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Abstract 

Machine Vision is one of the leading technologies of the present era. The quest for the 
best solution to the geometrical camera calibration has been a research problem for many 
years in the Computer/Machine Vision communities. In the field of machine vision, 
camera calibration refers to the experimental determination of a set of parameters which 
describe the image formation process for a given analytical model of the machine vision 
system. A complete set of calibration parameters includes both the intrinsic parameters 
that describe the lens-camera-frame grabber combination as well as the extrinsic 
parameters that relate the position and orientation of the camera to a fixed reference 
frame. An accurate, reliable calibration procedure is essential for most industrial machine 
vision applications including mechanical metrology, robot assembly, reverse engineering, 
tracking, image fusion etc. One of the most systematic calibration procedures for 3-D 
machine vision applications was proposed by Heikkila in which a comprehensive set of 
camera parameters is automatically evaluated by observing a calibration target consisting 
of two perpendicular planes, each with 256 circular control points. Other similar 
techniques employ a checkerboard pattern as a target and use the vertices of the squares 
as control points. While these techniques are sound from a theoretical point of view, they 
do not adequately speak to the question of measurement accuracy. This study addresses 
the problems associated with geometric camera calibration using the Design of 
Experiments as well as the question of accuracy. The broad use of camera calibration in 
the field of machine vision and computer vision is the primary motivation for 
understanding the major factors that influence the accuracy of camera calibration as well 
as the accuracy that can be achieved within the practical limits of most research 
environments. Based on the results of this study, a new approach towards camera 
calibration is also proposed in which image center and focal length are calculated 
independently of the lens distortion. 
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Chapter 1 

Introduction 

Machine Vision is one of the leading technologies of the present era. Machine Vision 

(MV) is the study of methods and techniques whereby artificial vision systems can be 

constructed and usefully employed in practical applications (Davies, 2004). As such, it 

embraces both the science and engineering of vision. It is an application of computer 

vision and image processing to the manufacturing industry for improving product quality 

and safety, as well as enhancing process efficiency and operational safety (Batchelor and 

Whelan, 1997). Whereas Computer Vision (CV) is a branch of Computer Science, MV is 

an area of specialization within Systems Engineering that includes not only the study of 

software but also the hardware environment and image acquisition techniques needed to 

apply it. Therefore, Machine Vision is a subfield of engineering that incorporates 

computer science, electronic engineering (hardware and software), engineering 

mathematics, physics (optics and lighting), mechanical engineering, and industrial 
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automation. A MV system often consists of components like digital cameras, suitable 

light sources, computer networks to control other manufacturing equipment, embedded 

processors or PCs, actuators, sensors etc. Machine Vision is a relatively new technology 

and its applications are diverse and wide ranging. Areas of endeavor include: 

~ Industrial applications for manufacturing, control and automation, quality control, 

inspection etc., 

~ Spaceflight, 

~ Remote sensing, 

~ Medical image analysis, 

~ Robot vision, 

~ Industrial metrology, 

~ Reverse engineering, 

~ Image fusion, 

~ Tracking, 

~ Automatic assembly of electronics/mechanical components etc., 

~ Monitoring of agricultural production, botany, agronomy, ecology and forestry. 

Machine Vision was initially employed for two dimensional (2-D) measurements and 

focused primarily on image analysis. Later, complex three dimensional (3-D) 

measurement systems were developed leading to a convergence of automation 

technologies including vision, robotics and metrology. One of the most common 

industrial applications of machine vision systems is visual inspection; e.g. in the 

inspection of manufactured goods such as semiconductor chips, automobiles, food, 
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pharmaceuticals and other demanding applications that reqmre high-speed, high 

preclSlon, high-magnification, 24-hour operation, contactless detection, and/or 

repeatability of measurements. A diagrammatic representation of a typical 3-D Machine 

Vision system is shown in Figure 1.1: 

3D Machine Vision System 

Digital Camera 

Field of View 

Granite Surface Plate 

Figure 1.1: Diagrammatic representation of a 3-D machine vision system 
(Krouglicof, [Online]) 

Since the primary function of a Machine Vision system is to represent a real 

object by images, cameras are an indispensable component in a MV system. A camera 

must be calibrated before using it for high precision measurement applications. This 

important topic is covered in this research work. 
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Camera calibration has long been an important issue beginning with the 

photogrammetry community. With the increasing demand for high accuracy 

measurements, it has recently attracted researchers in the Computer Vision (CV) and 

robotic communities leading to a great demand for reliable and accurate calibration 

techniques for Machine Vision Systems. Compared with the high quality metric cameras 

used in photogrammetry, cameras commonly used in computer vision I machine vision 

have the following characteristics (Weng et al., 1990): (a) Image resolution is well­

defined by spatial digitization and is relatively low (e.g. a typical Charge-Coupled­

Device (CCD) sensing array has about 1024xl024pixels); (b) Lenses used for video 

cameras are non-metric off-the-shelf lenses and exhibit a substantial amount of distortion; 

and (c) Camera assembly results in considerable internal misalignment. For example, the 

CCD sensing array may not be orthogonal to the optical axis of the lens and the center of 

the array may not coincide with the optical principal point; i.e. the intersection of the 

optical axis of the lens and the image plane. Due to these factors, camera calibration is an 

important consideration for high accuracy 3-D measurement systems. More details on 

camera calibration and the various techniques currently used for camera calibration are 

discussed in the following sections. 

Camera calibration is an issue of fundamental importance in machine VISIOn 

applications involving quantitative image analysis. In the field of machine vision, camera 

calibration refers to the experimental determination of a set of parameters which describe 

the image formation process for a given analytical model of the machine vision system. A 

complete set of calibration parameters includes both the intrinsic parameters that describe 
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the lens-camera-frame grabber combination as well as the extrinsic parameters that relate 

the position and orientation of the camera to a fixed reference frame. In other words, 

camera calibration is the process of determining the true parameters of the camera that 

produced a given video or still image. An accurate, reliable calibration procedure is 

essential for most industrial machine vision applications including mechanical metrology, 

robot assembly, reverse engineering, etc. 

In 3-D Machine Vision, it is necessary to know the relationship between the 3-D 

object coordinates and the 2-D image coordinates (Heikkila, 2000). This transformation 

is determined in Geometric Camera Calibration (GCC) by experimentally determining 

the unknown parameters of the camera model. Typically camera calibration techniques 

are based on the observation of planar 2-D targets consisting of a large number of control 

points. In GCC, the assumption is made that the camera observes a set of features such as 

points or lines with known positions in some fixed world coordinate system (Forsyth and 

Ponce, 2003). In this context, camera calibration can be modeled as an optimization 

process where the discrepancy between the observed image features and their theoretical 

positions as predicted by the perspective transformation equations is minimized with 

respect to the camera's intrinsic and extrinsic parameters. Several linear and nonlinear 

approaches based on least square techniques can be used for solving this type of 

optimization problem. In general, once a camera has been calibrated it is possible to 

obtain accurate measurements from digitized images. 

Camera calibration techniques were initially developed in the field of 

photogramrnetry where reliable information about physical objects and the environment 
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are obtained through the process of recording, measuring, and interpreting photographic 

images and patterns of electromagnetic radiant energy and other phenomena for aerial 

imaging, remote sensing and surveying (Gruen and Huang, 2001 ). Later, new application 

areas including robot vision and industrial metrology emerged where camera calibration 

plays a vital role. The precision of the parameter estimation is an important factor for 

such applications. In general, camera calibration plays a crucial role in fields where high 

accuracy is expected. Such areas include industrial metrology, 3-D computer vision, 

robot vision, dimensional measurement of mechanical parts, automatic assembly of 

mechanical or electronics components, tracking, trajectory analysis, image fusion, reverse 

engineering, stereo vision and object localization in robotic tasks. 

When a camera is used in a Machine Vision application, light from the 

environment is focused on an image plane and captured. This process reduces the 

dimensions of the data taken in by the camera from three to two i.e. light from a 3-D 

scene is stored on a 2-D image (Hartley and Zisserman, 2003). Each pixel on the image 

plane therefore corresponds to a ray of light from the original scene. Camera calibration 

(also called camera resectioning) determines which incoming light is associated with 

each pixel on the resulting image. In an ideal pinhole camera, a simple projection matrix 

is sufficient to do this. With more complex camera systems, errors resulting from lens 

misalignment and deformations in their structures can result in more complex distortions 

in the final image. The transformation from 3-D scene to 2-D image can be represented 

by a series of transformations; e.g. a lens distortion model, a projection matrix describing 

the lens/sensor assembly, a 3x3 rotation matrix, and a translation vector. More details on 
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the pinhole camera model are presented in Chapter 2. The camera projection matrix can 

be used to associate points in a camera's image space with locations in 3-D world space. 

Camera calibration is often used in stereo vision applications where the camera projection 

matrices of two cameras are used to calculate the 3-D world coordinates of a point 

viewed by both cameras. 

The importance of camera calibration is described by Tsai (Tsai, 1987). Camera 

calibration in the context of 3-D machine vision is the process of determining the internal 

camera geometric and optical characteristics (intrinsic parameters) and/or the 3-D 

position and orientation of the camera frame relative to a certain world coordinate system 

(extrinsic parameters), for the following purposes: 

1. Inferring 3-D information from image coordinates: 

(a) The first is 3-D information concerning the location of the object, target, or feature. 

The applications include mechanical part dimensional measurement, automatic assembly 

of mechanical or electronics components, tracking, robot calibration and trajectory 

analysis. In the above applications, the camera calibration needs to be done only once. 

(b) The second kind is 3-D information concerning the position and orientation of a 

moving camera (e.g. a camera held by a robot) relative to the target world coordinate 

system. The applications include robot calibration camera-on-robot configuration, and 

robot vehicle guidance. 

2. Inferring 2-D image coordinates from 3-D information: 

In model-driven inspection or assembly applications using machine vision, a hypothesis 

of the state of the world can be verified or confirmed by observing if the image 

7 



coordinates of the object conform to the hypothesis. In doing so, it is necessary to have 

both the intrinsic and extrinsic camera model parameters calibrated so that the 2-D image 

coordinate can be properly predicted given the hypothetical 3-D location of the object. 

The above purposes can be best served if the following criteria for the camera calibration 

technique are met. 

(a) Autonomous: The calibration procedure should not require operator intervention such 

as giving initial guesses for certain parameters, or choosing certain system parameters 

manually. 

(b) Accurate: The camera calibration technique should have the potential of meeting the 

required accuracy. For example, applications such as mechanical part inspection and 

assembly require high accuracy, i.e. one part in a few thousandths of the working range. 

(c) Reasonably efficient: The complete camera calibration procedure should avoid high 

dimensional nonlinear searches. 

(d) Versatile: The calibration technique should operate uniformly and autonomously for a 

wide range of accuracy requirements, optical set-ups, and applications. 

(e) Need only common off-the-self camera and lens: The advantages of using off-the­

shelf camera and lens are versatility, high availability, user familiarity and low cost. 

The goal of camera calibration is to correct the image displacements which occur 

due to elements of the camera' s interior orientation (Computer Vision, [Online]). There 

are two general approaches used for camera calibration: 

1) Model-based approaches: In a model based approach, a few predominant factors 

contributing to error are identified, and the errors are modeled using a mathematical 
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equation. Once models are generated for each contributing factor, the next step is to 

determine the values of the coefficients which best model the observed error. This can be 

accomplished in one oftwo ways: 

a) Explicit Approach: In this approach, targets with known 3-D and 2-D 

coordinates or angular positions are used. Precision calibration frames, field 

approaches, etc. can be used to generate known positional targets. The pro and 

con ofthis approach are: 

Pro: Precise 

Con: Expensive and time consuming 

b) Implicit Approach: In this approach, objects with known geometrical properties 

but with no known positional or angular orientation are used, e.g. Checkerboard 

approach, plumb-line approach. The pros and con are: 

Pros: 

• Relatively simple, fast and cheap 

• Simple models can usually account for most of the error 

Con: Not as precise as explicit approach 

Therefore, the advantages and disadvantages of model-based approaches can be 

summarized as follows: 

Pros: 

• Relatively simple, fast and cheap 

• Only a few factors, mostly optical configuration and lens distortion 

influence geometry 
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• Simple models account for most of the error 

Cons: 

• Can only remove errors represented by terms in the model 

• Unknown causes of error are ignored 

2) Mapping-based Approaches: With a mapping-based approach, no attempt is made to 

understand the individual contributing causes of error, rather the entire focus is on 

generating a comprehensive reality-to-image or image-to-reality mapping function. The 

advantages and disadvantages of mapping-based approaches can be summarized as 

follows: 

Pros: 

• Can handle all types of distortions 

• Very precise, with subpixel accuracy 

• Only needs to be done once 

• Lends itself to automated approaches 

Cons: 

• Lot of explicit control is required 

• Expensive and time consuming 

The above paragraphs clearly answer questions like "What is the role of a camera 

in computer I machine vision applications?", "Why is camera calibration important in 

such vision based applications?" and "What are the different general approaches involved 

in camera calibration". In the following section a literature survey involving a more 
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detailed description and classification of the existing methods, models and techniques 

used for camera calibration in the photogrammetry and CV I MV communities will be 

presented. 

1.1 Camera Calibration: Existing Methods, Models and 
Techniques 

A camera calibration procedure is necessary in applications were metric information of 

the scene or environment is needed from 2-D images. Salvi et al. (2002) explain camera 

calibration by dividing the calibration procedure into two phases. Firstly, the camera is 

mathematically modeled by approximating the physical and optical behavior of the lens 

and image sensor. Secondly, the model parameters are estimated by using direct or 

iterative methods. Two kinds of parameters are considered in the camera model. Intrinsic 

parameters model the camera's internal geometry and optical characteristics. Extrinsic 

parameters relate the three dimensional position and orientation of the camera frame to a 

fixed world coordinate system which in turn provides metric information with respect to 

a user fixed coordinate system instead of the camera coordinate system. This section 

presents some of the current approaches adopted for camera calibration in close-range 

photogrammetry and computer vision. Various techniques and algorithms concerning 

camera calibration have been reported over the years in the photogrammetry and CV 

literature. The techniques proposed in the literature include those using 3-D calibration 

models (two or three orthogonal planes or a plane undergoing a pure translation, etc.), 2-
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D objects (planar patterns undergoing unknown motions), 1-D objects (points aligned on 

a line) and 0-D features (self-calibration using unknown scene points) for calibration 

purposes (Zhang, 2002). 

Much of the initial research work in camera calibration has been reported by the 

photogrammetry community (a few citations are: Brown, 1971; Faig, 1975; Fraser, 1997; 

Clarke and Fryer, 1998; Fraser, 2001; Remondino and Fraser, 2006 etc.) and by 

researchers working in the area of Computer Vision (a few citations are: Ganapathy, 

1984; Faugeras and Toscani, 1987, 1986; Tsai, 1987; Weng et al., 1992; Wei and Ma, 

1993, 1994; Heikkila, 2000; Zhang, 2008 etc.). The Manual of Photogrammetry (Slama, 

1980) cites many research papers on camera calibration in the field of photogrammetry 

starting from the 1970' s. These papers are categorized as close-range and terrestrial 

photogrammetric systems, architectural photogrammetry, industrial photograrnmetry, 

underwater photograrnmetry, etc. An overview of photogrammetric camera calibration 

techniques has also been reported in (Remondino and Fraser, 2006). Different camera 

models have been formulated and used in close-range photogramrnetry, but generally 

sensor orientation and calibration is performed based on a perspective geometrical model 

by means of the bundle adjustment (Brown, 1971, 1974). A review of methods and 

models of the last 50 years is provided in (Clarke and Fryer, 1998). A mathematical 

model of the self-calibrating bundle adjustment with the extension of the collinearity 

model was formulated by (Fraser, 1997; Gruen and Beyer, 2001). The nonlinear 

collinearity equations include additional parameters such as principle distance and 

principle point offset as well as the radial and decentering distortion coefficients. 
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Various criteria for classifying calibration techniques are presented in the 

literature. Zhang classified the calibration techniques in computer vision and 

photogrammetry roughly into three categories; namely 3-D reference object based 

calibration, 2-D plane based calibration, and self calibration (Zhang, 2002). In 3-D 

reference object based calibration, camera calibration is performed by observing a 

calibration object whose geometry in 3-D space is known with very good precision. The 

object usually consists of two or three planes which are orthogonal to each other. 

Sometimes a planar pattern undergoing a precisely known translation is used to provide 

the equivalent of 3-D reference points (Tsai, 1987). It is stated that although these 

approaches require an expensive calibration apparatus and an elaborate set up, calibration 

can be done efficiently. Techniques involving 2-D plane based calibration require 

multiple observation of a single planar pattern presented at several different orientations 

(Zhang, 2008). In contrast to Tsai's approach, this technique does not require an 

expensive calibration apparatus and the calibration set-up is considered to be easier to 

implement since anyone can make such a 2-D calibration pattern (Zhang 2002). 

Techniques involving self-calibration in photograrnmetry and CV do not make use of any 

calibration object and are considered to be 0-D approaches. Self-calibration is also known 

by the term auto-calibration where the metric properties of the camera and of the imaged 

scene are recovered from a set of uncalibrated images using constraints on the camera 

parameters or on the imaged scene (Remondino and Fraser, 2006). Generally three types 

of constraints are applied to perform self-calibration: scene constraints, camera motion 

constraints, or constraints on the camera intrinsic parameters. In general, a camera 
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undergoing a single displacement in a static (rigid) scene provides two constraints 

(Maybank and Faugeras, 1992; Zhang, 2008) on the camera' s internal parameters using 

image information alone. Therefore, if images are taken by a single camera with fixed 

internal parameters, correspondences between three images are sufficient to recover both 

the internal and external parameters which allow the reconstruction of 3-D structure up to 

a similarity (Luong and Faugeras, 1997; Hartley, 1994). Auto-calibration matches 

corresponding features in multiple uncalibrated scene views (Faugeras et al. , 1992; 

Hartley and Zisserman, 2000). Although these approaches are flexible, it is difficult to 

obtain reliable results because of the number of parameters that must be estimated 

(Zhang, 2008). Due to difficulty in initialization, auto-calibration results tend to be 

unstable (Sun and Cooperstock, 2005). 

Various algorithms described m the photogrammetry and CV literature are 

generally based on perspective or projective camera models, with the most popular 

approach being the well-known self calibrating bundle adjustment, which was first 

introduced to close-range photogrammetry in the early 1970s (Remondino and Fraser, 

2006). The literature mentions that depending on the nature of the application and the 

required accuracy, two basic functional models can be adopted for calibration purpose, 

namely a camera model based on perspective projection and a projective camera model 

supporting projective rather than Euclidean scene reconstruction. 

Several different criteria can be applied to differentiate I classify camera 

calibration techniques (Salvi et al. , 2002). 
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(1) Linear versus nonlinear camera calibration which is usually differentiated based on 

the modelling of lens distortion (Ito, 1991). The calibration results vary with the 

influence of lens distortion (Sun and Cooperstock, 2005). Tsai used a second order radial 

distortion model (Tsai, 1987) while Zhang employed both the second and fourth order 

terms (Zhang, 2000). Heikkila in his approach used a nonlinear fourth order radial 

distortion model and a second order tangential ( decentering) distortion model (Heikkila, 

2000). Lavest et al. (1998) used a sixth order radial distortion component, while Weng et 

al. (1992) introduced thin prism distortion which can be considered as a decentering 

distortion. 

(2) Intrinsic versus extrinsic camera calibration: Intrinsic calibration deals with the 

estimation of the geometrical and optical parameters of the camera (Lenz and Tsai, 1988; 

Penna, 1991) whereas extrinsic calibration deals with the estimation of metric 

information concerned with the position and orientation of the camera in the scene (Liu et 

al., 1990; Wang, 1992). 

(3) Implicit versus explicit models: Implicit calibration is the process of calibrating a 

camera without explicitly computing its physical parameters and is useful for both three­

dimensional (3-D) measurement and generation of image coordinates (Wei and De Ma, 

1994). Although implicit calibration techniques achieve high accuracy, they are 

computationally expensive and do not reveal the physical camera parameters. 

(4) Methods using 3-D points (3-D world coordinates) as the calibration pattern 

(Heikkila, 2000; Tsai, 1987; Faugeras and Toscani, 1986; Hong and Yang, 1993) versus 

2-D planar point arrays (Triggs, 1998; Tsai, 1987; Zhang, 2008). 
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(5) Point-based versus line-based methods (Caprile and Torre, 1990; Fryer and Brown., 

1986): Point-based methods are more popular in photogrammetry with the only line­

based approach of note being plumbline calibration which yields lens distortion 

parameters but not of interior orientation (Remondino and Fraser, 2006). Line-based 

methods are also used in the CV community (Salvi et al. , 2002). Examples include 

calibration methods that use geometrical properties (also called geometric invariants) in 

the scene such as parallel lines (Echigo, 1989) or vanishing lines (Wang and Tsai, 1991) 

or other line features (Chen and Tsai, 1990). 

A more specific classification of the different approaches can be made according 

to the calibration method used for parameter estimation of the camera model and the 

optimization technique employed: 

(1) Direct nonlinear optimization techniques: In this category, equations are established 

that relate the parameters to be estimated with the 3-D coordinates of control points and 

their image plane projections (Weng et al. , 1990). A calibrating technique is said to be 

nonlinear if the camera model includes any kind of lens imperfection. The objective of 

this type of optimization technique is to estimate the camera parameters iteratively by 

minimizing an objective function; i.e. to minimize residual errors of some equations. In 

photograrnmetry the basis of the self calibrating bundle adjustment is an extended 

collinearity equation model which is a nonlinear technique (Remondino and Fraser, 

2006). Most of the classical approaches in photogrammetry belong to this category (a few 

citations are: Brown, 1966; Abdel-Aziz and Karara, 1971; Wong, 1975; Faig, 1975; 

Slama, 1980). For instance, a rigorous and accurate modelling of the camera 10 and lens 
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distortion parameters is provided through an iterative least-squares estimation process 

(Brown, 1971; Remondino and Fraser, 2006). The advantage of using this type of 

technique is that the camera model can be very general to cover many types of distortion 

(Weng et al., 1990) and is easily adapted to any arbitrarily accurate yet complex imaging 

model (Tsai, 1987). If the estimated model is good and correct convergence is reached, 

the algorithm can result in high accuracy (Weng et al., 1990). However, being an iterative 

algorithm there are certain drawbacks to this type of technique: (a) It requires a good 

initial guess to start the nonlinear search. If not, the procedure may end up with a bad or 

false solution. This violates the principle of automation. (b) It requires a computationally 

expensive, full-scale, nonlinear search (Tsai, 1987). (c) If distortion parameters are 

included in the parameter space of the camera model, the minimization may be unstable. 

The interaction between the distortion parameters and other camera parameters can lead 

to divergence or incorrect solutions (Weng et al. , 1990). 

(2) Closed-form solution (Linear techniques): This type of scheme uses linear techniques 

to compute the transformation matrix relating 3-D points in the world coordinate frame to 

their 2-D projections in the image plane. The well known DLT (Direct Linear 

Transformation) method developed by Abdel-Aziz & Karara exemplifies such a 

technique. Linear techniques make use of the least-square method to obtain the 

transformation matrices. Parameters are computed directly through a non-iterative 

algorithm leading to a closed form solution (e.g. Abdel-Aziz and Karara, 1971; 

Ganapathy, 1984; Wong, 1975; Faugeras and Toscani, 1986; Weng et al., 1990). By first 

solving a set of linear equations, the algorithm computes a set of intermediate parameters 
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that can be expressed in terms of the desired camera parameters. The camera parameters 

are then determined from the intermediate parameters. Some of the advantages of this 

technique are: no nonlinear optimization is needed and hence the algorithm is 

computationally fast and simple providing a rapid calibration; and the camera model is 

simple without any nonlinear lens imperfections included. However, there are some 

drawbacks associated with this technique. First, lens distortion cannot be incorporated 

into linear techniques, resulting in low accuracy. Although the DLT method can be 

extended to incorporate distortion parameters (e.g. Shih et al. , 1993), the corresponding 

formulation is not exact. The second disadvantage of linear methods is that in order to 

create a non-iterative algorithm, the actual constraints in the intermediate parameters are 

not considered. Consequently, in the presence of noise, the intermediate solution does not 

satisfy the constraints and the accuracy of the final solution is relatively poor (Weng et 

al., 1990). Moreover, it is sometimes difficult to extract some of the physical camera 

parameters from the transformation matrix due to the use of implicit camera calibration 

(Salvi et al., 2002). Some of the references cited for linear techniques can be found in 

(Faugeras and Toscani, 1986; Ganapathy, 1984; Wong, 1975; Hallet al., 1982; lto,1991 ; 

Abdel-Aziz and Karara, 1971 ; Sutherland, 1974). 

(3) Two-step techniques: Two-step techniques are a combination of linear and nonlinear 

techniques and make use of the advantages of the techniques previously described. As a 

first step, linear techniques are employed to compute or recover initial approximations for 

some of the parameters and as a second step the orientation and refined calibration 

parameters are computed iteratively. Some references related to two-step methods are 
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(Tsai, 1987; Lenz and Tsai, 1988; Wei and De Ma., 1994; Heikkila and Silven, 1997). 

The advantages of their methods are: (a) They permit a rapid calibration by considerably 

reducing the number of iterations required and the number of parameters to be estimated 

iteratively; (b) A closed-form solution can be derived for a major set of parameters 

initially (Weng et al., 1990); and (c) The convergence is nearly guaranteed because the 

linear approximation of the parameters obtained in the first step is in the vicinity of the 

final solution (Salvi et al., 2002). 

Geometric Camera Calibration in CV and MV make use of 3-D or planar 2-D 

calibration models. These models typically consist of multiple circular control points or 

checkerboard patterns where the vertices of the squares serve as control points. 

Commonly adopted methods in CV /MV are those of Tsai (1987), Zhang (2008) and 

Heikkila (2000). These are the most widely used plane-based calibration algorithms. All 

are based on the pinhole camera model including terms for modelling lens distortions. 

The various methods differ in their implementation, formulation and mathematical 

modeling. 

Tsai 's method (Tsai, 1987) is an example of a two-step technique that consists of 

a combination of linear and nonlinear methods. A technique for three-dimensional 

camera calibration for machine vision based metrology using off-the-shelf TV cameras 

and lenses is described in Tsai ( 1987). The proposed two-stage technique is aimed at 

efficiently computing the camera external position and orientation relative to the object 

reference coordinate system as well as the effective focal length, radial lens distortion, 

and image scanning parameters. The calibration model assumes that some camera 
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parameters are provided by the manufacturer hence no initial approximation of these 

parameters is required, which makes the technique fast. The approach is based on the 

radial alignment constraint which is a function of five of the six extrinsic camera 

parameters; namely, the relative rotation and translation between the camera and the 

calibration points with the exception of the z translational vector. Hence, by using this 

radial alignment constraint (parallelism constraint) all of the extrinsic parameters except 

for tz are computed in the first stage. This constraint considerably reduces the 

dimensionality of the unknown parameter space while solving a subset of calibration 

parameters (coefficients of the homogeneous transformation matrix) with linear 

equations. In the second stage, all other parameters are estimated by nonlinear 

optimization. The intrinsic parameters are computed using normal projective equations. A 

second order radial distortion model is used while no decentering or tangential distortion 

effects are considered. The optimization technique does not use the full camera model in 

order to speed up the performance (Zollner and Sablatnig, [Online]). Moreover, the 

number of iterations is considerably reduced by the proposed algorithm although all the 

parameters are iteratively optimized. This method works with a single plane or multiple 

plane images and with 2-D or 3-D calibration grids as targets. In the case of multiple 

calibration images, a planar pattern is moved to different levels by a z stage. 

Zhang's method (Zhang, 2008) uses 2-D planar targets (e.g. a checkerboard 

pattern) as a calibration target and uses the vertices of the squares as control points to 

compute a projective transformation. The technique requires the camera to observe the 

target presented at several different orientations producing n different images (with n ~ 2) 
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either by moving the camera or the planar pattern. The proposed procedure consists of a 

closed-form solution for estimating the camera's intrinsic (interior) and extrinsic 

(exterior) parameters, and a linear least-squares solution for recovering the coefficients of 

radial distortion. This is followed by a nonlinear optimization technique (Levenberg­

Marquardt Algorithm) based on the maximum likelihood criterion for refining all the 

recovered parameters by minimizing the reprojection error. Zhang's approach is similar 

to an earlier technique proposed by Triggs (1998) that requires a minimum of five views 

of a planar target. 

The technique developed by Heikkila (Heikkila, 2000) consists of a forward 

camera model which converts the 3-D world coordinates to distorted image coordinates 

and a backward camera model which transforms the distorted camera coordinates to 

lines-of-sight in the 3-D world coordinate system, or to the intersection of these lines 

with a known 2-D plane. More on this camera model and technique is described in 

Chapters 2 and 3. The calibration procedure is mainly intended to be used with circular 

control points. The camera model includes eight intrinsic and six extrinsic parameters. 

The calibration model first extracts the initial estimates of the camera parameters using a 

closed-form solution based on a Direct Linear Transformation (DLT) solution and then a 

nonlinear least-squares estimation employing numerical techniques like the Levenberg­

Marquardt algorithm to refine the parameters of the forward camera model. It makes use 

of distortion models and inverse distortion models to distort and correct the image 

coordinates respectively. The model considers two coefficients of radial and two 
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coefficients of tangential ( decentering) distortion. The proposed method works with 

single or multiple images and with 2-D or 3-D calibration grids. 

To summarize, chronologically Tsai's algorithm is the oldest technique that is still 

widely used in CV I MV, and there are numerous implementations in C I C++ or other 

high-level computer languages (Zollner and Sablatnig, [Online]). Zhang's method, which 

makes use of advanced concepts in projective geometry, offers significant advantages in 

terms of flexibility in comparison to other classical techniques which use expensive 

equipment such as two or three orthogonal planes. Heikkila's method uses an array of 

circular control points as a target and hence the method requires additional subpixel 

detection techniques and ellipse fitting to extract the circular control points from the 

synthetic images making the whole procedure more complicated. Still this method gives 

quite accurate results in estimating the camera parameters including lens distortion 

coefficients. A camera calibration toolbox for MATLAB has also been proposed by 

Heikkila (Heikkila, 2000). 

1.2 Proposed Project 

The quest for the best solution to the Geometric Camera Calibration has been a research 

problem for many years in the Computer I Machine Vision communities. One of the most 

systematic calibration procedures for 3-D machine vision applications was proposed by 

Heikkila (2000) in which a comprehensive set of camera parameters is automatically 

evaluated by observing a calibration target consisting of two perpendicular planes, each 
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with 256 circular control points (Figure 1.2). Other similar techniques employ a 

checkerboard pattern as a target and use the vertices of the squares as control points 

(Figure 1.3). While these techniques are sound from a theoretical point of view, they do 

not adequately speak to the question of measurement accuracy. The following figures 

represent two types of calibration targets used mainly for machine vision applications as 

explained in the previous sections. 

Figure 1.2: 3-D Calibration target (Heikkila, 2000) 
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Figure 1.3: Checkerboard pattern as target 
(http://www. vision.caltech.edu/bouguetj/calib _ doc/htrnls/calib _ example/index.html) 

This study addresses the problems associated with geometric camera calibration as well 

as the question of accuracy. The broad use of camera calibration in the field of machine 

vision and computer vision is the primary motivation for understanding the major factors 

that influence the accuracy of camera calibration as well as the accuracy that can be 

achieved within the practical limits of most research environments. Heikkila' s camera 

calibration technique was selected for the detailed investigation in this study. 
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1.2.1 Methodology Overview 

The study starts with the implementation of the technique and algorithms proposed by 

Heikkila for geometric camera calibration. The performance of the technique is then 

evaluated by analyzing a virtual camera image of a hypothetical calibration target that is 

created by applying a set of known camera parameters. The entire performance 

evaluation process can be briefly described as follows: 

Step 1: Define a 3-D target which consists of an array or arrays of control points whose 

object coordinates in the world coordinate system are known. 

Step 2: By applying a set of known camera parameters, calculate the image coordinates 

of these control points in the image coordinate frame with the Euclidian and projective 

transformations as well as with lens distortion. 

Step 3 : Perform the calibration by employing the proposed calibration method in order to 

extract the camera's intrinsic and extrinsic parameters and compare with the known 

values used in Step 2. 

As an initial start to the proposed research, Heikkila's calibration algorithm was 

verified with a set of synthetic images of a simulated 3-D target. A set of intrinsic and 

extrinsic parameters were computed from the synthetic images by applying Heikkila's 

calibration algorithm. These parameters were found to be exactly equal to the values used 

to generate the synthetic image which implies that the algorithm works properly in 

estimating the parameters. The camera modelling in GCC is broken down into 4 steps as 

described in Figure 1.4: 
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Image coordinate system 

{ w} Step 1 

Image plane 

Step2 
Camera coordinate system 

Figure 1.4: The geometric relation between a 3-D object point and its 2-D Image 
projection 

Step 1: Consists of the transformation of a point Wp w in the world coordinate system to 

the camera coordinate system obtaining Cp w· This transformation is done by using 

rotation matrix and a translational vector. 

Step 2: Consists of a projective transformation of the point Cpw to the image plane 

obtaining the point Pu. 

Step 3: Models the lens distortion which transforms the point P u to P d . 

Step 4: Consists of the coordinate system transformation of the point Pd to the image 

coordinate system of the computer producing 1P d which is measured in pixels. 
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More on camera modeling and the mathematical relationship between the transformations 

involved in this study are discussed in Chapter 2. 

Camera calibration has been studied extensively in Computer I Machine vision, 

and various techniques have been employed; however, it can be said that while these 

techniques are sound from a theoretical point of view, they do not adequately speak to the 

question of measurement accuracy. Hence the study was extended to gain an 

understanding of how much accuracy is needed on the target points for an optimal 

calibration. This study addresses the following fundamental question: Assuming a certain 

tolerance or uncertainty in the calibration target, what is the expected error with respect 

to the measured camera parameters and what is the impact on the final 3-D machine 

vision application? Later, the study on the accuracy analysis was extended to understand 

the problems associated with geometric camera calibration through the application of 

Design of Experiments (DOE). A response surface methodology (RSM), namely a 

Central Composite Design (CCD), is carried out for this purpose. The objective of this 

study is to find out the significant factors leading to inaccurate results during the process 

of camera calibration. Based on the results of this study, the final focus was to propose a 

new approach towards camera calibration in which image center and focal length are 

calculated independently of the lens distortion. The experimental setup includes an X-Y 

table with camera, LED lighting, stepper motor driven ball screws for controlling the 

table motion, a microcontroller interface circuit and a computer. The software, which is 

developed in MA TLAB, consists of a series of image processing algorithms to extract the 

image points with subpixel accuracy. 
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1.2.2 Significance of the study 

Geometric camera calibration introduces the analytical tools necessary to establish the 

quantitative constraints between the image measurements and the position and orientation 

of geometric figures measured in some arbitrary coordinate system. Once a camera has 

been calibrated, it is possible to associate with an image point a well defined ray which 

passes through this point and the camera' s optical center as well as to perform three 

dimensional measurements from a digitized picture (Forsyth and Ponce, 2003). An 

accurate, reliable calibration procedure is essential for most industrial machine vision 

applications including areas like mechanical metrology, robot assembly, reverse 

engineering, etc. An optimal calibration technique should produce unbiased and 

minimum variance estimates of the camera parameters. In practice, this is quite difficult 

to achieve due to various error sources affecting the imaging process. The precision of 

the parameter estimates is an important aspect in all camera calibration techniques. This 

study focuses mainly on the role of "accuracy" in geometric camera calibration by 

identifying a few predominant factors contributing to error. 

1.3 Document Organization 

This document is organized as follows: Chapter 2 describes the camera model in general 

with a detailed explanation of the pinhole camera model, perspective geometry and other 
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mathematical models of the image formation process. Chapter 3 describes the relevant 

background and motivation which includes an overview of Heikkila' s calibration 

techniques and algorithms. Chapter 4 describes the work done for the implementation and 

validation of Heikkila' s method with a discussion on the accuracy analysis of the 

calibration model, including methodology and results. Chapter 5 describes the application 

of Design of Experiments (DOE) to analyze the problems associated with geometric 

camera calibration. Included is a description of DOE, experimental design considered, a 

description of the methodology and a discussion of the results obtained. Chapter 6 

describes the new approach used for camera calibration with a description of the 

technique as well as experimental results acquired with the proposed technique. Finally, 

in Chapter 7, results are summarized, conclusions are drawn, contributions are 

highlighted and recommendations on future work are presented. 
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Chapter 2 

Camera Model 

In machine vision we need to know aspects of a camera's image-formation process that 

range from simple properties, such as magnification and focussed distance, to more 

complex image properties such as perspective projection and image defocus (Gruen and 

Huang, 2001). In order to have computationally efficient, closed-form equations for the 

more complex properties, we use models that are based on simplifications or abstractions 

of the true image-formation process of the lens. The two most commonly used abstract 

models are the pinhole camera model and the thin-lens model. In this research work of 

camera calibration, a pin-hole camera model, which is the simplest kind of camera model, 

is demonstrated for the mathematical modeling of image formation process. Models that 

account for lens distortion first try to move an observed image point to another point 

corresponding to the pinhole camera model (Tsai, 1987; Heikkila, 2000). A camera 

model is an algorithm for calculating a line where an observed point should lie, given its 
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coordinates in the image (Ryberg et al. , 2006). Or conversely, knowing the relative 

position and orientation of the camera and an object point, calculate where it would end 

up in the image. 

Depending on the accuracy requirements, the camera model is based on either 

orthographic or perspective projection (Heikkila, 2000). Orthographic transformation, 

which is the roughest approximation, assumes that the objects in 3-D space are 

orthogonally projected on the image plane. It is more suitable for vision applications 

where the requirements of the geometric accuracy are somewhat low. Due to its linear 

nature, it provides a simpler and computationally less expensive solution than perspective 

projection which is a nonlinear form of mapping. For 3-D motion estimation and 

reconstruction problems, perspective projection gives an idealized mathematical 

framework which is actually quite accurate for high quality camera systems. For off-the­

self systems, the perspective projection model is often augmented with a lens distortion 

model. Analytical approaches to calibration have a common starting point, that is, the 

introduction of specific analytical models for radial and decentering (tangential) lens 

distortion directly into the projective equations (Slama, 1980). 

2.1 Pinhole Camera Model: A Brief Introduction 

The pinhole camera model describes the mathematical relationship between the 3-D 

(object) coordinates of a point in the world frame and its 2-D image coordinates in the 

image frame of an ideal pinhole camera; i.e. where the camera aperture is described as a 
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point (pinhole) and is used instead of lenses to focus light. A pinhole camera, also known 

as camera obscura (literally, dark chamber) can be imagined as a light-proof box with a 

small hole in one of its sides and a translucent plate on the opposite side. Light from a 

scene passes through this small hole and projects an inverted image on the translucent 

plate of the box. The inverted image is created by the perpective projection. Hence, it is 

convenient to consider a virtual image associated with a plane lying in front of the 

pinhole, at the same distance from it as the actual image plane, which will produce an 

image equivalent to the actual one (Forth and Ponce, 2003). Imaging devices such as 

cameras with small apertures, and even a human eye in bright light act like a pinhole 

camera. Figure 2.1 represents the principle of pinhole camera, where light rays from an 

object pass through a small hole to form an inverted image. 

Objett 

Figure 2.1 : Principle of pinhole camera 
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The smaller the hole, the sharper the image is. But it reduces the amount of light reaching 

the image plane making the projected image appear to be dimmer. On the other hand, if 

the hole is large in size, the image looks brighter but gives blurry pictures. Optimally, the 

size of the aperture should be 1/100 or less of the distance between it and the screen. 

Pinhole cameras in combination with Charge Coupled Devices (CCDs) are often used for 

surveillance because they are difficult to detect. 

An ideal pinhole camera model does not include secondary effects such as 

geometric I optical aberrations or blurring of unfocused objects caused by the lenses and 

finite or larger sized apertures. It also does not take into account the fact that most 

modern practical cameras have only discrete image coordinates (e.g. the commercially 

available off-the shelf cameras). Hence an ideal pinhole camera model can only be 

considered to be a linear model for mapping a 3-D scene and a 2-D image. If the goal is 

to get highly accurate 3-D geometric measurements, especially in machine vision 

applications, some of the lens distortion effects are compensated for by applying suitable 

coordinate transformations on the image coordinates and by adding a nonlinear lens 

distortion model to the existing pinhole camera model (more detailed descriptions of 

these mathematical formulations are explained in the following sections). Normally, other 

effects are negligible if a high quality camera is used. Such a pinhole camera model can 

generally describe how a camera depicts a 3-D scene. A pinhole camera model is widely 

used in various vision based applications involving areas like computer I machine vison, 

computer graphics, image processing, and pattern recognition. 
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2.2 The Geometry of Pinhole Camera Model 

The pinhole camera model is based on the principle of collinearity, where each point in 

the world I object space is projected by a straight line through the projection center (the 

origin of the camera coordinate system) onto the image plane (Heikkila and Silven, 

1997). Let us consider a pure perspective projection (i.e. pinhole) camera model 

illustrated in Figure 2.2 which often provides an acceptable approximation of the imaging 

process. The camera model assumes the laws of Gaussian optics with an extension for the 

aberration of geometric lens distortions (i.e. radial and tangential distortions). Hence, the 

camera model consists of a linear part corresponding to the ideal pinhole camera model 

(i.e. a first order approximation of the real camera projection) and a nonlinear part 

corresponding to the lens distortion model. The incorporation of nonlinear models is 

necessary to accurately model the lenses which are useful for applications requiring 

greater precision. The mathematics related to the geometry of a pinhole camera model is 

explained in the following sections: 
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World frame , W 

Camera frame, C 

Yc 

f 

O cOR- Optical axis I Principal axis I 
Principal ray 
OR- Principal point (Image centre-U0, V0) 

f- Effective focal length 

Pu (u,v) 

Image fra me, l 

Figure 2.2: Ideal pinhole camera model 

2.3 Definition of Various Coordinate Frames 

1. World Coordinates 

The coordinates of a point with respect to the object I world coordinate frame are denoted 

by (Xw, Y w, Zw ). The geometry of the calibration target with respect to this coordinate 

frame is known a priori. 

2. Camera Coordinates 

The coordinates of a point with respect to the camera coordinate frame are denoted by 

(Xc, Y c, Zc). The origin of this coordinate frame Oc, coincides with the projection center 
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of the lens. The image plane, TI, is parallel to the Xc Y c plane and it is displaced a 

distancef(i.e. the effective focal length) from Oc along the Zc axis. 

3. Image Coordinates 

The two dimensional coordinates of a point on the image plane are denoted by (u,v). The 

origin of the coordinate frame OR [(U0,V o)] lies at the intersection of the optical axis of 

the lens and the image plane. This point is known as the principal point or the image 

centre. Due to the lens distortions, the image points (u,v) are displaced. The distorted 

image points are denoted by (ud,vd) and once the correction has been applied, these points 

are denoted by (uc,Vc). 

Let 'Pw' be an arbitrary 3-D point located in the world frame as can be seen in 

Figure 2.2. The projection of 'Pw' corresponds to the point 'Pu' in the image frame which 

is defined by the coordinates [ u, v ( The coordinates of the point 'P u' can be determined 

from the homogeneous coordinates given by the following transformation: 

(2.1) 

where F is the perspective transformation matrix (PTM) that can be defined as the 

product of two matrices P and M. The matrix P contains the intrinsic camera parameters: 

(2.2) 
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The parameter s is the scale factor and Asp is the aspect ratio. The parameter f and 

U0,V0 were previously defined as the effective focal length and image centre respectively. 

The matrix M is a 4 by 4 matrix describing the mapping from the world frame (W) to the 

camera frame (C), which contains the extrinsic camera parameters. It is composed of two 

parts as follows: 

M= (2.3) 

where f = ~X f y f Z r describes the translation between tWO frames (i.e. between w and 

C), and R is a 3 by 3 orthonormal rotation matrix that can be expressed in terms of the 

three Euler angles:a,(roll), f3,(pitch),y, (yaw) , that define a sequence of three 

elementary rotations around z, y, and x-axes, respectively. The rotations are performed 

first about z-axis by an angle a,, then about y-axis by an angle /3,, and finally about x-

axis by an angler r • 

2.4 Camera Parameters 

In practice, the world and camera coordinate system are related by a set of physical 

parameters such as the effective focal length of the lens, the position of the image center, 

the size of the pixels and the position and orientation of the camera. Generally, the 
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objective of the explicit camera calibration procedure is to determine the optimal values 

for these parameters based on image observations of a known 3-D target. In the case of 

self-calibration the 3-D coordinates of the target points are also included in the set of 

unknown parameters (Heikkila and Silven, 1997). These physical camera parameters are 

commonly divided into two, i.e. extrinsic and intrinsic parameters. These parameters are 

explained in the following paragraphs: 

1. Extrinsic Parameters (Exterior Projective Parameters) 

These parameters relate the camera' s coordinate system to a fixed world coordinate 

system and define its position and orientation in space. In other words these parameters 

are required to define the transformation from 3-D object I world coordinate system to the 

3-D camera coordinate system centered at the optical center. The extrinsic parameters 

also describe the relationship between cameras in multi-camera systems. The extrinsic 

parameters are the three Euler angles (a,, [J,, y,) and the three components of translation 

Ctx. ty. t2).The Euler angles can be computed by decomposing the rotation matrix R given 

as, 

l
r,, 

Rotation matrix, R = r21 

r3, 

2. Intrinsic Parameters (Interior Projective Parameters) 

(2.4) 

The intrinsic parameters relate the camera coordinate system to the idealized image 

coordinate system, in which the image coordinates have their origin at the principal point. 
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In other words these parameters are required for the transformation from 3-D object I 

world coordinates measured with respect to the camera coordinate frame to 2-D image 

coordinates. The intrinsic parameters basically determine how light is projected through 

the lens onto the image plane of the sensor and models the internal geometry and optical 

characteristics of the camera. The intrinsic parameters are: 

a. Effective focal length (f)- image plane to projective center distance. 

b. Image center (Uo, V0) - the point where the optical axis pierces the image plane, also 

called the principal point. 

c. Scale factor ( s) - results from the difference in frequency between the pixel clock of 

the camera and the acquisition rate of the frame grabber. This is only an issue in older 

machine vision systems that employ camera with an analog output signal. The scale 

factor is equal to I in modem digital cameras where the pixels are usually square. 

d. Lens distortion coefficients: Actual cameras are not perfect and sustain a variety of 

optical aberrations (Weng et al. , 1992). Off-the self consumer grade camera lenses 

exhibit inherent nonlinear distortion properties that must be accounted for in high 

accuracy machine vision applications. In this research two types of lens distortion are 

considered, radial and tangential I decentering distortions. Figure 2.3 illustrates radial and 

tangential distortion. 
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Figure 2.3: Radial and tangential distortions (Weng et al. , 1992) 

1. Radial distortion coefficients (k1, k2) - Radial distortion causes the actual image point 

to be displaced radially in the image plane; i.e. an inward or outward displacement of a 

given image point from its ideal location. Figure 2.4 illustrates the effects of radial 

distortion with respect to no distortion. 
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Figure 2.4: Effect of radial distortion. Solid lines: no distortion; dashed lines: with radial 
distortion (a: negative, b: positive) (Weng et al. , 1992) 

Radial distortion is a function of the distance separating the optical axis from the point of 

interest. This type of distortion is mainly caused by an incorrect radial curvature of the 

lens elements. A negative radial displacement of the image points is referred to as barrel 

distortion (Figure 2.5). It causes outer points to crowd together and scale to decrease 

(Weng et al., 1992). This leads to a decrease in the image magnification with the distance 

from the optical axis. Apparently, the effect is that of an image which has been mapped 

around a sphere. 
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Figure 2.5: Barrel distortion 

A positive radial displacement is referred to as pincushion distortion (Figure 2.6). It 

causes outer points to spread and the scale to increase. This leads to an increase in the 

image maginification with the distance from the optical axis. The apparent effect is that, 

lines that do not go through the centre of the image are bowed inwards towards the centre 

of the image. This type of distortion is strictly symmetric about the optical axis. 
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Figure 2.6: Pincushion distortion 

2. Tangential distortion coefficients (p1, P2) -Tangential distortion is an image defect that 

occurs when the individual lens elements in a compound lens assembly are not strictly 

collinear. This misalignment of the optical centers causes the displacements of the image 

points to occur at right angles to a radius from the center of the field. In Figure 2.3, the 

displacement of the image point is perpendicular to the radial distortion indicated by dt. 

Figure 2. 7 illustrates the effects of tangential distortion, showing the maximum and 

minimum axis of tangential distortion. 
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Figure 2.7: Effect of tangential distortion. Solid lines: no distortion; dashed lines: with 
tangential distortion (Weng et al., 1992) 

Other distortion types have also been proposed in the literature (Heikkila and 

Silven, 1997). For example, Melen (1994) proposes a correction term for the linear 

distortion that occurs when the image axes are not orthogonal. In most cases this error is 

small and the distortion component is insignificant. Another error component is thin 

prism distortion. It arises from imperfect lens design and manufacturing, as well as 

camera assembly. This type of distortion can be adequately modeled by the adjunction of 

a thin prism to the optical system, causing additional amounts of radial and tangential 

distortions (Faig, 1975; Weng et al. , 1992). 
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2.5 Mathematical Model of Image Formation Process 
(Camera Model) 

2.5.1 Coordinate Transformations 

The transformation describing the Image formation process can be summarized as 

follows: 

1. World (i.e. Object) Frame to Camera Frame 

This transformation consists of a rotation followed by translation. 

Xc 
T 

Xw 
T T 

'il r,2 r,3 fx 

Yc Yw r2, r22 r23 + ty 
(2.5) 

Zc Zw r3, r32 r33 t_ 

The parameters which must be identified are the nine rotation parameters and the three 

The nine rotation parameters can be expressed in terms of the three Euler angles, 

a,,fJ,,r, as follows (Craig, 1986): 
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r11 =cos a,. cos fJ,. 

r12 =-sin a,. cosy,. +cosa,. sin/],. siny,. 

r13 =sin a,. sin y,. +cos a,. sin/],. cosy,. 

r21 =sin a,. cos [J,. 

r22 =sina,.sinfJ,.siny,. +cosy,.cosa,. 

r23 =-cos a,. sin Yr +sin a ,. sin [J,. cos Yr 

r31 =-sin fJ,. 

r32 = cos [J,. sin y r 

r33 =cos [J,. cos Yr 

(2.6) 

Conversely, the Euler angles can be computed from the elements of R by applying the 

following decomposition: 

ar = atan2(r211cosfJr,r,,lcosfJr) 

{Jr =a tan 2( -r31 ,~r11 2 + r21
2

) 

y,. = a tan 2(r32 1 cos p,., r33 1 cos p,.) 
(2.7) 

The function a tan 2(x, y) is a two-argument inverse tangent function in MA TLAB giving 

the angle in the range[- ;r, 7r]. 

2. Camera Frame to Sensor Frame (i.e. undistorted image coordinates measured with 
respect to the centre of the sensor) 

This transformation describes the single point perspective projection for an ideal lens-

sensor assembly. The perspective projection equations are derived from the collinearity 

of the 3-D point 'Pw', its image point 'Pu', and the center of the pinhole 'Oc' (Forsyth 

and Ponce, 2003). The coordinates of 'Pw' in the world coordinate system are represented 

by (Xw, Yw,Zw) and its projection in the image plane is represented by the point 'Pu' with 
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coordinates (u, v) (See Figure 2.2). Since the image plane is two dimensional and is 

parallel to the camera frame, the third coordinate of the image point located in the image 

plane can be considered to be the effective focal length 'f. Since the points 'Pw', ' Oc', 

and 'Pu' are collinear, it can be written as Oc Pw = AOcPu for some number A, so 

u = A Xw} 
v = A Yw 

f = A Zw 

1_u_v_l 
/1,- ------

Xw Yw Zw 
(2.8) 

The coordinates of ' Pw' in the camera coordinate system can be calculated using the 

Euclidian transformation equation (Equation (2.5)). Hence the coordinates (Xw, Yw,Zw) 

can be replaced with their corresponding camera coordinates denoted by (Xc, Yc,Zc). 

Therefore, Equation (2.8), can be written as: 

1_u_v_l 
/1,------

X c Yc Zc 
(2.9) 

From Equation (2.9), the projection of the 3-D target point to the image plane IS 

expressed as: 

(2.1 0) 

X y 
where u = I _c and v = I ---..£ 

Zc Zc 

The parameter which must be identified through camera calibration is the effective focal 

distance 'f'. 
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Usually in computer vision literature, the origin of the image coordinate system is 

in the upper left hand comer of the image array (Heikkila and Silven, 1997). It is more 

convenient to express the image coordinates in terms of pixels. Therefore, the image 

coordinates u and v are multiplied by factors Du and Dv (i.e. the pixel size) that specify 

the relationship between pixels and the physical object unit, millimeters (Heikkila, 2000). 

These factors can be typically obtained from the data sheets of the camera; however 

knowing their precise values is not necessary, because they are linearly dependent on the 

focal length and scale factor that are determined during calibration. Therefore, the 

corresponding image coordinates (u', v') in pixels can be obtained from the projection 

(u, v) by applying the following transformation: 

(2.11) 

3. Undistorted image coordinates to distorted image coordinates. (Nonlinear lens 
distortion model that accounts for radial and tangential distortions) 

The pinhole camera model is only an approximation of the real camera projection which 

provides a simple mathematical relationship between the object and image coordinates 

(Heikkila and Silven, 1997). In real cameras, perspective projection is insufficient for 

modeling the mapping between 3-D object and 2-D image coordinates precisely. Hence, 

it is not valid when high accuracy is required and, therefore, a more comprehensive 

camera model must be used. Ideally, the light rays coming from the scene should pass 

through the optical center linearly, but in practice, lens systems are composed of several 

48 



optical elements introducing nonlinear distortion to the optical paths and the resulting 

images (Heikkila, 2000). The most commonly used approach for correcting this lens 

distortion is to decompose the distortion into radial and tangential components. Usually, 

the pinhole model is a basis that is extended with some corrections for the systematically 

distorted image coordinates (Heikkila and Silven, 1997). In this study, a nonlinear fourth 

order radial distortion model and a second order tangential distortion model are used. The 

correction for the combined effect of both radial and tangential distortion can be 

expressed using the nonlinear lens distortion model as follows: 

F(ad ,8 ) = [udFRadial + F7:ngential l = [!:::.u] = [uAk1r/ + k2r/ )+ (2p1ud vd + p 2 (r/ + 2u/ ))l 
V dFRadial + Ffangential !:::.v V Aklrd 

2 
+ k2rd 

4 
)+ (2p2ud V d + P1 (rd 

2 
+ 2v d 

2 ))J 
rd=~u/ +v/ 
8 = [kl,k2, pl , p2y 

ac = [uc, vJ 
ad =[ud, vd] 

(2.12) 

!:::.u, !:::.v are the corrections for the combined effects of radial and tangential distortion. 

T ac = [uc, vcJ are the corrected image coordinates (corresponding to an ideal pinhole 

camera model) and ad = [ ud, v d fare the distorted image coordinates. 

Equation (2.12) represents an approximation for the corrected image coordinates 

from the distorted (or measured) image coordinates. Unfortunately there is no analytical 

closed-form solution for computing the distorted image coordinates, ad, from the 
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corrected image coordinates, ac. Several approximations for ad are proposed in the 

literature (e.g. Heikkila, 2000; Melen, 1994). In this study, ad is calculated by solving 

Equation (2.12) iteratively by applying Newton's method. The parameters which must be 

identified in this transformation are the radial distortion coefficients, k1 and k2 and the 

tangential distortion coefficients, p 1 and P2· 

4. Distorted image coordinates to computer coordinate system (pixels) 

The distorted image coordinates ud and vd are measured relative to the projection centre 

of the lens. In computer vision applications, it is customary to specify the coordinates of 

pixels with respect to the upper left-hand comer of the image. Therefore, the 

transformation of the distorted image coordinates (measured in mm) to pixels in the 

computer reference frame is given by: 

uds CY - vd V, ex, =-+Uo I--+ 0 
p ' p 

X y 

(2.13) 

(ex, ,CY, )-row and column numbers of the image pixel in computer frame memory 

Px - pixel size in X direction 

PY- pixel size in the Y direction 

Equation (2.13) can be expressed using the transformation matrix as follows: 

(2.14) 
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In summary, a proper camera model for high accuracy computer vision 

applications can be derived by combining the pinhole camera model with the correction 

for radial and tangential distortion. The set of intrinsic parameters if, s, Uo, Vo) is 

supplemented with the radial distortion coefficients, k, and k2, and the tangential 

distortion coefficients, p 1 and p2. These intrinsic parameters are also known as physical 

camera parameters since they have a certain physical meaning (Heikkila and Silven, 

1997). 

The mathematical transformation in GCC is represented as a flow chart in the 

next section, Section 2.5.2. 
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2.5.2 Flow Chart Representation 

(Xw,Y w,Zw) 3-D world coordinate system 

1 
Step 1 

Rigid body transformation from (Xw,Yw,Zw) to (Xc,Y c,Zc) 

Parameters to be identified: fj 1, fj 2 , fj 3 , r21 , r22 , r23 , r31 , r32 , r33 , tx ,t y, tz 

(Xc, Y c,Zc) 3-D camera coordinate system 

l 
Step 2 

Perspective projection with pinhole geometry 
Parameters to be identified: f 

l 
(u,v) Ideal undistorted image coordinate 

l 
Step 3 

Radial & Tangential lens distortion 
Parameters to be identified: khk2>PhP2 

, 
(ud,vd) Distorted image coordinate 

Step 4 
Computer acquisition, sensor misalignment 

Parameter to be identified: scale factors for image X coordinate, image centre (U0,V0) 

(CX1, CY1) Computer image coordinates 

Figure 2. 8: Four steps of transformation from 3-D world coordinate to computer image 
coordinate (Tsai, 1987) 
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Figure 2.8 represents the four steps of transformation from 3-D world coordinates 

to 2-D image coordinates. This flow chart can be explained briefly as follows: (1) Step 1 

represents the rigid body transformation from the 3-D object coordinates in the world 

frame to 3-D object coordinates in the camera frame. The parameters that must be 

identified during this transformation are the nine rotational parameters and the three 

translational parameters, collectively referred to as extrinsic parameters. (2) Step 2 

represents the transformation from the camera frame to the image plane giving ideal 2-D 

undistorted image coordinates. The parameter that is identified is the focal length. (3) 

Step 3 represents the transformation from undistorted image coordinates to distorted 

image coordinates as a result of radial and tangential distortion. The parameters that are 

identified are the four coefficients of radial and tangential distortion. ( 4) Step 4 represents 

the transformation from distorted coordinates in the image plane to the computer 

coordinate system which yields the coordinate locations in pixels. The parameters that 

must be identified are the scale factor and the image centre. The transformation from Step 

2 to Step 4 identifies the camera's intrinsic parameters. 

This procedure outlines the mathematical transformation used in this research for 

the purpose of camera calibration. 
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Chapter 3 

Camera Calibration Techniques 
and Algorithms 

3.1 Background and Motivation 

This research work implements the techniques and algorithms reported in the paper by 

Heikkila, Geometric Camera Calibration Using Circular Control Points (Heikkila, 

2000). This technique is considered to be representative of most techniques that are 

currently employed for camera calibration. 

3.2 Discussion of Heikkila's Method 

The technique of camera calibration presented by Heikkila in the paper Geometric 

Camera Calibration Using Circular Control Points involves a forward camera model 
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which converts the 3-D world coordinates of control points to distorted image coordinates 

and a backward camera model that transforms these distorted camera coordinates to lines-

of-sight in the 3-D world coordinate system, or to the intersections of these lines with a 

known 2-D plane. The technique utilizes circular control points; however, the calibration 

procedure is also suitable for small points without geometry in which the radius is set to 

zero. Two types of lens distortions, namely radial and tangential distortion, are taken into 

consideration along with the pinhole camera model. The nonlinear lens distortion model 

used for correcting the distorted image coordinates is given by: 

(3.1) 

The distorted and corrected coordinates are denoted by a d and ac, respectively. Since 

circular control points are used, a mathematical model for ellipse fitting is also presented 

in the procedure as the projection of a circle will be an ellipse during mapping. It is 

assumed that the camera model includes eight intrinsic parameters 

order to minimize the error between the observed and model coordinates, the distorted 

image coordinates are expressed in terms of their undistorted counterparts using an 

inverse distortion model. Since there is no analytic or closed form solution for the inverse 
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distortion problem, an approximate inverse model is found by taking the Taylor series of 

FD about ac which yields the following model: 

where: 

(3.2) 

The parameters obtained using the inverse camera model are subsequently used to correct 

the distorted image coordinates. Due to the nonlinear nature of the camera model, an 

iterative search technique is used to produce an optimum solution. The calibration 

procedure suggested in (Heikkila, 2000) involves three steps and can be summarized as 

follows: 

Step I: Initialization: Before using an optimal estimator, initial estimates of the camera 

parameters are required to ensure that a global minimum can be achieved. In the 

initialization step, the aim is to produce the first, not the final, estimates of the camera 

parameters. It is often more reliable to use the nominal values for the focal length, scale 

factor and the image center as the initial estimates of the intrinsic parameters. 

Step 2: Iterative search: In this step the parameters of the forward camera model are 

estimated by minimizing the weighted sum of the squared differences between the 

observations and the model. Numerical techniques such as the Lavenberg-Marquardt 

nonlinear optimization method are used to compute the optimal camera parameters. 

Step 3: Backward camera model: This model involves the projection of the observed 

image coordinates back to 3-D coordinates. Once Steps I and 2 have been completed, the 
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parameters of the forward camera model are known and a set of distorted points {ad (i )} 

for arbitrary points {ac (i )}, where i = 1, .... , M can be produced. The inverse distortion 

model parameters are calculated and used for correcting the distorted image. Due to the 

approximations made in the derivation of the inverse distortion model, the parameter 

vector, 8, must be adjusted for back projection using the following least-squares 

formulation: 

~ 

8'= 

B(l) 

B(2) 

B(M) 

~ 

+ ac(l) - aAl) 

ac (2) - ad (2) 

(3 .3) 

where 8' is the vector of the distortion parameters to be used in the backward camera 

model, 

2~d (i~d (i) 
r} (i)+2~! (i) 
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.----------------------------------------------------------------------------

3.2.1 Experiment Overview 

Heikkila performed two experiments to test the proposed camera calibration procedure. 

First, the parameter estimates of the forward camera model were analyzed statistically 

using synthetic images and the results were compared with the outcome of a 

corresponding real image. Second, the precision of the inverse distortion model was 

evaluated by correcting and distorting random image coordinates. 

1. Calibrating the Forward Camera Model 

The tests were performed with 200 synthetic images and one real image that was used as 

a reference model. Figure 3.1 below shows the calibration images used for the 

experiments, one being the real image captured using an off-the-shelf monochrome CCD 

camera and the other being the corresponding synthetic image. 

(a) (b) 

Figure 3.1: Calibration images (a) Real image (b) Synthetic image (Heikkila, 2000) 
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The calibration object consists of two perpendicular planes each with 256 circular control 

points. The centers of these control points were located using the moment and curvature 

preserving ellipse detection technique and renormalization conic fitting. The calibration 

procedure was first applied to estimate the camera parameters based on the real image. 

The synthetic images were then produced using ray tracing with the camera parameters 

obtained from calibration and the known 3-D model of the control points. In order to 

make the synthetic images better correspond to the real images, their intensity values 

were perturbed with additive Gaussian noise (cr = 2), and blurred using a 3 by 3 Gaussian 

filter (cr =I pixel) as shown in Figure 3.l(b). Three different calibration methods were 

applied separately for all control point sets. The first method is the traditional camera 

calibration approach which does not assume any geometry for the control points. In the 

second method, circular geometry is utilized and all the observations are equally 

weighted. In the third method, each observation is weighted by the inverse of the 

observation error covariance matrix Ce. The estimated bias and standard deviation of the 

intrinsic parameters for all three methods were reported. Confidence intervals with a 95 

percent confidence level were also presented. It was noted that control points with 

circular geometry can reduce the bias significantly. 

2. Calibrating the Reverse Distortion Model 

In this experiment, the accuracy of the reverse distortion model was tested with a wide 

range of distortion parameters. For each 8, the third step of the calibration procedure 

was applied to solve for the parameter vector 8' . Then 10,000 random points were 
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generated inside the image region which were corrected and distorted using the distortion 

models mentioned in equations (3 .1) and (3 .2). The difference between the resulting 

coordinates and the original coordinates was examined with respect to the different 

values of the distortion parameters. The curves showing the root mean square error in the 

image coordinates as a function of distortion parameters k1 and k2 is also reported in the 

paper. 

The paper also discusses the various error sources that reduce the theoretical 

accuracy. Depending on the study done, the paper concludes that an accuracy of 1150 of 

the pixel size is achievable with the presented technique if error sources, such as line 

jitter and chromatic aberration are eliminated. The tests with synthetic images indicate 

improvements in the calibration results in limited error conditions. In real images, the 

suppression of external error sources becomes a prerequisite for successful calibration. 
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Chapter 4 

Implementation and Assessment of 
Accuracy 

In the field of machine vision, Geometric Camera Calibration refers to the experimental 

determination of a set of parameters which describe the image formation process for a 

given analytical model of the machine vision system. This study implements the camera 

calibration techniques and algorithms described in (Heikkila, 2000). The first problem 

that is addressed in this thesis is to find out whether the algorithm reported in (Heikkila, 

2000), works properly in estimating the camera parameters. As a second step, an 

accuracy assessment is performed on Heikkila' s method. Accurate camera calibration is 

necessary in many vision based applications that involve quantitative measurements. In 

general, no matter the calibration method used, the accuracy of the calibration depends on 

the known geometry of the targets which the lens or camera views. The camera support 
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during calibration should be rigid and shielded from vibrations; thermal variables should 

be negligible (Slama, 1980). Accuracy is the degree of closeness of a measured or 

calculated quantity to its actual (true) value. In this study, the accuracy analysis is 

performed using a synthetic model and deals with the fundamental question, "What is the 

accuracy required on the target points for optimal camera calibration? " In order to 

generate a synthetic model, the assumption is that the 3-D coordinates of a certain 

number of target points are known with respect to the world coordinate frame. In GCC, 

these 3-D target points are mapped to 2-D image points by applying the forward camera 

model. The unknown camera parameters are then solved by minimizing the discrepancy 

between the measured 2-D image points and those obtained from the model. 

The control points of the calibration target can be either coplanar (e.g. a printed 

checkerboard pattern as shown in Figure 1.3) or three dimensional (e.g. two orthogonal 

planes as depicted in Figure 1.2). In the case of a coplanar target, multiple images 

captured from different positions and orientations are required. If the control point 

structure is three dimensional, the advantage is that only one image is required for 

calibration. In order to generate a synthetic image of a calibration target, the 

configuration of the imaging system must first be specified. 
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4.1 Implementation and Validation of Heikkila's 
Method 

4.1.1 Problem Statement 

The first problem that is addressed in this thesis is to determine whether the algorithm 

reported in Heikkila (2000), works properly in estimating the camera parameters 

assuming ideal data (i.e. no measurement errors). This involves generating a synthetic or 

virtual image by defining target points in the world coordinate system and then mapping 

these 3-D object coordinates to 2-D image coordinates using a set of known extrinsic and 

intrinsic camera parameters. The specific parameters used in this study correspond to a 

commercially available camera, Lumenera (Lm135 1.4 megapixel industrial USB 2.0 

camera, Figure 4.1) and lens assembly. 

Figure 4.1: Camera system, Lurnenera 
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4.1.1.1 Calibration model 

The validation procedure involves generating a synthetic camera calibration model that 

includes: 

1. Target points in the world coordinate system: 

• An array of 1200 target points in three parallel planes (20x20x3) with a 5.715mm 

spacing between each target point in the X direction, 3.810mm in theY direction 

and 6.35mm in the Z direction (Figure 4.2). This spacing was selected to cover 

the entire field-of-view of the camera. 

2. Position and orientation of target points relative to the camera coordinate system: 

• Rotation of target about Z axis, a r = 0 

• Rotation of target about Y axis, flr = 0 

• Rotation of target about X axis, Yr = 0 

• X position oftarget relative to camera coordinate system, (trans_x) = -60mm 

• Y position of target relative to camera coordinate system, (trans_y) = -40mm 

• Z position of target relative to camera coordinate system, (trans_z) = 800mm 

3. Effective focal length of the lens: 

• f = 35mm 
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4. Image center in pixels measured relative to the image coordinate system with origin 

in the upper left-hand corner of the image. The pixel dimensions in the X and Y 

direction is 0.00465mm as provided by the camera manufacturer: 

• X image center in pixels, U 0 = 696 

• Y image center in pixels, V0 = 520 

5. Radial and Tangential distortion coefficients: 

• Radial distortion coefficients, Rad1 (k1) = 0.0001, Rad2 (k2) = 0.00005 

• Tangential distortion coefficients, Tan1 (p1) = 0.0001 , Tan2 (p2) = 0.00005 

Figure 4.2 below is a diagrammatic representation of the synthetic camera calibration 

model. 
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Figure 4.2: Diagrammatic representation of the synthetic camera calibration model 

4.1.1.2 Algorithm 

The algorithm used to validate the calibration procedure can be summarized as follows: 

Step 1: 

Step 2: 

Define the world coordinates of target points. 

Define the rotation matrix relating the world coordinate system to the 

camera coordinate system. Rotate and translate the target points to obtain 

the points relative to the camera coordinate system. 
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Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

Assuming a pinhole camera model, calculate the coordinates of the 

undistorted image coordinates of the target points (measured in mm) 

relative to the image center of the camera. 

Calculate the radial and tangential distortion using the nonlinear lens 

distortion model and compute the distorted image coordinates of the target 

points. 

Introduce the scale factor and convert the units of the distorted image 

coordinates from mrn to pixels using the pixel dimensions provided by the 

camera manufacturer. 

Add the image center offset to the distorted image coordinates to obtain 

the image coordinates relative to the computer coordinate system 

measured relative to the upper left hand comer of the image. 

Using the distorted computer image coordinates obtained in Step 6 and the 

world coordinates of the target points defined in Step 1, perform the 

camera calibration by applying Heikkila's algorithm. 

Calculate the inverse model parameters and determine the corrected image 

coordinates. 

Compare the original undistorted image coordinates of the target points in 

pixels with the corrected image coordinates and plot the histograms of the 

differences. 
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Step 10: Finally, compare the intrinsic and extrinsic parameters used to generate 

the synthetic image (Section 4.1.1.1) with those provided by Heikkila' s 

calibration algorithm in Step 7 above. 

4.1.2 Results and Discussions 

Figures below represent the calibration target, synthetic images and the histogram plot of 

error in pixels in the X and Y directions obtained by following the steps described in the 

previous section. Note that the lens distortion is relatively weak as can be observed in 

Figure 4.4. The distortion parameters used are typical of a commercially available 

industrial camera with a relatively long focal length. 
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Figure 4.3: Calibration targets (in nun) 
(a) Defined target points (b) Target points after undergoing rotation and translation 
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Figure 4.4 : Synthetic images (in pixels) 
(a) Undistorted image (b) Distorted image after adding radial and tangential distortion 
(c) Distorted plus corrected image; blue: distorted, red: corrected (correction done using 
inverse model parameters) 
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Figure 4.5: Error in pixels; histogram plots representing the difference between the 
original and the corrected image coordinates (error in X and Y direction) 

71 



Table 4.1 given below presents the calibration results of the model explained above. 

Table 4.1: Validation results 

Parameters Symbol Theoretical Value Calibration Results 

Scale factor s 1.0 1.0000 

Effective focal length f(mm) 35.0 34.9999 

Principal point 
U0 (pixels) 696 695.8728 

V0 (pixels) 520 519.7194 

Radial distortion 
k1 (mm-2

) I.Oe-4 9.788726e-005 

k2 (mm4
) 5.0e-5 5.046853e-005 

Tangential distortion 
Pl(mm-1) I.Oe-4 1.000345e-004 

P2(mm-1) 5.0e-5 5.002318e-005 

Alpha a, (degrees) 0 5.3713e-006 

Beta {J, (degrees) 0 9.6931 e-004 

Gamma Yr (degrees) 0 -0.0021 

trans x tx(mm) -60.0 -59.9865 

trans_y ty (mm) -40.0 -39.9702 

trans z tz(mm) 800.0 800.0024 

The results in Table 4.1 indicate that the calibration results for each parameter 

closely match the theoretical values used to generate the synthetic image. This implies 

that from a theoretical point of view the calibration algorithm accurately estimates the 

intrinsic and extrinsic camera parameters. 
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4.2 Accuracy Assessment 

4.2.1. Problem Statement 

The accuracy of the data acquisition process plays an important role when evaluating the 

performance of the camera calibration algorithm (Guendouz et al. , 2006). The precision 

of the estimated camera parameters depends on the positional accuracy of the 3-D target 

points as well as on the technique employed to identify the 2-D image points. Hence, it 

can be inferred that uncertainty in the 3-D coordinates of the target points can potentially 

yield inaccurate results during camera calibration. 

In an effort to better understand the influence of measurement error on camera 

calibration, this section of the thesis focuses on determining the required accuracy on the 

target points for optimal camera calibration. This is accomplished by adding uncertainty 

on the target point locations through randomly generated noise and studying the influence 

of the measurement error on the estimated camera parameters. 

4.2.2 Accuracy Assessment Procedure 

The accuracy assessment procedure involves adding an uncertainty of 0.1 mm on each of 

the target points through randomly generated noise using the same synthetic camera 

calibration model depicted in Figure 4.6. Previously it was assumed that the exact 

coordinates of the 3-D target points were known relative to the world coordinate system. 
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In this section an error bound or tolerance is introduced on the position of the target 

points. It is assumed that each target point has an equal probability of being located 

somewhere within an error bound of +/-0.05 mm in each of the three orthogonal 

directions. 

} O.lmm 

r-------, r-------, ,--------· 

-- :. : I I 
I I 
I I 
I I 

: . : I I--
I I 
I I 

:. : I I 
I I 
I I 
I I 
I I I I I I 

L-------1 L-------' I------- _I 

"-y----1 '-y-----1 

~ 
Target point is assumed to be 

anywhere within the 0.1 mm cube 

Figure 4.6: Diagrammatic representation showing addition of uncertainty 

4.2.2.1 Algorithm 

In order to verify how much accuracy is required on the target locations, the following 

study is performed: 
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Step 1: 

Step 2-6: 

Step 7: 

Step 9: 

Step 10: 

Add randomly generated noise on each of the target point coordinates as 

defined in the world coordinate system. In this manner each target point 

has an equal probability of falling anywhere within a 0.1 mm 

"uncertainty" cube. 

Calculate the distorted image coordinates of the target points in pixels 

relative to upper left hand comer of image (i.e. relative to the computer 

coordinate system) as described in Section 4.1 .1.2. 

Perform the calibration by applying Heikkila' s calibration algorithm. 

Repeat Step 7 and compute the mean and variance of the intrinsic and 

extrinsic parameters provided by the calibration algorithm. Continue until 

a constant value of variance is observed for each of the parameters (in this 

case 400 iterations are required). 

Plot the histogram of each of the parameters. 

4.2.3 Results and Discussions 

Table 4.2 summarizes the results of the study presented in the previous section. The 

various performance indices are defined as follows: 

• The Variance and Mean for each parameter was computed by following the steps 

outlined above with an uncertainty of +/-0.05mm added onto each of the target 

points. 

• The Standard Deviation is the square root of the Variance. 
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• The Absolute Accuracy is the 95% confidence limit which corresponds to twice 

the Standard Deviation. 

• The Relative Accuracy is the Absolute Accuracy expressed as a percent of the 

Mean value. Note that Relative Accuracy is not defined for parameters that have a 

nominal value of zero. 

Table 4.2: Calibration results with an error bound of 0.1 mm 

Parameters Variance 
Standard 

Mean 
Absolute Relative 

Deviation Accuracy accurac)' 

s 2.26E-09 4.75E-05 1.0000 9.50E-05 0.0095% 

f(mm) 0.0125 0.11 2 35.0105 2.24E-OI 0.6398% 

U0 (pixels) 267 .3676 16.3514 696.2667 3.27E+01 4.6969% 

V0 (pixels) 132.4768 11.5099 518.9618 2.30E+01 4.4357% 

k1(mm-2) 3.01E-09 5.48E-05 -2.91E-07 1.10E-04 -

k2(mm-4) 3.74E-11 6.11E-06 1.99E-08 1.22E-05 -

PJ(mm-1) 3.11E-JO 1.76E-05 1.62E-06 3.53E-05 -

P2(mm-1) 5.23E-IO 2.29E-05 -3.57E-07 4.58E-05 -

Alpha, a, 1.66E-06 0.0013 9.23E-05 2.60E-03 -

Beta, /3, 0.0153 0.1235 -0.0027 2.47E-OI -

Gamma,y, 0.0077 0.0877 -0.0079 1.75E-OI -

trans_x, t, 3.0231 1.7387 -60.028 3.48E+OO -5.7929% 

trans_y, ty 1.4984 1.2241 -39.8896 2.45E+OO -6.1374% 

trans_z, tz 6.7001 2.5884 800.24 5.18E+OO 0.6469% 

It is observed that if the locations of the 3-D control points are not precise, the 

estimates of the camera parameters are inaccurate. The camera parameters appear to 
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follow a Gaussian distribution centered about the mean or nominal value as shown in the 

histogram plots below. 
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Figure 4.7: Variation in the scale factor and focal length observed for an uncertainty level 
of +/-0.05 mm (a) Scale factor (b) Focal length 
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Figure 4.8: Variation in the image centre observed for an uncertainty level of +/-0.05 mm 
(a) Image centre, Uo (b) Image centre, Vo 
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Figure 4.10: Variation in the tangential distortion observed for an uncertainty level of +/-
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The figures shown above represent the histogram plots of the camera calibration 

parameters showing the mean and the standard deviation which characterizes the 

dispersion of data about the mean value when a random error is added onto the target 

points. A low standard deviation indicates that the data is clustered around the mean 

value, whereas a high standard deviation indicates that the data is widely spread with 

significant deviation from the mean. Note that the mean value corresponds to the 

predefined or nominal values of the parameters taken into consideration in the calibration 

model. It can be observed that the parameter values follow a Gaussian or Normal 

distribution. For example, Figure 4.7(b) shows that the values of focal length obtained 

with an uncertainty of +/-0.05 mm added to target points closely follows a Gaussian 

distribution with a mean value of 35mm. Upon close inspection, it can be observed that 

the statistical dispersion of distortion parameters is high in comparison to the other 

intrinsic parameters. It should be noted that for the distortion parameters, the order of 

magnitude of the variation is close to the actual value of the parameter. An important 

conclusion can be drawn from this; namely, that a very high accuracy is required on the 

target points in order to accurately determine the distortion parameters. With respect to 

the extrinsic parameters, the histogram plot of the first rotational parameter (i.e. ; " a," 

the rotation about the Z axis) is relatively accurate when compared to the other two 

rotational parameters. This is due to the fact that a relatively small change in " a ," results 

in a relatively large change in the observed image. 

To conclude, the dimensional accuracy of the calibration target plays an important 

role in geometric camera calibration. The calibration results and accuracy analysis 
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presented in this chapter prove that the camera calibration techniques and algorithms 

described by Heikkila work properly in theory, but not necessarily in practice. In a real 

world machine vision application it is extremely difficult to obtain accurate or repeatable 

results even though current camera calibration techniques and algorithms are sound from 

a theoretical point of view. 

85 



Chapter 5 

Analysis Using Design of 
Experiments 

This chapter focuses on the task of quantitatively analyzing the problems associated with 

geometric camera calibration using the systematic Design of Experiments (DOE) 

approach. It has already been mentioned and demonstrated in Chapter 4 that it is 

extremely difficult to obtain accurate and repeatable results in practice, although, from a 

theoretical point of view, the camera calibration techniques and algorithms currently in 

use are sound. As an outcome of the study performed in this chapter, significant findings 

are reported including large interactions between certain factors that help explain the 

difficulties in obtaining accurate calibration results in many real-world machine vision 

applications where high accuracy is essential. 
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5.1 Design of Experiments - An Overview 

Design of Experiments (DOE) is a structured, organized, and theoretically sound 

statistical approach for determining the relationship between factors (parameters) 

affecting a process and the output of that process (response). This method was first 

developed in the 1920s and 1930s, by Sir Ronald A. Fisher, the renowned mathematician 

and geneticist. 

In simplest terms, DOE is a methodology for systematically applying statistics to 

experimentation. The DOE approach involves designing a series of structured tests in 

which planned changes are made to the input variables of a process or system and the 

effects of these changes on a pre-defined output are then assessed. Design of Experiments 

lets experimenters develop a mathematical model that predicts how input variables 

interact to create output variables or responses in a process or system. Design of 

Experiments methods are also very useful as a strategy for building mechanistic models 

and they have the additional advantage that no complicated calculations are needed to 

analyze the data produced from the designed experiment (Lye, 2003). The theoretical 

study and practical usage I applications of DOE are described thoroughly in (Cochran and 

Cox, 1992; Hicks and Turner, 1999; Mason et al., 2003; Montgomery, 2008; Myers and 

Montgomery, 2009). 

Design of Experiments can be used for a wide range of experiments for various 

purposes including nearly all fields of engineering (e.g. chemical, manufacturing, civil, 

environmental, etc.), science (e.g. biology, agriculture, etc.) and to a lesser extent in 
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business marketing studies (Lye, 2005). It is, however, rarely used in fields such as 

intelligent systems; a multidisciplinary area of study involving computer vision, machine 

vision, robotics, artificial intelligence, computing I neural networks, etc. 

5.1.1 When to use DOE? 

Design of Experiments can be used to find answers in various situations such as "what is 

the main contributing factor to a problem?"; "how well does the system/process perform 

in the presence of noise?"; "what is the best configuration of factor values to minimize 

variation in a response?"; (The Quality Portal, [Online]). 

In general, by using DOE, one can (Lye, [Online]): 

- Learn about the process involved in the investigation 

- Screen important variables 

- Build a mathematical model 

Obtain prediction equations 

Optimize the response (if required) 

The DOE approach is more efficient than the one factor at a time approach, because it 

requires fewer test runs and it plans for all possible dependencies or interactions between 

the levels or range of factors taken under consideration. The factorial approach of DOE is 

the most modern, theoretically sound and efficient approach. It is applied extensively in 

industrial research and development and process improvement. 
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The basic techniques of DOE consist of a combination of experimental design, 

analysis of variance (ANOVA), and regression analysis. An experiment is a test or a 

series of tests in which purposeful changes are made to the input variables (design 

variables) or factors of a system so that the reasons for changes in the output response(s) 

or response or dependent variables are observed or identified (Lye, [Online]). An 

experimental design is a strategy to gather empirical knowledge; i.e. knowledge based on 

the analysis of experimental data and not on theoretical models. It can be applied 

whenever the goal is to investigate a phenomenon in order to gain understanding or 

improve performance (CAMO, [Online]). Building a design means carefully choosing a 

small number of experiments that are to be performed under controlled conditions. There 

are four interrelated steps in building a design: 

1. Define an objective to the investigation; e.g. better understand or sort out 

important variables or find optimal values. 

2. Define the variables that will be controlled during the experiment ("factors or 

design variables") and their levels or ranges of variation. 

3. Define the variables that will be measured to describe the outcome of the 

experimental runs ("response variables or dependent variables") and examine 

their precision. 

4. Among the available standard designs, choose the one that is most compatible 

with the objective, the number of input factors, and the precision of the 

measurements. The design selected should also have a reasonable time and 

budget especially in practical experiments. 
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The statistical significance of the experimental design is tested usmg Analysis of 

Variance (ANOVA). The analysis of variance is a mathematical process for separating or 

partitioning the total variability of a group of observations into its assignable causes and 

setting up various significance tests (NIST/SEMATECH, [Online]). The goal of 

regression analysis is to determine the values of parameters for a function that cause the 

function to best fit the set of data observations provided (NLREG, [Online]). In DOE, it 

is used to obtain the prediction model. 

5.2 Problem Definition 

A statistical factorial design of experiments is an efficient means to simultaneously study 

the effect of several input factors on an output response and determine the optimum 

settings for them. In addition, any potential interactions between the factors can be 

evaluated (NIST/SEMATECH, [Online]). The problem with geometric camera 

calibration based on the accuracy analysis study presented in Chapter 4, is analyzed here 

by applying the concepts of design of experiments. The procedure for applying DOE to 

better understand the question of accuracy with geometric camera calibration can be 

summarized as follows: 

1. Set the objective and process variables, i.e. input factors (choose factor levels) 

and response variables. 

2. Choose a suitable experimental design depending on the objective of the 

experiment and the number of factors to be investigated. 
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3. Execute the chosen experimental design and analyze the experiment by 

selecting model factors , model reduction, finding significant factors through 

ANOVA analysis, forming model equations and analyzing residuals for 

model adequacy checking. 

4. Interpret the results obtained from the model graph plots. 

5. Validate the model plots by comparing with the results obtained using the 

MATLAB calibration model under study. 

A more detailed description on the methodology undertaken for the study, the discussion 

on the results and the validation approach is described in Section 5 .2.1 , Section 5.3 and 

Section 5.4. 

5.2.1 Experimental Design 

This section of the chapter discusses the use of DOE to investigate the influence of seven 

intrinsic parameters on the accuracy of the camera calibration procedure. The calibration 

model based on a 3-D calibration target consisting of three planes of control points as 

explained in Chapter 4 was considered for the statistical experiment. Seven intrinsic 

parameters namely; focal length, image centre (Uo,Vo), radial (k1, k2) and two tangential 

distortion (p1, P2) coefficients were chosen as factors. The response was taken as the sum 

of the square of the error in the image coordinates caused by different combinations and 

levels of the factors considered. The error was calculated as the change in the image 

coordinate locations relative to the actual image coordinates due to the change in the 
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levels of the factors chosen. A response surface methodology (RSM), namely a Central 

Composite Design (CCD), was carried out to analyse the effects. Analysis of variance 

(ANOV A) was used to choose the significant factors out of the seven factors considered. 

5.2.1.1 Central Composite Design (CCD) 

A Box-Wilson Central Composite Design contains an imbedded factorial or fractional 

factorial design with center points that is augmented with a group of "star or axial points" 

that facilitates the estimation of curvature. This allows the user to fit a second order 

(quadratic) model for the response variable. In statistics, this design is useful in response 

surface methodology. Additional information is provided in Appendix B. 

In general, the CCD design consists of three distinct sets of experimental runs: 

1. A factorial or perhaps fractional factorial design involving the factors under 

study with two levels considered for each factor; i.e. the range of each factor 

is +/- 1 level. 

2. A set of centre points; i.e. experimental runs with the input factors set to the 

median of the values used in the factorial portion. This point is often 

replicated in order to improve the precision of the experiment by estimating 

the pure error. 

3. A set of star or axial points (a); i.e. experimental runs identical to the centre 

point runs except for one factor which is assigned values outside the range 

and both below and above the median of the two factorial levels. All factors 
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are varied in this way. A CCD design with k factors will always have 2k star 

points. Usually, in order to maintain rotatability (See Appendix B), the value 

of a depends on the number of experimental runs in the factorial portion of 

the central composite design. 

The CCD allows approximation of three regression models; linear, interaction (2FI: Two-

Factor Interaction) and quadratic terms. The models are defined as follows: 

Linear: 

Interaction (2FI): 

Quadratic: 

k 

y =Po+ LPJxJ +B 
j;) 

k k 

Y =Po+ 'LP1x1 + LLP!i x;x1 +& 
j ; ) i<j j ; ) 

k k k 

Y =Po+ 'LP1x1 + LLP!ixixJ + LPil xJ + B 
j ; J i<j j;) j;J 

(5.1) 

(5.2) 

(5.3) 

where y is the response, P, is the regression coefficient, Po is the overall average, x,, x 1 

are variables that represents factor i and j respectively, k is the number of factors, 

p!i represents interaction terms, p iJ represents pure second order or quadratic effects and 

B is the error estimate. 

Table 5.1 shows the DOE factors at the two levels considered. The two levels 

chosen were based on the nominal values of the commercially available Lumenera 

camera system used in the lab. The zero level value is the nominal values for each of the 

camera parameters. Parameters are represented by the letters A, B, C, ... , and are 

therefore referred to as factor A, factor B, factor C, etc. 
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Table 5.1: Design space for the study of sum of the square of the error 

Factors Level(-) Level(+) 

34.5 35.5 
A. Effective focal length (mm) 

686 706 
B. U0 (pixels) 

510 530 
C. V0 (pixels) 

D. Rad1 , k1 (mm-2
) 

-0.0005 +0.0005 

E. Rad2, k2 (mm4
) 

-1 x w-j 1 X JO-) 

F. Tan1, p1 (mm-1
) -0.0003 +0.0003 

G. Tan2, p2 (mm-1
) 

-0.0003 +0.0003 

5.2.1.2 Summary of Experiment Methodology 

A series of numerical experiments were conducted using MATLAB. The experimental 

procedures are outlined below: 

Procedure I (using nominal focal length, image center and zero distortion) 

Step 1: Define world coordinates of target points 

Step 2: Define rotation matrix 

Step 3: Rotate and translate target relative to camera coordinate system 

Step 4: Calculate the coordinates of undistorted target points in mm relative to 

center of image 

Step 5: Calculate radial and tangential distortions 
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Step 6: Calculate coordinates of distorted target points in pixels relative to upper 

left hand comer of image 

Procedure 2 (using different combinations of levels of focal length, image center and 

distortion) 

Step 1: 

Step 2: 

Procedure 1 explained above is replicated through several runs for the 

different levels of factors chosen. 

The response is calculated by taking the square root of the sum of the 

squares of the differences between the image coordinates obtained using 

Procedure! and Step 1 of Procedure 2. 

Experiments using DESIGN-EXPERT Software: 

• The statistical software Design-Expert 7.1.3 was used to create and analyze the 

experiment designed to measure the effects of the factors mentioned in Table 5.1. 

• Seven factors were each analyzed at 2 levels and one center point using a CCD 

design. This resulted in 79 runs (half CCD) of the calibration model implemented in 

MATLAB. 

• The 2 levels were chosen based on the nominal values of the Lumenera camera 

system as provided in the technical data sheet. 

• An ANOV A of the significant factors was run to determine the relative importance of 

each factor to the response. 

• No replications were performed smce the output results were obtained from a 

numerical simulation without any sources of error. Since the experimental setup is not 
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subject to any uncertainties (e.g. measurement error) subsequent replications would 

yield identical results. In this case the numerical error is assumed to be insignificant. 

• The center point in combination with the additional star points facilitates the check 

for curvature and hence permits the software to fit a second order model. 

• Seventy-nine computer simulations were performed in MA TLAB and subsequent 

response values were obtained for each of the 79 treatment combinations. 

• The Response Surface Methodology based on Central Composite Design, determined 

an optimum point on a nonlinear curve between the end point levels. 

• Calibration Model Assumptions: Any additional factors other than the seven intrinsic 

factors under consideration are assumed to be negligible and are not included in the 

current study; i.e. zero contribution to the response is assumed. 

5.3 Analysis of Experimental Results and Discussions 

The analysis was performed by selecting a half CCD resulting in fewer runs; i.e. 79 runs 

compared to a full CCD which requires 143 runs. A quadratic model was chosen as the 

best choice of model that can be fitted from the CCD as compared to the models like 

linear and 2FI (two factor interaction) by analyzing the fit summary tables (Sequential 

Model Sum of Squares, Lack of Fit Tests, and Model Summary Statistics) obtained from 

the Design-Expert software. The experimental results from the Design-Expert software 

are described in this section. 
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5.3.1 Statistical Test for Significance using ANOVA 

Firstly, in order to improve the final (regression) model, model reduction was performed 

to lessen the number of insignificant model terms (factors) and to determine the best 

subset of regressor variables (predictor variables or regressors) to include. Backward 

elimination with a s = 0.10 was used for model reduction (Myers and Montgomery, 

2009). The reduced ANOV A (Table 5.2) of the chosen design indicates that the model 

selected is significant with a model F-Value of 596825.16. There is only a 0.01% chance 

that a "Model F-Value" this large could occur due to noise. In general, if the test statistic 

F-value >> 1, the corresponding factor effects are considered to be significant. That is, 

these factors will significantly affect the response variable(s). This significance level 

approach is done by comparing the calculated F -value to 5% F -table (Percentage Points 

of the F Distribution) using the degree of freedom (df) of main effects (e.g. A, B, C, .. G) 

and degree of freedom of error, i.e. residual (refer to Table 5.2). Furthermore, the 

significance of the effect can also be tested from the computed P-value. If the P-value, 

"Prob > F" is less than 0.05 (P-value <as = 0.05 ), the model effect is said to be highly 

significant and if "Prob > F" is less than 0.1 (P-value <as = 0.1 ), the model effect is said 

to be significant. Values greater than 0.10 indicate the model terms are not significant. 

Therefore, several factors including D, AD, AE, BG, CF, A2
, B2

, C2
, D2

, E2
, F2 and G2 

are highly significant model terms, which includes a main effect, four interaction effects, 

and quadratic effects of all factors considered for the study. Factors like A, B, C, E, F, G 
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are not significant but must be included in the model to maintain the hierarchy (Myers 

and Montgomery, 2009). 

Table 5.2: Reduced ANOV A for the calibration model 

AtiOVA for Res1)onse Surface Reduced Quadratic Model 

Analysis of variance table [Partial sum of S(IUares - TYI)e Ill] 

Sum of Mean f I)-value 

Source Squares df Square Value Prob > f 

Model 70.63 18 3 .92 5.968E+005 <( 0 .0001 significant 

A-Focal Lengt1 1.317E-005 1.317E-005 2.00 0.1622 

B-UO 0.000 0.000 0.000 1.0000 

C-VO 0.000 0.000 0.000 1.0000 

D-Rad1 9.442E-005 9.442E-005 14.36 0.0004 

E-Rad2 8.406E-006 8.406E-006 1.28 0.2627 

F-Tan1 0.000 0.000 0.000 1.0000 

G-Tan2 0.000 0.000 0.000 1.0000 

AD 0.025 0.025 3803.01 <( 0.0001 

AE 2.676E-004 2.676E-004 40.70 <( 0.0001 

BG 0.091 0.091 13814.28 <( 0.0001 

CF 0.051 0.051 7738.59 <( 0.0001 

AZ 8.44 8.44 1.284E+006 <( 0.0001 

EF 21 .92 21.92 3.334E+006 <( 0.0001 

cz 21.92 21 .92 3.334E+006 <( 0.0001 

[)1 0.059 0.059 9043.69 <( 0.0001 

E2 0.63 0.63 96354.33 <( 0.0001 

p 0.028 0.028 4212.21 <( 0.0001 

GZ 1.594E-003 1.594E-003 242.48 <( 0.0001 

Residual 3.879E-004 59 6 .574E-006 

Cor Total 70.63 77 

The interactions between the various factors that were found to be significant are: 

98 



1. "AD" which represents the interaction between focal length (factor "A") and 

radial distortion coefficient 1 (factor "D"). 

2. "AE" which represents the interaction between focal length and radial 

distortion coefficient 2 (factor "E"). 

3. "BG" which represents the interaction between X image center, Uo (factor 

"B"), and tangential distortion coefficient 2 (factor "G"). 

4. "CF" which represents the interaction between Y image center, Vo (factor 

"C") and tangential distortion coefficient 1 (factor "F"). 

5. Finally, the quadratic effects of all seven intrinsic parameters were found to 

be significant as demonstrated by the seven squared terms. 

Table 5.3 shows the summary statistics ofthe model undertaken. 

Table 5.3: Model summary statistics 

std. Dev. 2.564E-003 R-Squared 1 .0000 

Mean 3.50 Adj R-Squared 1 .0000 

C.V. % 0.073 Pred R-Squared 1 .0000 

PRESS 6.831E-004 Adeq Precision 2938.622 

"Std. Dev." is the square root of the error mean square (Montgomery, 2008). "C.V." is 

the coefficient of variation that measures the unexplained or residual variability in the 

data as a percentage of the mean of the response variable. "PRESS" stands for 

"prediction error sum of squares," and it is a measure of how well the model for the 

experiment is likely to predict the response in a new experiment. Small values of PRESS 
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are desirable. The quantity "R-squared" is interpreted as the proportion of the variablity 

in the data explained by the ANOVA model. The "Pred R-Squared" of 1.0000 is in 

reasonable agreement with the "Adj R-Squared" of 1.0000. "Adeq Precision" measures 

the signal to noise ratio. Large values of this quantity are desirable, and values that 

exceed four usually indicate that the model will give reasonable performance in 

prediction. In this case the ratio of 2938.622 indicates an adequate signal, and, therefore, 

this model can be used to navigate the design space. 

In designed experiments, "Model adequacy checking" is an important part of the 

data analysis procedure. It is also useful in building regression models. The model 

diagnostic plots (e.g. residual plots) obtained from the designed experiment are always 

examined for a regression model (Montgomery, 2008). In general, when building a 

regression model from DOE, it is always necessary to (1) examine the fitted model to 

ensure that it provides an adequate approximation to the true system and (2) verify that 

none of the least squares regression assumptions (ANOV A) are violated. Specifically, 

these assumptions are that the observations are adequately described by the model, 

(5.4) 

and that the errors (or residuals) represented by, 

(5.5) 

are normally and independently distributed with mean zero and constant variance a 2
, 

where y iJ is the ijth observation, Jl; is the mean of the ith factor level or treatment, r ; is 

100 



the ith treatment effect, c tJ is a random error component that incorporates all other 

sources of variability in the experiment, and yiJ is an estimate of the corresponding 

observation yiJ . Violations of the basic assumptions and many types of model 

inadequacies can be easily investigated by the examination of residuals, especially by the 

graphical analysis of the residuals. If the model is adequate, the residuals should contain 

no obvious patterns; i.e. it should be structureless. See Appendix C for more information 

regarding how the model adequacy checking was done through the graphical analysis of 

residuals including the model diagnostic plots. 

5.3.2 Regression Analysis 

Regression analysis in designed experiments IS a general approach used to fit an 

empirical model (also named as prediction models); an interpolation equation developed 

for the response variable in the experiment. Regression models are used to fit more 

precise models rather than giving a rough approximation of the model. Equations (5 .6) 

and (5.7) are the final model equations, i.e. fitted regression models (a quadratic model 

fit) obtained in terms of coded and actual factors, respectively. These models are second 

order response surface models with seven independent or regressor variables. 
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Final Equation in Terms of Coded Factors: 

Sqrt(Sum Square of error) 

+0.86 

+4.360E-004 •A 

+5.319E-007 •B 

-5.721 E-007 •c 
-1 .167E-003 •o 
-3.483E-004 *E 

+1 .954E-007 *F 
-9.162E-007 *G 

-0.020 *A*D 

-2.045E-003 *A*E 

-0.038 *B*G 

-0.028 •c•F 
+0.75 • A~ 

+1.20 • B2 

+1 .20 • C2 

+0.063 • D~ 

-0 .20 • E2 

-0.043 • f 2 

+0.010 • GZ 

(5 .6) 
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Final Equation in Terms of Actual Factors: 

Sqrt(Sum Square of error) 

+12719.99179 

-208.71537 • Focal Length 

-16.72030 • uo 
-12 .4921 8 • vo 

+ 2764 .80612 • Rad1 

+14278.671 08 • Rad2 

+4887.11606 • Tan1 

+8739.60120 • Tan2 

-79.06117 • Focal Length • Rad1 

-408.95717 • Focal Length • Rad2 

-12.55690 • UO • Tan2 

-9.39830 • VO • Tan1 

+2.98166 • Focal Length2 

+0.012012 • U02 

+0.012012 • V02 

+2.50224E+005 • Rad1 :: 

-2 .04188E+009 • Rad22 

-4.7 4360E+005 • Tan1 :: 

+1 .13812E+005 • Tan2::: 

5.3.3 Interpretation of the Results 

(5.7) 

The model graphs representing the significant interactions between the various factors are 

shown below in the form of curvatures. 

103 



Interaction between Focal Length and Radial Distortion Coefficient 1: 

Interaction 0.00 
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Figure 5.1: Interaction between factors "A" and "D" 

The interaction between factors "A" and "D" is shown in the above plots (Figure 5.1 ). As 

expected, the sum of the square of the error is minimum when the focal length (factor 
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\ 

"A") and radial distortion coefficient 1 (factor "D") are at their nominal value; however, 

it can be seen that for a range of values for "D" the error is almost constant. 

Interaction between Focal length and Radial Distortion Coefficient 2: 
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Figure 5.2: Interaction between factors "A" and "E" 
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The above plots, Figure 5.2, represent the interaction between factors "A" and "E". It can 

be seen that it is difficult to identify a minimum value for the error which could 

potentially make it difficult to find the actual camera parameters resulting in an 

inaccurate camera calibration. 

Interaction between Image Centre, Uo, and Tangential Distortion Coefficient 2: 

Interaction 
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Figure 5.3: Interaction between factors "B" and "G" 

The interaction between factors "B" and "G" can be seen from the above plots (Figure 

5.3). The sum of the square of the error is minimum when the X image center, U0 (factor 

"B") and tangential distortion coefficient 2 (factor "G") are at their nominal value, but it 

can be seen that for a range of values for "E" the error is almost constant. 
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Interaction between Image Centre, Vo, and Tangential Distortion Coefficient 1: 

Interaction 
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Figure 5.4: Interaction between factors "C" and "F" 

The above plots, Figure 5.4, represent the interaction between factors "C" and "F". The 

sum ofthe square of the error is minimum when theY image center, V0, (factor "C") and 
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the tangential distortion coefficient 1 (factor "F") are at their nominal value, but it can be 

seen that for a range of values for "E" the error is almost constant. 

The results of the design of experiments study indicate that due to the interactions 

between parameters the calibration algorithm will not necessarily converge to the 

minimum value when the data is subject to measurement error and the error cannot 

necessarily be attributed to a single camera parameter. The above interaction plots 

demonstrate that the error is potentially due to the combined effects of multiple 

parameters that cannot be distinguished separately. This makes it difficult to get accurate 

calibration results in practice, although the techniques and algorithms are theoretically 

sound. 

5.4 Validation of the Model 

Validation of the model is evaluated by comparing the 3-D plots obtained using Design­

Expert with a more detailed simulation implemented in MA TLAB. For this purpose, 50 

points were considered between the high and low level values of factors that were found 

to have strong interactions. The error for each combination of these 50 points was plotted. 

The interaction between "AD", "AE", "BG" and "CF" were obtained and are shown 

below (Figure 5.5): 
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Figure 5.5: Plots of interaction between factors generated in MATLAB (a) Interaction 
between "A" and "D", (b) Interaction between "A" and "E", (c) Interaction between "B" 
and "G", (d) Interaction between "C" and "F" 
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The plots shown above (Figure 5.5) match the 3-D surface plot obtained from the 

Design-Expert software. The error is minimum (almost zero) when the factors are at their 

nominal values; i.e. at their center values, for Figure 5.5 (a), (c) and (d). When the focal 

length, X image centre, and Y image center are in the vicinity of their nominal values, 

there is little variation in the error for a relatively wide range of values of radial distortion 

coefficient 1, tangential distortion coefficient 2, and tangential distortion coefficient 1, 

respectively. For instance, small variations in focal length and radial distortion coefficient 

1 result in no appreciable change in response (i.e. error) which is a prerequisite for 

accurate camera calibration. This makes experimental camera calibration very difficult to 

perform in practice. The same conclusion can be drawn from the relationship between 

image centre and tangential distortion. 

In the case of the interaction graph between focal length and radial distortion 

coefficient 2, the result suggests that it is difficult to estimate the minimum value for 

error at the nominal values of these factors. Hence the radial distortion coefficient 2 is 

effectively negligible and can be removed from the distortion model of the camera; 

however, the ANOV A analysis in the DOE shows it as a significant interaction factor; a 

significant finding that goes against much of the published camera calibration literature. 

To conclude, in vision based applications where high accuracy is a requirement, 

the various interactions between the intrinsic parameters play a critical role that can 

significantly affect the results of the camera calibration procedure. One of the most 

significant findings from this study is that certain camera parameters can effectively be 

removed from the calibration model with no discernible loss in accuracy. 
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Chapter 6 

A New Approach to Camera 
Calibration 

As discovered from the previous studies, it can be said that for 3-D object analysis, 

accuracy is an important aspect that needs to be taken into consideration when 

performing geometric camera calibration. Inaccurate calibration results will adversely 

affect the estimation of the position and orientation of 3-D objects as well as 2-D image 

analysis in machine vision applications. Furthermore, the DOE study concluded that in 

vision based applications where high accuracy is a requirement, the various interactions 

between the intrinsic camera parameters play a crucial role that can significantly affect 

the results of the camera calibration procedure. It was found that certain intrinsic 

parameters like focal length and image center are strongly coupled with radial and 

tangential distortions, respectively; i.e. highly significant interaction effects were 
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revealed. It was noticed from the interaction plots that for a range of values of these 

parameters there was no appreciable change in the error response; i.e. error was almost 

constant which renders it difficult to distinguish the error causing treatments or factor 

effects (i.e. parameters) seperately. This would make experimental camera calibration 

very challenging to perform in practice. Based on these DOE results, the final focus of 

this thesis is to propose a new approach towards geometric camera calibration in which 

image center and focal length are calculated independently of the lens distortion. The idea 

behind this study is to demarcate certain intrinsic parameters like image center and focal 

length and compute them separately and precisely without taking into consideration lens 

distortion. A practical experiment was conducted for this study. The experimental results 

show that this new technique for finding the image center and focal length of a camera 

has the potential to improve the calibration accuracy. An elaborated description of the 

proposed technique is presented in the following sections. 

6.1 Overview of the Experimental Setup 

The experimental setup includes a calibration test rig (consisting of a precision X-Y table, 

solid-state camera, LED lighting, stepper motor driven ball screws for controlling the 

table motion) and a microcontroller interface to a PC. The structure of the test rig used 

for calibration purposes is shown in Figure 6.1. The table is made up of aluminum 

extrusions. It incorporates a camera (the camera system used here is a Lumenera Lm 135 

1.4 megapixel industrial USB 2.0 camera) placed at the top of the test rig looking 
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downwards at the X-Y table. The X-Y table is driven by two stepper motors with a 

stepping resolution of 0.0005 inches or 0.0127mm. The movement of the table was 

aligned to ensure perpendicularity between the two axes. The maximum positional error 

ofthe table was experimentally determined to be 25 microns. 

Figure 6.1: Test rig for calibration 

The PIC based microcontroller interface used in this study serves as an interface 

circuit between the test rig and the PC. Figure 6.2 represents the microcontroller 

interfacing circuit. 
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Figure 6.2: PIC based microcontroller interface 

The specific role of the rnicrocontroller interface is to precisely control the movement of 

the stepper motor driven X-Y table on the test rig. The two motors rotate either clockwise 

or counter-clockwise in accordance with output signals from the microcontroller interface 

circuit. Figure 6.3 shows the connection between the microcontroller interface and one 

stepper motor including a power supply. 
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Figure 6.3 : PIC based microcontroller interface with a stepper motor 

For the proposed technique, a computer application including a Graphical User Interface 

(GUI) was developed in MATLAB. This application also serves as an interface between 

the PC and the camera. The microcontroller interface moves the table by means of 

stepper motor driven ball screws and acquires the image of the calibration target at 

predetermined grid positions with the help of the image acquisition software developed 

for the camera. Images are stored in the folder specified by the user for further 

processmg. 

A precisely ground (3-D) spherical target with a sphericity of 2.5microns , placed 

at two different height levels was used to obtain the control points for the calibration 

procedure. Figure 6.4 shows the 3-D spherical target used for this work. The advantages 

of using a 3-D spherical target are: 1) Being isotropic in nature, it will simplify the 
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process of calibration greatly; 2) More accurate and efficient for high accuracy 

applications than 2-D planar target; 3) Suitable geometric and optical/radiometric 

properties; 4) More target and image point locations can be generated within a small area. 

(a) 

(b) (c) 

Figure 6.4: Precisely ground (3-D) spherical target 
(a) Top view of the sphere kept on a cylindrical base (b) Side view of the sphere kept on 
a cylindrical base (c) Side view of the sphere kept on a cylindrical base of longer height 
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Four arrays of white LEDs (Light emitting diodes) placed at the four sides of the 

test rig are used to provide appropriate lighting. Each array consists of 70 discrete LEDs 

in 5 rows of 14. A power supply is used to supply the required voltage to the LEDs 

Figure 6.5. 

(a) (b) 

Figure 6.5: LED Lighting 
(a) An array of white LEDs (b) Four arrays of white LEDs placed above the target 

Further scripts developed in MATLAB were used to implement the proposed 

calibration technique. These scripts include image processing algorithms to extract the 

image points with subpixel accuracy, numerical methods like Newton' s method for 

solving nonlinear system of equations, nonlinear least square analysis to fit a nonlinear 

model to a set of experimental data points, etc. These techniques will be explained in 

detail in the next section (Section 6.2). 
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6.2 Description of the Proposed Technique 

6.2.1 Methodology Overview 

As mentioned earlier, the approach undertaken for this study was to compute the image 

center and focal length of the camera independent of lens distortion. Image center, also 

called the principal point, is the point where the optical axis of the lens pierces the image 

plane. Focal length is the perpendicular distance between the image plane and the 

projective center of the lens. The goal of the proposed approach was to find these 

parameters separately and accurately. The proposed technique employed a precision 

ceramic sphere (3-D object) as a calibration object. For this, an experimental set up 

represented by the diagram shown in Figure 6.6 was used to determine the two intrinsic 

parameters. The diagram represents only a part of the entire experimental set-up 

neglecting the microcontroller interface circuit and all other related components such as 

the test rig frame, stepper motors, LEDs, power supply, etc. 
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Diagrammatic Representation ofthe Proposed Calibration Technique 

Figure 6.6: Diagrammatic representation of the proposed calibration technique 

As shown in the figure, the camera, which is fixed to the top of the calibration test frame, 

looks down at the spherical target which is mounted on the X-Y table. The sphere is 

placed in a conically shaped cavity situated at the center of the cylindrical base (shown as 

black in the diagram). The sphere can be positioned at a second known height relative to 

the table by introducing a precisely machined spacer block as shown in Figure 6.6 (also 

refer to Figure 6.4(c)). The cylindrical base and spacer block ensure that the line between 

the centers of the sphere in the two positions is perpendicular to the table. 

A sphere is a non-degenerate quadric surface whose projection (i.e. the occluding 

contour) is given by the projection of its contour generator which is the conic formed by 

the tangent rays traveling from the camera center (Wijewickrema et al. , 2006). The 
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contour generator of a sphere is essentially a circle, as any plane through the sphere 

would result in a circle. In general, the occluding contour of a sphere projects to a conic, 

which is a circle or an ellipse in the image. There are several reports in the literature 

which deal with camera calibration using spheres as calibration targets (e.g. Shivaram 

and Seetharaman, 1998; Agrawal and Davis, 2003; Zhang et al. , 2005, 2007; Ying and 

Zha, 2006). In this study, the occluding contour of the sphere is interpreted as a circle in 

the image. The image of the sphere is acquired for each position in the table and various 

image processing algorithms are employed to obtain the 2-D measurement point; i.e. the 

center of the observed circle. These points are later used to solve for the image center and 

focal length as described in detail in Section 6.2.4. 

6.2.2 Processing of the Images 

A typical image of the calibration sphere as captured by the camera is shown in Figure 

6.7. The four arrays of white LEDs positioned around the table ensure uniform lighting 

over the field of view of the camera. This renders the object clearer and improves the 

contrast of the sphere relative to the dark background. The image is processed using a 

series of image processing algorithms in order to determine the 2-D coordinates of the 

center of the observed sphere. To estimate the center, it is necessary to first extract the 

contour of the sphere. 
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Figure 6.7: A typical image ofthe calibration sphere 

The various steps involved in extracting the contour and finding the center of the image 

with subpixel accuracy can be described as follows: 

1) The acquired RGB image is first converted to a gray scale (or monochrome) image 

(Figure 6.8). A grayscale image is an image whose pixel values specifY intensity values 

that are composed exclusively of shades of gray, varying from black at the weakest 

intensity to white at the strongest intensity. Pixel values in an 8 bit grayscale image 

define gray levels ranging from 0 to 255 (256 gray levels). 
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Figure 6.8: A gray scale image of the calibration sphere 

2) Thresholding and converting to a binary image: Thresholding is a process of image 

segmentation. Thresholding creates a binary image from a grayscale image by converting 

all pixels below some particular threshold to zero and all pixels above that threshold to 

one. The automatic thresholding algorithm (Otsu's method) was used to find this 

optimum threshold and thereby convert the grayscale image to a binary image. A binary 

image is required to apply the contour tracking algorithm (Step 3). Otsu' s algorithm 

assumes that the image to be thresholded contains two groups of pixels; i.e. foreground 

and background. The optimum threshold separating these two groups is chosen such that 

the sum of the weighted within-group variances is minimum. This can be expressed 

mathematically as (Morse, 1998-2000 [Online]): 
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cr~irhin (T) = n8 (T)cr~ (T) + nF (T)cr~ (T) 

where cr~irhin (T) = Within-group variances at threshold 'T' 

n8 (T) = Total number of pixels in the group 'Background' (below threshold) 

nF (T) =Total number of pixels in the group 'Foreground' (above threshold) 

cr~(T) = The variance of the pixels in the group 'Background' 

cr~ (T) = The variance of the pixels in the group 'Foreground' 

(6.1) 

Obtaining the minimum within-group variance is equivalent to selecting a threshold that 

maximizes the squared difference between the group means which is referred to as the 

between-group variance. This can be expressed as: 

where cr~erween (T) = Between-group variances at threshold 'T' 

,u8 (T) = The mean of the pixels in the group 'Background' 

JlF(T) = The mean of the pixels in the group 'Foreground' 

(6.2) 

The implementation of Otsu' s Method used here is based on the concept of within-group 

variance works as follows: 
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• Compute the histogram of the gray scale image to identify the number of pixels at 

each particular gray level and classify them into two groups. 

• Find the variance of the pixels of each group. 

• Multiply the variance with the corresponding number of pixels in each group. 

• Sum the products to obtain the within-group variances. 

• The optimum threshold is the one that minimizes the within-group variances. 

3) Contour tracking I Border following: Once the binary image is obtained, contour 

tracking algorithm is applied to identify the pixels that fall on the boundary of the object 

(sphere). Boundary pixels are defined as those pixels that have a neighbor that belongs to 

the background region. There are two standard code definitions used to represent 

boundaries: code definitions based on 4-connectivity (crack code) and code definitions 

based on 8-connectivity (chain code) (Krouglicof, [Online]). In this case, crack code is 

used to represent boundaries. The contour tracking algorithm for generating crack code is 

as follows: 

• Identify a pixel 'P' that belongs to the class ' Objects' (i.e. P= l) and a neighboring 

pixel (4 neighbor connectivity) ' Q' that belongs to the class 'Background' (i.e. 

Q=O) 

• Depending on the relative position of ' Q' relative to 'P', identify pixels 'U' and 

'V' as follows: 
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CODEO CODEl CODE2 CODE3 

v Q Q p p u u v 

u p v u Q v p Q 

• Pixels 'U' and 'V' are used to determine the next move; i.e. the next element of 

crack code is summarized in the following truth table: 

u v P' Q' TURN CODE 

X I v Q RJGHT CODE- I 

I 0 u v NONE CODE 

0 0 p u LEFT CODE+ I 

• The contour tracking algorithm terminates when the point 'P ' returns to the 

starting point. 

4) Object Recognition using Blob Analysis: Once the image has been segmented into 

regions or classes representing the objects in the image, the next step is to generate a high 

level description of the various objects. In the present case, there is only one object of 

interest within the image. Object recognition is often done with the help of a set of form 

parameters that describe the object. Ideally these parameters are invariant with respect to 

position, orientation and scale; e.g. number of holes in the object, compactness or 
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complexity (perimeter2/area), and moment invariants. The generalized moment equation 

for a digital image of size n by m pixels can be expressed as: 

n m 

M iJ = LL:Xi/f(x,y) (6.3) 
x=l y=l 

where Mij represents the (i,j)th moment. In the case of a binary image, the functionf(x,y) 

takes a value of ' 1' for pixels belonging to the class 'object' and ' 0' for the class 

'background' . Note that the generalized moments can be computed directly from the 

crack code during contour tracking. 

The first three moments; i.e. Moo, Mo1 and M10, are particularly useful for 

determining the center of mass or centroid of the object of interest (i.e. image of the 

sphere). The coordinates ofthe centroid can be estimated from the moments as follows: 

(6.4) 

where M00 = The total number ofpixels in the object; i.e. the "Area" ofthe object 

M10 = The sum of the x-coordinate values for each pixel in the object 

M01 = The sum of they-coordinate values for each pixel in the object 

The radius, R, of the image of the sphere can be determined from the area, Moo, using the 

following expression: 
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R=~Mofrr (6.5) 

The centroid and radius obtained above provide approximate values for the extracted 

image of the sphere; i.e. without subpixel accuracy. The next step is to identify the exact 

values for these parameters in order to locate the exact measurement point in the image. 

5) Circles Fitting: Fit a circle to the image of the sphere using the estimated centroid and 

radius. Fit two additional circles in the vicinity of this fitted circle using a radius above 

(radius_maximum) and below (radius_minimum) the estimated radius. Figure 6.9 shows 

the resulting image. 

Figure 6.9: Three circles fitted on the binary image of the calibration sphere 

6) Edge Detection: The next step in the processing of the image is to apply an edge 

detection algorithm to identify the points in the digital image at which the image intensity 
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changes sharply; i.e. a jump in intensity from one pixel to the next. Edges characterize 

boundaries and are areas with strong intensity contrast (Green, 2002). In many 

applications, detecting the edges in an image significantly reduces the amount of data, 

filters out useless information, and preserves the important structural properties in an 

image. There are many ways to perform edge detection. Here, a gradient method of edge 

detection; namely Sobel method, was used. It operates by applying a 2-D spatial gradient 

operator on an input grayscale image. It can also provide directional information; i.e. the 

direction of the maximum intensity gradient. The Sobel edge detector uses a pair of 3 x 3 

convolution masks as shown below. The first mask estimates the gradient in the x-

direction and the other estimates the gradient in the y-direction. 

l-1 0 1] 
X gradient mask: - 2 0 2 

- 1 0 1 

Magnitude: M = .J X 2 + Y 2 

Direction: ¢ = TAN-'[~ J 

y gradient mask: r ~ 
-1 

(6.6) 

(6.7) 

In this application, Sobel edge detection is only applied to the area of the image that 

contains the image of the sphere. Figure 6.10 shows the "gradient image" obtained by 

applying Sobel edge detection. It can be seen that there is a sharp change in the image 

intensity in the vicinity of the edge of the sphere. 
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(a) (b) 

(c) 

Figure 6.10: Gradient images using Sobel method 
(a) X gradient image (b)Y gradient image (c) Image showing magnitude 

7) Determine the location of the edges to the nearest pixel: As mentioned above, edges 

are the areas with an elevated spatial derivative. From the estimated centroid, search in 

the radial direction for the maximum value of the pixel in the gradient (magnitude) image 

to determine the location of the edges to the nearest pixel. For greater efficiency, the 
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search is limited between radius_ minimum and radius_ maximum defined above for angle 

e equals 0 to 180. The value of e is incremented by a small value of 0. 01 for each 

search. The coordinates of the pixels between radius_ minimum and radius_ maximum are 

estimated using the general equation for line-circle intersection. This method of searching 

from radius_ minimum to radius_ maximum for an angle e from 0 to 180 will give two 

opposite points in the 2-D image where the circle and the line intersect. 

The general equation of a line (y = mx+c) substituted in the equation of a circle of radius, 

R, and center coordinates (X,Y) can be expressed as: 

(x - X} +((mx+c) -Y} = R2 (6.8) 

which can be simplified to the form of a quadratic equation: 

Ax2 + Bx + C = 0 (6.9) 

The two solutions for 'x' (x1, x2) can be obtained using the formula: 

- B±.JB2 - 4AC 
X =-------

2A 
(6. 10) 

The two solutions for 'y' (y1,y2) can be obtained by substituting the value of 'x' into the 

general line equation: 
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Y1 = mx1 + c 

Y2 = mx2 + c 

(6.11) 

(6.12) 

These 'x' and 'y' coordinates will give the points in the gradient image where the line 

intersects the circle in the area between radius minimum and radius maximum. From 

these points obtain the coordinates of the maximum pixel for each search, i.e. peaks 

which will give the location of the edges to the nearest pixel. The location of these peaks 

will be refined later through subpixel interpolation for subpixel accuracy. Figure 6.11 

shows the thresholded image obtained by leaving the edges. Here, all the peaks are given 

a pixel value ' 1 ', thereby representing a binary image. 

Figure 6.11: Binary image of the calibration sphere showing peaks 

8) Subpixel interpolation technique for subpixel accuracy: The peaks obtained by the 

above process are stored in a matrix to apply subpixel interpolation and thereby to 
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determine the edges in the image with subpixel accuracy. Subpixel interpolation is based 

on "fitting" a continuous interpolation function to the discrete gradient values 

(Krouglicof, [Online]). For this consider a Gaussian filter, I.e. convolution with a 

Gaussian kernel, h(x,y) expressed as: 

s(i,J) = J(i,J)x h(x,y) (6.13) 

1 - '- {x2 + yz ) 
where the kernel or mask h(x,y) = 

2 
e 2a

2 

2Da 

The Gaussian filter can soften the edges depending on the value of a . One technique for 

subpixel interpolation consists of determining the position of the mask that maximizes the 

value of the convolution evaluated using the gradient image and a Gaussian kernel. The 

steps involved in performing the subpixel interpolation can be summarized as follows: 

• Perform the convolution of the gradient image with a Gaussian kernel. This can 

be expressed as: 

( ) L
2 L2 (· . ) _ _!_[<x-mf+(y-n)

2
] 

s x , y = g z + m, 1 + n · e 2 
m=-2 

n=-2 

(6.14) 

• The position of the mask that maximizes the value of the convolution is given by 

the coordinates (x,y). In order to determine these coordinates, the derivative of 
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s(x, y) must be determined with respect to each of the unknown parameters and 

set equal to zero. This yields two nonlinear equations and two unknowns; i.e. 

F; =0= 8s(x,y) =G·(-l)·(x-m) 
ox 

F
2 

= 0 = 8s(x, y) = G · (- 1) · (y- n) 
bY 

2:2 L2 
(. . ) --'-[(x-m )2 +(y-n Y] 

where G = g l + m, J + n · e 2 
m=-2 

n=-2 

(6.15) 

(6.16) 

• Since these equations are nonlinear in nature, a numerical technique like 

Newton's method can be applied to solve these set of nonlinear equations. In 

general, Newton's method for solving nonlinear system of equations operates in 

an iterative manner, i.e. a vector ' f3 ' is found which satisfies the equation: 

(6.17) 

where F(Bo) represents the vector of function values (in this case it consists of 

two equations forming two rows and one column) and J(Bo) represents the 

Jacobian matrix which is defined as the matrix of partial derivatives of each of the 

n equations in the function vector evaluated with respect to each of the unknown 

parameters (in this case, it is a matrix containing two rows and two columns). 

Both F(Bo) and J(Bo) are evaluated using the most recent approximation to the 
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unknown parameters, Bo . The new approximations to the unknown parameters are 

then computed by adding f3 and 80 as follows: 

(6.18) 

This step proceeds in an iterative fashion and continues until the Euclidean norm 

of the vector f3 is less than a certain threshold ~ (i.e. specified accuracy criterion 

is attained) or until the maximum number of iterations is exceeded (i.e. the 

algorithm fails) (See Appendix D for a detailed explanation of the algorithm). 

Here, the i and j in the function vector (Equation 6.15 and Equation 6.16) can be 

substituted with the stored y and x coordinates of the peaks in the gradient 

magnitude image respectively. 

• In order to apply Newton's method, the Jacobian matrix is evaluated by taking the 

partial derivative of each of the two equations (Equation 6.19 and Equation 6.20) 

with respect to each of the unknown parameters namely x and y . The elements of 

the Jacobian matrix are given by: 

JF; = G ·(x - mY - G 
& 

JF; = G · (x - m) · (y - n) 
bY 
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oF2 =G·(y - nY - G 
& 

oF2 = G · (x - m) · (y- n) 
& 

(6.20) 

These x and y parameters estimated through subpixel interpolation using the Newton' s 

method represent the location of edges with subpixel accuracy (Figure 6.12). Blue circle 

points represent the location of edges refined through subpixel interpolation. 

Figure 6.12: Edge points ofthe sphere refined through subpixel interpolation 
(a) Location of edges with subpixel accuracy (b) Closer view of the location of edges 
represented by blue circular points 

9) Nonlinear least square analysis: Once the location of edges with subpixel accuracy is 

obtained, the final procedure is to best-fit a circle with these set of data points using the 

concept of nonlinear-least square analysis. Nonlinear-least squares analysis refers to the 

problem of fitting a nonlinear model to a set of experimental data points (Krouglicof, 
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[Online]). It operates in an iterative manner, i.e. a vector f3 is found which satisfies the 

equation: 

(6.21) 

where F(Ba) represents the vector of function values and J(Ba) represents the Jacobian 

matrix for the system of nonlinear equations under study. Both are evaluated using the 

most recent approximation to the unknown parameters, Ba . The new approximations to 

the unknown parameters are then computed by adding 7J and Baas follows: 

(6.22) 

This step proceeds in an iterative fashion and continues until the Euclidean norm of the 

vector f3 is less than a certain threshold c; (i.e. specified accuracy criterion is attained) 

or until the maximum number of iterations is exceeded (i.e. the algorithm fails) (Refer to 

Appendix E for a detailed explanation of nonlinear least-square analysis). Using this 

method of nonlinear least-square analysis, the unknown parameters, namely the center 

coordinates of the circle and the radius are estimated with subpixel accuracy and a circle 

is fitted for the data points. Figure 6.13 represents the circle fitted on the image of the 

sphere (highlighted in red) with subpixel accuracy for the set of data points (highlighted 

in yellow). 
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Figure 6.13: Best-fit circle for the set of edge points 

6.2.3 Lining up of Spheres 

The first step in the proposed technique was to line up the spheres kept at two different 

levels to determine the image center of the camera approximately. It can be executed by 

taking the image of the sphere kept at a cylindrical base of smaller height and then taking 

the image of the same sphere kept at the same location on the same base of higher height. 

Two images captured for a specific location and height can be processed using image 

processing algorithms as explained in the Section 6.2.2 to calculate the center of the 

circle. This process can be repeated for several locations in the world frame (i.e. where 

the spheres are kept) within the field of view of the camera until the center of the both 
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spheres in the image coincides at a common point. When the center of both spheres 

coincides it can be recognized that the both spheres were lined up along the optical axis 

of the camera, which will give an approximate image center of the camera initially. These 

image coordinates can be used later to obtain a mathematical model for calculating the 

exact image center and thereby the focal length of the camera, by considering the 

assumption that the plane of the table on which the spheres are kept and the image plane 

are not exactly parallel to each other. Figure 6.14 shows the schematic representation of 

the problem. 

Focal length 

Image of the spheres "30 
VEIW' 

"TOPVEIW' 
• 

Sphere is kept on a 
cylindrical base to give 
different height levels 

Image plane 

Image center 

Projective center 

.._ __ "S 10 E V EIW' 

Center to center 
distance between 
two spheres "H" 

Figure 6.14: Schematic representation of the sphere line-up problem 
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6.2.4 Estimation of the Image Center and Focal Length of the 
Camera 

6.2.4.1 Geometrical and Mathematical Models 

In the real world, the plane of the object and the image plane may not be exactly parallel. 

Hence, once the spheres are lined up, the results obtained will be a rough approximation 

of the image center of the camera (Xo, Yo). If both planes are parallel to each other, the 

obtained image center will coincide with the exact image center of the camera [(Xo, Yo) = 

(Uo, Vo)] (see Figure 6.15). In this figure it can be found that there are two displacements 

at a distance 'W' taken towards the positive and negative side from the centered spheres. 

Each of the coordinates in the image plane represents the center of the circle, i.e. the 

image of the target sphere, and can be determined by processing the image of each sphere 

using the procedures as explained in Section 6.2.2. 
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Image plane 
I 

Projective center f(Focallength) 

·ve direction +ve direction 

Object plane 

I }" 
Figure 6.15: Geometrical model when the image plane and table are parallel 

If the assumption is that both planes are parallel, then the image of these spheres after 

displacements will lie at opposite sides of the image center with an equal distance from 

the center. Hence, by identifying the image locations with respect to the center of the 

image plane, the slope or the direction of tilt of the image plane can be found. 

Suppose that the two planes are not paralleL In order to quantify this assumption, 

another geometrical model is considered as shown in Figure 6.16. In the figure it is 

considered that the image plane is not parallel to the object plane and is tilted by a very 

small angle ' a ' . From the accuracy point of view, this angle is not considered to be 

negligible in the camera calibration procedure. It can be noticed that in this situation once 

the spheres are lined up there is a small variation in the image center from the original 

which will depend on the angle ' a '. When there is a slope in the image plane, the image 
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of the spheres after displacements in the positive and negative direction will not lie at 

equal distances on opposite sides of the image center as mentioned before. To be more 

efficient in generating a mathematical model, only the x-coordinates of the image points 

are denoted which is obtained by moving the spheres to both the positive and negative 

side by a distance ' W' along the X direction of the table in the test rig. In this case, the 

image plane is assumed to be as one-dimensional, where each x-coordinate of the image 

points obtained in the image plane lie in a line. 

Image plane 

a' . 
I 

a; 

Figure 6.16: Geometrical model when the image plane and table are not parallel 

The distance from the projective center to the point 'Xo' is taken as 'L1 ', having length 

slightly higher than the focal length. The distance 'Lw' represents the distance between 

the projective center and the center of the top sphere which is lined up. The distance 

between the centers of two spheres is represented by a height 'H'. The angle made by the 
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axis of the top spheres is represented as ' a, ' and those made by the bottom spheres is 

represented as ' a;'. The six equations generated from the model using the geometry is as 

follows: 

L1 tan( a;+ a)= X 2 - U0 (6.23) 

L1 tan(a; +a)= X 1 -U0 (6.24) 

L1 tan(a; -a)= U0 -X4 (6.25) 

L1 tan(a; -a)= U0 -X3 (6.26) 

w 
(6.27) tana. =-

I L w 

w 
(6.28) tana. = 

' Lw +h 

The six unknown parameters in these equations are L"Lw, a,U0 ,a;. a; . Since the 

equations are nonlinear in nature, an analytical approach is not always feasible and hence 

a numerical technique like Newton's method is applied to solve these equations (See 

Appendix D for a detailed explanation of the Newton's method algorithm). The values of 

'W' and 'H' are taken as 25 and 53.35mm respectively. Once L, and a are estimated 

using the above method, the focal length if) can be calculated using the formula: 

f = L, cos(a) (6.29) 
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The drawback of this method is that from the experiment it is assumed that only four 

significant digits will be obtaining for each of the image points. If that is the case, then 

the solutions for the unknown parameters will not be accurate. 

Taking into consideration of the results obtained by Newton's method, another 

geometrical model is considered (Figure 6.17) where more displacements are provided to 

generate more image points by moving the spheres 'n' times to one side (positive 

direction), with a distance 'W' . For better understanding, displacements towards one 

direction are only shown in the figure. The direction shown is considered to be along the 

X-axis. The dotted lines towards right and left indicates that the displacements of the 

sphere are given continuously by a distance 'W' each time in the object plane and 

corresponding image points are obtained in the image plane. For 'n' displacements of the 

sphere '2n' image points are obtained. 
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l 

Image plane 

Figure 6.17: Geometrical model with 'n' displacements of the sphere to the right 

From the geometry, four equations are generated for each point in the image plane for the 

displacements i=l ... .. n along the X axis of the table in the test rig: 

w. 
tana. = - 1 

/Lw (6.30) 

' w. 
tana; = 1 

4v +h 
(6.31) 

(6.32) 

x; = U0 + L1 tan( a;+ a) (6.33) 
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The points Xi and Xi' represent the x-coordinates of the 2-D image points obtained in the 

image plane. The unknown parameters in the above equations are LI> Lw, a ,U0 ,a;. a;. For 

displacements, Wi=I .. n, there will be angles a; and a; for i= 1 ... n. Hence for each 

displacements, additional a; and a; are added to the list of unknown parameters along 

with the other four parameters namely L~' Lw, a , U0 , which are common in all 

displacements. Therefore to summarize, if there are 'n' displacements, there are '4n' 

equations and ' 2n+4' unknowns. If the displacements are taken towards the negative 

direction, the same four equations are sufficient to solve these unknown parameters. 

Hence, to fit a nonlinear model to this set of experimental data points (displacements), a 

nonlinear least square analysis problem has been used. Refer Appendix E to see the 

description of the algorithm of nonlinear least square analysis. Similarly, these four 

equations can be used to solve the unknown parameters when the table is moved along 

theY-axis (i.e. perpendicular to the above movement of the table) where the points Xi and 

Xi ' will be substituted with the obtained Yi and Yi ' points for both spheres and Uo will be 

substituted with Vo. Equations (6.32) and (6.33) will be then be changed to: 

Y; = V0 + L, tan( a; + a) 

Y; ' = V0 + L, tan(a; +a) 

(6.34) 

(6.35) 

where Yi andY/ represents they-coordinates of the image points for i=l .. n displacements 

and V o represents the y-coordinate of the image center. 
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Once L1 and a are estimated, the focal length (j) can be calculated using 

Equation (6.29). It.is recognized from the simulation that, the more the displacements are 

added the more accurate the parameter values are obtained. Therefore, using this concept, 

the results are verified by considering 50 displacements to the positive direction and 

negative direction, which gave comparatively good results for the unknown parameters in 

the simulation. This was then implemented experimentally which will be described in 

detail in the next section. 

6.2.4.2 Experiments 

The results obtained usmg simulation were verified by undergoing some real-time 

experiments. Figure 6.18 shows the complete experimental set up for the proposed 

technique. 
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Figure 6.18: Complete experimental setup 

As described before, the first step in the proposed technique is to line up the spheres kept 

at two different levels to determine the image center of the camera approximately. It was 

executed by taking the image of the sphere kept at a cylindrical base of smaller height 

and then taking the image of the same sphere kept at the same location on the same base 

of higher height. The experimental set up used for this case was exactly in the same way 

as shown in the Figure 6.18. The microcontroller interfacing circuit along with the 

stepper motor driven ball screws controlled the motion of the table in the X (horizontal) 

and Y (vertical) directions. A Graphical User Interface (GUI) which includes a data 

acquisition software along with the Lurnenera MA TLAB driver were implemented to 
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capture the images of the spheres. The GUI includes features that automate the process of 

motion of the X-Y table in accordance with the user's information and capturing of 

images of the target. Two images obtained on the image plane for a specific location 

were processed using image processing algorithms (as explained in Section 6.2.2) to 

calculate the center of the circle. The center coordinates thus obtained were examined 

each time to acquire the information regarding the direction to which the motors have to 

get rotated in the next step. This process was repeated for several locations in the object 

plane (i.e. where the spheres were kept) within the field of view of the camera until the 

center of both spheres in the image coincides at a common point. When the center of both 

spheres coincides it was recognized that both spheres were lined up along the optical axis 

of the camera, which gave an approximate image center of the camera initially. The 

spheres were lined up when their image coordinates were approximately (712.6894, 

429.8865) and (712.5424, 429.4762) pixels for the bottom and top sphere respectively. 

Once the spheres were lined up, to check for correctness, a few trials were taken at the 

same location in order to obtain the repeatable results. Table 6.1 shows the trial runs 

performed. X0 and Y 0 represent the x and y image coordinates of the image center and R 

represents the radius of the circle obtained on the image plane. The results were almost 

similar. Small variations are due to noise in the camera. The underlying fact here is that 

multiple images will reduce the noise which forms the next step of the experiment. 
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Table 6.1: Trial runs for lining up the spheres 

Bottom Sphere Top Sphere 

Trial Xo Yo R Xo Yo R 

I 712.6939 429.8497 109.1571 712.5473 429.4547 116.0257 
2 712.6627 429.8213 109.151 9 713 .0042 429.1541 116.0301 
3 712.6449 429.8481 109.1602 713 .0034 429.1779 116.0268 

Once the spheres were lined up the next step undertaken was to move the spherical target 

towards the positive and negative directions in X and Y. The sphere was placed at two 

different heights as before. As mentioned earlier, 50 displacements were taken in the 

positive and negative X and Y axis directions for both heights from the centered position. 

Images were captured by camera for each displacement resulting in a total of 400 images. 

These images were stored in a particular directory in the computer for further processing. 

These images were processed using a series of image processing algorithms plus several 

other techniques as explained in Section 6.2.2 for estimating the center coordinates of 

each image. The center coordinates in pixels, thus obtained with subpixel accuracy 

through subpixel interpolation were multiplied with the pixel size of the camera 

represents the Xi and Xi' as well as Y; and Y; ' points in mm. These 400 points were then 

used to calculate the unknown parameters namely L" Lw, a ,U0 ,a;. a; for i = 1 to n 

displacements in X-axis (L"Lw,a,V0 ,a;,a; fori = 1 ton displacements in Y-axis) using 

nonlinear least square analysis (refer to Appendix E to see the description of the 

algorithm of nonlinear least square analysis). The pixel size of the camera in X and Y 

was taken as Px = 0.00465mm and Py = 0.00465mm. In this case n = 101 , i.e. 50 

displacements to the left and 50 displacements to the right plus the center location in each 
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axis direction. For 101 displacements, the value of 'W' was incremented by 0.5mm 

which makes the target to be within the field of view of the camera. The distance, 'H' , i.e. 

the center to center distance between the bottom sphere and top sphere was taken as 

53.35mm. For the nonlinear least squares analysis problem, initial approximations of the 

unknown parameters have to be set. Hence the initial parameter values of focal length, 

'F' and ' a ' were taken as 38mm and 0 degrees from which the initial estimate of L1 was 

calculated by using the formula obtained from geometry, L1 = ( ) , i.e. L1 = 38mm. 
cos a 

The total distance from the projective center (also known as focal point) to the bottom 

sphere was approximately taken as 900mm. Hence the initial estimate for Lw was taken 

as Lw = 900-H. The initial value for Uo and Vo were taken as 3.31359mm and 2mm, 

respectively which were obtained from the Xo and Yo value when the spheres were lined 

up. The initial values for a;, a; were obtained by using Equations (6.30) and (6.31 ), 

respectively. The unknown parameters were then estimated separately for the 

displacements in X and Y axis of both spheres by applying the algorithm of nonlinear 

least squares analysis. 

6.2.4.3 Results and Discussions 

The results of the above experiment indicate that the algorithm of nonlinear least squares 

analysis (Appendix E) works perfectly in calculating the unknown parameters 
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parameters were estimated separately for the displacements in X and Y axis of both 

spheres. The following results were obtained from the technique undertaken: 

Displacements of bottom and top sphere in the X-axis direction: 

The problem of nonlinear least square analysis is to fit a nonlinear model to a set of 

experimental data points (n= 101 ). It was noted that the algorithm had converged within 

four iterations. Since there are 206 unknown parameters (i.e. m=2n+4), the unknown 

parameter vector to be estimated consists of a size of 206 rows and 1 column. The 

obtained values for a; range from -0.0288 to +0.0288 and those for a; range from -0.0271 

to +0.0272. From geometry, it is clear that the angle a; (i.e. the angle made by the top 

sphere) should be greater than a;. Hence, the values obtained for the angles from the 

experimental study can be recognized as valid results. Similarly, the obtained values for 

the other unknown parameters are: L1 = 36.6599mm, Lw = 867.5287mm, a = 0.0065 

radians (i .e. 0.3724 degrees), U0 = 3.0761mm (i.e. 661.53 pixels). The value of a 

indicates that the object plane and image plane are not parallel to each other and that 

there is a small tilt in the image plane. From L1, the focal length obtained was 36.6599mm 

which matches with the focal length obtained using the Heikkila's method of camera 

calibration (refer to Table 6.2). The value of 867.5287mm obtained for Lw also seems to 

be correct for the distance from the projective center to the top sphere. The camera used 

for the experiment was Lumenera (Lml35) which had a resolution of 1392* I 040 pixels. 

In that case, the value of the x-coordinate of the image center, i.e. Uo = 3.0761mm 

(661.53 pixels) is also observed to be a valid result. 
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The accuracy of the data acquisition process plays a vital role when evaluating the 

final results of the camera calibration technique. For validation and estimation of error in 

the image points, the Xi and Xi' points were calculated using the obtained unknown 

parameters as initial estimates and using the mathematical model generated from 

geometry. Figure 6.19 shows a comparison of the Xi and Xi' (in the MATLAB figure, Xi' 

is denoted by the notation Xi") image points of top and bottom spheres, respectively. The 

plotted blue lines represent the image locations obtained by conducting the experiment 

and the red lines represent those values obtained by applying the analytical model 

developed from geometry. It can be seen that both values of image points follow 

similarly in each displacement. The percentage error in Xi points falls within a range of 

0.04% to +0.13% and that in Xi' points falls within a range of -0.01% to +0.06%, which 

are negligibly small and acceptable (Figure 6.20). These results show the experimental 

set up corresponds with the mathematical model developed from the geometry in 

calculating the 2-D image locations in the image plane. 
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Figure 6.19: Comparison of image points (X-axis displacements) 
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Figure 6.20: Percentage error in the image points (X-axis displacements) 
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Displacements of bottom and top sphere in the Y-axis direction: 

In this case, both the top and bottom spheres are moved in the positive and negative 

directions from the image center, but the displacements are given in the Y -axis. The 

results obtained were similar to the X- direction. Here, the algorithm of nonlinear least 

squares analysis had converged within five iterations. The values obtained for each of the 

unknown parameters are as follows: The values range from -0.0288 to +0.0288 for ai and 

from -0.0272 to +0.0271 for a;. The values estimated for L~, Lw,a, and Yo were 

36.6989mrn, 867.8981mrn, -0.0183 radians (i.e. 1.05 degrees) and 2.6720mrn (i.e. 574.62 

pixels), respectively. The focal length calculated from L1 corresponds to 36.6989mrn. 

This value matches with that obtained above for the X displacements. Similar results 

were observed corresponding to Lw. A negative value of a indicates that the image 

plane is tilted by a small angle in the opposite direction with respect to the value of 

a during the X-axis displacements. 

As mentioned earlier, for validation and estimation of error in the image points, 

the Yi and Yi' points were calculated by using the obtained unknown parameters as initial 

estimates and by using the mathematical model generated from the geometry. The Figure 

6.21 shows a comparison of the Yi and Yi' (in the MA TLAB figure, Yi ' is denoted by the 

notation Yi") image points of top and bottom spheres respectively. The plotted blue lines 

represent the image locations obtained by conducting the experiment and the red lines 

represent those locations obtained by applying the analytical model developed from the 

geometry. It can be seen that both values of image points follows are similar for each 

displacement. The percentage error in Yi points falls within a range of -0.15% to +0.1% 
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and that in Yi' points falls within a range of +0.05% to +0.35 %, which are comparatively 

negligible and acceptable (Figure 6.22). Hence, this also exemplifies that the 

experimental set up used corresponds with the mathematical model developed from the 

geometry in calculating the 2-D image locations in the image plane. 
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Figure 6.21: Comparison of image points (Y -axis displacements) 
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Figure 6.22: Percentage error in the image points (Y-axis displacements) 

Using this new approach, the image center of the camera was calculated as 

(661.53, 574.62) pixels and focal length was 36.6mm. The results obtained by this 

technique were compared with the results obtained using Heikkila's camera calibration 

algorithm in Table 6.2. 
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Table 6.2: Comparison of the estimated parameters 

Parameters X-axis displacements Y -axis displacements Heikkila's Method* 

f (mm) 36.6599 - 36.6597 

f (mm) - 36.6989 36.7257 

Uo (pixels) 661 .53 - 756.27 

V0 (pixels) - 574.62 630.38 

ax (degrees) 0.3724 - 0.423 

a Y (degrees) - 1.05 1.5 

Lw (mm) 867.52 867.89 859.63 

s 1.001 1.0018 

" 
. . 

" • Taken from T. Rahman, 2009: H1ghly Accurate V1s1on Based Surface Reconstruction System (Thes1s Report), pp. 139 . 

In the table, for differentiating the tilted angle, ' a x ' and ' a Y ' are used for X and 

Y displacements, respectively. The intrinsic parameter 's' is calculated by taking the ratio 

between the focal length obtained in the Y-axis displacements to X-axis displacements. 

The parameter values mentioned in the last column of the table is acquired by using the 

camera calibration algorithm proposed by Heikkila with 4800 target points. These are 

used as a reference for the comparison of this new technique. It can be seen from the 

table that the focal length obtained using this proposed technique is similar to that 

obtained by Heikkila's method. Hence, this technique can be considered to be more 

efficient in calculating the focal length precisely with only a less number of target images 

(in this case: 202 images) compared with the Heikkila's algorithm using 4800 target 
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images. Similarly the calculated scale factors are comparable from the two methods. But 

in the case of image center, there is a difference of around 95 pixels for U0, and around 

55 pixels for Vo which cannot be quantified unless the true value of the image center is 

known. This suggests further improvements need to be done in the proposed new 

technique for making a conclusion regarding the accuracy of the image center. Regarding 

a , there is only a slight variation in the angle calculated from both techniques. Similar 

with the case of Lw, where there is a small difference of around 8rnm in length. 

To summarize, using the proposed technique the intrinsic parameters like image 

center and focal length are computed separately without taking into consideration lens 

distortions of the camera. This makes the technique simple and efficient in estimating the 

camera parameters without involving the incorporation of any complex nonlinear lens 

distortion models. Also, the time required to undertake the technique is comparatively 

less and hence is suitable for applications that require high speed calibration. The 

observations from the experimental study show that this new technique for separately 

finding these parameters of the camera has the potential to improve the calibration 

accuracy especially in the case of calculating focal length whereas further improvements 

are recommended to get a conclusion on estimating the image center precisely. 
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Chapter 7 

Conclusions and Recommendations 

In the field of machine vision, camera calibration refers to the experimental 

determination of a set of parameters which describe the image formation process for a 

given analytical model of the machine vision system. In 3-D machine vision, it is 

necessary to know the relationship between the 3-D object coordinates and the 2-D image 

coordinates. This transformation is determined in Geometric Camera Calibration (GCC) 

by experimentally determining the unknown parameters of the camera model. It 

introduces the analytical tools necessary to establish the quantitative constraints between 

the image measurements and the position and orientation of geometric figures measured 

in some arbitrary coordinate system. Once a camera has been calibrated, it is possible to 

associate with an image point a well defined ray which passes through this point and the 

camera's optical center as well as to perform three dimensional measurements from a 
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digitized picture. An accurate, reliable calibration procedure is essential for most 

industrial machine vision applications including areas like mechanical metrology, robot 

assembly, reverse engineering, image fusion, tracking, etc. An optimal calibration 

technique should produce unbiased and minimum variance estimates of the camera 

parameters. In practice, this is quite difficult to achieve due to various error sources 

affecting the imaging process. The precision of the parameter estimates is an important 

aspect in all camera calibration techniques. Hence, geometric camera calibration followed 

by the estimation of parameters precisely is not a trivial task in any vision based 

applications. Therefore, this study mainly focused on the role of "accuracy" in geometric 

camera calibration by identifying a few predominant factors contributing to error. Also, a 

new approach towards camera calibration is proposed in which image center and focal 

length is calculated independently of the lens distortion. 

7.1 Summary of Results and Conclusions 

The following paragraphs explain the research work undertaken and the conclusions that 

can be drawn from the work: 

• The first problem addressed in this thesis was to determine whether the algorithm 

reported in Heikkila (2000), works properly in estimating the camera parameters 

assuming ideal data (i.e. no measurement errors). This was verified from the 

calibration results obtained, which illustrated that the algorithm works perfectly in 

determining the camera's extrinsic and intrinsic parameters. 
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• As a second step, an accuracy assessment was performed on Heikkila's method. 

The problem undertaken was to gain an understanding of how much accuracy is 

needed on the target points for an optimal calibration which addresses the 

following fundamental question: Assuming a certain tolerance or uncertainty in 

the calibration target, what is the expected error with respect to the measured 

camera parameters and what is the impact on the final 3-D machine vtswn 

application? The relative accuracy obtained for each parameter when 

incorporating an uncertainty of O.lmm on each of the target points has been 

reported as an outcome of the study. From the histogram plots and the accuracy 

analysis, it was observed that the statistical dispersion of distortion parameters is 

high in comparison to the other intrinsic parameters and that the order of 

magnitude of the variation is close to the actual value of the parameter. An 

important conclusion that can be drawn from this is that a very high accuracy is 

required on the target points in order to accurately determine the distortion 

parameters. Also, it was noticed that a relatively small change in the rotation 

angle about the Z axis results in a relatively large change in the observed image. 

The accuracy assessment study clearly indicates that the dimensional accuracy of 

the calibration target plays an important role in geometric camera calibration and 

that a carefully machined "precision" calibration target is critical in applications 

demanding high accuracy. Therefore, the results illustrate that in a real world 

machine vision application it is extremely difficult to obtain accurate or 
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repeatable results even though current camera calibration techniques and 

algorithms are sound from a theoretical point of view. 

• The next move in the research was to understand the problems associated with 

geometric camera calibration through the application of Design of Experiments 

(DOE). The camera calibration toolbox for MA TLAB proposed by Heikkila is 

used for computer simulation. The primary (intrinsic) factors associated with 

camera calibration are emphasised in this experiment, namely, focal length, image 

centre, radial and tangential distortions. The response is taken as sum square of 

error caused by varying different combinations of the factors considered. A 

response surface methodology (RSM), namely a Central Composite Design 

(CCD), was carried out for this purpose. The objective of this study was to 

determine the significant factors leading to inaccurate results during the process 

of camera calibration. As an outcome of the study performed, significant findings 

are reported, including large interactions between certain factors that help explain 

the difficulties in obtaining requisite calibration results in many real-world 

machine vision applications where high accuracy is essential. The results indicate 

that due to the interactions between parameters the calibration algorithm will not 

necessarily converge to the minimum value when the data is subject to 

measurement error and the error cannot necessarily be attributed to a single 

camera parameter. Also, it was noted that the results from Design-Expert are 

acceptable with the results obtained from MA TLAB calibration model, the 

interaction plots are reported for validation purposes. One of the most significant 
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findings is that certain camera parameters (e.g. radial distortion 2) can effectively 

be removed from the calibration model with no discernible loss in accuracy; a 

significant finding that goes against much of the published camera calibration 

literature. 

• Based on these DOE results, the final focus of this thesis was to propose a new 

approach towards geometric camera calibration in which image center and focal 

length are calculated independently of the lens distortion. The idea behind this 

study was to differentiate certain intrinsic parameters like image center and focal 

length and compute them separately without incorporating any nonlinear lens 

distortion models. This forms a novel technique towards GCC involving 

mechatronics and the algorithms are based on state of the art image processing 

algorithms including subpixel interpolation techniques for subpixel accuracy and 

a few numerical techniques. The experimental results show that this new 

technique for finding the above mentioned camera parameters has the potential to 

improve the calibration accuracy especially in the case of calculating focal length 

whereas further improvements are recommended to get a conclusion on 

estimating the image center precisely. Also, this technique is simple, efficient and 

comparatively fast and hence is suitable for applications that require high speed 

calibration. 
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7.2 Contributions 

The following is a summary of the main contributions of this work: 

• An accuracy assessment on Heikkila's method is performed by adding an 

uncertainty to the target points and thereby to investigate the 3-D measurement 

errors. 

• Novel application of Design of Experiments (DOE) as an aid in finding the 

problems associated with geometric camera calibration. As an outcome of the 

study performed, significant findings are reported, including large interactions 

between certain factors that help explain the difficulties in obtaining requisite 

calibration results in many real-world machine vision applications where high 

accuracy is essential. One of the most significant findings is that certain camera 

parameters (e.g. radial distortion 2) can effectively be removed from the 

calibration model with no discernible loss in accuracy; a significant finding that 

goes against much of the published camera calibration literature. 

• Development of a novel technique to estimate certain intrinsic camera parameters 

like image center and focal length independently of the lens distortion based on 

the state of the art image processing algorithms including subpixel interpolation 

techniques for subpixel accuracy and a few numerical techniques. A GUI was 

developed and implemented for automating the process of capturing the images of 

the target. Also, this technique is simple, efficient and comparatively fast and 

hence is suitable for applications that require high speed calibration. 
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7.3 Recommendations 

The following are the recommendations for future work: 

• It was already discussed that the accuracy of data acquisition process plays a 

crucial role in geometric camera calibration when evaluating the final estimates of 

camera parameters. The precision of the final results of camera calibration 

depends on how accurately the camera model is used and how 3-D coordinate 

points and its corresponding 2-D image points are located. Therefore, the current 

work on accuracy and error analysis can be further extended to deal with the 

problem of error propagation of image coordinates on the camera calibration 

parameters resulting from the measurement errors of 3-D and 2-D coordinate 

points. An error propagation model can be derived for the camera model used in 

calibration procedure, and be used to study the impact of image coordinates error 

and how these errors are propagated in to the final results of camera calibration. 

Further, the impact of increasing the number of image points on the errors of 

image coordinates can also be investigated. 

• In the study of design of experiments, a half CCD is used which requires less 

number of runs compared to full CCD. Hence, for further investigations a full 

CCD or a different type of RSM like BBD can be used for checking the 

correctness and accuracy of the model obtained. Also, the results from the DOE 

approach can be used for better understanding in vision based applications 

involving the GCC of cameras. 
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• In the new proposed technique of estimating certain camera parameters 

separately, the projection of the occluding contour of a sphere can be interpreted 

as an ellipse in the image. It is suspected that, this can be used for better 

efficiency and accuracy of the new proposed technique. This geometric 

interpretation needs the inclusion of conic fitting algorithms, namely ellipse 

fitting to extract the contour and thereby to obtain the control points from the 

Images. 

• Further extension to the new technique can be done by increasing the number of 

target points and thereby the corresponding image points. It is expected that this 

can reduce the error and improve the accuracy in the estimated camera parameters 

during calibration process. 

• For a comparative study and to have further improvements, the calibration results 

from the proposed technique can be compared with the results obtained from the 

other calibration techniques. 

• The various image processing algorithms and numerical techniques involved in 

the proposed new approach can be implemented for real-time applications. 
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Appendix A 

Response Surface Methodology 

This section briefly describes the use and importance of Response surface methodology 

in the analysis of designed experiments. Response surface methodology, or RSM, is a 

collection of mathematical and statistical techniques useful for the modeling and analysis 

of problems in which a response of interest is influenced by several variables and the 

objective is to optimize this response. A more detailed explanation of RSM can be 

obtained in (Montgomery, 2008). The uses ofRSM are: 

1) To determine the factor levels that will simultaneously satisfy a set of desired 

specification (e.g. model calibration). 

2) To determine the optimum combination of factors that yield a desired response 

and describe the response near the optimum. 

3) To determine how a specific response is affected by changes in the level of the 

factors over the specified levels of interest. 
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4) To achieve a quantitative understanding of the system behavior over the region 

tested. 

5) To find conditions for process stability, i.e. insensitive spot (robust condition). 

6) To replace a more complex model with a much simpler second order regression 

model for use within a limited range -7 replacement models, meta models, or 

surrogate models. 

In most RSM problems, the form of the relationship between the response and the 

independent variables is unknown. Thus, the first step in RSM is to find a suitable 

approximation for the true functional relationship between y and the set of independent 

variables. Usually, a low-order polynomial in some region ofthe independent variables is 

employed. If the response is well modeled by a linear function of the independent 

variables, then the approximating function is the first-order model 

(A. I) 

Ifthere is a curvature in the system, then a polynomial of higher degree must be used, 

such as the second order model 

k k k 

Y =Po+ LfJ;x; + Lf3;; x/ + LLf3ux;X; + & (A.2) 
i=l i= l i <J J=l 

Almost all RSM problems use one or both of these models. 
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Figure A.l: The sequential nature of RSM 

RSM is a sequential procedure. When we are at a point on the response surface 

that is far from the optimum, i.e. far from the peak such as the current operating 

conditions in Figure A.l, there is little curvature in the system, then a first-order model 

will be appropriate. The objective here is to lead the experimenter rapidly and efficiently 

to the general vicinity of the optimum. Once the region of the optimum has been found, a 

more elaborate model such a second order model may be employed, and an analysis 

performed to locate the optimum. 

The method of least squares is used to estimate the parameters in the 

approximating polynomials. The response surface analysis is then performed using the 

fitted surface. The model parameters can be estimated most effectively if proper 

experimental designs are used to collect the data. Designs for fitting response surfaces are 

called response surface designs. Two very useful and popular experimental designs that 

allow a second order model to be fit are the: 
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• Central Composite Design (CCD) 

• Box-Behnken Design (BBD) 

Both designs are built up from simple factorial or fractional factorial designs. 

The Figure A.2 shows a 3-D view of a CCD: 

Figure A.2: 3-D view of a CCD 

When selecting a response surface design, some of the features of a desirable 

design are as follows: 

1. Provides a reasonable distribution of data points (and hence information) 

throughout the region of interest. 

2. Allows model adequacy, including lack of fit, to be investigated. 

3. Allows experiments to be performed in blocks. 

4. Allows designs of higher order to be built up sequentially. 
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5. Provides an internal estimate of error. 

6. Provides precise estimates of the model coefficients. 

7. Provides a good profile of the prediction variance throughout the experimental 

regiOn. 

8. Provides reasonable robustness against outliers or missing values. 

9. Does not require a large number of runs. 

1 0. Does not require too many levels of the independent variables. 

11. Ensures simplicity of calculation of the model parameters. 
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Appendix B 

CCD Design 

This appendix presents a brief overview of the Central Composite Design (CCD). For a 

detailed description refer to (Montgomery, 2008). A CCD is commonly used to fit a 

second order model. This is the most popular class of design used for building second 

order response surface models. 

Generally, the CCD consists of a 2k factorial (or fractional factorial of resolution V) with 

nF factorial runs (nF is the number of points used in the factorial portion of the design), 2k 

axial or star runs, and nc center runs where k equals the number of factors. Figure B.l 

represents central composite design where a 2k design is augmented with four axial runs. 

The small circles in the figure represent the points at which the experiment is run. For 

k=2, the design forms a square and for k=3, it forms a cube. 
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(a) Two factors (b) Three factors 

Figure B.l: Central Composite Designs (a) For k=2 (b) For k=3 

The practical deployment of a CCD often arises through sequential experimentation. That 

is, if the curvature is important (exhibits lack of fit), the two level design (2k) can be 

augmented with axial runs allowing the quadratic terms to be incorporated into the first 

order model, to obtain a central composite design. That are two parameters in the design 

that must be specified: the distance a of the axial runs from the design center and the 

number of center points nc .. 

The features ofCCD are (Lye, [Online]): 

• Each factor varies over five levels 

• Typically smaller than Box-Behnken designs 

• Built upon two-level factorials or fractional factorials of Resolution V or greater 
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• Can be done in stages ~ factorial + centerpoints + axial points 

• Rotatable 

Figure B.2 explains how a CCD is generated: 

* I 
I 
I Factorial 

points+ EJ I Axial + *"----· ----* 
~ 

I 

l points 
I 

* II 

Figure B.2: Illustration of generating a Central Composite Design 

Axial points are points on the coordinate axes at distances "a" from the design center; 

that is, with coordinates. The ' a ' value is usually chosen so that the CCD is rotatable. 

Rotatabilty: Rotatability is a desirable property for response surface designs, i.e. 

quadratic model designs (Lye, [Online]). It is important for the second order model to 

provide good predictions throughout the region of interest (Montgomery, 2008). A design 

is rotatable if the variance of the predicted response at any point x depends only on the 

distance of x from the design center point. A design with this property can be rotated 

around its center point without changing the prediction variance at x. That means, for a 
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rotatable design the variance of the predicted response is constant at all points that are 

equidistant from the center of the design. Figure B.3 illustrates the three types of central 

composite designs for two factors. The CCC (Central Composite Circumscribed) 

explores the largest process space and the CCI (Central Composite Inscribed) explores 

the smallest process space. Both the CCC and CCI are rotatable designs, but the CCF 

(Central Composite Face- Centered) is not. In the CCC design, the design points describe 

a circle circumscribed about the factorial square. For three factors, the CCC design points 

describe a sphere around the factorial cube. 

-1 +1 

c c 

C F 

c 1 

Figure B.3: Three types of Central Composite Designs for k=2 

188 



Appendix C 

Model Adequacy Checking 

This appendix describes how a model adequacy checking was performed for the model 

developed in Chapter 5, through the graphical analysis of the residuals. It was already 

explained that any violations of the model assumptions (normality of residuals, constant 

variance, and independence) and model inadequacies can be easily investigated by the 

examination of residuals, especially by the graphical analysis of the residuals 

(Montgomery, 2008). In general, if the model is adequate, the residuals should contain no 

obvious patterns. 

A check of normality assumption could be made by constructing a normal 

probability plot of the residuals. If the error distribution is normal then the plot should 

resemble a straight line. A check of constant variance assumption could be made by 

constructing a plot of the residuals versus fitted or predicted values. If the model is 

correct and the assumptions are satisfied, the residuals should be structureless; i.e. the 

plot should not reveal any obvious pattern. In particular, the residuals should be unrelated 
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to any other variable including the predicted response. Plotting of residuals in run/time 

sequence will check the independence assumption. This plot is helpful in detecting the 

correlation between the residuals. Proper randomization of the experiment is an important 

step in obtaining independence. The presence of outliers can also be checked for proving 

the adequacy of the model. A residual that is very much larger than any of the others in 

the normal probability plot or in the plot of outlier T or externally studentized residuals is 

often called an outlier. The presence of one or more outliers can seriously affect the 

analysis of variance. Figures C.la to C.7 shows the results of analysis of residuals for 

model assumptions. 
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JOO 

99 • • • .. 
~ 

iii 
:::J 

150 .., 
~ 

00 ·;;;; .. 
.a 80 n: 

- f .. 
70 ~ .a e .tl 

a. 50 c 0.00 
~ 

., .., 
iii 30 :::J 

e 20 
Ui 

0 'I .2:-
z 10 iii 

I 
E -1~ .. 
5 

a I 
• - • a 

I 

- I 

• I 
• 

·JOO 

-2l1 -116 000 116 2l1 0 31 1 , , 2.17 3 10 • 03 

Internally studentlzed Residuals Predicted 

Figure C.l: (a) Normal probability plot of residuals (b) Plot of residuals versus predicted 
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Residuals vs. Run Residuals vs. Focal Lenoth 
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Figure C.2: (a) Plot of residuals versus run (b) Plot of residuals versus factor A 
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Residuals vs Rad1 Residuals vs Rad2 
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Figure C.4: (a) Plot of residuals versus factor D (b) Plot of residuals versus factor E 
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Figure C.5: (a) Plot of residuals versus factor F (b) Plot of residuals versus factor G 
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Figure C. I a shows almost a straight line fit. This indicates that the residuals are 

approximately normally distributed. In general, moderate departures from normality are 

of little concern in the fixed effects analysis of variance. Figure C.l b plots the residuals 

against the predicted values showing a nice scatter without any systematic pattern. This 

indicates a constant variance. The points show random scattering or pattern in the Figure 

C.2a where the residuals are plotted against run order or time. Also Figures C.2b to C.Sb 

do not show any obvious pattern, indicating that there is no particular contribution of an 

independent factor that is not accounted for in the model. This implies the independence 

assumption. Figure C.6a shows any significant outliers. The outliers lie between the 

limits and no visible pattern can be seen. The plot of predicted versus actual in Figure 

C.6b shows consistency. The Box-Cox plot in Figure C.7 shows a square root 

transformation of the model as recommended by the plot before. All plots from Figure 

C.l a to C. 7 explained before had been obtained by undertaking the square root 

transformation on the model recommended by the Box-Cox plot as the transformation 

gave good results compared to no transformation of the model. Therefore from the above 

graphs and the underlying statements the model adequacy was proven. 
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Appendix D 

Newton's Method 

This appendix explains the numerical technique namely, Newton' s method for solving 

the nonlinear systems of equations developed from the geometrical model considered in 

Chapter 6 (Krouglicof, [Online]). 

Generally, if there are n unknown parameters to be determined then a minimum of 

n independent equations are required for a solution. But if the equations are nonlinear in 

nature, then an analytical approach is not always feasible and a numerical teclmique must 

be applied to solve the equations. Newton's method for solving nonlinear system of 

equations is a simple numerical method for finding the zeros or roots of a nonlinear 

differential function. The method works in an iterative manner. The method can be 

described as follows: 

The system ofn nonlinear equations is represented by the vector F(B): 
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J/8l 
F(e)= 12(8 

~n(e) 

81 

82 
where the vector 8 = which represents then unknown parameters. 

(D. I) 

The first order Taylor series approximation of F(e) about an initial parameter vector B0 

is given by: 

(D.2) 

where J(B0 ) is the Jacobian of F(e) evaluated at 1fo given by: 

~(e) ~(e) ~(e) 
881 88 88 

J(e)= 
qt;(e) qt;{B) qt;@) 
881 882 88n 

t?i)~) i.(e) i.(e) 
881 882 88n (D.3) 

The Jacobian is defined as the matrix of partial derivatives of each of the n equations 

contained in F(e) evaluated with respect to each of the unknown parameters contained 

inB. Since the objective of Newton ' s method is to find the zeros or roots of F(e), 

Equation (D.2) can be written as: 
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F(e)= o = F(eo )+ J(eo )· (e- B0 ) (D.4) 

Solving for B from Equation (D.4) yields: 

(D.5) 

For simplicity, (lJ -Bo) can be represented by a vector 7J , i.e. 7J = (li - B0 ) . Thus by 

substitutingp, Equation (D.5) can be written as 

(D.6) 

The vector 7J can be evaluated by solving the following linear system of equations: 

J(eo)· P = -F(eo) (D.7) 

A new estimate of lJ is computed by adding 7J and B0 as follows: 

(D.8) 

Being an iterative technique, the algorithm continues until the specified accuracy 

criterion is attained or until the maximum number of iterations is exceeded (i.e. the 

algorithm fails). A suitable accuracy criterion can be defined as follows: 

(D.9) 

Basically the algorithm will successfully converge to a solution when the Euclidean norm 

is less than some threshold, c; . 
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A pseudo-code implementation of the Newton's method can be written as follows: 

1f0 = initial estimate of root 

i = 1; (i = number of iterations) 

~ = required accuracy 

nrm = 1; (nrm = Euclidean norm) 

n max = maximum number of iterations allowed 

while (nrm >~)and (i<n_max) 

{ 

nrm = sqrt(i; (eY + / 2 (eY + ... +In (eY) 

p = invJ(1i0 )(- F(ffo )) 

i = i + 1 

} 
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Appendix E 

Nonlinear Least-Squares Analysis 

This appendix explains the technique of Nonlinear Least-Squares Analysis used m 

Chapter 6 for the problem of fitting a nonlinear model (Krouglicof, [Online]). 

Nonlinear least-square analysis refers to the problem of fitting a nonlinear model 

to a set of experimental data points. Generally, if there are n unknown parameters to be 

determined then a minimum of n independent equations are required for a solution. But in 

this case there are m unknown parameters and n equations; i.e. one per data point. The 

method also works in an iterative fashion. The method can be described as follows: 

The system ofn nonlinear equations is represented by the vector F(iJ) : 

(E. l) 
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el 
e2 

where the vector e = which represents the m unknown parameters. 

The first order Taylor series approximation of F(e) about an initial parameter vector 00 

is given by: 

(E.2) 

where J(ffo) is the Jacobian of F(e) evaluated atB0 • 

The Jacobian is defined as the matrix of partial derivatives of each of the n equations 

contained in F(ff) evaluated with respect to each of the m unknown parameters 

contained in B. As in the case of Newton's method, the objective of nonlinear least 

squares analysis is also to find the zeros or roots of F(e), and Equation (E.2) can be 

written as: 

F(B)= 0 = F(B0 )+ J(B0 ). (e- B0 ) (E.3) 

Equation (D.3) can be simplified by defining a vector, fJ , given by: 

Substituting fJ in Equation (E.3) yields: 

0 = F(ffo )+ J(90 )lf (E.4) 
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If the experimental data is subject to measurement error and the system of equations is 

overdetermined (i .e. n>m), then Equation (E.4) cannot be satisfied explicitly for all 

points. An error term, & , must be introduced to account for this discrepancy: 

(E.5) 

The sum of the squares of the individual error is an appropriate error criterion, q, which 

can be readily minimized. The sum of the squares of errors can be represented in matrix 

form as follows: 

q = (&Y .(&) = (F(Bo )+ J(Bo )(,B)Y .(F(Bo )+ J(Bo )(,B)) (E.6) 

In order to minimize q, the partial derivative of Equation (E.5) with respect to each of the 

unknown parameters must be calculated and set equal to zero. After some manipulation 

this yields the following set of normal equations: 

(E.7) 

Once again the algorithm proceeds m an iterative manner. A new estimate of 1f is 

computed by adding 7J and 1J0 as follows : 

() = ()0 + fJ (E.8) 
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A pseudo-code implementation of the Nonlinear Least-Squares Analysis can be written 

as follows: 

n =Number of data points 

m =Number of unknown parameters 

00 = initial estimate of root 

~ = required accuracy 

cnt =0; 

nrm = 1; 

(cnt = iteration counter) 

(nrm = Euclidean norm) 

n max = maximum number of iterations allowed 

while (nrm > ~) and cnt<n _max) 

{ 

} 

7J = -1 * inv(J.'*J) * J .'*F 

nrm = O 

fori = 1 :m 

rum = nrm + fJ(i) "2 

end 

cnt = cnt+ 1 
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