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Abstract 

Tubedown (Tbdn), a developmentally regulated gene, is a subunit of the N-terrninal 

acety I transferase Arrest Defective-! (Ard 1) complex that is conserved from yeast to 

hun1an. The role of the Tbdn gene product was examined in the development and 

progression of pediatric neuroblastic tun1ors (ganglioneuroma, ganglioneuroblastoma, 

and neuroblastoma) that result from a blockage during normal sympathetic development. 

Currently, very few markers have been proven useful to distinguish the various states of 

neuroblastic differentiation. Therefore, the use of a neuroblastic tissue microarray was 

essential in determining the importance of Tbdn expression as a novel biomarker. High 

levels of Tbdn expression correlated with advanced tumor stages (stage 3 and 4), high­

risk group status, unfavorable histology, and poor outcome. 

In addition, the ftmctional relationship between the NatA complex (Tbdn and Ard 1) and 

the MycN gene product was investigated. MYCN gene amplification strongly correlates 

with advanced tumor stage and treatment failure. Although, MYCN gene amplification 

usually results in high MycN mRNA and protein expression there are subsets of 

neuroblastomas that have high MycN expression without MYCN gene amplification. I 

have demonstrated a co-regulation between Tbdn, Ardl, and MycN, using an in vitro 

human neuroblastoma LA-N-5 cell model. Subsequently, a conditional in vitro MycN­

inducible system demonstrated an over-expression of MycN that resulted in increased 
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expression of both Tbdn and Ardl. These results suggested that MycN may regulate the 

NatA complex. Promoter region analysis of TBDN and ARDI revealed a MycN 

consensus binding site within the TBDN promoter region, indicating a possible direct 

target for MycN. However, no MycN consensus sequence was detected within the ARDI 

promoter. The binding of MycN to TBDN was confirmed by chromatin 

immunoprecipitation potentially providing a mechanistic role for poor outcome in 

neuroblastoma. Finding functional links between MycN and TBDN will provide further 

validation for Tbdn as a novel biomarker that may possibly be used in diagnosis and/or 

prognosis. 
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1.1 Cancer 

Cancer is a multi-stage process arising from many genetic alterations (Hanahan and 

Weinberg, 2000). Cancer is the result of cumulative mutations, affecting two types of 

genes, oncogenes (stimulate growth), and tumor suppressor genes (inhibit growth). The 

activation of oncogenes or the deactivation of tumor suppressor genes will result in 

tumorigenesis, or the formation of cancer (Gibbs, 2003). The transformation of a normal 

cell into a malignant cell usually results in sporadic or induced cancers (Hanahan and 

Weinberg, 2000). Many factors contribute to tumorigenesis which include physical 

carcinogens (UV radiation, ionizing radiation), chemical carcinogens (nickel, cadmium, 

arsenic) or biological carcinogens (Human papilloma virus B, Helicobacter pylori) 

(Schulz, 2007). 

The majority of adult cancers result from an accumulation of mutations over many years 

(Pahlman et a!., 2004 ). In contrast, pediatric cancers appear earlier. Therefore, it is 

dubious that pediatric malignancies occur from just an accumulation of mutations. 

Pediatric malignancies occur from developmental abnormalities during the normal 

differentiation process (Figure l-1 ; Maris and Denny, 2002; Pahlman eta!., 2004). These 

developmental abnormalities are the result of both sporadic and familial cancers. In 

particular, many pediatric cancers are thought to involve Knudson' s two-mutation 

hypothesis, which states the first mutation is inherited while the second is acquired 
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Figure 1-1. Mechanisms leading to pediatric and adult malignancies. 

In children, committed stem cells undergo normal development, resulting in terminally 
differentiated cells. However, during normal growth and differentiation, a 
developmental blockage (represented by 'X') occurs resulting in the formation of 
pediatric malignancies. Conversely, in adults, mature tissues maintains normal 
homeostasis resulting in normal organ function. However, during normal homeostasis, 
cumulative mutations due to genetic mutations and/or environmental exposures (denoted 
by a double line) will result in adult malignancies. 
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somatically (Knudson, 1971 ; Knudson and Strong, 1972). Although there is an obvious 

difference between adult and pediatric cancers, they still share many similar w1derlying 

properties. Six key hallmark features result in malignant growth. They include self­

sufficiency in growth capabilities, unresponsive to antigrowth signals, circumvention of 

apoptotic signals, unlimited replicative potential, sustained angiogenesis and tissue 

invasion and metastasis (Hanahan and Weinberg, 2000; Abbott et al., 2006). 
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1.2 Neuroblastic Tumors 

Neuroblastic tumors (NTs) are the most common extra-cranial tumors occurring in 

children (Mora and Gerald, 2004). NTs are composed of a combination of components 

including undifferentiated neuroblasts, neuropil, differentiating neuroblasts, ganglion 

cells, neuritic processes, Schwann cells, and fibrous tissue (Joshi, 2000). NTs are far 

from a uniform disease as they have varying levels of immature and mature cells. These 

immature neural crest cells are referred to as neuroblasts whereas the mature 

differentiated forms are referred to as ganglion and Schwann cells (Lonergan et al., 

2002). NTs were classified into four groups (ganglioneuroma; ganglioneuroblastoma, 

intermixed; ganglioneuroblastoma, nodular; neuroblastoma), which vary according to 

their range of differentiation (Shimada et al. , 1999a). Ganglioneuromas are (Schwannian 

stroma dominant) benign tumors composed of mature ganglion and Schwann cells. The 

mature ganglion cells are embedded in the stroma which contain the Schwann cell 

sheaths encompassing neural elements (Shimada et al., 1984). Ganglioneuroblastoma ­

intermixed (Schwannian stroma-rich) are considered benign tumors composed mainly of 

ganglion cells with the presence of microscopic neuroblast cells which are present at 

different stages of differentiation. Conversely, ganglioneuroblastoma - nodular 

(composite Schwannian stroma-rich/stroma-dominant and stroma-poor) contains more 

aggressive and malignant composite of neuroblast clones. Neuroblastomas are 

(Schwrumian stroma-poor) tumors consist mainly of immature, undifferentiated cells 

(Shimada et al. , 1999a). 
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1.3 Neuroblastoma 

In 1864, Rudolf Virchow originally described neuroblastoma as a glioma (Joyner and 

Lopushnyan, 2007). However, it was not until 1910 that James Homer Wright officially 

introduced the term 'neuroblastoma'. Wright demonstrated that neuroblastoma 

originated from embryonic neuroblasts or neural crest cells (Joyner and Lopushnyan, 

2007). Neuroblastoma is a disease of the trunk region of the neural crest which gives rise 

to the sympatheticoadrenallinkage of neural crest cells (Dyer, 2004; Maris et al. , 2007). 

Due to the high migratory nature of the neural crest cells they can arise anywhere along 

the sympathetic nervous system during embryogenesis (Figure 1-2; Maris, 2005 ; 

Howman-Giles et al., 2007; Bowen and Chung, 2009). The sympathetic nervous system 

is responsible for involuntary actions of the body, such as increasing heart rate, 

decreasing urine secretion, and dilating the pupils of the eye (Sherwood, 1997). During 

normal development, neural crest stem cells migrate to many areas within the embryo. 

The Trunk region of the neural crest stem cells give rise to sympathetic tissues which 

include sympathetic neurons, sympathetic ganglia, Schwann cells and adrenomedullary 

cells (Dyer, 2004; Mora and Gerald, 2004). However, a developmental blockage of the 

neural crest stem cells will disturb the normal proliferation and migration of these cells, 

resulting in pediatric embryonal malignancies. 

Although greater than fifty percent of neuroblastomas occur in the adrenal medulla, other 

primary sites of neuroblastoma formation include the chest, neck and pelvis (Maris et al., 

2007). Prior to a neuroblastoma diagnosis, fifty percent of the cases will present 

5 



Figure 1-2. Potential neuroblastic sites. 

Neuroblastic tumors can arise anywhere along the sympathetic nervous system. The 
chains of sympathetic ganglia (red) run along the spinal chord (light gray) and the 
occurrence of NTs can invade the spine including the spinal nerves. The adrenal glands 
(yellow) site on top of each kidney (brown) and are the source of catecholamines, 
epinephrine and norepinephrine. 

6 



metastasis to areas such as the bone, bone marrow, liver and/or lungs (Castel et al., 2007; 

Howman-Giles et al. , 2007; Ishola and Chung, 2007). Neuroblastoma is one of the most 

complex yet intriguing diseases for scientists and clinicians. Half of the patients 

diagnosed with neuroblastoma, die from the disease (Pahlman et al., 2004). 

Paradoxically, neuroblastoma also has one of the highest rates of spontaneous regression 

(Pritchard and Hickman, 1994; Castel et al., 2007). 
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1.3. 1 Spontaneous Regression & Apoptosis 

In the mid 1980s, a mass screening detection program was initiated in Japan to improve 

the discovery of neuroblastoma (Sawada et al., 1984). Japan began screening six-month 

old infants for catecholamine metabolites (produced by neuroblastoma) found in the 

urine. Subsequently, similar efforts were taken by Canada and Germany to determine the 

practicality and effectiveness of these screening programs (Schilling et al. , 1994; Woods 

et al., 1996). The screening program in Japan was terminated in 2004 after studies from 

Canada and Germany revealed that there was no reduction in the mortality rate (Tsubono 

and Hisamichi, 2004). In fact, there was an increase in the incidence of neuroblastoma 

since the induction of the mass screening program. The program proved unsuccessful 

due to an over-detection of the biologically favorable type of neuroblastomas, ultimately 

leading to unnecessary treatments. The treatments were deemed unnecessary, as this 

class of tumors would have likely undergone spontaneous regression before any clinical 

signs were present (Brodeur, 2003; van Noesel and Versteeg, 2004). In addition to 

adding a greater understanding about spontaneous regression, other important 

observations came from the screening program. The idea that neuroblastoma may not 

necessarily be derived from a common precursor and in fact may arise as separate entities 

(favorable and unfavorable). There is now a greater awareness that spontaneous 

regression occurs in neuroblastomas, and at a higher rate than any other human tumor. 

However, the reason for such a high rate of spontaneous regression is still unclear. 
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Neuroblastoma has the highest rate of spontaneous regression (1 0 to 100 times) of any 

cancer (D'Angio et al., 1971; Pritchard and Hickman, 1994; Castel et al., 2007). Two 

hypotheses have been suggested for this occurrence, including immunological attack on 

the tumor (Hellstrom et al. , 1968) and spontaneous maturation (Rangecroft et al. , 1978). 

Hellstrom and colleagues demonstrated that there was an inhibition of neuroblastoma cell 

growth in vitro using lymphocytes from children with neuroblastoma. In addition, using 

lymphocytes from a mother who had given birth to a child with neuroblastoma also 

inhibited neuroblastoma growth in vitro (Hellstrom et al., 1968). The problem with the 

first theory is the lack of immunological evidence for immune surveillance (or the lack of 

constant monitoring by the immune system) against the development of neuroblastomas 

(Pritchard and Hickman, 1994; Ochsenbein et al., 1999). In addition, neuroblastomas are 

not highly immunogenic, meaning that they express low levels of surface antigens that 

would be required for proper immune surveillance (Brodeur, 2003). Other reasons that 

spontaneous regression is not supported by the immunological theories is that children do 

not develop neuroblastoma from inherited immune deficiencies or after receiving 

immunosuppressant therapy (Pritchard and Hickman, 1994). 

The second theory regarding spontaneous maturation also seemed implausible. 

Rangecroft et al. reported a case in which a stage 4S neuroblastoma spontaneously 

matured with minimal treatment (Rangecroft et al. , 1978). Usually during spontaneous 

regression of a stage 4S neuroblastoma, the tumor disappears completely (the liver and 
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bone marrow biopsy specimens are tumor-free). In addition, there should be no traces of 

a treated tumor ever existing. In other words, no ganglion (or differentiated) cells would 

be left behind. However, in this case spontaneous maturation to ganglioneuroma had 

occurred leaving residual mature ganglion cells (Pritchard and Hickman, 1994). 

Pritchard and Hickman suggested that the most likely explanation for the spontaneous 

regression observed in neuroblastoma is a delay in the time-switch for apoptosis during 

normal development (Pritchard and Hickman, 1994) and after a period, the apoptotic 

pathway becomes activated. Massive cell death of sympathetic neurons occur during the 

perinatal period (Oppenheim, 1991; Nakagawara, 2005). The same controlled cell death 

mechanism appears to occur in neuroblastoma, resulting in the regression of the tumor. 

Oue and colleagues used in situ detection of DNA fragmentation and Bcl-2 expression to 

demonstrate a relationship between apoptosis and spontaneous regression in 

neuroblastoma (Oue et al. , 1996). High Bcl-2 expression has been shown to block 

apoptosis in the advanced stages of neuroblastoma (Oue et al., 1996). Previously, Bcl-2 

expression was reported to correlate with poor prognosis, unfavorable histology, and 

MYCN amplification (Castle et al. , 1993). They suggested that Bcl-2 might have a role in 

neuroblastoma progression. However, Bcl-2 levels were decreased in children less than 

one year of age (Oue et al. , 1996). The reports regarding the prognostic significance of 

Bcl-2 levels in primary tumors are varied. Therefore, the role that Bcl-2 plays in 

spontaneous regression still remains elusive. Moreover, Bcl-2 may have a more 

significant role in acquired resistance to chemotherapy (Maris and Matthay, 1999). Over 

eighty percent of neuroblastoma specimens analyzed post-chemotherapy treatment 
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expressed Bcl-2 (Castle et al., 1993). Dole et al. demonstrated that over-expression of 

Bcl-2 in neuroblastoma clones inhibited apoptosis, even in the presence of chemotherapy 

treatment (Dole et al., 1994). Their results suggested that Bcl-2 promoted tumor 

resistance to chemotherapy agents. 

Caspase-8 is an integral part ofthe death receptor (extrinsic) apoptotic pathway (van 

Noesel and Versteeg, 2004). In general, many human cancers, including neuroblastoma, 

evade apoptosis through inactivation of Caspase-8. The function of Caspase-8 can be 

impaired due to epigenetic mechanisms or genetic deletions (Fulda, 2009). However, 

Eggert and colleagues demonstrated through demethylation experiments, the restoration 

of Caspase-8 expression using neuroblastoma cell lines. Their results suggested that the 

mechanism leading to the loss of Caspase-8 expression was likely due to DNA 

methylation as opposed to deletion of CASP ASE-8 (Eggert et al., 2000). In advanced 

neuroblastomas, the inactivation of CASPASE-8 occurs via promoter hypermethylation. 

This represents a defective hallmark for apoptosis, suggesting that Caspase-8 may serve 

as a tumor suppressor (Teitz et al., 2000; Teitz et al., 2001). Unfortunately, the 

regulatory region of the CASP ASE-8 promoter does not contain classical CpG islands or 

even have promoter activity as was displayed using neuroblastoma cell line and primary 

tumor samples (Fulda, 2009). Nevertheless, reports show that demethylation (using 5-

Aza-Cytidine) restores Caspase-8 expression (Eggert et al. , 2000; Banelli et al., 2002; 

Fulda, 2009). 
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The loss of Caspase-8 expression has been reported to be as low as 25-35%, and as high 

as 75% in neuroblastomas (van Noesel and Versteeg, 2004; Fulda eta!., 2006). In 

addition, there is much controversy between Caspase-8 expression and MYCN 

amplification. Some studies suggest that the loss of Caspase-8 strongly associate with 

MYCN amplification (Teitz et al., 2000), whereas other reports show no such correlation 

(Fulda et al., 2006). In addition, loss of Caspase-8 did not associate with the 

aggressiveness, prognosis or staging of neuroblastoma (Fulda et al., 2006). 

Similar to Caspase-8, Survivin is also involved in the apoptotic pathway. However, 

SURVJVJN is an anti-apoptotic gene that is located on the long arm of chromosome 17. 

The Survivin protein is a member of the inhibitor of apoptosis, and is a negative regulator 

of Caspase-9 (van Noesel and Versteeg, 2004). Over-expression of Survivin is associated 

with high-risk neuroblastomas (Adida et al., 1998; Nakagawara, 2005). 

As mentioned, neuroblastoma can also undergo spontaneous maturation (Castel and 

Grau, 2006). In the late 1920s, Cushing and Wolbach described that malignant 

neuroblastoma, consisting of immature neuroblastic cells, underwent spontaneous 

maturation into benign ganglioneuroma, consisting of mature ganglion cells (Cushing and 

Wolbach, 1927; Brodeur, 2003). A limited number of cases have been reported involving 

the complete maturation and regression of neuroblastoma (Stage IVS) without surgery or 

chemotherapy (Rangecroft et al. , 1978; Haas et al., 1988). Conversely, other studies have 

rep01ted that even minimal treatment have resulted in spontaneous regression of 

neuroblastoma (Evans et al. , 1976; Howman-Giles et al., 2007). 
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1.3.2 Epidemiology 

Neuroblastoma is one ofthe most common extra-cranial solid tumors occurring in 

children. During the first year of life, neuroblastoma accounts for fifty percent of all 

solid tumors (Castel eta!., 2007). Only accidents precede neuroblastoma as the most 

common cause of death among children (Castel et al., 2007). Ninety percent of patients 

are diagnosed during the first 5 years of life while the median age for diagnosis is 

approximately 18 months (Brodeur, 2003; Castel et al., 2007; Howman-Giles eta!. , 

2007). In Canada, there are 65 new cases diagnosed each year compared to 700 new 

cases reported in the United States. The prevalence of neuroblastoma is about 1 in 7000 

live births and it accounts for approximately 15 percent of all childhood cancers 

(Brodeur, 2003 ; Maris et al., 2007). A more staggering statistic is that fifty percent of all 

children diagnosed with neuroblastoma will die from the disease (Pahlman et al. , 2004). 

Several epidemiologic studies have focused on the many potential risk factors for 

neuroblastoma. There are theories such as maternal use of illicit or recreational drugs 

such as marijuana (Bluhm et al. , 2006) and maternal use of hair dye (McCall et al. , 2005) 

before or during pregnancy, both increasing the risk for neuroblastoma. Conversely, 

activities such as maternal vitamin usage (Olshan et al., 2002) and breast-feeding 

(Daniels et al., 2002) suggested a decrease in the risk for neuroblastoma. However, 

proving the aforementioned theories will require further investigation. 
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A retrospective population-based cross-sectional study was completed at the Hospital for 

Sick Children in Toronto, Canada that examined pre-folic acid fortification (from January 

1985 to December 1997) and post-folic acid fortification (from January 1998 to October 

2000) food (French et al. , 2003). French et al. suggested that the recent decline in 

neuroblastoma (from 1.57 cases per 10 000 births to 0.67 cases per 10 000 births) was 

attributed to folic acid fortified food (French et al. , 2003). The decline observed in this 

study may be due to the relatively short follow-up time (25 months) for children 

conceived after folic acid fortification. In addition, Barone & Bunin estimated that 3 7% 

of the children would still get neuroblastoma even after folic acid fortification (Barone 

and Bunin, 2004). Interestingly, the incident rate comparing children conceived before 

and after fortification is 40%, very close to the predicative value. Although folic acid 

supplementation appear to have little effect on neuroblastoma prevention, more studies 

including longer follow-up times would be required to fully develop this relationship. 

1.3.3 Genetic Predisposition 

Neuroblastoma is predominantly a sporadic cancer resulting from a somatic cell 

mutation, which is restricted to the affected individual (Schwab, 1997). Dodge and 

Brenner first clinically described familial neuroblastoma in 1945 (Maris and Brodeur, 

2005). Familial neuroblastoma occurs in one to two percent of neuroblastoma cases and 

results from a germ line mutation. Germ line mutations are not restricted to the affected 

individuals but passed to the offspring (Schwab, 1997; Maris and Matthay, 1999; Maris 
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et al., 2007). Like familial retinoblastomas, familial neuroblastomas is a multi-stage 

process consistent with Knudson's two-mutation hypothesis (Knudson, 1971 ; Knudson 

and Strong, 1972; Schwab, 1997; Maris et al., 2007). One ofthe hallmarks offamilial 

neuroblastoma is multiple primary tumor sites (Kushner et al., 1986), which again is in 

accordance with Knudson's two-mutation model (Knudson and Strong, 1972). 

Hereditary neuroblastoma is an autosomal dominant disease with reduced penetrance 

(Brodeur, 2003; Maris et al. , 2007). In 2000, a hereditary neuroblastoma predisposition 

locus (HNBJ) was mapped to the short arm of chromosome 16, 16pl2-13 (Weiss et al., 

2000; Maris et al., 2002). However, no causal gene for hereditary neuroblastoma was 

found to be associated with the 16p12-13 region (Maris eta!., 2007). In 2003, Arnie! et 

al. reported neuroblastoma cases containing mutations of the P HOX2B gene (Arnie! eta!. 

2003). However, no such evidence for a hereditary linkage to the short arm of 

chromosome 4 was found (Maris eta!., 2002; Maris and Brodeur, 2005). In 2004, 

Trochet and colleagues reported that mutations to the PHOX2B gene had a hereditary 

predisposition to neuroblastoma (Mosse et al., 2004; Trochet et al. , 2004). Recently, 

Mosse and colleagues identified the anaplastic lymphoma kinase (ALK) gene as a key 

factor in familial neuroblastoma patients. Heritable mutations to the ALK gene are found 

in a subset of neuroblastoma cases (Mosse et al. , 2008). In 2000, the presence of ALK 

expression in neuroblastoma was first described (Lamant et al., 2000). However, ALK 

expression was not limited to neuroblastoma but was also present in cancers such as 

breast and rhabdomyosarcoma (Chiarle et al., 2008). 
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1.3.4 Neural Crest Development 

Wnt [Wg (Wingless) and Int] signaling is one of the earliest events in the transition of 

ectodermal cells into neural crest cells. Bone morphogenetic proteins (BMPs) help 

trigger and maintain the differentiation process of neural crest cells (Pahlman et al., 

2004). Differentiation into sympathetic neurons involves many factors including basic 

helix-loop-helix (bHLH), homeobox genes, and tumor suppressor genes (Nakagawara, 

2005). 

In 1991 , Lo et a!. demonstrated that the bHLH factor mammalian achaete-scute 

homologue- I (MASH-1 ; HASH-1 in humans) had transient expression in neural crest cells 

(Lo et al., 1991 ). MASH-1 null mice were used to prevent the generation of sympathetic 

neurons (Guillemot et al., 1993). In addition, Mash-1 (or Hash-1) is essential for the 

proper formation of the sympathetic nervous system (Axelson, 2004). Meanwhile, Hash-

1 is present in primary neuroblastomas and neuroblastoma cells indicating the derivation 

of neuroblastoma from immature neural crest cells of the sympathetic nervous system 

(Axelson, 2004; Pahlman eta!. , 2004). 

1.3.5 Biological Pathways 

Neurotrophins are a family of proteins that bind to a receptor on a nerve cell (Brodeur, 

2003). The neurotrophin family consists of four main ligands including nerve growth 
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factor (NGF), brain-derived neurotrophic factor (BDNF), new-otrophin-3 (NT-3), and 

neurotrophin-4/5 (NT-4/5), each binding to specific receptors. NGF binds preferentially 

to Trk A, BDNF to TrkB, NT-3 to TrkC and NT-4/5 prefers TrkB but also weakly binds 

to TrkA (van Noesel and Versteeg, 2004; Nakagawara, 2005). The p75 new-otrophin 

receptor (p75NTR) is a member of the tumor necrosis factor receptor that can bind all four 

neurotrophins but at a lower affinity than the Trks. The neurotrophin receptors and their 

corresponding ligands are important regulators for neuronal cell survival, growth, and 

differentiation (Maris et al. , 2007). 

High expression ofTrkA receptor is found in mature sympathetic ganglia (van Noesel 

and Versteeg, 2004), as well as in neuroblastoma tumors with favorable prognosis 

(Nakagawara et al. , 1993). Moreover, high expression ofTrkA receptor is found in 

young neuroblastoma patients with a low stage tumor that is MYCN non-amplified (van 

Noesel and Versteeg, 2004). Neuroblastoma cells expressing TrkA can undergo 

differentiation or apoptosis depending on the microenvironment of the tumors (Brodeur 

et al. , 2009). In the presence ofNGF, new-oblastoma cells expressing TrkA will undergo 

differentiation. However, in the absence ofNGF, neuroblastoma cells expressing TrkA 

will undergo apoptosis (Nakagawara et al. , 1993). Conversely, low TrkA receptor 

expression is found in neuroblastoma tumors associated with MYCN amplification and 

poor outcome (Kogner et al., 1993; Nakagawara et al., 1993; Brodeur, 2003). Similar to 

TrkA, TrkC is expressed in the lower-stage tumors and is absence in MYCN-amplified 

new-oblastomas (Ryden et al. , 1996; Yamashiro et al. , 1996; van Noesel and Versteeg, 
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2004). Also, p75NTR expression is, in general, associated with a favorable outcome for 

neuroblastoma patients (Brodeur, 2003). Conversely, TrkB expression is associated with 

tmfavorable neuroblastomas (Maris et al., 2007). In particular, the fu ll-length TrkB and 

corresponding BDNF ligand are associated with MYCN-amplified high-risk 

neuroblastomas (Nakagawara et al., 1994). MYCN amplification contributes to the 

aggressiveness of neuroblastomas (Seeger et al., 1985). 

1.3.6 Myc Family 

The v-MYC oncogene was originally identified as a transforming determinant of avian 

acute leukemia virus MC29 (Bister et al. , 1977; Duesberg et al. , 1977; Vita and 

Henriksson, 2006). c-MYC (also referred to as MYCC or MYC), the cellular homologue 

ofv-MYC, was first described in 1982 (Vennstrom et al. , 1982). In 1983, the MYCN gene 

was reported to share homology with the MYC cellular oncogene (Kohl et al. , 1983; 

Schwab et al. , 1983). In 1985, L-MYC (MYCL) was first reported by Nau and colleagues 

(Nau et al. , 1985). MYC, MYCL, and MYCN are localized to 8q24, lp32 and 2p23-24, 

respectively (Schwab, 2004). The MYCL and MYCN genes are 35% and 38% identical to 

the amino acid sequence of MYC (Ryan and Birnie, 1996). 

The MYC genes encode transcription factors that are involved in a wide range of 

processes including but not limited to cell proliferation, differentiation and apoptosis 

(Vita and Henriksson, 2006). The expression pattern of the transcription factors is 
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distinct throughout embryogenesis (Nesbit et al., 1999). During development, there is a 

high expression pattern noted by Myc, MyeL, and MycN, which upon maturation their 

expression is down-regulated (Hatton et al., 1996). Myc is expressed mainly in rapidly 

proliferating cells whereas MyeL is primarily expressed in the developing kidney, lung, 

brain, and neural tube. MycN is highly expressed in the pre-B cells, kidney, forebrain, 

hindbrain, and intestine (Nesbit et al., 1999). 

Knockout models of the MYC family loci helped to further differentiate the functions of 

the genes (Nesbit et al., 1999). Homozygous null MYC mice are embryonic lethal on or 

after I 0.5E with abnormalities including reduced embryo size, dilated pericardia, 

enlarged hearts, delay or failure in forming the neural tube and in the axial rotation of the 

embryo (Davis et al. , 1993). Homozygous null knockout of MYCN survived past 11.5E 

but reached embryonic lethality at 12.5E. The major challenge with these mice were the 

developmental defects in tissues expressing MYCN. Contradictory to the outcomes for 

both MYC and MYCN, Hatton and colleagues reported MYCL knockout mice to be viable. 

The mice lacking MYCL did not reveal any phenotype even though the expression of 

MYCL was abundant during the development of the central nervous system (Hatton et al. , 

1996). 

The MYC and MYCN genes are highly conserved and share many common features. 

Both genes are involved in oncogenesis and the knockout of either gene results in 

embryonic lethality. They encode transcription factors that dimerize with Max, a 
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ubiquitously expressed bHLH family member. Both Myc/Max and MycN/Max can bind 

the same DNA target sequence, CACGTG (Lu eta!., 2003). In addition, an in vivo study 

demonstrated that MYC and MYCN share similar targets. The endogenous Myc coding 

sequence was functionally replaced with a MycN coding sequence, which resulted in 

viable mice (Malynn eta!., 2000). Interestingly, the MYC promoter was used to drive the 

synthesis of the MYCN transcript instead of the MYC transcript. Nevertheless, the 

homozygous mice for the MYCN mutation were able to survive into adulthood and were 

capable of reproducing (Malynn et al. , 2000). 

The Myc fan1ily of proto-oncogene such as MYC, MYCL and MYCN are widely known to 

be deregulated in many human cancers (Nesbit eta!., 1999). Their deregulation can 

range from gene amplification to over-expression, giving this family strong oncogenic 

potential (Mukherjee et a!. , 1992; Vita and Henriksson, 2006). Deregulation is often 

associated with aggressive and poorly differentiated tumors, which can assume various 

forms including gene amplification, over-expression, or translocation (Vita and 

Henriksson, 2006). Myc over-expression and MYC amplification have been linked to 

solid tumors such as breast and colon whereas hematological malignancies such as 

Burkitt's lymphoma possess over-expression and translocation (Vita and Henriksson, 

2006). MYCL amplification is primarily associated with small-cell lung carcinoma 

whereas ovarian cancers contain both over-expression and gene amplification (Vita and 

Henriksson, 2006). MYCN amplification has been mainly associated with neuroblastoma 
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(Vasudevan eta!., 2005) and is considered to be one of the most consistent genetic 

aberrations associated with neuroblastoma (Maris et al., 2007). 

The MYCN gene is located on the short arm of chromosome 2. However, during gene 

amplification, MYCN can be found as double-minutes (DMs) or homogeneously staining 

regions (HSRs) (Schwab et al., 1984). DMs are extrachromosomal pieces containing 

multiple copies of the same gene whereas HSRs are uniformly stained regions of a 

chromosome, which contain multiple copies of the same gene. Amplification of the 

MYCN gene refers to an increase in gene copy-number of 50 - 400 copies per cell (Maris 

and Matthay, 1999; Schwab, 2004 ). As previously mentioned, MYCN was originally 

characterized as a MYC related gene (Kohl et al., 1983; Schwab et al., 1983). The amino 

acid sequences that encode exons 2 and 3 are 27 and 39 percent identical, respectively 

(Stanton eta!., 1986). 

MYCN gene amplification, found frequently in neuroblastoma, was initially thought to be 

specific only for neuroblastoma (Schwab, 2004). MYCN gene amplification is also 

present in other neuronal origin tumors such as glioblastoma, small cell lung cancer, 

peripheral neuroectodermal tumors, and retinoblastoma. However, the incidence rate in 

the later tumors are much lower than in neuroblastoma (Schwab, 2004; Vita and 

Henriksson, 2006). 
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MYCN amplified neuroblastoma tumors usually result in over-expression of the MycN 

protein (Tang eta!. , 2006). However, neuroblastoma tumors that lack MYCN 

amplification can still express the MYCN oncogene (Nisen eta!., 1988; Seeger et a!. , 

1988; Slave et al., 1990). The controversy arises regarding the clinical significance with 

respect to MycN expression in MYCN non-amplified tumors. 

Chan and colleagues demonstrated that MycN expression could be utilized as a predicator 

for neuroblastoma prognosis (Chan eta!., 1997). Immunohistochemistry was performed 

on 57 non-localized neuroblastoma specimens. Chan and colleagues used two 

monoclonal antibodies specific for the MycN protein. Seeger and colleagues performed 

immunohistochemistry on 126 neuroblastoma specimens with a polyclonal MycN 

antibody. Their results showed that MYCN amplified and MYCN non-an1plified twnors 

expressed significant amounts of the My eN protein. Their results suggested that the 

MycN protein has no prognostic significance (Seeger et a!. , 1988). Therefore, aggressive 

tumors without MYCN amplification but high protein expression may rely on an 

alternative mechanism to transform neuroblastoma cells. Bordow and colleagues showed 

that a high level of My eN expression was predictive for poor outcome in older children 

with neuroblastoma. However, such a prognostic value was not present in infants with 

neuroblastoma (Bordow et al. , 1998). Cohn et al. reported that MycN expression does 

not have prognostic significance with respect to adverse outcome in patients with 

advanced-stage MYCN non-amplified neuroblastomas (Cohn et al. , 2000). Irrespective of 

MYCN amplification status of the neuroblastoma tumor, the probability of death was 
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unaffected as long as the tumors did not over-express MycN. Patients with MYCN non­

amplified tumors that over-expressed MycN showed a low survival. Moreover, MYCN 

amplification was not related to clinical outcome in patients that did not over-express 

MycN (Alaminos et al. , 2005). 

As mentioned, some authors find a correlation between MycN over-expression and 

clinical outcome (Bordow et al., 1998; Lasorella et al. , 2002; Vandesompele et al., 2003), 

whereas others fail to find any correlation (Cohn et al. , 2000). The consensus with all of 

the above-mentioned studies (Bordow et al., 1998; Brodeur, 2003) is that in order to 

rectify the MycN controversy a large prospective study using standardized methods of 

treatment and detection will be required. 

In general, having MYCN amplification I MycN over-expression is not favorable for the 

patient. However, could having MYCN amplification I MycN over-expression make 

neuroblastoma easier to treat? MYCN amplification I MycN over-expression may 

actually serve as a weakness for neuroblastoma during chemotherapy treatments (lshola 

and Chung, 2007). MycN over-expressing tumors respond more favorably to 

chemotherapy treatment than tumors lacking MycN expression. Paffhausen and 

colleagues used a well-established MYCN-inducible cell line model (SHEPIMycN) to 

demonstrate that upon exposure to anti-tumor agents, MYCN induced cells underwent 

apoptosis (Paffhausen et al. , 2007). These results suggest that MycN expression makes 

neuroblastoma cells more susceptible to chemotherapy treatments. 
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Brodeur and colleagues demonstrated a correlation between MYCN gene amplification 

and advanced neuroblastoma disease (Brodeur et al., 1984). MYCN gene amplification 

occurs in one third of advanced neuroblastoma cases, and rarely occurs in low stage cases 

indicating that amplification happens later in the tumorigenesis process (Kohl et al., 

1983; Brodeur et al., 1984). MYCN gene amplification was reported to be associated 

with rapid disease and poor outcome (Seeger et al. , 1985). Weiss and colleagues 

performed a hallmark experiment regarding the role of MYCN in neuroblastoma 

development (Weiss et al. , 1997). In particular, Weiss et al. demonstrated that targeted 

over-expressed of MYCN in a mouse model can contribute to the transformation of 

neuroblasts (Weiss et al. , 1997). The transgenic mice were under the control of a tyrosine 

hydroxylase promoter that targeted neuronal tissue. The targeted expression of MYCN 

ultimately led to the development of neuroblastoma (Weiss et al. , 1997). Weiss and 

colleagues demonstrated that their murine model mirrored the human form of 

neuroblastoma. Specifically, the location of the tumors, the dosage of the MYCN gene 

affecting tumorigenesis, the histological characteristics, the positive staining for 

synaptophysin and neuron-specific enolase, and the syntenic gains and losses of 

chromosomes (Weiss et al. , 1997). 

Knocking down or silencing MycN expression inhibits neuroblastoma cell growth, as 

well as induces apoptosis and differentiation (Negroni et al., 1991; Whitesell et al. , 1991 ; 

Nara et al. , 2007). Particularly, inhibition ofMycN expression with antisense 
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oligodeoxynucleotides resulted in a decrease in the proliferation rate of the LA-N-5 

neuroblastoma cells in vitro (Negroni et al., 1991 ). 

RA (retinoic acid) treatment of neuroblastoma cells leads to a decrease in MycN 

expression prior to undergoing differentiation (Thiele et al., 1985). RA treatment of 

neuroblastoma cells negatively regulates MycN expression and decreases growth while 

inducing differentiation. Constitutive over-expression of MycN in a RA treated 

environment resulted in cellular proliferation (Peverali et al., 1996). Conversely, 

constitutive over-expression of Max in a differentiated environment led to the growth 

arrest and differentiation of neuroblastoma cells. This study suggests that the levels of 

MycN to Max appears to be a critical factor in neuroblastoma growth and differentiation 

(Peverali et al., 1996). 

Members of the Myc family encode nuclear proteins which serve as transcription factors 

(Schwab, 2004). The Myc family of proteins contains a transcriptional activation domain 

in the N-terminus. In the C-terminus there is a transcriptional regulation domain, 

including a basic helix-loop-helix I leucine zipper (bHLHZip) domain (Lu et al., 2003). 

The bHLHZip region is capable of binding other proteins with a bHLHZip domain, as 

well as mediating DNA-binding. To activate transcription the MycN protein must first 

heterodimerize with the Max protein. Max is a ubiquitously expressed nuclear protein 

that also contains a bHLHZip domain (Maris and Matthay, 1999). Max can 

homodimerize to repress transcription or heterodimerize with MycN to activate 
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transcription (Blackwood et al. , 1991 ; Lu et al., 2003). The MycN/Max complex 

recognizes and binds to canonical E-box motifs (CACGTG or CATGTG) with high 

affinity resulting in transcriptional activation of target genes (Vasudevan et al., 2005). In 

addition, Max also heterodimerizes with Mxi 1 or Mad to repress transcription. However, 

with an increase in MycN nuclear protein production usually from genomic amplification 

(Tang et al. , 2006), the MycN/Max dimer complex is favored over the formation of 

Max/Mxi1, Max/Mad or Max/Max (Figure 1-3; Wenzel and Schwab, 1995; Maris and 

Matthay, 1999; Lu et al., 2003). The MycN/Max dimer will target an E-box sequence 

located within the 5' -UTR I promoter region of the MYC-targeted genes. 

For over 20 years, MYCN gene amplification remains prognostically relevant (Cohn and 

Tweddle, 2004) and is the most widely accepted predictive parameter for clinical 

diagnosis of neuroblastoma. Currently, MYCN remains the only clinical relevant 

amplified oncogene in neuroblastoma cells. MYCN gene amplification usually leads to 

high MycN protein and RNA expression in neuroblastoma tumors (Tang et al. , 2006). 

Amplification of the MYCN gene and over-expression of My eN protein is indicative of 

increased tumor growth and tumorigenicity (Seeger et al. , 1985; Weiss eta!., 1997; Cohn 

and Tweddle, 2004). 
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Figure 1-3. Model of MycN interactions. 
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The MycN nuclear protein heterodimerize with Max forming a complex that will 
recognize the £-box motif in the promoter region of the target gene and activate 
transcription. However, in the absence of MycN, Max can heterodimerize with Mxil or 
Mad leading to transcriptional repression of the target gene. In addition, Max can also 
homodimerize which will also lead to transcriptional expression. 
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1.3. 7 Chromosomal Aberrations 

In addition to MYCN gene amplification, cytogenetic aberrations are also associated with 

poor outcome in neuroblastoma. Neuroblastoma tumors with chromosome aberrations 

have a near-diploid karyotype, resulting in chromosomal rearrangements and unbalanced 

translocations. These tumors tend to be more aggressive and have a more adverse 

outcome than tumors with mitotic dysfunction. Neuroblastoma tumors with mitotic 

dysfunction are less aggressive and are associated with whole chromosome gains or 

losses (Brodeur, 2003 ; Maris eta!. , 2007). 

Brodeur reported that a deletion in the short arm of chromosome 1 (containing a yet 

unidentified tumor suppressor) is found in patients with advanced stages of 

neuroblastoma (Brodeur, 2003). In addition to the allelic loss of chromosome lp, there is 

a high association with MYCN gene amplification. The majority of neuroblastoma cases 

that have MYCN gene amplification also have the allelic loss of chromosome 1 p. 

However, the reverse is not necessarily true, suggesting that 1 p deletion may occur before 

MYCN gene amplification (Brodeur, 2003). A deletion of chromosome 1p occurs in 25 -

35% of neuroblastomas and correlates with unfavorable outcome (Caron et al. , 1996b; 

Maris et a!. , 2007). In addition, deletion in chromosome 1 p correlates with an1plification 

of the MYCN oncogene. Although the loss of chromosome 1 p may predict disease 

progression, it does not appear to decrease the overall survival of the neuroblastoma 

patients (Maris eta!., 2000; Maris eta!., 2007). 
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Gains in the long arm of chromosome 17 (17q 23-qter) is one of the most common 

genetic abnormalities found in primary neuroblastomas. Caron et al. described the gain 

in 17q as an indicator of poor prognosis (Caron, 1995). Later reports suggested 17q as an 

independent predicator of unfavorable outcome in neuroblastoma patients (Lastowska et 

al., 1997). Ninety percent of high-risk neuroblastoma patients have a gain in 

chromosome 17q (Vasudevan et al., 2005). 

Another common genetic aberration found in 35-45% of neuroblastomas involves 

chromosome 11 . An unbalanced deletion of chromosome 11 usually results in an 

aggressive phenotype. However, this aberration is rarely associated with MYCN gene 

amplification despite being associate with other high-risk factors (Brodeur, 2003; Maris 

et al., 2007). 

1.3.8 Differentiation 

Neuroblastoma arises in the sympathetic nervous system from a defect during normal 

neuro-ectodermal development (Brodeur, 2003; van Noesel and Versteeg, 2004; Maris, 

2005; Vasudevan et al. , 2005). A down-regulation of HASH-1 mRNA expression occurs 

upon induced differentiation of human neuroblastoma cells (Soderholm et al., 1999). 

This down-regulation of HASH-1 was not cell-type specific and was irrespective of the 

differentiate agent used (Axelson, 2004). In addition, Ichimiya et al. used neuroblastoma 
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cells that did not differentiate and did not express HASH-I (Ichimiya et al., 2001 ). These 

studies provide additional evidence for the transformation of neuroblastic cells into more 

mature differentiated cells. Morphological differentiation can be observed in many 

neuroblastoma cells lines (Sidell et al., 1983; Abemayor and Sidell, 1989). In particular, 

the LA-N-5 human neuroblastoma cell line is one of the most well-established models for 

studying differentiation (Sidell et al. , 1983; Hill and Robertson, 1997). Untreated LA-N-

5 cells are small and round with few protruding neurites. However, upon RA-induced 

differentiation, LA-N-5 cells undergo a morphological transformation. The cells produce 

a large number of neurites that form a strong network and the cells tend to clump and 

roundup (Robson and Sidell, 1985). In addition, molecular markers such as 

neurofilan1ent and vimentin confirm the immature form from the well-differentiated form 

(Hill and Robertson, 1997; Pahlman eta!., 2004). 

1.3.9 Histology 

Small blue round cell tumors (SBRCT) include tumors such as Ewing's sarcoma, Wilms' 

tumor, retinoblastoma, and neuroblastoma that have a tendency to arise in children. In 

addition, SBRCT share common histological characteristics upon hematoxylin and eosin 

(H & E) staining (Pisick eta!., 2003). SBRCT are undifferentiated, small round cells 

with large nuclei that stain dark blue upon H & E staining. 
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In particular, neuroblasts are uniformly sized cells that appear blue, due to their large 

dark nuclei and scant cytoplasm. Homer-Wright rosettes are a characteristic feature of 

neuroblastoma. However, rosettes may not always be present. Rosettes are formed using 

a circular pattern of neuroblast cells that sunound neuropil, which are neurites that 

protrude the cell (Figure 1-4; Lonergan et al., 2002). 
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Figure 1-4. Schematic of Homer-Wright rosettes. 

Homer-Wright rosettes are a cluster of neuroblasts (small uniform cells) that form a 
circular arrangement (arrow) around neurophil or neuritic processes (arrowhead) that 
are stained in red. Homer-Wright rosettes are characteristic of neuroblastomas and as 
such are used as a diagnostic tool. 
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1.3.10 Diagnosis 

Although understanding the histology of neuroblastomas is an invaluable tool for 

evaluating tumors, it is not the first step during diagnosis. The standard routine for 

diagnosing neuroblastoma usually begins with a physical exam accompanied by a urine 

test. Neuroblastomas produce elevated levels of catecholamines, which are small 

molecules such as dopamine and norepinephrine that function as the main 

neurotransmitters of the sympathetic nervous system. Catecholmaines are broken down 

into urinary metabolites (vanyllylmandelic acid and homovanillic acid) and measured in 

the urine (Brodeur, 2003). Ninety to ninety-five percent of neuroblastomas produce high 

levels of urinary metabolites (Kline and Sevier, 2003). 

Medical imaging also plays a pivotal role in the initial assessment of the neuroblastoma, 

indicating the precise location of the tumor (Howman-Giles et al., 2007). Computed 

tomography (CT) is an imaging method that generates two-dimensional images of the 

patient's body producing a cross-sectional view that when combined gives a three­

dimensional view. CT is mainly utilized for assessing tumors within the abdomen, 

pelvis, or mediastinum (Maris et al. , 2007). Another imaging technique used to examine 

the structure and function of the body is magnetic resonance imaging (MRI). MR1 is 

more effective than CT in providing contrast between the soft tissues of the body. MRl is 

the preferred method for determining the spread of the tumor into the spinal canal (Ishola 
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and Chung, 2007). Alternatively, CT can define the site and extent of the tillTior. In 

addition, CT can provide evidence of regional invasion, vascular encasement, 

adenopathy, and calcification (Howman-Giles et al., 2007). CT scans can determine if 

the tumor is neuroblastoma based on calcification evidence which occurs in over 80% of 

the patients (Howrnan-Giles et al., 2007). 

Another method for the clinical assessment of tumors is metaiodobenzylguanidine 

(MIBG) scintigraphy. MIBG is actively absorbed by catecholamine producing cells such 

as neuroblastoma. MIBG is a highly specific method of detection as it occurs in more 

than 90% of neuroblastomas (Maris et al. , 2007). 

1.3.11 Classification 

Following initial tillTior diagnosis, the histological features of the tumor are used to 

classify the tumor. In 1984, Shimada and colleagues developed a histopathological 

classification system that focused on NTs and related this information to the tumors 

clinical behavior (Castel et al. , 2007; Maris et al. , 2007). This age-linked classification 

system focused on the stromal development, the degree of neuroblast differentiation, and 

the nuclear morphology. Stromal development focused on the organizational pattern of 

the connective tissue. NTs divide into stroma-poor and stroma-rich groups (Shimada et 

al. , 1984). The degree of neuroblast differentiation was evaluated by microscopic 

assessment and refers to the level of neuroblastic cells maturity. An ' undifferentiated 
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population' contains less than 5% differentiating cells whereas a 'differentiated 

population' contains 5% or more differentiating cells (Shimada et al., 1984). The nuclear 

morphology is represented by the mitosis-karyorrhexis index (MKI). The MKI is defined 

as the number of mitoses and karyorrhexis (fragmentation of a cell's nucleus) per 5000 

cells. The MKI is divided into 3 classes: Low, less than 100 mitotic and/or karyorrhectic 

cells per 5000; Intermediate, 100 - 200 mitotic and/or karyorrhectic cells per 5000; and 

High, greater than 200 mitotic and/or karyorrhectic cells per 5000 (Shimada et al., 1984). 

The Shimada histopathologic classification can stratify tumors into either favorable or 

unfavorable categories based on age of the patient and subtype of NT (Joshi, 2000). 

In 1994, there was a consensus among six pathologists to create an International 

Neuroblastoma Pathology Committee. The intention of this committee was to 

standardize the terminology, as well as to create a morphological classification for the 

NTs. The committee used a modified version of the Shimada Classification system to 

develop the International Neuroblastoma Pathology Classification (INPC) which was 

proposed in 1999 (Shimada et al. , 1999b ). The INPC subdivided the stroma-rich group 

into ganglioneuroma, ganglioneuroblastoma-intermixed and ganglioneuroblastoma­

nodular. In addition, an age component was added to the stroma-poor I favorable group 

consisting of a <1.5 yrs and 1.5 - 5 years (Shimada et al. , 1999b; Vasudevan et al. , 2005). 

The MKI index is expressed as a percentage of mitosis and karyorrhexis where the low, 

intermediate and high MKI represent <2%, 2-4%, >4% respectively (Joshi, 2000). The 

INPC does not take into consideration the location of the tumor or the progression of the 
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disease during the time of diagnosis. Figure 1-5 outlines the various steps needed to 

classify and categorize the NTs according to INPC (Joshi, 2000). 

The International Neuroblastoma Staging System (INSS) was created in 1988 but 

underwent modifications and was not fully developed until 1993. The INSS is currently 

used as a part of the diagnosis and treatment of neuroblastoma patients (Brodeur et al., 

1993; Castel et al., 2007). The INSS consists of four stages (one through fom) including 

two subsets (2B and 4s) of neuroblastoma. The INSS represents the various ways NB 

tumors are diagnosed and treated. Simplistically, Stage l tumors are defined as localized 

and confined to the area of origin. Stage 1 tumors are usually removed by smgery alone. 

Stage 2A, the tumor is confined to one side of the body and cannot be completely 

removed by surgery alone. Also, lymph nodes enclosed within the tumor may contain 

neuroblastoma but lymph nodes outside the tumor are negative for neuroblastoma. Stage 

2B, the tumor is confined to one side ofthe body and cannot by completely removed by 

surgery alone. In addition, nearby lymph nodes are positive for neuroblastoma. Stage 3 

the cancer ca1mot be completely removed by surgery alone as it has infiltrated across the 

midline. The smrounding lymph nodes may or may not be positive for neuroblastoma. 
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Figure 1-5. Brief outline of the pathological prognostic categorization of NTs. 

NT classification is a complex process that requires a specific prognostic categorization 
protocol. Initially, the type of NT (neuroblastoma, NB; ganglioneuroblastoma, GNB; 
ganglioneuroma, GN) is defined. Then, subtypes of the tumor are identified. For GNB 
and maturing GN, age is not considered. However, age and subtypes of NB are 
considered when defining favorable histology (FH) or unfavorable histology (UH). The 
FH and UH classifications are then used in defining the neuroblastoma risk groups (see 
Table 1-1). 
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Stage 4, describes cancer that has metastized to the distant lymph nodes, bone, liver, skin, 

bone marrow or other organs. Stage 4S also called 'special' neuroblastoma occurs in 

children less than one year of age and is usually localized to one area of the body. 

However, the cancer may spread to the other side of the body or may spread to the liver, 

skin, and/or bone marrow (no greater than 10% of the marrow cells are cancerous). 

The Risk Group Classification system is an extension of the INSS that focuses on tumor 

location and progression (Children 's Oncology Group [COG]). Risk Group 

Classification is used to determine the most effective treatment for patients. This 

classification encompasses the stage of the disease (or INSS), age at diagnosis, MYCN 

status, DNA ploidy, and tumor histopathology (Table 1-1; Brodeur, 2003; Goldsby and 

Matthay, 2004; Vasudevan et al. , 2005; Maris et al. , 2007; Bowen and Chung, 2009). 

Children with neuroblastoma will be assigned into either the low-risk, intermediate-risk 

or high-risk group. 

In an attempt to gain global solidarity, a working group was assembled in 2005 to 

develop an International Neuroblastoma Risk Group (INRG) classification system. The 

INRG represented members from the major pediatric oncology group worldwide (Maris 

eta!., 2007). The INRG schema will include the International Neuroblastoma Risk 

Group staging system (INRGSS), MYCN status, Ploidy, Histology, age at diagnosis 

(increased to 18 months) and Risk group (Castel et al., 2007; Maris eta!., 2007). 
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Table 1-1. Neuroblastoma risk groups. 

None 

Age 1-21 years 
andMA +UH 

Age 0-21 years 
andMA 

or 
age 1 - 21 years 
andMNA + UH 
Age < 1 year and 
MA 

Age <1 and MA 

The low, intermediate, and high risk groups are based on based stage, age, MYCN status, 
histological categories, and DNA ploidy. 
MA, MYCN amplified; MNA, non-MYCN amplified; Dl, DNA index (ploidy); FH, 
favorable histology; UH, unfavorable histology. 
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As mentioned earlier, the INSS is currently still in use. The INRG is also developing the 

INRGSS which will now use image-defined risk factors along with bone marrow 

morphology to aid in the definition of the disease (Castel et al. , 2007; Maris et al., 2007). 

The new staging system will be classified into four divisions representing Stage L 1, Stage 

L2, Stage M and Stage MS. Stage L 1 represents localized disease without image-defined 

risk factors whereas stage L2 represents localized disease with image-defined risk factors 

(Cohn et al., 2009; Monclair et al., 2009). Stage M represents tumors that are widely 

metastatic whereas stage MS represents tumors that have a 4S INSS pattern (Maris et al. , 

2007). As mentioned earlier, the INRG and INRGSS classification systems are a work in 

progress with a final outline of the criteria yet to be determined. Nevertheless, further 

refinement of these risk group will ultimately improve clinical interpretation (Maris et al. , 

2007). 

1.3.12 Treatment 

As mentioned, before treatment strategies are considered the patients are assigned a risk 

group classification (Howman-Giles et al., 2007). The low-risk group includes localized 

or stage 4S neuroblastomas can regress spontaneously or differentiate into benign 

ganglioneuroblastoma or ganglioneuroma tumors. The regression response by certain 

subsets of neuroblastoma is approximately ten to one hundred times more than any other 

cancer (Castel et al. , 2007). Treatment for the low-risk group would usually involve 

minimal therapy such as surgery. Treatment for the intermediate-risk group would likely 
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contain a combination of surgery and chemotherapy. The high-risk group contains stage 

3 or 4 neuroblastoma tumors that are widely metastatic and have poor outcomes despite 

aggressive therapy (Brodeur, 2003). These tumors are fatal in approximately 60% of the 

high risk cases (Castel et al. , 2007). It is also worth mentioning that fifty percent of all 

neuroblastoma cases are classified as high-risk for recurrence (Maris et al. , 2007). 

Treatment for the high-risk group usually consists of a combination of chemotherapy, 

radiation therapy, surgery, stem cell transplant and biological based approaches (Joshi, 

2000; Brodeur, 2003; Castel and Canete, 2004). Aggressive chemotherapy in young 

infants can lead to severe mental and physical impairments and poor quality of life that 

adds further burden to patients, families, and health care systems. Despite this intensive 

multi-modal approach, approximately 70% of those neuroblastoma cases still remain 

incurable (Wei et al., 2005; Maris et al., 2007). New approaches involving cytotoxic 

agents, immunotherapy, retinoids, angiogenesis inhibitors, and tyrosine kinase inhibitors 

are currently being evaluated (Maris et al., 2007). 

In 2008, the International Society of Pediatric Oncology (SlOP) group completed a phase 

III clinically trial for high-risk neuroblastoma patients. The focus of this trial was to test 

the effects of the Ch14.18 antibody on high-risk neuroblastoma patients1
• Ch 14.18 is a 

chimeric mouse I human monoclonal antibody that binds tumors over-expressing 

ganglioside GD2 and induces cell-mediated cytotoxicity2
. The outcome of the antibody-

1 www .cancer .gov/searchNiewCI inica1Trials .aspx?cdrid=6919l &version=HealthProfessional&protocolsear 
chid=40 15135 (retrieved on February 17, 2009) 
2 www.cancer.gov (retrieved on February 17, 2009) 
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based immunotherapy was very effective for the high-risk neuroblastoma patients. The 

progression-free survival and overall survival at 2 years were 20 percent and 11 percent, 

respectively, more effective than standard treatments3
. 

Presently, standard treatments for neuroblastoma include the use of retinoids because of 

their role in normal neural crest development. A randomized clinical trial has previously 

shown that 13-cis RA, an isomer of all-trans RA (ATRA), improved the survival rates 

while reducing toxicity in high-risk patients (Matthay et al., 1999). The ability of the 

aggressive neuroblastoma tumors to differentiate into benign ganglioneuromas is a vital 

part ofthe treatment. Consequently, 13-cis RA has been included as part of the treatment 

regiment for high-risk neuroblastoma cases. The naturally occurring active form of RA, 

A TRA, has been extensively studied in culture. The ability to transform neuroblastoma 

cells into a more differentiated state is observed with differentiation markers such as 

neurofilaments (Hill and Robertson, 1997; Ross et al. , 2002). 

Despite advancements in treatment, neuroblastoma still accounts for 15% of cancer 

deaths in children (Maris et al. , 2007). More effective diagnostic tools and treatments are 

needed to improve cure rates, reduce toxicity, and long-term effects of current therapies. 

Discovering novel treatments for NTs will require new insight into the interaction 

between existing molecular pathways and new molecular markers. New markers will 

provide better tools for selecting the best treatment for the neuroblastic patient. 

3 www .asco.org (retrieved on August 13/09) 
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1.4 Tube down 

Our laboratory isolated and characterized a developmentally regulated gene named 

TUBEDOWN. TUBEDOWN is found on chromosome 4 and is located at 4q31.1. There 

are two protein isoforms of TUBEDOWN, Tubedown-1 (Gendron eta!., 2000) and 

Tubedown-1 00 (Fluge eta!., 2002; Paradis et al., 2008). Both forms are similar to the 

Yeast N-terminal acetyltransferase subunit Nat1 (28% Tubedown-1 & 25% Tubedown-

1 00). The Tubedown-1 00 protein harbors two different types of conserved domains 

including 3 full tetratricopeptide repeat (TPR) motifs (TPRI: ll-112aa, TPR2: 115-

213aa; TPR3: 3 78-4 70aa) and a coiled-coil domain homologous to a syntaxin 18 

conserved domain (503-676aa) (Figure 1-6A; H. Paradis, personal communication). The 

TPR domains mediate protein-protein interactions (Blatch and Lassie, 1999) and their 

presence in Tubedown suggests that this protein may be part of a multi-protein complex 

(Gendron et al., 2000; Fluge et al. , 2002). Syntaxin-18 is a member of the syntaxin 

family, which are involved in membrane trafficking (Hatsuzawa et al. , 2000). Recently, 

the neuroblastoma-amplified gene (NAG) and ZW1 0 were reported to be components of 

the syntaxin-18 complex (Aoki et al. , 2009). NAG has been shown to be associated with 

poor prognosis (Kaneko eta!., 2007). However, there is controversy surrounding the 

association ofNAG with tumor progression and outcome (Aoki eta!., 2009). In addition, 

ZWlO plays a role in turning off spindle checkpoint (Williams et al., 2003). Collectively, 

these studies suggest a role for the syntaxtin-18 complex in cell proliferation. 
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Fluge and colleagues used a nested RT-PCR approach to show that alternative splicing 

did not affect the ORF ofTubedown-100 (Fluge eta!., 2002). Therefore, Tubedown-1 

and Tubedown-1 00 are likely derived from the same transcript (Fluge eta!. , 2002; Willis 

et al., 2002; Sugiura et al., 2003). In addition, our laboratory obtained evidence that both 

Tubedown isoforms can be derived from the same transcript (H. Paradis, personal 

communication). At the protein level, Tubedown-1 has been suggested to result from an 

alternative translation initiation (Fluge et al., 2002). Tbdn-1 00 may contain an alternative 

start site such as an Internal Ribosome Entry Site (IRES). IRES is a nucleotide sequence 

that allows for translation initiation of a specific mRNA sequence. IRES acts in a cap­

independent manner and are commonly located within the 5' -UTR (Baird et al. , 2006). 

Tubedown-1 00 encodes an 866aa protein (Figure 1-6A) with a molecular weight of 

1 OOkDa (Fluge et al., 2002) whereas Tubedown-1 encodes a 594aa protein (Figure 1-6B) 

with a molecular weight of 69kDa (Gendron et al., 2000). 

Tubedown-1 00 is a functional protein that binds to the Ard1 protein (Park and Szostak, 

1992; Sugiura eta!., 2003; Arnesen eta!. , 2005a; Arnesen et al. , 2008). Recently, 

Tubedown-1 00 was shown to be present in a complex with cortactin, an actin binding 

protein (Paradis eta!., 2008). Tubedown-1 00 was reported to co-localize with cortactin, 

which is important for endothelial permeability, vesicular transport, and cell migration 

(Buday and Downward, 2007; Paradis eta!., 2008). In addition, cortactin has a possible 

role in tumor invasion through cell motility structures as lamellipodia and invadopodia 
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Figure 1-6. Tuhedown-1 and Tuhedown-1 00 domains. 

(A) Tubedown-100 encodes a protein (866aa) whereas Tuhedown-1 (B) encodes a 
protein of 594aa. The TPRs represent tetratricopeptide repeat motifs whereas the 
syntaxin domain represents a coiled-coil motif. Various antibodies were utilized in 
assessing Tubedown junction and a schematic representing the location of the antibodies 
are shown (C). The asterisks(*) corresponds to the aa sequence recognized by the 0£5 
antibody (J0-20aa), the pound symbol(#) corresponds to the aa sequence denoted by the 
Ab1272 antibody (J60-1 70aa), and the ampersand symbol(&) corresponds to the aa 
sequence represented by the Misty antibody (483-494aa). 
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(Weaver, 2008). Also, over-expression of cortactin has been reported in many human 

cancers including head and neck squamous cell carcinomas, colorectal, gastric, breast and 

ovarian cancers (Buday and Downward, 2007; Weaver, 2008). 

Tbdn-100 (Tbdn, also known as NATH and NARGl) and Ardl form a functional 

acetyltransferase NatA complex that is evolutionarily conserved from yeast to human. 

Mutagenesis studies completed in yeast have previously shown that this functional Nat l­

Ard I complex is involved cell cycle control, cell growth, and sporulation (Mullen et al. 

1989). Park and Szostak showed in yeast that both Natl and Ard 1 are required to form a 

functional acetyltransferase complex (Park and Szostak, 1992). Sugiura and colleagues 

used a murine model to demonstrate the involvement of Tbdn and Ard 1 during brain 

development as well as during neuronal tissue development (Sugiura et al. , 2003). In 

2005, Arnesen et al. identified and characterized the human Nat-Ardl acetyltransferase 

complex (Arnesen et al. , 2005a). In yeast, the NatA complex appears to have a role in 

ribogenesis as it binds the nascent polypeptide-associated complex and associates with 

ribosomes (Gautschi et al. , 2003 ; Arnesen et al. , 2005a; Raue et al. , 2007; Polevoda et al. , 

2008). Recently, Arnesen and colleagues demonstrated that yeast and human NatA 

subunits are phenotypically similar. As well, the human ARDJ and NATJ genes 

complement the yeast Ardl and Nat] genes. However, heterologous combinations (such 

as hArdl and yNatl) between the species proved non-functional in yeast. Although the 

proportion of acetylation varied between yeast and human, NatA was still able to 

acetylate the same substrates in both species (Arnesen et al. , 2009). 
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A third subunit of the yeast NatA complex, Nat5, was identified (Polevoda and Sherman, 

2003). Gautschi and colleagues demonstrated that the association of the Nat l-Ard I-Nat5 

complex with the ribosome depended on the presence ofNatl and not Ardl or Nat5 

(Gautschi et al., 2003). In particular, Natl appears to have a role in the binding and/or 

positioning of the complex to the ribosomes (Gautschi et al., 2003). In 2006, the human 

homologue of the yeast Nat5p was described as hNAT5 (Arnesen et al., 2006a). The 

NatA complex has been shown to be located within the cytoplasm (Gautschi et al., 2003 ; 

Arnesen et al., 2006a). In other mammalian cells, homologues for human TBDN 

(mNAT2, 70% identity) and ARD1 (ARD2, 81% identity) were reported (Sugiura et al. , 

2003; Arnesen et al., 2006b). 

Both yeast and mammalian Tbdnl Ard 1 protein complexes appear to possess factor 

acety I transferase (FAT) activity, which target cytoplasmic proteins, as opposed to histone 

acetyltransferases (HATs). Although the in vivo acetylated substrates of the Tbdn 

complex in cells have not yet been identified, Tbdn was found to associate with the actin 

binding protein cortactin in retinal endothelial cells, a cell type in which Tbdn exerts a 

homeostatic influence (Wallet al., 2004; Paradis et al., 2008). Cortactin is important for 

cellular permeability (Mehta and Malik, 2006) and knockdown ofTbdn expression both 

in vitro and in vivo leads to an increase in endothelial cell permeability (Paradis et al., 

2008). To study the functional importance ofTbdn, our laboratory generated three 

different Tbdn antibodies (Figure 1-6C). The Misty and Ab 1272 antibodies were used to 
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detect protein levels by Western blot analysis whereas the OES antibody was used to 

detect the level of protein expression by immunohistochemistry. 

Tbdn is most highly expressed during embryonic development (mid to late gestation in 

mesenchymally derived cells such as endothelial, chondrocytic, hematopoietic and 

osteoblastic cells) and in neuronal cells (Sugiura et al., 2003; Ohkawa et al., 2008). 

However, in adult, high levels of Tbdn is restricted to very few tissues including the cells 

of bone marrow, ocular blood vessels, endothelial choroid plexus, and blood vessels of 

regressing ovarian follicles (Gendron et al., 2000; Gendron et al., 2001 ; Paradis et al., 

2002; H. Paradis, personal communication). In humans, a low level of Tbdn expression 

was present in most adult tissues. 

Tbdn is transiently expressed during the developing vasculature tissue with high levels of 

Tbdn expression found postnatally in the ocular endothelium and blood vessels of 

regressing ovarian follicles (Gendron et al., 2000; Gendron et al., 2001; Paradis et al. , 

2002). Tbdn has been extensively characterized as a negative regulator of angiogenesis 

in endothelial cells (Gendron et al. , 2000; Gendron et al., 200 l; Paradis et al., 2002). In 

addition, decreased Tbdn levels were demonstrated in the retinal blood vessels of patients 

with proliferative diabetic retinopathy (Gendron et al., 2001). A bitransgenic mouse 

model was used to suppress Tbdn levels within the endothelial cells, resulting in retinal 

neovascular pathology (Wallet al., 2004). The abovementioned studies suggest that at 
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least in the retinal endothelial cells, Tbdn participates in promoting vascular homeostasis 

in the retina. 

In addition, there is evidence that Tbdn could have different functions in other cellular 

contexts such as the developing neuronal tissue (Sugiura et al., 2003). Sugiura and 

colleagues showed that both Tbdn and Ardl demonstrated a spatia-temporal up­

regulation during brain development (Sugiura et al. , 2003). Additionally, a 2-fold 

decrease in Tbdn and Ardl levels occurred upon RA-induced differentiation of mouse 

P 19 embryonic carcinoma cells (Sugiura et al., 2003). 

The Tbdn-Ardl (NatA) complex also appears to have a role in tumorigenesis (Arnesen et 

al. , 2006c). siRNA knockdown ofTbdn and Ard 1 expression in HeLa cells reduced cell 

viability. The decrease in cell viability was attributed to an increase in apoptosis and not 

a reduction in cell proliferation. 

In 2002, the original connection between Tbdn and cancer was established. Tbdn was 

up-regulated in gastric cancer and over-expressed in thyroid carcinoma tissue when 

compared to non-neoplastic thyroid tissue (Fluge et al. , 2002; Line et al., 2002). 

Moreover, high expression of the Tbdn transcript was linked to the clinically aggressive 

thyroid tumors which contained poorly differentiated or undifferentiated areas (Fluge et 

al. , 2002; Arnesen et al. , 2008). In the same report, a Burkitt lymphoma cell line, 

characterized by a high proliferation rate, was shown to exhibit elevated levels of Tbdn 
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expression compared other adult tissues including the human brain, the heart and the 

normal thyroid (Fiuge et al., 2002). 

The second part of the NatA complex, Ard 1, plays a role in cellular viability (Arnesen et 

al., 2008). In 2005, RNAi was used to knock-down hArd I expression in human 

hepatocellular carcinoma (HepG2) cells, resulting in a reduction in cell division (Fisher et 

al. , 2005). A decrease in cell viability and an increase in apoptosis occurred during 

siRNA-knockdown of hArdl and Nath in human cervical (HeLa) cells (Arnesen et al. , 

2006c ). In addition, induction of G 1 arrest and inhibition of cell proliferation occurred in 

lung cancer cells (H 1299 and A549) upon treatment with hArd !-silencing RNA (Lim et 

al. , 2006). Recently, ARDl was reported differentially expressed in stage 4 

neuroblastomas compared to stage 4S neuroblastomas (Lavarino et al., 2009). 

As mentioned, Tbdn expression is linked to gastric cancer and thyroid carcinoma. The 

more aggressive thyroid cancers have higher levels of Tbdn expression. In addition, 

Tbdn expression is tightly down-regulated following embryonic neural development. 

Therefore, Tbdn may play an important role in neural crest cancers such as 

neuroblastoma, which are thought to result from derangements in the normal 

differentiation process. Previously, our laboratory had shown that Tbdn was expressed in 

neuroblastoma cells (H. Paradis, personal communication). However, the role ofTbdn in 

neuroblastic cells remains elusive. 
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1.5 Hypothesis & Objectives 

Tbdn expression is tightly down-regulated following embryonic neural development. 

Therefore, my central hypothesis is that the persistence of Tbdn is an important factor in 

neural crest tumors such as ganglioneuroma, ganglioneuroblastoma, and neuroblastoma, 

which are thought to result from derangements in the normal differentiation process. 

My first objective was to determine if Tbdn expression is linked to the differentiation 

status and aggressiveness ofNTs. Amplification and over-expression of MycN have 

been widely known to contribute to the growth (Weiss et al. , 1997) and the 

aggressiveness (Brodeur, 2003; Wei et al., 2008) of neuroblastoma. My second objective 

focused on the regulation of Tbdn. I wanted to determine if there was a correlation 

between MycN and Tbdn. The 5' -UTR I promoter region of TBDN contained a canonical 

E-box motif which was a binding site for MycN. Therefore, my focus was on 

determining ifMycN binds directly to the TBDN promoter region. If so, then is it 

possible that this relationship between MycN and TBDN could be responsible for 

contributing to the aggressiveness of neuroblastoma? 
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2.1.2 Abstract 

Purpose: The discovery and validation of new prognostic factors and further 

refinement of risk group stratification are needed to improve clinical 

interpretation of neuroblastoma. Our laboratory isolated and characterized a 

developmentally regulated gene named TUBEDOWN against which we have 

raised a monoclonal antibody (OE5). Tubedown becomes downregulated 

postnatally yet remains strongly expressed in some neuroblastomas. The 

purpose of this study is to define the utility ofTubedown expression as a new 

measure of the differentiation status and aggressiveness of neuroblastic tumors. 

Experimental Design: Tubedown protein expression was quantitatively 

assessed in neuroblastic tumors (neuroblastomas, ganglioneuroblastomas, and 

ganglioneuromas) and normal adrenal tissues using Western blot and OE5 

immunohistochemistry. Regulation of Tubedown expression during retinoic 

acid-induced neuronal differentiation in neuroblastoma cell lines was assessed 

by Western blotting. 

Results: High levels ofTubedown expression are observed in tumors with 

significant neuroblastic component, unfavorable histopathology, advanced 

stage, high-risk group and poor outcome. In contrast, more differentiated 

subsets of neuroblastic tumors, ganglioneuroblastomas with favorable 
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histopathology and ganglioneuromas, express low levels of Tubedown. In vitro, 

marked retinoic acid-induced neuronal differentiation responses of 

neuroblastoma cells are associated with a significant decrease in Tubedown 

expression while limited neuronal differentiation responses to retinoic acid were 

associated with little or no decrease in Tubedown expression. 

Conclusions: Our results indicate that the levels of Tubedown expression are 

linked to the differentiation status and aggressiveness of neuroblastic tumors 

and represent an independent prognostic factor for neuroblastoma. Tubedown 

expression may be useful to more accurately define different neuroblastic tumor 

subsets and ultimately provide more adequate assessment and treatment for 

neuroblastoma patients. [Clin Cancer Res 2007; 13 (5) 1480-1487} 
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2.1.3 Introduction 

Neuroblastoma is one of the most common solid tumors occurring in children (Castel and 

Canete, 2004). Although the etiology ofNB is still not clear, evidence suggests that these 

neuro-ectodermal tumors arise in the sympathetic nervous system from a defect occurring 

during normal developmental processes (Brodeur, 2003; van Noesel and Versteeg, 2004; 

Maris, 2005; Vasudevan et al., 2005). Neuroblastomas exhibit heterogeneity with respect 

to differentiation and tumor progression, making diagnosis and treatment a challenge 

(Brodeur, 2003; Browne et al., 2006). In young infants, localized and stage 4S 

neuroblastoma can spontaneously undergo complete regression or differentiate into 

benign ganglioneuroma requiring minimal treatment (Brodeur, 2003). Conversely, 

children with advanced metastatic neuroblastoma have poor outcomes despite intensive 

multimodality therapies (Castel and Canete, 2004; Laverdiere et al., 2005). In recent 

years, choice of treatment for neuroblastoma has relied on a range of prognostic factors 

(age at diagnosis, International Neuroblastoma Staging System, histopathological features 

[International Neuroblastoma Pathology Classification] , DNA ploidy, and MYCN 

amplification status) that have been used to stratify these tumors into low-, intermediate-, 

or high-risk categories (Maris, 2005; Vasudevan et al. , 2005). However, both the 

validation of these prognostic factors and further refinement of risk group stratification 

are needed to improve clinical interpretation (Maris, 2005; Vasudevan et al. , 2005). 

Despite advancements in treatment, neuroblastoma still accounts for 15% of cancer 
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deaths in children (Maris, 2005). Therefore, more effective diagnostic tools and 

treatments are needed to improve cure rates, reduce toxicity and long-term effects of 

current therapies (Brodeur, 2003 ; Castel and Canete, 2004; Maris, 2005). 

Neuroblastoma differentiation is likely an important biological process that can impact 

tumor outcome (Shimada et a!., 1999a; Shimada et a!., 1999b ). The use of differentiating 

agents is effective in improving the survival rate of high-risk neuroblastoma patients 

while limiting toxicity in normal host cells (Castel and Canete, 2004). One such 

commonly used differentiation agent is retinoic acid. Retinoic acid is one of the most 

powerful in vitro differentiating agents of neuroblastoma cells (Reynolds et a!. , 2003). 

The monitoring of neuroblastoma differentiation using specific differentiation markers 

could be useful in predicting neuroblastoma outcome. 

Our laboratory isolated and characterized a developmentally regulated gene named 

TUBEDOWN (Gendron eta!., 2000). Tubedown-1 has been defined as a protein of 

69kDa with homology to yeast Natl , a subunit of the yeast acetyltransferase NatA 

(Gendron et a!. , 2000). A longer 1 OOkDa variant of Tubedown-1, Tubedown-1 00, 

appears to be derived from the same transcript (Fluge eta!., 2002; Willis et al., 2002; 

Sugiura et al., 2003). Tubedown is transiently expressed during embryogenesis in several 

tissues while in adults high levels are found in only a few tissues including bone marrow, 

ocular endothelial cells, atrial endocardium, and blood vessels of regressing ovarian 

follicles (Gendron eta!., 2000; Gendron et al., 2001). TUBEDOWN transcript is also 
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expressed in neuronal cells during brain development but suppressed during neuronal 

maturation (Sugiura et al., 2003). TUBEDOWN is also highly expressed in papillary 

thyroid carcinoma cells while adult tissues except testis express low levels (Fluge et al. , 

2002; Arnesen et al., 2005b). We have extensively characterized Tubedown as a negative 

regulator of angiogenesis in endothelial cells (Paradis et al., 2002; Wall et al., 2004). 

However, Tubedown could have different functions in other cellular contexts (Willis et 

al. , 2002; Arnesen et al. , 2006c). Since TUBEDOWN expression is tightly down­

regulated following embryonic neural development, I hypothesized that the persistence of 

Tubedown may be an important factor in pediatric tumors such as neuroblastoma which 

are thought to result from derangements in normal differentiation processes. The present 

study addresses a hypothesis that levels of Tubedown expression are linked to the 

differentiation status and aggressiveness of neuroblastic tumors and could represent an 

independent prognostic factor for neuroblastomas. 

2.1.4 Materials & Methods 

Tumor Specimens - Snap frozen tissues and paraffin embedded sections from 

neuroblastoma, ganglioneuroblastoma and ganglioneuroma were obtained from the 

Cincinnati Children's Hospital Medical Center (Cincinnati, OH), the Brain Tumor Tissue 

Bank (London, ON, Canada) and the Janeway Child Health Centre (St. John's, NL, 

Canada). Two tissue microarrays were constructed using triplicate I.Omm cores taken 

from 45 paraffin-embedded, formalin-fixed neuroblastic tumors (30 neuroblastoma, 7 
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ganglioneuroblastoma, 7 ganglioneuroma, and 5 composite/mixed histology tumors), 5 

normal adrenal glands, and 20 other neural crest-derived and unrelated neoplasms 

obtained from archival material at the University of Michigan and the Cooperative 

Human Tissue Network (National Cancer Institute). Specimens from the tissue 

microarrays had previously been classified according to International Neuroblastoma 

Pathology Classification criteria (Shimada et al. , 1999a; Shimada et al., 1999b) and 

clinical data (age at diagnosis, sex, stage, treatment protocol, initial response to treatment, 

event-free survival, time to relapse, and time to death) was made available. All human 

specimens were obtained and studied under the approval of the Institutional Review 

Boards of the author' s institutions. 

MYCN fluorescence in situ hybridization- Analyses were performed on representative 

sections (Bridge eta!., 2006). A commercial probe cocktail was used, consisting of a 

Spectrum OrangeTM-labed centromere enumerating probe 2 paired with a Spectrum 

GreenTM-labeled MYCN probe on 2p24 (Vysis, Inc. , Downers Grove, IL). The probes 

were diluted 1150 with tDenHybTM hybridization buffer (lnsitus Biotechnologies, 

Albuquerque, NM). For each hybridization, 100 non-overlapping nuclei were 

enumerated for MYCN and centromere enumerating probe 2 signals. Cells with MYCN to 

centromere enumerating probe 2 ratios >4 or innumerable MYCN signals were considered 

amplified. In non-an1plified cases, those with > 10% cells containing >2 copies of 

centromere enumerating probe 2 were defined as having polysomy 2. 
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Cell Cultures - LA-N-5 (Seeger et al. , 1982a) and IMR-32 (Tumilowicz et al., 1970) cell 

lines were gifts from Dr. Thomas Inge (Cincinnati Children's Hospital Medical Center, 

Cincinnati, OH). The LA-N-5 and IMR-32 cells were respectively maintained in RPMI 

1640 and in Dulbecco's Modified Eagle Media supplemented with 10% heat-inactivated 

fetal bovine serum and 2mM glutamine. The SK-N-DZ and RF/6A (rhesus macaque 

choroid-retina endothelial) cell lines were acquired from the American Type Culture 

Collection and maintained, respectively, in RPMI 1640 and in Dulbecco' s Modified 

Eagle Media supplemented with I 0% fetal bovine serum, 0.1 mM non-essential amino 

acids and 4mM glutamine. The EWS-96 cell line was derived from a tumor specimen 

obtained from a patient with Ewing's sarcoma and will be described elsewhere. 

Exponentially growing cells were used for every experiment. 

All-trans retinoic acid (Sigma) was dissolved in 5% dimethylsulfoxide and added to cells 

at an optimal concentration of 41-lM. The media (with or without retinoic acid) was 

changed every 3 days. Cells were photographed using a Leica DMIRE2 microscope 

system with a Qlmaging RETIGA Exi camera and Openlab software. Viability was 

assessed using trypan blue dye exclusion. All cell growth assays were performed in 

triplicate. 

Western Blot - Celllysates were prepared from snap frozen tumor specimens and cell 

lines as previously described (Gendron et al., 2000). Protein lysates were quantified 
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using albumin as standard and analyzed by SDS-PAGE. Western blotting was performed 

by standard procedures using ECL Plus chemiluminescence detection reagent 

(Amersham Biosciences) for anti-NF-M (Zymed Laboratories), vimentin (Ab-1) 

(Oncogene Research Products), c-Myb (C-19) (Santa Cruz Biotechnology) and anti­

MycN (EMD Biosciences) antibodies. Ab1272 anti-Tubedown Western blot analyses 

were performed as described (Gendron et al., 2000; Gendron et al., 2001). All Western 

blots were stripped and reprobed with either ERK-1 (Santa Cruz Biotechnology) or 

alpha-Tubulin (Sigma) antibodies. 

Tubedown Immunohistochemistry - Sections from paraffin embedded tissues were 

deparaffinized, post-fixed in 4% paraformaldehyde and incubated overnight with anti­

Tubedown mouse monoclonal OE5 supernatant or negative control supernatant 

supplemented with control isotype match IgG2a antibody (Dakocytomation) in 3% non­

fat milk in Tris buffer saline with 0.05% Tween 20. The mouse monoclonal OE5 

hybridoma (Wall et al., 2004) recognizes Tubedown recombinant protein. Sections were 

developed using alkaline phosphatase and Vector Red substrate kit (Vector Laboratories), 

and photographed in triplicate using a Leica DMIRE2 microscope system with a 

Qlmaging RETIGA Exi camera and Openlab software. 

Northern Blotting and Real-Time RT -PCR - Northern blotting was performed as 

previously described (Gendron et al. , 2000). Blots were hybridized with a 693bp 32P­

labeled MYCN eDNA probe (Image Clone ID 5502743) (American Type Culture 
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Collection) and reprobed with a mouse 18S ribosomal eDNA fragment in order to 

confirm loading equivalency and RNA integrity. Densitometric measurements of band 

intensity were completed using OptiQuant software. 

For RT-PCR analysis, eDNA was prepared from total RNA using Roche Reverse 

Transcription kit. The eDNA was then amplified by Real-Time PCR with primers 5'­

AAC CCC AAT GAT GAT GGA AA-3' and 5'- CCA AAG CAA TAG ATG GCT 

GA-3' specific for human Tubedown (GeneBank accession no. BC039818) using a 7000 

sequence detector system (Applied Biosystems). EWS-96 cells were used as a standard 

for the experiments. All experiments were done in at least triplicate. 

Data and Statistical Analyses - To stratify neuroblastoma patients into low-, 

intermediate- and high-risk groups, prognosis parameters including age at diagnosis, 

International Neuroblastoma Staging System, histopathology (International 

Neuroblastoma Pathology Classification), and MYCN amplification status were used as 

previously described (Maris, 2005). 

Tubedown immunostaining was quantified as previously described (Gendron et al., 

2006). Tubedown staining levels for each specimen were averaged and the average 

background levels subtracted. To standardize single tumors and tumors from the tissue 

microarrays, paraffin embedded sections from a Ewing's sarcoma xenograft tumor were 

used as a control in every experiment. Tubedown relative level of expression was 
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calculated from a ratio of expression of each specimen over that of the Ewing's sarcoma 

tumor. 

Quantitative analyses were compared using the two-tailed Student's t-Test with a 

Microsoft Excel program. Tests for homogeneity of variance were performed as 

described4
. The data was considered to be statistically significant if the p-value was less 

than or equal to 0.05. 

4 http :1 /he I ios. bto. ed .a c. uk/bto/statistics/tab le8 .htm I#Test%20for%20homogeneity 
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2.1.5 

2.1.5.1 

Results 

High levels of Tubed own expression in neuroblastic tumors correlates 
with advanced stages and neuroblastic unfavorable histopathology 

Western blotting showed that Tubedown is expressed in the LA-N-5 human 

neuroblastoma cell line and in several neuroblastoma tumor specimens (Figure 2-1). 

Much higher levels of Tubedown were detected in the stage 2 and 3 neuroblastoma 

specimens compared to stage 1 neuroblastoma specimens and ganglioneuroblastoma 

specimens (Figure 2-1 ). Additional neuroblastic tumor specimens were next analyzed for 

Tubedown expression by quantitative immunohistochemistry using anti-Tubedown OE5 

monoclonal antibody (Wallet al. , 2004) (Figure 2-2). In neuroblastoma, the cells that 

stained most intensely for Tubedown were of neuroblastic appearance (small round cells) 

(Figure 2-2). Tubedown staining was not detected in blood cells and blood vessels 

65 



NB 

ERK 

Figure 2-1. Western blot analysis of Tubedown-1 expression in cell lines and primary 
neuroblastic tumors. 

Western blot analysis using Abl272 anti-Tubedown (Tbdn-1) antibody(69 kDa) of LA-N-
5 and RF/6A eel/ lines, and neuroblastoma and ganglioneuroblastoma pathology 
specimens. ERK (44/42 kDa) western blot analysis was used to show loading 
equivalency and protein integrity (Bottom panel). A representative experiment is shown. 
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Figure 2-2. Immunohistochemistry analysis ofTubedown expression in neuroblastic 
tumors and normal tissues. 

Tubedown immunohistochemistry on primary neuroblastoma tumors (stage 1 [A}, stage 2 
[B), stage 3 [C) and stage 4 [D and H)), stroma rich (favorable histopathology) primary 
ganglioneuroblastoma tumor (F), primary ganglioneuroma tumor (G) and normal 
adrenal tissues (E). Specimens were stained with anti-Tubedown 0£5 monoclonal 
antibody (A-G and inset from panel H) or control with isotype matched negative control 
antibody (H) and developed using alkaline phosphatase (bright red). Representative 
experiments are shown at 400X magnification. Arrows indicate positively stained cells 
while arrowheads indicate absence of staining in structures such as blood vessels. The 
scale bar represents JOOJ.lf'1. 
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(Figure 2-2). Normal adrenal tissues contained significantly lower Tubedown staining 

(0.62 +/- 0.11 relative units) than stage 2, 3 and 4 neuroblastoma tumors (p=0.047, 

p=0.036 and p=3.4 x 10-6 respectively) (Figure 2-2 and 2-3A). Moreover, stage I and 2 

neuroblastoma exhibited significantly lower levels of Tubedown immunostaining (0. 97 

+/- 0.10 and 1.04 +/- 0.13 relative units, respectively) than the advanced stage 3 and 4 

neuroblastoma tumors (1.34 +/- 0.26 and 1.41 +/- 0.05 , respectively; p =6.8 x l0-14
) 

(Figure 2-2 and 2-3A). 

In the more differentiated neuroblastoma subtypes (ganglioneuroblastoma and 

ganglioneuroma), both ganglion-like and stromal (Schwann-like) cells faintly stained for 

Tubedown at levels lower than the neuroblastic- like cells observed in neuroblastoma 

specimens (Figure 2-2 and 2-3A). Interestingly, two out of two nodular 

ganglioneuroblastoma specimens with unfavorable histopathology and significant 

neuroblastic component expressed much higher levels of Tubedown in neuroblastic-like 

cells (1.57 +/- 0.06 relative units) than all favorable ganglioneuroblastoma specimens 

with minimal neuroblastic component (0.65 +/- 0.10) (Figure 2-2 and 2-3A). 

Significantly lower levels of Tubedown expression in the ganglioneuroma specimens 

(0. 72 +/- 0.11 relative units) and ganglioneuroblastoma specimens with favorable 

histopathology and minimal neuroblastic component were observed compared to the 

advanced stage 4 neuroblastoma tumors (p=6.0 x 10-6 andp=O.OOll, respectively) 

(Figure 2-3A). Although the more differentiated ganglioneuroma and 

ganglioneuroblastoma tumors with minimal neuroblastic component express lower levels 
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Figure 2-3. Quantitative analysis of Tubedown expression in neuroblastic tumors. 

A) Levels ofTubedown (Tbdn) expression in normal adrenal tissues (Normal, n=4) and 
neuroblastic tumors (ganglioneuroma, n =6; ganglioneuroblastoma with favorable 
histopathology: ganglioneuroblastoma, n=6; ganglioneuroblastoma with unfavorable 
histopathology and significant neuroblastic component: ganglioneuroblastoma(n), n=2; 
neuroblastoma tumors stage 1: Sf, n=9; neuroblastoma tumors stage 2: S2, n=5; 
neuroblastoma tumors stage 3: S3, n=2; and neuroblastoma tumors stage 4: S4, n=l 1). 
B) Significantly higher levels ofTubedown (Tbdn) expression were present in the 
unfavorable neuroblastoma specimens (n = 13) compared to the favorable neuroblastoma 
(n =l 7). C) Kaplan-Meier analysis displaying the correlation between low Tubedown 
(Tbdn) expression in neuroblastoma specimens and overall survival (p=0.038 at 3 years). 
Low expression levels (<1.3 relative units, n=9) versus high expression levels (?.1 .3 
relative units, n=13). D) Significantly lower levels ofTubedown (Tbdn) expression were 
present in the low-risk group neuroblastoma specimens (n= 14) compared to the high-risk 
group neuroblastoma (n =11). In panels A, Band D the relative Tubedown expression 
units for each specimen is represented by a small dot, while the averages of Tubedown 
levels for each category are represented by large squares. The bars represent standard 
error of the mean. 
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of Tubedown than neuroblastoma specimens, the differentiation status within 

neuroblastoma specimens, categorized according to the International Neurobla toma 

Pathology Classification system, was not associated with a significant difference in 

Tubedown levels. The undifferentiated neuroblastoma specimens expressed 1.18 +/- 0.13 

relative units of Tubedown, while the differentiated and poorly differentiated 

neuroblastoma specimens expressed respectively 1.12 +/- 0.09 and 1.18 +/- 0.13 relative 

units of Tubedown. 

There was a direct correlation between unfavorable histopathology of neuroblastoma 

specimens and a high level of Tubedown expression. High levels of Tubedown 

expression (1.38+/- 0.08 relative units) were present in the unfavorable tumors whereas 

low levels ofTubedown expression (1.09 +/- 0.07 relative units) were observed in the 

favorable tumors (p=0.009) (Figure 2-3B). High levels of Tubedown (2: 1.3 relative 

units) were observed in 77% of unfavorable neuroblastoma tumors compared to 24% of 

favorable tumors. There was no correlation between the levels ofTubedown expression 

and whether or not the patient was diagnosed at an early age (less than 12 or 18 months 

of age). Tubedown expression did not correlate with MYCN amplification status of 

neuroblastoma tumors. Similarly, the treatment status of the neuroblastic tumors did not 

show significant correlation with Tubedown staining. 
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2.1.5.2 High levels of Tubedown in neuroblastoma tumors correlate with high­
risk and low survival rate 

Classification of our neuroblastoma cohort into three risk groups, low, intermediate and 

high, revealed a significant positive correlation between high Tubedown expression and 

the high-risk neuroblastoma patients (Figure 2-30). Lower levels ofTubedown 

expression (1.00 +/- 0.08 relative units) were detected in the low-risk neuroblastoma 

patients compared to the intermediate- (1.32 +/- 0.12) and high-risk neuroblastoma 

patients ( 1.41 +/- 0.06; p=0.0004). High levels of Tubedown expression (~ 1.3 relative 

units) were observed in 73% of high-risk neuroblastoma cases compared to 21% in low-

risk cases. Kaplan Meier analysis (Kaplan & Meier, 1958) revealed significantly better 

outcomes for patients with low Tubedown expression compared to high expression (3-

year overall survival, p =0.038) (Figure 2-3C). Patients with low Tubedown expression 

had no notable events whereas 46% of patients with high Tubedown expression relapsed 

or died. Moreover, high Tubedown expression (1.50 +/- 0.05 relative units) was found in 

the patients who relapsed or succumbed to the disease (n=8) whereas a low level of 

Tubedown expression (1.01 +/- 0.10 relative units) was observed in patients who 

survived without relapse (n= l4). 

Analysis of our neuroblastoma cohort revealed that the event-free survival rate of patients 

within the cohort depended on the International Neuroblastoma Staging System (stage 4: 

relative risk =6.1), patient's age at diagnosis (greater than or equal to I year: relative risk 

=2.6), undifferentiated status (relative risk =2.5), and MYCN amplification (relative risk 
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= 1.1 ). The relative risk factors for our neuroblastoma cohort were comparable to other 

published cohorts (Krams et al., 2004; Hsu et al. , 2005; London et al., 2005). The 

median age of the patient at diagnosis was 24 months (range: 0.1 to 288 months) and the 

percentage of MYCN amplified tumors was 29%. 

2.1.5.3 Tubedown is down-regulated in neuroblastoma cells undergoing marked 
neuronal differentiation 

Since Tubedown levels in the differentiated neuroblastic tumor subtypes 

(ganglioneuroma and ganglioneuroblastoma with minimal neuroblastic component) are 

low and since the state of neuroblastoma tumor cell differentiation is likely an important 

biological factor for the clinical outcome (Shimada et al., 1999a; Shimada et al. , 1999b), I 

examined Tubedown expression as a function of the differentiation of neuroblastoma cell 

lines in vitro. Tubedown expression was analyzed in neuroblastoma cell lines induced to 

undergo differentiation by treatment with retinoic acid. The extent of neuronal 

differentiation in response to retinoic acid-treatment was first analyzed in 3 neuroblastic 

type neuroblastoma cell lines (LA-N-5, IMR-32 and SK-N-DZ). Upon treatment with 

retinoic acid, LA-N-5 cells developed significantly more neurite-like processes (increased 

length and thickness) than controls (Figure 2-4). Retinoic acid treatment of SK-N-DZ 

and IMR-32 cells did not significantly induce process development compared to controls 

(Figure 2-4). Retinoic acid treatment resulted in 
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Figure 2-4. Morphological differentiation of neuroblastoma cells upon retinoic acid 
treatment. 

LA-N-5, SK-N-DZ, and IMR-32 neuroblastoma eel/lines grown for 3 or 6 days in the 
absence (panels A and C, respectively) or presence ofretinoic acid [RAJ (panels Band 
D, respectively). LA-N-5 cells (panel D) exhibit an increase in the length and the 
thickness of neurites (white arrows) and cellular clustering (black arrows) in response to 
retinoic acid treatment as compared to control (panel C). Representative experiments 
are shown at 400X magnification. 
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moderate inhibition of cell growth in LA-N-5 while more significant growth inhibition 

was observed in IMR-32 and SK-N-DZ cells (Figure 2-5). The retinoic acid-induced 

differentiation in LA-N-5 cells was accompanied with a marked up-regulation of 

neurofilament-160 kDa (NF-M) expression (Figure 2-6A). The SK-N-DZ and IMR-32 

cells displayed a modest or no increase in NF-M expression upon retinoic acid treatment 

(Figure 2-6A). All three neuroblastoma lines treated with retinoic acid showed down­

regulation ofvimentin (Figure 2-6B) and c-Myb expression (Figure 2-6C). LA-N-5 and 

IMR-32 lines expressed high levels of MYCN transcript and protein. However, only LA­

N-5 cells significantly down-regulated MYCN transcript (data not shown) and MycN 

protein (Figure 2-6D) expression upon retinoic acid treatment. 

Analysis of Tubedown levels upon retinoic acid-induced differentiation in these 

neuroblastoma cells lines revealed a marked reduction of expression only in LA-N-5 cells 

(Figure 2-6E). The limited retinoic acid-induced differentiation of SK-N-DZ and IMR-

32 cells was associated with a modest or no decrease of Tubedown expression, 

respectively (Figure 2-6E). Real-time RT-PCR analysis of TUBEDOWN transcript 

expression during retinoic acid-induced differentiation of LA-N-5 and IMR-32 cells 

revealed the same pattern of down-regulation observed for the protein expression (data 

not shown). These results indicate that significant reduction in Tubedown expression 

only takes place upon induction of extensive neuronal differentiation in LA-N-5 cells. 
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Figure 2-5. Cell growth of neuroblastoma cells upon retinoic acid-induced 
differentiation. 

6C 6R 

Decreases in viable cell numbers are observed for LA-N-5 (A), SK-N-DZ (B) and!MR-32 
(C) eel/lines when treated with retinoic acid for 3 days (3R) and 6 days (6R) compared 
to 3 (3C) and 6 (6C) days controls. Values are expressed as the mean percentage of the 
control +I- standard error of the mean. Results represent the average of at least three 
experiments. 
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Figure 2-6. Expression dynamics of Tubedown, intermediate filaments, c-Myb and 
MYCN in neuroblastoma cells upon retinoic acid-induced differentiation. 

NF-M [160 kDa (A)}, vimentin [58 kDa (B)] and c-Myb [75 kDa (C)} Western blot 
analyses of untreated(-), 3 days (3) and 6 days (6) retinoic acid (RAJ-treated LA-N-5, 
SK-N-DZ and IMR-32 cell extracts. ERK (44/42 kDa) Western blot analysis was used as 
a loading control. D, MycN (67164 kDa) Western blot analysis of untreated(-), 3 days (3) 
and 6 days (6) retinoic acid (RAJ-treated LA-N-5 and IMR-32 cell extracts. RF/6A cell 
line represents a negative control for MycN expression and ERK Western blot analysis 
was used as a loading control. E, Western blot analysis with Abl 272 anti-Tubedown 
antibody (69 kDa) of untreated (-), 3 days (3) and 6 days (6) retinoic acid (RAJ-treated 
LA-N-5, SK-N-DZ and IMR-32 cell extracts. Tubulin (55 kDa) was used as a loading 
control. Representative experiments are shown. 
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2.1.6 Discussion 

Tubedown is highly expressed in neuroblastoma cell lines and certain subsets of 

neuroblastic tumors. In normal adrenal tissues Tubedown expression is almost 

undetected. High Tubedown levels are detected in tumors presenting significant 

neuroblastic component and unfavorable histopathology such as advanced stage 

neuroblastoma and some nodular ganglioneuroblastoma. Conversely, low levels were 

detected in low stages neuroblastoma, ganglioneuroblastoma with favorable 

histopathology and ganglioneuroma. High levels of Tubedown expression also correlated 

with high-risk group and significantly reduced overall survival rate. These results 

suggest that Tubedown may be a useful marker for unfavorable neuroblastic 

histopathology of neuroblastic tumors. This may be especially true for the 

ganglioneuroblastoma subsets as a marked difference was observed in the levels of 

expression of Tubedown in ganglioneuroblastoma with favorable versus unfavorable 

histopathology. Tubedown may offer a means to assess the state of differentiation in 

cases of ganglioneuroblastoma, which are difficult to assess. The state of differentiation 

of ganglioneuroblastoma may be critical to clinical outcome of the disease (Joshi, 2000). 

Our results also indicate that Tubedown is a useful marker for neuroblastoma tumors 

within the high-risk group and advanced stages as well as for predicting poor outcome. 

However, since the range ofTubedown expression overlapped to a certain degree in low­

risk versus high-risk patients and in tumors with favorable versus unfavorable 

histological features, the determination ofTubedown levels in neuroblastic tumors may 

be more useful in multivariate analyses with other parameters (age at diagnosis, 
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International Neuroblastoma Staging System, histopathological features, DNA ploidy, 

and MYCN amplification status). 

The more differentiated subset of neuroblastic tumors (ganglioneuroblastoma with 

favorable histopathology and ganglioneuroma) express lower levels of Tubedown. 

However, the differentiation status within neuroblastoma specimens was not associated 

with significant differences in Tubedown expression. Since the International 

Neuroblastoma Pathology Classification system (Shimada et al., 1999a; Shimada et al., 

1999b) categorizes neuroblastoma tumors as differentiating if 5% or more of the cells 

appear differentiated while poorly differentiated if less than 5% of cells appears 

differentiated (Joshi, 2000), a 5% more or less of differentiated cells would not affect the 

overall levels of Tubedown expression within a given specimen. Tubedown levels may 

only be reduced if the tumor specimen presents significant levels of differentiation as 

seen in ganglioneuroblastoma and ganglioneuroma. Moreover, in vitro, reduction in 

Tubedown levels only occurs upon extensive differentiation of neuroblastoma cells. In 

vitro, extensive neuronal differentiation was characterized by Tubedown suppression, 

increases in neurite-like formation and NF-M expression but a marked decrease in MycN 

expression. Reductions in growth, vimentin and c-Myb expression do not appear to be 

sufficient to lead to Tubedown suppression. Our in vitro analyses are in agreement with 

the pattern of expression of Tubedown in neuroblastic tumors and indicate that 

Tubedown expression correlates with the differentiation status of neuroblastic tumors. 
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Tubedown levels did not correlate with MYCN amplification status of neuroblastoma 

tumors. MYCN amplification is a poor prognosis factor that is observed in approximately 

25% of neuroblastoma tumors (Brodeur, 2003). In our neuroblastoma cohort MYCN was 

found amplified in 29% of neuroblastoma tumors while high levels of Tubedown were 

found in 46% of neuroblastoma tumors. The relative risk of our neuroblastoma cohort 

for MYCN amplification was slightly low compared to the cohorts presented by others 

(Krams eta!., 2004; Hsu et al. , 2005). However, it is still clear that within our 

neuroblastoma cohort, amplification of MYCN leads to a higher relative risk compared to 

tumors that are non-MYCN amplified. At least one other factor, the allelic loss of 11 q 

chromosomal locus, was associated with high-risk features (such as advanced stage, older 

age at diagnosis, and unfavorable histopathology) and did not correlate with MYCN 

amplification (Maris, 2005). Both MycN and Tubedown protein expression are reduced 

upon marked retinoic acid-induced differentiation of the LA-N-5 neuroblastoma cell line 

(Figure 2-6). However, although several studies have established a link between MYCN 

RNA and/or protein overexpression and poor outcomes, there is still some controversy 

surrounding this issue (Matthay, 2000; Tang et al. , 2006). 

To date very few markers have been proven to represent an independent prognostic value 

for neuroblastic tumors (Brodeur, 2003 ; Krams et al. , 2004; Maris, 2005). Higher levels 

of Tubed own expression in advanced stage, histologically unfavorable and high-risk 

group neuroblastoma could be the consequence of a more aggressive tumor phenotype or 

could indicate that Tubedown itself somehow drives the aggressiveness of neuroblastic 
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tumors. In vitro, only marked differentiation of neuroblastoma cell lines is associated 

with reduced expression ofTubedown. In primary tumors, lower levels ofTubedown are 

observed in the more differentiated subsets of neuroblastic tumors. These results could 

indicate that Tubedown is involved in blocking differentiation. At present the role of 

Tubedown in aggressive neuroblastic tumors is not clear. However, in yeast the 

Tubedown homologue Natl acts in a complex with the acetyltransferase Ardl to regulate 

a wide range of cellular processes including cell growth and differentiation (Gautschi et 

a!. , 2003; Polevoda and Sherman, 2003 ; Wang et al., 2004). Similarly to the yeast 

system, Tubed own forms a complex with a mouse homolog of the yeast Ard 1 

acetyltransferase (mARDI) (Sugiura eta!., 2003) and has been shown to be involved in 

cellular processes that regulate cell growth and differentiation in different cellular 

contexts (Willis eta!., 2002; Wallet al., 2004; Arnesen eta!., 2006c). 

My results indicate that the levels of Tubedown expression are linked to the 

differentiation status and aggressiveness of neuroblastic tumors. Tubedown 

expression may be useful to more accurately define different neuroblastic tumor 

subsets and to provide a new independent prognostic indicator of 

neuroblastoma. 
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3.1.2 Abstract 

Background: Tubedown is a developmentally regulated subunit of theN-terminal 

acety !transferase Ard 1 that is highly expressed in a subset of neuroblastoma tumors. 

High levels of Tubedown expression in neuroblastoma correlate with high risk, low 

survival, and elevated levels of the transcription factor MycN. MYCN amplification 

occurs in approximately 20% of neuroblastomas, associates with poor prognosis and 

usually results in high MYCN expression. In the present study, I further characterized the 

link between Tubedown and MycN expression in neuroblastoma. 

Methods: Patterns of expression of Tubedown, Ard 1, and MycN during neuronal 

differentiation of neuroblastoma cells were analyzed by Western blot. The role of MycN 

on Tubedown and Ard 1 expression was assessed using an inducible MycN expression 

neuroblastoma cell system. Chromatin Immunoprecipitation was used to determine if 

MycN binds to the promoter region of TUBEDOWN. 

Results: I demonstrate a co-regulation between Tubedown, Ard 1, and MycN expression 

during the neuronal differentiation of neuroblastoma cells. Moreover, conditional over­

expression of MycN in neuroblastoma cells increased both Tubedown and Ard 1 

expression. TUBEDOWN promoter region was found to harbour a consensus E-box 

binding motif for MycN. Chromatin immunoprecipitation assays in neuroblastoma cells 
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confirmed that MycN directly binds the 5 '-untranslated I promoter region of 

TUBEDOWN containing this E-box motif. 

Conclusions: The regulation of TUBEDOWN by MycN could play a mechanistic role 

leading to poor outcome for neuroblastoma. Moreover, our work provides further insight 

into understanding the biology of neuroblastic tumors. [In preparation} 
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3.1.3 Background 

Tubedown (Tbdn, also designated NATH, Nargl, hNatl) is associated with an 

acetyltransferase activity and is homologous to the yeast N-terminal acetyltransferase 

subunit Natlp. Tbdn forms a functional acetyltransferase NatA complex with Ard1 

which is conserved from yeast to humans (Park and Szostak, 1992; Sugiura et al., 2003; 

Arnesen et al. , 2005a; Arnesen et al. , 2008). TBDN is transiently expressed during 

embryogenesis in the developing vasculature and diminishes in adult during vascular 

maturity (Gendron et al., 2000). Similarly, a spatia-temporally specific expression 

pattern of TBDN and ARDJ has been reported in neuronal tissue during embryogenesis. 

The expression of both genes decrease throughout brain development and is lowest in 

adult (Sugiura et al., 2003). There is evidence that the Tbdn/Ardl complex is involved in 

a wide range of processes including cellular growth and differentiation (Park and 

Szostak, 1992; Paradis et al. , 2002; Willis et al., 2002; Sugiura et al. , 2003; Arnesen et 

al. , 2005a; Arnesen et al. , 2006b). For example, a decrease in Tbdn levels occur during 

retinoic acid (RA) induced differentiation of neuroblastic tumor cells and mouse 

embryonic carcinoma cells (Sugiura et al., 2003; Martinet al. , 2007). Tbdn and Ard 1 

expression has been shown to be co-regulated and the knockdown of Tbdn in diverse 

cellular systems is associated with a reduction in Ard 1 expression (Sugiura et al. , 2003 ; 

Arnesen et al. , 2006c; Hou et al. , 2007; Paradis et al. , 2008; Polevoda et al., 2008). 

Recently, new nomenclature has been introduced to rename NATJ as NAA 15 and ARDJ 

as NAAJO (Arnesen et al. , 2009). 
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The NatA complex also plays a role in ribogenesis as it binds the nascent polypeptide­

associated complex and associates with ribosomes in yeast (Gautschi et al. , 2003; 

Arnesen et al., 2005a; Raue et al. , 2007; Polevoda et al., 2008). N-terminal acetylation of 

nascent polypeptides by NatA occurs at specific substrate residues (Polevoda et al. , 

2008). A third component of the NatA found at ribosomes is the putative 

acetyltransferase Nat5 , which was described in both yeast and human but has yet to be 

studied at the functional level (Gautschi et al., 2003; Arnesen et al. , 2006a; Arnesen et al. , 

2008). Recently, our laboratory demonstrated that Tbdn is present in a complex with 

Cortactin (Paradis et al., 2008). Cortactin modulates the Actin cytoskeleton, is important 

for a variety of processes including cellular permeability (Mehta and Malik, 2006) and 

has been shown to be involved in tumor progression (Weaver, 2008). 

Tbdn is also involved in tumorigenesis (Arnesen et al., 2006c ). Tbdn is highly expressed 

in aggressive neuroblastoma tumors (Martinet al., 2007), thyroid carcinomas (Fluge et 

al., 2002), and gastric cancer (Line et al. , 2002). Knockdown ofTbdn in tumor cells is 

associated with reduced viability (Arnesen et ·al., 2006c). In neuroblastoma, high levels 

of Tbdn expression have been linked to high-risk and poor outcome (Martin et al., 2007). 

This down-regulation in Tbdn expression is accompanied by suppression of the 

transcription factor MycN (also referred to as N-Myc) (Martinet al., 2007). MYCN is 

amplified in over 20% of neuroblastoma tumors (Brodeur, 2003). MYCN amplification 

usually results in high MycN mRNA and protein expression (Tang et al., 2006). 
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Amplification and over-expression of MycN contributes to neuroblastoma aggressiveness 

and can lead to increased tumor growth and tumorigenicity (Seeger et al., 1985; Weiss et 

al., 1997; Cohn and Tweddle, 2004). The Myc family of proteins ( c-Myc, MycN and L­

Myc) have been considered to have growth-promoting properties (Vita and Henriksson, 

2006). Deregulation of Myc family members such as MycN can result in the 

development of neuroblastoma (Weiss et al., 1997). The Myc family of proteins belongs 

to the basic helix-loop-helix leucine (bHLH)-zipper class of transcription factors 

(Grandori and Eisenman, 1997) that dimerize with other bHLH family members such as 

Max, a ubiquitously expressed transcription factor (Lu et al., 2003). The MycN/Max 

complex recognizes and binds to theE-box motif (CACGTG) with high affinity resulting 

in transcriptional activation of target genes (Vasudevan et al. , 2005). To date, there are a 

limited number of MycN/Max target genes known to be expressed in neuroblastomas 

such as cellular RA binding protein II (CRABP-11) (Gupta et al., 2006), mini­

chromosomal maintenance proteins 2- 7 (MCM2- 7) (Koppen et al., 2007) and multi­

drug resistance-associated protein (MRP1) (Manohar et al., 2004). However, the MycN 

target genes responsible for neuroblastoma tumor progression are still unclear (Manohar 

et al. , 2004). Consequently, the co-regulation ofTbdn and MycN in neuroblastoma cells 

may indicate that Tbdn is involved in a dependent or independent mechanism with 

MycN, which may play a role in regulating cancer growth. Based upon previous data in 

which I found that Tbdn expression was correlated with neuroblastoma risk, I undertook 

the present study to determine if My eN regulates Tbdn expression. My results 
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demonstrate that MycN is regulating both Tbdn and Ard 1 expression. In addition, MycN 

can bind directly to the TBDN promoter region. 

3.1.4 Methods 

Cell Cultures- The LA-N-5 (Seeger et al., 1982b) neuroblastoma cell line was a gift 

from Dr. Thomas Inge (Cincinnati Children's Hospital Medical Center, Cincinnati, OH). 

The neuroblastoma SHEPTet2 (Tet2) and SHEPTet2/Nmyc (Tet2N) cell lines were gifts 

from Dr. Manfred Schwab (German Cancer Research Center, Heidelberg, Germany) and 

have been described previously (Lutz et al., 1996). In brief, the Tet2 cells were generated 

by co-transfection of SHEP cells (a subclone of SK-N-SK human neuroblastoma cells) 

with pUHD15-l containing tTA coding sequence under the control of the human 

cytomegalovirus promoter and a plasmid conferring neomycin resistance. Tet2N cells 

were generated by co-transfection ofTet2 cells with a hygromycin resistance plasmid and 

pUHC 10-3 containing human MYCN coding sequence under the control of seven copies 

of the tet operator and a cytomegalovirus minimal promoter. Upon removal of 

tetracycline, MycN expression is induced in the Tet2N cell line (Lutz et al., 1996). 

The LA-N-5 cells were maintained in RPMI 1640 Media supplemented with 10% heat­

inactivated fetal bovine serum and 2 mM glutamine. The Tet2 cells were maintained in 

RPMI 1640 media supplemented with 10% heat-inactivated fetal bovine serum, 4 mM 

glutamine, and 200 j..tg/ml G418. The Tet2N cells were maintained in the same media as 
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Tet2 with the addition of 90 !J.g/ml hygromycin B. In order to induce MycN suppression 

in the Tet2N cells, tetracycline was added to a final concentration of 1 !J.g/ml. The LA-N-

5 cells were treated with all-trans RA (Sigma, Oakville, Ontario, Canada) to induce 

differentiation at an optimal concentration of 4 !J.M. The culture media with or without 

RA was changed every 3 days. Exponentially growing cells were used for every 

experiment. 

Antibodies - Anti-chicken Ard 1 antibody OH020 was generated by immunizing chickens 

with a KLH-conjugated 11 mer peptide (ENKVESKGNSP) corresponding to the amino 

acids sequence of human Ard 1 positions 177-187 onto which a cysteine residue was 

added at theN-terminus to facilitate coupling (Covance Research Products, Denver, PA). 

Other antibodies used in this study include ARD1 (E-16) (Santa Cruz Bioteclmology, 

Santa Cruz, CA), Max (C-17) (Santa Cruz Biotechnology), N-Myc (C-19) (Santa Cruz 

Biotechnology), MycN(2) [sc:142] (Santa Cruz Biotechnology), Tbdn C755-766 (Paradis 

eta!. , 2008), extracellular signal-regulated kinase (ERK)-1 (K-23) (Santa Cruz 

Biotechnology), alpha-Tubulin (Sigma) and negative control isotype match mouse lgG2a 

(Dako, Glostrup, DK). 

Western Blotting - Celllysates were prepared from cell lines as previously described 

(Gendron eta!., 2000). Protein lysates were quantified using Albumin as standard and 

analyzed by SDS-PAGE. Western blotting was performed using standard procedures as 

previously described (Gendron eta!., 2000; Gendron et al., 2001). Western blot 
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chemiluminescence signal detection varied depending on the antibody used. ECL 

advance (Amersham Biosciences, Piscataway, NJ) was used for detection ofTbdn C755-

766, OH020, ARD1, and N-Myc antibodies; Lumiglo (KPL, Gaithersburg, MD) was 

used for the detection of the Max antibody; and ECL plus chemiluminescence reagent 

(Amersham Biosciences, Piscataway, NJ) was used for the detection of the ERK-1 and 

alpha-Tubulin antibodies. Densitometric analyses were performed using the Kodak Gel 

Logic Imaging System (Eastman Kodak Company, Rochester, NY) with Kodak 

Molecular Imaging Software (Version 4.0, Eastman Kodak Company, Rochester, NY). 

Chromatin Jmmunoprecipilation (ChiP) - ChiP assays were based on modified versions 

of published protocols (Boyd and Farnham, 1999; Strieder and Lutz, 2003) (Farnham 

laboratory, http://genomecenter.ucdavis.edu/farnham/farnham/protocols /chips.html). 

The Tet2N (MycN inducible) cell line was cultured in the presence or absence of I ~Lg/ml 

of tetracycline. Cultures were cross-linked with the addition of formaldehyde to a final 

concentration of 1% for 10 min at room temperature. To terminate the cross-linking 

reaction glycine was added to a final concentration of 125 mM. Cells were washed and 

scraped into cold phosphate-buffered saline, centrifuged, resuspended in swelling buffer 

(5 mM HEPES pH 8.0, 85 mM KCI, 0.5% Nonidet P-40, and protease inhibitors such as 

1 mM Phenylmethanesulfonyl fluoride [PMSF], 0.3 U/ml aprotinin, 10 J.Lg/ml leupeptin) 

and incubated on ice. Cells were next homogenized and centrifuged. The pellets were 

resuspended in sonication buffer (I 0 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDT A, 1% 

Nonidet P-40, 1% deoxycholate, 0.1% SDS, and 500 J.!M PMSF) and incubated on ice. 
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--------- -

Lysed nuclear extracts were then sonicated at an amplitude of 15% maximum power 

using a Virsonic Cell Disrupter (The Virtis Company, Gardiner, NY) for two I 0 seconds 

pulses on ice to obtain DNA fragments of 500-1000 bp. The chromatin solutions were 

cleared for 10 min. at 1 OOOOXg. Chromatin pre-clearing was performed using pre­

blocked (with 1 J.lg of sheared herring sperm DNA per ml and I J.lg of Bovine Serum 

Albumin per ml for at least 4 hrs at 4°C) protein-G sepharose for 15 min. at 4°C on a 

rotating platform then centrifuged at 1 OOOOXg. Immunoprecipitations were performed 

overnight at 4°C with a mouse monoclonal MycN(2) [sc: 142] or the control isotype 

matched IgG2a. The samples were eluted, reversed cross-linked and Real-time qPCR was 

performed. For each ChiP assay, a standard control was used. A ratio was obtained 

using the standard control with both the MycN immunoprecipitation and the lgG2a 

immunoprecipitation. For each primer pair, the difference in threshold cycle (delta CT) 

was calculated. 

Real-time PCR (qPCR) - DNA was amplified by real-time PCR using a 7000 sequence 

detector system (Applied Biosystems, Foster City, CA). The area of interest included an 

E-box site located within the TBDN promoter region [GenBank: NM057175] with the 

forward primer, 5' -CAAGCTCCGAAACCCAGAG-3 ' (Figure 3:-116 to -98), and the 

reverse primer, 5' -CGTAGCTGCTTCAGCCTTG-3 ' (Figure 3: +161 to +179). The 

positive control contained an E-box sequence located within the MCM2 promoter 

[GenBank: NM004526] with the forward primer, 5' -CTCCGTGTCCCTTCTGGTC-3 ' 

(nucleotide positions from the predicted transcription start site: -91 to -73), and the 
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reverse primer, 5' -GA TCCTCTCCGCCACTACAG-3' (nucleotide positions from the 

predicted transcription start site: +27 to +46) (Koppen et al., 2007). The negative control 

lacked an E-box sequence within the MCMJ 0 promoter region [GenBank: NM182751] 

with the forward primer, 5'-CCTCGCAGGCTTTGTAGATT-3' (nucleotide positions 

from the predicted transcription start site: +728 to +747), and the reverse primer, 5'­

GCCACGGTAATCTTCCCTTT-3' (nucleotide positions from the predicted transcription 

start site: +833 to +852) (Koppen et al. , 2007). 

Sequence Analysis ofTBDN 5 '-Untranslated region (UTR) I Promoter - The 

transcriptional start site for the TBDN gene was determined using the Database of 

Transcriptional Start Sites (DBTSS) (http://dbtss.hgc.jp) in combination with the NCBI 

database (http://www.ncbi.nlm.gov/sites/entrez?db=pubmed). The transcriptional start 

site and 5' -UTR for TBDN was located on chromosome 4 (GenBank: NM_057175) using 

the Entrez Gene component ofthe NCBI database. Examination ofthe 5' -UTR / 

promoter region was completed using manual scanning, along with, the Transcription 

Element Search System (TESS) software (http://www.cbil.upenn.edu/cgi-bin/tess/tess) 

and the TFSEARCH software (http://www.cbrc.jp/research/db/TFSEARCH.html). 
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3.1.5 

3.1.5.1 

Results 

Tbdn and Ardl are co-regulated with MycN in neuroblastoma cells 
undergoing marked neuronal differentiation 

To assess patterns of expression of Tbdn, Ard 1, MycN and MycN binding partner Max 

during differentiation of neuroblastoma cells, levels of these three proteins were co-

examined upon RA-induced differentiation ofLA-N-5 cells by Western blot analyses 

(Figure 3-1 ). Tbdn expression was down-regulated upon RA-induced differentiation of 

LA-N-5 cells with a 2.1 -fold decrease at day 3 (Figure 3-1 ). Similarly, RA-induced 

differentiation in LA-N-5 cells was accompanied by a marked down-regulation of Ard I 

protein expression with a 4.2-fold decrease at day 3 (Figure 3-1). MycN expression was 

decreased by 5-fold upon 3 days ofRA treatment of human neuroblastoma LA-N-5 cells. 

On the other hand, the level of Max, a transcriptional binding partner of MycN, was 

decreased by 1-fold compared to untreated cells following 3 days ofRA treatment ofLA-

N-5 neuroblastoma cells (Figure 3-1 ). 

3.1.5.2 Conditional MycN over-expression leads to up-regulation of Tbdn and 
Ardl 

To further investigate the relationship between MycN and Tbdn!Ardl , a conditional 

MycN expression system (Lutz et a!. , I 996) was used to determine the effect of MycN 

over-expression on Tbdn and Ardl expression in a neuroblastoma cell line. For 
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Figure 3-1. Tbdn co-regulation with MycNIArdl during cell differentiation. 

Western blot analyses of untreated (-) and 3 days of RA -treated human neuroblastoma 
LA -N-5 cells was performed RA treatment of LA -N-5 cells induces a significant 
decrease in the levels of Tbdn (101 kDa), Ard1 {28 kDa), and MycN (67 kDa) expression 
whereas only a minimal change in Max (21120 kDa) expression was detected. ERK1/2 
( 44/42 kDa) Western blot analysis was used as a loading control. The results are from 
representative experiments. 
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these analyses I used a MycN inducible cell line (Tet2N) previously derived by Lutz et al. 

( 1996) based on the SHEP neuroblastoma cell line (as it lacks endogenous My eN 

expression). In the Tet2N cells MycN expression is suppressed upon tetracycline 

treatment (Figure 3-2; Lutz et al., 1996). The conditional over-expression of MycN is 

accomplished in the absence of tetracycline by the induction of a MYCN eDNA construct 

under the control of the tetracycline responsive element (TRE) and the tetracycline­

regulated transactivator (tTA) (Lutz et al. , 1996; Zhu eta\. , 2002). Western blot analyses 

showed that removal of tetracycline from the Tet2N cell line resulted in an over­

expression of MycN (Figure 3-2) as previously described (Lutz et al. , 1996). The Tet2 

(empty vector) cells did not express MycN upon removal of tetracycline. Parallel 

Western blot analyses showed that Tbdn was up-regulated 2.2-fold and Ard1 was up­

regulated I. 7-fold after tetracycline withdrawal from Tet2N cell line but not from Tet2 

control cells (Figure 3-2). 

3.1.5.3 MycN binds a TBDN promoter region 

Based on the co-regulation of Tbdn and Ard 1 with MycN and the up-regulation of Tbdn 

and Ard 1 upon conditional over-expression of MycN, the genomic sequence of TBDN 

promoter region was examined for a Myc-responsive element, an E-box binding motif 

An E-box binding motif was located within the 5'-UTR I promoter region of TBDN. 

Figure 3-3 illustrates that theE-box motif is located after the transcriptional start site (at 

position+ 12) within the beginning of the 5' -UTR of TBDNtranscript. The TBDN 

promoter appears to be aT AT A-less promoter similar to the MYCN promoter (Inge et al. , 
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2002). In addition, the TBDN promoter is GC rich and includes a GC-box element at 

position -177 to -172 (Figure 3-3) which is known to bind SP 1. SP 1 is a transcription 

factor involved in early development, binding sites for which are also seen within the 

MYCN promoter region (Inge et a!., 2002). The TBDN promoter also contains three 

Hypoxia responsive elements (HRE) harboring the consensus sequences 5'-(A/G)CGTG-

3'. Two of these HRE motifs are found within the promoter region while a third motif 

overlaps with theE-box motif located within the 5' -UTR (Figure 3-3). To determine if 

MycN binds the 5' -UTR and promoter region of TBDN encompassing the Myc-
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Figure 3-2. MycN over-expression induces Tbdn and Ardl expression. 

(A) Western blot analyses revealed that removal of tetracycline from the in vitro MYCN­
inducible expression system, Tet2N, resulted in an over-expression of MycN and an up­
regulation of Tbdn and Ardl expression. Graphical representation of Tbdn (B) and Ardl 
(C) levels are shown. Each Western blot is paired with the respective loading control 
Tubulin or ERK. Results represent the average of at least three experiments. The results 
in A are from representative experiments. The error bars in B and C represent the 
standard error. 
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Figure 3-3. The nucleotide sequence of TBDN promoter region contains a canonical 
E-box motif. 

The illustration depicts the nucleotide sequence ofTBDN promoter region and TBDN 
transcript [GenBank: NM05 717 5}. The nucleotide sequence contains 52 2 bp of the 
proximal promoter, 256 bp of the 5 '-UTR and 142 bp of the coding sequence (CDS). 
Binding sites for known transcription factors are highlighted in gray whereas the forward 
(F) and reverse (R) primers are underlined. 



-522 ct t tea ega t t tccagactctgt taagcccct t tctcccc 

482 agggctgttaacaagtctccactgcggtgaagcttttttc 

442 attttccactccgcctctgctccttaaattaggcatttcg 

402 tccataatcaactacagcgcttctcaaacacctacacctg 

~62 tattttagcactttgggctcaaacgatgatcacacagtgt 

~22 gcgagactctttccaaggaatgaaaggtcgatctagcagg 

~82 aaggcgccagagaggctgtttttgatgaggaggcggtctg 

-242 aaccgtact tgcctagcc tcccgtagctccgcgggcgct t 

~02 cgagggtaccacgcactgaaatgatgggcggggcctgccc 
SP1 

-162 cgaccctcccggcctccacaggcaggccagcctccaggtt 

-122 tcccggcaagc tccgaaa cccag agg aggtggggaaagg a 
Primer (F) MZF1 

~2 ggtcaccgcgcctgcgtgttaggaagcgtgacccgggtgg 

HIF HIF 
42 gaaaaccctccgcgtccgccattttggctgcctctgtcgg 

YY1 
~tc gttcagttaccacgtgaaccgccgacggagacccgta 

E-box 
+39 gtgggggaggcggcggcagcgttaagtgagaaaggaaaaa 

+79 agacaacgaggaaaaaggaggtgtccgggtagggcaacgc 

+119 ggcgacacccgaggcctggtggtggcggcgga tcgaga ta 

+159 ttcaaggctgaagcagctacggaacggcagcggcggcggt 
Primer (R) c-Myb 

+199 cggacaaactgactgaccgagccgggtggtggcgggagca 
c-Myb 

+239 gcgggagcagccggaacg tgccggccgtgagcctcccgc 

+279 ccaaggagaatgcgctcttcaagcggatcttggtaagtgt 

+319 gaggctccgggcaagcggtggggaggatttagccggtaac 

+359cgggcctgtcacccctaacctcggcccggcgggcactgag 

105 

Promoter 
Region 

5'-UTR 

CDS 



responsive element (E-box) a ChiP assay was performed. The Tet2N cell line (which 

expressed MycN in the absence of tetracycline) was used to analyze the TBDN 5' -UTR 

and promoter region. Throughout the ChiP procedure various confirmatory steps were 

required. The cells were monitored under the microscope during the addition of the 

swelling buffer and during the lysis of the nuclei. In addition, samples from the 

sonication step were verified on a gel to ensure correct fragment size (500 - 1000 bp). 

Quantitative Real-time PCR (qPCR) was then performed on DNA immunoprecipitated 

with either an anti-MycN antibody or an anti-IgG2a negative isotype matched control 

antibody. The variation in threshold cycle (delta CT) of the qPCR was determined for 

each san1ple. qPCR using TBDN primers flanking the E-box motif in TBDN 5' -UTR I 

promoter region and ChiP DNA revealed approximately a 6-fold increase in the delta CT 

of MycN-ChiP over IgG2a-ChiP (Figure 3-4). MCM2 primers flanking an E-box motif in 

MCM2 promoter (positive control promoter region regulated by MycN; Koppen eta!., 

2007) region showed approximately an 8-fold increase in the delta CT between the 

MycN-ChiP samples and the negative control IgG23-ChiP (Figure 3-4). MCMJO primers 

flanking a region in MCMJ 0 promoter devoid of an E-box (negative control promoter 

region not regulated by MycN; Koppen eta!., 2007) presented no increase in the delta CT 

between the MycN-ChiP samples and the IgG2a-ChiP (Figure 3-4). The qPCR products 

for all experiments were verified on a gel to ensure that only one product was present. 
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Figure 3-4. MycN binds to the TBDN promoter. 

Delta Ct of qPCR on ChiP analysis of MycN binding to theE-box motif region in the 
MCM2 (black bar) or 1BDN (gray bar) promoter and absence of binding of MycN to 
MCMJO (white bar) promoter region devoid ofE-box motif. The error bars represent the 
standard error. 
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3.1.6 Discussion 

Previously, I showed that high levels ofTbdn expression are linked with aggressive and 

high-risk group neuroblastoma and are associated with poor survival (Martinet al. , 

2007). The aggressiveness of neuroblastoma has also been linked to MYCN amplification 

(Thiele eta!. , 1985; Wei et al. , 2008) but the reason for such an association is still unclear 

(Brodeur, 2003). MYCN amplification is associated with poor prognosis in 

neuroblastoma patients (Pession and Tonelli, 2005). There is a correlation between 

MYCN-amplified neuroblastoma tumors and MycN expression (Tang et al., 2006). Over­

expression of human MycN under the control of a tyrosine hydroxlyase promoter in a 

transgenic mouse model leads to the development of neuroblastoma (Weiss et al. , 1997). 

It is also worth mentioning that there was a co-regulation between Tbdn and MycN upon 

RA-induced differentiation of neuroblastoma cells (Martin et al. , 2007). Based upon 

these findings, I sought to determine here if Tbdn expression and MycN are in any way 

functionally linked. 

In this report, I demonstrate that Tbdn and Ard 1 protein expression correlate with MycN 

expression during RA-induced differentiation of neuroblastoma cells. Our group as well 

as others have reported a significant down-regulation of MycN expression upon RA 

treatment of neuroblastoma cells (Thiele et al., 1985; Martinet al. , 2007). In addition a 

significant down-regulation of both Tbdn and Ard1 expression accompanied this RA-
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induced differentiation. Although MycN heterodimerizes with Max to activate 

transcription, I have observed only a moderate decrease in Max expression upon RA­

induced differentiation. Nevertheless, our results are in agreement with Cetinkaya et al. 

(2007) who demonstrated a modest reduction in Max expression upon RA-induced LA­

N-5 cells (Cetinkaya et al., 2007). To verify my results, additional neuroblastoma cell 

line with and without MYCN amplification would be required. 

The well-established MycN-induced SHEP model (Lutz eta!., 1996) has been widely 

used to investigate a number of target genes in neuroblastoma (Manohar et al. , 2004; 

Slack et al. , 2005; Gupta et al. , 2006; Koppen et al. , 2007; Dasgupta et al., 2009). The 

MycN-inducible model was used to study the effects of both Tbdn and Ard I in 

neuroblastoma cells. The parental SHEP cell line is an epithelial-like cell line (S-type) 

and not a neuronal derived cell line (N-type) (Ross et al., 1983). The SHEP cell line was 

used by Lutz and colleagues because it lacked MYCN amplification and MYCN 

expression. My results show an increase in Tbdn and Ard 1 protein expression upon 

conditional over-expression of MycN in neuroblastoma cells. These observations 

indicate that MycN regulates Tbdn and Ard1 expression in neuroblastoma. In addition, 

our previous data demonstrated a correlation between MycN, Tbdn, and neuroblastoma 

differentiation status (Martinet al. , 2007). To verify my MYCN-inducible data, an 

alternative approach targeting the knockdown of MYCN through siRNA or antisense 

teclmology could have been used. 
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To further explore if the regulation of Tbdn expression by MycN was direct or indirect, 

the promoter I 5' -UTR region of TBDN was examined for potential MycN binding sites. 

The identification of a MycN canonical E-box motif, CACGTG, within the TBDN 

promoter I 5'-UTR region suggests that MycN could potentially regulate Tbdn expression 

directly through up-regulation of transcription. Conversely, no canonical E-box motif 

could be identified within the ARDJ promoter region for MycN to bind and regulate 

ARDJ expression. It is possible that MycN regulates Ardl expression indirectly through 

the action of another transcription factor. Alternatively, Tbdn levels have been shown to 

regulate Ardl in systems other than neuroblastoma such as thyroid carcinoma (Arnesen et 

al. , 2005b), cervix adenocarcinoma HeLa cells (Arnesen et al., 2006c), and endothelial 

cells (Paradis et al. , 2008). Therefore, Tbdn up-regulation itself could be responsible for 

the up-regulation of Ard 1 in neuroblastoma. However, the mechanism for such 

regulation remains to be elucidated. 

Our results further show that MycN binds to the promoter I 5' -UTR region of TBDN that 

contains the identified canonical E-box motif. These results suggest that MycN directly 

regulates Tbdn expression through regulation of gene expression. It is not uncommon for 

E-box elements to be located within the 5' -UTR. Miltenberger et al. (1995) mapped an 

E-box motif to the 5' -UTR of Cad which was responsible for growth-dependent 

transcription of this gene (Miltenberger et al. , 1995). Similarly, Hayama et al. (2007) 

reported the presence of an E-box motif within the 5' -UTR of Polyserase-1 as a required 

element for maximal promoter activity (Hayama et al. , 2007). 
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An E-box motif within the promoter I 5'-UTR of TBDN indicate a potential binding site 

for not only Myc/Max heterodimer but as well as other factors such as Max homodimer, 

Max/Mad heterodimer, Max/Mnt heterodimer, and USF and TFE3 (Facchini and Penn, 

1998; Vasudevan et al., 2005). In addition to having a canonical coreE-box binding 

motif, other characteristics may determine which factor is capable of binding to this site. 

Previous studies have shown that nucleotides flanking theE-box motif determine the 

most likely factor to bind the consensus sequence. Halazonetis & Kandil (1991) tested a 

number of oligonucleotides varying the sequences flanking theE-box and reported that 

the sequence with the highest affinity for Myc/Max was GAC-CACGTG-GTC 

(Halazonetis and Kandil , 1991). However, the flanking 5' nucleotides sequence T(-3)A(-

2)C( -1) also provided an increase in the affinity of the tested promoter region for the 

Myc/Max heterodimer. The numbers represent the position of the nucleotide from the 

flanking core sequence. For exan1ple, -1 at the 5' (or + 1 at the 3 ') would represent the 

position closest to the core sequence whereas -3 (or +3) would be located 3 positions 

from the core sequence. A previous study suggested that purines in either the -2 or the -3 

positions are favored whereas nucleotides such as 5 ' -Tat position -1 (or 3 ' -A at position 

+ 1) would not be preferred residues for Myc/Max (Solomon et al., 1993). However, 

Swanson and Yang ( 1999) demonstrated that there can be some variations in the 5' and 

3' flanking sequences. In particular, the 5'-A/C/T and 3'-G/A/T can be found in the -1 

and + 1 positions, respectively (Swanson and Yang, 1999). The Myc/Max consensus 

binding sequence has been defined as 5' - RHCACGTGDY-3' (Swanson and Yang, 
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1999). The nucleotides flanking the high affinity E-box motif in TBDN consist ofT AC 

in the 5' region whereas the nucleotides in the 3 '- region consist of AAC. These 

nucleotide arrangements would indicate a preferred target for MyciMax in the TBDN 

promoter I 5 ' -UTR region. 

The aforementioned criteria are important in determining potential transcription factor 

binding sites. However, the primary criterion for determining the ability of a 

transcription factor to bind directly to a gene is the actual binding of the factor to the 

regulatory DNA element in the chromatin in situ (Fernandez et al., 2003). One approach 

to assess transcription factor binding sites is the ChlP assay, which can be performed in 

live cells (Fernandez et al., 2003). Using ChlP methodology, I show here that MycN 

binds to the TBDN promoter I 5' -UTR region encompassing the high affinity E-box 

motif. It is well known that Tet2N cells can be induced to express MycN upon 

withdrawal of tetracycline. However, in the presence of tetracycline MycN expression is 

suppressed in Tet2N cells to a minimum (Figure 2A). Lutz et al. ( 1996) showed that 

MYCN expression is not completely repressed in Tet2N cells in the presence of 

tetracycline (Lutz et al., 1996). Accordingly, MycN specific ChiP assays performed on 

tetracycline treated Tet2N cells showed very minimal binding of MycN to the TBDN 

promoter -5'UTR region encompassing theE-box with less than 1-fold delta CT (data not 

shown). 
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Members ofthe Myc family of transcription factors have been linked to many important 

cellular processes including proliferation which is known to provide a growth advantage 

to breast cancer cells, small cell lung carcinomas, and neuroblastoma cells (Ben-Yosef et 

a!., 1998). Conditional over-expression of MycN in Tet2N cells has been associated with 

an increase in cell growth (Lutz et al., 1996; Koppen et al., 2007). In this report, I show 

that the conditional over-expression of MycN in Tet2N cells is accompanied by an 

increase in Tbdn and Ard 1. Moreover, in neuroblastoma cells I previously showed that 

reduced Tbdn expression is accompanied with a decrease in cell growth and increased 

differentiation (Martin et a!., 2007). Arnesen and colleagues (2006) reported that the 

knockdown ofTbdn expression in epithelial cervical adenocarcinoma (HeLa) cells using 

siRNA results in apoptosis (Arnesen eta!., 2006c). Ard1 has also previously been shown 

to play a role in cellular viability (Fisher et al., 2005; Arnesen eta!., 2006c; Lim eta!., 

2006; Arnesen eta!., 2008). It is worth mentioning that cervical carcinoma cells such as 

HeLa cells have been shown to over-express c-Myc (Macville eta!., 1999; Henriksson et 

a!., 200 I). Based on these observations it is temping to speculate a relationship between 

Tbdn and Myc family of transcription factors in other models as well as neuroblastoma. 

These studies collectively suggest that Tbdn may play a role in the growth of cancers. 

A possible explanation for the association of Tbdn and MycN with a growth advantage 

for cancer cells may be based on ribosome biogenesis. Boon and co-workers (200 1) 

demonstrated that MycN enhanced the expression of a large group of genes involved in 

ribogenesis supporting a role for MycN in ribosome biogenesis and in protein synthesis 
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(Boon et al., 2001 ). Gautschi et al. (2003) reported in yeast that the Tbdn orthologue 

Natlp, is required to anchor Ardlp and Nat5p to the ribosome, and interacts with the 

nascent polypeptide-associated complex (Gautschi et al., 2003). Arnesen et al. (2005) 

demonstrated the association of Tbdn and Ard 1 with ribosomal subunits (Arnesen et al. , 

2005a). It is well known that the ribosome is essential for cell growth. However, 

deregulation of ribogenesis can lead to oncogenic transformation (Bilanges and Stokoe, 

2007). One example of the link between deregulation of a product of ribogenesis and 

oncogenesis is the ribosomal protein RPL35a. RPL35a has anti-apoptotic activity and 

has been shown to be over-expressed in glioblastoma, a type of malignant brain tumor 

that has high resistance to chemotherapy (Lindstrom, 2009). Whether the links between 

Tbdn and MycN impact upon ribosome biogenesis or are in any way responsible for 

dysfunction of growth control via ribogenesis in neuroblastoma deserves further 

investigation. 
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3.1.7 Conclusions 

The work herein demonstrates a co-regulation between Tubedown, Ard 1, and MycN 

expression during the neuronal differentiation of neuroblastoma cells. In addition, I 

demonstrate an increase in Tubedown and Ardl expression upon conditional over­

expression of MycN in an inducible neuroblastoma cellular system. Finally, I show that 

MycN binds to the TBDN promoter. Collectively, these results suggest a new role for 

MycN in regulating Tbdn expression. 
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3.1.8 List of abbreviations 

Tbdn (NATH and Nargl), Tubedown; RA retinoic acid; PMSF, Phenylmethanesulfonyl 

fluoride; UTR, untranslated region; CRABP-11, cellular retinoic acid binding protein II; 

MCM 2 - 7, mini-chromosomal maintenance proteins 2 - 7; MRPl, multi-drug resistant 

protein; Tet2, SHEPTet2; Tet2N, SHEPTet2/Nmyc; ChiP, Chromatin 

Irnmunoprecipitation; qPCR, Quantitative PCR; DBTSS, Database of Transcriptional 

Start Sites; T SS, Transcription Element Search System; HRE, Hypoxia responsive 

elements; Hif, Hypoxia-induced transcription factor. 
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4.1 Suppression of Tubedown Expression 

4.1.1 Introduction 

RA treatment of neuroblastoma cells lead to a more differentiated phenotype associated 

with reduced cell growth in vitro (Sidell et al., 1983). My previous data demonstrated 

that RA treatment of human neuroblastoma LA-N-5 cells induced differentiation and 

resulted in a decrease in Tbdn expression (Martinet al., 2007). In addition, Arnesen and 

colleagues showed that knocking down Tbdn levels in human cervical (HeLa) cells 

resulted in reduced cell viability (Arnesen et al., 2006c). Therefore, the functional 

importance ofTbdn had to be investigated in neuroblastoma cells. In particular, 

suppressing Tbdn levels may play a role in inhibiting growth and/or promoting 

differentiation in neuroblastoma cells. 

4.1.2 Materials and Methods 

Cell culture - LA-N-5 (Seeger et al. , 1982a) cells were a gift from Dr. Thomas Inge 

(Cincinnati Children's Hospital Medical Center, Cincinnati, OH). The LA-N-5 cells were 

maintained in RPMI 1640 media and supplemented with 10% heat-inactivated fetal 

bovine serum and 2 mM glutamine. For all transfection experiments, LA-N-5 cells were 

passaged one day before and grown to 80% confluency. 
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siRNA - Three hundred to 1 000 nM of gene-specific siRNA (Dharmacon, Lafayette CO 

USA) were used for each nucleofection. The following siRNA duplex target sequences 

were used: HS-TBDN611 (positive control): 5'- GGGACCUUUCCUUACUACA-3 ' 

(Arnesen et al., 2006c); SC47 (negative scramble control): 5'­

GAUCCGUUCAUCGUCACUA-3'; HS-TBDN1138: 5'­

GAAGGCUGCCGUUAAACUU-3 . 

Nucleofection - Nucleofections were completed according to the suppli r's adherent cell 

line manual (Amaxa, Cologne, Germany). In brief, LA-N-5 cells were washed with 

sterile phosphate-buffered saline, trypsinized and counted to determine cell density. The 

cells were centrifuged at room temperature for 10 min at 90 g. Following media 

aspiration, the cell pellet was resuspended in 100 ul of nucleofector solution V ( 4.5U) 

containing the supplement solution ( 1 U). The final concentration of the samples were 

4X106 cells/100 ul and 1X106 cells/100 ul. One thousand nanomolar siRNA and 2 ug 

pmax Green Fluorescent Protein (GFP; for monitoring cell transfection efficiencies) were 

added directly to the cell suspension (100 ul /cuvette). The nucleofector device was set to 

program V -00 l or U-0 14. Post nucleofection, the cells were returned to the humidified 

37°C I 5% C02 incubator. 

Microinjection - The Femtoject (Eppendorf, Mississauga, ON, Canada) and lnjectMan 

NI 2 (Eppendorf) were used to inject affinity purified anti-Tbdn rabbit antibody C1 0-20 

(Paradis et al. , 2008) into LA-N-5 cells. Prior to experiment, a tracer such as GFP (100 
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ug/ml) or Hoechst (0.15 ug/ml) were mixed with the Tbdn antibody and loaded directly 

into the Femtotip. Subsequently, LA-N-5 cells were monitored using a Leica DMIRE2 

microscope system. 

Liposorne-mediated transfection - Liposome transfections were completed according to 

the supplier's manual (Invitrogen, Burlington, ON, Canada). First, the host cell line, LA­

N-5, was incubated with 10 ug regulatory plasmid (pTet-on) and 0.5 - 5 ul of 

lipofectamine (or lipofectin) per ug of DNA. After 48 hrs, 100 ug/ml of G418 was added 

to each plate. G418-resistant clones were selected and analyzed by Northern blot to 

determine which clone had the highest fold-induction (i.e. highest expression with the 

lowest amount of background). Secondly, the response plasmid (pTRE-ASTBDN) was 

co-transfected with a selection agent (pTK-Hyg) at a ratio of 10:1 or 20:1. For every I ug 

of DNA, 0.5 - 5 ul of lipofectamine (or lipofectin) was added. The mixture was placed at 

room temperature for 20 min before adding to the LA-N-5 cells. After 48 hrs, 50 ug/ml 

of hygromycin B (HygroB) was added to each plate. HygroB-resistant and G418-

resistant clones were selected and analyzed by Southern blot for the presence of the 

pTRE-ASTBDN construct and then by Northern and Western blot to determine if the 

levels of Tbdn have been diminished. 

Adenofection - LA-N-5 and Ewing' s sarcoma cells were infected with adenovirus at 

varying levels of MOl (7.5, 10, 12.5). The recombinant adenoviral vector transducing 
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ASTBDN-1 under the control of the CMV promoter (Ad5-CMV I ASTBDN-1) was 

compared to the control vector transducing p-galactosidase (Ad5-CMV /Lac Z). 

4.1.3 Results & Discussion 

Our laboratory was interested in understanding the function of the TBDN gene. 

Therefore, several transfection approaches were carried out to knockdown Tbdn 

expression. Transfection is the process of introducing foreign DNA into eukaryotic cells. 

Methods of transfection can range from viral-based (e.g. adenofection) to physical (e.g. 

microinjection, electroporation) to chemical (e.g. liposome-mediated). 

Adenofection teclmology was originally evaluated in an attempt to knockdown Tbdn 

expression. However, I experienced problems infecting our P-Galactosidase plasmid 

(pcmv P-Gal) into neuroblastoma cell lines. I did not experience any problems with our 

control (Ewing's sarcoma) cell line. After several condition changes, I concluded that 

this technique was ineffective for infecting neuroblastoma cells. Similarly, Skog and 

colleagues also experienced difficulty and could not effectively infect neuroblastoma cell 

lines with adenofection due to a low binding capacity (Skog et al. , 2002). 

The microinjection approach was used to block the activity of the Tbdn protein by 

injecting a Tbdn antibody into the cell. The Femtojet system was used to inject the 

antibody. The major technical issue with this approach was the limited number of cells 
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that could be injected in a short period. In addition, this technique is more effective when 

utilizing flat cells. Unfortunately, LA-N-5 cells tend to grow as clumps adding to the 

difficulty of the injections. Consequently, constant resetting ofthe stage to a new plane 

of focus had to be completed. As a result, this method of injection also proved 

ineffective for our purposes. 

The liposome method of transfection is one of the most commonly used techniques. The 

antisense approach was utilized because it is a well-established way of interfering with 

the expression of the endogenous sense gene. Various transfection reagents such as 

lipofectamine and lipofectin were used to transfect the antisense Tbdn (ASTBDN) eDNA 

into human LA-N-5 neuroblastoma cells. The ASTDBN construct was under the control 

of a tetracycline responsive element (TRE) and reverse tetracycline regulated 

transactivator (rtT A) (Figure 4-1 ). A few caveats with this system and model included a 

very low efficiency rate and very slow growing clones. In addition, the non-induced 

ASTBDN cell line appeared to be deregulated or leaky and was no longer modulated by 

rtT A activation. 

During the initial Southern blot screen of 30 derived LA-N-5/rtT A/TRE-ASTBDN 

clones, three clones (L T AS#8, L T AS# I 0, L T AS# 17) had incorporated the pTRE­

ASTBDN construct. Western blot analysis revealed that clone L TAS#8 showed no 

suppression of Tbdn expression in response to Doxycycline treatment whereas clone 

L T AS# I 0 showed suppression of Tbdn expression. Tbdn levels for clone L T AS# 17 were 
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Figure 4-1. 'Tet-on' inducible antisense Tbdn system. 

rtTA binds to the teto sequence of the let-responsive element (TRE), which controls the 
ASTBDN-1 gene thereby activating transcription in the presence of an inducing agent, 
Doxycycline. ASTBDN-1 eDNA interferes with the expression of the endogenous sense 
Tbdn-1 thereby decreasing Tbdn-1 levels. 
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decreased with and without Doxycycline treatment indicating that the TRE-ASTBDN 

construct in this clone is deregulated (Figure 4-2). Upon further analysis, clone 

L T AS# 15 (which did not contain the pTRE-ASTBDN construct) also displayed similar 

cell cycle results as clones L T AS#8, 10 and 17 indicating that Tbdn is likely not 

regulated by the inducible tetracycline-based system (data not shown). 

The next transfection approach evaluated was nucleofection. I utilized nucleofection 

technology from Amaxa to introduce siRNA Tbdn oligonucleotides into LA-N-5 cells 

with the expectation of silencing Tbdn expression. Nucleofection technology is based on 

electroporation properties in that voltage is used to introduce a substance into a cell 

(Hagemann et al., 2006). This method was very effective in delivering siRNA to LA-N-5 

neuroblastoma cells. Nucleofection technology is based on electrical parameters, as well 

as cell type specific nucleofector solutions. These solutions differed in their buffer 

capacity, ionic strength, and composition. A major disadvantage of this technology is 

that Amaxa holds the electrical parameters and nucleofector solutions in strict confidence 

(Hagemann et al., 2006). Another disadvantage is that every cell line has to be 

optimized. Amaxa has generated a database which contains optimized conditions for 

many commonly used cell lines. Unfortunately, optimized conditions were not available 

for the LA-N-5 cells. I determined that solution V along with nucleofector programs V-

001 and U-014 provided optimal nucleofection rates for the LA-N-5 neuroblastoma cell 

line. I reached nucleofection efficiencies of approximately 60% using the control green 
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Figure 4-2. Doxycycline effects on antisense Tbdn clones. 

Western blot analysis of Tbdn-1 (69 kDa) expression with and without Doxycycline. 
Parental (LA-N-5), rtTA (LA-N-5 1ET4, empty vector) and rtTNTRE-ASTBDN 
represents the LTAS#8, 10, 17 clones. ERK (44/42 kDa) represents the loading control. 
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fluorescence protein also known as maxGFP (Figure 4-3). After extensive design, the 

optimal Tbdn siRNA was selected. Levels ofTbdn expression were then assessed by 

Western blot analysis. Unfortunately, I was unable to produce a significant knockdown 

ofTbdn expression. In theory, designing the optimal siRNA is a relatively simple 

process. Design an siRNA of approximately 21 nucleotides that is complementary to 

your sequence of interest to get the desired degraded mRNA. However, in practicality, a 

far better strategy would be to design and test at least ten siRNAs. The next step should 

be to continue testing potential Tbdn siRNAs since an effective transfection approach 

(nucleofection) was found. 

Several transfection approaches were utilized in determining the functional importance of 

Tbdn in neuroblastoma cells. However, due to the many technical problems, I was 

unable to knockdown Tbdn expression in the neuroblastoma cells. Nevertheless, initial 

studies suggested that the nucleofection approach would be an effective method to 

transfect human LA-N-5 neuroblastoma cells. Furthermore, suppressing Tbdn levels will 

determine the importance of Tbdn with respect to growth and differentiation in 

neuroblastoma cells. 
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Figure 4-3. Nucleofection of LA-N-5 cells. 

LA-N-5 cells were transjectedwith maxGFP using the U-014 (A & B) and the V-001 (C 
& D) Amaxa programs. Panels A & C were analyzed by phase-contrast microscopy 
whereas panels B & D were analyzed by immunojluorescene in which the observed green 
fluorescence was due to GFP expression. Magnification, x400. 
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5.1 Summary 

5.1.1 Martinet a/., 2007 

Immunohistochemistry was performed on tissue microarrays, snap-frozen tissues and 

other paraffin-embedded sections using a Tbdn mouse monoclonal OE5 antibody. My 

data demonstrated that Tbdn expression maybe a novel factor that enhances the 

stratification ofNT risk groups. Additionally, Dr. Arie Perry performed the fluorescence 

in situ hybridization experiment to show MYCN amplification (tumors containing more 

than 5 extra copies of the MYCN gene) or MYCN gains (tumors containing 1-4 extra 

copies of the MYCN gene). Corroboration of the results did not reveal any correlation 

between Tbdn expression and MYCN amplification (Martin et al. , 2007). However, a 

potential correlation between Tbdn and MycN protein expression may still exist 

according to my in vitro data. MycN immunohistochemistry experiments were 

completed on paraffin-embedded section. However, a definitive conclusion could not be 

reached by immunohistochemistry because antibodies available for the MycN protein 

were not specific enough. 

In addition to MycN, Tbdn expression was also compared and correlated with the 

differentiation status ofNTs. High levels ofTbdn expression were found in the less 

differentiated NTs (such as the neuroblastomas) whereas low levels ofTbdn expression 

were present in the more differentiated NTs (such as the ganglioneuromas). Previously, 
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in vitro data showed that Tbdn expression correlated with a subset of differentiated 

neuroblastoma cells (Figure 2-6). Morphological changes in a neuroblastoma cell line 

treated with RA led to a decrease in Tbdn expression where the majority of the cells are 

undergoing differentiation upon RA treatment. The differentiated neuroblastoma cells 

had less Tbdn expression compared to the non-differentiated neuroblastoma cells. Based 

on the aforementioned in vitro data, Tbdn expression was compared to the differentiated 

status of the neuroblastoma specimens. Unfortunately, the differentiation status within 

the neuroblastoma specimens from the tissue array did not correlate with Tbdn 

expression. The reason for the discrepancy, as alluded to in chapter 2, was that the INPC 

system considers neuroblastoma specimens as differentiated if 5% or more of the tumor 

contains differentiated cells. However, a population with 5% or less of differentiated 

cells may not affect the overall expression levels of Tbdn for a specific specimen. In 

other words, 5% of the neuroblastoma tumor specimen had to be differentiated for it to be 

classified within the differentiated category. 

Clinically, the more differentiated a tumor, the greater the chance of a response to 

treatment. RA treatment of acute promyelocytic leukemia has been shown to induce 

terminal differentiation of malignant myeloid cells into mature neutrophils (Soignet et a!. , 

1998). Similarly, RA-induced differentiation can affect malignant neuroblastoma cells 

by mimicking the differentiation of neurons in culture (Robson and Sidell, 1985). In 

vitro, different forms of RA have been shown to induce differentiation and decrease the 

growth of neuroblastoma cells (Sidell et al., 1983; Thiele eta!., 1985; Reynolds eta!., 

128 



1994; Brodeur, 2003). Currently, 13-cis RA is being used in clinical trials with high-risk 

neuroblastoma patients (Matthay et a!., 1999) and is becoming standard practice in the 

treatment of high-risk neuroblastoma (Brodeur, 2003). 

As stated, Tbdn is involved in neuroblastic differentiation, suggesting that it maybe an 

attractive target for cancer treatment. However, according to Arnesen eta!., Tbdn would 

not be useful as a cancer drug target, since decreasing Tbdn would lead to an increase in 

capillary formation (Arnesen eta!., 2008). This statement by Arnesen eta!. was likely 

based on previous data by our group, showing that a down-regulation of Tbdn in an 

endothelial cell model resulted in an accumulation of capillary-like structures (Paradis et 

a!. , 2002). Firstly, I did not observe or report any Tbdn staining of the blood vessels 

within the neuroblastic specimens analyzed. As stated in chapter 2, Tbdn staining was 

not detected in blood cells or vessels (see Figure 2-2C). Secondly, I was looking at Tbdn 

in a different model system than was reported previously. There is a strong possibility 

that Tbdn may have different roles depending on its cellular context. For example, Stat3 

activation is associated with proliferation and promoting apoptosis (Bromberg and 

Darnell , 2000). Activated Stat3 prevents apoptosis and increases proliferation in head 

and neck squamous cell carcinoma. Conversely, Stat3 activation increases mammary 

epithelial apoptosis (Chapman et a!., 1999; Leeman eta!., 2006). Additionally, the 

expression of the nm23-Hl gene can vary with tumor type. High expression of nm23-H 1 

is associated with a favorable outcome in breast cancer and malignant melanomas 

(Hennessy eta!. , 1991 ; Florenes et a!., 1992). Conversely, an up-regulation ofnm23-H1 
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is linked to poor outcome in neuroblastoma and non-Hodgkin lymphomas (Niitsu eta!. , 

2001; Godfried et al. , 2002). 

Although a great deal of progress has been made in creating a more efficient risk group 

classification system, effective treatments for various subsets of patients require new 

markers to aid in advancing the stratification of tumors. Tbdn is highly expressed in the 

most malignant and aggressive subset of neuroblastic tumors. Therefore, additional 

markers will enhance the neuroblastic classification system thereby providing clinicians 

an array of resources for assessing and treating neuroblastic patients. 

5.1.2 Martinet a/., 2009 

Our group, as well as others, showed that MycN expression was down-regulated in 

human neuroblastoma LA-N-5 cells upon RA-induced differentiation (Thiele eta!. , 1985; 

Martin et al. , 2007). I showed that MycN expression correlated with both Tbdn and Ard 1 

expression. In addition, I showed that MycN regulated Tbdn and Ard 1 expression using 

the MYCN-inducible SHEP cell line. One advantage of this well-established cell system 

is that it is inducible which means that the same cell line can be used to over-express or 

suppress MycN expression. One potential drawback of our experimental setup was that I 

did not have access to a second MYCN-inducible cell line to ensure that the regulation of 

Tbdn by MycN was not an artifact of the cell line. However, I did demonstrate that the 

decrease in both Tbdn and Ardl was not cell line dependent. Treatment of the LA-N-5 
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cells with RA, a differentiation agent, resulted in a co-downregulation of Tbdn, Ard 1, and 

MycN. 

The link between aggressiveness of neuroblastoma and MYCN amplification is still 

unclear (Thiele et al. , 1985; Brodeur, 2003; Wei et al., 2008). However, MYCN 

amplification usually leads to high MycN protein and RNA expression in neuroblastomas 

(Tang et al. , 2006). My previous work showed that high levels ofTbdn expression are 

linked with aggressive and high-risk group neuroblastoma and are associated with poor 

survival (Martin et al. , 2007). Our present evidence supports a hypothesis that the 

MycN/Tbdn/Ardl pathway may be regulated in an aberrant manner in neuroblastomas 

with poor outcome. Besides their roles in cancer, Tbdn, Ard 1, and MycN are also 

involved in normal development. Throughout brain development there is a spatia­

temporal up-regulation ofTbdn and Ardl (Sugiura et al., 2003). Similarly, Grady and 

colleagues (1987) showed that MycN was highly expressed in the early fetal cerebral 

germinal layer and the primordial cortex during human fetal brain development (Grady et 

al. , 1987). Therefore, understanding the relationship between TBDN, ARDJ and MycN 

may provide new insight for regulation and treatment of neuroblastoma. 

The MYCN-inducible SHEP cell line was an invaluable tool for studying the potential 

binding of MycN to the TBDN promoter. From our ChiP analysis, I showed that MycN 

binds the TBDN gene (Figure 5-l ). The next step would be to verify our results. I could 

have accomplished this by mutating various nucleotides of the E-box within the promoter 
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region. Another method would be to delete nucleotides within the E-box region. 

However, this would change the size of the E-box region, ultimately affecting basal 

transcription. Therefore, the former option would be the preferred method. Furthermore, 

to determine whether MycN activates transcription of the TBDN gene, luciferase assays 

could have been performed with a number of TBDN promoter I reporter constructs 

containing various point mutations or E-box deletions. This would ultimately determine 

if the TBDN promoter activity directly correlates with MycN expression. In addition, I 

also used the MYCN-inducible system to demonstrate that MycN can regulate Ard 1 

expression. The decrease in Ard 1 expression may result from MycN binding directly to 

Tbdn or MycN may directly bind ARDI through an unknown transcription factor (Figure 

5-l ). 

Tbdn is expressed in the Tet2 MYCN-inducible cell line which lacks MycN expression 

upon tetracycline treatment (see Figure 3-2). The Tet2N MYCN-inducible system cannot 

be completely shut off, even in the presence of tetracycline. Therefore, the Tbdn 

expression present may be a direct result of the low level of MycN expression still being 

expressed. However, an alternative explanation may suggest that other factors could be 
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Figure 5-1. Tbdn, Ardl, and MycN pathway interaction. 

Solid lines represent confirmed interactions whereas dotted lines represent hypothetical 
interactions. 



E2F --~ MCM gene_......,.._. Mcm 

MYCN ge~~~---~~ 

I 
I 

I 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

I Ebox ---4111-• Tbdn 
Ardl 

Element 

\ 
\ 

' ' '• 
I ARDJ gen~+---•111-A rdil 

134 



involved in regulating Tbdn such as E2F or Hypoxia-inducible factor (Hif). Therefore, I 

suggested a hypothetical model to explain the potential interactions between Tbdn, Ard 1, 

and MycN (Figure 5-l ). 

Hypoxia can drive solid tumors towards an immature phenotype (Axelson et al., 2005). 

Poorly oxygenated environments express transcription factors such as Hif-1 and Hif-2 

(Nilsson et al. , 2005; Lofstedt et al., 2007). Before discussing the role ofHifs with the 

Tbdn/ Ard 1 complex, it is important to first describe the relationship between the 

Tbdn/Ard1 complex, in particular, Ardl and the Wnt signaling pathway. 

The NatA complex appears to target the Wnt signaling pathway. As mentioned, during 

normal neuro-ectodermal development, an anomaly results in the formation of 

neuroblastoma (Brodeur, 2003; van Noesel and Versteeg, 2004; Maris, 2005; Vasudevan 

eta!., 2005). One of the earliest pathways involved in neuro-ectodermal development is 

the Wnt signaling pathway. Recently, Lim and colleagues demonstrated that Ardi is 

responsible for acetylating and activating the ~-Catenin pathway and promoting cancer 

proliferation (Figure 5-2; Lim et al., 2006). In addition, Wai et al. also reported an up­

regulation of wingless-type mouse mammary tumor virus integration site family member 

11 (WNT11) in neuroblastoma cells (Wai et al. , 2002). Acetylation of ~-Catenin induces 

the binding of TCF 4 to the cyclin D I promoter. hArd !-silencing RNA was used to treat 

lung cancer cells, resulting in inhibition of cell proliferation and induction of G I arrest 

(Lim et al., 2006). A ChiP assay was used to demonstrate that silencing ofhArdi 
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Figure 5-2. Possible mechanism of NatA acetylating Beta-Catenin. 

An increase in the activity of Beta-Catenin through NatA acetylation results in an 
increase in cellular proliferation through Myc and Cyclin D 1. 
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inhibited the recruitment of ~-Catenin/TCF complex on the cyclin D 1 promoter. Since 

p300 was also known to active ~-Catenin by acetylation, Lim et al. wanted to 

demonstrate that p300 did not affect the association between ~-Catenin and Ard 1. 

siRNA-p300 knockdown revealed an attenuation of p300 binding for ~-Catenin but did 

not affect the association between Ard 1 and ~-Catenin. 

Therefore, p300 knockdown was shown not to be necessary for the interaction between 

hArd 1 and ~-Catenin. However, both the siRNA-Ard 1 and the siRNA-p300 knockdowns 

inhibited ~-Catenin acetylation independently of each other (Lim et al., 2006). 

Collectively, the above mentioned studies indicate that Ard 1 has a role in cellular growth. 

Under hypoxic conditions, Hif-1a binds hArdl and in the process dissociates hArd1 from 

~-Catenin thereby preventing hArd1 from acetylating ~-Catenin (Figure 5-2; Lim et al. , 

2008). Specifically, the deacetylation of ~-Catenin, through hArd1 removal, will 

ultimately repress that transcriptional activity of the ~-Catenin/TF complex and down­

regulate c-Myc by disrupting the ~-Catenin/TF complex. Moreover, knocking down Hif­

la augments ~-Catenin acetylation, resulting in activation of target genes such as c-Myc 

(Lim et al., 2008). In addition, Hif-1a has been reported to bind directly to ~-Catenin and 

down-regulate c-Myc expression (Figure 5-2; Kaidi et al., 2007; Lim et al., 2008). 

During prolonged hypoxia there is a notable difference between Hif-1 a and Hif-2a in 

neuroblastoma. The Hif-2a protein levels tend to accumulate whereas Hif-1a protein 
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levels are reduced or disappear over time (Holmquist-Mengelbier et al., 2006; Lofstedt et 

al. , 2007). The Hif-2 accumulation in neuroblastoma correlates with advanced stages and 

low patient survival. Poorly vascularized solid tumors such as neuroblastomas become 

de-differentiated and more aggressive under hypoxic conditions (Nilsson et al. , 2005). In 

addition, neuroblastoma twnor evaluation revealed a strong correlation between high Hif-

2 levels and unfavorable patient outcome (Holmquist-Mengelbier et al., 2006). 

Holmquist-Mengelbier and colleagues used a xenograft model to demonstrated that 

knocking down Hif-2 resulted in decreased growth of neuroblastoma (Holmquist­

Mengelbier et al., 2006). Since the TBDN promoter region contains three HREs (Figure 

3-3), and is up-regulated in the less differentiated cancers, it becomes tempting to 

speculate that Hif-2 would bind HRE and induce Tbdn expression, resulting in an 

increase in the growth of neuroblastoma. 

5.1.3 Tbdn, Ard1, Myc, and Cancer 

As mentioned, neuroblastoma has a wide range of heterogeneity with respect to 

differentiation, possibly caused by hypoxic conditions (Jogi et al., 2002; Brodeur, 2003). 

In addition, factors such as MycN also play a role in neuroblastoma growth and 

differentiation (Vita and Henriksson, 2006). Why then is it important to study Tbdn? 

Tbdn is involved in tumorigenesis (Arnesen et al., 2006c). Knocking down Tbdn 

expression in HeLa cells by siRNA technology resulted in a decrease in cell viability by 

increasing the rate of apoptosis (Arnesen eta!., 2006c ). Tbdn is highly expressed in 
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cancers such as neuroblastoma, papillary thyroid carcinomas, gastric cancer, and Burkitt 

lymphoma. A commonality between these tumor types is their high rates of proliferation. 

Tbdn is up-regulated in neoplastic thyroid tissue versus non-neoplastic thyroid tissue 

indicating that the higher levels of the Tbdn protein may provide a growth advantage for 

the cancer cells (Arnesen et al. , 2005b). In addition, our laboratory showed that high 

Tbdn levels are found in the advanced stages of neuroblastoma specimens compared to 

the less aggressive stages (Martinet al., 2007). Possible mechanisms for such regulation 

of cellular growth and differentiation in cancer cells may involve the action of Nat I I Ard l 

as a factor acetyltransferase, or uncharacterized activities of Tbdn protein. In particular, 

I have reported that MycN can bind and regulate the expression ofTbdn (Figure 3-2 & 3-

4). 

In addition to MycN, Myc also appears to be linked to Tbdn expression. Tbdn has been 

shown to regulate cell growth in cervical (HeLa) cells that over-express both Tbdn and c­

Myc (Arnesen et al. , 2006c). Similar to HeLa cells, Ewing sarcoma cells also over­

express both Tbdn and c-Myc (Parham, 1996; Macville et al. , 1999; Henriksson et al. , 

2001; Rorie et al. , 2004; H. Paradis, personal communication). Knocking down Tbdn in 

this cell model resulted in a decrease in cell growth (in vitro) and tumor growth (in vivo) 

(H. Paradis, personal communication). 

c-MYC and MYCN are conserved genes belonging to the san1e family. Knockout models 

of either gene results in embryonic lethality (Nesbit et al., 1999). In addition, c-Myc and 
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MycN are transcription factors that dimerize to Max and bind to the same E-box 

(CACGTG) consensus sequence (Blackwell et a!., 1990; Blackwood and Eisenman, 

1991). Although both c-Myc and MycN have oncogenic potential, they are involved in 

different tumor types. c-Myc is generally involved in tumors such as epithelial cervix 

adenocarcinoma whereas MycN is involved mainly with neuroblastoma (Ben-Yosef et 

a!., 1998). Furthermore, based on the results from our group and others (Arnesen eta!. , 

2008), it is tempting to speculate that Myc may regulate Tbdn and/or Ardl in other 

cancer models. 

Tbdn and Cytogenetic Aberrations 

In addition to MycN, other factors such as cytogenetic aberrations may explain the 

pathobiology of neuroblastomas. In particular, the allelic loss of chromosome 4p was 

found in 20% of neuroblastomas irrespective of disease stage, patient age, loss of 

heterozygosity I p or MYCN amplification (Caron eta!., 1996a). Therefore, the allelic 

loss of 4p may impact upon neuroblastoma pathobiology (McGowan-Jordan et a!., 1994; 

van Noesel and Versteeg, 2004). More recently, Gisselsson eta!. completed a 

retrospective study using karyotypes from the Mitelman Database of Chromosome 

Aberrations in Cancer. Gisselsson and colleagues demonstrated whole chromosome 4 

loss in low-stage and low-risk neuroblastoma tumors (Gisselsson et al., 2007). Tbdn is 

located at 4p31 .1 and our laboratory reported that low levels of Tbdn expression are 

found in the low-stage and low-risk group (Martinet a!., 2007). It is tempting to 

speculate that loss of chromosome 4 may delete Tbdn . 
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Recently, Tbdn was found in a complex with the actin binding protein cortactin in retinal 

endothelial cells (Paradis eta!., 2008). Our laboratory has previously shown that Tbdn 

exerts a homeostatic influence in retinal endothelial cells although we have not yet 

identified in vivo acetyl transferase substrates of the Tbdn complex (Wall et al. , 2004; 

Paradis et a!., 2008). While these findings provide insight into understanding the nature 

of the Tbdn complex, they also raise the intriguing question of whether Tbdn associates 

with cortactin in neuroblastoma cells. Cortactin is also involved in the process of tumor 

progression and metastasis formation. Cortactin has been reported to be over-expressed 

in breast cancers as well as head and neck cancers (Buday and Downward, 2007). In 

addition, amplification of cortactin has been found to occur in aggressive head and neck 

squamous cell carcinoma (Clark eta!. , 2008), as well as a subgroup of neuroblastoma 

(Michels eta!., 2007). Therefore, it is tempting to speculate that the association between 

cortactin and the Tbdn complex may contribute to the aggressiveness of the NTs. 

5.1.4 Pitfalls & Future Directions 

Although I was unable to silence Tbdn expression in neuroblastoma (LA-N-5) cells using 

siRNA technology, I knocked-down Tbdn expression in other cell models such as rhesus 

macaque choroid-retina endothelial (RF/6A) cells. In addition, Arnesen and colleagues 

silenced Tbdn expression in epithelial cervical adenocarcinoma (HeLa) cells (Arnesen et 

a!. , 2006c). However, there are many reasons for not getting a decrease in Tbdn 

expression in the LA-N-5 cells using siRNA technology. Firstly, the optimal siRNA 

142 



sequence may not have been selected. Again, the only way to truly determine the optimal 

siRNA sequence is by experimental testing. Secondly, suppression ofTbdn alone may 

not show an effect on neuroblastoma cells since the co-interacting Ard 1 acetyl transferase 

may be limiting. In addition, our laboratory was also interested in over-expressing Tbdn 

to determine if neuroblastoma cells would become more malignant with increased levels 

of Tbdn expression. Many unsuccessful attempts to over-express Tbdn have been made 

by our laboratory. Again, over-expression of Tbdn alone may not show an effect on 

neuroblastoma cells since the co-interacting Ardl acetyltransferase may be limiting. 

Over-expression of either Tbdn or Ardl alone is not sufficient to result in an increase in 

acetyltransferase activity. Therefore, both Tbdn and Ardl must be over-expressed to 

attain an increase in the acetyltransferase activity (Mullen et al. , 1989; Arnesen eta!., 

2006c; Arnesen et a!. , 2008). 

A decrease in Tbdn and MycN expression was observed upon RA-induced differentiation 

of neuroblastoma cells (Thiele et al. , 1985; Martinet a!., 2007). To confirm the link 

between Tbdn, MycN, and differentiation, a MycN inducible system could be utilized. 

Unfortunately, the MYCN-inducible SHEP system generated by Lutz eta!. (1996) would 

not be an effective model to study the putative effects of MYCN on differentiation (Edsjo 

et al. , 2004). The problem with using the MycN-induced SHEP model is that the SHEP 

cell line is an S-type cell line and not anN-type. Treatment of the S-type cells with a 

differentiation agent such as RA would induce apoptosis instead of neuronal elongation 

(Voigt and Zintl, 2003). Subsequent to RA treatment, N-type cells elongate their 
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neuronal processes, reminiscent of axons or dendrites. However, S-type of cells lose 

their adherence to substratum and become apoptotic (Voigt and Zintl, 2003). Edsjo et al. 

over-expressed MycN in a SK-N-SH (N-type) cell line resulting in a SKMYC2 cell line 

that constitutively expressed MYCN (Edsjo et al., 2004). However, the downfall with 

this system is the lack of inducibility or regulation. Similarly, Slack et al. cloned MycN 

eDNA into a subclone of the SHEP cell line but again the cell line was epithelial-like 

(Slack eta!., 2005). Ideally, generating an inducible MycN system, in anN-type of cell 

that has the potential to differentiate would be the preferred model. 

As alluded earlier, I generated an in vitro conditional knockdown system to exan1ine the 

effects of Tbdn knockdown on neuroblastoma growth and differentiation. I planned on 

using these knockdown clones to complete preclinical work. A xenograft mouse model 

would have been used to determine if decreased Tbdn levels would have an effect on 

tumor growth or tumor differentiation. Three different approaches include giving 

Doxycycline to cells in vitro then injecting the cells into the nude mice; injecting the non­

induced cells into the mice then letting the tumor grow before giving the mice 

Doxycycline to determine if the tumor decreased in size; and removing Doxycycline from 

the diet of the mouse to determine if the tumor reappears. The expected outcome would 

be that knockdown of Tbdn expression may decrease or stabilize tumor growth and shift 

the level of tumor differentiation toward a more differentiate form . Unfortunately, there 

were many issues regarding the leakiness with this inducible system. Therefore, further 

experiments using this model system could not be completed. 
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Another focus of my work involves MycN, as alluded to earlier, is an important factor 

surrounding the aggressivity of neuroblastoma. Since my in vitro data suggests that 

MycN regulates Tbdn expression, I would be interested in determining in vivo if varying 

levels of MycN expression affects Tbdn expression. Could this outcome influence tumor 

progression? Before determining the effects of MycN on Tbdn expression in vivo, I will 

need an inducible MycN mouse model. William Weiss and colleagues have generated a 

transgenic mouse model that over-expresses MycN in the neuroectodermal cells, 

resulting in development of neuroblastoma (Weiss eta!., 1997). To target MYCN 

expression to the neural crest cells, Weiss and colleagues used a tyrosine hydroxylase 

promoter. The tyrosine hydroxylase promoter is active in migrating cells and targets 

catecholamine neurons during early development (Banerjee eta!., 1992). Weiss eta!. 

demonstrated that tumor formation is dependent on MYCN gene dosage. Homozygotes 

were reported to have increased incidence and decreased latency of tumor formation 

(Weiss eta!. , 1997). 

I would be interested in determining if there is a relationship between MYCN gene 

dosage, Tbdn activation, and tumor formation. By varying the levels of MycN 

expression I would expect to get varying levels ofTbdn activation. This would ultimately 

result in the generation of neuroblastoma tumors that varied in size and complexity. I 

would expect that high levels of MycN would drive Tbdn activation and result in the 
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generation of poorly differentiate tumors whereas low MycN expression would only 

weakly activate Tbdn and result in no tumor or a more differentiated tumor. 

These future experiments will help define the functional role that Tbdn plays in NT 

progression/development. In particular, the above mentioned experiments will determine 

whether Tbdn expression drives neuroblastoma growth and whether MycN regulates 

neuroblastoma growth through Tbdn expression using in vivo models. 

5.1.5 Potential Tubedown Mechanism 

My hypothetical Tbdn mechanism (Figure 5-3) is based on a deregulated Wnt/P-Catenin 

pathway that is found in high risk neuroblastoma without MYCN amplification (Liu et al., 

2008). Wnt/P-Catenin signaling may be of particular relevance to neuroblastomas, 

arising from highly migratory neural crest stem cells (Dyer, 2004; Mora and Gerald, 

2004 ). There are subsets of high-risk neuroblastomas without MYCN an1plification that 

have high MycN expression (Suenaga et al., 2009). MYCN mRNA is expressed at high 

levels in some subsets of neuroblastoma with only a single copy of the MYCN gene. This 

is accomplished by positive auto-regulation of MycN in human neuroblastomas. MycN 

protein enhances its own promoter activity through direct recruitment onto the intron 1 

region of the MYCN gene which contains two putative E-box sites (Suenaga et al., 2009). 
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Figure 5-3. Possible mechanism of Tubedown. 

Subsets of high-risk neuroblastomas without MYCN amplification can have high MycN 
expression that will potentially drive the expression of the Tbdn complex thereby 
acetylating Beta-Catenin and resulting in an increase in cellular proliferation. 

147 



High expression of the MycN protein will bind to the E-box located in the TBDN 

promoter region. Increased expression of the Tbdn/Ardl complex will drive the 

acetylation of ~-Catenin thereby providing a survival advantage for the cancer cells to 

grow. 
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