








The Watchman’s Valk Problem

and i1ts Variations

by

© Rebecea Keeping

A thesis submitt. to the

Schiool of Graduate Studies

in partial fulfib of the
requirements for the degree of

AMaster of Science

Department of Mathe  ties and Statistics

Memorial University of Newfoundland

Novewmber 20 )

St. John's Newfoundland



Abstr. :t

Given a graph and a single watchman, the  atchman’s Walk Problemn is concerned
with finding closed dominating walks of minimum length, which the watchman can
traverse to efficiently guard the graph. When ultiple guards are available, two nat-
ural variations emerge: (1) given a fixed numl - of guards, how can we minimize the
length of tinme for which vertices are unobserved? and (2} given fixed tinie constraints
on the monitoring of vertices, what is the minimum number of guards required? The
present thesis reviews known results for the original problent as well as its variations.,

and proves an upper bound on the number of  1ards required when time is fixed.
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Chapter 1

Introduction

1.1 Motivation

A musecum is attempting to monitor its rooms. Each room is cor ected to one or
more other rooms via hallways, and from any given room it is possible to sce all
adjacent rooms. Placing one guard in eve | room will ensure all rooms are constantly
monitored, but this requires more guards tha are necessarv: we need only place
guards i such a way that cvery room cither has a guard or is adjacent to a room
with a guard. This problem belongs to the field 7 graph theory, aud the set of rooms
we require 1s called a dominating sct.

In graph theorvy, a graph G is a set V(G of vertices together with a set E(G) of
cdges. The edges of G are subsets of size two from V(G). and we say two vertices
w, v € V(G are adjacent or ncighbourmg if t » edge {w,o} (usunally written we)
belongs to E(G). Nore generally, if we allow for multiple edges between the same

pair of vertices then we obtain a multigraph, a1 if we accept edges of the form wu.



called loops, we obtain a reflexive graph. Here, however, the term graph will be
restricted to what is sometimes called a simple graph: a graph with no multiple edges
and no loops.

It is not difficult to sce how the museum problem can be translated into the
language of graph theory. The museum is a graph, say G, with rooms as vertices
and lialls as edges. The definition of a domii  ing set is then a set D C V(G) with
the property that every vertex of G is either D or adjacent to a vertex of D. The
concept of graph domination is widely rescarce 1, and many results are known about
thie domination number of a graph: the size  a smallest dominating set, denoted
¥(G). Minimizing the size of a dominating set  important, as ‘wa ful” dominating
sets are casy to find (take D = V(G), for example).

A variation on domination, as introduced by Hartnell, Rall, and Whitchead in 1998
[4], considers an alteruative method of guarding the museum: ra  er than placing
one guard in cach room of a dominating sct, ave a single guard (or “watcliman’)
walk around the museum in such a way that the visited rooms ¢ ectively form a
dominating set. This ensures that every room lhas becn either visited by the guard
or scen by the guard from an adjacent room. We will assume that the guard’s route
begins and ends in the same room, allowing the walk to be repeated.

In a graph, an alternating sequence of vertices and cdges, such as the route of
a guard through a musewm, is called a walk; more formally, a walk of length A is a
SCQUCLCE Vg, €1, U1, C2, . ., Cp, U Where ¢; = vj_yv; for cacli 4. Note that the length of
a walk is the number of edges it contains. A w Kk is closed if it hegins and ends on
the same vertex and is dominating if the vertice  of the walk form a dominating set.

We sce then that the desired route for a single muscum guard as described above is






!

1.2 Definitions

The nmumber of vertices [V(G)] in a graph G is called the order of G, and the number
of edges |E(G)] is called the size of G. If ve  ces w and © are adjacent we say w is
a neighbour of v, and the set of all neighbours of v along with o itsclf is called the
closed neighbourhood of v, denoted Nv]. 1f ¢ = we is the edge joining w and v then we
say 1 and v are both incident with ¢. The munber of edges ncident with the vertex
v in a graph G is called the degree of o and is denoted degew, or simply deg o if the
associated graph is clear from context. A vertex of degree 0 is called an usolate.

A graph with n vertices, every two of which are adjacent, is called the complete
graph of order n, denoted I,,. A bipartite gr W is one whose vertices can be parti-
tioned into two sets A and B such that every edge in the graph has oue end in A
and the other in B similarly, a multipartitc g vh has its vertex set partitioned into
multiple sets such that no vertex lias a neighbe  rin its own set. The terin ‘complete’
is applied to a bipartite or multipartite graph  hen all possible edges are present. A
complete bipartite graph that has one set of sit 1 and the other set of size A is called
a k-star.

T concept of a walk in a graph, as introd ed in Section 1.1, leads to a number
of further definitions. For example, a u-v walk is a walk beginning on the vertex u
and ending on the vertex ¢. A closed wallk with all edges distinet is called a cureudt,
and a walk with both vertices and edges distinet is called a path. A closed eircuit with
no repeated vertices except for the first and la is called a cyele; a eyele of length A
is called a k-cycle and is denoted Cp. If a cireuit in a graph G visits every edge of

G exactly once then it is called an Fulerian circuit, and when such a walk exists G



is said to be Fulertan. It is a well-known result, originally obscrved by Euler, that a
grapl is Eulerian if and only if each of its vertices has even degree. A Hamalton cycle
in a graph G is a cycle which includes every  ertex of G exactly ouce, and if such a
cycle exists then the graph G is said to be A niltonian.

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C F(G). A
spanning subgraph of G is a subgraph of G wit  vertex set V(G). A induced subgraph
of G is a subgraph A whosc edge set E(H) ¢ sists of all edges of G that have both
cudpoints in V(H). For a set of vertices S C V(G) we use G\S (or G\ ¢ if S contains
a single vertex ©) to denote the induced subgraph with vertex set V(G) \ S, and for
a set of edges S C E(G) we denote by G\'S 2 subgraph with vertex set V(@) and
edge set E(G)\ S.

A graph is said to be connected if there is a path between any two vertices, and
the maximal connected subgraphs of a disconnected graph are the components of the
grapli. If the graph G is connected and the graph G\ v is disconnected then the
vertex v € V(G) is called a cut vertex; simila 7, an edge whose removal disconneets
the graph is called a cut edge. A maximal  unected subgraph containing no cut
vertices is called a block of the underlying graplh. A cactus is a graph with the
property that cach of its blocks is ecither an ¢ or a cycle.

The girth of a graph is the length of a sho st cyele i the graph. The girth of a
era] that contains no cycles is defined to be infinity. An important family of graphs
called trees are categorized by the absence of cyeles; equivalently, a tree is a graph
which has a unique w-v path for any two vertices u, v. Note that this definition forces
trees to be connected. A spanning free of a graph G is a spanning subgraph of ¢

that is a tree. We refer to vertices of degree 1 atree as leaves and to a leat’s single
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ncighbouring vertex as a stem. If T is a tree then L(7T) denotes the set of leaves of
T, and we will define Tjy to be the leaf-delete  subtree T\ L(T).
“a grapht G has a w-v path then the dist ee in G from w to o, written de(u, v)
(or d(u,v) when G is clear), is the length ¢ a shortest w-v path in G. If S is a
set of vertices in G then the distance from a vertex ¢ € S to the set S is given by
d(v, S) = min d(u, v).
uesS
We move now from basic background terr 1ology to a few specific concepts that
will appear in forthcoming discussions: niatchi s and paired domination. A matching
in a graph G is a set of edges of G that hav no common endpoints. A mazimum,
matching is one containing the greatest numl - of edges, and a perfect matching is
one whichh uses every vertex of the graph. A total dominating set of a graph G is
a dominating set of G with the property that cvery vertex of G has a neighbour
in D. At first this may not appear to be dif  ent from the original definition of a
dominating set; however, the set of shaded ve ces in Figure 1.1 is an example of a
dominating sct that is not a total dominating: , since neither of the shaded vertices

lias a neighbour in the doniinat 1 set. Finally, a total dominating set D is called a
> . O

paired dominating set if the subgraph induced by D has a perfect matching.

1.3 Variations on the prob m

Two variations of the original watchman’s walk  -oblem are conside  1in the present
thesis. Both are motivated Dy supposing that v tiple guards are available to monitor
a network. When determining routes for multiple guards on a single graph, a balance

is souglht between security and cconomy: we wa: to minimize both the time for which



vertices are unobserved as well as the number of guards we must hire, but the two
are negatively correlated. In the second half of Chapter 2 we sumimarize the results
of Hartuell and Whitchead’s Downsizing a ¢ ninating set [6], where the priovity is
given to economy  they assume a fixed nun  er of guards and attempt to monitor
the graph as efficiently as possible with thosc  ards.

In Chapter 3 we consider the opposite problem, expanding on a variatiou first
introduced by Davies, Finbow, Hartuell, Li and Schmeisser in [1]. Here we assue
that a muscum cares less about how many gua s arc cmployed than about protecting
its valuables. The museun may require, for « wunple, that each room must be seen
every 10 minutes. The goal is to respect this t e restraint while using as few guards
as possible.

We will say a vertex is unobserved if neith — the vertex nor any of its neighbours
is occupied by a guard. Hence for a given graph G and length of thue £, we are
interested in finding the minimum nunber of  ards needed to dominate the graph
such that no vertex is unobserved for more t1I n ¢ conseeutive units of time. More
formally, for fixed time £ € N, a graph G can be t-monitored by a set S of guards if

there exists a function f: .5 x N — V(G) such that
(i) For every guard g € S and at every time € N, f(g,7+ 1) € N[f(¢.7)], and
(ii) For every vertex v € V(G) and every interval 7 C N of lengtli £ + 1, there exists
a guard g € S and a time 7 € I such that f(g,7) € N[v].

Note that f{g,7) is the vertex occupied by the ard g at tine 7. Essentially, condi-
tion (i) ensures that at each unit of time, guards may only move frou a vertex to one

of its neighbours (i.c., no ‘jumpin  is allowed). 1d condition (ii) ensures that every
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vertex has a guard within its closed neighbo  100d at least once every ¢ + 1 units of
time. For a given graph G and length of time  denote by Wi (G) the minimuu value
of [S], the number of guards needed to t-mor  or a graph.

In [1], the authors find upper bounds on W, (T') for ¢+ < 3 when T is a tree. The
primary objective of the present thesis is to  encralize the results of [1] by finding
an upper bound on W,(T') for ¢t > 3. An upp  bound that holds for all odd natural
numbers ¢ is presented in Chapter 3. This is followed by an analysis of the bound,
including a description of a family of trees for which it is attained. In Chapter 4 we
prove bounds for small even values of ¢ (f =  and ¢ = 4). Finally, in Chapter 5 we
discuss a conjectured upper bound for all ev  values of ¢ and suggest other future

directions for this rescarch.






given a graph G and positive integer £, is wi(G) < A7 Then we have the following

result.
Theorem 2.1. [4] CLOSED DOMINATING WALK us NP-complete.

Proof. Note firstly that CLOSED DOMINATING WALK is in NP, since it is straightfor-
ward to verify any solution to the problem. € -en a graph G of order n, take & =n
in the decision problenn and create a new gra G' by attaching a degree-one vertex
to every vertex of G. A MCDW in G’ need not visit any of these degree-one vertices,
but must visit their neighbours in order to nonitor all vertices. Thus every vertex in
(G must be ncluded in a MCDW of G': we can conclude that wy (') > k. since there
arc b vertices in G If G is a Hamiltonian g1 Hh then there exists a closed walk of
length A containing every vertex of the graph, and in this case w (G") = k. Hence if
wi(G') > k then G is not Hamiltonian, and if > could find a MCDW in G’ of length
A then we could find a Hamilton cycele in the  bitrary graph G, a problem we know

to be NP-complete. U

We will sce that despite the level of cc ol ty for general graphs, there are many
typ  of graphs for which wa 8 W blem is very approachable. Indeed,
the following  » lemmas will completely solv  the problem for trees.

Lemma 2.2. [4] Fvery cut vertear of a graph G must belong to cocry dominating walk

of GG.

Proof. Let o be a cut vertex of G and let 117 be any dominating walk of G. If 117
is the trivial walk on the single vertex o the  we are done; otherwise let Gy be a

component of G\ v that contains a vertex of W and let Gy be a second component of
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G\ v. If 11" does not pass through ¢ then it does not reach vertices of G, as v is the
only vertex in G connecting those componen  If v is a vertex in Gy then u is not,
on 11" and conscequently must be adjacent to vertex on the walk. So u is adjacent
to a vertex of Gp; but then Gy and Gy are ne separate components of G\ v, which
is a contradiction. Hence every cut vertex belongs to every dominating walk of G, as

claimed. O

Lemma 2.3. [4] Let G be a connccted graph  f order at least 3. If Wois a MCDW

in G then W does not include any vertices of  egree 1.

Proof. To reach a vertex v of degree 1 the walk nust first visit the single neighbour
of v, from wlich it can dominate ¢; it is therefore unnecessary to add the two extra

cdges required to visit e itself. )

Note in particular that a MCDW in a trc  does not include any leaves. As sug-
gosted, the two preceding le nas tell us exactly how to 1 d a MCDW for any tree.
Since every non-leaf vertex of a tree is a cut vertex, we know the vertex set of any
MCDW in a tree will include all non-leaves an - no leaves; 1.e., the vertex set is always
V(T)\ L(T), for a tree T. Since a MCDW nu return to the vertex it starts o, and
since there is only one path between any two  ortices of a tree, it is casy to see that
every edge traversed by a closed walk will in - ot be traversed twice when the graph
is a tree. Recall that Ty is the tree T\ L(T): then we have shown wy(77) > 2| E(Ty)|.
Let us find a dominating walk in . . If we double every edge of Ty then every vertex
has even degree and hence there exists an Eul  ian circuit in this new tree. Since the
vertices traversed are all the non-leaves of T, this circuit is a closed dominating walk

of T" of length 2

E(Ty)].

E(Ty)|. A MCDW will be at ost this length, so w (77) < 2

11



We thus have the following theorem.

Theorem 2.4. [4] If T is a tree then w(T) = 2|E(To)|, and an Eulerian circuit in

the tree Ty with doubled edges is a MCDW for T'.

Theorem 2.5. [4] For a connected graph G « 1 any spanning tree T of G, w(G) <

21E(TH)|.

Proof. Let T be any spanning tree of the graph G. We know th:  a NMCDW for T'
has length 2|E(Th)]. But since V(G) = V(T), this walk is also a closed dominating
walk of G, and it follows that a minimum clos 1 dominating walk of ¢ has length at

most 2| E(Ty)]. O

Figure 2.1 illustrates the method describe  above for finding an upper bound on
w(G). Note that the walk obtained is not  MCDW, since traversing one of the
G-cycles (e.g., the shac |+ ciees) in this grapl gives a shorter closed dominating

walk: however, we can at least conclude that  ((G) < 10.
R ¢ e
T ATy ? M
) u b
[ I ﬂ Lol INGTL

Cuw

—~

~

v

Figure 2.1: A closed dominating walk for G obtained from the spanning tree 7'

We have already established that trees attain the upper bound of Theorenn 2.5,

since every non-leaf edge is traversed twice in a NICDW for a tree. Figure 2.2 shows









upper bound is not attained for every graph of girth less than seven. We can see the
graph G has wi(G) < 2|E(T})| for every spam g tree T hecause up to isomorphism
there is only one such T, with the correspondn  walk having length 6, and traversing

tlie d-cyele in G gives a shorter closed doming ng walk.

Figurc 2.4: A graph of girth 4 for which w,(G) < 2|E(Tp)| for any spanning tree 7',

The following theorcins consider the watchn  n’s walk problemt for several connmon

tvpes of graphs.

Theorem 2.7. [4] If G is a connected graph then w (G) = 0 if and only if G has a

dominating verter (that is, o dominating sct ¢, size 1).
Proof. This is trivial; the watchman need not move from the dominating vertex. [

Theorem 2.8. [4] Let G be a complete mul — artite graph.  If any part is a single

vertex then w(G) = 0, and otherwise w,(G) = 2.

Proof. If one part of a complete multipartite g ph is a sing  vertex, then that vertex
dominates the entire graph and so, by Theore 2.7, w ((7) = 0. Otherwise, a vertex
w dominates the vertices in all other parts ex  pt its own, which can be dominated
by onc vertex, say o, from any other part. Sit G is complete, w and ¢ are adjacent
and the closed walk of length 2 between them is a MCDW. Thus w(G) = 2 in this

casce. O



Theorem 2.9. [4] Let G be o connected bipar e graph with bipartition (A, B), where
both A and B contain at least 2 vertices. Let ' denote a minimum subset of A that
dominates all of B, and let B’ denote a mine  uwm subset of B that dominates all of
B},

5

A. Then wi(G) > 2(max{|A’

Proof. Since G is bipartite, no vertex of A dor nates any other vertex of A, Likewise
for 3. Hence, if A” is the subsct of vertices from A on a MCDW then A” must
dominate B and consequently has at least [A’| vertices. Similarly, the set of vertices
B from B on a MCDW must have size greater than or equal to [B']. Since we must
enter and leave each vertex of the larger of the two sets A” and B, our MCDW has
length at least twice the cardinality of the la  »r set, which is at least the larger of

A" and B’ !
Theorem 2.10. [4] If C, is a cycle of length  then

n ifn >0
w (C,) =
2n —3) 3 <n<o6
Proof. 1f G is a cycle then we have two clear  1oices for a ‘good” closed dominating
walk; cither we walk the entire way around the cycle, making a walk of length n, or we
walk partially around the cycle in one directic  before reversing and returning to the
starting vertex. With any other walk there will be edges traversed more than twice,
which adds unnecessary length. Label the ve o ces of ) as o, vs, ..., 2, Begiuning
at vy and walking to w, ensures every vertex is obscrved, since the guard can see
vy from v, and vy from vz, Reversing direction at v, and returning to vy creates a
closed walk that is minimal in the sense that if we had reversed at any vertex before

v, then the walk would not be dominating (v would be unobserved). This method

16



gives a walk of length 2(n — 3), which will he shorter than a complete traversal of the
cycle if 2(n — 3) < n, or n. < 6. Henee, wi(C),) = 2(n — 3) for n < 6, and otherwise

wi(C,) = n. O

Notice that in the proot of Theorem 2.10 we are given, in addition to w (C,).
precise constructions for MCDWs in n-cyeles.  Results about w(G) and NCDW
coustructions are knowu for other families of  aphs G. Given two graphis G and H,
the Cartesian product graph GOH is the grap  with vertex set V(G) x V(H) and edge
set {(u, v)(u,v)|u € V(G),ve'  E(H)} U {(u,0)(wv)|e € V(H),ud € E(G)}. In
[5], for T a tree, sharp bounds are found for 1 TOK,), and necessary and sufficient
conditions are found for a walk in TORX, to be a MCDW. In [4], the following theorem

describes MCDWs in cactus graphs.

Theorem 2.11. [4] Let G be a connected cac s, Let G' be the induced subgraph of
G obtained by deleting all vertices of degree 1, all vertices of degree 2 that are on 3-
cycles, and ceactly one pair of adjacent verti. of degree 2 from ¢ h cyele of length
4 or & that contains such a pair of vertices. If each cut edge of G’ is duplicated to

form G", then G" is Fulerian and any Fulert v circuit in G" is a MCDW of G.

Proof. Let G be a cactus graplhi. We will show that an Eulerian circuit formed as
described above is &« MCDW by showing that none of the identified vertices need to
be on a dominating walk, that each of the ren.  1ing vertices (those in G7) must be on
a dominating walk, and that cvery cedge of G' must be traversed in order to connect
its vertices.  Doubling the cut edges follows  ccessarily to ensure that the walk is
closed.

By Lemma 2.3, no vertex of degree 1 nc s to be on a MCDW, so we discard

17



such vertices (i.c., we do not include them in G'). Any vertex of degree 3 or higher,
or of degree 2 and not on a cycle, is a cut vertex in a cactus. To see this, note that
since every block is a cycle or an edge, a vertc  belongs to single block it and only if
it is on a cycle and has degree two; otherwise the vertex belongs to two blocks and
its removal would disconnect those blocks. € vertices must be on any dominating
walk, by Lemima 2.2, so we keep these vertices in (.

Vertices of degree 2 on a 3-cycle will be  n fromn the cut vertex (or vertices)
ou the cycle, so discard them. If there are ad ent vertices of degree 2 on a 4-eyele
then we discard one pair of them and keep the two remaining adjacent vertices, from
which a guard can monitor the discarded pair. .« he edge between the retained vertices
must be on a dominating walk in order for the guard to move from one vertex to the
other. If there are no adjacent vertices of degr 2 on a 4d-cyele then there are vertices
of degree 3 or higher (i.e., cut vertices) at « posite corners, which must be on a
dominating walk. For a guard to move between these opposite vertices, two adjacent
edges must be traversed, and if the guard’s walk is to be closed then two edges will
have to be traversed in the opposite direction as well; we can tlierefore put all four
vertices and all four edges of the eyele in Y. similar rule applies for 5-cycles.

For cycles of 1o »" 6 or more, a complete traversal suffices for the minimum
dominating walk, cven if that traversal is inte  ipted (at cut vertices), and so G7 will
include full cycles of any length higher than 5.

Now, any vertex in G’ is either a cut vertex or is on a cycle and has degree 2, and
cacli cut vertex is either the end of a cut edg or ouly belongs to cycles. If a vertex
only belongs to cycles then cach of its cycles contributes 2 incident edges and so the

total degree of the vertex is even. Thus, if we duplicate each cut edge of G to create
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of guards, how can we minimize the length of  ne for which vertices are unobserved?
The precise problem addressed in [6] is motivated as follows.
Suppose firstly that a museum or other v vork has cnough guards to place one

at cach vertex of a dominating set. so that all — rtices are under constant monitoring.

Let D be a dominating set. If we have |D| guards and cach remains stationary at
a vertex of D, then we have an extreniely ef dent but expensive security network.
Now supposce that the guards have been do o sized, so that only some fraction ¢,
0 < q < 1, of the guards are now cmiploved. T+ following question arises: given ¢|D)|
guards, low can we minimize the maximuni ti e for which any vertex is unobserved?

Given a closed dominating walk in a graph and multiple guards at our disposal, a
natural strategy is to have the guards “share’  1¢ dominating walk, by spacing them
out along it as equally as possible. This will not always be the most effective method,
as illustrated in Figure 2.6: if two guards share the elosed dominating walk on the left,
wlhich has length 120 then the leaves of this tree are unobserved for 5 consceutive units
of time, whereas with the two disjoint walks ¢ - the right no vertex is unobserved for
more than 3 units of time. The inefliciencey is even more  arked when we note that
the closed dominating walk in this case is ac ally mininnun. However, the method
of sharing a dominating walk at least gives us an upper bound on the length of time
for which vertices must be unobserved. Len 1w 2,12 formalizes this idea. whicl is

used repeatedly in [6].

Lemma 2.12. If a graph has a closed dominating walk of length m then it can be
dominated with p guards such that no verter is unobserved for more than { 1 -1
.

units of time.



% Q¥

S

Q QP oQ

Figure 2.6: Different methods of monitoring — graph with two guards (g, and g»).

Proof. Tf p guards are spaced out as evenly as possible along a closed walk of length
m, then any two guards will be at most, P[L,’-! edges apart. If the guards follow one
another along the walk then cvery vertex on the walk is ocenpied at least once every

(i

L—)-! units of time. Since the walk is domit  ing, this means every vertex in the
mn

grapl is obscrved (perhaps from a neighbour) at least once every L—)—‘ units of time,

or equivalently no vertex is unobserved for more than {%] — 1 units of tiwe. 0

The bound given in Lemmia 2,12 would obviousty be strengthened if the closed
dominating walk was of mininnuu length, bt since finding a MCDW in a general
graph is computationally d....ult, we settle for a cleverly constructed closed walk
whose vertices contain a given dominating s¢ D, This coustruction is outlined in

Theorem 2.14; first we need the following lenmnia.

Lemma 2.13. If D is a dominating set in a connected graph G then for any sct of

vertices S C D therce exists o vertex v € D\ S such that dg(v,S) < 3.

Proof. Suppose there exists a subset S of D 1 which every vertex ¢ in D\ S has
de:(v,8) > 4. Let v be any vertex in D but 1 in .S and choose « to be the closest
vertex in S to v, Let P = w, 0y, 05, 03,04, ..., 0 be a shortest «w — v path in G. The
vertex vy 18 not i S nor adjacent to any ver @ in S because otherwise w is not the

closest vertex to v in S, Furthermore, v and its neighbowurs are not in D\ S, because




these vertices are within distance 3 of w € 5@ d by assumption the set S is at least
distance 4 from any vertex in D\ .S, But the oy is not in D and is not. adjacent to

a vertex of D, which contradicts the fact that D is a dominating set in G. (1

Theorem 2.14. [6] If G is a connected graph with dominating set D then G can be
monitored with q|D| guards, 0 < ¢ < 1, such that no vertezr is unobscroed for more

than ﬂ—ﬂ — 1 units of time.

Proof. Let © be any vertex in D. Coustruct a ibtree T of G containing the vertices
of D via the following iterative procedure. Set vy = v, V(G) = {1}, 2(G) = 0.9, =
{v}, and for 4 from 2 to |D|, find ¢; in D\ S; ;| with minimum de(v;, S;2y). Let P
be a shortest path from v; to S;_y; by Lemma 2.13; this path has length at most 3.
Now let V(G;) = V(G,_1) UV(P), E(G;) = E(G; 1)) UE(P,), and S; = S; | U{uv}.
At cach step the graph G, is connected becar » we are adding a path 12 which has
onc cud alrcady in the graph. Take T" to be a Hanning tree of the final graph Gp).

Note that at each step we add o vertex of D and at most 3 edges to G;. Since

there are |D| — 1 iterations, this shows the gro h Gp (and consequently the tree T7)
has at most 3(|D| — 1) edges. Note also that  (T') = V(G p)) contains every vertex
of D. Hence if we double the edges of T we o ain a closed dominating wa  of G of

length at most 6(|D] — 1). Then by Lemima 2.12 we know ¢|D| guards can doninate

G leaving no vertex unobscerved for more than

6(|D ’ § 6
<— —l=f-—- -] -1<|~-|-1
q| | g qL (
units of thue, as claimed. ]

Let us focr  now on ¢ = %; i, suppose o sct of |D| guards have 1 1 cut by
half. We have the following result as an innne iate corollary of Thicorem 2.14.
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o : N D
Corollary 2.15. If G is a connected graph with dominating sct D then Q qrards

can monitor G such that no vertex is unobscrved for more than 11 units of tune.

(WA

We will see that  guards are even more effective if the vertices of D are suffi-
ciently ‘close’ to one another; i.c., if we have a onger condition than that gunaranteed
by Lenmna 2.13. In this case we abandon the method of sharing a dominating walk.
The following theorems explain how we can form clusters of thie vertices of D and as-
sign a number of guards to cach, thereby redur g the total number of edges traversed

(sce Figure 2.6, for example). We need the fo wing auxiliary graph.

Definition 2.16. Let G be a connected graph with domanating sct D. For a positive
integer d, define Gp g to be the graph with ver v set D i which two vertices u, v € D
are adjacent if and only if de(u,v) < d.

Theorem 2.17. [6] Let G be a connected graph with dominating sct D.

(i) If de;(0, D\ {v}) <2 for all v in D then @ quards can monitor G such that no
vertex 1s unobserved for more than 7 units of  me.

(11) If de;(v, D\ {v}) < 1 for all v in D then @ guards can monitor G- such that no

vertea is unobserved for more than 3 units of  me.

Proof. (i) Assume de (v, D\ {v}) < 2 for all o in D; then by definition the graph G o
will have no isolates. Let A be a maximum watching in Gy, All neighbours of an
wnnatched vertex are end vertices of an edge in A7, since if two unmmatched vertices
arc acdljacent then their shared edge could belong to A, which contradicts the fact that
M is maximum. For cach unmatched vertex can therefore select an edge incident
with a matched neighbour. Now cousider an edge w, v of A If both v and ¢ are

incident with a sclected edge then we have a path of length three, say P = o', u, 0,0/,



in Gpy where o' and v arc not incident wit edges of A/. Then Al could include
the edges w'u and vo” instead of ww, again contradicting its maxinality. Thus for
cach edge of M, exactly one end vertex is now connected to omne or more unmatched
vertices, therchy creating a collection of st in Gp o containing all vertices of D.
The edges in these stars represent pathis of ler | h at most 2 in G between two vertices
of D.

For cach star on 7 vertices, double the edges on the corresponding paths in G
and have BJ guards walk an Eulerian circuit in thie resulting graph. There are v — 1
such paths, and when doubled cach has length at most 4, so the guards follow cach
other along the circuit, spaced apart such tI no vertex dowminated by the walk is

unobserved for more than

4(r—1) B _4(1‘—1\ _q
2|

units of time. Since 7 is the number of vertic  in cach star of Gp oy and siuce these

stars comprise all vertices of D, placing L’—,J guards on cach star in total uses at most

121 oards
5 guards.

(ii) If de(v, D\ {v}) < 1forall vin D thc Gp,; has no isolates and we can form
nds to a single

stars in this graph as described above. Eachi edge in a star corr

1

edge in G, so a star on » vertices shared by J guards will have any two guards at

111081
2(r — 1) - 2(r — 1)
Lr/2) (r—1)/2
edges apart. Hence in 7 7s case guards o monitor G osuch that no vertex is
unobscrved for more than 3 units of time. U

Note that this method of assigning guards to stars of the graph Gp s can also be
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used if D satisfies only de (v, D\{v}) < 3 forall vin D (using grapl G 3); however, in
general there is no improvement in this case over the method of sharing a dominating
walk. In particular, one finds only that no  rtex is unobscrved for more than 11
units of time, which we already have from Corollary 2.15. However, the authors of (6]

note that when many stars created in Theore:  2.17 have odd order », the number of

. . o Dl .
guards used in total is actnally significantly le  than ljl, since we reduce the number
of guards on cach odd star from r to [5] = =1 (rocall that we initially assume every

vertex of D has a guard, and that we downsize this set of guards by half). In these
cases we can afford to ‘waste’ guards in certain parts of the graph, while still using
only “—;l in total. In particular, if in Theorem 2.17 we clinlinate the condition that
da(v, D\ {v}) <2orde(v,D\ {v}) <lora wvin D, then the resulting isolates in
Gpa or Gpi could be given their own guard provided there are at least as many odd

stars as there are isolates. This gives the follc  ing corollary.

Corollary 2.18. [6] Let G be a connected  aph with dominating sct D. Form a
collection of stars wn the graph Gpo as described in the proof of Theorem 2.17; if
the number of odd stars is at least the num - of isolates in Gpo then 1—’;—' quards
can monitor G such that no vertex is unobserved for more than . units of time. If
de(o, D\ {v}) < 2 for all v € D and the 1 mber of odd stars in Gpy is at least

[1]

the number of isolates in Gp,y then =2 guards can monitor G- such that no verter is

unobscrved for more than 3 units of tine.

Returning to Theorem 2.17, note that when D satisfies dg (e, D\ {v}) < 1 for
all v € D, D is a total dominating set. If the matching A/ defined in the proof of

Theorem 2.17 is perfect then D is in fact a ired dominating set. The following



theorem shows how paired domination is ideal »n minimizing the length of time for

which vertices are unobserved.

. : L (G
Theorem 2.19. [6] A graph G can be monitor:  with 7(‘) Y quards and leave no verter

unobserved for more than 1 unit of time if and only if G has a pawed domnating sct
of size y(G).

G :
2 ) gu s such that every vertex is seen at

Proof. (=) If G can be monitored by
least once every two units of time then the set Sy of vertices occupied by the guards
at some time t and the set Sy of vertices occuy  Tat time £+ 1 must together form a

dominating sct of G:ic.. D S;USyis adomi  ting set of G Thus |D| > ~4(G). But

: « (¢ S (G
since there are 222 guards, we must have |S1],| | < 24 g0 [D] < 77 +29 — (@)

D| = ~4(G). We conclude th Sy N Sy = @, and if we let M be the

and conscquently
set. of edges walked by the guards, cach havit  one end vertex in Sy and one in Ss,
then A is a perfect matching in the subgraph © duced by D, and henee D is a paired
dominating set, as required.

(<) If G has a paired dominating set D 1cn the subgraph induced by D has
a perfect matching, A/, whose end vertices comprise D, Each edge of M can be
traversed repeatedly by one gunard, so that no vertex is unobserved for more than 1

. : . D
unit of time, and this niethod uses exactly l—,‘ uards. O



Chapter 3

Fixed time

[n this chapter we explore a variation on the watchman's walk problem first introduced
by Davies et al. in [1]. This variation takes the opposite standpoint of the problems
discussed in Chapter 2, assuuil  that fixed time coustri 1ts are nposcd on the
monitoring of a graph G and atten  ting to dete 1ine the minimum nuber of guards,
Wi(G), required to mect those constraints. Vo begin with an introduction to this
problem, including some basic results, and proc d to find an upper bound on W (G)

for any odd integer ¢ > 0.

3.1 Introductory results

Reca  that a graph G can be t- onitored by m 1ards if there exists a collection of m
walks (not necessarily dist™ 't or 77 joint) that can be traversed by the guards such
that no vertex in G is unobsery  for more the ¢ units of time. Equivalently, every
vertex is either occupied by a guard or adjacent to a vertex occupied by a guard at

least once every ¢ 4 1 units of time.






of these guards share a walk TV that is not clo 1. At any fixed point in time, label
a vertex O0* if it is currently occupied by a guard, label a vertex 0 if it is unoccupied
but adjacent to a vertex with a guard, and lal = every other vertex with a positive
integer (at most ) according to the length of t > since the vertex was last observed.
For example, from the graph G in Figure 3.1 obtain the vertex labelling shown

in Figure 3.2 below. Since both ¢ and |V(T)| ¢ - finite, there are only finitely many

such labellings, and so at sowme point a vertex  Helling will be repeated. When this
happens, we can truncate 117 and have it repeat whatever edge sequence followed
the first occurrence of that labelling. The new walk is closed does not disrupt the
t-monitoring of G. Since any non-closed walk ¢ 1 be reconstructed in this way, have

the following theorem.

2 O*LL

Figure 3.2: The length of time for which cacli vertex in G has been unobserved.

Theorem 3.1. If a graph G can be t-monitored — 1m guards then Gcan be t-monitored

by m guards whose walks are closed.






we prove a generalized result that encompasses the bounds for ¢ = 1 and ¢ = 3, and

in Chapter 4 we prove the bound for ¢t = 2, so the individual proofs are omitted here.

Theorem 3.4. [1] For any tree T with n > 3,

n—1
II']\.L / S - Y J.
. 2n,
H(T) < —r—J . and
L O
. n
W) < |5

In cach case there exist trees or faunilies of t 25 attaining the upper bounds listed
above. For t = 1 the authors categorize precisely those trees for which 1 (77) =

L%J This result is presented in . acorem 3.5 below.

Theorem 3.5. [1] For a tree T with n > 5, Wi(T) = L”;lj of and only iof T has

L-‘ J mactually non-adjacent stems.

Note that for n fixed and odd. there is only one tree satisfying the prop  of

Theorem 3.5; it is a star with edges that have cach been subdivided, as illustrated

. . . . _ _9 . 1. .
in Figure 3.3 (a) below. If n is even then L”—)l = == and the two families of trees

with this number of mutually non-adjacent st ns are shown in Fowre 3.3 (h) and

(¢), where in cach case deg(u) > 2 and deg(e) 1.

000 00000 00 C |
ULt ’ﬁ 10 8 G S 6 G
sid Wty S s OAS OO O - y QO 0
a7 S 7

(@) ) ()

)

Figure 3.3: Trees satisfvic 17, (T) = |22 ].
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In Section 3.2 we present, an upper bound on W (T') for higher odd values of ¢, and
in Section 3.3 we deseribe families of trees that attain this upper bound. However, it is
only for t = 1 that a complete categorization has been found; the conditions discussed
for t+ > 2 are sufficient but not necessary for at  mment of the upper bounds.

As with the original watchman’s walk prob 1, there are certain types of graphs
for which the question of f~monitoring is completely solved. We end this section with

a formula for W, (T') when 7T is a path.
Theorem 3.6. If T is a path on n vertices th

W when t 15 odd,

W(T) =
[——W wh 11 s even.
Proof. If t is odd, a single guard on a path can monitor at most &L 43 vertices within

t+1

2

t + 1 units of time, by traversing cdges once in cach direction. Partition the path

+1
2

into sections of + 3 vertices, possibly with sonie remaining vertices at one eud.
Placing oue guard on ecach section, and one gui 1 on any remaining vertices, ensures

no vertex is unobserved for more than ¢ units [ time. The total munber of gnards

required for this method is

. n

B3] |i+7

Similarly, when # is even a guard can traver £ edges once in cach direction and
thereby monitor £ + 3 vertices; hence the number of guards required in this case is

1. V,

3 t+6





















as possible. Every vertex on or adjacent to this alk, including cach of the & selected
vertices, is then seen at least once every ¢ uni  of time. Thus with one new guard
and the described additions to W, the entire tr - T can be t-monitored with {%J
guards; since the new guard is joining a walk of length at most (p + 1)(f + 1) shared

by p + 1 guards, properties (1) and (2) arc preserved. Thus the theoren holds in all

Cases. ]
We now have as an immediate corollary the following upper bound for odd t.
. 5

Corollary 3.10. If G is a connected graph of order n and t > 0 s an odd integer

then

2n+t—3 n+hk—23
V < | = T = | =
Wil(e) < [ t+3 J “ k J’

for k= “

. . . . 9 —:

Proof. Let T be any spanning tree of G. If ¢ odd then by Theorem 3.9, [l’%r—’{—*J
tards can monitor T st * that no vertex is uunobserved for more than £ s of

time. The mininmun number of guards requit 1 to t-monitor 7' is therefore at most

this value, and since any set of closed walks dc dnating T must also dominate GG, the

result follows. O

Recall from Lemma 3.2 t1  W,(G) < W, (G) for any time ¢ and any graph G.

If t is even then from this inequality and Core  wy 3.10 we have T (G) < W2 (G) <

“Bn“l»(f.—l)—:i

=113 J The resulting upper bound for even ¢, presented below i Corollary

3.11, is notably weaker than the bound for o t.









disjoint walks would also fail to 3-monitor T a single guard on one of the longer
branchies has only enough time to walk from the stem to the central vertex and hack
(since t+ 1 = 1), so no guard could reach the short branch. Finally, if the walks are
neither identical nor edge-disjoint then they overlap: the union of their walks is then
also a closed walk. which must in fact be an ilerian circuit through the doubled
edges of T, But we have already shown that 1 ) guards spaced along such a circuit,

arc not able to 3-monitor 7.

() 1=3

Figure 3.4: A tree T'with 11 T) =3 > [”*L#J
The tree T belongs to a larger family of t1 s that attain the bound of Corollary
3.10. Recall that every stem of a tree must 1 visited by at least one guard, since
otherwise a leaf is not dominated. Intuitively, then, trees will be thard’ to monitor
when stems are relatively far apart. Since the upper bound decreases when the order
of the graph decreases, we will see that trees with as fow vertices as possible while
having stems sufficiently dispersed will conie ¢ sest to meeting the generalized upper

bound. The following results formalivze this ic .

Theorem 3.12. Lct t be an odd intcger and L k= ’—t,—‘ If T s formed from a star of

any size by subdividing one edge j times, 2 < j < k4 1. and subdividing all vemainimg



edges k times, then W,(T) = | T ==

Proof. Let T be formed as described (sce Figure 3.5), say with m -+ 1 branches off
the central vertex. We claim that each branch requires its own guard. Let us first
rule out the possibility that m guards could me  tor the graph with one shared walk:
AE(TY)| = 2[m(k = 1)+~ 1 =mt+m+2j—2>mt+m~+2, since j > 2, and so
{W-’ > { ‘ -’ > .

Next note that it takes exactly ¢ + 1 umts of time to walk from a stem to the

central vertex and then back to the same stem, since & — 1 = 2 edges are cach

traversed twice. Hence if m guards were placed on the m branches of length A and
cach was responsible for a single branch, none of the guards would have time to enter
the branch of length j. We ¢ tl it i gua s can t-monitor T' then they do not
share a single walk nor do they have m disjoint walks; the only remaining possibility
is a collection of closed walks which overlap but are not identical, and clearly such an
arrangement would not be minimal.

So m guards are not able to t-monitor T, ad m 4+ 1 guards are (by placing oue

nthk—23

on cach branch). Hence W(T) o+ L. It remains to show that ij =m+1

for this tree. We know that |[V(T)| =n =mk j+ 1, so we have

e I T R LAk} P
k K K k

since j < hA4+1 = ) < 1. Hence, the  trees attain the bound of Corollary

3.10. 0

Figure 3.5 illustrates the trees described in Theorem 3.12.
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QO O
Q.
0,0,

Figure 3.5: A tree T satisfying W, (T) = [ J fortoddand k= 2 < j<h+1.
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Note that if S has only one leaf then it consists of ¢ and an adjacent path of
length less than A&, and if B has only one leaf then it is a path of length less than &
and more than 2 (since at least one vertex of  is not selected and at least one vertex
is). Recall that the & vertices are selected fror S; one branch at a time: let us further
assume that these branches are chosen in ordi based on the number of vertices they
contain, beginning with a largest branch. We can then assume B has fewer vertices
than S (since S also includes ).

If t = 2 then & = 'i_,‘ = 3 and cach brar 1 of ¢ in S; has less than 3 vertices.
Since B has at least 2 vertices and S has more vertices than 3. both S and B are

paths of length 2 attached to ¢ (where S inclu s the vertex o). There are two cases.

- *\) ’ S‘
gv i\O

Ci L. Case 2.

Figure 4.1: Pc ible subtre S, when t = 2.

Case I S\ ¢ and B are the ouly branches in S;. Remove the entire component
S; and apply induction to the resul = g tree 77 n — (£ +3) = n — 5 vertices. Then

S; can be t-monitored by two new guards who b stationary on the stems of S and

2n4t—2

o | guards. Properties (1) and (2) are

B.an so. by (xx). T is f-monitored by L
clearlv unaffected by the addition of two statior v guards.

("ase 2: There are other branches in S;. Since a third branch lias no more vertices

18



thi B, it must have 1 or 2 vertices: let 77 be the subtree obtained by removing 1
of these vertices along with the stems and 1o es of S and B. Have two new guards
share a walk of length at most 6 on the three bra  hes. The result holds as above.
Ift =1 then b = 4. Then B is a path of length at least 2, and S has more vertices
than 3 but has less than & = 4 vertices, so § is a path of length 2 or 3 attached to
the vertex o, If S is a path of length 2 then ' is also a path of length 2, but then
both vertices of B must be selected, which e radicts the definition of B. If § is a

path of length 3 then B is a path of length 2 ‘ase 1 below) or 3 (Case 2 below).

Case la. Case 1b. Case 1c.

Case 1d(i). Case 1d(11). Case 1d(iv).

147 CL ' subt 11 4 (Case 1).
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Case 1: S is a path of length length 3 at  hed to v and B is a path of length 2.
There are four sub-cases.

Casc la: There is a leaf ¢ adjacent to v. Instead of remioving the A vertices as
sclected, remove € and S\ v to form a subtree 77 on . — k = n — 4 vertices. One
new guard can t-monitor the leat and S by  wersing the two non-leat edges in .S,

creating a walk of length £ = 4 that is edge-c  joint from all walks in 77, By (x), T

2n4t—2

3 J guards. Note that since I3 belongs to 17, its vertices

cai be t-monitored by L
arce already f-monitored.

Casc 1b: There is another non-leaf hranch —.S;. Since B is a path of length 2 and
any stubsequent branches have no more vertice  than B3, this third branch must also
be a path of length 2. Reselect & = 4 vertices in 3 and this branch, and remove them
to form 77; one new guard can dowinate these two branches with a walk of length 4
that is edge-disjoint from all othiers in 77.

Casc lc: There are no other branches in _,, and v; 1 has degree 2. Let 77 be
formed by removing S; and v,y from T. Then T” has n — (f + 3) vertices, and two
new guards can dominate S; and v;_; by sharing a walk of length 6 through the
nou-leaf edges of S;, so by (%%), T' can be t-monitored as required.

Case Id: There are no otlier branches in S; and v, has degree 3 or more. Let
B* he a second branch of v;_q; if we assume S; was chiosen as the largest branch of
v; 1 that contains k& vertices, then I3* has 6 or  wer vertices. We break into further
cases based on the number of vertices in 3.

Case 1d(i): B* has one vertex, (. Apply induction to the subtree 77 on n — 7
vertices, obtained from T by removing { and S;. Two new guards can monitor these

vertices by sharing a walk of length 8 through ¢;_ o and the non-leaf edges of .S






t-monitored with the desired number of guards.
Case 1d(v): B* has six vertices but is @t a copy ¢ S, If B* has at most 2
nou-leaf edges we can proceed as in Case 17l

leneth 5, say with vertices uy.....ug. Since  * is not a copv of 5. we can assume
5 R 1 R

without loss of generality that cither wy or uy is adjacent to o; -, In both cases we
. . e / . : . . 41 \ r
ICHIOVC Us. 1y, U, tg to form TV, and one new  1ard can t-nionitor these 4 vertices by

repeatedly traversing the edge wyus.

T } T~ T TS o
. : N N
PR U D o
T AN 35 e
() ) ) ) Oy QO
Y f _\\ B s hY { —\_ B
() s; L) w5 L ) ) s ()
Case 2a. Case 2b. Case 2c.

Figure 4.3: Choices for the subtree & when ¢ = 14 (Case 2).

Case 2: S is a path of length 3 attached to  and B is a path of length 3. There
are 3 sub-cases.

C'ase 2a: There are no other branches in 5;. Remove the 7 =+ 4 3 vertices of 5.
including ¢ and apply induction to the remain g subtree 77,0 Two new guards can
t-monitor S; by sharing a walk of length 8 < 2(f + 1), which is edge-disjoint from any
walk in 77,

Case 2b: There is a brauch in S, with 1 or 2 vertices. This branch is either a leaf

or path of length 2: remove its leaf and all verti s in .S\ ¢ and B to forn a subtree



T on n— (t+3) = n— 7 vertices. Then T\ 7" can be t-monitored by two new guards
who share a walk of length 8 or 10 that is ec >-disjoint from all walks of T".

Case 2¢: There is another branch in .S; with exactly 3 vertices; either this branch
is a stem with two leaves or is a path of length 3. Either way, remove one of its leaves
along with the vertices of S\ v and B to form a subtree 77 on n — (f 4+ 3) vertices. A
walk of 7" must traverse the edge of the third branch that is incident with ¢ in order
to dowminate cither the second leaf or the end [ what is now a path of length 2. If p
guards initially share this walk then by the inc  ction hypothesis it has length at most
p(t+ 1) = 5p. Add to this walk the four non- f edges of S and I and possibly one
edge in the third branch. Then two addition.  guards cawn join a walk of maxinnun

length 5p 4+ 10 = (p+2)5 = (p+ 2)(t + 1), ar  properties (1) and (2) remain intact.

2n41-2

(43 J guards whose

In cach casc, for ¢ € {2,4} we find T can be  monitored by |

walks satisfy the desired properties. O
From this exhaustive argument we have the following upper hounds.

Corollary 4.2. If G is a connected graph of order n then

i 2n !
Wy (G) < {TJ . W(G) <

2n 4+ 2
5

| .



Chapter 5

Conclusions and opei.. questions

In this thesis we explored the time contraint © lation of the watchman’s walk prob-

lem. We found explicitly the value of W(G)  hen G is a path, and we noted that

("
4+

for any spanuing tree T of a graph G, W, (G) < { ‘i Expanding on the work
of [1], we generalized the upper bounds known o W (T'), Wi(T), and 13(7T") to find
that W (T) < L“i’t 'u J for all odd mtegers . During an analysis of this bound we
illustrated a family of trees for which it is attained. As a consequence of the upper
bhoud for odd ¢, we have the slightly weaker bound W, (7T) < V’—'ﬁ B J for all even
integers £ In the previous chapter we demonstrated that a stronger upper bhound
does exist for ¢t =2 and t = 4.

There are a muber of natural directions that the present rescarch could talke. It
would be iuteresting to explore both the orighh watchntan’s walk — roblenm as well
as the fixed time variation for additional classes of graplhs; in particular, it would be

nice to know more about W,(G) for graphs other than trees.

One question that reappeared frequently duriug the present rescarch coneerns the



structure of guards” walks when time is fixed. Specifically, if i guards can f-monitor
a tree with a set of closed walks that are not necessarily pairwise edge-disjoint or
identical, then can the walks be redesigned ¢ h that they do satisfy this property?
The fixed time variation supplies a number of such open problems. but the most
obvious question is whether or not there exist results analogous to Theorem 3.9 and
Corollary 3.10 for even values of /. We saw in Theorem 1.1 that a similar upper
bound does exist for t = 7 and £ = ; what I pens when £ > 6 for even 7 We have

the following conjecture as a natural extensio  of Theoremn 4.1,

Conjecture 5.1. If T is a tree of order n an t > 0 is an coen integer then

2n+1t—2

MG <
(G = t+3

As seen in Chapter 4, we can attempt to prove this conjectured bound as we
proved Theorem 3.9, but the previous methe  does not work when the subtree S
and the branch B from that proof cach have « Iy one leaf. In this situation we are

e

thwarted by the fact that the number of vertices being removed (A= 557 is relatively

N

larger than for odd t (k= A- ).

More generally, a subtle problem arvises wl 1 ¢ is even that is unrelated to the
choice of k. Suppose a single guard walks a ¢lo 4 walk disjoint from all other walks
and suppose there is a leaf ( adjacent to his starting vertex which no other gnard
dominates (a situation that occurs in the proc of Theorem 3.9). Since ¢ must be
scen at least once every ¢+ 1 units of time, the guard’'s walk can have length at most
t+1; but + 1 is an odd munber, and since any  Hsed walk on a tree has even lengtl,
the maximum length of the walk is in fact only 7.

We saw from case-by-case analysis that the proposed upper bound for even f
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does hold for Wyo(T) and W,(T). However, 1 exhaustive method quickly becomes
inefficient for larger values of ¢, and so we 1 d a gencral strategy to deal with the
problematic configuration of S and I3 describ - above. This case induces such specific
structurce ou the tree 7' that further vesearch ill hopefully reveal a solution. We are
therefore optimistic that Conjecture 5.1 can = proven with little deviation fromn the

approach used for Theorems 3.9 and 4.1.
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