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ABSTRACT

The efficiency of turbines depends to a large extent on the forces developed on rotor
blades. The blades, while they pass by nozzles, are subjected to gas forces. Itis quite
important to understand the develupment of these forces to do any useful turbomachine
work. The understanding of these forces and torques would aiso be quite helpful in
designing the bearing supports.

The rctor as well as the nozzle system can be defined in an inertial frame at any
instant of time. In this frame, the fluid-flow through the nozzies can be described as a
vector in three dimensions. Similarly, the position and the velocity of any point on the rotor
blada can also be specified at any instant of time. Using transformation matrices, one can
calculate the change in momentum of gases as they impinge on the blade surfaces and
get reflected. The resulting forces, then, can be expressed in the inertial frame, and one
can calculate the three-dimensional forces and torques.

The thesis brings forth an analytical model to calculate the impulse forces, and the
resulting torques on the rotating blade due to nozzle excitations. The results obtained by

the present method are compared with those used by conventional method to establish the

validity of the model and the lying principle. The m ling principle is quite general

in nature and can be used for various rotating machines.
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CHAPTER 1
INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION

Gas Turbines are weil known for their application in Industry. There have been
widely increasing demands for gas turbines in the power sector generation, and the jet
propulsion over the past few decades. Fig. 1.1 shows the major components of a gas
turbine used in aircrafts. As can be seen from this figure, the air is let in through an air-

inlet or a diffuser, it is then P and led to where the temp , and

pressure of air is increased. The air-fuel mixture is then injected through the nozzles of
the gas turbine chamber onto the turbine blades. The air, as it hits the rotor blade, imparts
its kinetic energy to the blades by change of momentum of the directed gases. This
produces mechanical power, which is then used to drive the propelier attached to the
turbine shaft.

As is evident, the exchange of momentum is quite significant from the paint of view
of power generation. This exchange of momentum depends on the profile of the rotor
blade, and the orientation of the blade surfaces with respect to the interacting gas flow
from the nozzle. Hence, it is quite crucial to have a fairly accurate estimate of the flow
exchange as the rotor blade passes by the fixed nozzle. Furthermore, the blades

experience dynamic loading due to nozzle excitations as they pass by a finite nozzle.



FORWARD FRAME
EIGHT.STAGE AXIALFLOW
COMPRESSOR ROTOR
OMPRESSOR CASING

MAIN FRAME

CrETs
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Fig. 1.1 A CUT AWAY VIEW OF THE GENERAL ELECTRIC CF700 GAS
TURBINE SHOWING MAJOR COMPONENTS [TREAGER, 1970]



The dynamic loading is exhibited in terms of inslantaneous altemaling impulsive forces
and moments due to the nozzle excitations onto the moving blade. These loads are
known to be the major cause of vibration, and the blade failure due to fatigue. Hence it
is quite important to understand the nature of these forces in a sufficiently accurate

manner to take suitable preventive measures against the blade failure.

1.2 LITERATURE SURVEY

The major source of itations, in normal operating condilions in ines,

arises out of the interaction between the moving blade rows and stationary blade rows,
Basic work relating to this field comes from Karman and Sears(1938) who presented an
analysis for airfoil theory for non uniform motion by replacing the airfoil by vortex sheet
and by assuming the flow to be potential and two-dimensional. Kemp and Sears(1953)
applied this theory to calculate unsteady lifts and moments on elementary turbo-machine
stage. Osbome(1971) extended the work of Kemp and Sears lo the case of
compressible flow. Increased attention has been directed towards determining the nature
and magnitude of blade dynamic loads in recent years to focus on the larger problem of
designing blades to suit the real environment for stress and failures. For example, Rao
and Rao (1987) generalized the theory of flow interference between the stator and rotor
rows by including both the upwash and downwash effects of a stage with generalized

camber blades in subsonic compressible flow.



Itis not only difficult to have a definite quantitative assessment of the unsteady
forces in a turbomachine blade stage directly but also very expensive, even if a suitable
method is devised. Classical hydraulic analogy has been extensively used to study the
gas flow in qualitative manner. Loh(1959) has summarized the two-dimensional steady
flow equations and one-dimensional non-steady equations of this analogy. Hoyt(1962) has
reviewed the hydraulic analogy literature, Rieger(1975) has obtained the two-dimensional
non steady analogy equations in generalized coordinates. However, the classical analogy
has its own inherent limitations because the analogy is valid for a hypothetical gas of
specific heat ratio equal to 2, which no real gas possesses. This is a serious limitation
which has to be taken into account before relating the simulated flow resuits with those
obtained from dynamic gas solution. Rao(1980) made extensive studies and established
amodified analogy for gases with any specific heat ratio. This analogy was used by Rao
etal. (1985) to build a rotating water table to determine the non-steady forces in a turbine
stage.

When the blades are thick, thin airfoil theories may become inadequate and

iqt involving ional model b y. Most of the
researchers in this area used the conditions that (a) the blade surface is inpermeable, (b)
the relative velocity over the blade profile is tangential, and they set up a system of
equations and obtained steady pressure field using Euler's equation. Yet another
approach to study the rotor-stator interaction is to solve the unsteady thin layer Navier-
Stokes equations using a system of patched and overlaid grids [Rai(1985); Gundy-Burlet

etal(1990)]. They derived the necessary equations for an accurate transfer of information



between lhe several grids and developed an ileralive implicit algorithm. The
computational time was, however, enormous in this case, and was seemingly
unjustifiable.

The procedure used in design and off-design analysis was based ona quasi-three-
dimensional flow model whose origin could be traced back to late forties and early fiies
[e.g. Wu(1952); Smith(1966)]. This model required calculations to be executed on two
othogonal surfaces within a blade row passage of a multistage configuration. One of
these surfaces was an axi-symmelric surface of revolution whose interaction with a blade
row defined a cascade. The flow field relative to this cascade was assumed to be steady
in time. McFarland(1982) used panel method of discretizing the blade surface into
several panels to investigate the plane cascade flow over the blade fail. Two three-
dimensional flow models were proposed for the simulations and analysis of multiple blade
row flow. The first {Denton(1979); Adamczyk(1984); Ni(1987)], referred to asthe average
flow modelled by Adamczyk (1986), simulating the time-averaged flow field within a typical
passage of the blade row. The second simulated the unsteady deterministic flow field
with the machine. Although a number of simulations have been reported, the

computational time, and effort required in all the cases became enormous.

Though, there have been signifi d pments in putati models and
design of turbomachine over the past few decades, the three-dimensional analysis of the
forces, and the torque on gas turbine blade is still a cause of concem to engineers. To
simulate three-dimensional blade dynamics and the actual flow interaction with the blade,

and to develop a significantly appropriate model is still a challenging subject matter. The



survey of literature reveals that the problems of flow interaction from slator rows to the
rotor have been addressed by considering streamline flow and laying out the grid
pattems. Based on these grid patterns the Navier Stokes equation is solved. As already

discussed, the relative flow over the blade foil is considered to be tangent to the blade

surface. M , the blade is d to be in fluid continuum (refer Fig.
1.2). These idealization, however, do not represent the true flow interaction with
turbomachine blade.

From Fig. 1.3, the representalive arrangement of the nozzles, and the blades
(shown cut-out portions) in an axial gas turbine unit can be understood. From lhe figure,
it is evident that during the transient condilions, i.e both at start-up, and shut-down
conditions, the blade velocity changes its magnitude and direclion with time. Therefore,
the incident relative velocity, {W,}, which is given by the difference of the absolute flow
velocily and the blade velocity (refer toFig. 1.4), also changes its magnilude and direction
withtime. Even during steady-state period, while rotor attains a constant angular speed,
the direction of the blade velocity always changes in radial plane. This gives rise to a
continuously varying relative velocity vector, Hence the angle of attack of the flow with
the blade surface continuously changes in both the transient and steady stale. Also, in
praclice, the flow within the blade passage is highly disturbed due to presence of casing
and aradial flow arising due to interaction with the blade surface. Thus, the assumptions
of smooth streamline flow using ideal boundary condilions of flow being tangent to the
blade surface, and complete immersion of the blade in the gas are not achievable in the

actual systems.



/ 1 =3

/
/
/
/
/i
/ /
! motor
2 /l

STATOR

FIG. 1.2

STREAM-LINE FLOW TRAJECTORY

T ABSOLUTE FLOW TRAJECTORY

STATOR - ROTOR INTERACTION ( FLOW TRAJECTORIES )



NOZZLE

FIG. 1.3 SCHEMATIC OF NOZZLE, BLADE CONFIGURATION
Y
(U}
BLADE VELOCITY
INCIDENT RELATIVE VELOCITY
X
FIG. 1.4

INCIDENT RELATIVE VECLOCITY DIAGRAM



It is worth mentioning here that the fluid dynarnics models were mainly adopted from
flight models where aircrafts fly into more or less undisturbed fluid continuum. However,
in the case of turbomachinery, the flow is highly disturbed by the rotation of the blades.
Therefore, the assumptions which were valid for calculations of lift in case of aircrafts are
not applicable in turbomachines even if similar blade profiles were assumed. In view of
these facts, there is a need of other approaches considering the realistic conditions of flow
incidence with the blade surface and the corresponding impulsive forces.

In order to deploy a general model of the gas turbine stage, one needs the basic
understanding of the various geometrical as well as the functional aspects of the gas
turbines. These can be studied through a number of literature and sources
[Kerrebrock(1977); Boyce(1982); Jennings and Rogers(1953); Vincent(1963);
Csanady(1964); Dzung(1970); Harman (1981), Rao (1991)].

1.3 OBJECTIVES OF THE THESIS

We have seen in the last few sections that the forces and torques on the turbine
blade arising due to instantaneous flow interaction are quite significant from both utility,
and life management (fatigue life) point of views. Therefore, a need is felt to develop an
analytical model which could be able to present the state of forces without exhaustive
computational cost and effort, as in the case in most of the fluid continuum models.

Hence, based on the review of the literature, the following objectives were set up:



1. to develop a th i i lytical model to the dy ics of a

single blade of a gas turbine, and to determine the gas excitation forces, and

torques over the blade.

2. to study the force distribution on a single blade due to the variation in the nozzle
geometry.

3 lo study the dilference in the distribution of forces acling on a straight and lapered
blade.

4. to study the force distribution on a single blade due to the variation in the absolute

velocity of the gases.

5. to study the force variation at different angular positions of the blade.
6. to determine the total forces and torques due to summation of forces on all the
blades.

In Chapter 2, an analytical method has been discussed for the impulse analysis
of the turbine blade due to nozzle excitations. The stage is modelled considering the
blade discretization, and vectorization of each finite element surface. The dynamics of
the blade, and the flow have been modelled, and a methodology Is developed for
calculation of forces, and the torques acting on the three dimensional model. Finally, the
equation for angular acceleration has been derived considering the inertia of a single

blade-rotor system.



In Chapter 3, the mathematical model developed in the Chapter 2 is compared
against a conventional impulse model. The effect of the geometrical, and operating
paramelers are sludied. The results obtained for the nozzle excitations on two different
blade types, a straight blade, and a tapered blade are put forth for a comprehensive and
comparative studies. A formulation is developed for multi blade-rotor system, and the
forces and the torques due to impulse action of the fluid flow are analyzed for the entire

system.

Finally, the and i for future work are presented in

Chapter 4.



CHAPTER 2

MODELLING OF THE NOZZLE EXCITATION ON GAS

TURBINE BLADE

2.1 INTRODUCTION

Since the very beginning of the development of turbines, the danger of a general

failure of rotor blades has remained i unpredi with suffici The

reason is - very little is known about the excitations on the rotating blade due to gas forces
in three-dimensions for the overall range viz. both at design and off-design conditions of
operation. Analysis of these excitations on rotating blade is very complicated because the
geometry of nozzle and the blade are quite intricate and involved. Moreover, it is
extremely difficult to accurately analyze the gas interaction within the blade passage due
to relative motion between the stator and rotor. However, understanding such mechanism
is quite crucial to the efforts to calculate sufficiently accurate nature of the exciting forces

over a range of performance, and to improve the current turbomachinery design.

The present chapter deals with the ytical ing of the nozzle on

the moving blades under i i The g app is suggested for a

single stage of a partial-admission, axial-gas turbine. The nozzle and the blade geometry,
the gas flow, and the dynamics of the turbine wheel have been defined by using several

12



inertial frames and the vector algebra. A i ion has been

for the analysis of the impulse force over the whole biade profile as gases impinge on the
blade. The modelling also takes care of the three-dimensionality of the gas flow in the
blade stage, periodicity of flow admission due to discrete nozzle, and relative motion

between the stator and rotor rows.

2.2 MATHEMATICAL FORMULATION
2.21 FRAME DESCRIPTION

Fig. 2.1(a) shows an axial gas turbine unit. Blades, B, are mounted on a wheel
rotating with the shaft. Nozzles, N, are mounted on an annular disc co-axially placed to
the blade wheel. The gases at high temperature and pressure are directed on to the
turbine blade, which in tum cause the wheel to rotate. The dynamics of blade and the gas
flow can be modelled by considering three basic frames of reference as shown in Fig.

2.4(b).

A global reference frame (stationary) is considered at the rotor axis about which the
whole rotor and the blade assembly rotate. The X - axis is defined along the shaft axis.

The entities, such as vectors etc., in this frame are referred by G.

A second reference frame has been considered at the centroid of the root of the
turbine blade. The orientation of this frame is exactly similar to the global frame. °Paora
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shows the position vector of this frame relative to the global frame. The geometry of the
blade has been represented in this frame. The frame is denoted by B. The third reference
frame has been considered at the nozzle exit. The X-Y plane of this frame is
perpendicular to the relative velocity of the flow at the nozzle exit. This will be dealt with
detail in later section. ®Pycag Shows the position vector of this frame relative to the global
frame. The frame is denoted by N. The position vector of the origin of the blade frame is

denoted by °Pyore.

In addition, several local frames of references have been used at the blade surfaces
to represent the interaction of the gas with the blade surfaces. These frames will also be

discussed in later sections.

In most of the cases, the computations are carried out by transforming vectors into
the global frame, G. The transformation of a vector from one frame to another can be
achieved by premultiplying the vector by a transformation operator. The transformation
operator, [T], is a 4 x 4 homogeneous matrix [Craig, 1989] which takes care of transiation
as wall as the orientation of the frames relative tu each other. A general description of the

frame transformation is given in the Appendix A. )

The quantities to be computed are the forces on the blade elemental surface, their
resultant, the driving torque, and the angular acce'z+ation of the rotor at any instant of its

angular position.



2.2.2 BLADE MODELLING
2.2.2.1 FINITE ELEMENT DISCRETIZATION OF THE BLADE

To investigate the gas flow interaction and the resulting excitation forces over the
entire blade profile, it is convenient to discretize the blade by using finite element
technique. Fig. 2.2 shows a representative three-dimensional finite element model of the
blade. A total of 35 elements are used to describe the blade with 7 elements across the
cross-section and 5 layers along the height [Bahree, 1988]. The elements used are
curved, solid, C° continuity, serendipity, twenty-noded, isoparametric finite elements. This
type of element is chosen because of its versatility in accurately mapping the complex
three-dimensional geometry of the turbine blade. Figs. 2.3(a), and 2.3(b) show one such
finite element including the local coordinate system (g, 1, £), and the global coordinate

system (X, Y, 2).

The following g i were lated using a finite element software

package called ANSYS :
i) Centroid of the area of the finite surfaces (both suction, and pressure side)
i) Centroid of the volume of each elemental layer across the blade height, and
the entire blade
i) The volume of the blade
iv)  The moment of inertia of volume of each elemental layer across the blade
height, and the entire blade about the origin of the blade frame, B.

Description of the program prepared in ANSYS is given in Appendix B.
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2.2.2.2. BLADE KINEMATICS

Fig. 2.4 shows an instantaneous position of the blade represented by angular
movement of the turbine shaft, about the global X - axis by an angle 6. The position
vector of any point °P given by ®(x, y, z}" on the blade surface in the frame 'B' can be

given in global frame as follows:

G G
glRl 1 “Paong
3x3 13 x1

1)

- N < x
- N < X

where ®Pyqqq is the position vector of the blade frame with respect to global frame, and
S[R] is a 3 x 3 rotation matrix required to describe the rotation about X - axis of the glcbal

frame. The rotation matrix [R] can be given as:

& 10 0
gl Rl =[ R ] =0 cos(e) -sin(6) (22)
0 sin(8) cos(B)
3x3
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Fig. 2.4 INSTANTANEOUS POSITION OF ANY POINT °P ON THE BLADE
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2223 VECTOR DESCRIPTION OF THE BLADE FINITE ELEMENT SURFACE

It is convenient to define the blade element in terms of vectors in order to

ir igate the ics in three-di ional frame. Finite element surfaces are

described in terms of vectors along cross-section and the blade height.

Fig. 2.5(a) shows the vector layout of the blade along the blade cross-section.
Using only the corner nodes of each finite element, the veclors are drawn from the trailing
edge to the leading edge along both pressure and suction surfaces in such a way that
the tip of the vectors face the nozzle. The nozzle is on the left of the leading edge (not
shown). A vector can be given by the difference of the coordinate of the two adjacent

cormer nodes of the element on each side respectively as shown below:

G
x-x | 29)
Gs, = 1%-v
2 -

where the subscripts k, and I refer to the adjacent comer nodes of elemental surface
along the blade cross section. (S, } represents the vector drawn from the node | to node
k, and its corresponding unit vector is denoted by °($..v \}. The superscript ¢ stands for a

finite surface in consideration and is denoled by s, p for suction, and pressure surfaces
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respectively.

Fig. 2.5(b) shows the layout of the vectors along the whole surface the blade in
three-dimension. The hatched area shows a representative blade finite surface with
comer nodes |, k, m, and n respectively. The vectors along blade height are drawn from
the boltom layer to the adjacent top layer. Thus, one can define a height vector, "(S\ b
by the co-ordinate difference of the corner nodes k, m respectively using an equation

similar to Eq. (2.3).

From Figs. 2,5(b) and 2.6(a), it is evident thal a blade finite element surface can
be represented by two vectors along the cross-section of the adjacent layers, and two
vectors along the height from adjacent corner nodes. Also, it can be assumed that all the
vectors defining a finite surface lie in a plane provided the blade twist angle is negligible
or small. The orientation of finite surface area can be represented by a unit vector
normal to it as shown in Fig. 2.6(a). The unit vectors normal to the suction and pressure

surfaces can be defined as:

Gl = Gs ) x 8.} (24)
G(ﬂ}n - G{SM," % G<su.|}p
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While taking the cross product, one should be careful lo select the vectors such

that the normal vectors %(fi)*, and °(A)° always point outwards to the respective surface.

One can also calculate the surface area (AA) of a finite surface with the

combination of the vectors along cross section and height (refer to Fig. 2.6(b)) as follows:

(oAl = ([ Os,) x G5, | [ Gl x O[] @9

Geometrically, as shown in Fig. 2.6(b), the first term in the right hand side of the

above eq| P the area of the < kibn. Its ponding half is

represented by shaded area kin. Similarly, the second term corresponds to parallelogram
aknm, and the corresponding half is represented by the hatched area knm. The total

surface area AA is, thus, given by the sum of the two halves as shown in the figure.

Thus the blade geomelry can be completely defined in terms of the finite elemental

surfaces, and the vectors described for each such finite elemental surface.

2.2.3. FLOW MODELLING

The fluid flow from the nozzle strikes the exposed finite element surfaces and gets

il by the blade surf: causing a change in the direction of the flow
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velocity, thus changing the momentum of the flow. The change of momentum resuits in
an instantaneous impulsive force on the blade surface. The tangential component of the
net impulse forces thus causes the wheel to rotate. However, the dynamics of the flow
interaction with the moving blade is quite complicated phenomenon and is highly
dependent on several flow parameters, geometric constraints and the rotation of the blade.

The following assumptions have been made in order to model the gas flow:

i) the velocity remains uniform across the nozzle,

i) the absolute efflux at nozzle is parallel to the global X-Y plane,

iii) the flow is incompressible, and non-viscous,

iv) partial-admission (i.e. a nozzle covers only a fraction of the blade annulus
circumferential area) of flow is assumed by considering several equiangular
discrete nozzle blocks on an annular disk, and

v) identical number of nozzles and rotor blades have been used.

2.2.3.1 FLOW MODELLING AT NOZZLE EXIT

Fig. 2.7(a) shows the planar layout of a representative stage of a gas turbine. The
corresponding velocity diagram at nozzle exit point, in global X-Y frame, can be seen in
Fig. 2.7(b). The absolute velocity of efflux, °(V,}, subtends an angle of a, (refer to Fig. 1.4

for the nomenclature) with the axial direction and can be represented in global frame as:
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cosloy)
)| ol | svie) 20
)

The relative velocity of the incoming flow on a finite surface of the slemental layer
can be given as (the superscript ¢ is used to indicate the surface which can be p
(pressure) or s (suction) :
(2.7

Cmpe S - Clor

where °{U}* is the tangential velocity of the blade element in the elemental layer under
consideration. It is a function of instantaneous rotor speed, ®, and the height of the

centroid of the layer, &,, in consi ion from the root of the blade. The
mathematical expression of this vector is given by:

o

G(U)' B 2ne !R . a.) . (2.9

60
[}
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2232 FLOW INTERACTION WITH MOVING BLADE SURFACES

The interaction of the flow with the blade element can be modelled by a simple
reflection process as shown inthe Fig. 2.8. The flow %{W,) stikes the exposed finite
surface lkmn of the moving blade and gels reflected from the surface. The change in the
direction of the flow causes a change in the flow momentum at the blade surface,
resulling in an instantaneous impulse force. In order to calculate he momentum change,
one needs to know the direction and the magnitude of the incident and reflected flow

velocities.

The orientation of the ®{W,} with the finite surface lkmn is given by the angle of

incidence to the surface as expressed below:

e ) (2.9)

(1) = cos”( &

where °(W,}*, and °(i1}* are the unit relalive velocily vector of incidence at the surface and
unit veclor representing normal to the surface (discussed in Seclion 2.22.3) in

consideration.

Fig. 2.9 explains the flow reflection process in the plane of reflection over the blade
surfaces. (y)®, asexplained earller, represents the angle of incidence and (y)® represents
the angle of reflection measured from the normal to the surface in consideration. The

orientation of the reflected velocity can be achieved by rotating the unit incident relative
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Fig. 28 SCHEMATIC OF FLOW INTERACTION WITH THE BLADE FINITE
ELEMENT SURFACE

Fig.29 FLOW INTERACTION WITH THE BLADE SURFACE IN THE PLANE OF
REFLECTION
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velocity ®(W,}* by an angle 8, about an axis parallel to the surface, and perpendicular
to the plane of reflection so that the angle of reflection from normal to the surface is
exactly the same as angle of incidence from it. The angle 6, will be explained later.
However, in order to rotate the vector, it is convenient to use a local frame at the point
of incidence of the flow on the surface. Fig. 2.10 explains one such local frame at the

finite surface of the blade element.

Now, our objective Is to obtain the vector ®(W,}* having known the angle v, °(W,}*,

and ®(A)’. This can be done in the following steps [Sharan and Agarwal (1996)]:

Step 1. Obtain ®{z,}* using the following equation:

Gpnpe = G’ x Star (210)
8, x S|

One should ensure that the unit vector describes the positive z - direction in the

local frame.
Step 2. Define °{%,}* along °(}* such that

Cz,J* = Snl* @)
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Fig. 2.10

LOCAL FRAME AT THE FINITE ELEMENT SURFACE OF THE BLADE
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Step 3. Compute %{¥,)° using the cross product of °(2, )%, and %(%)* as given in the

equation below:

(2.12)
Syt = S = G
Step 4. Obtain 4{W,}* using the following equation
b qw = Al Syt =%
where,
L G, -t G, A2
RO N CT R B (219
and,
G[R]’ G i¢ Gp 16 G e 2.15
CIRP | Gg)* Goye Gy @19

3x 3

Here, G corresponds tothe global frame and L corresponds to the local frame at the finite
surface of the blade,
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Step 5. Oblain a veclor “{W,"}* by rolating "{W,}* counlerclockwise about °(2,}* by

angle 0,. This is matheratically represented as follows:

" (2.16)
L{ws)' - YRoap b w,p

where “[R,(6,)] is lhe rotation matrix representing a counterclockwise rotation by 8; about

Z-axis of lhe local triad. It is given by [Craig, 1989}

cos(8g) -sin(8g) 0

L[Ry09] = | sn(@n) cos(e,) © @17)
0 0 1
Ix 3

where 6, Is the angle of rotation by which the incident relative velocity vector is rolated
about the local z-axis to obtain the direction of reflected relative velocity, The

mathemalical expression for 8 is given as (refer lo the Fig. 2.10)

(0a) =1 + 2(y) (2.18)

where () is the magnitude of the angle of incidence or reflection of flow measured from

the normal to the surface in consideration,
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Thus “{W,"}* represents a vector which is equal in magnitude to the incident
relative velocity, and is oriented in the direction of the reflected relative velocity. To
include lhe Irictional losses, one can wrile an equation with K < 1 such that the reflected
relative velocity is ziven by:

Lle)' - K L{W,“}' (2.19)

Once the reflected velocity vector is obtained in the local frame, it can be
expressed in global frame by multiplying with the global-local rotation matrix as defined

in Eq. (2.15) as follows:

W)t = G(Wa)' - flR]" L{Wz)‘ (2.20)

Now the vector difference of the relative velocity is given by:

Gawy - G{w‘ y - G(Wz}‘ (2.21)
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2233 SELECTION OF ACTIVE SURFACES OF BLADE FINITE ELEMENT AND
CALCULATION OF MASS FLOW IMPINGING ON THE FINITE SURFACES

There are three important state variables to analyze the flow and its interaction with
the blade surface. They are - the flow orientation from the nozzle, the geomelry of the
blade and the nozzle, and the blade rotation. One should consider ali these factors in
order to select the active surfaces that receive the instantaneous flow, and to calculate

the itude of the flow on a particular finite blade surface as the blade

passes across the nozzle.

The scheme for the seleclion of the active surface can be led out in two successive

steps:

Step 1. Select surfaces based on flow vector and the orientation of the elemental

surface as described by the blade vectors.

Fig. 2.11 shows any arbitrary position of flow vector and the blade geometry as
represented by vectors. The unit normal vectors extend outwards to the surfaces of the

blade element. D ing on the vector ion of the blade surfaces and the relative

incident velocity, a surface that would make a contact with the flow can easily be
determined. The criterion of the surface selection should be that if the condition given

below
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Fig.2.11  SCHEMATIC OF FLOW VECTOR AND THE BLADE SURFACE VECTORS
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( W} ) <0 (222)

is satisfied. The area, then, has to be considered as the active surface. The condition
holds good for both pressure and suction surfaces. A surface is discarded when the dot

product is positive.

Step 2. Select surfaces considering the flow bounded by nozzle geometry, and the

orientation of the element surfaces with rotor movement.

Fig. 2.12 represents the schematic of a nozzle, turbine blade, and the rotor
configuration. As it is evident from the figure that the moving blade is momentarily
excited upon by the impingement of gases while it gets exposed lo the discrele nozzle.
However, this instantaneous excitation is a function of the geometry of the nozzle, the

blade, the axial spacing between the two, at a given instant of time.

In order to estimate the surfaces that are exposed to the flow, one needs to have
the projection of finite surface area of the blade, and the nozzle cross-section at outlet
on a common plane perpendicular to the relative incident velocity, {W,}. This can be
dane by establishing a local triad denoted by frame N (as pointed out in Section 2.2.1)
at one of the points of the nozzle cross section at exit. Fig. 2.13 shows the nozzle cross-

section at exit in a global frame. {W,} shows the relative velocity at the nozzle exit. N,,
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Fig. 2.12

SCHEMATIC OF NOZZLE, BLADE AND ROTOR CONFIGURATION

[BAHREE, 1988}
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Nozzle Cross - Section

Local Frame at

Nozzle exit point
Global Frame at Shaft Axis

Fig. 213  SCHEMATIC OF NOZZLE CROSS-SECTION IN GLOBAL FRAME
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N,, Ny, and N, are the four corner points of the nozzle cross-section at the flow exit. The
coordinates of these four corner points, N,, N,, N;, and N, of the nozzle are known in the
global frame. Having known the relative velocity and the origin of the triad in global
frame, we have to define the triad in such a way the Z,, - axis of the triad is parallel to the
flow direction and the Xy - Y, plane defines a flow front normal to the incident relative
velocily. The compulational scheme involved in establishing the N - frame consists of the

following steps:
Step 1. Compute the unit vector (Z,} = $(W,}
Step 2. Define a plane which is normal to the incident relative velccity vector S(W,},

containing the point N as shown in the Fig. 2.14. The equation of this plane

is given by:

iy s | (2.23)
Yn Y[ |W,[=0
2y =2y

where (xy, Yy, 2y) represent the coordinates of the point N which defines the origin of the
local frame. The coordinate of the point N is known in the global frame. Similarly (xy, Yy

2,) represent the point M, which is any arbitrary point on the X, - Yy plane.
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Fig.2.14  SCHEMATIC OF A PLANE NORMAL TO THE INCIDENT RELATIVE
VELOCITY, AT ONE OF THE CORNER POINTS OF THE NOZZLE
CROSS-SECTION
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Step 3.

Step 4.

Step 5.

Step 6.

Select arbitrarily the y, z co-ordinates of the point M on this plane, and
obtain its x coordinate by substituting them in Eq. (2.23)
Obtain a unit vector along the fine NM which is given by (X}

Obtain ®(Y,} using

S{i} - Sz« Sfx) &
Obtain the following transformation matrix
|
ﬁ[T] - G{)‘(u} G{YN} G{ZN} I GPuoau (2:25)

where ®P,., is the position vector of the origin of the frame N relative to the global frame

(refer to Section 2.2.2.1). Now, in order to represent the global frame in terms of the

local frame at nozzle exit one has to use the inverse transformation of the above as given

by:

=[]’ —
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Tho cross-soclion of the nozzle at flow oxit and tho finile blado surfaces can be
projected over the (X, - Y,) plane at this local triad by premultiplying the transformation
matrix. A surface (blade elemental surface or nozzle cross section), represented by a
quadrilateral with all four comer points defined in global frame, can be projected onto the
( Xy - Yy) plane by defining the position vector of each of the corners of the quadrilateral

in (Xy - Yy - Z) system using the following transformation

(2.27)
N
= a7l

- N < X
- N < x

and the equating the z p of this d vector to zero. In other words,

once the co-ordinates of the nozzle and blade finile surfaces are mapped in the local
frame, the x, y co-ordinates of the individual comer points define the projection onto the
Xy - Yy plane which is a plane perpendicular to the incident relative velocity, *{W,).

An important point to note is that X,-Yy, plane is perpendicular to {W,}. The vector,
{W,}, is a function of the tangential velocity of the blade surface, which varies along the
blade height. Thus the X, - Y, plane is a dynamic plane whose orientation depends on
the surface of the blade in consideration. Again, one should also note that the X, - Yy
plane is different from the plane defined by the nozzle cross - section (defined by four

corner points Ny, Ny, Ny, and N,).
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Fig. 2.15(a) shows schematic of the projection of the nozzle cross - section on the
Xy - Yy plane. N,*, N,*, Ny*, and N, are the projection of four corner points (N,, N, Ny,
and N,) of the nozzle cross section on the plane. Fig. 2.15(b) shows the projection of one
of the blade surfaces onto this plane. This is shown by a shaded quadrilateral. Fig.
2.15(c) shows both the projections superimposed on each other. In this figure, one can
notice that the area enclosed within the dotted lines represents the maximum of the upper
limit of the forces on the blade. Although the momentum will be experienced by all the
areas falling within the region which is actual projection of the nozzle, yet the
approximation within the dotted line region would be reasonable otherwise the
computation becomes enormous. In this way the element surfaces which experience the

impact due to nozzle excilation can be selected.

Next, to ine the onan surface of the blade, we have

to project each finite element surface areas normal to the incoming relative velocity,

S{W,). The projected surface area normal to the incident flow can be given by:

(8A,)* = (aA) . cos(y)°* (2.28)

where (AA)* represents the finite surface area, and (AA,)* refers the finite area normal

to the impinging flow, and (y)* has already been mentioned earlier in Eq. (2.9).
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Fig. 215  PROJECTION OF (a) NOZZLE CROSS-SECTION; (b) A BLADE FINITE
ELEMENT SURFACE; (c) BOTH (a), AND (b) SUPERIMPOSED OVER

X,- Y, PLANE
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Once the projected areas have been calculated, the mass flow of the gas hitting

the blade surfaces can be given as:

(am,)* = p [ (W[ (8 (229

where p is the densily of the fluid.

2.2.4 CALCULATION OF IMPULSE FORCE AND DRIVING TORQUE
The impulse force on a finite surface for an elemental layer of the blade can be

given by:

Glar)* = (arn,)e . Claw)’ 20

The point of application of the impulse force on each finite surface is assumed to

be at geometric centroid of the finite surface.

Once the surface force for all inalayeris the same pi
is repeated for the elements in other layers, and finally all surface forces are summed up.

The resultant impulse over the entire blade profile can be given by:
G(F) B> G(AF}' (2.31)
0

47



The y-component of the resultant impulse force, {F}, represents the resultant
tangential force. This defines the driving force due to gas forces on an isolated rotor
blade. The x, and z components of the resultant force will be in axial and radial directions

respectively.

Considering the three components of each of the elemental forces {AF} as {AF,),
{4F,}, and {AF,} respectively, one can write the corresponding point of application of the

resuitant impulse force as:

X X, AF,
Y[ =—1_ % 1v.[ x4F, (2:32)
z| |l | AF,

In the above equation x,, ¥,, and z, are the coordinate of the geometric centroid

of an elemental surface.

The position vector of the point of application in global frame can be given by:

x

(2.33)

<

{Ra} =

N
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The corresponding moment of the resultant force {F} acting on a single blade about

the origin of the global frame at rotor axis is given by:

(T} = (R} = {F} (234)

In the above equation the moment (T} has three components. The x - component
of the moment represents the driving torque on the wheel, the y - component of the
moments represents the bending moment on the blade about the rotor centre, while the

z - component represents the twisting moment on the blade.

One should note that in the above formulation, the forces and the torques are
calculated for a single three-dimensional blade exciled by a single nozzle at any instant
of angular position about the global X - axis during the course of its angular motion.

2.2.5. CALCULATION OF ANGULAR ACCELERATION

As the gases impinge on to the blades, they result in a driving torque as mentioned

above, which causes the rotor-blade to The angular acct

of the roior - blade assembly can be expressed as follows:

o (2.35)
[
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where T, is the driving torque denoted by the x - component of the moment (T} as
mentioned in the Eq. (2.34). In the above equation |,, denotes the combined mass
moment of inertia of the rotor disc and the blade assembly about the global X - axis,
which is nothing but the rotor axis about which the entire assembly rotates. However, the
combined mass moment of inertia, ,,, in this equation accounts for a single blade, and

the rotor disc. This will be discussed in the next section.

2.2.6. DERIVATION OF THE MASS MOMENT OF INERTIA OF THE COMBINED DISC-
BLADE ASSEMBLY

Fig. 2.16 shows a schematic diagram of the rctor disc, and the blade mounted on
it. The moment of the inertia of the blade is known at the root (refer to Section 2.2.2.1).
By using parallel axis theorem, one can calculate the corresponding moment of Inertia

of the blade, %(l,,),, about the rotor axis as follows:

G, = B, - M,(% ]z (2.36)

where (1,,), represents the mass moment of inertia of the blade about root of the blade.
This is represented in the blade frame about the origin, B. M, represents the mass of an

individual blade, and d represent the diameter of the rotor disc.



Fig. 216 SCHEMATIC OF ROTOR DISC AND THE TURBINE BLADES
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Now the combined mass moment of inertia of the disc and the blades about the

rotor X - axis can be expressed as follows:

= G0 = B, - O, wn

where (1,,), denotes the mass moment of inertia of the rotor disc about the global X -
axis. One can notice that the combined moment of inertia is obtained by the summation
of the former with the mass moment of inertia of the blade about the global X - axis.

However, the above equation is valid for a single blade and the rotor disc assembly.
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CHAPTER 3

VERIFICATION AND ANALYSES OF THE MODEL

31 INTRODUCTION

In the previous chapter we discussed the mathematical modelling of a gas turbine
stage to determine impulse forces acting onthe entire blade at any instant of time or any
angular posilion of the rotor, As a follow-up, this chapter presents the resulls of impulse
forces calculated by the method described in the previous chapler. The results are
compared with a conventional impulse model to validate the model developed in the
Chapter 2.

Resulls for two different blade geomelries viz. a straight blade, and a tapered blade
have been presented. The effect of partial-admission due to nozzle boundary on the
incoming flow over the blade is shown in conjunction with the blade dynamics. The effect
of blade geometry on impulse and the driving torque has been brought into light.

Angular acceleration has been calculated by considering the inertia of the whole
rolor system. Total forces and torque equations have been formulated for equal number

of nozzle and blade pairs and the results have been presented.

53



3.2 MODEL VERIFICATION

3.2.1 BLADE NOMENCLATURE AND THE CONVENTIONAL IMPULSE EQUATION

The common nomenclalure of a gas turbine blade can be seen in Fig. 3.1 which
shows a section taken through the blading at any chosen diameter.

o, and o, represent the flow angles at entry and the exit points in the blade
passage respectively. B,, and B, are the blade angles at the leading and trailing edge of
the b'ade airfoil. The chord is represented by c.

{W,}, and {W,} represent the relative flow velocities at entrance and the exit of the
blade passage and their directions are determined by the flow angles at inlet and exit.
The blade geometry and the flow angles are, however, quite important parameters to
determine the turbomachinery performance.

It is well known that the change in the momentum of the fluid flow causes the
exertion of the impulse force on the blade which can be given by conventional equation

[Harman, 1981] as follows:

lE}] - (!(W.> ]| F— @)

where nis the number of rotor blades being simultaneously activated by a single nczzle.
The flow angles, ,, and o, are expressed in radians. The force, (F}, exerted by the gas
flow acts against the concave side of the blade, and is the resultant effect of the impulse
forces exerted on the overall blade surface. The impulse force, {F} is approximately

normal o the blade chord [Harman, 1981].
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3.22 REPRESENTATIVE MODEL - A STRAIGHT BLADE
The conventional planar model, however, can be extended to a three-dimensional
model, if the same blade profile were used along the height. In this case, the mass flow

will be accounted for the entire three-dimensional blade. Thus, the theory developed for

a general three-di i model in the previ chapter can be compared with the
conventional model by taking an example of a blade with constant profile along the

height.

3.22.1 DETAILS OF THE BLADE

The Fig. 3.2 shows a three-dimensional finite element model of a straight blade
used as a representative model. The finite element discretization of the blade is done
using 20-noded, C®continuity, serendipity elements as discussed in the Section 2.2.2.1.
The elements are shown staggered for the sake of clarity.

The profile data of the blade is detailed in the Appendix C, whereas other
geometric details viz. the blade volume, the centroid of the elemental layer, the mass
moment of inertia, etc. have been described in the Table 3.1

The aerodynamic details (to the actual scale) are shown in the Fig. 3.3. As evident
from the figure, the values of the blade angle B,, and B, were approximated by the
geometry of the suction surface of the first element at the leading edge and the pressure
surface of the element at the trailing edge of the blade respectively. The blade chord

subtends an angle (y = - 13.6°) with the axial direction.






TABLE 3.1 GEOMETRIC PROPERTIES OF THE: STRAIGHT BLADE

Densily of the blade material = 8256 kg/ m®

Total volume of the blade = 0.2347 x 10 m®

Height of the centroid of the blade from the blade root = 0.055 m

Mass moment of inertia of the blade about the origin of the blade frame,

O(1,,), = 7.84 X 10 kg-m?.

Height of the centroid of the elemental layers from the blade root:

Elemental En
Layer from x10 2
the root m
1 1.1
& 3.3
3 5.5
4 7.7
5 9.9
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3.2.3 ASSUMPTIONS FOR VERIFICATION
The conventional model, however, does not provide detailed or sufficient

information about the partial fk ission, and the th dir ional elfect of the

relative flow velocity and the flow attack due to blade rotation. In order to compare the
results with present modelling, these issues can be easily handled by assuming the rotor
at rest and the full-flow admission to the blade.

Now, for a stationary blade:

U =0; o =0y
0 =f,
where [{U}l is the magnitude of blade velocity, and o, is the angle subtended by absolute
flow al nozzle exit as explained in the Fig. 2.7(b). One can also simulate the design
condition by considering the orientation of flow vector identical to the blade angle 3, which
means «, = a, = B,. Thus, inthe present case the value of g, is 50°, while value of u,

is equal to - 56.236°.

3.2.4 COMPARISON OF IMPULSE FORCE

The calculation for impulse force was carried out with the formulation described in
the previous chapter by considering the following parameters:

The absolute flow velocity, V, = 500.00 m/s.

The density of the flow, p = 2.89 kg/m".

The dissipative velocity loss factor in the blade passage, K =0.9

The blade speed, I{U}l =0



Thus, (W, }I =1{V,}} =500.00 m/s.; and

I{W,)I = 0.9 x 718.05 m/s = 450.00 ms.

The mass flow over *he entire blade profile was calculated by summing up the flow
over individual active surfaces as discussed in the Eq. (2.28). The mass flow rate thus
obtained over the entire blade, rh, =4.936 kg/s
The forces over the entire blade profile were computed along the global frame using Eq.
(2.31) were:

The total force obtained , I{F}l = 3937.44 N

The axial component of the force F, = 1523.31 N

The tangential component of the force F, = 3630.84 N, and

the radial component of the force F,=0.0 N

The angle sublended by the force with the axial direction = tan'(FJF) = 67.24°
i.e. It sublends an angle of (67.24 + 13.6) = 80.84° with the blade chord, which is
approximately 9° off from the normalto the chord against the concave side of the blade.

For asingle blade per nozzle we consider n = 1, and on substituting the values of
the above parameters in Eq.(3.1), we obtain the conventional impulse force as:

{F}! =4347.5N

Thus, the value of the impuise force obtained by following the theory developed
is found to be fairly close to the conventional one (The difference is about 9%). Moreover,
the impulse force is found to be almost perpendicular to the blade chord. This verifies

the modelling concept employed in the previous chapter.

61



33 ASTUDY OF THE EFFECT OF THE STAGE GEOMETRY

The impulse force acting on the turbine blade at any given angular position
depends upon several geometrical parameters. These geometrical parameters include
the nozzle geometry, the location of the nozzle corresponding to the blades, and the
geometry of the blade itself. In the present work, a study was carried out to present the
effect of these geometrical parameters which are quite important from the design point

of view.

3.3.1 THE EFFECT OF THE NOZZLE GEOMETRY

Fig. 8.4 shows the schematic of the radial arrangement of the discrete nozzles
along the annular periphery of a circular disc. It can be seen from the figure thal each
finite nozzle serves the purpose of partial admission of flow to the blades in motion. It
is obvious that the magnilude of Impulse forces acting on the blade will be directly
proportional to the amount of mass actually hitting the blade surfaces (reler to the Eq.
(2.30)). The quantity of flow admission can be controlled by the angular opening, 0, of
the nozzle. Fig. 3.5 shows the variation of the resultant tangential and the axial forces
acling on a stationary straight blade described previously. One can observe from the
figure that with increase in the nozzle opening, the forces increase almost linearly. This
is because of the proportional increase in the gas flow hitting the blade surfaces.
However, one can also note that this behaviour is observed up to a certain degree of the
nozzle opening (4° in this case), and beyond that there is no fuither increment in the

forces due to further opening of the nozzle. This is because at this particular opening the
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mass flow hitting the blades cover the entire blade geometry and further increment of the
flow goes beyond the blades, and the effective mass of the gases hitting the blade remains
invariant. In this figure, the undulation in the curve is due to lack of smoothness in the

blade profile.

3.3.2 THE EFFECT OF THE BLADE GEOMETRY

The forces on the blade were obtained by calculating the flow distribution on each
element in a given blade layer. One can note that the force distribution on each blade
finite element surface depends upon its orientation with respect to the relative ficw vector.
Fig. 3.6 shows the variation of the axial and the tangential force distribution along the
pressure surfacas in one of the elemental layer at the root of the blade from leading edge
to the trailing edge. One can easily notice that the effect of the blade geometry (i.e., the
orientation of surfaces) is quite proncunced on the force distribution from the leading edge
to the trailing edge of the blade. There is a negative gradient in the axial force at the
second surface of the blade (the axial force on element 2 is less than that on element 1)
which is due to the lack of smoothness in the blade. The distributions of the forces were

found to be the same in other elemental layers of the straight blade.

3.3.2.1 THE EFFECT OF TAPER
The straight blade discussed in earlier sections was modified to a tapered blade.
The coordinates of the cross-section at the tip of the blade were muluplied by a factor of

0.59 while the profile at the root was kept the same as that of the straight
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blade. The geometric properties of the tapered blade are detailed in the Table 3.2. Figs.
3.7 and 3.8 show the distribution of the forces along the elemental surfaces and their

variation in layers from the rool to the lip of the blade. It can

be seen from the figure that the distributions of both axial and tangential forces show the
similar characterislics as exhibited by the straight blade. This is because the nature of
the blade profile along the cross section does not vary. However, a significant reduction
in the forces is observed in the elemental layers along the height of the tapered blade.
The reduction in the magnitude of the forces is due to the reduction in the effective
surface area of the blade elements and correspondingly, the amount of the flow impinging
on the surfaces also get reduced. Fig. 3.9 shows the variation of the total axial and

tangential forces along each elemental layer along the blade height.

3.4 THE EFFECT OF THE VELOCITY VARIATION
3.4.1. THE EFFECT OF THE ABSOLUTE GAS VELOCITY VARIATION

The effect of variation of the absolute flow velocity, {V,} at nozzle exit on the
impulse forces over a straight blade can be observed in Fig. 3.10. The blade is kept
slationary against the flow to observe the effect of the variation of the flow. The results

show that the forces increase with the increment of the flow velocity, and the nature of

the increment is This can be by referring to Egs. (2.29) and (2.30).

If we substitute Arh,, from Eq. (2.29) into Eq. (2.30), we get:
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TABLE 3.2 GEOMETRIC DETAILS OF A TAPERED BLADE

Density of the blade material = 8256 kg/ m®

Total volume of the blade = 0.15162 x 10" m®

Height of the centroid of the blade from the blade root = 0.04575 m
Mass moment of inertia of the blade about the origin of the blade frame,

®(1,,), = 3.80 X 10* kg-m*.

Height of the centroid of the elemental layers from the blade root:

Elemental €,
Layer from x102
the root m
1 1.0687
2 3.2657
3 5.4622
4 7.6597
5 9.8524

68



250
Layer {

Tapered Blade

Layer2
200 Y

Layer3 \
\
150 \

\
Layer 4 \

\

Layer5

AXIAL FORCES (N)
3
8

ELEMENTAL SURFACE
Fig. 3.7 DISTRIBUTION OF AXIAL FORCES ON THE ELEMENTAL SURFACES
AND THEIR VARIATION IN ELEMENTAL LAYERS ALONG THE SLADE
HEIGHT

69



TANGENTIAL FORCE (N)

Fig. 3.8

300

250

n
8

@
8

g

T
!
t Layer 1
| IT]
4
Layer2
\
A
Layer3
N\
Layer 4
Layer5 \
1 2 3 4 5 [} 7 8
ELEMENTAL SURFACE

DISTRIBUTION OF TANGENTIAL FORCES ON THE ELEMENTAL
SURFACES AND THEIR VARIATION IN ELEMENTAL LAYERS ALONG

THE BLADE HEIGHT

70



1600

1400

1200

1000

800

FORCES ON THE BLADE (N)

200

Tapered Blade

Tangential Force

Axial Force

/.

Fig. 3.9

3
ELEMENTAL LAYER

VARIATION OF TOTAL TANGENTIAL AND AXIAL FORCES IN THE

ELEMENTAL LAYERS ALONG THE BLADE HEIGHT

n



9000

8000

7000

6000

4000

3000

TOTAL FORCES ON THE BLADE (N)

2000

1000

0

Fig. 3.10

5000 -

Resultant Force
Tangential Force

Axlal Force

q N

A,
g
e
<

a2 o e g o 9o o 9 9
"8 23R 88878888

ABSOLUTE VELOCITY OF THE FLOW (METER/SEC)

Q
S
R

a
@
B4

VARIATION OF GAS FORCES DUE TO VARIATION IN ABSOLUTE

VELOCITY

72



CaF)® = p Clw,)l (aA,)° . Claw)* @2)
- f(w,)?
~f(V,)? atw=0;

Thus the force is a second order function of the absolute velocity, which explains
the parabolic nature of the variation of forces. The parabolic nature of the curves hold
good for both axial, and tangential components of the forces. Similar results are also
obtained for the driving torque as shown in the Fig. 3.11. This is because the torque is

nothing but the moment of the tangential forces about the global X - axis.

3.4.2 THE EFFECT OF THE ROTOR SPEED VARIATION

Fig. 3.12 shows that the forces acting on the blade decrease with increase in the
rotor speed. This decrease shows a linear behaviour. This is primarily due to the
decrease in the relative velocity, {W,} of the flow entering the blade passage (refer to Fig.
2.7), and the decrease in the flow entry angle a,. Similar results were also obtained by

other researchers [Rieger et al., 1978].

3.5 A STUDY OF FORCES, TORQUES, AND ANGULAR ACCELERATIONS AT
DIFFERENT ANGULAR POSITIONS OF A SINGLE BLADE

The dynamics of the blade under instar nozzle
depends upon the nozzle geometry, the blade geometry, and the gas flow. A simulation

study was carried out at several discrete steps of the angular positions of the blade from
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-15° through 15° which covers the rotation of the blade by one circular pitch. The axial
spacing between the tws (the stator and the rotor) was taken to be 50 % of the chord

length. The absolute valocity of the flow has been taken lo be 718.05 nvs [Dhar, 1994].

In the previous chapter we developed formulation for a single nozzle causing
excitations on a single blade mounted on a rotor disc. For the sake of simplicity, we
considered a solid circular disc with its thickness identical to the axial blade width. Tabla
3.3 shows the calculation of mass moment of inertia of the rotor - disc assembly about

the global X - axis.

Figs. 3.13 through 3.17 show the results of the simulation study carried out on a
single blade-rotor system excited by a single nozzle. As can be seen from the figura that
the gas from the finite nozzle hits the blade only be&ween a range of rolor angular
positions. As soon as the gases hit the rotor blade, it starts gaining the momentum and
reaches to a peak at certain angular position of the blade where it is completely exposed
to the flow from the nozzle. On further movement of the rotor, the mass flow hitting the
blade reduces, which explains the reduction in the forces, torque, and the angular
acceleration. The position of the psak, however, depends on the flow angle and the axial
spacing between the stator, and rotor stage. Also, it can be observed from the Fig. 3.17
that the angular speed of the rotor builds up ill the blade remains in the zone of nozzle
excitation. The angular speed becomes again constant once the blade loses the flow

contact. The anguler acceleration at each instant of the angular position of the rotor was
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TABLE 3.3

CALCULATION FOR MASS MOMENT OF INERTIA OF A SINGLE BLADE - DISC

ASSEMBLY

d, the diameter of the disc = 0.1 m

h, the thickness of the disc = 0.032 m

pg the density of the material (steel) of the disc = 7860 kg/m®

M, The mass of the rotor disc = nd’*hp, = 197.54 kg.

9(I,,)¢ the mass moment of inertia about X - axis = % M, (d/2)* = 24.6925 Kg-m”.

By

llds

(o)

(1) kg-m? kg-m? kg-m?
kg-m* | Straight | Tapered | Straight | Tapered | Straight | Tapered
Blade Blade Blade Blade Blade Blade
24.6925 784 3.80 0.04926 | 0.03167 | 24.741 24.724
x 10* x 10*
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calculated using Eq. (2.35), and was used to obtain the angular speed at that instant. The

angular speed over a short interval was calculated using the equation:
2 = 02 + 2048 (3.3)

It should be noted that the angular acceleration, a, is a variable and varies with the

torque.

it was y to di ize the interval -15° to 15° into equal
angular steps. The value of & was assumed to be the constant between these steps. The
final ® values (i.e. @) shown in Fig. 3.17 would increase further when the blade goes
through another nozzle excitation.

The simulation results in Figs. 3.13 to 3.17 also show the comparative study of the
straight, and the tapered blades. It can be seen from figures that the forces, and other
dynamic parameters in the case of a tapered blade are comparatively quite as compared

to the straight blade.

3.6 COMBINED FORCES ON THE ROTOR-BLADE ASSEMBLY SYSTEM
In the previous chapter formulations were developed for a single blade in
association with the rotor. However, In order lo design an aclual system one must
consider lotal forces i.e. the forces on each of lhe blades being simultaneously excited
by each of the nozzles. In the present work, we have assumed the number of nozzles
to be equal to the number of blades.
For an identical set of nozzles and blades, the impulse excitation on each blade
will be identical. The total forces acting on the complete disc and blade assembly due

to nozzle excitations can be given by:



£IF) = 3[R ] (F, @4)

where n, is the number synchronous sets of blades or nozzles arranged radially. {F,} is
the force obtained on a single blade. Here, [R,(6,)] is the rotation matrix (rotational
operator) about the global X - axis passing through the centre of the rotor-disc assembly.
It is used to obtain the simultaneous forces on the other blades spaced at angle 6, form
the first blade. It can mathematically be expressed as:

8,=0,+(r-1)x2" (3.5)
nh

where , is the angular position of the first blade in Y - Z plane of the global frame.
In the force equation, one should note that the overall force, Z{F} has three
components where:
XF, = Net force in X - direction. This is the total reaction force on the bearings.
ZF, = Net force in langential direction. For blades at equal angular spacing, this
force accrues to nil.
ZF, = Net force in radial direction. This force is responsible for the bending of the

rotating wheel shaft. For blades at equal angular spacing, this force accrues to nil.
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Similarly, the net driving torque on the rotor - blade system can be given by the

cross product of the point of ication, and the ponding impulse force on the

blade will be

z{t - ([H,(ex) R, }  {Ru@)) ), } @6)

where {R,} is a 3 x 1 column matrix representing the position vector of the point of
application of the impulse force on an individual blade. Now, the total driving torque on
the turbine rotor stage is given by the x - component of overall moment about the origin
of the global frame.

The angular acceleration in this case would be:

o=t @7

where X, is the combined mass moment of inertia of the rotor disc and the total number

of blades. Referring to Egs. (2.38) and (2.39), one can write

2 - 1) - 00 ), e

where %(l,) is the combined mass moment of inertia of the rotor disc and a single blade
whereas %(l,,), is the mass moment of inertia of an individual blade about the global X -

axis.
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Fig. 3.18 shows lhe tolal resultant force characteristics of the entire slage
consisting a set of twelve nozzles, and identical number of blades arranged radially at
equal angular interval. From the figure, one can observe that both the tangential, and the
radial forces get cancelled due to synchronous effect on the radially opposite blades.
However, the axial forces on all individual blades get combined to give the net bearing
force on the rotor. From this figure, it can also be seen thal the total bearing force varies
with the blade rotation. Fig. 3.19 shows the similar combined effects on the total driving
torque on the rotor.

Table 3.4 shows the distribution of the forces on a set of twelve tapered blades
simultaneously excited upon by the identical number of nozzles at a given angular
position. The last row shows the summation of all the blade forces along the global
direction. One can see that the sum of all the forces in radial and tangential direction
becomes nil. These resulls clearly depict a balanced system in the global Y - Z plane.
All axial forces acting in the same direction get accrued, and thus suggests the need of
suitable bearing to take up the loads in axial direction.

Fig. 3.20 shows the comparative variation of angular acceleration due to
simultaneous excitations on all twelve blades with that of a single blade. The angular
acceleration in the case of lwelve blades is approximately equal to twelve times the value
for a single blade. It would not be strictly equal to 12 times since the inertia of the other

11 blades is also included in results for a single blade.
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TABLE 3.4

DISTRIBUTION OF SIMULTANEOUS NOZZLE EXCITATIONS ON ALL BLADES AT

8,=3°

Angular
Blade Axial Force Tangential Force Radial Force
Position
Number (N) (N) (N)
el

1 3° 2260.316 5187.046 -279.4247

2 33° 2260.316 4631.827 2351.532

3 63° 2260.316 2835.515 4352.399

4 93° 2260.316 279.4313 5187.045

5 123° 2260.316 -2351.526 4631.83

6 153° 2260.316 -4352.396 2835.52

& 183° 2260.316 -5187.045 279.4366

8 213° 2260.316 -4631.832 -2351.522

9 243° 2260.316 -2835.526 -4352.392

10 273° 2260.316 -279.444 -5187.045

1 303° 2260.316 2351.514 -4631.836

12 333° 2260.316 4352.387 -2835.533

Z{F) 27123.792 0.00 0.00
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Fig. 3.21 shows the comparative results due fo variation in the angular speed of the rotor.
One can notice that the angular speed of the twelve blade-rotor system was not twelve
times the angular speed of the single blade-rotor system. This is because the square of

angular speed varies linearly with the acceleration which is quite evident from Eq. (3.3).

In summary, we can say as mentioned in the Section 3.1, the lorces on the rotor
blades at any position were calculated by dividing the blade surface into several finite
surfaces. The effect of the nozzles geometry and the gas velocily were considered.
Finally, the angular speed of the rotor-blade and the shaft system was also calculated

based on the forces on all the blades.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

41  DISCUSSION AND CONCLUSIONS

The objective of the present work was to develop an analytical model, and to study
the impulse forces acting on the rotating blade by considering the flow interaction with the
entire blade in three-dimensional frame work. The theoretical formulations were
developed in Chapter 2 where this was achieved by suitably dofining the coordinate
systems on the blade, the rotor shaft, and the nozzle at its one of the exit points. The
blade was discretized using C°~continuity, 20-ncded serendipity elements in order to map
the complicated geometry. Each surface of the blade finite element was defined by two
sets of vectors, one along the cross-section facing the nozzle, and the other along the
blade height. The nozzles and blades were spaced at approximately 50% of blade chord
length. The velocity of the fluid flow from the finite nozzle was modelled as a vector, and

its corresponding interaction with the rotating blade surface was obtained. Such a

tends to be quite i because (a) the geometries are quite complicated,
and (b) there is always a relative motion between the blade and the nozzle. The major
difficulty in modelling is the orientation of the vectors in three dimensions. The flow
interaction with the blade surface was modelled as a reflection process in three dimension.

This was done by defining the local frame of references at each of the dynamic blade

93



surfaces, and the incident flow vector was rotated in a plane normal to the blade surface

to obtain the reflected flow vector, and then the ing change in the

was calculated by their difference in the global frame. The mass flow was estimated for
each finite surface by considering projection of the surface over a plane nommal to the
incident relative velocity vector. The impulse force was calculated by the change of
momentum over each finite element, and then were summed up to obtain the total force
over the blade surface. In Chapter 2, The torque, and angular acceleration were
calculated for a single blade rotor system, and the blade dynamics were presented.

In Chapter 3, the model was compared with the conventional model. The variations
of various parameters viz. the geometry of the nozzle, and the blade, the absolute flow
velocity etc. were carried out on a single blade at a typical position. Finally, the squations
were formulated for a multi-blade rotor system to calculate the combined forces, torques,
and angular accelerations using the inertia of the combined system, and results were
presented for a set of 12 nozzle-blade system.

The studies carried out in this investigation helps one to draw the following
conclusions:

1. The prasent analytical model can be successfully used to present the state of the

forces, the torques, angular acceleration, etc. on a gas turbine blade under nozzle

excitations. On a comparative study of forces sted based on this i

and those obtianed by the conventional model, a close agreement was obtained.
2. The forces on the blade increase with the increase in the nozzle opening angle, 8y,

to a limiting value. Be; ...d that, the forces become constant, i.e. a saturation is

reached.



4.2

The forces acting on the blade are highly dependent on the blade geometry in
terms of the orientation of the blade surfaces with respect to the incident relative
velocity.

The forces and torques on the tapered blade were found to be significanlly less
compared to that on the straight blade.

A parabolic nature of the forces and torquos were obtained due to increase in the
absolute velocity of the gases.

With increase in the rotor speed the magnitude of the forces and torques
decrease.

The forces, and the torques acting on the blade are a function of the blade position
with respect to the nozzle. These forces and torques increass to a maximum

value, and then decrease with the rotation of the blade.

LIMITATIONS OF THE PRESENT WORK AND RECOMMENDATIONS FOR
FUTURE WORK

There is a possibility that the flow, after getting reflected from the blade surface
might hit some other element(s) of the same blade and, or the adjacent blade.
The reflected flow velocity can be traced forward and its further interaction with the

blade surf: can be ir i ], , one can also trace the velocities

at exit from one stage as the inlet velocity for the next stage.

In Section 2.2.3.3, the formulation for mass flow calculation was developed by

using an approxi method by ing the X-Y bound of the
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nozzle projecti This is sup d to give a iv timate of the force
over the blade. Howaver, the method should be revised to calculate the exact
value of the exposed area.

An experimental verification is required to investigate the accuracy of the‘results.
The excitations give rise to fluctuating loads on the blade, and are well known to

cause vibration in the turbines. The forces obtained from the present work can be

used to study the vibratory effects on the blades and rotor disc systems.
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APPENDIX A

A1 GENERAL MAPPING AND THE TRANSFORMATION OF THE
FRAMES
Very olten we know the descriplion of a vector with respect to some frame B, and we
would like to know its description with respect to another frame A. This can be done
using a general mapping involving the translation and the orientation of the frame with
respect lo each other. As shownin the Fig. A.1, *Pyong Isa vector that locates ths origin
of the frame B with respect to frame A. Also the frame B is oriented with respect to A.
Given a vector ®P in the frame B, we wish to compute the vector’P. This can be done

as follows:

We can first change ®P to its description relative to an intermediate frame which has the
same orlentation as frame A, but whose origin is coincident with the origin of the frame
B. Thisis done by premultiplying by a 3X3 matrix called rotation matrix, 8[R], which
describes the orientation of frame B with respect to the frame A. This orientation matrix

can be given by aset of three vectors as follows:

%oXa VoRa 2%y

BiR1 =| AR, Ny A2, [ = | ¥4 Yo¥a 20, (A1)
%oZe V2o Ll
3x3 3x3
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Fig. A.1 GENERAL MAPPING OF THREE DIMENSIONAL FRAMES [CRAIG, 1989]
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Each component in the matrix represents the dot product of two unit vectors. This is
nothing but the cosines of angle between them. The components of rotation matrix are
often referred to as direction cosines.

We then account for the translation between origins by simple vector addition

yielding

Ap - &A1 Bp + Ap (A2)

'sonc
Thus the above equation describes the general mapping of a vector from its
description in one frame to a description in a second frame. The above equation can also

be written as:

Ap - jBp (A3)

where §[T] is called transformation matrix. As it is evident form Egs. (A.2), and (A.3) that
this transformation matrix takes care of both the rotation, as well as the translation of the
veclor and is often called as transformation operator. In order that we can write the
mathematics of Eq. (A.2) in the matrix operator form, we represent the transformation
operator as a 4 x 4 matrix, and use a 4 x 1 position vector. If done so, the Eq. (A.2)

takes the following structure
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ol | B e || B )

1 0 0 o0 : 1 1
We adopt the convention that a position vector is 3 x 1 or 4 x 1, depending
on whether it is multiplied by 3 x 3 rotation matrix or by a 4 x 4 transformation matrix.

Thus, the above equation will take the following shape

o= RBP e, (a5

1=1

The transformation operator is a homogeneous matrix , and is often called a

It can be reg: purely as a ion matrix used lo
cast both rotation, as well as the transformation into a single matrix. Thus, one can use
this transformation operator to describe a point or vector in any given frame relative to

an another reference frame in three dimensional space.

105



A2 ROTATION OF FRAMES ABOUT PRINCIPAL AXES

1.0 0
[R(6)] =| O cos® -sin® (A.6)
0 sin® cos®

cos® 0 sind

A.7

RMOI=[ 0o 1 0 (A7)
-sin@ 0 cosB

cosé -sin® 0
[R,(0)] =| sind cos® 0 (A.8)
o o 1]




APPENDIX B

ANSYS ALGORITHM FOR THREE-DIMENSIONAL FINITE ELEMENT
DISCRETIZATION OF THE TURBINE BLADE, AND CALCULATION OF THE
GEOMETRIC PROPERTIES

The three-dimensional mode! of the turbine blade was generated with the help of
a general purpose finite element software, called ANSYS. The coordinates of the airfoil
cross-section of the turbine blade at the root and the tip are the input data. The input
values were fed into the program from a file called node. The node file contains the node
numbers and the corresponding coordinates of the top and the bottom layers of the
turbine blade. The program is versatile enough to discretize both straight, and tapered
blade. One can conveniently modify the node file to obtain the discretization for a given
type of blade. The purpose of the program was to calculate the geometric properties
as discussed in Section 2.2.2.1. This was done by using only the preprocessor module
of the finite element package.
Two routines/macros were used:
i) area - calculates the centroid of the individual finite elemental surface
area ( both pressure and suction sides). The values of these are written in

output data files, and is suitably explained in the algorithm.

ii) volume - the ic properties such as volume of the each

elemental layer of the blade, its moment of inertia, centroid etc.
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1 ANSYS ALGORITHM

Iprep7
hitle, THREE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF THE TURBINE
BLADE

linp,node ! Nodes for the bottom & top layers are read from file
I Node Filling Between Bottom and Top layers of the blade
*do,m,1,15,1

fil, n,500+m,8,50+m,50

fill,m+30,530+m,9,80+m,50

*enddo

Iview,1,-1,-1,2

Inplo

1 Element Definition

et,1,s0lid90 1 20-Noded, solid, Isoparametric, serendipity Element
¢,1,3,03,31,101,103,133,131

emore,2,18,32,16,102,118,132,116

emore,51,53,83,81

/pnum,enum,1

1 eplo

IELEMZENT GENERATION
egen,7,2,1,7,1
egen,2,100,1,8,7
egen,7,2,8,14,1
egen,2,100,8,15,7
egen,7,2,15,21,1
egen,2,100,15,22,7
egen,7,2,22,28,1
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egen,2,100,22,29,7
egen,7,2,29,35,1

| VIEW THE MODEL IN 3_DIMENSION
Iiview,1,-1,-1,2
leplo

1 Keypoint Generation from the nodes to the
*do,i,1,6,1
= 100*(-1)
*do,m,1,15
knode,m+j,m+j
knode,m+30+j,m+30+j
*enddo
*enddo

f/inp,area | A routine/ macro for calculating the Surface area, and the geometric
Centroid.

I/inp,volume ! Calculates the Volume of each finite element, and the
| Moment of inertia of the elemental layer, and the entire
1 blade about the blade frame.

Nlini

lexit

MACROS

i) area

! D ination of ic Properties of Finite Surface area of the Blade
*DIM,cs,,40,3 | centroid of the suction surfaces

*DiM,cp,,40,3 | centroid of the pressure surfaces

*DIM,as,,40 ! area of the suction surfaces
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*DIM,ap,,40 | area of the pressure surfaces

| SURFACE AREA GENERATION
=1

*do,j,1,5,1

i=100°(j-1)

a,+1,i+31,i+131,i+101

asum

Kk = 8(j-1) + 1

*get,cp(kk,1),area,ii,cent,x 1 X-Coordinate of Centroid of pressure Surface
*get,cp(kk,2),area,ii,cent,y 1 Y-Coordinate of Centroid of pressure Surface
*get,cp(kk,3),area,ii,cent,z 1 Z-Coordinate of Centroid of pressure Surface
“get,ap(kk),area,ii,area

adele,ii

*do,m,1,13,2

a,i+m,i+m+2,i+m+2+100,i+100+m
asum

pp = 8*(-1) + (M+3)/2
*get,cp(pp, 1),area,ji,cent,x
*get,cp(pp.2),area,ii,cent,y
*get,cp(pp,3),area,iicent,z
*get,ap(pp),area,ii,area

adele, i

*enddo

*do,m,1,13,2

a,1+30+m,i+30+m+2,i+30+m+2+100,i+30+100+m

asum

qq = 8*(j-1) + (m+1)/2

*get,cs(qq,1),area,ii,cent,x ! X-Coordinate of centroid of Suction Surface
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*get,cs(qq,2),area,ii,cent,y 1 Y-Coordinate of centroid of Suction Surface
*get,cs(qq,3),area,i,cent,z ! Z-Coordinate of centroid of Suction Surface
*get,as(qq),area,ji,area

adele,ii

*enddo

m=qq+1

a,i+15,i+45,i+145,i+115

asum

*get,cs(rr,1),area,ji,cent,x

*get,cs(rr,2),area,ji,cent,y

*get,cs(rr,3),area,ii,cent,z

*get,as(rr),area,ii,area

adele,ii

*enddo

*status,cp

*status,cs

loutput,centp { Writing centroid of Pressure Surfaces in file centp

*vwrite,cp(1,1),cp(1,2),cp(1,3)

(f8.4,2x,18.4,2x,{8.4)

loutput,term

Jout,cents

*vwrite,cs(1,1),cs(1,2),cs(1,3) ! Writing Centroid of Suction Surfaces in file cents

(18.4,2x,(8.4,2x,(8.4)

fout,lerm

Jout,asp

*vwrite,ap(1)

(f8.4)

Jout,term

lout,ass

*vwrite,as(1) ! Writing the surface area of the suction side in file
ass

m



(18.4)
/out,term

ii) volume

1 D ination of \ ic Properties of Finite E
*do,jv,100,500,100

*do,mv,1,13,2

jiv =jv-100

of the Blade

32§ 30

V VMV VMV, VMV, VMV 30,jj 32

*enddo

vsum ! of of all
vdele,1,7
*enddo

NOTE: The value of ic properties were i

inan layer.

y read from the program,
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APPENDIX C

C.1  PROFILE DATA OF THE AIRFOIL SECTION USED FOR TURBINE BLADE

The airfoil data are detailed in Figs. C.1, and C.2. Fig. C.1 shows the cross section of
the turbine blade with x-coordinates of the comer nodes of the finite elements at this
section. Fig. C.2 shows the corresponding y-coordinates. The values of the coordinates
are in mm. One can also notice the location of the blade frame, B, at the centroid of the

airfoil.

C.2 NODE NUMBERING PATTERN OF THE BLADE FINITE ELEMENT AND THEIR
CORNER NODES

Fig. C.3 shows a finite element no. 2 of the three dimensional finite element mode of the
turbine blade used in the present work. The node numbering of the element number 2"

can be seen in this figure.
Fig. C.4 shows the comer nodes of the finite element and the vectorization scheme. Out

of a total of 308 nodes, only 96 comer nodes were used for the three dimensional

vectorization scheme of the turbine blade.
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Fig.C.2

Y - AXIS

BLADE CENTROID

BLADE AIRFOIL CROSS-SECTION AT THE ROOT OF THE BLADE

SHOWING THE Y-COORDINATES OF THE CORNER NODES



Fig. C.3

A BLADE FINITE ELEMENT (NO. 2) SHOWING THE NODAL

ARRANGEMENT
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Fig.C.4 A BLADE FINITE ELEMENT (NO. 2) SHOWING THE CORNER NODES
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APPENDIX D

PROGRAM LISTINGS

D.1

GEOMETRIC MODELLING AND NOZZLE EXCITATIONS

The coordinates of the corner nodes of the entire three - dimensional model were
read in the program from suitable data file for a given blade type - viz. straight
biade, or tapered blade. The other geometric properties - such as the geometric
centroid of each of the finite element surfaces (both pressure side, and suction
side), the height of the centroid of the elemental layers from the root of the blade
and the mass moment of inertia of the blade, nozzle location etc. were provided
as inputs.

The results such as force, torque, angular acceleration etc. obtained on simulation

of the blade under nozzle excitation were reported in output files.

The results are for the nozzle excitations on a single blade. However, this program

is versalile enough to incorporate the effect of the combined mass moment of

inertia of the complete sets of blade, and rotor system.

The program was written in FORTRAN 77. The program is listed in D.1.1
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AR

o

PROGRAM FOR DYNAMIC SIMULATION OF IMPULSE ON A FINITE_ELEMENT
DISCRETIZED BLADE.

DIMENSION K(6,16), CO_ORD(6,4,16), D_CO_ORD(6,4, 16), h(50)
DIMENSION VS(8.3,8), VP(8,3,8), VSH(5,38), VPH(5,3,8)
DIMENSION UVS(6,3,8), UVP(6,3,8) ABSVS(6,8), ABSVP(68)
DIMENSION UVSH(5,3,8), UVPH(5.3,8),ABSVSH(5,8), ABSVPH(5,8)
DIMENSION USVS(5,3,8), USVP(53,8), AVS(5,8), AVP(S,8), RD(54,1),
CENT_LAYER(5),0MEGA(3), R_DYN(5,4,1), VB(5,3)VR1(53)UVRI1(5,3)
DIMENSION Gamma_s(5,8), Gamma_p(5,8), FACTOR_S(5,8,FACTOR_P(58).
DAVS(5,8), DAVP(58), QS(58), QP(5.8), PROT_GL(5,3,3,8),
SROT_GL(5,3,3,8), TPROT_GL(5,33,8), TSROT_GL(5,3,38) ABSVR1(5),
UVR2_S(5,3,8), UVR2_P(53,8), S_IMP(538), P_IMP(5.3,8),
A_SIMP(5,8), A_PIMP(5,8), TOT_SIMP(5,3), TOT_PIMP(5,3),
AT_SIMP(5), AT_PIMP(5),TOT_IMP(5,3), TOT_ABSIMP(5),TIMP(3),
CENTP(5,4,8), CENTS(5 4,8), DCENTP(54,8), DCENTS(5,48),
ALCENTS(5,3), ALCENTP(5,3), ACENTS(3) ACENTP(3), TS(3),TP(3),
T_PIMP(3), T_SIMP(3), APP_IMP(3), TORQUE(3), DDAVS(58),
DDAVP(5,8)

COMMON /DYNAM/CO_ORD, D_CO_ORD, CENTS, CENTP, RR
COMMON /DYN/ DCENTS, DCENTP

COMMON /VECT_LAYER/ VS, VP,UVS, UVP, ABSVS, ABSVP
COMMON NVECT_HEIGHT/ VEH, VPH, UVSH, UVPH, ABSUVSH, ABSUVPH ,Layers
COMMONNVECT_SURF/USVS,USVP, AVS, AVP

COMMON /rpm/ OMEGA, RD, R_DYN

COMMON/PROJ / FACTOR_S , FACTOR_P

COMMON / ROTATION/ PROT_GL, SROT_GL, TPROT_GL,TSROT_GL.
COMMON/ UNIT_REL_VEL2/ UVR2_S, UVR2_P
COMMON/IMP_FORCE/ S_IMP, P_IMP, A_SIMP, A_PIMP, TOT_SIMP,
TOT_PIMP, AT_SIMP, AT_PIMP, TOT_IMP,TOT_ABSIMP

COMMON/ CENTROID / ALCENTS, ALCENTP
COMMONNVELOCITY/ABSV1, ALPHA

COMMON /FLOW AREA/ DAVS, DAVP, DDAVS, DDAVP
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REAL AZ, AINC, th, ABSVS, ABSVPABSVPHABSVPS, AVS,AVP

ALIMIT =0001

ALPHA is the angle of efflux at the Nozzle outlet.
ALPHA =50

THETAN is lhe Nozzle opening angle.
THETAN =7.5
THETAP = THETAN * (3.1416927 / 180.00)

START IS THE STARTING VALUE OF ANGLE OF ROTOR MOVEMENT
START =-15

ANBis the number of Nozzles considered for excitations,
ANB = 1 fora signle blade-rotor dynamics.
ANB= 1

ABSV1 is the absolule veloclly at Nozzle exit[Dhar, D.pg. 101]
ABSV1 = 718.05

RRs the Rolor radius.
RR=0.5

OPEN (UNIT = 1, FILE = 'CORNER_NOD.DAT, STATUS ='0LD')
OPEN (UNIT = 2, FILE = 'CP.DAT’, STATUS =OLD))

OPEN (UNIT = 3, FILE = "CSDAT’, STATUS =OL.D)

OPEN (UNIT = 4, FILE = 'CENT.DAT, STATUS ="OLD)

OPEN (UNIT = 31, FILE =
OPEN (UNIT = 32, FILE = 'pdat’, STATUS =NEW))
OPEN (UNIT = 33, FILE = ‘pappl.dat, STATUS ="NEW)
OPEN (UNIT = 34, FILE = 'sinp.diat, STATUS ='NEW)
OPEN (UNIT = 35, FILE = ‘pinp.dlat, STATUS ='NEW)
OPEN (UNIT = 36, FILE = "ol_simp.dat,, STATUS =NEW")
OPEN (UNIT = 37, FILE = "lol_pimp.dat’, STATUS =NEW’)

s.dat’, STATUS =NEW')
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OPEN (UNIT = 38, FILE = 'ot_imp.dat, STATUS ='NEW')
OPEN (UNIT = 39, FILE = 'imp.dat, STATUS ='NEW)
OPEN (UNIT = 40, FILE = '_pimp.dal, STATUS ='NEW')
OPEN (UNIT = 41, FILE = '_simp.dal, STATUS ='NEW)
OPEN (UNIT = 42, FILE = ‘pdat’, STATUS =NEW)
OPEN (UNIT = 43, FILE = 'lsdat’, STATUS =NEW)
OPEN (UNIT = 44, FILE = 'lorque.dal, STATUS ='NEW)
OPEN (UNIT = 45, FILE = 'omega.dal, STATUS ='NEW')
OPEN (UNIT = 46, FILE = 'ang_accdat’, STATUS =NEW")

Layers = no, of blade airfoil cross sections
Layers = 6

ILayers = no of elemental layers = Layers -1
ILayers =5

Reading Blade data

DO 1L =1,Layers
DO2N =1,16

ﬁEAD(1 ") K(L,N), (CO_ORD(L,M,N)M=1,3)

tempt = CO_ORD(L1,N)
temp2 = CO_ORD(L2N)
temp3 = CO_ORD(L3N)

Co-ordinate unit correction, and transformation to Global frame.

CO_ORD(L,1,N) =temp1/1000.00
CO_ORD(L2,N) =temp2/1000.00
CO_ORD(L3,N) =temp3/100.00 + RR
CO_ORD(L4N) =10

CONTINUE
CONTINUE



Roading Blade surface centroids

DO 41L=1, ILayers
READ(4,) CENT_LAYER()

DO 42N=1,8
READ(2")(CENTP(L, MN)\M=1,3)
READ(3,")(CENTS(L,MN)M=1,3)

tpt = CENTP(L,1,N)
1p2 = CENTP(L,2N)
1p3 = CENTP(L3N)

ts1 = CENTS(L,1N)
1s2 = CENTS(L,2N)
1s3 = CENTS(L,3N)

Centroid unit correction, and transformation to global frame.

CENTP(L1,N) = {p1/1000.00
CENTP(L2N) = p2/1000.00
CENTP(L3N) = p3/100.00 + RR
CENTP(L4N) =10
CENTS(L1,N) = 151/1000.00
CENTS(L2,N) = 152/1000.00
CENTS(L3N) = 1s3/100.00 + RR
CENTS(L4N) =10

CONTINUE
CONTINUE

D025 L=1, ILayers

RD (L,1,1)= 0.0
RD (L,2,1) = 0.0
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25

RD (L.3,1) = CENT_LAYER(L) /100 + RR
RD (L.4,1)= 1.0

continue

IT=16

Anticlockwise corrections

ASTART =- START * (3.1415927/ 180.00)
AINC =0

AZ = (2'START/(IT-1))*(3.1415927 / 180.00)
Specify the initial rotating speed of the rotor
OMEGA(f) = 100

OMEGA(2) = 0

OMEGA@3) = 0

D010 I=1,T,1

() = th() + AINC + ASTART
AINC = AINC +AZ

WRITE(45,") OMEGA(1)

CALL DYN_CO_ORD (th, |)

DO 15 L=1,Layers

CALL LAYER_VECTOR(D_CO_ORDL, 1)

continue

DO 18 L=1,ILayers
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CALL HEIGHT_VECTOR (D_CO_ORD,L,1)
CALL SURFACE_VECTOR(L,l, VSH, VPH,VS, VP)

CALL INCIDENT_REL_VEL(L,\th, VR1, UVR1, ABSVR1)

CALL INCIDENT_ANGLE(UVR1, USVS, USVP, Gamma_s, Gamma_p, L)

CALL PROJECT_AREA (AVS, AVP, DAVS, DAVP, L)

CALL REFLECT_REF_GEN (UVR1, USVS, USVP, L)

CALL REFLECT_REL_VEL(UVR1,USVS,USVP,Gamma_s, Gamma_p,L)

CALL VEL _TRIAD (UVR1,D_CO_ORD, L, THETAP)
CALL MASS_FLOW (ABSVR1, DDAVS, DDAVP,L, 08, QP)
CALL IMPULSE(UVR1, ABSVR1, QS,QP, L)

conlinue

Thisis analysis section for impulse and torque at different time
DO3M =13

TIMP(M) =0
TP(M) =0
TS(M) =0
T_PIMP(M) =0
T_SMP(M) =0

DO 31 L =1,ILayers

TP(M) = TP(M) + TOT_PIMP(LM)*ALCENTP(L,M)
TS(M) = TS(M) + TOT_SIMP(L,M)*ALCENTS(L,M)
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T_PIMP(M) = T_PIMP(M) + TOT_PIMP(L,M)
T_SIMP(M) = T_SIMP(M) + TOT_SIMP(L,M)

TIMP(M) =TIMP(M) + TOT_IMP(L,M)

CONTINUE
CONTINUE

WRITE(40,') (T_PIMP(M),
WRITE(41,") (T_SIMP(M),

IF(ABS(T_PIMP(1)) .LE. ALIMIT .AND. ABS(T_PIMP(2)) JLE, ALIMIT AND.
ABS(T_PIMP(3)) .LE. ALIMIT) THEN

ACENTP()) = O
ACENTP(2)= O
ACENTP(3) = O

ELSE IF (ABS(T_PIMP(3)) LE. ALIMIT) THEN

ACENTP(1) = TR(1) [T_PIMP(1)
ACENTP(2) = TP(2) [T_PIMP(2)
ACENTP(3) = DCENTP(3,35)

ELSE

ACENTP(1) = TPR(1) IT_PIMP(1)
AGENTP(2) = TP(2) [T_PIMP(2)
ACENTP(3) = TP(3) [T_PIMP(3)
ENDIF

D050 M=1,3

IF(ABS(T_SIMP (M) .LE. ALUMIT) THEN

ACENTS(M) = O

ELSE

ACENTS(M) = TS(M) /T_SIMP(M)
ENDIF
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50 CONTINUE

IF (ABS(TIMP(1)) .LE. ALIMIT AND. ABS(TIMP(2)) .LE. ALIMIT AND.
1 ABS(TIMP(3)) LE. ALIMIT) THEN

APP_IMP(1) =0
APP_IMP(2) =0
APP_IMP(3) =0

ELSE IF{ ABS(TIMP(3)) LE. ALIMIT) THEN

APP_IMP(3) = DCENTP(3,3,5)

APP_IMP(1) = (ACENTP(1)*T_PIMP(1) - ACENTS(1)"T_SIMP(1))TIMP(1)
APP_IMP(2) = (ACENTP(2)*T_PIMP(2) - ACENTS(2) *T_SIMP(2))TIMP(2)

ELSE

APP_IMP(1) = (ACENTP(1)*T_PIMP(1) - ACENTS(1) " T_SIMP (1)) TIMP(1)
APP_IMP(2) = (ACENTP(2)* T_PIMP(2) - ACENTS(2)*T_SIMP(2))TIMP(2)
APP_IMP(3) = (ACENTP(3)* T_PIMP(3) - ACENTS(3)*T_SIMP(3))TIMP(3)
ENDIF

AIMP = SQRT(TIMP(1)*2 + TIMP(2)**2 + TIMP(3)**2)

WRITE(39,”) (TIMP(M)M=1,3), AMP
WRITE(33,") (APP_IMP(M),M =1,3)

CALL CROSS_PROD(TIMP, APP_IMP TORQUE)
WRITE(44,) (TORQUE(M)M=13)

CALL DYN_PARA (TORQUE, OMEGA, AZANB, )
10 continue

close(1)

close(2)

close(3)

close(d)

close(31)
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close(32)
close(33)
close(34)
close(36)
close(36)
close(37)
close(38)
close(39)
close(40)
close(41)
close(42)
close(43)
close(44)
close(46)

sTOP
END

SUBROUTINE DYN_CO_ORD (i, 1)

DIMENSION GO_ORD(6,4, 16), D_CO_ORD(6,4,16), TEMP_IN(4,16),
1 TEMP_OUT (4,16), th(50), OBX(44),CENTS(5,4,8), DCENTS(5,4,8),
CENTP(5,4,8), DCENTP(5,4,8),TS_IN(4,8)TS_OUT(4,8),TP_IN(4,8),
1 TP_OUT(4,8)

COMMON /DYNAMY/ CO_ORD, D_CO_ORD,CENTS,CENTP, RR
COMMON /DYN/ DCENTS, DCENTP
REAL th, theta

CALL TH_XAXIS (th, 0BX, 0, I)
DO 1iL=1,8
DO 10N= 1,16
DO 10M= 1,4

TEMP_IN(M,N) = CO_ORD(L,MN)
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CALL MATMUL (OBX, TEMP_IN, TEMP_OUT 4, 4,16)

DO9N=1,16
DO9IM =14

9 D_CO_ORD(LM,N) = TEMP_OUT(M, N)

" continue

DO1t5L=1,5
DO14N=1,8
DO14M =1,4

TP_IN(M,N) = CENTP(L,M,N)
14 TS_IN(M,N) = CENTS(L,M.N)

CALL MATMUL (OBX, TP_IN, TP_OUT 4, 4,8)
CALL MATMUL (OBX, TS_IN, TS_OUT4, 4,8)

DO 16N = 1,8
DQ16M =1,4

DCENTP(L,MN) = TP_OUT(MN)
16 DCENTS(L,MN) = TS_OUT(MN)

15  continue

RETURN
END

SUBROUTINE LAYER_VECTOR(D_CO_ORD,L,ll)

DIMENSION Vs(6,3,8), VP(6,3,8), D_CO_ORD(6,4,16),UVP(6,38),
UVs(6,3,8), ABSVP(6,8), ABSVS(6,8),STEMP_IN(3), STEMP_OUT(3),
PTEMP_IN(3), PTEMP_OUT(3)
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REAL ABSVS, ABSVP, ABSSTEMP, ABSPTEMP
COMMON /VECT_LAYER/ VS, VP, UVS, UVP, ABSVS, ABSVP
N=16

DO11=1,N2-1
J=N2+1
DO2K=1,3

VP(LK, I+1) = (D_CO_ORD(LK,I) - D_CO_ORD(L,KI+1))
VS(LK, 1) = (0_CO_ORD(LKJ) - D_CO_ORD(L,K,J+1))
CONTINUE

DO3K=13
VS(LK, N/2) = (D_CO_ORD(LK,N) - D_CO_ORD(L,K,N/2))
VP(LK,1) =(D_CO_ORD(LKN/2+1) - D_CO_ORD(LK,1))

DO4NN =18
DO5SMM =13

STEMP_IN(MM)= VS(LMMNN)
PTEMP_IN(MM)= VP(LMMNN)

CALL UNIT_VECT(STEMP_IN,STEMP_OUT, ABSSTEMP)
CALL UNIT_VECT(PTEMP_IN,PTEMP_OUT, ABSPTEMP)

DO6MM =13
UVS(LMMNN) = STEMP_OUT(MM)
UVP(LMMN) = PTEMP_OUT(MM)

ABSVS(L,NN) = ABSSTEMP
ABSVP(L,NN) = ABSPTEMP
RETURN

END

SUBROUTINE HEIGHT_VECTOR(D_CO_ORD/L,I1)
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DIMENSION D_CO_ORD(6.,4,16), VSH(5,3,8), VPH(5,3,8),UVSH(5,3,8),
UVPH(5,3,8), ABSVSH(5,8),ABSVPH(5,8),STEMP_IN(3),STEMP_OUT(3),
PTEMP_IN(3), PTEMP_OUT(3)

COMMON /VECT_HEIGHT/ VSH, VPH, UVSH, UVPH, ABSUVSH, ABSUVPH , Layers
REAL ABSUVSH, ABSUVPH, ABSSTEMP, ABSPTEMP

IF(L .EQ.6) GOTO 9

DO1NN=18

JW=NN+8

DO2MM=1,3

VSH(LMMNN) =  D_CO_ORD(L+1,MM,JJ) - D_CO_ORD(L,MM,JJ)
VPH(L,MM,NN) = D_CO_ORD(L+1,MM,NN) - D_CO_ORD(L,MM,NN)

CONTINUE

DO4 NN=18
DO5 MM=1,3

STEMP_IN(MM)= VSH(L,MM,NN)
PTEMP_IN(MM)= VPH(L,MM,NN)

CALL UNIT_VECT(STEMP_IN,STEMP_OUT, ABSSTEMP)
CALL UNIT_VECT(PTEMP_IN,PTEMP_OUT, ABSPTEMP)

D06 MM=1,3
UVSH(LMM,NN) = STEMP_OUT(MM)
UVPH(L,MM,NN) = PTEMP_OUT(MM)

ABSVSH(L,NN) = ABSSTEMP
ABSVPH(L,NN) = ABSPTEMP

RETURN
END
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SUBROUTINE SURFACE_VECTOR(L,I, VSH, VPHVS, VP)

-

DIMENSION VSH(5,3,8), VPH(5,3.8), VS(6,3,8), VP(6,3,8)

DIMENSION SVs(5,3,8), SVP(5,38), AVS(5,8), AVP(5,8)

DIMENSION USVS(5,3,8), USVP(5,3,8), STEMP_IN(3), PTEMP_IN(3)

DIMENSION STEMPH_IN(3), PTEMPH_IN(3), STEMP_OUT(3), PTEMP_OUT(3)
DIMENSION USTEMP_QUT(3), UPTEMP_OUT(3),SUC_AREA1(5,8), SUC_AREA2(5,8),
PRESS_AREA1(5,8), PRESS_AREA2(5,8), USVS_2(5,3,8), USVP_2(5,3.8)

REAL USTEMPAREA, UPTEMPAREA, AVS, AVP
COMMONVECT_SURF/USVS,USVP, AVS, AVP
liL. EQ. 6) GOTO 10

DO4 NN=1,8
D05 MM=1,3

Generating temporary variables
STEMP_IN(MM) = VS(L,MM,NN)
PTEMP_IN(MM) = VP(L,MM,NN)
STEMPH_IN(MM) = VSH(LMM,NN)
PTEMPH_IN(MM) = VPH(LMM,NN)

CALL CROSS_PROD(STEMP_IN, STEMPH_IN, STEMP_OUT)
CALL CROSS_PROD(PTEMPH_IN, PTEMP_IN, PTEMP_OUT)

CALL UNIT_VECT(STEMP_OUT,USTEMP_OUT,USTEMPAREA)
CALL UNIT_VECT(PTEMP_OUT,UPTEMP_OUT,UPTEMPAREA)

DO6 MM=1,3
USVS(L,MM,NN) = USTEMP_OUT(MM)
USVP(L,MM,NN) = UPTEMP_OUT(MM)

SUC_AREA1(L,NN) = USTEMPAREA
PRESS_AREA1(LNN) = UPTEMPAREA

Continue
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Corner Surfaces Require Special Treatment

DO 30 MM = 1,3
STEMP_IN(MM) = VS(L+1.MM,8)
STEMPH_N(MM) = VPH(L,MM.8)
PTEMP_IN(MM) = VP(L+1,MM,1)
PTEMPH_IN(MM) = VSH(L,MM, 1)

CALL CROSS_PROD(STEMP_IN, STEMPH_IN, STEMP_OUT)
CALL CROSS_PROD(PTEMPH_IN, PTEMP_IN, PTEMP_OUT)

CALL UNIT_VECT(STEMP_OUT,USTEMP_OUT ,USTEMPAREA)
CALL UNIT_VECT(PTEMP_OUT,UPTEMP_OUT,UPTEMPAREA)

Corner Surfaces Require Special Treatment
DO 11 MM =13

USVS_2(L,MM,8) = USTEMP_OUT(MM)
USVP_2(L,MM,1) = UPTEMP_OUT(MM)

§UC_AREA2(L,B) = USTEMPAREA
PRESS_AREA2(L,1) = UPTEMPAREA

DO7NN=28
poO8MM =13

STEMP_IN(MM) = VS(L+1,MM,NN -1)
PTEMP_IN(MM) = VP(L+1,MM,NN)
STEMPH_IN(MM) = VSH(LMM,NN)
PTEMPH_IN(MM) = VPH(L,MM,NN-1)

CALL CROSS_PROD(STEMP_IN, STEMPH_IN, STEMP_OUT)
CALL CROSS_PROD(PTEMPH_IN, PTEMP_IN, PTEMP_OUT)

CALL UNIT_VECT(STEMP_OUT USTEMP_OUT ,USTEMPAREA)
CALL UNIT_VECT(PTEMP_OUT,UPTEMP_OUT,UPTEMPAREA)
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10

DO9MM =13

USVS_2(L,MM,NN-1) = USTEMP_OUT(MM)
USVP_2(L,MM.NN) = UPTEMP_OUT(MM)

SUC_AREA2(L,NN-1) = USTEMPAREA
PRESS_AREA2(L,NN) = UPTEMPAREA

continue
DO20NN=1,8

AVS(LNN) = (SUC_AREAT(L,NN) + SUC_AREA2(L.NN))/2
AVP(LNN) = (PRESS_AREA1(L,NN) + PRESS_AREA2(L.NN))/2

continue
RETURN
END

SUBROUTINE INCIDENT_REL_VEL(L,\,th,VR1, UVR1, ABSVR1)

DIMENSION V1(3), VR1(5,3), VB(5,3), UVR1(5,3), TEMP_IN(3),
TEMP_OUT(3),ABSVR1(5), th(50)

COMMON/VELOCITY/ABSV1, ALPHA
REAL ABSV1, ABSVR1, th, TEMPABS

CN = COS(ALPHA * 3.14159 /180)
SN = SIN(ALPHA * 3.14159 /180)

V(1) = CN*ABSV1
V1(2) = SN*ABSV1
Vi(3)= 0

IF(L.EQ.6) GOTO 1

CALL BLADE_VEL(L,|,th,VB)
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VR1(L1) = V1(1) - VB(L.1)
VRI(L2) = V1(2) - VB(L2)
VR1(L,3) = V1(3) - VB(L,3)

DO2NN=13
TEMP_IN (NN) = VR1(L,NN)

CALL UNIT_VECT(TEMP_IN, TEMP_OUT, TEMPABS)
DO3NN=13

UVR1(L,NN) = TEMP_OUT(NN)

ABSVR1(L) = TEMPABS

RETURN
END

SUBROUTINE BLADE_VEL(L,, th, VB)

DIMENSION VB(5,3), OBX (4,4), OMEGA(3), RD(5,4,1), R_DYN(5,4,1),
TEMP(3), TEMP_IN(4,1) , TEMP_OUT(4,1), VTEMP(3), th(50)

common /rpm/ OMEGA, RD, R_DYN
REAL theta, th
CALL TH_XAXIS(th, OBX, 0,l)

DO1M=14
TEMP_IN(M,1) = RD(L,M,1)

CALL MATMUL (OBX, TEMP_IN, TEMP_OUT, 4,4,1)

DO2M=14
R_DYN (L, M, 1) = TEMP_OUT(M,1)

DO3M=1,3
TEMP(M) = R_DYN (L, M, 1)



CALL CROSS_PROD (TEMP,OMEGA, VTEMP)

DO4M=1,3

VB(L,M) = 2 * 3.14159 * VTEMP(M) /60.
RETURN

END

SUBROUTINE INCIDENT_ANGLE(UVR1, USVS, USVP, Gamma_s, Gamma_p, L)

1

DIMENSION UVR1(5,3), USVS(5,3,8), USVP(5,3,8), GAMMA_S(5,8),
GAMMA_P(5,8), STEMP_IN(3), PTEMP_IN(3)
DIMENSION FACTOR_S(5,8), FACTOR_P(5,8), VTEMP(3)

COMMON /PROJ/ FACTOR_S, FACTOR_P
DO1M=18
DO2N=13

STEMP_IN(N) = USVS(L, N, M)
PTEMP_IN(N) = USVP(L, N, M)

VTEMP(N) = UVR1(LN)

CALL DOT_PROD(VTEMP, STEMP_IN, STEMP_OUT)
CALL DOT_PROD(VTEMP, PTEMP_IN, PTEMP_OUT)

Gamma_s(L,M) = ACOS(STEMP_OUT)
Gamma_p(L,M) = ACOS(PTEMP_OUT)

FACTOR_S (L,M) = STEMP_OUT
FACTOR_P (L,M) = PTEMP_OUT

continue

RETURN
END
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SUBROUTINE PROJECT_AREA (AVS, AVP, DAVS, DAVP, L)

DIMENSION AVS(5,8), AVP(5,8), DAVS(5,8), DAVP(5,8), FACTOR_S(5,8),
FACTOR_P(5,8)

REAL AVS, AVP
COMMON / PROJ/ FACTOR_S, FACTOR_P
DO2M=18

CALCULATION OF PROJECTED AREA OF PRESSURE SIDE
IF (FACTOR_P(L,M) .LT. 0) THEN

DAVP (L,M) = ABS(FACTOR_P(L,M)) * AVP(L,M)

ELSE

DAVP(LM) =0

ENDIF

CALCULATION OF PROJECTED AREA OF SUCTION SIDE

IF (FACTOR_S(L,M) .LT. 0) THEN

DAVS (L,M) = ABS(FACTOR_S(L,M)) * AVS(L,M)
ELSE

DAVS(LM) =0

ENDIF

CONTINUE
RETURN
END

SUBROUTINE REFLECT_REF_GEN(UVR1, USVS, USVP, L)

DIMENSION UVR1(5,3), USVS(5,3,8), USVP(5,3,8), ANS1(5,3,8),
ANS2(5,3,8), ANP1(5,3,8), ANP2(5,3,8), TEMPS1_IN(3), TEMP2_IN(3)
DIMENSION TEMPP1_IN(3), TEMPS_OUT(3), TEMPP_OUT(3), TEMP_S(3),
1 TEMP_P(3), UTEMPS_OUT(3), UTEMPP_OUT(3), PROT_GL(5,3,3,8),

1 SROT_GL(5,3,3,8), TPROT_GL(5,3,3,8), TSROT_GL(5,3,3,8)
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0000

COMMON / ROTATION/ PROT_GL, SROT_GL, TPROT_GL, TSROT_GL
REAL AMTEMPS_OUT, AMTEMPP_OUT
This subroutine Generates a Local Frame of reference for relative
velocity rotation. The Gloabl - Loral Refrerence Rotation Matrix
for each surface have been calculated as *“ROT_GL, and their Transpose
have been calculated as T*ROT_GL.
DO1N=18
DO2M=13
TEMPS1_IN(M) = USVS(LM,N)
TEMP2_IN(M) = UVR1(L,M)
TEMPP1_IN(M) = USVP(L,M,N)
CALL CROSS_PROD (TEMPS1_IN, TEMP2_IN, TEMPS_OUT)
CALL UNIT_VECT(TEMPS_OUT, UTEMPS_OUT, AMTEMPS_OUT)
Making Sure That the Z - AXIS is positive
IF(UTEMPS_OUT(3) .LE. 0.0) THEN

do22M=1.3

UTEMPS_OUT(M) = -1* UTEMPS_OUT(M)

continue
ENDIF
CALL CROSS_PROD (UTEMPS_OUT, TEMPS1_IN, TEMP_S)
CALL CROSS_PROD (TEMPP1_IN, TEMP2_IN, TEMPP_OUT)
CALL UNIT_VECT(TEMPP_OUT, UTEMPP_OUT, AMTEMPP_OUT)

Making Sure That the Z - AXIS is positive
IF(UTEMPP_OUT(3) .LE. 0) THEN
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do23M =13
UTEMPP_OUT(M) = -1* UTEMPP_OUT(M)
continue

ENDIF

CALL CROSS_PROD (UTEMPP_OUT, TEMPP1_IN, TEMP_P)
DO3M=13

ANS1(L,M,N) = UTEMPS_OUT(M)

ANS2(L,M,N) = TEMP_S(M)

ANP1(L,M,N) = UTEMPP_OUT(M)

ANP2(L,M,N) = TEMP_P(M)

Generaling Rotation Matrix for Pressure Surface
PROT_GL(L,M,1,N) = USVP(LMN)

PROT_GL(LM2,N) = ANP2(LM.N)

PROT_GL(L,M,3,N) = ANP1(L,M\N)

Gensraling Rotation Matrix for Suction Surface
SROT_GL(LM,1,N) = USVS(L,M,N)

SROT_GL(LM.2,N) = ANS2(L,M,N)

SROT_GL(L,M,3,N) = ANS1(L.M,N)

Geneating the Transpose of the Rotation Matrix on Pressure Surface
TPROT_GL(L,1,M,N) = USVP(LM,N)

TPROT_GL(L2,M,N) = ANP2(L,M,N)

TPROT_GL(L3,M,N) = ANP1(L,M,N)

Geneating the Transpose of the Rotation Matrix on Suction Surface
TSROT_GL(L,1,M,N) = USVS(LMN)

TSROT_GL(L,2,M\N) = ANS2(L,M\N)
TSROT_GL(L,3,M,N) = ANS1(L,M,N)
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CONTINUE
CONTINUE

RETURN
END

SUBROUTINE REFLECT_REL_VEL(UVR1,USVS,USVP,Gamma_S, Gamma_P,L)

DIMENSION UVR1(5,3), USVS(5,3,8), USVP(5,3,8), Gamma_s(5.8),
Gamma_p(5,8), PROT_GL(5,3,3,8), SROT_GL(5,3,3,8)

DIMENSION TPROT_GL(5,3,3,8), TSROT_GL(5,3,3,8), TTEMP_S(3,3),
TTEMP_P(3,3), AUVR1(3), SBUVR1(3), PBUVR1(3), 0BZ(3,3)
DIMENSION SNBUVR1(3), PNBUVR1(3), TEMP_S(3,3), TEMP_P(3,3),
SNAUVR1(3), PNAUVR1(3), DIFF_S(3), DIFF_P(3), UVR2_S(5,3.8),
UVR2_P(5,3,8)

COMMON / ROTATION/ PROT_GL, SROT_GL, TPROT_GL,TSROT_GL
COMMON/ UNIT_REL_VEL2/ UVR2_S, UVR2_P

BETA = 0.9
ERR = .0001
BETA IS THE VELOCITY FRICTION FACTOR

DO1N=1,8
Do2J=1,3
DO3M=1,8

TTEMP_P(J,M) = TPROT_GL(LJM.N)
TTEMP_S(J,M) = TSROT_GL(L,JM,N)
TEMP_P(J,M) = PROT_GL(LJ,MN)
TEMP_S(J,M) = SROT_GL(L.J,MN)
AUVR1(J) = UVRI(LJ)

CALL MATMUL(TTEMP_P, AUVR1, PBUVR1, 3, 3, 1)
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CALL MATMUL(TTEMP_S, AUVR1, SBUVR1, 3, 3, 1)
phi_s = Gamma_s(L,N)

CALL TH_ZAXIS (phi_s, OBZ)

CALL MATMUL (OBZ, SBUVR1, SNBUVR1, 3,3,1)

phi_p = Gamma_p(L,N)

CALL TH_ZAXIS (phi_p, OBZ)

CALL MATMUL (OBZ, PBUVR1, PNBUVR1, 3,3,1)
CALL MATMUL(TEMP_P, PNBUVR1, PNAUVRHY, 3, 3, 1)
CALL MATMUL(TEMP_S, SNBUVR1, SNAUVR1, 3, 3, 1)
DO4M=13

DIFF_S(M) = ABS(USVS(L,M,N) - SNAUVR1(M))
DIFF_P(M) = ABS(USVP(L,M,N) - PNAUVR1(M))
continue

Angle correction and obtaining proper reflected velocity
For Suction Side

IF(ABS((SNAUVR1(1)) - (USVS(L,1,N))).LE. ERR .AND.
ABS((SNAUVR1(2)) - (USVS(L,2,N))).LE. ERR .AND.
ABS((SNAUVR1(3)) - (USVS(L,3,N))).LE. ERR) THEN

phi_s = 2 * Gamma_s(L,N) -3.141359

ELSE

phi_s = 3 * 3.14159 - 2 * Gamma_s(L,N)

ENDIF
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CALL TH_ZAXIS (phi_s, OBZ)
CALL MATMUL (0BZ, SBUVR1, SNBUVR1, 3,3,1)
CALL MATMUL(TEMP_S, SNBUVR1, SNAUVR1, 3, 3, 1)

For Pressure Side
IF(ABS((PNAUVR1(1)) - (USVP(L,1,N))).LE. ERR .AND.
ABS((PNAUVR1(2)) - (USVP(L,2,N))).LE. ERR .AND.
ABS((PNAUVR1(3)) - (USVP(L,3,N))).LE. ERR) THEN
phi_p = 2 * Gamma_p(L,N) -3.141359
ELSE
phi_p = 3 * 3,14159 - 2 * Gamma_p(L,N)
ENDIF
CALL TH_ZAXIS (phi_p, OBZ)
CALL MATMUL (OBZ, PBUVR1, PNBUVR1, 3,3,1)
CALL MATMUL(TEMP_P, PNBUVR1, PNAUVR1, 3, 3, 1)

DO5M=13

UVR2_S(L,M,N) = BETA * SNAUVR1(M)
UVR2_P(L,M,N) = BETA * PNAUVR1(M)

CONTINUE
CONTINUE
RETURN
END

oo

This program calculates the flow fraction impinging on the blade
element.
SUBROUTINE VEL_TRIAD({ UVR1,D_CO_ORD.L, THETAP)
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000

DIMENSION UVR1(5,3), UX(3), UY(3) , UZ(3), Framo(4,4), Framinv(4,4)
DIMENSION ANZ_DAT(4,4), P_NZDAT(4,4), TEMP(4), TEMP_OUT(4),
D_CO_ORD(6,4,16), TEMP1(4,4), TEMP2(4,4), PTEMP1(4,4),
STEMP2(4,4), DAVS(5,8), DAVP(5,8), DDAVS(5,8), DDAVP(5,8)

COMMON /FLOW AREA/ DAVS, DAVP, DDAVS, DDAVP

ANZ_DAT(1,1)
ANZ_DAT(1,2
ANZ_DAT(1,3)
ANZ_DAT(1,4)

-0.03

ANZ_DAT(2,1) = - tan(THETAP/2) * 0.5
ANZ_DAT(2,2) = + tan(THETAP/2) * 0.5

ANZ_DAT(2,3) = - tan(THETAP/2) * 0.61
ANZ_DAT(2,4) = + tan(THETAP/2) * 0.61

ANZ_DAT(3,1) = 0.5
ANZ_DAT(3,2) = 05
ANZ_DAT(3,3

ANZ_DAT(4,1) = 1
ANZ_DAT(4,2) = 1
ANZ_DAT(4,3) = 1
ANZ_DAT(4,4) = 1

OPEN (UNIT = 66, FILE = 'frame.dal’, STATUS = 'NEW')
OPEN (UNIT = 67, FILE = 'triad.dat’, STATUS = 'NEW')

Eqn of Plane Normal to Rel. vel. vector : [Linear Algebra, Barnett,259]
X'UVR1(L,1) + Y'UVR1(L,2) + Z*UVR1(L,3) =
XO.UVR1(L,1) + YO'uvri(L,2) + 20*uvri(L,3)

X0 = -30E-3
YO = ANZ_DAT(2,1)
20=05



Y =-7.5e-3
Z =050

X =-((Y-Y0) *UVR1(L.2) + (Z - Z0)*'UVR1(L,3)UVR1(L,1) + X0
VECTL = SQRT((X - X0)**2 + (Y-Y0)*'2 + (Z-20)"*2)

UX(1) = (X-X0)/VECTL
UX(2) = (Y-YO)VECTL
UX(3) = (Z-ZO)/VECTL

Uz(1) = UVRI(L,1)
UZ(2) = UVR1(L,2)
UZ(3) = UVR1(L,3)

CALL CROSS_PROD(UZ, UX, UY)
CALL DOT_PROD(UX, UY, VAL)

Do1M=13

Frame (M, 1) = UX(M)
Frame (M, 2) = UY(M)
Frame (M, 3) = UZ(M)
Frame (4, M) =0

Frame (1, 4) = X0
Frame (2, 4) = YO
Frame (3, 4) = 20
Frame (4, 4) =1

CALL MINV( Frame, framinv,4,4)
DO 2M=1,4

TEMP(1) = ANZ_DAT(1,M)
TEMP(2) = ANZ_DAT(2,M)

TEMP(3) = ANZ_DAT(3,M)
TEMP(4) = ANZ_DAT(4,M)
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CALL MATMUL (framinv, TEMP, TEMP_OUT, 4, 4, 1)

P_NZOAT (1,M) = TEMP_OUT(1)
P_NZDAT (2,M) = TEMP_OUT(2)
P_NZDAT (3M) = TEMP_OUT(3)
P_NZDAT (4,M) = TEMP_OUT(4)

CONTINUE
Calculation of projected surface of the pressure side

DO10M=1,4
TEMP1(M,2) = D_CO_ORD(L,M, 9)
TEMP1(M,1) = D_CO_ORD(LM, 1)
TEMP1(M,4) = D_CO_ORD(L+1,M,9)
TEMP1(M,3) = D_CO_ORD(L+1,M,1)
CONTINUE

CALL MATMUL(framinv, TEMP1, PTEMP1, 4,4,4)
OLD_AREA = DAVP(L,1)

CALL CALC_AREA (P_NZDAT, PTEMP1, OLD_AREA, AREA)
DDAVP(L,1) = AREA

DO5N=2,8
DO1IM=14

TEMP1(M,2) = D_CO_ORD(L,MN-1)
TEMP1(M,1) = D_CO_ORD(L,M, N)
TEMP1(M4) = D_CO_ORD(L+1,M, N-1)
TEMP1(M,3) = D_CO_ORD(L+1,M, N)

CONTINUE

CALL MATMUL (framinv, TEMP1, PTEMP1, 4,4,4)
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DO 16J=1,4

CONTINUE

OLD_AREA = DAVP(L,N)

CALL CALC_AREA (P_NZDAT,PTEMP1, OLD_AREA, AREA)
DDAVP(L,N) = AREA

CONTINUE

Calculation of projected surface of the suction side
DOBN=9,15

DO12M=1,4

TEMP2(M,2) = D_CO_ORD(L,M,N)

TEMP2(M,1) = D_CO_ORD(L,M, N+1)
TEMP2(M,4) = D_CO_ORD(L+1,M, N)
TEMP2(M,3) = D_CO_ORD(L+1,M, N+1)
CONTINUE

CALL MATMUL (framinv, TEMP2, STEMP2, 4,4,4)
OLD_AREA = DAVS (L, N-8)

CALL CALG_AREA (P_NZDAT,STEMP2, OLD_AREA, AREA)
DDAVS(L, N-8) = AREA

CONTINUE

DO13M=14

TEMP2(M,2) = D_CO_ORD(L,M,16)
TEMP2(M,1) = D_CO_ORD(L,M,8)
TEMP2(M,4) = D_CO_ORD(L+1,M,16)
TEMP2(M,3) = D_CO_ORD(L+1,M,8)
CONTINUE

CALL MATMUL(framinv, TEMP2, STEMP2, 4,4,4)
OLD_AREA = DAVS (L, 8)

CALL CALC_AREA (P_NZDAT,STEMP2, OLD_AREA, AREA)
DDAVS(L,8) = AREA
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DO 3M=1,4

WRITE(66,*) (P_NZDAT(M,\N), N = 1, 4)
WRITE(67,*) (Framinv(M,N), N = 1, 4)
CONTINUE

RETURN
END

SUBROUTINE MASS_FLOW (ABSVR1,DDAVS, DDAVP.L, QS, QP)

DIMENSION DDAVS(5,8), DDAVP(5,8), QS(5,8), QP(5,8), ABSVR1(5)

RHO is the density of the flow [ Deepak Dhar, pg.101]
RHO = 2.890

DO1N=18

QP(L,N) = RHO * ABSVR1(L) * DDAVP(L,N)
QS(L,N) = RHO * ABSVR1(L) * DDAVS(L,N)

WRITE(31,*) QS(L,N)
WRITE(32,") QP(L,N)

CONTINUE

RETURN
END

SUBROUTINE IMPULSE(UVR1, ABSVR1, QS, QP,L)

DIMENSION QS(5,8), QP(5,8), ABSVR1(5), UVR1(5,3),
UVR2_S(5.3,8), UVR2_P(5,3,8), S_IMP(5,3,8), P_IMP(5,3,8),
A_SIMP(5,8), A_PIMP(5,8), TOT_SIMP(5,3), TOT_PIMP(5,3),
AT_SIMP(§), AT_PIMP(5), TOT_IMP(5,3), TOT_ABSIMP(5),
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1 DCENTP(5,4,8), DCENTS(5,4,8), ALCENTP(5,3), ALCENTS(5,3),
1 TEMPS(5,3), TEMPP(5,3)

COMMON/IMP_FORCE/ S_IMP, P_IMP, A_SIMP, A_PIMP, TOT_SIMP,
1 TOT_PIMP, AT_SIMP, AT_PIMP, TOT_IMP,TOT_ABSIMP

COMMON/ UNIT_REL_VEL2/ UVR2_S, UVR2_P

COMMON/ DYN / DCENTS, DCENTP

COMMON/ CENTROID / ALCENTS, ALCENTP

ALIMIT = 001
DO1,N=18
DO2,M=13

S_IMP(L,M,N) = ABSVR1(L)*QS(L,N)* (UVR1(L,M) - UVR2_S(LM\N))
P_IMP(L,M,N) = ABSVR1(L)*QP(L,N)* (UVR1(L,M) - UVR2_P(LM\N))

A_SIMP(L,N)=SQRT(S_IMP(L,1,N)**2+S_IMP(L,2,N)**2+5_IMP(L,3,N)*2)
A_PIMP(L,N)=SQRT(P_IMP(L,1,N)**2+P_IMP(L,2,N)**2+P_IMP(L,3,N)**2)

WRITE(34, *) (S_IMP(LM.N), M =1,3), A_SIMP(L,N)
WRITE(35, *) (P_IMP(L,M,N), M =1,3), A_PIMP(L,N)

CONTINUE

DO3,M=13
TOT_SIMP(LM) = 0
TOT_PIMP(LM) = 0
TEMPS(L,M) =0
TEMPP(L,M) = 0
DO4,N=18

TOT_SIMP(L,M) = TOT_SIMP(L,M) + S_IMP(LMN)
TOT_PIMP(L,M) = TOT_PIMP(L,M) + P_IMP(LMN)

TEMPS(L,M) = TEMPS(L,M) + S_IMP(L,M,N)*DCENTS(L,M,N)
TEMPP(L,M) = TEMPP(L,M) + P_IMP(L,M,N)*'DCENTP(L,M,N)

TOT_IMP(L,M) = TOT_PIMP(L,M) - TOT_SIMP(L,M)
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CONTINUE

IF (ABS(TOT_PIMP(L,1)) .LE. ALIMIT .AND. ABS(TOT_PIMP(L.2)).LE. ALIMIT
.AND. ABS(TOT_PIMP(L,3)) .LE. ALIMIT ) THEN

ALCENTP(L,1) = 0
ALCENTP(L2) = 0
ALCENTP(L,3) = 0

ELSEIF(ABS(TOT_PIMP(L,3)) .LE. ALIMIT ) THEN
ALCENTP(L,1) = TEMPP(L,1)/TOT_PIMP(L,1)
ALCENTP(L,2) = TEMPP(L,2)/TOT_PIMP(L,2)
ALCENTP(L,3) = DCENTP(L,3,5)
ELSE

ALCENTP(L,1) = TEMPP(L,1)/TOT_PIMP(L,1)
ALCENTP(L,2) = TEMPP(L,2)/TOT_PIMP(L,2)
ALCENTP(L,3) = TEMPP(L,3)/TOT_PIMP(L,3)
ENDIF

DO10M=13
IF(ABS(TOT_SIMP(L,M)) .LE. ALIMIT) THEN
ALCENTS(LM) =0
ELSE
ALCENTS(L,M) = TEMPS(L,M)/TOT_SIMP(L,M)
ENDIF

continue

AT_SIMP(L)=SQRT(TOT_SIMP(L,1)**2+TOT_SIMP(L,2)**2+TOT_SIMP(L,3)**2)
AT_PIMP(L)=SQRT(TOT_PIMP(L,1)**2+TOT_PIMP(L,2)**2+TOT_PIMP(L,3)**2)

TOT_ABSIMP(L)=SQRT(TOT_IMP(L,1)**2+ TOT_IMP(L,2)**2+ TOT_IMP(L,3)**2)

WRITE(36,") (TOT_SIMP(L,M), M =1,3), AT_SIMP(L)
WRITE(37,") (TOT_PIMP(L,M), M =1,3), AT_PIMP(L)
WRITE(38,) (TOT_IMP(L,M), M =1,3), TOT_ABSIMP(L)
WRITE(42,) (ALCENTP(L,M), M =1,3)

WRITE(43,") (ALCENTS(L,M), M =1,3)
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RETURN
END

SUBROUTINE CALC_AREA (P_NZDAT, TEMP, OLD_AREA, AREA)

o

DIMENSION P_NZDAT(4,4), TEMP(4,4),PNOZ(2,4) BLADE(2,4)

DO 1 N=1,2
pDo2M=1,4

PNOZ(NM) =P_NZDAT(N,M)
BLADE(N,M) = TEMP(N,M)
CONTINUE

CALCULATION OF DIFFERENTIAL AREA
NEGLECTING ELEMENTS LYING OUTSIDE THE DOMAIN OF THE NOZZLE

IF (MIN(PNOZ(1,1),PNOZ(1,2),PNOZ(1,3),PNOZ(1,4)) .GE.
MAX(BLADE(1,1), BLADE(1,2), BLADE(1,3), BLADE(1,4)).0R.
MAX(PNOZ(1,1),PNOZ(1,2),PNOZ(1,3) ,PNOZ(1 4)) LE.
MIN(BLADF(1,1), BLADE(1,2), BLADE(1,3), BLADE(1,4)).0R.
MIN(PNOZ(2,1), PNOZ(2,2), PNOZ(2,3), PNOZ(2,4).GE.
MAX(BLADE(2,1), BLADE(2,2), BLADE(2,3), BLADE(2,4)).0R.
MAX(PNOZ(2,1), PNOZ(2,2), PNOZ(2,3), PNOZ(24)).LE.
MIN(BLADE(2,1), BLADE(2,2), BLADE(2,3), BLADE(2,4))) THEN

AREA =0

ELSE
AREA = OLD_AREA

ENDIF
RETURN
End
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SUBROUTINE DYN_PARA (TORQUE, OMEGA, AZ, ANB,|)

-

DIMENSION TORQUE(3),OMEGA(3), ANG_ACC(50)

ANB is the number of blades used on the wheel
REAL OMEGA

AIG = 0.049226'ANB + 24.6925
ANG_ACC(l) = ANB*(TORQUE(1))/ AIG
OMEGA(1) = 2'3,14592'OMEGA(1)/60

OMEGA(1) = SQRT(OMEGA(1)**2 + 2*ANG_ACC() *ABS(AZ)*180/3.1345927)
* 30 /3.14592

OMEGA@) = 0
OMEGA(@) = 0

WRITE(46,') ANG_ACC()

RETURN
END

Subroutine To Calculate The Inverse Of a Matrix
SUBROUTINE MINV(A, AINV, ND, N)

DIMENSION A(ND, ND), AINV(ND, ND), C(50,50 )

NIS THE ACTUAL DIMENSION OF SQUARE MATRIX,

AND ND IS THE DIMENSION TO BE PUT IN DIMENSION STATEMENT OF THE
MAIN PROGRAM.

A IS THE ACTUAL MATRIX AND ANV IS THE INVERSE OF THE MATRIX A
CIS A TEMPORARY MATRIX WHICH IS COPIED FROM A
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REAL A, AINV, DET

INTEGER ND, N, IPASS, IROW, ICOL

DET=1.0
DO1l=1\N
DO1J =1N

IF(I . EQ. J) THEN

AINV(L) = 1.0
ELSE

AINV(,J) = 00
ENDIF
C() = AlLY)
CONTINUE

DO 9IPASS = 1,N

IMX = IPASS

DO 2 IROW = IPASS, N

IF(ABS(C(IROW, IPASS)) .GT. ABS(C(IMX, IPASS))) THEN
IMX = IROW

ENDIF

CONTINUE

IF(IMX. NE. IPASS) THEN
DO 3ICOL =1N

TEMP = AINV(IPASS, ICOL)
AINV(IPASS, ICOL) = AINV(IMX, ICOL)
AINV(IMX, ICOL) = TEMP

IF(ICOL .GE. IPASS) THEN

TEMP = C(IPASS, ICOL)
C(IPASS, ICOL) = C(IMX, ICOL)
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C(IMX, ICOL) = TEMP
ENDIF
CONTINVE

ENDIF

PIVOT = C(IPASS, IPASS)
DET =DET *PIVOT

IF( DET .EQ. 0.0) THEN
WRITE(",10)

DO 6ICOL = 1N

AINV(IPASS, ICOL) = AINV( IPASS, ICOL)PIVOT
IF(ICOL.GE.IPASS) THEN

C(IPASS, ICOL) = C(IPASS, ICOL)/PIVOT
ENDIF

CONTINVE

DO 8 IROW = 1N

IF(IROW. NE. IPASS) THEN
FACTOR = C(IROW, IPASS)
ENDIF

DO 7ICOL = 1IN

IF(IROW.NE.IPASS) THEN

AINV(IROW, ICOL) = AINV(IROW, ICOL) - FACTOR*AINV(IPASS, ICOL)
C(IROW, ICOL) = C(IROW, ICOL) - FACTOR*C(IPASS, ICOL)

ENDIF

CONTINVE

CONTINUE
CONTINUE

RETURN
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FORMAT(EX,’--~-ERROR IN MINV---- THE MATRIX IS SINGULAR'/,
10X, * PROGRAM TERMINATED")

END

SUBROUTINE TH_XAXIS (theta, OBX, R,l)

DIMENSION OBX(4,4), theta(50)
REAL theta

S = SIN(theta(l))
C = COS(iheta(l))

0BX(1,1) =1
0BX(1,2)=0

0BX(3,1)=0
OBX(4,1) =0
0BX(4,2) =0

0BX(4,4) =1

0BX(2,2)=C
0BX(2,3) =-8
0BX(2,4) =0
0BX(3,
0BX(3,3)=C
0BX(34)=R

RETURN
END

SUBROUTINE TH_ZAXIS (phi, 0BZ)
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DIMENSION OBZ(3,3)

S = SIN(ph)
C = COS(phi)

0BZ(1,1) =C
08Z(1,2) =-§
0BZ(1,3) =0

0BZ(2,1) =8
0BZ(2,2) =C
0BZ(2,3) =0

08(3,1) =0
08B2(3,2) =0
08BZ(3,3) =1

RETURN
END

SUBROUTINE MATMUL(E,F,Gli jj.kk)

20
30

DIMENSION E(iijf), F(j, kk), Gl kk)
Matrix multiplication: G(ii.kk) = E(iij) * F(j,kk)

DO L =1,

DO 30 N = 1kk

GLN) =0

DO20 M =1,

G(LN) = G(LN) + E(LM) * F(MN)
continue

RETURN
END
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DOT PRODUCT
SUBROUTINE DOT_PROD(A,B,CD)

DIMENSION A(3)B(3),C(3)

D0O1J=13
C) = AY) * B

CD = C{1)+ C(2)+ C(3)
RETURN
END

CROSS PRODUCT
SUBROUTINE CROSS_PROD(A, B, C)

DIMENSION A(3),8(3),C(3)

C(1) = AR)'B(3) - A(3)*B(2)
C(2) = A@)'B(1) - A(1)*B(3)
C(3) = A(1)'B(2) - A(2)*B(1)

RETURN
END

SUBROUTINE UNIT_VECT(VECTA, UVECTA, ABSVECTA)

DIMENSION VECTA(3), UVECTA(3)
REAL ABSVECTA
ABSVECTA = SQRT( VECTA(1) **2 + VECTA(2)**2 + VECTA(3)**2)

DO1H=13
UVECTA(ll) = VECTA(il) / ABSVECTA
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RETURN
END
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D2 CALCULATION OF THE TOTAL FORCES, AND THE TORQUE ON THE ENTIRE
BLADE-ROTOR ASSEMBLY SYSTEM

1 The forces obtained due to the nozzle excitations on a single blade due to the combined
mass moment of inertia of the whole system was fed in as input. The corresponding

va'ues of the point of application of the forces were also fed into this program.

2 The program resolves the forces on the twelve such blades, and calculates the resullant

forces, and the torques on the rotor system.

The program is listed in D.2.1
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PROGRAM TO CALCULATE THE TOTAL FORCES, AND TORQUES DUE TO
SIMULTANEOUS EXCITATIONS ON ALL THE BLADES

DIMENSION F(3), R(3), DT(3), DF(3), DR(3), FTOT(3), TTOT(3),
OBX(33)

OPENUNIT = 1, FILE = timp.dal, STATUS = '0LD’)
OPEN(UNIT =2, FILE = pappldat, STATUS ='0LD’)
OPEN(UNIT =3, FILE = flot.dat, STATUS = "NEW)
OPEN(UNIT =4, FILE = ttot.dat, STATUS = "NEW)
WRITE(",") * GIVE 1T’

READ () IT

AINC =30

DO 11=1,T

READ(1,") (F(M), M =1,3)

READ(2,") (R(M), M = 1,3)

FTOT(l) =0
FTOT() =0
FTOT@) =0
TTOT(H) = 0
TTOT@) = 0
TTOTE) = 0

TH =0
AAINC=0
DO2J=1, 12
TH =TH + AAING

AAINC = AINC * 3.14159/180

CALL TH_XAXIS (TH, 0BX)

CALL MATMUL (OBX, F, DF, 3,3, 1)
FTOT (1) = FTOT(1) +DF(1)

FTOT (2) = FTOT(2) +DF(2)

FTOT (3) = FTOT(3) +DF(3)
write(8,')( DF(M), M=1,3)

CALL MATMUL(OBX, R, DR, 3,3, 1)
CALL CROSS_PROD(DF, DR, DT)
TTOT() = TTOT(1) + DT(1)
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TIOT(2) =TTOT() + DT(2)
TTOT(3) = TTOT(3) + DT(3)
CONTINUE

WRITE(3,) (FTOTM) , M=1, 3)
WRITE(,) (TTOT(M) , M=1, 3)
CONTINUE

CLOSE (1)

CLOSE (2)

CLOSE (3)

CLOSE (4)

sToP

END

SUBROUTINE TH_XAXIS (theta, 0BX)

DIMENSION OBX(3,3)
REAL theta

= SIN(hela)
C = COS(theta)

0BX(1,1) =1
0BX(1,2) =0
0BX(1,3)=0
0BX(2,1) =0
08BX(3,1) =0

0BX(2,2)=C
0BX(2.3) =S
0BX(3.2) = §
0BX(3,3) = C

RETURN
END



SUBROUTINE MATMUL(E,F,G,iijj,kk)

g8

DIMENSION E(il.jj), F(ij, kk), G(ii,ki
Matrix multiplication: Giii,kk) =

DO30L =1

DO 30 N = 1,kk

G(LN) =0

DO20M=1,j
G(LN) = G(L,N) + E(L,M) * F(M\N)
continue

RETURN

END

* F(ij.kk)

CROSS PRODUCT
SUBROUTINE CROSS_PROD(A, B, C)

DIMENSION A(3),B(3),C(3)
C(1) = A(2)'B(3) - A(3)'B2)
C(2) = A(3)'B(1) - A(1)'B(3)
C(3) = A(1)'B(2) - A()"B(1)
RETURN

END
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