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Abstract 

In this thesis, the algorithms developed for an automated image analysis toolkit 

called PetrograFX for petrographic image assessments, particularly thin section images. 

are presented. These algorithms perform two main functions, porosity determination and 

quartz grain measurements. For porosity determination, the pore space is segmented 

using a seeded region growing scheme in color space where the seeds are generated 

automatically based on the absolute R- B differential image. The porosity is then derived 

by pixel-counting to identify the pore space regions. For quartz grain measurements. 

adaptive thresholding is applied to make the system robust to the color variations in the 

entire image for the segmentation of the quartz grains. Median filtering and blob analysis 

are used to remove lines of fluid inclusions, which appear as black speckles and spots. on 

the quartz grains before the subsequent measurement operations are performed. The 

distance transformation and watershed transformation are then performed to separate 

connected objects. A modified watershed transformation is developed to eliminate false 

watersheds based on the physical nature of quartz grains. Finally. the grain are 

characterized in terms ofNSD. which is the nominal sectional diameter, NSD distribution 

and sorting. 
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Cltapter 1 

Introduction 

1.1 The Reservoir Development in the Petroleum Industry 

For most of the last century, the oil and gas industry has relied on extracting 

geological information from sediment samples in order to make decisions about 

exploration and production. Mineralogy, pore geometry and grain size of petroleum 

reservoir rocks are essential information for reservoir scientists and engineers since these 

parameters will help to determine whether the project can make favorable economics. 

This information is gathered from the analysis of core samples as illustrated in Figure 1.1. 

It is important and desirable to access core samples, which are obtained from as far as 1.6 

- 3.2 miles down in the earth. for determining mineral composition and porosity type. 

However. obtaining, storing and processing cores from petroleum reservoirs are 

expensive and difficult procedures. 

Thin sections of core samples are one source of information derived from a core 

sample. These sections, as illustrated in Figure 1.2, are cut perpendicular to bedding. 

After digitization, the thin section image provides important information. such as the 

form and origin of porosity, grain orientation and packing, related to petroleum recovery. 

[Biederman, 1986] 



Figure 1.1 Core Sample Image [Hibernia] 

Figure 1.2 Thin Section Image 

1.2 Manual Thin Section Analysis 

In Figure 1.2, the blue areas correspond to the pore space. There are three types 

of minerals, quartz grain, opaque components and clay, in this image. 

Porosity and grain size are two key parameters, which can be obtained by thin 

section analysis [Biederman, 1986 and Kennedy ar1d Mazzullo, 1991]. A manual thin 

section analysis is a necessary but time consuming activity. Usually, conducting thin 

section analysis on a typical sequential analysis of a slide for containing 200-500 grains 
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by a highly qualified person can take more than two hours to complete. 7000 images are 

required by a single welL therefore, a complete manual assessment is not practical. 

[Gosine and Burden, 1999] 

1.3 Objectives 

The objective of this work is to develop the necessary pore space and quartz grain 

segmentation and measurement algorithms that will enable automated. fast and accurate 

thin section image analysis to replace or partially replace the human analysis. 

Developments in computer vision and image analysis techniques makes this possible. 

Kennedy and Mazzullo [1991] describe a grain-by-grain technique for determining grain 

size that involve using the length of one or t\:vo axes, perimeter, projection area and 

Nominal Sectional Diameter (NSD). NSD is defined as "the diameter of a circle with the 

same area as the maximum projection profile of a single particle". Ehrlich [1991] 

introduces an objective classification method of porosity based on color images that are 

appropriate for pore identification at or very near the surface ofthe section. Ford [1998] 

is developing the image analysis software for a small test image in petrographic image 

analysis (PIA). In his work. the porosity was estimated using unsupervised classification 

methods in such small test images. and the software has not been released yet. According 

to Goins (2000). the new image analysis technologies "not only speeds traditional 

microscopical methods, such as point counting, but also improves accuracy" . An 

automated, fast and accurate thin section image analysis tool, however, is not available at 

present. 
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1.4 The Automated Image Analysis System 

In this thesis, the work has been done as a part of a project called PetroGraFX. 

PetroGraFX is an automatic thin· section image analysis toolkit developed in a 

collaboration \\ith Hibernia Management and Development Company Ltd. where 

provides the thin section image database. the Centre for Earth Resources Research and C-

CORE. Memorial University ofNewfoundland. Figure 1.3 shows the system diagram for 

PetroGraFX. When an image is loaded from the image database into the PetrograFX 

window. the user can select from three functions: pore space identification. quartz grain 

size measurement or search for a selected structure in the entire image or in a database of 

images. The work in this thesis focuses on two key steps of the analysis: porosity 

determination and grain size measurement. 

The first part of this thesis deals with the development of techniques to segment 

the pore space from other image components. Since pore space measurement is very 

important to the application. accuracy becomes the primary criterion for this step. In this 

thesis. a seeded region growing scheme is developed for pore space segmentation. 

s.z 

Petrograf• GUI 

z--:::. 
i ; 

PC<rc Sp.lt!e 
ldcnu fiet1on 

; i 

I s.z 

Ou=Gr.11n 
~IC':uurcmct\1 

Sevch Engmc 

Figure 1.3 PetrograFX system diagram 
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The second part of this thesis details the measurement of the quartz grain size. In 

the first stage of this part, individual grains are identified using adaptive thresholding. 

median filter and blob analysis methods. A modified watershed transformation is then 

performed for disconnecting cemented quartz grains to form the individual grains. In the 

second stage, the gain sizes are measured in terms of the individual NSD. NSD 

distribution and sorting class for the whole image. The results between automatic mode 

and manual mode segmentation and measurement are compared and displayed. 

Chapter 2 gives the background of image analysis and image processing 

techniques, while Chapter 3 presents an overview of the pore space segmentation. as well 

as describes the feature extraction based on the color space. Chapter 4 elaborates on the 

pore space segmentation and porosity derivation. Chapter 5 presents the individual quartz 

grain segmentation, and Chapter 6 presents a modified watershed for disconnecting 

cemented grains. Also, Chapter 6 shows the details for grain size measurement. Chapter 7 

presents the results in a small set of test image and discusses the performances of the 

algorithm and system integration. Finally, the conclusions and recommendations are 

given in Chapter 8. 
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Chapter 2 

Background 

In this chapter, the fundamental techniques for image segmentation. shape 

representation and description, image preprocessing and blob analysis are reviewed. In 

addition, some related morphological operations related to the work are also described. 

2.1 Segmentation Techniques 

Image segmentation is one of the most important steps in translating raw data into 

information. There are a wide variety of image segmentation techniques including 

thresholding. edge-based, region-based. and morphological operations. The main purpose 

of segmentation is to partition an image into meaningful regions. Generally, segmentation 

algorithms are based on one of two basic properties of gray-level images: discontinuity or 

similarity. Edge-based segmentation belongs to the first category. and edge-based 

methods focus on the detection of isolated points, lines and edges in the image. The 

techniques in the second category include thresholding, region growing. a.nd region 

splitting and merging. [Gonzalez and Wintz, 1987] Many different features can be used 

in edge detection and region growing, mainly gray level, color and texture. 
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2.1.1 Thresholding 

Thresholding is one of the simplest and most frequently used methods for image 

segmentation. The thresholded image translates an intensity (or other images) into a 

binary image. The most important and fundamental step in this segmentation scheme is 

the selection of an appropriate threshold value to achieve the desired segments. 

Generally, threshold is defined as one or a range of gray-level value(s). Based on the 

gray-level ofthe image, the threshold can be selected: 

g(i. j) = I for f(i, j) 2 T 

= 0 forf(i. J) < T 

(2.1) 

where T is the threshold, g(i, j) = I represents objects and g(i, j) = 0 is the background. 

[Sonka et al. 1998]. 

Thresholding may also be carried out on a color image by selecting a threshold 

based on the Euclidean distance between two colors or the difference between two 

parameters. When an image contains textural properties, it cannot be satisfactorily 

thresholded using single gray-level values. This will be discussed in later sections. 

1. Global Threshold Selection Based on Histograms 

If objects have unique gray level range in an image, the image histogram can be 

used for automatic threshold selection. A technique called the mode method utilized the 

valleys, also known as automodes. of the histogram for choosing appropriate thresholds. 

The procedure for automatic threshold selection includes histogram data smoothing, 

modes searching, and threshold selection between the modes that should meet the 

minimum segmentation error requirements. This technique analyzes the shape of the 
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histogram, the peaks and valleys corresponding to the regions of objects and the 

background. [VVeszka, 1978] 

2. Adaptive thresholding 

Due to the non-uniform lighting, input devices and noise, which is introduced in 

the image generation, transmission, and receiving processes, the results of basic 

thresholding are rarely satisfactory and more sophisticated approaches. such as variable 

thresholds should be used. Variable threshold approaches utilize a function of the local 

features of the image. One approach is to divide the image into subimages and select 

thresholds locally [Sonka et aL 1998]: 

T= T (/.fc) (2.2) 

where/is the whole image, andfc is a subimage, and Tis the threshold. This method is 

particularly useful when there are gray-level variations across the entire image, although 

objects are distinguishable from the image background. 

3. Thresholding based on local properties 

Spatially local properties can be added to the threshold selection based on an 

analysis of the histogram. In other words, the histogram is computed locally. Instead of 

computing the local histogram for each pixel ' s neighborhood. the image is divided into 

exclusive blocks, and the local threshold is selected based on computing the histogram 

for each block [Haralick and Shapiro. 1985] 

In [Haralick and Shapiro, 1985], it is also suggested that a histogram for pixels 

which have large Laplacian magnitude should be generated. These pixels represent the 

shoulder of the gray-level intensity function on each side of the boundary. Another 
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suggestion is to choose a threshold value which maximizes the sum of gradients over all 

pixels whose gray-level equals the threshold value. 

4. Minimum error tltresholding 

Kittler and Illingworth (1986] propose a thresholding method in which 

thresholding is considered as a classification problem. First they assume the respective 

population is distributed normally with distinct means and standard deviations. Then the 

gray-level histogram is used to represent the population parameters 

> c g ~ r 
~p(g 11) P,p(g 12h 

< • g > r 
(2.3) 

where g is the gray-level value. and "t is the Bayes minimum error threshold. 

Rarnesh et al [1995] present two automatic threshold-selection schemes based on 

a functional approximation of the image histogram. One scheme is based on minimum 

square errors. while the other is determined by the minimum variance of the histogram. 

These two methods focus on the nonbimodal distribution images in which it is usually 

difficult to determine the threshold values. Instead of viewing the histogram as a mixture 

density function and treating the problem of thresholding as a classification problem. they 

view the histogram as a l·D function and lead to multilevel thresholding. 

5. Emropic thresltolding 

The use of entropic-based thresholding schemes has been proposed by Shannon. 

The Shannon Index is used in paleontology to assess species diversity, a form of entropy. 

His work is described by Beghdadi [1995] . The Shannon entropy is defined by 

256 

H = - L Pk log Pk (2.4) 
k = l 

where Pk is the probability of a certain gray leveL 

9 



Beghdadi [ 1995] introduces some methods and gives a new approach for entropy 

thresholding. One method is to maximize the posteriori entropy of the gray-level in order 

to optimize the gray-level threshold .using first order entropy. Since the histogram does 

not give any spatial information about the image, the problem of this method is that it can 

not deal with two different images when they have the same histogram. One solution for 

this problem is to use high order entropy, such as second-order entropy, while the other is 

to use a two-dimensional entropy for gray-level thresholding. Beghdadi exploits the 

spatial properties among neighbor pixels in an image without using high order entropy. 

The main idea is to find another symbol source which is not related to the gray-level 

distribution and can be used to obtain the first order entropy. The method defines a 

window that corresponds to the gray-level value of pixels enclosed; therefore, it is 

considered as another symbol source. In Beghdadi' s work, two different approaches. 

fixed block and moving block. are proposed, although the moving block gives better 

results. 

Brink [1995] gives a different solution for the spatial problem usmg spatial 

entropy. The idea is to define a bivariate entropy measure to exploit the 

interrelationships among neighbor pixels in an image. Consider a random variable x(k) 

which is the gray-level of each pixel at k = (i. j ). the spatial entropy is decided by the 

spatial distance (lag A.) 

n- 1 n - i 

H (J. ) =-I I P~·U) logpg_s( (l. ) ~ 0 (2 .5) 
;:=0 ).( =0 

Pgg· = Pr{x(k) eg,x(k + i. ) e g' },g,g' = O, ... n -1 (2.6) 

where p AA. is the probability of gray level g occurs a distance I. from a gray level g' . 
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2.1.2 Edge-based Segmentation 

Segmentation algorithms based on the gray-level discontinuity focus on abrupt 

changes in gray-leveL color or texture. Techniques that detect points. lines. and edges to 

achieve the segmentation goal belong to this category. Edge detection is the most 

common method for identifying meaningful image discontinuities. .A..n edge is the 

boundary between an object and the background or the boundary between t\vo 

overlapping objects. The edge information is very useful for segmentation since it can be 

used to obtain other image properties such as area and shape. Edges can be obtained by 

applying various edge detectors to the target image. Usually, this information cannot be 

used immediately as the segmentation result because it contains noises. Generally, edges 

are combined into edge chains. which correspond to the boundaries of objects in an 

image. 

An edge usually occurs where the gray-level or other features have an abrupt 

change. and a derivative operator is sensitive to this change. An image function has two 

variables. the co-ordinates. in the image plane. This leads to describing the edges using 

partial derivatives. An edge is a vector variable with two properties. magnitude and 

direction. This operator is also called the gradient [Parker. 1997). The Laplacian operator. 

Laplacian of Gaussian (LoG), difference of Gaussians (DoG), Sobel operator are popular 

tools for the edge detection. Canny [1986] gave an advanced approach to edge detection. 

There are three criteria defined in Canny's edge detector, no missing edges, the minimum 

distance between the actual edge and the detected edge and the minimum multiple edge 

response. 
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2.1.3 Region-Oriented Segmentation 

Region-oriented segmentation techniques partition an image directly into regions 

[Gonzalez and Wirtz, 1987]. When an image is noisy, region-based segmentation is more 

suitable because the edge is difficult to detect in such an image. Generally. region 

growing schemes are based on homogeneity of regions. Many features can be used as 

criteria for homogeneity, such as gray-leveL color, shape and texture. We denote R to 

represent the whole image region. R is partitioned into n subregions. R1• R2, •••• R0 • such 

that 

II 

(a) UR, = R. 
•=I 

(b) R; is a connected region, i =I. 2 . .... n, 

(c)R;nR1 = f/J. for all iandj, i :;r:j. 

(d) P(RJ =True, fori= I. 2, .... n. 

(e) P(R; uRJ) =False, fori :;r:j, (2.7) 

\Vhere P(RJ is a logical predicate defined over the points in set R;. [Gonzalez. 1987] 

1. Region merging and splitting 

The simplest region merging method considers each pixel as a region. and merges 

regions according to some criteria. There are diverse approaches that vary in starting 

condition chosen and merge criteria selection. One method is to begin merging by 

dividing an image into small regions, for example, 2 x 2 or 4 x 4, then merge regions 

based on the local histogram. Usually the result of segmentation depends on the order of 

starting subregions and merging order. [Sonka et al, 1998 and Gonzalez, 1987] 
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Hojjatoleslami and Kiner [1998] give a novel region growing approach. In their 

work. both the similarity and discontinuity measures are used for pixel aggregation. In 

addition. two discontinuity criteria, average contrast and peripheral contrast, are 

employed for controlling the region growing process. 

Region splitting is the opposite operation of region merging. Considering the 

Image as a whole region. then use the same criteria of homogeneity on the region 

mergmg. Let R represent the whole image and P is a predicate value. The simple 

approach is to subdivide the image into smaller quadrant regions when P(R) is False. If P 

is False for any quadrant, we subdivide that quadrant into subquadrants, and so on. This 

is also called quadtree. [Sonka et al, 1998 and Gonzalez and Wirtz, 1987] 

2. Adaptive image region-growing 

Chang and Li [1994] present a different region-growing method, adaptive image 

region-growing. The main idea behind this method is to adjust the threshold value taking 

over the \vhole process of the region growing. rather than use a fixed threshold value. 

Generally. threshold selection is a difficult task. and even if the suitable threshold exist. it 

is hard to find. Chang and Li ·s algorithm uses position and time-varied thresholds that are 

dynamically and automatically computed in the region-growing process. 

The region-growing segmentation commonly starts from dividing an image into 

many equal size subimages, called primitive regions. Then these primitive regions are 

merged to form larger regions if the merging criteria are satisfied. The repeat process will 

stop when no more merge happens. Most region-growing methods use a fixed threshold T 

FIXCRUR )={true ifiX- Y i<T, 
' 

1 false otherwise 
(2 .8) 
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where R; and R1 are two regions consist of nand m primitive regions. R; ={X1 • .••• A:~}and 

Rj = {Y,_ .... y·m}. X and Y are feature means of R; and Rf 

In Chang and Li's work, they-estimate a range based on the feature histogram of a 

region, called the adaptive range (11• !1). The central value is A. (O~A.~l ), called the 

adaptive parameter. The adaptive regions 

U {
true if lj1 <X < IF!andlj"!. < f <It"!.. 

ADAP(R; R
1

) = 
false otherwise. 

(2.9) 

The results show that the adaptive methods are superior when compared 

comparing to the conventional region growing schemes. 

3. Seeded region growing 

The basic idea of seeded region growing is to aggregate pixels or subregions into 

a larger region starting from an individual pixel or a small region, known as a seed. 

Adams and Bischof [1994] give an approach for this technique to be applied to gray-level 

images. In their work, the seeds are input manually. First, they group n set of seeds. A 1. 

A2 .... An. Seeds may be consist of single points or small regions to avoid embedded 

noise. Based on seeds, a tessellation is formed in the image. The tiles. areas that contain 

only one seed in each area, are formed in which pixels are all similar to the seed. 

2.1.4 Texture Segmentation 

Many images contain a variation m gray-level, known as texture. Texture is 

defined from one pixel to the next or within a small region, also called a texture primitive 

or texture element. Texture is widely used as a measure of the surface roughness. For 

textural images. segmentation can not be done accurately in gray-level space. Texture can 
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be used as a good feature in thresholding, edge detection, region-growing and other 

segmentation techniques for such Images. Texture can be estimated and described in 

many ways. 

1. Variance: 

Variance is a measure of dispersion. It is related to the gray-level of the image. 

, I(x-m)2 

(J- =----
N 

(2.1 0) 

where cr is the variance, x is the gray-level value of a certain pixel, and m is the local 

mean value and N the number of the pixels in local area. 

Variance responds to operator: the variation of pixels in the region. 

2. Gradient 

As described in the early section, gradient has two attributes, the magnitude and 

direction. We denote 

G = 8f G = 8f 
.r ..._ • ~· .::h ex . vy' 

(2 .1 1) 

The magnitude of gradient can be approximated by absolute values: [Gonzalez 

and Wirtz. 1987] 

G[ f(x. y) ] == IGxl + IGyl (2.12) 

and the direction of gradient: 

a[ f(x. y) ] = atan (GJGx) (2.13) 

The first partial derivatives can be obtained by applying various operators, such as 

Sobel. involving pixels in a small local area. 
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3. Gabor filter 

Gabor filter is a multi-channel filtering approach to the texture analysis. It is the 

product of a sinusoid with a Gaussian function, and becomes one of the most popular 

textural methods. Jain and Farrokhnia [1991] point out that multi-channel filtering can 

exploit the magnitudes and orientations for different textures, as well as the simple 

statistics of gray levels can be used. Clausi and Jernigan [Waterloo] used the Gabor filter 

to improve the performance of a common texture feature, the gray-level cooccurrence 

rnatrix(GLCM), in SAR imagery segmentation. Vision systems are tuned to recognize 

different orientations and frequency sensitivity. In human vision system there are three 

aspects are involved in texture identification: frequency, orientation. and complexity. 

Gabor filter is the output of a sinusoid with a Gaussian function and can be tuned to 

specific orientation (9) and frequencies (F). A 2-D Gabor filter is defined as: 

h(x,y ) = g(x. y)exp(2;~f(U:'t' + Vy )) (2.14) 

where g(x,y) is a two-dimensional Gaussian. F = .Ju 2 + V 2
, 9 = atan(UN ). The input 

signal to the Gabor filter should be pure sinusoid in order to obtain the optimal results . 

The only prior information for Gabor filter is the correct frequency. Since the textural 

propenies cannot be expressed by pure sinusoids. in practice. multiple filters are used for 

texture capture. 

4. Discrete Cosine Transform (DCT) 

Discrete Cosine Transform (OCT) represents a local linear transform technique 

for texture segmentation. Ng. Tan and Kittler [1992] present a texture segmentation 

approach using the orthogonal masks derived from the OCT. A N xi OCT basis vector llm 

is denoted as 
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{ 

llfN: m=1 

u"'(k)= {2 {(2k-1)(m-l);r}- -? . 
VNcos 

2
N , m- - , ...• N. 

(2.15) 

The 20 filters of N2 entities are generated by multiplying the column basis vectors 'With 

the row vector of identical length. 

(2. 16) 

where d1(i.j) is the 1-th entity in this filter bank, I= m + (n-1)N for 1 Sm, n::;N_ 

Randen and Husoy [1999] include this method in the comparative study for texture 

classification. The results show that the OCT filter gives good results in some types of 

textures. 

2.1.5 Watershed Segmentation 

Morphological segmentation methods are very useful for segmenting touching 

particles. Vincent [1991 , 1993] present binary and grayscale image segmentation using 

the watershed transformation, as well as efficient algorithms for their implementation. 

Consider an image as a topographic surface with a gray scale of each pixel representing 

the height in a 30 landscape view. The lowest height corresponds to the pixel that has the 

lowest gray scale, while the highest height represents the pixel that has the highest gray 

scale. The sea and the lakes are region minima in landscapes, and regional minima in the 

image are pixels whose gray scales are lower than their neighbors. A whole landscape 

can be divided into regions that are called catchment basins, and watershed lines separate 

these catchment basins. Figure 2.1 shows the catchment basins and watershed lines. 

[Vincent and Soille, 1991 ]. In order to understand watershed transformation, it is 

necessary to introduce some basic definitions. 
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Watershed lines 
Catchment basins 

'" '; ,' . 

Regional minima 

Figure 2.1 Catchment basins and watershed lines [Vincent and So ill e. 1991] 

1. Basic Definitions 

The formal definitions of catchment basins and watersheds depend on the 

following concepts and descriptions. 

The grayscale image I is defined to be a subset of Z 2
, where Z is the integer 

domain. We assume that the grayscale values for the image I are in a range of [0. i\1, 

where N is an integer. 

Let G denote the digital grid with any type. such as a square grid in four or eight 

connectivity. Then we can define a path P between two pixels p and q with a length I in 

the image I to be a(!+ 1 )-vector of pixels (p0_p1 , ••• p 1 ) where (p,_l.p, ) e G, '\fie [1, I]. 

Now we can define the minimum M1(h) of the image I at the gray level h to be the 

subset of I satisfying the following conditions: 
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for any p in M,(h) and any q not in M1(h) with I q s I, . where I q and I, are gray 

level values of p and q, and for any path P = (P0.p 1 •••• p,) , where p 0 = p and p , = q. 

we can always find an i e [1,/] such that I,, >I,_ 

From another perspective. a minimum is an region in an image whose gray level 

is darker than all neighbor pixels. 

Let hmin be the smallest gray level value of the image I. and hm ...... be the maximal. 

For any h with hmm ~ h ~ hma. ... , we can define the threshold of I at gray level h. 

(2. 17) 

where D1 is the domain of I in Z1
. 

Let A be a single connected region in I. The geodesic distance d.-~ (x. y) between 

two pixels x andy in A is infimum of the length of the path between x andy inside .4. By 

using this definition. we can define the geodesic influence zone. Figure 2.2 illustrates this 

definition. 

Suppose B is the set of 81.82 ••• •• Bk which are several connected subregions in A. 

Then the geodesic influence zone izA (B, ) of a connected component Bi of Bin A is 

i= .~(B,) ={pEA I 'rij E [l.k]l{i},d ..~ (p, B;) < d.~(p.B)} (2.18) 

The influence zone ofB in A is defined by IZ.~(B) = UizA(B, ). (2.19) 
IE(I.k) 

2. Catchment Basins and Watershed Lines 

Finally, we can give the formal definitions of the catchment basin and watershed 

line. 
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Figure 2.2 Geodesic influence zone of connected components 8 1 inside set A. (Vincent 

and Soille, 1991) 

For any h e ( hmin , hma."] let Xh be a subset of D, and define X h,.. = T;,m .. (f) . Then 

we can recursively define all Xh by 

(2.20) 

Definition: The set of catchment basin of the image I is X 11...,, Watersheds of I is 

0 1 I ,:\' . i.e. the complement of catchment basin in the domain D1• 
/Jnu\ -

3. Image Segmentation Using Watersheds 

The watershed transformation is a powerful tool for separating overlapping 

particles in order to measure them individually in a binary image. The first step is to mark 

all objects correctly using a marking function in which the catchment basins correspond 

to the individual objects. This function is determined by the distance function which is 

described in Section 2.3.2. The watershed transformation then is applied for 
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disconnecting adjoining objects in the image. [Vincent, 1993] Figure 2.3 shows this 

process. 

(a) (b) (c) 

Figure 2.3 Illustration of the watershed segmentation. (a) A region contains connected 

objects, (b) after applying the 3i4 chamfer distance transformation. (c) the watersheds 

added region. 

2.1.6 Color Image Segmentation 

In the literature. a large fraction of segmentation techniques deals only with 

monochrome images. Some of them can be extended to the color image. With the rapid 

technology development, there is an increased use of color images. It is important to 

understand the mechanisms of color vision [Sharma and Trussell, 1997]. Two basic types 

of methods are employed for the color segmentation: statistical and spatial methods. 

Schettini [1993] presents a color image segmentation algorithm. The procedure starts 

\Vith color mapping. Since RGB is the basic color space, the color value is converted into 

a device-independent uniform color space to avoid RGB feature limitation. Second, 

clustering is employed to divide the image into many homogeneous regions. This is based 

on recursive 1-D histogram. The final step is to merge adjacent regions using color 

similarity and spatial proximity criteria. 
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Ohta, Kanade and Sakai [1980] propose a set of effective color features for color 

image segmentation. The eigenvectors of the covariance matrix of a whole image are 

( 
1 l 1 )/ 

calculated and found that the eigenvectors W1, W2 and W3 are about -::;- -::;- -::;- . 
.) .) .) 

( .!_ 0 - .!_)' . (-_I_ 
2 2 . 4 2 

-_I_)'. respectively. They test eight different images. and W1• 4 . 

W2 and W3 are about the same for every image. They conclude that the three orthogonal 

color features. /1 = ( R + G + B) I 3 , 12 = ( R - B) I 2 , and 13 = (2G - R - B) I 4 are useful 

features for the color representation. 

2.1.7 Conclusions 

This completes briefly review of the common segmentation techniques of 

thresholding, edge-based, region-oriented and texture. Threshold value selection IS 

essential to thresholding methods. and statistical properties, such as image histogram. are 

important means for obtaining this value. The limitation of these statistical methods is 

that the spatial properties are lost after applying these methods. Although there are 

approaches for improving this limitation. such as adaptive methods. it is very difficult to 

achieve accurate segmentation results only using thresholding even for those simple 

images. Consequently, it is almost always used as combinations with other types of 

techniques. 

In edge-based segmentation techniques, most of them are application dependent. 

and no general edge detector exists. Anther significant aspect of this type of methods is 

the noise. It degrades the qualities of the edge operator outputs, and causes many false 

edges; therefore, edge-based methods are not appropriate for noisy images. The crucial 
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aspect m region-based methods is the choice of the mergmg or splining criteria. 

Generally, region-oriented techniques exploit the internal properties of a region, and form 

the region directly. Compared to thresholding and edge-based methods, the speed of the 

performance for these techniques is relatively slow, and they also require more space to 

store the information, therefore, the segmentation accuracy is higher. 

Morphological segmentation methods, such as watershed transformation. provides 

the best way to separate touching particles using topographies. The watershed 

transformation IS usually combined with other operations, such as the distance 

transformation. 

For many textural images, such as SAR and MRI, texture is a good feature for 

segmentation. There are many papers published in this area, and many new technologies. 

such as wavelet and Gabor functions, are employed to achieve desired results. The main 

disadvantage of this type of technique is that it is very difficult to obtain the precise 

object boundary. The reason is that each pixel is re-represented by a value generated by 

its local neighbors that reflect its texture property. 

For color image segmentation. the results rely on not only the color reference 

system. but also the algorithms. The color space can be represented by some useful 

features. such as (R- B) I 2. 

2.2 Shape Representation and Description 

Object shape representation and description are important Issues in Image 

analysis. After an image is segmented into regions by various segmentation methods, 

these regions need to be represented and described for further image analysis. Usually, 
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the shape of the object is represented as a binary image, and this representation is non­

numeric. Shape description methods generally define a feature vector corresponding to 

the given shape. There already exist a variety of shape analysis methods. and most 

methods are application-oriented. Generally, these methods are divided into two classes. 

One method uses boundary-based representation in which the external characteristics are 

utilized to represent the object while the other chooses the internal characteristics to 

represent it. This is also known as the region-oriented representation or the global 

operation. Moreover, mathematical morphology provides a useful tool for shape-related 

analysis tasks in image processing. 

2.2.1 Contour-Based Shape Analysis 

Generally, contour-based methods are suitable for applications that focus on 

morphological features. Before describing contour-based methods, it is necessary to 

introduce some basic issues in mathematical morphology. 

1. Morphological operations 

Morphological operations are related to the shape of the object, and are used to 

identify objects or boundaries in an image. The three major morphological functions are 

erosion. dilation and hit-or-miss. [Burdick, 1997]. Since the input tmage ts usually 

binary, we can simply apply the logical operations of Boolean algebra. 

I). Binary erosion and dilation 

Erosion and dilation are a pair of binary convolutions. They combine a local 

neighborhood of pixels with a mask. Dilation fills the holes and cracks, and makes the 

boundaries smoother. The following function performs the dilation. [Jahne, 1991] 
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R R 

c;, = v (2.21) 

k=-Rl=-R 

. 

The A and v denote the logical and and or operation, respectively. G is a binary image 

convolving with a symmetric mask M. 

The dilation is defined as: 
G ffi M = {p: M p n G =~:- 0} (2.22) 

where G is the set of all the pixels of the matrix which are not zero. M is the set of the 

non-zero mask pixels. Mp is the mask and shifts to the pixel p. 

The erosion has the opposite effect. After erosion operation is performed, the 

objects are eroded. Those connected only by a small bridge will be disconnected. The 

following operation can perform erosion: 

R R 
G~~~~ = v v (2.23) 

k=-R 1= - R 

leaving erosion as: 

G6 M={p:Mp~G} (2.24) 

2). Opening and closing 

By using basic erosion and dilation other operations may be performed on objects. 

The erosion operation can remove the small objects (usually noise), which isolated from 

the big objects. The main side effect of erosion is that all objects shrink in size. Usually. 

the dilation is used following the erosion to avoid this. This method is also known as an 

opening operation [Jahne, 1991] 

G o M = (G e M) EB M 
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Dilation followed by erosion is called a closing operation. Dilation fills small 

holds and smoothes the boundaries, but enlarges the objects. The following eroston 

operation can reverse this effect. 

G • M = (G EEl M) e M (2.26) 

The mathematical proofs of properties of erosion and dilation operations were 

gtven in Haralick et al [1987], where more properties were discussed. such as the 

inclusion relationship of sets holds under the opening and closing operations. 

2. Polygonal approximations 

Polygonal approximations are popular schemes in boundary approximation. In 

these schemes, the polygonal line is used to describe the shape boundary. The 

approximation criteria include the maximal internal polygon area, minimal external 

polygon area, minimal error and the minimal polygon perimeter. 

The split-and-merge algorithm is one of the most often used methods. The main 

idea behind this approach is to split a curve into segments until the desired error criteria 

are reached. The area of a polygon can be computed by· the following equation [Wu and 

Leou. 1993]: 

(2.27) 

where p(n) is the initial polygon, n is the number of vertices and x(xi. Yi). i = 1.2 ... .. n. are 

the vertex coordinates. 

Wu and Leou [1993] developed new algorithms for the polygonal approximation 

schemes, internal maximum area polygonal approximation (IMAPA), External minimum 

area polygon approximation (EMAPA), and Minimum area deviation polygonal 

approximation (MADPA). 
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3. Fourier Descriptors 

The Fourier descriptor is a very useful tool for the boundary-based methods. 

Since the algorithm is based on the well-developed Fourier theories and only uses the 

boundary to describe the object, this method is very fast and fairly efficient. 

Zahn and Roskies (1972] present a method using Fourier descriptors for plane 

closed curves. For a closed curve y with the length L. the cumulative angular function is 

denoted as <I>(l) where l is the arc length between the starting point and the point l. The 

normalized function in (0, 2tt] is defined as 

(2.28) 

The Fourier series of<I>*(t) is 

oc 

<t> * (t) =f-lo+ L (ak cos kt + bk sin kt) 
k=l 

or (2.29) 

"' 
<I>* (t) =f-lo + L Ak cos(kt- ak) 

k=l 

If the curve y is polygonal with m vertices Yo .. .. . V m- l and the edge iength is Ll.h. 

then 

X 

<I>* (t) =f-lo + L (a, cos nt + b" sin nt) (2.30) 
Il - l 

where 
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-1 
a"=­

n;r 

-1 
b =-
" n;r 

"' .., l ' "' . _;m k 
L... Ll""" sm --
k~I . L 
m 2;m/ 

l:Ll<I>k cos--k 
k=r L 

(2.31) 

Since all coefficients are determined by t.L and .o.«!>i. they are invariant under 

translations. rotation and scale. 

2.2.2 Region-based Shape Analysis 

While contour-based shape methods have the advantage of computational 

efficiency, the region-oriented techniques exploit internal properties, such as color and 

texture. Some simple region descriptors, such as region area and Euler" s number. are 

suitable for small and simple region descriptions. The complex shape is usually 

segmented into a set of simple shapes: however, there are a number of approaches in this 

area. 

1. Shape matrices 

This method uses an M x N matrix to describe the region shape [Taza and Suen. 

1989 and Goshtasby. 1985]. The 2-D shape is first converted into 1-D function. which is 

composed of radii. Then the maximum radius r is divided into (n-1) equal lengths, and n-

1 circles with the centroid 0 are drawn. The circles are divided into m equal arcs. Finally. 

all pixels that belong to the object and fall in the subarea (m, n) are assigned to form the 

shape matrix. 
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After obtaining the shape matrices of the objects, the shape descriptor is achieved. 

By comparing the shape matrices, the shape discrimination is also achieved. The two 

shapes can be compared in terms of the redundancy R, which is defined as follows: 

R = number of sample points 
number of pixels 

(2.32) 

In Taza and Suen's work, this algorithm is applied to alphabet letters. numerals. 

geometrical figures, and physical objects. The criterion used in this work is the similarity 

in percentage. 

2. Distance transformation 

Borgefors [1986] develops a different approach for shape description. named 

distance transformations (DT). In this method, all pixels in a binary image are divided 

into two classes, feature pixels and non-feature pixels. This image is converted into a 

grayscale image where every feature pixel takes value 0. and every non-feature pixel 

takes value according to the distance to its nearest non-feature pixel. This is also known 

as chamfer 3~ distance transformation. Since the globe operation is usually 

computationally expensive, this operation is restricted to the local neighborhood. In his 

work. 3 x 3. 5 x 5 and 7 x 7 sizes are used and also the relationship between DT and the 

Euclidean distance transformation are discussed. The results showed that this algorithm 

has a maximal error of about 2%. 

2.2.3 Conclusions 

Generally speaking, external operations, also known as boundary (or contour)-

based methods, are fast and efficient, such as polygonal approximation and Fourier 
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descriptors, because they require less data to represent the object. The main disadvantage 

is that these methods ignore all internal properties of the object a..11d have difficulty 

describing the symmetrical shapes. Internal operations exploit the information inside the 

region, but they are generally computationally expensive. 

Morphological operations. such as dilation, erosion, opemng and closing. are 

often used before the shape representation and description. They are useful for small 

holes· removal and narrow bridges' disconnection. 

In boundary-based techniques, polygonal approximation or piece-wise linear 

approximation is one of most popular methods in boundary approximation. Wu and Leou 

[1993], compared their algorithm to other existing methods by using the criterion of area 

deviation under the certain uniform error and the corresponding approximating lines. 

Furthermore, their methods are in both sequential and parallel manners instead of only 

sequential in order to increase the computational efficiency. Fourier descriptors are very 

useful tools for shape description because their high performance and efficiency. In 

addition. Fourier descriptors are very easy to implement. 

For region-based methods. the most important criterion is the cost since these 

operations are global. and heavy· computation is usually involved. Since almost all 

boundary-based methods are shape approximation schemes, i.e. some data are ignored. 

the region-based schemes are usually more accurate especially for the local properties. 

2.3 Image Preprocessing 

Image preprocessing is also called image enhancement. These operations include 

smoothing, sharpening images, or improving the contrast of images etc.. Image 
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enhancement does not increase the image information content in terms of entropy. This 

section gives two methods of image smoothing. 

2.3.1 Neighborhood Averaging 

Image smoothing belongs to the local pre-processmg for the purposes of 

removing the noise m the image. A common method for the 1mage smoothing is 

neighborhood averaging. One approach is to replace the gray level of each pixel with the 

average value of its neighbors 

+m 

'w .. p . 
~ 1.} .t+l.y+ 1 

p * = _i.;;:_=_-n_r ----
x.y +m (? ...... ) __ .).) 

"w. . ~ r.; 
i .J=-nt 

where Wi. i is the set of integer weights. This is also kno'Wll as kernel operation. [Sonka et 

al. 1998) 

2.3.2 Median Filtering 

The main difficulty of the neighborhood averaging operation is that it blurs the 

edges that are crucial details in some applications. The median filter provides a different 

approach. Median filter replaced the gray level of each pixel by the median of the gray 

levels of its neighbors. The median m of a set values is determined such that half of the 

values in the set are less than m. while another half are greater than m. The advantage of 

median filter is that it attenuates noise. while the edge sharpness is preserved. [Sonka et 

al. 1998) 
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2.4 Blob Analysis 

In an image. regions of connected pixels that are in the same logical pixel state are 

called blobs. Usually, the foreground-that consists of these connected pixels is set to 255 

or some values other than zero. and the background is set to zero. Blob analysis provides 

a tool for identifying and measuring these regions. 

Matrox Imaging Library [ 1999] contains a comprehensive blob analysis package. 

By using this, one can count the total blob number, extract holes from blobs. reconstruct 

blobs according to some criteria, and measure the area, length and many other features of 

a blob. A typical blob analysis procedure is as follows: 

• Load an image that is under good qualities to minimize the preprocessing. 

• Reduce the noise in the image. 

• Generate a blob image in which the foreground ts non-zero and the 

background is zero. 

• Select a feature list according to the application. 

• Calculate the selected features and retrieve them from the result buffers. 

2.5 Conclusion 

This chapter provides a revtew of techniques for image segmentation. shape 

representation and description, image preprocessing and blob analysis. 

The image preprocessing improves the image appearance and removes the noise. 

For various image smoothing methods, median filtering eliminates image noise and keeps 

the edge sharpness. So that it is appropriate for the thin section images processing since 

the shape analysis of such images requires accurate boundaries. 
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As the thin section Image is relatively noisy especially for the quartz gram 

component. the region-based segmentation IS more appropriate. Watershed 

transformation is a powerful tool for disconnecting adjoining objects, and ensures the 

individual mineral to be segmented. Matrox Imaging Library [1999] provides a large 

number of blob analysis functions and can be used for measuring the size of the mineral 

and pore space. fill holes in blobs and include or exclude blobs under certain conditions. 



Chapter 3 

Pore Space Segmentation: Algorithm Overview and 

Feature Extraction 

One of the main tasks of PetroGraFX is to determine the porosity in a certain 

image or slide. Porosity calculated visually is also known as point-count porosity. In thin 

section analysis, this parameter is estimated as a percentage of the slide or photograph 

area corresponding to the pore space that was filled by a colored epoxy during initial thin 

section preparation. Therefore, the first stage of the porosity determination is the pore 

space segmentation. Based on the obtained regions of pores, the porosity can be derived 

by pixel-counting over such regions. 

Figure 3.1 is an original 880 x 649 JPEG color image, which is chosen from a set 

of images from the Hibernia oilfield. The objects in the thin section image include pore 

space and minerals, such as quartz grains. opaque components. rock fragments and clay. 

In Figure 3.1 , the pore space is dyed bright blue, so that it may be distinguished from 

rock and mineral fragments. Quartz grains form the dominant component in an image. 

artd usually occupy at least 50% of the image area. They appear white in this test image 

set; opaque components and clay show black and dark brown, respectively. 
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3.1 Algorithm Overview 

In the particular image shown in Figure 3.1, one can fmd much of pore area by 

using a thresholding method in a selected channel of the original image. In the test 

database. images vary, both within images and between images, in color of pore-filling 

epoxy and matrix minerals, as well as the lighting conditions and digitizing parameters. 

Figure 3.2 gives four different images chosen from the test image set. 

0 microns 400 ----

Figure 3.1 Original JPEG thin section image 

In Figure 3.2 (a), (c), and (d), the color of the pores is dim, while it is very bright 

in (b). Furthermore, quartz grains are much darker than that in other images in (c). From 

this point of view, the simple thresholding technique can not be applied alone for the pore 

space segmentation since the predetermined threshold value cannot be appropriate to all 

images. In addition, porosity is a very important parameter for resource assessments and 
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reservoir discovery, and accuracy is the most important criterion for this stage. Therefore, 

algorithms for pore space segmentation should be adaptive to these variations. Moreover, 

the segmentation scheme selection should focus on the achievement of high accuracy. 

(a) 

(c) (d) 

Figure 3.2 Different original images 

3.1.1 Segmentation Scheme Selection 

There are a variety of segmentation techniques in the literature. These techniques 

are mainly in two major categories: edge-based and region-oriented segmentation 

methods. In Chapter 2, it is concluded that edge-based methods are not appropriate for 

noisy images since the noise also has high frequency properties as edges do. In the image 

shown in Figure 3.1 and Figure 3.2, there is plenty of "noise", speckles and black spots, 
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on the quartz grains. In fact, this is a corrunon texture feature of quartz grains. which 

makes edge-based methods perform poorly in extracting real boundaries of the quartz 

grain. In addition, there are different _types of pores. such as inter-granular. intra-granular. 

inter-crystal and intra-crystal. For the intra-type pores seen in (d). it is found that they do 

not have clear boundaries. 

Region-oriented methods focus on the internal properties of a region. and exploit 

the homogeneity of spatially localized features. Seeded region growing methods [Adams 

and Bischof. 1994 and Hojjatoleslami and Kittler, 1998] are typical of region merging 

techniques, which start with a region from a given pixel or a very small region. known as 

a seed, and performs a pixel aggregation operation by merging the seed·s neighbors into 

the region under certain merging conditions. Since this technique is performed locally, it 

usually yields accurate results. In the literature, most segmentation techniques are 

developed based on monochrome images. In PetroGraFX, the original images are full 

color. As mentioned in the early section, the color image is appropriate for the pore space 

identification. Consequently. the seeded region growing scheme has been extended to the 

color space. 

3.1.2 System Flow Chart 

In order to manipulate the color image, a proper color representation system 

should be chosen for further segmentation purposes in the first step. The second step is 

the extraction of the most appropriate features for highlighting the pore space against its 

background. Once the best features are obtained, an automatic seed selection operation is 

performed for extracting seeds from all possible regions of pores. Then a seeded region 
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gro-..ving scheme in color space is applied to achieve more accurate results. Finally. the 

porosity is derived from the percentage of pores in the whole image. Figure 3.3 illustrates 

the system flow chart of the porosity .derivation. 

Image Input 
I 

I 

Color Representation Selection 

T 

Feature Extraction 

I ... 
Feature Image Thresholding 

I 

* Automatic Seed Generation 

I • 
Seeded Region Growing in Color Space 

I 
I ,. 

Porosity Determination 

I 
• 

Image Output 

Figure 3.3 Flow chart of porosity determination 
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3.1.3 Color Space Selection 

With the increasing use of color image acquisition technology, such as color 

scanners, monitors and printers, the -color imaging is being developed rapidly. For users 

of this technology, color is sometimes thought of as a combination of the primary colors. 

red, green and blue (RGB). This is also considered as the basic color space. 

Based on RGB, cyan. yellow, magenta, and black (CYMK). also known as 

subtractive primaries, is particularly useful in the publishing industry since it provides the 

ease of mixing inks. [Wilson, 1988] 

The YIQ, in which Y is luminance and I and Q are chrominance. is a color model 

that has been widely used in television broadcast: 

[
y) [0.299 0.587 0.1 14 )[RJ 
I = 0.596 -0.275 -0.321 G 

Q 0.212 -0.523 0.311 B 

(3.1) 

Another important color model is hue, saturation, and intensity (HSI). Hue refers 

to a pure color. such as yellow or red whereas saturation describes a measure of its 

dilution by white light. [Sonka et al, 98] This model is very useful for image processing 

algorithms. We assume that 

0 ~ r ,g, b;?: 1 (3.2) 

Then. hue, saturation and intensity can by derived from RGB: 
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. r+g+b 
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.) 

h =COS-I --.,...!2::.._ ______ _ l _!_[(r-g)+(r-b)] I 
[(r-g)} +(r-b)(g-b)]Yz 

(3.3) 

s = 1-
3 

min(r,g,b) 
r+g+b 

if b/i > g/i, then h:=27t-h. [Sonka, 1998] 

According to Ohta et al [1980], hue is the most useful feature for color image 

segmentation. However, in our test data set, most images do not show the pore space 

clearly in HSI color space. Figure 3.4 gives hue and saturation channels of the original 

image shown in Figure 3 .1. 

As a result, the RGB color space is chosen since it is the basic color space, and 

many features can be extracted from r, g and b channels. 

3.2. Feature Selection and Extraction 

The pore space segmentation is viewed as a classification problem in this research 

\vork. All the pixels in an image are classified into one of two ciasses. pores and non-

pores. In classification schemes. feature selection and extraction are crucial steps. 

Features can be pixel intensities, edges and/or texture features. 
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Figure 3.4 (a) Hue, (b) Saturation channels ofthe image shown in Figure 3.1. 

3.2.1 Criteria for the Feature Selection and Extraction 

The objective of feature extraction is to find a set of features which provide 

greatest separation between the classes of data. In other words, feature extraction is to 
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form a new smaller dimensional space Y from a larger dimensional feature space X. All 

the elements in Y are called features, and Y refers to the feature vector, 

y , 

Y= Y! (3.4) 
M 

Yn 

Feature extraction reduces computational complexity for pattern classification. 

and produces fairly accurate estimates and reliable decision rule for a certain number of 

training samples. [Therrien, 1991] 

The criteria for feature selection and extraction are [Chen, 1978]: 

• Features should properly describe the pattern, which means there is no 

increase in the minimum probability of error. 

• Features are manipulated without difficulty . 

• Features should be invariant to translation and rotation of the 

pattern. 

In practice, it is very difficult to satisfy all three criteria at the same time. One 

should decide which measure is more important in a particular application. 

3.2.2 Feature Extraction: R- B Difference Image 

As mentioned in the beginning of this chapter, the pore space is distinguished 

from its background in its color. which is bright blue although the intensity can vary 

within an image and between images. Generally speaking, color perception is very 

important since human eye is more sensitive to color than to brightness. In this work, 
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feature ex'traction is performed in the color space. The original image is split into red. 

green and blue channels as shown in Figure 3.5. 

Observation of the split r, g tmd b channels indicates that red and green channels 

are nearly identical except the red displays higher contrast than the green does, while 

there are significa'lt differences between the blue and the other two channels. 

In chapter 2. Haralick [1985] suggested that it is not necessary to compute 

histograms in red, green and blue channels individually, but uses (R + G +B) I 3. (R- B) 

I 2 and (2G- R- B) I 4 in color images. 

Recall the predictive coding schemes in image encoding techniques: 

em = x., - x., (3 .5) 

where em is the difference or the error signal, Xm is the actual pixel value, while x., is the 

prediction. [Appendix I] The purpose of the predictive coding is to reduce the variance 

inside the image, so that the difference image has less correlated data. This will produce 

high compression ratio. The idea of this technique is the same as that of feature extraction 

to a certain extent. 

From Figure 3.5, the pore space shows higher intensity in blue channel and lower 

intensity in red channel. Quartz grains are very bright, while the opaque components and 

the clay appear very dark in all channels. From this point of view. the differences 

between the red and the blue. or the green and the blue will highlight the pore space. 

Since the red channel has higher contrast, the absolute difference image is generated 

between the red and the blue. Figure 3.6 illustrates the generation of this difference 

Image. 
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(b) 

(c) 

Figure 3.5 (a) Red, (b) Green and (c) Blue channels of Figure 3.1. 

Obviously, only the pore space is highlighted in the absolute difference image of 

R - B. This difference image also has another benefit: the variation of the lighting 

condition and the color of quartz grains are suppressed since this image is a subtraction of 

-
two channels of the same image. This factor will be particularly useful during the 

threshold value selection stage. The difference image operation is applied to all images in 

the test data set, and the pore space is fairly clear in the resulting images. Figure 3. 7 

shows the absolute difference images corresponding to the original images shown in 

Figure 3.2. 
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Figure 3.6 (a) the red channel, (b) the blue channel, (c) ABS(R-B) difference image 
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Now, the color representation is reduced from three channels to one, and the 

desired image region corresponding to the pore space, is highlighted. 

(a) (b) 

(c) (d) 

Figure 3.7 Difference images of original images shown in Figure 3.2. 
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Chapter4 

Porosity Determination based on the Pore Space 

Segmentation 

In this chapter. the pore space segmentation will be detailed. After the feature 

space is obtained, the appropriate segmentation techniques are employed to yield 

satisfactory results. 

4.1 Feature Image Thresholding 

Chapter 3 illustrated that the absolute difference image of R- B highlights the pore 

space. as well as suppresses variations of lighting conditions and the color of quartz 

grains. This provides for an option of presetting the threshold values. As mentioned in 

Chapter 2. thresholding is a global operation. and local properties will be subsequently 

lost. Therefore, thresholding the feature image tan only yield approximate pore regions 

and it cannot be used alone for producing final accurate results. As described in Section 

2.5 and 3.1.1, the seeded region growing scheme is presented for the pore space 

segmentation since it exploits the homogeneity in the seed' s neighborhood. and a more 

accurate segmentation result is yielded. Since the goal of PetroGraFX is to provide for 

automated image analysis, the seeds that are required by the local region growing 

technique should be generated automatically. These seeds can be extracted from all 
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regions of pores after the feature image thresholding as long as these regions are real 

pores. 

4.1.1 Predefined Thresholds 

In order to find all pore reg10ns and get rid of all other components. an 

investigation of the color distribution for various components was made over all images 

in the test image set. It was found that there are two kinds of components that should be 

excluded when thresholding the difference image: 

a. Clay 

Clay component has similar values to the pore space in the difference image. This 

component has the positive difference of R and 8, while the pore space has negative 

values. A condition for removing clay was set to 8 > R. 

b. Rock fragments 

Usually, rock fragments in an image appear black, and some of these also have 

similar (R - B) values to the pore space. These components, however. have low gray 

levels in both the red and blue channels. Experimentally, the threshold values. Tred and 

Totue. were selected as 60 and 160 for the red and blue channels, and these values were 

tested over the image data set. 

Another predefined threshold is for the difference image itself. This value, Tdiff. 

was experimentally set to 28 which is very low in order to avoid light blue areas missing. 

4.1.2 Automatic Threshold Selection 

From Figure 3.2, it is observed that the color of quartz grains varies in a great deal 

in different images, so that the maximum value of quartz grains cannot be predefined. As 
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indicated in Chapter 2. the image histogram can be used for automatic threshold selection 

if the object is distinguished from the background in its gray level. This type of methods 

is based on monochrome images. In ~his application, this operation was extended to color 

images by choosing one representative channel. The red channel is a good candidate 

since it is most similar to the intensity of the original. 

The red channel histogram is generated, and the maximum occurrence of the gray 

level in the range, 180 - 252 which corresponding to the quartz grain intensity range, is 

calculated. Based on this value, the maximum gray level of quartz grains in the red 

channel. Tquarr=. was obtained. 

4.1.3 Feature Image Thresholding 

As described in Section 4.1.1 and Section 4.1.2, the rough pore regions can be 

obtained by thresholding the difference image based on a threshold T diff· These regions 

include some false pore regions. such as clay and quartz grains. and should be eliminated 

by comparing the gray level for each pixel in the red and blue channels to the 

corresponding thresholds Trt!d· Tbtue and Tquarr:. Figure 4.1 shows the thresholded 

difference image according to both predefined and automatic generated threshold values. 

According to Figure 4.1. all pore regions in the original image sho\m in Figure 

3.1 are found, while pixels near some pore boundaries are lost as predicted. Notice that 

some very thin regions that correspond to the boundaries of the clay are also included in 

this image. These rough regions are used for the automatic seed generation purpose. 
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Figure 4.1 Thresholded image of the difference image 

4.2 Seed Selection for Region Growing 

In the literature, the seeded region growing techniques usually require the input of 

seeds manually. In order to reach the goal of the automatic image analy·sis. these seeds 

should be generated automatically. Since the seed selection is crucial to the entire 

algorithm. and seeds missing will directly affect the accuracy of the final results. these 

seeds should satisfy following conditions: 

• Cover all regions of the pore space. This means that there is no m1ssmg pore 

space. 

• Only corresponding to a desired region (i.e. the pore space). 

In order to reach these goals, all possible regions, or blobs. need to be generated 

first as described in Section 4.1. 
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4.2.1 Blob Generation 

As mentioned in Section 4.1.1, the threshold in the difference image is predefined 

to a very low value, 28, so that all possible pores are obtained including those pixels 

nearby the pore space boundaries after applying a threshold operation. This ensures the 

first goal for the seed extraction is reached. 

The second condition focuses on the removal of false blobs that are not the pore 

space. In Figure 4.1, there exist some very thin blobs, whose widths are usually one or 

two pixels, which correspond to the boundaries of the minerals in the original image. 

These blobs are actually minerals that have similar values as the pore space in the 

difference image, and will not yield real seeds; therefore, they should be removed from 

the feature image. 

Since one significant characteristic of these blobs is that their widths are very thin. 

only one or t\VO pixels. the opening operation is a effective for the removal of these blobs. 

Meantime. other blobs will not be affected by this operation except for the slight shape 

variations. and this will have no influence in the seed generation. Upon this stage. all 

blobs in the feature image represent only the pore space. Figure 4.2(b) illustrates the 

binary image after the one time opening operation. Comparing to Figure 4.2(a), it \vas 

found that those thin regions corresponding to mineral boundaries are eliminated. 

4.2.2 Seed Extraction from Blobs 

A problem arises when considering shape analysis of the blob. Given that there 

are small holes inside some blobs. These holes normally correspond to tiny mineral chips 
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dropped into the pore space during the thin section preparation, or small pteces of 

minerals nearby the pore space in the original. They are formed during the thresholding 

operation. since the pixels inside th~se holes have different colors. If a seed falls in a 

hole. the color of this seed will not be blue, but either white or black. Another problem 

for the second criterion is that the seed should be chosen close to the central part of a 

blob. This is because pixels along the boundaries are not representative, and may result in 

an inaccurate region growing. 

(a) (b) 
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Figure 4.2 (a) Original binary image, (b) binary image after one time opening operation. 

(c) three times opening operation, (d) six times opening operation 
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In order to find all true pore regions, each blob in Figure 4.2(b) is considered as 

a seed-carrier. The seed should be a pixel in the central part of a blob. and not in a hole. 

The blob analysis is employed to geQerate seeds from blobs, and the pixels in a hole can 

be excluded from a blob. The procedure of seed extraction is as follows: 

1. Choose a blob Figure 4.2 (b), (c) and (d) are binary images with all pores in 

white, and the rest in black. The white region forms blobs, and these are labeled, and 

processed in afor loop. 

2. Generate the distance transformation The purpose for this step is to find a 

pixel that is in the central part of a blob. The chamfer 3i.J distance transformation is used 

to produce a distance image in which the value of a pixel is the distance from this pixel to 

the nearest edge of the blob. 

3. Find a pixel that has maximum distance In the distance image, the pixels with 

the highest value within a blob should be near the center of the blob in most cases. The 

only exception is when a seed is located in a blob that touches the image border and is not 

included entirely in the image. According to the distance, a seed may be exactly on the 

image border in fade blue. The solution is to correct the image border. typically 2 - 3 

pixels. to black before this operation. so that the -blob, which is the white part, will 

exclude the pixels on the border and will ensure that the seed be blue. Notice that the 

centroid of the blob cannot be used since some blobs are not convex, and the centroids of 

these blobs will be outside their blobs. Finally, the pixel selected from these which has 

the maximum value yields a real seed. 
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4.3 Seeded Region Growing in Color Space 

The objective of the seeded region growing operation is to achieve more accurate 

results for the pore space segmentation. It is found that most pores are obtained after 

thresholding the feature image. Since this is a global operation. some local properties 

especially near the pore space boundaries are missing. Based on seeds obtained from 

thresholding the feature image, the local seeded region growing operation exploits the 

similarities in the neighborhood of these seeds, and the pixels are aggregated under 

certain merging criteria, which are crucial to this operation, until the operation reaches 

the region boundaries. 

The first step of the region merging is the base image selection. Although the 

feature image highlights the pore space, it ignores some important information. For 

example, the sign of the difference between gray levels in the red and blue channels is 

lost since the gray levels can not take negative values. As mentioned before, the clay has 

similar intensity values as the pore space, and the sign is a flag to distinguish between 

them. In RGB space, there is no single channel that can be used for this operation due to 

the overlap of gray-level distribution for different components. Region growing, 

therefore. should be performed in RGB color space. In chapter 2, it was concluded that 

most segmentation methods are based on monochrome images and can be extended to 

color images. Recall that the red channel is similar to the intensity channel, and most 

components show different gray levels in this channel. As a result, the red channel IS 

chosen as the base image for the region growing operation. 
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4.3.1 Region Growing by Pixel Aggregation in the Red Channel 

This operation starts from the seed and appends the region to the seed· s neighbor 

pixels that have the similar properties, in this case, the color. 

Let R be a set of a region. such that for any x in R 

o(x) < T 

o(x) = lg(x)- mean[g(x)]l 
:reR 

( 4.1) 

where 8(x) is a measure of difference of x from the region, g(.r:) is the gray-level in red 

channel of x and Tis the threshold in the red channel. In the entire operation. the mean of 

the region is updated continually. Region growing proceeds by examining all pixels· 

eight neighbors in the red channel starting from the seed. When o(x) is bigger. the 

operation stops. All pixels which satisfied the condition are marked after examining: 

therefore. they are counted only once in order to increase the algorithm efficiency. Figure 

4.3 illustrates the seeded region growing operation. 

In Figure 4.3, the threshold T. is predetermined to 30. which produces good 

region growing results. 

4.3.2 Implementation of the Seeded Region Growing 

One of the disadvantages of the region based segmentation techniques is the 

efficiency of the performance because the local properties, which usually mean heavy 

computations, are involved. As a commercial product, however, PetroGraFX requires 

high speed. So considerable effort was spent in dealing with finding ways to speed up the 

region growing performance. 
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Figure 4.3 Illustration of the seeded region growing 

There are two approaches for the implementation of this algorithm: 

1. Recursion The algorithm for the recursion is very simple with the 8 neighbors 

of the seed being examined, and then the neighbor's neighbors, and so on. The 

implementation is straightforward, but the problems arise when the region becomes big 

or the image size is large because the recursion requires a significant of stack space. 

When a large amount of data are involved, the stack dumps. 
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2. Quick Sorting The main idea of this operation is to start a region from a seed, 

and to extend the 8 neighbors ofthis seed. Only neighbor pixels satisfied merging criteria 

are sorted into the region to form a_set. Then the neighbors of all pixels in the set are 

examined, and their neighbors are sorted into the set when merging criteria are met. and 

so on. Finally, the set contains all pixels that are similar to the seed. The implementation 

using the linked list ensures fast operation. 

It was approved that quick sorting is superior in practice and used in this work. 

4.3.3 Region Growing in the Color Space 

In practice, region growing is more complicated. For example, in Figure 4.4 (a), 

there is a piece of clay near the right bottom comer, and it has almost the same gray level 

as the pore space in the red channel shown in Figure 4.4 (b). Furthermore, some pore 

regions have higher gray levels than usual, such as those light blue regions shown in 

Figure 4.4 that are close to quartz grains, in the red channel as shown in Figure 4.4 (b). 

As a result, the threshold Tin Equation 4.1 should be relatively high to enable all pixels 

near edges that appear light blue to be selected. A T value of predetermined 60 was 

selected experimentally. This introduces a new problem: some non-pore regions will also 

be included; therefore, other information should be used for excluding these regions. In 

order to exclude the non-pore components, mainly rock fragments and clay, the region 

growing should be extended to the color space instead of only the red channel. 
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(a) 
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(b) 

Figure 4.4 (a) Thin section color image with clay (b) the red channel 
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As discussed early in this chapter, the red and blue channels are efficient for 

recognizing different components. L_ike the work in thresholding the feature image, five 

criteria are given for restricting the growth of a region: 

• Intensity in the difference image Tdiff> 28 

• Intensity in blue channel Tbtue > 160 for getting rid of the clay 

• Intensity in red channel Tred > 60 for avoiding rock fragments, and < Tquarr= which 

is determined by running the histogram in red channel for excluding the quartz 

grains. 

• The difference R- B should be negative, orR< B for deleting the clay. 

4.3.4 Three-Step Seed Input 

There is a problem when applying the seeded region growing operation from 

seeds which are obtained from the thresholded difference image. Although they are all 

real seeds, some pore regions are missing in the region growing resulting image. This 

requires the mapping between the seed selection and the seeded region growing. Recall 

that the threshold for the difference image is set to a very low value to ensure all pores 

are included. This has the side effect that a blob in the feature image probably represents 

more than one region of the pore space. The low threshold value results in some 

separated regions being connected together. If only one seed is extracted from such a 

blob. a smaller region will be produced from this seed in the region growing operation. In 

other words, more seeds need to be generated to represent one region in the feature 

Image. 
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In order to solve this problem, a three-step seed extraction is performed. The main 

idea behind this operation is to separate connected blobs by applying an opening 

operation. Since small blobs will v~sh during the opening, no single feature image can 

be used to represent all blobs. The seed selection operation should be performed multiple 

times to ensure that seeds from all blobs are extracted. The sequence of operations 

follows: 

• Perform opening once to remove the very small false objects (already shown 

in Figure 4.2(b))- Seeds A. 

• Opening three times to break the connected region and keep most small blobs 

sho\Vn in Figure 4.2 (c)- Seeds B. 

• Opening six times to break widely connected regions shown in Figure 4.2 (d) 

-Seeds C. 

Three images are generated, and used in a sequence for the seed selection. The 

seeds are selected automatically and stored in three individual groups, Seeds A, Seeds B 

and Seeds C in which Seeds A contains the maximal number of seeds, while Seeds B 

medium and Seeds C the minimum. The region growing starts from Seeds C. In this step. 

all seeds from large regions are input, and all pixels inside these regions are counted in 

and marked. In second and third steps, Seeds B and A are input, and the seeds are 

checked before the region growing function is called. If a seed is already marked, it 

means that region growing is applied to its neighbors and is removed from the 

corresponding seed group since the region it represents is already included in a region. 

This ensures every pixel that is belonging to a pore space region is only counted once 

during this three-step seed in puc so that the system has high efficiency. 
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4.4 Porosity Derivation 

In manual thin section analysis; the porosity of a given slide is measured visually or 

by point-counting while the former is less accurate and the laner is time consuming. This 

is straightforward in image analysis after all regions of pores are obtained. The porosity is 

derived from the pore space percentage calculation: the number of all marked pixels 

divided by the pixel number of in the whole image. The percentage is approximated to 

the nearest integer and printed onto the output image. Figure 4.5 gives a comparison chart 

for visual porosity estimation [Scholle, 1979], while Figure 4.6 is the resulting image for 

porosity determination. All pixels of pores are changed into pink in this image. 

4.5 Pore Space Distribution 

The purpose of the generating the pore space distribution is that it is related to 

another very important parameter. permeability. Given t\VO samples with the same 

porosity. and image of equal magnification. the image containing the less number of 

pores will correspond to the well from which it will be easier to recover oil. 

The area of every individual pore is calculated, and the histogram of the pore 

space. that is the occurrences via area (micron\ is generated and planed as shown in 

Figure 4.6. From this figure. it is clear that the size distribution is not normally 

distributed. and about 80% of the pores are small and within a very narrow range of area. 

Only a few is over 5000J.Lm2
• 
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Figure 4.5 Comparison chart for visual porosity estimation estimation [Scholle, 1979] 
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Chapter 5 

Quartz Grain Segmentation 

The minerals, which belong to the sandstone category, are the other predominant 

objects in the thin section image. In analyzing thin section images. reservoir engineers are 

typically interested in materials surrounding the pore space in the core sample. 

5.1 Sandstone Classification 

According to Williams et al [ 1983 ], '"'Sandstones are the rocks in which detrital 

grains of sand predominate". In the image shown in Figure 5.1, a sandstone consists of 

several different types of minerals. such as quartz grains, clay and opaque components. 

which corresponds to coal in this image. These minerals vary in many respects. including 

size. shape. orientation and texture. 

According to some reservoir geologists. quartz is the most interesting mineral in 

this type of images, while all other minerals are secondary. Therefore. quartz 

measurement becomes the major task for the mineral analysis in this work. Opaque 

components are visually different from all other materials. They appear as black and 

texture free, and are easy to distinguish. Clay usually contains rich textural properties and 

appears as brown. The remainder of the work discussed in this thesis restricts the mineral 

measurements on quartz grains. 
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Figure 5.1 Thin section color image 

5.2 Quartz Grain Segmentation 

Grain size assessment is an important parameter in thin section analysis of core 

samples. In order to measure the quartz grain size individually or statistically. all quartz 

grains should be obtained using segmentation techniques. In addition. all adjoining grains 

should be disconnected before the size measurement. Performing this operation 

automatically and reliably is perhaps the most challenging problem in developing 

PetroGraFX. 

5.2.1 Characteristics of Quartz Grains 

From the image shown in Figure 5.1, quartz grains are commonly bright except 

for few "dirty" grains. They usually have high contrast to other image objects in all three 
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channels. Therefore, a single channel can be used to segment them. Another significant 

characteristic is that most quartz grains are nearly texture free and only a few speckles 

and black spots which correspond to lines of fluid inclusions are usually found on these 

grains. 

Since most texture-based segmentation methods use a window for taking 

measurement in the local neighborhoods, the boundaries of objects are degraded in the 

resulting image. In taking grain size measurements, grain shape is important and a clear 

boundary description, such as angularity and roundness, is required. On the other hand, 

the texture properties for most quartz grains are limited to a few speckles and small black 

spots that can be removed through image preprocessing and blob analysis techniques. As 

a result, the conventional segmentation techniques are employed for obtaining the quartz 

grains. For the small partition of quartz grains that contain rich texture properties. 

texture-based methods will be appropriate, and would be the future work for PetroGraFX. 

5.2.2 System Flow Chart 

In order to measure the grain size. all individual grains should be obtained in 

advance. According to reservoir geologists, the speckles and black spots \vhich 

correspond to lines of fluid inclusions and often contain water and oil inside quartz grains 

should be included in the corresponding quartz grain. Therefore, they should be removed. 

Since there are many cemented grains in the image due to the quartz grain overgrowth. 

the watershed transformation was investigated to separate adjoining grains. Due to the 

characteristics of the quartz grain. some false watersheds are obtained inside some long 
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and large grains. A modified watershed transformation was developed for removing these 

false watersheds. The system flow chart is illustrated in Figure 5.2. 

Image Input 

Base Image Selection for Quartz Grain 
Segmentation 

Adaptive +sholding 

Speckle ;emoval 

' Small Hole Filling 

Common Watershed Transformation 

False Watershed Line Elimination 

Grain Size Measurement 

I • 
Image Output 

Figure 5.2 Flow chart for quanz grain segmentation and measurement 

5.2.3 Quartz Grain Obtaining 

As mentioned in Section 3.2.2, the red channel provide highest contrast for 

recognizing different objects. and has been chosen as the base image for the quartz grain 

segmentation. Since the shape is an important parameter for thin section tmages, 
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considerable effon has been made to extract precise boundaries of grains. From the image 

shown in Figure 5.3(a), most quartz grains have very high image intensity. Thresholding 

this image based on the image histogram finds most of quartz grains as illustrated in 

Figure 5.3(b). 

(a) 

(b) 
Figure 5.3 (a) Red channel, (b) Thresholded red channel 
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Comparing Figure 5.3 (a) and (b), it was found that most quartz grains in the left 

part of the image are captured successfully. while some regions of them in the right part 

are omitted. This is due to the non-uniform lighting condition. as well as the global 

thresholding operation. In Chapter 2, it was suggested that an adaptive thresholding 

technique could be used to solve this problem. In this work, the whole image is divided 

into subimages. Figure 5.4. in which the image I is divided into four subimages J;. 1~. 

J; and I~ . illustrates this procedure. 

Subimage Subimage 

fi h 
Original Image 

.......... I ..,/ 

Sub image Sub image 
f3 /I 

Figure 5.4 Decomposition of the original image 

The thresholds are selected locally, 

T = T (f./c) 

\Vhere I is the whole image. lc is a subimage, and T is the threshold obtained by 

generating the subimage histogram. The thresholded subimages are combined together to 

form a whole image. Figure 5.5 shows the adaptively thresholded image. It is clear that 

there is an improvement in the segmentation of quartz in the left part of the image. 
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Speckles and 
black spots 

Figure 5.5 Binary image after adaptive thresholding 

5.2.4 Median Filter for Speckles Removal 

In Figure 5.5, most quartz grains are found, and show very precise boundaries. In 

this stage. the image is .. noisy .. due to the existence of speckles and black spots that 

should be included inside the grains during the gain size measurement. 

Very tiny speckles can be removed using a median filter. This approach is 

superior to neighborhood averaging methods since it preserves the sharpness of the 

edges. One important parameter for median filter is the number of repeatings of the 

operation. With few repeating. many of the speckles remain, while more repeating 

degrades the shape of the blob. It was found that repeating the median filer five times 

gave the best result. Figure 5.6 (a) shows the image after applying the median filter five 

times. and most speckles inside the blobs are omitted. 
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(a) 

(b) 

Figure 5.6 (a) Binary image after applying median filter. (b) all holes extracted from 

blobs in (a). 
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(c) 

(d) 

Figure 5.6 (c) Small holes. (d) Binary image after small hole filling. (Continued) 
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5.2.5 Blob Analysis for the Small Hole Filling 

After the speckles are omitted, blobs in the binary image shov.-n in Figure 5.6 (a) 

are much cleaner, although there are still some holes corresponding to the small black 

spots inside the quartz grains. These holes should also be included in the corresponding 

quartz grain during the quartz grain size measuring process. For holes in such a range of 

sizes, usually 20 - 1 00 pixels, the median filter does not function well since it works over 

a small neighborhood. normally a 3x3 window. The blob analysis can be employed. 

however, to extract holes inside the blobs and fill them. Figure 5.7 illustrates this blob 

analysis function. The procedure of this operation is following: 

1. Extract holes inside all blobs in the given image. 

2. Select the area as the blob analysis feature. 

3. Calculate the areas of all extracted holes. 

4. Select holes whose areas are less than a preset hole area threshold T hole· This is 

because the bigger hoies usually correspond to the pore space in the original 

image. Thole is set to I 00 pixels in this work. Figure 5.6 (b) gives an image 

with all holes extracted from the image in Figure 5.6 (a). Small holes are black 

spots, while big ones are the pore space or edges between two grains. 

5. Fill the small holes. Figure 5.6 (c) shows the image after hole filling. 

Based on the operation applied to this part. the quartz grains are very clean. The 

side effect of the filling in small hole is that some short edges are also filled and vanish. 

This will result in the merging of some individual grains. 
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(a) (b) 

Figure 5. 7 Hole filling in blob analysis. (a) An original adjoining blob with holes, a 

partial edge and a pore. (b) The blob after hole filling 

5.3 Watershed Transformation and Adjoining Quartz Grains 

Separation 

In order to measure the grain size accurately. all individual quartz grains should 

be presented both in terms of shape and size. Some of the objects in Figure 5.6 (d) are 

touching quartz grains resulting from the quartz overgrO\\th and the missing edges. 

Mathematical morphology provides solutions to such problems and the watershed 

transformation can be applied to disconnect touching objects. 

The watershed transformation can be used in conjunction with other operations to 

disconnect touching particles. According to Vincent [1993] and Matrox Imaging Library 

( 1999]. the procedure is as follows: 

l . Apply the 3.1.& chamfer distance transformation to the binary object image. The 

distance for each pixel inside objects is assigned as the distance to the nearest 

pixel of the background. 
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2. Perform a watershed transformation. The distance transformation provides a 

maximum for each blob, also known as a marker. and these maxima are used 

for forming the catchment basins. Because many maxima are caused by noise, 

the minimum variation between maxima should be given to obtain real 

watersheds. In this case, it is set to 2. 

3. Perform an AND operation to the original binary image and the image m 

which contains watersheds for adding watersheds to the objects. 

0 ----

Figure 5.8 Watershed lines added quartz grains 

Applying this operation to the binary image shown in Figure 5.6 (d), and Figure 

5.8 is the resulting image. It is found that most watersheds correctly split the adjoining 

grains. while some of them are inside the individual grains in this image. These false 

lines are marked in Figure 5.9. 
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Figure 5.9 Arrow marked false watersheds 
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Chapter 6 

Modified Watershed Transformation and Quartz Grain 

Measurements 

In the first part of this chapter, the watersheds that are obtained by applying a 

common watershed transformation to the binary image of the segmenting quartz grains 

are examined. A modified watershed transformation based on the physical nature of 

quartz grains is developed for correctly disconnecting adjoining grains. The second part 

of this chapter describes the algorithms for determining the individual quartz grain size, 

distribution and sorting. 

6.1 Modified Watershed Transformation 

As shown in Figure 5.9. their natural boundaries plus the watersheds provide the 

outline for the quartz grains in this image. The ~vatersheds split quartz grains that have 

been fused by the recrystallization. Also as explained in Section 5.2.5. some edge pixels 

are removed by the process of filling in small holes in the image objects correspond to 

quartz grains. 

As elaborated in Section 5.3, the maxima of the distance transformation image are 

used for forming the catchment basins, and some of maxima are caused by noise. 

Therefore, a minimum variation between maxima should be preset. It has been set to 2 in 

this work, and proven to be efficient. From the image shown in Figure 5.8, it is evident 
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that many watersheds split the connected grains correctly, while some of watersheds are 

incorrect due to oversegementaion as shown in Figure 5.9. 

In order to eliminate these false watershed lines. it is necessary to analyze the 

nature of quartz grains. and find the source of these errors. 

6.1.1 Physical Nature of Quartz Grains 

Quartz grains are natural materials. In thin section images from the test database. 

quartz grains appear white with black spots inside. As mentioned in early section. the 

quartz grain is measured in terms of size, shape and orientation. Since the orientation is 

chosen randomly during the image digitization, it is not a major factor. The size of the 

quartz grain is described as very fine (from 0.062mm to 0.125mm), fine (from 0.125mm 

to 0.25mm). medium (from 0.25mm to O.Smm), coarse (from 0.5mm to lmm) and very 

coarse (from 1 nun to 2mrn). In the image that is shown in Figure 1.1 , the size is fine -

medium. Roundness as a shape factor includes very angular, angular. subangular. 

subrounded. rounded and \Veil rounded. [Scholle, 1979] The comparison chart of the 

measure of roundness is shov.-11 in Figure 6.1. 

To summarize. quartz grains varies in size and shape in a great deal. As a result. 

the generation of watershed lines should respect these factors. 
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Figure 6.1 Comparison chart for roundness [Scholle, 1979] 

6.1.2 Error Analysis 

The watershed lines marked with arrows in Figure 5.9 are false. Some of them are 

inside individual grains, while the rest corresponds to some dark areas that belong to the 

quartz grains. but which were missed during the thresholding operation and the small 

hole filling process. For the false watersheds inside quartz grains. when quartz grains are 

more angular. the problem arises since the watersheds are generated by setting a 

minimum variation between extrema. and this variation does not adapt to the angularity 

factor. ln the operation of a common watershed transformation, this value is set to 2. 

Obviously. the variation factors in some grains are out of range, and result in false 

watersheds. If this variation is set larger. the watersheds in smaller grains will be omitted 

since the variation of extrema will be less in these grains. This introduces the need for 

another factor, the grain size, to guide the watershed generation. 
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The other error is related to dark spots in the image that is shown in Figure 5.9. In 

some cases. the holes that do not touch the blob border are extracted during the blob 

analysis. In practice. some dark parts touch the border. and remain black after the hole 

filling operation. These spots are actually inside the blob, but appear to have the 

background coloL causing incorrect variation, and resulting in false watersheds. In order 

to solve this problem. more complex image analysis methods should be developed. For 

example. texture-based techniques exploit the properties in a pixers neighborhood. 

Classification based on different texture patterns may help. 

The second type of black spots are inside blobs. As mentioned in Section 5.2.5. a 

threshold of the maximum grain area T1rote is set for the extraction of certain single range 

of holes. The reason for setting this range is to avoid extracting the pore space whose area 

is usually larger. Although adaptive thresholding is applied when obtaining the quartz 

grain. some weak edges are missed. and only the stronger parts obtained in the object 

image that is shown in Figure 5.4 (b). These partial edges are also extracted as holes. 

Since the areas of these edges are usually larger than those of black spots. a threshold of 

the area is selected in order to maintain these edges. The black spots with the same size 

range as edges. however. are also maintained. 

In this research work. only the false \.Vatersheds inside quartz grams are 

considered. while those caused by black spots will be the future work. 

6.1.3 Introduction to the Modified Watershed Transformation 

It was found that using only the common watershed transformation would 

produce an image that require significant manual editing. In view of this, a modified 
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watershed transformation was developed which would operate with regard for the 

physical nature of quartz grains. 

In this thesis. the approach js to examine all vvatersheds that are obtained by 

applying the common watershed transformation. add true watersheds and deleting false. 

The main idea behind this approach is that it was found that there is a significant 

difference between the lengths of the watershed and lines in parallel to the watershed. By 

establishing an acceptable difference which is adaptive to the grain size. false watersheds 

can be found and deleted using an approach illustrated in Figure 6.2. 

Figure 6.2 (a) illustrates two different types of grains. The left image represents 

t\VO cemented grains. while the right image is a single long grain. Figure 6.2 (b) shows 

the resulting grains after applying the common watershed transformation, and two 

watersheds in which the left one is true. and the right is false are added to the grains. In 

Figure 6.2 (c), two lines are drawn in parallel with the watershed in each grain. It is 

apparent that the length differences between the watershed and its two parallel lines are 

larger for the left hand grain. while smaller in the right. Figure 6.2 (d) shows the resulting 

grains after the watershed line examination. The left hand-watershed is retained. while 

the right hand grain has the \Vatershed line removed. 
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Figure 6.2 Illustration of the watershed line examination 

6.1.4 Algorithms for Modified Watershed Transformation 

The algorithm starts from the examination of watersheds after the common 

wat~rshed transformation has been applied. The procedure is as follows: 

I. Measure the lengths of all watershed lines. and extract those longer lines and 

add shorter ones to the object image directly. This step is applied because blob 

analysis is time consuming. and it is desirable to reduce the number of blobs. 

In addition. shorter lines are usually correct since the error commonly occurs 

in the large and long grains. A line length threshold Tune is set to 18 pixels 

experimentally. 

2. Examine individual watersheds, obtain and store the central points of all 

watersheds. 
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3_ Reconstruct every individual watershed from its central point. 

-1. Draw two lines in parallel with each watershed in a certain distance d which is 

chosen according to the average maximal blob diameter. d = 12 in this case. 

5. Measure the lengths of every two lines corresponding to each \Vatershed and 

calculate the differences. 

6. Determine the difference threshold Tlinedisr based on the length of the current 

watershed. Preset the Threshold_Base = 16 experimentally, assume the length 

of the watershed is Lwarershed and calculate the ratio. 

ratio= 0, L ... arerslt•d < 45 } 

ratio= (L .. ·mmh•d -45)/60, L,..me,-,lted > 45 
(6.1) 

Then 

~medw = (1 + ratio) x Threshold_ Base (6.1) 

7. Compare the two distances to the threshold. 

8. Add the watershed line to the object image if both distances are less than the 

threshold. or skip this 'vvatershed if one or both of two distances are greater 

than the threshold. 

6.1.5 The Line Drawing Algorithm 

Since the watershed line examination involves a line length comparison inside the 

grains. linear geometry and blob analysis are employed in the development of the 

al!!orithm. After the lengths of all watersheds are measured. each watershed is examined - - . 

individually. Two lines are drawn in parallel at a set distanced from the watershed. One 

typical blob with the related lines and points is drawn in Figure 6.3. In this figure, the 
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line A is the watershed. while Band Care lines in parallel with it and Dis a perpendicular 

line of A. Band C. and passes the point a. a is the central point of the line A. which is the 

watershed, while b and c are the intersections of the lines B and D. and C and D. 

respective I y. 

Assume the coordinate of the point a is (x0 , y 0 ) , and the slope of the line A is k 0 • 

From these known data. the points b and c, as well as the equations of the lines Band C 

are derived. 

Figure 6.3 A typical blob 

Assume the coordinates of points band c are(x,,;.·,)and (x,._y..). respectively. 

and that the distanced that between A and B (and A and C) is knO\vn. Then 
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Let 

Then 

d 

x, =x,- ~I+ X,' 
d 

d 

B: }' = k0 X+ Yo -a~ -k0(x0 +a1) 

C : y = k0 x +Yo -a~ - k0 (x0 + a 1 ) 

(6.3) 

(6.4) 

(6.5) 

Based on Equation 6.3. the two lines are drawn inside the current blob according 

to the following procedure: 

I . Find the start point and the end point for each line. The m1mmum and 

ma"<imurn coordinates of the current blob restrict the line in a certain range. 

while the coordinates of the start and end points are determined by these 

values. First select the x-coordinate, and the y-coordinate is calculated based 

on the Equation 6.3. There is a very important aspect in dra\\ring lines in a 

digital image since the coordinates calculated based on a line equation are 
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possibly decimal. but they should be integer. According to the Bresenham 

algorithm [Appendix II], they-coordinate is determined by finding the nearest 

integer of the calculated value. 

2. Drawing two lines from their start and end points. In the Bresenham 

algorithm, the coordinate of each pixel on a line is determined by the "nearest 

integer" rule to form a step function, and the line will look most natural to 

human eyes. 

These two lines are drawn in a box that is defined by the minimum and maximum 

coordinate of the current blob. Then an AND operation is performed between these lines 

and the blob for obtaining the lengths of lines inside the blob. 

6.1.6 Special Cases in Implementation of the Line Drawing 

Algorithm 

Due to factors, such as the _irregular shapes of grains, boundary problem. some 

special cases occur during the line dra~ing implementation procedure. 

Case 1: The watershed is reconstructed from its centroid. Unfortunately. this point 

is sometimes not on the watershed due to the integer and decimal conversion problem. 

The distance between the centroid and its real position on the watershed is usually one 

pixel. A local neighborhood search solves this problem. 

Case 2: When a watershed near the image boundary, they-coordinate is checked 

to confirm if it is out of range. 

Case 3: Figure 6.4 shows an irregular blob. In this case, three lines will be 

obtained after the AND operation is performed. The line on the right part of the blob can 
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not be used for the lioe comparison since it does not reflect the local variation of the blob 

width and needs to be removed. The solution is to find the line near the watersheds 
' 

which is in the left part of the blob, and delete the other. 

Case 4: When the angle of a watershed is oo or 90°, the start and end point should 

be determined separately since invalid values will be produced using Equation 6.3. 

(a) (b) 

Figure 6.4 An irregular grain 

Case 5: When a watershed touches the image border, the situation is extremely 

complicated. It is difficult to determine the threshold for the length variation that is 

determined by the watershed length since it cannot be predicted that the partition of a 

grain inside the image, such as a half, more than a half or less than a half. In this case, all 

watersheds that touch the image borders are added directly to the object image. 

There are some other cases in this procedure, such as two connected watersheds. 

These connected lines are added directly into the image. Figure 6.5 gives the resulting 

image after the watershed line examination. It was found all watersheds inside the long 

and large grains are deleted. 
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Figure 6.5 Resulting image after the watershed line examination 

6.2 Quartz Grain Measurement 

As mentioned in Section 5.2. the grain size is a very important parameter in thin 

section analysis since it is a visible property. Size is also considered as the basis for grain 

classification. Reservoir geologists and engine.ers are interested in information about 

individual grains as well as statistical derived from a large number of grains. such as the 

size mean. distribution histogram and sorting. 

6.2.1 NSD of the Grain 

According to Kennedy and Mazzullo [ 1991 ), the nominal sectional diameter 

(NSD) is an appropriate size descripter. The NOS is defined as "the diameter of a circle 

with the same area as the maximum projection profile of a single particle". In thin section 
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image. the objects are on a single plane, so that the maximwn projection profile of a 

particle will be the area of this particle. and this area is readily converted into its NSD. 

6.2.2 NSD Distribution Histogram 

The statistical information of the grain size is generated from an entire image or 

even a whole slide. After the area of each grain is available, its NSD can be determined 

by converting the area to this diameter. In this research work, the NSD distribution 

histogram is plotted by percentage vs. microns. This provides for a direct comparison 

between samples. The software is designed to determine the size distribution in a whole 

image or in a user-selected range. The histogram of quartz grains for the image shown in 

Figure 5.1 is given in Figure 6.6. 

6.2.3 Sorting 

Sorting of the object sizes in a thin section image is useful for core analysis. The 

sorting class provides an idea of whether the grains are fairly uniform in size. Usually. 

the grains are not perfectly sorted. According to Folk [1980], the sorting is most likely to 

be decided by the size range in the image. If the size range is large, it will not be well 

sorted. The conventional sorting classes include very well sorted, well sorted. moderately 

sorted and poorly sorted. Figure 6.8 shows the sorting images. 

In Folk' s book, four values in the Phi (~)standard deviation shown in Figure 6.7, 

correspond to the sorting classes, very well sorted cq,=0.35), well sorted (q,=0.5), 

moderately sorted ( cp= 1.0) and poorly sorted ( $=2.0). 
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In order to determine the sorting class of grains within an image. a estimation is 

made to obtain the values related to the sorting classes. From statistics. it is known that 

the standard deviation is the most frequently used measure of dispersion. and ··takes into 

account every observation in the data set". [Levin, 1984] The following formula is used 

to calculate the standard deviation: 

J L.(x- f.L)" 
cr=v N (6.4) 

where cr is the standard deviation. x is the observation, J..l. is the population mean. and N is 

the total number of elements in the population. 

From the equation 6.4, it is found that the standard deviation is still related to the 

grain size. In other words, if the values of all elements in a data set are relatively large. 

the standard deviation will be large since x- f1 is large. A value of the relative difference 

should be found. A relative deviation is defined as follows: 

S=alfl (6.5) 

\Vhere S is the relative deviation. cr is the standard deviation and J..l. is the population 

mean. Table 1 shows a comparison of values in Figure 6.8 and using equation 6.5. 
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Table 1 Comparison chart for sorting and sorting classes 

PHI standard deviation Relative standard deviation Verbal scale 

0.35 0.2377 very well sorted 

0.5 0.4017 well sorted 

1 0.5542 moderately sorted 

2 0.9989 poorly sorted 

From Table 1, it is found that the range for the relative standard deviation is 

narrower than that for PHI standard deviation. Nevertheless, it separates four sorting 

classes and is easy to compute. 
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Chapter 7 

Results, Integration into Windows Tools and 

Discussions 

In this chapter, the algorithms for both porosity determination and quartz grain 

measurements are tested and the results are presented. These algorithms have also been 

integrated into a graphic user interface (GUI) of the PetroGraFX software tool which is 

under development at C-CORE. Discussions about the results are also given in this 

chapter. 

7.1 Results and Discussions 

The test image set is from #B-16 2 well of the Hibernia oilfield. It contains 70 

thin section imaees in two resolutions. X63 and X 125. In this test image set. X63 images - - ~ 

contain about 100-400 grains, and are good for quartz grain measurements. especially the 

distribution and sorting, while Xl25 images display the inter or intra-crystal porosity in a 

certain part of the thin section clearly_ 

The PetrograFX software is implemented using Microsoft Visual C++ 6.0 and 

Matrox Imaging Library 6.0 in vvhich many built-in functions for image processing and 

analysis, such as the distance transformation, the watershed transformation and blob 

analysis, are provided. 
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7.1.1 Porosity Determination 

All 70 images were tested for the pore space segmentation and porosity 

determination. The pore space is converted into pink in all resulting images. Currently, 

the manual (visual) estimated porosity database is being built, and is not available in the 

present, so that all resulting images were visually reviewed by a specialist. It was found 

that 67 image processed using the algoritlun in this thesis presented very good pore space 

segmentation based on a visual assessment by an expert. Only 3 of segmented images 

showed any evidences of missing very small pores. When the resulting images are 

obtained from X125 original images, the region growing in the pore space show details 

along the boundaries. Figure 7.1 gives a X125 image and its resulting image. In this 

figure, the pixels of light blue near the boundaries are picked up. Figure 7.2 gives four 

original images shown in Figure 1.5 and their corresponding resulting images. 

From Figure 7.2, the resulting images (b), (d) (h) exhibit good pore space 

segments. all visible pores were found accurately. Figure 7.2(f) illustrates a case where 

there are some small pores missing, in which the color is very light annotate the image. In 

fact. Figure 7.2 (f) represents a class of images, in which pores are dimmer. and quartz 

grains are darker than usual. In this experiment, the parameters for thresholding and 

region grov.ing are adjusted automatically according to the red channel histogram for this 

class of images. so that most pores are found. 

There are 3 images which display missing pores in this experiment. Figure 7.3 (a) 

and (c) are the other two originals, while (b) and (d) are the resulting images. In Figure 

7.3 (b), there are several very tiny pores missing due to the light color. Figure 7.3 (c) is a 

special case, in which the pores appear an unusual dark blue. Some regions are too dark 
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to be recognized as the pore space: therefore, it results in some central parts of pores 

being omitted. 

Overall, the defect images in the pore space segmentation are less than 5% in 

totaL These images have been reviewed by reservoir specialists and it has been noted that 

the pore space segmentation is very good. 

7.1.2 Quartz Grain Measurements 

Since the manual segmentation images are very expensive, the limited testing for 

quartz grain measurements has been carried on three thin section images for which a 

reservoir specialist provided manually segmented images as a basis for comparison. 

Figure 7.4 illustrates segmented quartz grains that are converted into white in the auto 

segmentation mode ((a), (c) and (e)) and the yellow manual segmentation by the reservoir 

specialist ((b). (d) and (f)). Table 2 provides a comparison chart for these two modes. 

From Figure 7.4 and Table 2. some observations are made: 

I. The percentage of quartz grains in manual mode is higher than that in auto 

mode in Figure 7.4 (a) and (b). The reason for this is that some dark quartz 

grains that contain rich texture properties are excluded in the auto mode 

segmentation process. Noticed that this factor in two modes is nearly identical 

in Figure 7.4 (c) and (d), and (e) and (f) since most quartz grains are texture 

free, while there are 7.2% differences between (a) and (b). 

2. The numbers of grains in Figure 34 (c) and (d) are very close. This number in 

(c) is larger than that in (d) due to the merging of some small grains caused by 

missing edges. The number difference is more significant between (a) and (b), 
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and (e) and (f) since some small grains were omitted in the manual mode and 

then included in the auto mode. 

3. The relative standard deviation in manual mode is smaller than in the auto 

mode. The main reason for this is that some individual quartz grains which 

contain rich textural properties are decomposed into several small grains 

during the thresholding operation. The minor reason is some relatively big 

black spots inside the quartz grains are omitted from the small hole filling 

process and lead to false watersheds to form smaller segments. From the NSD 

mean, the difference of this factor between Figure 7.4 (a) and (b) is significant 

because the texture reason, while this difference is also large between Figure 

7.4 (e) and (f) due to the small grain exclusion in the manual mode. 

Despite the differences in the extracted parameters, it was concluded by the 

reservoir specialist that the initial grain segmentation results were very promising. 

Table 2 Comparison Chart for Auto and Manual Quartz Grain Segmentation 

Relative NSD 
I Image Segmentation Total Grain Standard Mean Percentage of 

Number Mode Number Deviation (Microns) Quartz Grain 

I 
417870a Manual ?"'"' 0.3682 41.2146 67.968 -J-' I 

(Figure7.4 
(a) & (b)) Auto 278 0.5645 33.0576 60.742 

418527a Manual 281 0.6074 34.6940 70.212 
(Figure7.4 
(c) & (d)) Auto 267 0.7521 33.1423 69.461 

434646a Manual 215 0.5226 36.8419 56.276 
(Figure7.4 
(e) & (f)) Auto 303 0.8020 27.6469 57.609 

96 



7.2 Integration into the Windows Tool 

The software for porosity determination and the quartz grain measurement has 

been integrated into a graphic user interface (GUI) using MFC in Microsoft Visual C++ 

6.0 in Windows environment. Besides the two processing tools, the GUI also provides a 

user interface for examining thin section images. Small windows within an image can be 

selected for processing if desired. Figure 7.6 illustrates the PetrograFX GUI windo\v. 
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Figure 7.2 Resulting images for the pore space segmentation 
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Figure 7.2 Resulting images for the pore space segmentation (Continued) 
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Figure 7.2 Resulting images for the pore space segmentation (Continued) 
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Figure 7.2 Resulting images for the pore space segmentation (Continued) 
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Figure 7.3 Defect resuiting images for the pore space segmentation 
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Figure 7.3 Defect resulting images for the pore space segmentation (continued) 

104 



0 ----

(a) 

(b) 

Figure 7.4 Auto and manually segmented quartz grains 
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Figure 7.4 Auto and manually segmented quartz grains (continued) 
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Figure 7.5 PetrograFX GUI window 
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Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

This thesis has presented the algorithms for automated image analysis for 

petrographic thin section images including pore space segmentation. porosity 

determination. pore space distribution, individual quartz grain segmentation and the NSD 

measurement. quartz grain distribution and sorting. 

From the comparison of auto mode and manual mode segmentation results, it is 

concluded as follows: 

• The region growing scheme in color space successfully segments the pore 

space with an error rate less than 5%. The software is designed to be adaptive 

to variations in color. lighting condition and other parameters in different 

tmages. 

• Image segmentation, image preprocessing and blob analysis are employed to 

perform the automated quartz grain segmentation and measurements. such as 

determining the NSD of an individual grain, the quartz grain distribution in a 

certain size range or the full range, the sorting class in a whole image. The 

comparison of results between the auto mode and manual mode has shov.rn 

that the most quartz grains are measured to an acceptable accuracy. 
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The major contribution of this thesis is the development of image processing and 

image analysis algoritluns for a particular image class. the petrographic thin section 

images. Since most segmentation techniques are application dependent, this thesis 

focuses on the selection and development of the most appropriate methods based on the 

clients· requirements. as well as to assess the performance of the software. In the porosity 

determination phase, the seeded region growing scheme in color space is designed, while 

the seeds are generated automatically from all pore space regions that are obtained from 

the feature space. The feature is extracted from the absolute R - B difference image. It 

utilizes color signatures for forming the most appropriate feature space for highlighting 

the pore space. Meantime, the effects of color and lighting variations are also suppressed 

since the feature image is generated from two channels of the same image. In the quartz 

grain measurement phase, the adaptive thresholding, median filter and blob analysis are 

used for obtaining the quartz grains, and the modified watershed transformation IS 

designed to insert acceptable approximation of grain boundaries between fused grains. 

8.2 Recommendations 

This thesis provides the basis for future recommendation and development on 

both pore space segmentation and quartz grain boundary identification. This will 

includes: 

• Estimating the porosity in a whole slide. This will likely require optimization of the 

speed since many more blobs are involved. Also there will likely be issues related to 

image registration to be addressed since the entire image will need to be processed in 

blobs. 
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• Adapting to various color stained pore space. In this thesis, only the blue-stained pore 

space is processed although stains of various colors are used by industry. 

• Segmenting rich texture quartz grains - Although most quartz grains are texture free 

and included in the resulting image, there are still a few grains in which rich texture 

properties are found. These grains are omitted from the quartz grain segments in the 

current software. but this issue needs to be considered. 

• Recovering missing edges. Some weak edges that belong to the quartz gram 

boundaries are removed during the blob analysis and small hole filling process. By 

analyzing the shape or other related factors. these edges could be recovered. 

• Extracting other features (eg. angularity, roundness, connectedness etc.) for the 

image. 
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Appendix/ 

Lossless Predictive Coding 

Generally. the gray scales of adjacent pixels in natural images are highly 

correlated since there are many uniform regions. The predictive coding idea is to exploit 

the relationship between a pixel and its surrounding neighbors. and obtain the value of 

this pixel by inspecting its neighboring pixel values. This can modeled as a Markov 

source. '·An mth-order Markov source is a source in which the probability of occurrence 

of a source symbol s; depends upon a finite number m of the preceding symbols". 

[Rabbani, I 99 I] It is defined by the set of conditional probabilities 

where i ,jP (p = I , .... m) = L2, .... n. 

[f an image is modeled by a mth-order Markov source, any pixels that are 

represented by k bits in this image take one of values of K from 2t possible values. A 

given pixel x"'depends on the values of them previous pixels, x0 ,x1 .... x"'_1• 

The differential pulse code modulation (DPCM) uses the most probable estimate 

for x"' instead of all of the possible estimates. The value -~"' is the maximum of 

p(xm I xm- I'"''Xo). This is the most likely prediction. The difference between xm and -~m 

is called the differential or error signal e"' , 

em= xm -xm 
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Appendix// 

Bresenham Algorithm 

The line drawing procedure is known as the Bresenham algorithm. In a computer 

graphics system. the line drawing procedure belongs to the display process unit (DPU). 

According to Loustau and Dillon [1993 ], if the coordinates of two pixels are 

given, the line equation y = mx: + b is determined. The problems arise in rendering the 

graph on a computer screen. Only the pixels with integer coordinates can be displayed. 

Also. since the scope of the line is not integer in most case, the integer x-coordinate 

associates with a decimal y-coordinate. So that the line can not be represented properly. 

A good line drawing algorithm should satisfy the following criteria: 

• The displayed pixels should be closest to the actual pixels 

• The displayed pixels shot:ild be distributed evenly 

• Begin and end accurately 

• Be efficient 

The Bresenham algorithm provides a good approach to solve this problem. From 

the two end pixels, (x, , y, ) and (x ~. J·~) . each integer between x, and x, is utilized to 

calculate the corresponding y-coordinate using the line equation. Then the integer y­

coordinate is determined by finding its nearest integer. This is called a Round function. 

The x-coordinate is increased 1 greater than the previous until the last pixel is generated. 
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