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Abstract 

Given a balanced incomplete block design V = (V, B) with block set B, its traditional 

block-intersection graph G(V) is the graph having vertex set B such that two vert ices 

(31 , (32 E B are adjacent if and only if (31 n (32 =1- 0. The I -block-intersection graph of 

a design V = (V, B), denoted by G1(V) , is the graph having vertex t B such that 

two vertices (31 , (32 E B are adjacent if and only if 1(31 n (321 E I , wh re I is a given 

subset of {1 , 2, . .. , k}. If III = 1 then we will a l o refer to the !-block-intersection 

graph as the i-block-intersection graph and will denote it by Gi (V) , where i is the 

sole element of I. 

The initial investigation into the cycle properties of block-inters ction graphs 

was said to have been initiated by Ron Graham in 1987. One year later, Graham's 

question was proved by Peter Horak and Alexander Rosa. Since the posing of Gra

ham's question, many people have looked into several different cycle properties of 

block-intersection graphs, most of which can be found in [1, 4, 6, 9, 10, 13- 15]. 



In this thesis we will prove several lemmata that deal with the size of independent 

sets of vertices in block-intersection graphs. Also, we will show that the {1, 2}-block

intersection graph of any 

1. (v, 4, A)-BIBD with arbitrary A is Hamiltonian for v 2:: 11, 

2. (v, 5, A)-BIBD with arbitrary A is Hamiltonian for v 2:: 57, 

3. (v, 6, A)-BIBD with arbitrary A is Hamiltonian for v 2:: 167. 

We then extend the idea of Horak, Pike and Raines [11], and prove that th 

1-block-intersection graph of any (v 4, A)-BIBD with arbitrary A is Hamiltonian for 

v 2:: 136. Finally we end with some open problems related to extensions of work done 

in this thesis. 
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Chapter 1 

Introduction 

Hamiltonian cycles in graphs have been one of the central topics in graph theory. 

Determining whether or not a graph is Hamiltonian is an NP-complete problem. 

Hence it seems to be impossible to find an efficient standard for determining when a 

graph is Hamiltonian. 

The motivation of this thesis is due to Dr. David Pike, who is one of the leading 

experts in the study of block-intersection graphs, and together with Peter Honik and 

Michael Raines, has shown that the 1-block-intersection graph of any (v, 3, .A)-BIBD 

with v ~ 12 and arbitrary .A is Hamiltonian [11]. 

At a regional meeting of the American Mathematical Society in March 1987, Ron 

Graham asked if the block-intersection graph of every (v, 3, 1)-BIBD is Hamiltonian 



INTRODUCTION 

[2]. This is said to have been the initial motivation into investigating the cycle 

properties of block-intersection graphs. In 1988, one year after Graham posed this 

question, the question was proved by Horak f!.nd Rosa [12]. Over the next two decades 

many people have looked into several different cycle properties of block-intersection 

graphs, most of which can be found in [1, 4, 6, 9, 10, 13- 15]. 

In this thesis we will investigate block-intersection graphs. More specifically, 

Sections one and two of Chapter 1 will cover background material in graph theory 

and design theory, respectively. Chapter 2 will present some lemmata bounding the 

sizes of independent sets of vertices in block-intersection graphs, as well as notation 

that will be used throughout the rest of the thesis. Chapter 3 shows that the {1, 2}

block-intersection graph of any 

1. (v, 4, >.)-BIBD is Hamiltonian for v ~ ·'.1.1 and ·arbitrary >., 

2. (v, 5, >.)-BIBD is Hamiltonian for v 2: 57 and arbitrary>., 

3. (v , 6, >.)-BIBD is Hamiltonian for v 2: 167 and arbitrary >.. 

This is original work following ideas used in [7 11, 12]. Chapter 4 shows that 

the 1-block-intersection graph of a (v, 4, >.)-BIBD is Hamiltonian for v 2: 136 and 

arbitrary >.. This is an extension of the work done in [11]. Chapter 5 poses some 

open problems related to extensions of work done in this thesis. 
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I \'I 

1.1 GRAPH THEORY 

1.1 Graph Theory 

This section contains some preliminary definitions, examples and theorems from 

graph theory, which are relevant to the development of the topics and results pre-

sented in this thesis. 

A graph G is a pair (V, E) of sets, V nonempty and each element of E a set 

of two distinct elements of V. The elements of V are called vertices; the elements 

of E are called edges. An example of a graph is given in Figure 1.1, in which V = 

{VI, v2 , v 3 , V4 , v 5 , v 6 , V7} and E = { v1v2 , VIVs, VI V7, V2V7, V2V5, V5V7, V2V3, V5V5, V3V4, V4V5}. 

V2 V3 

Figure 1.1: G 

A graph G' is a subgraph of another graph G if and only if the vertex and edge 

sets of G' are, respectively, subsets of the vertex and edge sets of G. Figures 1.2 and 

1.3 are both subgraphs of Figure ·l.l. I , 

3 



1.1 GRAPH THEORY 

VI . • V7 
VJ t8J V2 

v2 • • V3 V5 V7 

V4 • • V6 Figure 1.3: G~ 

Figure 1.2: G~ 

The complete graph on n vertices, denoted by Kn, is the unique graph up to 

isomorphism on n vertices with an edge between every pair of vertices. The complete 

graph on seven vertices is given in Figure 1.4. 

Figure 1.4: K 7 

A walk is an alternating sequence of vertices and edges, beginning and terminating 

at vertices, with each edge being incident to the vertices immediately preceding and 

succeeding it in th sequence. A walk is closed if and only if the first vertex is th 



1.1 GRAPH THEORY 

same as the last; otherwise the walk is open. Figure 1.5 provides an example of a 

closed walk. 
A 

E F 

Figure 1.5: Closed Walk: CEFCBDC 

A cycle is a closed walk with no repeated vertices. A Hamiltonian cycle in a 

graph is a cycle in which every vertex of the graph appears. Figure 1.6 provides an 

example of a Hamiltonian cycle. 
A 

c 

D 

Figure 1.6: Hamiltonian Cycle: ABCDEA 

A vertex-cut or cutset of a graph G is a set S c V (G) such that G - S has more 

than one component. A component of a graph is a maximal connected subgraph, that 

5 



1.1 GRAPH THEORY 

is, a connected subgraph which is properly:contained in no other connected subgraph 

which has more vertices or more edges. Figure 1. 7 is an example of a graph with 

more than one component. 

Figure 1. 7: A graph with two components 

A graph G is k -connected if every vertex-cut has at least k vertices. The con

nectivity of G, denoted by "'(G), is the maximum k such that G is k-connected. In 

Figures 1.8 and 1.9 the connectivity is "' = 1 and "' = 3, respectively. 

A D 

B c 

Figure 1.8: "' = 1 Figure 1.9: "' = 3 

A set of vertices is independent if no two vertices in the set have an edge between 

them. A maximum independent set is a largest independent set for a given graph 

G and its size is denot d by a( G). lri 'FiglJlte 1.8, t'he vertices in the set {A , D} ar 

6 



1. 2 DESIGN THEORY 

independent, as are those in {B, C}. 

In 1972, Vasek Chvatal and Paul Erdos gave the following sufficient condition for 

a graph to be Hamiltonian. 

T heorem 1.1. {7/ For any graph G, if a(G) :::; 1'\,(G) , then G is Hamiltonian. 

Theorem 1.1 has opened a whole new world in the study of the Hamiltonicity 
I . \ . 

of graphs. Since [7], several classes of graphs have been shown to be Hamiltonian, 

many of which establish their conclusions by using Theorem 1.1. 

1 .2 Design Theory 

This section contains some preliminary definitions, examples and theorems of design 

theory that are relevant to the development of the topics and results presented in 

this thesis. 

A balanced incomplete block design (v, b, r,k, A)-BIBD, is a pair (V, B) where Vis a 

set of v elements and B is a collection of k-s~tskts of V called blocks (with repetition 

of blocks allowed) where any 2-subset of V is contained in exactly A blocks. We 

write (v, k, A)-BIBD for short since the parameters band r can be determined from 

knowing v, k and A. 

The five parameters of a (v, k , A)-BIBD are as follows: 

7 
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1.2 DESIGN THEORY 

1. v, the size of V, 

2. b, the size of B (i.e., the number of blocks), 

3. r, the number of blocks in which an element appears (this is the same for all 

elements and is often referred to as the replication number), 

4. k, the size of the blocks (incompleteness dictates that k < v), 

5. A, the index of the design, is the number of times a pair of elements of V 

appears in the design. Balance ensures that this is the same for all pairs of 

elements. 

Example 1.1. Consider the blocks (31 = {1 ,2,4},/32 = {2,3,5},(33 = {3,4, 6}, (34 = 

{ 4, 5, 7}, (35 = {1, 5, 6} , (36 = {2, 6, 7} , (37 = {1 , 3, 7}. These blocks form the (7, 3, 1)

BIBD. Since the blocks satisfy lf3i n (3i I =f. 0 for all i =f. j, the block-intersection graph 

of the (7, 3, 1)-BIBD is K 7 , as portrayed in Figure 1.4. 

The following are two conditions which allow us to solve for all parameters of a BIBD 

when only knowing v, k, and A. 

Lemma 1.1. (see {3}) In a (v, k, A)-BIBD with b blocks each element occurs in r 

blocks where 

1. A(v- 1) = r(k - 1) , 

8 



1. 2 DESIGN THEORY 

2. bk = rv. 

Proof. 1. Consider an element x E V and let P = I { (y, B) I B E B, x , y E 

B and x =J. y} I· Since x forms A pairs with each of the remaining v - 1 

elements, P = A ( v - 1) . As well, x occurs in r blocks, each of which contain 

k- 1 additional elements, soP= r(k- 1). Hence A(v - 1) = r(k- 1) . 

2. LetT= l{(x,B) I x E V,B E B ,x E B}l. Since there are k elements in each 

of the b blocks, T = bk. As well, each of the v elements occurs exactly r times, 

soT= VT. Hence bk = rv. 

D 

I : 

9 



Chapter 2 

Block-Intersection Graphs 

In this chapter we will present some lemmata for bounding the size of independent 

sets of vertices in block-intersection graphs, as well as notation that will be used 

throughout the rest of the thesis. 

Given a balanced incomplete block design V = (V, B) with block set B, its tradi

tional block-intersection graph G(V) is the graph having vertex set B such that two 

vertices (31, (32 E B are adjacent if and only if (31 n (32 #- 0. The I -block-intersection 

graph of a design V = (V, B), denoted by G1 (V), is the graph having vertex set B such 

that two vertices (31, (32 E B are adjacent if and only if lf31 n(321 E I , where I is a given 

subset of {1 , 2, .. . , k }. If III = 1 then we will also refer to the / -block-intersection 

graph as the i-block-intersection graph and will denote it by Gi(V), where i is the 



BLOCK-INTERSECTION GRAPHS 

sole element of I. 

Theorems 3.1, 3.2, 3.3 and 4.1 proved in this thesis follow a similar proof technique 

used in [11]. First note that these theorems have already been proven for). = 1 [12]. 

Our goal is to establish that the Chvatal-Erd6s condition (namely the hypothesis of 

Theorem 1.1) holds true throughout the proof of these theorems. 

We define the following notation to be used throughout the proofs of the theorems 

to be presented. 

1. For sets S1 , S2 , ... , Sn, the Inclusion-Exclusion Principle states 

n n u si = L lSi I - L ISinSjl + L ISinsjnSkl - ... + ( - 1t-11Sln'. ·nSnl· 
i=l i=l i,j 

l::;i<j~n 
i,j,k 

l~i<j<k~n 

' I 

2. To represent th number of blocks of 8 having at least i elements in common 
1 

with a set U we calculate 

t (A(i, j)( - 1)i- ikuv(T) ) , 

ITI=j 

where the A( i , j) are numerical con tants that are suitably chosen to ensure 

that each block to be counted is counted exactly once, and v(T) represents the 

number of blocks of 8 that contain T. For example, if ITI = 1 then v(T) = r . 

If ITI = 2 th n v(T) = >.. 

11 ' · ' 



--------·----------------------

BLOCK-INTERSECTION GRAPHS 

To illustrate how the constants A(i, j) are determined, suppose that i = 3 

and consider a set U = { u, w, x , y, z} as an example. If there is a block that 
.. f 
I 

contains exactly three points of U then the j = 4 and j = 5 parts of the sum 

count this block zero times, and so it must be that A(3, 3) = 1. 

If there is a block that contains exactly four points of U, then the j = 3 part of 

the sum counts this block A(3, 3) (~) times, which is three more than is wanted. 

Therefore A(3, 4) = 3. 

If there is a block that contains all five points of U, then the j = 3 part of the 

sum counts this block A(3, 3) G) times and the j = 4 part of the sum counts 

this block - A(3,4)G) times. To obtain a net count of exactly one it must be 

that A(3, 5) = 6. 

Definit ion 2.1. (see (8}) 

otherwise 

where nff = n( n - 1) · · · ( n - k + 1) . 

A consequence of the above definition gives the following property called upper 

n egation. 

Corollary 2 .1. 

12 • 



BLOCK-INTERSECTION G RAPHS 

Proof. 

(:) - ~~ 
n(n- 1)(n- 2) · · · (n- k + 1) 

k! 

_ ( -
1
)k · (k-n-1)(k -n- 2) .. · (1 -n)(-n) 

k! 

( _
1

)k . (k- n- 1)(k- n - 2) .. · (k - n - 1 - k + 1) 
k! 

k (k- n - 1)k 
( - 1) k! 

- (- 1)k ( k-:-1). 

Lemma 2.1. A(i,j) = (~=.! ) ,where i E {1, 2, ... , k}. 

D 

Proof. We proceed with a proof by induction. Let i ~ j ~ k and i E { 1, 2, ... , k}. 

For j = i, then A(i, i) = 1 = (~=.~), as our coefficient A(i, j) is always one for our 

smallest i value. Assume A(i, j) = (~=.D for all j < t, where i < t ~ k. We want to 

prove A(i, j) = (~=.~) for j = t. We consider two cases. 

Case 1: If t = i(mod 2) we need 

or equivalently 

A(i , t) = 1 - ( A(i , i) G) -A(i, i + 1) c ~ 1) + .. . - A(i, t - 1) c ~ 1) ) ' 

13 
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BLOCK-INTERSECTION GRAPHS 

because as we said before we want to make sure that each block to be counted is 

counted exactly once. Hence · 

1+ (~=:) _ ~((- 1)'-')' G) (x-i-}~~ 1) - 1) 

1 + (~ = ~) -L (!) (x ~ i) 
X 

1+ G=:)- ( m (=:)+~G) c::)) 

Case 2: If t ¢ i(mod 2) then similar to Case 1 

14 



BLOCK-INTERSECTION GRAPHS 

Hence 

- -1 + (t -1) + 1 
t -'l 

(
t - ~) . 
t - 'l 

- --~~~~ 

So A(i, j ) = (~::::D for j = t and we are done. 

. ' , 

0 

Lemma 2.2. The size of an independent set I of vertices in the {1 , 2}-block-

intersection graph of a (v, k, ,X.)-BIBD is bounded above by v((>.- l)~~- l )+2) . 

Proof. Choose an independent set of vertices I C B of G {1 ,2} ('D) and a point a1 E 

V . Define Ia1 to be the set of blocks in I that contain the point a1 and let S = 

{ a1 , a2 , ... , ak} E Ia1 be a block of size k. Since the blocks of Ia1 must each have 

at least three points in common with S, one of which is a1 , then ach block of 

Ia1 contains at least two pairs of the form { a1 , ai} where 2 < i < k . Each pair 

15 



BLOCK-INTERSECTION GRAPHS 

of points occurs in A blocks of B and so by counting pairs of points occurring in 

the blocks in Ia1 having the form {a1 ,ai}, where i E {2, 3, .. . , k}, we find that 

2(1Ia1 l- 1) + k - 1 :S (k - 1)A. Hence 2(IIPI - 1) + k- 1 :S (k- 1)A for all p E V, 

and therefore 

I
II = 2_"' II I < 2_"' (A - 1)(k - 1) + 2 = v((A - 1)(k - 1) + 2). 

k 6 p - k 6 2 2k 
pEV pEV 

0 

Lemma 2 .3 . The size of an independent set I of vertices in the {1 , 2, ... , k - 2}-

block-intersection graph of a (v, k, A)- BIBD is bounded above by k>::!1. 

Proof. Choose an independent set of vertices I C B of G p,2, .. . ,k- 2} (V) and a point 

a1 E V. Define Ia
1 

to be the set of blocks in I that contain the point a 1 and let 

S = { a 1, a2 , . .. , ak } E Ia1 be a block of size k. If all blocks of Ia1 have all k points 

in common, then IIa1 l :S A. Otherwise there are blocks in Ia1 which share only k - 1 

points with S. For 2 :S i :S k, let :la; = {.B E Ia1 I ai rt ,8} d note the subset of 

Ia1 that consists of all blocks of I not containing ai, but containing each point of 

S - { ai}. If there is a unique i E {2, 3, .. . , k} for which :la; =I 0, then clearly IIa 1 l :S A. 

However, if :la; =I 0 for multiple choices of ·l E {2, 3, .. . , k} then there must be a 

point ak+ 1 E V - S that is shared by each block of :la2 U :la3 U · · · U :lak . Hence the pair 

k 

{ a1, ak+l } occurs in each of these blocks and so L IJa; I = l:la2 U :la3 U · · · U :lak I :S A. 
i= 2 

16 



BLOCK-INTERSECTION GRAPHS 

Also, for each i E {2, 3, ... , k} the pair { a1 , ai} occurs in each block of Ia1 - Ja; 

( k - 1) liP I :::; k).. for all p E V, and therefore 1 

I=~""' I <~""'~=~ I I k L...J I PI - k L...J k - 1 k - 1. 
pE V pEV 

0 

Lemma 2.4. The size of an independent set I of vertices in the 1-block-intersection 

graph of a (v , k, >.)-BIBD is bounded above by v((A- l)~k-I)+l). 

Proof. Choose an independent set of vertices I C B of G1 (V) and a point a1 E 

V. Define Ia, to b the set of blocks in I that contain the point a1 and let S = 

{ a1 , a2 , ... , ak} E Ia
1 

be a block of size k. Since the blocks of Ia1 must each hav 

I 

at least two points in common with S, ·one ·of which is a1, then each block of Ia1 

contains at least one pair of the form { a 1, ai} where 2 :::; i :::; k. Each pair of points 

occurs in ).. blocks of B and so by counting pairs of points in Ia1 having the form 

{a1 , ai}, where i E {2, 3, ... , k} , we find that (IIa1 l - 1) + k- 1 :::; (k - 1)>.. Hence 

(IIPI - 1) + k- 1 :::; (k- 1)).. for all p E V, and therefore 

III = ~""'II I :::; ~""' ((>. - 1)(k - 1) + 1) = v((>. - 1)(k - 1) + 1). 
k L...J p k L...J k 

pEV pEV 

0 

17 



Chapter 3 

The {1, 2}-Block-lntersection 

Graph 

In this chapter we will prove that the {1 , 2}-block-intersection graph of any 

1. (v, 4, A)-BIBD with arbitrary A is Hamiltonian for v 2: 11, 

2. (v, 5, A)-BIBD with arbitrary A is Hamiltonian for v 2: 57, 

3. ( v, 6, A)-BIBD with arbitrary A is Hamiltonian for v 2: 167. 

Theorem 3.1. The {1, 2}-block-intersection graph of a (v , 4, A)-BIBD with v 2: 11 

and arbitrary A is Hamiltonian. 



THE {1, 2}-BLOCK-INTERSECTION GRAPH 

Proof. Let D = (V, B) be a (v, 4, .A)-BIBD and G{l,2} (D) = (B, E) d note the {1 , 2}-

block-intersection graph of D. We will sho'; that G{l,2}(D) is Hamiltonian by showing 

that a(G{l,2}(D)) ~ K:(G{1,2}(V)). 

First choose an independent set of vertices I C B of G{l,2} (D). Then by 

Lemma 2.3 we have III~ .>.3v. Hence a(G{l,2}(D)) ~ >-r 

Now let C c B be a cutset of G{1,2}(D). We wish to show that ICI 2: >-r Let 

A be the vertex set of a component of G{1,2} (D)- C. Then let F = B - (AU C), 

VA = U {3 and VF = U {3 . 
~EA ~EF 

We now consider two cases. 

Case 1: VA U Vp = V. 

Case 1a: Assume first that VAn VF =f. 0. Then there is a blocks = { w, X, y, z} E 
' ' I f 

A and a block S' = { w, x, y , z~ } E F having at least three points in common, say 

w ,x, andy. 

Case 1a)i: Suppose z = z' . From the inclusion-exclusion principle there are 

4r- 6-A + l.:::v(T) - v(S) blocks of B containing at least one point of S. Also, there 
T CS 
IT~3 

are l.:::v(T) - 3v(S) blocks of B having at least three points in common with S. 
TCS 
ITI=3 

Hence there are (4r- 6-A + .L::v(T) - v(S)) - ( .L::v(T) - 3v(S)) blocks with exactly 
T C S T CS 
IT~3 IT~3 

one or exactly two points in common with S. Therefore 4r - 6-A + 2v(S) is a lower 

bound on the size of the cutset C and ICI 2: 4r - 6-A + 2v(S) > 4-A ( v~l) - 6-A 2: ~v 

19 



THE {1 , 2}-BLOCK-INTERSECTION GRAPH 

for v ~ 8, since v(S) ~ 2. 

Case la)ii: Suppose that z =/:. z' . Then there are 3r - 3.\ + v( { w, x, y}) blocks of 

B containing at least one point of { w, x, y}. We wish to count the number of blocks 

containing exactly one point of { w, x, y }, ignoring whether or not these blocks will 

also contain z, z' or both , as these blocks will still be adjacent to both S and S'. 

Hence there are (3r - 3.\+v( { w, x, y} )) - (3(.\ - v( { w, x, y} )) +v( { w, x, y} )) blocks of 
I 

B containing exactly one point of {w,x,y} , where 3(.\ - v({w,x,y} )) is the number 

of blocks containing exactly two points of { w, x, y} and v ( { w, x, y}) is the number of 

blocks containing all the points of { w, x, y }. Therefore ICI ~ 3r-6.\+3v( { w, x, y}) > 

3.\ ( v-l ) - 6.\ > .Xv for V > 11 . 
3 - 3 -

Case lb: Assume VAn VF = 0. That is, there is no blocks E G{l,2}(V) - c 

satisfying VA n S =/:. 0 =/:. VF n S. Each block of B that contains a pair of points wx 

such that w E VA and x E VF must belong to C. Clearly there are IVAIIVFI such 

pairs of points. Since a block of size four can contain at most four pairs of this kind, 

and each pair of points occurs in A block~, , ICI ~ .XIVAJIVFI. Also, each component 
I j J { 

' of G{l,2}(V ) - C has at least one block, so IVAI ~ 4 and IVFI ~ 4. Therefore 

ICI ~ min { .Xp(v- p) } ~ .\(v - 4) ~ .Xv for v ~ 6. 
4~p~v-4 4 . 3 

Case 2: Assume VA U VF ~ V. Then all blocks containing any point of V -

(VA U VF) must be in C. If there are at least two points in V - (VA U VF) then 

20 



THE {1, 2}-BLOCK-lNTERSECTION GRAPH 

ICI 2:: 2r- A 2:: >.3v for v 2:: 5. . ; 

Now suppose that IV - (VA U VF) I = 1 and let 1 be the only element of V -

(VA U Vp). So IVA U VFI = v- 1. If VAn Vp = 0, then similar to Case lb, we obtain 

ICI 2:: min { >.p(v- 1-p) } 2:: A(v- 5) 2:: >.v for v 2:: 8. 
4~p~v-5 4 3 

If VA n VF =I 0, then there is a block S = { w, x, y, z} E A, and a block S' = 

{ w, x, y, z'} E F having at least three points in common, say w, x, and y. Then C 

includes all blocks containing exactly one point of { w, x, y}, of which there are exactly 

(3r-3A+v({w,x,y}))-(3A-2v({w,x,y})). Hence ICI2:: 3r--6A + 3v({w,x y}) > 

3A (v-1)- 6A > >.v for v > 11. 
3 - 3 -

Therefore ,.,;(G{l,2}(V)) 2:: >.
3
v for all v 2:: 11 and a(G{l,2}(V)) :::; ,.,;(G{l,2}(V)) in all 

cases. Hence the Chvatal-Erdos condition holds, and so Gp,2}(V) is Hamiltonian. 

0 

Theorem 3.2. The {1 , 2}-block-intersection graph of a (v, 5, A)-BIBD with v 2:: 57 

and arbitrary A is Hamiltonian. 

Proof. Let V = (V,B) be a (v,5,A)-BIBD and G{l,2}(V) = (B,E) denote the {1,2}-

block-intersection graph ofV. Vve will show that G{l,2} (V ) is Hamiltonian by showing 

that a(Gp,2}(V)) :::; ,.,;(G{l,2}(V)). 

First choose an independent set of vertices I c B of Gp,2} (V). Then by 

Lemma 2.2 we have II I:::; v(2~- 1 ) . Hence a(G{l,2}(V)):::; v(2~- l) . 
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Now let C C B be a cutset of Gp,2}(D ). We wish to show that ICI ~ v(2~-l). Let 

A be t he vertex set of a component of G{l,2}(D)- C. Then let F = B - (AU C), 

VA = U /3 and Vp = U /3. 
PEA PEF 

We now consider two cases. 

Case 1: VA U Vp = V. 

Case 1a: Assume first t hat VAnVF # 0. Then t here is a blockS = { u, w, x, y, z} E 

A and a block S' = { u, w, x, y', z'} E F having at least three points in common, say 

u , w and x. 

Case 1a)i: Suppose I {y, z} n {y', z'} I = 2. Without loss of generality, assume 

y = y' and z = z'. From the inclusion-exclusion principle there are 5r - 10..\ + 
5 

2: ( ( - 1 )J- l l:v(T)) blocks of B containing at least one point of S. Also, there are 
J=3 rc;_s 

ITI=j 
l:v(T)- 3 l:v(T) + 6v(S) blocks of B containing at least three points of S. Hence 

TCS TCS 
IT~3 IT~4 

5 

there are (5r - 10..\ + 2:((-1)J- l l:v(T))) - ( l:v(T)- 3 l:v(T) + 6v(S)) blocks 
j = 3 T';;,S T ';;,S T';;,S 

ITI=j ITI=3 ITI=4 
of B wit h exactly one or exactly two points of ·{ u , w x, y , z }. Therefore 5r- 10..\ + 

2 l:v(T) - 5v(S) is a lower bound on the size of t he cutset C. Note that each 
TCS 
IT~4 

block that is counted by v(S) is counted (~) t imes within the sum l:v(T) and so 
TCS 

2 l:v(T) 2: 5v(S). Thus ICI 2: 5..\ (v;l ) - 10..\ 2: v(2~- l) for v ~ 14. 
TCS 
IT~4 

IT~4 

Case 1a)ii: Suppose l{y, z} n {y', z'}l = 1. Without loss of generality, assume 
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y = y' and let U = { u, w, x, y, z, z'}. From the inclusion-exclusion principle there are 

5 
6r - 15-A +I: (( -1)1-1 L:v(T)) blocks of B containing at least one point of U. Also, 

j=3 Tc;,U 
ITI=j 

there are L:v(T)-3 L:v(T)+6 L:v(T) blocks of B containing at least three points of 
TCU TCU TCU 
1Tf=3 1Tf=4 1Tf=5 

5 

U. Hence there are (6r-15.A+ I: (( - 1)1- 1 L:v(T))) - ( L:v(T) - 3 L:v(T)+6 L:v(T)) 
j=3 Tc;,U Tc;,U T c;, U Tc;,U 

ITI=j ITI=3 ITI=4 ITI=5 
blocks of B with exactly one or exactly two points of U. Of these blocks, all except 

those containing exactly one point of { z, z'} must be in C. Since exactly 2 ( r - A) 

blocks contain exactly one point of {z, z'}, it follows that (6r- 15-A + 2 L:v(T) -
TCU 
1Tf=4 

5 L:v(T)) - (2r- 2.A) = 4r- 13-A + 2 L:v(T) - 5 L:v(T) is a lower bound on the 
TCU T C U TCU 
1Tf=5 1Tf=4 1Tf=5 

size of the cutset C. Observe that each block that is counted within the sum L:v(T) 
T C U 
1Tf=5 

is counted exactly once within this sum, but is counted G) t imes within the sum 

L:v(T) and so 2 L:v(T) ~ 5 L:v(T). Thus ICI ~ 4-A ( v~ 1 ) - 13-A ~ v(2~- 1 ) for 
TCU T C U T C U 
1Tf=4 1Tf=4 1Tf=5 
v ~ 24. 

Case la)iii: Suppose l{y, z} n {y',z'}l = 0 and let U = {u ,w,x,y,y',z,z'}. 

5 
From the inclusion-exclusion principle there are 7r - 21-A + I: ( ( - 1 )1- 1 L:v(T)) 

j = 3 T c;, U 
ITI=j 

blocks of B containing at least one point of U. Also, there are L:v(T) - 3 L:v(T) + 
T CU T CU 
1Tf=3 1Tf=4 

6 L:v(T) blocks containing at least three points of U. Hence there are (7r - 21-A + 
TCU 
1Tf=5 
5 ' 
I: (( - 1)1- l L:v(T))) - (L:v(T) - 3 L:v(T) +6 L:v(T)) blocks of B with exactly one 
j = 3 T c;,U Tc;,U T c;,U T c;,U 

ITI=j ITI=3 ITI=4 ITI=5 
or exactly two points of U. Of these blocks, all except the following must be in C: 
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1. those which contain the pair yz or t he pair y' z'. 

2. those which have exactly one of y , z, y' , z' but none of u, w, x . 

There are 2r - 2>. blocks that contain y or z but not both and there are 2r - 2>. 
I 

blocks that contain y' or z' but not both. Hence there are at most 4r-4>. exceptional 

blocks of Type 2 and at most a further 2>. blocks of Type 1, for a total of at most 

4r- 2>. exceptional blocks. It follows that (7r- 21A + 2 l:v(T) - 5 l:v(T))- (4r -
TCU T CU 
ITJ=4 1Tl=5 

2>.) = 3r - 19>. + 2 l:v(T) - 5 l:v(T) is a lower bound on the size of the cutset 
TCU T CU 
ITJ=4 ITJ=5 

C . Once again 2 l:v(T) 2: 5 l:v(T) and thus ICI 2: 3>. ( v~l) - 19>. 2: v(2~- l) for 
T CU T CU 
ITJ=4 ITJ=5 

v 2: 57. 

Case lb: Assume VA n Vp = 0. That is, there is no block S E Gp,2}('D) - C 

satisfying VA n S # 0 # Vp n S. Each block of B that contains a pair of points 

wx such that w E VA and X E Vp must belong to C. Clearly there are IVAI IVFI 

such pairs of points. Since a · block of size five can contain at most six pairs of 

this kind , and each pair of points occurs in >. blocks, ICI 2: >- IVA~IVFI. Also, each 

component of G{l ,2}('D) - C has at least one block, so IVAI 2: 5 and IVFI 2: 5. Hence 

ICI 2: min { >.p(v- p)} 2: 5>.(v-5) 2: v(2>.- l) for v 2: 10. 
5~p~v-5 6 6 5 

Case 2: Assume VA U VF ~ V. Then all blocks containing any point of V -

(VA U VF) must be in C. If there are at least two points in V - (VA U Vp) then 
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ICI 2:: 2r - A 2:: v(2~- l) for v 2:: 15. 

Now suppose that IV - (VA U Vp) I = 1 and let "! be the only element of V -

(VA U Vp ). So IVA U Vpl = v- 1. If VAn Vp = 0, then similar to Case lb, we obtain 

ICI 2:: min { .Xp(v~l -p) } 2:: 5-X(~-B) 2:: v(2~- I) for v 2:: 12. 
5~p~v-6 

If VAn Vp =I 0, then similar to Case la, there is a block s = { u, w, x, y, z} E A 

and a block S' = { u, w, x, y' , z'} E F having at least three points in common, say u, 

w and x. Then C includes all blocks of the following types. 

1. All those containing 'Y· 

2. All those containing exactly one of u, w, x and none of y, y', z , z', "!· 

Clearly, there are r blocks of Type 1. To count the numb r of blocks of 

Type 2, we first note that there are at least 3r- 2G)A blocks containing exactly one 

of the points of { u w, x }. At most 15A blocks may contain a pair of points consisting 

of a point from {u,w ,x } and a point from {y ,y',z ,z' ,"f} and so there are at least 

(3r - 6A) - 15A blocks of Type 2. Therefore ICI ;:=: r + (3r - 21A) = 4r - 21A ;:=: v(2~- l) 

for v;::: 37. 

Therefore ,..;(Gp,2}(D)) ;:=: v (2~- l) for all v ;:=: 51 and a(Gp ,2}(D)) ~ ,..;(Gp,2}(D)) 

in all cases. Hence the Chvatal-Erdos condition holds, and so Gp,2}(D) is Hamilto-

nian. 

0 
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Theorem 3.3. The {1 , 2}-block-intersection graph of a (v, 6, .A)-BIBD with v ~ 167 

and arbitrary A is Hamiltonian. 

Proof. Let 1) = (V, B) be a (v, 6, ~)-BIBD and G{1,2}(7J) = (B, E) denote the {1, 2}-

block-intersection graph of V. We will show that G {!,2} (V) is Hamiltonian by showing 

that a(G{1,2}(7J)):::; ~(G{l ,2}(7J)). 

First choose an independent set of vertices I C B of G {1 ,2} ( 1J) . Then by 

Lemma 2.2 we have III :::; v(5~-3). Hence a( G {1 ,2} (V )) :::; v(5~-3). 

Now let C C B be a cutset of G{l ,2}(7J). We wish to show that ICI ~ v(
5
;;

3
). Let 

A be the vertex set of a component of Gp,2}(7J)- C. Then let F = B- (AU C), 

VA = U {3 and VF = U {3 . 
~EA ~EF 

We now consider two cases. 

Case 1: VA U Vp = V . 
I ! : ,tl 

Case 1a: Assume first that VAn Vp =I= 0. Then there is a blocks= { t , u, w, x, y, 

z} E A and a block S ' = { t, u, w, x' , y', z'} E F having at least three points in 

common, say t, u and w. 

Case 1a)i: Suppose l{x, y, z} n {x',y',z'}l = 3. Without loss of generality, 

assume x = x', y = y' and z = z'. From the inclusion-exclusion principle there are 

6 

6r - 15-A + 'L (( - 1)j- l "Lv(T)) blocks of B containing at least one point of S. Also, 
j = 3 Tt;S 

ITI=j 
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there are l:v(T) - 3 i:v(T)+6 i:v(T) - 10v(S) blocks of B containing at least three 
T C S T C S T CS 
IT~3 [T~4 IT~5 

6 

points of S. Hence t here are (6r-15..\+ 2:: (( -1)j- l l:v(T))) - (i:v(T) - 3 l:v(T) + 
j = 3 r r;s r r;s r r;s 

[T[= j ITI= 3 [T [=4 

6 l:v(T) - 10v(S)) = 6r - 15..\+2 l:v(T) - 5 l:v(T)+9v(S) blocks of B with exactly 
T CS T CS T C S 
IT~5 1Tt= 4 [T~5 

one or exactly two points of S. Note that each block f3 that is counted by l:v(T) is 
T CS 
[T t= 5 

counted either exactly once (if l/3 n Sl = q) or exactly (~) t imes (if l/3 n Sl = 6). If 

l/3 n Sl = 5, then (3 is counted G) t imes within the sum l:v(T) , and if l/3 n Sl = 6, 
T CS 
[T~4 

then f3 is counted (~) times within the sum l:v(T). Either way f3 is counted ( l f3~SI) 
T C S 
[T~4 

times within the sum l:v(T) and so 2 l:v(T) ~ 5 l:v(T). Therefore 6r - 15.-\ is 
T CS T CS T C S 
1Tt= 4 1Tt=4 IT~5 

a lower bound on t he size of the cutset C and ICI ~ 6.-\ (v;l) - 15.-\ ~ v(5~2-3) for 

v ~ 21. 

Case la)ii: Suppose l{x, y, z} n {x' , y', z'}l = 2. Without loss of general-

ity, assume x = x' , y = y' and let U = { t , u , w, x, y , z, z'}. From the inclusion-

6 

exclusion principle there are 7r - 21A + 2::((- 1)}- ll::v(T)) blocks of B containing 
}= 3 r r;u 

ITI= j 

at least one point of U. Also, t here are l:v(T) - 3 l:v(T) + 6 l:v(T) - 10 l:v(T ) 
r r;u r r;u r r;u r r;u 

. ·fT[=3 [T[r==4 [T[=5 [T[=6 

blocks of B containing at least three points of U. Hence there are (7r - 21.-\ + 
6 

i:((- 1)j- ll::v(T))) - (i:v(T) - 3 l:v(T) + 6 l:v(T) - 10 l:v(T)) = 7r- 21.-\ + 
j = 3 r r;u r r;u r r;u r r;u r r;u 

[T[= j ITI= 3 ITI=4 [T [= 5 IT I= 6 

2 l:v(T) - 5 l:v(T) + 9 l:v(T) blocks of B with exactly one or exactly two points 
T CU T C U T C U 
fTf=4 [Tf=5 [Tf= 6 

of U. Of these blocks, all except those containing exact ly one point of {z, z'} must 
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be in C. Since exactly 2(r-- >.) blocks contain exactly one point of {z, z'}, it follows 

that (7r- - 21>. + 2 l:v(T)- 5 l:v(T) + 9 l:v(T)) - (2r-- 2>.) = 5r- - 19>. + 2 l:v(T) -
TCU TCU TCU T CU 
1Tf=4 1Tf=5 1Tf='6 1Tf=4 

5 l:v(T) + 9 l:v(T) is a lower bound on the size of the cutset C. ate that each 
TCU TCU 
1Tf=5 1Tf=6 

block f3 t hat is counted by l:v(T) is counted either exactly once (if l/3 n Ul = 5) 
TCU 
1Tf=5 

or exactly (~) t imes (if l/3 nUl = 6). If 1/3 nUl = 5, then /3 is counted G) tim s 

within the sum l:v(T) , and if l/3 nUl = 6, then f3 is counted (~) times within the 
TCU 
1Tf=4 

sum l:v(T). Either way f3 is counted (I.B~UI) times within the sum L:v(T) and so 
TCU TCU 
1Tf=4 1Tf=4 

2 l:v(T) 2': 5 l:v(T). Thus ICI 2': 5>. (v~l ) - 19>. 2': v(s~;3) for v 2': 35. 
T CU TCU 
1Tf=4 1Tf=5 

Case la)iii: Suppose l{x,y,z} n {x' , y' ,z'}l = 1. Without loss of generality, 

assume x = x' and let U = { t, u, w, x, y, :v', z, z'} . From the inclusion-exclusion prin-
' , I 

6 0 

ciple there are 8r-- 28>. + 2::(( - 1)i - l L:v(T)) blocks of B containing at least one 
j = 3 Tc;,U 

ITI=j 
point of U. Also, there are l:v(T) - 3 l:v(T)+6 l:v(T)- 10 l:v(T) blocks of B con-

r ev TCU TCU TCU 
1Tf=3 1Tf=4 1Tf=5 1Tf=6 

6 
taining at least three points of U. Hence there are (8r-- 28>. +2:: (( - 1)i- l l:v(T)))-

j = 3 r c;,u 
ITI=j 

(2:v(T) - 3 L:v(T) + 6 L:v(T) - 10 L:v(T)) blocks of B with exactly one or exactly 
T CU TCU T CU T CU 
1Tf=3 1Tf=4 1Tf=5 1Tf=6 
two points of U. Of these blocks, all except the following must be in C: 

1. those which contain the pair yz or the pair y' z' . 

2. those which have exactly one of y, z, y', z' and none oft, u, w, x. 
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Similar to Case la)iii of Theorem 3.2, there are at most 4r-2.A of these exceptional 

blocks, and so it follows that (8r-28.A+2l::v(T) - 5l::v(T)+9l::v(T))- (4r- 2.A) = 
TCU TCU TCU 
ITI=4 1Tf=5 1Tf=6 

4r- 26.A + 2l::v(T)- 5l:v(T) + 9l:v(T) is a lower bound on the size of the cutset 
TCU TCU TCU 
1Tf=4 1Tf=5 ITI=6 

C. As in previous cases, 2l::v(T) 2' 5l:v(T). Thus JCJ 2' 4.A (v;l )- 26.A 2- v(s;;3) 
TCU TCU 
1Tf=4 1Tf=5 

for v 2' 70. 

Case la)iv: Suppose J{x,y,z}n{x' ,y';z'}l = Oand let U = {t,u,w,x,x',y,y',z, 
6 

z'} . From the inclusion-exclusion principle there are 9r- 36.A +l::((- l)i- 1 l::v(T)) 
j=3 T<;U 

ITI=j 
blocks of l3 containing at least one point of U. Also, there are l::v(T) - 3l:v(T) + 

TCU TCU 
ITI=3 1Tf=4 

6l:v(T)- 10 l:v(T) blocks of l3 containing at least three points of U. Hence there 
TCU TCU 
ITI=5 ITI=6 

6 
are (9r - 36.A + 2:: ( ( - 1 )i- l l:v(T))) - ( l:v(T) - 3l:v(T) + 6l:v(T) - 10 l:v(T)) 

j=3 Tc;;_U T<;U T<;U T<;U T<;U 
ITI=j ITI=3 ITI=4 ITI=5 ITI=6 

blocks of l3 with exactly one or exactly two points of U. Of these blocks, all except 

the following must be in C: 

1. those which contain one of the pairs: xy, xz, yz , x'y', x'z', or y'z'. 

' \ 
2. those which have exactly one of x, x', y, y' z, z' and none oft, u, w. 

There are at most 3r - 6.A blocks that contain x, y or z but not both and there 

are at most 3r - 6.A blocks that contain x' , y' or z' but not both. H nee there are 

at most 6r - 12.A exceptional blocks of Type 2 and at most a further 6.A blocks of 
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Type 1, for a total of at most 6r- 6-A exceptional blocks. It follows that (9r - 36-A + 

2 L":v(T) - 5 L":v(T) + 9 L":v(T)) ~ (6r - 6-A) is a lower bound on the size of the cutset 
T CU TCU TCU 
ITJ=4 ITJ=5 ITJ=6 

C. Once again, 2 I':v(T) - 5 I':v(T) 2: 0. Thus ICI 2: 3-A (v~ l ) - 30-A 2: v(s;;3
) for 

T CU T CU 
ITJ=4 ITJ=5 

v 2: 167. 

Case lb: Assume VAn Vp = 0. That is, there is no blocks E G{1,2}('D)- c 

satisfying VA n S =J. 0 =J. VF n S. Without loss of generality, assume that A is a 

smallest component of G{l,2} ('D) - C. 

Case lb)i: Suppose IAI = 1. Without loss of generality, let A contain the block 

{t ,u,w,x,y, z}. Thus, VA= {t,u,w,x,y,z}, IVAI= 6 and IVFI = v - 6. Then all 

6(v - 6)-A mixed pairs (those pairs that contain a p0int from both VA and Vp) are in 

blocks of C. The blocks of C with mixed pairs are of the following types. 

Type 1. AAAAAD: 5 mixed pairs and 10 pure A pairs. 

Type 2. AAAADD: 8 mixed pairs and 6 pure A pairs. 

Type 3. AAADDD: 9 mixed pairs and 3 pure A pairs. 

Type 4. AAD D D D: 8 mixed pairs and 1 pure A pair. 

Type 5. ADDDDD: 5 mixed pairs and 0 pure A pairs. 

The overall number of pure A pairs (those that contain two points of VA) is 

-A G) = 15-A. The number of Type 3 blocks is at most ( ~ ) <;- l ) = 5-A - 5, in which 

there are at most 9(5-A - 5) mixed pairs. Hence ICI 2: ~in {i + 6>.(v~6)-9i } > 
. · ; , . O~t~5.>.-5 
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6>.(v- 6) - (5>.- 5) > v(5>.- 3) f > 16 8 - 12 or v- . 

Case 1b)ii: If IAI2: 2, then IVAI2: 10 and IVFI2: 10. Now, the number of mixed 

pairs is at least min {p(v- p).A.} . Hence ICI 2: lO(v ;lO)>. 2: v(5~_;3) for v 2: 16. 
10~p~v- 10 

Case 2: Assume VA U VF ¥ V . Then all blocks containing any element of 

V- (VA U VF) must be in C. 

Case 2a: Assume IV - (VA U VF) I = 1 and let r be the only element of V - (VA U 

Case 2a)i: Suppose VA n VF = 0. If IAI = 1, then similar to Case 1b, ICI > 

. {. + 6>.(v- 7) - 9i } > 6>.(v- 7)-(5>.- 5) > v (5>. - 3) f > 18 mm 'l 
8 

_ 
8 

_ 12 or v _ . 
O~i9>.-5 

If IAI 2: 2, then IVA I 2: 10 and IVFI 2: 10. Now the number of mixed pairs is at 

least min {p(v- p - 1)>.} . Hence ICI 2: 10
(v;ll)>. 2: v(5~_;3) for v 2: 18. 

lO~p~v-11 

Case 2a)ii: Suppose VA n VF =f. 0. Then similar to Case 1a there is a block 

S = {t ,u,w,x,y,z} E A, and a blockS'= {t,u ,w,x',y', z'} E F having at least 

three points in common, say t, u and w. Then C includes all blocks of the following 

types. 

1. All those containing r. 

2. All those containing exactly one oft, u, wand none of x, x' , y, y' , z, z' , f. 

There are r blocks of Type 1 and at least 3r - 27). blocks of Type 2. Hence 

ICI 2: r + (3r- 27>.) = 4r- 27). 2: v(5~2-3) for v 2: 73. 
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Case 2b: Now assume IV ~ (VA U VF)I = 2 and let { 1 1,12 } = V- (VA U VF)· 

Case 2b)i: Suppose VA n VF = 0. If IAI = 1, IVAI= 6, IVF I = v- 8, and every 

mixed pair tu such that t E VA U { 11 , 12 } and u E VF must be in C. The number of 

such pairs is .X(8)(v - 8) . Hence ICI 2: 8>.(~-8) 2: v(s;2-
3

) for v 2: 16. 

If IAI 2: 2, t hen IVAI 2: 10, IVFI 2: 10 and every mixed pair tu such that t E 

VA U { 1 1 , 1d and u E VF must be in C. Now t he number of mixed pairs is at least 

min {(p + 2)(v- p- 2)-X}. Hence IC I 2: 1 2(v~ l2) >. 2: v(s;
2
-

3
) for v 2: 18. 

IO::;p::;v- 12 

Case 2b )ii: Suppose VA n VF =I 0. Then similar to Case 1a t here is a block 

S = {t ,u,w,x, y,z} E A and a block S'= {t, u,w,x', y' ,z'} E F having at least 

three points in common, say t , u , and w. The cutset C must include all blocks of t he 

following types. 

1. All those containing / I , 1 2 or both. 

2. All those containing exactly one of { t , u , w} and none of { x, x', y , y' , z , z' , / I , / 2} . 

There are 2r - .X blocks of Type 1 and at least 3r - 30-X blocks of Type 2. Hence 

ICI 2: (2r - .X) + (3r - 30-X) = 5r - 31-X 2: v(s; 2-
3

) for v 2: 55. 

Case 2c: Finally suppose IV - (VA U VF) I 2: 3 and let S ~ V- (VA U VF ) such 

that lSI = 3. Then ICI 2: 3r - 3-X + L:v(T) 2: 3r- 3.-\ 2: v(s~-J) for v 2: 20. 
TCS 
1Ty;:3 

Therefore ~(G{l ,2}(D)) 2: v(s~-J) for ali v ' 2: 167 and a (G{l,2}(D )) ~ ~(G{l,2}(D)) 
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in all cases. Hence the Chvatal-Erdos condition holds, and so G {1 ,2} ('D) is Hamil to-

man. 

0 
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Chapter 4 

The 1-Block-Intersection Graph 

In this chapt r we will extend the idea in [11] to BIBDs of block size four by showing 

that the 1-block-intersection graph of any (v , 4, A)-BIBD with v 2: 136 and arbitrary 

A is Hamiltonian. 

Theorem 4 .1. The 1-block-intersection graph of any (v, 4, A)-BIBD with v 2: 136 

and arbitrary A is Hamiltonian. 

Proof. Let 'D = (V, B) be a (v, 4, A)-BIBD and G1 ('D) = (B, E) denote the 1-block

intersection graph of 'D . We will show that G1 ('D) is Hamiltonian by showing that 

a(G1('D)) ::; K:(G1('D)). 

First choose an ind pendent set of vertice, I c B of G1 ('D). Then by Lemma 2.4 

we have III ::; v(J~-2). Hence a(G1('D))::; v(J~-2). 



THE 1-BLOCK-lNTERSECTION GRAPH 

Now let C C B be a cutset of G1 (D). We wish to show that ICI 2': v(3~-2) . Let A 

be the vertex s t of a smallest component of G1 (D) - C. Then let F = B - (AU C) , 

VA= U j3 and Vp = U /3 . 
PEA PEF 

If !AI = 1, then from the inclusion-exclusion principle there are 4r - 6,\ + 

I.:: v(T) - v(VA) blocks of B having at least one point in common with VA. Also, th r 
T~YA 
ITI=3 
are 6,\ - 2 I.:: v(T) + 3v(VA) blocks of B having at least two points in common with 

T~;YA 
ITI=3 

VA. Hence there are (4r- 6,\ + I.:: v(T) - v(VA )) - (6,\ - 2 I.:: v(T) + 3v(VA) ) blocks of 
T~~ T~~ 
ITI=3 ITI=3 

B having exactly one point in common with VA. Note that each block that is counted 

by v(VA) is counted (D times within the sum I.:: v(T) and so 3 I.:: v(T) 2': 4v(VA) · 
T~VA T~VA 
ITI=3 ITI=3 

Thus IC I 2': 4r - 12,\ + 3 I.:: v (T) - 4v(VA) 2': 4,\ ( v~l) - 12,\ 2': v (3~-2) for v 2': 23. 
T~VA 
ITI=3 

Henceforth we assume !AI 2': 2 and therefore IVA I 2': 7 and I Vp l 2': 7. 

We now consider two cases. 

Case 1: VA U Vp = V. 

Case la: Assume first that VAn Vp =/: 0. Then there is a blocks = { w , x, y, z} E 

A and a block S' = { w, x, y' , z'} E F having at least two points in common , say w 

and x . 

Case la) i: Suppose i{y, z} n {y' , z'}l = 2. Without loss of generality, assume 

y = y' and z = z' . From the inclusion-exclusion principle there are 4r - 6,\ + 
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L,v(T) - v(S) blocks of B having at least one point in common with S. Also, there 
TCS 
IT~3 
are 6>.- 2 L,v(T) + 3v(S) blocks of B having at least two points in common with S. 

TCS 
IT~3 

Hence there are (4r- 6>. + L,v(T) - v(S))- (6>. - 2 L,v(T) + 3v(S)) blocks of B 
TCS TCS 
ITI=3 ITI=3 

having exactly one point in common with S. Note that each block that is counted 

by v(S) is counted (D times within the sum L,v(T) and so 3 L,v(T) 2 4v(S). Thus 
T CS T CS 
IT~3 IT~3 

ICI 2 4r- 12). + 3 L,v(T) - 4v(S) 2 4,\ (v3 1
) - 12). 2 v(J~-2) for v 2 23. 

TCS 
ITI=3 

Case la)ii: Suppose l{y,z} n {y', z'}l = 1. Without loss of generality, assume 

y = y' and let U = { w, x, y, z, z'}. From the inclusion-exclusion principle there are 

4 

5r-10>.+ L, (( - 1)1- 1 L,v(T)) blocks of B having at least one point of U. Also, th r 
J=3 r r;u 

ITI=J 
are 10>. - 2 L,v(T)+3 L,v(T) blocks of B containing at least two points of U. Herre 

TCU T CU 
1Tf=3 1Tf=4 

4 

there are (5r - 10>. + L, (( - 1)J- 1 L,v(T))) - (10>.- 2 L,v(T) + 3 L,v(T)) blocks of 
J=3 r r;u r r;u r r;u 

ITI=j ITI=3 ITI=4 
B containing exactly one point of U. Of these blocks, all except those containing 

exactly one point of {z, z'} must be in C. Since exactly 2(r- >.) blocks contain exactly 

one point of {z, z'} , it follows that (5r - 20). + 3 L,v(T) - 4 L,v(T)) - (2r - 2>.) is 
TCU T CU 

I 1Tf=3 IT~4 
a lower bound on the size of the cutset C. Note that each block that is counted by 

L, v(T) is counted (~) times within the sum L,v(T) and so 3 L,v(T) 2 4 L,v(T). 
TCU TCU TCU T CU 
1Tf=4 1Tf=3 1Tf=3 1Tf=4 
Thus ICI 2 3r - 18). + 3 L,v(T)' - 4 L,v(T) 2 3). (v31

) - 18). 2 v(J~-2) for v 2 76. 
T CU T CU 
1Tf=3 1Tf=4 

Case la)iii: Suppose l{y, z} n {y' , z'}l = 0 and let U = {w ,x , y,y', z , z'} . 
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Initially w suppose that IVAn Vpj = 2 and so VAn VF = { w, x }. Th n there are 

(IVA 1-2)(1VFI- 2) pairs of points containing one element from VA- (VA nvF) and the 

other from VF - (VA n VF). Since, a block of size four can only contain at most four 

pairs of this kind and each pair occurs in ). blocks we have ICI ~ -X(!VAI- 21(!VFI-2
) . 

Recall that IAI ~ 2, IVAI ~ 7 and IVFI ~ 7. Hence ICI ~ min { .X(p-
2
)(v-p) } ~ 

7~p~v-5 4 

5-A(v-7) > v(3.X - 2) f > 18 
4 

_ 
4 

or v _ . 

Now suppose that IVA n VFI ~ 3. Then in addition to w and x there exists a 

third point t E VA n VF and so there exists a pair of blocks T E A and T' E F 

with t in common. Let D = S U S' U T U T' . If neither T nor T' i the same 

block as S or S' then { S, S', T, T'} is a set of four blocks and 6 ::; IDI ::; 12. The 

number of blocks containing exactly one of w, x t and none of D - { w, x, t} is at least 
' 11 ' 

3r- G) (2-A)- 3(IDI- 3)-A. So ICI ~ 3r + 3). - 3IDI.A ~ 3-A (v3l) - 33). ~ v(3~-2) for 

v ~ 136. 

If T is the same block as S, but T' is not S' then there are only thr e blocks in 

play. Since IDI can then be at most eight, it follows that ICI ~ 3r- 21-A ;::: v(3~-2) 

for v ~ 88. 

If Tis the same asS and T' is the same as S' then we are either in Case la)ii or 

Case la)i. 

Case 1 b: Assume VA n VF = 0. That is, there is no block s E G 1 (D) - c 
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satisfying VA n S =!= 0 =!= VF n S. Each block of B that contains a pair of points 

wx such that w E VA and x E VF must belong to C. Clearly, there are I VA IIVF I of 

these pairs. Since a block of size four can only contain at most four pairs of this 

kind and each pair of points occurs in ..\ blocks, we have ICI 2: >.IVAJIVFI. Also, each 

component of G1 (V) - C has at least two blocks, so IVAI 2: 7 and IVFI 2: 7. Hence 

ICI 2: min { >.p(v- p) } 2: 7>.(v- 7) 2: v(3>. - 2) for v 2: 13. 
7~p~v-7 4 4 4 . ' 

Case 2: Assume VA U VF ~ V. Then all blocks containing any element of 

V- (VA U VF) must be in C. 

Case 2a: Assume IV - (VA U VF) I = 1 and let 1 be the only element of V- (VA U 

Case 2a)i: If VA n VF = 0, then similar to Case lb we obtain ICI > 

m . { >.p(v- 1- p) } > 7>.(v- 8) > v(3>.- 2) f > 14 m 
4 

_ 
4 

_ 
4 

or v _ . 
7~p~v-8 

Case 2a)ii: If VA n VF =!= 0, then similar to Case la ther is a block S = 

{ w, x, y, z} E A, and a block S' = { w, x, y', z'} E F having at least two points in 

common, say w and x. Then C includes all blocks of the following types. 
,. \ 

1. All those containing I· 

2. All those containing exactly one of w , x and none of y , y', z, z', I · 

There are r blocks of Type 1 and at least 2r - 12.\ blocks of Type 2. Hence 

ICI 2: r + (2r - 12.\) = 3r - 12.\ 2: v(3~-2) for v 2: 52. 
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Case 2b: Now assume IV- (VA U VF)I = 2. Let {11 , 12} = V - (VA U Vp). 

Case 2b)i: Assume VAn Vp = 0. Since IAI 2: 2, then IVAI 2: 7 and IVFI 2: 7. 

Every mixed pair wx such that w E VA U { 1 1 , 12} and x E Vp must be in C. 

Now the number of mixed pairs is at least min {(p + 2)(v - p- 2).\}. Hence 
7:=:;p:=:;v-9 

ICI 2: min { (p+ 2)(v4- p - 2)..\ } 2: 9(v~9)..\ 2: v(3~-2) for v 2: 14. 
7:=:;p :=:;v- 9 

Case 2b )ii: If VA n VF =J. 0, then similar to Case 1a there is a block s 

{ w , x , y , z} E A and a block S' = { w , x , y', z'} E F having at least two points in 

common, say w and x . Then C includes all blocks of the following types. 

1. All those containing /1> 1 2 or both. 

2. All those containing exactly one of w, x and none of y, y', z , z' , / I, 12. 

There are 2r - ). blocks of Type 1 and at least 2r - 14.\ blocks of Type 2. Hence 

ICI 2: (2r - .\) + (2r - 14.\) = 4r - 15.\ 2: v(3~-2) for v 2: 28. 

Case 2c: Assume IV - (VA U VF)I 2: 3 and let S ~ V - (VA U VF) such that 

lSI = 3. Then ICI 2: 3r - 3). + L_v(T) 2: 3.\ (v3l) - 3-A 2: v(3~-2) for v 2: 16. 
TCS 
IT~3 

Therefore r;,( G1 (D)) 2: v(3~-2) for all v 2: 136 and a( G1 (D)) :::; r;,( G1 (D)) in all 

cases. Hence by the Chvatal-Erdos condition holds, and so G 1 (D) is Hamiltonian. 

D 
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Chapter 5 

Summary and Some Open 

Problems 

In this thesis we have given numerous definitions and examples that deal with graph 

theory and design theory, several lemmata that deal with bounding the size of inde

pendent sets of vertices of block-intersection graphs and we have shown that 

(i) the {1 , 2}-block-intersection graph for any (v, 4, A)-BIBD with v 2: 11 and 

arbitrary A is Hamiltonian, 

(ii) the {1 , 2}-block-intersection graph for any (v, 5, A)-BIBD with v > 57 and 

arbitrary A is Hamiltonian, 

(iii) the {1 , 2}-block-intersection graph for any (v, 6, A)-BIBD with v > 167 and 



SUMMARY AND SOME OPEN PROBLEMS 

arbitrary A is Hamiltonian, 

(iv) the 1-block-intersection graph for any (v, 4, A)-BIBD with v ~ 136 and arbi

trary A is Hamiltonian. 

Some open problems are showing that 

1. the {1, 2}-block-intersection graph for any (v, k, A)-BIBD with k ~ 7 and arbi

trary A is Hamiltonian or else find a suitable counter example 

2. the 1-block-intersection graph for any (v, k, A)-BIBD with k ~ 5 and arbitrary 

A is Hamiltonian or else find a suitable counter example. 
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