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4. Image center in pixels meast relative to the image coordinate system with origin
in the upper left-hand ¢ :r « the image. The pixel dimensions in 1 : X and Y

direction is 0.00465mm as pro»  :d by the camera manufacturer:

e X image center in pixels, U, =696

e Y image center in pixels, ¥, = 520

5. Radial and Tangential distortion coefficients:

e Radial distortion coefficients, Radl (k;) = 0.0001, Rad2 «t;)=0.00005

e Tangential distortion coeff ts, Tanl (p;) = 0.0001, Tan2 (p,) = 0.00005

Figure 4.2 below is a diagramm representation of the sy1 1« c camera calibration

model.
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Step 10: Finally, compare intrinsic and extrinsic parameters used to generate
the synthetic im: : (Section 4.1.1.1) with  >se provided by Heikkila’s

calibration algorithm in Step 7 above.

4.1.2 Re: Its and Discussions

Figures below represent the ¢ ~'b ion target, synthetic images and the istogr 1 plot of

error in pixels in the X and Y d 5 obtained by following the steps described in the
previous section. Note that the : distortion is relatively eak as can be observed in
Figure 4.4. The distortion parai 5 used are typical of a commercially available

industrial camera with a relatively »ng focal length.
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Figure 4.4: Synthetic images (in pixels)
(a) Undistorted image (b) Distorted image after adding radial at igential di Hrtion
(c) Distorted plus corrected image; blue: distorted, red: correcte rrection done using
inverse model parameters)
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Figure 4.5: 1 -or in pixels; histc n plots representing the difference between the
original and the corrected image cc t es (error in X and Y direction)
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presented in this chapter prove that the camera calibration techniques and algorithms
described by Heikkila work properly in theory, but not neces: ‘ily 1 practice. In a real
world machine vision applicatic it is extremely difficult to obtain accurate or repeatable
results even though current ¢ era calibration techniques a gorithms are sound from

a theoretical point of view.
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are not significant but must be inc! led in the model to maintain the hierarchy (Myers

and Montgomery, 2009).

Table 5.2: Red ANOVA for the calibratt m« :l

AHOVA for Response Surface Redi Jadr atic Moc
Analysis of var  1ce table [Partial sum ot res - Type ]
Sum of Mean F p-value

Source Squares daf Square Value Prob > F

Modlel 70.63 392 5.968E+005 = 0.0001 ificant
A-Focal Lengt 1.317E-005 1.317E-005 2.00 0.1622
8-U¢ 0.000 1 0.000 0.000 1.0000
-0 0.000 1 0.000 0.000 1.0000
D-Rad1 9.442E-005 1 9.442E-005 14.36 0.0004
E-Rad2 8.406E-006 1 8.406E-006 1.28 0.2627
F-Tan 0.000 1 0.000 0.000 1.0000
G-7an2 0.000 1 0.000 0.000 1.0000
AD 0.025 1 0.025 3803.01 < 0.0001
AE 2.B676E-004 1 2.8676E-004 40.70 < 0.0001
8G 0.091 1 0.091 13814.28 < (0.00017
CF 0. 1 0.051 7738.59 < 0.0001
Al 8.44 1 8.44 1.284E+006 < (0.0001
g 21.92 1 21.92 3.334£+006 < (0.0001
c? 21.92 1 21.92 3.334¢E+006 < 0.0001
D 0.059 1 0.059 9043.69 < 0.0001
- 0.63 1 0.63 96354.33 < 0.0001
2 0.028 1 0.028 4212.21 = 0.0001
G 1.594E£-003 1 1.594E£-003 242.48 < 0.0001

Residual 3.879E-004 6.574E-006

Cor Total 70.63

The interactions between the various ctors that were found ) ¢ significant are:
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Final Equation Terms of Coded Facto

Sgrt(Sum Square of error) =
+0.86
+4 360E-004 * A
+5.319E-007 *B
-5.721E-007 *C
-1.167E-003 *D
-3.483E-004 *E
+1.954E-007 *F
-9.162E-007 *G
-0020 *A*D
-2.045E-003 *A*E
-0038 *B*G
-0.028 *C:
+075 * A2
+1.20 *|
+1.20 *C*
+0.063 *D=
-0.20 *E=
-0.043 *F2

+0010 *G°
(5.6)
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Final Equation Terms of Actual Facto

Sqrt(Sum Square of error) =
+12719.99179
-208.71537 *Fo 1
-16.72030 *UO
-12.49218 *V0
+2764.80612 *Rad1
+14278.67108 *Rad2
+4887.11606 * Tan1
+8739.60120 * Tan2

-79.06117 * 1
-408.85717 * 2
-12.55680 *!
-9.39830 * VYO0 * Tam
+298166 *Fon :

+0.012012 *U0°

+0.012012 *vO0-
+2.50224E+005 *Radi1®
-2.04188E+009 * Rad2-
-4 74360E+005 * Tan1<

+113812E+005 * 22
(5.7)

5.3.3 Interpretation of ..1e Results

The model graphs representit  the ificant interactions b veen the various factors are

shown below in the form of curvatu
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Figure 5.3: -action between factors “B” ¢ d “G”
The interaction between factors “ ’ and “G” can be seen from the above plots (Figure
5.3). The sum of the square of tl or is minimum when tl X image center, U (factor

“B”) and tangential distortion ¢ cient 2 (factor “GG™) are at their nominal value, but it

can be seen that for arange of val  for “E” the ¢ is almost co tant.
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yr=mx; tc

y>=mx; tc

These ‘x’ and ‘y’ coordinates will

intersects the circle in the area be

these points obtain the coordina

which will give the location of the

will be :fined later through subp

shows the thresholded image ob

a pixel value “1°, thereby represen

‘ve the points in the gradiei

6.11)

(6.12)

i age where the line
een radius_minimum and radius_maximum. From
of the maximum pixel for ear search, i.e. peaks
>s to the nearest pixel. The location of these peaks
interpolation for subpixel accuracy. Figure 6.11

by leaving the edges. H :, 1 the peaks are given

a binary image.

Figure 6.11: Binary i

8) Subpixel interpolation techn

above process are stored in a n

of the calibration sphere showing peaks

for subpixel accuracy: The peaks obtained by the

ix to apply subpixel interpolation and thereby to
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6.2.4 Est mation of the | age Center and Focal Length of the
Camera

6.2.4.1 Geometrical and Mathematical Models

In the real world, the plane of the 0t and the image plane may not be exa y parallel.
Hence, once the spheres are lined up, the results obtained will ¢ a rough approximation
of the image center of the camera (X, Yo). If both planes are a1 lel to each other, the
obtained image center will coincide with the exact image center of the camera [(Xo, Yo) =
(Uy, Vo)] (see Figure 6.15). In 1is ire it can be found that there are two di  lacements
at a distance ‘W’ taken towards the »>sitive and negative side from the centered spheres.
Each of the coordinates in the plane represents the ¢ ter of the circle, i.e. the
image of the target sphere, and can  determined by processing the image of each sphere

using the procedures as explaine in :ction 6.2.2.
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axis of the top spheres is represented 3 ‘a,’ and those made by the bottom spheres is

represented as ‘ a,°. The six equations generated from the model using the geometry is as

follows:
L, tan(a, +a)=X,-U, (6.23)
L, tan(a, +a)= X, -U, (6.24)
L, tan(a, -a)=U, - X, (6.25)
L, tan(a, —a)=U, - X, (6.26)
tana, = 6.27)
L,
tang, = (6.28)
L, +h
The six unknown parameters in > equations are L,,L,,a.,U,,aq, ,a,' . Since the
equations are nonlinear in natu 1alytical approach is not always feasible and hence
a numerical technique like Newt method is applied to solve these equations (See
Appendix D for a detailed explanati  of the Newton’s meth rith: . The values of

‘W and ‘H’ are taken as 25 and  35mm respectively. ( ce L,and a are estimated

using the above method, the focal h () can be calculated using the formu

S =1L, cos(a) (6.29)
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The drawback of this method is from the experiment it is assumed that only four
significant digits will be obtaini  for each of the image points. If 1at is the case, then
the solutions for the unknown parameters will not be accurate.

Taking into consideration « the results obtained by Newton’s methc  another
geometrical model is considered (F ire 6.17) where more dis] icements are provided to
generate more image points by moving the spheres ‘n’ s to one side (positive
direction), v h a distance ‘W’ . For better understanding, displacements towards one
direction are only shown in the f The direction shown is considered to be along the
X-axis. The dotted lines towards t and left indicates at the splacements of the
sphere are ; ‘en continuously by distance ‘W each tii : in the object plane and
corresponding image points are ol | in the image plane. F  ‘n” displacements of the

sphere ‘2n’ image points are obte
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Sy
e
Figure 6.17: Geometrical mo 1 th ‘n’ displacements ot the sphere to the right

From the geometry, four eq ions generated for each point  the image pl e for the

displacements i=/.....n along the X s of the table in the test rig:

tana, = LA (6.30)
W
tana, = W, - (6.31)
Ly 4
X, =U, + L, tan(a, + @) (6.32)
X =U,+L n(a+a) (6.33)
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Figure 6.20: Percentage error in the image points (X-axis displacements)







and thatin Y points falls withina 1ge of +0.05% to +0.35 %, w ch are co paratively
negligible : d acceptable (Figu 6.22). Hence, this also exemplifies that the
experimental set up used correspon  with the mathematical odel developed from the

geometry in calculating the 2-D in  : locations in the image plane.

Comparison of Yi points C.ambarison of Yi" naints

35
xpenmental Y|
nalytical Y1

Yi values {(mm)
i
Yi" vaiues (mm)

05 [ T L R,
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I rure 6.21: Comparison of image po ts (Y-axis displacements)
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Figu 6.22: Percentage error in the image points (Y-axis displacements)

Using this new approach, e image center of the camera was calculated as
(661.53, 574.62) pixels and focal gth was 36.6mm. The sults obtained by this
technique were compared with the  ilts obtained using Heikkila’s camera calibration

algorithm in Table 6.2.
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5. Prov: :san internal estimate of error.

6. Provides precise estimates of e model coefficients.

7. Provides a good profile of the prediction variance throughout the ¢ )erimental
regio

8. Provides reasonable robu . 1inst outliers or missir - values.

9. Does otrequire a large nun zr of runs.

10. Does not require too many :vels of the independent variables.

11. Ensures simplicity of calct ition of the model parameters.
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Appendix B

CCD Design

This appendix presents a brief o
detailed description refer to (I
second order model. This is the
order response surface models.
Generally, 1 : CCD consists of a
ng factorial runs (ng is the numl
axial or star runs, and n. center
represents central composite des

The small circles in the figure

k=2, the design forms a square an

riew of the Central Composite Design (CCD). For a
ymery, 2008). A CCD is commonly used to fit a
popular class of design used for building second
torial (or fractional fa »>rial of resolution V) with

yoints used in the factori portion of the design), 2k

where k equals the r 1ber of ~ ors. Figure B.1
here a 2" design is augi  ited with for axial runs.
sent the points at which the experimer is run. For

r k=3, it forms a cube.
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L/ (0 )~ (D.1)
9]
— 16, .

where the vector 6 = which rc  :sents the n unknown parameters.

9"
T e first order Taylor series ap ation of F (9_ ) about an init paramet vector 6,
is given by:
F6)=F6,)+6,)(6-5,) (D.2)

where J (6_?0) is the Jacobian of F (@  evaluated at 6, given by:

56, 50
56, 56,

J(6)-

~6) af0)

| o6 906, (D.3)
The Jacobian is defined as the x of partial derivatives of each of the n equations

contained in F (9_ ) evaluated with  pect to each of the unk »wn parameters contained

in@ . Since the objective of D 's method is to fin the zeros or ro« ofF(H_),

Equation (D.2) can be writ 1 as:
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Fo)=0=Flo,)+(0,)} (0~

(D.4)

Solving for & from Equation (D.4) yields:

0-J(g]"-F)+(0-2)

(D.5)

For simplicity, (5—50) can be represented by a vector 3, ie. B = (0_—50). Thus by

substituting
0=J(8,)" F(8,)+B

The vector £ can be evaluated by
0.} 5= (0,)

A new estimate of 0 is computed

9=9_0+B

Being an iterative technique,
criterion is attained or until the

algorithm fails). A suitable ¢

Py =,

Basically the algorithm will s

is less than  me threshold, &.

, Equation (D.5) can |

written as

(D.6)
11 the following linear system of equations:
(D.7)
ding B and 6, as follows:
(D.8)

algorithm continues until 1 : specified accuracy

imum numb: of iteratic : is exceeded (i.e. the

criterion can be defined as follows:

(D.9)

ly converge to a solution when the Euc  dean norm
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A pseu

-CQ

: implementation of tl

Newton’s method can be written as follows:

6, = initial estimate ¢ ‘oot
i=1;, (i=number ( rations)

& =required accur :y

nrm =1, (nrm=F lidean norm)

n_max = maximuir der ¢ iterations allowe
while (nrm > &) and max)

{
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where the vector 8 =| ° |whichre ts the m unknown pa ters.

The first order Taylor series approx 1ation of F (9_ ) about an itial pai net vector 6,

is given y:
Flo)=F(g,)+(6,)-(6-,) (E2)
where J (50) is the Jacobian of F aluated at @, .

The Jacobia is defined as the n  x of partial derivatives of each of the n equations

contained in F (5 ) evaluated w  respect to each of the 1 unknown parameters

contained in @ . As in the case of Newton’s method, the objective of nonlinear least
squares analysis is also to find t| zeros or roots ofF(é_), and Equation (E.2) can be

written as;

F(§)=0:F(9_0)+J(§0)-(5_9_0) (E.3)

Equation (D.3) can be simplified :fining a vector, £, given by:

Substituting 7 in Equation (E.3)* ds:

0="F(@,)+s(5)7 (E4)
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If the experime al data is subject = measurement error and the system of e 1ations is
overdetermined (i.e. n>m), then | uation (E.4) cannot be satisfied explicitly for all
points. An error term, £ , must be introduced to account for this discrepancy:

(&)= F(6,)+ J(9,)B (E.5)
The sum of the squares of the indiv' " 1al error is an appropriate error criterion, q, which
can be readi n 1imized. The sum of the squares of errors can be represented in matrix

form as follows;

q=() (6)=(r(@,)+ 10, )B) (r6,)+ 16,)(5)) (E6)
In order to minimize q, the partial ¢ ivative of Equi on (E.5) with respect to each of the

unknown parameters must be calcu ed and set equal to zero. After some i 1ipulation

this yields the following set of nor equations:

(p)=-b@.) +@)] (@) €7)
Once again the algori’ p x in an i <ative nner. A new estimate of 6 is

computed by adding B and 6, as YWS:

0=06,+f (E.8)
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A pseudo-cc : implementation of  Nonlinear Least-Squares / lysis can

as follows:

n = Number of data points
m = Number of unknown parameters

6, = initial estimate of root

& =required accur -

cnt =0; (ent = ation counter)
nrm=1; (nrm iclide 1 norm)

n_max = maximur ber of iter ions allowe
while (nrm > ") <n_max)

{

p=-1in N*J.*F

fori I'm

nr arm + (i)™

end
0=0,+p4
cnt = cnt+ 1
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