
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author' s Permission)

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directJy from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistind print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins. and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to

right in equal sections with small over1aps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality e· x s· black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contad UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

lJ]_\,.f_I""
800-521-0600

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions et Acquisitions and
Bibliographic Services services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K 1 A ON4
canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permiSSIOn.

Our file Norte fflletfKICS

L' auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L' auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-42482-0

Canada

ARTIFICIAL NEURAL NETWORKS

IN INDUCTION MOTOR SPEED ESTIMATION

AND CONTROL

by

@Prashant Mehrotra, M.Tech., I.I.T. Mumbai, India

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering & Applied Science

Memorial University of Newfoundland

St. John's, Newfoundland, Canada

January, 1999

Abstract

The squirrel-cage induction motor has various inherent advantages not present in

other types of ac motors, and is widely used in the industry. Its usage is e.xpected

to go up because of possible applications like electric vehicles, which require a light

and efficient motor drive. However: the induction motor has a complex and non-linear

structure which makes precise control a complicated and expensive process. Added

to this complexity is the fact that the motor parameters undergo a variation during

regular operation, chiefly due to a change in temperature and nonlinear magnetic

characteristics. This variation reduces the efficacy of the control technique, though its

effect can be mitigated with the help of robust control techniques. Also, most control

techniques require speed feedback from a shaft encoder and these devices have various

disadvantages and are considered undesirable for a number of applications. Thus,

present day research in this area is mostly focussed on obtaining speed sensorless and

robust induction motor drives.

Artificial neural networks (ANNs) have shown great promise in image processing

and control applications where robustness is desirable. However, these are at the stage

of infancy in the area of induction motor control. The ability of ANNs to map arbitrary

nonlinear functions has been used to advantage by many researchers. The motivation

behind this work was to investigate the possibility of using ANNs to eventually come

up with an ANN based sensorless induction motor drive. This central idea was broken

down into two major components - speed estimation of induction motors using ANNs,

and control of induction motors using ANNs. Both these areas have attracted attention

in recent years, though very little work has been done so far. Because of the complexity

of the problem, researchers have been unable to come up with a satisfactory solution.

This work makes an important contribution to the area of induction motor drives,

i

by presenting for the first time! off-line trained ANN speed estimators. Using the

d-q axis dynamic equations of the squirrel-cage induction motor, four methods are

proposed whereby an ANN is trained off-line to estimate the speed of the motor. The

results presented in the thesis indicate that the proposed schemes are able to track the

speed under load variations. The effectiveness and superiority of the fourth method

is further demonstrated under vector control conditions in the presence of an inverter.

This method has also been experimentally verified.

A novel strategy for control of induction motors using just one off-line trained

ANN is also presented. The control strategy employs the magnitude and frequency

of the d-q axis quantities to simplify the off-line training of the ANN and allow the

ANN to mimic a vector controller. This scheme has the added benefit that subsequent

to off-line training, the ANN can be on-line trained for improved performance and

robustness, though it can function well without any on-line training also. Simulation

results show that after off-line training the ANN is able to run the induction motor

for various changes in speed reference and load torque, and the network is able to

generalize effectively. Further simulation results are presented to show the robustness

of the control strategy under induction motor parameter variation when the ANN

controller is functioning under on-line control. An off-line trained ANN is particularly

useful for real-time implementation, because of the reduced computational burden.

Though the problem of obtaining a robust and sensorless induction motor drive is

by no means completely solved, the results obtained as part of this work point in a

promising direction.

ii

Acknowledgements

I express my sincerest gratitude and appreciation to my supervisors Dr. J .E.

Quaicoe and Dr. R. Venkatesan, for their guidance, advice, encouragement and thought­

fulness throughout this program. I also acknowledge the assistance from Dr. :VL

Hinchey in my supervisory committee, for his useful comments and suggestions. I

extend my appreciation to the School of Graduate Studies for their support in this

program. I am also grateful to the Dean and associate Dean, Faculty of Engineering

and Applied Science, for their help in my program.

I sincerely acknowledge the assistance received from Mr. David Press, Mr. Tony

Galway, Mr. Scott Squires, Mr. Philip van Ulden, Ms. Valerie Fortier and ::Vlr. Tom

Pike of the C-CAE. I also wish to thank Mr. Richard Newman for his continued

assistance with my experimental work and Mr. Don Guy, Mr. Dennis Johnson and

:VIs. :\'loya Crocker for their help and support. I express my gratitude to Dr. B.

Jeyasurya, Dr. C. Moloney, Dr. P. Artiss and Dr. M. Collins for their help. Thanks

are also due to Mrs. Lilian Beresford, international student advisor at MUN for her

assistance.

I thank the following friends, who helped me out at some point or the other, and

made my stay here a lot pleasanter than it would have otherwise been: V. Adluri,

B. Balasubramanian, S. Bellini, Y. El-Sayed, H. Khandwala, M. Kresz, A. Petersons,

Y.V.S.N. Prasad, I. Rada, R. Ramjuttan, R. Roy, S. Sharan, H. Sivakumar, K. Subra­

maniam, P. Timko, F. Zahra and A. M. Zeiner. Finally, I thank my parents and my

sister for their continued encouragement and support, and I would like to dedicate this

thesis to them.

iii

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

List of Symbols and Abbreviations

1 Introduction

1.1 Motion control- issues involved and the future .

1.1.1

1.1.2

Applications of motion control .

Future trends . .

1.2 Motivation for this work

iv

i

iii

X

xvii

xviii

1

3

3

4

5

1.3 Objectives of the proposed research

1.4 Induction machines

1.5 Artificial neural networks .

1.6 Outline of the thesis ...

2 Review of Literature

2.1 Scalar control techniques

2.2 Field-oriented control .

2.3 Speed sensorless drives

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

Direct computation of speed

Slip frequency-based approach .

Observer based methods

Model reference adaptive control based methods

Extended Kalman filter based techniques .

Rotor harmonic detection based methods .

Superimposition of signals on the current command

2.4 Disturbance torque and robust motion control

2.5 Use of artificial neural networks in induction motor drives

v

6

7

8

14

15

15

16

20

22

23

24

25

26

28

29

30

32

2.5.1 Estimation of flux, torque and speed

2.5.2 Current control

2.5.3 Performance enhancement of existing controllers .

2.5.4 Induction motor control

2.6 Summary

3 Development of the Object-Oriented Software

3.1 An overview of some existing simulators . .

3.1.1

3.1.2

3.1.3

MATLAB neural network toolbox .

SIMULINK

EMTP .. .

3.2 Motivation for building another simulator

3.3 Building blocks

3.4 Artificial neural network simulator

3.4.1

3.4.2

3.4.3

The neuron ..

The network . .

Training algorithm

3.5 Putting it all together . .

vi

32

35

36

39

41

43

44

44

45

46

48

48

58

59

60

63

63

3.6 Summary . 64

4 ANN Based Induction Motor Speed Estimator 66

4.1 lnd uction motor equations 67

4.2 Speed estimation 70

4.2.1)..[ethod 1: Using singular functions 71

4.2.2 Method 2: Using non-singular function 77

4.2.3 Method 3: Using non-singular function with magnitude and phase

a.ngle . 80

4.3 Importance of form in ANN training 80

4.4)J[ethod 4: Speed estimation using the DQ-MF block 83

4.5 Summary 85

5 ANN Control of Induction Motor 89

5.1 Issues involved with ANN control of induction motor 90

5.2 ANN based direct adaptive control of induction motor 93

5.3 Off-line control of induction motor using ANN 98

5.3.1 Training considerations 100

5.3.2 Fully-connected network training 103

vii

5.3.3 Split-ANN training 107

5.3.4 Voltage feedback scheme with current amplifier 111

5.3.5 Voltage feedback scheme with PWM voltage source inverter 118

5.4 On-line training . 134

5.4.1 Voltage feedback scheme with PWM voltage source inverter 134

5.4.2 Effect of parameter variation . 136

5.5 Summary 139

6 Experimental Verification of ANN-based Speed Estimation 141

6.1 A review of available ANN hardware

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

Optical implementation

Analog implementation .

Digital implementation .

Hybrid implementation .

Choice of hardware for real-time ANN implementation

6.2 Scope of the experimental work

6.3 Description of the experimental setup .

6.3.1 Hardware components

viii

142

142

143

144

145

148

148

149

149

6.3.2 Software components

6.4 Experimental results and discussion

6.5 Summary

7 Conclusion

7.1 Contributions of this work

7.2 Suggestions for future work

References

A Simulation Input Files

A.l Induction machine parameters (mach.par)

A.2 Vector controller parameters (vector. par)

A.3 Inverter parameters (inv. par)

A.4 PWM current controller parameters (pwm.par) .

A.5 Backpropagation learning parameters (bpn. par)

A.6 ANN architectural parameters (ann. par)

ix

156

158

173

174

175

177

179

187

187

188

189

189

190

191

List of Figures

1.1 d-q axis equivalent circuits for induction machine in the synchronous

reference frame 9

1.2 Artificial neural network architectures . 10

1. 3 Schematic of an artificial neural network 11

2.1 Transformation of stator current space phasor 17

2.2 Rotor field-oriented induction motor drive .. 19

2.3 Slip frequency-based sensorless control of induction motor 23

2.4 Block diagram of observer based schematic 25

2.5 Block schematic of model reference adaptive control 26

2.6 Estimation of disturbance torque 31

2. 7 Block diagram of DTC 37

2.8 ANN control of induction motor (50] 39

X

2.9 Artificial neural network controller . 41

3.1 Block level description of the simulator 49

3.2 Structure of the simulator 59

3.3 The network corresponding to the example parameter file . 62

4.1 Numerator and denominator functions in the speed expression 68

4.2 Comparison of the two speed expressions 69

4.3 Block diagram of ANN speed recovery (method 1) . 73

4.4 Actual and ANN recovered speed (method 1): Step change in load (10%

to 150%) at t = 1.0 s . 75

4.5 Actual and ANN recovered speed with inverter operation (method 1):

Step change in load (10% to 150%) at t = 1.0 s 76

4.6 Block diagram of ANN speed estimator (method 2) 78

4.7 Actual and ANN recovered speed (method 2): Step change in load (10%

to 150%) at t = 1.0 s . 79

4.8 Actual and ANN recovered speed (method 3): Step change in load (10%

to 150%) at t = 1.0 s 81

4.9 ANN speed estimator using the DQ-MF block (method 4) 84

xi

4.10 Actual and ANN recovered speed (method 4): Step change in speed

reference at t = 1.0 sand step change in load torque at t = 2.0 s . 86

4.11 Sum squared error during ANN training (method 4) 87

5.1 Training of ANN for controller mimicing 91

5.2 Induction motor control model ... 92

5.3 Direct adaptive control using ANN 94

5.4 ANN training for off-line control . 100

5.5 Data collection for ANN training 101

5.6 Current amplifier based scheme for ANN control of induction motor

using voltage feedback . 106

5. 7 Performance of the fully-connected 1~ 75-2 ANN controller using a cur-

rent amplifier: Step change in speed reference at t = 1.0 s and step

change in load torque at t = 2.0 s . 108

5.8 Sum squared error during training of 1~ 75-2 ANN controller using a

current amplifier . 109

5.9 Outputs of the fully-connected 1~ 75-2 ANN controller using a current

amplifier: Step change in speed reference at t = 1.0 s and step change

in load torque at t = 2.0 s

5.10 Dual output split-ANN for induction motor control

xii

llO

lll

5.11 Sum squared error during training of the 13-80-2 split-ANN controller

using a current amplifier . 113

5.12 Performance of the 13-80-2 split-ANN controller using a current ampli-

fier: Step changes in speed reference at t = 1.0 and 2.0 s 114

5.13 Outputs of the 13-80-2 split-ANN controller using a current amplifier:

Step changes in speed reference at t = 1.0 and 2.0 s 115

5.14 Performance of the 13-80-2 split-ANN controller using a current ampli­

fier: Step change in speed reference at t = 1.0 sand step change in load

at t = 2.0 s . 116

5.15 Outputs of the 13-80-2 split-ANN controller using a current amplifier:

Step change in speed reference at t = 1.0 sand step change in load at t

= 2.0 s . 117

5.16 PW~ current controller 118

5.17 Performance of induction motor drive with field-oriented control (speed

response) 120

5.18 Performance of induction motor drive with field-oriented control (torque

response) 121

5.19 Performance of induction motor drive with field-oriented control (imr

response) . 122

5.20 d-axis inverter and filtered voltages 123

5.21 a-phase reference and actual currents with rotor field-oriented control . 124

xiii

5.22 Generation of desired outputs for ANN training 125

5.23 Voltage feedback for ANN training 126

5.24 Current controller and inverter based scheme for ANN control of induc-

tion motor using voltage feedback . 127

5.25 Sum squared error during training of the 13-80-2 split-ANN controller

using an inverter . 129

5.26 Perfonnance of the 13-80-2 split-ANN controller using an inverter: Step

changes in speed reference at t = 1.0 and 2.0 s 130

5.27 Outputs of the 13-80-2 split-ANN controller using an inverter: Step

changes in speed reference at t = 1.0 and 2.0 s 131

5.28 Perfonnance of the 13-8~2 split-ANN controller using an inverter: Step

change in speed reference at t = 1.0 sand step change in load torque at

t = 2.0 s . 132

5.29 Outputs of the 13-80-2 split-ANN controller using an inverter: Step

change in speed reference at t = 1.0 sand step change in load at t = 2.0 s133

5.30 Performance of the 13-80-2 split-ANN controller using an inverter: On-

line training implemented from t = 1.0 s to t = 2.0 s 135

5.31 Outputs of the 13-80-2 split-ANN controller using an inverter: On-line

training implemented from t = 1.0 s to t = 2.0 s 136

xiv

5.32 Performance of the 13-8~2 split-ANN controller using an inverter: On­

line training implemented from t = 1.0 s tot = 2.5 sand linear change

in motor parameters from t = 2.0 s tot= 2.5 s

5.33 Outputs of the 1~80-2 split-ANN controller using an inverter: On-line

training initiated at t = 1.0 s and linear change in motor parameters

137

from t = 2.0 s to t = 2.5 s . 138

6.1 Classification of artificial neural network hardware . 143

6.2 Schematic of the experimental setup 149

6.3 Photograph of the experimental setup . 150

6.4 Speed measurement circuit 152

6.5 Circuit schematic of the Sallen and Key filter 153

6.6 Inverter voltage before and after filtration . . 159

6.7 Filtered inverter voltages for phases 'a' and 'c' 160

6.8 Inverter current before and after filtration . . 161

6.9 Filtered inverter currents for phases 'a' and 'c' 162

6.10 Performance of the modified averaging filter . 164

6.11 Actual vs. ANN estimated speed (real-time implementation) 165

6.12 Percentage error in the ANN speed estimate (real-time implementation) 166

XV

6.13 Sum squared error for the experimental ANN during training 167

6.14 Actual and ANN estimated speed for 60Hz operation in the forward

mode of drive operation . 168

6.15 Actual and ANN estimated speed for 60Hz operation in the reverse mode

of drive operation 169

6.16 Actual and ANN estimated speed for 30Hz operation in the forward

mode of drive operation . 170

6.17 Actual and ANN estimated speed for 30Hz operation in the reverse mode

of drive operation . 171

xvi

List of Tables

4.1 Induction motor parameters used in simulation studies 72

5.1 Induction motor parameters used in motor control simulation studies . 105

6.1 Available ANN hardware (67] . 147

6.2 Parameters of the induction motor used for experimental verification 155

xvii

List of Symbols and Abbreviations

B Damping coefficient (All electrical machines)

eict.s error between estimated value and measured value of the direct axis stator

current

eiq.s error between estimated value and measured value of the quadrature axis

stator current

induction motor speed error (reference speed minus actual speed)

Armature current (DC machine)

direct-axis stator current in the stationary reference frame (AC machines)

direct-axis rotor current in the stationary reference frame (AC machines)

direct-axis rotor current in the rotor flux oriented reference frame

direct-axis stator current in the rotor flux oriented reference frame

field current (DC machine)

magnitude of the space phasor of the rotor magnetizing currents expressed in

the rotor flux oriented reference frame

'qr quadrature-axis rotor current in the stationary reference frame (AC machines)

i:,. quadrature-axis rotor current in the rotor flux oriented reference frame

iq, quadrature-axis stator current in the stationary reference frame (AC machines)

i:, quadrature-axis stator current in the rotor flux oriented reference frame

xvili

i,

space phasor of the rotor current expressed in the stationary

reference frame

space phasor of the rotor current expressed in the rotor flux oriented

reference frame

space phasor of the stator current expressed in the stationary

reference frame

space phasor of the stator current expressed in the rotor flux oriented

reference frame

J Moment of Inertia (All electrical machines)

.J cost function for ANN training

ke back E~IF constant (DC machine)

kt flux constant (DC machine)

kt torque constant (DC machine)

Ltr Rotor leakage inductance (AC machines)

L~s Stator leakage inductance (AC machines)

Lm Magnetizing inductance (AC machines)

Lr Rotor self inductance (AC machines)

L, Stator self inductance (AC machines)

p differentiation operator

P Number of pole pairs (All electrical machines)

Rr Rotor phase winding resistance (AC machines)

Rs Stator phase winding resistance (AC machines)

T Time step for simulation

T em Electromagnetic torque (All electrical machines)

1l Load torque (All electrical machines)

V11 Armature voltage (DC machine)

vdr. direct-axis rotor voltage in the rotor fiux oriented reference frame

xix

vds direct-axis stator voltage in the stationary reference frame (AC machines)

vd., direct-axis stator voltage in the rotor flux oriented reference frame

Vca vds - R, ids

v:r quadrature-axis rotor voltage in the rotor flux oriented reference frame

Vqs quadrature-axis stator voltage in the stationary reference frame (:\.C machines)

v~, quadrature-axis stator voltage in the rotor flux oriented reference frame

t'q:r Vqs - R,iqs

v, space phasor of the stator voltage expressed in the stationary

reference frame

Yi(n)

=-1

8; (n)

space phasor of the stator voltage expressed in the rotor flux oriented

reference frame

synaptic weight for neuron j in one layer to neuron i in the previous layer at the nt

Output of neuron i at the nth iteration

Delay operator

ANN momentum parameter for training

the nth iteration

slope of the neuron activation function

local gradient of neuron j at the nth iteration

increment for synaptic weight from neuron j in one layer to neuron i in the

previous layer at the nth iteration

11 ANN learning rate

Oe Angle of the rotor flux vector referred to the stationary frame of reference

aw uncertainty in the rotor speed measurement

ai uncertainty in the stator current measurement

~() neuron activation function

Wdr direct-axis rotor flux linkage in the stationary reference frame (AC machines)

1/l~r direct-axis rotor flux linkage in the rotor ftux oriented reference frame

XX

tf.Jd~ direct-axis stator flux linkage in the stationary reference frame { AC machines)

wd., direct-axis stator flux linkage in the rotor flux oriented reference frame

t/lf field flux (DC machine)

lJJqr quadrature-axis rotor flux linkage in the stationary reference frame (AC machines)

t/J:r quadrature-axis rotor flux linkage in the rotor flux oriented reference frame

Wq~ quadrature-axis stator flux linkage in the stationary reference frame (AC machines)

t/J:~ quadrature-axis stator flux linkage in the rotor flux oriented reference frame

tPr space phasor of the rotor flux linkage expressed in the stationary

reference frame -Wr space phasor of the rotor flux linkage expressed in the rotor flux oriented

2DOF

AC

ADC

AGP

ANN

CNN

CPS

CUPS

DAC

reference frame

space phasor of the stator flux linkage expressed in the rotor flux oriented

reference frame

space phasor of the stator flux linkage expressed in the stationary

reference frame

Filter cut-off frequency in radians/sec

Synchronous speed in electrical radians/sec (AC machines)

Motor speed in electrical radians/sec (All electrical machines)

Two Degree of Freedom

Alternating Current

Analog to Digital Converter

Accelerated Graphics Port

Artificial Neural Networks

Cellular Neural Network

Connections Per Second

Connection Updates Per Second

Data Acquisition System

xxi

DC

DSP

DTC

DVC

EKF

E~lf

E~lTP

ETANN

EV

FF

FFT

GCPS

GPIB

HP

IGBT

I~

IVC

LCD

L~S

LPF

LR

MCPS

MCUPS

MIMO

ML

MMF

~R...<\C

Direct Current

Digital Signal Processor

Direct Torque Control

Direct Vector Control

Extended Kalman Filter

Electromagnetic Force

ElectroMagnetic Transients Program

Electrically Trainable Analog Neural Network

Electric Vehicle

Feed Forward network

Fast Fourier Transform

Giga Connections Per Second

General Purpose Interface Bus

Horse Power

Insulated Gate Bipolar Transistor

Induction Motor

Indirect Vector Control

Liquid Crystal Display

Least Mean Square

Low Pass Filter

Learning Rate

Mega Connections Per Second

Mega Connection Updates Per Second

Multiple Input Multiple Output

Multi-Layer

Magneto-Motive Force

Model Reference Adaptive Control

xxii

:MRAS :Model Reference Adaptive System

:MS-DOS N1icroSoft Disk Operating System

NAR...\1AX Non-linear AutoRegressive N1oving Average with eXogenous inputs

PC Personal Computer

PI Proportional Integral

PLC

PN1SN1

PNN

PWN1

RCE

ruse
RWC

Sl).,1D

SISO

SSE

TDL

THD

VSI

Programmable Logic Controller

Permanent :Magnet Synchronous Machine

Probabilistic Neural Network

Pulse Width Nlodulated

Restricted Coulomb Energy

Reduced Instruction Set Computing

Random Weight Change

Single Instruction-stream :Multiple Data-stream

Single Input Single Output

Sum Squared Error

Tapped Delay Line

Total Harmonic Distortion

Voltage Source Inverter

xxiii

Chapter 1

Introduction

The history of adjustable speed motor drives is quite old and goes back to the 19th

century. Earlier, this area was dominated by DC machines, and AC machines were

relegated to constant speed operations. This was primarily due to the fact that with

a separately excited DC machine, independent control of the flux and torque can be

achieved, and all quantities are DC, resulting in a simpler control strategy. However,

the sliJrring and brushes arrangement results in a lot of wear and tear .. .o\lso, due to

sparking at the brushes, these machines cannot be used in mines and other potentially

hazardous areas because of the risk of explosion.

After 1970, adjustable speed AC drive technology gained a lot of momentum, and

it was found that AC motor drives accounted for more than 50% of all the energy

consumed in developed countries. AC machines are now replacing DC machines even

in high performance applications. It is predicted that in the future, the omnipresent

internal combustion engine will be replaced by AC machines, leading to maintenance

and pollution free automobiles.

1

AC machines can be further classified as two main types - synchronous machines

and induction machines. Synchronous machines are a very important class of electric

machines. Their forte has been the area of power generation, because of which they are

known as synchronous generators or alternators. Synchronous machines run only at

synchronous speed, i.e. the speed of rotation of the air gap flux vector. The field wind­

ing of synchronous machines is on the rotor and carries DC current, which is supplied

through an arrangement of commutators and brushes not unlike DC machines. These

machines, thus, have the same drawbacks as DC machines. The electrically excited

rotor can also be replaced by a permanent magnet. This type of machine is called the

permanent magnet synchronous machine (PMSM). This offers many advantages like

elimination of rotor copper losses and brushes, leading to increased efficiency. How­

ever, because a permanent magnet is used, the airgap cannot be considered uniform

[1]. Thus, it is difficult to obtain smooth torque and a servo like performance from

these machines. Also, the use of a permanent magnet rules out flux control! making

it difficult to operate the drive in the constant power region. The PMS~1 is usually

e.xpensive because of the expensive permanent magnet material and has saturation

problems at the teeth because rotor flux is non-uniform.

Induction machines do not have many of the problems associated with synchronous

machines, and are widely used in the industry. The machine of choice for this thesis

work was the squirrel-cage induction machine and it will be discussed in more detail

in section 1.4.

2

1.1 Motion control - issues involved and the fu­

ture

The field of motion control stemmed from the area of power electronics initially, but as

Harashima [2] points out, it has acquired a separate status of its own. The early stages

of research in this area, in the 1970s, focussed on the application of basic control theory

to drive a motor, using a power electronic converter. As the field evolved, it drew in

researchers who originally trained in various other fields, including control engineering,

computer science, mechanical engineering, artificial intelligence (including fuzzy logic

and artificial neural networks) and electrical machines and power systems. According

to Harashima, as the situation stands today, a traditionally trained Power Electronics

engineer would no longer be suitable for the field of motion control, since the field is

so interdisciplinary and requires experts from various fields pooling their efforts.

1.1.1 Applications of motion control

~lotion control encompasses every technology related to the movement of objects. It

covers every motion system from micro-sized systems such as silicon-type micro in­

duction actuators to macro-sized systems such as a space platform. In consumer and

commercial applications, motion controllers are found in vacuum cleaners, washers

and dryers, music systems, VCRs, computer peripherals like printers, plotters and disk

drives, ceiling and portable fans, mixers and blenders, drills, elevators and escalators,

and various other products. In the industrial setting, motion controllers are ubiqui­

tous, and can be found in pumps, compressors, machine tools, rolling mills, PLCs and

other applications. Control of robotic manipulators is also included in the field of mo­

tion control because most of the robotic manipulators are driven by electrical servo

3

motors and the key objective is the control of motion. Transportation offers another

area rife with motion controllers. They are found in electric vehicles including electric

trains, street cars, trolleys, ships and steamers, airplanes and space shuttles.).'lotion

controllers are also widespread in military applications like missile launcher guidance

and radar control.

As can be seen from the above, motion controller applications can be found in

virtually every aspect of modem life. Thus, a large number of researchers are involved

with the research and development of motion controllers.

1.1.2 Future trends

There are two central issues and problems in motion control. One is to make the

resulting system of controller and plant robust against parameter variations and dis­

turbances. The other is to make the system intelligent, i.e., to make the system self­

adjusting to changes in environment and system parameters. Various methods used

in control system theory have been applied to improve the robustness of the system.

One famous method is the H-oc method based on frequency-domain optimization [3].

Sliding-mode control is also effective for robust control [4]. It has switching inputs and

is thus attractive for power electronics engineers.

To make a motion control system intelligent requires more time and research efforts

because our knowledge and computational resources are not yet sufficient for realiza­

tion. Soft computational methods such as artificial neural networks (ANNs) and fuzzy

logic are familiar intelligent control methods, and they have been applied by many

researchers working in the drives area. However, a lot of work remains to be done, not

only in the drives area but also in maturing the base technologies themselves.

4

For induction motor drives in particular, another issue has gained importance in

recent years and that stems from problems associated with the speed sensor. ~lost

closed loop control schemes require a speed sensor, and this is usually expensive and

cannot be used in some situations. Thus, many researchers have focussed on ways to

avoid the use of a speed sensor, but many of these schemes have other problems not

associated with speed sensor-based control.

In the future, it is expected that computational power and memory will get still

cheaper leading to realization of more powerful control techniques. It will be possible

to make a totally automatic control system which will derive a mathematical model

of the plant by providing some test signals at the input, or obviate the need for a

plant model by using an intelligent control technique like ANNs. It will be possible to

identify the required parameters, decide on the control strategy and self-commission

the drive. For induction motor drives, it will be possible to have an accurate estimate

of the speed without using a speed sensor. Motion control will also have to deal with

nonlinear systems, and this would require further maturity of base technologies like

nonlinear adaptive control theory, fuzzy logic and ANNs.

1.2 Motivation for this work

Newer motion control applications like electric vehicles demand a high torque-to-size

ratio machine, and a powerful but inexpensive controller. The squirrel-cage induction

motor satisfies the first requirement admirably, and has been the motor of choice for a

number of electric vehicle applications. For example, the EVl electric vehicle, which is

made by General Motors and is commercially available, uses an induction motor drive

[5]. Awareness about the harmful effects of automobile pollution on the environment

is on the rise, and it is inevitable that there will be more research on efficient and

5

compact induction motor controllers for electric vehicles and other environmentally­

friendly applications like harnessing alternate-energy sources.

It was seen in subsection 1.1.2 that intelligent control techniques will become more

commonplace in the future. ANN technology spawned off from research on the func­

tioning of the brain and has grown by leaps and bounds in recent years. It has some

important features like large scale parallelism for both computation and information

storage. vVith the advent of ANN integrated circuits, ANN applications should run

in a fraction of the time needed by conventional sequential processors. Also, partial

malfunctioning of an ANN controller would not cause the controller to stop function­

ing, because of the inherent robustness of the ANN architecture. At present, dedicated

ANN hardware is a very expensive proposition, but that is chiefly because of lack of

demand. 'With higher demand, and production in larger volumes, the price of ANN

hardware is bound to come down. Thus, it would be worthwhile to investigate ANN

techniques for induction motor drives to establish a theoretical foundation in this area.

This might lead to more effective ANN based induction motor drives, thereby further­

ing a demand in ANN hardware.

1.3 Objectives of the proposed research

The first objective of this research is to estimate induction motor speed using ANNs.

The next objective is to come up with a strategy for controlling an induction motor

using only an ANN controller. Both of these are unreported in the literature, and even

though this itself is quite ambitious, it was decided that experimental verification of the

ANN based schemes should be a third objective of this work. Achieving these objectives

should pave the way for the development of an ANN based sensorless induction motor

drive, which is the ultimate goal of many researchers working in this field.

6

'\Vith these objectives in mind, the next two sections provide a brief discussion on

induction machines and ANNs respectively, and the rest of the thesis outlines the liter­

ature review undertaken, and the work done, in an attempt to achieve these objectives.

1.4 Induction machines

Induction machines have been the workhorse of the industry. These machines enjoy

various advantages like simplicity, ruggedness, low cost, reliability and compactness.

The squirrel-cage induction machine, in particular, has been used in constant speed

drives for more than a century now. The principle of operation of the induction ma­

chine is similar to that of the transformer. The induction motor always runs at a speed

slightly less than the synchronous speed! because there is no torque production in an

induction machine at synchronous speed. The slip ring induction machine has access

to the rotor terminals, but does away with some of the benefits of the squirrel-cage

induction machine. The basic problem with the induction machine is the difficulty of

control. The induction machine is a highly coupled, non-linear dynamic plant and its

applications in the area of speed control have traditionally been limited. The com­

plex and expensive techniques such as pole changing, Scherbius and Kramer schemes

have been known for a long time but are not generally favoured for high performance

applications.

The d-q axis induction machine dynamic equations in the stationary reference frame

7

are given below [1 J

Vd.f R, +pL, 0 pLm 0 ·td,

Vqs 0 R, + pL, 0 pLm iqs
- (1.1)

0 pLm WrLm R,. + PLr WrLr 1.dr

0 -wrLm PLm -wrLr Rr +pLr 1.qr

where Vd.f , Vqs are the direct and quadrature (d-q) axis components respectively of the

applied stator voltage, ids, iqs refer to the d-q axis stator currents, idn iqr are the d-q

axis rotor currents, Wr is the motor speed in electrical radians per second, R, , R,. refer

to the stator and rotor resistance, L,, Lr refer to the stator and rotor inductance, Lm

is the magnetizing inductance and P is the number of pole pairs.

Tem = -~PLm(ichiqr- iq,idr)

dwr
T em = T1 + J dt + Bwr

(1.2)

(1.3)

where T em is the electromagnetic torque, T1 is the load torque, J is the moment of

inertia and B is the damping coefficient.

Ad- q axis equivalent circuit model of the induction machine in the synchronous

reference frame is shown in Figure 1.1. In this figure, L~s and L1r refer to the stator and

rotor leakage inductance, tPds and Wqs are the d-q axis stator and rotor flux components

and We refers to the synchronous speed.

1.5 Artificial neural networks

Artificial neural networks have emerged as powerful problem solving tools in the ar­

eas of pattern recognition and function emulation. There are various types of ANNs,

8

q-Axis Circuit

ict.
Lcr

irtr
Lc.

R.
,.,.

~
We'I/Jq• (we - Wr)1/Jqr

Vct• Lm

d-Axis Circuit

Figure 1.1: d-q axis equivalent circuits for induction machine in the synchronous ref­

erence frame

9

though they can be broadly classified into three main categories - Feedforward, Feed­

back and Self-organizing. The most widely used architectures can be further classified

within these three categories, as can be seen in figure 1.2 (6]. The most common type

Artificial Neural Networ

Hopfield
Model

Boltzmann
Machine

Feature
Maps

Figure 1.2: Artificial neural network architectures

is known as the multilayered feedforward network. The basic structure of a multilay­

ered feedforward network is shown in Figure 1.3. Feedforward networks are so named

because the output of each layer feeds the next layer of units. The Perceptron, pro­

posed by Rosenblatt in 1962 and Adaline proposed by Widrow in the same year are

the earliest feedforward ANN architectures [7]. These ANNs consist of two basic parts

-a typically non-linear processing element called the neuron, and a connection ele­

ment called the synapse which connects various neurons. Each synapse has a number

associated with it, called the synaptic weight. All the knowledge in the ANN is stored

10

Output

Figure 1.3: Schematic of an artificial neural network

in these weights, also known as the free parameters of the network.

The neurons are laid out in layers. The first layer is called the input layer and acts

as the sensory organ for the ANN. The various inputs of the ANN are received through

this layer. The last layer of the ANN is called the output layer and supplies the ANN

output. All the intermediate layers are called hidden layers, because their inputs and

outputs are not readily accessible to the external world. The inputs to the hidden layer

or output layer neurons are the outputs of the previous layer neurons multiplied by the

synaptic weights. The structure of a feedforward network is generally denoted by a set

of numbers representing the number of inputs, neurons or outputs in each layer. For

example, the structure of a four layered network with 10 inputs, 20 neurons in the first

hidden layer, 15 neurons in the second hidden layer, and 2 outputs would be denoted

by 10-20-1~2.

The process of training an ANN is defined as learning and several algorithms for

11

ANN learning are available in the literature [8] . However, one of the most popular

algorithms is known as the error backpropagation algorithm. As the name implies,

this algorithm modifies the weights of the networks by propagating the errors at the

output backwards through the network. The training data is presented to the ANN

one data-vector at a time, and this is referred to as an iteration. The presentation of

the whole data set to the ANN is referred to as as epoch. The weights are modified at

each iteration as (8]

(1.4)

where w;i(n) represents the synaptic weight from neuron j in one layer to neuron i

in the previous layer at the nth iteration, Aw;i(n) stands for the weight increment,

6;(n) is the local gradient of the neuron j at the nth iteration, Yi(n) is the output of

neuron i at the nth iteration, o is called the momentum parameter and TJ is called the

learning rate. This equation is known as the generalized delta rule. There are no fixed

rules for choosing the training parameters (o and 11). A high value of 11 makes the

ANN converge faster but might lead to instabilities, or might miss the optimum set

of weights required for effective training. A low value of 11 makes learning slower, but

is more stable. However, the training algorithm might get trapped in a local minima

of the multidimensional weight surface and still not reach an optimum set of weights.

It is good to try out different learning rates for training. The momentum parameter,

o, is less than unity and is usually not too small. It has a smaller effect on network

training.

The neuron in any layer computes the weighted sum of the inputs and passes this

sum through a non-linear function called the activation function. Usually the sigmoid

function is used as the activation function, because it has many desirable properties -

it is non-linear and differentiable and its output is limited in an asymptotic fashion.

12

This function is given by

(1.5)

where {3 represents the slope of the activation function. There is another term associ­

ated with this sum, and this is called the bias term. This term can be represented as

a constant input of -1 multiplied by the synaptic weight, for each of the layers other

than the input layer~ as shown in Figure 1.3.

In summary, an ANN is a parallel distributed information processing structure with

the following characteristics [9]:

• It is a neurally inspired mathematical model.

• It consists of a large number of highly interconnected processing elements.

• Its connections (weights) hold the knowledge.

• A processing element can dynamically respond to its input stimulus, and the

response completely depends on its local information; that is, the input sig­

nals arrive at the processing elements via impinging connections and connection

weights.

• It has the ability to learn, recall, and generalize from training data by assigning

or adjusting the connection weights.

• Its collective behaviour demonstrates the computational power, and no single

neuron carries specific information (distributed representation property) .

ANNs have been used successfully in various areas including image processing and

recognition, control systems, speech processing, optimization, communication, signal

classification, robotics, power systems and many others [9]. ANNs have the ability to

13

approximate almost any continuous nonlinear function, and this feature is extremely

useful in applications where the functional relationship between the inputs and outputs

is very complex or unknown. Image and speech processing with ANNs has received

widespread attention and commercial products are now available which use this tech­

nology. :More recently, ANNs have been applied to problems in control systems, though

the field has yet to reach maturity.

1.6 Outline of the thesis

A review of present day research in the drives area and a critique of some work which

has been done is presented in chapter 2. Chapter 3 discusses some existing commercial

simulators and their main features and limitations. It also describes the design of

an object-oriented simulator that was built for the purpose of doing this research.

Chapter 4 deals with speed estimation of induction motors using ANNs, and four

schemes for the same have been proposed in this chapter. Chapter 5 discusses some

issues involved with induction motor control using ANNs and proposes a scheme for

controlling an induction motor using an off-line trained ANN. A scheme is also proposed

for improving the steady state performance and robustness of this ANN by on-line

training. Chapter 6 introduces some commercially available ANN hardware, and then

describes an experimental setup which was built for the purpose of verifying the ANN

speed estimator developed in chapter 4. Experimental results are then presented and

compared with simulation results. Chapter 7 concludes the thesis by highlighting the

contributions made by this work and also outlines some avenues for further research in

this area.

14

Chapter 2

Review of Literature

The previous chapter introduced the area of motor drives and outlined the motivation

and objectives of doing the present research. It also identified the squirrel-cage induc­

tion motor as the motor of choice for this work. The motor drives incorporating this

motor have undergone a major change over the last twenty years or so. This chapter

traces the evolution of the squirrel-cage induction motor drive and, also highlights the

directions taken by recent researchers in this area.

2.1 Scalar control techniques

A simple, economical, but low performance control method of the induction motor

that is extremely popular in industry is the open-loop V/fcontrol [10]. A small drift in

speed and airgap fiux due to fiuctuations in load torque and supply voltage, respectively,

as well as sluggish transient response, are some of the problems associated with this

scheme. However, they are of no consequence in a majority of industrial applications.

15

An improvement over the basic Vlf scheme is presented by Koga et al [ll] . This

method extends the applicability of a V If controlled induction motor drive system by

reducing the steady state speed error, caused by load changes from no-load, to zero

without using a rotor speed sensor. In another technique called the loss minimization

technique [12}, an effort is made to operate an inverter fed induction motor drive at

the point of maximum efficiency at any torque-speed operating point. This method

is an improvement over the V If method and falls under the closed-loop category of

control techniques. In a few other techniques, advanced concepts from control systems

engineering have been applied to induction motor control. A robust speed control

method using a load torque observer and feedforward control is presented by Iwasaki et

al [13]. ~lodel Reference Adaptive Control (MRAC) and Sliding Mode control methods

are used by Alonge [14] . This scheme uses two controllers- one for the machine and

one for the inverter. The machine controller is further split into three subcontrollers

namely the speed, the rotor flux and the stator current vector subcontrollers. Such

control techniques overcome some of the problems of conventional scalar techniques

like lack of robustness and high susceptibility to load torque disturbance. However,

they are more complex than the simpler techniques mentioned earlier, and usually

require a Digital Signal Processor (DSP) for their implementation. Krein et al (15]

have done a comparative analysis of induction motor control methods and come to

the conclusion that, on an axis representing control complexity, there is a galaxy of

possible control methods.

2.2 Field-oriented control

The first major breakthrough in the area of induction motor drives came with the

discovery of the concept of field orientation by Blaschke [16] in 1972. Blaschke examined

16

how field orientation occurs naturally in a separately excited DC motor. The armature

flu..x and the field flux are always perpendicular to each other due to the effect of the

compensating winding. In an induction machine, a similar condition can be created

in the rotating frame of reference, by controlling the stator currents in a particular

fashion.

The basic idea of field orientation is given mathematical rigor by the use of space

phasors. Field orientation is perfonned by decoupling the stator current space phasor

along one of rotor flux space phasor, stator flux space phasor and air-gap flux space

phasor. Figure 2.1 shows how the stator current space phasor can be decoupled along

the rotor flux space phasor. The d- q axis model of the induction motor with the

Figure 2.1: Transfonnation of stator current space phasor

reference axes rotating at synchronous speed We is given by [17]

ye
s - R # PiiJ . tP sls + s +)We s (2.1)

0 - Rri; + p;p; + j(we- Wr)~ (2.2)

Tem - 3P Lm (t/Je ·e _ t/Je ·e)
2 Lr cfT'£qs qr'£rl.s (2.3)

where

,..e e + · e V 5 - Vct.s)Vq1 (2.4)

17

-;oe ·e · ·e (2.5) 1_, - ld.t + Jlq,

oe ie + jie (2.6) 1,. - dr qr

.....-e
tbd., + j'l/J:, (2.7) tJ.l, -

~ - 1/J~r + jlj;:r (2.8)

In the above, 1/J refers to the flux and the superscript e implies that the quantity is

e..xpressed in the rotor flux-oriented reference frame, the q and din the subscript stand

for the quandrature and direct axes respectively and the sand r in the subscript stand

for stator and rotor quantities respectively.

The field orientation concept implies that the current components supplied to the

machine should be oriented in phase (flux component) and in quadrature (torque com­

ponent) to the rotor fiux vector~· This can be accomplished by choosing We to be the

instantaneous speed of ¢; and locking the phase of the reference system such that the

rotor flux is entirely in the d-axis (flux axis), resulting in the mathematical constraint

(2.9)

It should be noted that control is performed on the DC quantities obtained in the

synchronous frame and depending on which flux phasor is chosen for decoupling, we get

rotor field-oriented control, stator field-oriented control and magnetizing field-oriented

control respectively. Field-oriented control, also called vector contra~ can be classified

in a different way as indirect field-oriented control or direct field-oriented control. In

the first method, the flux is indirectly estimated while in the latter scheme the flux is

obtained by direct measurement or explicit computation using stator quantities. With

the evolution of fast microprocessors and Digital Signal Processors (DSPs), implemen­

tation of vector control in real-time has been achieved and both direct and indirect

vector controlled induction motor drives have been developed [18} . A block diagram

of a rotor field-oriented induction motor drive is shown in Fig. 2.2. All the quantities

18

with the superscript * refer to the reference (or command) values.

I I I Ramp w·
Generator

r
~

Rectifier

J:;:; i: Gat.i~ w+ Speed T;m Torque i. Current Sign-~ PWM~ Controller .-L Controller i; Controller
(PI) .. 3t/> VSI

(PI) -
ia

Trm i,.

Flux Ref. i~ Flux ic

Function Controller - ~.._

Generator (PI) ·e• 'd•

~
Induction

w,. Motor

l tj)

Trm_ FLUX w
imr ESTIMATOR

w,.

Figure 2.2: Rotor field-oriented induction motor drive

Indirect Vector Control (IVC) suffers from parameter variation problems, but can

function quite accurately in the zero speed region. Direct Vector Control (DVC) does

not suffer so much from parameter variation, but computation of fiux around zero

speed is error prone. An attempt to combine the benefits of both strategies is made in

[19]. In DVC, flux is explicitly computed, but direct integration is avoided by use of

cascaded Low Pass Filters (LPFs) with programmable time constants. Integration is

avoided because the gain becomes too high for low frequency signals. Here, the speed is

computed using stator quantities under stator fiux-oriented control. Stator resistance

is the main parameter which undergoes variation. It is compensated by sensing the

19

temperature and using the stator winding's temperature coefficient to compute the new

value of the resistance. The drive is operated in two modes. At startup it operates in

IVC. \Vhen the torque current exceeds a threshold, the drive is transitioned to DVC

mode. It is brought back to IVC mode when the synchronous speed approaches zero.

Field-oriented control has gained widespread acceptance as a high-performance con­

trol strategy for induction motor drives. However, as mentioned earlier, it has problems

associated with parameter variation of the motor. This leads to lack of robustness and

poorer performance, and has prompted researchers to investigate intelligent control

techniques like fuzzy logic and ANNs.

2.3 Speed sensorless drives

The field-oriented schemes provided very good dynamic response compared to the V /!
method and other control schemes. However, most such schemes used speed sensors

for closed loop speed control and also for the estimation of the rotor flux vector in the

indirect field-oriented control scheme. Unfortunately, speed sensors cannot be mounted

in some cases, such as motor drives in hostile environments and high speed motor drives.

Also, speed sensors are expensive and reduce the advantage of an induction motor drive

system. They lower the reliability of the system, especially in defective environments

and require special attention to noise. Because of these problems, researchers put in a

lot of effort towards developing induction motor vector controlled drives which required

no speed sensor, popularly known as sensorless drives [20].

Pioneering work in the area of sensorless vector control of induction motor was done

by Ohtani, Takada and Tanaka [21]. They consider the induction motor equations in a

frame of reference which rotates at synchronous speed and derive the conditions for field

20

orientation by setting the quadrature-axis rotor flux to zero. The slip speed is computed

by assuming conditions for field orientation, and the motor speed is computed by

subtracting slip speed from the synchronous speed. In such a system! the flux has

to be obtained from the stator quantities because indirect estimation is not possible

without speed feedback. The d-q axis fluxes in the stationary frame can be obtained

by direct integration, but this method leads to instability near zero speed. Also. the

computed flux depends on motor parameters and a variation in these causes incorrect

estimation of the flux. The standard method of using LPFs is also undesirable because

it produces phase shifts. The authors propose a method in which an extra LPF is used

with the flux command as the input. This approximately compensates the phase shift

problem introduced by the first LPF.

As mentioned in the literature, the main types of speed sensorless control schemes

can be classified as (22}, (23]

• Direct computation of speed

• Slip frequency-based approach

• Observer based methods

• MRAS/MR.AC based methods

• Kalman filter /Extended Kalman filter based methods

• Rotor harmonic detection based methods

• Superimposition of signals on the current command

21

2.3.1 Direct computation of speed

The direct calculation of speed method derives expression for the rotor speed and rcr

tor resistance using stator voltage feedback. These expressions have a numerator over

denominator form where both the numerator and denominator are zero for sinusoidal

waveforms. But, actually, the waveforms are non-sinusoidal, and hence speed and resis­

tance can be obtained. The technique loses reliability as load increases. Kanmachi et

al [24] have obtained expressions for the induction motor speed and the rotor resistance

as shown in equations (2.10), (2.11).

(tPtl.6- L~i,u}]J'I/Jqr- (¢9~- L~i9~)pt/JM-w - ~~--~~~~--~~--~~~~
r - (1/J,u- L~icLt)P'I/Jdr- (l/Jq5- L5iq5)]Jt/Jqr

(2.10)

Rr = -Lm_tPdrWcb- - Lmt/lqrP'¢_qr
(tP!U - L51.cLt)pt/Jqr- (tPq& - LJ1.qJ)P'r/Jdr

(2.11)

In the above equations, 1/J and Lm represent flux and mutual inductance respectively,

and p stands for the differentiation operator. In both these expressions, the numerator

and denominator are identically zero for normal sinusoidal operation. However, the

authors claim that, for inverter-fed induction motor drive, the expressions are not

identically zero, and thus the speed and rotor resistance can be obtained. The authors

have also studied the influence of parameter variations on this scheme. By varying the

stator resistance in the simulations, they found that the output of the speed and rotor

resistance estimators is erroneous. Furthermore, the speed calculation error increases

with an increase in the load torque, whereas the rotor resistance calculation error

changes very slightly with a change in load torque.

22

2.3.2 Slip frequency-based approach

In this approach, the inverter frequency is controlled such that vector control conditions

are satisfied [25]. Under these conditions, the slip frequency is given by

. R, iq~
Wslip = -L -. -

f ld_,

The motor speed is then obtained as

where the · indicates estimated quanti ties.

(2.12)

(2.13)

It should be noted that in this scheme the vector control algorithm and the slip

frequency computation are interlinked, and failure of one would result in failure of the

other. A block diagram of this scheme is shown in Figure 2.3.

w,.

Slip frequency
based
Vector Control

Estimation of
slip frequency

d-q
to

Q-jj

Figure 2.3: Slip frequency-based sensorless control of induction motor

23

2.3.3 Observer based methods

Observer theory is aimed at providing a real-time estimate of the state of a system,

using only the input and output signals, both of which are assumed to be known [26].

The estimate provided by the observer contains a prediction error term. The induction

machine dynamic equations can be written in state variable form as

± - Ax+Bv~

I~ - Cx

(2.14)

(2.15)

where v, is the stator voltage, I, is the stator current phasor, and x is the induction

motor state vector given by

X= [icU iq~ Wdr 1/JqT]T (2.16)

where rt· stands for the flux linkage and the subscripts follow the standard notation.

The stator voltage phasor v~ and stator current phasor I, are given by

i~ - icU + jiq,

v, - VcLJ + jvq,

(2.17)

(2.18)

The state observer, which estimates the stator current and the rotor flux, can be written

as [27]

(2.19)

where· means estimated values and G is the observer gain matrix, which is chosen

such that equation (2.19) is stable. By utilizing Lyapunov's theorem, induction motor

speed can be estimated as

Wr = Kp(eiu¢1/T- ~q,'¢dr) + Kr J (~u¢f/T- eiqstbr~r)dt (2.20)

where eiu, ~q, stand for the error between estimated value and measured value of the

direct and quadrature axis stator current respectively, and Kp, Kr are proportional

and integral gains. Figure 2.4 shows a block diagram of this scheme.

24

v.

Figure 2.4: Block diagram of observer based schematic

The observer based methods yield a reasonably accurate value for the speed. How­

ever, most of these methods use integration techniques which have problems with the

initial values and drift. To avoid these problems, the pure integrator is replaced by a

low pass filter (LPF) with a high gain. However, this replacement causes instability of

identification at low speeds.

2.3.4 Model reference adaptive control based methods

The Model Reference Adaptive System (MRAS) or Model Reference Adaptive Control

(:VlRAC) is a common technique to obtain speed sensorless control and parameter

independence. In this technique, there is a reference model, an adju.stable model, and

an adaptation mechanism (28]. A block diagram of the MRAC scheme is shown in

Fig. 2.5. The reference model is a certain quantity which is estimated without using

the rotor speed. In the adjustable model, the same quantity is estimated using the rotor

speed and other parameters. It is assumed that the difference in the two quantities

is chiefly due to the rotor speed variation. The error between the two is used as a

25

u REFERENCE +
MODEL

- f

ADJUSTABLE

MODEL

~.
~

ADAPTATION

Conection MECKANISM

Figure 2.5: Block schematic of model reference adaptive control

correction for the speed. These techniques usually use integrators for computing the

flux from the stator quantities. Use of integrators causes various problems like drift

in the value and very high gain at a low frequency. Thus, they can only be used in

a limited range of the drive operation. To overcome the integration problem, some

researchers have used LPFs instead of integrators. These cause a phase shift in the

output, as has been mentioned before. One technique has been suggested, which uses

back emf and does not require integrators [29]. An extension of the MRAC technique

is presented by Zhen and Xu [19]. Here, the reference model and the adjustable models

have interchangeable roles. Initially, the models are used to estimate the speed. After

the speed becomes constant, the models interchange their roles, and an estimation of

the rotor resistance and rotor time constant is effected. It is assumed that the speed

does not change during this time.

2.3.5 Extended Kalman filter based techniques

The Kalman filter is an optimal observer for the state space solution of problems

where random noise is assumed to be present both in the inputs and the outputs. The

26

formulation of the state space problem is as follows [30].

:t(t) - Ax(t) + Bu(t) + w(t)

y(t) - Cx(t) + v(t)

(2.21)

(2.22)

where x(t) is the state-variable vector, u(t) is the input vector, y(t) is the output

vector, w(t) is the noise matrix of the state model and v(t) is the noise matrix of the

output model. It should be noted that the above state space representation is linear.

In the dynamic model of the induction motor, however, the dimension of the state

vector is increased by adding the angular speed of the rotor. This causes the state

model to become non-linear. In such a. case, the extended Kalman filter has to be used

to estimate the desired parameter. The discrete-state model and the output model for

the extended Kalman filter case are given by [31]

x(t) - f[x(t), u(t), t] + G(t)w(t)

y(t) - h[x(t), t] + v(t)

(2.23)

{2.24)

where f[x(t), u(t), t] and h[x(t), t] represent the non-linear part of the state model. The

extended Kalman filter relinearizes the non-linear state model for each new estimate

as it becomes available. The rotor speed can be estimated from the dynamic model

of the induction motor by using the extended Kalman filter algorithm in the following

steps. i) estimation of error covariance matrix ii) computation of Kalman filter gain

iii) update of error covariance matrix and iv) state estimation.

The extended Kalman filter algorithm has a very good performance as regards

to noise sensitivity. Also, it is able to function at low speeds. However, the noise

covariance matrices and initial values for the algorithm must be chosen very carefully.

Otherwise, instability may result with this algorithm. Also, the steady-state error for

this algorithm is somewhat high especially at low speeds (23]. Another disadvantage of

this scheme is that it is very computation intensive and requires a very fast processor

for real-time implementation.

27

2.3.6 Rotor harmonic detection based methods

Rotor harmonic detection based methods use the fact that speed related harmonics

arise from rotor slots and rotor eccentricity. They are independent of time-varying

machine parameters and exist at any non-zero speed. But these techniques fail under

light load conditions and at very low speeds. They also require some form of user

initialization, since they depend on typically unknown parameters such as the number

of rotor slots, and they are susceptible to noise. If analog filters are used, the bandwidth

gets reduced. FFT based technique is also used, but it relies on a particular slot

harmonic, which limits application to different machines. In one technique proposed

by Hurst et al [32], the speed related harmonics arising from rotor mechanical and

magnetic saliencies, such as rotor slotting and rotor eccentricity, are used to detect the

speed. The harmonics arising from the rotor speed depend on the number of rotor

slots, the order of rotor eccentricity and the order of the airgap MMF harmonics.

However, if only the eccentricity harmonics are considered, an expression for the slip

can be obtained with poorer resolution. The authors use the latter fact to run an

initialization routine and to determine the other parameters from a limited domain of

their typical values. The speed detection technique uses both analog and digital filtering

and the application of a Hamming window to determine the rotor speed. This method

is, however, computationally very intensive, and so a simpler method is also suggested

which uses the mechanical model of the machine and tries to estimate the moment of

inertia, the viscous damping and the load torque. The speed can be estimated with a

knowledge of these parameters and the electromagnetic torque.

28

2.3. 7 Superimposition of signals on the current command

In most sensorless schemes, the speed estimate obtained depends on the motor para­

meters, which are subject to variation. Thus, it would be desirable to have a sensorless

scheme in which the motor parameters, especially the rotor time constant, can be ob­

tained simultaneously. Ohnishi et al [25] have shown that simultaneous identification of

the rotor resistance and motor speed is possible only when the rotor flux is persistently

time-variant. Under vector control, the rotor flux is maintained constant so that the

orthogonality of rotor flux and rotor current is achieved. Thus, it would be impossible

to obtain the speed and rotor time constant simultaneously. Kubota and Matsuse [33]

propose a scheme in which the equations of the induction motor are considered in the

synchronous reference frame. As shown in the equation below, only the ratio between

the slip speed and rotor resistance can be obtained.

·e _ -Wstip •1,e
1.qr- R,. ~dr (2.25)

If, however, AC components are superimposed on the field current command, the motor

speed and rotor resistance can be estimated simultaneously. The frequency of these

AC components have to be different from the fundamental frequency of the inverter

output. This is not a very popular technique and suffers from the drawback that

the flux command, and hence the controlled flux, will have ripples, leading to poorer

performance.

Apart from the techniques mentioned above, there are some other techniques, which

are not as well known as the above. Some of them are used under special conditions.

One such scheme obtains the motor speed from split phase stator windings [34]. This

requires a modification in the stator windings of standard induction motor. Another

scheme for obtaining the speed using Direct Self Control is presented by Baader et al

[35]. This is used in medium to low performance drives.

29

2.4 Disturbance torque and robust motion control

High performance motion control often presents conflicting control requirements. To

attain high performance, the control system should be robust against load and para­

meter changes. In mathematical terms, this implies that if a force F is applied to a

system, and x is the change in position in a position control system. or change in speed

in a speed control system, then the control stiffness is defined as (25]

control stiffness = ~~I (2.26)
t-+oc

The ideal control system should not allow any stationary and transient deviation for

any load. This implies that the control stiffness should be infinite. On the other hand,

an ideal control system should be able to adjust instantaneously to the smallest change

in the reference, thereby implying that the smallest error signal should be able to drive

the system instantaneously towards its new steady state. This, in tum, implies that

the control stiffness should be zero. A regular system, of course, has a control stiffness

somewhere between the two extremes.

A robust controller, typically used for high performance drives, has to be

• insensitive to the external disturbance

• insensitive to parameter variation

Though these two are different requirements, they can be combined in a a single quan­

tity called the disturbance torque. Using a disturbance torque observer is one way to

counter the effects of the disturbance torque. To illustrate the procedure, consider the

dynamical equation of motion of the DC machine given by

Tem = kt1/lfia = T, + J~r + Bwr (2.27)

30

where '1/J 1 is the field flux, ia is the armature current and kt is the torque constant. As­

sume that the inertia J and the torque constant kt undergo variations. The parameter

variation of each from the nominal value gives

J - Jn +6.J

kt - ktn + 6.kt

Incorporating these variations, the equation of motion can be written as

ktntiJJia = Tdis + Jn ~r + Bwr

where

Tdis = 1l + 6.J~" - 6.kttPJic

Using equations (2.27) and (2.31) we get

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

and this equation can be used to estimate the disturbance torque as shown in Figure 2.6.

The estimated disturbance torque can be fed back in the control loop, making the

control strategy more robust.

Figure 2.6: Estimation of disturbance torque

31

2.5 Use of artificial neural networks in induction

motor drives

Artificial neural networks have found widespread use in function approximation. It

has been shown that , theoretically, a three layer ANN can approximate arbitrarily

closely, any nonlinear function, provided it is non-singular (36]. This property has

been exploited by a. few researchers working in the induction motor drives area..

2.5.1 Estimation of flux, torque and speed

Toh et al [37] developed a. flux estimator for use in vector controlled induction motor

drives using ANNs. Two ANNs are used, one for the magnitude of the rotor Bu.x and

the other for the sine of its space phase angle. The inputs to the ANNs a.re the d-q

a.xis stator currents in the synchronously rotating reference frame and five previous

values of the same. Standard multilayer ANNs with backpropagation are used. The

ANNs have been simulated on a PC and training has been performed assuming the

availability of the rotor flux magnitude and space phase angle.

Mohama.dian et al [38] have implemented an ANN which essentially computes the

rotor flux angle and performs the transformation from the synchronous frame to the

stationary frame. The rotor flux angle is shown to depend on the synchronous frame

d-q axis current, the rotor speed and the previous values of these quantities. The

stationary frame d-q axis voltages and their previous values are also given as inputs

to the ANN to improve its accuracy. The ANN transforms the synchronous frame d-q

axis current commands (which are also given as inputs to the ANN) to the stationary

frame d-q axis current commands. A 20-1~2 network is trained by the backpropagation

algorithm to achieve the transformation. Though the authors call it an ANN controller,

32

control action is not performed by the ANN.

In another study by Simaes and Bose [39), four feedback signals for a direct vector

controlled induction motor drive have been estimated using ANNs. A 4-20-4 multilayer

backpropagation network has been used for the estimation of the rotor flu.x magnitude,

the electromagnetic torque and the sine and cosine of the rotor flux angle. The ANN is

simulated using a commercially available neural network software. The output is not

very good, though the authors claim that it can run an induction motor drive in closed

loop. The simulation is run on a PC.

In an interesting application of neural networks, Marino et al [40) develop a robust

neural network observer for estimating rotor flux and electromagnetic torque of an in­

duction motor. They argue that existing observers suffer from the drawback that, in

the presence of uncertainties, their performance deteriorates. To overcome this prob­

lem ~ some researchers have resorted to using adaptive techniques like on-line training,

while others use the observer for rotor time constant estimation only.

The authors of [40] have come up with a different way of attacking this problem.

They propose an off-line trained observer in which the training set is generated by

taking the parameter variations into account, using a stochastic model of the induction

motor. A parameter vector Z is defined as

(2.33)

and the identification problem can be defined as the search for the parameter vector

which minimizes the following function (also known as the reduced X 2 function)

(2.34)

33

where the quantities with· indicate estimated quantities, K is the number of measure­

ments and aw and ai are the uncertainties in the rotor speed and the stator current

measurements, respectively. Once a suitable minimization procedure is complete, then

the parameters lying within a resulting confidence ellipsoid will yield a good fit for the

measured data. To estimate this confidence ellipsoid, the authors use a direct, global

optimization algorithm called the Price algorithm. The algorithm is outlined in detail

in this paper. After implementing the algorithm, a confidence ellipsoid is obtained,

and, if the variations of the plant parameters are within this confidence ellipsoid, then

the reduced X2 function has a small value (< 1.5).

For ANN training, the training set used includes a number of input/output pairs

generated via simulations in which parameter variations are introduced. These varia­

tions are within the confidence ellipsoid previously determined by the Price algorithm.

To ensure a further richness of training set, random signals are also added to the stator

voltages. Thus, the training set contains not only parameter variations, as mentioned

earlier, but also noise in the stator voltages. The ANN used in this study is of structure

4-20-3 with a hyperbolic tangent activation function. Performance of this ANN, called

stochastic neural network by the authors, has been shown to be significantly better in

the case of varying plant parameters, than using an ANN with deterministic training

data, or an extended Kalman filter algorithm.

In one application, Ba-razzouk et al [41] have trained a 5-8-8-2 ANN to estimate the

induction motor stator flux using measured stator quantities. After training, the ANN

is used in a direct field-oriented controlled drive, which has been simulated using the

MATLAB-SIMULINK environment. The rotor flux is computed from the stator flux

estimate provided by the ANN and the stator current. The same paper also presents

an ANN based decoupler which is used for indirect field-orientation. A 2-8-8-1 ANN

is used for implementing the mapping between the flux and torque reference and the

34

stator current references. A current-fed induction motor model is used for testing the

ANN decoupler in simulation.

Even though a lot of research has been carried out into developing ANN techniques

to estimate some of the motor parameters like flux and torque, not much work has

gone into speed estimation of induction motors using ANNs. Ben-Brahim [42] has

used linear ANN technique to estimate induction motor speed. Though the technique

gives a fairly good estimate of the speed, it lies more in the realm of adaptive control

than neural networks. The speed value is not obtained at the output. Instead, the

magnitude of one of the weights corresponds to the speed magnitude. Mehrotra et al

[43] outline a couple of techniques for estimating the motor speed using ANNs, and

these will be discussed in detail in chapter 4, since they form part of the work done for

this thesis.

2.5.2 Current control

In one study, Burton et al [44] have used a current control strategy outlined by Wishart

and Harley [45] to train an ANN to control induction motor stator currents, but with

a different training algorithm. The training algorithm, called Random Weight Change

(RWC) algorithm gives almost the same performance as the popular backpropagation

algorithm, but is supposed to be slightly faster than the latter. In the RWC algorithm,

the weights are perturbed by a fixed ste~size and a random sign. This is done for a

fixed number of trials and after each trial the error with the desired output is computed.

Finally, the set of weight changes which result in the least error are chosen and the

whole process is repeated till convergence is reached. Though this scheme has only

been tried out in simulation, the authors have proposed a hardware for implementing

the RWC algorithm.

35

Cabrera et al [46] have used ANNs to function as switching state selector for running

the inverter in inverter-fed induction motor drives. A 3-5-3 ANN is trained to emulate

an existing switching state selector, and various training strategies like backpropaga­

tion, adaptive neuron model, extended Kalman filter (EKF) and the parallel recursive

prediction error have been tried out and compared. From this work, the authors have

found the EKF and parallel recursive prediction error method to be the most effective.

However, the authors point out that the use of neural networks in such an application

does not demonstrate any tangible benefits over the conventional direct torque control

(DTC) method. One reason for this could be that the problem of switching state selec­

tion is a very deterministic one and neural networks may not be the appropriate tool

to solve such a problem, since it can be handled by a simple algorithm.

2.5.3 Performance enhancement of existing controllers

Neural Networks have been used frequently to improve the performance of existing

controllers. Cabrera et al [47] have used a neural network to tune the stator resistance

of direct torque controlled (DTC) induction motors. DTC is a commonly used control

strategy for tracking a reference electromagnetic torque and stator flux. It uses only

stator measurements and avoids the complications which arise in control methods which

make use of the rotor time constant. A block diagram of the method is shown in

Figure 2.7.

The neural network used in this strategy produces the change in stator resistance,

which is added to the previous stator resistance estimate to produce the present esti­

mate for the stator resistance. This value is handed over to the plant which is composed

of the induction motor and the DTC strategy. The error between the measured sta­

tor current and the reference stator current is used to train the ANN. The ANN is

36

-
Inverter

t:ii:\. fiM
\.

G b

:z'c Vfl
U1 U2 iu3 r· em

~ Switching Stator Flux - -
State w~ and
Selector Torque

8 Estimator

Figure 2.7: Block diagram of DTC

trained using the Parallel Recursive Prediction Error algorithm. This method is com­

putationally more intensive than the gradient based methods like backpropagation, but

it is supposed to train the network faster for certain applications. The authors have

trained various networks ranging in size from 2-2-1 to 2-5-1 , and they seem to operate

satisfactorily. The networks have also been tried out in an experimental setup using

T:\1S320C30 DSP.

Kung et al [48] use a neural network for improving the performance of a two-degree­

of-freedom (2DOF) controller. The 2DOF controller comprises of a feedback controller

and a feedforward compensator. It is a scalar control technique and requires retuning

of the controller parameters under different operating conditions. The model of the

plant is given by
e -1

-1) z
Gp(z = 1 - cpz-1 (2.35)

where e and 4) are two plant parameters which are derived from the inertia of the drive

(J) and its damping coefficient (B). The structures of the feedforward compensator

37

and the feedback controller are given below

{2.36}

(2.37)

where eo, c1, do, d1, ~. R 1 and 5 1 ••• Sd are controller parameters. The order of the

denominator of Gc is d + 1, where dis the time delay of the drive model.

It is assumed that the plant parameters 9 and ~ undergo variation during operation

of the plant, though the variations are restricted to the ranges

~min$~$ ~max

emin $ e $ 9max (2.38}

vVithin the ranges defined in equation (2.38), the parameters are divided into N sets,

and for each set of plant parameters, the controller parameters are determined by a

rigorous method outlined in the paper. Finally, the ANN is trained using backprop­

agation method, to produce the desired set of controller parameters with the plant

parameters as inputs. Since the mapping between the inputs and outputs is quite com­

plex and unknown, the ANN's generalization property is relied upon to produce a set

of controller parameters for any combination of plant parameters not covered in the

training set. For real-time operation, a plant. parameter identifier is used for providing

the inputs to the ANN. The ANN outputs are used to adjust the controller parameters

on-line. With this scheme, the 2DOF controller can function satisfactorily under wide

operating ranges.

Tadakuma et al (49] have used a 3-2 linear ANN for improving the robustness

of a vector-controlled induction motor drive. The basic control scheme uses both

feedforward and feedback controllers. The ANN uses on-line training to approximate

the induction motor model and one of the ANN weights is used for the computation

38

of the synchronous speed. The ANN is able to accurately identify the motor in about

8 seconds.

2.5.4 Induction motor control

Narendra and Parthasarthy (50j proposed methods for identification and control of

dynamical systems using ANNs. Wishart and Harley [45] use the basic principles

outlined in [50] to identify and control induction machines. A block diagram of the

control scheme is shown in Fig. 2.8 For the induction motor, the NAR.vlAX (Non-

w;(k)

+

S411e(k}

current
controlled

1--....._--'-------;-.t induction
i;(k) machine

41J,.(k}

Figure 2.8: ANN control of induction motor [50]

linear AutoRegressive Moving Average with eXogenous inputs) model for the stationary

frame stator current is derived and used for identification of the electromagnetic model.

In its general form, the NAR.i\1AX model represents a system in terms of its delayed

inputs and outputs. Random steps in the stator voltage are given for the purpose of

39

identification. The neural network used is of the multi-layer backpropagation type,

and a quantity based on the rotor time constant is also computed as an e.xtra weight.

As opposed to the regular ANN architechture, this ANN has no non-linearity in the

output layer and the weighted sum of the inputs is used as the output. This gives an

estimate of the rotor time constant and makes the system robust against variation of

this parameter. Once the identification is over, the ANN is used for current control.

The stator currents predicted by the ANN are used to compute the input voltage for

the induction motor, and the ANN output is made to track the reference currents by

backpropagating the error.

The rotor speed is also controlled in this system by identifying a NAR..viAX model

for the speed increment rather than the absolute value of speed. To simplify the

NAR.\IIAX model, the load torque is assumed to be a function of the motor speed~ as is

the case in a fan or a pump type of load. For the current control case, the relationship

between the control variable (voltage) and the controlled quantity (current) was linear.

In the speed control case, this relationship is non-linear, thus necessitating two ANNs,

one for identification of speed and the other for control. The identification ANN (Ni)

predicts the value for the speed increment, which is compared with the actual speed

increment, and the error (Ei) is backpropagated through the ANN. A PI controller is

used for basic speed control, and the control ANN (Nc) produces the slip frequency,

and the difference between the desired speed increment and the actual speed increment

(Ec) is backpropagated through this ANN. The induction motor drive therefore employs

three ANNs. The drive is simulated on a digital computer, and its performance is quite

good.

In another recent application (51], an ANN is used to replace the PI speed controller

in a vector controlled induction motor drive. The authors develop a model for a robust

observer, the output of which is used in the computation of the quadrature axis stator

40

current reference. The neural network, which is first trained off-line to emulate a PI

controller, produces an estimate of the quadrature axis stator current reference, and

the difference between the neural network output and the output of the previous block

is used for on-line training of the network. This process is demonstrated in Figure 2.9.

As is clear from this figure, the neural controller block is redundant, because the desired

Reference Xm =w·

Model

Target
r

Calculation

w,.
r-

I
I

I

i;. Kt
,
J•+B

Figure 2.9: Artificial neural network controller

output, which is computed in the "Target Calculation" block, can be directly used as

a reference input to the induction motor.

2.6 Summary

From the literature review presented above, it can be seen that induction motor drives

have undergone various stages in their development. With developments in the area of

power electronics, induction motor drives evolved from essentially constant speed drives

to adjustable speed drives. The simple V /!control scheme and other scalar techniques

41

were successfully used in low to medium performance drives. With the evolution in

the field-oriented control strategy, it was possible to decouple flu.~ and torque control

in induction motor drives. With the developments in the area of microprocessors and

DSPs, high performance vector controlled drives could be fabricated . However, use

of vector control in both the direct and indirect mode posed some problems. Also,

the use of expensive shaft encoders for these drives was considered an undesirable

feature. A lot of work was put into developing speed sensorless drives, and most of

them used field-oriented control. Various types of schemes were developed to perform

sensorless control, but these schemes also had some problems, mainly that of sensitivity

to parameter variation. Artificial neural networks have emerged as a powerful tool to

identify and control non-linear system. Researchers in the drives area have put in some

effort to develop ANN based drives, and they have come up with various applications

ranging from estimation of control quantities to assisting conventional controllers in

induction motor control. However, complete control of induction motor using one or

more ANNs has not been reported in literature so far. Also, most of these methods

have been tried out in simulation only, barring a couple of schemes where the ANNs

involved are very small (less than 25 weights). In spite of this progress, the potentials

of this new technique have yet to be fully exploited.

In the next few chapters, novel ANN based speed estimation and control schemes

are proposed with a view to developing an intelligent and robust controller for induction

motor drives. As a first step, a versatile object-oriented simulator is developed in the

next chapter.

42

Chapter 3

Development of the

Object-Oriented Software

A first step towards studying ANNs and their applications for research purposes is to

implement and train them using a software simulator. One of the main benefits of doing

simulation based research is that a good deal of flexibility can be obtained as opposed

to building a real system. For example, it is much easier to modify a few parameters in

simulation and study the effects. To harness this feature more effectively, the simulation

software must be well designed. :Modularity and reuseability are important features in

a good design.

This chapter introduces some of the existing commercial simulators and their fea­

tures, and it points out why none of them was found suitable for this work. It then

discusses the design and development of the object-oriented simulator which was used

for this research. The simulator is composed of many different modules, each of which

represents a physical system. The user can plug these modules together as required.

Since object-oriented languages have been designed to provide these features, it was

43

decided to use C++ for building the simulator. The simulator was implemented on

a UNIX platform~ running on a DEC-ALPHA workstation. Section 3.3 discusses the

building blocks of this simulator. Since the design of the ANN simulator was more

involved, it will be discussed in a separate section.

3.1 An overview of some existing simulators

This section takes a look at some of the popular commercially available software pack­

ages, which are widely used by researchers in the motor drives area. This list is by no

means exhaustive, but gives a general idea of what products are commonly used and

what are the main features and limitations of using these packages.

3.1.1 MATLAB neural network toolbox

MATLAB Neural Network Toolbox [52] comes with a large suite of ANN simulators. It

can simulate the perceptron which uses a hard limit activation function and its learning

rule. Linear networks can be simulated along with the least-mean-square or L:VlS (also

called Widrow-Hoff} learning rule. These have a single minimum on the error surface,

which is a multi-dimensional parabola, and this can be located by the training method.

For updating weights after each input, as opposed to updating after each epoch, the

adaptive Widrow-Hoff algorithm can be used. Feedforward networks are implemented

with the backpropagation training scheme, and these can use the tansig, logsig or linear

activation function. Apart from the simple backpropagation algorithm, one can also

use the trainbpx function which uses momentum and an adaptive learning rate and

trainlm which implements Levenberg-Marquardt optimization.

44

Radial basis function networks are implemented with the simurb function. Sev­

eral associative learning rules are implemented- leamh (Hebb learning rule), learnhd

(Hebb learning rule with weight decay}, leamis (instar learning rule), learnk (Kohenen

learning rule) and learnos (outstar learning rule). Associative learning rules are for

producing associations between pairs of vectors (associative memory), i.e. al produces

p11 a2 produces P2 etc. These provide the basis for unsupervised networks like the

competitive layers and self-organizing map networks. Many Self-organizing networks

have been implemented- trainc (competitive layers), trainsm (Self-organizing :\~laps)

trainlvq (Learning Vector Quantization). Finally, recurrent networks like Elman and

Hopfield networks are implemented with the trainelm and simuhop functions respec­

tively.

As can be seen from the above, the MATLAB Neural Network toolbox offers a

wide variety of network types and learning algorithms, and it is a very useful tool for

researchers working in this area. However, it has a few limitations which reduce its

applicability for more general problems. For example, it is unable to simulate more

than three layers in a feedforward network, and the user does not have the option of

using arbitrary connections and neurons, because of the Matrix approach which has

been used for developing this toolbox. Thus, the user would be unable to experiment

with non standard architectures.

3.1.2 SIMULINK

SIMULINK [53] is a software package for modeling, simulating, and analyzing dynam­

ical systems. It supports linear and nonlinear systems, modeled in continuous time,

sampled time, or a hybrid of the two. Systems can be also multirate, i.e. have differ­

ent parts that are sampled or updated at different rates. For modeling, SIMULINK

45

provides a graphical user interface (GUI) for building models as block diagrams, using

click-and-drag mouse operations. With this interface, one can draw the models just as

you would with a pencil and paper (or as most textbooks depict them). SI~IULINK in­

cludes a comprehensive block library of sinks, sources, linear and nonlinear components

and connectors. Users can customize and create their own blocks. ~1odels are hierar­

chical, so one can build models using both top-down and bottom-up approaches. One

can view the system at a high-level, then double-click on blocks to go down through

the levels to see increasing levels of model detail. Model analysis tools include lin­

earization and trimming tools, which can be accessed from the .MATLAB command

line, plus the many tools in ~IATLAB and its application toolboxes. Also, because

~IATLAB and SI~lULINK are integrated, users can simulate, analyze and revise their

models in either environment at any point.

SI~IULINK provides a very fiexible and easy to use environment for development

of powerful G UI simulators, with the added benefit that the user can access all of

~IATLAB's powerful routines for solving equations, handling matrices and so on. It is

widely used in the industry, and there are hardware accelerator cards available these

days which can directly implement systems designed with SIMULINK in real-time [54).

3.1.3 EMTP

The Electromagnetic Transients Program, or EMTP [55] for short, is a computer pro­

gram for simulating electromagnetic, electromechanical and control system transients

on multiphase electric power systems. It was first developed as a digital computer

counterpart to the analog Transient Network Analyzer. Many other capabilities have

been added to the EMTP over a fifteen-year period, and the program is widely used

in the utility industry.

46

Studies involving the use of EMTP can be put into two general categories. One

is design, which includes insulation coordination, equipment ratings, protective device

specification and control system design. The other is solving operating problems such

as unexplained outages or equipment failures. The EMTP is used to solve the ordinary

differential and/or algebraic equations associated with an '~arbitrary'' interconnection

of different electrical (power system) and control system compenents. The implicit

trapezoidal-rule (second-order) integration is used on the describing equations of most

elements which are modeled by ordinary differential equations. The result is a set

of real! simultaneous, algebraic equations which is solved at each time-step. These

equations are written in nodal-admittance form, and they are solved by triangular

factorization. Initial conditions for differential equations of the various components

can be determined automatically by the program for most cases of practical interest.

The calculation of initial conditions is normally limited to linear elements. Nonlinear

resistances are always ignored during the steady state solution. Nonlinear reactances

can either be represented by their linear part or fully modeled to include the harmonic

distortion effects. Injections of the electric network may also be specified in terms

of power and voltage magnitude, thereby providing multi-phase load flow capability.

Control system modeling allows for the superposition of an arbitrary number of linear

phasor solutions of different frequencies. Program output consists of component vari­

ables (e.g., branch currents or voltages, machine torques or speeds, etc.) as functions

of time, for those variables requested by the user. Both printed and plotted output are

possible, with plotting possible in either character or vector-graphic modes.

EMTP also provides a very powerful environment for simulating electromagnetic

systems and power systems. However, it cannot be easily integrated with an ANN

simulator, thereby limiting its application in motor drives research.

47

3.2 Motivation for building another simulator

With so many available simulators, the question naturally arises whether to choose one

of them or to develop a new one tailored to one's specific needs. For this work, it was

felt that e.""q>erimenting with different and non-standard neural network architectures

would be required, and this implies that the :vt:ATLAB neural network toolbox. which

is one of the best ones available, would be inadequate. Also, if a new neural network

simulator has to be developed in a general purpose programming language, then the

other building blocks of the simulator should also be developed in the same language

to ensure compatibility. Further, it was felt that having one's own software would

ensure complete control over, and transparency of, the source code. It was also felt

that porting this source code over to a PC based hardware for experimental verification

would be much easier than if a commercially available simulator was used. \Vith all

these things in mind, a simulator was built for the purpose of this research, and the

rest of this chapter takes a look at its design.

3.3 Building blocks

A block diagram of the simulator as a whole is shown in Figure 3.1. The simulator

is composed of many entities, most of them representing a physical object. Each of

these entities has been written as a separate class, which makes it a distinct unit and

also makes it possible to use multiple objects belonging to each class. This section

describes the breakup of the software at the header file level, with details of different

classes within a header file. Since the software is built in a hierarchical fashion, with

the higher layers using the services provided by the lower layers, the description will

follow a bottom-up approach.

48

main program (can use any lower level block) Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

ioserror (can be used by any higher level block) Layer 1

Figure 3.1: Block level description of the simulator

49

• ioserror. This header file contains a class with the same name which is used by

most blocks at the higher level for error management. This class constitutes the

lowest layer in the hierarchy. It provides a standard interface for error handling

and each class at the higher level can include a static object of the ioserror class.

Thus, multiple objects of the higher level class can share the same error handler.

Each class can generate a warning or a critical error. A critical error results in

immediate shutdown of the program, while a warning just generates a message

upon regular program shutdown. The error messages are generated by the respec­

tive class and the ioserror class reports which class generated the error message.

Having a standard error interface greatly simplifies program development and

debugging.

• memory: This header file is placed in the second layer of the hierarchy and

contains a class called dynaTTay which creates a dynamically sized array. This can

be used in applications where the size of the array is not known beforehand. The

user can keep writing to an object of the dynarray class, and it will automatically

adjust the array size to accommodate the data.

The memory header file also contains overloaded functions for allocating memory

and generating a fatal error message, in case the operating system is unable to

allocate the requested memory.

• simtime: This header file is also placed in the second layer of the hierarchy and

contains a class with the same name, which controls the timing operation for the

complete simulation. It must be used by the main program, if any timing opera­

tions are being used. The entire simulation uses just one clock for any function or

class which requires timing. The main program increments the clock, and every

other function or class receives the correct time from this clock. Furthennore,

every class or function computes the increment interval on its own, and thus each

can be run at different intervals, without risking timing accuracy.

50

• filter. This header file is placed in the third layer of the hierarchy and contains

the following class descriptions:

1. Digital Filters: Two kinds of filters have been simulated - average filter

and first order filter. The average filter provides a weighted average of a set

number of previous values, as specified in equation (3.1).

e-[•·-;mJ2
W (i) = -n---:-1--

LW(k)
k=O

(3.1)

A bell shaped weighting curve is used, and the filter length n, and the

variance a can be set for each individual filter. Since this is only an averaging

filter, it doesn't use any timing operations.

The first order filter uses the bilinear transformation

2(1-z- 1)
s=

T (1 + z- 1)

to convert a first order analog filter of the form

A
H(s) = -­

A+s

(3.2)

(3.3)

to a digital filter. It needs a knowledge of the time step T for computing

the filter output.

2. Pl_controller. This class simulates a PI controller which is given by the

transfer function

(3.4)

and makes use of the integrator class for performing the integration. The

PI constants, K, and Ki, can be set independently for each controller.

3. Integrator and Differentiator. These two classes perform numerical integra­

tion and differentiation. The integrator class uses the trapezoidal rule for

51

performing the integration. The differentiator uses the backward difference

method for computing the derivative. Both classes need a knowledge of the

time step T.

• util.s: This header file is placed in the third layer of the hierarchy and contains a

class for some useful tasks which many classes might need to perform.

1. datafile: This class enables easier handling of datafiles which are used for

outputting data onto the disk. The maximum file size and the sampling

interval can be set externally.

2. tdltype: This class is used to simulate a tapped delay line which is frequently

used in ANN applications to generate previous values of certain inputs. The

class does not use any timing operations, and the nth previous value is

produced as the output, n being externally selectable.

3. counter. This class is used for producing clocking pulses for certain applica­

tions. It outputs a pulse after n iterations, where n is externally selectable.

• matrix: This header file is placed in the third layer of the hierarchy and contains

two classes - one called matrix and the other called complex. The matrix class

simulates an m x n matrix, where m and n are externally selectable. Many

matrix operations are provided, like addition, subtration and multiplication. The

complex class simulates complex numbers, and various operations for complex

numbers are also defined, e.g. addition, subtraction, multiplication and division.

• parfile: The header file is placed in the third layer of the hierarchy and contains

the definition of a class by the same name, which is used to facilitate reading pa­

rameter files used by various other classes. For example, the induction machine

has many parameters like the stator and rotor resistances and inductances, num­

ber of poles, moment of inertia and so on, which are set externally. All these are

read from a parameter file, and an object of the parfile class, provides a standard

52

and convenient intedace for doing the same. The parameter files can contain

comment statements, and the parameters can be arranged in any fashion, but

they are read correctly by an object of the parfile class.

• neuron: This header file is placed in the third layer of the hierarchy, and contains

classes for simulating different kinds of neurons. It is discussed in greater detail

in the next section.

• transfrm: This header file is placed in the fourth layer of the hierarchy and this

layer is further subdivided into three sublayers. transfrm occupies the lowest

of these sublayers. It contains two classes for pedorming data transformation

operations. These two classes are discussed below:

l. three_phase: This class simulates a three-phase quantity and automatic con­

version is performed between three-phase and two-phase direct-axis and

quadrature-axis quantities and vice-versa as given in equations (3.5) to (3.9).

id -

iq -

ia -

ib -

ic -

2ia- ib- ic
3

ib- ic

v'3

id

0.866iq - 0.5id

-(ill+ ib)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

2. mag_freq: This class pedorms transformation between direct, quadrature­

axis quantities and magnitude, frequency and vice-versa as given in equa­

tions (3.10) to (3.14).

53

{3.10)

(3.11)

k-1

(Ji (k) - L ~lJi(n) (3.12)
n=O

id - imag COS lJi(k) (3.13)

iq - imag sin Oi(k) (3.14)

This class is used for data conversion in ANN training for induction motor

control.

• connect: This header file occupies sublayer 2 of layer 4 in the hierarchy. It con­

tains two classes - single_conductor and three_phase_conductor - which model

a single-phase and a three-phase conductor respectively. The presence of the

conductor classes makes it possible to have a standard interface for all higher

level objects, ensuring any kind of connection between different objects. The

conductors have error checking to ensure that, for example, two voltage sources

are not tied to the same conductor leading to a short circuit. Also monitoring

of currents, voltages and power flow is facilitated by member functions of these

classes which return these respective values.

• supply: This header file occupies the third and highest sublayer in layer 4 of the

hierarchy. It contains classes for the following:

1. dc_supply: This class simulates a DC power supply, and it is used chiefly for

supplying the DC bus of the inverter. The voltage level can be set externally.

2. three_phase_.supply: This class, as the name implies, simulates a three-phase

power supply, which can be used to drive a three-phase rectifier or an in­

duction motor directly.

3. current_amplifier. This class simulates an ideal three-phase current source.

4. function_generator. This class, as the name implies, simulates a function

generator which can produce the following different kinds of waveforms -

square: triangle, sine and sawtooth. For each waveform, the frequency,

54

amplitude and the DC offset can be set. It can also produce a balanced

three-phase sinewave.

• ann: This header file occupies layer 4 of the hierarchy and defines a class by the

same name. This is discussed in greater detail in the next section.

• vector. This header file occupies the fifth layer in the hierarchy and contains

a class called vector_controller. This class implements the indirect rotor fiu..x­

oriented control strategy for a squirrel-cage induction motor drive. It has separate

blocks for flux estimation 1 imr estimation, ramp reference generation for speed

and flux reference generation. It uses PI controllers, which are declared as objects

of the PLcontroller class. The main vector controller function receives the current

feedback, speed feedback and the reference speed setting as inputs. It computes

the three-phase reference currents which are handed over to the current controller.

The speed reference setting acts as an input to the speed reference generator block

inside the vector controller1 which ramps up the speed reference slowly, to prevent

any instabilities.

The main function first converts the speed to electrical rad/s. The conversion

from three-phase to tw~phase d-q axis quantities is automatically done in the

three_phase class. Next, the flux estimator, the flux reference generator and the

speed reference generator blocks are run. After this, the torque is computed in

the synchronously rotating frame of reference. The various PI controllers are run

next and the outputs from the PI controllers in the last stage, which are the

reference currents in the rotating frame, are converted back to quantities in the

stationary frame.

• inv: This header file occupies the fifth layer in the hierarchy and contains classes

for the inverter and three different types of current controller.

1. inverter: This is modeled in a class called inverter and simulates a three-

55

phase transistor inverter. At the input side, it interfaces to an object of the

dc_supply class, which supplies the de bus of the inverter. At the output, it

interfaces to an object of the three_phase_conductor class. The main inverter

function receives the six gate signal pulses as input, and computes the output

voltages for the three-phase conductor at its output. It checks to see whether

there is a DC short circuit, or if the voltages and currents exceed the specified

transistor ratings.

2. current controllers: Three different types of current controllers have been

modeled- a PWM voltage controller called pwm_vc, a PW:'J current con­

troller called pWTTLcc and a hysteresis current controller called hysLcc. These

classes emulate the well known current control strategies. The two current

controllers need the three-phase reference and actual currents as inputs to

their main function. The PW:'J voltage controller needs the magnitude and

frequency of the modulating signal as inputs to its main function. All these

functions supply the six gate drive pulses at the output, and these gate drive

pulses can be given directly to an object of the inverter class. Dead-time

(or blanking time) required between the top and bottom transistors in the

same leg of the inverter has not been considered in this simulation because

it is usually in the range of a couple of JJS, and this would imply a reduction

in the simulation step time causing a large increase in the actual run time

of the simulation.

• indmach: This header file occupies the fifth layer in the hierarchy and models a

class for the squirrel-cage induction machine and uses the Runge-Kutta method

for solving the d-q axis induction motor dynamic equations, i.e. (1.1) ... {1.3).

To make this set amenable to solution by Runge-Kutta method, we separate all

the derivative terms and rearrange the equations in the state-space format, i.e.

{3.15)

where

I= [i,u iqs idr iqr]T (3.16)

and

-RsLr WrLm 2 RrLm w.LmL•1
1 -wrLm 2 -RsLr -wrLmLr RrLm

Av = L L - L 2
RsLm -wrLsLm -R,Ls -w.L.L, j r s m

WrLsLm R,Lm WrLrLs -RrL,

(3.1 i)

vci!Lr

1 VqsLr
B, = 2

LrLs- Lm -VasLm
(3.18)

This model of the induction motor is called the voltage source model, since it

assumes that the motor is supplied by a voltage source. It is also possible to

supply the induction motor with a current source, and this model is also included

in the induction motor class. For the current source model, it is assumed that

the motor is supplied by a three-phase current source at the stator, and hence ids

and iqs in equation (1.1) are known and we have to solve for iar, iqr, Vcis and Vqs

and estimate the torque and motor speed. The rotor currents can be estimated

by applying the Runge-Kutta method to the following equations

(3.19)

where

(3.20)

and

(3.21)

57

The d-q axis stator voltages can then be estimated as follows:

(3.22)

(3.23)

At the input, the induction motor interfaces to an object of the three_phase_condu.ctor

class. The induction motor is automatically able to detect whether the three­

phase conductor is being supplied by a voltage or a current source, and it switches

to the correct model for solving the dynamic equations. The only input to the

main function of the induction motor class (called run) is the load torque, and

the output of this function is a structure which contains the motor speed in roofs

and the electromagnetic torque.

• bpn: This header file occupies the fifth layer in the hierarchy and contains a defin­

ition of the backprop class. This class implements the backpropagation algorithm

and is discussed in greater detail in the next section.

At the highest, or the user level, there are main program(s) in which a user puts

together objects from the classes discussed above.

3.4 Artificial neural network simulator

The ANN simulator has been developed using a hierarchical approach, and it can be

used by a programmer to study non-standard network topologies and also create new

neuron types with minimal modification to the remaining code [56]. It is possible

to interconnect neurons in any fashion, without limiting the network to a layered

architecture. Also, each neuron in the simulator can be of a different type and can have

58

a different learning rate. This approach allows new training algorithms, or the addition

of a new type of neuron without affecting existing functionality. In addition, one of

the biggest benefits of this scheme is that it encompasses a variety of different neural

network types like ~lultilayer feedforward network, Hopfield, Radial Basis Function

network and Elman network. Fig 3.2 shows a layout of the simulator.

;--read--
ann

parameter
file

Training
parameter

file

Figure 3.2: Structure of the simulator

~lost types of ANNs can be subdivided into three constituent parts (9} - the

processing element (neuron}, the connections and the learning rule. The following

subsections describe this classification in greater detail.

3.4.1 The neuron

The fundamental unit in the ANN is the neuron. The neuron is implemented with

a two-level design. At the root level, a neuron class is defined which implements the

59

common features of the different neuron types. These common features are

• a set of inputs

• a set of weights

• a synaptic function which might differ from neuron to neuron

• the output of the synaptic function (usually called net)

• an activation function which might differ from neuron to neuron

• the neuron output

The neuron class can then be inherited by the classes for the different neuron types

e.g. sigmoid neuron, linear neuron or perceptron. The sigmoid and linear neurons

have a sigmoid and linear activation function respectively, and the perceptron has a

hard-limiting activation function. Most neurons use the linear synaptic function, and

this is implemented in the neuron class. However, the inheriting class can redefine this

function if need be, since the function is implemented using the virtual mechanism [57}.

The activation function is implemented only as a dummy prototype in the neuron class,

since it is expected that each new neuron would have a different activation function.

Thus, the inheriting class must define an activation function.

3.4.2 The network

The creation of neuron objects and their connections is implemented in the constructor

of the ann class. An object of this class reads from a parameter file which defines the

structure of the ANN. The user has to create this parameter file which consists of three

parts. The first part defines the number of neurons, the number of ANN inputs and

60

the number of ANN outputs. The second part describes each neuron type. the number

of inputs for each neuron and any optional parameters like 'LR' (learning rate) or 'B'

({3 in the sigmoidal activation function). The third part of the parameter file consists

of the connection description for each input of each neuron. It describes where each

input of each neuron is connected to. An example of a parameter file is shown below.

Any line which begins with a '%' is a comment line.

% Part 1

% Number of neurons

3

% Number of ann inputs

1

% Number of ann outputs

1

% Part 2 (neuron description)

% number

0

1

2

neuron type

TAHSIG

LINEAR

LINEAR

inputs

1

1

3

% Part 3 (connection description)

%type from to

INPUT 0 0

INPUT 0 1

INPUT 0 2

HIDDEN 0 2

HIDDEN 1 2

OUTPUT 2 0

optional

LR=0.3

LR=0.3

LR=O.l

61

B=0.9

Fig 3.3 shows a diagram of the network which is represented in the parameter file

shown above. In this file, neuron 0 is a TANSIG neuron (with a tan-sigmoid activation

function), and the other two neurons are LINEAR neurons (with a linear activation

function).

Io

LDlE.AR

Figure 3.3: The network corresponding to the example parameter file

The last part of the parameter file details the neuron connections. Connections are

of three types. If the connection is between an ANN input and a neuron input, the type

is INPUT. If a connection is between a neuron output and a neuron input, it is of type

HIDDEN. Finally! if a connection is between a neuron output and an ANN output, it

is of type OUTPUT. The from and to fields refer to the input number, neuron number

or output number as the case may be. It should be noted that with this scheme it is

possible to define recurrent ANNs as well as neurons with self feedback.

Apart from creating the neurons and making the various connections, the ann class

should also provide an interface for the training method. This interface· is implemented

as a friend class called ann_interface (Fig 3.2). This class contains functions for com­

puting the output of a particular neuron, accessing any free parameter of a particular

neuron and accessing the various neuron parameters (learning rate, number of inputs,

threshold, local gradient and so on).

62

3.4.3 Training algorithm

The training method is written as a separate class which inherits the ann_interface

class. As an e."'<3.11lple, a class backprop has been written to modify the weights of

the network according to the backpropagation rule. It reads training parameters from

a separate parameter file. There are two main functions - forwarcLpa3s and back­

ward_pass, which implement the two main activities in backpropagation. The weights

are saved periodically in a weight file as training progresses. The weight saving and

weight reading functions are implemented in the ann class.

3.5 Putting it all together

At the top level in Figure 3.1, the block named "main program" makes use of the

lower level blocks to build useful programs. Some of the programs which were built

with the basic building blocks are briefly discussed below. It should be noted that the

main program must run the system clock if it uses any lower level block which requires

timing.

• gendata: This program is used for generating the data that is used for ANN

training. The program uses the induction motor, vector controller, inverter and

other relevant blocks, and runs the vector controller with step changes in the

reference speed and load torque every couple of seconds. The inputs needed for

the ANN and the desired outputs are stored on a disk file.

• pd: This program, which is an acronym for ''peak detector", reads the datafile

generated by gendata and finds the peak magnitudes for all the ANN inputs and

outputs. These values, which are written onto the disk in a separate file, are used

63

as the normalizing and denormalizing gains for ANN training.

• layerann: This program is used for generating the parameter file which is used

by the "ann" block. As has been discussed earlier, the ann block needs the

network architecture in a specially formatted file, and this file can become very

large for an average sized network. To save the user from typing this big text file

containing the network description, the layerann program generates this file for

a feedforward network with a given number of layers and neurons in each layer.

• bpntrain: This program is used for training a network using the backpropagation

algorithm. It reads the training parameters like momentum, weight file name

and so on from a disk file, and it also reads the normalizing and denormalizing

gains from the same file. Next, it reads the complete data file, which contains the

training vectors generated by gendata, and presents these vectors to the network

for a specified number of epochs. The training vectors can be randomly shuffled

if desired, because this helps the backpropagation algorithm in its search for the

minimum.

• nnim: This program is used to run the induction motor using the trained network.

It substitutes the vector controller with an ANN which has been off-line trained

to mimic a vector controller.

3.6 Summary

This chapter describes a suite of software that was developed as a part of, and for facil­

itating, this research. The software is completely modular and can be easily extended.

It models physical objects closely and thus greatly facilitates experimentation, since

the user just has to put the various blocks together in the desired fashion to run an

64

experiment. This suite of software might benefit other researchers also, both at Memo­

rial University of Newfoundland and elsewhere. The next two chapters discuss some

simulation experiments that were carried out using thls software, and the theoretical

contribution made as a result of those experiments.

65

Chapter 4

ANN Based Induction Motor Speed

Estimator

It was seen in chapter 2, that sensorless control is an important issue in present day

research in the area of induction motor drives, and various techniques have been devel­

oped for the same. ANNs were shown to have a great potential for non-linear function

approximation and control applications. They also have various benefits not present

in other techniques. It was seen from the literature survey that almost no work has

been done to develop sensorless drives using ANNs.

This chapter investigates the use of the function approximation property of ANNs

for speed estimation of induction motor. This property was exploited by first consid­

ering the d-q axis dynamic equations of the induction motor and obtaining expressions

for speed, based on the measurable stator quantities. These expressions were used

to develop three different ANN based schemes for induction motor speed estimation.

Though the schemes give a reasonable output, it was felt necessary to reduce the

network sizes and improve performance at the same time. With this mind, another

66

approach for speed estimation was developed, which satisfies both these criteria. This

chapter also presents simulation results for all the four schemes. For the purpose of

simulation, extensive use was made of the software described in chapter 3.

4.1 Induction motor equations

The d-q axis dynamic equations for the squirrel-cage induction motor are very well

known and are given in equation (1.1). \Ve can see that in equation (1.1), if the

stator voltages and stator currents are known along with the machine parameters, we

have only 3 unknowns, viz. w,., ittr and iqr. We can thus solve for w,. in terms of the

stator quantities only. First, we obtain the rotor currents as functions of the stator

quantities and w,. from the first two rows of equation (1.1), since the rotor currents are

not accessible in a squirrel-cage induction motor. The expressions obtained for idr and

iqr in the stationary reference frame are

idr - ;m [j(vrb- R,ict.s)dt- L,ict,]

iqr - L~ [j (vq:s - R,iq,)dt- L.,iq,]

(4.1)

(4.2)

When we substitute equations (4.1) and (4.2) in the last two rows of equation (1.1) we

obtain the following two expressions for the rotor speed w,.

, _ -[a2 ~ - R,.L.,ict.s + R,. I vudt + L,.vu]
w,.- a2iq., + L,. I Vqzdt (4.3)

(4.4)

where, vd:r = Vct.s- R,ict, , Vqz = Vqs- R,iq, and a 2 = L~- L,.L,. The induction motor

speed can be recovered from either of equations (4.3) or (4.4) . However, both of these

equations have singularities for regular induction motor operation. This can be seen

67

by plotting the numerator and denominator of either equation. Figure 4.1 gives this

for the numerator and denominator of equation (4.3).

4 NumeralOr function

2- ~·
~

~ 0:__/ ~-/ \ :;
>

-2-

-4
0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.1

Time (sec)

0.01 Denominator function

0.005- (\
~ = 0-:;
>

-0.005- \
-0.01

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2

Time (sec)

Figure 4.1: Numerator and denominator functions in the speed expression

It can be seen from Figure 4.1 that both waveforms are in phase, resulting in

simultaneous zero-crossings, and hence, singular points. Equation (4.4) also produces

a similar plot. A comparison of the numerators and denominators of equations (4.3)

and (4.4) is shown in Figure 4.2.

From Figure 4.2 we can see that both the numerator and denominator of equa-

68

-+
Comparison of two numerator functions

2- -·\
IU = -;;
>

\
-4
0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2

Time (sec)

0.01 Comparison of two denominator functions
02 (X\ 0.005-

IU = 0--;;
>

-0.005- \
-0.01

0. 15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195 0.2

Time (sec)

Figure 4.2: Comparison of the two speed expressions

69

tion (4.4) lead those of equation (4.3) by 90°. This suggests that we can treat them

like d and q components of a vector or space phasor quantity. Thus equations (4.3)

and {4.4) can be combined and expressed as

w.,.[a2iq, + L.,. J Vq:z:dt} = -[a2 d;~ - R,.L,id, + R,. J vudt + L.,.vdz] {4.5)

w.,.[~id, + L.,. J Vd:z:dt] = [a2d!;"- R.,.L,iq, + Rrj Vq:z:dt + LrVq:z:] (4.6)

~1ultiplying equation (4.6) by j and subtracting from equation (4.5) we can obtain

another expression for the rotor speed as

(a2p- RrLs - R,L.,. - R,R..)i, + (L.,. + R,.)v s
w - p p

.,. - j((a2 - R,PL ..)I, + l.;v,} (4.7)

where I, and V 5 represent the stator current vector and stator voltage vector respec­

tively. Note that the R.H.S. of equation (4.7) is complex and the speed would be given

as the magnitude of the equation.

4.2 Speed estimation

The primary goal of building a speed estimator is to use it in an induction motor

drive system which requires speed feedback for closed loop control. An inverter forms

an essential component of an induction motor drive system, because control over the

voltage magnitude and frequency is desired. The presence of an inverter results in a

non-sinusoidal stator voltage waveform and ripples in the stator current also. This

would impede ANN training, and thus it might be more desirable to study the ANN

scheme under more ideal conditions and then try out its efficacy in the presence of an

inverter.

One of the necessary conditions for an ANN to approximate a function is that

the function be square integrable in the unit cube [58]. This condition is obviously

70

not satisfied by either equation (4.3) or equation (4.4). Thus, it would be futile to

attempt to train the ANN using the quantities on the right hand side of either of these

equations. This problem does not exist in equation (4. 7), but it is a more complex

function compared to the other two.

The basic problem in training an ANN to recognize induction motor speed is that

the functional relationship between the speed and the stator parameters is quite com­

plex with the result that the number of training vectors required is very large. Also,

the training times involved on a PC become quite substantial. To circumvent the prob­

lems of large data files and substantial training times, it was decided that the whole

drive system with the ANN be implemented in simulation, using the software outlined

in chapter 3. The training vectors could be generated on-line, obviating any need for

storing training data on the disk. For simulation, the induction motor model used has

the parameters shown in Table 4.1.

4.2.1 Method 1: Using singular functions

As a first step, it was decided to use equations (4.3) or (4.4) for the purpose of ANN

training. It has been mentioned in section 4.1 that both these equations have singu­

larities. Thus, the basic idea in this method is to partition the main function having

singularities (or poles) into smaller functions, each of which do not have any singu­

]arities, and to train multiple ANNs to identify these smaller functions. The desired

output can be obtained from the outputs of these ANNs by avoiding the singular points

or poles of the main function. In this case, one of the simplest ways to partition the

functions is to consider their numerators and denominators separately. The numerators

and denominators of equations (4.3) and (4.4) can be expressed respectively as

[
2 diu . J Nt = - u dt - RrLi&u + Rr Vcdt + Lrvu] (4.8)

71

Table 4.1: Induction motor parameters used in simulation studies

ll Parameter I Symbol I Value 1\

Power rating l.5HP

Voltage 208V

Connection type y

Stator Resistance Rs o.49 n

Rotor Resistance R,. o.45 n

Stator Inductance Ls 37.1 mH

Rotor Inductance Lr 37.1 mH

Magnetizing Inductance Lm 35.4 mH

Moment of Inertia J 0.024 N- m 2

Damping Coefficient B 0.0011 N- m2 fs
Pole Pairs p 2

72

D1 - a
2iqs + Lr I Vq:rdt (4.9)

N2 - [a2diqs -f4L5 iq, + Rrj Vqzdt + Lrvqz] (4.10)
dt

D2 - a
2ids + Lr I Vudt (4.11)

ANNs can be trained to approximate either N1 and D 1 in equations (4.8) and (4.9)

or N2 and D2 in equations (4.10) and (4.11). The output of these ANNs can then be

passed through a filter which perfonns the required division at points where both the

numerator and denominator are non zero [59]. A block diagram of the speed recovery

scheme using equation (4.4) is shown in Figure 4.3.

Figure 4.3: Block diagram of ANN speed recovery (method 1)

In the simulation study performed, both the ANNs have 2 hidden layers each.

Inputs given to the numerator ANN were iq,(k), ~' vq,(k), I vq,dt and f iq,dt, based

on the expression for N2 and the network structure chosen was 5-26-1~1. Inputs given

to the denominator ANN were ic~.t(k), I Vc~.tdt and I idsdt, based on the expression for

73

D2 and the structure chosen was 3-20-10-1. Training was initiated by giving random

inputs to the ANNs. The same random inputs were also given to the numerator and

denominator functions and the desired outputs for training the ANNs were obtained

from these functions. The learning rate (TJ) was maintained at 0.25 and the value of

the momentum parameter (a) was fixed at 0.2 throughout the training. After giving

5 million (5 x 106) vectors of random inputs, 1 million vectors of direct on-line start

using a power supply, with step change in load torque were given. After this off-line

training, the ANNs were able to mimic the numerator and denominator functions quite

accurately. For the actual speed recovery, a peak detector was used as the filter in the

block diagram. This detects the positive and negative peaks of the sinusoidal outputs

of the two ANNs, and performs the required division at these points. The actual and

ANN recovered speeds for direct on-line start and step change in load torque are shown

in Figure 4.4. As can be seen from Figure 4.4, the performance of the speed estimator

is quite accurate.

For inverter operation, this method can be used without the need for filtering the

feedback signals (60]. However, a first order filter was used at the output, because the

speed estimate obtained from the 2 ANNs had a lot of ripples. In the simulation study,

a first order low pass filter (LPF) with the following transfer function was used

80
H(s) =

3
+

80
(4.12)

The two ANNs were trained for 3 million (3 x 106) iterations in the presence of a

PWM current-controlled voltage source inverter, with step changes in magnitude and

frequency of the voltage and load torque.

The resulting estimated speed with the LPF in series with the peak detector circuit

is shown in Figure 4.5. It can be seen that this simple filter has resulted in the removal

of most of the ripples during the startup period. However, there is a deviation from

the actual speed at the start of the motor run, and there is a small steady state error

74

2000---

1800-

1600- r
I

1400-
I

..;
I

..!
1200- I

~ _J

Q.
Cll::: _J - 1000-
"0 ...J qJ

~
800-Cl') . -

_j

600- -.
Actual speed

400-

200-- .
• Speed estimate obtained from 2 ANN s

o--------------------~--------------------~-----------
0 0.2 0.4 0.6 0.8 1.2 1.4

Time (sec)

Figure 4.4: Actual and ANN recovered speed (method 1): Step change in load (10%

to 150%) at t = 1.0 s

75

during the speed build-up.

........
~
Q..
C(......
't:)
<U

8.
en

2000------~----~------------~------~----~----------

1800-

1600- Actual speed;/"'
/

1400-

1200 - - .

1000- . l
I

j

800- I

600-

200- .:·
Speed estimate obtained from 2 ANNs after filtration

o~--~----~---
0 0.2 0.4 0.6 0.8 1.2 1.4

Time (sec)

Figure 4.5: Actual and ANN recovered speed with inverter operation (method 1) : Step

change in load (10% to 150%) at t = 1.0 s

The estimate of the obtained speed is quite good in this method. However, since this

scheme requires the computation of the numerator and denominator functions, a very

small sampling time is required even though the speed feedback need not be computed

very frequently. In the simulation study, the two ANNs compute their output every

50J.&SeC and further increase in the sampling time results in loss of perfonnance because

76

the peaks of the ANN outputs cannot be accurately determined. Also, the sizes of the

two ANNs are quite large. Thus, this technique would require very high performance

A/D converters and dedicated ANN hardware to implement it in real-time.

A.nother drawback of this scheme is that the actual motor speed is not used during

training. For this reason, this scheme did not function acceptably in the presence of

a vector controlled induction motor drive. Thus, it was decided to use equation (4. 7)

and see if it would be possible to obtain a more practical speed estimator.

4.2.2 Method 2: Using non-singular function

As seen in equation (4. 7), there exists a non-singular function between the induction

motor rotor speed and the stator quantities. Thus, if all the quantities which comprise

the R.H.S. of equation (4. 7) are given as inputs to an ANN, it should be able to estimate

the speed, given sufficient training examples. Figure 4.6 shows the block diagram of

the ANN speed estimator using this method. In this figure, the term T.D.L. represents

a Tapped Delay Line which is used for obtaining the previous values of the inputs. The

ANN is a four-layered 10-22-17-1 network. The inputs given to the ANN are iq,(k),

ia..(k), iq,(k - 1), irl.t(k- 1), I iq,dt, f id.tdt, vq,(k), va..(k), f vq,dt, and f va..dt. Here,

unlike in method 1, training with random inputs was not performed, because applying

random inputs to the induction motor would result in instability. Instead, the network

was trained repeatedly on 16000 data vectors comprising of the starting response and

step changes in load torque, frequency, etc. This set was given repeatedly 450 times

resulting in a total of 7.5 million (7.5 x 106) iterations. Both the learning rate parameter

and the momentum parameter were maintained at 0.2.

The output of the ANN had a lot of ripple in this case, and it had to be filtered

in order to obtain a cleaner speed estimate. The response of the ANN to a direct

77

p~ ~-------------------T
Supply 1---...-----~,•'----------\

Filter

id.

.t-Layered
iq. A)OJ

for
Speed

Estimation
Va Vet.

Vb

v.,.

Figure 4.6: Block diagram of ANN speed estimator (method 2)

on-line start and step change in load torque is shown in Figure 4. 7. It can be seen

that this response is not as good as the response obtained in method 1 (section 4.2.1) ,

even though there is a larger number of training examples. One of the main reasons

for this is that training with random inputs was not performed in this case. Such a

training spans a much larger area in the input space, with the effect that the ANN is

able to generalize more effectively. However, if the training data is to be obtained from

induction motor operation, giving absolutely random inputs to the motor would not

be very effective, since the motor would not pick up speed. Thus, the ANN would be

unable to generalize effectively. Another reason for the poorer performance is that the

function to be estimated is more complex than the previous case.

78

2000--

1800-

1600-

1400-

::;; 1200-
c..
~

"0
~

~
Cl'l

1000-

soot
· 1 1 Actual speed

600 ri: .,

400~ I'' "()(),.it. .
- . I

0

. •· ;
1

. ANN estimate after filtnuion

0 0.2 0.4 0.6 0.8 1.2 1.4

Time (sec)

Figure 4.7: Actual and ANN recovered speed (method 2): Step change in load (10%

to 150%) at t = 1.0 s

79

4.2.3 Method 3: Using non-singular function with magnitude

and phase angle

The speed response of the ANN speed estimator using method 2 can be somewhat

improved if the magnitudes and phase angles of all the quantities are given instead of

their d-q components. This seems logical. because speed is obtained as the modulus

of equation (4. 7). The response of the ANN after filtration is shown in Figure 4.8.

The filter uses the transfer function given in equation (4.12). As can be seen from the

figure, the accuracy of the ANN output is improved even though it is still poorer than

the estimation using two ANNs in section 4.2.1. However, one major advantage of

this scheme and the one in method 2, is that the speed output can be computed with

a much lower frequency as compared to the two ANN method. Thus, the hardware

requirement would not be as stringent as in method 1. Unfortunately, methods 2 and

3 did not produce an acceptable output in the presence of an inverter, and thus these

two methods are also not good candidates for a practical ANN speed estimator.

4.3 Importance of form in ANN training

The three speed estimators outlined in section 4.2 certainly prove the validity of the

schemes presented, but as was seen earlier, the schemes cannot be used for obtaining

a practical and real-time ANN speed estimator. In method 1, the two ANNs are large

and have to be run at a very fast rate to approximate the complete sinusoid functions.

Also, this method requires the induction motor parameters for the purpose of training,

and this is undesirable. In methods 2 and 3, in spite of trying out numerous network

sizes and extensive training, the networks were unable to produce a smooth speed

estimate, and required filtration at the network output. Of bigger concern was the

80

2000--

1800-

1600-

1400-

~ 1200-
Q.,
Cl:::
-- 1000-
"C
cu
&

{,f) 800-

t
J

I
. J

p .

':t I
' i I 'I

~. · ·~·r

Actual speed

600- ~'

•I

4001 .
i ,~J

200 ~~-

1
o~· ----------------------------~------------------------
0 0.2 0.4 0.6 0.8 1.2 1.4

Time (sec)

Figure 4.8: Actual and ANN recovered speed (method 3): Step change in load (10%

to 150%) at t = 1.0 s

81

fact that in the presence of a vector controlled, inverter-fed drive, all the methods did

not produce an acceptable output. Thus, it was felt that achieving the objective of

experimental verification would require the development of another speed estimator

which should be much smaller in size and should function more accurately, even in the

presence of an inverter-fed drive.

With the above in mind, the whole idea of ANN speed estimation was revisited

with the following fundamental question: "Why does the ANN find it so difficult to

obtain a mapping between the stator quantitie.s and the speed, even though it has been

e.stablished that there exists a functional relationship between the same'?' Some further

investigation and thought led to the realization, that for an ANN speed estimator

operating in steady state, the output would be a constant DC value, whereas the inputs

would be sinusoidal in nature, though with a constant magnitude and frequency. For a

different speed, the inputs would still be sinusoidal, but the magnitude and frequency

would change. This implies that the ANN would need to extract the magnitude and

frequency information from the sinusoidal inputs based on a few previous values, and

then learn the relationship between the magnitude and frequency of the stator inputs

and the speed. Thus, the sinusoidal nature of the inputs unnecessarily impedes the

learning process, and modifying the form of the inputs would lead to a mapping which

would be simpler for the ANN to learn. It should be noted that all the three methods

outlined earlier have inputs which are not DC values. ~ethod 3 uses magnitudes of the

stator quantities, but it uses the phase angle also, which is not a DC quantity. Thus,

the functional mapping remains quite complex and nonlinear.

This idea led to the development of a simple block which converts the instanta­

neous direct and quadrature axis sinusoidal quantities to instantaneous magnitude and

frequency. Equations (3.10) to (3.14) are used to perform this conversion. This block

uses the current and previous value of the d-q axis sinusoidal quantity to compute the

82

instantaneous magnitude and frequency. In the discrete case, the frequency is given

by f = f::l.(), and it was decided that computing ~9 would suffice, since dividing by ~t
!::it

would not provide any further useful information. This block will be called the '~DQ

to MF" or "'DQ-MF" block. The block which performs the reverse transformation will

similarly be called the "MF to DQ" or "MF -DQ" block. It should be noted that the

speed estimator problem would not require the reverse transformation.

4.4 Method 4: Speed estimation using the DQ-MF

block

This section outlines a simplified and more accurate speed estimator, which uses the

"DQ-~IF" block discussed in subsection 4.3 to obviate the problems associated with

sinusoidal inputs. It was decided to try this scheme directly with an inverter-fed vector­

controlled drive, by filtering the feedback quantities before using the "DQ-MF" block.

Since it is impossible to filter out all the ripple, the instantaneous magnitude and ~9

also have ripples, and this necessitates the use of another filtration stage after the "DQ­

MF" conversion. The block diagram of a 6-20-1 ANN estimator is shown in Figure 4.9.

In this figure, T.D.L. stands for Tapped Delay Line which produces the previous value

of the input. As can be seen from this figure, the current and voltage feedbacks for two

phases are obtained and filtered to reduce the inverter ripple. They are then converted

to d-q axis quantities and subsequently converted from DQ to MF. After this another

filtration stage is required to smoothen the inputs for the ANN. The ANN receives

the magnitude and ~() values of the stator current along with one previous value of

each. It also receives the magnitude of the stator voltage. Since the frequency of the

stator voltage is the same as that of the stator current, ~() value of the stator voltage

would not provide any new information. Thus it is not used, making the ANN more

83

Drive ~--J

ib Filter
3-Layered

A~'X

for

Speed
v,. Estimation

Vb Filter

Figure 4.9: ANN speed estimator using the DQ-MF block (method 4)

compact. Also, like methods 2 and 3 and unlike method 1, the sampling requirements

of this ANN speed estimator are not very stringent. However, it should be noted that

the size of this ANN is significantly smaller than the two ANNs used in method 1 or

the networks used in methods 2 and 3.

In section 4.2 it was noted that, for the purpose of training, no data need be stored

on the disk, and the whole system, including the induction motor and the ANN, can

be run on-line to provide training data to the ANN. Subsequent to that work, it was

discovered that it is significantly more advantageous to store training data on the disk,

and then provide the ANN with randomly shuffied data points during training. This

not only increases the efficacy of the training process but also enables the computation

of the "sum squared error" (SSE} per epoch, which is a useful indicator of the training

progress. Thus, the training data for the speed estimator using method 4 has been

stored prior to the start of ANN training.

84

For training, the induction motor was run in simulation with a vector controller

and inverter setup, and a data set of training vectors was obtained. The network

was trained with different learning rates, and different number of epochs. The chosen

network was trained for 47 epochs with 0.03 as the output neuron learning rate and

0.50 as the learning rate of every other neuron. Figure 4.10 shows the performance

of the ANN speed estimator with a step change in speed reference at t = 1.0 s and a

step change in load torque from (9.3% to 93.0%) at t = 2.0 s. This speed estimator

functions well under vector control conditions and in the presence of an inverter. Also,

it does not require a filter at the output. Thus, this speed estimator is a very good

candidate for experimental verification. The SSE for the ANN during training is shown

in Figure 4.11.

4.5 Summary

In this chapter, four techniques for speed estimation of induction motors using artificial

neural networks have been outlined. The mathematical model of the induction motor

is considered and expressions for the rotor speed are obtained. Two of the expressions

obtained have singularities and thus, ANNs cannot be used to obtain the speed directly

by supplying the same inputs as the functions. A method is proposed in which two

ANNs are trained to approximate the numerator and denominator functions in the

speed expression. By training such ANNs and using a filter to avoid singular points,

the speed can be recovered with a high degree of accuracy. In the second method, the

two expressions with singularities are combined to obtain a single expression which does

not have singularities for regular induction motor operation. A single ANN is trained

to obtain the speed in this case by giving it all the quantities which act as input to the

expression in equation (4. 7). In the third method, which is a modification of the second,

85

1600.--------.;--------.---------.---------,--------~---------,

ANN estimate

-200~------~~------~~------~--------~--------_.--------~
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 4.10: Actual and ANN recovered speed (method 4): Step change in speed

reference at t = 1.0 sand step change in load torque at t = 2.0 s

86

12~----r-----r-----r-----r-----r-----.-----r-----.-----.-----,

10

8 -

CD

~ 61-
>

41-

2 -

0~--~~--~~~----~----~----~----~----~----~----~--~
0 5 10 15 20 25 30 35 40 45 50

Number of epochs

Figure 4.11: Sum squared error during ANN training (method 4)

87

the inputs are presented in a different form~ i.e. using magnitude and phase angle, and

this results in a slight improvement in performance. These three methods were found

unsuitable for real-time implementation, and a fourth method was developed in which

the inputs to the ANN are transformed in a way which simplifies the mapping that the

ANN is required to learn. This method was found to be suitable and functions well~

even in the presence of a vector controlled, inverter-fed drive. A real-time experimental

implementation of the fourth method will be outlined in chapter 6.

88

Chapter 5

ANN Control of Induction Motor

It was seen in chapter 2 that while considerable progress has been made in the applica­

tion of ANNs to induction motor drives, complete control of an induction motor using

ANNs still eludes researchers. For ANN control of induction motor to become com­

mercially feasible and economically viable, ANNs must provide a useful alternative to

existing control strategies. This means that researchers must come up with strategies

to implement induction motor control using ANNs, without the help of conventional

controllers. Also, the resulting strategies must not be computationally overwhelming

for the available hardware to implement in real-time.

The main thrust of this work was to move in this direction and try to come up with

an induction motor control strategy using just one ANN. This chapter focusses on the

problem of ANN control of induction motor drives, and demonstrates, for probably the

first time, a strategy for complete control of induction motor using a single ANN. This

ANN is able to control the induction motor in a satisfactory way, after being off-line

trained to mimic a vector controller. A scheme for on-line training of this ANN is

also presented, and this leads to improved steady state response and robustness in the

89

presence of motor parameter variations.

5.1 Issues involved with ANN control of induction

motor

1-lost of the control theory developed so far deals with linear time-invariant systems~

and powerful methods for designing controllers for such systems are currently available.

However, as applications become more complex, the processes to be controlled are in­

creasingly characterized by uncertainty in the system model! non-linearities, presence

of noise and the effects of having distributed sensors and actuators with their associated

delays and other problems. One approach used for handling a non-linear system has

been to linearize it around an equilibrium point, and then use the well established linear

control theory to study issues like stability, controllability and observability, and design

controllers to function in an approximate linear region around the equilibrium point.

Both single-input single-output (SISO) and multiple-input multiple-output (MI:\10) sys­

tems have been studied using this approach, in which the non-linear dynamical system

to be controlled can be described by the state equations

x(k + 1) - f[x(k), u(k)], f(O, 0) = 0

y(k) - h[x(k)], h(O) = 0

(5.1)

(5.2)

where u(k), y(k) E !Rm and x(k) E !Rn and represent the input, output and state

vectors. From a purely mathematical point of view, the precise control of a non-linear

dynamical system is a formidable task [61]. It becomes substantially more difficult

when uncertainty is also present in the system.

In most cases where ANNs have been used in the control of induction motors, on­

line training has been preferred. On-line training has the potential to adapt to changing

90

motor parameters, but it is computationally very expensive, and it is very difficult to

run an average sized ANN in real-time with on-line training.

As indicated earlier, Kung et al [48] have used a two degree of freedom controller

(2DOF) to control an induction motor and also use an ANN to tune the parameters

of this controller on-line. One of the most rigorous works on ANN control of induction

motor has been done by Wishart and Harley [45j! and here too we can see the presence of

a PI controller which receives the speed error as an input and produces the magnitude

of the reference currents needed for the current controlled induction machine. The

control ANN produces only the frequency of the reference currents. Thus the ANN

only partially controls the motor.

One way to control a plant using ANNs is to train the ANN off-line to mimic an

existing controller. This implies that the ANN must have as input, all the quantities

that are input to the existing controller (with a suitable number of previous values) ,

including the reference value. The ANN is trained off-line to produce the same outputs

as the controller and after sufficient training, the ANN should be able to replace the

controller. A block diagram of this scheme is shown in Figure 5.1. Since it is impractical

Reference ControUer Plant

,

Figure 5.1: Training of ANN for controller mimicing

91

to provide all possible combinations of reference and load torque change to the ANN

as training data, the ANN's generalization property will have to be relied upon to

learn the important trends. It is a well known property of backpropagation nets that

too much training increases the accuracy of the network on the given data set, but

the network loses its ability to generalize effectively. On the other hand, a network

that can generalize well will not produce extremely accurate results. Also, it must be

remembered that a network will always have a small error in its output, no matter how

well it is trained. Thus, it looks very likely that the steady state error in an off-line

trained ANN may not be eliminated completely.

A second problem that is present in induction motor control is the inability to

model the disturbance or load torque. As seen in Figure 5.2, the load torque acts

as an external and unknown input. Some researchers have simplified the problem by

load
torque

reference plant

input ~ Plant= outputs__..
Controller Inverter

1-- r--1 current controller
~ control induction motor

I inputs

Figure 5.2: Induction motor control model

assuming that the load torque depends only on the speed, which is valid for pump and

fan loads [45]. However, this factor severely limits the applicability of the drive. To

be more general, the ANN controller must be able to handle unknown step changes in

load torque.

92

One of the chief difficulties in controlling an induction motor with an ANN is that

an induction motor requires sinusoidal inputs. This usually means that the ANN must

produce smooth sine wave references which vary in magnitude and frequency to im­

plement the control. For example, a vector controller produces stationary frame direct

and quadrature axis reference voltages or currents, which are subsequently converted

to three-phase references. If an ANN has to mimic the vector controller, it must also

produce the same outputs. However, producing direct and quadrature axis references

which are sinusoidal in shape and exactly 90° apart is no easy task. Thus it is very

difficult to even run the induction motor at any speed using an ANN, let alone control

the speed.

A second factor which contributes to this difficulty is the inverter which is required

to supply the induction motor with three-phase voltages. The switching property of

the inverter creates a lot of ripple and non-linearity which would severely hamper the

operation of the ANN, since the ANN would require current or voltage feedback. This

strategy was tried out in simulation, whereby an ANN was trained to mimic a vector

control algorithm block, but failed to run the induction motor even after extensive

training.

5.2 ANN based direct adaptive control of induction

motor

Since the induction motor dynamic model is well known, it makes sense to use a control

strategy which incorporates this knowledge, rather than treating the induction motor

as a black box. Direct adaptive control offers a way of doing this, by using the plant

Jacobian in ANN training. A block diagram of this strategy is shown in Figure 5.3 [62}.

93

Reference

Model

Re ference error ,----------------- I: ,
"

;:
A~"X Plant

r Controller

Figure 5.3: Direct adaptive control using ANN

For induction motor control, the plant consists of the induction motor and the in­

verter along with the current controller. Thus, the plant ha.s just two inputs, which are

the stationary frame, d-q axis reference currents. For simplicity, the inverter and cur­

rent controller dynamics can be ignored, because in an ideal case the current controller

and the inverter just supply the induction motor with the desired currents.

To derive the adaptive control strategy with ANNs, we have to consider the speed

error which is given by

• ewr = Wr - Wr (5.3)

where Wr • is the reference speed and Wr is the actual speed. A cost function is computed

from the speed error, and this can take various forms, though a standard form used is

1 2 :J = -ewr (5.4)
2

For the output layer neurons, the weight increment is given by

8:1
-TJ(-)

aw;i

94

= -TJ(8:1)(8ewr)(aui) (5.5)
8ew., aui awji

where TJ is the learning rate, wii is the z-th weight of the jth neuron in the output layer

and ui is the jth input to the plant.

Equation (5.5) can be further simplified as

~Wji = -TJ(ew,.)(- 8wr)(8ui)
aui awji

) 8wr) 1

- -TJ(ew,. (- 8u . ~ (neti)(Yi)
J

- 77(6i)(Yi)

(5 .6)

(5.7)

(5.8)

where ~ represents the neuron activation function and cSi is the local gradient given by

awr I)

cSj = ewr(au .)~ (netj (5.9)
J

and Yi is the output of the ith neuron. Once the local gradient for the output neurons

is known, regular backpropagation can be used for computing the weight increments

for the hidden layer neurons.

The main idea behind on-line training using direct adaptive control is to compute

the local gradient, using the plant Jacobian (- aawr). This requires a knowledge of
Uj

the plant dynamic model, in particular the dependence of the speed on the stationary

frame d-q axis stator currents. From the earlier work on speed estimation, we have an

expression for the induction motor speed of the form

1 912 + 922

Wr = p It'}.+ ll (5.10}

where,

91 - -[a2i:U - R,.Ltiu + R,. J Vu - R,.R~ I iu + LrVu - R,Lria.,} (5.11)

92 - [u2i~1 - R,.L,iqa + R,. I Vq1 - R,.R11 I i 9, + LrVq11 - R,Lriq11 } (5.12)

It - ~i9, + Lr I Vq11 - R,Lr I iq• (5.13)

h - ~iu + Lr J Vu - R.Lr J it~a {5.14)

95

In the above equations, rr = Lm 2 - LrLs, where Lm is the magnetizing inductance and

Lr, L5 are the rotor and stator inductances respectively. Also, i:U and i~5 refer to the
d" d"

fi . d . . f . d . . lds lq_,
rst time envat1ves o ld.f an lqs, I.e. dt' Tt·

tlT d b • • C 8Wr d 8Wr C d • 1 b . . vve nee to o tam expressions ,or -
8

. an !l.: 10r a apt1ve contra ecause tt 1s
"~d.! tF'q"'

assumed that ids ~ id., and i9_, ~ i;5 , assuming a good current controller and inverter

combination.

Equation (5.10) can be represented as w. = ~ J!i. where both N and Dare func­

tions of id.! and i 9.,, given by N = g 1
2 + 922 and D = j 1

2 + /22
• Applying the chain-rule

differentiation, we get

1 {D 1 8N 8D
- 2P v N D 2 (D aid.! - N 8id.!)

. 8gl 8g2 8ft 8!2
Thus, we need to find expressiOns for -

8
. , -

8
. , -

8
. and !l.: •

'~d.! lq_, lq_, v•u

1 891 · fun · r · ., d I · d h . 8id.!: 91 1s a etlan o ld-9, "u an 'lu an t us,

8g1 8g1 m:U 8g1 8i!Ui
~ = [LrRs + R,.L_,] + (!:1.:/)(!:1.:) + (~)(~)
Uld.! fJ'd.! Vld.! U'ldJi lndJ

96

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

where iui = f iu

8gl -cr (5.22)
aid.,

-

8id., (8id.,) I (8iu) (5.23) -
8iu &t EJt

- ,a;)l(i~.,) (5.24)

8g1
Rs.R,. (5.25)

8iui
-

8iui (aid.Ji) I (Bid.!) (5 .26) -
8iu EJt EJt

iu
(5.27) - .,

1.cU

(5.28)

a!h a2 (5.29)
8i' -

qs
a·' (8i~.,) I { 8i9,) 'tqs

- (5.30)
&iq, at &t

- (a~.,)l(i~.,) (5.31)

8g2 -R,Rr (5.32)
8iqsi

-
8iq.,i

- (mq.,i) I (8iq.,) (5.33)
8iqs 8t &t

-
iq.,

(5.34) .,
'tq!J

where i9.,i = f i 9.,

8ft I . fun . f . d J . 3. -.-: l lS a CtlOD 0 lq.s an lq11
8iq,

(5.35)

97

As in the previous case,

8ft
-LrR$

&iqai
-

8iq$i '&qa
-8iq,

.,
'&q&

8!2
4. - · h is a function of iris and J iris

8id.s.

8!2 = 2 (8!2)(&id.si)
!l-: (j + !l-: !l-:
u ·'d& U'fbi U'd&

8!2
-LrR,

8ict.ti
-

Bict.ti id&
-

8ict.t
.,
'ct.t

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

From the above equations, we can see that we have all the terms required to compute

equations (5.17) .. . (5.20) 1 and hence obtain expressions for equations (5.15) and (5.16) .

Thus, the plant Jacobian can be computed for direct adaptive control using ANNs.

However, as is quite obvious from the above, this method is computationally quite

involved. Furthermore, this method was tried out in simulation, but the system became

unstable and the induction motor was unable to run at a sustained speed and kept

oscillating around zero speed. Thus, this method was not investigated further, though

it is being reported for the sake of completeness.

5.3 Off-line control of induction motor using ANN

This section discusses a hitherto unreported scheme of induction motor control - one

using a single ANN for control with only off-line training. To date, the author has

not come acr055 a single satisfactory scheme in which complete control of an induction

98

motor has been executed using only one or more ANNs and without any conventional

controller. In the relatively few papers that discuss induction motor control using

ANNs, the authors have used the ANNs to assist an existing controller, or at best,

implement a portion of the control. In the off-line control strategy which is consid­

ered here, the ANN is trained to mimic a rotor field-oriented control strategy, which

produces stationary frame direct and quadrature axis current references at its output.

These references are converted to three-phase quantities by a simple transfonnation.

Thus, for all practical purposes, the control problem is converted to a system identifi­

cation problem.

The main benefit of using off-line control is that for running the system in real-time,

the computationally intensive backpropagation algorithm does not have to be executed.

This results in a major saving in execution time, thereby enabling bigger networks to

be implemented. The next benefit is that the network can, in theory, be trained to

model a very efficient control algorithm like field-oriented control. In schemes which

backpropagate the speed error for on-line training, the resultant control may not be as

efficient as field-oriented control and might be closer to simple PI based control or V /f

control.

It has been pointed out in section 4.3 that it is very important to present the inputs

to an ANN in a form that simplifies the mapping that the ANN is required to learn.

In the case of the speed estimator discussed in section 4.4, the sinusoidal inputs were

transformed from DQ to MF to simplify the mapping for the ANN. For the control

problem, both the inputs and outputs are sinusoidal, even in steady state. However,

it was felt that here also the mapping could be simplified if this sinusoidal nature

could be suppressed, since control is actually executed by varying the magnitude and

frequency of the reference outputs, depending on the magnitude and frequency of the

inputs to the controller. Thus, in this work the following block diagram is used for

99

training purposes: As seen in this block diagram, the outputs of the vector controller~

i •
J;,.m1

iaa id.---
DQ

w· Vector Controller to I~ r
MF w,

~;.
.....__

r------- ,/ , ----y , ,
, , , ;: ,....---,

MF

ANN to

DQ DQ .___
to
MF

L....-

Figure 5.4: ANN training for off-line control

which are the direct and quadrature axis stator current references, are converted from

DQ to MF and then used as desired outputs for ANN training. The ANN receives

all the signals that the vector controller receives. However, to facilitate training, the

current feedback is converted from DQ to ~IF. After training, the ANN is run in the

feedforward mode and its outputs are converted from MF to DQ and then handed over

to the inverter-motor block.

5.3.1 Training considerations

Since an inverter forms a necessary component of a drive system, it was decided to

implement a three-phase current amplifier for reasons mentioned in section 4.2. This

is simply a block which supplies the motor with three-phase currents identical to the

current references. This block is implemented as the class c:urrent_amplifier in the

simulator and has been discussed in section 3.3. With this arrangement, the current

controller and the inverter can be bypassed, because the three-phase current amplifier

100

acts like an ideal current source which injects currents into the induction motor. In

effect, it functions like a power amplifier, boosting the power of the reference signals

and then supplying the induction motor with these boosted signals.

The next thing to consider is that the ANN must receive all the inputs that the

vector controller receives, plus some previous values. The vector controller is first run

with the current amplifier to collect data for training the neural network and a block

diagram of this process is shown in Figure 5.5. If the ANN receives current feedback,

w;
--~

Vector
Controller

Figure 5.5: Data collection for ANN training

like a vector controller, then the network would have to be a feedback network and not

simply a feedforward one, because the network output would be fed back to the input

after a unit delay. Thus, the network would have to be trained in the series-parallel

mode and, after training, run in the parallel mode. It is known that the series-parallel

mode is preferrable to the parallel mode [50], and it would be desirable to be able to

run the ANN in a series-parallel mode after training. This would entail avoiding the

output feedback. This, however, is not possible in most cases, since, after training,

the ANN no longer has access to the training data (or the "right answers") and hence

the ANN outputs must be fed back after a delay to obtain the previous values of the

101

outputs. This would make it a parallel system while running, increasing the chances

of instability, because of the feedback present.

In the current reference model of the induction motor, the motor receives current

inputs from a current source and the stator voltages are determined by the currents

flowing into the motor. Thus, the stator voltages should contain information about the

stator currents. This, in turn, implies that stator voltages can be provided as inputs

to the ANN instead of stator currents, making the ANN a strictly feedforward one.

Something else to consider is that whereas 6.8 attains both positive and negative

values, the magnitude is always positive. Thus, the output neuron which produces

the magnitude of the reference current could have an activation function which does

not permit negative values, thereby reducing the range of possible incorrect values

produced by the network. The other output neuron which produces the A8 of the

current reference should have a different activation function such that negative outputs

are permitted.

For training purposes, it should be noted that a single output network is usually

easier to train than a multiple output network, because in a multiple output network,

there is interference from other outputs when the error is being backpropagated. Thus,

instead of having a dual output neuron, it might be more desirable to have two single

output networks. However, having two ANNs in the simulation would imply that a

backpropagation algorithm block would be required for each of them, and, if they both

receive the same inputs, then these would have to be supplied individually to both,

increasing the program length and complexity.

102

5.3.2 Fully-connected network training

The number of weights in a three-layer fully-connected network is given by

Nwegbts = (I + O)H (5.41)

where I is the number of ANN inputs, His the number of neurons in the hidden layer

and 0 is the number of ANN outputs.

A 13-75-2 ANN was tried out for the purpose of control. The magnitude output neu­

ron has a "LOGSIG" activation function for reasons outlined earlier in subsection 5.3.1.

and this function is given by

1
!LoGstG(net) = 1 + e-Pnet (5.42)

Every other neuron in the network has a "TANSIG" activation function given by

1 _ e-Pnet
fTAXSIG(net) = 1 + e-Bnet (5.43)

The parameter {3 was chosen to be 0.8 for the 2 output neurons and 0.9 for every other

neuron. This network structure was chosen after a lot of trial and error, in an attempt

to optimize the performance. It should be noted that it is not possible to implement

this kind of a network using a commercially available ANN simulator like the MATLAB

neural network toolbox, because of the possibility of having different neurons within

the same layer, each with a different learning rate. The inputs to the ANN are

• Voltage magnitude and !:18 and 2 previous values of each

• Speed feedback and 3 previous values

• Actual speed error (ramp generator output minus speed feedback) and 1 previous

value

103

• Speed reference

This set of inputs was chosen carefully, based on the approximate NAR.viAX model of

the vector controller. Usually, in ANN training, there are no fixed rules for choosing

the network structure, learning rates, number of training epochs, training data set and

so on. The researcher must try different combinations and use various heuristics and

experience in an attempt to come up with an optimum network, which is efficient in

tenns of size and perfonnance. The structure of the above network is by no means the

best one, and theoretically, one should be able to get a network which approximates

the desired function arbitrarily closely.

The data set was obtained by running the induction motor under vector control with

step changes to reference speed and load torque. The induction motor parameters are

given in Table 5.1 [41]. An important point to note is that the ANN itself does not

need any machine parameters for the purpose of training, because it observes only

the motor inputs and outputs. The machine parameters have been used only for the

purpose of simulating the induction motor.

The vector control algorithm runs at 500#-£5 sampling interval, and the rest of the

simulation runs at a lOJJS sampling interval. To nullify the effects of inverter ripple, a

current amplifier block was used instead of the current controller and inverter combi­

nation. Apart from the speed reference, the output of a romp generator bas also been

provided to the ANN to improve learning. This ramp generator is identical to the block

which ramps up the speed reference inside the vector controller. A block diagram of

the scheme is shown in Figure 5.6.

For generating training data, the switch "S" is thrown to the top position, connect­

ing the vector controller to the current amplifier. After the data is collected, training

of the ANN is perfonned off-line, and the switch "S" is then thrown to the bottom

104

Table 5.1: Induction motor parameters used in motor control simulation studies

\J Parameter J Symbol \ Value IJ

Power Rating 2.0 kW

Voltage 208V

Connection type y

Stator Resistance R, o.6o n
Rotor Resistance Rr oAo n
Stator Inductance L, 72.7 mH

Rotor Inductance Lr 72.7 mH

Magnetizing Inductance Lm 69.8 mH

Moment of Inertia J 0.0357 N- m2

Dam ping Coefficient B 0.0030 N- m2 fs
Pole Pairs p 2

105

Vector
Control

w; Ramp
Gen

s
.---4 Curr.

-~Amp.

Desired outputs
for ANN training

.I'L..o"--

MF
to

DQ

w,.

To ANN
inputs

Figure 5.6: Current amplifier based scheme for ANN control of induction motor using

voltage feedback

106

position, handing over the reins to the ANN and disconnecting the vector controller.

It must be remembered that the inputs and outputs have to be normalized to a range

of ±1 before being handed over to the ANN.

The ANN was trained for 50 epochs on a training data set with 1690 points which

were randomly shuffled during training. The learning rate of all neurons was 0.20. The

performance of the ANN controller is shown in Figure 5. 7. Here, the reference speed

undergoes a step change at t = 1.0 s, and there is a step change in load torque at t =

2.0 s. As can be seen from the figure, the performance of the ANN is unacceptable as

a controller. The SSE during ANN training and the actual ANN outputs are shown in

Figures 5.8 and 5.9 respectively.

5.3.3 Split-ANN training

One of the main problems with using a fully-connected ANN is that the training for

the two outputs cannot be performed independently, thereby leading to less effective

learning. To circumvent this problem and still attain the convenience of using just one

ANN, a dual output split-ANN is proposed as shown in Figure 5.10. This network is

a special kind of sparse ANN architecture. As can be seen from the figure, both the

subnetworks can be trained separately, by controlling their learning rates individually.

For example, if it is desired to train just one subnetwork, then the learning rates

of all the neurons in the other subnetwork can be set to zero, thereby preventing

any modification of the weights. Also, it can be seen from the figure, that both the

subnetworks may or may not have the same set of inputs. Thus, for all practical

purposes, we have two separate networks which can be trained separately if desired,

for optimum performance, without any interference from each other, and with the

convenience of having just one training algorithm block. Also, extending the principle

107

150r-------~r--------,--------~--------~---------.--------,

Reference speed
100~----------------~

-100

-150~------~~------~--------~--------_.--------~--------~
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 5. 7: Performance of the fully-connected 1~ 75-2 ANN controller using a current

amplifier: Step change in speed reference at t = 1.0 s and step change in load torque

at t = 2.0 s

108

SSE value (Magnitude)
Sr-----r-----~----~----.------r-----r----~----~----~-----.

4.8

4.6

44

4.2

4

5 10 15 20 25 30 35 40 45 50
Number of epochs

SSE value (Delta theta)

1 6

5 10 15 20 25 30 35 40 45 50
Number of epochs

Figure 5.8: Sum squared error during training of 13-7fr.2 ANN controller using a current

amplifier

109

Reference current magnitude (Amps)

1.5
Time {sec)

2

Reference current Delta theta (radians)

2.5 3

0 .2~--------r---------~--------~--------~---------r--------~

1.5
Time (sec)

2 2.5 3

Figure 5.9: Outputs of the fully-connected 13-75-2 ANN controller using a current

amplifier: Step change in speed reference at t = 1.0 s and step change in load torque

at t = 2.0 s

110

further, more single output networks can be added in just one physical ANN.

Figure 5.10: Dual output split-ANN for induction motor control

5.3.4 Voltage feedback scheme with current amplifier

Keeping in mind the various constraints discussed in the previous section, a dual output

split-ANN has been trained to mimic the vector controller. The number of weights for

a three-layer split-ANN is given by

Nweigbts = (I+ l)H (5.44)

where I is the number of ANN inputs, and H is the number of neurons in the hidden

layer. It should be noted that in a split-ANN, the number of weights does not depend

on the number of ANN outputs.

The structure of the ANN chosen was 13-80-2, so that the number of weights is

roughly equal to that of the network presented in subsection 5.3.2. The inputs to the

111

ANN are the same as those in subsection 5.3.2. The scheme is similar to the one shown

in Figure 5.6, except for the fact that a split-ANN is used instead of a fully-connected

network. The network was initially trained on a data set comprising of 1690 points, for

60 epochs with a learning rate of 0.01 for all neurons. After this, only the subnetwork

producing the magnitude output was trained for another 100 epochs with the same

learning rate and learning was blocked for the tl.(J network. The plot of the '"sum

squared error" during training is shown in Figure 5.11. This quantity is the sum of the

squares of the nonnalized output errors for a single network output, computed over

the entire epoch.

Figure 5.12 shows the ANN perfonnance for step changes in speed reference. The

step changes at zero and 1 s have been included in the training data set, and as can

be seen from the plot, the ANN responds well to these changes in speed reference.

However, the next step change is one that hasn't been included in the training data

set. The network perfonnance is quite good in this case also, thereby proving that the

network is able to generalize effectively. The actual network outputs for the above case

are shown in Figure 5.13.

Next, the response of the ANN to a step change in load torque was tested by

applying a step change in load torque from 9.3% to 93.0% rated torque at time= 2.0

sees. The response of the ANN controller is shown in Figure 5.14. As can be seen from

the figure, the ANN response is very quick, leading to a speed recovery that is faster

than regular vector control. The ANN outputs for this case are shown in Figure 5.15.

112

SSE value (Magnitude)
80~----~-------r------~------~------r------,------~------,

70

60

50

40

30L-----~------~------~------~------L-----~------~------~
0 20 40 60 80 100 120 140 160

Number of epochs

SSE value (Delta Theta)
25r-----~-------r------~------~------~----~-------r------,

20

15

10

5

0~----_.·------~------~------~------~----~------_. ______ ~
0 20 40 60 80 100 120 140 160

Number of epochs

Figure 5.11: Sum squared error during training of the 13-8~2 split-ANN controller

using a current amplifier

113

u
CD
~
1:)

~

160~--------r---------~--------.---------,---------~--------·

140

120

100

80

60

40
Adual speed

1.5
nme (sec)

2 2.5 3

Figure 5.12: Performance of the 13-80-2 split-ANN controller using a current amplifier:

Step changes in speed reference at t = 1.0 and 2.0 s

114

Reference current magnitude (Amps)

30~--------r---------~--------Jr---------r---------.---------.

25

5~------~--------~--------~--------~--------~--------~
0 0.5 1.5

Time (sec)
2

Reference current Delta theta (radians)

2.5 3

0 .2~--------r---------~--------~--------~--------~--------~

0.1

0.5 1.5
Time (sec)

2 2.5 3

Figure 5.13: Outputs of the 13-80-2 split-ANN controller using a current amplifier:

Step changes in speed reference at t = 1.0 and 2.0 s

115

160.-------~--------~--------~---------r---------r--------~

140

120

60

40

20

Actual speed

0.5 1.5
Time (sec)

2 2 .5 3

Figure 5.14: Perfonnance of the 13-80-2 split-ANN controller using a current amplifier:

Step change in speed reference at t = 1.0 sand step change in load at t = 2.0 s

116

Reference ament magnitude (Amps)
30~--------r---------~--------~--------,----------r--------~

5~--------~--------~--------~--------~--------~--------~
0 0.5 1.5 2 2.5 3

Time (sec)

Reference current Delta theta (radians)
0.2 ,...-------~------..,..---------""T'""--------r------,---------,

0.15

0.1

0.05

0.5 1.5
Time (sec)

2 2.5 3

Figure 5.15: Outputs of the 13-8~2 split-ANN controller using a current amplifier:

Step change in speed reference at t = 1.0 sand step change in load at t = 2.0 s

117

5.3.5 Voltage feedback scheme with PWM voltage source in­

verter

The scheme described in section 5.3.4 used a current amplifier to simplify the system for

establishing the theoretical foundation of the scheme. The scheme in this subsection is

similar to the previous scheme except for the fact that the current amplifier is replaced

by a current-controller and an inverter combination [63]. A PWM current controller is

chosen because it has a constant switching frequency. This feature is very important

because the voltage feedback needs to be filtered since it is in the form of inverter

output pulses and cannot be used directly for converting to the magnitude-6.9 format.

A block diagram of the PWM controller is shown in Figure 5.16.

Tt
T4

i; +

+ Crt CrJ lrs
TJ

T6 v.,c

T4 T6

i~ + Ts

T2
iCl ill ic

Triangular carrier

Figure 5.16: PWM current controller

The vector controller is run for step changes in load and speed reference, and all

the ANN inputs and desired outputs are collected in a data file. The vector controller

118

performance is shown in Figures 5.17 to 5.22. The following speed and torque changes

are used: A speed ramp from 0 to 100 rad/s in 0.5 seconds, a constant speed of 100

rad/s for 0.5 seconds, a speed ramp from 100 to 150 rad/s in 0.25 seconds, a constant

speed of 150 rad/s for 0.75 seconds and a step change in load torque from 1N-m to

lON-m at t = 2 s. Figure 5.18 shows the reference and actual torque (as computed

within the vector control algorithm), and the effect of the P~I voltage source inverter

is clear in this figure. The ripples in the torque are due to the fact that the current is

not a smooth sinusoid. Figure 5.19 shows the reference and actual value of imr~ which

is the flux component of the current. It should be noted that under ideal field-oriented

conditions, the flux and torque should be completely decoupled, but this is not the case

as can be seen in this figure. A step change in speed reference and a step change in

load torque cause the flux component of the current to deviate from its reference value,

indicating a coupling between the flux and the torque. The main reason for this is that

the sampling time for vector control is 500J.&s. Reducing the sampling time would lead

to more effective decoupling.

The inverter voltage for phase a, before and after filtration, is shown in Figure 5.20.

Filtration plays a very important role in inverter based ANN training, because the

inverter voltage has discrete values, and it is difficult to see any trend from a few

previous values. A first order digital filter is used for filtering out the ripple, in this

case. The reference and actual current for phase a are both shown in Figure 5.21. The

distortion in the actual current waveshape is probably due to the fact that the PWM

current controller functions in the over modulation range, for a part of the cycle.

Figure 5.22 shows the filtered and unfiltered versions of the reference currents con­

verted to magnitude-~8 using the "DQ-MF'' block. As can be seen in this case, D.8

has a lot more ripple than the magnitude, necessitating another filter at this stage.

Figure 5.23 shows the same quantities for the voltage feedback. Here again, it can be

119

(.)

~
1::1

~
1::1

8.
(fl

160

140

120

100

80

-20~--------L---------L---------~--------~--------~------~
0 0.5 1.5

nme (sec)
2 2.5 3

Figure 5.17: Performance of induction motor drive with field-oriented control (speed

response)

120

25r--------,--------~---------r---------r--------.---------,

20

Reference torq
15

5

0

-5~------------~------------~----------~------------._----------~--------~
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 5.18: Performance of induction motor drive with field-oriented control (torque

response)

121

7~--------~----------~--------~--------~.~--------.---------~

Reference imr
s I -

Actual imr

2 -

1~--------~---------L--------~----------~--------~--------_j
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 5.19: Performance of induction motor drive with field-oriented control (imr

response)

122

300r-------~------~------~------,-------.--------.-------r-------,

Inverter voltage

200

-300~----~-------L------~------~----~------_.------~----~
0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88

Time (sec)

Figure 5.20: d-axis inverter and filtered voltages

123

20

10

c
~ 0
~
u
CD

"' Ill -a.
I

Ill -10

-20

0.81 0.82 0.83 0 .84
nme (sec)

0.85 0.86 0.87 0.88

Figure 5.21: a-phase reference and actual currents with rotor field-oriented control

124

seen that another stage of filtering is required to make the voltage feedback suitable

as ANN input. A block diagram of this scheme is shown in Figure 5.24.

Filtered vs. unfiltered current magnitude (Amps)
30~------~--------~--------~---------r---------.--------.

0.5 1.5
Time (sec)

2

Filtered vs. unfiltered current Delta theta (radians)

2.5 3

0.25 ,...---------,----~-----~-------r--------.--------.

0.2

0.1

0.5 1.5
Time (sec)

2 2.5

Figure 5.22: Generation of desired outputs for ANN training

3

The PWM voltage source inverter is run at a switching frequency of 7 kHz, and the

amplitude of the triangular carrier signal is lOV. The transistors used in the simulation

have a current rating of 150A, and a voltage rating of 600V. If the current through, or

the reverse voltage across, any transistor exceeds these ratings, then the inverter block

invokes the error module and terminates the simulation. It should be noted that the

125

Filtered vs. unfiltered voltage magnitude (Volts)
100r-------------------~~--------.---------~----------~---------,

80

oL---------~--------~--------~----------~--------~--------~
0 0.5 1.5

Time (sec)
2

Filtered vs. unfiltered voltage Delta theta (radians)

2.5 3

0.06~--------.----------.---------.----------r---------,---------~

-0. 01~--------~--------~--------_.--------~~--------._--------~ 0 0.5 1.5
Time (sec)

2

Figure 5.23: Voltage feedback for ANN training

126

2.5 3

Vector
Control

w· .,. Ramp
Gen

s

desired outputs

for training

MF
to

DQ

Curr.
cont.
& Inv

w.,.

To ANN
inputs

Figure 5.24: Current controller and inverter based scheme for ANN control of induction

motor using voltage feedback

127

dead-time needed between the two transistors of the same leg is not considered because

this would drasticallv slow down the simulation. Also, the transistor is considered an

ideal switch and small non-idealities like the forward voltage drop are not modeled in

the simulation.

The network was initially trained on a data set comprising of 1630 points, for 20

epochs with a learning rate of 0.01 for both output neurons, 0.50 for the magnitude

subnetwork and 0.05 for the b&8 subnetwork. The plot of the '1ium squared error"

during training is shown in Figure 5.25.

After training, the network performance was tested by letting the ANN run the

induction motor for various changes in speed reference and load torque. The ANN

output is passed through the "MF-DQ" block to convert it to d and q-axis currents,

which are then subsequently converted to three-phase quantities. There is no filtration

required at this stage. Figure 5.26 shows the ANN performance for step changes in

speed reference. The step changes at zero and 1 s have been included in the training

data set, and, as can be seen from the plot, the ANN responds well to these changes

in speed reference. However, the next step change is one that has not been included in

the training data set. The network performance is quite good in this case also, thereby

proving that the network is able to generalize effectively. However, the network has

a peak steady state error of about 5.5%. This may not be precise enough for a high

perfonnance drive, but it certainly fares well in comparison to traditional open-loop

V /f drives. It should be noted that this network is by no means the most optimum one,

and better training and a more extensive training data set might lead to much better

performance. The actual network outputs for the above case are shown in Figure 5.27.

Next, the response of the ANN to a step change in load torque was tested by

applying a step change in load torque from 9.3% to 93.0% rated torque {lNm to lONm)

128

SSE value (Magnitude)
ao
70

60

50

40

30

20

10
0 2 4 6 8 10 12 14 16 18 20

Number of epochs

SSE value (Delta Theta)
10

8

6

4

2

0
0 2 4 6 8 10 12 14 16 18 20

Number of epochs

Figure 5.25: Sum squared error during training of the 13-80-2 split-ANN controller

using an inverter

129

160r-------~~------~~------~~-------,---------,---------,

140

120

AduaJ speed

-20~------~--------~--------~--------~------~~------~
0 0.5 1.5 2 2.5 3

Time (sec)

Figure 5.26: Performance of the 13-80-2 split-ANN controller using an inverter: Step

changes in speed reference at t = 1.0 and 2.0 s

130

30

29

28

27

26

~ 25

24

23
0

r

0.5

Reference current magnitude (Amps)

1.5
Time (sec)

2

Reference current Delta theta (radians)

2.5 3

0.2.---------~--------,----------r---------r---------,--------~

0.15

0.5 1.5
Time (sec)

2 2.5 3

Figure 5.27: Outputs of the 13-80-2 split-ANN controller using an inverter: Step

changes in speed reference at t = 1.0 and 2.0 s

131

at time 2.0 sees. The response of the ANN controller is shown in Figure 5.28. As can

be seen from the figure, the ANN response is very quick, lea.ciing to a speed recovery

that is faster than regular vector control. The fast recovery is due to the fact that the

ANN is running the motor in "overdrive". The ANN outputs for this case are shown

160r-------~---------r---------r--------~--------r-------~

-20~------~--------~--------~--------~--------~-------J
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 5.28: Performance of the 1~80-2 split-ANN controller using an inverter: Step

change in speed reference at t = 1.0 sand step change in load torque at t = 2.0 s

in Figure 5.29.

132

30

29

28

27

26

25

24

23
0

(

0.5

Reference ament magnitude (Amps)

1.5
Time (sec)

2

Reference current Delta theta (radians)

2.5 3

0 .2~--------~--------~---------r--------~---------.--------~

0.15

1.5
Time (sec)

2 2.5 3

Figure 5.29: Outputs of the 13-80-2 split-ANN controller using an inverter: Step change

in speed reference at t = 1.0 sand step change in load at t = 2.0 s

133

5.4 On-line training

The basic idea behind on-line control is to use the speed feedback and reference speed

to get the speed error, and use this speed error for adjusting the weights of the ANN

on-line using backpropagation. This requires estimating the plant Jacobian using a

method similar to the one outlined in section 5.2. Since the ANN controller produces

the current reference magnitude and ~(J, partial derivatives of the motor speed Wr

with respect to these quantities would be the two elements of the Jacobian vector. The

process of computing these quantities is quite involved, and as seen in section 5.2 , would

result in a large increase in computation time for real-time implementation. However,

even if the sign of the Jacobian is known, it is enough for running backpropagation,

because the direction of the gradient is then known. For this work, both elements in

the Jacobian vector were assumed to be +1, resulting in a lot of simplification.

5.4.1 Voltage feedback scheme with PWM voltage source in­

verter

The response of the ANN controlled induction motor drive with a current controlled

PWM VSI is shown in Figure 5.30. In this figure, the drive is run with off-lin2 control

till the motor reaches steady state. It has been seen that there is a steady state error

with off-line control, and it is difficult to nullify this error. On-line training is switched

on at t = 1.0 s, and it can be seen that the drive reaches its desired steady state at

about t = 1. 7 s. On-line training is switched off at t = 2.0 s, after the speed has

reached its steady state value. The learning rate is kept very small (0.0001 for all the

neurons) to prevent oscillations about the reference speed. The actual ANN outputs

for the above case can be seen in Figure 5.31. Here, it can be seen that the magnitude

134

~
II)

i;
~

120r-------~,---------r---------r---------~--------.---------,

,._ Reference speed

100 1 ---rrr:::v===============-==--=-------"1
80

60-

401-

Actual speed
20

)
-20~------~~---------~--------~--------~--------~------~

0 0.5 1.5
Time (sec)

2 2.5 3

Figure 5.30: Perfonnance of the 13-80-2 split-ANN controller using an inverter: On-line

training implemented from t = 1.0 s tot = 2.0 s

135

output saturates at its peak value, and the ANN essentially runs on frequency control

during on-line training.

~27
E
< 26

24

Reference current mag"itude

23~--------~--------~--------~--------~--------~--------~
0 0 5 1.5 2 2.5 3

Time {sec)

Reference current delta theta
0.12 .-----------,........--------,........--------~---------r---------""T"""---------.

fiJ
1::

0.1

0.08

~ 0.06
~

0.04

0.021-

0~--------~--------~--------~--------~--------~--------~
0 0.5 , .5

Time (sec)
2 2.5 3

Figure 5.31: Outputs of the 1~80-2 split-ANN controller using an inverter: On-line

training implemented from t = 1.0 s to t = 2.0 s

5.4.2 Effect of parameter variation

This subsection studies the effect of induction motor parameter variation when the

ANN controller is functioning under on-line control. For this simulation experiment,

136

on-line training was initiated at t = 1.0 s like before, and was terminated at t = 2.5 s.

However, this time both the stator and rotor resistances are increased by 100% linearly

from t = 2.0 s tot= 2.5 s. The performance of the ANN is shown in Figure 5.32, and

the actual ANN outputs are shown in Figure 5.33. As can be seen from these figures,

~
~
"D
~

120r--------.---------,---------.--------~--------~--------~

A Reference speed
100r---~'\/~-~========~===========-=-------------------1

80

60

40r

Actual speed
20~

0

-20~------~--------~--------~--------~--------~--------~
0 0.5 1.5

Time (sec)
2 2.5 3

Figure 5.32: Performance of the 13-80-2 split-ANN controller using an inverter: On-line

training implemented from t = 1.0 s tot= 2.5 sand linear change in motor parameters

from t = 2.0 s to t = 2.5 s

the ANN performance is quite good even under such a drastic change in parameters. It

should be noted that in real applications, one would usually not encounter such a large

137

Magnttude
30

29 -
28~ -

~27

~J
E
c(26

25

24 ~ -

23
0 0.5 1.5 2 2.5 3

Time(sec)

Delta theta
0.12

O.H·

0 .08~
eft

lii
iS 0.06
~
0.04~

0 .02~

0
0 0.5 1.5 2 2.5 3

Time (sec)

Figure 5 .. 33: Outputs of the 13-80-2 split-ANN controller using an inverter: On-line

training initiated at t = 1.0 sand linear change in motor parameters from t = 2 .. 0 s to

t = 2.5 s

138

change in motor parameters, and thus the performance would be better than shown

here.

5.5 Summary

This chapter outlines a major portion of the theoretical work done for this thesis. The

issues involved with ANN control of induction motor have been discussed first, and the

basic equations for a traditional direct adaptive control method using ANNs have been

derived. These equations are cumbersome and need a lot of computation time. The

scheme itself is unstable and an ANN trained with this scheme was unable to even run

the motor, let alone control the speed.

The next method proposed in this work is off-line control of induction motor using

ANNs. The problems with off-line control are discussed~ along with some benefits.

After this, a simplified off-line control strategy is presented in which an ANN has

been trained to mimic a vector controller. Simulation results for the same are also

presented. Next, a full fledged ANN based induction motor control using a PW:\1

voltage source inverter is presented along with simulation results. On-line control is

discussed, and a computationally simple strategy for direct adaptive on-line control

is presented. Simulation results for the same are also presented. It is shown that

the on-line strategy is quite robust even in the presence of large changes in motor

parameters.

The control schemes outlined in chapter fulfill a major objective of this work, viz.

to control an induction motor using only an ANN and no other controller. It would

be desirable to verify this strategy in real-time, but this could not be tried out due to

limitations in available resources. However, keeping in mind the objective of experi-

139

mental verification of the ANN based schemes, the next chapter discusses a real-time

implementation of an ANN based speed estimator discussed in the chapter 4.

140

Chapter 6

Experimental Verification of

ANN-based Speed Estimation

The previous two chapters outlined the simulation studies which were undertaken as

part of this research work. The simulations helped to establish a theoretical foundation

for ANN based induction motor speed estimation and control. It has been noted earlier

that most of the work done on the application of ANNs to induction motor drives has

been simulation work, and very little experimental verification has been done. This

could be in part due to the fact that dedicated .-'\NN hardware is expensive and difficult

to acquire, and most sequential machines cannot handle in real-time the large number of

computations required for an average sized ANN. However, as part of this work, it was

decided that some of the simulation studies done earlier must be verified experimentally.

This chapter begins with a review of some of the commercially available ANN hardware

and discusses the nature and scope of the proposed experiments. It then outlines the

setup which was built for the experimental work. Finally, the experimental results are

presented to demonstrate close conformity between the simulation and the practical

141

implementation [64}.

6.1 A review of available ANN hardware

Some important benefits of using ANNs: which are cited by various researchers as justi­

fication for choosing ANN based methods, are inherent parallelism and robustness. For

many practical applications, however, these benefits and other requirements can hardly

be met by conventional algorithms running on sequential machines. Even though the

simulations help to validate the theory and can effectively demonstrate the ability of

the ANNs to map unknown nonlinear functions, the parallelism and robustness can

only be exploited with dedicated ANN hardware.

Over the last few years, the field of ANNs has matured considerably and has

prompted the development of both custom-built laboratory test benches as well as

some commercial hardware. These systems are extremely heterogeneous and range

from small systems for on-board applications to large computational servers often call

neurocomputers (65]. Figure 6.1 shows a classification of available ANN hardware. A.s

can be seen from the figure, implementations could be analog, digital, hybrid (mixed

analog and digital) and optical [66}. The last one is relatively new and still in the early

stages of development.

6.1.1 Optical implementation

Optoelectronic circuits that use optics for inter-connection provide the fastest way of

implementing ANNs. They do not suffer from connectivity problems, because light

emitted from different sources can cross without interfering, and thus the third dimen-

142

' Optical
Implementation

+
Standard
ML. FF

Neural Netrork Hardware

t t
Analog Digital

Implementation Implementation

l
t ' Cellular Neuromorphic

NN Designs

t
Hvbrid

Im piementation

Slice ::'vlultiprocessor Accelerator
Architectures Architectures boards

Figure 6.1: Classification of artificial neural network hardware

sian can be exploited to implement neural network functions, e.g., nonlinearity and

weight storage. Besides light sources and receptors, spatial light modulators are the

main component of optical systems. These can be used for storing weights, by chang­

ing the transparency or opacity of liquid crystal devices in proportion to the value of

the weight. An interesting application is the GaAs-based retina chip which provides

parallel image sensing and processing capability (66].

6.1.2 Analog implementation

Analog hardware is several orders of magnitude faster than digital, and can exploit

some of the inherent qualities of ANNs, e.g. large scale parallelism and nonlinearity.

However, analog hardware is very tricky to implement because of parameter spread in

large circuits. Creating an analog synapse involves the complications of analog weight

storage and the need for a multiplier linear over a wide range. Thus, like optoelectronic

implementations, analog hardware has not found very widespread use.

143

Analog designs come in various fonns. Some designs implement standard multilayer

feedforward networks. The Intel 80170NW ETANN (Electrically Trainable Analog

Neural Network) is one example. The design is quite flexible and allows for multiple

configurations including 3-layers of 64 neurons/layer, and 2-layers with 128 inputs

and 64 neurons. The ETANN is not designed for on-chip training, so a chip-in~the~loop

mode with a PC is necessary. Following off-line training, the network configuration and

weights are downloaded to the chip. Though this was probably the first commercially

available analog Al~N, Intel has since sold off its ANN division to Nestor Inc.

Cellular Neural Networks (CNN) are another kind of ANN, which are amenable to

analog implementation. In CNN, the individual neurons are influenced only by a local

neighbourhood of contiguous cells. This is a very attractive feature for hardware im­

plementation, as it alleviates the connectivity problem present in large fully-connected

multilayer networks. These are quite useful in certain image processing applications.

A few implementations of CNN chips have been reported in literature (66}.

Neuromorphic designs attempt to closely mimic the biological model of the neuron.

The Synaptics Silicon Retina [67] is an example of this design.

6.1.3 Digital implementation

Digital implementations of ANNs are the most common, primarily because of a large

existing digital infrastructure and compatibility with PCs and workstations. However,

digital implementations are much slower than analog or optical implementations.

Digital implementations of ANNs can be broadly classified as slice architectures,

multiprocessor architectures and accelerator boards [67]. Slice architectures provide

building blocks for constructing networks of arbitrary structure and size.The Micro

144

Devices :YID1220 was probably the first commercial neural network chip[8]. Each chip

has eight neurons with hard-limit thresholds and eight 16-bit synapses with 1-bit inputs.

~lultiprocessor architectures have multiple small processors on the same chip, and

each could perform the same or different computation depending on the hardware

architecture and the degree of programmability. Accelerator boards typically have a

single or couple of high performance processors (DSPs, RISC processors and so on)

and can conveniently plug in into the PC GPIB. The degree of programmability is

typically quite high, and many systems come with their own compilers for program

development.

Digital systems can be further classified according to various sub-criteria like numer­

ical representation, degree of parallelism and inter-processor communication network.

To simplify the dedicated ANN hardware, fixed point numerical representation with

reduced precision is often chosen. The degree of parallelism can vary widely from very

fine grain to coarse grain or even sequential in some cases. Massively parallel systems,

with a very fine grain of parallelism, can even map each synapse onto a simple processor

(also called a node occasionally}. :vlost moderately parallel systems map one or more

neurons onto each processor. Single instruction-stream, multiple data-stream (SIMD)

architectures often model one neuron per processor. In systems with a higher degree of

programmability, the mapping of neurons onto processors depends on the user's choice.

The inter-processor communication network could take many forms - bidimensional

mesh~ systolic ring, broadcast bus, linear array and so on.

6.1.4 Hybrid implementation

Hybrid designs attempt to combine the best of analog and digital techniques. Typi­

cally, the external inputs/outputs are digital to facilitate integration into digital sys-

145

terns, while internally some or all of the processing is analog. Examples of hybrid

architectures are the AT&T ANNA chip and the Ricoh RN-200 chip among others.

Table 6.1 (671 outlines some of the commercially available ANN hardware.

Typically, computation performance of hardware ANNs is measured in connections

per second (CPS), or connection updates per second (CUPS). Each of these might be

preceded by ~I or G, which stand for million and giga respectively. However, these

benchmark values may not be fair when comparing different systems. One reason is

that using a simpler numerical representation might speed up the number of CUPS,

but the training process as a whole might take longer, or it may not be as effective

as with a full floating point or double representation. Thus, it may not be easy to

compare the performance of ANN hardware based on a few simple metrics.

Another difficulty posed by ANN hardware is that it is not very standardized.

As the programmability of the system increases (to make it more flexible) , the speed

and degree of parallelism generally reduce. In fact, as Ienne et al [651 point out, in

some cases, dedicated ANN hardware might actually be slower or moderately faster

than a high performance serial workstation, or a high-end PC. Also, even though the

prices of ANN hardware have come down in recent years, they are still considerably

more expensive than serial hardware. In addition, the commercial market is still quite

volatile, and some ANN hardware has disappeared from the market after a brief stint.

Thus, buying dedicated ANN hardware is still a risky proposition, and the user must

weigh all the available options before spending time, money and effort in developing

ANN hardware based systems.

146

Table 6.1: Available ANN hardware [67]

Type Name Architecture Learning Neurons Synapses Speed

Analog Intel FdFwd, ~lL no 64 10280 2GCPS

ETANN

Synaptics N euromorphic no 48x48 Resistive Ina
I

\ Silicon Retina net II I

I

i

I
Digital NeuraLogix FdFwd, ~lL no 16 off-chip 300 CPS

NLX-420

HNC lO~NAP GP~SIMD,FP program lOOPE 512K off-chip 250~lCPS

64 ~CUPS

IBM RBF ROI 36 64x36 250k pat/s

ZISC036

~licro Devices FdFwd!~L no 1 PE 8 8.9~CPS

~lD-1220

Nestor /Intel RBF RCE,PNN 1PE 256x1024 1 40k pat/s

NilOOO

Philips FdFwd,ML no 16 PE 64 26M CPS

Lneur<rl

Siemens matrix ops no 16 PE 16 X 16 400MCPS

:MA-16

Hybrid AT&T FdFwd,~IL no 16-256 4096 2.1GCPS

ANNA

Mesa Research FdFwd,ML no 6 426 21GCPS

Neuroclassifier

Ricoh FdFwd,ML BP 16 256 3.0GCPS

Rl'l-200

147

6.1.5 Choice of hardware for real-time ANN implementation

The preceding subsections discuss some specialized hardware used for implementing

ANNs in real-time. As pointed out, commercial ANN hardware has not yet been stan­

dardized and is quite expensive. A DSP based accelerator board was also considered

for the e."'<perimental work. However, a typical DSP based system these days is about

4 times as expensive as a high-end Pd which can provide more computation power.

On the other band, DSP systems are optimized for real-time applications and usually

come with a suite of software that makes the development of a control or estimation

algorithm very easy and trouble free. In the end, it was decided that using a very

fast sequential machine might be a better idea, because it would lead to a more gen­

eral purpose hardware setup and the development time for the software would be very

small! because most of the programs could be recompiled using a DOS based C++

compiler and used with minor modifications for real-time application. A high-end PC

would be able to handle smaller sized networks with relative ease, providing the added

fle."'<ibility of being able to use a regular C++ compiler. Since all of the simulation was

implemented using C++, the transitidn from simulation to real-time implementation

would be smoother.

6.2 Scope of the experimental work

Since a sequential machine was being used, it was decided to implement an ANN

which would not be very large. The ANN speed estimator using method 4 outlined in

chapter 4 seemed to be an ideal choice, because of the reasonable size, and also because

it would permit the verification of the important idea of training with the help of the
I

"DQ-MF" block, which is used for ANN control discussed in the previous chapter.

148

It was decided that if the experimental results agree with the simulated results to a

good extent, then it can be said with a high degree of certainty that the ANN control

methods outlined in chapter 5 should work as predicted. Furthermore, it was decided

to use a commercially available drive to run the induction motor.

6.3 Description of the experimental setup

A block diagram of the experimental setup for real-time ANN speed is shown in Fig­

ure 6.2, and a photograph of the same is shown in Figure 6.3.

P-11
266 MHz

V /f power
drive supply

Filters!#====~

Figure 6.2: Schematic of the experimental setup

6.3.1 Hardware components

A Pentium-II computer running at 266 MHz was chosen for implementing the ANN

speed estimator in real-time. The operating system for this machine is MS-DOS version

6.0. The reason for using a DOS based system was the simplicity it offers, in terms of

149

Figure 6.3: Photograph of the experimental setup

150

accessing the input and output ports, as well as program portability. A Borland Turbo

C++ compiler was used for program development. Because of this arrangement, the

actual program development time was drastically reduced.

For obtaining the current, voltage and speed feedback, an RTI-815-F board was used

[68], which plugs in conveniently into the PC's AGP 100 MHz bus. The IITI-815-F is

a multifunction analog/digital I/0 board that has capabilities for analog input, analog

output, digital input and output, and time-related digital I/0 functions (through the

AM9513A Counter/Timer chip). It has 16 analog input channels with 12 bit A/D

resolution, and A/D ranges of 0 to +lOV, ±5V, or ±10V can be selected. The A/D

conversion time is typically 8JJS. There are two analog outputs with a 12 bit D/A

resolution and a 20tzs settling time for a +10V step. The board also has an 8-bit

digital input port and an 8-bit digital output port.

The current feedback was obtained with two Hall effect LEM current modules with a

ratio of 1:1000. Voltage feedback was obtained with SI 9000 differential probes with an

attenuation ratio of 1:50. An optical, incremental shaft encoder was used for obtaining

speed feedback. The encoder produces 1000 pulses per revolution and has two separate

channels which are phase shifted by 90° to allow estimation of the direction of rotation.

There are various ways of obtaining the actual speed from the encoder pulses. Since

the encoder produces high frequency pulses (about 30KHz for a 4 pole induction motor

running at rated speed), conversion from frequency to voltage produces a very accurate

estimate of the motor speed. Such a circuit is very easy to implement, using one of

many commercially available frequency-voltage converters. Some extra circuitry has to

be used to estimate the direction. The circuit used in the experimental setup is shown

in Figure 6.4. This produces two separate signals, one for the speed magnitude and

the other for the speed direction. The direction signal is a digital signal, and both the

signals can be read into the Pentium-IT using the RTI-815-F ADC/DAC card. It should

151

Speed
:Magnitude Speed

Direction

A B
EncodeT Outputs

Figure 6.4: Speed measurement circuit

be noted here that a shaft encoder has been used in the setup only for the purpose of

obtaining ANN training data. In a sensorless scheme, the trained ANN should be able

to provide a good estimate of the speed, obviating the need for a shaft encoder. If a

shaft encoder cannot be mounted for the purpose of ANN training, it is possible to

use a contact-less tachometer for this purpose, though the accuracy of the ANN speed

estimate would be limited by the accuracy of the measured speed in the training data.

The induction motor runs on a PWM voltage supplied by the IGBT inverter in the

V /f drive, and this voltage signal cannot be used directly, since the instantaneous mag­

nitude and f:l.(J values cannot be obtained from such a signal. Thus, the fundamental

component of the voltage signal must be extracted from the PWM signal. Also, the

current waveform is not a pure sinusoid, because of the PWM nature of the voltage.

This necessitates the use of a filtration stage prior to the analog/digital conversion.

Also, the speed signal obtained from the frequency-t~voltage conversion circuit has

noise. This noise probably results from the internal operation of the frequency-t~

152

voltage converter. Thus, it is necessary to filter all the five feedback quantities before

use. For purposes of filtration, a Sallen and Key second order active filter was chosen,

because of the simplicity and efficiency of the circuit. A circuit schematic of the filter

is shown is Figure 6.5. The transfer function of the filter is given by

Vout

Figure 6.5: Circuit schematic of the Sallen and Key filter

H(s) = Kw;
s2 + ~s +w2

Q c
(6.1)

where,

(6.2)

(6.3)

(6.4)

To simplify the filter design, it was assumed that R 1 = R2 and C1 = C2 , and the

circuit values were chosen to obtain a cut-of£ frequency (we) of about 300 ranfs. The

gain was anjusted such that the output signal occupies most of the available range of

the ADC (±lOV) . Identical filters were used for the current and voltage signals and

for the circuit components chosen, the total harmonic distortion (THD) of the filter

output was about 3.5%, which implies that the output signal was quite clean. For the

speed feedback signal, a lower cutoff frequency of 100 rad/s was chosen, because high

frequency components are not expected in the speed due to the inertia of the motor

153

and the fact that the drive accelerates and decelerates the motor at a predetermined

rate.

It should be noted that the use of the filters would lead to a delay in the signals. For

the current and voltage signals, this delay manifests itself as a phase shift. However,

after conversion from DQ to MF, the phase information is lost, and thus phase shifted

current and voltage signals make no difference to the ANN operation. For the speed

signal, the filter has to be carefully chosen, because a delay here would result in a delay

in the ANN output. Fortunately, the speed dynamics are significantly slower than the

current and voltage dynamics and no appreciable delay results due to filtering.

For controlling the induction motor, a commercially available 1 HP V /f drive was

used, which can operate in all four quadrants. The drive has an IGBT inverter running

at 3.3kHz. An open loop frequency control method was used, since it is simpler and does

not affect in any way the generality of the ANN based speed estimation scheme. Closed

loop control is also possible with this drive. The drive parameters can be programmed

from a convenient digital keypad with an LCD screen. For most applications, the

factory settings are good enough, though the acceleration and deceleration rates were

readjusted for this work. Also, the drive had to be reprogrammed to enable reversal of

speed.

For loading the induction motor, another induction motor was mounted on the same

frame with the shafts of the two motors coupled together. A variable three-phase power

supply was used for applying a. voltage to the loading motor, with a. phase sequence

which was opposite to that of the main induction motor. This system is quite efficient

and enables the application of step changes in load. The parameters of the induction

motor used for speed estimation are given in Table 6.2. It should be noted here, that

these parameters are not used anywhere for ANN training, since the ANN is trained

to learn the motor characteristics by observing the machine inputs and outputs.

154

Table 6.2: Parameters of the induction motor used for experimental verification

\1 Parameter I Symbol j Value II

Power Rating 1.0 HP

Voltage 208V

Connection type y

Stator Resistance Rs 2.75 n
Rotor Resistance R,. 2.45 n
Stator Inductance Ls 169mB

Rotor Inductance Lr 169mB

Magnetizing Inductance Lm 160mB

~loment of Inertia J 0.0630 N- m 2

Damping Coefficient B 0.0030 N- m 2 /s
Pole Pairs p 2

155

6.3.2 Software components

For the purpose of carrying out the experimental work, the main addition to the suite

of software described in chapter 3 was a class called RTLboard for handling the input

and output from the RTI board described earlier in this section. It has the following

functions which greatly simplify the task of the user.

• in_ voltage: This function reads an analog voltage from the channel number which

is passed as a parameter to the function. It returns the actual value of the voltage

read, which has been calibrated against an oscilloscope.

• out_uoltage: This function outputs a specified voltage to a specified channel, both

of which are passed as parameters to the function.

• digitaLin: This function reads a 1-bit digital value from specified bit number in

the 8-bit digital I/0 port on the RTI board.

• digitaLout: This function writes an 8-bit digital value to the digital I/0 port on

the RTI board.

As has been mentioned in chapter 3, the ANN simulator has been written to provide

a great deal of flexibility and reliability. However, because of the above features, it has

not been optimized for speed. Also, the simulator is too large to run on a DOS platfonn.

To circumvent these problems, it was decided to implement another ANN simulator

which would simulate only fully-connected multi-layer feedforward networks without

any training algorithm. This simulator is much smaller in size, with a lot less flexibility,

but has been optimized for speed. The computation of the exponential function, which

is required for the neuron activation function, has been implemented using a lookup

table with 600 elements, since this saves a lot of time. Training of the ANN has to be

156

done off-line using the larger and more flexible UNIX based simulator. To facilitate

the transfer of the weight set between the two programs, both of them follow exactly

the same format for reading the weight file from the disk.

Another important modification in the real-time simulator was the "DQ-:MF" block

described in chapter 4. The need for modification resulted from the fact that computa­

tion of~() in particular, assumes sampling at a constant and fast rate, which would not

be possible in real-time implementation, since the ANN also has to be run along with

the "OQ-MF" block. Thus, it was felt necessary to take three equally spaced voltage

and current feedbacks and use them for computing the present and delayed values of

magnitude and ~(}. Also, this block directly converts the 'a' and 'c' phase values to

magnitude and~(} to save time .

. o\s pointed out in chapter 4, after conversion from DQ to MF, a second stage of

filtration is required. In the real-time implementation, this has to be done with a

digital filter which does not depend on critical timing and uses as few previous values

as possible. Thus, it was decided to use a modified averaging filter, which uses just

three previous values and computes the slope of the input to reject higher frequency

components. This filter has been found to be very useful for such an application. The

performance of this filter will be demonstrated in section 6.4.

The main program was written using the components described above and some

others described in chapter 3. This program operates in two modes. In the data

collection mode, it just collects the ANN training data using the RTI board and stores

it onto the disk after applying the "DQ-MF" transfonnation and filtration. In the

feedfonnard ANN mode, the data is handed over to the ANN, instead of being stored

on the disk. The ANN output, which is an estimate of the induction motor speed, is

converted to an analog voltage by the RTI board and can be seen on the oscilloscope,

alongside the actual speed signal obtained from the f/v circuit shown in Figure 6.2.

157

6.4 Experimental results and discussion

The experimental verification was conducted by first collecting different training data

sets, by running the V /f drive at various frequencies, under both forward and reverse

modes of operation and applying step changes in the load. These different sets of data

were combined together to generate a larger data set for off-line training. After the

training was complete, and various networks and learning rates were tried out to get an

optimum output, the ANN weights were stored in a weight file, which could be directly

read by the real-time ANN program.

The "a' phase voltage feedback signal before and after filtration is shown is Fig­

ure 6.6. As has been mentioned earlier, the THD for this waveform is only 3.5%, which

should be clean enough for conversion from DQ to MF. The 'a' and 'c' phase filtered

voltage waveforms, separated by 120°, are shown in Figure 6.7. The 'a' phase current

feedback signal before and after filtration is shown is Figure 6.8. It can be seen that

the current feedback signal from the LE:\-1 sensors has spikes due to the inverter oper­

ation. The 'a' and 'c' phase filtered current waveforms, separated by 120°, are shown

in Figure 6.9.

It was seen earlier in chapter 4 that the magnitude and A9 for stator currents and

voltages have ripples due to imperfect filtering of these waveforms. These ripples would

impede ANN training, and thus a second stage of digital filtering is required, this time

for the magnitude and t:..9 of the sinusoidal quantities. In the experimental setup, there

is one more reason for noise in the magnitude and 6.9 of the stator voltage and current,

in spite of the improved filtering using the second order Sallen-Key filter. The reason is

that high-end PCs have a lot of dynamic features like superscalar architecture, branch

prediction and so on, which improve the overall speed, but make the system less suitable

for real-time applications, since the execution time of the code might vary from one run

158

'l'r::.q : DC V!R'l'ICAL

,...........,! t
/ ~ ~lte red V! f

\
l y \ I

+ I - Cli1

1\
unf:.lt ea V!

~
-- l --
f I

\ -
~I

~ v
~
~

2.0V 2.0V

Figure 6.6: Inverter voltage before and after filtration

159

'rri.q : DC VRR'fiCAL

2.0V 2.0V 2111

Figure 6.7: Filtered inverter voltages for phases 'a' and 'c'

160

'rriq : DC VBR'fiCAL

I t I
I

--
~ ~Ktere~ Is

/ ~" N ,,.,, 1 ~t T·

~ ~ ""'7 (- \ ~ -
~ ~ -

I I .

!
., s ~ WJ ktr '"- l A. - -y

/ ~ \ ~ / ~
CB1

~ J.., 'II" f/11""' - T
-+-
-
~

~
-~

2.0V 2.0V 2111

Figure 6.8: Inverter current before and after filtration

161

'rr:.q : DC VERTICAL

I t I
-~ I ~

-~

J_J..L ~ !c.a K / r ""5.
,., _/

CH2

I
~ "'\ v ~ f\ v ~

-~

~ ~~

' v 1/ \ ~ .\ i ./
-t-

I

i/ 1\ ~
., v

-~

1\/ -t-
+

y1 \
~ JJ\ /

~ ~ + ''t I """" ~ ,.v
-I- ,.......
-t-
-i-

2.0V l.OV

Figure 6.9: Filtered inverter currents for phases 'a' and 'c'

162

to another [69]. This implies that the computation of 6.8, which assumes a constant

sampling frequency, would have increased ripples. This problem ca.n be rectified with

a clock-based interrupt driven system, which would ensure that the loop time remains

reasonably constant. However~ for this work, a high performance digital filter was

used, which has to operate under the constraints of a variable sampling time period

and fewer available previous values. The average filter discussed in subsection 6.3.2

was designed with these objectives in mind and uses just 2 previous values to achieve

a good output. The performance of the filter, on a 1000 point sample of the ~(} for

the stator current, is shown in Figure 6.10.

The chosen network had a 6-20-1 architecture and was trained for 26 epochs on

the data set, and the learning rate was 0.08 for the output neuron and 0.80 for all

other neurons. The Pentium-II was able to run the ANN, along with the sampling

and "DQ-MF" conversion and the six input filters, in about 400J.LS. This is a very

impressive speed and demonstrates the feasibility of this approach. A comparison of

the ANN estimated speed and the actual speed is shown in Figure 6.11. The data

in this figure has been collected while the ANN was running on-line. The percentage

error in the ANN speed estimate is shown in Figure 6.12. The sum squared error for

this ANN during training is shown in Figure 6.13. Figure 6.14 shows the ANN speed

estimate (CHl) along with the actual speed signal from the f/v circuit (CH2) in the

forward mode of operation. The ANN speed estimate has a steady state error of less

than 1.0%. Figure 6.15 shows the ANN speed estimate (CH1) along with the actual

speed signal from the f/v circuit (CH2) in the reverse mode of operation. The ANN

speed estimate has a negligible steady state error for this case. Figures 6.16 and 6.17

show the ANN performance for 30 Hz. operation of the drive. Here again, the error

is about 1% for the forward mode of operation and almost negligible for the reverse

mode.

163

Unfiltered delta theta for current vs. number of points
0 . 15~----~-----r----~------r-----~----~-----.------~----~-----,

0.1

0.05

0

-0 .05

-0.1

0 100 200 300 400 500 600 700 BOO 900 1000

Filtered delta theta for current vs . number of po1nts
0 . 15~----~----~----~------r-----~----~----~------~----~-----,

0.1

0.05

0

-0.05

-0.1

0 100 200 300 400 500 600 700 BOO 900 1000

Figure 6.10: Performance of the modified averaging filter

164

Actual and ANN Estimated Speed
8~----r-----r-----~----~----~----~----~----~----T-----~~

6

4

~ 2
0
~
lSI
ii
~ 0 ;;;
w
"C
lSI

!-2

-4

-6

e: 1 volt • 254 RPM
-8~----~----~----._ ____ ._ ____ ._ ____ ._ ____ ._ ____ ._ ____ ._ ____ ~~

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 6.11: Actual vs. ANN estimated speed (real-time implementation)

165

Percentage error in the ANN speed estimate

6

4

2

&
ra
E
CD Q

~
-2

-4

-6

2 4 6 8 10 12 14 16 18 20
Time(sec)

Figure 6.12: Percentage error in the ANN speed estimate (real-time implementation)

166

Sum Squared Error

4.5~--------~--------T---------~--------.---------.---------~

4 I

3.5 r-

3

2.5

2

1.5 -

0.5-

0~--------~--------._ ________ ._ ________ ~--------~--------~
0 5 10 15

Number ot epochs
20 25 30

Figure 6.13: Sum squared error for the experimental ANN during training

167

Tr:q : DC V!R'riCAL

i I
-~

II l I - -~

I • • I ' ..
I I I

I

I
- I -~

1 1 I I _L __._
I

-~ -
-
4= ...

I
I

I

* Y·n:s sc!tle: 1 volt= 254 llPM
2.0V 2.0V 0.21U

Figure 6.14: Actual and ANN estimated speed for 60Hz operation in the forward mode

of drive operation

168

'

I I I

.Jr Iii

II 1 lCI

'!·u:s scale: 1 wlt = 254 RPM
2.0V ~ 2.0V

I

'rr:.q : DC V!R'fiCAL

i

-I-
-I-
-~
-~
~

1-

I . --
-~
-~

1-
·I-
·I-
-I-

-I-

1-
·I- ,,

0.2u

'

I

I 1 em
CH2

Figure 6.15: Actual and ANN estimated speed for 60Hz operation in the reverse mode

of drive operation

169

I

l

I

I L

I

.
I I

Y·u:s scue: 1 volt= 254 RPM
2.0V 2.0V

'tci.q : DC VRRTICAL

-~ -
-I-

1-

J l
I '

-I-
-I-

. -~

-I-
-I-
1-

-I-

-I-
1-
1-

0.21u

I .. I

I
CBl
CH2

Figure 6.16: Actual and ANN estimated speed for 30Hz operation in the forward mode

of drive operation

170

1 1

I -..

Y·u:s sc!le: 1 volt= 254 iPM
2.0V ~ 2.0V

1 1

'rr..q : DC VERTICAL

i
I

$ -
--
-~
~

-~
~
~
-~
±
+
~
~
~

-~

0.2lu

. .

em
CB2

Figure 6.17: Actual and ANN estimated speed for 30Hz operation in the reverse mode

of drive operation

171

The results presented in this section clearly indicate the efficacy of the ANN speed

estimator for real-time applications. The ANN performs very well, and the results are

comparable to a similar network demonstrated in chapter 4, even though the latter

was trained with a simulated vector controlled drive. In fact, this proves the generality

of the scheme, and the same method can be used with any other drive, as long as the

ANN is suitably trained. This ANN architecture is by no means optimum, and a higher

performance ANN can be obtained, if more time is spent on trying out different network

sizes and learning rates. However, the primary scope of this thesis was to establish

the theoretical basis and feasibility for the proposed scheme, rather than attempt to

obtain the most efficient and commercially viable estimator.

This experimental verification also helps to validate the theory and simulation stud­

ies presented for ANN control of induction motor in chapter 5. If two control outputs

from the control circuit of the V /f drive to the inverter can be obtained, for example

the magnitude and frequency of the desired voltage, or id,., i;,., then the same setup can

be used for induction motor control. The only thing that would change would be the

training data collected and the outputs of the ANN. After off-line training this ANN

could be used for mimicing the V /f controller. If a vector controller was not available,

it would not make any difference to the scheme outlined, since the ANN can mimic

any kind of controller. Presently, the size of the ANN used in the simulation studies

for control is too large to be run in a convenient time frame even on a high perfor­

mance PC like the Pentium-11 266MHz machine used in this setup. Also, a split-ANN

cannot be implemented using the real-time ANN simulator, which does not have the

same flexibility as the one used for simulation studies. Even if the speed requirements

were satisfied, it would be desirable to have a clock-based interrupt driven system as

mentioned earlier. This is more crucial for the ANN controller, because unlike a speed

estimator, the controller outputs affect its own inputs, thereby making it a vastly more

challenging problem.

172

6.5 Summary

The aim of the work presented in this chapter was to demonstrate the feasibility of

the proposed schemes and to verify some of the theory and simulations outlined in

chapter 4. A review of the ANN hardware shows that procuring dedicated hardware

for ANN experiments is still not a very attractive option. Thus, the approach taken

for this experiment was to build a setup based on a high-end PC, which should be able

to handle a large number of computations in real-time. The experimental results prove

the efficacy of the scheme, and show that an off-line trained ANN can be used for high

performance speed estimation of induction motors.

173

Chapter 7

Conclusion

The work done for this thesis has led to significant contributions to the area of ANN

based induction motor drives. The objective of obtaining an accurate ANN based

speed motor estimator has been achieved, as demonstrated in chapter 4. Four methods

of induction motor speed estimation using ANNs are discussed in this chapter. Speed

expressions derived from the d-q axis dynamic equation of the induction motor form a

basis for the first three methods. These methods function well if the motor is operated

with a power supply, but do not produce satisfactory output if the motor is operated

with a vector-controlled drive. A fourth method is proposed in which the ANN is able

to function quite well in the presence of a vector-controlled drive, and is also small

enough to be implemented in real-time.

The objective of implementing induction motor control using only an ANN bas been

achieved as shown in chapter 5. In this chapter, a scheme has been presented, which

implements induction motor control with an ANN which has been off-line trained to

mimic a vector controller. The performance of this ANN is quite good and it is able

to generalize effectively. Having a controller which can function with only off-line

174

training is a big advantage, since it saves a lot of computational time for real-time

implementation. However, this ANN controller has a small steady state error and

another scheme is also presented, whereby the off-line trained ANN can be on-line

trained to minimize this steady state error. This on-line scheme has another benefit in

that it is computationally less demanding than other on-line training schemes, because

only the signs of the quantities in the Jacobian vector are used. Both of these methods

were previously unreported in the literature.

The experimental verification objective has been partly achieved as outlined in

chapter 6. Here, the ANN based speed estimator using method 4 in chapter 4 was

implemented in real-time using a Pentium-II PC based hardware. The performance

of this real-time estimator is very good, and clearly demonstrates the practicability

of the scheme. The ANN based control strategy could not be verified in real-time

because of hardware limitations. It has been pointed out in chapter 6 that dedicated

ANN hardware is not yet standardized, and the network size for the ANN controller

is too large for proper real-time implementation using the available Pentium-II based

setup. Also, ANN control would require that two control outputs be obtained from the

motor drive for the purpose of collecting testing data. These outputs are not readily

accessible in the motor drive used in the setup. However, as mentioned in chapter 5,

verification of training with the "DQ-MF" block has been done for the speed estimator,

and this lends credibility to the ANN based control scheme which uses the same block

for training.

7.1 Contributions of this work

The work outlined in this thesis has made some important contributions to the area. of

induction motor control using ANNs. These contributions are discussed below:

175

• Speed estimation of induction motor. Prior to the publication of some of the work

outlined in chapter 4, almost no work was done in the area of induction motor

speed estimation using ANNs, even though many alternate techniques were used

for speed estimation, as was seen in the literature review. This work presented

an off-line trained ANN speed estimator for the first time. The speed estimation

scheme outlined in chapter 4, which has been experimentally verified, is also a

first. To date, the author has not come across any other ANN based induction

motor speed estimator, which has been verified in experimentation.

• Induction motor control using off-line trained ANN: This is probably the biggest

contribution of this work. To date, the author has not come across any work

reporting satisfactory and complete induction motor control, using just one or

more ANNs, and without using any other conventional controller. Wishart and

Harley's work [45] is probably the best work on ANN control of induction motor

presented so far, and it uses one conventional PI controller along with the ANN.

Also, the strategy cannot handle step changes in load torque, thereby severely

limiting its utility. Lastly, it uses on-line training, which requires extremely

high computing power to implement in real-time. The work done for this thesis

has demonstrated induction motor control using a single ANN, which is off-line

trained to mimic an existing high performance controller and which can handle

step changes in load. For better performance, the ANN can also be trained on-line

and this leads to improved steady state response and robustness in the presence

of motor parameter variations.

• Object-oriented simulator. The suite of software developed as part of this re­

search, and discussed in chapter 3, has proved to be invaluable for this work.

Also, the simulation programs have been written in a way such that it becomes

very easy for anyone to use them, with only a minimal knowledge of C++ pr"

gramming. The ANN control schemes presented in chapter 5 would have been

176

impossible to implement! if the only available option was a conventional ANN

simulator like the MATLAB neural network toolbox.

7.2 Suggestions for future work

The following are some suggestions for future work in this area.

1. Experimental verification of the off-line trained ANN controller. This should be

possible with a high performance drive in which the two control outputs to the

inverter can be tapped. The rest of the experimental setup would not change

much. The basic idea would be to collect data, which would comprise a set

of inputs (reference speed, actual speed, and magnitude and fi(J of the stator

voltage, along with the previous values of all these quantities) and a set of desired

outputs (magnitude and ti(J of the reference voltage or current). A split ANN

could then be trained to mimic the controller as outlined in chapter 5. A faster

PC might be required, with which a larger network could be run in real-time (in

about 800 ps}, and which could handle more stringent timing requirements.

Significant improvement in performance could be obtained by using an integrated

circuit to perform the "DQ-MF" and "MF-DQ" transformations. This would free

up the PC from these time critical conversions, and would enable second stage

filtration in hardware itself. An application specific integrated circuit (ASIC)

could be used to realize this circuit in hardware.

2. ANN based sensorless induction motor drive: Based on thls work, combining the

ANN control scheme with the ANN speed estimator would result in a complete

ANN based sensorless drive. In this scheme, the control ANN could be trained as

before. However, instead of the actual speed, it would receive the speed estimate

177

from the ANN speed estimator, which would have to be off-line trained to a high

degree of accuracy. Of course, restricting to only off-line training would imply

foregoing robustness in the control scheme. This scheme would be a lot more

challenging than just putting these individual components together, because any

inaccuracy in the speed estimate would propagate back into the control scheme,

acting like a positive feedback, and further worsening the speed estimate.

As a first step towards obtaining the sensorless drive, a very high performance

off-line trained ANN speed estimator should be developed. The vector-controller

should be able to function properly with feedback from the ANN speed estimator.

The training data for the ANN controller should be collected while running the

drive with speed feedback obtained from the ANN speed estimator instead of the

shaft encoder. This data should be used for training the control ANN, and after

successful training, this ANN should be able to function in real-time, resulting

in an ANN based sensorless induction motor drive.

3. ANN based indirect adaptive control of induction motor. In this scheme two ANNs

would be required, one for plant identification and the other one for control. The

ANN speed estimator would be the plant identifier in this case, and would be

on-line trained with the help of the actual speed obtained from a speed sensor.

The control ANN would also be on-line trained, and its cost function would be

derived from the error between the reference speed and the actual speed. The

computation of the Jacobian, which is required for adjusting the weights on-line

using backpropagation, would be done through the speed estimator ANN. This

scheme looks promising, and it should be possible to get performance comparable

to the schemes mentioned in this work.

178

References

[1] P. Vas. Vector Control of AC Machines. Clarendon Press- Oxford, 1990.

(2] F. Harashima. "Power Electronics and Motion Control- A Future Perspective".

Proceedings of the IEEE, val. 82, no. 8, pp. 1107-1111 , Aug 1994.

[3] S. uk Kim, I. woo Yang, Y. jo Kim, and Y. seok Kim. "Robust TDOF Controller

of Induction Motor Without Speed Sensors for Variations of Rotor Resistance''.

In Power Electronics Specialists Con/., val. 2, pp. 1043-1049, 1997.

[4] C. Won, D. Kim, S. Kim, and D. Yoo. "Position Control of Induction .:V1otor With

a New Fuzzy-Sliding Mode Controller". In Proceedings of Power Conversion Conf.

- Yokohama, pp. 421-427, 1993.

(5] General .:Vlotors Corporation. "EVl Electric Vehicle Specifications". In www site:

http:/ fwww.gmev.com/ specs/ specs.htm, 1998.

[6] N. B. Karayiannis and A. N. Venetsanopoulos. Artificial Neural Networks -

Learning Algorithms, Performance Evaluation, and Applications. Kluwer Acad­

emic Publishers, 1993.

(7] M. H. Hassoun. Fundamentals of Artificial Neural Networks. The MIT Press,

Cambridge, Massachusetts, 1995.

179

[8] S. Haykin. Neural Networks - A Comprehensive Foundation. ~Iacmillan College

Publishing Company, Inc., 1994.

[9] C.-T. Lin and G. Lee. Neural Fuzzy Systems - A Neuro-Fuzzy Synergism to

Intelligent Systems. Prentice Hall PTR, Upper Saddle River, NJ 07458, 1996.

[10] B. K. Bose. "Power Electronics and Motion Control - Technology Status and

Recent Trends" . IEEE Trans. Ind. Applicat., vol. 29, no. 5, pp. 902-909, Sep/Oct

1993.

[11] K. Koga, R. Ueda, and T. Sonoda. "Constitution of V/f Control for Reducing

the Steady-State Speed Error to Zero in Induction Motor Drive System". IEEE

Trans. Ind. Applicat., vol. 28, no. 2, pp. 463-471, Mar/ Apr 1992.

(12] P. Famouri and J. J. Cathey. "Loss Minimization Control of an Induction ~lotor

Drive" . IEEE Trans. Ind. Applicat., vol. 27, no. 1, pp. 32-37, Jan/Feb 1991.

[13] M. Iwasaki and N. Matsui. "Robust Speed Control ofiM with Torque Feedforward

Control". IEEE Trans. Ind. Elect., vol. 40, no. 6, pp. 553-560, Dec 1993.

[14] F. Alonge. "MRAC and Sliding Motion Control Techniques to Design a new Ro­

bust Controller for Induction Motor Drives.". In Proceedings of Power Conversion

Conf. - Yokohama, pp. 29Q--296, 1993.

(15] P. T. Krein, F. Disilvestro, I. Kanellakopoulos, and J. Locker. "Comparative

Analysis of Scalar and Vector Control Methods for Induction Motors". In Power

Electronics Specialists Conf., pp. 1139-1145, 1993.

[16] F. Blaschke. "The Principle of Field Orientation as Applied to the new

TRANSVECTOR Closed Loop Control System for Rotating-Field Machines".

Siemens Review, vol. 34, pp. 217-220, May 1972.

180

(17] R. D. Lorenz, T. A. Lipo, and D. W. Novotny. ":Vlotion Control with Induction

~lotors". Proceedings of the IEEE, vol. 82, no. 8, pp. 1215-1240, Aug 1994.

(18] D. Fodor, Z. Katona, and E. Szesztay. "Digitized Vector Control of Induction

Motor with DSP". In Proceedings of the IEEE JECON, vol. 3, pp. 2057-2062,

1994.

[19] L. Zhen and L. Xu. "A ~lutual :VIRAS Identification Scheme for Position Sensorless

Field Oriented Control of Induction Machines". In Con[Rec. IEEE Ind. Applicat.

Soc. Ann. Meeting, vol. 1, pp. 159-165, 1995.

[20] K. Rajashekara, A. Kawamura, and K. Matsuse. Sensorless Control of AC Motor

Drives: Speed and Position Sensorless Operation. IEEE Press, 1996.

[21] T. Ohtani, N. Takada, and K. Tanaka. "Vector Control of Induction :VIator without

Shaft Encoder". IEEE Trans. Ind. Applicat., vol. 28, no. 1, pp. 157-164, Jan/Feb

1992.

[22] T.-H. Chin. "Approaches for Vector Control of Induction Motor without Speed

Sensor". In Proceedings of the IEEE IECON, vol. 3, pp. 1616-1620, 1994.

[23] C. llas, A. Bettini, L. Ferraris, G. Griva, and F. Profumo. "Comparison of Different

Schemes without Shaft Sensors for Field Oriented Control Drives" . In Proceedings

of the IEEE IECON, vol. 3, pp. 1579-1588, 1994.

[24] T. Kanmachi and I. Takahashi. "Sensor-Less Speed Control of an Induction Mo­

tor". IEEE Ind. Applicat. Magazine, pp. 22-27, Jan/Feb 1995.

[25] K. Ohnishi, N. Matsui, and Y. Hori. "Estimation, Identification, and Sensorless

Control in Motion Control System" . Proceedings of the IEEE, vol. 82, no. 8, pp.

1253-1265, Aug 1994.

181

[26) G. C. Verghese and S. R. Sanders. "Observers for Flu.x Estimation in Induction

Machines". IEEE Trans. Ind. Elect., vol. 35, no. 1, pp. 85-94, Feb 1988.

[27] H. Kubota, K. Matsuse, and T. Nakano. "OSP-Based Speed Adaptive Flux Ob­

server of Induction Motor''. IEEE Trans. Ind. Applicat., vol. 29, no. 2, pp. 344-348,

~far/ Apr 1993.

(28] C. Schauder. "Adaptive Speed Identification for Vector Control of Induction Mo­

tors without Rotational Transducers". IEEE Trans. Ind. Applicat., vol. 28, no. 5,

pp. 1054-1061, Sep/Oct 1992.

[29] F .-Z. Peng and T. Fuka.o. "Robust Speed Identification for Speed Sensorless Vec­

tor Control of Induction Motors". In Conf. Rec. IEEE Ind. Applicat. Soc. Ann.

Meeting, vol. l, pp. 419-426, 1993.

[30] R. T. Stefani, Clement J. Savant, Jr., B. Shahian, and G. H. Hostetter. Design of

Feedback Control Systems. Saunders College Publishing, 1994.

[31] Y.-R. Kim, S.-K. Sul, and M.-H. Park. "Speed Sensorless Vector Control of an

Induction Motor Using an Extended Kalman Filter". In Conf. Rec. IEEE Ind.

Applicat. Soc. Ann. Meeting, vol. 1, pp. 594-599, 1992.

[32) K. Hurst, T. Habetler, G. Griva, and F. Profumo. "Speed Sensorless Field­

Oriented Control of Induction Machines Using Current Harmonic Spectral Es­

timation" . In Conf. Rec. IEEE Ind. Applicat. Soc. Ann. Meeting, vol. 1, pp.

601-607' 1994.

[33) H. Kubota and K. Matsuse. "Simultaneous Estimation of Speed and Rotor Re­

sistance of Field Oriented Induction Motor without Rotational Transducers". In

Proceedings of Power Conversion Conf. - Yokohama, pp. 473-477, 1993.

182

[34] K. Gopalrumar, V. Ranganathan, and S. Bhat. "Vector Control of Induction

~[otor With Split Phase Stator \Vindings". In Conf. Rec. IEEE Ind. Applicat.

Soc. Ann. Meeting, vol. 1, pp. 569-574, 1994.

(35] U. Baader,;\'[. Depenbrock, and G. Gierse. "Direct Self Control (DSC) of Inverter­

Fed Induction Machine: A Basis for Speed Control Without Speed Measurement".

IEEE Trans. Ind. Applicat., vol. 28, no. 3, pp. 581 -588, ~:lay/ Jun 1992.

[36] Cybenko. '~Approximations by Superpositions of a Sigmoidal Function". Mathe­

matics of Contr., Signals and Syst., vol. 2, pp. 303-314, 1989.

[37] A. K. Toh, E. P. Nowicki, and F. Ashrafzadeh. "A Flux Estimator for Field

Oriented Control of an Induction Motor using an Artificial Neural Network". In

Conf. Rec. IEEE Ind. Applicat. Soc. Ann. Meeting, vol. 1, pp. 585-592, 1994.

[38] ~[. ~Iohamadian, E. Nowicki, and J. Salmon. '~A Neural Network Controller for

Indirect Field Orientation Control". In Conf. Rec. IEEE Ind. Applicat. Soc. Ann.

Meeting, vol. 2, pp. 177D-1774, 1995.

[39] M.G. Simoes and B. K. Bose. "Neural Network Based Estimation of Feedback Sig­

nals for a Vector Controlled Induction Motor Drive". IEEE 17-ans. Ind. Applicat.,

vol. 31, no. 3, pp. 620-629, May/Jun 1995.

[40] P. Marino, M. Milano, and F. Vasca. "Robust Neural Network Observer for Induc­

tion Motor Control". In Power Electronics Specialists Conf., vol. 1, pp. 699-705,

1997.

[41] A. Ba-Razzouk, A. Ch'eriti, G. Olivier, and P. Sicard. "Field-Oriented Control of

Induction Motors Using Neural-Network Decouplers". IEEE Trans. Power Elec­

tronics, vol. 12, no. 4, pp. 752-763, Jul 1997.

(42] L. Ben-Brahim. "Motor Speed Identification via Neural Networks". IEEE Ind.

Applicat. Magazine, pp. 28-32, Jan/Feb 1995.

183

(43] P.)v!ehrotra, J. E. Quaicoe, and R. Venkatesan. "Speed Estimation of Induction

)v!otor Using Artificial Neural Networks". In Proceedings of the IEEE IECON~

val. 2, pp. 881-886, Aug 5-10, 1996.

(44] B. Burton, F. Kamran, R. G. Harley, T. G. Habetler, M. Brooke, and R. Poddar.

"Identification and Control of Induction Motor Stator Currents Using Fast On­

Line Random Training of a Neural Network". In Conf Rec. IEEE Ind. Applicat.

Soc. Ann. Meeting, vol. 2, pp. 1781-1787, 1995.

[45] :\II. T. Wishart and R. G. Harley. "Identification and Control oflnduction)v!achines

using Neural Networks". IEEE Trans. Ind. Applicat., val. 31, no. 3, pp. 612-619~

May/ Jun 1995.

[46] L. A. Cabrera, M. E. Elbuluk, and D. S. Zinger. ''Learning Techniques to Train

Neural Networks as a State Selector for Inverter-Fed Induction Machines Using

Direct Torque Control". In Power Electronics Specialists Conf., val. 1, pp. 233-

242, 1994.

[47} L. A. Cabrera, M. E. Elbuluk, and I. Husain. "Tuning the Stator Resistance of In­

duction Motors Using Artificial Neural Network". IEEE Trans. Power Electronics,

vol. 12, no. 5, pp. 779-787, Sep 1997.

[48] Y. Kung, C. Liaw, and M. Ouyang. "Adaptive Speed Control for Induction Motor

Drives Using Neural Networks". IEEE Trans. Ind. Elect., vol. 42, no. 1, pp. 25-32,

Feb 1995.

[49] S. Tadakuma, S. Tanaka, H. Naitoh, and K. Shimane. "Improvement of Ro­

bustness of Vector Controlled Induction Motors Using Feedforward and Feedback

Control". IEEE Trans. Power Electronics, vol. 12, no. 2, pp. 221-227, Mar 1997.

184

[50] K. S. Narendra and K. Parthasarthy. "Identification and Control of Dynamical

Systems using Neural Networks". IEEE Trans. Neural Networks, vol. 1, no. 1, pp.

4-27, ~lar 1990.

[51] K.-K. Shyu, H.-J . Shieh, and S.-S. Fu. ":\fodel Reference Adaptive Speed Control

for Induction :\iotor Drive Using Neural Networks". IEEE Trans. Ind. Elect., vol.

45, no. 1, pp. 180-182, Feb 1998.

[52] Howard Demuth and ~lark Beale. Neural Network Toolbox: For Use with MAT­

LAB, version 3. The ~lathWorks Inc., Natick, MA 01760-1500, 1998.

[53] SIMULINK: Dynamic System Simulation for MATLAB, version 2, 1997.

[54] Solutions for Control - dSPACE Catalogue, 1997.

(55] E~lTP Development Coordination Group. Electromagnetic Transients Program

(EMTP) Revised Rule Book, Version 2.0, 1989.

[56] P. ~lehrotra, R. Venkatesan, and J. E. Quaicoe. "Development of a Flexible

Object-Oriented Artificial Neural Network Simulator" . In Canadian Conf. on

Electrical and Computer Engineering, vol. 1, pp. 318-321, May 25-28, 1997.

[57] B. Eckel. C++ Inside & Out. Osborne McGraw-Hill, 1993.

[58] R. H. Nielsen. ''Theory of Backpropogation Neural Network". In International

Joint Conf. on Neural Networks, pp. 1585-1592, 1989.

[59] P. Mehrotra, J. E. Quaicoe, and R. Venkatesan. "Induction Motor Speed Esti­

mation Using Artificial Neural Networks". In Canadian Conf. on Electrical and

Computer Engineering, vol. 2, pp. 607-610, May 26-29, 1996.

(60) P. Mehrotra, J. E. Quaicoe, and R. Venkatesan. "Development of an Artificial

Neural Network Based Induction Motor Speed Estimator". In Power Electronics

Specialists Con/., vol. 1, pp. 682-688, June 24-27, 1996.

185

[61} K. S. Narendra. "Neural Networks for Control: Theory and Practice". Proceedings

of the IEEE, vol. 84, no. 10, pp. 1385-1406, Oct 1996.

[62} J. Tanomaru and S. Omatu. "Process Control by On-Line Trained Neural Network

Controllers". IEEE Trans. Ind. Elect., vol. 39, no. 6, pp. 511-521, Dec 1992.

[63] P.)J[ehrotra, R. Venkatesan, and J. E. Quaicoe. "Induction)J[otor Control Using

Artificial Neural Networks With Vector Controller)ilimicing''. paper submitted to

the IEEE Trans. Ind. Elect., 1999.

[64] P.)/[ehrotra, J. E. Quaicoe, and R. Venkatesan. "A Real-Time Offline Trained

High Performance Artificial Neural Network Induction Motor Speed Estimator".

paper submitted to the IEEE Trans. Power Elect., 1999.

[65] P. Ienne, T. Cornu, and G. Kuhn. "Special-Purpose Digital Hardware for Neural

Networks: An Architectural Survey". Journal of VLSI Signal Processing Systems,

vol. 13! no. 1, pp. 5-25, 1996.

[66] A. Konig. "Survey and Current Status of Neural Network Hardware". In Proceed­

ings of the International Conference on Artificial Neural Networks, pp. 391-410,

1995.

[67] C. S. Lindsey and T. Lindblad. "Review of Hardware Neural Networks". In UJWW

site: http:/ /msia02.msi.se/ ,..,.Jindseyjelba2html/elbaFramed.html, Last modified:

June, 1998.

[68] Analog Devices. RTI-800/815 User's Manual, 1987.

(69] L. Geppert. "High-flying DSP Architectures". IEEE Spectrum, vol. 35, no. 11,

pp. 53-56, Nov 1998.

186

Appendix A

Simulation Input Files

This appendix contains sample parameter files, which serve as inputs to the various

components of the simulation. All blank lines in the parameter files, as well as those

that begin with a'%' sign are ignored. There must be an'=' sign (without any spaces),

between the parameter name and its value (e.g. P=2). The parameters can be in any

order within a parameter file, as long as they are identified with the correct parameter

name.

A.l Induction machine parameters (mach.par)

% 2-kW, Vnom = 120/208 V- 60Hz., Inom = 15.2/8.8 A,

% rated speed = 1770rpm, Tem,nom = 10.8 Nm

% Number of pole pairs

P=2

% Connection type (WYE or DELTA)

187

YD=WYE

% Stator resistance

Rs=0.60

% Rotor resistance

Rr=0.40

% Stator inductance

Ls=0.0727

% Rotor inductance

Lr=0.0727

% Magnetizing inductance

Lm=0.0698

% Damping coefficient

8=0.0030

% Moment of inertia

J=0.0357

A.2 Vector controller parameters (vector. par)

% Induction motor parameters needed in the vector controller

Rr=0.40

Lr=0.0727

Lm=0.0698

P=2

% Speed controller PI constants

Kp_sc=2.0

Ki_sc=8.0

188

% Torque controller PI constants

Kp_tc=0.3

Ki_tc=15.0

% Flux controller PI constants

Kp_fc=S.O

Ki_fc=25.0

% Ramp rate for speed reference

RAMP_RATE=4:00

% Current limit is used to compute the limit for the torque controller

CURRENT_LIMIT=20.0

% imr reference (proportional to the rotor flux)

IMR_SETI'ING=6.0

A.3 Inverter parameters (inv.par)

% Transistor current rating

CURRENT_RATING=150

% Transistor voltage rating

VOLTAGE_RATIHG=600

A.4 PWM current controller parameters (pwm.par)

% Type of carrier signal (TRIANGLE. SINE. SQUARE or SAWTOOTH)

CARRIER_TYPE=TRIAHGLE

% Amplitude of the carrier signal

189

CARR1ER_AMPL=2.0

% Frequency of the carrier signal

CARR1ER_FREQ=4000

% DC offset for the carrier signal

DC_OFFSET=O.O

A.5 Backpropagation learning parameters (bpn.par)

The information about the number of layers and number of neurons in each layer is

ignored by the backpropagation program. This information is used only by the layerann

program, which generates the ANN parameter file.

% Number of layers

3

% Number of neurons in each layer, their types, learning rates

% and optional parameters

6

20 TANS1G LR=0.20

1 TANS1G LR=O.OS

% The information below is used by the backpropagation program

% Scale factors for ANN inputs

10=23.0

11=0.036

12=23.0

13=0.036

14=84.0

190

15=84.0

% Scale factors for ANN outputs

00=178.0

% Momentum parameter

MOMENTUM=0.5

% Weight storage file

WTFILE=speedest.net

% Saving frequency

SAVE_FREQ=1000

% Training frequency

TR.AIN_FREQ=l

%Network mode (LOAD_NET: load trained network from file,

% NEW_NET = create new network)

NET_MODE=NEW_NET

% TRAIN (train the network) OR COMPUTE (feedforvard mode)

RUH_MODE=TRAIN

A.6 ANN architectural parameters (ann.par)

This file has been generated by running the layerann program, which reads the first few

lines on the bpn.par parameter file and creates the ann.par file shown below. This file

contains all the details about the ANN architecture, and can be manually reconfigured

to add or remove connections, change the neuron types and so on.

% Part 1 of parameter file

% Number of neurons

191

21

i. Number of ann inputs

6

i. Number of ann outputs

1

i. Part 2 of parameter file (neuron description)

0 TANSIG 6 LR=0.20

1 TANSIG 6 LR=0.20

2 TANSIG 6 LR=0.20

3 TANSIG 6 LR=0.20

4 TANSIG 6 LR=0.20

5 TANSIG 6 LR=0.20

6 TANSIG 6 LR=0.20

7 TANSIG 6 LR=0.20

8 TANSIG 6 LR=0.20

9 TANSIG 6 LR=0.20

10 TANSIG 6 LR=0.20

11 TANSIG 6 LR=0.20

12 TANSIG 6 LR=0.20

13 TANSIG 6 LR=0.20

14 TANSIG 6 LR=0.20

15 TANSIG 6 LR=0.20

16 TANSIG 6 LR=0.20

17 TANSIG 6 LR=0.20

18 TANSIG 6 LR=0.20

19 TANSIG 6 LR=0.20

20 TANSIG 20 LR=O.OS

192

% Part 3 of parameter file {connection description)

INPUT 0 0

INPUT 1 0

INPUT 2 0

INPUT 3 0

INPUT 4 0

INPUT 5 0

INPUT 0 1

INPUT 1 1

INPUT 2 1

INPUT 3 1

INPUT 4 1

INPUT 5 1

INPUT 0 2

INPUT 1 2

INPUT 2 2

INPUT 3 2

INPUT 4 2

INPUT 5 2

INPUT 0 3

INPUT 1 3

INPUT 2 3

INPUT 3 3

INPUT 4 3

INPUT 5 3

INPUT 0 4

INPUT 1 4

193

INPUT 2 4

INPUT 3 4

INPUT 4 4

INPUT 5 4

INPUT 0 5

INPUT 1 5

INPUT 2 5

INPUT 3 5

INPUT 4 5

INPUT 5 5

INPUT 0 6

INPUT 1 6

INPUT 2 6

INPUT 3 6

INPUT 4 6

INPUT 5 6

INPUT 0 7

INPUT 1 7

INPUT 2 7

INPUT 3 7

INPUT 4 7

INPUT 5 7

INPUT 0 8

INPUT 1 8

INPUT 2 8

INPUT 3 8

INPUT 4 8

INPUT 5 8

194

INPUT 0 9

INPUT 1 9

INPUT 2 9

INPUT 3 9

INPUT 4 9

INPUT 5 9

INPUT 0 10

INPUT 1 10

INPUT 2 10

INPUT 3 10

INPUT 4 10

INPUT 5 10

INPUT 0 11

INPUT 1 11

INPUT 2 11

INPUT 3 11

INPUT 4 11

INPUT 5 11

INPUT 0 12

INPUT 1 12

INPUT 2 12

INPUT 3 12

INPUT 4 12

INPUT 5 12

INPUT 0 13

INPUT 1 13

INPUT 2 13

INPUT 3 13

195

INPUT 4 13

INPUT 5 13

INPUT 0 14

INPUi 1 14

INPUT 2 14

INPUT 3 14

INPUT 4 14

INPUT 5 14

INPU'l' 0 15

INPUT 1 15

INPUT 2 15

INPUT 3 15

INPUi 4 15

INPUT 5 15

INPUT 0 16

INPUT 1 16

INPUT 2 16

INPUT 3 16

INPUT 4 16

INPUT 5 16

INPUT 0 17

INPUT 1 17

INPUT 2 17

INPUT 3 17

INPUT 4 17

INPUT 5 17

INPUT 0 18

INPUT 1 18

196

INPUT 2 18

INPUT 3 18

INPUT 4 18

INPUT 5 18

INPUT 0 19

INPUT 1 19

INPUT 2 19

INPUT 3 19

INPUT 4 19

INPUT 5 19

HIDDEN 0 20

HIDDEN 1 20

HIDDEN 2 20

HIDDEN 3 20

HIDDEN 4 20

HIDDEN 5 20

HIDDEN 6 20

HIDDEN 7 20

HIDDEN 8 20

HIDDEN 9 20

HIDDEN 10 20

HIDDEN 11 20

HIDDEN 12 20

HIDDEN 13 20

HIDDEN 14 20

HIDDEN 15 20

HIDDEN 16 20

HIDDEN 17 20

197

HIDDEN 18 20

HIDDEN 19 20

OUTPUT 20 0

198

