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Abstract 

The squirrel-cage induction motor has various inherent advantages not present in 

other types of ac motors, and is widely used in the industry. Its usage is e.xpected 

to go up because of possible applications like electric vehicles, which require a light 

and efficient motor drive. However: the induction motor has a complex and non-linear 

structure which makes precise control a complicated and expensive process. Added 

to this complexity is the fact that the motor parameters undergo a variation during 

regular operation, chiefly due to a change in temperature and nonlinear magnetic 

characteristics. This variation reduces the efficacy of the control technique, though its 

effect can be mitigated with the help of robust control techniques. Also, most control 

techniques require speed feedback from a shaft encoder and these devices have various 

disadvantages and are considered undesirable for a number of applications. Thus, 

present day research in this area is mostly focussed on obtaining speed sensorless and 

robust induction motor drives. 

Artificial neural networks (ANNs) have shown great promise in image processing 

and control applications where robustness is desirable. However, these are at the stage 

of infancy in the area of induction motor control. The ability of ANNs to map arbitrary 

nonlinear functions has been used to advantage by many researchers. The motivation 

behind this work was to investigate the possibility of using ANNs to eventually come 

up with an ANN based sensorless induction motor drive. This central idea was broken 

down into two major components - speed estimation of induction motors using ANNs, 

and control of induction motors using ANNs. Both these areas have attracted attention 

in recent years, though very little work has been done so far. Because of the complexity 

of the problem, researchers have been unable to come up with a satisfactory solution. 

This work makes an important contribution to the area of induction motor drives, 
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by presenting for the first time! off-line trained ANN speed estimators. Using the 

d-q axis dynamic equations of the squirrel-cage induction motor, four methods are 

proposed whereby an ANN is trained off-line to estimate the speed of the motor. The 

results presented in the thesis indicate that the proposed schemes are able to track the 

speed under load variations. The effectiveness and superiority of the fourth method 

is further demonstrated under vector control conditions in the presence of an inverter. 

This method has also been experimentally verified. 

A novel strategy for control of induction motors using just one off-line trained 

ANN is also presented. The control strategy employs the magnitude and frequency 

of the d-q axis quantities to simplify the off-line training of the ANN and allow the 

ANN to mimic a vector controller. This scheme has the added benefit that subsequent 

to off-line training, the ANN can be on-line trained for improved performance and 

robustness, though it can function well without any on-line training also. Simulation 

results show that after off-line training the ANN is able to run the induction motor 

for various changes in speed reference and load torque, and the network is able to 

generalize effectively. Further simulation results are presented to show the robustness 

of the control strategy under induction motor parameter variation when the ANN 

controller is functioning under on-line control. An off-line trained ANN is particularly 

useful for real-time implementation, because of the reduced computational burden. 

Though the problem of obtaining a robust and sensorless induction motor drive is 

by no means completely solved, the results obtained as part of this work point in a 

promising direction. 
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Chapter 1 

Introduction 

The history of adjustable speed motor drives is quite old and goes back to the 19th 

century. Earlier, this area was dominated by DC machines, and AC machines were 

relegated to constant speed operations. This was primarily due to the fact that with 

a separately excited DC machine, independent control of the flux and torque can be 

achieved, and all quantities are DC, resulting in a simpler control strategy. However, 

the sliJrring and brushes arrangement results in a lot of wear and tear .. .o\lso, due to 

sparking at the brushes, these machines cannot be used in mines and other potentially 

hazardous areas because of the risk of explosion. 

After 1970, adjustable speed AC drive technology gained a lot of momentum, and 

it was found that AC motor drives accounted for more than 50% of all the energy 

consumed in developed countries. AC machines are now replacing DC machines even 

in high performance applications. It is predicted that in the future, the omnipresent 

internal combustion engine will be replaced by AC machines, leading to maintenance 

and pollution free automobiles. 
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AC machines can be further classified as two main types - synchronous machines 

and induction machines. Synchronous machines are a very important class of electric 

machines. Their forte has been the area of power generation, because of which they are 

known as synchronous generators or alternators. Synchronous machines run only at 

synchronous speed, i.e. the speed of rotation of the air gap flux vector. The field wind­

ing of synchronous machines is on the rotor and carries DC current, which is supplied 

through an arrangement of commutators and brushes not unlike DC machines. These 

machines, thus, have the same drawbacks as DC machines. The electrically excited 

rotor can also be replaced by a permanent magnet. This type of machine is called the 

permanent magnet synchronous machine (PMSM). This offers many advantages like 

elimination of rotor copper losses and brushes, leading to increased efficiency. How­

ever, because a permanent magnet is used, the airgap cannot be considered uniform 

[1]. Thus, it is difficult to obtain smooth torque and a servo like performance from 

these machines. Also, the use of a permanent magnet rules out flux control! making 

it difficult to operate the drive in the constant power region. The PMS~1 is usually 

e.xpensive because of the expensive permanent magnet material and has saturation 

problems at the teeth because rotor flux is non-uniform. 

Induction machines do not have many of the problems associated with synchronous 

machines, and are widely used in the industry. The machine of choice for this thesis 

work was the squirrel-cage induction machine and it will be discussed in more detail 

in section 1.4. 
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1.1 Motion control - issues involved and the fu­

ture 

The field of motion control stemmed from the area of power electronics initially, but as 

Harashima [2] points out, it has acquired a separate status of its own. The early stages 

of research in this area, in the 1970s, focussed on the application of basic control theory 

to drive a motor, using a power electronic converter. As the field evolved, it drew in 

researchers who originally trained in various other fields, including control engineering, 

computer science, mechanical engineering, artificial intelligence (including fuzzy logic 

and artificial neural networks) and electrical machines and power systems. According 

to Harashima, as the situation stands today, a traditionally trained Power Electronics 

engineer would no longer be suitable for the field of motion control, since the field is 

so interdisciplinary and requires experts from various fields pooling their efforts. 

1.1.1 Applications of motion control 

~lotion control encompasses every technology related to the movement of objects. It 

covers every motion system from micro-sized systems such as silicon-type micro in­

duction actuators to macro-sized systems such as a space platform. In consumer and 

commercial applications, motion controllers are found in vacuum cleaners, washers 

and dryers, music systems, VCRs, computer peripherals like printers, plotters and disk 

drives, ceiling and portable fans, mixers and blenders, drills, elevators and escalators, 

and various other products. In the industrial setting, motion controllers are ubiqui­

tous, and can be found in pumps, compressors, machine tools, rolling mills, PLCs and 

other applications. Control of robotic manipulators is also included in the field of mo­

tion control because most of the robotic manipulators are driven by electrical servo 
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motors and the key objective is the control of motion. Transportation offers another 

area rife with motion controllers. They are found in electric vehicles including electric 

trains, street cars, trolleys, ships and steamers, airplanes and space shuttles. ).'lotion 

controllers are also widespread in military applications like missile launcher guidance 

and radar control. 

As can be seen from the above, motion controller applications can be found in 

virtually every aspect of modem life. Thus, a large number of researchers are involved 

with the research and development of motion controllers. 

1.1.2 Future trends 

There are two central issues and problems in motion control. One is to make the 

resulting system of controller and plant robust against parameter variations and dis­

turbances. The other is to make the system intelligent, i.e., to make the system self­

adjusting to changes in environment and system parameters. Various methods used 

in control system theory have been applied to improve the robustness of the system. 

One famous method is the H-oc method based on frequency-domain optimization [3]. 

Sliding-mode control is also effective for robust control [4]. It has switching inputs and 

is thus attractive for power electronics engineers. 

To make a motion control system intelligent requires more time and research efforts 

because our knowledge and computational resources are not yet sufficient for realiza­

tion. Soft computational methods such as artificial neural networks (ANNs) and fuzzy 

logic are familiar intelligent control methods, and they have been applied by many 

researchers working in the drives area. However, a lot of work remains to be done, not 

only in the drives area but also in maturing the base technologies themselves. 
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For induction motor drives in particular, another issue has gained importance in 

recent years and that stems from problems associated with the speed sensor. ~lost 

closed loop control schemes require a speed sensor, and this is usually expensive and 

cannot be used in some situations. Thus, many researchers have focussed on ways to 

avoid the use of a speed sensor, but many of these schemes have other problems not 

associated with speed sensor-based control. 

In the future, it is expected that computational power and memory will get still 

cheaper leading to realization of more powerful control techniques. It will be possible 

to make a totally automatic control system which will derive a mathematical model 

of the plant by providing some test signals at the input, or obviate the need for a 

plant model by using an intelligent control technique like ANNs. It will be possible to 

identify the required parameters, decide on the control strategy and self-commission 

the drive. For induction motor drives, it will be possible to have an accurate estimate 

of the speed without using a speed sensor. Motion control will also have to deal with 

nonlinear systems, and this would require further maturity of base technologies like 

nonlinear adaptive control theory, fuzzy logic and ANNs. 

1.2 Motivation for this work 

Newer motion control applications like electric vehicles demand a high torque-to-size 

ratio machine, and a powerful but inexpensive controller. The squirrel-cage induction 

motor satisfies the first requirement admirably, and has been the motor of choice for a 

number of electric vehicle applications. For example, the EVl electric vehicle, which is 

made by General Motors and is commercially available, uses an induction motor drive 

[5]. Awareness about the harmful effects of automobile pollution on the environment 

is on the rise, and it is inevitable that there will be more research on efficient and 
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compact induction motor controllers for electric vehicles and other environmentally­

friendly applications like harnessing alternate-energy sources. 

It was seen in subsection 1.1.2 that intelligent control techniques will become more 

commonplace in the future. ANN technology spawned off from research on the func­

tioning of the brain and has grown by leaps and bounds in recent years. It has some 

important features like large scale parallelism for both computation and information 

storage. vVith the advent of ANN integrated circuits, ANN applications should run 

in a fraction of the time needed by conventional sequential processors. Also, partial 

malfunctioning of an ANN controller would not cause the controller to stop function­

ing, because of the inherent robustness of the ANN architecture. At present, dedicated 

ANN hardware is a very expensive proposition, but that is chiefly because of lack of 

demand. 'With higher demand, and production in larger volumes, the price of ANN 

hardware is bound to come down. Thus, it would be worthwhile to investigate ANN 

techniques for induction motor drives to establish a theoretical foundation in this area. 

This might lead to more effective ANN based induction motor drives, thereby further­

ing a demand in ANN hardware. 

1.3 Objectives of the proposed research 

The first objective of this research is to estimate induction motor speed using ANNs. 

The next objective is to come up with a strategy for controlling an induction motor 

using only an ANN controller. Both of these are unreported in the literature, and even 

though this itself is quite ambitious, it was decided that experimental verification of the 

ANN based schemes should be a third objective of this work. Achieving these objectives 

should pave the way for the development of an ANN based sensorless induction motor 

drive, which is the ultimate goal of many researchers working in this field. 
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'\Vith these objectives in mind, the next two sections provide a brief discussion on 

induction machines and ANNs respectively, and the rest of the thesis outlines the liter­

ature review undertaken, and the work done, in an attempt to achieve these objectives. 

1.4 Induction machines 

Induction machines have been the workhorse of the industry. These machines enjoy 

various advantages like simplicity, ruggedness, low cost, reliability and compactness. 

The squirrel-cage induction machine, in particular, has been used in constant speed 

drives for more than a century now. The principle of operation of the induction ma­

chine is similar to that of the transformer. The induction motor always runs at a speed 

slightly less than the synchronous speed! because there is no torque production in an 

induction machine at synchronous speed. The slip ring induction machine has access 

to the rotor terminals, but does away with some of the benefits of the squirrel-cage 

induction machine. The basic problem with the induction machine is the difficulty of 

control. The induction machine is a highly coupled, non-linear dynamic plant and its 

applications in the area of speed control have traditionally been limited. The com­

plex and expensive techniques such as pole changing, Scherbius and Kramer schemes 

have been known for a long time but are not generally favoured for high performance 

applications. 

The d-q axis induction machine dynamic equations in the stationary reference frame 
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are given below [ 1 J 

Vd.f R, +pL, 0 pLm 0 ·td, 

Vqs 0 R, + pL, 0 pLm iqs 
- (1.1) 

0 pLm WrLm R,. + PLr WrLr 1.dr 

0 -wrLm PLm -wrLr Rr +pLr 1.qr 

where Vd.f , Vqs are the direct and quadrature (d-q) axis components respectively of the 

applied stator voltage, ids, iqs refer to the d-q axis stator currents, idn iqr are the d-q 

axis rotor currents, Wr is the motor speed in electrical radians per second, R, , R,. refer 

to the stator and rotor resistance, L,, Lr refer to the stator and rotor inductance, Lm 

is the magnetizing inductance and P is the number of pole pairs. 

Tem = -~PLm(ichiqr- iq,idr) 

dwr 
T em = T1 + J dt + Bwr 

(1.2) 

(1.3) 

where T em is the electromagnetic torque, T1 is the load torque, J is the moment of 

inertia and B is the damping coefficient. 

Ad- q axis equivalent circuit model of the induction machine in the synchronous 

reference frame is shown in Figure 1.1. In this figure, L~s and L1r refer to the stator and 

rotor leakage inductance, tPds and Wqs are the d-q axis stator and rotor flux components 

and We refers to the synchronous speed. 

1.5 Artificial neural networks 

Artificial neural networks have emerged as powerful problem solving tools in the ar­

eas of pattern recognition and function emulation. There are various types of ANNs, 
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Figure 1.1: d-q axis equivalent circuits for induction machine in the synchronous ref­

erence frame 
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though they can be broadly classified into three main categories - Feedforward, Feed­

back and Self-organizing. The most widely used architectures can be further classified 

within these three categories, as can be seen in figure 1.2 (6]. The most common type 

Artificial Neural Networ 

Hopfield 
Model 

Boltzmann 
Machine 

Feature 
Maps 

Figure 1.2: Artificial neural network architectures 

is known as the multilayered feedforward network. The basic structure of a multilay­

ered feedforward network is shown in Figure 1.3. Feedforward networks are so named 

because the output of each layer feeds the next layer of units. The Perceptron, pro­

posed by Rosenblatt in 1962 and Adaline proposed by Widrow in the same year are 

the earliest feedforward ANN architectures [7]. These ANNs consist of two basic parts 

-a typically non-linear processing element called the neuron, and a connection ele­

ment called the synapse which connects various neurons. Each synapse has a number 

associated with it, called the synaptic weight. All the knowledge in the ANN is stored 
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Output 

Figure 1.3: Schematic of an artificial neural network 

in these weights, also known as the free parameters of the network. 

The neurons are laid out in layers. The first layer is called the input layer and acts 

as the sensory organ for the ANN. The various inputs of the ANN are received through 

this layer. The last layer of the ANN is called the output layer and supplies the ANN 

output. All the intermediate layers are called hidden layers, because their inputs and 

outputs are not readily accessible to the external world. The inputs to the hidden layer 

or output layer neurons are the outputs of the previous layer neurons multiplied by the 

synaptic weights. The structure of a feedforward network is generally denoted by a set 

of numbers representing the number of inputs, neurons or outputs in each layer. For 

example, the structure of a four layered network with 10 inputs, 20 neurons in the first 

hidden layer, 15 neurons in the second hidden layer, and 2 outputs would be denoted 

by 10-20-1~2. 

The process of training an ANN is defined as learning and several algorithms for 
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ANN learning are available in the literature [8] . However, one of the most popular 

algorithms is known as the error backpropagation algorithm. As the name implies, 

this algorithm modifies the weights of the networks by propagating the errors at the 

output backwards through the network. The training data is presented to the ANN 

one data-vector at a time, and this is referred to as an iteration. The presentation of 

the whole data set to the ANN is referred to as as epoch. The weights are modified at 

each iteration as (8] 

(1.4) 

where w;i(n) represents the synaptic weight from neuron j in one layer to neuron i 

in the previous layer at the nth iteration, Aw;i(n) stands for the weight increment, 

6;(n) is the local gradient of the neuron j at the nth iteration, Yi(n) is the output of 

neuron i at the nth iteration, o is called the momentum parameter and TJ is called the 

learning rate. This equation is known as the generalized delta rule. There are no fixed 

rules for choosing the training parameters ( o and 11). A high value of 11 makes the 

ANN converge faster but might lead to instabilities, or might miss the optimum set 

of weights required for effective training. A low value of 11 makes learning slower, but 

is more stable. However, the training algorithm might get trapped in a local minima 

of the multidimensional weight surface and still not reach an optimum set of weights. 

It is good to try out different learning rates for training. The momentum parameter, 

o, is less than unity and is usually not too small. It has a smaller effect on network 

training. 

The neuron in any layer computes the weighted sum of the inputs and passes this 

sum through a non-linear function called the activation function. Usually the sigmoid 

function is used as the activation function, because it has many desirable properties -

it is non-linear and differentiable and its output is limited in an asymptotic fashion. 
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This function is given by 

(1.5) 

where {3 represents the slope of the activation function. There is another term associ­

ated with this sum, and this is called the bias term. This term can be represented as 

a constant input of -1 multiplied by the synaptic weight, for each of the layers other 

than the input layer~ as shown in Figure 1.3. 

In summary, an ANN is a parallel distributed information processing structure with 

the following characteristics [9]: 

• It is a neurally inspired mathematical model. 

• It consists of a large number of highly interconnected processing elements. 

• Its connections (weights) hold the knowledge. 

• A processing element can dynamically respond to its input stimulus, and the 

response completely depends on its local information; that is, the input sig­

nals arrive at the processing elements via impinging connections and connection 

weights. 

• It has the ability to learn, recall, and generalize from training data by assigning 

or adjusting the connection weights. 

• Its collective behaviour demonstrates the computational power, and no single 

neuron carries specific information (distributed representation property) . 

ANNs have been used successfully in various areas including image processing and 

recognition, control systems, speech processing, optimization, communication, signal 

classification, robotics, power systems and many others [9]. ANNs have the ability to 
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approximate almost any continuous nonlinear function, and this feature is extremely 

useful in applications where the functional relationship between the inputs and outputs 

is very complex or unknown. Image and speech processing with ANNs has received 

widespread attention and commercial products are now available which use this tech­

nology. :More recently, ANNs have been applied to problems in control systems, though 

the field has yet to reach maturity. 

1.6 Outline of the thesis 

A review of present day research in the drives area and a critique of some work which 

has been done is presented in chapter 2. Chapter 3 discusses some existing commercial 

simulators and their main features and limitations. It also describes the design of 

an object-oriented simulator that was built for the purpose of doing this research. 

Chapter 4 deals with speed estimation of induction motors using ANNs, and four 

schemes for the same have been proposed in this chapter. Chapter 5 discusses some 

issues involved with induction motor control using ANNs and proposes a scheme for 

controlling an induction motor using an off-line trained ANN. A scheme is also proposed 

for improving the steady state performance and robustness of this ANN by on-line 

training. Chapter 6 introduces some commercially available ANN hardware, and then 

describes an experimental setup which was built for the purpose of verifying the ANN 

speed estimator developed in chapter 4. Experimental results are then presented and 

compared with simulation results. Chapter 7 concludes the thesis by highlighting the 

contributions made by this work and also outlines some avenues for further research in 

this area. 
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Chapter 2 

Review of Literature 

The previous chapter introduced the area of motor drives and outlined the motivation 

and objectives of doing the present research. It also identified the squirrel-cage induc­

tion motor as the motor of choice for this work. The motor drives incorporating this 

motor have undergone a major change over the last twenty years or so. This chapter 

traces the evolution of the squirrel-cage induction motor drive and, also highlights the 

directions taken by recent researchers in this area. 

2.1 Scalar control techniques 

A simple, economical, but low performance control method of the induction motor 

that is extremely popular in industry is the open-loop V/fcontrol [10]. A small drift in 

speed and airgap fiux due to fiuctuations in load torque and supply voltage, respectively, 

as well as sluggish transient response, are some of the problems associated with this 

scheme. However, they are of no consequence in a majority of industrial applications. 
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An improvement over the basic Vlf scheme is presented by Koga et al [ll] . This 

method extends the applicability of a V If controlled induction motor drive system by 

reducing the steady state speed error, caused by load changes from no-load, to zero 

without using a rotor speed sensor. In another technique called the loss minimization 

technique [12}, an effort is made to operate an inverter fed induction motor drive at 

the point of maximum efficiency at any torque-speed operating point. This method 

is an improvement over the V If method and falls under the closed-loop category of 

control techniques. In a few other techniques, advanced concepts from control systems 

engineering have been applied to induction motor control. A robust speed control 

method using a load torque observer and feedforward control is presented by Iwasaki et 

al [13]. ~lodel Reference Adaptive Control (MRAC) and Sliding Mode control methods 

are used by Alonge [14] . This scheme uses two controllers- one for the machine and 

one for the inverter. The machine controller is further split into three subcontrollers 

namely the speed, the rotor flux and the stator current vector subcontrollers. Such 

control techniques overcome some of the problems of conventional scalar techniques 

like lack of robustness and high susceptibility to load torque disturbance. However, 

they are more complex than the simpler techniques mentioned earlier, and usually 

require a Digital Signal Processor (DSP) for their implementation. Krein et al (15] 

have done a comparative analysis of induction motor control methods and come to 

the conclusion that, on an axis representing control complexity, there is a galaxy of 

possible control methods. 

2.2 Field-oriented control 

The first major breakthrough in the area of induction motor drives came with the 

discovery of the concept of field orientation by Blaschke [16] in 1972. Blaschke examined 
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how field orientation occurs naturally in a separately excited DC motor. The armature 

flu..x and the field flux are always perpendicular to each other due to the effect of the 

compensating winding. In an induction machine, a similar condition can be created 

in the rotating frame of reference, by controlling the stator currents in a particular 

fashion. 

The basic idea of field orientation is given mathematical rigor by the use of space 

phasors. Field orientation is perfonned by decoupling the stator current space phasor 

along one of rotor flux space phasor, stator flux space phasor and air-gap flux space 

phasor. Figure 2.1 shows how the stator current space phasor can be decoupled along 

the rotor flux space phasor. The d- q axis model of the induction motor with the 

Figure 2.1: Transfonnation of stator current space phasor 

reference axes rotating at synchronous speed We is given by [17] 

ye 
s - R # PiiJ . tP sls + s +)We s (2.1) 

0 - Rri; + p;p; + j(we- Wr)~ (2.2) 

Tem - 3P Lm ( t/Je ·e _ t/Je ·e ) 
2 Lr cfT'£qs qr'£rl.s (2.3) 

where 

,..e e + · e V 5 - Vct.s )Vq1 (2.4) 
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-;oe ·e · ·e (2.5) 1_, - ld.t + Jlq, 

oe ie + jie (2.6) 1,. - dr qr 

.....-e 
tbd., + j'l/J:, (2.7) tJ.l, -

~ - 1/J~r + jlj;:r (2.8) 

In the above, 1/J refers to the flux and the superscript e implies that the quantity is 

e..xpressed in the rotor flux-oriented reference frame, the q and din the subscript stand 

for the quandrature and direct axes respectively and the sand r in the subscript stand 

for stator and rotor quantities respectively. 

The field orientation concept implies that the current components supplied to the 

machine should be oriented in phase (flux component) and in quadrature (torque com­

ponent) to the rotor fiux vector~· This can be accomplished by choosing We to be the 

instantaneous speed of ¢; and locking the phase of the reference system such that the 

rotor flux is entirely in the d-axis (flux axis), resulting in the mathematical constraint 

(2.9) 

It should be noted that control is performed on the DC quantities obtained in the 

synchronous frame and depending on which flux phasor is chosen for decoupling, we get 

rotor field-oriented control, stator field-oriented control and magnetizing field-oriented 

control respectively. Field-oriented control, also called vector contra~ can be classified 

in a different way as indirect field-oriented control or direct field-oriented control. In 

the first method, the flux is indirectly estimated while in the latter scheme the flux is 

obtained by direct measurement or explicit computation using stator quantities. With 

the evolution of fast microprocessors and Digital Signal Processors (DSPs), implemen­

tation of vector control in real-time has been achieved and both direct and indirect 

vector controlled induction motor drives have been developed [18} . A block diagram 

of a rotor field-oriented induction motor drive is shown in Fig. 2.2. All the quantities 
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with the superscript * refer to the reference (or command) values. 
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Figure 2.2: Rotor field-oriented induction motor drive 

Indirect Vector Control (IVC) suffers from parameter variation problems, but can 

function quite accurately in the zero speed region. Direct Vector Control (DVC) does 

not suffer so much from parameter variation, but computation of fiux around zero 

speed is error prone. An attempt to combine the benefits of both strategies is made in 

[19]. In DVC, flux is explicitly computed, but direct integration is avoided by use of 

cascaded Low Pass Filters (LPFs) with programmable time constants. Integration is 

avoided because the gain becomes too high for low frequency signals. Here, the speed is 

computed using stator quantities under stator fiux-oriented control. Stator resistance 

is the main parameter which undergoes variation. It is compensated by sensing the 
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temperature and using the stator winding's temperature coefficient to compute the new 

value of the resistance. The drive is operated in two modes. At startup it operates in 

IVC. \Vhen the torque current exceeds a threshold, the drive is transitioned to DVC 

mode. It is brought back to IVC mode when the synchronous speed approaches zero. 

Field-oriented control has gained widespread acceptance as a high-performance con­

trol strategy for induction motor drives. However, as mentioned earlier, it has problems 

associated with parameter variation of the motor. This leads to lack of robustness and 

poorer performance, and has prompted researchers to investigate intelligent control 

techniques like fuzzy logic and ANNs. 

2.3 Speed sensorless drives 

The field-oriented schemes provided very good dynamic response compared to the V /! 
method and other control schemes. However, most such schemes used speed sensors 

for closed loop speed control and also for the estimation of the rotor flux vector in the 

indirect field-oriented control scheme. Unfortunately, speed sensors cannot be mounted 

in some cases, such as motor drives in hostile environments and high speed motor drives. 

Also, speed sensors are expensive and reduce the advantage of an induction motor drive 

system. They lower the reliability of the system, especially in defective environments 

and require special attention to noise. Because of these problems, researchers put in a 

lot of effort towards developing induction motor vector controlled drives which required 

no speed sensor, popularly known as sensorless drives [20]. 

Pioneering work in the area of sensorless vector control of induction motor was done 

by Ohtani, Takada and Tanaka [21]. They consider the induction motor equations in a 

frame of reference which rotates at synchronous speed and derive the conditions for field 
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orientation by setting the quadrature-axis rotor flux to zero. The slip speed is computed 

by assuming conditions for field orientation, and the motor speed is computed by 

subtracting slip speed from the synchronous speed. In such a system! the flux has 

to be obtained from the stator quantities because indirect estimation is not possible 

without speed feedback. The d-q axis fluxes in the stationary frame can be obtained 

by direct integration, but this method leads to instability near zero speed. Also. the 

computed flux depends on motor parameters and a variation in these causes incorrect 

estimation of the flux. The standard method of using LPFs is also undesirable because 

it produces phase shifts. The authors propose a method in which an extra LPF is used 

with the flux command as the input. This approximately compensates the phase shift 

problem introduced by the first LPF. 

As mentioned in the literature, the main types of speed sensorless control schemes 

can be classified as (22}, (23] 

• Direct computation of speed 

• Slip frequency-based approach 

• Observer based methods 

• MRAS/MR.AC based methods 

• Kalman filter /Extended Kalman filter based methods 

• Rotor harmonic detection based methods 

• Superimposition of signals on the current command 
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2.3.1 Direct computation of speed 

The direct calculation of speed method derives expression for the rotor speed and rcr 

tor resistance using stator voltage feedback. These expressions have a numerator over 

denominator form where both the numerator and denominator are zero for sinusoidal 

waveforms. But, actually, the waveforms are non-sinusoidal, and hence speed and resis­

tance can be obtained. The technique loses reliability as load increases. Kanmachi et 

al [24] have obtained expressions for the induction motor speed and the rotor resistance 

as shown in equations (2.10), (2.11). 

(tPtl.6- L~i,u}]J'I/Jqr- (¢9~- L~i9~)pt/JM-w - ~~--~~~~--~~--~~~~ 
r - (1/J,u- L~icLt)P'I/Jdr- (l/Jq5- L5iq5)]Jt/Jqr 

(2.10) 

Rr = -Lm_tPdrWcb- - Lmt/lqrP'¢_qr 
(tP!U - L51.cLt)pt/Jqr- (tPq& - LJ1.qJ)P'r/Jdr 

(2.11) 

In the above equations, 1/J and Lm represent flux and mutual inductance respectively, 

and p stands for the differentiation operator. In both these expressions, the numerator 

and denominator are identically zero for normal sinusoidal operation. However, the 

authors claim that, for inverter-fed induction motor drive, the expressions are not 

identically zero, and thus the speed and rotor resistance can be obtained. The authors 

have also studied the influence of parameter variations on this scheme. By varying the 

stator resistance in the simulations, they found that the output of the speed and rotor 

resistance estimators is erroneous. Furthermore, the speed calculation error increases 

with an increase in the load torque, whereas the rotor resistance calculation error 

changes very slightly with a change in load torque. 
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2.3.2 Slip frequency-based approach 

In this approach, the inverter frequency is controlled such that vector control conditions 

are satisfied [25]. Under these conditions, the slip frequency is given by 

. R, iq~ 
Wslip = -L -. -

f ld_, 

The motor speed is then obtained as 

where the · indicates estimated quanti ties. 

(2.12) 

(2.13) 

It should be noted that in this scheme the vector control algorithm and the slip 

frequency computation are interlinked, and failure of one would result in failure of the 

other. A block diagram of this scheme is shown in Figure 2.3. 

w,. 
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Figure 2.3: Slip frequency-based sensorless control of induction motor 
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2.3.3 Observer based methods 

Observer theory is aimed at providing a real-time estimate of the state of a system, 

using only the input and output signals, both of which are assumed to be known [26]. 

The estimate provided by the observer contains a prediction error term. The induction 

machine dynamic equations can be written in state variable form as 

± - Ax+Bv~ 

I~ - Cx 

(2.14) 

(2.15) 

where v, is the stator voltage, I, is the stator current phasor, and x is the induction 

motor state vector given by 

X= [ icU iq~ Wdr 1/JqT ]T (2.16) 

where rt· stands for the flux linkage and the subscripts follow the standard notation. 

The stator voltage phasor v~ and stator current phasor I, are given by 

i~ - icU + jiq, 

v, - VcLJ + jvq, 

(2.17) 

(2.18) 

The state observer, which estimates the stator current and the rotor flux, can be written 

as [27] 

(2.19) 

where· means estimated values and G is the observer gain matrix, which is chosen 

such that equation (2.19) is stable. By utilizing Lyapunov's theorem, induction motor 

speed can be estimated as 

Wr = Kp(eiu¢1/T- ~q,'¢dr) + Kr J (~u¢f/T- eiqstbr~r)dt (2.20) 

where eiu, ~q, stand for the error between estimated value and measured value of the 

direct and quadrature axis stator current respectively, and Kp, Kr are proportional 

and integral gains. Figure 2.4 shows a block diagram of this scheme. 
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v. 

Figure 2.4: Block diagram of observer based schematic 

The observer based methods yield a reasonably accurate value for the speed. How­

ever, most of these methods use integration techniques which have problems with the 

initial values and drift. To avoid these problems, the pure integrator is replaced by a 

low pass filter (LPF) with a high gain. However, this replacement causes instability of 

identification at low speeds. 

2.3.4 Model reference adaptive control based methods 

The Model Reference Adaptive System (MRAS) or Model Reference Adaptive Control 

(:VlRAC) is a common technique to obtain speed sensorless control and parameter 

independence. In this technique, there is a reference model, an adju.stable model, and 

an adaptation mechanism (28]. A block diagram of the MRAC scheme is shown in 

Fig. 2.5. The reference model is a certain quantity which is estimated without using 

the rotor speed. In the adjustable model, the same quantity is estimated using the rotor 

speed and other parameters. It is assumed that the difference in the two quantities 

is chiefly due to the rotor speed variation. The error between the two is used as a 
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Figure 2.5: Block schematic of model reference adaptive control 

correction for the speed. These techniques usually use integrators for computing the 

flux from the stator quantities. Use of integrators causes various problems like drift 

in the value and very high gain at a low frequency. Thus, they can only be used in 

a limited range of the drive operation. To overcome the integration problem, some 

researchers have used LPFs instead of integrators. These cause a phase shift in the 

output, as has been mentioned before. One technique has been suggested, which uses 

back emf and does not require integrators [29]. An extension of the MRAC technique 

is presented by Zhen and Xu [19]. Here, the reference model and the adjustable models 

have interchangeable roles. Initially, the models are used to estimate the speed. After 

the speed becomes constant, the models interchange their roles, and an estimation of 

the rotor resistance and rotor time constant is effected. It is assumed that the speed 

does not change during this time. 

2.3.5 Extended Kalman filter based techniques 

The Kalman filter is an optimal observer for the state space solution of problems 

where random noise is assumed to be present both in the inputs and the outputs. The 
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formulation of the state space problem is as follows [30]. 

:t(t) - Ax(t) + Bu(t) + w(t) 

y(t) - Cx(t) + v(t) 

(2.21) 

(2.22) 

where x(t) is the state-variable vector, u(t) is the input vector, y(t) is the output 

vector, w(t) is the noise matrix of the state model and v(t) is the noise matrix of the 

output model. It should be noted that the above state space representation is linear. 

In the dynamic model of the induction motor, however, the dimension of the state 

vector is increased by adding the angular speed of the rotor. This causes the state 

model to become non-linear. In such a. case, the extended Kalman filter has to be used 

to estimate the desired parameter. The discrete-state model and the output model for 

the extended Kalman filter case are given by [31] 

x(t) - f[x(t), u(t), t] + G(t)w(t) 

y(t) - h[x(t), t] + v(t) 

(2.23) 

{2.24) 

where f[x(t), u(t), t] and h[x(t), t] represent the non-linear part of the state model. The 

extended Kalman filter relinearizes the non-linear state model for each new estimate 

as it becomes available. The rotor speed can be estimated from the dynamic model 

of the induction motor by using the extended Kalman filter algorithm in the following 

steps. i) estimation of error covariance matrix ii) computation of Kalman filter gain 

iii) update of error covariance matrix and iv) state estimation. 

The extended Kalman filter algorithm has a very good performance as regards 

to noise sensitivity. Also, it is able to function at low speeds. However, the noise 

covariance matrices and initial values for the algorithm must be chosen very carefully. 

Otherwise, instability may result with this algorithm. Also, the steady-state error for 

this algorithm is somewhat high especially at low speeds (23]. Another disadvantage of 

this scheme is that it is very computation intensive and requires a very fast processor 

for real-time implementation. 
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2.3.6 Rotor harmonic detection based methods 

Rotor harmonic detection based methods use the fact that speed related harmonics 

arise from rotor slots and rotor eccentricity. They are independent of time-varying 

machine parameters and exist at any non-zero speed. But these techniques fail under 

light load conditions and at very low speeds. They also require some form of user 

initialization, since they depend on typically unknown parameters such as the number 

of rotor slots, and they are susceptible to noise. If analog filters are used, the bandwidth 

gets reduced. FFT based technique is also used, but it relies on a particular slot 

harmonic, which limits application to different machines. In one technique proposed 

by Hurst et al [32], the speed related harmonics arising from rotor mechanical and 

magnetic saliencies, such as rotor slotting and rotor eccentricity, are used to detect the 

speed. The harmonics arising from the rotor speed depend on the number of rotor 

slots, the order of rotor eccentricity and the order of the airgap MMF harmonics. 

However, if only the eccentricity harmonics are considered, an expression for the slip 

can be obtained with poorer resolution. The authors use the latter fact to run an 

initialization routine and to determine the other parameters from a limited domain of 

their typical values. The speed detection technique uses both analog and digital filtering 

and the application of a Hamming window to determine the rotor speed. This method 

is, however, computationally very intensive, and so a simpler method is also suggested 

which uses the mechanical model of the machine and tries to estimate the moment of 

inertia, the viscous damping and the load torque. The speed can be estimated with a 

knowledge of these parameters and the electromagnetic torque. 
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2.3. 7 Superimposition of signals on the current command 

In most sensorless schemes, the speed estimate obtained depends on the motor para­

meters, which are subject to variation. Thus, it would be desirable to have a sensorless 

scheme in which the motor parameters, especially the rotor time constant, can be ob­

tained simultaneously. Ohnishi et al [25] have shown that simultaneous identification of 

the rotor resistance and motor speed is possible only when the rotor flux is persistently 

time-variant. Under vector control, the rotor flux is maintained constant so that the 

orthogonality of rotor flux and rotor current is achieved. Thus, it would be impossible 

to obtain the speed and rotor time constant simultaneously. Kubota and Matsuse [33] 

propose a scheme in which the equations of the induction motor are considered in the 

synchronous reference frame. As shown in the equation below, only the ratio between 

the slip speed and rotor resistance can be obtained. 

·e _ -Wstip •1,e 
1.qr- R,. ~dr (2.25) 

If, however, AC components are superimposed on the field current command, the motor 

speed and rotor resistance can be estimated simultaneously. The frequency of these 

AC components have to be different from the fundamental frequency of the inverter 

output. This is not a very popular technique and suffers from the drawback that 

the flux command, and hence the controlled flux, will have ripples, leading to poorer 

performance. 

Apart from the techniques mentioned above, there are some other techniques, which 

are not as well known as the above. Some of them are used under special conditions. 

One such scheme obtains the motor speed from split phase stator windings [34]. This 

requires a modification in the stator windings of standard induction motor. Another 

scheme for obtaining the speed using Direct Self Control is presented by Baader et al 

[35]. This is used in medium to low performance drives. 
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2.4 Disturbance torque and robust motion control 

High performance motion control often presents conflicting control requirements. To 

attain high performance, the control system should be robust against load and para­

meter changes. In mathematical terms, this implies that if a force F is applied to a 

system, and x is the change in position in a position control system. or change in speed 

in a speed control system, then the control stiffness is defined as (25] 

control stiffness = ~~I (2.26) 
t-+oc 

The ideal control system should not allow any stationary and transient deviation for 

any load. This implies that the control stiffness should be infinite. On the other hand, 

an ideal control system should be able to adjust instantaneously to the smallest change 

in the reference, thereby implying that the smallest error signal should be able to drive 

the system instantaneously towards its new steady state. This, in tum, implies that 

the control stiffness should be zero. A regular system, of course, has a control stiffness 

somewhere between the two extremes. 

A robust controller, typically used for high performance drives, has to be 

• insensitive to the external disturbance 

• insensitive to parameter variation 

Though these two are different requirements, they can be combined in a a single quan­

tity called the disturbance torque. Using a disturbance torque observer is one way to 

counter the effects of the disturbance torque. To illustrate the procedure, consider the 

dynamical equation of motion of the DC machine given by 

Tem = kt1/lfia = T, + J~r + Bwr (2.27) 
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where '1/J 1 is the field flux, ia is the armature current and kt is the torque constant. As­

sume that the inertia J and the torque constant kt undergo variations. The parameter 

variation of each from the nominal value gives 

J - Jn +6.J 

kt - ktn + 6.kt 

Incorporating these variations, the equation of motion can be written as 

ktntiJJia = Tdis + Jn ~r + Bwr 

where 

Tdis = 1l + 6.J~" - 6.kttPJic 

Using equations (2.27) and (2.31) we get 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

and this equation can be used to estimate the disturbance torque as shown in Figure 2.6. 

The estimated disturbance torque can be fed back in the control loop, making the 

control strategy more robust. 

Figure 2.6: Estimation of disturbance torque 
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2.5 Use of artificial neural networks in induction 

motor drives 

Artificial neural networks have found widespread use in function approximation. It 

has been shown that , theoretically, a three layer ANN can approximate arbitrarily 

closely, any nonlinear function, provided it is non-singular (36]. This property has 

been exploited by a. few researchers working in the induction motor drives area.. 

2.5.1 Estimation of flux, torque and speed 

Toh et al [37] developed a. flux estimator for use in vector controlled induction motor 

drives using ANNs. Two ANNs are used, one for the magnitude of the rotor Bu.x and 

the other for the sine of its space phase angle. The inputs to the ANNs a.re the d-q 

a.xis stator currents in the synchronously rotating reference frame and five previous 

values of the same. Standard multilayer ANNs with backpropagation are used. The 

ANNs have been simulated on a PC and training has been performed assuming the 

availability of the rotor flux magnitude and space phase angle. 

Mohama.dian et al [38] have implemented an ANN which essentially computes the 

rotor flux angle and performs the transformation from the synchronous frame to the 

stationary frame. The rotor flux angle is shown to depend on the synchronous frame 

d-q axis current, the rotor speed and the previous values of these quantities. The 

stationary frame d-q axis voltages and their previous values are also given as inputs 

to the ANN to improve its accuracy. The ANN transforms the synchronous frame d-q 

axis current commands (which are also given as inputs to the ANN) to the stationary 

frame d-q axis current commands. A 20-1~2 network is trained by the backpropagation 

algorithm to achieve the transformation. Though the authors call it an ANN controller, 
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control action is not performed by the ANN. 

In another study by Simaes and Bose [39), four feedback signals for a direct vector 

controlled induction motor drive have been estimated using ANNs. A 4-20-4 multilayer 

backpropagation network has been used for the estimation of the rotor flu.x magnitude, 

the electromagnetic torque and the sine and cosine of the rotor flux angle. The ANN is 

simulated using a commercially available neural network software. The output is not 

very good, though the authors claim that it can run an induction motor drive in closed 

loop. The simulation is run on a PC. 

In an interesting application of neural networks, Marino et al [40) develop a robust 

neural network observer for estimating rotor flux and electromagnetic torque of an in­

duction motor. They argue that existing observers suffer from the drawback that, in 

the presence of uncertainties, their performance deteriorates. To overcome this prob­

lem ~ some researchers have resorted to using adaptive techniques like on-line training, 

while others use the observer for rotor time constant estimation only. 

The authors of [40] have come up with a different way of attacking this problem. 

They propose an off-line trained observer in which the training set is generated by 

taking the parameter variations into account, using a stochastic model of the induction 

motor. A parameter vector Z is defined as 

(2.33) 

and the identification problem can be defined as the search for the parameter vector 

which minimizes the following function (also known as the reduced X 2 function) 

(2.34) 
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where the quantities with· indicate estimated quantities, K is the number of measure­

ments and aw and ai are the uncertainties in the rotor speed and the stator current 

measurements, respectively. Once a suitable minimization procedure is complete, then 

the parameters lying within a resulting confidence ellipsoid will yield a good fit for the 

measured data. To estimate this confidence ellipsoid, the authors use a direct, global 

optimization algorithm called the Price algorithm. The algorithm is outlined in detail 

in this paper. After implementing the algorithm, a confidence ellipsoid is obtained, 

and, if the variations of the plant parameters are within this confidence ellipsoid, then 

the reduced X2 function has a small value ( < 1.5). 

For ANN training, the training set used includes a number of input/output pairs 

generated via simulations in which parameter variations are introduced. These varia­

tions are within the confidence ellipsoid previously determined by the Price algorithm. 

To ensure a further richness of training set, random signals are also added to the stator 

voltages. Thus, the training set contains not only parameter variations, as mentioned 

earlier, but also noise in the stator voltages. The ANN used in this study is of structure 

4-20-3 with a hyperbolic tangent activation function. Performance of this ANN, called 

stochastic neural network by the authors, has been shown to be significantly better in 

the case of varying plant parameters, than using an ANN with deterministic training 

data, or an extended Kalman filter algorithm. 

In one application, Ba-razzouk et al [41] have trained a 5-8-8-2 ANN to estimate the 

induction motor stator flux using measured stator quantities. After training, the ANN 

is used in a direct field-oriented controlled drive, which has been simulated using the 

MATLAB-SIMULINK environment. The rotor flux is computed from the stator flux 

estimate provided by the ANN and the stator current. The same paper also presents 

an ANN based decoupler which is used for indirect field-orientation. A 2-8-8-1 ANN 

is used for implementing the mapping between the flux and torque reference and the 
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stator current references. A current-fed induction motor model is used for testing the 

ANN decoupler in simulation. 

Even though a lot of research has been carried out into developing ANN techniques 

to estimate some of the motor parameters like flux and torque, not much work has 

gone into speed estimation of induction motors using ANNs. Ben-Brahim [42] has 

used linear ANN technique to estimate induction motor speed. Though the technique 

gives a fairly good estimate of the speed, it lies more in the realm of adaptive control 

than neural networks. The speed value is not obtained at the output. Instead, the 

magnitude of one of the weights corresponds to the speed magnitude. Mehrotra et al 

[43] outline a couple of techniques for estimating the motor speed using ANNs, and 

these will be discussed in detail in chapter 4, since they form part of the work done for 

this thesis. 

2.5.2 Current control 

In one study, Burton et al [44] have used a current control strategy outlined by Wishart 

and Harley [45] to train an ANN to control induction motor stator currents, but with 

a different training algorithm. The training algorithm, called Random Weight Change 

(RWC) algorithm gives almost the same performance as the popular backpropagation 

algorithm, but is supposed to be slightly faster than the latter. In the RWC algorithm, 

the weights are perturbed by a fixed ste~size and a random sign. This is done for a 

fixed number of trials and after each trial the error with the desired output is computed. 

Finally, the set of weight changes which result in the least error are chosen and the 

whole process is repeated till convergence is reached. Though this scheme has only 

been tried out in simulation, the authors have proposed a hardware for implementing 

the RWC algorithm. 
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Cabrera et al [46] have used ANNs to function as switching state selector for running 

the inverter in inverter-fed induction motor drives. A 3-5-3 ANN is trained to emulate 

an existing switching state selector, and various training strategies like backpropaga­

tion, adaptive neuron model, extended Kalman filter (EKF) and the parallel recursive 

prediction error have been tried out and compared. From this work, the authors have 

found the EKF and parallel recursive prediction error method to be the most effective. 

However, the authors point out that the use of neural networks in such an application 

does not demonstrate any tangible benefits over the conventional direct torque control 

(DTC) method. One reason for this could be that the problem of switching state selec­

tion is a very deterministic one and neural networks may not be the appropriate tool 

to solve such a problem, since it can be handled by a simple algorithm. 

2.5.3 Performance enhancement of existing controllers 

Neural Networks have been used frequently to improve the performance of existing 

controllers. Cabrera et al [47] have used a neural network to tune the stator resistance 

of direct torque controlled (DTC) induction motors. DTC is a commonly used control 

strategy for tracking a reference electromagnetic torque and stator flux. It uses only 

stator measurements and avoids the complications which arise in control methods which 

make use of the rotor time constant. A block diagram of the method is shown in 

Figure 2.7. 

The neural network used in this strategy produces the change in stator resistance, 

which is added to the previous stator resistance estimate to produce the present esti­

mate for the stator resistance. This value is handed over to the plant which is composed 

of the induction motor and the DTC strategy. The error between the measured sta­

tor current and the reference stator current is used to train the ANN. The ANN is 
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Figure 2.7: Block diagram of DTC 

trained using the Parallel Recursive Prediction Error algorithm. This method is com­

putationally more intensive than the gradient based methods like backpropagation, but 

it is supposed to train the network faster for certain applications. The authors have 

trained various networks ranging in size from 2-2-1 to 2-5-1 , and they seem to operate 

satisfactorily. The networks have also been tried out in an experimental setup using 

T:\1S320C30 DSP. 

Kung et al [48] use a neural network for improving the performance of a two-degree­

of-freedom (2DOF) controller. The 2DOF controller comprises of a feedback controller 

and a feedforward compensator. It is a scalar control technique and requires retuning 

of the controller parameters under different operating conditions. The model of the 

plant is given by 
e -1 

-1) z 
Gp(z = 1 - cpz-1 (2.35) 

where e and 4) are two plant parameters which are derived from the inertia of the drive 

(J) and its damping coefficient (B). The structures of the feedforward compensator 
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and the feedback controller are given below 

{2.36} 

(2.37) 

where eo, c1, do, d1, ~. R 1 and 5 1 ••• Sd are controller parameters. The order of the 

denominator of Gc is d + 1, where dis the time delay of the drive model. 

It is assumed that the plant parameters 9 and ~ undergo variation during operation 

of the plant, though the variations are restricted to the ranges 

~min$~$ ~max 

emin $ e $ 9max (2.38} 

vVithin the ranges defined in equation (2.38), the parameters are divided into N sets, 

and for each set of plant parameters, the controller parameters are determined by a 

rigorous method outlined in the paper. Finally, the ANN is trained using backprop­

agation method, to produce the desired set of controller parameters with the plant 

parameters as inputs. Since the mapping between the inputs and outputs is quite com­

plex and unknown, the ANN's generalization property is relied upon to produce a set 

of controller parameters for any combination of plant parameters not covered in the 

training set. For real-time operation, a plant. parameter identifier is used for providing 

the inputs to the ANN. The ANN outputs are used to adjust the controller parameters 

on-line. With this scheme, the 2DOF controller can function satisfactorily under wide 

operating ranges. 

Tadakuma et al (49] have used a 3-2 linear ANN for improving the robustness 

of a vector-controlled induction motor drive. The basic control scheme uses both 

feedforward and feedback controllers. The ANN uses on-line training to approximate 

the induction motor model and one of the ANN weights is used for the computation 
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of the synchronous speed. The ANN is able to accurately identify the motor in about 

8 seconds. 

2.5.4 Induction motor control 

Narendra and Parthasarthy (50j proposed methods for identification and control of 

dynamical systems using ANNs. Wishart and Harley [45] use the basic principles 

outlined in [50] to identify and control induction machines. A block diagram of the 

control scheme is shown in Fig. 2.8 For the induction motor, the NAR.vlAX (Non-
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Figure 2.8: ANN control of induction motor [50] 

linear AutoRegressive Moving Average with eXogenous inputs) model for the stationary 

frame stator current is derived and used for identification of the electromagnetic model. 

In its general form, the NAR.i\1AX model represents a system in terms of its delayed 

inputs and outputs. Random steps in the stator voltage are given for the purpose of 
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identification. The neural network used is of the multi-layer backpropagation type, 

and a quantity based on the rotor time constant is also computed as an e.xtra weight. 

As opposed to the regular ANN architechture, this ANN has no non-linearity in the 

output layer and the weighted sum of the inputs is used as the output. This gives an 

estimate of the rotor time constant and makes the system robust against variation of 

this parameter. Once the identification is over, the ANN is used for current control. 

The stator currents predicted by the ANN are used to compute the input voltage for 

the induction motor, and the ANN output is made to track the reference currents by 

backpropagating the error. 

The rotor speed is also controlled in this system by identifying a NAR..viAX model 

for the speed increment rather than the absolute value of speed. To simplify the 

NAR.\IIAX model, the load torque is assumed to be a function of the motor speed~ as is 

the case in a fan or a pump type of load. For the current control case, the relationship 

between the control variable (voltage) and the controlled quantity (current) was linear. 

In the speed control case, this relationship is non-linear, thus necessitating two ANNs, 

one for identification of speed and the other for control. The identification ANN (Ni) 

predicts the value for the speed increment, which is compared with the actual speed 

increment, and the error (Ei) is backpropagated through the ANN. A PI controller is 

used for basic speed control, and the control ANN (Nc) produces the slip frequency, 

and the difference between the desired speed increment and the actual speed increment 

(Ec) is backpropagated through this ANN. The induction motor drive therefore employs 

three ANNs. The drive is simulated on a digital computer, and its performance is quite 

good. 

In another recent application (51], an ANN is used to replace the PI speed controller 

in a vector controlled induction motor drive. The authors develop a model for a robust 

observer, the output of which is used in the computation of the quadrature axis stator 
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current reference. The neural network, which is first trained off-line to emulate a PI 

controller, produces an estimate of the quadrature axis stator current reference, and 

the difference between the neural network output and the output of the previous block 

is used for on-line training of the network. This process is demonstrated in Figure 2.9. 

As is clear from this figure, the neural controller block is redundant, because the desired 
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Figure 2.9: Artificial neural network controller 

output, which is computed in the "Target Calculation" block, can be directly used as 

a reference input to the induction motor. 

2.6 Summary 

From the literature review presented above, it can be seen that induction motor drives 

have undergone various stages in their development. With developments in the area of 

power electronics, induction motor drives evolved from essentially constant speed drives 

to adjustable speed drives. The simple V /!control scheme and other scalar techniques 
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were successfully used in low to medium performance drives. With the evolution in 

the field-oriented control strategy, it was possible to decouple flu.~ and torque control 

in induction motor drives. With the developments in the area of microprocessors and 

DSPs, high performance vector controlled drives could be fabricated . However, use 

of vector control in both the direct and indirect mode posed some problems. Also, 

the use of expensive shaft encoders for these drives was considered an undesirable 

feature. A lot of work was put into developing speed sensorless drives, and most of 

them used field-oriented control. Various types of schemes were developed to perform 

sensorless control, but these schemes also had some problems, mainly that of sensitivity 

to parameter variation. Artificial neural networks have emerged as a powerful tool to 

identify and control non-linear system. Researchers in the drives area have put in some 

effort to develop ANN based drives, and they have come up with various applications 

ranging from estimation of control quantities to assisting conventional controllers in 

induction motor control. However, complete control of induction motor using one or 

more ANNs has not been reported in literature so far. Also, most of these methods 

have been tried out in simulation only, barring a couple of schemes where the ANNs 

involved are very small (less than 25 weights). In spite of this progress, the potentials 

of this new technique have yet to be fully exploited. 

In the next few chapters, novel ANN based speed estimation and control schemes 

are proposed with a view to developing an intelligent and robust controller for induction 

motor drives. As a first step, a versatile object-oriented simulator is developed in the 

next chapter. 
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Chapter 3 

Development of the 

Object-Oriented Software 

A first step towards studying ANNs and their applications for research purposes is to 

implement and train them using a software simulator. One of the main benefits of doing 

simulation based research is that a good deal of flexibility can be obtained as opposed 

to building a real system. For example, it is much easier to modify a few parameters in 

simulation and study the effects. To harness this feature more effectively, the simulation 

software must be well designed. :Modularity and reuseability are important features in 

a good design. 

This chapter introduces some of the existing commercial simulators and their fea­

tures, and it points out why none of them was found suitable for this work. It then 

discusses the design and development of the object-oriented simulator which was used 

for this research. The simulator is composed of many different modules, each of which 

represents a physical system. The user can plug these modules together as required. 

Since object-oriented languages have been designed to provide these features, it was 
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decided to use C++ for building the simulator. The simulator was implemented on 

a UNIX platform~ running on a DEC-ALPHA workstation. Section 3.3 discusses the 

building blocks of this simulator. Since the design of the ANN simulator was more 

involved, it will be discussed in a separate section. 

3.1 An overview of some existing simulators 

This section takes a look at some of the popular commercially available software pack­

ages, which are widely used by researchers in the motor drives area. This list is by no 

means exhaustive, but gives a general idea of what products are commonly used and 

what are the main features and limitations of using these packages. 

3.1.1 MATLAB neural network toolbox 

MATLAB Neural Network Toolbox [52] comes with a large suite of ANN simulators. It 

can simulate the perceptron which uses a hard limit activation function and its learning 

rule. Linear networks can be simulated along with the least-mean-square or L:VlS (also 

called Widrow-Hoff} learning rule. These have a single minimum on the error surface, 

which is a multi-dimensional parabola, and this can be located by the training method. 

For updating weights after each input, as opposed to updating after each epoch, the 

adaptive Widrow-Hoff algorithm can be used. Feedforward networks are implemented 

with the backpropagation training scheme, and these can use the tansig, logsig or linear 

activation function. Apart from the simple backpropagation algorithm, one can also 

use the trainbpx function which uses momentum and an adaptive learning rate and 

trainlm which implements Levenberg-Marquardt optimization. 
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Radial basis function networks are implemented with the simurb function. Sev­

eral associative learning rules are implemented- leamh (Hebb learning rule), learnhd 

(Hebb learning rule with weight decay}, leamis (instar learning rule), learnk (Kohenen 

learning rule) and learnos (outstar learning rule). Associative learning rules are for 

producing associations between pairs of vectors (associative memory), i.e. al produces 

p11 a2 produces P2 etc. These provide the basis for unsupervised networks like the 

competitive layers and self-organizing map networks. Many Self-organizing networks 

have been implemented- trainc (competitive layers), trainsm (Self-organizing :\~laps) 

trainlvq (Learning Vector Quantization). Finally, recurrent networks like Elman and 

Hopfield networks are implemented with the trainelm and simuhop functions respec­

tively. 

As can be seen from the above, the MATLAB Neural Network toolbox offers a 

wide variety of network types and learning algorithms, and it is a very useful tool for 

researchers working in this area. However, it has a few limitations which reduce its 

applicability for more general problems. For example, it is unable to simulate more 

than three layers in a feedforward network, and the user does not have the option of 

using arbitrary connections and neurons, because of the Matrix approach which has 

been used for developing this toolbox. Thus, the user would be unable to experiment 

with non standard architectures. 

3.1.2 SIMULINK 

SIMULINK [53] is a software package for modeling, simulating, and analyzing dynam­

ical systems. It supports linear and nonlinear systems, modeled in continuous time, 

sampled time, or a hybrid of the two. Systems can be also multirate, i.e. have differ­

ent parts that are sampled or updated at different rates. For modeling, SIMULINK 
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provides a graphical user interface (GUI) for building models as block diagrams, using 

click-and-drag mouse operations. With this interface, one can draw the models just as 

you would with a pencil and paper (or as most textbooks depict them). SI~IULINK in­

cludes a comprehensive block library of sinks, sources, linear and nonlinear components 

and connectors. Users can customize and create their own blocks. ~1odels are hierar­

chical, so one can build models using both top-down and bottom-up approaches. One 

can view the system at a high-level, then double-click on blocks to go down through 

the levels to see increasing levels of model detail. Model analysis tools include lin­

earization and trimming tools, which can be accessed from the .MATLAB command 

line, plus the many tools in ~IATLAB and its application toolboxes. Also, because 

~IATLAB and SI~lULINK are integrated, users can simulate, analyze and revise their 

models in either environment at any point. 

SI~IULINK provides a very fiexible and easy to use environment for development 

of powerful G UI simulators, with the added benefit that the user can access all of 

~IATLAB's powerful routines for solving equations, handling matrices and so on. It is 

widely used in the industry, and there are hardware accelerator cards available these 

days which can directly implement systems designed with SIMULINK in real-time [54). 

3.1.3 EMTP 

The Electromagnetic Transients Program, or EMTP [55] for short, is a computer pro­

gram for simulating electromagnetic, electromechanical and control system transients 

on multiphase electric power systems. It was first developed as a digital computer 

counterpart to the analog Transient Network Analyzer. Many other capabilities have 

been added to the EMTP over a fifteen-year period, and the program is widely used 

in the utility industry. 
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Studies involving the use of EMTP can be put into two general categories. One 

is design, which includes insulation coordination, equipment ratings, protective device 

specification and control system design. The other is solving operating problems such 

as unexplained outages or equipment failures. The EMTP is used to solve the ordinary 

differential and/or algebraic equations associated with an '~arbitrary'' interconnection 

of different electrical (power system) and control system compenents. The implicit 

trapezoidal-rule (second-order) integration is used on the describing equations of most 

elements which are modeled by ordinary differential equations. The result is a set 

of real! simultaneous, algebraic equations which is solved at each time-step. These 

equations are written in nodal-admittance form, and they are solved by triangular 

factorization. Initial conditions for differential equations of the various components 

can be determined automatically by the program for most cases of practical interest. 

The calculation of initial conditions is normally limited to linear elements. Nonlinear 

resistances are always ignored during the steady state solution. Nonlinear reactances 

can either be represented by their linear part or fully modeled to include the harmonic 

distortion effects. Injections of the electric network may also be specified in terms 

of power and voltage magnitude, thereby providing multi-phase load flow capability. 

Control system modeling allows for the superposition of an arbitrary number of linear 

phasor solutions of different frequencies. Program output consists of component vari­

ables (e.g., branch currents or voltages, machine torques or speeds, etc.) as functions 

of time, for those variables requested by the user. Both printed and plotted output are 

possible, with plotting possible in either character or vector-graphic modes. 

EMTP also provides a very powerful environment for simulating electromagnetic 

systems and power systems. However, it cannot be easily integrated with an ANN 

simulator, thereby limiting its application in motor drives research. 
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3.2 Motivation for building another simulator 

With so many available simulators, the question naturally arises whether to choose one 

of them or to develop a new one tailored to one's specific needs. For this work, it was 

felt that e.""q>erimenting with different and non-standard neural network architectures 

would be required, and this implies that the :vt:ATLAB neural network toolbox. which 

is one of the best ones available, would be inadequate. Also, if a new neural network 

simulator has to be developed in a general purpose programming language, then the 

other building blocks of the simulator should also be developed in the same language 

to ensure compatibility. Further, it was felt that having one's own software would 

ensure complete control over, and transparency of, the source code. It was also felt 

that porting this source code over to a PC based hardware for experimental verification 

would be much easier than if a commercially available simulator was used. \Vith all 

these things in mind, a simulator was built for the purpose of this research, and the 

rest of this chapter takes a look at its design. 

3.3 Building blocks 

A block diagram of the simulator as a whole is shown in Figure 3.1. The simulator 

is composed of many entities, most of them representing a physical object. Each of 

these entities has been written as a separate class, which makes it a distinct unit and 

also makes it possible to use multiple objects belonging to each class. This section 

describes the breakup of the software at the header file level, with details of different 

classes within a header file. Since the software is built in a hierarchical fashion, with 

the higher layers using the services provided by the lower layers, the description will 

follow a bottom-up approach. 
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main program (can use any lower level block) Layer 6 

Layer 5 

Layer 4 

Layer 3 

Layer 2 

ioserror (can be used by any higher level block) Layer 1 

Figure 3.1: Block level description of the simulator 
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• ioserror. This header file contains a class with the same name which is used by 

most blocks at the higher level for error management. This class constitutes the 

lowest layer in the hierarchy. It provides a standard interface for error handling 

and each class at the higher level can include a static object of the ioserror class. 

Thus, multiple objects of the higher level class can share the same error handler. 

Each class can generate a warning or a critical error. A critical error results in 

immediate shutdown of the program, while a warning just generates a message 

upon regular program shutdown. The error messages are generated by the respec­

tive class and the ioserror class reports which class generated the error message. 

Having a standard error interface greatly simplifies program development and 

debugging. 

• memory: This header file is placed in the second layer of the hierarchy and 

contains a class called dynaTTay which creates a dynamically sized array. This can 

be used in applications where the size of the array is not known beforehand. The 

user can keep writing to an object of the dynarray class, and it will automatically 

adjust the array size to accommodate the data. 

The memory header file also contains overloaded functions for allocating memory 

and generating a fatal error message, in case the operating system is unable to 

allocate the requested memory. 

• simtime: This header file is also placed in the second layer of the hierarchy and 

contains a class with the same name, which controls the timing operation for the 

complete simulation. It must be used by the main program, if any timing opera­

tions are being used. The entire simulation uses just one clock for any function or 

class which requires timing. The main program increments the clock, and every 

other function or class receives the correct time from this clock. Furthennore, 

every class or function computes the increment interval on its own, and thus each 

can be run at different intervals, without risking timing accuracy. 
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• filter. This header file is placed in the third layer of the hierarchy and contains 

the following class descriptions: 

1. Digital Filters: Two kinds of filters have been simulated - average filter 

and first order filter. The average filter provides a weighted average of a set 

number of previous values, as specified in equation (3.1). 

e-[•·-;mJ2 
W ( i) = -n---:-1--

LW(k) 
k=O 

(3.1) 

A bell shaped weighting curve is used, and the filter length n, and the 

variance a can be set for each individual filter. Since this is only an averaging 

filter, it doesn't use any timing operations. 

The first order filter uses the bilinear transformation 

2(1-z- 1) 
s= 

T (1 + z- 1) 

to convert a first order analog filter of the form 

A 
H(s) = -­

A+s 

(3.2) 

(3.3) 

to a digital filter. It needs a knowledge of the time step T for computing 

the filter output. 

2. Pl_controller. This class simulates a PI controller which is given by the 

transfer function 

(3.4) 

and makes use of the integrator class for performing the integration. The 

PI constants, K, and Ki, can be set independently for each controller. 

3. Integrator and Differentiator. These two classes perform numerical integra­

tion and differentiation. The integrator class uses the trapezoidal rule for 
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performing the integration. The differentiator uses the backward difference 

method for computing the derivative. Both classes need a knowledge of the 

time step T. 

• util.s: This header file is placed in the third layer of the hierarchy and contains a 

class for some useful tasks which many classes might need to perform. 

1. datafile: This class enables easier handling of datafiles which are used for 

outputting data onto the disk. The maximum file size and the sampling 

interval can be set externally. 

2. tdltype: This class is used to simulate a tapped delay line which is frequently 

used in ANN applications to generate previous values of certain inputs. The 

class does not use any timing operations, and the nth previous value is 

produced as the output, n being externally selectable. 

3. counter. This class is used for producing clocking pulses for certain applica­

tions. It outputs a pulse after n iterations, where n is externally selectable. 

• matrix: This header file is placed in the third layer of the hierarchy and contains 

two classes - one called matrix and the other called complex. The matrix class 

simulates an m x n matrix, where m and n are externally selectable. Many 

matrix operations are provided, like addition, subtration and multiplication. The 

complex class simulates complex numbers, and various operations for complex 

numbers are also defined, e.g. addition, subtraction, multiplication and division. 

• parfile: The header file is placed in the third layer of the hierarchy and contains 

the definition of a class by the same name, which is used to facilitate reading pa­

rameter files used by various other classes. For example, the induction machine 

has many parameters like the stator and rotor resistances and inductances, num­

ber of poles, moment of inertia and so on, which are set externally. All these are 

read from a parameter file, and an object of the parfile class, provides a standard 
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and convenient intedace for doing the same. The parameter files can contain 

comment statements, and the parameters can be arranged in any fashion, but 

they are read correctly by an object of the parfile class. 

• neuron: This header file is placed in the third layer of the hierarchy, and contains 

classes for simulating different kinds of neurons. It is discussed in greater detail 

in the next section. 

• transfrm: This header file is placed in the fourth layer of the hierarchy and this 

layer is further subdivided into three sublayers. transfrm occupies the lowest 

of these sublayers. It contains two classes for pedorming data transformation 

operations. These two classes are discussed below: 

l. three_phase: This class simulates a three-phase quantity and automatic con­

version is performed between three-phase and two-phase direct-axis and 

quadrature-axis quantities and vice-versa as given in equations (3.5) to (3.9). 

id -

iq -

ia -

ib -

ic -

2ia- ib- ic 
3 

ib- ic 

v'3 

id 

0.866iq - 0.5id 

-(ill+ ib) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

2. mag_freq: This class pedorms transformation between direct, quadrature­

axis quantities and magnitude, frequency and vice-versa as given in equa­

tions (3.10) to (3.14). 
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k-1 

(Ji ( k) - L ~lJi(n) (3.12) 
n=O 

id - imag COS lJi(k) (3.13) 

iq - imag sin Oi(k) (3.14) 

This class is used for data conversion in ANN training for induction motor 

control. 

• connect: This header file occupies sublayer 2 of layer 4 in the hierarchy. It con­

tains two classes - single_conductor and three_phase_conductor - which model 

a single-phase and a three-phase conductor respectively. The presence of the 

conductor classes makes it possible to have a standard interface for all higher 

level objects, ensuring any kind of connection between different objects. The 

conductors have error checking to ensure that, for example, two voltage sources 

are not tied to the same conductor leading to a short circuit. Also monitoring 

of currents, voltages and power flow is facilitated by member functions of these 

classes which return these respective values. 

• supply: This header file occupies the third and highest sublayer in layer 4 of the 

hierarchy. It contains classes for the following: 

1. dc_supply: This class simulates a DC power supply, and it is used chiefly for 

supplying the DC bus of the inverter. The voltage level can be set externally. 

2. three_phase_.supply: This class, as the name implies, simulates a three-phase 

power supply, which can be used to drive a three-phase rectifier or an in­

duction motor directly. 

3. current_amplifier. This class simulates an ideal three-phase current source. 

4. function_generator. This class, as the name implies, simulates a function 

generator which can produce the following different kinds of waveforms -

square: triangle, sine and sawtooth. For each waveform, the frequency, 
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amplitude and the DC offset can be set. It can also produce a balanced 

three-phase sinewave. 

• ann: This header file occupies layer 4 of the hierarchy and defines a class by the 

same name. This is discussed in greater detail in the next section. 

• vector. This header file occupies the fifth layer in the hierarchy and contains 

a class called vector_controller. This class implements the indirect rotor fiu..x­

oriented control strategy for a squirrel-cage induction motor drive. It has separate 

blocks for flux estimation 1 imr estimation, ramp reference generation for speed 

and flux reference generation. It uses PI controllers, which are declared as objects 

of the PLcontroller class. The main vector controller function receives the current 

feedback, speed feedback and the reference speed setting as inputs. It computes 

the three-phase reference currents which are handed over to the current controller. 

The speed reference setting acts as an input to the speed reference generator block 

inside the vector controller1 which ramps up the speed reference slowly, to prevent 

any instabilities. 

The main function first converts the speed to electrical rad/s. The conversion 

from three-phase to tw~phase d-q axis quantities is automatically done in the 

three_phase class. Next, the flux estimator, the flux reference generator and the 

speed reference generator blocks are run. After this, the torque is computed in 

the synchronously rotating frame of reference. The various PI controllers are run 

next and the outputs from the PI controllers in the last stage, which are the 

reference currents in the rotating frame, are converted back to quantities in the 

stationary frame. 

• inv: This header file occupies the fifth layer in the hierarchy and contains classes 

for the inverter and three different types of current controller. 

1. inverter: This is modeled in a class called inverter and simulates a three-
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phase transistor inverter. At the input side, it interfaces to an object of the 

dc_supply class, which supplies the de bus of the inverter. At the output, it 

interfaces to an object of the three_phase_conductor class. The main inverter 

function receives the six gate signal pulses as input, and computes the output 

voltages for the three-phase conductor at its output. It checks to see whether 

there is a DC short circuit, or if the voltages and currents exceed the specified 

transistor ratings. 

2. current controllers: Three different types of current controllers have been 

modeled- a PWM voltage controller called pwm_vc, a PW:'J current con­

troller called pWTTLcc and a hysteresis current controller called hysLcc. These 

classes emulate the well known current control strategies. The two current 

controllers need the three-phase reference and actual currents as inputs to 

their main function. The PW:'J voltage controller needs the magnitude and 

frequency of the modulating signal as inputs to its main function. All these 

functions supply the six gate drive pulses at the output, and these gate drive 

pulses can be given directly to an object of the inverter class. Dead-time 

(or blanking time) required between the top and bottom transistors in the 

same leg of the inverter has not been considered in this simulation because 

it is usually in the range of a couple of JJS, and this would imply a reduction 

in the simulation step time causing a large increase in the actual run time 

of the simulation. 

• indmach: This header file occupies the fifth layer in the hierarchy and models a 

class for the squirrel-cage induction machine and uses the Runge-Kutta method 

for solving the d-q axis induction motor dynamic equations, i.e. (1.1) ... {1.3). 

To make this set amenable to solution by Runge-Kutta method, we separate all 

the derivative terms and rearrange the equations in the state-space format, i.e. 

{3.15) 



where 

I= [ i,u iqs idr iqr ]T (3.16) 

and 

-RsLr WrLm 2 RrLm w.LmL•1 
1 -wrLm 2 -RsLr -wrLmLr RrLm 

Av = L L - L 2 
RsLm -wrLsLm -R,Ls -w.L.L, j r s m 

WrLsLm R,Lm WrLrLs -RrL, 

(3.1 i) 

vci!Lr 

1 VqsLr 
B, = 2 

LrLs- Lm -VasLm 
(3.18) 

This model of the induction motor is called the voltage source model, since it 

assumes that the motor is supplied by a voltage source. It is also possible to 

supply the induction motor with a current source, and this model is also included 

in the induction motor class. For the current source model, it is assumed that 

the motor is supplied by a three-phase current source at the stator, and hence ids 

and iqs in equation (1.1) are known and we have to solve for iar, iqr, Vcis and Vqs 

and estimate the torque and motor speed. The rotor currents can be estimated 

by applying the Runge-Kutta method to the following equations 

(3.19) 

where 

(3.20) 

and 

(3.21) 
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The d-q axis stator voltages can then be estimated as follows: 

(3.22) 

(3.23) 

At the input, the induction motor interfaces to an object of the three_phase_condu.ctor 

class. The induction motor is automatically able to detect whether the three­

phase conductor is being supplied by a voltage or a current source, and it switches 

to the correct model for solving the dynamic equations. The only input to the 

main function of the induction motor class (called run) is the load torque, and 

the output of this function is a structure which contains the motor speed in roofs 

and the electromagnetic torque. 

• bpn: This header file occupies the fifth layer in the hierarchy and contains a defin­

ition of the backprop class. This class implements the backpropagation algorithm 

and is discussed in greater detail in the next section. 

At the highest, or the user level, there are main program(s) in which a user puts 

together objects from the classes discussed above. 

3.4 Artificial neural network simulator 

The ANN simulator has been developed using a hierarchical approach, and it can be 

used by a programmer to study non-standard network topologies and also create new 

neuron types with minimal modification to the remaining code [56]. It is possible 

to interconnect neurons in any fashion, without limiting the network to a layered 

architecture. Also, each neuron in the simulator can be of a different type and can have 
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a different learning rate. This approach allows new training algorithms, or the addition 

of a new type of neuron without affecting existing functionality. In addition, one of 

the biggest benefits of this scheme is that it encompasses a variety of different neural 

network types like ~lultilayer feedforward network, Hopfield, Radial Basis Function 

network and Elman network. Fig 3.2 shows a layout of the simulator. 

;--read--
ann 

parameter 
file 

Training 
parameter 

file 

Figure 3.2: Structure of the simulator 

~lost types of ANNs can be subdivided into three constituent parts (9} - the 

processing element (neuron}, the connections and the learning rule. The following 

subsections describe this classification in greater detail. 

3.4.1 The neuron 

The fundamental unit in the ANN is the neuron. The neuron is implemented with 

a two-level design. At the root level, a neuron class is defined which implements the 
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common features of the different neuron types. These common features are 

• a set of inputs 

• a set of weights 

• a synaptic function which might differ from neuron to neuron 

• the output of the synaptic function (usually called net) 

• an activation function which might differ from neuron to neuron 

• the neuron output 

The neuron class can then be inherited by the classes for the different neuron types 

e.g. sigmoid neuron, linear neuron or perceptron. The sigmoid and linear neurons 

have a sigmoid and linear activation function respectively, and the perceptron has a 

hard-limiting activation function. Most neurons use the linear synaptic function, and 

this is implemented in the neuron class. However, the inheriting class can redefine this 

function if need be, since the function is implemented using the virtual mechanism [57}. 

The activation function is implemented only as a dummy prototype in the neuron class, 

since it is expected that each new neuron would have a different activation function. 

Thus, the inheriting class must define an activation function. 

3.4.2 The network 

The creation of neuron objects and their connections is implemented in the constructor 

of the ann class. An object of this class reads from a parameter file which defines the 

structure of the ANN. The user has to create this parameter file which consists of three 

parts. The first part defines the number of neurons, the number of ANN inputs and 
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the number of ANN outputs. The second part describes each neuron type. the number 

of inputs for each neuron and any optional parameters like 'LR' (learning rate) or 'B' 

({3 in the sigmoidal activation function). The third part of the parameter file consists 

of the connection description for each input of each neuron. It describes where each 

input of each neuron is connected to. An example of a parameter file is shown below. 

Any line which begins with a '%' is a comment line. 

% Part 1 

% Number of neurons 

3 

% Number of ann inputs 

1 

% Number of ann outputs 

1 

% Part 2 (neuron description) 

% number 

0 

1 

2 

neuron type 

TAHSIG 

LINEAR 

LINEAR 

inputs 

1 

1 

3 

% Part 3 (connection description) 

%type from to 

INPUT 0 0 

INPUT 0 1 

INPUT 0 2 

HIDDEN 0 2 

HIDDEN 1 2 

OUTPUT 2 0 

optional 

LR=0.3 

LR=0.3 

LR=O.l 
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Fig 3.3 shows a diagram of the network which is represented in the parameter file 

shown above. In this file, neuron 0 is a TANSIG neuron (with a tan-sigmoid activation 

function), and the other two neurons are LINEAR neurons (with a linear activation 

function). 

Io 

LDlE.AR 

Figure 3.3: The network corresponding to the example parameter file 

The last part of the parameter file details the neuron connections. Connections are 

of three types. If the connection is between an ANN input and a neuron input, the type 

is INPUT. If a connection is between a neuron output and a neuron input, it is of type 

HIDDEN. Finally! if a connection is between a neuron output and an ANN output, it 

is of type OUTPUT. The from and to fields refer to the input number, neuron number 

or output number as the case may be. It should be noted that with this scheme it is 

possible to define recurrent ANNs as well as neurons with self feedback. 

Apart from creating the neurons and making the various connections, the ann class 

should also provide an interface for the training method. This interface· is implemented 

as a friend class called ann_interface (Fig 3.2). This class contains functions for com­

puting the output of a particular neuron, accessing any free parameter of a particular 

neuron and accessing the various neuron parameters (learning rate, number of inputs, 

threshold, local gradient and so on). 
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3.4.3 Training algorithm 

The training method is written as a separate class which inherits the ann_interface 

class. As an e."'<3.11lple, a class backprop has been written to modify the weights of 

the network according to the backpropagation rule. It reads training parameters from 

a separate parameter file. There are two main functions - forwarcLpa3s and back­

ward_pass, which implement the two main activities in backpropagation. The weights 

are saved periodically in a weight file as training progresses. The weight saving and 

weight reading functions are implemented in the ann class. 

3.5 Putting it all together 

At the top level in Figure 3.1, the block named "main program" makes use of the 

lower level blocks to build useful programs. Some of the programs which were built 

with the basic building blocks are briefly discussed below. It should be noted that the 

main program must run the system clock if it uses any lower level block which requires 

timing. 

• gendata: This program is used for generating the data that is used for ANN 

training. The program uses the induction motor, vector controller, inverter and 

other relevant blocks, and runs the vector controller with step changes in the 

reference speed and load torque every couple of seconds. The inputs needed for 

the ANN and the desired outputs are stored on a disk file. 

• pd: This program, which is an acronym for ''peak detector", reads the datafile 

generated by gendata and finds the peak magnitudes for all the ANN inputs and 

outputs. These values, which are written onto the disk in a separate file, are used 
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as the normalizing and denormalizing gains for ANN training. 

• layerann: This program is used for generating the parameter file which is used 

by the "ann" block. As has been discussed earlier, the ann block needs the 

network architecture in a specially formatted file, and this file can become very 

large for an average sized network. To save the user from typing this big text file 

containing the network description, the layerann program generates this file for 

a feedforward network with a given number of layers and neurons in each layer. 

• bpntrain: This program is used for training a network using the backpropagation 

algorithm. It reads the training parameters like momentum, weight file name 

and so on from a disk file, and it also reads the normalizing and denormalizing 

gains from the same file. Next, it reads the complete data file, which contains the 

training vectors generated by gendata, and presents these vectors to the network 

for a specified number of epochs. The training vectors can be randomly shuffled 

if desired, because this helps the backpropagation algorithm in its search for the 

minimum. 

• nnim: This program is used to run the induction motor using the trained network. 

It substitutes the vector controller with an ANN which has been off-line trained 

to mimic a vector controller. 

3.6 Summary 

This chapter describes a suite of software that was developed as a part of, and for facil­

itating, this research. The software is completely modular and can be easily extended. 

It models physical objects closely and thus greatly facilitates experimentation, since 

the user just has to put the various blocks together in the desired fashion to run an 
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experiment. This suite of software might benefit other researchers also, both at Memo­

rial University of Newfoundland and elsewhere. The next two chapters discuss some 

simulation experiments that were carried out using thls software, and the theoretical 

contribution made as a result of those experiments. 
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Chapter 4 

ANN Based Induction Motor Speed 

Estimator 

It was seen in chapter 2, that sensorless control is an important issue in present day 

research in the area of induction motor drives, and various techniques have been devel­

oped for the same. ANNs were shown to have a great potential for non-linear function 

approximation and control applications. They also have various benefits not present 

in other techniques. It was seen from the literature survey that almost no work has 

been done to develop sensorless drives using ANNs. 

This chapter investigates the use of the function approximation property of ANNs 

for speed estimation of induction motor. This property was exploited by first consid­

ering the d-q axis dynamic equations of the induction motor and obtaining expressions 

for speed, based on the measurable stator quantities. These expressions were used 

to develop three different ANN based schemes for induction motor speed estimation. 

Though the schemes give a reasonable output, it was felt necessary to reduce the 

network sizes and improve performance at the same time. With this mind, another 
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approach for speed estimation was developed, which satisfies both these criteria. This 

chapter also presents simulation results for all the four schemes. For the purpose of 

simulation, extensive use was made of the software described in chapter 3. 

4.1 Induction motor equations 

The d-q axis dynamic equations for the squirrel-cage induction motor are very well 

known and are given in equation (1.1). \Ve can see that in equation (1.1), if the 

stator voltages and stator currents are known along with the machine parameters, we 

have only 3 unknowns, viz. w,., ittr and iqr. We can thus solve for w,. in terms of the 

stator quantities only. First, we obtain the rotor currents as functions of the stator 

quantities and w,. from the first two rows of equation (1.1), since the rotor currents are 

not accessible in a squirrel-cage induction motor. The expressions obtained for idr and 

iqr in the stationary reference frame are 

idr - ;m [j(vrb- R,ict.s)dt- L,ict,] 

iqr - L~ [j (vq:s - R,iq,)dt- L.,iq,] 

(4.1) 

(4.2) 

When we substitute equations (4.1) and (4.2) in the last two rows of equation (1.1) we 

obtain the following two expressions for the rotor speed w,. 

, _ -[a2 ~ - R,.L.,ict.s + R,. I vudt + L,.vu] 
w,.- a2iq., + L,. I Vqzdt (4.3) 

(4.4) 

where, vd:r = Vct.s- R,ict, , Vqz = Vqs- R,iq, and a 2 = L~- L,.L,. The induction motor 

speed can be recovered from either of equations (4.3) or (4.4) . However, both of these 

equations have singularities for regular induction motor operation. This can be seen 
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by plotting the numerator and denominator of either equation. Figure 4.1 gives this 

for the numerator and denominator of equation (4.3). 

4 NumeralOr function 
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Figure 4.1: Numerator and denominator functions in the speed expression 

It can be seen from Figure 4.1 that both waveforms are in phase, resulting in 

simultaneous zero-crossings, and hence, singular points. Equation (4.4) also produces 

a similar plot. A comparison of the numerators and denominators of equations (4.3) 

and ( 4.4) is shown in Figure 4.2. 

From Figure 4.2 we can see that both the numerator and denominator of equa-
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Figure 4.2: Comparison of the two speed expressions 

69 



tion ( 4.4) lead those of equation ( 4.3) by 90°. This suggests that we can treat them 

like d and q components of a vector or space phasor quantity. Thus equations ( 4.3) 

and {4.4) can be combined and expressed as 

w.,.[a2iq, + L.,. J Vq:z:dt} = -[a2 d;~ - R,.L,id, + R,. J vudt + L.,.vdz] {4.5) 

w.,.[~id, + L.,. J Vd:z:dt] = [a2d!;"- R.,.L,iq, + Rrj Vq:z:dt + LrVq:z:] (4.6) 

~1ultiplying equation (4.6) by j and subtracting from equation (4.5) we can obtain 

another expression for the rotor speed as 

(a2p- RrLs - R,L.,. - R,R.. )i, + (L.,. + R,. )v s 
w - p p 

.,. - j((a2 - R,PL .. )I, + l.;v,} (4.7) 

where I, and V 5 represent the stator current vector and stator voltage vector respec­

tively. Note that the R.H.S. of equation (4.7) is complex and the speed would be given 

as the magnitude of the equation. 

4.2 Speed estimation 

The primary goal of building a speed estimator is to use it in an induction motor 

drive system which requires speed feedback for closed loop control. An inverter forms 

an essential component of an induction motor drive system, because control over the 

voltage magnitude and frequency is desired. The presence of an inverter results in a 

non-sinusoidal stator voltage waveform and ripples in the stator current also. This 

would impede ANN training, and thus it might be more desirable to study the ANN 

scheme under more ideal conditions and then try out its efficacy in the presence of an 

inverter. 

One of the necessary conditions for an ANN to approximate a function is that 

the function be square integrable in the unit cube [58]. This condition is obviously 
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not satisfied by either equation (4.3) or equation (4.4). Thus, it would be futile to 

attempt to train the ANN using the quantities on the right hand side of either of these 

equations. This problem does not exist in equation ( 4. 7), but it is a more complex 

function compared to the other two. 

The basic problem in training an ANN to recognize induction motor speed is that 

the functional relationship between the speed and the stator parameters is quite com­

plex with the result that the number of training vectors required is very large. Also, 

the training times involved on a PC become quite substantial. To circumvent the prob­

lems of large data files and substantial training times, it was decided that the whole 

drive system with the ANN be implemented in simulation, using the software outlined 

in chapter 3. The training vectors could be generated on-line, obviating any need for 

storing training data on the disk. For simulation, the induction motor model used has 

the parameters shown in Table 4.1. 

4.2.1 Method 1: Using singular functions 

As a first step, it was decided to use equations (4.3) or (4.4) for the purpose of ANN 

training. It has been mentioned in section 4.1 that both these equations have singu­

larities. Thus, the basic idea in this method is to partition the main function having 

singularities (or poles) into smaller functions, each of which do not have any singu­

]arities, and to train multiple ANNs to identify these smaller functions. The desired 

output can be obtained from the outputs of these ANNs by avoiding the singular points 

or poles of the main function. In this case, one of the simplest ways to partition the 

functions is to consider their numerators and denominators separately. The numerators 

and denominators of equations (4.3) and (4.4) can be expressed respectively as 

[ 
2 diu . J Nt = - u dt - RrLi&u + Rr Vcdt + Lrvu] (4.8) 
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Table 4.1: Induction motor parameters used in simulation studies 

ll Parameter I Symbol I Value 1\ 

Power rating l.5HP 

Voltage 208V 

Connection type y 

Stator Resistance Rs o.49 n 

Rotor Resistance R,. o.45 n 

Stator Inductance Ls 37.1 mH 

Rotor Inductance Lr 37.1 mH 

Magnetizing Inductance Lm 35.4 mH 

Moment of Inertia J 0.024 N- m 2 

Damping Coefficient B 0.0011 N- m2 fs 
Pole Pairs p 2 
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D1 - a
2iqs + Lr I Vq:rdt (4.9) 

N2 - [a2diqs -f4L5 iq, + Rrj Vqzdt + Lrvqz] (4.10) 
dt 

D2 - a
2ids + Lr I Vudt (4.11) 

ANNs can be trained to approximate either N1 and D 1 in equations (4.8) and (4.9) 

or N2 and D2 in equations (4.10) and (4.11). The output of these ANNs can then be 

passed through a filter which perfonns the required division at points where both the 

numerator and denominator are non zero [59]. A block diagram of the speed recovery 

scheme using equation ( 4.4) is shown in Figure 4.3. 

Figure 4.3: Block diagram of ANN speed recovery (method 1) 

In the simulation study performed, both the ANNs have 2 hidden layers each. 

Inputs given to the numerator ANN were iq,(k), ~' vq,(k), I vq,dt and f iq,dt, based 

on the expression for N2 and the network structure chosen was 5-26-1~1. Inputs given 

to the denominator ANN were ic~.t(k), I Vc~.tdt and I idsdt, based on the expression for 
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D2 and the structure chosen was 3-20-10-1. Training was initiated by giving random 

inputs to the ANNs. The same random inputs were also given to the numerator and 

denominator functions and the desired outputs for training the ANNs were obtained 

from these functions. The learning rate (TJ) was maintained at 0.25 and the value of 

the momentum parameter (a) was fixed at 0.2 throughout the training. After giving 

5 million (5 x 106 ) vectors of random inputs, 1 million vectors of direct on-line start 

using a power supply, with step change in load torque were given. After this off-line 

training, the ANNs were able to mimic the numerator and denominator functions quite 

accurately. For the actual speed recovery, a peak detector was used as the filter in the 

block diagram. This detects the positive and negative peaks of the sinusoidal outputs 

of the two ANNs, and performs the required division at these points. The actual and 

ANN recovered speeds for direct on-line start and step change in load torque are shown 

in Figure 4.4. As can be seen from Figure 4.4, the performance of the speed estimator 

is quite accurate. 

For inverter operation, this method can be used without the need for filtering the 

feedback signals (60]. However, a first order filter was used at the output, because the 

speed estimate obtained from the 2 ANNs had a lot of ripples. In the simulation study, 

a first order low pass filter (LPF) with the following transfer function was used 

80 
H(s) = 

3 
+ 

80 
(4.12) 

The two ANNs were trained for 3 million (3 x 106 ) iterations in the presence of a 

PWM current-controlled voltage source inverter, with step changes in magnitude and 

frequency of the voltage and load torque. 

The resulting estimated speed with the LPF in series with the peak detector circuit 

is shown in Figure 4.5. It can be seen that this simple filter has resulted in the removal 

of most of the ripples during the startup period. However, there is a deviation from 

the actual speed at the start of the motor run, and there is a small steady state error 
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during the speed build-up. 
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Figure 4.5: Actual and ANN recovered speed with inverter operation (method 1) : Step 

change in load (10% to 150%) at t = 1.0 s 

The estimate of the obtained speed is quite good in this method. However, since this 

scheme requires the computation of the numerator and denominator functions, a very 

small sampling time is required even though the speed feedback need not be computed 

very frequently. In the simulation study, the two ANNs compute their output every 

50J.&SeC and further increase in the sampling time results in loss of perfonnance because 
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the peaks of the ANN outputs cannot be accurately determined. Also, the sizes of the 

two ANNs are quite large. Thus, this technique would require very high performance 

A/D converters and dedicated ANN hardware to implement it in real-time. 

A.nother drawback of this scheme is that the actual motor speed is not used during 

training. For this reason, this scheme did not function acceptably in the presence of 

a vector controlled induction motor drive. Thus, it was decided to use equation ( 4. 7) 

and see if it would be possible to obtain a more practical speed estimator. 

4.2.2 Method 2: Using non-singular function 

As seen in equation ( 4. 7), there exists a non-singular function between the induction 

motor rotor speed and the stator quantities. Thus, if all the quantities which comprise 

the R.H.S. of equation ( 4. 7) are given as inputs to an ANN, it should be able to estimate 

the speed, given sufficient training examples. Figure 4.6 shows the block diagram of 

the ANN speed estimator using this method. In this figure, the term T.D.L. represents 

a Tapped Delay Line which is used for obtaining the previous values of the inputs. The 

ANN is a four-layered 10-22-17-1 network. The inputs given to the ANN are iq,(k), 

ia..(k), iq,(k - 1), irl.t(k- 1), I iq,dt, f id.tdt, vq,(k), va..(k), f vq,dt, and f va..dt. Here, 

unlike in method 1, training with random inputs was not performed, because applying 

random inputs to the induction motor would result in instability. Instead, the network 

was trained repeatedly on 16000 data vectors comprising of the starting response and 

step changes in load torque, frequency, etc. This set was given repeatedly 450 times 

resulting in a total of 7.5 million (7.5 x 106 ) iterations. Both the learning rate parameter 

and the momentum parameter were maintained at 0.2. 

The output of the ANN had a lot of ripple in this case, and it had to be filtered 

in order to obtain a cleaner speed estimate. The response of the ANN to a direct 
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Figure 4.6: Block diagram of ANN speed estimator (method 2) 

on-line start and step change in load torque is shown in Figure 4. 7. It can be seen 

that this response is not as good as the response obtained in method 1 (section 4.2.1) , 

even though there is a larger number of training examples. One of the main reasons 

for this is that training with random inputs was not performed in this case. Such a 

training spans a much larger area in the input space, with the effect that the ANN is 

able to generalize more effectively. However, if the training data is to be obtained from 

induction motor operation, giving absolutely random inputs to the motor would not 

be very effective, since the motor would not pick up speed. Thus, the ANN would be 

unable to generalize effectively. Another reason for the poorer performance is that the 

function to be estimated is more complex than the previous case. 
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4.2.3 Method 3: Using non-singular function with magnitude 

and phase angle 

The speed response of the ANN speed estimator using method 2 can be somewhat 

improved if the magnitudes and phase angles of all the quantities are given instead of 

their d-q components. This seems logical. because speed is obtained as the modulus 

of equation ( 4. 7). The response of the ANN after filtration is shown in Figure 4.8. 

The filter uses the transfer function given in equation ( 4.12). As can be seen from the 

figure, the accuracy of the ANN output is improved even though it is still poorer than 

the estimation using two ANNs in section 4.2.1. However, one major advantage of 

this scheme and the one in method 2, is that the speed output can be computed with 

a much lower frequency as compared to the two ANN method. Thus, the hardware 

requirement would not be as stringent as in method 1. Unfortunately, methods 2 and 

3 did not produce an acceptable output in the presence of an inverter, and thus these 

two methods are also not good candidates for a practical ANN speed estimator. 

4.3 Importance of form in ANN training 

The three speed estimators outlined in section 4.2 certainly prove the validity of the 

schemes presented, but as was seen earlier, the schemes cannot be used for obtaining 

a practical and real-time ANN speed estimator. In method 1, the two ANNs are large 

and have to be run at a very fast rate to approximate the complete sinusoid functions. 

Also, this method requires the induction motor parameters for the purpose of training, 

and this is undesirable. In methods 2 and 3, in spite of trying out numerous network 

sizes and extensive training, the networks were unable to produce a smooth speed 

estimate, and required filtration at the network output. Of bigger concern was the 
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fact that in the presence of a vector controlled, inverter-fed drive, all the methods did 

not produce an acceptable output. Thus, it was felt that achieving the objective of 

experimental verification would require the development of another speed estimator 

which should be much smaller in size and should function more accurately, even in the 

presence of an inverter-fed drive. 

With the above in mind, the whole idea of ANN speed estimation was revisited 

with the following fundamental question: "Why does the ANN find it so difficult to 

obtain a mapping between the stator quantitie.s and the speed, even though it has been 

e.stablished that there exists a functional relationship between the same'?' Some further 

investigation and thought led to the realization, that for an ANN speed estimator 

operating in steady state, the output would be a constant DC value, whereas the inputs 

would be sinusoidal in nature, though with a constant magnitude and frequency. For a 

different speed, the inputs would still be sinusoidal, but the magnitude and frequency 

would change. This implies that the ANN would need to extract the magnitude and 

frequency information from the sinusoidal inputs based on a few previous values, and 

then learn the relationship between the magnitude and frequency of the stator inputs 

and the speed. Thus, the sinusoidal nature of the inputs unnecessarily impedes the 

learning process, and modifying the form of the inputs would lead to a mapping which 

would be simpler for the ANN to learn. It should be noted that all the three methods 

outlined earlier have inputs which are not DC values. ~ethod 3 uses magnitudes of the 

stator quantities, but it uses the phase angle also, which is not a DC quantity. Thus, 

the functional mapping remains quite complex and nonlinear. 

This idea led to the development of a simple block which converts the instanta­

neous direct and quadrature axis sinusoidal quantities to instantaneous magnitude and 

frequency. Equations (3.10) to (3.14) are used to perform this conversion. This block 

uses the current and previous value of the d-q axis sinusoidal quantity to compute the 
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instantaneous magnitude and frequency. In the discrete case, the frequency is given 

by f = f::l.(), and it was decided that computing ~9 would suffice, since dividing by ~t 
!::it 

would not provide any further useful information. This block will be called the '~DQ 

to MF" or "'DQ-MF" block. The block which performs the reverse transformation will 

similarly be called the "MF to DQ" or "MF -DQ" block. It should be noted that the 

speed estimator problem would not require the reverse transformation. 

4.4 Method 4: Speed estimation using the DQ-MF 

block 

This section outlines a simplified and more accurate speed estimator, which uses the 

"DQ-~IF" block discussed in subsection 4.3 to obviate the problems associated with 

sinusoidal inputs. It was decided to try this scheme directly with an inverter-fed vector­

controlled drive, by filtering the feedback quantities before using the "DQ-MF" block. 

Since it is impossible to filter out all the ripple, the instantaneous magnitude and ~9 

also have ripples, and this necessitates the use of another filtration stage after the "DQ­

MF" conversion. The block diagram of a 6-20-1 ANN estimator is shown in Figure 4.9. 

In this figure, T.D.L. stands for Tapped Delay Line which produces the previous value 

of the input. As can be seen from this figure, the current and voltage feedbacks for two 

phases are obtained and filtered to reduce the inverter ripple. They are then converted 

to d-q axis quantities and subsequently converted from DQ to MF. After this another 

filtration stage is required to smoothen the inputs for the ANN. The ANN receives 

the magnitude and ~() values of the stator current along with one previous value of 

each. It also receives the magnitude of the stator voltage. Since the frequency of the 

stator voltage is the same as that of the stator current, ~() value of the stator voltage 

would not provide any new information. Thus it is not used, making the ANN more 
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Figure 4.9: ANN speed estimator using the DQ-MF block (method 4) 

compact. Also, like methods 2 and 3 and unlike method 1, the sampling requirements 

of this ANN speed estimator are not very stringent. However, it should be noted that 

the size of this ANN is significantly smaller than the two ANNs used in method 1 or 

the networks used in methods 2 and 3. 

In section 4.2 it was noted that, for the purpose of training, no data need be stored 

on the disk, and the whole system, including the induction motor and the ANN, can 

be run on-line to provide training data to the ANN. Subsequent to that work, it was 

discovered that it is significantly more advantageous to store training data on the disk, 

and then provide the ANN with randomly shuffied data points during training. This 

not only increases the efficacy of the training process but also enables the computation 

of the "sum squared error" (SSE} per epoch, which is a useful indicator of the training 

progress. Thus, the training data for the speed estimator using method 4 has been 

stored prior to the start of ANN training. 
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For training, the induction motor was run in simulation with a vector controller 

and inverter setup, and a data set of training vectors was obtained. The network 

was trained with different learning rates, and different number of epochs. The chosen 

network was trained for 47 epochs with 0.03 as the output neuron learning rate and 

0.50 as the learning rate of every other neuron. Figure 4.10 shows the performance 

of the ANN speed estimator with a step change in speed reference at t = 1.0 s and a 

step change in load torque from (9.3% to 93.0%) at t = 2.0 s. This speed estimator 

functions well under vector control conditions and in the presence of an inverter. Also, 

it does not require a filter at the output. Thus, this speed estimator is a very good 

candidate for experimental verification. The SSE for the ANN during training is shown 

in Figure 4.11. 

4.5 Summary 

In this chapter, four techniques for speed estimation of induction motors using artificial 

neural networks have been outlined. The mathematical model of the induction motor 

is considered and expressions for the rotor speed are obtained. Two of the expressions 

obtained have singularities and thus, ANNs cannot be used to obtain the speed directly 

by supplying the same inputs as the functions. A method is proposed in which two 

ANNs are trained to approximate the numerator and denominator functions in the 

speed expression. By training such ANNs and using a filter to avoid singular points, 

the speed can be recovered with a high degree of accuracy. In the second method, the 

two expressions with singularities are combined to obtain a single expression which does 

not have singularities for regular induction motor operation. A single ANN is trained 

to obtain the speed in this case by giving it all the quantities which act as input to the 

expression in equation ( 4. 7). In the third method, which is a modification of the second, 
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the inputs are presented in a different form~ i.e. using magnitude and phase angle, and 

this results in a slight improvement in performance. These three methods were found 

unsuitable for real-time implementation, and a fourth method was developed in which 

the inputs to the ANN are transformed in a way which simplifies the mapping that the 

ANN is required to learn. This method was found to be suitable and functions well~ 

even in the presence of a vector controlled, inverter-fed drive. A real-time experimental 

implementation of the fourth method will be outlined in chapter 6. 
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Chapter 5 

ANN Control of Induction Motor 

It was seen in chapter 2 that while considerable progress has been made in the applica­

tion of ANNs to induction motor drives, complete control of an induction motor using 

ANNs still eludes researchers. For ANN control of induction motor to become com­

mercially feasible and economically viable, ANNs must provide a useful alternative to 

existing control strategies. This means that researchers must come up with strategies 

to implement induction motor control using ANNs, without the help of conventional 

controllers. Also, the resulting strategies must not be computationally overwhelming 

for the available hardware to implement in real-time. 

The main thrust of this work was to move in this direction and try to come up with 

an induction motor control strategy using just one ANN. This chapter focusses on the 

problem of ANN control of induction motor drives, and demonstrates, for probably the 

first time, a strategy for complete control of induction motor using a single ANN. This 

ANN is able to control the induction motor in a satisfactory way, after being off-line 

trained to mimic a vector controller. A scheme for on-line training of this ANN is 

also presented, and this leads to improved steady state response and robustness in the 
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presence of motor parameter variations. 

5.1 Issues involved with ANN control of induction 

motor 

1-lost of the control theory developed so far deals with linear time-invariant systems~ 

and powerful methods for designing controllers for such systems are currently available. 

However, as applications become more complex, the processes to be controlled are in­

creasingly characterized by uncertainty in the system model! non-linearities, presence 

of noise and the effects of having distributed sensors and actuators with their associated 

delays and other problems. One approach used for handling a non-linear system has 

been to linearize it around an equilibrium point, and then use the well established linear 

control theory to study issues like stability, controllability and observability, and design 

controllers to function in an approximate linear region around the equilibrium point. 

Both single-input single-output (SISO) and multiple-input multiple-output (MI:\10) sys­

tems have been studied using this approach, in which the non-linear dynamical system 

to be controlled can be described by the state equations 

x(k + 1) - f[x(k), u(k)], f(O, 0) = 0 

y(k) - h[x(k)], h(O) = 0 

(5.1) 

(5.2) 

where u(k), y(k) E !Rm and x(k) E !Rn and represent the input, output and state 

vectors. From a purely mathematical point of view, the precise control of a non-linear 

dynamical system is a formidable task [61]. It becomes substantially more difficult 

when uncertainty is also present in the system. 

In most cases where ANNs have been used in the control of induction motors, on­

line training has been preferred. On-line training has the potential to adapt to changing 
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motor parameters, but it is computationally very expensive, and it is very difficult to 

run an average sized ANN in real-time with on-line training. 

As indicated earlier, Kung et al [48] have used a two degree of freedom controller 

(2DOF) to control an induction motor and also use an ANN to tune the parameters 

of this controller on-line. One of the most rigorous works on ANN control of induction 

motor has been done by Wishart and Harley [45j! and here too we can see the presence of 

a PI controller which receives the speed error as an input and produces the magnitude 

of the reference currents needed for the current controlled induction machine. The 

control ANN produces only the frequency of the reference currents. Thus the ANN 

only partially controls the motor. 

One way to control a plant using ANNs is to train the ANN off-line to mimic an 

existing controller. This implies that the ANN must have as input, all the quantities 

that are input to the existing controller (with a suitable number of previous values) , 

including the reference value. The ANN is trained off-line to produce the same outputs 

as the controller and after sufficient training, the ANN should be able to replace the 

controller. A block diagram of this scheme is shown in Figure 5.1. Since it is impractical 

Reference ControUer Plant 

, 

Figure 5.1: Training of ANN for controller mimicing 
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to provide all possible combinations of reference and load torque change to the ANN 

as training data, the ANN's generalization property will have to be relied upon to 

learn the important trends. It is a well known property of backpropagation nets that 

too much training increases the accuracy of the network on the given data set, but 

the network loses its ability to generalize effectively. On the other hand, a network 

that can generalize well will not produce extremely accurate results. Also, it must be 

remembered that a network will always have a small error in its output, no matter how 

well it is trained. Thus, it looks very likely that the steady state error in an off-line 

trained ANN may not be eliminated completely. 

A second problem that is present in induction motor control is the inability to 

model the disturbance or load torque. As seen in Figure 5.2, the load torque acts 

as an external and unknown input. Some researchers have simplified the problem by 

load 
torque 

reference plant 

input ~ Plant= outputs__.. 
Controller Inverter 

1-- r--1 current controller 
~ control induction motor 

I inputs 

Figure 5.2: Induction motor control model 

assuming that the load torque depends only on the speed, which is valid for pump and 

fan loads [45]. However, this factor severely limits the applicability of the drive. To 

be more general, the ANN controller must be able to handle unknown step changes in 

load torque. 
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One of the chief difficulties in controlling an induction motor with an ANN is that 

an induction motor requires sinusoidal inputs. This usually means that the ANN must 

produce smooth sine wave references which vary in magnitude and frequency to im­

plement the control. For example, a vector controller produces stationary frame direct 

and quadrature axis reference voltages or currents, which are subsequently converted 

to three-phase references. If an ANN has to mimic the vector controller, it must also 

produce the same outputs. However, producing direct and quadrature axis references 

which are sinusoidal in shape and exactly 90° apart is no easy task. Thus it is very 

difficult to even run the induction motor at any speed using an ANN, let alone control 

the speed. 

A second factor which contributes to this difficulty is the inverter which is required 

to supply the induction motor with three-phase voltages. The switching property of 

the inverter creates a lot of ripple and non-linearity which would severely hamper the 

operation of the ANN, since the ANN would require current or voltage feedback. This 

strategy was tried out in simulation, whereby an ANN was trained to mimic a vector 

control algorithm block, but failed to run the induction motor even after extensive 

training. 

5.2 ANN based direct adaptive control of induction 

motor 

Since the induction motor dynamic model is well known, it makes sense to use a control 

strategy which incorporates this knowledge, rather than treating the induction motor 

as a black box. Direct adaptive control offers a way of doing this, by using the plant 

Jacobian in ANN training. A block diagram of this strategy is shown in Figure 5.3 [62}. 
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Figure 5.3: Direct adaptive control using ANN 

For induction motor control, the plant consists of the induction motor and the in­

verter along with the current controller. Thus, the plant ha.s just two inputs, which are 

the stationary frame, d-q axis reference currents. For simplicity, the inverter and cur­

rent controller dynamics can be ignored, because in an ideal case the current controller 

and the inverter just supply the induction motor with the desired currents. 

To derive the adaptive control strategy with ANNs, we have to consider the speed 

error which is given by 

• ewr = Wr - Wr (5.3) 

where Wr • is the reference speed and Wr is the actual speed. A cost function is computed 

from the speed error, and this can take various forms, though a standard form used is 

1 2 :J = -ewr (5.4) 
2 

For the output layer neurons, the weight increment is given by 

8:1 
-TJ(-) 

aw;i 
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= -TJ( 8:1 )( 8ewr )( aui ) (5.5) 
8ew., aui awji 

where TJ is the learning rate, wii is the z-th weight of the jth neuron in the output layer 

and ui is the jth input to the plant. 

Equation (5.5) can be further simplified as 

~Wji = -TJ(ew,.)(- 8wr )( 8ui ) 
aui awji 

) 8wr) 1 

- -TJ(ew,. (- 8u . ~ (neti)(Yi) 
J 

- 77(6i)(Yi) 

(5 .6) 

(5.7) 

(5.8) 

where ~ represents the neuron activation function and cSi is the local gradient given by 

awr I ) 

cSj = ewr( au . )~ (netj (5.9) 
J 

and Yi is the output of the ith neuron. Once the local gradient for the output neurons 

is known, regular backpropagation can be used for computing the weight increments 

for the hidden layer neurons. 

The main idea behind on-line training using direct adaptive control is to compute 

the local gradient, using the plant Jacobian (- aawr ). This requires a knowledge of 
Uj 

the plant dynamic model, in particular the dependence of the speed on the stationary 

frame d-q axis stator currents. From the earlier work on speed estimation, we have an 

expression for the induction motor speed of the form 

1 912 + 922 

Wr = p It'}.+ ll (5.10} 

where, 

91 - -[a2i:U - R,.Ltiu + R,. J Vu - R,.R~ I iu + LrVu - R,Lria.,} (5.11) 

92 - [u2i~1 - R,.L,iqa + R,. I Vq1 - R,.R11 I i 9, + LrVq11 - R,Lriq11 } (5.12) 

It - ~i9, + Lr I Vq11 - R,Lr I iq• (5.13) 

h - ~iu + Lr J Vu - R.Lr J it~a {5.14) 

95 



In the above equations, rr = Lm 2 - LrLs, where Lm is the magnetizing inductance and 

Lr, L5 are the rotor and stator inductances respectively. Also, i:U and i~5 refer to the 
d" d" 

fi . d . . f . d . . lds lq_, 
rst time envat1ves o ld.f an lqs, I.e. dt' Tt· 

tlT d b • • C 8Wr d 8Wr C d • 1 b . . vve nee to o tam expressions ,or -
8

. an !l.: 10r a apt1ve contra ecause tt 1s 
"~d.! tF'q"' 

assumed that ids ~ id., and i9_, ~ i;5 , assuming a good current controller and inverter 

combination. 

Equation (5.10) can be represented as w. = ~ J!i. where both N and Dare func­

tions of id.! and i 9.,, given by N = g 1
2 + 922 and D = j 1

2 + /22
• Applying the chain-rule 

differentiation, we get 

1 {D 1 8N 8D 
- 2P v N D 2 ( D aid.! - N 8id.! ) 

. 8gl 8g2 8ft 8!2 
Thus, we need to find expressiOns for -

8
. , -

8
. , -

8
. and !l.: • 

'~d.! lq_, lq_, v•u 

1 891 · fun · r · ., d I · d h . 8id.!: 91 1s a etlan o ld-9, "u an 'lu an t us, 

8g1 8g1 m:U 8g1 8i!Ui 
~ = [LrRs + R,.L_,] + ( !:1.:/ )( !:1.: ) + ( ~ )( ~) 
Uld.! fJ'd.! Vld.! U'ldJi lndJ 
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(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 



where iui = f iu 

8gl -cr (5.22) 
aid., 

-

8id., ( 8id., ) I ( 8iu ) (5.23) -
8iu &t EJt 

- ,a;)l(i~.,) (5.24) 

8g1 
Rs.R,. (5.25) 

8iui 
-

8iui ( aid.Ji ) I ( Bid.! ) (5 .26) -
8iu EJt EJt 

iu 
(5.27) - ., 

1.cU 

(5.28) 

a!h a2 (5.29) 
8i' -

qs 
a·' ( 8i~., ) I { 8i9, ) 'tqs 

- (5.30) 
&iq, at &t 

- (a~., )l(i~.,) (5.31) 

8g2 -R,Rr (5.32) 
8iqsi 

-
8iq.,i 

- ( mq.,i ) I ( 8iq., ) (5.33) 
8iqs 8t &t 

-
iq., 

(5.34) ., 
'tq!J 

where i9.,i = f i 9., 

8ft I . fun . f . d J . 3. -.-: l lS a CtlOD 0 lq.s an lq11 
8iq, 

(5.35) 

97 



As in the previous case, 

8ft 
-LrR$ 

&iqai 
-

8iq$i '&qa 
-8iq, 

., 
'&q& 

8!2 
4. - · h is a function of iris and J iris 

8id.s. 

8!2 = 2 ( 8!2 )(&id.si) 
!l-: (j + !l-: !l-: 
u ·'d& U'fbi U'd& 

8!2 
-LrR, 

8ict.ti 
-

Bict.ti id& 
-

8ict.t 
., 
'ct.t 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

From the above equations, we can see that we have all the terms required to compute 

equations (5.17) .. . (5.20) 1 and hence obtain expressions for equations (5.15) and (5.16) . 

Thus, the plant Jacobian can be computed for direct adaptive control using ANNs. 

However, as is quite obvious from the above, this method is computationally quite 

involved. Furthermore, this method was tried out in simulation, but the system became 

unstable and the induction motor was unable to run at a sustained speed and kept 

oscillating around zero speed. Thus, this method was not investigated further, though 

it is being reported for the sake of completeness. 

5.3 Off-line control of induction motor using ANN 

This section discusses a hitherto unreported scheme of induction motor control - one 

using a single ANN for control with only off-line training. To date, the author has 

not come acr055 a single satisfactory scheme in which complete control of an induction 
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motor has been executed using only one or more ANNs and without any conventional 

controller. In the relatively few papers that discuss induction motor control using 

ANNs, the authors have used the ANNs to assist an existing controller, or at best, 

implement a portion of the control. In the off-line control strategy which is consid­

ered here, the ANN is trained to mimic a rotor field-oriented control strategy, which 

produces stationary frame direct and quadrature axis current references at its output. 

These references are converted to three-phase quantities by a simple transfonnation. 

Thus, for all practical purposes, the control problem is converted to a system identifi­

cation problem. 

The main benefit of using off-line control is that for running the system in real-time, 

the computationally intensive backpropagation algorithm does not have to be executed. 

This results in a major saving in execution time, thereby enabling bigger networks to 

be implemented. The next benefit is that the network can, in theory, be trained to 

model a very efficient control algorithm like field-oriented control. In schemes which 

backpropagate the speed error for on-line training, the resultant control may not be as 

efficient as field-oriented control and might be closer to simple PI based control or V /f 

control. 

It has been pointed out in section 4.3 that it is very important to present the inputs 

to an ANN in a form that simplifies the mapping that the ANN is required to learn. 

In the case of the speed estimator discussed in section 4.4, the sinusoidal inputs were 

transformed from DQ to MF to simplify the mapping for the ANN. For the control 

problem, both the inputs and outputs are sinusoidal, even in steady state. However, 

it was felt that here also the mapping could be simplified if this sinusoidal nature 

could be suppressed, since control is actually executed by varying the magnitude and 

frequency of the reference outputs, depending on the magnitude and frequency of the 

inputs to the controller. Thus, in this work the following block diagram is used for 

99 



training purposes: As seen in this block diagram, the outputs of the vector controller~ 

i • 
J;,.m1 

iaa id. ....---
DQ 

w· Vector Controller to I~ r 
MF w, 

~;. 
.....__ 

r------- ,/ , ----y , , 
, , , ;: ,....---, 

MF 

ANN to 

DQ DQ .___ 
to 
MF 

L....-

Figure 5.4: ANN training for off-line control 

which are the direct and quadrature axis stator current references, are converted from 

DQ to MF and then used as desired outputs for ANN training. The ANN receives 

all the signals that the vector controller receives. However, to facilitate training, the 

current feedback is converted from DQ to ~IF. After training, the ANN is run in the 

feedforward mode and its outputs are converted from MF to DQ and then handed over 

to the inverter-motor block. 

5.3.1 Training considerations 

Since an inverter forms a necessary component of a drive system, it was decided to 

implement a three-phase current amplifier for reasons mentioned in section 4.2. This 

is simply a block which supplies the motor with three-phase currents identical to the 

current references. This block is implemented as the class c:urrent_amplifier in the 

simulator and has been discussed in section 3.3. With this arrangement, the current 

controller and the inverter can be bypassed, because the three-phase current amplifier 
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acts like an ideal current source which injects currents into the induction motor. In 

effect, it functions like a power amplifier, boosting the power of the reference signals 

and then supplying the induction motor with these boosted signals. 

The next thing to consider is that the ANN must receive all the inputs that the 

vector controller receives, plus some previous values. The vector controller is first run 

with the current amplifier to collect data for training the neural network and a block 

diagram of this process is shown in Figure 5.5. If the ANN receives current feedback, 

w; 
--~ 

Vector 
Controller 

Figure 5.5: Data collection for ANN training 

like a vector controller, then the network would have to be a feedback network and not 

simply a feedforward one, because the network output would be fed back to the input 

after a unit delay. Thus, the network would have to be trained in the series-parallel 

mode and, after training, run in the parallel mode. It is known that the series-parallel 

mode is preferrable to the parallel mode [50], and it would be desirable to be able to 

run the ANN in a series-parallel mode after training. This would entail avoiding the 

output feedback. This, however, is not possible in most cases, since, after training, 

the ANN no longer has access to the training data (or the "right answers") and hence 

the ANN outputs must be fed back after a delay to obtain the previous values of the 
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outputs. This would make it a parallel system while running, increasing the chances 

of instability, because of the feedback present. 

In the current reference model of the induction motor, the motor receives current 

inputs from a current source and the stator voltages are determined by the currents 

flowing into the motor. Thus, the stator voltages should contain information about the 

stator currents. This, in turn, implies that stator voltages can be provided as inputs 

to the ANN instead of stator currents, making the ANN a strictly feedforward one. 

Something else to consider is that whereas 6.8 attains both positive and negative 

values, the magnitude is always positive. Thus, the output neuron which produces 

the magnitude of the reference current could have an activation function which does 

not permit negative values, thereby reducing the range of possible incorrect values 

produced by the network. The other output neuron which produces the A8 of the 

current reference should have a different activation function such that negative outputs 

are permitted. 

For training purposes, it should be noted that a single output network is usually 

easier to train than a multiple output network, because in a multiple output network, 

there is interference from other outputs when the error is being backpropagated. Thus, 

instead of having a dual output neuron, it might be more desirable to have two single 

output networks. However, having two ANNs in the simulation would imply that a 

backpropagation algorithm block would be required for each of them, and, if they both 

receive the same inputs, then these would have to be supplied individually to both, 

increasing the program length and complexity. 
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5.3.2 Fully-connected network training 

The number of weights in a three-layer fully-connected network is given by 

Nwegbts = (I + O)H (5.41) 

where I is the number of ANN inputs, His the number of neurons in the hidden layer 

and 0 is the number of ANN outputs. 

A 13-75-2 ANN was tried out for the purpose of control. The magnitude output neu­

ron has a "LOGSIG" activation function for reasons outlined earlier in subsection 5.3.1. 

and this function is given by 

1 
!LoGstG(net) = 1 + e-Pnet (5.42) 

Every other neuron in the network has a "TANSIG" activation function given by 

1 _ e-Pnet 
fTAXSIG(net) = 1 + e-Bnet (5.43) 

The parameter {3 was chosen to be 0.8 for the 2 output neurons and 0.9 for every other 

neuron. This network structure was chosen after a lot of trial and error, in an attempt 

to optimize the performance. It should be noted that it is not possible to implement 

this kind of a network using a commercially available ANN simulator like the MATLAB 

neural network toolbox, because of the possibility of having different neurons within 

the same layer, each with a different learning rate. The inputs to the ANN are 

• Voltage magnitude and !:18 and 2 previous values of each 

• Speed feedback and 3 previous values 

• Actual speed error (ramp generator output minus speed feedback) and 1 previous 

value 
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• Speed reference 

This set of inputs was chosen carefully, based on the approximate NAR.viAX model of 

the vector controller. Usually, in ANN training, there are no fixed rules for choosing 

the network structure, learning rates, number of training epochs, training data set and 

so on. The researcher must try different combinations and use various heuristics and 

experience in an attempt to come up with an optimum network, which is efficient in 

tenns of size and perfonnance. The structure of the above network is by no means the 

best one, and theoretically, one should be able to get a network which approximates 

the desired function arbitrarily closely. 

The data set was obtained by running the induction motor under vector control with 

step changes to reference speed and load torque. The induction motor parameters are 

given in Table 5.1 [41]. An important point to note is that the ANN itself does not 

need any machine parameters for the purpose of training, because it observes only 

the motor inputs and outputs. The machine parameters have been used only for the 

purpose of simulating the induction motor. 

The vector control algorithm runs at 500#-£5 sampling interval, and the rest of the 

simulation runs at a lOJJS sampling interval. To nullify the effects of inverter ripple, a 

current amplifier block was used instead of the current controller and inverter combi­

nation. Apart from the speed reference, the output of a romp generator bas also been 

provided to the ANN to improve learning. This ramp generator is identical to the block 

which ramps up the speed reference inside the vector controller. A block diagram of 

the scheme is shown in Figure 5.6. 

For generating training data, the switch "S" is thrown to the top position, connect­

ing the vector controller to the current amplifier. After the data is collected, training 

of the ANN is perfonned off-line, and the switch "S" is then thrown to the bottom 
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Table 5.1: Induction motor parameters used in motor control simulation studies 

\J Parameter J Symbol \ Value IJ 

Power Rating 2.0 kW 

Voltage 208V 

Connection type y 

Stator Resistance R, o.6o n 
Rotor Resistance Rr oAo n 
Stator Inductance L, 72.7 mH 

Rotor Inductance Lr 72.7 mH 

Magnetizing Inductance Lm 69.8 mH 

Moment of Inertia J 0.0357 N- m2 

Dam ping Coefficient B 0.0030 N- m2 fs 
Pole Pairs p 2 
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Figure 5.6: Current amplifier based scheme for ANN control of induction motor using 

voltage feedback 
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position, handing over the reins to the ANN and disconnecting the vector controller. 

It must be remembered that the inputs and outputs have to be normalized to a range 

of ±1 before being handed over to the ANN. 

The ANN was trained for 50 epochs on a training data set with 1690 points which 

were randomly shuffled during training. The learning rate of all neurons was 0.20. The 

performance of the ANN controller is shown in Figure 5. 7. Here, the reference speed 

undergoes a step change at t = 1.0 s, and there is a step change in load torque at t = 

2.0 s. As can be seen from the figure, the performance of the ANN is unacceptable as 

a controller. The SSE during ANN training and the actual ANN outputs are shown in 

Figures 5.8 and 5.9 respectively. 

5.3.3 Split-ANN training 

One of the main problems with using a fully-connected ANN is that the training for 

the two outputs cannot be performed independently, thereby leading to less effective 

learning. To circumvent this problem and still attain the convenience of using just one 

ANN, a dual output split-ANN is proposed as shown in Figure 5.10. This network is 

a special kind of sparse ANN architecture. As can be seen from the figure, both the 

subnetworks can be trained separately, by controlling their learning rates individually. 

For example, if it is desired to train just one subnetwork, then the learning rates 

of all the neurons in the other subnetwork can be set to zero, thereby preventing 

any modification of the weights. Also, it can be seen from the figure, that both the 

subnetworks may or may not have the same set of inputs. Thus, for all practical 

purposes, we have two separate networks which can be trained separately if desired, 

for optimum performance, without any interference from each other, and with the 

convenience of having just one training algorithm block. Also, extending the principle 
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Figure 5. 7: Performance of the fully-connected 1~ 75-2 ANN controller using a current 

amplifier: Step change in speed reference at t = 1.0 s and step change in load torque 

at t = 2.0 s 
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Figure 5.8: Sum squared error during training of 13-7fr.2 ANN controller using a current 
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Figure 5.9: Outputs of the fully-connected 13-75-2 ANN controller using a current 

amplifier: Step change in speed reference at t = 1.0 s and step change in load torque 

at t = 2.0 s 
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further, more single output networks can be added in just one physical ANN. 

Figure 5.10: Dual output split-ANN for induction motor control 

5.3.4 Voltage feedback scheme with current amplifier 

Keeping in mind the various constraints discussed in the previous section, a dual output 

split-ANN has been trained to mimic the vector controller. The number of weights for 

a three-layer split-ANN is given by 

Nweigbts = (I+ l)H (5.44) 

where I is the number of ANN inputs, and H is the number of neurons in the hidden 

layer. It should be noted that in a split-ANN, the number of weights does not depend 

on the number of ANN outputs. 

The structure of the ANN chosen was 13-80-2, so that the number of weights is 

roughly equal to that of the network presented in subsection 5.3.2. The inputs to the 
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ANN are the same as those in subsection 5.3.2. The scheme is similar to the one shown 

in Figure 5.6, except for the fact that a split-ANN is used instead of a fully-connected 

network. The network was initially trained on a data set comprising of 1690 points, for 

60 epochs with a learning rate of 0.01 for all neurons. After this, only the subnetwork 

producing the magnitude output was trained for another 100 epochs with the same 

learning rate and learning was blocked for the tl.(J network. The plot of the '"sum 

squared error" during training is shown in Figure 5.11. This quantity is the sum of the 

squares of the nonnalized output errors for a single network output, computed over 

the entire epoch. 

Figure 5.12 shows the ANN perfonnance for step changes in speed reference. The 

step changes at zero and 1 s have been included in the training data set, and as can 

be seen from the plot, the ANN responds well to these changes in speed reference. 

However, the next step change is one that hasn't been included in the training data 

set. The network perfonnance is quite good in this case also, thereby proving that the 

network is able to generalize effectively. The actual network outputs for the above case 

are shown in Figure 5.13. 

Next, the response of the ANN to a step change in load torque was tested by 

applying a step change in load torque from 9.3% to 93.0% rated torque at time= 2.0 

sees. The response of the ANN controller is shown in Figure 5.14. As can be seen from 

the figure, the ANN response is very quick, leading to a speed recovery that is faster 

than regular vector control. The ANN outputs for this case are shown in Figure 5.15. 
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Figure 5.11: Sum squared error during training of the 13-8~2 split-ANN controller 

using a current amplifier 
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Figure 5.12: Performance of the 13-80-2 split-ANN controller using a current amplifier: 

Step changes in speed reference at t = 1.0 and 2.0 s 
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Figure 5.13: Outputs of the 13-80-2 split-ANN controller using a current amplifier: 

Step changes in speed reference at t = 1.0 and 2.0 s 
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Figure 5.14: Perfonnance of the 13-80-2 split-ANN controller using a current amplifier: 

Step change in speed reference at t = 1.0 sand step change in load at t = 2.0 s 
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Figure 5.15: Outputs of the 13-8~2 split-ANN controller using a current amplifier: 

Step change in speed reference at t = 1.0 sand step change in load at t = 2.0 s 
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5.3.5 Voltage feedback scheme with PWM voltage source in­

verter 

The scheme described in section 5.3.4 used a current amplifier to simplify the system for 

establishing the theoretical foundation of the scheme. The scheme in this subsection is 

similar to the previous scheme except for the fact that the current amplifier is replaced 

by a current-controller and an inverter combination [63]. A PWM current controller is 

chosen because it has a constant switching frequency. This feature is very important 

because the voltage feedback needs to be filtered since it is in the form of inverter 

output pulses and cannot be used directly for converting to the magnitude-6.9 format. 

A block diagram of the PWM controller is shown in Figure 5.16. 
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Figure 5.16: PWM current controller 

The vector controller is run for step changes in load and speed reference, and all 

the ANN inputs and desired outputs are collected in a data file. The vector controller 
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performance is shown in Figures 5.17 to 5.22. The following speed and torque changes 

are used: A speed ramp from 0 to 100 rad/s in 0.5 seconds, a constant speed of 100 

rad/s for 0.5 seconds, a speed ramp from 100 to 150 rad/s in 0.25 seconds, a constant 

speed of 150 rad/s for 0.75 seconds and a step change in load torque from 1N-m to 

lON-m at t = 2 s. Figure 5.18 shows the reference and actual torque (as computed 

within the vector control algorithm), and the effect of the P~I voltage source inverter 

is clear in this figure. The ripples in the torque are due to the fact that the current is 

not a smooth sinusoid. Figure 5.19 shows the reference and actual value of imr~ which 

is the flux component of the current. It should be noted that under ideal field-oriented 

conditions, the flux and torque should be completely decoupled, but this is not the case 

as can be seen in this figure. A step change in speed reference and a step change in 

load torque cause the flux component of the current to deviate from its reference value, 

indicating a coupling between the flux and the torque. The main reason for this is that 

the sampling time for vector control is 500J.&s. Reducing the sampling time would lead 

to more effective decoupling. 

The inverter voltage for phase a, before and after filtration, is shown in Figure 5.20. 

Filtration plays a very important role in inverter based ANN training, because the 

inverter voltage has discrete values, and it is difficult to see any trend from a few 

previous values. A first order digital filter is used for filtering out the ripple, in this 

case. The reference and actual current for phase a are both shown in Figure 5.21. The 

distortion in the actual current waveshape is probably due to the fact that the PWM 

current controller functions in the over modulation range, for a part of the cycle. 

Figure 5.22 shows the filtered and unfiltered versions of the reference currents con­

verted to magnitude-~8 using the "DQ-MF'' block. As can be seen in this case, D.8 

has a lot more ripple than the magnitude, necessitating another filter at this stage. 

Figure 5.23 shows the same quantities for the voltage feedback. Here again, it can be 
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seen that another stage of filtering is required to make the voltage feedback suitable 

as ANN input. A block diagram of this scheme is shown in Figure 5.24. 
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Figure 5.22: Generation of desired outputs for ANN training 

3 

The PWM voltage source inverter is run at a switching frequency of 7 kHz, and the 

amplitude of the triangular carrier signal is lOV. The transistors used in the simulation 

have a current rating of 150A, and a voltage rating of 600V. If the current through, or 

the reverse voltage across, any transistor exceeds these ratings, then the inverter block 

invokes the error module and terminates the simulation. It should be noted that the 
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Figure 5.23: Voltage feedback for ANN training 
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dead-time needed between the two transistors of the same leg is not considered because 

this would drasticallv slow down the simulation. Also, the transistor is considered an 

ideal switch and small non-idealities like the forward voltage drop are not modeled in 

the simulation. 

The network was initially trained on a data set comprising of 1630 points, for 20 

epochs with a learning rate of 0.01 for both output neurons, 0.50 for the magnitude 

subnetwork and 0.05 for the b&8 subnetwork. The plot of the '1ium squared error" 

during training is shown in Figure 5.25. 

After training, the network performance was tested by letting the ANN run the 

induction motor for various changes in speed reference and load torque. The ANN 

output is passed through the "MF-DQ" block to convert it to d and q-axis currents, 

which are then subsequently converted to three-phase quantities. There is no filtration 

required at this stage. Figure 5.26 shows the ANN performance for step changes in 

speed reference. The step changes at zero and 1 s have been included in the training 

data set, and, as can be seen from the plot, the ANN responds well to these changes 

in speed reference. However, the next step change is one that has not been included in 

the training data set. The network performance is quite good in this case also, thereby 

proving that the network is able to generalize effectively. However, the network has 

a peak steady state error of about 5.5%. This may not be precise enough for a high 

perfonnance drive, but it certainly fares well in comparison to traditional open-loop 

V /f drives. It should be noted that this network is by no means the most optimum one, 

and better training and a more extensive training data set might lead to much better 

performance. The actual network outputs for the above case are shown in Figure 5.27. 

Next, the response of the ANN to a step change in load torque was tested by 

applying a step change in load torque from 9.3% to 93.0% rated torque {lNm to lONm) 
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using an inverter 

129 



160r-------~~------~~------~~-------,---------,---------, 

140 

120 

AduaJ speed 

-20~------~--------~--------~--------~------~~------~ 
0 0.5 1.5 2 2.5 3 

Time (sec) 

Figure 5.26: Performance of the 13-80-2 split-ANN controller using an inverter: Step 

changes in speed reference at t = 1.0 and 2.0 s 
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Figure 5.27: Outputs of the 13-80-2 split-ANN controller using an inverter: Step 

changes in speed reference at t = 1.0 and 2.0 s 
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at time 2.0 sees. The response of the ANN controller is shown in Figure 5.28. As can 

be seen from the figure, the ANN response is very quick, lea.ciing to a speed recovery 

that is faster than regular vector control. The fast recovery is due to the fact that the 

ANN is running the motor in "overdrive". The ANN outputs for this case are shown 
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Time (sec) 
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Figure 5.28: Performance of the 1~80-2 split-ANN controller using an inverter: Step 

change in speed reference at t = 1.0 sand step change in load torque at t = 2.0 s 

in Figure 5.29. 
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Figure 5.29: Outputs of the 13-80-2 split-ANN controller using an inverter: Step change 

in speed reference at t = 1.0 sand step change in load at t = 2.0 s 
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5.4 On-line training 

The basic idea behind on-line control is to use the speed feedback and reference speed 

to get the speed error, and use this speed error for adjusting the weights of the ANN 

on-line using backpropagation. This requires estimating the plant Jacobian using a 

method similar to the one outlined in section 5.2. Since the ANN controller produces 

the current reference magnitude and ~(J, partial derivatives of the motor speed Wr 

with respect to these quantities would be the two elements of the Jacobian vector. The 

process of computing these quantities is quite involved, and as seen in section 5.2 , would 

result in a large increase in computation time for real-time implementation. However, 

even if the sign of the Jacobian is known, it is enough for running backpropagation, 

because the direction of the gradient is then known. For this work, both elements in 

the Jacobian vector were assumed to be +1, resulting in a lot of simplification. 

5.4.1 Voltage feedback scheme with PWM voltage source in­

verter 

The response of the ANN controlled induction motor drive with a current controlled 

PWM VSI is shown in Figure 5.30. In this figure, the drive is run with off-lin2 control 

till the motor reaches steady state. It has been seen that there is a steady state error 

with off-line control, and it is difficult to nullify this error. On-line training is switched 

on at t = 1.0 s, and it can be seen that the drive reaches its desired steady state at 

about t = 1. 7 s. On-line training is switched off at t = 2.0 s, after the speed has 

reached its steady state value. The learning rate is kept very small (0.0001 for all the 

neurons) to prevent oscillations about the reference speed. The actual ANN outputs 

for the above case can be seen in Figure 5.31. Here, it can be seen that the magnitude 
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output saturates at its peak value, and the ANN essentially runs on frequency control 

during on-line training. 
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Figure 5.31: Outputs of the 1~80-2 split-ANN controller using an inverter: On-line 

training implemented from t = 1.0 s to t = 2.0 s 

5.4.2 Effect of parameter variation 

This subsection studies the effect of induction motor parameter variation when the 

ANN controller is functioning under on-line control. For this simulation experiment, 
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on-line training was initiated at t = 1.0 s like before, and was terminated at t = 2.5 s. 

However, this time both the stator and rotor resistances are increased by 100% linearly 

from t = 2.0 s tot= 2.5 s. The performance of the ANN is shown in Figure 5.32, and 

the actual ANN outputs are shown in Figure 5.33. As can be seen from these figures, 
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Figure 5.32: Performance of the 13-80-2 split-ANN controller using an inverter: On-line 

training implemented from t = 1.0 s tot= 2.5 sand linear change in motor parameters 

from t = 2.0 s to t = 2.5 s 

the ANN performance is quite good even under such a drastic change in parameters. It 

should be noted that in real applications, one would usually not encounter such a large 
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change in motor parameters, and thus the performance would be better than shown 

here. 

5.5 Summary 

This chapter outlines a major portion of the theoretical work done for this thesis. The 

issues involved with ANN control of induction motor have been discussed first, and the 

basic equations for a traditional direct adaptive control method using ANNs have been 

derived. These equations are cumbersome and need a lot of computation time. The 

scheme itself is unstable and an ANN trained with this scheme was unable to even run 

the motor, let alone control the speed. 

The next method proposed in this work is off-line control of induction motor using 

ANNs. The problems with off-line control are discussed~ along with some benefits. 

After this, a simplified off-line control strategy is presented in which an ANN has 

been trained to mimic a vector controller. Simulation results for the same are also 

presented. Next, a full fledged ANN based induction motor control using a PW:\1 

voltage source inverter is presented along with simulation results. On-line control is 

discussed, and a computationally simple strategy for direct adaptive on-line control 

is presented. Simulation results for the same are also presented. It is shown that 

the on-line strategy is quite robust even in the presence of large changes in motor 

parameters. 

The control schemes outlined in chapter fulfill a major objective of this work, viz. 

to control an induction motor using only an ANN and no other controller. It would 

be desirable to verify this strategy in real-time, but this could not be tried out due to 

limitations in available resources. However, keeping in mind the objective of experi-
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mental verification of the ANN based schemes, the next chapter discusses a real-time 

implementation of an ANN based speed estimator discussed in the chapter 4. 
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Chapter 6 

Experimental Verification of 

ANN-based Speed Estimation 

The previous two chapters outlined the simulation studies which were undertaken as 

part of this research work. The simulations helped to establish a theoretical foundation 

for ANN based induction motor speed estimation and control. It has been noted earlier 

that most of the work done on the application of ANNs to induction motor drives has 

been simulation work, and very little experimental verification has been done. This 

could be in part due to the fact that dedicated .-'\NN hardware is expensive and difficult 

to acquire, and most sequential machines cannot handle in real-time the large number of 

computations required for an average sized ANN. However, as part of this work, it was 

decided that some of the simulation studies done earlier must be verified experimentally. 

This chapter begins with a review of some of the commercially available ANN hardware 

and discusses the nature and scope of the proposed experiments. It then outlines the 

setup which was built for the experimental work. Finally, the experimental results are 

presented to demonstrate close conformity between the simulation and the practical 
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implementation [64}. 

6.1 A review of available ANN hardware 

Some important benefits of using ANNs: which are cited by various researchers as justi­

fication for choosing ANN based methods, are inherent parallelism and robustness. For 

many practical applications, however, these benefits and other requirements can hardly 

be met by conventional algorithms running on sequential machines. Even though the 

simulations help to validate the theory and can effectively demonstrate the ability of 

the ANNs to map unknown nonlinear functions, the parallelism and robustness can 

only be exploited with dedicated ANN hardware. 

Over the last few years, the field of ANNs has matured considerably and has 

prompted the development of both custom-built laboratory test benches as well as 

some commercial hardware. These systems are extremely heterogeneous and range 

from small systems for on-board applications to large computational servers often call 

neurocomputers (65]. Figure 6.1 shows a classification of available ANN hardware. A.s 

can be seen from the figure, implementations could be analog, digital, hybrid (mixed 

analog and digital) and optical [66}. The last one is relatively new and still in the early 

stages of development. 

6.1.1 Optical implementation 

Optoelectronic circuits that use optics for inter-connection provide the fastest way of 

implementing ANNs. They do not suffer from connectivity problems, because light 

emitted from different sources can cross without interfering, and thus the third dimen-
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Figure 6.1: Classification of artificial neural network hardware 

sian can be exploited to implement neural network functions, e.g., nonlinearity and 

weight storage. Besides light sources and receptors, spatial light modulators are the 

main component of optical systems. These can be used for storing weights, by chang­

ing the transparency or opacity of liquid crystal devices in proportion to the value of 

the weight. An interesting application is the GaAs-based retina chip which provides 

parallel image sensing and processing capability (66]. 

6.1.2 Analog implementation 

Analog hardware is several orders of magnitude faster than digital, and can exploit 

some of the inherent qualities of ANNs, e.g. large scale parallelism and nonlinearity. 

However, analog hardware is very tricky to implement because of parameter spread in 

large circuits. Creating an analog synapse involves the complications of analog weight 

storage and the need for a multiplier linear over a wide range. Thus, like optoelectronic 

implementations, analog hardware has not found very widespread use. 
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Analog designs come in various fonns. Some designs implement standard multilayer 

feedforward networks. The Intel 80170NW ETANN (Electrically Trainable Analog 

Neural Network) is one example. The design is quite flexible and allows for multiple 

configurations including 3-layers of 64 neurons/layer, and 2-layers with 128 inputs 

and 64 neurons. The ETANN is not designed for on-chip training, so a chip-in~the~loop 

mode with a PC is necessary. Following off-line training, the network configuration and 

weights are downloaded to the chip. Though this was probably the first commercially 

available analog Al~N, Intel has since sold off its ANN division to Nestor Inc. 

Cellular Neural Networks (CNN) are another kind of ANN, which are amenable to 

analog implementation. In CNN, the individual neurons are influenced only by a local 

neighbourhood of contiguous cells. This is a very attractive feature for hardware im­

plementation, as it alleviates the connectivity problem present in large fully-connected 

multilayer networks. These are quite useful in certain image processing applications. 

A few implementations of CNN chips have been reported in literature (66}. 

Neuromorphic designs attempt to closely mimic the biological model of the neuron. 

The Synaptics Silicon Retina [67] is an example of this design. 

6.1.3 Digital implementation 

Digital implementations of ANNs are the most common, primarily because of a large 

existing digital infrastructure and compatibility with PCs and workstations. However, 

digital implementations are much slower than analog or optical implementations. 

Digital implementations of ANNs can be broadly classified as slice architectures, 

multiprocessor architectures and accelerator boards [67]. Slice architectures provide 

building blocks for constructing networks of arbitrary structure and size.The Micro 
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Devices :YID1220 was probably the first commercial neural network chip[8]. Each chip 

has eight neurons with hard-limit thresholds and eight 16-bit synapses with 1-bit inputs. 

~lultiprocessor architectures have multiple small processors on the same chip, and 

each could perform the same or different computation depending on the hardware 

architecture and the degree of programmability. Accelerator boards typically have a 

single or couple of high performance processors (DSPs, RISC processors and so on) 

and can conveniently plug in into the PC GPIB. The degree of programmability is 

typically quite high, and many systems come with their own compilers for program 

development. 

Digital systems can be further classified according to various sub-criteria like numer­

ical representation, degree of parallelism and inter-processor communication network. 

To simplify the dedicated ANN hardware, fixed point numerical representation with 

reduced precision is often chosen. The degree of parallelism can vary widely from very 

fine grain to coarse grain or even sequential in some cases. Massively parallel systems, 

with a very fine grain of parallelism, can even map each synapse onto a simple processor 

(also called a node occasionally}. :vlost moderately parallel systems map one or more 

neurons onto each processor. Single instruction-stream, multiple data-stream (SIMD) 

architectures often model one neuron per processor. In systems with a higher degree of 

programmability, the mapping of neurons onto processors depends on the user's choice. 

The inter-processor communication network could take many forms - bidimensional 

mesh~ systolic ring, broadcast bus, linear array and so on. 

6.1.4 Hybrid implementation 

Hybrid designs attempt to combine the best of analog and digital techniques. Typi­

cally, the external inputs/outputs are digital to facilitate integration into digital sys-
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terns, while internally some or all of the processing is analog. Examples of hybrid 

architectures are the AT&T ANNA chip and the Ricoh RN-200 chip among others. 

Table 6.1 (671 outlines some of the commercially available ANN hardware. 

Typically, computation performance of hardware ANNs is measured in connections 

per second (CPS), or connection updates per second (CUPS). Each of these might be 

preceded by ~I or G, which stand for million and giga respectively. However, these 

benchmark values may not be fair when comparing different systems. One reason is 

that using a simpler numerical representation might speed up the number of CUPS, 

but the training process as a whole might take longer, or it may not be as effective 

as with a full floating point or double representation. Thus, it may not be easy to 

compare the performance of ANN hardware based on a few simple metrics. 

Another difficulty posed by ANN hardware is that it is not very standardized. 

As the programmability of the system increases (to make it more flexible) , the speed 

and degree of parallelism generally reduce. In fact, as Ienne et al [651 point out, in 

some cases, dedicated ANN hardware might actually be slower or moderately faster 

than a high performance serial workstation, or a high-end PC. Also, even though the 

prices of ANN hardware have come down in recent years, they are still considerably 

more expensive than serial hardware. In addition, the commercial market is still quite 

volatile, and some ANN hardware has disappeared from the market after a brief stint. 

Thus, buying dedicated ANN hardware is still a risky proposition, and the user must 

weigh all the available options before spending time, money and effort in developing 

ANN hardware based systems. 
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Table 6.1: Available ANN hardware [67] 

Type Name Architecture Learning Neurons Synapses Speed 

Analog Intel FdFwd, ~lL no 64 10280 2GCPS 

ETANN 

Synaptics N euromorphic no 48x48 Resistive Ina 
I 

\ Silicon Retina net II I 

I 

i 

I 
Digital NeuraLogix FdFwd, ~lL no 16 off-chip 300 CPS 

NLX-420 

HNC lO~NAP GP~SIMD,FP program lOOPE 512K off-chip 250~lCPS 

64 ~CUPS 

IBM RBF ROI 36 64x36 250k pat/s 

ZISC036 

~licro Devices FdFwd!~L no 1 PE 8 8.9~CPS 

~lD-1220 

Nestor /Intel RBF RCE,PNN 1PE 256x1024 1 40k pat/s 

NilOOO 

Philips FdFwd,ML no 16 PE 64 26M CPS 

Lneur<rl 

Siemens matrix ops no 16 PE 16 X 16 400MCPS 

:MA-16 

Hybrid AT&T FdFwd,~IL no 16-256 4096 2.1GCPS 

ANNA 

Mesa Research FdFwd,ML no 6 426 21GCPS 

Neuroclassifier 

Ricoh FdFwd,ML BP 16 256 3.0GCPS 

Rl'l-200 
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6.1.5 Choice of hardware for real-time ANN implementation 

The preceding subsections discuss some specialized hardware used for implementing 

ANNs in real-time. As pointed out, commercial ANN hardware has not yet been stan­

dardized and is quite expensive. A DSP based accelerator board was also considered 

for the e."'<perimental work. However, a typical DSP based system these days is about 

4 times as expensive as a high-end Pd which can provide more computation power. 

On the other band, DSP systems are optimized for real-time applications and usually 

come with a suite of software that makes the development of a control or estimation 

algorithm very easy and trouble free. In the end, it was decided that using a very 

fast sequential machine might be a better idea, because it would lead to a more gen­

eral purpose hardware setup and the development time for the software would be very 

small! because most of the programs could be recompiled using a DOS based C++ 

compiler and used with minor modifications for real-time application. A high-end PC 

would be able to handle smaller sized networks with relative ease, providing the added 

fle."'<ibility of being able to use a regular C++ compiler. Since all of the simulation was 

implemented using C++, the transitidn from simulation to real-time implementation 

would be smoother. 

6.2 Scope of the experimental work 

Since a sequential machine was being used, it was decided to implement an ANN 

which would not be very large. The ANN speed estimator using method 4 outlined in 

chapter 4 seemed to be an ideal choice, because of the reasonable size, and also because 

it would permit the verification of the important idea of training with the help of the 
I 

"DQ-MF" block, which is used for ANN control discussed in the previous chapter. 
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It was decided that if the experimental results agree with the simulated results to a 

good extent, then it can be said with a high degree of certainty that the ANN control 

methods outlined in chapter 5 should work as predicted. Furthermore, it was decided 

to use a commercially available drive to run the induction motor. 

6.3 Description of the experimental setup 

A block diagram of the experimental setup for real-time ANN speed is shown in Fig­

ure 6.2, and a photograph of the same is shown in Figure 6.3. 

P-11 
266 MHz 

V /f power 
drive supply 

Filters!#====~ 

Figure 6.2: Schematic of the experimental setup 

6.3.1 Hardware components 

A Pentium-II computer running at 266 MHz was chosen for implementing the ANN 

speed estimator in real-time. The operating system for this machine is MS-DOS version 

6.0. The reason for using a DOS based system was the simplicity it offers, in terms of 
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Figure 6.3: Photograph of the experimental setup 
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accessing the input and output ports, as well as program portability. A Borland Turbo 

C++ compiler was used for program development. Because of this arrangement, the 

actual program development time was drastically reduced. 

For obtaining the current, voltage and speed feedback, an RTI-815-F board was used 

[68], which plugs in conveniently into the PC's AGP 100 MHz bus. The IITI-815-F is 

a multifunction analog/digital I/0 board that has capabilities for analog input, analog 

output, digital input and output, and time-related digital I/0 functions (through the 

AM9513A Counter/Timer chip). It has 16 analog input channels with 12 bit A/D 

resolution, and A/D ranges of 0 to +lOV, ±5V, or ±10V can be selected. The A/D 

conversion time is typically 8JJS. There are two analog outputs with a 12 bit D/A 

resolution and a 20tzs settling time for a +10V step. The board also has an 8-bit 

digital input port and an 8-bit digital output port. 

The current feedback was obtained with two Hall effect LEM current modules with a 

ratio of 1:1000. Voltage feedback was obtained with SI 9000 differential probes with an 

attenuation ratio of 1:50. An optical, incremental shaft encoder was used for obtaining 

speed feedback. The encoder produces 1000 pulses per revolution and has two separate 

channels which are phase shifted by 90° to allow estimation of the direction of rotation. 

There are various ways of obtaining the actual speed from the encoder pulses. Since 

the encoder produces high frequency pulses (about 30KHz for a 4 pole induction motor 

running at rated speed), conversion from frequency to voltage produces a very accurate 

estimate of the motor speed. Such a circuit is very easy to implement, using one of 

many commercially available frequency-voltage converters. Some extra circuitry has to 

be used to estimate the direction. The circuit used in the experimental setup is shown 

in Figure 6.4. This produces two separate signals, one for the speed magnitude and 

the other for the speed direction. The direction signal is a digital signal, and both the 

signals can be read into the Pentium-IT using the RTI-815-F ADC/DAC card. It should 
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Figure 6.4: Speed measurement circuit 

be noted here that a shaft encoder has been used in the setup only for the purpose of 

obtaining ANN training data. In a sensorless scheme, the trained ANN should be able 

to provide a good estimate of the speed, obviating the need for a shaft encoder. If a 

shaft encoder cannot be mounted for the purpose of ANN training, it is possible to 

use a contact-less tachometer for this purpose, though the accuracy of the ANN speed 

estimate would be limited by the accuracy of the measured speed in the training data. 

The induction motor runs on a PWM voltage supplied by the IGBT inverter in the 

V /f drive, and this voltage signal cannot be used directly, since the instantaneous mag­

nitude and f:l.(J values cannot be obtained from such a signal. Thus, the fundamental 

component of the voltage signal must be extracted from the PWM signal. Also, the 

current waveform is not a pure sinusoid, because of the PWM nature of the voltage. 

This necessitates the use of a filtration stage prior to the analog/digital conversion. 

Also, the speed signal obtained from the frequency-t~voltage conversion circuit has 

noise. This noise probably results from the internal operation of the frequency-t~ 
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voltage converter. Thus, it is necessary to filter all the five feedback quantities before 

use. For purposes of filtration, a Sallen and Key second order active filter was chosen, 

because of the simplicity and efficiency of the circuit. A circuit schematic of the filter 

is shown is Figure 6.5. The transfer function of the filter is given by 

Vout 

Figure 6.5: Circuit schematic of the Sallen and Key filter 

H(s) = Kw; 
s2 + ~s +w2 

Q c 
(6.1) 

where, 

(6.2) 

(6.3) 

(6.4) 

To simplify the filter design, it was assumed that R 1 = R2 and C1 = C2 , and the 

circuit values were chosen to obtain a cut-of£ frequency (we) of about 300 ranfs. The 

gain was anjusted such that the output signal occupies most of the available range of 

the ADC (±lOV) . Identical filters were used for the current and voltage signals and 

for the circuit components chosen, the total harmonic distortion (THD) of the filter 

output was about 3.5%, which implies that the output signal was quite clean. For the 

speed feedback signal, a lower cutoff frequency of 100 rad/s was chosen, because high 

frequency components are not expected in the speed due to the inertia of the motor 
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and the fact that the drive accelerates and decelerates the motor at a predetermined 

rate. 

It should be noted that the use of the filters would lead to a delay in the signals. For 

the current and voltage signals, this delay manifests itself as a phase shift. However, 

after conversion from DQ to MF, the phase information is lost, and thus phase shifted 

current and voltage signals make no difference to the ANN operation. For the speed 

signal, the filter has to be carefully chosen, because a delay here would result in a delay 

in the ANN output. Fortunately, the speed dynamics are significantly slower than the 

current and voltage dynamics and no appreciable delay results due to filtering. 

For controlling the induction motor, a commercially available 1 HP V /f drive was 

used, which can operate in all four quadrants. The drive has an IGBT inverter running 

at 3.3kHz. An open loop frequency control method was used, since it is simpler and does 

not affect in any way the generality of the ANN based speed estimation scheme. Closed 

loop control is also possible with this drive. The drive parameters can be programmed 

from a convenient digital keypad with an LCD screen. For most applications, the 

factory settings are good enough, though the acceleration and deceleration rates were 

readjusted for this work. Also, the drive had to be reprogrammed to enable reversal of 

speed. 

For loading the induction motor, another induction motor was mounted on the same 

frame with the shafts of the two motors coupled together. A variable three-phase power 

supply was used for applying a. voltage to the loading motor, with a. phase sequence 

which was opposite to that of the main induction motor. This system is quite efficient 

and enables the application of step changes in load. The parameters of the induction 

motor used for speed estimation are given in Table 6.2. It should be noted here, that 

these parameters are not used anywhere for ANN training, since the ANN is trained 

to learn the motor characteristics by observing the machine inputs and outputs. 
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Table 6.2: Parameters of the induction motor used for experimental verification 

\1 Parameter I Symbol j Value II 

Power Rating 1.0 HP 

Voltage 208V 

Connection type y 

Stator Resistance Rs 2.75 n 
Rotor Resistance R,. 2.45 n 
Stator Inductance Ls 169mB 

Rotor Inductance Lr 169mB 

Magnetizing Inductance Lm 160mB 

~loment of Inertia J 0.0630 N- m 2 

Damping Coefficient B 0.0030 N- m 2 /s 
Pole Pairs p 2 
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6.3.2 Software components 

For the purpose of carrying out the experimental work, the main addition to the suite 

of software described in chapter 3 was a class called RTLboard for handling the input 

and output from the RTI board described earlier in this section. It has the following 

functions which greatly simplify the task of the user. 

• in_ voltage: This function reads an analog voltage from the channel number which 

is passed as a parameter to the function. It returns the actual value of the voltage 

read, which has been calibrated against an oscilloscope. 

• out_uoltage: This function outputs a specified voltage to a specified channel, both 

of which are passed as parameters to the function. 

• digitaLin: This function reads a 1-bit digital value from specified bit number in 

the 8-bit digital I/0 port on the RTI board. 

• digitaLout: This function writes an 8-bit digital value to the digital I/0 port on 

the RTI board. 

As has been mentioned in chapter 3, the ANN simulator has been written to provide 

a great deal of flexibility and reliability. However, because of the above features, it has 

not been optimized for speed. Also, the simulator is too large to run on a DOS platfonn. 

To circumvent these problems, it was decided to implement another ANN simulator 

which would simulate only fully-connected multi-layer feedforward networks without 

any training algorithm. This simulator is much smaller in size, with a lot less flexibility, 

but has been optimized for speed. The computation of the exponential function, which 

is required for the neuron activation function, has been implemented using a lookup 

table with 600 elements, since this saves a lot of time. Training of the ANN has to be 
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done off-line using the larger and more flexible UNIX based simulator. To facilitate 

the transfer of the weight set between the two programs, both of them follow exactly 

the same format for reading the weight file from the disk. 

Another important modification in the real-time simulator was the "DQ-:MF" block 

described in chapter 4. The need for modification resulted from the fact that computa­

tion of~() in particular, assumes sampling at a constant and fast rate, which would not 

be possible in real-time implementation, since the ANN also has to be run along with 

the "OQ-MF" block. Thus, it was felt necessary to take three equally spaced voltage 

and current feedbacks and use them for computing the present and delayed values of 

magnitude and ~(}. Also, this block directly converts the 'a' and 'c' phase values to 

magnitude and~(} to save time . 

. o\s pointed out in chapter 4, after conversion from DQ to MF, a second stage of 

filtration is required. In the real-time implementation, this has to be done with a 

digital filter which does not depend on critical timing and uses as few previous values 

as possible. Thus, it was decided to use a modified averaging filter, which uses just 

three previous values and computes the slope of the input to reject higher frequency 

components. This filter has been found to be very useful for such an application. The 

performance of this filter will be demonstrated in section 6.4. 

The main program was written using the components described above and some 

others described in chapter 3. This program operates in two modes. In the data 

collection mode, it just collects the ANN training data using the RTI board and stores 

it onto the disk after applying the "DQ-MF" transfonnation and filtration. In the 

feedfonnard ANN mode, the data is handed over to the ANN, instead of being stored 

on the disk. The ANN output, which is an estimate of the induction motor speed, is 

converted to an analog voltage by the RTI board and can be seen on the oscilloscope, 

alongside the actual speed signal obtained from the f/v circuit shown in Figure 6.2. 
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6.4 Experimental results and discussion 

The experimental verification was conducted by first collecting different training data 

sets, by running the V /f drive at various frequencies, under both forward and reverse 

modes of operation and applying step changes in the load. These different sets of data 

were combined together to generate a larger data set for off-line training. After the 

training was complete, and various networks and learning rates were tried out to get an 

optimum output, the ANN weights were stored in a weight file, which could be directly 

read by the real-time ANN program. 

The "a' phase voltage feedback signal before and after filtration is shown is Fig­

ure 6.6. As has been mentioned earlier, the THD for this waveform is only 3.5%, which 

should be clean enough for conversion from DQ to MF. The 'a' and 'c' phase filtered 

voltage waveforms, separated by 120°, are shown in Figure 6.7. The 'a' phase current 

feedback signal before and after filtration is shown is Figure 6.8. It can be seen that 

the current feedback signal from the LE:\-1 sensors has spikes due to the inverter oper­

ation. The 'a' and 'c' phase filtered current waveforms, separated by 120°, are shown 

in Figure 6.9. 

It was seen earlier in chapter 4 that the magnitude and A9 for stator currents and 

voltages have ripples due to imperfect filtering of these waveforms. These ripples would 

impede ANN training, and thus a second stage of digital filtering is required, this time 

for the magnitude and t:..9 of the sinusoidal quantities. In the experimental setup, there 

is one more reason for noise in the magnitude and 6.9 of the stator voltage and current, 

in spite of the improved filtering using the second order Sallen-Key filter. The reason is 

that high-end PCs have a lot of dynamic features like superscalar architecture, branch 

prediction and so on, which improve the overall speed, but make the system less suitable 

for real-time applications, since the execution time of the code might vary from one run 
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to another [69]. This implies that the computation of 6.8, which assumes a constant 

sampling frequency, would have increased ripples. This problem ca.n be rectified with 

a clock-based interrupt driven system, which would ensure that the loop time remains 

reasonably constant. However~ for this work, a high performance digital filter was 

used, which has to operate under the constraints of a variable sampling time period 

and fewer available previous values. The average filter discussed in subsection 6.3.2 

was designed with these objectives in mind and uses just 2 previous values to achieve 

a good output. The performance of the filter, on a 1000 point sample of the ~(} for 

the stator current, is shown in Figure 6.10. 

The chosen network had a 6-20-1 architecture and was trained for 26 epochs on 

the data set, and the learning rate was 0.08 for the output neuron and 0.80 for all 

other neurons. The Pentium-II was able to run the ANN, along with the sampling 

and "DQ-MF" conversion and the six input filters, in about 400J.LS. This is a very 

impressive speed and demonstrates the feasibility of this approach. A comparison of 

the ANN estimated speed and the actual speed is shown in Figure 6.11. The data 

in this figure has been collected while the ANN was running on-line. The percentage 

error in the ANN speed estimate is shown in Figure 6.12. The sum squared error for 

this ANN during training is shown in Figure 6.13. Figure 6.14 shows the ANN speed 

estimate (CHl) along with the actual speed signal from the f/v circuit (CH2) in the 

forward mode of operation. The ANN speed estimate has a steady state error of less 

than 1.0%. Figure 6.15 shows the ANN speed estimate (CH1) along with the actual 

speed signal from the f/v circuit (CH2) in the reverse mode of operation. The ANN 

speed estimate has a negligible steady state error for this case. Figures 6.16 and 6.17 

show the ANN performance for 30 Hz. operation of the drive. Here again, the error 

is about 1% for the forward mode of operation and almost negligible for the reverse 

mode. 
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Figure 6.10: Performance of the modified averaging filter 
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Figure 6.11: Actual vs. ANN estimated speed (real-time implementation) 
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Figure 6.12: Percentage error in the ANN speed estimate (real-time implementation) 
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The results presented in this section clearly indicate the efficacy of the ANN speed 

estimator for real-time applications. The ANN performs very well, and the results are 

comparable to a similar network demonstrated in chapter 4, even though the latter 

was trained with a simulated vector controlled drive. In fact, this proves the generality 

of the scheme, and the same method can be used with any other drive, as long as the 

ANN is suitably trained. This ANN architecture is by no means optimum, and a higher 

performance ANN can be obtained, if more time is spent on trying out different network 

sizes and learning rates. However, the primary scope of this thesis was to establish 

the theoretical basis and feasibility for the proposed scheme, rather than attempt to 

obtain the most efficient and commercially viable estimator. 

This experimental verification also helps to validate the theory and simulation stud­

ies presented for ANN control of induction motor in chapter 5. If two control outputs 

from the control circuit of the V /f drive to the inverter can be obtained, for example 

the magnitude and frequency of the desired voltage, or id,., i;,., then the same setup can 

be used for induction motor control. The only thing that would change would be the 

training data collected and the outputs of the ANN. After off-line training this ANN 

could be used for mimicing the V /f controller. If a vector controller was not available, 

it would not make any difference to the scheme outlined, since the ANN can mimic 

any kind of controller. Presently, the size of the ANN used in the simulation studies 

for control is too large to be run in a convenient time frame even on a high perfor­

mance PC like the Pentium-11 266MHz machine used in this setup. Also, a split-ANN 

cannot be implemented using the real-time ANN simulator, which does not have the 

same flexibility as the one used for simulation studies. Even if the speed requirements 

were satisfied, it would be desirable to have a clock-based interrupt driven system as 

mentioned earlier. This is more crucial for the ANN controller, because unlike a speed 

estimator, the controller outputs affect its own inputs, thereby making it a vastly more 

challenging problem. 
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6.5 Summary 

The aim of the work presented in this chapter was to demonstrate the feasibility of 

the proposed schemes and to verify some of the theory and simulations outlined in 

chapter 4. A review of the ANN hardware shows that procuring dedicated hardware 

for ANN experiments is still not a very attractive option. Thus, the approach taken 

for this experiment was to build a setup based on a high-end PC, which should be able 

to handle a large number of computations in real-time. The experimental results prove 

the efficacy of the scheme, and show that an off-line trained ANN can be used for high 

performance speed estimation of induction motors. 
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Chapter 7 

Conclusion 

The work done for this thesis has led to significant contributions to the area of ANN 

based induction motor drives. The objective of obtaining an accurate ANN based 

speed motor estimator has been achieved, as demonstrated in chapter 4. Four methods 

of induction motor speed estimation using ANNs are discussed in this chapter. Speed 

expressions derived from the d-q axis dynamic equation of the induction motor form a 

basis for the first three methods. These methods function well if the motor is operated 

with a power supply, but do not produce satisfactory output if the motor is operated 

with a vector-controlled drive. A fourth method is proposed in which the ANN is able 

to function quite well in the presence of a vector-controlled drive, and is also small 

enough to be implemented in real-time. 

The objective of implementing induction motor control using only an ANN bas been 

achieved as shown in chapter 5. In this chapter, a scheme has been presented, which 

implements induction motor control with an ANN which has been off-line trained to 

mimic a vector controller. The performance of this ANN is quite good and it is able 

to generalize effectively. Having a controller which can function with only off-line 
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training is a big advantage, since it saves a lot of computational time for real-time 

implementation. However, this ANN controller has a small steady state error and 

another scheme is also presented, whereby the off-line trained ANN can be on-line 

trained to minimize this steady state error. This on-line scheme has another benefit in 

that it is computationally less demanding than other on-line training schemes, because 

only the signs of the quantities in the Jacobian vector are used. Both of these methods 

were previously unreported in the literature. 

The experimental verification objective has been partly achieved as outlined in 

chapter 6. Here, the ANN based speed estimator using method 4 in chapter 4 was 

implemented in real-time using a Pentium-II PC based hardware. The performance 

of this real-time estimator is very good, and clearly demonstrates the practicability 

of the scheme. The ANN based control strategy could not be verified in real-time 

because of hardware limitations. It has been pointed out in chapter 6 that dedicated 

ANN hardware is not yet standardized, and the network size for the ANN controller 

is too large for proper real-time implementation using the available Pentium-II based 

setup. Also, ANN control would require that two control outputs be obtained from the 

motor drive for the purpose of collecting testing data. These outputs are not readily 

accessible in the motor drive used in the setup. However, as mentioned in chapter 5, 

verification of training with the "DQ-MF" block has been done for the speed estimator, 

and this lends credibility to the ANN based control scheme which uses the same block 

for training. 

7.1 Contributions of this work 

The work outlined in this thesis has made some important contributions to the area. of 

induction motor control using ANNs. These contributions are discussed below: 
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• Speed estimation of induction motor. Prior to the publication of some of the work 

outlined in chapter 4, almost no work was done in the area of induction motor 

speed estimation using ANNs, even though many alternate techniques were used 

for speed estimation, as was seen in the literature review. This work presented 

an off-line trained ANN speed estimator for the first time. The speed estimation 

scheme outlined in chapter 4, which has been experimentally verified, is also a 

first. To date, the author has not come across any other ANN based induction 

motor speed estimator, which has been verified in experimentation. 

• Induction motor control using off-line trained ANN: This is probably the biggest 

contribution of this work. To date, the author has not come across any work 

reporting satisfactory and complete induction motor control, using just one or 

more ANNs, and without using any other conventional controller. Wishart and 

Harley's work [45] is probably the best work on ANN control of induction motor 

presented so far, and it uses one conventional PI controller along with the ANN. 

Also, the strategy cannot handle step changes in load torque, thereby severely 

limiting its utility. Lastly, it uses on-line training, which requires extremely 

high computing power to implement in real-time. The work done for this thesis 

has demonstrated induction motor control using a single ANN, which is off-line 

trained to mimic an existing high performance controller and which can handle 

step changes in load. For better performance, the ANN can also be trained on-line 

and this leads to improved steady state response and robustness in the presence 

of motor parameter variations. 

• Object-oriented simulator. The suite of software developed as part of this re­

search, and discussed in chapter 3, has proved to be invaluable for this work. 

Also, the simulation programs have been written in a way such that it becomes 

very easy for anyone to use them, with only a minimal knowledge of C++ pr" 

gramming. The ANN control schemes presented in chapter 5 would have been 
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impossible to implement! if the only available option was a conventional ANN 

simulator like the MATLAB neural network toolbox. 

7.2 Suggestions for future work 

The following are some suggestions for future work in this area. 

1. Experimental verification of the off-line trained ANN controller. This should be 

possible with a high performance drive in which the two control outputs to the 

inverter can be tapped. The rest of the experimental setup would not change 

much. The basic idea would be to collect data, which would comprise a set 

of inputs (reference speed, actual speed, and magnitude and fi(J of the stator 

voltage, along with the previous values of all these quantities) and a set of desired 

outputs (magnitude and ti(J of the reference voltage or current). A split ANN 

could then be trained to mimic the controller as outlined in chapter 5. A faster 

PC might be required, with which a larger network could be run in real-time (in 

about 800 ps}, and which could handle more stringent timing requirements. 

Significant improvement in performance could be obtained by using an integrated 

circuit to perform the "DQ-MF" and "MF-DQ" transformations. This would free 

up the PC from these time critical conversions, and would enable second stage 

filtration in hardware itself. An application specific integrated circuit (ASIC) 

could be used to realize this circuit in hardware. 

2. ANN based sensorless induction motor drive: Based on thls work, combining the 

ANN control scheme with the ANN speed estimator would result in a complete 

ANN based sensorless drive. In this scheme, the control ANN could be trained as 

before. However, instead of the actual speed, it would receive the speed estimate 
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from the ANN speed estimator, which would have to be off-line trained to a high 

degree of accuracy. Of course, restricting to only off-line training would imply 

foregoing robustness in the control scheme. This scheme would be a lot more 

challenging than just putting these individual components together, because any 

inaccuracy in the speed estimate would propagate back into the control scheme, 

acting like a positive feedback, and further worsening the speed estimate. 

As a first step towards obtaining the sensorless drive, a very high performance 

off-line trained ANN speed estimator should be developed. The vector-controller 

should be able to function properly with feedback from the ANN speed estimator. 

The training data for the ANN controller should be collected while running the 

drive with speed feedback obtained from the ANN speed estimator instead of the 

shaft encoder. This data should be used for training the control ANN, and after 

successful training, this ANN should be able to function in real-time, resulting 

in an ANN based sensorless induction motor drive. 

3. ANN based indirect adaptive control of induction motor. In this scheme two ANNs 

would be required, one for plant identification and the other one for control. The 

ANN speed estimator would be the plant identifier in this case, and would be 

on-line trained with the help of the actual speed obtained from a speed sensor. 

The control ANN would also be on-line trained, and its cost function would be 

derived from the error between the reference speed and the actual speed. The 

computation of the Jacobian, which is required for adjusting the weights on-line 

using backpropagation, would be done through the speed estimator ANN. This 

scheme looks promising, and it should be possible to get performance comparable 

to the schemes mentioned in this work. 
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Appendix A 

Simulation Input Files 

This appendix contains sample parameter files, which serve as inputs to the various 

components of the simulation. All blank lines in the parameter files, as well as those 

that begin with a'%' sign are ignored. There must be an'=' sign (without any spaces), 

between the parameter name and its value (e.g. P=2). The parameters can be in any 

order within a parameter file, as long as they are identified with the correct parameter 

name. 

A.l Induction machine parameters (mach.par) 

% 2-kW, Vnom = 120/208 V- 60Hz., Inom = 15.2/8.8 A, 

% rated speed = 1770rpm, Tem,nom = 10.8 Nm 

% Number of pole pairs 

P=2 

% Connection type (WYE or DELTA) 
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YD=WYE 

% Stator resistance 

Rs=0.60 

% Rotor resistance 

Rr=0.40 

% Stator inductance 

Ls=0.0727 

% Rotor inductance 

Lr=0.0727 

% Magnetizing inductance 

Lm=0.0698 

% Damping coefficient 

8=0.0030 

% Moment of inertia 

J=0.0357 

A.2 Vector controller parameters (vector. par) 

% Induction motor parameters needed in the vector controller 

Rr=0.40 

Lr=0.0727 

Lm=0.0698 

P=2 

% Speed controller PI constants 

Kp_sc=2.0 

Ki_sc=8.0 
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% Torque controller PI constants 

Kp_tc=0.3 

Ki_tc=15.0 

% Flux controller PI constants 

Kp_fc=S.O 

Ki_fc=25.0 

% Ramp rate for speed reference 

RAMP_RATE=4:00 

% Current limit is used to compute the limit for the torque controller 

CURRENT_LIMIT=20.0 

% imr reference (proportional to the rotor flux) 

IMR_SETI'ING=6.0 

A.3 Inverter parameters (inv.par) 

% Transistor current rating 

CURRENT_RATING=150 

% Transistor voltage rating 

VOLTAGE_RATIHG=600 

A.4 PWM current controller parameters (pwm.par) 

% Type of carrier signal (TRIANGLE. SINE. SQUARE or SAWTOOTH) 

CARRIER_TYPE=TRIAHGLE 

% Amplitude of the carrier signal 
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CARR1ER_AMPL=2.0 

% Frequency of the carrier signal 

CARR1ER_FREQ=4000 

% DC offset for the carrier signal 

DC_OFFSET=O.O 

A.5 Backpropagation learning parameters ( bpn.par) 

The information about the number of layers and number of neurons in each layer is 

ignored by the backpropagation program. This information is used only by the layerann 

program, which generates the ANN parameter file. 

% Number of layers 

3 

% Number of neurons in each layer, their types, learning rates 

% and optional parameters 

6 

20 TANS1G LR=0.20 

1 TANS1G LR=O.OS 

% The information below is used by the backpropagation program 

% Scale factors for ANN inputs 

10=23.0 

11=0.036 

12=23.0 

13=0.036 

14=84.0 
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15=84.0 

% Scale factors for ANN outputs 

00=178.0 

% Momentum parameter 

MOMENTUM=0.5 

% Weight storage file 

WTFILE=speedest.net 

% Saving frequency 

SAVE_FREQ=1000 

% Training frequency 

TR.AIN_FREQ=l 

%Network mode (LOAD_NET: load trained network from file, 

% NEW_NET = create new network) 

NET_MODE=NEW_NET 

% TRAIN (train the network) OR COMPUTE (feedforvard mode) 

RUH_MODE=TRAIN 

A.6 ANN architectural parameters (ann.par) 

This file has been generated by running the layerann program, which reads the first few 

lines on the bpn.par parameter file and creates the ann.par file shown below. This file 

contains all the details about the ANN architecture, and can be manually reconfigured 

to add or remove connections, change the neuron types and so on. 

% Part 1 of parameter file 

% Number of neurons 
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21 

i. Number of ann inputs 

6 

i. Number of ann outputs 

1 

i. Part 2 of parameter file (neuron description) 

0 TANSIG 6 LR=0.20 

1 TANSIG 6 LR=0.20 

2 TANSIG 6 LR=0.20 

3 TANSIG 6 LR=0.20 

4 TANSIG 6 LR=0.20 

5 TANSIG 6 LR=0.20 

6 TANSIG 6 LR=0.20 

7 TANSIG 6 LR=0.20 

8 TANSIG 6 LR=0.20 

9 TANSIG 6 LR=0.20 

10 TANSIG 6 LR=0.20 

11 TANSIG 6 LR=0.20 

12 TANSIG 6 LR=0.20 

13 TANSIG 6 LR=0.20 

14 TANSIG 6 LR=0.20 

15 TANSIG 6 LR=0.20 

16 TANSIG 6 LR=0.20 

17 TANSIG 6 LR=0.20 

18 TANSIG 6 LR=0.20 

19 TANSIG 6 LR=0.20 

20 TANSIG 20 LR=O.OS 
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% Part 3 of parameter file {connection description) 

INPUT 0 0 

INPUT 1 0 

INPUT 2 0 

INPUT 3 0 

INPUT 4 0 

INPUT 5 0 

INPUT 0 1 

INPUT 1 1 

INPUT 2 1 

INPUT 3 1 

INPUT 4 1 

INPUT 5 1 

INPUT 0 2 

INPUT 1 2 

INPUT 2 2 

INPUT 3 2 

INPUT 4 2 

INPUT 5 2 

INPUT 0 3 

INPUT 1 3 

INPUT 2 3 

INPUT 3 3 

INPUT 4 3 

INPUT 5 3 

INPUT 0 4 

INPUT 1 4 

193 



INPUT 2 4 

INPUT 3 4 

INPUT 4 4 

INPUT 5 4 

INPUT 0 5 

INPUT 1 5 

INPUT 2 5 

INPUT 3 5 

INPUT 4 5 

INPUT 5 5 

INPUT 0 6 

INPUT 1 6 

INPUT 2 6 

INPUT 3 6 

INPUT 4 6 

INPUT 5 6 

INPUT 0 7 

INPUT 1 7 

INPUT 2 7 

INPUT 3 7 

INPUT 4 7 

INPUT 5 7 

INPUT 0 8 

INPUT 1 8 

INPUT 2 8 

INPUT 3 8 

INPUT 4 8 

INPUT 5 8 
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INPUT 0 9 

INPUT 1 9 

INPUT 2 9 

INPUT 3 9 

INPUT 4 9 

INPUT 5 9 

INPUT 0 10 

INPUT 1 10 

INPUT 2 10 

INPUT 3 10 

INPUT 4 10 

INPUT 5 10 

INPUT 0 11 

INPUT 1 11 

INPUT 2 11 

INPUT 3 11 

INPUT 4 11 

INPUT 5 11 

INPUT 0 12 

INPUT 1 12 

INPUT 2 12 

INPUT 3 12 

INPUT 4 12 

INPUT 5 12 

INPUT 0 13 

INPUT 1 13 

INPUT 2 13 

INPUT 3 13 

195 



INPUT 4 13 

INPUT 5 13 

INPUT 0 14 

INPUi 1 14 

INPUT 2 14 

INPUT 3 14 

INPUT 4 14 

INPUT 5 14 

INPU'l' 0 15 

INPUT 1 15 

INPUT 2 15 

INPUT 3 15 

INPUi 4 15 

INPUT 5 15 

INPUT 0 16 

INPUT 1 16 

INPUT 2 16 

INPUT 3 16 

INPUT 4 16 

INPUT 5 16 

INPUT 0 17 

INPUT 1 17 

INPUT 2 17 

INPUT 3 17 

INPUT 4 17 

INPUT 5 17 

INPUT 0 18 

INPUT 1 18 
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INPUT 2 18 

INPUT 3 18 

INPUT 4 18 

INPUT 5 18 

INPUT 0 19 

INPUT 1 19 

INPUT 2 19 

INPUT 3 19 

INPUT 4 19 

INPUT 5 19 

HIDDEN 0 20 

HIDDEN 1 20 

HIDDEN 2 20 

HIDDEN 3 20 

HIDDEN 4 20 

HIDDEN 5 20 

HIDDEN 6 20 

HIDDEN 7 20 

HIDDEN 8 20 

HIDDEN 9 20 

HIDDEN 10 20 

HIDDEN 11 20 

HIDDEN 12 20 

HIDDEN 13 20 

HIDDEN 14 20 

HIDDEN 15 20 

HIDDEN 16 20 

HIDDEN 17 20 
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HIDDEN 18 20 

HIDDEN 19 20 

OUTPUT 20 0 
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