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ABSTRACT 

The mesoderm induction early response-! gene (mi-er I) is a fibroblast growth 

factor-inducible early response gene. It is activated during mesoderm induction in 

Xenopus embryos and it encodes a nuclear protein that functions as a transcriptional 

regulator. The human orthologue of this gene has 12 distinct transcripts encoding six 

protein isofonns, which differ in their amino (N) and carboxy (C) terminal domains. The 

C-terminal variants, alpha and beta, differ in both the size and sequence of their C­

terminal domain. 

Recently, the mouse orthologue of this gene was cloned and characterized and 

this study led us to determine the expression pattern of the MI-ER1 protein in mouse 

embryonic and adult tissues by immunohistochemistry. MI-ERl was expressed in all 

mouse tissues analyzed, with an overall decrease in expression in the adult compared to 

embryonic tissues. MI-ER1 beta was the only isoform expressed in the embryo, while 

both MI-ER1 alpha and beta were expressed in adult tissues. In the adult, the alpha 

isoform was particularly expressed at a high level in endocrine tissues, such as the 

adrenal gland, pancreas, ovary, and testis. There was distinct pattern ofMI-ER1 

expression in the adult mid-brain, with high expression in the CA3 cells of the 

hippocampus and the pyramidal cells of the thalamus. 

A complex pattern ofMI-ERl alpha and beta subcellular localization was found 

in the embryo and adult tissues of the mouse. In the embryo, the beta isoform was found 

in both the nucleus and the cytoplasm. In adult tissues, the beta isoform was found in the 

nucleus (and possibly in the cytoplasm in some instances), while the alpha isofonn was 
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found in the cytoplasm. The only exception to this was the adult testis, where MI-ERl 

alpha was found in both the nucleus and cytoplasm. Also, the spleen was the only adult 

tissue analyzed where MI-ERI alpha was not expressed and where we could definitely 

conclude that MI-ERl beta was located in the cytoplasm. 

The results of the current study were a powerful tool in providing the temporal 

and spatial expression ofMI-ERl in embryonic and adult mouse tissues. This work will 

be very significant for future work in the production of transgenic mice to further 

investigate functions ofMI-ERl. 
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1. INTRODUCTION 

1.1 General Introduction 

1.1.1 Cell proliferation and cancer 

A fundamental property of all cells is their ability to grow by synthesizing new 

proteins, lipids, carbohydrates and nucleic acids. Cell growth must be accompanied by 

cell division, where one cell gives rise to two new daughter cells. In order for this to 

occur, the cell must pass through a set of stages, referred to as the cell cycle (Figure 1 ). 

Most cells spend their time in the G 1 phase of the cell cycle, where the cell is not 

dividing (Dictor et al., 1999). Before the cell divides, it must pass through a checkpoint 

to ensure that the DNA is not damaged and can be replicated properly. After this, the cell 

enters the S phase, where DNA synthesis occurs and the G2 phase, where the cell 

continues to grow and produce new proteins. There is another important checkpoint 

between the G2 and M phases to ensure that the DNA has been replicated properly and 

that the cell is ready to divide. In theM phase, mitosis and cytokinesis occur, resulting in 

the division of the cel l. 

The control of the cell cycle depends on the cyclin dependent kinases (Cdks) and 

cyclins. Each Cdk protein and its corresponding cyclin protein can fonn a heterodimer 

with the Cdk as the catalytic subunit and the cyclin as the regulatory subunit. Thus, by 

themselves the cyclins have no catalytic activity and the Cdks are inactive without their 

cyclin partner. The resulting heterodimers can then activate or inactive target proteins to 

allow entry into the next phase of the cell cycle. 



Cyclin E + 
Cdk2 

CycllnD's+ 
Cdk4/Cdk6 

Figure 1: The cell cycle. The cell cycle can be divided into four stages: G 1, S, G2 and 
M. During mid G 1 cell cycle activities are dependent on Cdk4 and Cdk6 associations 
with D-type cyclins. The G 1 to S phase transition, where DNA replication is initiated, is 
driven by the activity of Cyclin E and Cyclin A with the Cdk2 molecule. The G2 toM 
transition is accomplished by the association ofCyclin B/Cdkl and Cyclin A /Cdkl 
complexes, which may phosphorylate cytoskeletal proteins, histones and nuclear 
envelope proteins. Finally, the destruction of Cyclin A and B, inactivates Cdkl and 
allows the cell to enter back into G 1. (Modified from (Lodish, 2000). 
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The cell cycle machinery may malfunction due to mutations or products of cellular 

metabolism to result in uncontrolled cell proliferation and the production of a mass of 

cells, or tumour (Hoeijmakers, 2001). Tumours can be classified as either benign or 

malignant, depending on their likelihood of spreading. Benign tumours do not invade 

neighbouring tissues and appear to grow slowly, while malignant (cancerous) tumours 

can invade or destroy tissues and proliferate rapidly (Cifone, 1982). 

Excessive cell proliferation can result from mutations that cause problems in the 

regulation of the cell cycle. These include two broad types of mutations: oncogenes (gain 

of function mutations) or tumour suppressor genes (loss of function mutations). An 

oncogene can arise from the mutation from a normal gene, or proto-oncogene, which are 

usually components of a growth factor signaling pathway ( eg. growth factors, receptors 

and protein kinases) that promote cell proliferation. The mutations that give 1ise to 

oncogenes include point mutations, DNA rearrangements, gene amplifications or 

chromosome translocations. These mutations cause the gene to be expressed at higher 

than normal levels, hence the name gain of function mutations. For example the ras gene 

is a proto-oncogene that relays signals from activated receptors on the cell surface by 

cycling between inactive GDP-bound and active GTP-bound states (Downward, 2003). 

The activated ras protein activates downstream kinase cascades that ultimately result in 

cell proliferation. Mutations in this gene result in uncontrolled cell proliferation and 

tumour fonnation. 

In contrast to oncogenes, tumour suppressor genes suppress cell proliferation by 

negatively regulating cell cycle progression. Their absence or inactivation can lead to 
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abnormal cell proliferation and ultimately the growth of a tumour. These genes are the 

"brakes" that restrain cellular proliferation, whereas oncogenes are the "accelerator". 

Tumour suppressor genes include the p 16 cyclin-kinase inhibitor, which regulates 

progression through specific stages of the cell cycle. 

1.1.2 Transcription 

In eukaryotic organisms, protein encoding DNA is transcribed into RNA by the 

enzyme RNA polymerase II (RNAP II), a 12-subunit polymerase that is able to 

synthesize RNA and proofread the transcript. The generation of the transcript can be 

divided into different steps including preinitiation, initiation, promoter clearance, 

elongation and termination. 

The assembly of the preinitiation complex (Figure 2), which consists of the 

general transcription factors IIA, liD, liB, liE, IIF, and IIH; RNA polymerase II; TATA 

box binding proteins (TBPs) and TAT A box associated factors , mark the start of 

transcription. A mediator, a large protein complex that binds RNAP ll and recruits it to 

the promoter region, is also often required in the preinitiation complex (Blazek et al., 

2005). 

To initiate transcription, RNAP II and the DNA template need to form an open 

complex. The open complex is generated by an ATP-dependent process where two 

general transcription factors (liE and IIH) melt the double stranded DNA into a single 

stranded bubble (Goodrich and Tjian, 1994; Holstege et al., 1996; Kim et al., 2000). The 

start of transcription initiation can be marked by the addition of two initiating nucleoside 
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triphosphates that are determined by the DNA sequence and the formation of the first 

phosphodiester bond. The presence of all nucleoside triphosphates and ATP allows 

RNAP II to clear the promoter and begin elongation (Dvir et al., 1996). 
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liD 

TATA BOX 
-25 

l\·Jediator 

Initiator 

Figure 2: The pre-initiation complex. Transcription factors , IIA, B, D, E, F and H 
bind to the promoter, along with the TATA box binding protein (TBP), TATA box 
associated factors. A mediator and RNA polymerase enzyme are also required to initiate 
transcription. Modified from (Mulligan, 2003) 
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Before the elongation stage can begin, the promoter must be cleared. During 

promoter clearance, the promoter initiation complex is partly disassembled. A number of 

general transcription factors remain at the promoter, such as TFII D, A, H E and 

mediator, which give structural support for the formation of the next transcription 

initiation complex (Zawel et al., 1995; Yudkovsky et al., 2000). One of these general 

transcription factors (TFIIH) is important in facilitating promoter clearance by helping to 

prevent premature arrest (Goodrich and Tjian, 1994; Dvir et al. , 1996; Kumar et al., 

1998). Once the promoter is cleared, the elongation process can begin. 

Elongation can be defined as the addition ofribonucleosides to a growing mRNA 

chain (Sims et al., 2004). Elongation is a regulated process that is controlled by various 

elongation factors (EFs) (any molecule that affects the activities of or is associated with 

the transcription elongation complex) and cofactors, which are associated with EFs. 

These factors include TFIIF, elongins (Bradsher et a!. , 1993 a; Bradsher et al. , 1993 b) and 

DSIF (5,6-dichloro-1-b-0-ribofuranosylbenzimidazole). They are important in 

stimulating the rate of transcription by RNAP II. Other elongation factors include NELF 

(negative elongation factor) and CSB (Cockayne syndrome group B). They play a role in 

halting RNAP II to allow 5' capping; and modulating the transcription factor TFIIS. 

The final step in the transcription cycle is tennination. In this step the RNAP II 

and mRNA strand are released from the DNA. However, before the transcript can be 

exported from the nucleus for translation, the mRNA needs to be processed (chemical 

modifications that are necessary to generate a final mRNA product) into a mature mRNA 

(Proudfoot, 2000). These processes include 5' capping, polyadenylation and splicing. 
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A. 5' Capping 

The process of 5' capping (Figure 3) can be defined as the addition of a guanosine 

nucleotide that is methylated at position 7 of the purine ring (Shatkin and Manley, 2000). 

This cap stabilizes the mRNA during translation by binding to ribosomes and translation 

initiation factors. It is also required to regulate nuclear export and prevent degradation by 

exonucleases (enzymes that hydrolize nucleic acids). 
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7-meUlylguanosine 5' end of mRNA 

I H H I 
0 0 

CH~ 5' to 5-' 
tnphospt1ate 

bridge 

Figure 3: The 5' Cap. The 5' cap is a guanosine nucleotide that is methylated at 
position 7 of the purine ring. It is added to the 5' end of the mRNA molecule to prevent 
degradation by exonucleases. 
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B. Polyadenylation 

This process involves the covalent linkage ofpolyadenylyl moieties (50-250 

adenosine nucleotides) to the 3' end of the mRNA molecule by the enzyme poly (A) 

polymerase (Shatkin and Manley, 2000). The function of the poly (A) tail is to protect 

the transcript from nuclease digestion and to help export it into the cytoplasm. 

C. Splicing 

Unlike prokaryotes, the primary mRNA of eukaryotes contains introns (internal 

parts of the transcript that are not translated) and exons (sequences that appear in the final 

mRNA and are translated into a protein). To produce a final mRNA product, the introns 

must be removed and the remaining RNA segments (exons) must be spliced together 

(Abelson, 1979). This can occur in one of two ways. The main method involves removal 

of introns by a splicesome, a group of snRNPs (small nuclear ribonucleoproteins) and 

additional proteins (Chabot and Steitz, 1987). The first step in this method is the 

formation of a mature splicesome. This occurs when the snRNPs U1 (Zillmann et al., 

1987), U2, U4/U6 (Lamond eta/., 1988) and U5 bind to the intron. Next, the mRNA is 

cleaved at the 5' splice site and the newly released 5' end of the intron is covalently 

joined to an adenine residue at the branch point sequence. This creates a looped structure 

called a lariat. Finally, the 3' splice site is cleaved and the two ends of the exon are 

joined together. The excised intron lariat is then targeted for degradation. 

In rare cases, there are transcripts that have self-splicing introns (Cech and Bass, 

1986). In this instance, the transcript can complete the splicing of introns without the 

help of any proteins. The intron itself (referred to as a ribozyme) catalyzes this reaction. 

10 



1.1.3 Chromatin Structure 

Transcription is partially regulated by chromatin structure and the packaging of the 

DNA molecule (Figure 4). DNA is wound around an octomer of histone molecules (two 

each ofH2A, H2B, H3 and H4) to make up a nucleosome (Becker eta/. , 2000) . Each 

histone has a tail of varying length that protrudes from the nucleosome and these tails can 

be modified (see section B below). The Hl protein then packages the nucleosomes into 

30 run chromatin fibers. The next level of packaging involves the folding of the 30 run 

into looped domains, which are approximately 50,000 - 100,000 bp in length. Insoluble 

networks of non-histone proteins maintain the looped domains. These loops can further 

be packaged into heterochromatin and finally into chromosomes. 
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Nucleosomes 

30 nrn chromatin 
fiber 

Looped domains 

Highly corullens~~Cl 
duplicated 
chromosome 

Centromere 

110 A 
-'-

T 
300A 

1 

T 
3000 A 

1 

T 
1000 A 

1 

1.4 Jl 

1 

Figure 4: DNA packaging. The DNA molecule is packaged on a number of levels. 
First, it is packaged into nucleosomes by histone proteins and then into 30 nm fibers. To 
further condense the DNA, the fibers are packaged into looped domains and then into 
heterochromatin. Finally, the heterochromatin is packaged into a highly condensed 
chromosome. (Modified from Becker et al. 2000) 
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Transcription requires that DNA is accessible to transcription factors and RNA 

polymerase enzymes, thus, the creation of a stable, tightly-wound, inaccessible chromatin 

structure can repress transcription, while an unwound, accessible structure can increase 

the rate of transcription (Narlikar et al., 2002). Two major classes of chromatin­

modifying complexes exist: A TP-dependent remodelling complexes and histone acetyl 

transferase (HAT) or histone deacetylase (HDAC) complexes. 

A. ATP-dependent remodelling complexes 

These complexes, which consist of an A TPase subunit use ATP hydrolysis to 

increase the accessibility of nucleosomal DNA. They can move positions, thereby 

exposing or occluding DNA sequences, and can create conformations where DNA is 

accessible on the surface of the histone octamer (Narlikar et al., 2002). 

B. HAT and HDAC 

These complexes covalently modify nucleosome structure by acetylating or 

deacetylating lysine residues in the N-tenninal region of the histone proteins. The 

enzyme HAT acetylates conserved lysine residues on the amino terminal tails of core 

histones (Davie, 1998), thereby opening the chromatin structure and increasing the rate of 

transcription. They include two broad classes: nuclear (A-type) and cytoplasmic (B-type) 

HATs, with further subdivisions within each class. HDACs have the opposite effect; 

they deacetylate lysine residues at the N-tenninus ofhistones, condensing the chromatin, 

making it inaccessible to transcription factors, and ultimately repressing transcription. 
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Phylogenie analyses have subdivided HDACs into four families:class I, II, III (sirtuins) 

and IV . The catalytic domain of classess I, II and IV share sequence and structural 

homology and all require zinc for their catalytic mechanism. In contrast, the sirtuins 

(class III) do not share sequence or structural homology with the other HDAC classes and 

use a distinct catalytic mechanism that involves the cofactor nicotinamide adenine 

dinucleotide (NAD+) (Frye, 2000). 

1.2 Mesoderm induction - early response gene 1 

1.2.1. Fibroblast growth factors and mesoderm induction 

Fibroblast growth factors (FGFs) are signaling proteins that are important in 

cellular responses, including mitogenesis, differentiation, angiogenesis and 

transformation (Baird and Klagsbrun, 1991 ). There are at least 19 different members 

present in the FGF family, which are related by amino acid sequence and their ability to 

bind heparin (Miyamoto eta!., 1993). The FGFs bind to FGF receptors (FGFR), a 

subfamily of cell surface receptor tyrosine kinases, present on the cell membrane and this 

action induces responses in the cell. High affinity FGFRs (Figure 5) are transmembrane 

proteins that have an extracellular binding domain consisting of two to three 

immunoglobulin domains. They have an intracellular domain that consists of a 

juxtamembrane region, a tyrosine kinase domain and a carboxyl terminal tail (Jaye et al. , 

1992). When FGFs bind to the extracellular binding domain of the receptor, the receptor 

becomes dimerized to trigger tyrosine kinase activation (McKeehan et al. , 1998), which 

leads to autophosphorylation of the intracellular domain. The autophosphorylation of 
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tyrosine acts as a mechanism for the construction and recruitment of signalling 

complexes (Schlessinger, 2000). Signaling proteins possessing protein-protein binding 

motifs such as Src homology 2 domains can then bind to the phosphorylated tyrosines, 

which in tum leads to the phosphorylation and activation of these signalling proteins 

(Pawson et al., 1993; Forman-Kay and Pawson, 1999). The signal transduction cascade 

can then occur through either of three pathways: the Ras/MAPK pathway, the PLC 

gamma/Ca2+ and the PI3 kinase/ Akt pathway. 
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Figure 5: The fibroblast growth factor receptor. The FGFR consists of a signal 
peptide, three immunoglobulin domains (which are separated by an acidic box), a 
transmembrane and juxtamembrane region, and a tyrosine kinase domain (which is 
interrupted by an interkinase domain). These domains have different functions that allow 
signaling through this receptor. 
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The differentiation of the mesoderm in Xenopus laevis embryo ex plants is 

induced by FGFs (Slack eta!., 1987). The mesoderm arises from cells located in the 

equatorial region of the blastula stage embryo and these cells are induced to form 

mesoderm when a signal is released from neighbouring vegetal cells (Nieuwkoop, 1985) 

(Figure 6). During mesoderm induction, FGF binds to receptors in the cell membrane, 

which become phosphorylated on tyrosine. This then binds to intracellular substrates to 

form a signaling complex (Ryan and Gillespie, 1994). This results in the activation of a 

number of signal transduction pathways. For example, protein kinase C (Gillespie et al., 

1992) and a mitogen-activated protein kinase become activated during mesoderm 

differentiation (Hartley et al., 1994). The ultimate targets of the signal transduction 

pathways are the immediate early genes. These cellular genes are expressed immediately 

after resting cells are stimulated by extracellular signals such as growth factors and 

neurotransmitters. 
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1 2 organizer 3 
Animal 

Ventral 

Signal 1 Vegetal 
organizer 

Figure 6: Mesoderm induction in Xenopus embryos. The first two signals for 
mesoderm induction are released from the vegetal pole - one from the ventral side and 
one from the dorsal side. The ventral mesoderm is specified by signal 1, while the 
Spemann organizer and the dorsal mesoderm are specified by signal 2. Signal 3 
dorsalizes the adjacent mesoderm by inhibiting the ventralizing action of signal 4. 
Modified from (Wolpert, 2002) 
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1.2.2. Xenopus mi-er 1 

Many studies using Xenopus laevis as a model system have been important in 

elucidating molecular mechanisms of gene regulation and for studying the earliest stages 

of vertebrate embryonic development due to its external development and the large 

number of embryos that it produces. The mi-er1 gene was first identified in Xenopus 

laevis embryo explants that were being induced to differentiate into mesodenn (Paterno 

et al., 1997). Xmi-er 1 contains an open reading frame of 1497 base pairs that is predicted 

to encode a protein of 493 amino acids. The predicted protein contains one functional 

nuclear localization signal (NLS), targeting it to the nucleus (Post et al. , 2001) as well as 

stretches of acidic amino acids in its N-terminus, that have been shown to function as a 

transcriptional activator (Paterno eta/., 1997). Xmi-er 1 is similar in three regions to the 

rat metastasis-associated gene, mta-1 , a gene whose expression is indicative of a 

metastatic phenotype. Mta-1 and mi-er1 are not homologs, but their gene products are 

possibly related families of proteins or proteins that contain similar domains. 

The gene mi-er1 is to be considered an immediate early gene (a gene that is 

activated transiently and rapidly by cellular stimuli at the transctiption level in the first 

round of response to stimuli, before new proteins are synthesized) for many different 

reasons. First, fibroblast growth factor-induced increase in mi-er 1 is not dependent on de 

novo protein synthesis, since the protein inhibitor, cycloheximide does not prevent FGF 

induced increases in MI-ER1 levels (Paterno et al., 1997). Furthermore,Xmi-er1 

transcripts are predominant during initial cleavage and blastula stages in Xenopus 
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development, and they peak during late blastulation. This evidence, taken together, 

shows that mi-er 1 is an immediate early gene. 

1.2.3 Human mi-er 1 

Human mi-er I is a single copy gene, located on chromosome 1, spanning 63 

kilobases and containing 17 exons (Paterno et al., 2002). Exon 3A is a "skipped exon", 

that is included in the transcript only at certain times. The last intron functions as a 

facultative intron, an intron that is also only present in the mature transcript at certain 

times. Three distinct 5' ends have been identified for the transcripts of this gene, which 

either include exon lA or lB while the skipped exon 3A is alternatively used. The other 

exons ( exons 4 to 15) are constitutive exons that are always included in the transcript. 

There are also four distinct 3' ends that have been identified, which have been called a, 

bi, bii, and biii. These depend on the alternate inclusion of the facultative intron (intron 

15) and the alternate use of three polyadenylation signals (Figure 7). 

The different transcripts code for proteins with different N and C tetmini. The 

three different 5' ends encode for 3 distinct N terminal domains (Paterno et al. 2002). 

The first N tetminal domain (Nl) contains exon lA, exon 2A and exon 3A. Another N­

terminal domain (N2) consists of exon lA and exon 2A only. Finally, another N tern1inal 

domain (N3) has exon 1 B instead of exon 1 A and does not contain exon 3A. The four 

alternate 3' ends encode two distinct C-terminal domains: alpha and beta. The alpha C 

terminus results from the removal of intron 15 and encodes a 23 amino acid domain. The 

beta C-tern1inus represents a sequence encoded by the bi, bii and biii ends and includes 
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intron 15. The three distinct N-termini in combination with the two C-termini are 

predicted to encode six distinct human MI-ERl protein isoforms. These are multiple 

forms of the same protein that differ in their amino acid sequence and are produced by 

alternative splicing of mRNA. Thus, the six different isoforms of mi-er 1 are N1 alpha, 

N1 beta, N2 alpha, N2 beta, N3 alpha and N3 beta (Figure 7). These are 457, 536, 432, 

511,433 and 512 amino acids respectively. Although, six different protein isoforms have 

been found in the human, only the N3 beta isoform has been found in Xenopus to date. 

The protein hMI-ER1 displays 91% similarity to the xMI-ER1 protein with 

stretches of 100% identity. These include one NLS and a proline rich region 

corresponding to the consensus for binding Src-homology 3 (SH3) domains. A SANT 

domain, which is characteristic of proteins involved in transcriptional regulation, is also 

100% conserved between the human and Xenopus MI-ERl. This high degree of identity 

between human and Xenopus MI-ERl indicates that it is conserved between vertebrate 

species. 

Human mi-er 1 is expressed at very low levels in normal human tissues, but mi-er 1 

mRNA expression is upregulated in breast carcinoma cell lines and in breast tumours 

(Paterno et al., 1998). This indicates that the expression of mi-er1 is associated with the 

neoplastic state (abnormal and uncoordinated tissue growth) in human breast carcinomas. 

Therefore, mi-er 1 may play a role in the pathology of human cancer. 
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Figure 7: Structure of human mi-erl gene and its transcripts (adapted from Paterno et 
al. 2002) 
The structure of the mi-erl gene (A) and a magnified version (B) shows the arrangement 
of the exons, introns, C-terminal coding regions, and alternate AUG start sites. The 
alternative transcripts (C) have 3 alternative 5'ends and 4 alternative 3' ends that arise as 
a result of alternative splicing, alternative start sites and the use to alternative poly A 
signals. 
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1.2.4 Mouse mi-er 1 

Recently, the mouse ortholog of mi-er 1 was cloned and characterized as a single 

copy gene located on chromosome four (Thome et al., 2005). Mouse mi-er1 has the same 

intron-exon structure as the human gene with the exception of exon 3A, in which an 

alternate upstream 3' splice acceptor is utilized. Like the human version, multiple 

transcripts are produced in the mouse, including orthologs of human N 1 beta, N2 beta, 

and N3 beta. A novel mouse isoform has been isolated containing sequence from an 

additional exon located between exon four and five that produces a fourth alternate N­

terminus. The MI-ERl alpha transcripts have been detected in the testis at the RNA level 

by a Northern blot (Grant, 2004). Nl beta and N3 beta are ubiquitously expressed in the 

mouse, while N4 beta is only expressed in the testis. N2 beta is expressed in most 

tissues, but is not found in heart, brain, eye, or skeletal muscle (Thome eta/. , 2005). 

The mouse mi-er 1 gene is currently being studied since the mouse (Mus 

musculus) has the potential to make major contributions to the study of mi-er 1. The 

study of the structure and expression of mouse mi-er 1 is necessary for any future 

construction of transgenic mice, whose genetic constitution has been experimentally 

altered by the addition or substitution of genes (Randall D., 2002). This type of study 

could be extremely useful to the study of mi-er 1 and its function in human cancers as the 

human and mouse genes are more than 98 percent identical. Thus, by determining the 

function of mi-er 1 in the mouse, important information can be learned about mi-er 1 in 

humans. 
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1.2.5 Domains of MI-ERl 

A. SANT domain 

The MIER-1 protein contains a SANT domain. This domain has been implicated 

in DNA binding and in protein-protein interactions (Aasland et al., 1996), which include 

interactions with complexes containing histone deacetylase (Guenther et al., 2001; You et 

al. , 2001). This domain has previously been found in other transcription regulatory 

molecules such as SMRT (Ordentlich et al. , 1999), N-CoR (Aasland et al., 1996) and in 

transcription/chromatin regulatory complexes such as MTA-1 (Toh et al., 2000). 

Proteins that are involved in cell differentiation and development may contain the SANT 

domain as well. For example, the protein Eg1-27 found in C. elegans (Solari et al., 

1999), and the protein Co Rest (You et al., 2001) both contain the SANT domain. 

The SANT domain ofhMI-ERl has recently been shown to bind and inhibit the 

Spl protein, a transcription factor with three zinc-fingers that binds GC-boxes and assists 

the further binding of the multiprotein complex TFIID, which promotes the initiation of 

gene transcription (Dynan and Tjian, 1983; Kolell and Crawford, 2002; Yoo et al., 2002; 

Yu et al., 2003). HMI-ERl physically associates with the Spl protein, through its SANT 

domain, thereby preventing Spl from binding to the promoter and activating gene 

transcription (Ding et al., 2004). Thus, by binding to the Sp1 protein through the SANT 

domain, hMI-ERl can repress transcription of target genes. 

B. ELM-2 domain 
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MI-ERl contains the ELM-2 domain, which is N-terminal to its SANT domain. 

It has been found that MI-ERl recruits histone deacetylase (HDAC) to its ELM-2 domain 

(Ding et al., 2003). HDAC is an enzyme that removes an acetyl group from N-acetyl 

lysine amino acids on a histone protein. Deacetylation restores a positive charge, 

increasing histones affinity for DNA and consequently down regulating transcription. 

Thus, by recruiting HDAC to its ELM-2 domain, hMI-ERl acts a transcriptional 

repressor. 

C. NLS 

The MI-ERl protein sequence also contains one functional NLS (Post et al., 

2001 ), short stretches of amino acids that mediate the transport of proteins into the 

nucleus (Tinland et al. , 1992). The only functional NLS in the MI-ERl protein is located 

in the beta C-terminal domain. Thus, only the beta isoform can be transported to the 

nucleus by its NLS. Although alpha does not contain a NLS, binding to other proteins 

that contain these sequences can transport it to the nucleus. 

D. Acidic Activation Domain 

The MIER-1 protein contains four acidic activation domains that have been 

previously characterized for the xMI-ERl protein (Paterno et al. 1997). Acidic activation 

domains are found in many transcription factors, such as the protein RF2a (bZIP 

transcription factor, which regulates expression from the promoter of rice tungro 
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bacilliform bandavirus) (Dai et al., 2003). These domains function to activate 

transcription of other genes. 

E. Proline-rich region 

The MIER -1 sequence also contains a proline rich region near the C-tenninus. 

Proline rich regions are common binding motifs because they contain PP II helices, 

which are extended structures with three residues per tum (Kay et al., 2000). The proline 

residues in the PP II helix form a continuous hydrophobic region around the surface of 

the helix. The backbone carbonyl groups are ideal hydrogen bonding sites, since they are 

conformationally restricted, making them poorly hydrated and electron-rich. Therefore, 

PP II helices present an easily available hydrophobic surface, as well as a good hydrogen­

bonding site. 

The MI-ERl protein contains a proline rich motif in its common region, C­

terminal to the SANT domain. It has been shown that the proline 365, within the proline 

rich region, regulates the activity ofXMI-ERl and inhibits mesodenn induction in 

Xenopus embryonic development (Teplitsky et al., 2003). 

F. LXXLL motif 

The MI-ERl alpha protein contains an LXXLL motif, where L represents the 

amino acid leucine and X represents any other amino acid. This motif (also referred to as 

the NR-box) is commonly found in nuclear receptor coactivators (SRC-1 , CBP, MICoA). 
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Figure 8: Domains of the MI-ERl protein. MI-ERl contains many different domains. 
Alternate splicing gives rise to two isoforms that differ in the C-terminal (alpha and beta). 
Black boxes indicate areas where there is no known domain. 
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1.2.6 Subcellular localization of MI-ERl 

In this study, the subcellular localization of the MI-ERI protein in mouse tissues 

was examined. It is important therefore to note which isoform contains the NLS and 

where the isofom1s are located in Xenopus and human. 

The MI-ERI beta isoform contains the only functional NLS in its C-terminal 

domain, which targets it to the nucleus. However, in Xenopus, MI-ERI beta is retained 

in the cytoplasm during cleavage stages by binding to a cytoplasmic anchor (Post et al., 

2005) and only begins to appear in the nucleus at mid-blastula stage (Luchman et al., 

1999). Transfection assays have revealed that hMI-ERl alpha, which lacks the NLS, 

remains in the cytoplasm (Paterno et al. , 2002). These studies show that MI-ERI beta is 

found primarily in the nucleus, while MI-ER1 alpha is found in the cytoplasm. 

1.3 Mouse embryo staging 

In this study, the expression ofMI-ER1 was examined in 8, 12 and 16-day mouse 

embryos, thus it is important to understand the development of the embryo at these 

stages. 

The 8-day embryo is the first stage where MI-ERI expression was examined in 

this study. At this point in development, (Figure 9) the brain plate of the central nervous 

system has developed rapidly in the mouse and detennines the form of the embryo 

(Theiler, 1972). Furthennore, at this stage the first seven somites appear, with the neural 

folds closing at the level of the fourth and fifth somite. At this age, the circulatory 

system develops by the formation of blood islets (an aggregation of mesodennal cells on 

28 



the embryonic yolk sac that can potentially form the vascular endothelium and primitive 

blood cells) and the endocardial tube. Within the circulatory system, the heart rudiment 

and pericardia! cavity develop and the dorsal aorta starts to form. At 8-days of age, the 

foregut pouch appears and the gut epithelium becomes columnar and cuboidal in certain 

areas. 

By the time the embryo is 12 days old, it has taken on a much different shape 

(Figure 9) and is seven to nine millimeters long {Theiler, 1972). The central nervous 

system becomes more developed at this stage, with the appearance of the pineal gland, 

thickening of the lens vesicle and development of the semicircular canals. The heart also 

develops further: the atrium becomes septated and the truncus arterious (located between 

the pulmonary artery and aorta) begins to part. At this stage the lungs are buds, which 

have developed both secondary and tertiary bronchi. Finally, the epithelium of the 

digestive tract also becomes specialized in the different regions and there is blood formed 

in the liver. 

The embryo develops greatly by the time it becomesl6 days old (Figure 9). It has 

grown to 14-17 mm, the fingers and toes have formed, the eyes develop, the auditory 

meatus is covered by pinna and the abdominal cavity has enlarged {Theiler, 1972). 

Within the central nervous system, the primary cerebral cortex enlarges, and in the 

diencephalon the hypophysis begins to differentiate from the pineal gland. The heati and 

vessels of the circulatory system also have their final prenatal configuration. 

Furthermore, the intestine forms crypts and the blood cell production in the liver 

increases. Finally, the lung tissue becomes compact and more vascularized. 
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Figure 9: General Overview of Mouse Embryo Development from 8 to 16 days. 

From left to right: 8-day old embryo, 12-day old embryo, and 16-day old embryo 

(modified from Downs and Davies, 1993). 
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1.4 Objective of study 

The purpose of this study was to determine the expression of the MI-ERl protein 

in various embryonic stages and in different adult tissues of the mouse by 

immunohistochemistry and to determine the subcellular localization of the MI-ERl alpha 

and beta proteins. Expression patterns are important to the study of proteins as they can 

provide an indicator of where the protein may function and when it is functioning in a 

particular tissue. Thus, this expression study will give us important infonnation 

regarding MI-ERI in different mouse tissues. 

The mi-erl gene has been cloned and characterized in Xenopus, human, mouse 

and functional studies of the MI-ERl protein have been completed in vitro and in vivo in 

various cell lines. However, to date there has been no work done with in vivo mouse 

models. Thus, a major goal in the MI-ERl study is to construct transgenic mice. Before 

such a major project is started, however, preliminary work must be completed to 

investigate where and when the MI-ERI protein is expressed in the mouse embryo and 

adult. This study will also aid in deciding what type of transgenic mouse would be most 

useful to construct in the future. 
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2. MATERIALS AND METHODS 

2.1 Mouse embryo and adult tissue sections 

Mouse adult brain, adrenal gland, heart, kidney, liver, lung, ovary, pancreas, leg 

muscle, intestine, spleen, testis, and all the embryo sections were obtained from Novagen, 

EMD Biosciences (Mississaga, Ontario, Canada). The tissue or embryos were dissected 

from the mouse and immersed immediately in PBS containing four percent 

paraformaldehyde. After fixation for twenty-four hours at four degrees Celsius, the 

tissues were washed in PBS, dehydrated through a graded series of ethanol washes, 

cleared in xylene and embedded in paraffin. Sections were then cut at a thickness of 

seven microns and mounted on slides that had been previously treated for adherence. 

The slides were shipped at ambient temperature and stored at four degrees Celsius before 

use. 

Mouse adult thyroid sections were obtained from Zyagen Laboratories (San 

Diego, California, USA). The organs were freshly harvested from Swiss Webster mice 

and cut into small pieces, fixed for sixteen to twenty-four hours in ten percent neutral 

buffered formalin and embedded in paraffin. The paraffin blocks were sectioned at a 

thickness of five to seven microns and mounted on slides treated for adherence. The 

sections were shipped at room temperature in tightly closed slide boxe . (Note: Either 

Novagen EMD Biosciences or Zyagen completed the tissue fixation, preparation, 

embedding and sectioning). 
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2.2 Immunohistochemistry using anti pan MI-ERl 

Immunohistochemistry was performed using the Vectastain Elite ABC kit from 

Vector Laboratories (Burlington, Ontario, Canada). First, the sections were 

deparaffinized in three changes of xylene for five minutes and hydrated through a graded 

alcohol series (two changes of 100 percent alcohol for five minutes each, one change of 

ninety-five percent alcohol for one minute and one change of seventy percent alcohol for 

one minute). The sections were then rinsed with water to remove any alcohol and to 

completely hydrate the tissues. To quench any endogenous peroxidase activity, the 

sections were incubated in zero point three percent hydrogen peroxide for thirty minutes. 

After this, the sections were rinsed in distilled water to remove excess hydrogen 

peroxide. 

When tissues are fixed and processed, the antigens often become masked and 

need to be retrieved. To retrieve the antigen, the sections were incubated in a ten 

millimolar sodium citrate buffer. The buffer was first heated in the microwave to ninety­

five degrees Celsius in a plastic coplin jar, the slides were then placed in the buffer and 

incubated in a ninety-five degrees Celsius water bath for ten minutes. After removal 

from the water bath, the sections were cooled to room temperature while in the buffer and 

then rinsed in PBS for five minutes. 

To block the sections from non-specific labeling, the sections were incubated in 

one percent goat serum (Vector Laboratories) in PBS for twenty minutes and the slides 

were blotted around the section with gauze after the incubation time. After this, the 

antibody was appropriately diluted in one percent BSA in PBS and one milliliter of the 
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diluted pan MI-ERI antibody (Paterno et al., 2002) (1 :800 dilution) was applied to each 

slide. The slides were then placed in a covered chamber to prevent evaporation and 

placed at four degrees Celsius overnight 

The following day, the slides were washed with PBS for five minutes to remove 

excess antibody. Next, the sections were incubated in diluted biotinylated goat anti­

rabbit secondary antibody for thirty minutes and the slides were rinsed in PBS. 

Vectastain Elite ABC reagent (Vector Laboratories) was then added to the slides and they 

were incubated for another thirty minutes. After the incubation, the slides were rinsed in 

PBS for five minutes and then the slides were incubated with DAB from Dako 

(Mississago, Ontario, Canada) until the desired staining intensity developed (between 45 

seconds and two minutes). The slides were then rinsed in distilled water. 

To counterstain the sections, the slides were incubated in hematoxylin for three 

minutes, rinsed, and differentiated in one percent acid alcohol (dipped in solution for 

approximately three seconds). After rinsing again, the sections were blued with Scott's 

tap water for one minute and rinsed in distilled water. To dehydrate the sections, the 

slides were incubated in seventy percent alcohol for one minute, ninety-five percent 

alcohol for one minute and two changes of one hundred percent alcohol for three minutes 

each. The sections were then cleared in two changes of xylene for five minutes each and 

mounted in Permount media. The sections were viewed under a compound light 

microscope (Olympus BH-2) and the pictures were taken with a digital camera. 

To analyze the sections, the intensity of staining and the percent of nuclei stained 

were examined. The intensity of staining was graded semi-quantitatively by three 
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separate people (myself, Dr. Laura Gillespie and Ph.D. student Patricia McCarthy) 

according to a scale of: + = weak staining, ++ = moderate staining, and +++ = strong 

staining. An estimated value for percent of nuclei stained in each tissue was also 

examined qualitatively by viewing the tissue under low power (forty times magnification) 

on the light microscope. 

2.3 Immunohistochemistry using anti-MIERl alpha 

Immunohistochemistry was performed using the Universal LSAB kit (Dako). 

The sections were cleared, hydrated, and quenched of peroxidase activity as described for 

the anti-pan MI-ER1. The antigen retrieval method was also performed the same as 

described for anti-pan MI-ERI. 

To block the sections from non-specific labeling, the sections were incubated in 

universal blocker (Dako) for twenty minutes and the slides were blotted around the 

section with gauze after the incubation time. Following this, the MI-ERI alpha antibody 

(Paterno eta!. , 2002) was appropriately diluted in one percent BSA in PBS and one 

milliliter of the diluted antibody was applied to each slide. The slides were then 

incubated overnight at four degrees Celsius. The method of incubation was perforn1ed as 

described for the previous antibody, with the exception of the antibody dilution which 

was 1:1200. 

The following day, the slides were washed with PBS for five minutes to remove 

excess antibody. Next, the sections were incubated in biotinylated anti-rabbit secondary 

35 



antibody in PBS (Daleo) containing stabilizing protein and 0.015 molar sodium azide for 

thirty minutes and the slides were rinsed in PBS. Strepavidin conjugated to horseradish 

peroxidase in PBS (Daleo) containing stabilizing proteins and an antimicrobial agent was 

then added to the slides and they were incubated for another thirty minutes. After the 

incubation, the slides were rinsed in PBS for five minutes and then the slides were 

incubated with DAB (Dako) until the desired staining intensity developed (between forty 

five seconds and two minutes). The slides were then rinsed in distilled water. 

Counterstaining, dehydration, clearing, mounting, photography and analysis were 

performed as described for the previous antibody. 

2.4 Immunohistochemistry using anti- MI-ERl beta 

Unfortunately, anti-MI-ERl beta was not suitable for immunohistochemistry of 

these prepared sections. Although the antibody is suitable for Western blotting and 

imrnunoprecipitations, it gave an unsuitable amount of background staining when the 

preimmune serum was used. Therefore, we can only deduce the expression of the beta 

isoform until an appropriate antibody becomes available. Since mMI-ER 1 has two 

distinct C-termini, it is possible to deduce expression of the beta isoform by analyzing the 

staining of the mouse tissues with the pan-antibody (recognizes both isofonns) and 

comparing it to the staining with the alpha antibody. The only time where we can 

definitely conclude that MI-ERl beta is expressed is when there is staining with the pan, 

but not the alpha antibody. When there is staining with both the pan and the alpha 
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antibody, we can conclude that MI-ER1 alpha is expressed, but we cannot determine 

whether MI-ER1 beta is expressed. 

3.RESULTS 

3.1 MI-ERl expression in mouse embryonic and corresponding adult tissues 

The 8, 12, and 16-day embryonic stages cover a major part of mouse development 

given that the average gestation time is 20 days. Therefore, 8, 12 and 16-day mouse 

embryos, as well as adult heart, lung, liver, intestine, brain and skeletal muscle were 

stained with both pan anti-MI-ER1 (1 :800 dilution) and anti MI-ER1 alpha (1: 1200 

dilution). Also, the expression of the beta isoform can, in some instances, be deduced 

from the expression pattern found using the alpha and the pan antibody. The expression 

ofMI-ER1 beta can only be deduced when expression is detected with the pan antibody, 

but not the alpha antibody. For example, if the pan antibody detects expression in the 

nucleus and the cytoplasm and the alpha antibody detects expression in the cytoplasm, 

then we can definitely conclude that beta is expressed in the nucleus. It may also be 

expressed in the cytoplasm with alpha, but we would need a beta specific antibody to 

definitely conclude this. 

The immunohistochemical analysis revealed ubiquitous nuclear and cytoplasmic 

expression in cells of the 8, 12, and 16-day embryo when stained with the pan antibody. 

There was no expression detected with the alpha antibody, thus, we can conclude that 

only MI-ERl beta is expressed in the 8, 12 and 16-day mouse embryonic cells. 
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3.1.2 Brain 

There was intense expression ofMI-ERl, both in the cell nuclei (75% of nuclei) 

and in the cell cytoplasm in embryonic brain cells shown by using the pan anti-MIER1 

antibody (Figure 10 C and E). Expression was not detected with anti-MI-ER1 alpha 

(Figure 10 G and 1), indicating that the beta isoform is only expressed. Therefore, MI­

ERl beta is expressed in the cell nuclei and cytoplasm of the embryonic brain. 

In the adult brain, a complex pattern of staining was observed and the level of 

staining was significantly decreased compared to the embryo. Pan anti-MI-ER1 detected 

a moderate level of cytoplasmic expression in cells of the cortex region of the brain, 

particularly in the pyramidal cells (Figure 11 C and D). There were certain areas of the 

cortex where the pyramidal cells were moderately stained (75%), while there were other 

areas where little staining was detected. Weak cytoplasmic expression of MI-ER1 alpha 

was detected with the anti-MI-ERl alpha antibody in the pyramidal cells (Figure 12C and 

D), indicating that Ml-ERl alpha is expressed here. Thus, MI-ERl alpha and possibly 

beta are expressed in the cytoplasm of the pyramidal cells. In addition, there was 

moderate level intensity staining of the neuronal processes in the cortex with the alpha 

specific antibody. 

Expression was detected in the hippocampus of the brain (Figures II G/H and 12 

G/H). Exclusive and moderate cytoplasmic expression was found in the CA3 cells 

(Figure 11 Hand 13 H) with both the pan and the alpha antibody, indicating that the 

alpha isofonn (and possibly beta) are expressed here. 
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In the thalamus (Figures 13 C/D and 14 C/D), there were varying levels of 

cytoplasmic staining in cells with the pan and alpha antibody. In some areas there was 

intense cytoplasmic staining of the pyramidal cells (60%), while there were other areas 

where no staining was detected. Given the cytoplasmic staining with both the pan and 

alpha antibody, MI-ERl alpha and possibly beta are expressed in this region of the brain. 

The alpha antibody detected an intense level ofMI-ER1 alpha expression in the 

cytoplasm of the neurons in the hypothalamus; the pan antibody detected only weak 

expression (Figures I 3 G/H and 14 G/H). This shows that the alpha isoform (possibly 

beta) are present in the cell cytoplasm. Furthennore, there was also a moderate level of 

anti-MI-ERl alpha staining in the neuronal processes indicating MI-ERl alpha 

express10n. 

3.1.3 Skeletal muscle 

Cytoplasmic expression was detected at a high level with the pan antibody in 

embryonic myocytes (Figure 15 C and E), while expression was not detected with the 

alpha antibody (Figure 15 G and I), indicating that MI-ER1 beta is the only isoform 

expressed in embryonic skeletal muscle. In myocytes of adult skeletal muscle tissue, a 

low level of cytoplasmic expression was detected with both the pan and the alpha 

antibody (Figure 16). Therefore, MI-ERl alpha is expressed only in the cytoplasm of 

cells in this tissue and it is possible that MI-ERl beta is expressed in a similar manner. 
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3.1.4 Heart 

Strong cytoplasmic expression was detected in the embryonic endocardial heart 

cells of the atria with pan anti-MI-ER1 (Figure 17 C and E), while expression was not 

detected with the alpha antibody (Figure 17 G and I), indicating that only the beta 

isoform is expressed in the embryonic heart cells. Because one of mouse embryo 

sections from Novagen did not contain any part of the embryonic ventricle of the heart, it 

was impossible to ascertain the level of staining in this part of the tissue. As a result of 

this, only the cells of the embryonic atrium could be analyzed with the pan antibody. In 

myocardiocytes of the adult heart, both the pan and the alpha antibody detected a 

moderate level of expression ofMI-ER1 in the cytoplasm, (Figure 18) therefore, we can 

conclude that only MI-ER1 alpha is expressed. 

3.1.5 Lung 

In the embryonic lung, a strong level of cytoplasmic staining was detected with 

the pan antibody (Figure 19 C and E) in stromal cells. In the epithelium cells of the 

bronchi, only the cytoplasm was stained. No expression was detected with anti MI-ERI 

alpha (Figure 19 G and I). This shows that MI-ER 1 beta is the only isofmm expressed in 

cells of the embryonic lung and this expression was both nuclear and cytoplasmic. In the 

adult lung, the staining intensity was significantly lower. In the bronchial epithelial cells, 

the cytoplasm was weakly stained with both the pan (Figure 20 C and D) and alpha 

(Figure 20 G and H) antibodies. This indicates that MI-ERl alpha and possibly beta are 

expressed in the cell cytoplasm. No expression was detected in the alveolar epithelium 

with either antibody. 
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3.1.6 Digestive Tract 

In the embryonic mouse digestive tract (Figure 21) strong cytoplasmic expression 

was found with the pan antibody in the enterocytes of the villi and smooth muscle cells. 

Expression was not detected with the anti-MI-ERl alpha. Thus, MI-ERI beta is 

expressed in the cytoplasm of these cells. In the enterocytes of the adult intestine, a 

moderate level of staining was observed for the pan antibody, while a weak level was 

detected with the alpha antibody (Figure 22). Thus, we can conclude that alpha is 

expressed in the cytoplasm of the enterocytes. 

3.1.7 Liver 

There are two types of cells in the embryonic liver: the hepatocytes and the 

hematopoietic cells. In the 16-day mouse embryonic liver, there was one cell type where 

strong expression was detected with the pan antibody (Figure 23 C and E) in the nucleus 

and cytoplasm; the other cell type did not express MI-ERl. These two cell types can be 

differentiated according to their morphology (one cell type was large and irregular, while 

the other cell was smaller and more rounded in shape), however, specific differentiation 

of the different cell types could not be determined. No expression was detected with the 

alpha antibody (Figure 23 G and I), indicating that MI-ERl beta is expressed in the 

nucleus and cytoplasm of embryonic liver cells. In the adult liver (Figure 24), the pan 

antibody detected a moderate level of expression in the nuclei and the cytoplasm of the 

hepatocytes, while only the cytoplasm was weakly stained with anti- MI-ERl alpha. We 

can therefore conclude that alpha is expressed in the cytoplasm, while beta is expressed 

in the nucleus and possibly cytoplasm of adult mouse liver hepatocytes. 
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Figure 10. Expression of MI-ERl in the embryonic mouse brain. 

The estimated position of the sections taken from the 16-day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). Hindbrain of the 16 day mouse 

embryo was stained with preimmune sera (B,D) or pan anti-MI-ER1 (C,E) and 

preimmune sera (F,H) or anti-MI-ERl alpha (G,I). Boxes shown in Band C correspond 

to panels D and E while boxes in F and G correspond to panels Hand I, respectively. 

Arrows indicate MI-ER1 expression in cell nuclei and cell cytoplasm. Immunostaining 

appears brown while counterstain appears blue. 
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Figure 11. Expression of MI-ERl in the cerebral cortex and hippocampus of the 

adult mouse brain. 

The cerebral cortex (A-D) and the hippocampus (E-H) of the adult mouse brain were 

stained with preimmune sera (A,B and E,F) or pan anti-MI-ERl (C,D and G,H). Boxes 

shown in A and C correspond to panels B and D while boxes in E and G correspond to 

panels F and G, respectively. Arrows indicate staining in the nuclei and cytoplasm of 

pyramidal cells (D) and the cytoplasm of CA3 cells (H). Imrnunostaining appears brown 

while counter tain appears blue. 
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Figure 12. Expression of MI-ERl alpha in the cerebral cortex and hippocampus of 

the adult mouse brain. 

The cerbral cortex (A-D) and the hippocampus (E-H) of the adult mouse brain were 

stained with preimmune sera (A,B and E,F) or anti-MI-ER1 alpha (C,D and G,H). Boxes 

shown in A and C correspond to panels Band D while boxes in E and G correspond to 

panels F and H, respectively. Arrows indicate staining in the cytoplasm of the pyramidal 

cells (D) and CA3 cells (H). Immunostaining appears brown while counterstain appears 

blue. 
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Figure 13. Expression ofMI-ERl in the thalamus and hypothalamus of the adult 

mouse brain. 

The thalamus (A-D) and the hypothalamus (E-H) of the adult mouse brain were stained 

with preimmune sera (A,B and E,F) or pan anti-MI-ERl (C,D and G,H). Boxes shown in 

A and C correspond to panels Band D while boxes in E and G correspond to panels F 

and H, respectively. Arrows indicate staining in the pyramidal cells (D) and neurons (H). 

lmmunostaining appears brown while counterstain appears blue. 
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Figure 14. Expression ofMI-ERl alpha in the thalamus and hypothalamus of the 

adult mouse brain. 

The thalamus (A-D) and the hypothalamus (E-H) of the adult mouse brain were stained 

with preimmune sera (A,B and E,F) or pan anti-MI-ERl (C,D and G,H). Boxes shown in 

A and C correspond to panels Band D while boxes in E and G correspond to panels F 

and H, respectively. Arrows indicate staining in the cytoplasm of the pyramidal cells (D) 

and neurons (H). Immunostaining appears brown while counterstain appears blue. 
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Figure 15. Expression of MI-ERl in embryonic mouse skeletal muscle. 

The estimated position of the sections taken from the 16 day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). Skeletal muscle of the 16 day mouse 

embryo was immunostained with preimmune sera (B,D) or pan anti-MI-ER1 (C,E) and 

preimmune sera (F,H) or anti-MI-ERI alpha (G,I). Boxes shown in Band C correspond 

to panels D and E while boxes in F and G correspond to panels Hand I, respectively. 

Arrows indicate MI-ER1 expression in cell nuclei and cell cytoplasm. Immunostaining 

appears brown while counterstain appears blue. 
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Figure 16. Expression ofMI-ERl in adult mouse skeletal muscle. 

Skeletal muscle of the adult mouse was stained with preimmune sera (A,B) or pan anti­

MI-ERl (C,D) and preimmune sera (E,F) and anti-MI-ERl alpha (G,H). Boxes shown in 

A and C correspond to panels B and D and boxes shown in E and G correspond to panels 

F and H respectively. Arrows indicate cytoplasmic staining in myocytes. 

Immunostaining appears brown while counterstaining appears blue. 
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Figure 17. Expression ofMI-ERl in the embryonic mouse heart. 

The estimated position of the sections taken from the 16 day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). Heart of the 16 day mouse embryo 

was immunostained with preimmune sera (B,D) or pan anti-MI-ERl (C,E) and 

preimmune sera (F,H) or anti-MI-ERl alpha (G,I). Boxes shown in Band C correspond 

to panels D and E while boxes in F and G correspond to panels Hand I, respectively. 

Arrows indicate MI-ERl expression in cell cytoplasm. Immunostaining appears brown 

while counterstain appears blue. 
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Figure 18. Expression of MI-ERl in the adult mouse heart. 

The heart ventricle of the mouse was stained with preimmune sera (A,B) or pan anti-MI­

ERl (C,D) and preimmune sera (E,F) and anti-MI-ERl alpha (G,H). Boxes shown in A 

and C correspond to panels B and D and boxes shown in E and G correspond to panels F 

and H respectively. Arrows indicate cytoplasmic staining in myocytes. Immunostaining 

appears brown while counterstaining appears blue. 
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Figure 19. Expression of MI-ERl in the embryonic mouse lung. 

The estimated position ofthe sections taken from the 16 day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). Lung of the 16 day mouse embryo 

was immunostained with preimmune sera (B,D) or pan anti-MI-ER1 (C,E) and 

preimmune sera (F,H) or anti-MI-ER1 alpha (G,I). Boxes shown in Band C correspond 

to panels D and E while boxes in F and G correspond to panels Hand I, respectively. 

Arrows indicate MI-ERl expression in bronchial epithelial cell cytoplasm. 

Immunostaining appears brown while counterstain appears blue. Br=bronchus;St = 

stroma. 
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Figure 20: Expression of MI-ERI in the mouse adult lung. 

The lung of the mouse was stained with preimmune sera (A,B) or pan anti-MI-ERI (C,D) 

and preimmune sera (E,F) and anti-MI-ERI alpha (G,H). Boxes shown in A and C 

correspond to panels B and D and boxes shown in E and G correspond to panels F and H 

respectively. Arrows indicate cytoplasmic staining in bronchial and alveolar epithelium. 

Immunostaining appears brown while counterstaining appears blue. EP=epithelium;A V= 

alveoli. 
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Figure 21. Expression of MI-ERl in the embryonic mouse digestive tract. 

The estimated position of the sections taken from the 16 day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). The digestive tract of the 16 day 

mouse embryo was immunostained with preimmune sera (B,D) or pan anti-MI-ERl 

(C,E) and preimmune sera (F,H) or anti-MI-ERl alpha (G,I). Boxes shown in Band C 

correspond to panels D and E while boxes in F and G correspond to panels H and I, 

respectively. Arrows indicate MI-ERl expression in cell nuclei and cell cytoplasm. 

Immunostaining appears brown while counterstain appears blue. V = villi;LP = lamina 

propna. 
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Figure 22: Expression ofMI-ERl in the adult mouse digestive tract. 

The digestive tract of the adult mouse was stained with preimmune sera (A,B) or pan 

anti-MI-ERI (C,D) and preimmune sera (E,F) and anti-MI-ERl alpha (G,H). Boxes 

shown in A and C correspond to panels B and D and boxes shown in E and G correspond 

to panels F and H respectively. Arrows indicate cytoplasmic staining cells of the villi. 

Immunostaining appears brown while counterstaining appears blue. 
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Figure 23. Expression of MI-ERl in the embryonic mouse liver. 

The estimated position of the sections taken from the 16 day old mouse embryo for 

subsequent immunohistochemistry is indicated (A). The liver of the 16 day mouse 

embryo was immunostained with preimmune sera (B,D) or pan anti-MI-ER1 (C,E) and 

preimmune sera (F,H) or anti-MI-ER1 alpha (G,I). Boxes shown in Band C correspond 

to panels D and E while boxes in F and G correspond to panels H and I, respectively. 

Arrows the different cell types in the embryonic liver (E). Immunostaining appears 

brown while counterstain appears blue. 
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Figure 24. Expression of MI-ERl in the adult mouse liver. 

The liver of the adult mouse was stained with preimmune sera (A,B) or pan anti-MI-ERl 

(C,D) and preimmune sera (E,F) and anti-MI-ERl alpha (G,H). Boxes shown in A and C 

correspond to panels B and D and boxes shown in E and G correspond to panels F and H 

respectively. Arrows indicate cytoplasmic (D,H) and nuclear (D) staining in the 

hepatocytes. Immunostaining appears brown while counterstaining appears blue. 

V=vessel. 
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3.2 Expression of MI-ERl alpha and beta in other adult mouse tissues 

The expression pattern ofMI-ERl in other adult mouse tissues, those that did not 

have visible corresponding tissues in the 16-day embryo section, was examined. These 

tissues included the kidney and the spleen. 

3.2.1 Kidney 

In the adult kidney, a moderate level of nuclear and cytoplasmic expression was 

evident in all the epithelial cells of the cortical tubules when stained with the pan­

antibody (Figure 25 C and D). Only cytoplasmic expression was evident with the alpha 

antibody in these cells (Figure 26 C and D) and this staining was less intense than that of 

the pan antibody. The most intense level of staining was seen in the cells of the outer 

cortex and in the cells of the medullary rays extending into the medulla. Overall, we can 

conclude that MI-ERl beta is expressed in the nucleus and MI-ERl alpha is expressed in 

the cytoplasm in the cells of the cortex and medulla. Interestingly, MI-ERl expression 

was not detected with either antibody in the podocytes of the glomeruli. In the epithelial 

cells of medullary collecting tubules, both the nuclei and cytoplasm were moderately 

stained with the pan antibody (Figure 25 G and H), while only the cytoplasm was stained 

with the alpha antibody (moderate level of staining) (Figure 26 G and H), indicating that 

the beta isoform is expressed in the nucleus (possibly in the cytoplasm) and the alpha 

isoform is expressed in the cytoplasm of these epithelial cells. 

3.2.2 Spleen 
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In the spleen, a moderate level of expression ofMI-ERl was detected with the 

pan antibody in the cytoplasm of the cells of the white pulp and weak nuclear and 

cytoplasmic expression in the cells of the red pulp (Figure 27). No expression was 

detected with the alpha antibody (Figure 28). Thus, only the beta isoform is expressed in 

the spleen and this expression is both nuclear and cytoplasmic. 

73 



Figure 25. Expression of MI-ERl in the adult mouse kidney. 

The cortex (A-D) and the medullla (E-H) of the adult mouse kidney were stained with 

preimmune sera (A,B and E,F) or pan anti-MI-ERl(C,D and G,H). Boxes shown in A 

and C correspond to panels Band D while boxes in E and G correspond to panels F and 

H, respectively. Arrows indicate nuclear and cytoplasmic staining in the epithelial cells 

of the cortical tubules (D) collecting tubules (H). Immunostaining appears brown while 

counterstain appears blue. CL = cortical labyrinth; CT = collecting tubule; 

G=glomerulus; MR = medullary rays. 
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Figure 26. Expression of MI-ERl alpha in the adult mouse kidney. 

The cortex (A-D) and the medulila (E-H) of the adult mouse kidney were stained with 

preimmune sera (A,B and E,F) or anti-MI-ERl alpha (C,D and G,H). Boxes shown in A 

and C correspond to panels B and D while boxes in E and G correspond to panels F and 

H, respectively. Arrows indicate cytoplasmic staining in the epithelial cells of the 

cortical tubules (D) collecting tubules (H). Immunostaining appears brown while 

counterstain appears blue. CL = cortical labyrinth; CT = collecting tubule; 

G=glomerulus; MR = medullary rays. 
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Figure 27. Expression ofMI-ERl in the adult mouse spleen. 

Mouse adult spleen was stained with preimmune sera (A,C,E) and pan anti-MI-ERl 

(B,D,F). Boxes shown in A correspond to panels C and E while boxes shown in B 

correspond to panels D and F. Arrows indicate nuclear (F) and cytoplasmic (D and E) in 

cells of the spleen. Immunostaining appears brown while counterstain appears blue. 

WP= white pulp; RP = red pulp. 
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Figure 28: Expression of MI-ERl alpha in the adult mouse spleen 

Mouse adult spleen was stained with preimmune sera (A,C,E) and anti-MI-ER1 alpha 

(B,D,F). Boxes shown in A correspond to panels C and E while boxes shown in B 

correspond to panels D and F. lmmunostaining appears brown while counterstain 

appears blue. WP= white pulp; RP = red pulp. 

80 



Pre immune Immune 

81 



- -------------------------------------------------------------------------

3.3 Expression of MI-ERl in adult mouse endocrine and endocrine responsive 

tissues 

Since MI-ERI interacts with several nuclear steroid hormone receptors, including 

the estrogen receptor (Savicky et al. 2004), we investigated the expression pattern in 

various mouse endocrine organs and in organs that are responsive to estrogen, such as the 

adrenal gland, thyroid, pancreas, ovary, and testis. 

3.3.1 Pancreas 

The mouse pancreas exhibited a dynamic pattern of expression (Figure 29). A 

very low level of MI-ERl cytoplasmk expression was detected in some of the exocrine 

cells with both the alpha and pan antibodies, indicating that the alpha form is expressed 

there. However, the expression of MI-ERl in the endocrine cells of the Islets of 

Langerhans was extremely intense. Expression was detected with both antibodies and 

was cytoplasmic in both cases, indicating that the alpha isoform is expressed in the 

endocrine cells of the Islets. 

3.3.2 Thyroid 

In the thyroid gland (Figure 30), the colloid, in the centre of the follicle was 

stained with both antibodies, however this is extracellular staining and is most likely an 

artifact. Intense cytoplasmic staining was detected with the pan antibody in all the 

thyroxine and triiodothyronine secreting follicular cells bordering the colloid; anti-pan 

MI-ERl detected no nuclear expression, indicating Ml-ERl beta cytoplasmic expression. 

The parafollicular cells, which do not border the colloid, have larger nuclei and secrete 
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calcitonin, were stained intensely with the two antibodies. Expression was detected in 

both the nuclei (25%) and cytoplasm with the pan-antibody and only in the cytoplasm 

with the alpha antibody. Thus, we can conclude that alpha is expressed in the cytoplasm 

and beta is expressed in the nuclei (and possibly cytoplasm) of the parafollicular cells. 

3.3.3 Adrenal glands 

Another endocrine organ, the adrenal gland, expressed MI-ER L in both its cortex 

and medulla. In the cells of the zona glomerulosa of the cortex, the proliferative region, 

intense nuclear and cytoplasmic staining was detected, when using the pan antibody 

(Figure 31D) while MI-ERl alpha was exclusive to the cytoplasm (Figure 32D). This 

shows that MI-ERL beta is expressed in the cell nuclei, while alpha and possibly beta are 

expressed in the cell cytoplasm. In the cells of the zona fasciculata, the corticosterone 

and cortisol secreting zone, both the nuclei (approximately 50%) and cytoplasm were 

stained with the pan antibody (Figure 31 D). However, in the zona fasciculata, there was 

a small region of cells closest to the outside that was not stained with the pan antibody, 

thus Ml-ERl was not expressed there. Expression was detected in the cell cytoplasm 

with the alpha antibody (Figure 32D), indicating that Ml-ERl beta is expressed in the 

nuclei, while MI-ERl alpha and possibly beta are expressed in the cytoplasm of cells of 

the fasciculata. There was a gradient of staining when the alpha antibody was used, with 

the staining becoming more intense towards the medulla. In the innermost region of the 

cortex, the x-zone (the zone which secretes sex hormone substrates), the pan antibody 

detected weak cytoplasmic expression in the cells, while the alpha antibody detected no 
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expression (Figures 31 F and 32F), thus only the beta isoform is expressed in the cells of 

the x-zone. Finally, in the chromaffin cells of the medulla, there was intense cytoplasmic 

expression detected with both pan (Figure 31H) and alpha anti-MI-ERl (Figure 32H), 

and a medium level of nuclear staining (approximately 50% of the nuclei) was detected 

with the pan antibody. This indicates that beta is expressed in the nuclei, while alpha is 

expressed in the cytoplasm ofthese chromaffin cells. 

3.3.4 Testis 

In the testis, differentiation of sperm occurs from the outermost region to the 

lumen of the seminferous tubule. Germ cells progressively differentiate into mature 

sperm as they move from the outermost layer to the lumen. Thus, one can identify 

spermatogonia on the periphery of the tubule (close to the tunica propria), spermatocytes 

in the middle and mature sperm in the lumen of the tubule. In the spermatogonia, 

approximately 50% of the nuclei and all of the cytoplasm of the cells were stained 

strongly with the pan antibody (Figure 33D); weak cytoplasmic expression was detected 

in all the cells with the alpha antibody (Figure 33H). Thus, MI-ERl alpha and possibly 

beta are expressed in the cytoplasm and MI-ERl beta is expressed in the nuclei ofthe 

spennatogonia. All the nuclei and the cytoplasm of the spermatocytes were stained at a 

strong level with the pan antibody; anti-MI-ERl alpha detected only weak cytoplasmic 

expression in these cells. This indicates alpha and possibly beta cell cytoplasmic 

expression and beta nuclear expression. In the spermatozoa, the cell cytoplasm was 

stained moderately with the pan antibody and weakly with the alpha antibody, 

demonstrating that MI-ERI alpha and possibly beta are expressed here. 
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3.3.5 Ovary 

In the ovary, mature ova are generated by oogenesis as the primary follicles 

develop into secondary follicles and finally into mature Graafian follicles where the 

oocyte is released. Once this occurs, the follicle degenerates into a corpus luteum. The 

mouse ovary showed a distinct pattern of expression of both isoforms. In all the 

granulosa cells of the primary follicle, there was intense nuclear staining detected with 

the pan antibody (Figure 34D), while expression was not detected with the alpha antibody 

(Figure 35D), indicating that MI-ERl beta is only expressed in these cells. The pan 

antibody detected intense expression in both the cytoplasm and the nucleus in all the 

granulosa cells from the secondary follicle (Figure 34F), while the alpha antibody 

detected expression in only the cytoplasm (Figure 35F), indicating that the beta isoform is 

expressed in the nucleus while the alpha and perhaps beta isof01ms are expressed in the 

cytoplasm of these cells. In the granulosa cells of the secondary follicles, there was a 

gradient of staining present when the alpha antibody was used, with the staining 

becoming more intense towards the inner cells closest to the oocyte. Both the antibodies 

also stained the oocyte (at all stages), indicating that alpha and possibly beta are 

expressed here. In the ovary, the corpus luteum was also stained. A moderate level of 

cytoplasmic and nuclear (50% of nuclei) expression were detected in the cells with the 

pan antibody (Figure 34H), while only weak cytoplasmic expression was found with the 

alpha antibody (Figure 35H), thus, we can conclude that the beta isoform is expressed in 

the cell nuclei , while the alpha isofonn is expressed in the cell cytoplasm. MI-ERl beta 

may or may not be present in the cytoplasm. 
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Figure 29. Expression ofMI-ERl in the adult mouse pancreas 

The pancreas of adult mouse was stained with preimmune sera (A,B) and pan anti-MI­

ERl (C,D) or preimmune sera ( E,F) and anti-MI-ERl alpha (G,H). Boxes shown in A 

and C correspond to panels B and D while boxes shown in E and G correspond to panels 

F and H, respectively. Arrows indicate cytoplasmic staining in the islet cells. 

Imuunostaining appears brown while counterstain appears blue. 
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Figure 30. Expression of MI-ERl in the adult mouse thyroid. 

The thyroid of adult mouse was stained with preimmune sera (A,B) and pan anti-MI-ERl 

(C,D) or preimmune sera ( E,F) and anti-MI-ERl alpha (G,H). Boxes shown in A and C 

correspond to panels B and D while boxes shown in E and G correspond to panels F and 

H, respectively. Arrows indicate nuclear and cytoplasmic staining in the follicular cells, 

parafollicular cells, and colloid. lmuunostaining appears brown while counterstain 

appears blue. C = colloid; FC = follicular cells; PF = parafollicular cells. 
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Figure 31. Expression of MI-ERl in the adult mouse adrenal gland. 

The adrenal glands of adult mouse were stained with preimmune sera (A,C,E,G) and pan 

anti-MI-ERl (B,D,F,H). Boxes shown in A correspond to panels C,E, and G while boxes 

shown in B correspond to panels D,F and H respectively. Arrows indicate nuclear and 

cytoplasmic staining in cells of the zona glomerulosa and zona fasciculata (D,F) and 

nuclear and cytoplasmic staining in cells in the medulla (H). Immunostaining appears 

brown while counterstain appears blue. ZG = Zona glomerulosa; ZF = Zona fasciculata; 

X = X-zone; M = Medulla. 
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Figure 32. Expression ofMI-ERl alpha in the adult mouse adrenal gland 

The adrenal glands of adult mouse were stained with preimmune sera (A,C,E,G) and anti­

MI-ERl alpha (B,D,F,H). Boxes shown in A correspond to panels C,E, and G while 

boxes shown in B correspond to panels D,F and H respectively. Arrows indicate 

cytoplasmic staining in cells of the zona glomerulosa and zona fasciculata (D,F) and 

cytoplasmic staining in cells of the medulla (H). Immunostaining appears brown while 

counterstain appears blue. ZG =Zona glomerulosa; ZF =Zona fasciculata ; X = X-zone; 

M =Medulla. 
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Figure 33. Expression of MI-ERl in the adult mouse testis 

The testis of adult mouse was stained with preimrnune sera (A,B) and pan anti-MI-ERI 

(C,D) or preimrnune sera ( E,F) and anti-MI-ERl alpha (G,H). Boxes shown in A and C 

correspond to panels B and D while boxes shown in E and G corre pond to panels F and 

H, respectively. Arrows indicate nuclear and cytoplasmic staining of spermatocytes (D) 

and cytoplasmic staining of sperrnatocytes(H). Imuunostaining appears brown while 

counterstain appears blue.Sg = Spennatogonia; Sc = Spermatocytes; Sz = Spermatozoa. 
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Figure 34. Expression of MI-ERl in the adult mouse ovary 

Ovary of adult mouse was stained with preimmune sera (A,C,E,G) and pan anti-MI-ERl 

(B,D,F,H). Boxes shown in A correspond to panels C,E, and G while boxes shown in B 

correspond to D,F and H. Primary follicles are shown in C and D; Secondary follicles are 

shown in E and F; and the corpus luteum is shown on G and H. Arrows indicate staining 

in the primary follicle (D), cytoplasmic and nuclear staining of the secondary follicle (F) 

and corpus luteum (H). Immunostaining appears brown while counterstain appears blue. 

TI= theca intema; GC= granulosa cells; PO= primary oocyte, A=antrum. 
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Figure 35. Expression of MI-ERl alpha in the adult mouse ovary 

Ovary of adult mouse was stained with preimmune sera (A,C,E,G) and anti-MI-ERl 

alpha (B,D,F,H). Boxes shown in A correspond to panels C,E, and G while boxes shown 

in B correspond to D,F and H. Primary follicles are shown in C and D; Secondary 

follicles are shown in E and F; and the corpus luteum is shown on G and H. Arrows 

indicate staining in the primary follicle (D), cytoplasmic staining of the secondary follicle 

and oocyte (F) and corpus luteum (H). Immunostaining appears brown while 

counterstain appears blue. TI= theca intema; GC=granulosa cells; PO= primary oocyte. 
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3.4 Results summary 

In the 8, 12, and 16-day mouse embryo the alpha isoform was not detected, thus 

only MI-ERl beta appears to be expressed in the embryo. Overall, there was decreased 

expression ofMI-ERl in the adult compared to the embryo. Furthermore, there was a 

pronounced difference in MI-ERl subcellular localization between many tissues in the 

embryo and tissues in the adult {Tables 1, 2 and 3). There was both nuclear and 

cytoplasmic expression ofMI-ERl beta in cells of the embryonic brain and liver, while 

there was cytoplasmic expression ofMI-ERl alpha (and possibly MI-ERI beta) in the 

cells of the corresponding adult tissue. There was a change in the subcellular localization 

ofMI-ER1 from the embryo to the adult in cells of the skeletal muscle, heart, lung and 

digestive tract. In these embryonic tissues, MI-ERI beta was expressed in the cytoplasm 

of the cells, while MI-ER1 alpha was expressed in the cytoplasm of the corresponding 

adult cells. 

The adult mouse spleen was the only adult tissue where there was no detectable 

expression ofMJ-ER 1 alpha. Furthermore, the spleen was the only adult tissue where 

MI-ERI beta was clearly expressed in the cytoplasm. In the other adult tissues that had 

cell cytoplasmic staining with the pan antibody, there was also staining with the alpha 

antibody. Thus, the MI-ERI beta isoform could be expressed in the cytoplasm with the 

alpha isofonn in the cells, but it is also equally possible that only alpha was expressed. 

In the cells of the adult tissues examined, there was an overall weak level of MI­

ERlexpression, with the exception of the endocrine tissues. Interestingly, the endocrine 

organs showed a particularly high level ofMI-ERl expression. The thyroid, pancreas, 
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adrenal gland, ovary, and hypothalamus expressed both MI-ERI beta and alpha. Of note, 

there was a particularly high level ofMI-ERl alpha expression compared to the other 

non-endocrine adult tissues that were examined. Thus, MI-ERl alpha is more highly 

expressed in endocrine tissues than non-endocrine tissues of adult mice. 
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Table 1: Location of pan MI-ER1 and MI-ER1 alpha expression in the 16-day 
mouse embryo 

TISSUE PAN ANTI-MI-ERl STAINING 

Cell 
nuclei 

Brain +++ 
Skeletal 0 
muscle 
Heart 0 
Lung 0 
Digestive 0 
Tract 
Liver +++ 

Key: 

0 = no staining 
+ = weak staining 
++ = moderate staining 
+++ = intense staining 

%cell Cell 
nuclei cytoplasm 

75 +++ 
0 +++ 

0 +++ 
0 +++ 
0 +++ 

50 +++ 
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ANTI-MI-ERl ALPHA 
STAINING 
Cell %of Cell 
nuclei cell cytoplasm 

nuclei 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 



Table 2: Location of pan MI-ERI and MI-ERI alpha expression in adult mouse 
tissues 

TISSUE PAN ANTI-MI-ERI STAINING ANTI-MI-ERl ALPHA 
STAINING 

Cell % cell Cell Cell %cell Cell 
nuclei nuclei cytoplasm nuclei nuclei cytoplasm 

Brain 
Cortex 0 0 ++ (75% of 0 0 + (75% of 

cells) cells) 
Hippocampus 0 0 +++ 0 0 ++ 
Thalamus 0 0 + (60% of 0 0 +++ (60% of 

cells) cells) 
Hypothalamus 0 0 + 0 0 +++ 
Skeletal 0 0 + 0 0 + 
Muscle 
Heart 0 0 ++ 0 0 ++ 
Lung 
Epithelium 0 0 + 0 0 + 

surrounding 
bronchi 

Alveoli 0 0 - 0 0 -
Digestive 0 0 ++ 0 0 + 
Tract 
Liver ++ 100 ++ 0 0 + 
Kidney 

Cortex 
-Tubules + 100 ++ 0 0 ++ 
-Glomeruli 0 0 0 0 0 0 

Medulla ++ 100 ++ 0 0 ++ 
Spleen 

Red pulp + 100 ++ 0 0 0 

White pulp 0 0 ++ 0 0 0 

Pancreas 
Islets of 0 0 +++ 0 0 +++ 

Endocrine 
Exocrine 0 0 + 0 0 + 

Portion 
Thyroid 

Follicular 0 0 +++ 0 0 -
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cells 
Parafollicular +++ 

cells 

Adrenal 
gland 

Cortex 
-Glomer. +++ 
-Fasciculata ++ 
-Reticularis 0 

Medulla ++ 
Testis 
Spermatogonia +++ 
Spermatocytes +++ 
Spermatozoa 0 
Ovary 
Follicular +++ 

cells of 1° 
follicle 
Follicular +++ 
cells of2° 
follicle 

Corpus ++ 
luteum 

Key: 

0 = no staining 
+ = weak staining 
++ = moderate staining 
+++ = intense staining 

100 +++ 0 0 +++ 

100 +++ 0 0 +++ 
50 ++ 0 0 + 
0 + 0 0 + 

50 +++ 0 0 +++ 

50 +++ 0 0 + 
100 +++ 0 0 + 
0 ++ 0 0 + 

100 +++ 0 0 0 

100 +++ 0 0 +++ 

50 ++ 0 0 + 
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Table 3: Comparison of subcellular localization of MI-ERl alpha and beta in 

embryonic and adult mouse tissues 

TISSUE MI-ERl ALPHA M I-ERl BETA 

Nucleus Cytoplasm Nuclear Cytoplasm 

Embryonic brain - - - + 

Adult brain - + - ? 

Embryonic skeletal - - - + 
muscle 

Adult skeletal muscle - + - ? 

Embryonic heart - - - + 

Adult heart - + - ? 

Embryonic lung - - - + 

Adult lung - + - ? 

Embryonic digestive tract - - - + 

Adult digestive tract - + - ? 

Embryonic liver - - + + 

Adult liver - + + ? 

Kidney - + + ? 

Spleen - - + + 

Pancreas - + - ? 

Thyroid - + + ? 
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Adrenal gland - + + ? 

Testis + + + ? 

Ovary - + + ? 

Key: 

+= Expressed 

- - Not expressed 

? = Cannot conclude 
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4. DISCUSSION 

MI-ERlexpression was detected in the mouse tissues that were analyzed in this 

study, except the bladder and the eye (data not shown). In these tissues, the preirnmune 

staining was too strong to draw any definite conclusions. It is possible that these tissues 

would need to be stained with a different antibody concentration as only one 

concentration could be tested in this study. 

4.1 MI-ERl alpha is not expressed in the mouse embryo 

In the mouse embryo, there was no expression ofMI-ERl alpha detected in the 8, 

12 or 16-day embryo, while the pan-antibody detected MI-ER 1 expression meaning that 

the only isofonn present in the 8, 12 and 16-day embryo is MI-ERl beta. It is possible, 

however, that MI-ERl alpha is expressed at an extremely low level that was below the 

level of detection. In this case, the expression would be so low that the isoform would 

likely not play a vital role in the embryo. Also, when MI-ERl alpha expression could not 

be detected with the alpha and pan specific antibodies, different antibody concentrations 

were used and immunostaining experiments were repeated. This ensured that the absence 

ofMJ-ER1 alpha detection was not due to the use of an inappropriate antibody dilution. 

The observation that the alpha isofonn is not expressed in the embryo from 8 to 

16 days is extremely important to any future transgenic studies of mi-er 1. These results 

show that it may be possible to knock out the alpha isofmm without producing an 

embryonic lethal. The results also tell us that it would not be advantageous to eliminate 

the beta isoform. Since the isoform was so strongly expressed in the embryo and has 
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previously been shown to play an important role in Xenopus development (Teplitsky et 

al., 2003), then it is likely that it is playing a crucial role in the mouse embryo as well. 

Thus, knocking out MI-ERl beta would likely produce an embryonic lethal. 

Other studies involving knockouts of the FGF signaling pathway, a pathway that 

involves MI-ERl, have given us important insights into mammalian embryonic 

development. Studies using FGF ligand and receptor knockouts have shown that this 

signaling pathway is important in gastric (Spencer-Dene et al., 2006), kidney (Poladia et 

al., 2006), and limb development (Li et al., 2005); mesenchymal and epithelial 

proliferation (del Moral eta!., 2006); as well as other stages in mammalian development. 

Given the results of these studies, future development ofMI-ERl knockout mice may 

play an important role in further elucidating the mechanisms of embryonic development 

involving the FGF signaling pathway. 

4.2 Subcellular localization ofMI-ERl beta in the mouse embryo 

In the embryonic tissues, MI-ERl beta was found to be expressed in the 

cytoplasm of the various cell types examined. This was a surprising result since MI-ERI 

beta contains the only functional NLS and is usually found in the nucleus. However, in 

early stages of Xenopus development, MI-ERl beta is retained in the cytoplasm through 

binding to a cytoplasmic anchor protein (Luchman et al., 1999). Therefore, it is possible 

that MI-ER1 beta is retained in the cytoplasm in the mouse embryo to regulate its 

function, keeping it from the nucleus so that it cannot affect the transcription of other 

genes. It is also possible that MI-ERl beta is found in the cytoplasm of adult tissues. 
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4.3 Subcellular localization of MI-ERl beta in adult mouse tissue 

In the adult, MI-ER1 beta was expressed in cell nuclei and MI-ERl alpha was 

expressed in cell cytoplasm with the exception of the testes and spleen. In the spleen, 

like the embryo, MI-ER1 beta was expressed in both the nuclei and the cytoplasm of the 

cell types examined. Therefore, it is possible that MI-ER1 beta is anchored in the 

cytoplasm of the red and white pulp cells of the spleen to regulate the amount ofMI-ER1 

beta available to enter the nucleus. Furthennore, it is possible that the beta isofonn has 

left the nuclei of cells in the spleen to enter a degradation pathway in the cytoplasm. The 

transcription factor FOXO is regulated in this way. In the presence of growth factors, 

FOXO is phosphorylated by Akt (Biggs et al. , I 999; Brunet et al., I 999; Kops and 

Burgering, 1999; Nakae et al., 1999; Rena et al., 1999; Tang et al., 1999), which results 

in the translocation of FOXO to the cytoplasm (Biggs et al., 1999; Brunet et al., I 999; 

Takaishi et al., 1999) where it is degraded by the ubiqutin proteasome pathway 

(Matsuzaki et al., 2003; Plas and Thompson, 2003; Aoki et al., 2004; Hu et al., 2004; 

Huang et al., 2005). Since MI-ER1 beta and FOXO are transcription factors that are 

involved in processes such as the cell cycle and cell proliferation, it possible that the MI­

ERl beta protein is regulated in a similar manner as FOXO. 

4.4 MI-ERl is not expressed in the nuclei of cells in certain adult tissues 

There were six adult mouse tissues where neither MI-ERI alpha or beta were 

expressed in the cell nuclei: the adult brain, heart, lung, skeletal muscle, intestine and 

pancreas. This is surprising since MI-ER 1 is a transcription factor that needs to be in the 
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nucleus to affect the transcription rate of other genes. Cytoplasmic sequestering has been 

found in other transcription factors as well. For example, unphosphorylated Smad3 is 

sequestered in the cytoplasm through the binding of Akt, which prevents Smad3 

mediated transcription (Conery eta/. , 2004). It is therefore possible that MI-ER1 is 

sequestered in the cytoplasm to inhibit its function. 

4.5 MI-ERl expression in the embryonic and adult mouse brain 

In the embryonic mouse brain only MI-ERl beta was expressed and this 

expression was both cell nuclei and cytoplasm. However, in adult mouse MI-ER1 alpha 

became expressed in the cell cytoplasm (possibly with MI-ERl beta), and MI-ERl beta 

was no longer expressed in the nuclei. This suggests the MI-ERl alpha isoform becomes 

expressed during the development of the mouse and this must occur after embryonic day 

16. The mechanism of how and why Ml-ERl alpha becomes expressed in the adult, 

along with determining the specific adult subcellular localization of the MI-ER1 beta 

protein in the adult mouse brain would be studies to conduct in the future. 

There was a shiking pattern ofMI-ERl expression in the adult brain. MI-ERl 

expression was found in cells of the hippocampus, a region of the brain that stores 

episodic memories (memories that can be formed during a single occurrence, can be 

articulated and are linked to a particular context) (Lisman, 1999). Particularly, MI-ERl 

expression was exclusive to the CA3 cells, a heteroassociative network that links 

different memories that occurred at different times. Other transcription factors have also 

been found to play an essential role in this area of the brain. For example, the cyclic 
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AMP response element-binding protein (CREB) protein is expressed in the hippocampus 

and has been implicated in long-term memory (Brightwell et al., 2007). Given the fact 

that the CREB protein binds to CBP (Gonzalez and Montminy, 1989) and that CBP binds 

to MI-ERl (Blackmore, 2004), these three proteins may form a complex in the CA3 cells 

ofthe hippocampus and function in the formation oflong-term memories. 

The brain is an important target for steroid hormones, therefore it expresses 

nuclear steroid receptors including the estrogen receptor, progesterone receptor, androgen 

receptor, glucocorticoid receptor and mineralocorticoid receptor. Their expression is 

particularly high in the hippocampus and hypothalamus (Kawata et al., 1998). Given that 

MI-ERl interacts with nuclear steroid receptors, it is possible that it is interacting with 

these receptors in these areas of the brain. 

4.6 MI-ERl expression in the embryonic and adult mouse liver 

There was an intriguing result regarding the MI-ERl expression in the embryonic 

liver. In this tissue, two distinct cell types were identified. One cell type expressed MI­

ERl, while the other cell type was negative for MI-ERl expression. It is possible that the 

cell that does not express MI-ERl is a hematopoetic cell while the other cell is a 

hepatocyte. This hypothesis is based on the morphology of the cell types and the fact that 

the liver is the main hematopoietic organ from embryonic day 10 to 15 in the mouse 

embryo (Sasaki and Sonoda, 2000). However, confirmation of this theory would require 

immunostaining the embryonic tissue for markers present in hematopoetic cells and 

markers present in hepatocytes. 
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4.7 MI-ERl expression in the adult mouse kidney and intestine 

The MI-ERl protein was present in the adult mouse kidney and intestine, with 

nuclear and cytoplasmic in the cells of the kidney and exclusively cytoplasmic expression 

in the intestinal cells. One possibility why MI-ERl would be expressed in these tissues is 

that it may be interacting with the vitamin D receptor (VDR), a member of the 

superfamily of steroid/thyroid hormones. The VDR is responsible for converting vitamin 

D to its active form of 1 ,2,5 dihydroxyvitamin D where it exerts its affects on target 

organs. Since the VDR is a nuclear steroid hormone receptor, it possible that it is 

interacting with this receptor in the cells of the kidney and intestine. In addition, the 

VDR is not expressed in the podocytes of the glomeruli (Liu et al. , 2006), which were the 

same cells that did not express MI-ERl . This further supports the theory that MI-ERI is 

interacting with the VDR in the kidney since MI-ERl is expressed in the epithelial cells 

of the tubules, the same cells that express VDR (Liu eta!., 2006). 

4.8 MI-ERl expression in the adult mouse spleen 

The spleen is the major site of immune response to blood-borne antigens and it is 

an important filter for blood, whereby the red pulp macrophages clear the blood of 

microbes (Abbas, 2000). In this study, expression ofMI-ERI beta was found in the 

nuclei and cytoplasm of the cells of the red and white pulp. No expression was detected 

with the alpha antibody. This was a striking result because the spleen was the only adult 

tissue where we could definitely conclude that MI-ERl beta was expressed in the cell 
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cytoplasm. This may be because it binds to a cytoplasmic anchor, which prevents it from 

entering the nucleus. As mentioned previously, it may also translocate to the cytoplasm 

where it is degraded, thereby regulating its function. The reason this occurs in the spleen 

would be interesting to investigate and may provide us with other functions of the MI­

ERl protein. Furthermore, the spleen was the only adult tissue that did not express the 

MI-ERl alpha protein. Finally, in this study it was not possible to distinguish between 

the T and B lymphocytes since they do not differ morphologically. Thus, to determine the 

exact types of cells that are expressing MI-ERl , specific markers ofT and B lymphocytes 

and macrophages need to be immunostained to determine the difference in the cell types. 

4.9 MI-ERl expression in adult mouse endocrine and endocrine responsive tissues 

The expression ofMI-ERl was detected in the endocrine organs as well. In these 

organs, the expression ofMI-ERl alpha was much more intense compared to other adult 

tissues. Thus, MI-ERI alpha may play a vital role in these organs. This is not surprising 

given that all these organs express nuclear steroid receptor proteins. 

4.9.1 Pancreas 

The expression ofMI-ERI in the pancreas was quite striking. In this tissue, 

intense cytoplasmic expression ofMI-ERl alpha (possibly beta) was detected in the cells 

comprising the Islets of Langerhans, the endocrine portion consisting of alpha, beta and 

delta cells which secrete glucagons, insulin and somatostatin, respectively. Given the 

association of MI-ER 1 alpha with nuclear steroid receptors (Savicky, 2004), and the 
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cytoplasmic expression, it is very likely that the alpha isoform is mainly expressed in the 

endocrine cells oflslets. It is very probable that MI-ER1 alpha is binding to nuclear 

steroid receptors in these endocrine cells and regulating their function. There was MI­

ER 1 expression detected in the exocrine portion of the pancreas, the portion that is 

responsible for secreting digestive juices into the small intestine (Carola, 1990). This 

expression was only cytoplasmic and also was not uniform. The reason for this and the 

function of MI-ER 1 in the pancreas remains to be investigated. 

The differences in the exocrine and endocrine portions of the pancreas were 

identified by morphology in this study. However, a more specific method could be used 

to definitely distinguish these regions. To do this, one could stain for a specific marker in 

the Islets of Langerhans, such as the pancreatic islet-specific glucose-6-phosphatase­

re1ated protein (Petrolonis et al., 2004), which catalyzes the dephosphorylation of 

g1ucose-6-phosphate to glucose. Thus, use of a specific marker would aid in a more 

specific and accurate examination ofMI-ERl in the pancreas. 

4.9.2 Thyroid 

The parafollicular cells of the thyroid expressed the Ml-ER 1 protein; expression 

ofMI-ERl beta was detected in the nuclei (possibly cytoplasm), while Ml-ERl alpha 

was expressed in the cytoplasm. These cells are responsible for secreting the hormone 

calcitonin, which lowers the calcium level in the blood. The role ofMI-ERl in the 

thyroid gland ha yet to be established, however, the function of other transcription 

factors in this gland has been examined. For example, the peroxisome proliferators 
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activator receptor (PP AR) alpha is a transcription factor that is related to steroid, retinoid 

and thyroid nuclear receptors (Cuzzocrea et al., 2006). This transcription factor recruits 

other cofactors and coactivators, such as the CREB binding protein (CBP), to form the 

TRAP (thyroid hormone receptor-associated protein) mediator complex, which facilitates 

interaction with RNA polymerase II and the basal transcriptional machinery (Issemann 

and Green, 1 990; Dreyer et al., 1992; Rachez et al., 1999; Ranish et al., 1 999; Reddy and 

Hashimoto, 2001; McKenna and O'Malley, 2002; Lewis and Reinberg, 2003; Roeder, 

2003; Wang et al., 2003; Miyano, 2005; Cuzzocrea et al., 2006). Thus, since MI-ERI 

interacts with the estrogen receptor, a nuclear steroid hormone receptor (Savicky, 2004), 

CBP (Blackmore, 2004) and has been found in multiprotein complexes, it is also possible 

that it interacts in the TRAP mediator complex in the thyroid gland. This would be an 

interesting investigation to undertake in the future. 

4.9.3 Adrenal glands 

There was also an interesting pattern of expression in the adrenal glands. The 

adrenal gland is portioned into two distinct regions: the cortex and the medulla. The 

medulla is fairly homogeneous, however, three distinct zones can be identified in the 

cortex and each zone produces a different type of hormone. The zona glomerulosa is the 

thin outennost zone; it supplies cells for all three zones of the cortex. Also, it contains 

the enzymes necessary for the production of the mineralcorticoid, aldosterone, a steroid 

honnone synthesized from cholesterol that helps maintain the body's electrolyte balance 

(Carola, 1990). Beneath the glomerulosa is the zona fasciculata, the layer that makes up 
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the bulk of the cortex layer and secretes the hormones corticosterone and cortisol as well 

as a small amount of gonadocorticoids. This layer also has the greatest concentration of 

cholesterol and considerable amounts of vitamin C. The deepest layer of the cortex is the 

x-zone, which secretes dehydroepiandrosterone (DHEA), a substrate for the production of 

the sex honnones. Finally the medulla, which is located in the center of the adrenal 

gland, secretes epinephrine and norepinephrine, the "fight or flight" hormones. 

In the mouse medulla there was an extremely high level of the MI-ERI alpha 

protein present in the cell cytoplasm. In the cortex, the cells of the zona glomerulosa 

expressed MI-ERI, mainly in the cytoplasm, but also in the nuclei, suggesting that both 

isoforms are present; the MI-ERI beta isoform is expressed in the nucleus (and perhaps 

in the cytoplasm) and the MI-ERI alpha isofonn is expressed in the cytoplasm. There 

was a gradient of staining present in the zona fasciculata (the second region of the 

cortex), with the greatest level of intensity towards the center. Again, in this region the 

MI-ER1 beta isoform was expressed in the cell nuclei and the alpha isofonn was 

expressed in the cell cytoplasm. The staining pattern in the adrenal gland was not 

expected. It was expected that the greatest level of staining would be in the cortical 

region since it produces steroid hormones and the MI-ER1 alpha protein interacts with 

nuclear steroid receptors (Savicky, 2004). However, recent evidence suggests that there 

may be more of a connection and interaction between the cortex and the medulla than 

previously believed and that they are no longer considered independent endocrine 

systems (Schinner and Bomstein, 2005). For example, catelcholamines that are released 

from the cortex increase the transcription rate of steroid enzymes thereby increasing the 
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synthesis and secretion of the corticosteroids (Ehrhart-Bomstein et al., 1991; Guse­

Behling eta/., 1992). Thus, it would be possible that the steroid receptor is actually 

located in the medulla, interacting with the MI-ERl alpha protein, therefore, it would 

make sense that the expression ofMI-ER1 is higher in this region compared to the cortex. 

This hypothesis would require further investigation. 

4.9.4 Ovary 

MI-ERl expression was detected in the ovary, an organ that is both responsive to 

and secretes the hormone estrogen and progesterone. The ovary expresses both the 

estrogen receptor alpha and beta (Tremblay eta/., 1997) and these receptors play vital 

roles in follicle development. In fact, it was found that the expression of estrogen 

receptor beta is critical for the differentiation of the granulosa cells and the response of 

these cells to the gonadotropin hormone (Couse et a/., 2005). Given the important role 

for estrogen receptor beta in the granulosa cells, that MI-ERI was expressed there and 

that MI-ERI interacts with the estrogen receptor beta, it is possible that MI-ERl may 

play a role in the process offolliculogenesis in the ovary. Also, the transcription factor 

CEBP beta has been implicated in follicular development as well (Stemeck eta/., 1997) . 

CEBP beta is required for granulosa cell differentiation in response to the lutenizing 

hormone (LH) and is an important downstream target of LH receptor signaling. Thus, the 

fact that a transcription factor is involved in folliculogenesis, coupled with the other 

evidence mentioned above makes it possible that MI-ERl is involved in this process 

somehow. 
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Furthermore, in the secondary follicles, there was a gradient of staining present in 

the granulosa cells, with staining becoming more intense towards the oocyte. This 

gradient of staining may occur due to chemical secretion from the oocyte. During 

development and growth of the follicle, there are many critical cellular interactions that 

occur. For example, interactions with the ligand KitL (expressed in the granulosa cells) 

and growth differentiation factor-9 (GDP9) and bone morphogenetic protein-15 (BMP-

15) (expressed in the oocyte) activate the TGF-beta signaling pathway. This signaling 

cascade leads to the activation of Smad proteins, which trans locate to the nucleus and 

interact with transcription factors that regulate gene expression (Lagna et al., 1996; Liu et 

al., 1997; Nishimura et al., 1998). Overall, this pathway promotes the development of 

the follicle by promoting the proliferation of the granulosa cells (Hayashi et al., 1999; 

Otsuka et al., 2000; Vitt et al. , 2000), inhibiting progesterone and increasing estradiol 

production (Vanderhyden and Macdonald, 1998), and inhibiting lutenization (Shimasaki 

et al., 2004). These factors that are secreted from the oocyte and granulosa cells and 

initiate this signaling pathway may also cause the gradient in MI-ER1 expression. If this 

is the case, MI-ERl may be involved in the process of follicle development in the ovary. 

4.9.5 Testis 

In the mouse testes, there was a high level ofMI-ER1 expression that was 

detected with the Ml-ER1 pan antibody. This result was expected since the testis is an 

endocrine tissue that has been shown previously to express MI-ERl alpha (Grant, 2004). 

The novel isoform, N4 beta, was also found in the testis and was exclusive to this organ 
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(Thome et al. 2005). Furthermore, it is very possible that MI-ERl is interacting with the 

androgen receptor in the testis, since it interacts with nuclear steroid hormone receptors. 

The androgen receptor mediates many different physiological and development processes 

in the male, including sexual differentiation and maintaining spermatogenesis. The 

androgen receptor is expressed in the spermatogonia (Kimura et a!., 1993; Zhou et al., 

1996), spermatocytes (Kimura et al., 1993) and the elongated spermatids (Vomberger et 

al., 1994), which was where MI-ER1 expression was found. Thus, it is very possible that 

MI-ERl is interacting with tills receptor in the testes and regulating the process of 

spennatogenesis. 

4.10 Limitations of Immunohistochemical Analysis 

Although immunorustochemical analysis is a powerful tool that can provide 

information on the temporal and spatial expression of proteins, there are certain 

limitations to this type of study. For example, often tissues are not stained uniformly due 

to incomplete antigen retrieval. In this study, the antigen retrieval was performed 

according to instructions given by the company that prepared the tissue slides and it was 

found that this method was extremely effective. However, there were times when the 

tissue was not stained uniformly, with the center staining more intensely that the outside 

of the sections. Thus, it is possible that this would affect the analysis of the percentage of 

cell nuclei stained. Furthermore, immunohistochemisty is a qualitative method of 

detennining protein expression and thus, one cannot use this analysis to quantify how 

much protein is present. In order to do this, a quantitative immunoassay would need to 
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be employed. Despite having disadvantages, immunohistochemisty is extremely useful 

in providing one with information on where and when a protein is functioning and can 

give important information that can lay the groundwork for potential discoveries. For 

these reasons immunohistochemical analysis will continued to be used in the future for 

scientific research. 
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5. CONCLUSIONS 

1. The MI-ER1 protein was expressed in all the tissues that were analyzed. It is 

expressed at particularly high levels in the endocrine tissues (adrenal gland, pancreas, 

ovary, testes, thyroid and hypothalamus) where it is likely interacting with nuclear steroid 

receptors. In particular, MI-ER1 alpha was detected at a much higher level in the 

endocrine tissues compared to other adult tissues. 

2. MI-ER 1 alpha expression was not detected in the 8, 12 or 16-day embryo, 

therefore it may be possible to knockout this isoforrn when constructing transgenic mice. 

This work would be very significant to the study ofMI-ER1 and potentially in the 

treatment of breast cancer. 

3. MI-ERl beta is therefore the only isoforrn present in the embryo, thus it is very 

likely that it plays a crucial role in the development of the mouse. Therefore, it is 

probable that it could not be knocked out without generating an embryonic lethal and a 

conditional knockout of this isoforrn would be necessary to determine any potential 

functions. 

4. Overall, there was a significant decrease in MJ-ER 1 expression in the adult 

tissue compared to the embryo. 

5. In the embryo, MI-ER1 beta is expressed in the cell nuclei and cell cytoplasm 

of different cell types in a variety of developing tissues, while MI-ER1 beta is expressed 

in the cell nuclei and MI-ERl alpha is expressed in the cell cytoplasm in cells of mouse 

adult tissues (brain, liver, kidney, thyroid, adrenal, testis and ovary). One exception was 
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the spleen, which was the only organ we could definitely conclude that MI-ERl beta was 

expressed in cell nuclei and cytoplasm. 

6. MI-ERl was not expressed in the nuclei of cells of five mouse tissues that 

were analyzed. These included adult skeletal muscle, heart, lung, intestine and pancreas. 

This could possibly be a mechanism to regulate the function ofMI-ERl. 

In conclusion, this project has been an important in determining the spatial and 

temporal MI-ERl expression in the embryonic and adult mouse and it has given us 

important information on possible functions of this protein. Furthermore, this was a 

critical preliminary study to the construction ofMI-ERl transgenic mice. These studies 

will enable us to further investigate the many functions of this protein. 
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