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Abstract 

Given a graph and a single watchman, the Watchman 's Walk Problem is concerned 

with finding closed dominating walks of minimum length , which the watchman can 

traverse to efficient ly guard the graph. When multiple guards are available, two nat

ural variations emerg : ( 1) given a fixed number of guards, how can we minimize th 

length oftime for which vertices are unobserved? and (2) given fixed time constraints 

on the monitoring of vertices, what is t he minimum number of guards requir d? The 

present thesis reviews known results for the original problem as well as its variations, 

and proves an upper bound on the number of guards required when time is fix d. 
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Chapter 1 

Introduction 

1.1 Motivation 

A museum is att mpting to monitor its rooms. Each room is connected to one or 

more other rooms via hallway , and from any given room it i possible to see all 

adjacent room . Placing one guard in every room will en ure all rooms arc constantly 

monitor d , but thi r quires more guards than are necessary: we need only pla 

guards iu ~uch a way LhaL every room ei.Lher has a guard r is adjacent to a ro m 

with a guard. This problem belong to the field of graph the ry, and the set of room 

we requir i · called a dominating set. 

In graph theory, a graph G is a et V (G) of vertices together with a set E (G) of 

edges. Th- dges of G are subsets of size two from V(G) , and we ay two vertices 

'U , v E V (G) arc adjacent or neighbou1·ing if the edge { u, v} (usually written uv) 

belong to E(G). More generally, if we allow for multiple edge bctw en the same 

pair of vertice · then we obtain a multigraph, and if we a cept edges of the form uu 

1 



called loops, we obtain a reflexive graph. Here, however , the term graph will be 

restricted to what is sometimes called a simple graph: a graph with no multiple edges 

and no loops. 

It is not difficult to see how the museum problem can be translated into t he 

language of graph theory. The museum is a graph, say G, with rooms as vertices 

and halls as edges. The definition of a dominating set is then a set D ~ V(G) with 

the property that every vertex of G is either in D or adjacent to a vertex of D. The 

concept of graph domination is widely researched , and many results are known about 

the domination number of a graph: the size of a smallest dominating s t, d noted 

1( G) . Minimizing the size of a dominat ing set is important , as 'wasteful ' dominating 

sets ar a ·y to find (take D = V (G), for example). 

A variation on domination, as introduced by Hartnell, Rall, and Whitehead in 1998 

[4], consider an alt rnative method of guarding the museum: r ather than placing 

one guard in each room of a dominating set, have a single guard (or 'watchman ') 

walk around the museum in such a way that the visited rooms collectively form a 

dominating s t. This ensures t hat every room has been either visit ed by the guard 

or seen by the guard from an adjacent room. We will assume that the guard's route 

begins and ends in the same room, allowing the walk to b e repeated. 

In a graph, an alternating sequence of vertices and edges, such as the route of 

a guard through a museum, is called a walk; more formally, a walk of length k is a 

sequence v 0, e1 , v1, e2 , .. . , ek, vk where ei = vi- lvi for each i. Note that the length of 

a walk is the number of edges it contains. A walk is closed if it begins and ends on 

the same vertex and is dominating if the vertices of th walk form a dominating set. 

We see then that the desired route for a single museum guard as described above is 
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a closed dominating walk. The added economic efficiency of this method, as only one 

guard is r quir d for the whole museum, is gained at the sacrifice of security, since at 

any given time th r will be room that are not visible by the guard. We will therefore 

be concerne l again with minimality; in particular, we want to find a shortest route 

for the guard to walk. This is the Watchman's Walk Problem: given a graph G, 

find a dominating walk that is closed and of minimum length, or a minimum closed 

dominating walk (MCDW) in G. We will use w 1 (G) to denote the length of a MCDW 

in a graph G, wh re the 1 indicates that a single guard is walking G. 

Although a closed dominating walk can be construct d from a dominating set D 

by forming an alternating sequence of vertices and edges that at l ast include all 

vertices of D, thi is not generally the most ffective method, even if D is minimum. 

Figure 1.1 illustrates this point; in fact , from the graph G we see that a MCDW need 

not even contain a minimum dominating set. The watchman 's walk is thus a distinctly 

different problem from that of finding a minimum dominating set in a graph. MCDWs 

are further xplored in Chapter 2. Before we introduce the primary objective of th 

present thesis, a more thorough introduction to graph theory is required ; the following 

section provid s t he necessary background terminology. 

G G G 

Figure 1.1: A minimum dominating set (shaded, left) , closed dominating walk ( cen

tre), and MCDW (right) of a graph G. 
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1.2 D efinitions 

Th number of vertices IV(G)I in a graph G is called the order of G , and the number 

of edges IE( G) I is called the size of G. If vertices u and v are adjacent we say u is 

a neighbour of v, and the set of all neighbours of v along with v itself is called the 

closed neighbo'urhood of 'U, denoted N[v]. If e = 'UV is the edge joining u and v then we 

say u and v are both incident with e. The number of edges incident with the vertex 

v in a graph G is called the degree of v and is denoted degcv, or simply deg v if the 

associated graph is clear from context . A vertex of degree 0 is called an isolate. 

A graph with n vertices, every two of which are adjacent, is call d the complete 

graph of order n, denoted Kn- A bipartite graph is one whose v r tices can be palti

tioned into two sets A and B such that every edge in the graph has one end in A 

and the other in B ; similarly, a multipartite gmph has its vertex set partitioned into 

multiple sets such that no vertex has a neighbour in its own set. The term 'complet ' 

is applied to a bipartite or multipartite graph when all possible dges are present. A 

complete bipartite graph that has one set of size 1 and the others t of size k is called 

a k-star. 

The concept of a walk in a graph , as introduced in Section 1.1 , leads to a number 

of further definitions. For example, a u-v walk is a walk beginning on the ver tex u 

and ending on the vertex v . A closed walk with all edges distinct is called a circuit, 

and a walk with both vertices and edges distinct is called a path. A closed circuit with 

no repeated vertices except for the first and last is called a cycle; a cycle of length k 

is called a k-cycle and is d noted Ck. If a circuit in a graph G visits every edge of 

G exactly once then it is called an Eulerian circuit, and when such a walk exists G 
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is said to be Eulerian. It is a well-known result , originally observed by Euler , that a 

graph is Eul rian if and only if each of its vertices has even degree. A Hamilton cycle 

in a graph G is a cycle which includes every vertex of G exactly once, and if such a 

cycle exists then th graph G is said to be Hamiltonian. 

A graph His a subgraph of a graph G if V (H ) ~ V(G) and E(H) ~ E (G). A 

spanning subgraph of G is a subgraph of G with vertex set V (G). An induced subgraph 

of G is a subgraph H whose edge set E(H) consists of all edges of G that have both 

endpoints in V (H). For a set of vertices S ~ V (G) we use G \ S (or G \ v if S contains 

a single vertex v) to denot the induced sub graph with ver tex set V (G) \ S, and for 

a set of edges S ~ E(G) we denote by G \ S t he subgraph with vertex set V (G) and 

edge set E(G) \ S. 

A graph is said to be connected if there is a path between any two vertices, and 

the maximal connected subgraphs of a disconnect d graph are the components of the 

graph. If the graph G is connected and the graph G \ v is disconnect ed then the 

vertex v E V (G) is called a cut vertex; similarly, an edge whose removal disconnects 

the graph is called a cut edge. A maximal connected subgraph containing no cut 

vertices is called a block of the underlying graph. A cactus i a graph with the 

prop rty that each of its blocks is either an edge or a cycle. 

The girth of a graph is the length of a shortest cycle in the graph. The girth of a 

graph that contains no cycles is defined to be infinity. An important family of graphs 

called trees are cat egorized by the abs nee of cycles; equivalently, a tree is a graph 

which has a unique u-v path for any two vertices u, v . ote that this definition forces 

trees to be connected. A spanning tr·ee of a graph G is a spanning subgraph of G 

that is a tree. Vve refer to vertices of degree 1 in a tree as leaves and to a leaf 's single 
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neighbouring vertex as a stem. If T is a tree then L(T) denotes the set of leaves of 

T , and we will define T0 to be the leaf-deleted subtree T \ L(T). 

If a graph G has a u-v path then t he distance in G from u to v, written dc(u, v) 

(or d(u , v) when G is clear) , is the length of a shor test u-v path in G. If S is a 

set of vertices in G then the distance from a vertex v (j. S to the set S is given by 

d(v, S) = min d(u, v). 
uES 

We move now from basic background terminology to a few specific concepts that 

will appear in forthcoming discussions: matchings and paired domination. A matching 

in a graph G is a set of edges of G t hat hav no common endpoints. A maximum 

matching is one containing the greatest number of edges, and a perfect matching is 

one which uses every vertex of the graph. A total dominating set of a graph G is 

a dominating set of G with the property that every vertex of G ha · a neighbour 

in D . At first this may not appear to be different from the original definition of a 

dominating set; however, the set of shaded vertices in Figure 1.1 is an exam pl of a 

dominating set that is not a total dominating set , since neither of the shaded vertices 

has a neighbour in t he dominating set . Finally, a total dominating set D is called a 

paired dominating set if the subgraph induced by D has a perfect matching. 

1.3 Variations on the problem 

Two variations of the original watchman's walk problem are considered in the present 

thesis. Both are motivated by supposing that multiple guards are available to monitor 

a network. vVhen determining routes for mult iple guards on a single graph, a balance 

is sought between security and economy: we want to minimize both the time for which 
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vertices are unobserved as well as the number of guards we must hire, but the two 

are negatively correlated. In the second half of Chapter 2 we summarize the results 

of Hartnell and Whitehead 's Downsizing a dominating set [6], where the priority is 

given to economy - they assume a fixed number of guards and attempt to monitor 

the graph as efficient ly as possible with those guards. 

In Chapter 3 we consider the opposite problem, expanding on a variation first 

int roduced by Davies, Finbow, Hartnell, Li and Schmeisser in [1]. Here we assum 

that a museum cares less about how many guards are employed than about protecting 

its valuables. The museum may require, for example, t hat each room must be seen 

every 10 minutes. The goal is to respect this t ime r straint while using as few guards 

as possible. 

We will say a vertex is unobserved if neither the ver tex nor any of it s neighbours 

is occupied by a guard. Hence for a given graph G and length of t ime t, we are 

interested in finding the minimum number of guards needed to dominate the graph 

such that no vertex is unobserved for more than t consecut ive units of time. More 

formally, for fixed time t E N , a graph G can be t -monitored by a set S of guards if 

there exist s a function f : S x N ----. V (G) such t hat 

(i) For every guard g E Sand at every t imeT E N , f (g, T + 1) E N [f (g, r)], and 

(ii) For every vertex v E V ( G) and every interval I C N of length t + 1, there exists 

a guard g E S and a t imeT E I such that f( g, r ) E N[v]. 

Note that f (g , r) is the vertex occupied by the guard g at t ime r . Essentially, condi

tion (i) ensures that at each unit of time, guards may only move from a vertex t o one 

of its neighbours (i.e., no 'jumping' is allowed) , and condit ion (ii) ensures that every 
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vertex has a guard within its closed n ighbourhood at least once every t + 1 units of 

time. For a given graph G and length of time t , denote by vllt(G) the minimum valu 

of IS I, the number of guards needed to t-monitor a graph. 

In [1] , the authors find upper bounds on Wt (T) for t :::; 3 when T is a tree. The 

primary objective of the present thesis is to generalize the results of [1] by finding 

an upper bound on Wt(T) fort > 3. An upper bound that holds for all odd natural 

numbers t is presented in Chapter 3. This is followed by an analysis of the bound, 

including a description of a family of trees for which it is attain d. In Chapter 4 we 

prove bounds for small even values oft (t = 2 and t = 4). Finally, in Chapter 5 we 

discuss a conjectured upp r bound for all even values of t and suggest other fu ture 

directions for this research. 
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Chapter 2 

Fixed number of guards 

In this chapter we review the original watchman's walk problem as well as the 'down

sizing' variation. Both of these problems consider optimal methods of monitoring a 

graph given a fix d number of guards. 'vVe begin with a singl guard, the results for 

which are primarily from [4]. 

2.1 One guard: the original watchman problem 

Recall that w1 (G) is the length of a minimum closed dominating walk (M CDW) in 

a connected graph G. Questions of complexity are among the first considered for 

graph theory problems like t he watchman's walk; Hartnell, Rall and Whitehead [4] 

show that finding a MCDW is NP-complete for general graphs. The proof involves 

relating the watchman's walk problem to the well-known Hamilton cycle problem: 

given a graph G, does there exist a Hamilton cycle in G? This problem is famously 

NP-complete [3], and we will see how it can be used to show the same is true of the 

watchman's walk problem. Let CLOSED DoMINATI NG WALK be phrased as follows: 

9 



.-------------------------- --

given a graph G and positive integer k, is w 1 (G) < k? Then we have th following 

result. 

Theorem 2.1. [4] CLOSED DOMINATING WALK is NP-complete. 

Proof. Note firstly that CLOSED DOMINATING WALK is in NP, since it is straightfor

ward to verify any solution to the problem. Given a graph G of order n, take k = n 

in the decision problem and create a new graph G' by attaching a degree-one vertex 

to every vertex of G. A MCDW in G' need not visit any of these degree-one vertices, 

but must visit their neighbours in order to monitor all vertices. Thus every vertex in 

G must be included in a MCDW of G'; we can conclude that w 1 ( G') :::::: k , since there 

are k vertices in G. If G is a Hamiltonian graph then there exists a closed walk of 

length k containing every vertex of the graph, and in this case w1 ( G') = k. H nc if 

w 1(G') > k then G is not Hamiltonian, and if we could find a MCDW in G' of length 

k then w could find a Hamilton cycle in the arbitrary graph G, a problem we know 

to be NP-complete. 0 

We will see that despite the level of complexity for general graphs, there are many 

types of graphs for which the watchman's walk problem is very approachable. Indeed , 

the following two lemmas will completely solve the problem for trees. 

Lemma 2.2. [4] Every cut vertex of a graph G must belong to every dominating walk 

of G. 

Proof. Let v be a cut vertex of G and let W be any dominating walk of G. If HI 

is the trivial walk on the single vertex v then we are done; otherwise let G1 be a 

component of G \ v that contains a vertex of vV and let G2 be a second component of 
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G \ v. If HI does not pass through v then it does not reach vert ices of G2, as v is the 

only vertex in G connecting those components. If u is a vertex in G2 then u is not 

on W and consequently must be adjacent to a vertex on the walk. So u is adjacent 

to a vertex of G1 ; but then G1 and G2 are not separate components of G \ v, which 

is a contradiction. Hence every cut vertex belongs to every dominating walk of G, as 

claimed. D 

Lemma 2.3. [4] Let G be a connected graph of order at least 3. If W is a MCDW 

in G then HI does not include any vertices of degree 1. 

Proof. To reach a vertex v of degree 1 the walk must first visit the single neighbour 

of v, from which it can dominate v; it is therefore unnecessary to add the two extra 

edges required to visit v itself. D 

Not in particular that a MCDW in a tree does not include any leaves. As sug

gest ed , the two preceding lemmas tell us exactly how to find a MCDW for any tree. 

Since every non-leaf vertex of a tree is a cut vertex, we know the vertex set of any 

MCDW in a tree will include all non-leaves and no leaves; i.e., the vertex set is always 

V(T) \ L(T), for a tree T. Since a MCDW must return to t he vertex it starts on, and 

since t here is only one path between any two vertices of a t ree, it is easy to see that 

every edge traversed by a closed walk will in fact be traversed twice when the graph 

is a t ree. Recall that T0 is the tree T \ L(T); then we have shown w 1(T ) :=:: 2IE(To)l. 

Let us find a dominating walk in T. If we double every edge of T0 then every vertex 

has even degree and hence there exists an Eulerian circuit in this new tree. Since t he 

vertices traversed are all t he non-leaves ofT, this circuit is a closed dominating walk 

ofT of length 2IE(To)l. A MCDW will be at most this length, so w1 (T):::; 2IE(To)l. 
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We thus have th following theorem. 

Theorem 2.4. [4] 1fT is a tree then w1(T) = 2IE(To)l, and an Eulerian circuit in 

the tree T0 with doubled edges is a MCDW forT. 

Theorem 2.5 . [4] For a connected graph G and any spanning tree T of G, w1(G) ::; 

2IE(To)l. 

Proof. Let T be any spanning tree of the graph G. We know that a MCDW for T 

has length 2IE(To)l. But since V(G) = V(T) , this walk is also a closed dominating 

walk of G, and it follows that a minimum closed dominat ing walk of G has length at 

most 2IE(To)l. D 

Figure 2.1 illustrates the method described above for finding an upper bound on 

w1(G) . ote that the walk obtained is not a MCDW, since traversing one of the 

6-cycles (e.g. , the shaded vertices) in this graph gives a shorter closed dominating 

walk; however , we can at least conclude that w1 (G) ::; 10. 

o : 
I I I 

0 0 0 

Figure 2.1: A closed dominating walk for G obtained from the spanning tree T. 

We have already established that trees attain the upper boun l of Theorem 2.5, 

since every non-leaf edge is traversed twice in a MCDW for a tree. Figure 2.2 shows 
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a graph that is not a tree that also satisfies w 1 (G) 2IE(To)l, for the indicated 

spanning tree T. 

G ZT0 0 0 , ' , 

o=--= --==-=o 
' 

'0 (j 

Figure 2.2: A graph satisfying w1 (G) = 2IE(T0 ) I that is not a tree. 

An important note here is that for a given graph G, different choices for the span-

ning tree T will likely result in different values for IE(To) 1. Specifically, a spanning 

tree with many leaves will result in T0 having fewer edges. Consider again the graph 

G in Figure 2.2. Figure 2.3 shows three different spanning trees of G and the corre-

sponding closed dominating walks of G for each. We see that the upper bound given 

in Theorem 2.5 can be slight ly improved if we specify that the spanning tree T be 

the 'best' spanning t ree; i.e., that we choose T so that To has the f west number of 

edges. This is equivalent to finding a spanning tree of G with t he maximum number 

of leaves, a problem which is known to b P-hard [3] . 

The following theorem categorizes a class of graphs that do not me t the bound 

of Theorem 2.5 for any choice of spanning tree. 

Theorem 2.6. [4] Let G be a connected graph and letT be any spanning tree of G. 

IJG has girth at least 7 then w 1 (G) < 2IE(To)l. 

Proof. Assume a graph G has girt h at least 7 but that w1 (G) = 2IE(To)l for some 

spanning tree T of G. Let u and v be the end vertices of some edge in G that is 

not in T . Let P be the unique u-v path in T , and let u' and v' be the neighbours 
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T T 

Figure 2.3: Thr choices for a spanning tree T , and the resulting dominating walks. 

of 'U and v, respectively, on P. Since every vertex on P has degree at least two in T 

(except possibly u and v), this pat h is contained in To . In particular, u' and v' are in 

To. Note that dr0 ( u', v') > 3, since otherwise such a path from u' to v' together with 

{ u', u'u, u , uv, v, vv' , v'} would form a cycle of length 6 in G, which contradicts that 

the girth of G is at least 7. 

Now, double each edge of T0 and let vll be an the Eulerian circuit in the resulting 

multigraph. This circuit has length 2IE(To)l and is thus a MCDW ofT. But if we 

replace one occurrence of the edges of P ~ E(T0 ) from u' to v' (of which there are at 

least 4) on v\l with the edges u'u, uv , vv' , then we obtain a walkinG that is at least 

one edge shorter than lill. This new walk has all vertices of W and so is dominating, 

which contradicts the fact that W is a MCDW. Thus, there is no such spanning tree 

of G; that is, no spanning tree T satisfies w1 (G) = 2IE(T0 ) I, as required. 0 

The girth requirement cannot be tightened here, as there do exist graphs of girth 

six that attain the bound in Theorem 2.5 (a cycle of length six, for example) . Also 

note that the converse of Theorem 2.6 is not true, as Figure 2.4 demonstrates that the 
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upper bound is not attained for every graph of girth less t han seven. We can see the 

graph G has w1 (G) < 2jE(T0 ) I for every spanning tree T because up to isomorphism 

there is only one such T, with the corresponding walk having length 6, and traversing 

the 4-cycle in G gives a shorter closed dominating walk. 

G 

0 D 

Figure 2.4: A graph of girth 4 for which w1 (G) < 2jE(To)l for any spanning tree T . 

The following theorems consider the watchman's walk problem for several ammon 

types of graphs. 

Theorem 2. 7. [4] If G is a connected graph then w 1 (G) = 0 if and only if G has a 

dominating verte.'E (that is, a dominating set of size 1) . 

Proof. This is trivial; the watchman need not move from the dominating v rtex. D 

Theorem 2.8. [4] Let G be a complete multipartite graph. If any part is a single 

vertex then w1(G) = 0, and otherwise w1(G) = 2. 

Proof. If one part of a complete multipartite graph is a single vertex, then that vertex 

dominates the entire graph and so, by Theorem 2.7, w 1(G) = 0. Otherwise, a vertex 

u dominates the v rtices in all other parts except its own, which can be dominated 

by one vertex, say v, from any other part. Since G is complet e, u and v are adjacent 

and the closed walk of length 2 between t hem is a MCDW. Thus w1(G) = 2 in t his 

case. D 
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Theorem 2.9. [4] Let G be a connected bipartite graph with bipartition (A, B), where 

both A and B contain at least 2 vertices. Let A' denote a minimum subset of A that 

dominates all of B , and let B' denote a minimum subset of B that dominates all of 

A . Then w1(G) ~ 2 (ma.~ { I A'I , IB' I} ). 

Proof. Since G is bipart it , no vertex of A dominates any other vertex of A. Likewise 

for B. Hence, if A" is the subset of vertices from A on a MCDW t hen A" must 

dominate B and consequently has at least lA' I ver tices. Similarly, the set of vertices 

B" from B on a MCDW must hav size greater t han or equal to IB'I· Since we must 

enter and leave each vertex of t he larger of the two sets A" and B ", our MCDW has 

length at least twice the cardinality of t he larger set, which is at least t he larger of 

A' and B'. 0 

Theorem 2.10. [4] If Cn is a cycle of length n then 

if n ~ 6 

if 3 ::::; n < 6 

Proof. If G is a cycle then we have two clear choices for a 'good ' closed dominating 

walk; eit her we walk the ent ire way around t he cycle, making a walk of length n, or we 

walk partially around the cycle in one direction befor r v rsing and returning to the 

starting vertex. Wit h any other walk there will be edges traversed more than twice, 

which adds unnecessary length. Label the vertices of Cn as v1 , v2 , . . . , Vn· Beginning 

at v3 and walking to Vn ensures every vertex is observed, since the guard can see 

v1 from Vn and v2 from v3 . Reversing direction at Vn and returning to 'V3 creates a 

closed walk that is minimal in t he sense t hat if we had reversed at any vertex b efor 

Vn then the walk would not be dominating (v1 would be unobserved ). T his method 
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gives a walk of length 2(n ~ 3) , which will be shorter than a complete traversal of the 

cycle if 2(n ~ 3) < n, or n < 6. Hence, w 1(Cn) = 2(n ~ 3) for n:::; 6, and otherwise 

wl(Cn) = n. D 

Notice that in the proof of Theorem 2.10 we are given, in addition to w1(Cn), 

precise constructions for MCDWs in n-cycles. Results about w 1 (G) and MCD\,Y 

constructions are known for other families of graphs G. Given two graphs G and H , 

the Cartesian product graph GDH is the graph with vertex set V(G) x V(H) and edge 

set {(u,v)(u ,v')iu E V(G) , vv' E E(H)} U { (u,v)(u'v) lv E V(H) ,uu' E E(G)}. In 

[5], for T a tree, sharp bounds are found for w1 (TDKn) , and nee ssary and sufficient 

conditions are found for a walk in TDK2 to be a MCDW. In [4], the following theorem 

describes MCDWs in cactus graphs. 

Theorem 2.11. [4] Let G be a connected cactus. Let G' be the induced subgraph of 

G obtained by deleting all vertices of degree 1, all vertices of degree 2 that are on 3-

cycles, and exactly one pair of adjacent vertices of degree 2 from each cycle of length 

4 or 5 that contains such a pair of vertices. If each wt edge of G' is duplicated to 

form G", then G" is Eulerian and any Eulerian cirwit in G" is a MCDW of G. 

Proof. Let G be a cactus graph. W will show that an Eulerian circuit formed as 

described above is a MCDW by showing that none of the identified vertices need to 

be on a dominating walk, that each of the remaining vertices (those in G' ) must be on 

a dominating walk, and that every edge of G' must be traversed in order to connect 

its v rtices. Doubling th cut edges follows necessarily to ensure that the walk is 

closed. 

By Lemma 2.3, no vertex of degree 1 needs to be on a MCDW, so we eli card 
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such vertices (i.e., we do not include them in G'). Any vertex of degree 3 or higher , 

or of degr 2 and not on a cycle, is a cut vertex in a cactus. To see this, note that 

since every block is a cycle or an edge, a vertex belongs t o single block if and only if 

it is on a cycle and has degree two; otherwise the ver tex belongs to two blocks and 

its removal would disconnect those blocks. Cut vert ices must be on any dominating 

walk, by Lemma 2.2, so we keep these vertices in G'. 

Vertices of degree 2 on a 3-cycle will be seen from the cut vertex (or vert ices) 

on the cycle, so discard them. If t here are adjacent vertices of degree 2 on a 4-cycle 

then we discard one pair of them and keep the two remaining adj acent vert ices, from 

which a guard can monitor the discarded pair. The edge between t he retained ver tices 

must be on a dominating walk in order for the guard to move from one v rt x to the 

other. If t here are no adjacent vertices of degree 2 on a 4-cycle t hen there are vert ices 

of degree 3 or higher (i. e., cut vertices) at opposite corners, which must be on a 

dominat ing walk. For a guard t o move between these opposite ver tices, two adjacent 

edges must be traversed , and if the guard 's walk is to be closed then two dg s will 

hav to be traversed in the opposite direct ion as well; we can therefore put all four 

vertices and all four edges of the cycle in G' . A similar rule applies for 5-cycles. 

For cycles of length 6 or more, a complete traversal suffices for th minimum 

dominating walk, even if that t raversal is interrupt ed (at cut vertices), and so G' will 

include full cycles of any length higher than 5. 

Now, any vertex in G' is either a cut vertex or is on a cycle and has degree 2, an l 

each cut vertex is either the end of a cut edge or only belongs t o cycles. If a vertex 

only belongs to cycles then each of it s cycles contr ibutes 2 incident edges and so the 

total degree of the vertex is even. Thus, if we duplicate each cut edge of G' to create 
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G", all vertices of the result ing graph have even degree. We see that to dominate the 

cycles of G we can walk each edge of G' , and to connect these cycl s with a closed 

walk each cut edge must be walked twice. Such a walk is obtained pr cisely by finding 

an Eulerian circuit in G". 0 

Figure 2.5 below demonstrates how Theorem 2.11 applies to the given cactus graph 

G. 

G G' 

Figure 2.5: A cactus G , the graphs G' and G" from Theorem 2.11 , and a MCDW. 

2.2 Multiple guards: downsizing a dominating set 

The original watchman 's walk probl m can be viewed as an attempt to minimize the 

unobserved time of vertices , given a single guard. In [6] t his problem is generaliz d to 

multiple guards, but the question is still essentially the same: given a fixed number 
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of guards, how can we minimize the length of time for which vertices are unobserv d? 

The precise problem addressed in [6] i motivated as follows. 

Suppose firstly that a museum or other network has enough guards to place one 

at each vertex of a dominating s t , so that all ver tices are under constant monitoring. 

Let D be a dominating set. If we hav IDI guards and ach remains stationary at 

a vertex of D , then we have an extr mely efficient but expensive securi ty network. 

Now sur pos that the guards hav - b - n lownsized, so that only some fraction q, 

0 < q < 1, of the guards are now employ d. The following questi n aris s: given qjDI 

guards, how can we minimize th maximum time for which any v rtex is unobserv d? 

Given a closed dominating walk in a graph and mult iple guard at our disposal, a 

natural strategy is to have the guards 'share' the dominating walk, by spacing them 

out along it a · equally as possible. This will not always be the most effective method, 

as illustrated in Figure 2.6: if two guards share the closed dominating walk on the left, 

which has length 12, then the leaves of this tree are unobserved for 5 cons cutive units 

of t ime, whereas with the two disjoint walks on the right no vert x i unob erved for 

more than 3 units of time. The inefficiency is even more marked when we note that 

the closed dominating walk in this cas is actually minimum. However , the method 

of sharing a dominating walk at least gives us an upper bound on the length of t ime 

for which vert ices must be unobserved . Lemma 2.12 formalizes this id a, which i 

used repeatedly in [ 6]. 

Lemma 2.12. If a graph has a closed dominating walk of l ngth m then it can be 

dominated with p guards such that no veTtex is unobserved fo1 · more than l ~ l - 1 

units of time. 
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Figure 2.6: Different methods of monitoring a graph with two guards (g1 and g2). 

Proof. If p guards are spaced out as evenly as possible along a closed walk of length 

m , then any two guards will be at most I~ l edges apart . If the guards follow one 

another along the walk then every vertex on the walk is occupied at least once very 

I~ l units of time. Since the walk is dominating, this means every vertex in the 

graph is observed (perhaps from a neighbour) at least once every I~ l units of time, 

or equivalently no vert x is unobserved for more than I~ l - 1 units of time. D 

The bound given in Lemma 2.12 would obviously be strengthened if the closed 

dominating walk was of minimum length, but since finding a MCDW in a general 

graph is computationally difficult , we settle for a cleverly constructed closed walk 

whose vertices contain a given dominating set D. This construction is outlined in 

Theorem 2.14; first we need the following lemma. 

Lemma 2.13. If D is a dominating set in a connected graph G then for any set of 

vertices S <;;;; D there exists a vertex v E D \ S such that de ( v, S) :::; 3. 

Proof. Suppose there exists a subset S of D for which every vertex v in D \ S has 

dc(v , S) ~ 4. Let v be any vertex in D but not in Sand choose u to be the closest 

vertex in S to v. Let P = u , v1, v2 , v3 , v4 , ... , v be a shortest u- v path in G. The 

vertex v2 is not in S nor adjacent to any vertex in S because oth rwise u is not the 

close t vertex to v inS. Furthermore, v2 and its neighbours are not in D \ S, because 
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these vertic s are within distance 3 of u E S and by assumption the set S is at least 

distance 4 from any vertex in D \ S. But then v2 is not in D and is not adjacent to 

a vertex of D , which contradicts the fact that Dis a dominating set in G. D 

Theorem 2 .14. [6] If G is a connected graph with dominating set D then G can be 

monitor-ed with qJDI guards, 0 < q < 1, such that no vertex is unobserved for- m ore 

than j% l -1 units of tim e. 

Proof. Let v be any vertex in D . Construct a subtree T of G containing th vert ices 

of D via t he following iterative procedure. Set v1 = v , V (Gl) ={vi} , E(Gt) = 0, S1 = 

{vi} , and fori from 2 to IDI , find Vi in D \ si-1 with minimum dc(vi, s i -1) · Let pi 

be a shortest path from Vi to si-1; by Lemma 2.13, this path has length at most 3. 

At each step the graph Gi is connected b cause we are adding a path Pi which has 

one end already in the graph. Take T to be a spanning t ree of the final graph G IDI· 

Note that at each step we add a vertex of D and at most 3 edges to Gi. Since 

there are JDI - 1 iterations, this shows the graph C IDI (and consequently the tre T ) 

has at most 3(JDI - 1) edges. Note also that V(T) = V( G IDI) contains every vertex 

of D. Hence if we double the edges ofT we obtain a clos d dominating walk of G of 

length at most 6(JD J-1) . Then by Lemma 2.12 we know qJD I guards can dominate 

G leaving no ver tex unobserved for more than 

r
6(IDI - 1)1- 1 = r~- _6 1 - 1 ::; r~q1 - 1 

qJDI q qJD I 

units of time, as claimed. D 

Let us focus now on q = ~; i.e., suppose the set of JDI guards have been cut by 

half. We have the following result as an immediate corollary of Theorem 2.14. 
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Corollary 2.15. If G is a connected graph with dominating set D then l~ l guards 

can monitor G such that no ver-tex is unobser-ved fo r- more than 11 units of time. 

We will see that 1~1 guards are ev n more effective if the vertices of D are suffi

ciently 'close ' to one another; i. e., if we have a stronger condit ion than that guaranteed 

by Lemma 2.13. In this case we abandon the method of sharing a dominating walk. 

The following theor ms explain how we can form clusters of the vertices of D and as

sign a number of guards to each, thereby reducing the total number of edges traversed 

(see Figure 2.6, for example). We need the following auxiliary graph . 

D efinition 2.16. Let G be a connected graph with dominating set D . For- a positive 

integer- d, define G D,d to be the gmph with ver-tex set D in which two ver-tices u , v E D 

ar-e adjacent if and only if de(u, v) :=:; d. 

Theorem 2.17. [ 6] Let G be a connected gmph with dominating set D . 

(i) If de ( v, D \ { v}) :=:; 2 for all v in D then 1 ~I guar-ds can monitor- G such that no 

vertex is unobser-ved for- mor-e than 7 units of time. 

(ii) If de(v, D \ { v}) :=:; 1 for- all v in D then 1~ 1 guar-ds can monitor- G such that no 

ver-tex is unobserved for more than 3 units of time. 

Pmof. (i) Assume de( v, D \ { v}) :=:; 2 for all v in D; then by definition the graph G D ,2 

will have no isolates . Let M be a maximum matching in Gn,2 . All neighbours of an 

unmatched vertex are end vertices of an edge in Jl;f , since if two unmatched vertices 

are adjacent t hen their shared dge could belong to M, which contradicts the fact that 

M is maximum. For each unmatched vertex we can therefore select an edge incident 

with a matched neighbour. Now consid r an edge ·u, v of NI. If both u and v are 

incident with a selected edge then we have a path of length three, say P = u' , u, v, v', 
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in G n,2 where u' and v' are not incident with edges of NI . Then NI could include 

the edges u'u and vv' instead of uv, again contradicting its maximality. Thus for 

each edge of M , exactly one end vertex is now connected to one or more unmatched 

vertices, thereby creating a collection of stars in G n,2 containing all vertic s of D . 

The edges in these stars represent paths of length at most 2 in G between two ver tices 

of D . 

For each star on T ver tices, double the edges on t he corresponding paths in G 

and have l ~J guards walk an Eulerian circuit in the result ing graph. There are T- 1 

such paths, and when doubled each has length at most 4, so the guards follow each 

other along t he circuit, spaced apart such that no ver tex dominated by the walk is 

unobserved for more than 

- 1 < - 1 = 7 r
4(T- 1)1 ~ 4(T- 1) l 

lT/2J - (T- 1)/2 

units of t ime. Since T is the number of vertices in each star of G n,2 and since these 

stars compris all vertices of D , placing l~ J guards on each star in total uses at most 

1~1 guards. 

( ii) If de (v, D \ { v}) ::; 1 for all v in D then G D ,1 has no isolates and we can form 

stars in this graph as described above. Each edge in a star corresponds to a single 

edge in G, so a star on T vertices shared by l ~ J guards will have any two guards at 

most 

J2(T - 1) l < r 2(T - 1) 1 = 4 
I lT/2J - (T - 1)/2 

edges apart. Hence in this case l ~ l guards can monitor G such that no ver tex is 

unobserved for more than 3 units of time. 0 

Note that this method of assigning guards to stars of t he graph Gn,d can also be 
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used if D satisfies only de ( v, D \ { v}) :::; 3 for all v in D (using graph G n,3 ); however, in 

general there is no improvement in this case over the method of sharing a dominating 

walk. In particular, one finds only that no vertex is unobserved for mor than 11 

units of t ime, which we already have from Corollary 2.15. However, the authors of [6] 

note that when many stars created in Theorem 2.17 have odd order r- , t he number of 

guards used in total is actually significantly less than 1~ 1 , since we reduce the number 

of guards on each odd star from r to l~J = r2l (recall that we initially assume every 

vertex of D has a guard , and t hat we downsize t his set of guards by half). In these 

cases we can afford to 'waste ' guards in certain parts of the graph, while still using 

only 1 ~ 1 in total. In particular, if in Theorem 2.17 we eliminate the condition that 

de(v, D \ { v}) :::; 2 or de(v, D \ { v}) :::; 1 or all v in D , then the resulting isolates in 

G n,2 or G D ,l could be given their own guard provided there are at least as many odd 

stars as there are isolates . This gives t he following corollary. 

Corollary 2 .18 . [6] Let G be a connected graph with dominating set D. Form a 

collection of stars in the graph G n ,2 as descr-ibed in the pr-oof of Theorem 2.17; if 

the number- of odd stars is at least the number of isolates in G n ,2 then 1~ 1 guards 

can monitor- G such that no ver-t e:r; is unobserved f or- more than 7 units of time. If 

de( v , D \ { v}) :::; 2 for all v E D and the number- of odd star-s in G n,1 is at least 

the number of isolates in G D ,l then 1~ 1 guards can monitor- G such that no vertex is 

unobserved for more than 3 'units of time. 

Returning to Theorem 2.17, note that when D satisfies de(v , D \ { v}) :::; 1 for 

all v E D , D is a total dominating set . If the matching NJ defined in th proof of 

Th or m 2.17 is p rfect th n D is in fact a paired dominating set. The following 
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theorem shows how paired domination is ideal for minimizing the length of time for 

which vertices are unobserved. 

Theorem 2.19. [6] A graph G can be monitored with -y~G) guards and leave no vertex 

unobserved for more than 1 unit of time if and only if G has a paired dominating set 

of size ry( G). 

Proof. ( =>) If G can be monitored by 'Y~) guards such that every vertex is seen at 

least once every two units of time then the set S1 of vertices occupi d by the guards 

at some time t and the set S2 of vertices occupied at time t + 1 must together form a 

dominating set of G; i. e., D = sl us2 is a dominating set of G. Thus IDI 2:: ry( G). But 

since there are -y~G) guards, we must have IS1I , IS2I :::; -y~G), so ID I :::; -y(~) + -y(~) = ry (G) 

and consequently IDI = ry(G) . We conclude that sl n s2 = 0, and if we let Nf be the 

set of edges walked by the guards, each having one end vertex in sl and one in s2, 

then Nf is a perfect matching in the subgraph induced by D , and hence D is a pair d 

dominating set, as required. 

( {:::) If G has a paired dominating set D then the subgraph induced by D has 

a perfect matching, M , whose end vertices comprise D. Each edg of Nf can be 

traversed repeatedly by one guard, so that no vertex is unobserved for more than 1 

unit of t ime, and this method uses exactly 1~ 1 guards. D 
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Chapter 3 

Fixed time 

In this chapt r we explore a variation on the watchman 's walk problem first introduced 

by Davies et al. in [1]. This variation takes t he opposite standpoint of the problem 

discussed in Chapter 2, assuming that fixed t ime constraints ar imposed on the 

monitoring of a graph G and attempting to determine t he minimum number of guards, 

Wt (G), required to meet those constraints. We begin with an introduction to this 

problem, including some basic results, and proceed to find an upper bound on Wt( G) 

for any odd integer t > 0. 

3.1 Introductory results 

Recall that a graph G can bet-monitored by m guards if t here exists a collection of m 

walks (not necessarily distinct or disjoint) that can be traversed by t he guards such 

t hat no vertex in G is unobserved for more than t units of time. Equivalently, every 

vertex is eit her occupied by a guard or adjacent to a vertex occupied by a guard at 

least once every t + 1 units of time. 
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Suppose for example that the graph G in Figure 3.1 below must be dominated 

such that no vertex is unobserved for more than t = 2 units of time. The gray vertices 

indicate the positions of four guards 91 , 92 , 93 and 94 at some fixed point in time, and 

the dotted arrows indicate the direction from which the guards have entered their 

current vertices. We will see how these four guards can 2-monitor G. The guard 91 

traverses two edges, and all four of the vertices dominated by 91 are seen at least 

once every 2 units of time. The guard 92 remains stationary at the indicated vert x, 

thereby constantly dominating that vertex and its two neighbours. Guards 93 and 

94 share a single closed walk, the intention being that the guards are spaced equally 

apart and follow one another along the walk. The reader can v rify that this ensures 

no vertex dominated by 93 and 94 is unobserved for more than t = 2 units of time. 

G 

Figure 3.1: A graph G that is 2-monitored with four guards. 

In Figure 3.1, each guard repeatedly traverses a closed walk. Although there is 

no such stipulation in the definition of t-monitoring, we may in fact assume this is 

always the case. Let G be a graph t-monitored by guards and suppose one or more 
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of these guards share a walk W that is not closed. At any fixed point in time, label 

a vertex 0* if it is currently occupied by a guard, label a vertex 0 if it is unoccupied 

but adjacent to a vertex with a guard, and label every other vertex with a positive 

integer (at most t) according to the length of time since the vertex was last observed. 

For example, from the graph G in Figure 3.1 we obtain the vertex labelling shown 

in Figure 3.2 below. Since both t and IV(T)I are finite, there are only finitely many 

such labellings, and so at some point a vertex labelling will be repeated. When this 

happens, we can truncate W and have it repeat whatev r edge sequence followed 

the first occurrence of that labelling. The new walk is closed does not disrupt the 

t-monitoring of G. Since any non-closed walk can be reconstructed in thi way, have 

the following theorem. 

G 
0 1 0 

o" 

Figure 3.2: The length of t ime for which each vertex in G has been unobserved. 

Theorem 3.1. If a graph G can be t-monitored by m guards then G can bet-monitored 

by m guards whose walks are closed. 
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ote that for any connected graph G, if m guards can (minimally) monitor G such 

that each vertex is seen within every t + 1 units of t ime, then with those m guards 

each vertex is also seen within every t + 2 units of t ime. Thus for any t , we have 

Wt (G) ~ Wt+ 1 (G). This idea is summarized in Lemma 3. 2 and will be useful as w 

investigate increasing values oft. 

Lemma 3.2. For any graph G7 T!V0 (G) ~ VV1(G) ~ W2 (G) ~ .... 

In [1], the authors discuss bounds on Wt (G) for various values of t, with G usually 

assum d t o be a tree. vVe begin naturally with t = 0; in this case, Wt (G) = I'( G) , 

since if vertices cannot be unobserved for even a single unit of time then the guards 

must dominate all vertices while remaining stationary. In this section, when a graph 

G is clear from the context, let n represent IV (G) 1. 

Theorem 3.3. [1] For any connected graph G7 W0 (G )::::; l~J . 

Proof. For any dominating set D of a conn ct d graph G , the set V(G)\D is also a 

dominating set of G. Hence a minimum dominating set must have cardinality less 

than or equal t o l~J, as otherwise its set complement is a dominating set with fewer 

vertices. Thus I' ( G)::::; l~J , and since W0 (G) =I'( G) , the result follows. 0 

The trees of even order n that have domination number equal to ~ are classified 

in [2]: they are composed of an equal number of leaves and non-leaves, with every 

non-leaf adjacent to exactly one leaf. Because of the complexity of the t ime restraint 

problem for general graphs, the remainder of this chapter predominant ly considers 

trees. 

Theorem 3.4 summarizes three important results of [1], pertaining t o upper bounds 

on the values of W1(T) , W2 (T), and W3 (T) for an arbit rary tree T. In the next section 
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we prove a g neralized result that encompasses the bounds for t = 1 and t = 3, and 

in Chapter 4 we prove the bound for t = 2, so the individual proofs are omit ted here. 

Theorem 3.4. [1] For any tree T with n 2:: 3, 

ln -? 1j, W1(T):::; _ 

W 2(T ) :::; l2
5
n j, and 

vV3(T) :::; l-n3J . 

In each case there exist trees or families of trees attaining the upper bounds listed 

above. For t = 1 t he authors categorize precisely t hose trees for which W1 (T) 

l n;l J. This result is presented in Theorem 3.5 below. 

Theorem 3.5. [1] For a tree T with n 2:: 5, W 1(T) = l n;l J if and only if T has 

l n;l J mutually non-adjacent stems. 

ote that for n fixed and odd, there is only one tree satisfying the property of 

T heorem 3.5; it is a star with n;l edges that have each been subdivided , as illustrated 

in Figure 3.3 (a) below. If n is even then l n;l J = n;2, and the two families of tre s 

with t his number of mutually non-adjacent stems are shown in Figure 3.3 (b) and 

(c), where in each case deg(u) 2:: 2 and deg(v) 2:: 1. 

(a) (b) (c) 

Figure 3.3: Trees sat isfying vV1 (T) = l n; l J. 
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In Section 3.2 we present an upper bound on Wt(T) for higher odd values oft, and 

in Section 3.3 we describe families of trees that attain this upper bound. However , it is 

only fort = 1 that a complete categorization has been found; the conditions discussed 

for t ~ 2 are sufficient but not n cessary for attainment of the upper bounds. 

As with the original watchman's walk problem, there are certain types of graphs 

for which the question oft-monitoring is completely solved. We end this section with 

a formula for vVt (T) when T is a path. 

Theorem 3.6. If T is a path on n vertices then 

when t is odd, 

when t is even. 

Proof. If t is odd, a single guard on a path can monitor at most ttl+ 3 v r tic s within 

t + 1 units of t ime, by traversing ttl edges once in each direction. Part ition the path 

into sections of ttl + 3 vertices, possibly wit h some remaining vertices at one end. 

Placing one guard on each section, and one guard on any remaining vertices, ensures 

no vertex is unobserved for more than t units of time. The total number of guards 

required for t his method is 

Similarly, when t is even a guard can traverse ~ edges once in each direction and 

thereby monitor ~ + 3 vertices; hence the number of guards required in this case is 

0 
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3.2 A generalized upper bound for odd t 

In this section we prove an upper bound on llllt( G) that holds for any odd integer 

t 2:: 1. To begin we have a straightforward result analogous to the upper bound on 

w1 (G) that is found using a spanning tree. While the result holds for general graphs, 

it will generally be a very poor upper bound for any graph that is not a tree. Recall 

that T0 = T \ L (T) is the leaf-deleted subtree ofT. 

T heorem 3.7. For a connected graph G and any spanning tree T , 

T-V (G) < j21E(To) 'l· 
t - 1 t+1 

In particular, any tree with less than tts vertices can be t-monitored with one guard. 

Proof. Since T is a spanning tree and since V (To) dominates T , a walk containing 

all vertices of T0 will be a dominating walk of G. Double every edg of T0 and let HI 

be an Eulerian circuit in this new graph. Place guards at most distance t + 1 apart 

on vV and have them follow one anoth r around the Eulerian circuit ; this ensur s no 

vertex is unobserved for more than t consecutive units of time. Since the total length 

of the circuit is 2IE(To)l, the number of guards required to place one at least at every 

( t + 1 )th position is 

I 21E(To) 'l· 
1 t + 1 

The minimum number of guards required to monitor G is at most this number, and 

so the first result follows. 

If G is a t ree wit h less t han tts v rt ices then T = G has at most tt7 
- 1 edges, 

at least 2 of which are removed to form T0 . This gives 

j21E(To) ll < 12(~- 3) l = I ~l = 1 1 t+ 1 - 1 t+ 1 l t+ 1 , 
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so T can be t-monitored with one guard, as claimed. D 

The case of a tree that is 'small ' with respect to t is highlighted in Theor m 3. 7 

because it will be useful know when a single guard is enough tot-monitor an arbitrary 

tree. 

The following lemma is needed for the proof of Theorem 3.9. 

Lemma 3.8. Suppose a tree T is dominated by guards sharing a single closed 'Walk. 

If j vertices are attached to T in such a 'Way that the resulting graph is still a tree 

then the existing guards can dominate the n e'W vertices by adding at most 2j edges to 

their closed 'Walk. 

Proof. This result can be proved inductively. Suppose first that only one vertex is to 

be added. At tach the new vertex, say u , to T at v . If v was not a leaf in T t hen it 

must have been visited by the original walk , and sou is seen without any modification 

of the walk. Otherwi e let s be the stem of v in T. The guards walking T must have 

visited s in order to see v; then inserting the sequence { s, v}, v, { v, s} into the walk 

ensures that the new vertex is dominated. Here 1 vertex was added and at most 

2 x 1 = 2 additional edges were required , so the result holds. 

Assume now that the lemma holds for all k where 1 :::; k < j, and suppose we add 

j vertices toT. Remove one of these, a leaf R; by the induction hypothesis t he guards 

can monitor j - 1 additional vertices by increasing the length of their shared walk 

by at most 2(j - 1). This walk must include either the stem s of R or a neighbour 

of s. If s is already on the walk then no extra edges need to be traversed to monitor 

R; if only a neighbour of s is on the walk then one additional edge must be traversed 

(twice) to get to sand back , thereby increasing the length of the walk by 2 edges. In 
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total all j additional vertices can be dominated by adding at most 2(j - 1) + 2 = 2j 

edges to the shared closed walk, as required. 0 

The upper bound for odd twill follow as a consequence of Theorem 3.9 below. The 

theorem includes a number of secondary results concerning the structure of guards' 

walks, as the additional structure is useful in the inductive proof of the main result . 

Theorem 3.9. If t is odd then any tree T on n ;::: 3 vertices can be t-monitored by 

l 2nt~t33 J g'uards such that 

(1) the closed walks of any two guards are either identical or edge-disjoint, and 

(2) a closed walk shared by p ;::: 1 guards has length at most p(t + 1). 

Proof. Let k = ti3
, so that l 2nt~t3-3 J = l n+z- 3 J. It is easy to verify the theorem 

when 3 ::; n ::; k + 2; in this case 

3 + k - 3 n + k - 3 (k + 2) + k- 3 2k- 1 
1 = < < = < 2 k - k - k k ) 

so l n+z-3 J = 1 and we must show any tree Ton n vertices can be t-monitored with 

one guard satisfying properties (1) and (2). Since T has at most k + 2 = ti3 + 2 

vertices, one guard can t-monitor T by following an Eulerian circuit through T0 with 

doubled edges, by Theorem 3.7. This also demonstrates property (2), and since only 

on guard is involved, property (1 ) follows trivially. 

Assume inductively that any t ree on m vertices, 3 ::; m ::; n - 1, can be t-

monitored by l m-1+k J guards whose walks satisfy proper ties ( 1) and (2) . Let T 

be an arbitrary tree on n vertices. We will find k suitable vertices to remove from 

T, forming a subtr e T' that by t he induction hypothesis can be t-monitored by 

l (n-k~+k-3 J = lnk"3 J guards. If we can show that including the k vertices requires 

35 



only one additional guard, whose walk preserves properties (1) and (2), then T can 

be t-monitored by l nk3 J + 1 = l n+z-3 J guards and the theorem will be proved by 

induction. We select the k vertices as follows. 

Find a non-leaf v rtex v0 such that T \ v0 has at least one component with more 

than k vertices, and let 51 be one such component. Let v1 be the vertex in 51 that 

is adjacent to Vo in T , and root 51 at 'Vl· If all branches of vl in 51 have less than k 

vertices, relabel v1 as v; otherwise, choose a branch with k or more vertices and call it 

52 . Root 5 2 at v2 , t he vertex adjacent to v1 . If all branches of v2 in 5 2 have less than 

k vertices, relabel v2 as v; otherwise, choose a branch with k or more vertices and call 

it 53. We can repeat this procedure until eventually a vertex v = vi is found whose 

branches are all of size less than k . Furthermore, t he subtre 5i (containing 'Vi and 

these branches) has at least k ver tices, since 5i was chosen from the branches of 'Ui-1 

with precisely that property. Select k vert ices from 5i beginning in one branch of v, 

ensuring that after each selection the unselected vertices are connected, and selecting 

from a second branch only after the first has been entirely selected, selecting from a 

third branch only if the second has been entirely selected, and so on. 

If 5i has exactly k vertices then we select the ent ire component, including v, and 

let the tree T' be T with these k ver tices removed. Then 5i is a t ree with k = tt3 

vertices, so by Theorem 3.7 it can be t-monitored by one guard. By the induction 

hypothesis the tree T' on n- k vertices can be t-monitored by l nk3 J guards, whose 

walks satisfy properties (1) and (2) . The one additional guard required for 5i gives a 

total of l 71k"3 J + 1 = l n+;-3 J gwu·ds, and since the new guard does not enter T' and 

walks at most 2(k- 2) = t- 1 edges, his walk does not violate properties (1) and (2). 

If 5i has more than k vertices t hen we will not select the ver tex v . At least one 
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branch of Si is entirely selected, since no single branch contains k or more vertices, 

and at most one branch is partially selected, since we are choosing the vertices one 

branch at a time. Let S be the subtree of T containing v and all completely selected 

branches. There are two cases. 

Case 1: There is no partially selected branch; that is, S contains all k selected 

vertices. Since v is not selected, S is a subtree with k + 1 vertices, at least two of 

which are leaves in T (S cannot have only a single branch because each branch of v 

has less thank vertices). Hen e by Theorem 3.7, Scan bet-monitor d by one guard 

who traverses at most 2(k- 2) = t- 1 edges. By the same reasoning as used above 

when IV(Si)l = k, the theorem holds in this case. 

Case 2: There is a partially-selected branch; call this branch B. LetT' beT with 

the k selected vertices removed . Since only some of the vertices of B are selected, part 

of this branch will be in the tree T'. By the induction hypothesis, T' on n- k vertices 

can be t-monitored by l nJ:3 J guards whose walks are identical or edge-disjoint , wh re 

a closed walk shared by p guards has length at most p( t + 1). In the following two 

sub-cases, let B' be the branch B of v contained in T'. 

Case 2a: The edges of B' belong to multiple edge-disjoint walks. At most one of 

these walks includes edges outside of B' , because a single edge joins B' to the rest of 

T'. So at least on walk has edg s only in B' , and consequent ly at least one guard 

never leaves B in T'. Let one guard remain in B' and let any other guards whose 

walks were entirely in B' sit stationary at the v rtex v . If there was a walk in B' 

involving edges outside of B', truncate this walk by excluding all edges of B'. The 

guard(s) on this walk can remain at v instead of entering B' , and can resume t he 

remainder of the walk at the appropriate time. These alterations do not affect the 
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monitoring of any vertex in T' \ B' , and properties (1) and (2) are clearly not violated. 

Th singl guard r maining in B' can t-monitor all of the branch Bin T, by Theorem 

3.7, because B has less than k = tt3 vertices. This walk is edge-disjoint from all 

others and has length at most 2[(k- 2) - 1] = t- 3 (becaus B has at most k- 2 

edges and at least one vertex which is a leaf in T). 

We now need to dominate the r mainder of th k select d vertices, which are in 

S. Because S has at most k = tt3 vertices, one new guard can t-monitor S with a 

walk which is edge-disjoint from all others, because S and T' have only the vertex 

v in common. Thus property (1) is preserved. The walk has one guard and length 

at most 2[(k - 1) - 1] = t- 1 (S has at most k- 1 edges and at least one leaf), so 

property (2) is also preserved, and we see that the theorem holds in this case. 

Case 2b: The edges of B' belong to a single walk. If t his walk does not include 

edges outside of B' then its guard(s) can monitor all of B in T, as in case 2a, so the 

result follows as above. Otherwise, we have a single closed walk vV which necessarily 

visits the vertex v . Suppose p guards share W, so t hat lV has length at most p( t + 1), 

and suppose IB \ B' l = j (i.e., j vertices of B were selected ). By Lemma 3.8, at most 

2j edges must be added to the walk W in order for the guards on W to also dominate 

the j vertices of B that are not in T' . 

Now, if j of the k selected vertices are in B then S has k - j + 1 vertices, including 

v . At least one of th s is a leaf ofT, so at most 2(k- j -1) = t + 1 - 2j edges must 

be traversed to visit all non-leaf vertices of S, including v. If we also add thes dges 

to the walk HI, which visits v , then in total we have a closed walk of length at most 

p(t + 1) + (2j) + (t + 1 - 2j) = (p + 1)(t + 1). We can therefore place one additional 

guard on the expanded walk, so that p + 1 guards are now spaced along it as equally 
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as possible. Every vertex on or adjacent to this walk, including each of the k selected 

vertices, is then seen at least once every t units of time. Thus with one new guard 

and the d scribed additions toW, the entire tree T can bet-monitored with l n+~-3 J 

guards; since the new guard is joining a walk of length at most (p + 1) ( t + 1) shared 

by p + 1 guards, properties (1) and (2) are preserved. Thus the theorem holds in all 

cases. D 

We now have as an immediate corollary the following upper bound for odd t. 

Corollary 3 .10. If G is a connected graph of order n and t > 0 is an odd integer 

then 

W (G) < l2n + t - 3J 
t - t + 3 

fork= t~3 . 

Proof. Let T be any spanning tree of G . If t is odd then by Theorem 3.9, l 2nt~t3-3 J 

guards can monitor T such that no vertex is unobserved for more than t units of 

time. The minimum number of guards required to t-monitor T is therefore at most 

this value, and since any set of closed walks dominating T must also dominate G, the 

result follows. D 

Recall from Lemma 3.2 that 1iVt(G) ~ Wt_1 (G) for any t imet and any graph G. 

If t is even then from this inequality and Corollary 3.10 we have Wt (G) ~ 1iVt- l (G) ~ 

l 2n(~~t~~3-3 J. The resulting upper bound for even t, presented below in Corollary 

3.11, is notably weaker than the bound for odd t. 
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Corollary 3.11. If G is a connected gmph of order n and t > 0 is an even intege1· 

then 

W (G) < l2n + t - 4J . 
t - t + 2 

V\ e dis uss better bounds on TtVt (G) for ev n values oft in hapters 4 and 5. We 

end the current hapter with an analysis of the upper bound on Wt(G) for odd t. 

3.3 Analysis of the bound 

In this se tion we explore the ut ili ty of orollary 3.10 and construct a family of t r es 

for whi h this upper bound is attain d. ote t hat the bound found by [1] fort= 1 

and t = 3 fit perfectly with the upper bound presented here. 

For general graphs this bound is clearly w ak, as it is an upper bound merely on 

Wt (T) for some panning tree T of th graph. How useful is th bound for trees? Our 

only alternative upper bound is given in Theorem 3. 7, and it has th disadvantage 

of r quiring some specific knowl dg of th tree, besides it order: we need to know 

the number of non-leaf edges in the tree. If we know nothing of the graph we could 

assume only that T has at least two leave , thus giving IE(To)l ::; n- 3. With only 

this assumption h w does the bound of l2n +t-3 j compare to I 21E(To)ll? 
, t+3 1 t+l · 

2n + t- 3 2(n - 3) 
---- < ----'---____;_ 

t+3 t + 1 

¢=> (2n + t - 3)(t + 1) < (2n - 6)(t + 3) 

¢=> t2 + 4t + 15 < 4n. 
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If we assume n is at least 10 and tis no more than ·v'n th n t 2 +4t+ 15 < n+4v'n+ 15 

and 15 < Jn 4 'n < Jn so 2 ' \1 l b 2 ' 

3n 3n 
t 2 + 4t + 15 < n + 2 + 2 = 4n. 

Hence with these onditions, and without knowing IL(T)I, the bound of Corollary 

3.10 is strictly b tt -r than t he bound of Theorem 3.7. Of cour e, to a sume T has 

only 2 leav s is rather strong. Suppose we allow for T having up to y'n leaves. Let 

L = IL(T)I; then 

2n+t -3 2(n- 1 -L) 
------- < ~------~ 

t+3 t+ 1 

{::} (2n + t- 3)(t + 1) < (2n- 2- 2L)(t + 3) 

¢:} t2 + 2tL + 6L + 3 < 4n, 

which is t rue if n > 45 since then t, L ::=:; y'n ::::} t2 + t + 2tL + 6L + 3 ::=:; 3n + 6fo + 3 

and 6y'n < i~, 3 < ~ ::::} 6fo + 3 < n. Thus for the rea nabl a sumption of n 

being large (n > 45) and both IL(T)I , t ::=:; y'n, the bound Wt(T) ::=:; l 2nt~t3-3 J is an 

improv m nt up nth bound Hlt(T) ::=:; l 21 ~l;o)l l · 

A final point for the strength f orollary 3.10 is that th bound is sharp in its 

current form; that i , if the denominator is kept as k = tt3 then the numerator cannot 

be reduced. This is illustrated by the tree Tin Figure 3.4, where k = 3 for odd tim 

t = 3. Here T has order n = 9; if the upper bound could be reduced to l n+~-4 J then 

we would b able to 3-monitor T with l~J = 2 guard . Howev r , 2 guards are not 

enough to monitor this tree such that no vertex is unobserved for more than t + 1 = 4 

units of t im . An Eul rian circuit t hrough doubled edges of To would have 10 edges, 

which means two guards sharing uch a walk would be more than 4 dg s apart. Two 
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disjoint walks would also fail to 3-monitor T: a single guard on on of the longer 

branches has only -nough time to walk fr m the stem to the entral vertex and back 

(since t + 1 = 4) , so no guard could reach the short bran h. Fina lly, if the walk are 

neither identi al nor edge-disjoint then th y ov rlap; th union of their walks is then 

also a clo eel walk which must in fact b an Eulerian circuit through the doubled 

edges of To. But we have already shown that two guards spa d along such a circuit 

are not able to 3-monitor T. 

T 

Figure 3.4: A tree T with vV3 (T) = 3 > ln+z-4 j. 

Th tr e T belongs to a larger family of trees that attain the bound of Corollary 

3.10. Recall t hat every stem of a t r e must be visited by at least one guard, sin 

otherwise a leaf is not dominated. Intuit ively, then, trees will b e 'hard ' to monitor 

when stem are relatively far apart. Sin e the upper bound decrea e when th order 

of the graph decrea es, we will see that trees with as f w vertice as possible whil 

having stem · sufficient ly dispersed will ome closest to meeting th g neralized upper 

bound. The following results formalize this idea. 

Theorem 3 .12. Lett be an odd integ rand let k = tt3
. JfT i f orm d from a staT of 

any size by subdividing one edge j time , 2 ::::; j ::::; k + 1, and ubdividing all remaining 
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edges k tim es, then Wt(T) = l 2nt~t3-3 J = l n+z-3 J. 

Proof. Let T be formed as described (see Figure 3.5) , say with m + 1 branches off 

the central vertex. We claim that each branch requires its own guard. Let us first 

rule out the possibility that m guards could monitor the graph with one shared walk: 

2IE(To)l = 2[m(k- 1) + j - 1] = mt + m + 2j- 2 ~ mt + m + 2, since j ~ 2, and so 

I 21E(To)l l > I m(t+1)+2 l > I t+l - I t+ l m . 

Next note that it t akes exactly t + 1 units of time to walk from a stem to the 

central vertex and then back to the same stem, since k - 1 = t!l edges are each 

traversed twice. Hence if m guards were placed on the m branches of length k and 

each was responsible for a single branch, none of the guards would have t ime to enter 

the branch of length j. We see that if m guards cant-monitor T then they do not 

share a single walk nor do t hey have m disjoint walks; the only remaining possibility 

is a collection of closed walks which overlap but are not identical, and clearly uch an 

arrangement would not be minimal. 

So m guards are not able to t-monitor T , and m + 1 guards are (by placing one 

on each branch). Hence Wt (T) = m + 1. It remains to show that l n+z-3 J = m + 1 

for this tree. We know that IV(T )I = n = mk + j + 1, so we have 

l
n + k - 3J = lmk + k + j- 2J = l (m + 1)k + .J- 2J = m + 1, 

k k k k 

since j < k + 1 ==> j~2 < 1. Hence, these tr es attain the bound of Corollary 

3.10. 0 

Figure 3.5 illustrates the trees described in Theorem 3.12. 
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T 

Figure 3. 5: A tree T satisfying Wt (T) = l n+~-3 J for t odd and k = t!3
, 2 ::=; j ::=; k + 1. 
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Chapter 4 

Bounds for small even t 

In this chapter we prove the upper bound on W2(T) from [1] (given in Theorem 3.4) 

as well as an original upper bound on W4 (T). These result s will follow from Theorem 

4. 1 below. 

Theorem 4 .1. Ijt E {2, 4} then any tTee Ton n ~ 3 veTtices can be t-monitoTed by 

l 2nt~t32 J guaTds such that 

(1) the closed walks of any two guaTds aTe eitheT identical oT edge-disjoint, and 

(2) a closed walk shaTed by p ~ 1 guaTds has length at most p (t + 1). 

Pmof. We use an inductive argument that in most cases is vir tually identi al to the 

proof of T heorem 3.9. Since t is even, the k value from Chapter 3 is no longer an 

integer; instead set k = tt4
. Although we will usually remove k vertices during the 

inductive step, in some cases we must remove t + 3 vertices, and so we need to check 

that t he theorem holds for 3 :::; n :::; t + 5. When 3 :::; n :::; k + 1 we have 

2(3) + t - 2 2n + t- 2 2k + 2 + t - 2 t + 3 + t + 1 
1 < < < = < 2 

t+3 - t+3 - t + 3 t +3 ) 
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which means l2nt:;_t
3
-

2 J = 1. Indeed , for such n, any tree T on n vertices can be t-

monitored by one guard who traverses an Eulerian circuit t hrough the doubled edges 

of T0 , since such a circuit has length at most 2JE(T0 )J :::; 2[(n - 1) - 2] :::; 2(k - 2) = t . 

Properties (1) and (2) hold trivially, since only one guard is involved . 

If k + 2 :::; n :::; t + 5 then 

2 
= 2t + 6 = 2(k + 2) + t - 2 < 2n + t - 2 < 2(t + 5) + t - 2 = 3t + 8 < 

3 
t+3 t+3 - t + 3 - t+ 3 t+3 , 

so l2nt:;_t
3
-

2 J = 2 and we must show a t ree on n vertices can be t-monitored with two 

or fewer guards. If Tis a path then by Theorem 3.6, Wt(T) = l t~6 l :::; f 2~!~0 l = 2. 

Otherwise T has at least 3 leaf vert ices so 2JE(T0 )J :::; 2[(n - 1)- 3] :::; 2t + 2 and then 

T can be t-monitored by 2 guards spaced t + 1 edges apart on an Eulerian circui t 

through the doubled edges of T0 . Again the two properties are satisfied (recall that 

when multiple guards minimally dominate a path, their walks are disjoint). 

Assume now that any tree on m vertices, 3 :::; m :::; n- 1, can bet-monitored by 

l2nt:;_t; 2 J guards whose walks satisfy properties (1) and (2) . LetT be an arbitrary t ree 

on n vertices. Find a vertex v =vi, with neighbour Vi- l , pr cisely as in the proof of 

Theorem 3.9. Then we have a component Si ofT \ vi- l containing at least k ver tices, 

such that ach branch of Si rooted at v has less than k vertices. Choose k ver tices 

from the branches of v as previously described, one branch at a time, and once again 

let S be the subtree ofT that includes v and all completely sel cted branches, and 

let B be the only partially selected branch, if one exists. 

In what follows we will remove either tt4 or t + 3 v rtices from T t o form a subtree 

T' , to which we can apply the induction hypothesis. If we then show t hat T \ T' can 

be t-monitored with the addition of only one or two guards, respectively, then the 
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tree T can be monitored with l2nt:t
3
-

2 J guards because 

l
2 ( n - k) + t - 2 J + 1 = l2n - t - 4 + t - 2 + t + 3 J < l2n + t - 2 J ( *) 

t+3 t+3 - t+3 ' 

l
2 [ n - ( t + 3)] + t - 2 J + 2 = l2n - 2t - 6 + t - 2 + 2t + 6 J = l 2n + t - 2 J . ( **) 

t+3 t+3 t+3 

Cases 1 and 2a of Theorem 3.9 work fort even and k = t14 as they did fort odd, 

since in these cases any closed walks involved in the proof are short enough (with 

respect to k) to compensate for the new, larger value of k. For example, the guard 

who dominat s S in Case 2a has a walk of maximum length 2(k - 2), which is at 

most t - 1 when k = t13
; for the present theorem 2( k - 2) is at most t , which is still 

short nough that a single guard cant-monitor S and satisfy prop rty (2). 

Hence, when T and the k selected vertices fall into Cases 1 and 2a as previously 

defin d, we can r move k = t14 vertices as before, and by the same reasoning used 

in these cases of Theorem 3.9, we can t-monitor the k vertices with only a single 

additional guard, whose walk preserves properties (1) and (2). The theorem holds in 

these cases by the calculations given in ( *). 

In Case 2b of the proof of Theorem 3.9 if the subtree S has at least two l aves 

then we obtain an expanded walk as described previously, of length at most p(t + 

1) + 2j + 2(k- j- 2) = p(t + 1) + 2j + t + 4- 2j- 4 = p(t + 1) + t < (p + 1)(t + 1) , 

and the result follows as before. Similarly, if B has more than one leaf, then less 

than 2j extra edges are required to dominate the j reattached vertices in B , and this 

too ensures the expanded walk has at most (p + 1)(t + 1) edges. However, if B and 

S have only one leaf each, then the walk from the proof of Theorem 3.9 has up to 

p(t + 1) + t + 4- 2 = p(t + 1) + t + 2 > (p + 1)(t + 1) edges when k = t14
, which is 

too large to satisfy property (2). Vve treat this case separately fort= 2 and t = 4. 
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ote that if S has only one leaf then it onsists of v and an adja ent path of 

length less than k , and if B has only one leaf then it is a path of length less than k 

and mor than 2 (since at least one vertex of B is not sele ted and at lea t one vert x 

is). Recall that th k vertices are sel t d from Si one branch at a t ime; l t us further 

assum that the e branches are cho ·en in order based on the numb r of vertice the 

contain, b ginning with a largest bran h . We an then assume B has fewer vertice 

than S (since S al o includes v) . 

If t = 2, th n k = tt4 = 3 and ea h bran h of v in si has less than 3 verti es. 

Since B has at least 2 vertices and S has more vertices than B , both S and B ar 

paths of length 2 attached to v ( wh r S in ludes the vertex v). Th r ar two ca es. 

S · l 

s 

Case!. Case 2. 

Figure 4.1: Po ibl subtrees Si wh n t = 2. 

Case 1: S \ v and B are the only bran he in Si· Remove th entire compon nt 

Si and apply indu tion to the resulting tr T' on n- (t + 3) = n - 5 vertice . Th n 

Si can b t-monitored by two new guard· who sit stationary on th - tems of S and 

B, and o, by ( ) , Tis t-monitor d by l 2nt~3-2 J guards. Propertie (1) and (2) are 

clearly unaff t d by the addition of two stationary guard . 

Case 2: There are other branches in Si· Sine a third bran h has no more v rtic 
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than B , it must have 1 or 2 vertices; let T' be the subtree obtained by removing 1 

of these vertices along with t he stems and leaves of S and B. Have two new guards 

share a walk of length at most 6 on the three branches. The result holds as above. 

If t = 4, then k = 4. Then B is a path of length at least 2, and S has more vertic s 

than B but has less than k = 4 vertices, so S is a path of length 2 or 3 attached to 

t he vertex v. If S is a path of length 2 then B is also a path of length 2, but then 

both vertices of B must be selected, which contradicts the definition of B. If S is a 

path of length 3 then B is a path of length 2 (Cas 1 below) or 3 (Case 2 below). 

B B 

S; 

Case la Case lb. Case lc. 

Case ld(i). Case ld(ii). Case l d(iv). 

Figure 4.2: Choices for the subt ree T' when t = 4 (Case 1). 
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Cas 1: S is a path of length 1 ngth 3 a ttach d to v and B is a path of length 2. 

There are four sub-cases. 

Case l a: There is a leaf £ adjacent to v . Inst ead of removing the k ver tices as 

selected, remove £ and S \ v to form a subtree T' on n - k = n - 4 vertic s. On 

new guard can t-monit or the leaf and S by traversing the two non-leaf edges in S, 

creating a walk of length t = 4 that is edge-disjoint from all walks in T' . By (*), T 

can be t-monitored by l 2nt~t3-2 J guards. Note that since B belongs to T' , its ver tices 

are already t-monitored. 

Case lb: There is another non-leaf branch in Si· Since B is a path of length 2 and 

any subsequent branches have no more vertices than B , this t hird branch must also 

be a path of length 2. Reselect k = 4 vertices in B and this branch , and remove them 

to form T'; one new guard can dominate these two branches with a walk of length 4 

that is edge-disjoint from all others in T'. 

Case l c: There are no other branche in si, and V i-1 has degree 2. Let T ' b 

form d by removing Si and vi_1 from T . Then T' has n- (t + 3) vertices, and two 

new guards can dominate Si and vi_1 by sharing a walk of length 6 through the 

non-leaf edges of Si, so by (**), T can be t-monitored as required. 

Case ld: There are no other branches in Si and Vi-1 has degree 3 or more. L t 

B* be a second branch of vi_1 ; if we assume Si was chosen as the largest branch of 

vi- I that contains k vertices, then B* has 6 or fewer vertices. We break into further 

cases based on the number of v rtices in B *. 

Case lcl(i): B* has one vertex, £. Apply induction to the subtree T ' on n - 7 

vertices, obtained from T by removing£ and Si· Two new guards can monitor these 

vertices by sharing a walk of length 8 through Vi-1 v and the non-leaf edges of Si. 
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Case ld(ii): B* has two or three vertices, including a leaf t Again letT' beT\ Si 

without f. If B* is a path of length 3 then a guard in T' walks down one edge of this 

branch. When p guards share this walk it has maximum length p( t + 1); we can add 

one more edge in B *, 4 edges from vi-l into Si, and two new guards to share a path 

now of maximum length p(t + 1) + 10 = p(t + 1) + 2(t + 1) = (p + 2)(t + 1). If B * 

is not a path of length 3 then a guard in T' need only come as far as vi- l , so we can 

have two guards share a walk of length 10 from B* to Si which is edge-disjoint from 

any walk in T'. 

Case ld(iii): B * has four or five vertices. Then as a subtree, B* has at most 2 

non-leaf edges. We can therefore remove the entire branch to form T' on n- 4 or 

fewer vertices, and have one new guard traverse a walk of maximum length 4 along 

the non-leaf edges in the subtree T \ T' = B *. 

Case ld(iv): B * is a copy of Si· Then form T' by removing all vertices of Si except 

for v and its neighbour in S, along with three vertices of B* as indicated in Figure 

4.2. In T', a guard who dominates the vertices of B* can do so by traversing edges as 

indicated by the gray arrows. Similarly, a guard who dominates the vertices of B in 

T' can traverse the edge vi _ 1v. If t he two walks are not part of the same larger walk 

then assume p guar ls share the gray walk and q guards share the black walk; these are 

edge-disjoint crossing at vi-I, with maximum length p(t+ 1) and q(t+ 1), respectively. 

Since the union of these walks is also a closed walk, restructur all involved guards to 

form a new walk of maximum length (p+q)(t+ 1) with p+q guards. Now add the five 

dges r quired to dominate all ofT\ T' and have two new guards join the walk, which 

now has p+q+2 guards and maximum length (p+q)(t+ 1) +2(5) = (p+q+2)(t+ 1). 

Properties (1) and (2) are preserved with this restructuring and by (**), T can b 
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t-monitor d with the desired number of guards. 

Ca ·e 1d(v): B* has six vertices but is not a copy of Si· If B * has at most 2 

non-leaf edg s w can proceed as in Case 1d(iii); otherwi e B* must be a path of 

length 5, ay with vertices u 1 , ... , u6 . Sine B * is not a copy of Si , we can a um 

without loss of generality that either u1 or u2 is adjacent to Vi-l · In both cases w 

remove u3 , u4 , u5 , u6 to form T', and one new guard can t-monitor the e 4 vertices by 

repeatedly t r aversing t he edge u,1u5 . 

T' 

B S 

Case 2a Case 2b. Case 2c. 

Figure 4.3: Choices for th subtree T ' when t = 4 ( as 2). 

Case 2: S is a path of length 3 attached to v and B is a path of length 3. There 

are 3 sub-cas . 

Case 2a: There are no other bran hes in Si· Remove the 7 = t + 3 vertice of Si , 

including v and apply induction to the remaining subtre T'. Two new guard can 

t-monitor si by sharing a walk of length < 2(t + 1), which i edge-eli joint from any 

walk in T '. 

Case 2b: There is a branch in Si with 1 or 2 vertices. This bran h i ither a leaf 

or path of l ngth 2; r move its leaf and all vertices in S \ v and B to form a subtr e 
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T' on n- ( t + 3) = n- 7 vertices. Then T \ T' can be t-monitored by two new guards 

who share a walk of length 8 or 10 that is edge-disjoint from all walks ofT' . 

Case 2c: There is another branch in S ; with exactly 3 vertices; either this branch 

is a stem with two leav s or is a path of length 3. Either way, remove one of its leaves 

along with the vertices of S \ v and B to form a subtree T' on n- (t + 3) vertices. A 

walk ofT' must traverse the edge of the third branch that is incident with v in order 

to dominate eit her t he second leaf or t he end of what is now a path of length 2. If p 

guards initially share this walk then by the induction hypothesis it has length at most 

p(t + 1) = 5p. Add to this walk t h four non-leaf edges of S and B and possibly one 

edge in t he t hird branch. Then two additional guards can join a walk of maximum 

length 5p + 10 = (p + 2)5 = (p + 2)(t + 1) , and propert ies (1) and (2) remain intact . 

In each case, fortE {2, 4} we find T can bet-monitored by l 2nt~t3-
2 J guards whose 

walks satisfy the desired properties. D 

From this exhaustive argument we have the following upper bounds. 

Corollary 4 .2 . If G is a connected graph of order n then 

W2 (G) ::; l2
; J , vV4 (G) ::; l2n; 2 J . 
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Chapter 5 

Conclusions and open questions 

In this thesis we explor d th t ime contraint variation of the watchman's walk prob

lem. We found explicitly the value of Wt(G) when G is a path, and w noted that 

for any spanning tree T of a graph G, Wt(G) ::; 1 2 1 ~l~o) ll· Expanding on the work 

of [1], we generalized the upper bounds known for W1 (T), W2 (T), and W3 (T) to find 

that Wt (T) ::; l 2nt~3-3 J for all odd integers t. During an analysis of this bound we 

illustrated a family of trees for which it is attained. As a consequence of the upper 

bound for odd t, we have the slightly weaker bound Wt(T) ::; l 2n~2-4 J for all even 

integers t. In the previous chapter we demonstrated that a stronger upp r bound 

does exist for t = 2 and t = 4. 

There are a number of natural directions that the present research could take. It 

would be interesting to explore both the original watchman's walk problem as well 

as the fixed t ime variation for additional classes of graphs; in particular , it would be 

nice to know more about l¥t(G) for graphs other than trees. 

One question that reappeared frequently during the present research concerns the 
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tructurc of guards ' walks when time is fixed . Specifically, if m guards can t-monitor 

a tree with a s t of closed walks that are not necessarily pairwis edge-disjoint or 

identical, th n an th walks be redesigned such that they do satisfy this proper ty? 

Th fixed tim variation supplies a number of such open problems, but the mo t 

obvious que tion i whether or not ther exist re ults analogous to Theorem 3.9 and 

Corollary 3.10 for even values of t. vVe aw in Theorem 4.1 that a similar upp r 

bound does exist for t = 2 an 1 t = 4; what happens when t ~ 6 for even t? We hav 

the following conje ture as a natural extension of Theorem 4.1. 

Conjectur 5.1. IJT is a tree of order n and t > 0 is an ev n integ r then 

vV(G) < l2n+t-2J . 
t - t + 3 

As s en in Chapter 4, we can attempt to prove this conj tured bound a we 

proved Thcor m 3.9, but the previous method does not work when the subtree S 

and the branch B from that proof each have only one leaf. In this ituation we arc 

thwarted by th fact that the number f v rti s being removed ( k = tt4
) is r lativ ly 

larger than for odd t ( k = tt3
). 

More generally, a subtle problem arise when t is even that is unrelated to the 

choice of k. Suppos a single guard walks a closed walk disjoint from all other walks 

and suppose th r is a leaf R adjacent to his starting v rtex which no other guard 

dominates (a situa tion that occur in the proof of Theorem 3.9). Since f. mu t b 

seen at least on e ev ry t + 1 units of t ime, the guard's walk can hav length at most 

t + 1; but t + 1 i an odd number, and ince any closed walk on a tree has even length, 

the maximum length of the walk is in fa t only t. 

We saw from case-by-case analysi that th proposed upp r bound for even t 

55 



does hold for W2 (T) and W4 (T). However, an exhaustive method quickly becomes 

inefficient for larger values oft, and so we need a general strategy to deal with the 

problematic configuration of Sand B described above. This ase induces such specific 

structure on the tree T that further research will hopefully reveal a solut ion. We are 

therefore optimistic that Conjecture 5. 1 can be proven with little deviation from the 

approach used for Theorems 3.9 and 4.1. 
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