of the thesis.

4.2.1 Projection

We define the projection of a trace t to an alphabet A to be the result of removing
all symbols in this trace that does not belong to e alphabet, and keep the rest of

the symbols in the original order.

52




A projection operation can be written as:
tTA

where ¢ is a trace and A is an alphabet.

A simple example of projection is shown as follows:

t aXbYcdZe
A= {a b ¢ d, €}
t] A= abcde (4.1)
In the remaining part of the thesis, upper case identifiers such as T" and U will be
uscd to represent threads or trace structures, and 1 or case identifier such as ¢ and

u will be used to represent traces, unless otherwise specified.

4.2.2 Weaving

With the definition of projection, we can formally define the weave function to be

(13]:
T 7 ({z€ (@TuUal)* |z 1aT €tTA z U €tU}, TUal) (4.2)

The definition means that the result of weaving two trace structure T and U is a

trace structure such that:

e The alphabet of this resulted trace structure is the union of the habet of the

two trace structures U and T.

e A trace in the trace set of the resulted trace structure must be a sequence of

the symbols from the new alphabet.
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o All traces in the resulted set project to the alphabet of T “~") must be in the

trace set of T (¢tT).

e All traces in the resulted set project to the alp. et of U must be in the trace

set. of T'.

For our case, because the symbol sets of trace structures representi:  two different
threads are always disjoint (which is intuitive because the symbol set of a thread only
contains operations from this thread itself), the trace set of the weaving of two trace
structure ¢(TwU) is in fact all possible interleaving of all pairs of traces < t,u >
where ¢t is from ¢T and u is from tU.

A simple example of weaving is shown as follows:

tT = {W}R}}  oT = {R}, V™ R}, W2, Or}
LU = {WERbU} QU = {Rgh WG» va tha GU}
HTwU) = {W7RFW( Ry, WeW(RERy,, WiW( Ry RY,

WEWh Ry, WEWERY R, WERLW, 3}

.@_(T_“_]U) = {R;‘a WTQ‘» R%, W;" Or, ?J’ Wll;’ va W37 QU} (4'3)

In this example, two threads T and U accesses two shared variables @ and b. The
trace sets of the two trace structures both contain only one trace, each with two
symbols. The result trace set t(TwlU) contains six traces. This trace t may see
complicated at the first glance; however, a careful inspection of the subscripts will
reveal that it is just interleaving the symbols fro the two t es in an arbitrary
order. For example, a trace with subscript in or¢ TUL. (W ¥{ ) R%) means

first exccute onc operation in thread 7', follo | by the two operation of U, then
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execute the other operation of T'.

As the number of traces in each trace set and the number of symbols in each trace
grows, the size of result trace set will grow exponentially. But the rule of weaving
remains the same. Deriving the result of weaving two trace structures representing

two threads together will be a trivial task given enough time and patience.

4.2.3 Equivalence of traces

In this section, we will define equivalent relations] ) between trac In common
sense, two traces are equivalent only if they are equal, which means they are formed
by the same set of symbols with the same order. However, because we are only
interested in using traces to represent the execution of threads, we v | say traces
that produce the same execution result are equiva 1t (represented by =) to each

other. For example:

Wi | REWS = WRRGREWS (4.4)

because although the order of the two reac R% and R, are diff :nt in the two
traces, they all return the same value (the value written by W%). Hence the program
execution result can not reflect this difference, the two exe  ion orders are the same
in the view point of the user of the program.

As aresult, we define the equivalence relationship between two traces by definition-

use chain.
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trace set of weaving result grows dramatically. In der to efficiently analyze the
equivalence relationship between large number of traces, we need to de op methods
that are more efficient than simply performing definition-use check to all uses.

We can break down the equivalence checks betw 1 two trace sets into a scries of
equivalence checks of two symbol trace, Detailed discussion about this method will
be provided in later sections. In this section, we ¢ elop a rule for the equivalence

relationship between all two symbol traces.

1. RiR; = Ry RS, as we discussed before, read does not have a ] .icular order,

since a read will neither establish nor block & :finition-1 : chain.

2. W;RZ £ R;W;, because the write will reach the read in left side, and will not

reach the read in the right side, these two traces are not equivalent.

3. WeWe = WeWe if there is no read operatic  to a immediately following the
trace. If there is a  d operation R? following these two symbols, then on the

left side, D(RS) = W2

., and on the right side, D(R?) = W7, the two traces are

not equivalent. On the other hand, if there is no read or  >ther write to a that
follows these two symbols, the interchange would not affect = equivalence of

the two traces.

4. O;‘Os = ijO;, where O can be cither read or write. Operations to different
variables would not interfere with each other, since no definition-use chain is

established between operations on different  ‘iables.

5. PO* = O°@. Intuitively, operations thout shi 1 variable access would not

affect the definition-use chain of shared var  »les.
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4.2.6 Equivalence of trace sets

We define the refinement relationship between trace sets to be:
tT CtU < VYuetU-FHetl - t=u (4.6)

We say a trace set tU refincs another trace set 7 if for any trace u in tU, we
can find a trace ¢t in tT so that u is equivalent to £. This statement also iniplies an
simplicity restriction that

al C aU (4.7)

because a trace ¢ can not be equivalent to other traces that has symbols that do not
exist in £. For the rest part of the paper, we will not consider this restriction because
the trace structures we are examining will always ] e the same al) at.

An example of refinement relationship of trace structures will be shown as follows:

(WeWeRCR®, W* °RCR®)

1

tU

(WPWeR*R®, W*RR*W"}

T CU (4.8)

Trace structure T is refined by U because, according to the definition of equiva-
lence of traces, WWeR'R® = WeWPRR® = WPW°R*R? since both uses in these
three traces are affected by t. same definition. According to 4.6, for both of = =
traces in tT, there exists a trace WPW®R2R? in tU that is € iivalent to them.

However, we should note that U is not refined by T', because there is a trace
WaeRPRAW? in tU that is not equivalent to either  the two traces in t7. If this trace

is removed from tU, then the new trace structure U’ will be refined by T. The two
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trace set, and removing traces from the original trace set clearly would not affect this

property.
A fusion is a transformation that converts two a1 1ic blocks into a  igle atomic
block:
{p); (9) - (pa) (4.11)
Fusion reduces the nondeternminism in parallel - -am. That means, if we de-
scribe the threads of parallel pr  am by trace structures, and the concurrent execu-

tion of them by weaving, fusion will reduce the size of the trace set of the resulted

trace structure, illustrated by the following example:

(T = {{(Wr)(R%)}
tT" = {(Wp.R}.)}
tU = {WiRpy)
HTwU) = {(Wp)(RPDWGRY, (WRWS(RT) Ry, (Wp)WERy(RE),
WG (W2 (RE) Ry, WE(WE) Ry (RE), WERE (W) (RS}
HT'wU) = {(WpR$)WERY, WE(WLRE)RG,, WERY (W2RE)}

tTwl) 7) (4.12)

We can see that fusion will only reduce the nu: Her of possible in  eaving traces
in concurrent execution but not introduce new traces. So fusion is always safe.

In the rest of the thesis, we will omit the atomic sign “()” from atomic block  at
has only one symbol, since a s e symbol is alw 3 atomic.

A fission is the opposite of fusion, which splits one atomic block into two separate
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blocks:

(pig) () (q) (4.13)

Fission will increase the nondeterminism in the ¢ current program by increasing
number of possible interleaving traces in the resulti  trace structure.

Strictly speaking, a fission is  :ver safe as long as both p and g cont = at least one
shared variable access. As for any fission transformation, we can always find a trace
set tU that when weaves with the original trace set and the one after transformation,

will cause:

Tv ¥ TwU

However, we are interested in a special ¢i  of «  ety, that is, if the fission is safe
in a certain context. For instance, in the case of Example 4.12, if U represents all

threads that are executing in parallel with T', then fission
T = {(WERR)}  — (T = {WAR})
is safe because the three new traces introduced by sion:
WALWERNRE, WeWERE RS, 78WE Ry RS,

are all equivalent to the trace
W {(WrRT) Ry
in the original trace set.

If we modify the thread U by just changing the order of the two symbols in its

trace, so that U becon

tU  {RyWS}
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The fission
(p:q) — (o)

is not safe anymore under this new context. Illustrated as follows:

tT = {(WpR$)}
tT' = {Wp.Rp}
tU = {RyWg}
YTwU)  {(WpR$)RyWG, Ry(WiRE)W, RyWS(WTRT)}
UT'wU)  {WhRGREWE, RYWARSE WS, REWSWE RS,
Wr RyWG RS, Wi RyRp W RyWr Wi RT.}

t(Twl) . (T'wl) (4.14)

—

This fission is not safe because there is a trace

W2, R, W2 RS
ity Wy i

in the new result trace set that is not equivalent to any of the three traces in the
original result trace set.

As aresult, we will only consider 2 safety of i on with respect to the context of
the concurrent program. We use M as the context, which is the trace structure rep-
resenting all threads that are executing in parallel with the target th id undergoing
fission transformation.

We introduce a new operator:
T Cuy U MU M (4.15)

to mean the transformation from trace structure T to U is safe under context M.
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So instead of Equation 4.10, we use

{(pra)} Car {p); {a)} {pa)w M)  ({{P);(@)}w M) (4.16)

to represent the fission is safe under context M.

4.3.2 safety

The context M is the trace structure representii  all other threads executed in par-
allel with the thread under fission transforination, hence it may coutain many trace
structures representing different threads. F  ever, this context can be split to a

number of different subsets. So if
M Moyw M, w ... M,
then
TCy U & (TCumU)ANTCp,U AN (T Cpp, U) (4.17)

This property will be proved in later section, in this section, we will only consider
M to contain trace set for a e thread, as traces from multiple th ads only require
us to repeat the equivalence analysis multiple tim

Although trace set representing a single thread may also conta  multiple traces
because of branch and loop structure, we can develop methods to merge traces intro-
duced by these structures into a single trace (detail discussed in later sections). As a
result, we will only deal with the case that ¢M contain only one trace: m.

~2cause a trace m  just a sequ 1ce of different operations, we can label the

operations by a symbol m; corresponding to the order of presence in m. So the trace
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m is a symbol sequence mgmyms - - - m,_y. According to our definition. {(p;q)}w{m}

is the set of all possible interleaving of the two traces:

t{{pi @) tw{m}) = {pgmomi - ma_y, mopgmy - Mu_y, -+, Moy -+ Ma1pq}
This is a set of n+4-1 traces with pq being placed before mg to m,_y, or after m,, ;.
Because (p; ¢) is atomic, no symbol can be placed in  tween of p and q. On the other
hand, the trace of {{p);(¢)}w{m} contains not only all traces in {(p;q)}w{m}, but
also traces that have a subset of m placed between p and q. There are % such traces.
We can label each trace by the number of operations before p and the number of

operations after q. Define the result trace set {(p);(¢q)}w{m} to be I, where I, is

the trace that has z operations before p and y operations after ¢, n: 1ely the trace
MMy * -~ Mg Py My Myl -~ - My (4.18)

Intuitively, {(p;q)’ “m} only contains [, that does not have operations between

p and ¢, hence z+y = n, while {(p) ; (¢) }w{m} contains all possible interleaving. So:
Lye{m@lw{m} & s+y=n (4.19)
Lye{p)i{@tw{m} & 2 y<n (4.20)

Hence the proof of equivalence is to prove the two sets are equivalent, so for every

trace Wy, that r + y < n, there is a trace with = + y = n that is equivalent to it.

{pa)} 3ar {{p) i (D)} Y(Iyli+j<n)- Iglr+y n)-Iy=1l, (4.21)

4.3.3 Proof of equivalenc of traces

Given two traces from the in leavii _ set I, : | [;;, we can prove whether I, = [;;

by the equivalence rule of twc  'mbol traces discussed in Section 4.2.5. In this ction,
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we only consider the case that p, ¢ and m contains access to only one shared variable
for simplicity. The method for dealing with multiple variables will be discussed n
later sections.

From the definition, I, is the trace
My - Mg 1PMg -+ My yqMn_yg1 *** My (4.22)

Each m; is either a R, W or ) symbol. Because p and ¢ may be multiple operations
grouped together, they may contain both reads and writes. Howev  if there is a
write operation before the first read operation in p o1 the use of the shared variable
in them will always be determined by this write. Hence, read operations in this case

will always satisfy the equivalent requirement in any interleaving.
WR=W in (p) or (q) (4.23)

If this is not the case, the a read before the first write to the shared variable,
then p or ¢ must be treated as both read and write, and have the constraint of both
operations. Hence, p and ¢ are each either R, W | @ or RW.

Suppose z > ¢ in I, and I,;; to prove I, = I;;, we can first prove I;_;, = I,,.

We can see that I,_;, is the trace
Mo« -Mg2PMg_1" " Mpu_yqMpy_yit1 My (4~24)
Compare this trace with the trace 4.22, we can ¢ that
Ip1y = Iy & Mg 1D = PMig.-1 (4.25)

We can judge whether this equivalent relatii hip is valid or not by the rule of the

equivalence of two symbol tra  developed in Section 4.2.5.
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Following this method, we can further judge whether I,_,, = I._, , by examining
if mge_op = pmg_y. If this is also true, we can say that I;_o, = I,.1, = I.
Repeating k times until z — & i, we can prove I, = I;,;; moreover, 2 equivalence
chain also contains any I,, where z < a <. Performing the sane operation to g, we
can establish an equivalence chain that shows W,, = W;, = W;;.

Failing to establish this equivalence chain will not always mean the two traces are
not equivalent. Because a read-write pair can be moved together even if they can
not be moved individually. For example RyWrRrWy = RgyWyWrRr even though
RyWrRtWy # RyWrWyRr # RyWyWrRr.

However, this also means that there will be at l¢ t one trace in the chain that is
not equivalent to the target trace. Because we are in  ested in the resu ng trace set
as a whole instead of the starting trace itself, this problem will not affect the result

of our analys

4.3.4 Equivalence of result sets

As discussed earlier, if we want to prove

{;:a)}  wny ()i (@)}

we have to prove
V(Ili+7<n) Iylz+y=n)-Li; Iy

Given an arbitrary trace I;; with ¢ + j < n, we need to find a ace I, with
zr +y = n that is equivalent to it. From the analysis in trace equivalence, we can see
the way to prove this is to = ‘remient i and 7 until the sum of ¢ and j is equal to n.

This increment is achieved by repeatedly performing the stepwise equivalence check.
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We can see that the equivalence check is indepen: 1t of each other and will not be
affected by the order they e performed. If we can prove I;; Iy, we can prove that
any trace Wy, with i < a <z and j < b <y is also equivalent to W;; by changing
the order of equivalence check.

Generally, if we can prove Iy is equivalent to so: I, with z+3y  n, then every
trace I,, with 0 <a <z and 0 <b <y will also be equivalent to this I, .

This is achieved by first performing equivalence checks to the front of the trace
to increment 7, until we meet some check that is not valid thus can not increase %
anymore. After that, we switch to performing equivalence check to the | of the trace

to increment j, until i + j = n or another nonequiv ent increment is encountered.
V{lwla <0 < ) - Loy = I (4.26)

where
L {{p;q)}w{m}.

For the case that a > i, following the same set of equivalence checks, we can easily
prove that Iy = I;,,—, by performii the approp te equivalence check to back of
trace only, Obviously this /,,_, also belongs to { ¢)' “m}. Same " ids for the

situation & > 7. By summing up all these three cases, we have proved that
V(IU|Z +7< TL) : 3(1;y|.’l] +y= TL) . Iij = IIy (427)

and hence

{o;a)} 1 {»; 1} (4.28)
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4.3.5 Proof of decomposability of the context

In this section, we will prove the theorem mentioned in  :tion 4.3.2, tt  the context
can be considered one thread at a time.

Suppose we have two traces:

T =(p;q)
T = (p);(q)
and context:
M= MywM wM .. M,

then
TCuy T <« (TCuT)ANTCuy,TY Al (T Cpp, TY) (4.29)
Since we have
TCu T & TwMuwbh ...wM,) Cyy T'w (My My ... wM,) (4.30)

Because weaving is associative, the right hand sic  of above equation is equivalent

to

(T w Mo) w M) .. M) Car ((T'w ! )w M) ... w M,) (4.31)

If

Cap TV

which means

(pig) wMoT (p);{qg My (4.32)
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from our analysis in previous sections, Equation 4.32 is equivalent to:
vt' e (p)s{pw Mo-3t € (piq) wMo-t =1t

So every trace in
(p) i {g) w Mo

can be transformed into a form:
mommy « - My (PQ) MeMygy - Mp—1

According to section 4.2.5, symbols that come ' >re p will not affect the safety
of fission of this trace and any other trace, since the equivalence check is not affected
by symbols before the two exchanged symbols. Similarly, although we do take the
symbols that come after ¢ into consideration in the moving write across write case;
having a read of a variable immediate following ¢ basically means ¢ does not have
write access to that variable, otherw  the read w not be able to move across g.

So the resulted trace set of weaving
(T'w Mo) w My~ (mgmy---m  (pg) MgMygyy -+ Mp_)w M,
where the right side of equation is the equivalent to
(T w Mo) w M,
Continue this precess for all M,,, we can then prove that
Tw(Myw M, ... whM,) — T'w (Mow M, ... M,)
if
Lt TYNT ,TYANANT 4, T) (4.33)

The context of fission 1s associative.
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4.4 Applying the method

When applying this result to general computer prc -ams, we need to consider a
number of more complex situations. Solution for t. se problems is discussed in this

section.

4.4.1 Multiple variables

The discussion in earlier sections is based on single shared variables for simplicity. In
real application, this is usually not the case; howe r, our method can be extended
to deal with this problem without too much modification.

Although (p) and (g) may access multiple variables, for a single variable, it can
still be only R, W , @ or RW. Hence, we can derive a reading variable set R, writing
set W, and read/write set RW for (p) and (g) respectively. Moreover, each operation
m; in m also has such a set of acc variables. When performing the equivalence
check described above, instead of checking equivalence relationship against a single
variable, we should check the set of accessed variables.

For the same variable, it follows the rule of single variable analysis; for different
variables, because OgOg = OgOg, they can be interchanged without any interference.

We can extend the rule for single variable eqi 1lence to multiple variables:

ut#tu if (WenRy#0)Vv (RiNW, #0O0)
ut #tu if (Wi NW,#O)A(F -D(R)e W N W,)

(4.34)
where ¢t and u are atomic blocks, which can be either p, ¢ or m;.
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<p> @mblock ¢ lOOpI

| block wp <> I

<p>‘_bloc“'iterz:um*'l(er;tlon ‘“lerilcon I block L<q> }

Figure 4.2: Example for loop structure tt  is safe for fission.

branches, the execution flow can take any of thiese auclies. Because all brauches
can be chosen at an execution, we need to ensure none of the branches will interfere

with the atomic block, as shown in Figure 4.4.2.

{branch 1 [branch 1‘
* head tail
<p> 4mblock block sp<q>

¥

& branch 2 |

Figure 4.3: Exainple for branch structure that is safe for fission.

The branches in this cases are examined individually because o: - one of the
branches will be chosen at any time. If all branches are safe for fission individually,
the whole branch structure is safe for fission. The only thing that is should be noticed
about branch structure is: if any one of the branches needs to be moved toward the
end of the trace, all codes after the branch structure must be also move toward the
end of the code; as this branch, if taken, prevents the code block after it from moving

toward the head of the trace.
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Chapter 5

Implementation of the compiler

front-end

5.1 Structure of the compiler 1 ont-end

As we discussed in the first chapter, t HARPO/L compiler consists of a front-end
and a m  Der of back-ends ta ting different platforms. .. front-c | takes the
plain-text HARPO/L source code as input, and produces a platform-independent
intermediate representation (Object graph) as the output. The HARPO/L front-end
consists of several major steps: syntax analysis, ty  checking, and specialization/

instantiation. Shown as Figure 5.1.

5.1.1 Syntax analyzer

The syntax  alyzer checks the grammar of the sour code and conv s the plain-

text source code into an abstract syntax tree (AST) reflecting the structure of the
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Source code

N

Syntax Analyzer

Abstract Syntax Tree
1

Type checker

Typed Abstract Syntax Trea
I

Specialization/
Inet=ntigtion

1
Object Graph

Figure 5.1: Structure of HARPO/L compiler front-end

program.
The abstract syntax tree built for statement a := a + 1 is shown as Figure 5.2.

The syntax analyzer first breaks the statement string into five tokens (a,:=,a,+,1)

A
A
E RS

Figure 5.2: Abstract Syntax Tree for a :=a + 1

according to the language definition, and then organize the five tokens into a tree
structure according to the priority of the operators.

The syntax analyzer utilizes standard techniques.
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5.1.2 Type checker

The AST derived by the syntax analyzer is not typed; the type checker checks the
program for type errors and adds type information  each node. A typed abstract

syntax tree for the example in Figure 5.2 is shown as Figure 5.3.

Figure 5.3: Typed Abstract Syntax Tree for a :=a+1

In this example, we asst  : variable a has been previously defined as an int16,
which is an integer represent¢ ~ by a 16-bit word. According to the semantic rules of
the language (9], the type of constant 1 is the shortest integer type 1at can hold its
value, which is int8. The type of the expression conibined by the + operator is the
shortest super-type of both its operands, int16. The assignment command requires
a check that the r” "1t operand can be assigned to the left operand. The type comm
basically means the command is correctly typed; if an error had been found, the type
of the statement will be set to err to reflect this fact.

The typing of generic clas s similar to that in Java [10]. Within generic classes,
the types of nodes may be represented by ¢ = variables’. Bounds information on
type variables used to determine the correctne of operatio

For  mple, within the generic class defined by
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(class G {type T extends A } ...)
a declaration
objz : T := new T()
requires that type A supports a constructor with no parameters and a call
z.m()
requires that A exports a method m with no parameters.
Outside of G, a declaration
obj y := new G{U})

requires type U to be a subtype of type A.

5.1.3 Specialization/ instantiation

HARPO/L uses generic classes to provide polymor ism. Specialization creates those
specializations of generic classes that are needed f  the given program.
Instantiation creates the objects from classes.  stantiation serves to connect ob-
jects together, by means of object references that are passed as constructor argunients.
For exanmple a consumer and a producer can be instantiated and connected together

via the declarations

obj p := new Producer(c)

obj ¢ new Consumer{p) (5.1)

Detailed explanation about specialization and instantiation will be discussed in

later secti












example:

obj a := new B()

obj c .= ad
obje =c
(class B

publicobjd =1
class)

In this example, be 1se the type is omitted in the declaration, the type of ¢
is decided by the initiation expression. However, because its initiation expression
contains a field d of class B, which is not yet declared, there is no way to decide the
type of ¢ at this point. In the declaration, the type of e can not be dec :d
either.

To deal with this problem, the HARPO/L compiler adopted a two-pass mech-
anism. The first pass fills in the symbol table with only variable names and their
initial expressions, and ty] information for the variables that have an explicit type
declaration. The second pa resolves initiation expressions for variables to decide
their types.

For the first pass, the entries in symbol ta ¢ for variable a will be a pair of
its name and an Object Type B. However, the compiler will not try to collect any
information about the type B, no matter whether it is available at this stage or not.
Similarly, the compiler will create an Ezpression Type correspo ling to expression

a.d, but treat a and d only as two names, without concerning if they exist in the
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symbol table. The compiler also records Class Type to be a class with an int8 field
d cqual to onc in the first pass.

The second pass will evaluate all the Ezpression Types and decide the actual type
of the variable. It will link the type B with its de ration, so when the compiler is
trying to evaluate expression a.d, the information about ficld d will be available at

this time.

Figure 5.7: Expression type for a.d

For the above expression, the compiler 1 look up in the symb table and find
the left operand a to have type B, and then look up the field table of class B for the
right operand d to decide the final type of the dot expression is int8. After the type
of variable c is filled into the symbol table as in it can be used to determine the

types of other variables such as e.

5.2.2 Type dependence

The exaniple in the last section s ws that the type of a variable may be decided
by the type of other variables. In this case, we s that the is a type dependency

relationship between these two variables. Furth ore, the example also shows that
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the dependency relationship can run 1 :kwards in the source code, meaning that a
variable may depend on another variable that has not been declared yet. For example,
a field of a class is effective throughout 1e entire cla  irrespective of in which part of
the class it is defined. One may define fields of a class at the end of the class definition
but use them earlier in the code to form initiation expressions of other local variables.

In the example from last section, this does not iuse any complication because
the type of class a and field d can be decided immediately at the first pass, so the
type information is already available to the compiler in second pass. However, this

situation may not always be true, see as the following example:

obja:=b ~—

objb=c  «

objc =10 -«

Figure 5.8: A simple example of type dependence

In this example, the type of @ depends on type of b, and type of b further depends
on type of c. When the compiler is trying to figure 1t the type of a, it needs to know
the type of b, but the type information is not av. able in the syr ol table because
the initiation expression for b b not been eval .ed yet. As a result, in order to
correctly type this block of code, we must evalua the variables in reversed order of
their apparency in prograni. In actual programming, this order can be arbitrary so
the situation may be even more complex.

One possible way to solve this problem is to perform a topoli cal sort of the

variables prior to the type checkii  Variables that do not depend on any other vari-
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able are evaluated first; variables that depend on available variables will be evaluated
after. Repeat this step until no more variables can be evaluated. The variables that
remain untyped after this is the set of variables that have non-satisfiable dependence
requirement hence will all be typed as err.

This approach introduces a complex problem into the compiler; a good algorithm
is needed in order to achieve both efficiency and co ‘ctness. In our implementation,
we decided to employ a different approach.

_.pre n
@ type: b
L 3 - _l 1_.
l b " wpe:c
c - Primiti  ype
I Ir

Figure 5.9: Symbol table entries and dependence relation ip

We implement a method getType for the Type class. When this method is called,
the Type class returns its own type if it is a normal Type, or evaluate itself to get its
type if it is an Expression Type. So for the example in 5.2.2, the compiler performs
type checking from top to bottom at the beginning, when it checks a, it will find it
is an ezpression type that depends on variable b. The compiler then evaluates this
expression by calling the getType method on the :pression type (c) returned by the
symbol table. The compiler further calls getType on this expression and it returns
the type of ¢: int8. This type information is w  to determine the type of b to be
nt8; type of b further determines the type of a to be also int8. If a variable depends

on another variable that does not exist or have type err, this variable will be typed
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as err.
This also introduces a new problem, cyclic dependency, as shown in Figure 5.2.2.

r

This is a slightly modified version of the code block in last example. © is time, the
type of ¢ is not a Primitive Type int8, but an Ezpression type that depends on the

type of a.

/obja:=b\\

objb:=c <«

\objc:=a/

Figure 5.10: An example of cyc  dependence

Cyclic dependence will not  1se any problem in topologic sort approach because
nonc of the dependence requirement of these thr  variable will be satisfied in the
type checking process, so the compiler will never try to determine the type of these
three variables. After the type checking finishes, these three variables that remain
untyped will be all be typed as err.

However, in the recursive approach, this block of code will cause an infinite loop.
When the compiler is type checking this block of code, it performs the same operation
as the last example until it is trying to decide the type of c. As we scussed above, it
will call getType on the Ezpression Type (a), and this expression calls back the same
method for b and the whole process starts over ¢ .in and again.

In order to avoid this mfinite loop problem and spot the cyclic dependency error,
the compiler ludess ack tc cord all theid ifiersinvol |in deciding the type

of a single variable. The stack records the name and scope of a variable when it is
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This behavior is achieved by linking the symbol table of the generic and specialized
class together, while the synibol table of generic class is the parent node, and generic
parameter table of all declarations of specialized cl: is a child table linked to it. So
when the compiler tries to get the information ab t the type of T in List{int32},
it will look up T in its generic table, which is in !, hence | occurrence of T in
List{int32} will become int32 * tead. Because the generic table of List{int32} only
contains entry for generic parameter T, all other table look up call will be passed
to its parent table as the default behavior of the symbol table. On the other hand,
List{int16} will have exactly the same behavior cept the generic type T being

replaced by int16 instead.

5.4 Implementation

We choose Java as the platform for the programming of the compiler front-end. In
this section, we will discuss details of the actual ¢ ling of the compiler, including its

structure, classes involved in the ir lementation, and interactions between classes.

5.4.1 Parsing

Parsing is used to convert t  plain-text source code into a tree structure representing
the meaning of the program.

We use JavaCC (Java Conipiler Compiler) to implement the | ser. Parsing a
program using JavaCC contains two major steps, the first step is to break the source
into a set of tok the sec 1stepis to organi tlI :tokens il »>a tree structure.

When a string is read in from a source file, is broken down into a number of
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substrings divided by a set of divider strings, which include blank space, tab character,
end of line character, and comments (comments in HARPO/L are defined as in Java).
The substring set is then all substrings of the original string that are enclosed by two
divider strings.

As a result, a string
obj intExample == 10+ 2+ (4+ 1) (5.2)

is broken into four substrings: obj, intEzample, :==, 10 + 2 * (4 + 1) after this step.
The parser then checks the definition of different tokens to convert these substrings
into tokens.
Token definitions involved in parsing 5.2 is shown as follows:
< OBJ > - obj
< ASSIGN > - =
< ADDITIVE > — (+1-)
< MULTIPLICATIVE > - («1/1%)
< LP> - (
< RP > — )
< #DIGIT > — (0—9]
< #LETTER > - la - 2] | [A-Z]
< INTEGER > - (< DIGIT > )"

< IDENTIFIER > — < LETTER > (< LETTER > | <DIGIT>|_)

These definitions are in fact quite straight forward, we defined keyword obj, several

operators, and two catcgorics of tokens: integer 1 identifier. Tok  definitions that
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start with # sign are macros, they are used to form other token definitions, but are
not token types by themselves. As we can sce from the definition, integer is defined
as a sequence of digit, and identifier is defined as a letter followed by an arbitrary
sequence of numbers, letters, and underscores.

We should note that token definitions are evaluated from top to bottoun, so the
substring obj will be converted into a < OBJ > token, even though it also satisfies
the definition of < IDENTIFER > token.

When converting the substrings to tokens, the parser will try to include as many
characters as possible into a token, until it encounters a character that can not be
included into correct tokens according to the to 1 definition. It will then combine
all characters before this stop point into a token, and perform a new token check
starting at the character where the previous check stopped. So for example, string
intErxample will be converted into a single token and 1 4 2 will be three tokens 1, +
and 2.

As aresult, the string in 5.2 wil e broken into a sequence of 12 tokens: < OBJ >,
< IDENTIFER >, < ASSGINMENT >, < INTEGER >, < ADDITIVE >, <
INTEGER >, < MULT.. .Lo....Vo> < LP>, INTEG..! < ADDITIVE >,
< INTEGER >, < RP >.

After converting the source into sequences of tokens, we need to define a parse
tree to organize the tokens into a correct tree structure according to its meaning. The
parse tree is derived from the language definition. A small portion of the parse tree
is shown in Figure 5.14.

In this graph, tokens are represented by circles or eclipses, with tokens that will

accept only a same sequence of characters (for example, < OBJ > can only be
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formed by string “obj”) represented by a circle labeled by  at stri  for simplicity.
Rectangles are used to represent | nches that can be expanded into subtrees. A
subtree may contain many branches, only branch that are involved in parsing (5.2)
are included in the graph.

When the parser is trying to organize the tokens into a tree, it will perform a tree
traversal. Starting at the root node, when a tok is inputed, the parser will walk
down into the branch that starts with the token, and consume tokens as spec :d
by each tree node. The parser will return to the parent of a node when the token
requirement of that node is satisfied. If the requiy 1ent for e root node is satisfied
as the last token is consumed, the parsing is successful.

We will not list the detailed tree walking steps for (5.2), just to point out several

important issues in this procedure.

e An Abstract Syntax Tree (AST) is ‘:mera . in the tree walking procedure,
when the parser returns from a parsing tree node, it will create a node in AST
according to the parsing tree node, and attach this AST node to the AST node

generated by the parent node in parsing tree.

e The priority of operators is determined by the depth of the node in the tree.
Nodes close to the tree ] ~will be evaluated earlier in the next step in con i-
lation, so will have a higher priority. For example, multiplicative expression is
the branch node of additive expression, hence the operator (*, /, %) will have

higher priority than additive operators.

¢ Parenthesis can be used to change the priority of expressions, as any expression

enclosed by parenthesis will become a terminal and be brought back to the leaf
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of the parse tree.

When the parsing is finished, we can guarantee at the syntax of the source code

is correct. After this, we will check e Abstract | atax Tree against the language

semantics to produce typed AST.

5.4.2 Representing types

As discussed carlier, the HARPO/L compiler front-cnd uses a munber of different

classes to represent types, all of them extend from a root class Type. The symbol

table is a tree of hash tables of (String, Type) pair.

The Type class is a base class of all types with  number of methods providing

basic services, as shown in Figure 5.15:

+Type ase
+aetT T
tBaselypey) . paseype
uals(in other : Type) : bool
+castTo(in other : Type) : boot
+extend(in other : Type) : boot
+getLine() : int
+getArrayfin size : Int) : ArayType
+isConstant() : boo!
+loStrina() : string
+d ing

+g ionType() : ExpressionType

+9 pe() : ClassType

+g yType() : PrimitiveType

+9 ype() : ObjactTurea

+g zadType() : S Clas  pe

+getarray 1ype() . ArrayType

Figure 5.15: Class diagram for class Type

e Constructor Type(BaseType) can only be used to  ~

Type object with for

type ¢ or __c that can not be decided. All other types should be defined
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as a specific type extending Type.

GetType() are used to get the real type of the type object, as discussed earlier.
So for an EzpressionType, calling getType() method will cause the compiler to
evaluate the expression and return the resulted type « the expression. Other-

wise the type called will return itself.

equals(Type), castTo(Type) and eztend(Type) method are used to compare be-
tween types. For example, an expression can only be assigne to a type that it
can be casted to; generic parameters can only accept generic arguments with a
type that extends it; an accept statement is only valid if there is a method in

the class with all types of parameters equals to its own parameters.

getLine() returns the line number in source e that this particular variable is
defined. It can be used to sort the order of declarations and crror messages for

nicer output.

isConstant() returns whether this type is compile time cons 1t. Only Ez-
pressionType and Primitive Type can be constant. Expression for values such
as array bounds and constructor argunients must evaluate to a type that is

conipile time constant.

toString() and detail() provides two different ways of outputting a Type object.
toSting() provides the basic information about this type and detail() lists details

such as itial expression of this type.

getBaseType() u enumerate type ¢« spondii  to t " type of

this object. Enumerator BaseType will be di  1ssed la
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e Get specific type methods such as get Primitive Type() or getObject Type() is used
to cast a Type object into a object of another  me. It will return a specific type
if its initiate expression can be eventually evaluated to that type or null if

otherwise, irrespective of the actual type of the called type originally.

There are a number of different specific types that extend this Type class, each
with a set of additional functionality according to that type. As a  1lt, when we
look up the table for a name and get a Type object, we would like to know to which
specific type it belongs, and then convert the type object to the correct class.

An enumeration class BaseType is used to rept :nt different types:

<<enumeration>>
type..BaseType

+INT
+OEAL

)OoL
+FRIMITIVE
+CLASS
+SPECIALIZED
+OBJECT
+ARRAY
+INTERFACE
4 HOD
+GENERIC
+VOID
+ERROR

Figure 5.16: Class diagram for class BaseType

o INT, REAL, BOOL and PRIMITIVE are the set of primitives. Primitives are
the only types that can be assigned with a value. They are represented by class
Primative Type.

o CLASS and INTERFACE are represented by class ClassType, they are the
same except Class Type with base type INTERFACE do not have fields for
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constructor parameters and threads.

SPECIALIZED are used for SpecializedClassType, it is the class type with

generic argument filled in.
OBJECT are used for Object Type, representing instantiated objects.
ARRAY are used for ArrayType, as discussed earlier.

METHOD are used for MethodType, a MethodType can only be contained in
the field table of a class. A miethod is also a tvpe because it shares the same
name space with other types. Once a method is declared, no fields with the

same name can be defined in this scope.

GENERIC are used for GParamType, whi  are used for generic parameters.
It also shares a same name space with other fields of the class, hence prevents
any field with the same name from being « ined. This type will not be seen
by any field reference because any correct instantiation of a generic class should
have a field with same name in the ficld table of the corresponding Specialized-

ClassType, which will shade this type from the descendant tables.

ERROR and VOID is used only for types 1 h errors in type checking.

5.4.3 Expressions

Among all specific tvpes, we would like to discuss Ezpression Type in detail as it is

significantly different from other specific types, as shown in Figure 5.17.

In addition to all the standard methods of . ,pe, expression type has several meth-

ods and ficlds of its own.
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type::ExpressionTvoe

-expression : Expression
-expectType : Type

-canstant : bool

+getScope() : subTable
+setConstant(in constant : bool)
+( 11 Value

Figure 5.17: Class diagram for EzpressionType

The use of the three fields is demonstrated by the following example:

const intExample : int32 = 20

e The keyword const affects the constant field of the EzpressionType. The mean-
ing of an FxpressionType type being constant is different than an expression be-
ing constant. An expression can be constant if all operands of  are constant.
However, an ExpressionType can only be constant if explicitly declared. Hence,
code line

obj intExample : int32 := 20

declares a object with the same name but not constant.

e The int32 part goes into the expectType . d. So this ExpressionType will
evaluate the type specified by this field instead of the one returned by the
initiation expression, as long as the type from initiation expression can be casted

to this expectType.

e The initiation expression 20 will be recorded by the Fxpression field, the func-

tionality of ..pression class will be discussed later.

98



The three access methods of the ErpressionTi, are based on the expression it
contains, so they will be discussed as we discuss cl ;1 Ezpression.
The Ezpression class is used to represent the expressions in the program, as shown

in Figure 5.18.

axp T St <<gnumeratinnss
et 1 bk 1 e
-righis . capressmon +l.

-operator - Operator +COMPARATIVE

-value : Value ’Eggé\;ggce

-type : Type +

-subTable : subTable +IDENTIFIER

T +ARRAY
+getScope() : subTable HINDEX

+gotType() : Type
+checkType() - bool *NEGATIVE

+getValue() . Value :bg:EDRAL
+isiConstant() : bool
+getline() : int
+toString() : string o
T 1
I :
I i
i ]
i !
[A— J—

exprassion; Of«. cuw.

l-operatorType : Operator

Lanacator Tokan
r(in operatorType : Operator, in token : Token)
{in lefl : Expression, in right : Expression) : Type

Figure 5.18: Class diagram for Ezpression, Operator and OperatorType

An Ezpression will consist of a Type or Value object if it represents the leaf node
of the expression tree, or two Expression objects il  is the branch node of the tree.
Either way, an Ezxpression object will also contain an Operator object which specifies
the operation taken in this expression. Note that the operators are categorized by
resulted types instead of priorities in this step. For example, although “+” and
“x7 operators have different priorities and are treated differently in the parsing step,
they will result in a same type for any expression pair hence are bo  categorized as
MATH operators. On the other hand, although “>" and “==" have same priority,
they are not same in type checking (for example, boolean == boolean is correct but

boolean > boolean does not make seuse), so they are categorized as COMPARATIVE
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and FQUALITY operators respectively.
In addition to the methods that are same with Type classes and are used to serve
the same named method of EzpressionType, Exp ssion also contains several unique

methods and fields for evaluating expressions.

getValue() will return a Value object that represents the result value of the

expression, only constant expression can have values.

SubTable field is used to record the scope the expression is defined in, as ex-

pressions that coutain identifiers will have different mcaning in different scope.

getScope() method is used mainly to deal with cyclic dependence problem.

check Type() checks if the semantics of the <pression is correct, it will return

false and type the exp ion as FRROR if the expression is not valid.

5.5 Working examy 3s

A number of working examples wi be shown in this section. The first example will
be the sample code shown at the end of Chapter 2, ne¢ :ly the fol _ block of

code:

(class FIFO {tyf T extends primitive}

constructor(in capacity : int)

public proc deposit(in value : T)
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public proc fetch(out value : T)

private obj a : . capacity)
private obj front := 0

private obj size := 0

(thread
(wh true
(accept
deposit( in value : T ) when si < capacity
a[ (front + size] % capacity ) := value
size := size + 1
|
fetch( out value : T ) whensi. >0
value := afront]
front:=(f t 1)%. ity
size size - 1
accept)
wh)
thread)
class)

obj producer :=1 v FIFO{int32}(40)
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The above code block ¢ .tes a FIFO object using generic parameter (int32) and

constructor parameter (40). The execution result is shown as folloy

Detailed field list:
FIFO : FIFO = FIFO generic <: pri :ive construct (in int8: ca ity)

producer : (FIFOint32 obj) = (<(FIFOint32 obj)> :w FIFOint32(<int8> 40))

Field dump for object (FIFOint32 obj):

new FIFOint32(<int8> 40)

{

private T : int32 = int32

private const capacity : const int8 = (<const int8> 40)

public deposit(in int32: value)

public fetch(in int32: value)

private a : int32[40] = (<int8[40]> (<int8> 0)(<const int8> capacity))
private front : int8 = (<int8> 0)

private size : int8 = (<int8> 0)

(thread

(wh (<bool> true)

(accept

deposit(in int32: +  ue) when (<bo > (<int8> size)<(<const int8> capacity))
(<int32> (<int32[40]> [(<int8> (<int8> (<int8> front)+(<int8> size))%(<const

int8> capacity))]) := (<ir > value)
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(<int8> size) := (<int8> (<int8> size)+(<int8> )

|

fetch(out int32: *  ue) when (<bool> (<int8> size)>(<int8> 0))

(< int32 > value) := (<int32> (<ii }2[40]> a)[(<int8> front)])

(<int8> front) := (<int8> (<int8> (<int8> front)+(<int8> 1))%(<const int8> ca-
pacity))

(<int8> size) := (<int8> (<int8> size)-(<int8> 1))

accept)

wh)

thread)

}

The output is just a plain string representation of the information and structure
of the typed AST obtained by the compiler fri :-end. Each section enclosed by
parenthesis is a node expression of the typed AST, while the ty] enclosed by <>
is the type of the node. Combining  h operat. , node expressions can form high
level expressions. This comp tion continues until a statement is rmed.

From this example we can see the compiler correctly types the generic argument
T to nt32 and makes constructor argument a constant number of 40 as intended,
and also correctly types other variables based on this information (for example, a :
T(capacity) in the source code is correctly typed as int32[40] = the typed AST for
object FIFO{int32}[40]).

The following example shows functionality of symbol table as well as error report-

103



ing of the compiler front-end:

obj intl := 5

obj intl := 10

(class testClassl constructor()
public obj reall := 10.6
public obj intl: int32 := 20
private obj int2 10
public const int3 := 15

private obj int4 := int3

(thread
int3 := 10
int4 := 10
)

)

obj objectl := new testClass1()

obj reall := objectl.reall
obj errorl := objectl.int2
obj error2 := objectl.int7
obj int2 := intl

o3 .intl
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obj cyclicl cyclic2
obj cyclic2 := cyclic3

obj cyclic3 := cyclicl

The output for this example is:

Detailed field list:

intl : int8 = (<int8> 5) testClassl : testClassl = testClassl
objectl : (testClassl obj) = (<(testClassl obj)> new testClassl)
reall : reall6 = (<reall6> (<(testClassl obj)> ot :tl).reall)
errorl : error = (<error> (<( tClassl obj)> objectl).int2)
error2 : error = (<error> (<(testC sl obj)> objectl).int7)
int2 : int8 = (<int8> intl)

int3 : int32 = (<int32> (<(testClass1 obj)> objectl).int1)
cyclicl : error = (<error> cyclic2)

cyclic2 : error  (<error> cyclic3)

cyclic3 : error = (<error> cyclicl)

Field dump for object (testClass1 obj):

new testClassl

{

public reall : reall. = (<real > 10.6)
public intl : int32 = (<int8> 20)

private int2 : int8  (<int8> 10)
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public const int3 : const int8 = (<const int8> 15)

private int4 : const int8 = (<const int8> int3)

(thread

<error> (<const int8> int3) := (<int8> 10)

(<const int8> int4) := (<int8> 10)

thread)

}

Line 11:

Line 18:

Line 19:

Line 23:

Line 24:

Line 25:

Can not assign valt to constant variable (<const int8> int3)

Can not access private field int2 of (<(testClassl obj)> objectl)
Error getting field, int7 is not a field of (< stClassl obj)> objectl)
Cyclic dependency for identifier cyclic2

Cyclic dependency for identifier cyclic3

Cyclic dependency for identifier cyclicl

This example shows how symbol table and scope rule works or the compiler,

it also shows that the compiler correctly identifies program errors such as overlap

declaration, assign to constant variable, and cyclic dependence.

Although a number of other sample programs wve been  d to test the correct-

ness of the program, a formal and thorough test is still needed to find and remove

Line 2: Multiple declaration of identifier intl in samr  scope.

potential errors witt  t m and improve the quality of the compiler front-end.
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Chapter 6

Conclusion and future work

6.1 Thesis summary

In this thesis, we have addressed a number of tec] ical issues involv  in designing a
language, HARPO/L, that can be compiled into CGRA configurations and executed
in hardware, and developed a front end for the language compiler.

Firstly, we did a brief discussion on the difference between using software and
hardwarc methe © in T oblems, 1 then introduced reconfigurable architec-

- TSl 7" 1 solution to ¢ abine some of the advantages of
software and hardware.

Then we introduced the overall structure of the HARPO/L project, which contains
compiler front-end, software | ‘k-end and hardwa back-end. In this thesis, we have
mainly concentrated on the compiler front-end.

We have discussed thela: | des’ inthese od chapter. HAROP/L is similar

to common h 1-level programming languages except the following characteristics:
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e HARPO/L allows explicit declaration of  allel execution, which allows the
output hardwarc configuration to beuefit me : from the parallel nature of hard-

ware.

e HARPO/L uses a generic s 2m and implicit type inferrence to make the

reusing of code segments easier.

e The method calling is HARPO/L is different from typical high-level program-

ming languages to reflect the nature of hardware.

e HARPO/L has explicit declaration of atomic block to allow easier parallel pro-

gramming.

In chapter 3, we have developed a Colored Petri Net representation of the HARPO/L,
that serves as a formal mathematical representati  of the language, to allow various
analysis. The CPN representation uses places to represent different states of the sys-
tem, and uses the motion of control tokens to rey  sent the flow of exceution in the
different threads of the program.

Ch: ter 4 introduced two operations, fission ¢ | fusion, to help simplify the im-
plementation of atomic block, and the code op "~ ization in parallel environment. We
utilized trace theory to develop a nethod to determine if a particular fission is safe
under certain context, or to identify the section  code that makes the fission not
safe.

Chapter 5 discussed issues invo 1 in developing the HARPO/L compiler front
end, and we have addressed a m  »er of issues that makes the im ‘mentation of it

different than typical compiler front end.
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6.2 Thesis Contribution

HARPO/L is a language that is designed to compile into CGRA configuration. e
purpose of this thesis is to develop a front end for the compiler, and to solve various

problems arising in the development. The main contribution of this thesis is listed as

e We developed a Colored Petri Net representation for the HARPO/L lar 1age.
Source code written in HARPO/L can then be converted to this formal math-
ematical representation. Given many analysis tools available for CPN, we can
formally examine the behavior and property, ich as safety and liveness, for the

source code.

e We developed a method to determine the safeness of the fission operation. Be-
cause the result is determined by other threads running in parallel with the
thread under analysis, the prol m can grow overly con licated, even for com-
puter analysis, when the length or number of other threads grov ~ Our method
is based on analyzing the interleaving of shared variable access operations us-
ing trace theory. It simplifics  : problem into a number of small and simple

analyses, to greatly reduces the complexity of the analysis.

e We coded the conipiler front end using Java. This front end takes HARPO/L
source code as input, performs syntax analysis and type checking for the code,

follows:
and produce a typed abstract syntax tree as output. ‘
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6.3 Open issues for future work

Future work to continue the research done in this 1esis could include:

e Colored Petri Net representation for i :rmediate representation

A CPN representation for intermediate reprc ntation can also be developed, in
comparing the CPN representation for source code and intermediate represen-
tation, one can analyze if the intermediate representation derived from source

code preserves its various properties.

e A thorough test of the compiler front end

Although the compiler front end works correctly against a number of test cases
we have done so far, it may still contain un. wn problems. A thorough test
should be performed to discover and remove potential problems and improve

the quality of the front end.

¢ Software and hardware back end

Back ends can be developed to convert the result obtained by the front end
into software code or hardware configurations, to complete the compiler devel-

opmment.
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Language Design for “"GRA

project. Desi~n 5 [Draft].

Theodore S Norvell
E trical and Computer ...agineering

Memorial University
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Meta notation

N — F Nonterminal N ca be an F

(E) Grouping

B Zero or more

EF Zero or more separ  ed by F's
E* One or more

E+F One or niore separa by F's
E? Zero or one

[E] 3r0 or one

E|F  Choice

A.1 Classes and Objects

A.1.1 Programs

A program is a set of classes, interfaces, and objects.

Program — (ClassDecl | IntDecl | ObjectDecl | ConstDecl |;Z'

A.1.2 Types

Types come in several categories.

¢ Primitive types: Primitive types represent sets of value. As such they have no
mutators. However objects of primitive types r y be assigned to, to change

their values. | itive t: s T nt 1t Ty lude

int8, int16, int32, in |, int
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— reall6, real32, realG4, real

— bool

o Classes: Classes represent sets of objects. As such they support methods that

may change the object’s state.
o fs. Interfaces are like classes, but without the implementation.
e Arrays: Arrays may be arrays of primitives or arrays of objects.

e Generic types. Generic types are not really types at all, but rather functions
from some domain to types. In order to be us , generic types must be instan-

tiated.
Types are either names of classes, array types or specializations of generic types
Type — Name | Name GArgs | Type[Bounds]
Arrays are 1 dimensional and indexed from 0 so the bounds are simply one number

Bounds — ConstintEzp

A.1.3 Objects

Objects are named instances of types.

ObjectDecl — obj Name [ : Type] := InitEzp

The Type may not be generic.

Initialization of an object can be an expression or an array initialization
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InitExp — Exp | Arraylnit | new Type(C Arg™t)
| (if Exp then InitEzp (else if Exp utEzxp)” else [nitExp lifl)
Arraylnit — (for Name : Bounds do InitEzp _[for]_)
C g— Exp
e If the object to be initia d is of a primitive type (such as int{ or real64),

the initEzp should be a compile me constant expression of a type assignable

to the type of the object.

e If the object to be initia «d is an array, then the InitEzp should be an Ar-

rayInitExp.

e If the object to be initialized is an object of non-primitive type, then the InitEzp

should be of the form new Type(Args ) where the Type is a non-generic class

type.

e Constructor arguments m . either represent ¢ =cts or compile t 1e values,

depending on whether the corresponding parameter is obj or in.

e In any case, the InitExp can be an if-else structu  in which the expression is a

compile-time constant assignable to bool.

e The InitErp must have a type that is a subtype . the Type.
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A.1.4 Constants

A constant is simply a named constant expression
ConstDecl — const Name | : Type| := ConstExp

The type, if present must be primitive. Constant expressions are always primitive.

A.1.5 Classes and interfaces

Each class declaration defines a family of types. Clas:  may be generic or nongeneric.

A generic class has one or niore meric parameters

ClassDecl — (class Name GParams’ (implement Typet)’ constructor(CPar*) (ClassMer

e The Name is the name of the class.

e The G Params is only present for generic classes, which will be presented in a

later section.

e The Types are the interfaces that =2 class implenients.

An interface defines a type. Interfaces may be generic or nongeneric. A generic

interfaces has one or more generic parameters

IntDecl — (interface Name GParams’ (extends T +*2? (IntMember)” [interface _[Name]_])

e The Name 1s the name of the class.
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e The GParams will be presented in a later section.

e The Types are the interfaces t|  the interface extends.

Constructor parameters represent objects to which this object is connected.

CPar — obj Name : Type | in Name : Type

e Object parameters represent named connections to other objects. So for exam-

ple if we have

(class B constructor( objx : A) ... )
obj a := (for i : 10 do new A() )

obj b := (for i : 10 do new B(a0) )

Then object b[0] knows object a[0] by the name of x.

e In parameters are conipile time constants and the corresponding argument must

be such.

A.1.6 Class Members

Class members can be fields, methods, and threads. [Nested classes and interfaces

are a possibility for the future.
ClassMember — Field | Method | Thread | ConstL | ;

Fields are objects that are within objects. Field declarations therefore define the
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part/whole hierarchy.

Field — Access obj Name[ : Type]

Access — pri- te | public

= InitEzp

Method declarations declare the method, but not its implementation. The imple-

mentation of each must be embedded within a thread.

Method — Access proc Name((Directi

Direction  in | out

The types of parameters must be primitive.

Recomniended order of declarations is

e public methods and fields, followed by

e private methods and fields, followed by

e threads.

[Name : | T'ype)™)]

There is no ‘declaration before use rule’. Name lookup works from inside out.

A.1.7 Interface Members

Interfaces members can be fields and methods. [Neste

possibility for the future.]

IntMember — Field | Method | Co

classes and interfaces are a

Decl | ;



A.2 Threads

Threads are blocks executed in response to object creation.

Thread — (thread Block [thread))

Each object contains * 1in it zero or more threads. Coordination between the
threads within the same object are the responsibility of the programmer. All concur-
rency within an object arises from the existence of ' tiple threads in its class. Thus

you can write a monitor (essentially) by having only one thread in a class.

A.2.1 Statements and Blocks

A block is simply a sequence of statements and semicolons

Block — (Statement | ;)"

Statements as follow
e Assignment statements

Statement — Objectids := Expressio

Objectlds — Objectid (, Objectld)*

Ezpressions — Ezpression (, Expression)”

Objectlid — Name | ObjectI d[Expression] | ObjectId.Name

The type of the Objectld must admit assignment, which me it should be a

primitive type, like int: or real64.
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Local variable declaration
Statement — obj Name|: Type|]  InitEzp Block

Same restrictions as fields. Thet = may be omitted, in which case it is inferred
from the initialization expression. The block part contains as many statements

as possible. The scope of a local variable name is the block that follows it.

Constant Declarations
Statement — ConstDecl Block

The block part contains as many statements  possible. The scope of a local

constant name 1s the block that follows it.
Method call statements

Statement — Objectld. me(Args)

| Name(Args)

Sequential control flow

Statement — (if Expression then Block (else if Ezpression Blockz'gelse Blockf 1if])

[ (wh Ezxpression do  ock [wh])

| (for Name : Bounds do Block _[for]_)

Parallelism
Statement — (co Block (|| Block)” _[col)

| (co Name : Bounds do Block _[col)

In the second case, the Bounds must be compile-time constant.
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o Method implementation.

Statement — (accept MethodImp (| MethodImp)* _[accept]_)
MethodImp — Name( (Direction Name : Type)™ ) [Guard] Blocky [then Block,]

Guard — when _.pression

— Restrictions

* The directions and types must match the declaration.
* The guard expression must be boolean.

* Each method may only be implemented once per class
— Possible restrictions:

* The guard may not refer to any parameters.

* The guard may refer only to the in  rameters.

— Seniantics: A thread that reaches an accept statement must wait until there
is a call to one of the methods it impler 1ts and the corresponding guard
is true. Once there is at least one met. d the ac >t can execute, one is
selected. Input parameters are passed in, Blockg is executed and finally
the output parameters arc copied back to the calling thread. If there is a

Block, it is executed next.

e Sequential consistency
S em ot (att i k  on
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obj k : K
(class GO ...T... class)

objg: GO = ..

Generic parameters may be one of the following

e Nongeneric Types

e Nongeneric Classes

G Params — {GParam+‘}

G Param — type Name [ex ads Type|

G Args — {Type*

A.5 Examples

(class FIFO {type T extends primitive}

constructor(in capacity : int)

public proc deposit(in value : T)

public proc fetch(out value : T)
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private obj a : T(capacity)
private obj front := 0

private objsi =0

(thread

(wh true
(ace it
deposit( in value : . ) when size < capacity
a[ (front + size] % capacity ) := value

size ;= size + 1

fetch( out value : T ) when size > 0
vali  := a[front]
front := (front + 1) % cap vy
¢ = re-1
accept)
wh)
thread)

class)

A.6 Lexical | 1es
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Appendix B

The Static Semantics f HARPO/L

Theodore S Norvell
Electrical and Computer Engineering

Memorial University

B.1 Abstract Syntax

We present the abstract syntax of the language as a phrase structure (context-free

grammnar).

B.2 Types

B.2.1 Typing relation

Each well-formed phrase of the language is associated with some phrase type. A

context is a mapping from iden "~ s to phrase types. If F is a phrase of the abstract
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syntax, ¢ is a phrase type,

and I' is a context, we write

'-E:t

to mean that phrase E has type t in context I

For example

This typing relation is

The domain of the

I'k1=2:bool

specified by a set of infer :e rules written

assnmntigns

conclrusion

‘ext is always a finite set of identifiers.

The typing relation is intended to define a partial function from contexts and

phrases to types

Types and objects

Objects

Types

Prim. types

Class and interface types
Type variables

Generic arguments
Read/Write Mode
Values

Class identifiers

0 = obj,.,(t)

t,u,v :  plarray(t) | « boundedby & | k

p,q == bool|int8 |intl6 | int32 | floatl6 | float32 | float64
k s= c(@)

a, [

a,b =t

rw n= r|w

vV

c,d

125



Context

Context ' == z—o Tl |z—mT|z—c |z (aboundedbyk),I'|¢e

Methods m

[TBD]

Class enviromnent. A class enviroument is a partial fuirction from class identifiers
to symbol table entries for class and interfaces. A class or interface symbol table
entry records the declarations of the class, the set of terfaces it extends (empty for

classes) and the set of interfaces it implements (empty for interfaces).

Class Enviromment © = cH—cid O]
Class and interface declarations cid ::= g - clinty(A,£,7%)
Class or interface ct = class | interface
Generic parameter g = Tt

Member Declaratio A == TBC

B.3 Building a class environr ent

We can analyse each class and interface in two pi  es. The first pass builds a class
environment. The second pass does type checking 1d inference.

In the first pass, we record information about each class 1d inteface in the class
environment (©). Since this is done before type  =cking, a that can be done is to

record information in a raw form. For each class :claration

(class r implements 7 D)

we add an entry

e Ae - clintgae (A, &, T)
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to the class environment, where ¢ is the fully qualified name for the class, A is derived

from D, and @ is derived from i. Similarly for each i rface declaration
(interface z extends 7 ™)

we add an entry

¢ Ae - clintga (AL E,€)

to the class environment. where ¢ is the fully qualified name for the interface, A is
derived from D, and £ is derived from i.

When there are  neric parameters,
t. er; < E;

we create new type variables a; and add constraints «; <: £; to between the A and the
-. Each t; is derived from each ., by replacing identifiers representing classes with the
corresponding class identifier, replacing braces with angle brackets, replacing each z;
with the coorsponding «; and so on. [To do: Formalize this.|

Deriving A from the sequence of declarations D is done by a similar process.
The type expressions used in field declarations, m 10d declarations, and constructor
arguments are turned into types t u g a superficial analysis. [To do: Formalize this.]

After the first pass is completed for the whole program, we can do full type

checking on the whole program.
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B.4.5 Inheritence

Classes can implement interfaces, while interfaces can extend other interfaces. In the
future we may allow classes to extend classes, so these rules are written with that in
mind.

Extension and implementation induce a subtype relation on classes and interfaces

as follows

e Inheritence by extension

O(c) = A\g - clinte( £, 7)

e Inheritence by implementation

O(c) = A\g - clint, (A, T, 1)
Jueu-d(b) € ulg =
c(@) <: d(b)

Furthermore, a type variable is a subtype of its bound

I pounaeany k) <:k

As noted carlier, subtyping is reflexive and transitive.

B.4.6 Fields and methods

A field can be found in an object that implements an interface or class that declares

the field. The same rule serves for method lookup. Fields and methods may also
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be inherited. Rules on consistancy of inheritence (see section [[TBD]}) ensure that a
ficld or method cau only be tnherited from one supertype and that there is no conflict

between the declarations of a type and any of its supertypes.

'k E:obj,,(t)
t <:z(a)
O(z) = A7 - clinty (A, @, v)

A(i)  (public, om)
'k Eid:om[g =7l

B.4.7 Initialization Expressions
A new object can be created from a concrete class

ThE:c(a)

[Matchii structor arguments is To Be Done.]

'k new E(rg, Y, ..., t'n-1) : 0bj,(c(a))

A new array can be created using a for loop.

T E- nhi(t) t <:int ) .. hi(q) obj(f,\

1 + (forv: £ do r):obj,array\t))
It is required that F be a compile time constant, evaluable after generic specialization.
This requirement is not captured formally by this rule.

A choice of initializations is given by an ‘if’ expression

I'F E: obj/haah ['F F:obilf) ' G :obj(t)
[+ (1t E thern. . else u):obj,(t)

Other initializations are mply expressions and are typed the same as other ex-

pressions.
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B.5 Type checking types

Some of the phrases in a program represent types.

B.5.1 Primitives

Each primitive type is typed to itself

p € {booal, int8, int16 int32.floatl, at32,float64}
CkEp:p

B.5.2 Class and interfaces

In the abstract syntax, class names are followed by 0 or more generic arguments in
braces. (In the concrete syntax, the baces are omitted in the 0 argument. case.)

Calculating the type of a phrase x {Ey, Ei, ...E,_1} is done in several steps

Look up identifier z in the context. It should map to a class identifier, c.

Look up that class identifier in the class ¢ ironment. This ‘ves a lambda

expression, which should have n generic pa1 neters.

Calculate the type of each phrase E; giving type a,.

Check that each argun it type a; matches the coresponding generic argument.
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e The resulting class type is ¢ {ag, a1, ..., @yn_1)-
[(z)=c
O(c) = da<:t-clinty, U, 7)
' E;:ay forallz

a; <:t;[@ :=al, for all ¢

| {E} :c_('a)
B.5.3 Array types

Phrases representing array types include a bound. This bound must be a compile
time constant calculable after generic expansion. O  rule here does not capture that

requirement, as it can only be determined at or after specialization

F'EE:t 'k F:obj(u) u <:int ()
[ ~ £[F)] : array(

B.5.4 Generic parameters
Iuside a generic class or interface the parameters’ identifiers will be bound —in the
context— to generic parameters of the form

a boundedby &

B.6 Type checking of commands

For statements, I'll use judgements of the form
r-F

where F is a command, to :an that E is well typed. We can think of this as an

abbreviation for ' E : con  where comm is  : type of commands.
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B.6.1 Assignments

Assignments are permitted only for primitive variab Thus the rule is

' E:obi.(t) I'E F :obilu) <t t <: primitive ()
ke :=F

B.6.2 Local variable declaration

Local variables may be of any object type

K-t ['F F:obj(u) u <t Loy ) F S
Trobji:E:=F

For local variables, the type, if omitted, is inferred from the type of the expression.

'+ F:obj(t) Liabju ) F S
1robji:i=FS

™.6.3 Blocks

A block is a sequence of 0 or more statements.

['F S forall5€{0,1,. ﬂ—l}
[ 505 .50

B.6.4 Method calls

TBD

B.6.5 Sequent mntrol flow

'k 7 : obj(bool) r-Ss r+7T
'+ (if F then S else T')

T T :ohi(bool) 'S
1 F{wh Edo S)
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I'F E:obj(t) t<:int ) I' b S
'k (for:: E do S)

B.6.6 Parallelism
kS, forallie{0,1,.., -1}
T'F(coSoll Sill .|| Snor)

'F E:obj(t) t <:int() Fi-—obj,(t) FS
' (coi: EdoS)

B.6.7 Method Implementation

TBD

B.6.8 Atomicity

Tk S
L ~ (atomic S)

B.7 Type Checking Declarat ms

7.1 Class slaratic
B.7.2 Interface declarations
B.7.3 Global object and field declarations

B.7.4 Method declarations
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