

TEST-DRIVEN DEVELOPMENT WITH

ORACLES AND FORMAL

SPECIFICATIONS

By

SHADI G. ALAWNEH , B. ENG.

A Thesis
Submitted to the School of Graduate Studies

in Partial FUlfilment of t he Requirements
for the Degree of

Master of Engineering

Memorial University of Newfoundland

© Copyright by Shadi G . Alawneh , June 2010

ii

MASTER OF ENGINEERING (2010)
(Electrical and Computer Engineering)

Memorial University of ewfoundland
St. John 's, NewFoundland

TITLE: Test-Driven Development with Oracles and Formal Specifications

AUTHOR: Shadi G. Alawneh, B. Eng. (Jordan University of Science and Tech
nology)

SUPERVISOR: Dr. Dennis K. Peters

UMBER OF PAGES: xii , 104

Abstract

The current industry trend to using Test Driven Development (TDD) is a recognition

of the high value of creating executable tests as part of the development process. In

TDD, the test code is a formal documentation of the required behaviour of the com

ponent or system being developed, but this documentation is necessarily incomplete

and often over-specific. An alternative approach to TDD is to develop the specifi

cation of the required behaviour in a formal notation as a part of the TDD process

and to generate test oracles from that specification. In this thesis we present tool in

support of this approach that allow formal specifications to be written in a readable

manner that is tightly integrated with the code through an integrated development

environment, and test oracles to be generated automatically. The generated test code

integrates smoothly with test frameworks (e.g., JUnit) and so can be directly used in

TDD. This approach has the advantage that the specifications can be complete and

appropriately abstract but still support TDD.

Acknowledgements

I would like to express my sincere appreciation for the assistance and guidance of Dr.

Dennis K. Peters in the preparation of this thesis.

Also, I gratefully acknowledge the financial assistance received from the Faculty

of Engineering and Applied Science, Memorial University and the Natural Sciences

and Engineering Research Council (NSERC).

I would specially like to thank the people in the CERL lab (Ala'a S. Al-habashna,

Al-Abbass Al-Habashneh and Rabie Almatarneh). It has been a lot of coffee with

them.

Last but not least my father (Ghazi) and mother (Moyasser), just for being you.

lJ

Contents

Abstract

Acknowledgements II

List of Acronyms xii

1 Introduction 1

1.1 Purpose 3

1.2 Scope 4

1.3 Types of Documents 5

1.4 Fillmore Software Project 5

1.5 Outline of This Thesis .. 6

2 Related Work 7

2.1 Test Driven Development . 7

2.2 Oracle Generation 11

3 Methodology 15

iii

CONTENTS

3.1 Formal Software Specifications .

3.2 Program Specifications

3.2.1 Constants

3.2.2 Variables .

3.2.3 Auxiliary Function And Predicate Definition::;

3.2.4 Predicate Expressions

3.2.5 Quantified Expressions

3.2.6 Tabular Expressions .

3.2.7 Sampl Program Specification

3.3 Tool Support

3.3.1 OMDoc Document Model

3.3.2 The Eclipse Framework .

3.3.3 Specification Editor .

4 Oracle Generation

4.1 Oracle Design .

4.1 .1 Programming Language

4.1. 2 Internal Design Overview .

4.1.2.1 Expression Implementation

4.1.3 Scalar Expressions

4. 1.3.1 Logical Operators

4. 1.3.2 Quantification

4.1.4 Tabular Expressions ..

IV

15

16

17

17

17

1

1

1

20

20

21

25

26

28

29

29

29

30

31

31

32

33

CONTENTS

4.1.5 Auxiliary Functions

4.1.6 Compilation and Execution

4.2 Test Oracle Generator Design

4.2.1 Requirements

4.2.1.1 Assumptions

4.2 .1.2 User Interface .

4.2 .1.3 Input Format .

4.2.1.4 Anticipated Changes

4 .2.2 Package Design

4.2.3 ew Packages Added To Fillmore

4.2.3. 1 Oracle Generator

(ca.Fillmoresoftware. plugin.actions)

v

35

37

41

41

41

42

42

43

43

44

Actions

44

4.2.3.2 Oracle Generation (ca.Fillmoresoftware.plugin.OracleGen) 45

4.2.3.3 Oracle Utilities (ca.Fillmoresoftware.plugin.OracleUtilities) 46

4.2.4 Old Packages In Fillmore . 46

4. 2.4. 1 Specification Model (ca.Fillmoresoftware. plugin .specmodel) 4 7

4.2.4.2 Kernel (ca.Fillmoresoftware.kernel) 48

4.2.4 .3 Editors (ca.Fillmoresoftware.plugin.editors) 48

4.2.4.4 Preferences (ca.Fillmoresoftware.plugin.preferences) 49

4.2.5 Symbols Representation

4.2.5.1 Catagories of Symbols

4.2 .6 Algorithem Overview

50

51

56

CONTENTS

4.2.6.1 Expression Coding . . .

5 Test Driven Development With Oracles

5.1 Test Driven Development with Oracles .

5.1.1 Test Driven Development For Methods

5.1.2 Test Driven DevelopmenL For Classes

6 Future Work and Conclusion

6.1 FuLure Work .

6.2 Conclu ions .

A Class Responsibility Collaborator (CRC)

A.1 Class Responsibility Collaborator (CRC) Tables

Vl

56

58

5

59

66

72

72

73

74

74

B The Gen rated Oracle Code 87

B.l The G nerated Oracle Code From Th Sample Example 7

List of Figures

1.1 The Steps of Test-Driven Development (TDD)[2] 0 0 0 0 0 0 0 0 0 0 0 2

301 Ggcd Program Specification 21

302 Screenshot of Editor 27

40 1 Oracle Design of ggcd Tabular Expression 35

402 TestR esul t 0 0 0 0 0 41

403 P ackages Diagram 0 44

404 Actions Package Class Diagram 45

405 OracleGen Package Class Diagram 46

406 OracleUtilities P ackage Class Diagram 47

5° 1 The Steps of TDD Approach 0 60

502 oSuchE!ementException 0 0 62

Vll

List of Tables

4.1 Logical Operator Conversions 32

4.2 Infix Symbols "Use" Values . 53

4.3 Unary Symbols "Use" Values 54

A.l GenerateAuxFunAction Class Responsibility Collaborator (CRC) 74

A.2 GenerateOracleAction Class Responsibility Collaborator (CRC) 75

A.3 OracleAction Class Responsibility Collaborator (CRC) 75

A.4 CodeFromOMobject Class Responsibility Collaborator (CRC) 75

A.5 CodeFromOMS Class Responsibility Collaborator (CRC) . 75

A.6 CodeFromOMA Class Responsibility Collaborator (CRC) . 75

A.7 CodeFromOMI Class Responsibility Collaborator (CRC) . 76

A.8 CodeFromOMV Class Responsibility Collaborator (CRC) . 76

A.9 CodeFromTabularExp Class Responsibility Collaborator (CRC) 76

A.lO CodeFromTheory Class Respon ibility Collaborator (CRC) 76

A.ll OracleModel Class Responsibility Collaborator (CRC) 76

A.l2 CellBase Class Responsibility Collaborator (CRC) . . . 76

viii

LIST OF TABLES IX

A.l3 Cellindex Class Responsibility Collaborator (CRC) . . . 77

A.l4 Integer_Interval Class Responsibi lity Collaborator (CRC) 77

A.l5 Inverted Table Class Responsibility Collaborator (CRC) 77

A.l6 ormalTable Class Responsibility Collaborator (CRC) 77

A.l7 VectorTable Class Responsibility Collaborator (CRC) 77

A.l8 TableGrid Class Responsibility Collaborator (CRC) 77

A.l9 VarMap Class Responsibility Collaborator (CRC) . 7

A.20 SpecModel Class Responsibility Collaborator (CRC) . 78

A.21 SpecModelElement Class Responsibility Collaborator (CRC) 7

A.22 SpecModelErrorHandler Class Responsibility Collaborator (CRC) 7

A.23 SpecModelParser Class Responsibility Collaborator (CRC) . . 78

A.24 ISpecModelListener Class Responsibility Collaborator (CRC) . 79

A.25 Cha.nge otifier Cla.ss Responsibi li ty Colla.borator (CRC) . 79

A.26 DOMXMLWriter Class Responsibility Collaborator (CRC) 79

A.27 OMDOMReader Class Responsibility Collaborator (CRC) 79

A.28 ElementTag Class Responsibility Collaborator (CRC) 79

A.29 Theory Class Responsibility Collaborator (CRC) . 79

A.30 Symbol Class Responsibility Collaborator (CRC) 0

A.31 TTSRole Class Responsibility Collaborator (CRC) . 0

A.32 Typ Class Responsibility Collaborator (CRC) . . . 80

A.33 Definition Cla.ss Responsibility Colla.bora.tor (CRC) 80

A.34 Presentation Class Responsibility Collaborator (CRC) . 0

LIST OF TABLES

A.35 Use Class Responsibility Collaborator (CRC) .

A.36 MObject Class Responsibility Collaborator (CRC) .

A.37 Table Class Responsibility Collaborator (CRC) ..

A.38 TableFactory Class Responsibility Collaborator (CRC)

A.39 EvalTerm Class Responsibility Collaborator (CRC) ..

A.40 EvalTermFactory Class Responsibility Collaborator (CRC)

A.41 GenRest Class Responsibility Collaborator (CRC)

A.42 GenRestFactory Class Responsibility Collaborator (CRC) .

A.43 Grid Class Responsibility Collaborator (CRC) .

A.44 Index Class Responsibility Collaborator (CRC)

A.45 IndexFactory Class Responsibility Collaborator (CRC)

A.46 InvertedEvalTerm Class Responsibility Collaborator (CRC) .

A.47 ormalEvalTerm Class Responsibility Collaborator (CRC)

A.48 VectorEvalTerm Class Responsibility Collaborator (CRC) .

A.49 NormalGenRest Class Responsibility Collaborator (CRC) .

A.50 OMUtil Class Responsibility Collaborator (CRC) .

A.51 Rectlndex Class Responsibility Collaborator (CRC)

A.52 RectShape Class Responsibility Collaborator (CRC) .

A.53 RectShapeiterator Class Responsibility Collaborator (CRC)

A.54 RectStructRest Class Responsibility Collaborator (CRC)

A.55 Shape Class Responsibility Collaborator (CRC)

A.56 ShapeFactory Class Responsibility Collaborator (CRC)

X

80

81

81

81

81

81

81

82

82

82

82

82

82

82

83

83

83

83

83

83

83

84

LIST OF TABLES x1

A.57 StructRest Class Responsibility Collaborator (CRC) 84

A.58 StructRestFactory Class Responsibility Collaborator (CRC) 84

A.59 ElementDialog Class Responsibility Collaborator (CRC) . . 84

A.60 ISpecModelS lectable Class Responsibili ty Collaborator (CRC) . 4

A.61 SpecEditor Class Responsibility Collaborator (CRC) 84

A.62 SpecEditorContributor Class Responsibility Collabora tor (CRC) 85

A.63 SpecElementLabelProvider Class Responsibility Collaborator (CRC) . 5

A.64 SpecErrorHandler Class Responsibility Collaborator (CRC) . 85

A.65 SpecOutlinePage Class Responsibili ty Collaborator (CRC) . 5

A.66 SpecTreeContentProvider Class Responsibility Collaborator (CRC) 5

A.67 FillmorePreferencePage Class Responsibility Collaborator (CRC) 86

A.68 PreferenceConstants Class Responsibili ty Collaborator (CRC) 6

A.69 Preferencelnitializer Class Responsibility Collaborator (CRC) 86

A.70 TestOracleP references Class Responsibili ty Collaborator (CRC) 6

List of Acronyms

I Acronym I Description

TOG T st Oracle Generator

TDD Te t Driven Development

XP Extreme Programming

JML Java Modeling Language

TT Tab! Tool System

F I Formal Methods

ADT Ab tract Data Type

xii

-----·--~~~~~~~~~~~~~~~-~~--~-

Chapter 1

Introduction

Test-Driven Development (TOO) is a methodology that uses tests to help developer ·

make the right decisions at the right Lim . TOO is not about testing, it is about using

tests to create software in a simple, incremental way. ot only does this improve the

quality and design of the software, but it a lso simplifies the development process. The

steps of TOO are illustra ted in the UML activity diagram of Figure 1.1. TOO is one of

the core practices of Extreme Programming (XP)[6, 21]. Two key principles of TOO

R.rC' 1) t.ha.t. no impiNnr.nta.t.ion C'OOe is written without first ha.ving; R. test C'R.SC' tha.t

fa ils with the current implementation, and 2) that we stop writing the implementation

as soon as all of the existing test cases pass. Although not all developers agree with

all of the XP practices, the ideas of TOO have started to gain wide acceptance.

In TOO, the test code is a formal documentation t hat describes the required

behaviour for the component or the system being developed for the particular t t

cases includ d. However, tests alone describe the properties of a program only in

1

1. Introduction

Pan

Pau ,
Development
continues

Pass,
Development
stops

Figure 1.1: The Steps of Test-Driven Development (TDD)[2]

2

terms of examples and thus are not sufficient to completely describe the behaviour

of a program . So, this documentation is unavoidably incomplete and often ov r-

specific. To solve this problem we propose an a lternative approach to TDD, which

is to develop a formal specification of the required behaviour as a part of the TDD

process and then generate test oracle from that specification. We thus propose a

variation on the key TDD principles listed above: 1) No implementation code is

written without first having a specification for the behaviour that i not satisfi ed by

the current implementation , an I 2) we stop writing the implementation as soon as

the implementation satisfies the current specification. By generating oracles direct ly

from the specification we are a bl to quickly and accurately check if the specification

1. Introduction 3

is satisfied by the implementation for the selected test cases.

1.1 Purpose

In the context of test driven development , tests specify the behaviour of a program

before the code that implements th program is actually written . In addition, they are

used as a main source of documentation in XP projects, together wi th the program

code.

An alternative approach to TDD i to develop a formal specification of the required

behaviour as a part of the TDD process and then generate test oracles from that

specifica tion. If a program has be n formally sp cified. it should be po sible to use

t.hf' spPri fi rFt.tion Ft.S Ft.n omrle, so the expPcteci ou tput. neeci not. to be given by t lw user.

This is par ticularly useful if the formal documenta tion is of a from that can be read

and understood by both domain experts and programmers. Such documentation can

be reviewed by t he domain experts to ensure that the specified behaviour is corr ct

and then used to communicate their intentions to t he programmers. Generating

an oracle from this documentation allows us to ensure that the documentation and

prgram are consistent.

The purpo e of this work is to develop tools in support of this approach that allow

formal specification to be written in a readable manner that is t ight ly integrated

with the code through an integrated development environment, and test oracles to

be generated automatically. One of the tools t ha t we have developed is a Test Oracle

Generator (TOG) tool that , given a relational program specification [33] using tabular

1. Introduction 4

expres ·ion [34], will produce a program that will act as an oracle. This oracle program

will take as input an (input, output) pair from the program under test and wi ll return

true if the pair sat isfi e the relat ion described by t he specifi cation, or fa lse if it does

not .

1.2 Scope

In t his t hesis, we considered applying our approach for Test Driven Develop

ment(TDD) on methods and classes which are the basic components for any software

application.

In our work, the kind of testing that we considered is the one composed of eval

uating executable parts of the software system. Testing is one of the methods used

to verify t he software system, but in this work we didn't use t he software verificat ion

since it has more wide meaning. We didn' t discuss the selection of suitable tests

for a component and how efficient those tests are. Interested readers are referred to

t he cited publication [46] for more details about t hese issues and a good survey of

t he related literature. Also, the kind of programs that we considered in this work is

the terminating programs. For the non-terminating programs, some terminating sub

program (e.g. the body of an infinite loop) could be documented and test d using

these methods.

Our methods are applicable for programs wri tten in different kinds of program

ming languages but the tools that we have implemented to describe and explain these

techniques only work for those wri tten in 'J ava' .

1. Introduction 5

1.3 Types of Documents

The documentation is very important for computer systems. The goal of softwar

documentation is to describe software systems and software processes. According

to information in [22], consistent, correct and complete documentation of a software

system is an important vehicle for the maintainer to gain an understanding of th

system, to ease the learning and /or relearning processes, and to make the system

more maintainable. Poor system documentation, on the other hand , is th primary

reason for quick software system quality degradation and aging. Proper process doc

umentation records the process, its stages and tasks, executing roles, their decisions

and motivations, and the results of each individual process task.

With reference to the set of documents described in [36] , in this work, we are

focused on using module internal design documents [37] or module interface speci

fications to drive the development [42]. These two types of documents specify the

behaviour of the module either in terms of the internal data structure and the effect

of each access program on it , or in terms of the externally observabl behaviour of

the module.

1.4 Fillmore Software Project

The Fillmore Software Project [39, 40], is a collaborative project between r searchers

at Memori al University, McMaster University and the University of Limerick that

was started in the Fall of 2006 and i · aimed at building a suite of tools to provide

1. Introduction 6

better support for software specifications or descriptions of software behaviour. The

purpose of these tools is to improve the quality of the developed software.

Thi project attempts to develop a suite of tools for development, analysis and

use of tabular software specifications. The set of tools that may be appropriate

outcomes from this project is very large and includes powerful editors, document

consistency checkers, verification systems, oracle generators, test case generators and

model checkers. As a part of our work, we implemented the TOG part of the Fillmore

Software Project.

1.5 Outline of This Thesis

Chapter 2 describes Lhe related work. Chapter 3 describes the content and Lhc formaL

of the type of the program specification to be used for generating a te t oracle. The

design of Lhe oracle itself and the design of the Test Oracle Generator are discussed

in Chapter 4, and Chapter 5 discusses the Test Driven Development approach with

oracles and formal specifications. Chapter 6 discusses the conclusions.

Chapter 2

Related Work

2.1 Test Driven D evelopment

This section first de cribes TDD practice in detail , then detail an empirical study

of TDD that has been completed by researchers in Germany [26]. It also, describes

some research that uses TDD.

In the TDD, before writing implementation code, the developer writes automated

unit test cases for the new functionality they are about to implement . After writing

test cases that generally will not even compile, the developers write implementation

code to pass these test cases. The developer writes a few test cases, implements the

code, writes a few test cases, implements the code, and so on. The work is kept

within the developers intellectual control because he or she is continuously making

small de ign and implementation d cisions and increasing functionality at a relatively

consistent rate. A new functionality is not considered properly implement d unles

7

2. Related Work 8

these n w unit test cases and every other unit test cases ever written for the code

base run properly.

Based on [16], TDD is considered preferable over other approaches.

• In any process, there exists a gap between decision (design developed) and

feedback (performance obtained by implementing that design). The favorable

outcome of TDD can be ascribed to the lowering, if not eliminating, of Lhat gap,

as the granular test-then-code cycle gives constant feedback to Lhe developer

[7]. Consequently, bug and Lheir cau es can be easily determined the bug

must lie in the code that was just written or in code with which the recently

added code interacts. An often-cited tenet of Software Engineering, in concert

with the Cost of Change [9], is that the longer a bug remains in a software

system the more difficult and costly it is to remove. By using TDD. bugs are

determined very quickly and the source of the bug is more easily determined.

Therefore. it is this higher granularity of TDD that distinguish the practi e

from other testing and development models.

• TDD gives programmers the ability to write code that can be tested auLomati

cally, such as having functions/methods returning a value which can be checked

against expected results. Some benefits of automated testing include: (1) pro

duct ion of reliable ystems, (2) improvement to the quality of the test effort ,

and (3) reduction of the test effort and minimization of the chedule.

• The TDD test cases create a thorough regression test bed . By continuously

running these automated test cases, one can easily determine if a new change

2. Related Work 9

breaks anything in the existing system. T his test bed should also allow smooth

integration of new functionali ty into the code base.

Lately, there are studies to analyze the efficiency of the TDD approach. Muller

and Hagner [26] reported an experiment to compare TDD with traditional program

ming. The experiment is done with 19 graduate students, evaluated the efficiency

of TDD in terms of (1) programming speed , (2) program reliability and (3) program

understanding. In this experiment, the subject were divided into two groups, TDD

and control, with each group solving the same task. The task to be solved in thi

experiment is called "GraphBase". It consists of implementing the main class of a

given graph library containing only the method declarations and method comments

but not the method bodies; the students completed the body of the necessary meth

ods. The programming was done in this way to give the researchers t he abili ty to

assess automated acceptance testing for their analysis.

The test cases that was specified by t he T DD group was implemented while the

code was written, but the control group students wrote automated test cases after

completing the code. Subjects work for the two groups was divided into two phases,

an implementation phase (IP), during which the subjects solved their assignment

unti l th y thought that their program would run correctly. This phase fin ished with

t heir call for the acceptance-te t . An acceptance-test phase (AP), during which the

subjects had to fix the faults that caused the acceptance-test to fail. The researchers

found no difference between the groups in overall development t ime. The TDD group

had lower reliability after the IP phase and higher reliability after the AP phase.

2. Related Work 10

However the TDD groups had statistically significant fewer errors when th code was

reused. Based on these results the researchers concluded that writing program in

test-first manner neither leads to quicker development nor provides an increase in

quality. However , the understandability of the program increases, measured in term

of proper reuse of existing interfaces.

Despite these results, this study is far from being a complete evaluation of test

first programming. The authors encourage other researchers to do the experiment

again or to conduct a similar in order to extend the knowledge about test-first.

There are some researchers who have described tools that can be used to combine

formal specifications with test driven development without loosing the agility of te ·t

driven development. In [5], Baumeister describes a tool that provides support to

combine formal specifications with test driven development. This is done by using

the tests, that drive the development of t he code, also to drive the development of

the formal specification. By generating runt ime assertions from the specification it is

possible to check for inconsistencies between code, specifications, and tests. Each of

the three artifacts improves the quali ty of the other two, yielding bett r code qual it y

and better program documentation in the form of a validated formal specification of

the program. This method is exemplified by using the primes example with Java as

the programming language, JUnit as the testing framework, and the Java Modeling

Language (J ML) [24] for the formulation of class invariants and pre- and postcon

ditions for mrthods. Thry usc .JML since JML specifications arr rasily undrrstood

by programmers, and because it comes with a runtime assertion checker [11], which

2. Related Work 11

allows them to check invariants and pre- and postcondit ions of methods at runtime.

Our work is different from the work above in that we use relations for the speci

fications, which characterize t he acceptable set of outcomes fo r a given input. Also,

we u e test oracles t hat are generated automatically from the program specification

to determine if the software behaviour is correct or not for a given te t input an I

output . By generating oracles directly from the specification we are able to quickly

and accurately check if the specification is satisfied by the implementat ion for the

selected test cases.

In [19], Herranz and Moreno- avarro have studied how the technology of For

mal Methods (FM) can interact with an agile process in general and with Extreme

Programming (XP) in part icular. They have presented how some XP practices can

admit the integration of Formal Methods and declarative technology. In particular,

unit testing, refactoring, and, in a more detailed way, incremental development have

been studied from the prism of FM.

2.2 Oracle Generation

The research t hat has been done on improving the efficiency of software testing is

divided into two categories: one is focused on the test case selection [17, 15, 27 30],

t he oth r has concentrated on developing tools to help generate, maintain and track

the testing documentation or run tests in simulated environments [10, 1 , 31, 32] .

All previous research areas arc support ive to, but is different from the work t hat has

done in this t hesis.

2. Related Work 12

Several r searchers have developed tools that give the user the ability to d termine

if the re ·ult · of a test are correct or not. In [31], Panzl explained three different kinds

of automatic oftware test drivers that can be used to automate the verification of

test results. In [1] Hamlet described another automatic testing ystem based on

fini te test-data sets, implemented l>y modifying a compiler. The disadvantages of

these testing systems are: 1) The user should specify the expected result, which may

be hard to acquire, and 2) The relational pecifications, which may accept more than

one acceptable result for a given input, can't be used because th se systems only

compare the expected and actual r suit.

The last di advantage is partly solved by Chapman in [10]. This system de

scribes the design and implementation of a program testing assistant which aids a

programmer in the definition execution, and modification of test cas during incn'

mental program development. Moreover, it gives the programmer th ability to set

the succe s criteria for a test case or use the default criterion qual, which check for

simple equali ty of a result and its correct value. Examples of other success criteria

are set-equal, which checks two sets to ee that they contain the same elements and

isomorphic, which checks that arbitrary structures, possibly including pointer cycles,

are topologically identical.

In [4 1] Peter and Parnas discuss the us of test oracles generat d from program

documentation. They describe an algorithm that can be used to generate a test oracle

from program documentation , and present the results of using a tool based on it to

help test part of a commercial network management application. The results demon-

2. Related Work 13

strate that these methods can be effective a t detecting errors and greatly increase

the speed and accuracy of test evaluation when compared with manual evaluation.

design of test oracle generator they used allows using only C programming language

in this prototype. If we need to choose among several programming languages we

need to add ev raJ addit ional sub modules, one for each languag .

In [38] P ters developed a prototyp automated Test Oracle Generator (TOG) tool

that, given a relational program specification using tabular expres ion , will produ e

a program that will act as an oracle. This oracle program will takes input an input,

output pair from the program under test and will return true if t he pair satisfies the

relation J escribed by the specification, or false if it does not.

Oth r kind of systems, such as ANNA [25] and APP [44], give the user the abili ty

to write code annotated with assertions that are evaluated while the code is exe

cuted. Th(' e as ertions can be used as an omrlc if t hey arc completely sperifi('d anci

accurately placed to define t he program specification.

In [45], Stock and Carrington described a Test Template Framework (TTF) which

a structured strategy and a formal fram work for Specification-based Testing (SBT)

which is using the Z notation. In [43], Richardson et al. encourage Lhe process of

generating te ' t oracle from formal specifications.

Other researchers have explained generating test oracles for abstract data types

(ADTs) that are defined using algebraic specifications, e.g [3, 8 14] or 'trace' specifi

cations 147]. These kind of specification approaches discuss another kinci of prohlcm

which is cliff'erent from the specification approaches that is us d in thi work in that

2. Related Work 14

they specify the desired properties of an ADT which is implemented by a group of

programs, but the approaches that are used in this work are used specify the effect

of a single program on some data structure.

Chapter 3

Methodology

3.1 Formal Software Specifications

Formal pecification are documentation methods that u e a mathematical descrip

tion of oftware or hardware which may be u ed to develop an implementation

to drive automat d testing. The emphasis is on what the syst m hould do, not

necessari ly how the system should do it. Also, formal software specifications are

expressed in a language whose vocabulary, syntax and semantics are formally defined .

Examples of such languages (or notations) are VDM, Z, and B.

Formal specifications have several advantages over more traditional (informal)

techniques:

I Since they are precisely defined, there is little room for mi interpretation

of the intended meaning. Thi is in tark contrast to natural language and

15

3. Methodology

other informal techniques, which leave lots of room for (mis)inLerpretation.

II Formal Specifications are mathematical entities, so they may b analyz d

using mathematical methods and Lools.

III They can be processed automatically, so we can use them as an exchange

medium for oftware tools that depend on it.

IV They can b u ed as a guide for id ntifying appropriate test cases.

V They can be used to objectiv ly d Lermine if the behaviour of a sysL m IS

acceptable or not.

16

For automated testing some form of formal specification of the required b haviour i

essential. In a traditional automated testing process, this specification is in the form of

the testing code, which will implement comparisons or tests to determine if the actual

behaviour i ac ptable. In this work we propose that the specification b expres ed in

Fl. mMhcmatirFl.l notation Fl.nct thFl.t spcrifirFl.t.ion ran be uscct to Fl.Ut.om at i Fl.lly gcnc•rat<'

testing code.

3.2 Program Specifications

A program pecification in our work, describe the required behaviour of a program

either in I erms of the internal daLa. tructure and the effect. of each access program

on it, or iu Lerms of t he externally observabl behaviour of th modul . IL consists of

t hese components: constants, variables, auxiliary function and pr dicate definitions,

3. Methodology 17

the program invocation, which gives the name and type of the program and lists all

its actual argument program variables, and an expression that gives the semantics of

t he program. The following explains these in more detail.

3.2.1 Constants

A constant is a special kind of variable whose value cannot be altered during pro

gram execution. Many programming languages make an explicit syntactic distinction

between constant and variable symbols. For example, in Java the following are con

stants: 10 and "Any Text".

3.2.2 Variables

In the specification, variables are strings of characters used to represent either t he

value of program variables in the initial stat e or final state of an execution, the value of

rxprrssions pa..'>s~d as argumrnts in auxiliary defin itions, orR.'> (]Uanti firation indirrs.

Variables which represent quantification indices are considered to represent a value

only where they are bound.

All variables mu t have a type and should be defined in the documentation.

3.2.3 Aux iliary Function And Predicate D efinitions

The definition of an auxi liary function consists of a name, a type, a li t of argument

variables and an expression t hat defines the semantics of th auxiliary function . Also,

the definition of the auxiliary predicate is the arne but t he expression is a. predicate

3. Methodology 18

expression which is described in Section 3.2.4.

3.2.4 Predicate Expressions

A predicate expression is an expression that evaluates to true or false and consists of

either quantified expression as described below, or a string of the form G !\ H , G V H ,

H ==? G or -.G, where G and H represents predicate expressions.

3.2.5 Quantified Expressions

In our te t oracle generator, quantification must be restricted to a finite et, which

can be implemented as a java collection so that it can be auLomatically g nerated .

T hit:i is done lJy permitting only the following forms of quantified exprcst:iioas, whcrl'

i is a variable, known as the index variable of the quantification, G(i) is a collection

and H(i) is any predicate expression of a permitted form :

(Vi: G(i).H(i))

(:3i: G(i).H(i))

3.2.6 Tabular Expressions

The nature of computer system behaviour often is that the system must react to

changes in its environment and behave differently under different circumstances. The

resul t is t hat the mathematics describing this behaviour consists of a large number

of conditions and cases that must be described. It has been recognized for some time

3 . Methodology 19

that tables can be used to help in the effective presentation of such math rnatics

[35, 1, 34, 20]. In our work we show such tabular representation of relations and

function as an ignificant factor in making the documentation more r adable, and o

we have specialized our tools to support them.

A complete discussion of tabular expressions is beyond the scope of this thesis,

so interested readers are referred to the cited publications. In their most basic form ,

tabular expre sions represent conditional expressions. For example, th function

definition 3.1, could be represented by the tabular expression 3.2.

x+y if X > 1 1\ y < 0

x-y if X ::; 1 1\ y < 0

df X
f(x, y)

if X> 1 1\ y = 0
(3.1)

xy if X ::; 1 1\ y = 0

y if X> 1 1\ y > 0

xjy if X ::; 1 1\ y > 0

J(x, y) g£ (3.2)

X> 1 X ::; 1

y<O x+y x-y

y = O X xy

y>O y xjy

Although 3.1 and 3.2 are clearly a nonsensical example, they are repre entative of

the kind of condintional expression that occurs often in documentation of software

3. Methodology 20

based systems. We have found that the tabular form of the expressions is not only

easier to read , but, perhaps more importantly, it is also easier to write correctly. Of

particular importance is that they make it very clear what the cases are, and that

all cases are considered.

Modern general purpose documentation tools, of course, have support for tables

as part of the documents, but they are often not very good at dealing with tables as

part of mathemat ical expressions. These tools al o encourage authors to focus effort

on the wrong things: authors will work very hard to try to get the appearance of the

table right, sometimes even to the detriment of readabili ty(e.g., shortening variable

names so that expressions fit in the columns).

3.2. 7 Sample Program Specification

F igure 3.1, specifies a program 'ggcd' which compares an integer value ' i ' with anoth r

integer value ' j ', ret urns the greatest common divisor of t hem if ' i > 0 1\ j > 0',

otherwise returns 0. Additionally, it indicates if the two integers are positive by using

the returned value, which is represented by a boolean variable 'result .

3.3 Tool Support

The tool support helped us to develop techniques and tools to facilitate the production

of software design documentation that is 1) readable and understood by the users, 2)

complete and accurate enough to allow analysis, both manually and mechanically and

3. Methodology

Program Specification
Boolean
ggcd(Integer i , Integer j , Integer gcdvalue)

i > O/\ j>O
gcdvalue = max({x E [O,min(i,j)] lcDiv(i,j,x)})
result = TRUE

Auxiliary Predicate D efinitions
Boolean cDiv(Integer a, Integer b, Integer x)

df
= (a%x = 0) !\ (b%x = 0)

i<ov·<o - J_
0

FALSE

Figure 3.1 : Ggcd Program Specification

21

3) suitable for use as a specification from which to produce an acceptable program.

We can't get these things with the general word processor .

3.3.1 OMDoc Document Model

As describ d in [23] the OMDoc (Open Mathematical Documents) format is a con-

tent markup scheme for (collections of) mathematical documents including articles,

textbooks, interactive books, and courses. OMDoc also serves as the content Jan-

guage for the communication of mathematical software. OMDoc is an extension of

the Open Math and (content) MathML standards and concentrates on representing

th meaning of mathematical formulae instead of their appearance. OpenMath and

MathML are formats for individual mathematical expressions and 0 !Doc is a for-

mat for documents that include mathematics. The specifications in our work on ist

of program specifications, which, in OMDoc terms arc symbol definitions contained

within theories. Also, each symbol has a type and possibly other information. Con-

3. Methodology 22

sequently, this leads us to propose our specification model which consists of these

OMDoc elements:

Theory : a I heory is a self-contained part of a specification. It. could . for example,

represent a requirements sp cification, a mod ule interface pecification, a mod

ule internal de ign document or a single program function . A theory contains

zero or more sections of each of the following kind.

Symbol : a syrubol is a basic component of a specification: a variable, function,

relation or con tant. All symbols that are used in a specification must be

defined omewhere, eit her by being declared to be a bound variable, defined

in t h(' specification itself, dcfinr.d (glohally) in an importcci thr.ory, or from a

standard set (e.g., standard OpenMath content dictionary) . A symbol has the

following attributes:

Name : for referring to the symbol (required) .

TTS Role : indicRtcs how this symbol is used as part. of a SJWcific<-l.tion (op

tional).

Type : all symbols should have a type supplied.

Definition : a definition contains an expression that gives the semantics of a symbol.

Presentation : a presentation contains the format for a mathematical symbol. A

presentation element has for attribute which identifies the symbol represented.

3. Methodology 23

Each presenta tion contains one or more use elements. For more details e

section 4.2.5.

Use : indicates how the symbol represented is in a specific language. A use element

has the following attributes:

Format : specifies the name of the language this use element applies to. It

could be a programming language, a text processing language such as !aLex

or could identify some other tool.

Fixity : determines the placement of the symbol. Thi at tribute can be on of

the keywords prefix, infix, and postfix. For prefix it is placed in front

of the arguments. For infix it is placed between the arguments. Finally,

for postfix it is placed behind the arguments.

Separator : t his specifies the separator in t he argument list .

lbrack/rbrack : these two attributes handle the brackets to be u ed in pr -

sentation .

Code : is unparsed formal text and it is not needed in our documents but in some

documents it is needed.

Text : is unparsed informal text and it is important for readability of the document.

Based on [4], any type of tabular expressions can be defined by providing:

A restriction : each type of tabular expression must satisfy a stated restriction.

A restriction is a predicate that states the condition that a tabular expression

3. Methodology 24

should meet, which might be on such properties as the number of grids, the

index sets of grids, the type of elements in each grid and some properties of Lhe

grids. The restriction must be ob erved when the tables are constructed .

An evaluation term : a tabular expression represents a relation which may be a

function. The evaluation term of a tabular expression has to be evaluated Lo

determine the value of the tabular expre sion for a given assignment. The eval

uation term is constructed using conventional and tabular expressions appear

in the tabular expression as well as auxiliary functions.

A set of auxiliary function definitions : these functions are applied in defining

the restriction and the evaluation term and will be used in evaluating or checking

the tab! .

In OMDoc it is straightforward to add support for tabular expre sions, simply by

defining appropriate (OpenMath) ymbols to denote them: we use a ymbol for "ta

ble", which, following the model presented in [4], takes four argument expressions

representing

1. The evaluation term, which expresses how the value of a tabular expression is

defined in terms of the expressions in its grids. For (3.2) thi expre sion would

express that the value is that of the element grid , T(Oj, which is indexed by

indic of the true elements of each of the 'header" grid , T(lj a nd T(2j, as

follow : T(Oj f elect(T(l j) elect(T(2/)J, where select is a function on a predicate

grid LhaL giv the index of the cell that is true.

3. Methodology 25

2. The tatic restriction, which defines a condition that must be true of the grids,

independent of the expressions in the grids, but possibly dependent on their

types. This is used, for example, to assert the conditions on the number and

size of the grid ·(i. e., the shape of the table). For (3 .2) this would express LhaL

the index set of the central grid should be power set of the index sets of Lhe

header grids, and that the header grids must contain predicate expressions.

3. The dynamic restriction, which rlcfincs a conctition that must br tnt<' of thr grid

expressions. This is used to assert constraints on the table to ensure that it has

a well defined meaning. For (3.2) this would assert than the header grids, Tfl /

and T/2/, must be "proper" - only one cell expression should b t rue for any

assignment.

4. A list of grid , which are indexed sets, represented by n-ary applications with

ymbol "grid" and taking pairs of cell index and cell contents as its arguments.

3.3.2 The Eclipse Framework

Eclipse is a software platform comprising extensible application frameworks, tools and

a runtime library for software development and management. It is written primarily in

Java to provide software developers and administrators an integrated development en

vironment (IDE). "Eclipse employs plug-ins in order to provide all of its functionality

on top of (and including) the runtime system, in contrast to some other applications

where functionali ty is typically hard coded" [13]. Using this framework to d velop our

tool provides significant advantages over developing a stand-alone tool inclurling its

---------- ------------

3 . Methodology 26

widespread use in the user community, its facilities for tight integration of documents

with other software artifacts, and provision of support for software development tasks .

3.3.3 Specification Editor

As part of our tools, we are developing a specification editor to support production

of software documents, which is illustrated in Figure 3.2. This Editor provides a

"multi-page editor" (which provides different views of the same source file) for ".tts"

files, which arc O:v1Doc files. Oue page of the editor is a structured view of t he doc

ument, another one shows the raw XML representation, and another gives a detailed

view of the document giving the user the ability to view and edit the mathematical

expressions. The support libraries in Eclipse provide techniques to ensure that t he

views of the document are consistent. This editor is built using several open source

libraries including the RIACA OpenMath Library.

This editor is een as a primary means for the human users to interact with

specification documents.

3. Methodology

Specification Element Details

.. mplqlrogr.JIJI.omdo<

• !impleprogram_th<OI)' : thoory

' ggcd : programfunction
gcd :auxiliary

1 Import Dedar~tions

relat1cnl.omdoc : relation!
lcgK!.omdCK : logic!
function.omdCK : funct1on
arithl.omdoc :arithl

I D.uik Sptc X.Ml
'--.

--~-- ·-·--·----
Oetaik for .. mplq>rogram. th<o!y: theory

Name: !impleprosram_theory

Figure 3.2: Screenshot of Edi tor

27

"'EI

a . z i

Chapter 4

Oracle Generation

This chapter describes the internal design of Lhe oracle that will be the output of the

Test Oracle G nerator (TOG). Th de ign i explained by u ing some examples from

an oracle, which was produced for the sample 'ggcd' program specification given in

3.2.7. This chapter also describes the requirements and design of the TOG. The work

reported in this thesis is similar to the work in [41] but our approach for generating

test oracles has th following characteristics that make it unique:

• We are using OMDoc as a standardized torage and communication format for

our spC'rifirations, ancl so we ran take aclvantFtgC' of other tools.

• The semantic of tabular expressions have been generalized to allow more precis

definit ion of a broader range of tabular expression types.

• The test oracl generator is implemented using J ava. Thi make it asy to

integrate with the Eclipse platform.

2

4. Oracle G neration 29

• The oracle g nerator has a 'graphical user interface' which is shown in Figure

3.2. Thi · interface gives the user the ability to select any program specification

and g nerate the oracle from it. This has the advantage of enabling the u er to

interact ea ily with the specifications.

• Th generated test code integrates smoothly with test frameworks (e.g., J Unit)

and hence it can be directly used to te t the behaviour of the program.

4 .1 Oracle Design

4 .1.1 Programming Language

The oracle is implemented using Java. This decision should not be seen as a significant

feature of the design- if the intended application were different, the ora le design

could be translated with some change .

4.1.2 Internal Design Overview

The oracle can be viewed as a 'compiled ' version of the specification in that it is

generated by tran lating the 'source' specification into an executable form (Java code).

The oracle can be executed without reference to the specification from which it wa

derived. So, it can be integrated smoothly with test framework (e.g., JUnit). This

design ha an advantage is that it reduces the time required for oracle execution by

giving the user the ability to use optimization techniques.

4. Oracle Generation 30

An alternative approach to design of the oracle is to build it as an 'interpr ter'

which would represent the specification by data and evaluate it directly. This kind of

design has an advantage that the oracle generation process is relatively simple and ,

since th re is no generated code involved in the oracle, the oracle programs will be the

same for any specification, only the data. they usc is dcpcndcut ou the pccifkaLion . A

disadvantage for thi design is that the oracle will need to interpret th semantics of

the documentation during evaluation and so would probably be comparatively slow

to execute.

4.1.2.1 Expression Implementation

Any expr ssion consists of one or more sub-expressions, th complexity of impl -

menting this xpre ·sion is managed by decompo ing each expression into it ' sub

expres ions and implementing each sub-expr sion individually. The oracle code thu ,

consists of a set of internal functions and objects, each of which implements a ub

expression and may call other internal functions or object methods.

All programming languages in general, and Java in particular, provide support for

basic logical and relational operators (i.e. A, V, •, >,<,=etc.), the e operators can be

used to imp! ment orne of the expressions. Also, it is po siblc to use these operators

for implementing an entire expres ion as a single J ava statement by tran ·lating it into

a. purely scalar, quantifier free expre sion (by expanding the quantification to a serie ·

of conjunctions or disjunctions) but the resulting Java statement would consist of

many lin s. While this would undoubtedly result in an oracle that execute r latively

4. Oracle Generation 31

quickly, since there would be none of the overhead associated with loops or function

calls. It would , however, require significant effort on the part of the TOG to do the

translation and would result in virtually incomprehensible oracle code. So, that is

why the oracle is implemented using the Java logical and relational operators only

where they directly represent the operators in the specification.

Another way to implement expressions is to use a class of Java objects. A specific

expression is implemented by instantiating the suitable objects, which include refer

ences to their sub-expression objects. This helps to simplify the oracle generation

process for expressions that have complex semant ics such as tabular expressions. So,

the T OG need only translate the expression into the suitable object constructor. In

this work, we used the above two ways to implement the expressions.

The code to implement each type of expression is explained in the following sec

tions below.

4.1.3 Scalar Expressions

Scalar(i. e. non-tabular) expressions can be translated into equivalent J ava statements

as described below.

4.1.3.1 Logical Operators

The logical operators can be directly translated to their Java eqivalent, as given in

Table 4.2. (G and H are arbitrary predicate expressions.)

4. Oracle Generation 32

Table 4.1: Logical Operator Conversions
Logical Operator Java Equivalent

-,Q !G
GvH GIIH
G I\ H G&&H

So, given the expression (a > b 1\ a > 5) in the specifications, the corresponding

Java code for tha t expression is:

(a> b)&&(a > 5)

4 .1.3 .2 Quantification

Quantifier expres ions are implemented by using loops that call the suita ble proce-

dures to enumerate t he elements of the set characterized as an integer interval and

the boundarie for t he interval given in the specifications. In our test oracle genera.-

tor, quantificat ion (V - for all , and :3 - t here exists) must l>c rcstrictcu to a fi nite

set , which can be implemented a a java collect ion so t hat it can be automatically

generated from the specificat ions. In the exampl below the boundari s are (0,10).

One distinction between t he work reported in this thesis and that in [41] is that

t he previous work used Inductively Defined Predicate to specify the rang for the

quant ification but we u ed a java collection .

The quantification '(Vi: {0 .. 10} .p_B [i] = p_x) ', can be implemented as fo llows.

boolean r es u l t = true ;

Int eger_ Int e rv a l bRange =new I n tege r_ I n te r va l (0 , 10);

4. Oracle G en er a tion 33

I n t e g e r i =new I n t e g e r (0) ·

for (It erator<Int ege r> it=bRange . it e r ator (); it .has ext()&&re ul t ;)

{

i= i t . next();

r es u It = ((p _B [i]== p _x)&& result) ;

}

4.1.4 Tabular Expressions

Tabular expressions are implemented by instantiating an object of one of several

lasses of (Java) table object which implement the various types of tabular expres

sions(normal, inverted and vector). These table classes contain all knowledge of th

semantic of tabular expressions, so there is no need for this knowledg to be in the

TOG. The expre sian in each cell of the table is implemented as J ava clas that ex

tends a Cel!Base class and therefore contains a procedure, eval, which evaluates the

expression in the cell.

Table objects have the following method, which is used to evaluate t he table:

evaluateTable finds th index for t he main cell that should be evaluat d and returns

t he content of that cell.

The expre sian i > 0 1\ j > 0", which is in the first cell of t he column header of

the ggcd tabular expression in Figure 3.1, is implemented as follow .

p ack age o r acl s ;

import ca . Fil l moresoftware . plugin . Or ac l eUt iliti es .*;

4. Oracle Generation

public class ggc d LG rid _2_ C e l LO extends Ce ll B ase {

}

private VarMap va rs;

public ggc dLGrid _2 _C e lLO (VarMap v a r s){

this. va r s=v a rs;

}

public Obj ec t eva] () {

}

In tege r

Int ege r

i = (In tege r) v a rs . ge t V a lu e(" i ");

j = (Int ege r) v a r s . ge t Valu e (" j ") ;

return ((i > O)&&(j > 0)) ;

34

The other cells in each table are implemented in a similar fashion. The oracle

design for the ggcd tabular expression in Figure 3.1 is illustrated in Figure 4. 1 and

the design for the gcd tabular expression looks similar.

4 . Oracle Generation 35

An alternative approach for implementing the tabular expressions that was con-

sidered is to convert the tabular expression into the equivalent scalar expression and

implement the scalar expression as explained in the previous section. This approach

has an disadvantage that the TOG would need to have the ability to do the transla-

tion.

i?: CeiiBase
r.~ j~,.."t J'U'''iJtv.·

I G ggaii_GIId_l_Ceii_O G ggcdl_ G1ld _2 _ Cell_l

t e..:) I f:\111:) f) e' • e.»~ 0 ~!(.•

I J IP".~"'-~!· .:" · .. • . (!IJ'I'! <d.OJ .. .'O tf~_.,._,_JJJc /
1

l'i#.:.nJ.:_c<.~: ' t w>"."'•).Cei.'U

o ~:.n.,

Figure 4.1: Oracle Design of ggcd Tabular Expression

4.1.5 Auxiliary Functions

An auxiliary function is implemented as a procedure, with the expres ion, imple-

mented as described above, forming the body of the procedure. For example, consider

the auxiliary function , which is used in the sample program specification in section

3.2.7 defined as follows:

4. Oracle Generation 36

Boolean Div(Integer a, Integer b, Integer x)

df
= (a%x = 0) A (b%x = 0)

This is implemented by the following procedure:

package orac l e ;

import ca .Fillmore o ft ware.plugin. Or acleUtiliLi es.*;

publi c class AuxFunctions{

static public Boolean cDiv (In tege r a , In teger b, In teger

x){

return (a%x 0) && (b % X 0).

}

}

Suitable ails to this procedure are u d in the code that implements expressions

using the auxiliary function .

4. Oracle Generation 37

4.1.6 Compilation and Execution

The oracle in our approach consists of two kinds of code: that generated by the Test

Oracle Generator (TOG), and the other kinds of classes, inc] uding Integer_lnterval,

lnvertedTable, NormalTable and VectorTable, which are not generated by the TOG

but are used by the TOG generated code. For more details about the above classes

see section 4. 2

The code below shows the implementation of the root class for the oracle (ggcdO

racle.java) for the sample program specification that described in section 3.2.7. To

see the whole generated classes from the example see appendix B

package orac l es;

import ca. Fi ll moresoftware. plugin. O rac l eUtilities ·*·

import static org. j unit. Assert.*;

public class ggcdOr ac le {

private VarMap vars;

private Outggcdl tO;

public ggcd Or ac le () {

v ars=new VarMap ();

4. Oracle Generation 38

tO=new Outggcdl (vars) ·

}

private Bool ean ggcdTOrac le(Int ege r i Int eger J,

In teger gc dvalu e , B oolean resu lt){

Boolean r e ul t Or acle;

va rs .setV a lu e(" i " ,i);

var .setVa lu e(" j ",j) ;

vars.s tValue("gcdva lu e" ,gcdv a lu e);

vars. set Value ("resu lt ", r es ult);

re ultOracle= tO. ggcdTl () ·

re turn r s ultOracl e;

}

4. Oracle Generation 39

publi c void assertggcdTOracle (Int ege r i , Int ege r J ,

Int ege r gcdvalue,Boolean r es ult) {

ass rtTrue(ggcdTOracl e(i , J ,gcdvalue , r es ul t));

}

}

Using the oracle involves implementing test code that calls th program under

test a nd then a ils the oracle procedures. In this work the JUnit framework is used

since it ha a number of advantages. One important advantage of JUnit i that it

is widely used, which will make it easier for others to understand th Lest case and

write new ones. In addition, it provides a graphical user interface (GUI) which makes

it easier to write and test the program quickly and easily. JUnit shows t st progress

in a !Jar that is green if testing is going fine ancl it t urns reel when a test fails . Thi · is

makes it easy for th software developer to quickly identify failing te t cases as they

are found . The cod below shows how to run the oracle generated from the sampl

program pccifirati on in 3.2.7 with JUnit:

package or a c I e s ;

impo rt org . j unit . B e for e;

impo rt org. j unit . T est;

4. Oracle Generation

public class Oracl eT es t extends juni t. fr a mework . T es tC ase{

}

ggcdOrac le com;

@Befor e

public void setUp() throws Exception {

com=new ggcdOracle ();

}

@T est

public void tes tCon () {

Int ege r g c=GCD. g c d (2 5 , 2 0) ;

com . ass e r t g g c d T 0 r a c I e (2 5 , 2 0 , g c , true) ;

}

40

The previous code contains one test case to t est that the program correctly finds the

greatest common divisor of (25 ,20) which is 5. The greatest common divisor is com

puted by the static method GCD .gcd(int,int) meant to implement the specification.

The user can add any number of test cases. The result for the previous code is shown

in Figure 4.2.

4. Oracle Gen ration 41

(11i_Poc~ge Explore [T: Hierorchy ·~ Jlfnit ~' = E'l
Finishe:d after 0.061 seconds

Runs: 1/1 E1 Errors: 0 D Fatlures; 0

~ l!lU oracl6.0racleTest (Runner: JUnit 4)

1!). ,1 testCon

Figure 4.2: TestResult

4.2 Test Oracle Generator Design

4.2.1 Requirements

The requirements for the TOG are that using a specification written in the form

discussed in chapter 3, it will output the executable test oracle code as described in

section 4.1.

4.2.1.1 Assumptions

The oracle code g nerated by the TOG uses two kinds of obje t classes: Tabular

expressions (Normal Table, Vector Table and Inverted Table) and Integer Interval im-

plemented in NormalTable.java, VectorTable.java, InvertedTable.java and Integerln-

terval.j ava. These table classes contain all knowledge of the semantics of tabular

expressions and provide several methods (addHeaderCell , add MainCell , getMainCell,

evaluateTable) which give the user the ability to create and evaluate the tabular ex-

pressions. The Integer Interval class is a java collection used to implement the finite

set containing th integers in a specified range for the quantifications. The e clas e

4. Oracle G en eration 42

are assumed Lo be correct.

4.2.1.2 User Interface

The Fillmore oftware specification editor leverages the eclipse plug-in architecture

to create a software specification editor . A part of the Fillmore oftware project is to

build a plug-in for eclipse to view and edit formal software specification documents.

Eclipse is an op n development platform that supports extension through a plug-in

mechanism. The platform provides an advanced integrated development environment

for software d velopment, and a wid range of available plug-in to upport such tasks

as testing, modeling and documentation. This plug-in is seen as a primary mean for

the u er to int ra t with software specification documents. This plug- in is used as a

u er interfac to the TOG the plug-in is pictured in Figure 3.2. This interface gives

the u er abi li ty to elect any program pecfication and generate the oracle from it.

So, this is has th advantage that the user can interact easily with the pecification .

In [41], they used a 'command line interface' for the oracle generator.

4.2.1.3 Input Format

T he input to the TOG i in the form of a specification file which follows our spe ifi

cation model and contains information as described in Chapter 3. The file consists of

a rollcrtion of thcorirs and carh of whi h consists of symbols anct r, ch symbol ctrfinrs

either a constant , variable, auxiliary function or program function.

4. Oracle Generation 43

4.2.1.4 Anticipated Changes

The items that are likely to change during the development of the TOG in the fu ture:

• The format of the specification file . It is possible to adrl new ekments to om

specification file over time and change the existing elements.

• The programming language that used to implement the oracle. Currently we

are using Java to implement the oracle. It is possible in the future to use another

language such as C++.

• The de ign of the oracle. For example: each cell in the tabular expressions is

implemented as Java class. It is possible in the future to implement all cells in

one class.

• The user interface that is used to interact with the specifications. We may add

n w features to the user interface such as giving the user the abili ty to view the

tree repre ·entation of the mathematical expressions.

4.2.2 Package D esign

The TOG is implemented as a set of packages, each of which contains a set of classes

that encapsulate design decisions. Also, the packages can be divided into sub-packages

which contain more specific design decisions. T his approach has advantages that the

design i easier to understand because of this separation of concerns, and it is easi r

to change the TOG ince the decisions affected by t he change are likely to be i alated.

4. Oracle Generation 44

To illustrate the system design, the class diagram is used. Figure 4.3 illu trates

the package dependencies for the TOG.

I I I
fB ca.flllmoresoftware.specmodel #-~·~·!B ca.fillmoresoftware.plugin.actions ~·~!!....C!!,"> W ca.fil lmoresoftware.plugin.editors

1 cinport, Cab

I
!B ca.fillmoresoftware.plugln.OracleUtilities

ca.flllmoresoftware.plugln.OracleGen

!B ca.flllmoresoftware.kernel fij ca.flllmoresoftware.plugln.preferences

Figure 4.3: Packages Diagram

4.2.3 New Packages Added To Fillmore

The packages below are new packages written as part of this thesis work .

4.2.3.1 Oracle Generator Actions (ca.Fillmoresoftware.plugin.actions)

This package represents the main controlling package for the TOG. It contains

the actions used to access the TOG (e.g. generate oracle and generat auxil-

iary function). It uses ca.Fillmoresoftware. plugin.editors to read the specification

from the fi le, ca.Fillmoresoftware. plugin.specmodel to acce s t he specification and

ca.Fillmoresoftware.plugin.OracleGen to generate the oracles and auxiliary functions.

Figure 4.4 is the class diagram for the ca.Fillmoresoftware.plugin.actions showing

the relationships between the classes. This package contains three classes (Gener-

4. Oracle Generation 45

ateAuxFunAction.java, GenerateOracleAction.java and Orad Action.java). The in-

terface to these classes dictated by the eclipse plug-in interface.

0 OracleAction

··-
oc OracleAction()

cf run()

selectionChanged()

0 setActiveEd~or()

-~
I l

G GenerateOracleAction (3 GenerateAuxFunAction

0 run() run()

Figure 4.4: Actions Package Class Diagram

4. 2. 3. 2 Oracle Generation (ca. Fillmoresoftware. pl ugin. Or acleGen)

This pi'\.cki'\.ge is responsible for converting the spccifici'\.tion into the or-

acle implementation. It u es ca.Fillmoresoftware.plugin.specmodel and

ca. Fillmoresoftware.plugin .kernel to access the tabular expressions. Figure 4.5

is the lass diagram for the ca.Fillmoresoftware.plugin.OracleGen showing the

relationships between the classes. This package contains eight classes (CodeFro-

mOMobj ct.java, CodeFromOMA.java, CodeFromOMI.java, CodeFromOMS.java,

CodeFromOMV.java, CodeFromTheory.java, CodeFromTabularExp.java and Or-

acleModel.j ava) . For more details about the responsibilities for the classes se

appendix A.

4. Oracle Generation

I

f!f r vt.h:tl'"l vn oOMuLtoe• 10

cJ- t:"OCitJFrort_"'Moi>t""' l ()

0 Cot.I&.:•M~t)

0 9f'lnttrt'lltftAilAoJ)(f~onc110oftl J

Q ttol't<!'rat.,A,u;. ilieuy Fun< .. '11arl()

0 ge~' at."""~te()

0 ~MOeforo&Vto~lutuP

• ..,1"1t< 1rt~~r lttPftr-.rnM"''f.!lo()

Q s,.otrlRolrffUitSyn,f.IOit.-()

0 untli"!"'~wnl'>~'' "TY~}

e o,;,o»tTn~aSymt>ats()

.. il CodeFromOMA

d.' emptyS1rln~r S1rlng

rJ' cymCd String

I .
d C"odn~ r o:m "")MA()

I 0 Q*fltU nl: lft....Vdtt()

I I
.__0_""_'--"'-·-~ __ _.

1
1 .. c au.. I

/ tn"t t:tnttm ... t",."'"l

,!

W
G On>cleMo""'d"'""eo:--~-.

wr it-e-A~• lht~~ryf~o~nc1r~a("lt'laa (l
Vlltf"'\- fOIIIo.""l",.' ()

rll~Ora(.ie.o(,"fe '-to"P"Io.>t T OOIJO<.Ih'll E >tf.ol)

wr"orJI~'IInf!vJ')f':" tnnttl,.)

vv1 it.e-RvvtClr HJ•:•~~uc J

: .. .,,.....;,ot u.fit~ntt ~le. (..:lll•

I

',.., • ..,, h t . Fttl•hnh

',

J Cc..-::8er o o m Trof"O• v(~
o fi.l"'""''""',..o. ,.,.,~n

Figure 4.5: OracleGen Package Class Diagram

4.2.3.3 Oracle Utilities (ca.Fillmoresoftware.plugin.OracleUtilities)

46

This package provides classes that are necessary to run the test oracle. These class s

are previously manually implemented and are used by the TOG generated code. These

clas es are CellBase.java, Celllndex.java, Integer_Interval.java InvertedTable.java,

ormalTable.java, TableGrid.java, VarMap.java and VectorTable.java. Figure 4.6

is the class diagram for the ca.Fillmoresoftware.plugin.OracleUtilities and shows the

relationships between the classes.

4 .2.4 0 ld Packages In Fillmore

These packages below came as part of Fillmore and are modifi d as part of this work .

4. Oracle Generation

0 getV&Iue()

0 setValuo()

@ lnvertedTable

d' lnver1edTable()

G VectorTable

oc v ectorTable()

o addHoaderCell()

o ~ddM~ino;ell()
0 &ddHead~rColl()

I 0 eveluateTable()
0 addMarnCell() ,

I
I 0 ovelueteToble() // ~ ~ getMarnCell() I

0 getMainCel~l

@ Integer _lnteMII

Oc lnteger_lnterval()

0 rterator()

0 size()

I /j ', (n,-:t ntr..,e.lnmrt, Cal:• 1

I clmport , Caft»:mpa~ , CDb '~ ... , I •ln"1.1Jnt.~.,. tm~t)r1 (;;!!

I // I ·~· . .;t,\ntl,rto hJvrt .~~ll•. I
,.-.-,...._~--- / r ,

0 CeiiBase ~ I ~ . lr.<:t~n:,.ts. !::•no.,.~.,._._~~~-·-~~~--·
········-- ·-···--···· @ TableGrid . @ Celllndex

Oc CeiiBa~Ol)

r;,A evo~)

0 evaiSoolean()

" \

<'-- !'!:"P~•- ····--·--···
c:f TableGnd()

\
\ clmpor1, CeU.

\
\

\

0 3ddCell()

0 ge!Cell()

0 getG11d()

1'
I clr,Bt .'•nti,'1f6, lil'lf;;.'Jrt , (.,:,u,. /

I //
I'

/

a 1ndex· Vector<lnteger>
.. _,.

d' Celllnctex()

0 ~leor()

0 getlnde>l)

0 • et()

\
\

/ c:lr•s.t"irrU&to::, Import , (&It

~--~1-.-~......,/

d' NormaiToble()

0 oddHeoderCell()

0 ad,iMelnCell(;

0 evoluotoToble()

0 ~etMarnCell()

Figure 4.6: OracleUtilities Package Class Diagram

4.2.4.1 Specification Model (ca.Fillmoresoftware.plugin.specmodel)

47

This package used to construct our specification model that described in section 3.3. 1

and provides classes that help us to access all parts of the specification . These classes

arc ChangcNotificr.java, Dcfinit ion.java, DOMXMLWritcr.java, ElcrncntTag.java,

ISpecModelListener.java, MObject.java, OMDOMReader.java, Presentation.java,

SpecModel.j ava, SpecModelElement.j ava, SpecModelErrorHandler.java, SpecModel-

Parser.java, Symbol.java, Theory.java, TTSRole.java, Type.java and Use.java. This

4. Oracle Generation 48

package is modified to provide support for the "Presentation" and ''Use" el ments.

4.2.4.2 Kernel (ca.Fillmoresoftware.kernel)

This package used to construct our specifications for the tabular expressions and

provides classes that help us to access all parts of the tabular expre sions. These

classes are EvalTerm.java, EvalTermFactory.java, GenRestFactor.java, Grid.java, In

dex.java, IndexFactory.java, InvertedEvalTerm.java, NormalEvalTerm.java, ormal

GenRest.java, OMUtil.java, Rectlndex.java, RectShape.java, RectShapeiterator.j ava,

RectStructRest.java Shape.java, ShapeFactory.java, StructRest.java, StructRestFac

Lory.java, Symbol.java, Table.java, TableFactory.java and VectorEvalTerm .java. This

package is modified to provide support for various kinds of tabular expre ions (or

mal , Vector and Inverted).

4 .2 .4.3 Editors (ca.Fillmoresoftware.plugin.editors)

This package used to implement "multi-page editor" to give the user ability to

access and edit the pecifications. This package consists of several classes (Ele

menLDialog.java, SpecEditor.java, SpecEditorContributor.java, SpecElementLabel

Provider.java, SpecErrorHandler.java, SpecOutlinePage.java and SpecTreeContent

Provider.java). This package is modified to give the user the ability to view the name

of the imported fi les (Content Dictionarirs), which rontain the j:wa rcprcsr ntation of

the symbols.

4. Oracle Generation 49

4. 2 .4. 4 Preferences (ca.Fillmoresoftware. pl ugin. preferences)

Edip e a!. o provides a Preferences APis used to add plug-in sperifir prcfrrr nrrs. T his

is a two step process:

• First the "org.eclipse.core.runtime. preferences" extension point is used to add

a preference to initialize the plug-in. Preferencelnitializer class is contributed

to ini t ialize all the preferences when the plug-in is first initialized .

• Second the "org.eclipse.ui.preferencePages" extension point is used to add pref

erence pages. It is important to note that the preference pag s contributed

must arrange themselves in a neat hierarchy to not interfere with other plug

ins. To accomplish this we add a base page name "Fillmore P references" and

id "ca. Fillmoresoftware. plugin. preferences. FillmorePreferencePage"

All the preference pages must include the id mentioned in the second step as their

category. Every preference page contributed through the extension point mechani ·m

can include a category attribute. The category attribute basically includ s the id

path of the location of this preference page. For example the TOG preference page,

which is contributed as a child to the Fillmore preference page, includes the id of the

Fillmore preference page as it category attribute. The XML for this is shown below:

<extension

point="org.eclipse.ui . preferencePages ">

<page

class="ca.Fillmoresoftware .plugin.preferences.FillmorePreferencePage"

4. Oracle G neration

id="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"

name="Fillmore Preferences"/>

50

<page

category="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"

class="ca.Fillmoresoftware .plugin.preferences.TestDraclePreferences''

id="ca.Fillmoresoftware.plugin.preferences.testOracle"

name="Test Oracle Generator"/>

</extension>

<extension

point="org.eclipse.core.runtime.preferences">

<initializer

class="ca.Fillmoresoftware.plugin.preferences.Preferencelnitializer"/>

</extension>

Also, this package include these clas es FillmorePreferencePage.java Preference

Constants.java, Preferencelnitializer.java and TestOraclePreference .java which im

plement the preference pages. This package is modified to add preference page· for

the Test Oracle Generator. These pages give the user the ability to sp cify: the path

for the TOG output oracle code, the output package name and the imported libraries.

4.2.5 Symbols Representation

Functions and operators in OMDoc are ncoded as "symbols", which are defined

either in Content Dictionaries, for the standard functions and operat rs , or in the

documrnt itself, for fun ctions that arc particular to the given prrifiration. T lw

4 . Oracle Generation 51

OY.!Doc "presentation·· element is used to define a representation of each symbol in

Java so that the tool can translate expressions using these symbols into Java.

To be more general and cover most of symbols, we have used presentation and

use elements for specifying the notation of symbols. OMDoc supplies a et of abbr -

viations that arc sufficient for most presentation applications via the 'usc" clements

that can occur as a children of "presentation" elements. Given the relevant infor

mation in the use elements, separate translation process generates the needed Java

Code for the expression. The presentation element has the following attributes:

for specifies the name of symbol that is represented .

T he use element has these set of attributes:

format specifies the name of the language that is used to represent the ymbol.

lbrack/ rbrack handle the brackets to be used in presentation for a symbol.

separator specifies the separator in the argument list of symbol.

fixity determines the placement of the symbol. This attribute can b one of the

keywords prefix, infix, and postfix. For prefix it is placed in front of the

arguments . For infix it is placed between the arguments. Finally, postfix it is

placed behind the arguments.

4.2.5.1 Catagories of Symbols

Infix Sy mbols these symbols are placed between the arguments. For exampl : plus,

minus, times, d ivide, eq, It, gt, leq, geq, a.nd, or, dot. A few exa.mples of defining

4. Oracle Generation 52

symbols are necessary to illustrate the concept of defining the presentation for

new symbols. So, these examples below illustrate how to represent the previous

symbols.

Plus Symbol:

<presentation for="plus">

<use format="java" fixity="infix" lbrack="(" rbrack=")"> + </use>

</presentation>

If the children for this symbol were a and b. The Java Output CodE wil l be:

(a+ b)

Minus Symbol:

<presentation for="minus">

<use format="java" fixity="infix" lbrack="(" rbrack=")"> - </use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:

(a-b)

All symbols in this category have the same values of the attribu tes in the "use"

clement but they arc different in the value between the start aud cnJ tag of the

"use" element. The table below shows the values of the "use" element for the

rest of the previous symbols and the generated java code if the children of t he

symbols are a and b.

4. Oracle Generation 53

Table 4.2: Infix Symbols "Use" Values
Symbol Value Generated Code
Times * a*b
Divide / a/b

Equality == a==b
Less than &It; a<b

Greater t han > a>b
Less than or equal <= a::; b

Greater than or equal >= a;::: b
And && a&&b

Or II al lb
Dot a.b

Unary Symbols these symbols have one child and may be prefix or postfix. For

exF~.mple: not Ftnd predefined functions thFtt have one child like: Ftb ·, sqrt Ftnd

floor.

These examples below illustrate how to represent the previous symbols.

Not Symbol:

<presentation for="not">

<use format="java " fixity="prefix" lbrack="(" rbrack=")"> </use>

</presentation>

If the children for this symbol was a . The J ava Output Code will be:

(!a)

All symbols in this category have the same values of the attributes in the "use"

ekmmt but they Ftre different in t he vFtlur between the stFtrt Ftnd rnd tFtg of

4 . Oracle Generation 54

the "use" element. Also, t hey are different in the value of fixity attribute. The

symbol in t he table below have no fixi ty. The table below shows the values of

the 'use element for the rest of the previous symbols and th generated java

code if the children of the symbols is a .

Tabl 4 3 U e .. nary S b 1 "U " V 1 es ym o s se au
Symbol Value Generated Code
Absolute abs abs(a)

Square Root sqrt sqrt(a)
Floor floor floor(a)

FUnction Symbols these symbols are functions that have mor than one child. For

example: any user defined function or predefined function .

This example below illustra te how to represent the previou symbols.

Power Function Symbol:

<presentation for="pow">

<use format="java" lbrack="(" rbrack=")" separator ",">pow

</use>

</presentation>

If the children for this symbol were a and b. T he Java Outpu t Code will be:

(pow(a,b))

Irregular Symbols these symbols use combined fixity. So, the fixity attribute is

not defined. For example: array_get and dot symbol . These example below

illustrate how to represent the previous ymbol .

4. Oracle Generation

Array _get Symbol :

<presentation for = "array_get">

<use format= "java" lbrack = "[" rbrack

</presentation>

55

"]II/>

If t his symbol has two children and they were A and i. The J ava Output Code

will be:

(A[i])

If t his symbol has three children and they were A, i and j . The J ava OutpuL

Code will be:

(A[i]U])

Dot Symbol:

<presentation for = "bar">

"java" lbrack = "(" rbrack = ")" separator <use format

</use>

</presentation>

II' II) •

If t his ymbol has two children and they were a and b . The J ava Output Cod

will be:

(a.bar(b))

If this symbol has more than two children and they were a , b , c and d . The

Java Output Code will be:

4. Oracle Generation 56

(a.bar(b,c,d))

If there is no presentation or use for the symbol then it is assumed to be a function

so a normal function call is generated. For example, if the symbol is bar and the

children are a and b. Then the generated code will be:

bar(a,b)

4.2.6 Algorithem Overview

The alogrithm that we have used for generating test oracles is the same for the one

which is used in [41] and consists of the following steps:

1. Initialization: open files, init ialize data structures.

2. Read specification from file .

3. Create oracle program contexts.

4. Code Auxiliary Definitions: Create a J ava function for each, code the expression.

5. Code the oracle.

6. Write and close fi les.

7. Free data structures .

4.2.6.1 Ex pression Coding

The mathmematical expressions used in the specfications or in auxiliary definitions

are translated into code in the following manner: The expression syntax tree is tra-

4. Oracle Generation 57

versed using a depth-first traversal and each sub-expression is implemented in turn

as described in section 4.1.2.1. The code that gives the value of each sub-expres ion

is writ ten into a buffer which is used to construct the code for the 'parent' expres

sion. This process continues until the root expression has been implemented and the

resulting code is used as the body of the procedure in the oracle.

Chapter 5

Test Driven Development With

Oracles

This chapter describes our new approach for TDD. It also describes examples which

show how to apply this approach.

5.1 Test Driven Development with Oracles

This section int roduces an alternative approach to TDD that is to develop the speci

fication of the required behaviour in a formal notation as a part of the TDD process

and to generate test oracles from that specification.

The process looks like this:

• Write the pecification for some required behaviour.

• Generate the test oracle from the specification and elect test inputs.

58

5. Test Driven D evelopment With Oracles 59

• Run the program under test in the test framework (e.g., J Uni t) using the test

oracle to verify if it passes or fails.

• If the test fails , write code until this test passes.

• If the te t passes and the specification is not completed yet, add to or refine t he

specification and redo the process again .

• keep doing this process unt il t he pecificat ion is complete.

The completeness in our work is determined by t he designer. Using these tools to

do analysis of the test cases (e.g., coverage of t he specificat ion) is beyond this work.

So, this is could be done in the future.

The steps of TDD approach are illustrated in the flowchart in Figure 5. 1.

TDD approach is applicable for methods and classes. This approach focuses on

deriving test oracles from the module internal design document [37] for methods and

module interface specification [42] for classes.

5.1.1 Test Driven Development For Methods

The illustration of TDD provided in [12, 29], in which a program is developed to con

vert decimal numbers into their roman numeral equivalent, serves as a good, although

somewhat simplistic, illustration of this method.

The following example shows the whole process for specification supported TDD.

According to the TDD approach, the first step is to write a spccificatiou for sou1e

required behaviour. So, start ing with this specification:

5. Test Driven Development With Oracles 60

Figure 5.1: The Steps of TDD Approach

String dToR(Integer i)

df

i 2': 1 A i <4

~ result = l subDToR(i)

5. Test Driven Development With Oracles

String subDToR(Integer i)

df

i = 3 "III"

i = 2 "II"

i = l ((I"

61

The above specification consists of two parts: the first part is the definition for

dToR(i) function which is the program function, the second part is the definit ion for

subDToR(i) function which is an auxiliary function. In program function drfini t ions,

we use the convention that result represents the value returned by the function.

The required behaviour that is repre ented by this specification is to upport th

conversion of numbers (1- 3) into their corresponding roman numerals (I, II , III).

After writing the specifications, generate the test oracle from it and run the test

oracle to make sure that the program behaviour is consistent with the required be

haviour. Following the TDD approach, the test cases should initially fail since the

program isn 't yet implemented . Then implement enough of the program to make the

cases pass.

The previous specification only specifies a behaviour for numbers in th range 1- 3,

so if a test case outside that range is used then the test oracle will give an error that

says "NoSuchElementException". Figure 5.2 shows that error.

The pattern used in the previous specification (i.e. , explicitly specifying the corre

sponding roman numeral representation for each decimal number) is clearly not prac

tical for a very broad range of inputs. The previous specification can be re-written,

as follows (where "+" on Strings is used to represent concatenation):

5. Test Driven Development With Oracles

= Failure Trace

Jv java.utii.NoSuchEiementException

= at java.utii.Vector.firstEiement(Unknown Source)

r-+D
l.:£J

: at ca.fillmoresoftware.plug in.OracleGen.OracleUtilities.Vector T able.evaluate T able(Vector T able.java:99)

= at oracles.OutdToRl.dToRTI(OutdToRl.java:54) = at oracles.OracleOut.dT oR(OracleOut.java:31) = at oracles.OracleTest.testCon(OracleT est.java:20)

Figure 5.2: oSuchElementException

String dToR(Integer i)

df
=

i~l/\i<4

I result = I subDToR(i)

String subDToR(Integer i)

df

i > 0 A i < 4 "I" + subDToR(i - 1)

i = 0 ""
Then the domam of the previous speclf1catwn can be broaden as follows:

String dToR(Integer i)

df
=

i ~ l /\ i <5 i ~ 5 V i < l

I result = subDToR(i) "NA"

62

5. Test Driven Development With Oracles 63

String subDToR(Integer i)

df
=

i=4 "IV"

i > 0 A i <4 "I" + subDToR(i- 1)

i = 0 tO)

Trw prrv1ous sp~cifi rat.IOn rl.cfinrs the convrrsion of numhrrs from (1- 4) i nt.o t lwi r

corresponding roman numerals (I, II, III , IV) and handles the error where subDToR

is not defined by specifying the behaviour for those inputs. After refining the init ial

specification, do the same steps as we did in the previous one. Again refine the

implementation until the behaviour is consistent with the specification. then cont inue

to revise the SJJccification, as follows.

String dToR(Integer i)

df

i~1 /\ i < 9 i ~ 9Vi < l

I result = subDToR(i) "NA"

String subDToR(Integer i)

df

i ~ 5/\i < 9 "V" subDToR(i - 5)

i = 4 "IV"

i >0A i <4 "I" + subDToR(i - 1)

i = 0 ""
The pec1ficatwn defines behaviOur for the conversion of numbers from (1- 8) into

their corresponding roman numerals (I, II , III , IV, V, VI, VII , VIII). We do the arne

5. Test Driven Development With Oracles 64

steps as before and after tha t, we continue to revise the specification, as follows.

String dToR(Integer i)

df
=

i 2: 1 (\ i < 10 i 2: 10 V i < 1

I result = subDToR(i) "NA"

String subDToR(Integer i)

df
=

i = 9 "IX"

i 2: 5A i < 9 "V" + subDToR(i - 5)

i = 4 "IV"

i > 0 A i < 4 "I" + subDToR(i- 1)

i = 0 ""
Now, the spec1ficat1on defines the conversiOn of numbers from (1- 9) into their

corresponding roman numerals (I, II, III, IV, V, VI, VII, VIII, IX). So, in every

step we revise the specification to describe new behaviour and the specificat ion is

represented in a formal way. Also, if the tests fail after we revise the specificaLiou

we have to wri te some code to satisfy the specification, and after tha t we continue to

revise the specifi ation.

We keep doing this pror.ess until the sper.ification is complete and the code be-

haviour i consistent wit h the required behaviour that is described by t he specification.

After we have done several steps using TDD approach to develop the specification

and code together, the complete specification is as follows.

5. Test Drive n D evelopment With Oracles

String dToR(Integer i)

df

i ~ 1 A i ~ 3999 i > 3999 v i < 1

I r esult = subDToR(i) "NA"

String su bDToR(Integer i)

df

i ~ 1000

i ~ 900 A i < 1000

i ~ 500 A i < 900

i ~ 400 A i < 500

i ~ 100 A i < 400

i ~ 90 1\ i < 100

i ~50 A i < 90

i ~ 40 A i <50

i ~ 10 A i < 40

i = 9

i ~5A i < 9

i = 4

i>0 A i <4

i = 0

' M" + subDToR(i - 1000)

' CM" + subDToR(i- 900)

"D" + subDToR(i - 500)

"CD"+ subDToR(i - 400)

"C" + subDToR(i - 100)

"XC ' + subDToR(i - 90)

"L" + subDToR(i - 50)

"XL' + subDToR(i - 40)

"X" + subDToR(i - 10)

"IX"

"V" + subDToR(i- 5)

"IV"

"I' + subDToR(i - 1)

""

65

Now, we have a complete spec1ficat10n that descnbes the whole required behavi ur

for the program and presumably the working implementation developed along with

5. Test Driven D evelopment With Oracles 66

it using TDD. So, using this TDD approach results in a complete specification, im-

plementation and suite of test cases for the program.

5.1.2 Test Driven Development For Classes

We now consider applying our approach to modules or classes that have an inter-

nal data structure and methods for accessing or modifying the values of that data

structure. As an illustrative example we use the bounded stack as developed in [28].

As before, the first step in our approach is to specify some required behaviour, in

this case for creation of an empty stack:

Data Stucture

Integers[]

Integer maxSize

Integer length

Program Functions

Stack stack(Integer x)

g; (result .isEmpty() 1\ result .maxDepth() = x)

Boolean isEmpty()

df
= result = (length = 0)

Integer maxDepth()

df l s . = resu t = max 1ze

5. Test Driven D velopment With Oracles 67

The pecification consists of the data structure description, the definition for

stack(x) function, which is the program function specifying Lh behaviour of Lhc

constructor and two program function specifying the behaviour of the methods

isEmpty() and maxDepth().

After we write the specification, we generate the test oracle from it and write th'

test code to call it (e.g., using JUnit). The test case will , of course, fail , so we should

implement the con tructor and methods so that t he test cases pass and we have a

program that is con istent with the spe ified behaviour.

We then modify the pecification for push to cover Lhe case where the stack IS

initially empty, and add two more methods:

void push(Integer x)

df

p_this .size() = 0

this.size() = p_this .size() + 1

this I this.lastElement () = x

Integer size()

df
= result = length

Integer lastElement ()

df
= result = s [length - 1]

H re we use the naming convention of prepending "p_" to a program variable name

(e.g., p_this) to represent the value of the program variable (e.g., t h is) in the slate

imm<'rlir~,t<'ly before the function was ex0cuted . The new behaviour rl<'fin<'rl by th<'

5. Test Driven Development With Oracles 68

specification is to push an object on an empty stack. After the push the stack should

contain that element and the ize for the stack after is increased by one. Again we

generate the test oracle and implement a test case, which will init ially fail. T he stack

code is then developed until t he test case pas es, and so it implements t he specified

behaviour.

As we see the previous specification only defines pushing on a.n empty stack, which

is clearly not complete. We need to modify the specification to define behaviour for

pushing on a. non-full stack:

void push(Integer x)

df

p_this .size() 2: 0 A p_this .size () < this .maxDepth()

this .size() = p_this .size() + 1

Vi : [0, p_this .size()- 1].(

this I this .elementAt (i) = p_this .elementAt (i))A

(this.lastElement () = x)

Integer elementAt (Integer i)

g£ result = s [i]

Again we generate the test oracle and implement test cases, this time to push a.

few elements onto t he stack. After modifying the implementation to ma.ke it pass the

tests, we then modify the specification to cover the case where the sta.ck is full:

5. Test Driven Development With Oracles 69

void push(Integer x)

df
=

p_this.size() 2: 0/\ p_this .size () =

p_this.size () < this.maxDepth() this .maxDepth()

this .size() = p_this.size () + 1 p_this .s ize ()

this I Vi : [0, p_this .size()- 1]. this = p_this

(this elementAt(i) =)
p_this .elementAt (i) 1\

(this .lastElement() = x)

The new bchav10ur supported by th1s speclficatwn IS to attempt to pu I! an object

on a full stack. The requirement is that the stack after the call returns is the same

size and contains the same elements as the stack before the call. The new test case

should check this behaviour by attempting to push on a full stack. Continuing th

development we add the specification for pop on a non-empty stack:

Integer pop()

df
=

p_this .size() 2: 1

this.size() = p_this .size () - 1

this I
(this.elementAt (i) =)

Vi: [0, this.size() - 1]. 1\

p_this .elementAt (i)

(result = p_this .lastElement ())

Contmumg 111 th1s manner, we eventually reach t he full spec1ficat10n of the

bounded stack, as below, and we have at the same time developed a full imple-

5. Test Driven D velopment With Oracles 70

menta tion and a full suite of test cases.

Data Stucture

Integers []

Integer maxSize

Integer length

Program Functions

Stack stack(Integer x)

g,t: (result.isEmpty() 1\ result .maxDepth() = x)

void push(Integer x)

df

p_this.size() ~ 01\ p_this .size () =

p_this .size() < this .maxDepth() thi s.maxDepth()

this .size() = p_thi s .size () + 1 p_this . s ize ()

this ! Vi : [0, p_this .size () - 1]. this = p_this

(this elementAt (i) ~)
p_this .elementAt (i) 1\

(this .lastElement() = x)

5. Test Driven Development With Oracles

Integer pop()

df

p_this.size () :2: 1

this .size() = p_this .size() - 1

this!
(this elementAt(i) ~)

Vi: [0, this.size() - 1]. !\

p_this .elementA t ('i)

(result = p_thi s.lastElement ())

Integer top()

~ result = this .lastElement ()

Boolean isEmpty()

df
= result = (length = 0)

Integer maxDepth()

df 1 s. = resu t = max 1ze

Integer size()

df
= result = length

Integer lastElement ()

~ result = s [length - 1]

Integer elementAt (Integer i)

~result = s [i]

71

Chapter 6

Future Work and Conclusion

6.1 Future Work

Clearly a next step in this research and tool development will be to support test case

generation from the specification as well, which will further reduce t he amount of

'manual' test code development effort .

Also, applying the techniques to real problems in a real-world development en

vironment will undoubtedly provide some insight and help to refine the techniques.

Other possible improvements in the tool set (e.g., better visual editing etc.) could be

done in the future development of these tools. In addition to that using these tools

to do analysis of the test cases (e.g., coverage of the specifi cation).

72

6. Future Work and Conclusion 73

6.2 Conclusions

In test driven development, tests are used to specify the behaviour of the program,

and the tests are additionally used as documentation of the program. However,

tests are not sufficient to completely define the behaviour of a program because they

only define the program behaviour by example and do not state general proper ties.

So, the latter can be achieved by using our TDD approach, which uses a formal

specification to specify the behaviour of the program and supports testing directly

against that specification by generating oracles. The outcome of this technique i::;

that, at the end of the development period, the developer has produced not only a

working implementation , but also a complete specification and a full set of test cases.

Appendix A

Class Responsibility Collaborator

(CRC)

The UML diagrams for the packages in the system are described in chapter 4.

A.l Class Responsibility Collaborator (CRC) Ta-

bles

Table A.l: GenerateAuxFunAction Class Responsibility Collaborator
(CRC)

GenerateAuxFunAction
Generates the code for auxiliary functions SpecModel

SpecModelEiement
Symbol
Definition
CodeFromOMobject

74

A. Class Responsibility Collaborator (CRC) 75

Table A.2: GenerateOracleAction Class Responsibility Collaborator
(CRC)

GenerateOracleAction
Generates the code for oracles SpecModel

SpecMode!Element
Symbol
Defiui tiou
CodeFromOMobject

Table A.3: OracleAction Class Responsibility Collaborator (CRC)
GenerateOracleAction
Abstract base class for all test oracle actions SpecEditor

Table A.4: CodeFromOMobject Class Responsibility Collaborator (CRC)
CodeFromOMobject
Generates the code from the open math objects SpecModel
Generates the context for the test oracle and auxiliary functions Table

Cod FromTabularExp
Defini tion

Table A.5: CodeFromOMS Class Responsibility Collaborator (CRC)
CodeFromOMS
Generates the code from the open math symbol object SpecModel

Definition

Table A.6: CodeFromOMA Class R esponsibility Collaborator (CRC)
CodeFromOMA
Generates the code from the open math application object SpecModel

Definition
CodeFromTabular Exp

A. Class Responsibility Collaborator (CRC)

Table A.7: CodeFromOMI Class Responsibility Collaborator (CRC)
CodeFromOMI
Generates the code from the open math integer object

Table A.8: CodeFromOMV Class Responsibility Collaborator (CRC)
CodeFromOMV
Generates the code from the open math variable object

76

Table A.9: CodeFromTabularExp Class Responsibility Collaborator
(CRC)

CodeFromOMobject
Generates the code from the tabular expressions SpecModel

Table
CodeFromOMobj ct
Definition
StructRest
Eva! Term

Table A.lO: CodeFromTheory Class Responsibility Collaborator (CRC)
CodeFromTheory
Generates the code from the theory CodeFromOMobject

SpecModel
Theory

Table A.ll: OracleModel Class Responsibility Collaborator (CRC)
OracleModel
Write all required files for the oracle

Table A.12: CellBase Class Responsibility Collaborator (CRC)
CellBase
Represents the Cell Base that used to implement the tabular expressions

A. Class Responsibility Collaborator (CRC) 77

Table A.l3: Celllndex Class Responsibility Collaborator (CRC)
Celllndex
Represents the index for the cell

Table A.14: Integer_lnterval Class Responsibility Collaborator (CRC)
Integer _Interval
Represents the interval for quantifiers expressions

Table A.15: InvertedTable Class Responsibility Collaborator (CRC)
Inverted Table
Implements the inverted table and encapsulates all semantics knowledge Tab leG rid
about the inverted table

Table A.16: NormalTable Class Responsibility Collaborator (CRC)
Normal Table
Implements the normal table and ncapsulates all semantics knowledge TablcGrid
about the normal table

Table A.17: VectorTable Class Responsibility Collaborator (CRC)
VectorTable
Implements the vector table and encapsulates all semantics knowledge TableGrid
about the vector table

Table A.18: TableGrid Class Responsibility Collaborator (CRC)
TableGrid
R presents tab! grid that used to implement tabular expressions Celllndex

Cell Base

--

A. Class Responsibility Collaborator (CRC)

Table A.19: VarMap Class Responsibility Collaborator (CRC)
VarMap
Represents the values for variable that used in the specification

Table A.20: SpecModel Class Responsibility Collaborator (CRC)
SpecModel
Top lcvd for thr- spr-cifi rF~.t ion model SpecMode!ElemenL
The model provides an abstract API for accessing ErrorHandl r
the content of a software specification ChangeN otifier

78

Table A.21: SpecModelElement Class Responsibility Collaborator (CRC)
SpecModelElement
Base las for all elements in a pecification SpecModel

ElementTag

Table A.22: SpecModelErrorHandler Class Responsibility Collaborator
(CRC)

SpecModelError Handler
Handle the errors ErrorHandl r

Table A.23: SpecModelParser Class Responsibility Collaborator (CRC)
SpecModelParser
A parser for specification models DocumenLBuilder
It knows the details about how to validate t he specification SpecMode!ErrorHandler
fi les against the Relax G schema
To avoid unnecessary re-reading of the DTD and schema fi les
and to conserve memory this is a singleton class

A. Class Responsibility Collaborator (CRC) 79

Table A.24: ISpecModelListener Class Responsibility Collaborator (CRC)
ISpecModelListener
Interfa~e for li teners for changes to the specification model
Classc::; t hal want to be notified of changes to the specification
model should implement this interface and register themselves
via { link SpecModel#addListener(ISpecModelListener)}

Table A.25: ChangeNotifier Class Responsibility Collaborator (CRC)
ChangeN otifier
Manage change notification to ISpecModelListeners ISpecModelListener

ChangeNotificat.iou

Table A.26: DOMXMLWriter Class Responsibility Collaborator (CRC)
DOMXMLWriter
Convert DOM to XML
This class is based almost entirely on XMLtoTree

Table A.27: OMDOMReader Class Responsibility Collaborator (CRC)
OMDOMReader
An OpenMath DOM reader

Table A.28: ElementTag Class Responsibility Collaborator (CRC)
Element Tag
The possible kinds of elements in a sp cification
(Defini tion, Symbol, Theory, Type, MObjed, Presentation, U::;e)

Table A.29: Theory Class Responsibility Collaborator (CRC)
Theory
Represent an omdoc theory Symbol

Presentation

A. Class Responsibility Collaborator (CRC)

Table A.30: Symbol Class Responsibility Collaborator (CRC)
Symbol
Repre ·ents a symbol declaration and defini tion TTSRole
which is the main building block of a specification definit ion

SpecModelElemeni

Table A.31: TTSRole Class Responsibility Collaborator (CRC)
TTSRole
The po sible values for the tts:role attribute
These classify a definition by the role the defined
symbol plays in a specification

Table A.32: Type Class Responsibility Collaborator (CRC)
Type
A representation of an omdoc element as specialized MObject
for software specifications

Table A.33: Definition Class Responsibility Collaborator (CRC)
Definition
A representation of an omdoc element as specialized MObjcct
for software specifications and contains an open math
expression that rlefines t he semantic meaning for t he symbol

Table A.34: Presentation Class Responsibility Collaborator (CRC)
Presentation

Table A.35: Use Class Responsibility Collaborator (CRC)
Use
Represents the format for symbol

80

A. Class Responsibility Collaborator (CRC)

Table A.36: MObject Class Responsibility Collaborator (CRC)
MObject
A representation of an omdoc math object

Table A.37: Table Class Responsibility Collaborator (CRC)
Table
A representation for the tabular expression Gri I
A tabular expression consists of : Eva! Term
An evaluation term GenRe t
A structural restriction expression, the value StructRest
of which must be independent of the value of the
expressions in the table
A general restriction expression, the value of which
may depend on the value of the expressions in the table
A sequence of grids, each of which is an indexed set of expressions

Table A.38: TableFactory Class Responsibility Collaborator (CRC)
TableFactory

Table A.39: EvalTerm Class Responsibility Collaborator (CRC)
EvalTerm
Interface for the evaluation term

81

Table A.40: EvalTermFactory Class Responsibility Collaborator (CRC)
EvalTermFactory

Table A.41: GenRest Class Responsibility Collaborator (CRC)
G enRest
Interface for the general restriction

A. Class Responsibility Collaborator (CRC) 82

Table A.42: GenRestFactory Class Responsibility Collaborator (CRC)
GenRestFactory
Constructs the general restriction term for the tabular expressions

Table A.43: Grid Class Responsibility Collaborator (CRC)
Grid
Represents a grid which has a shape (index set) and Shape
corresponding expressions represented by OMObject OMObject

Index

Table A.44: Index Class Responsibility Collaborator (CRC)
Index
Interface for the cell index

Table A.45: lndexFactory Class Responsibility Collaborator (CRC)
lndexFactory
A factory class for generating shapes

Table A.46: InvertedEvalTerm Class Responsibility Collaborator (CRC)
InvertedEvalTerm
Represents the inverted table evaluation term

Table A.47: NormalEvalTerm Class Responsibility Collaborator (CRC)
NormalEvalTerm
Represents the normal table evaluation term

Table A.48: VectorEvalTerm Class Responsibility Collaborator (CRC)
VectorEvalTerm
Represents the vector table evaluation term

A. Class Responsibility Collaborator (CRC) 83

Table A .49: NormalGenRest Class Responsibility Collaborator (CRC)
Nor mal GenRest
Represents general restriction for the normal table

Table A.50: OMUtil Class R esponsibility Collaborator (CRC)
OMUtil
Provides open math utlit ies

Table A.51: Rectlndex Class Responsibility Collaborator (CRC)
Rectlndex
Selects a particular cell wi thin a grid

Table A.52: R ectShape Class Responsibility Collaborator (C RC)
RectShape
Describes the index set for a rectangular grid

Table A.53: RectShapelterator Class R esponsibilit y Collabora tor (CRC)
RectShapelterator
An Iterator to iterate over a RectShape RectShape
RectShapelterator 's can be used to iterate over any grid Rectlndex
that has a shape of type RectShape

Table A.54: RectStructRest Class Responsibility Collaborator (CRC)
R ectStructRest
Represents the rectangular structure restriction for the tabular expressions

Table A.55: Shape Class R esponsibility Collabora tor (CRC)
Shape
An Interface for shape objects
A Shape describes the index set for a grid

A. Class R esponsibility Collaborator (CRC) 84

Table A.56: ShapeFactory Class Responsibility Collaborator (CRC)
ShapeFactory
A factory class for generating shapes

Table A.57: StructRest Class Responsibility Collaborator (CRC)
StructRest
Interface for the structure restriction

Table A.58: StructRestFactory Class R esponsibility Collaborator (CRC)
S tructRestFactory
Constructs the structure restriction for the tabular expressions

Table A.59: ElementDialog Class Responsibility Collaborator (CRC)
ElementDialog
Specify parts of the specifications SpecModel

Table A.60: ISpecModelSelectable Class R esponsibility Colla borator
(CRC)

ISpecModelSelectable
This interface must be implemented by pages of the Spec
Editor which need to be notified of changes to the selected
element

Table A.61: SpecEditor Class Responsibility Collaborator (CRC)
SpecEditor
A multipage editor with the following pages: XMLEditor
XML Editor SFormEditor

SpecModel
SpecModelElement
SpecOu tlinePage

A. Class Responsibility Collaborator (CRC) 85

Table A.62: SpecEditorContributor Class Responsibility Collaborator
(CRC)

SpecEditorContributor
Manage· the installation/ deinstallation of global actions
for multi-page editors
Responsible for the redirection of global actions to the
active ditor
Multi-page contributor replaces the contributors for the
individual editors in the multi-page editor

Table A.63: SpecElementLabelProvider Class Responsibility Collaborator
(CRC)

SpecElementLabelProvider
Provides labels for the sp cification elements

Table A.64: SpecErrorHandler Class Responsibility Collaborator (CRC)
SpecError Handler
Handle the errors

Table A.65: SpecOutlinePage Class Responsibility Collaborator (CRC)
SpecOutlinePage
Constructs the outline specifications SpecEditor

Table A.66: SpecTreeContentProvider Class Responsibility Collaborator
(CRC)

SpecTreeContentProvider
Adaptor for the SpecModel to ITreeContentProvider SpecModel

A. Class Responsibility Collaborator (CRC) 86

Table A.67: FillmorePreferencePage Class Responsibility Collaborator
(CRC)

FillmorePreferencePage
Blank Preference page to properly organize all t he preference
page for the plugin

Table A.68: PreferenceConstants Class Responsibility Collaborator
(CRC)

PreferenceConstants
Constant definitions for plug-in prdf'rC'llC<'s

Table A.69: Preferencelnitializer Class Responsibility Collaborator (CRC)
Preferencelnitializer
Used to initialize default preference values

Table A. 70: TestOraclePreferences Class Responsibility Collaborator
(CRC)

TestOraclePreferences
Test oracle preferences page StringFieldEditor

Appendix B

The Generated Oracle Code

B.l The Generated Oracle Code From The Sam

ple Example

This section shows the classes genera ted from the sample 'ggcd' program specification

given in 3.2.7

package o r ac les;

impor t ca. F i l lm o r eso f tware. plu g in . O rac leUt ili t i es .* ;

import stat i c o r g .juni t. Assert . * ;

p u b l ic class ggc d 0 r acle {

privat e VarMap v a r s;

87

B. The Generated Oracle Code 88

private Outggcd 1 tO ;

public ggcdOr ac le () {

vars=new VarMap ();

tO=new Outggcdl (vars) ;

}

private Bool ean ggcdTOr ac le (Int ege r i , Int ege r J ,

Int ege r gcdvalue , Boolean result){

Boolean r es ul tOrac le;

vars.setValu e(" i " ,i);

vars.setValue("j" , j);

vars . set Va lu e(" gc dv a lu e" ,gc dv a lu e);

vars.setValu e(" r es ult " , r es ult);

B. The Generated Oracle Code

r es ultOr ac l e=tO. ggcdTl ();

return r es ultOrac l e;

}

public void as s e rtg gcdTOrac le (Int ege r i , Int ege r j ,

Int ege r gc dv a lu e , Boolean r es ult){

asse rtTru e(ggcdTOr ac le(i , j , gcdv a lu e, res ult));

}

}

package or ac l es;

import j a v a . uti! .*;

import ca. fillm o r eso ft wa r e. plugin. O rac l eU tili t i es . *;

public class Outggcdl {

private VarMap v a rs ;

private V ec t o rT a bl e nTa ble;

89

B. The Generated Oracle Code 90

public Outggcd1 (VarMap v a r s) {

this. v a r s=var s ;

nT a bl e=new Vecto rT a bl e (3);

Ce lllnd ex inHead e r 1 []= new C elllnd ex [2];

Ce lllnd ex inH ead er2 []= new Celllnd ex [2] ;

for (int kO = O;kO < 2;k0++)

inHead erl [kO] = new C e lllnd ex (1);

for (in t k 1 = 0; k 1 < 2; k 1 ++)

inHead e r2 [k1]= new C elllnd ex (1);

Ce lllnd ex inM ain []= new C elllnd e x [4] ;

for (in t j = 0; j < 4; j ++)

inM a in [j]= new C e lllnd ex (2) ;

inH ead erl [0]. se t (0 ,0);

B. The Generated Oracle Code

nT a b1e . a dd Head erC e1l (0 , in Head erl [0] , new

ggc d LG rid_LC e 1LO (va rs));

in H e ad e r1 [1] . se t (0 , 1) ;

nT a ble . addHead erC e1l (0 , inHead erl [1] , new

ggc dLGrid _LC e1L1 (v a rs));

inHead e r2 [0] . s e t (0 ,0) ;

nTa b1e. addHead erC e11 (1 , inHead er2 [0] , new

ggc d LG rid _2_C e1LO (v a rs));

inH ead e r2 [1]. se t (0 , 1);

nT a b1e. a ddHead er Ce 11 (1 , inHead e r 2 [1] , new

ggc dLGrid _2 _C e1L 1 (v a rs));

int ind ex=O;

for (in t l 0 = 0; l 0 < 2; 1 0 ++)

for (i n t 11 = 0 ; 11 < 2 ; 11 ++)

{

}

inM ain [ind ex] . se t (0 , 10) ;

in Main [ind e x] . se t (1 , 11) ;

ind ex++;

91

n T a ble . add M a in C e 11 (in M ain [0] , new g g c d L G rid _ 0 _ C e 1L 0 (v a r s)) ;

B. The Generated Oracle Code 92

nTable. addMain Cell (inMain [1] , new ggcd LG rid _Q _Cel !_ 1 (vars));

nT ab le.add 1ainCell (in Main[2] , new ggcdLGr id _Q_Cell _2 (vars));

n Tab I e . add Main C e II (in Main [3] , new g g c d L G r i d _ 0 _ C e I !_ 3 (v a r s)) ;

}

public Boo lean ggcdT1 () {

Bool ean r es ul t = nTable. evaluateTabl e ();

return result ;

}

}

package orac les;

import ca. F ill moresoftware. plugin . Ora c l eUL ili Li es . *;

public class A uxFunctions {

static public Boolean cDiv(In teger a,Integer b , Int ege r

x){

B. The Generated Oracle Code

return (a% x 0) && (b % X 0);

}

}

package o r ac les;

import j a v a. uLil. *;

import ca . fillmor es oftwar e . plugin. Or ac l eU tiliti es .*;

public class ggcdLGrid _O_CelLO extends C e l!B ase {

private VarMap va rs;

public ggc d l _G rid _0 _C e lLO (VarMap v a r s) {

this . v a rs= v a r s;

}

public Obj ect e v a ! () {

In tege r

In tege r

In tege r

i = (lnt ege r) v a r s . ge tV a lu e(" i ");

j = (In teger) v a rs. ge t V a lu e(" j ");

x=(ln tege r) v a rs. ge tValu e ("x") ;

93

,------------------------ ------

B. The G enerated O racle Code

I nteger gcdvalu e=(I nt ege r) vars . get Value(" gcdvalu e ") ;

r e turn (gcdva lu e=A uxFun ctions.cD iv (i , j ,x));

}

}

package o r a c 1 e s ;

import java. u t i I . *;

import ca. f ill mor eso ftwar e. pl ug in. Or ac l eUt il i t i es .*;

public class ggcdLGr id_O _Ce lLl exte nds Ce l! Bas e {

private VarMap va r s;

public ggcd L Gr id _Q_Ce lLl (VarMap vars){

this . vars=var s;

}

public Object eva! () {

I nteger gc d valu e=(In teger) vars . getVal ue (" g cdva l u e ");

94

B . The Generated O racle Code

return (gcdvalu e==O);

}

}

package orac les;

import java. u t i I . * ;

import ca . f illm o r eso ftw are. plugin . O rac l eUti li t i es .* ;

public class ggc dLGrid _Q_Ce!L2 extends Cel!Base{

private VarMap vars;

public ggcd LG rid _Q _Ce !L2 (VarMap va r s){

this. vars=vars;

}

public O bject eva! () {

Boolean result=(Boolean) vars. getValue(" result ");

95

B. The Generated Oracle Code

return (r e s u 1 t = true);

}

}

package o r ac les;

import j a v a . u t i 1 . *;

import c a . f i 11m o r es oft wa r e . p 1 u g in . 0 r a c 1 e U t i 1 i t i e s . * ;

public class g gc dLGrid _Q_C e lL3 extends C e llB ase {

private VarMap va rs;

public ggc dLGrid _Q_C e lL3 (VarMap va r s){

this . v a r s=var s;

}

public O bj ect eva] () {

Boo lean r es ul t=(B oolean) var s . get Va lu e(" res ult ");

return (r es ult= false);

96

B. The Generated Oracle Code

}

}

package o r a c l e s ;

import j a va. u t il. *;

import ca . fil l m o r eso ft w ar e. plu gin . Or ac l e Utili t i es . *;

public class ggc dLGrid _LC e lLO extends Ce llB ase {

private VarMap va rs;

public ggc dLGrid _L Ce lLO (VarMap va r s){

this . va r s=va rs;

}

public Obj ect e v a l () {

In tege r gc dv a lu e=(In te g e r) v a rs. ge tV a lu e (" gc dv a lu e ") ;

return gc d value;

}

97

B. The Generated Oracle Code

}

package orac l es;

import j ava. u t i I . *;

import ca. fillm o r esoft w are . plu g in. O rac l e Ut ili t i es.*;

public class ggc dLGrid _L Ce! L l extends Ce l! Base {

private VarMap v a r s;

public ggc dLG r id _LCe !L l (VarMap vars){

this . v ars=var s;

}

public O bject eva! () {

Boo lean r es ult =(Boo lean) vars. get V a lue(" res ul t") ;

return res ul t;

}

}

98

B. The Generated Oracle Code

package o r ac I es ;

import j a v a. uti I . *;

import ca . fillmor esof tw a r e . plu g in . Or ac l e Ut ili t i es.*;

public class ggc dLGrid _2 _C e lLO extends Cell Base {

private Vari\!Iap vars;

public ggc dLGrid _2 _C eiLO (VarMap va r s){

this. va r s=v a r s;

}

public Obj ec t eva l () {

In tege r i =(Int ege r) v a r s.getV a lu e(" i ");

In tege r j = (In tege r) v a r s . get V al ue(" j ");

return ((i > O)&&(j > 0));

}

}

99

B. The Generated Oracle Code

package orac les;

import j ava . u t i l . * ;

import ca. fillm o r eso f twa r e . p l u g in . O rac l e Ut il i t i es.*;

public class ggc dLGrid _2_Cel L1 extends Ce llB ase {

private VarMap va r s;

public ggc dLG r id _2 _Ce lL1 (VarMap va r s){

this . va r s=var s;

}

public O b j ect eva ! () {

In teger i =(Int ege r) v a r s. ge t V al u e(" i ");

In tege r j =(Int ege r)vars.getV a lu e(" j ");

r e turn ((i <= O)IJ(j <=0));

}

}

100

Bibliography

[1] R. F. Abraham. Evaluating generalized tabular expressions in oftware documen
tation. M. Eng. thesis, McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton , 0 , Feb. 1997.

[2] S. Ambler. Agile Database Techniques:Effective Strategie for the Agile Sojtwa1·e
Developer. Wiley Publishing, United States of America, 2003.

[3] S. Antoy and D. Hamlet. Self-checking against formal specifications. In V\. W.
Koczkodaj, P. E. Lauer, and A. A. Toptsis, editors, Proc. Jnt 'l Conf. Computing
and Information (!CCI), pages 355- 360. IEEE Computer So i ty Press, May
19!)2.

[4] A. Balaban, D. Bane, Y. Jin, and D. Pa rnas. Mathematical model of tabular
expression . SQRL Document, 2006.

[5] H. Baumeister. Combining formal specifications with test drivcu dcvclopmcut.
pages 1- 12. Springer Berlin/ Heidelberg, 2004.

[6] K. Beck. Extr·eme Programming Explained: Embrace Change. Addison-Wesley,
2000.

[7] K. Beck. Te t-Driven Development by Example. Addison-Wesley, 2003.

[8] G. Bernot M. Gaudel, and B. Marre. Software testing based on formal speci
fications: A theory and a tool. Software Engineering Journal, 6:3 7- 405, Jun
1990.

[9] B. W. Boehm. Software Engineering Economics. Englewood Cliffs. J: Prentice
Hall , Inc., 19 1.

[10] D. Chapman. A program testing assistant. Communications A CM, 25(9):625
634, Sept. 19 2.

101

BIBLIOGRAPHY 102

[11] Y. Cheon and G. T. Leavens. A runtime assertion checker for the java modeling
language (JML) . In H. R. Arabnia and Y. Mun, editors, International Confer
ence on Software Engineering Research and Practice (SERP02}, pages 322- 32 .
CSREA Pre s,Las Vegas, 2002.

[12] C. Ching. A brief introduction to test driven development using microsoft excel
and vba. http: / / www.clarkeching.com/ 2006/ 04/test_driven_dev.html.

[13] E . Clay berg and D. Rubel. Eclipse Plug-ins. Addison-Wesley, 2008.

[14] J . Gannon, P. McMullin, and R. Hamlet. Data-abstraction implementation,
spccificatiou, and testing. A CM Trans. Programming Languages and System ,
3(3):211- 223, July 1981.

[15] D. Gelperin and B. Hetzel. The growth of oftware testing. Communications
A CM, 31(6):6 7- 695, June 1988.

[16] B. George and L. Williams. An initial investigation of test driven development
in industry. Proceedings of the 2003 ACM symposium on Applied computing,
Melbourne, Florida.

[17] J . B. Goodenough and S. L. Gerhart. Toward a theory of tes t data sel ction.
IEEE Trans. Software Engineering, 1(2):156- 173, June 1975.

[18] R. Hamlet . Testing programs with the aid of a compiler. IEEE Trans. Softwa·re
Engineering, SE-3(4):279- 290, July 1977.

[19] A. Herranz and J. J . Moreno- avarro. Formal extreme (and extremely formal)
programming. In Extreme Programming and Agile Processes in Softwa·re En
gineer-ing, 4th International Conference, XP 2003, Genova, Italy, May 2003,
volume 2675 of LNCS, pages 88- 98. Springer, 2003.

[20] R. Janicki. On a formal semantics of tabular expressions. CRL Report 355,
Communications Research Laboratory, Hamilton , Ontario, Canada, Oct . 1997.

[21] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2001.

[22] M. KAJKO-MATTSSON. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering, 10(1):31- 55, January 2005.

[23] M. Kohlhase. OMDoc: An Open MaTk·up Format for Mathematical Doc·uments
(Version 1.2}. Number 4180 in Lecture Notes in Artificial Intelligence. Springer
Verlag, 2006.

BIBLIOGRAPHY 103

[24] G. T. Leavens, A. L. Baker, and C. Ruby. JML: a notation for detail d design .
In H. Kilov, B . Rumpe, and I. Simmonds, ditors, B ehavioral Specifications for
Businesses and Systems, chapter 12, pages 175- 188. Kluwer, 1999.

[25] D . Luckham, F. von Henke, B. Krieg-Bruckner, and 0. Owe. ANNA A Language
for Annotating Ada Programs Reference Manual. Number 260 in Lecture Notes
in Computer Science. Springer-Verlag, 1987.

[26] M. Muller and 0. Hagner . Experiment about test-first programming. IEEE
Software, October 2002.

[27] G . J . Myers. The A r-t of Sof twar·e Testing. J ohn Wiley & sons, 1979.

[28] J. Newkirk and A. Vorontsov. Test-Driven Development in Micm sofl . NET.
Microsoft Press, 2004.

[29] D. Nicolette and K. Scotland . Manager's introduction to test-driven devel
opment. Agile Conference, 2008. ht tp: / j www.infoq.com/ presentations/ TDD
Managers-Nicolet te-Scotland.

[30] T. J. Os trand and M. J . Balcer . The category-partition method for specifying
and generating functional tests. Comm unications ACM, 31(6):676 686, June
19 .

[31] D. P anzl. Automatic software test drivers. Computer, pages 44- 50, Apr. 1978.

[32] D. J. P anzl. A language for specifying software tests. InS. P. Ghosh and L. Y.
Liu , editors, Proc. National Computer Conf. , pages 609- 619. AFIPS, June 197 .

[33] D. L. P arnas. A generalized control structure and it s formal definition . Commu
nications A CM, 26(8) :572- 581, Aug. 1983.

[34] D. L. Pa rnas. T abular representation of relations. CRL Repor t 260, Communi
cations Research Labora tory, Hamilton, Ontario, Canada, Nov. 1992.

[35] D . L. Pa rnas. Inspection of safety critical software using function tables. In Pm c.
IFIP Congress, volume I, pages 270- 277. Nort h Holland , Aug. 1994.

[36] D. L. P arnas and J. Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41- 61, Oct. 1995.

[37] D. L. P arnas, J . Madey, and M. Iglewski. Precise documentation of well
structured programs. IEEE Trans. Software Engineering, 20(12):948- 976, Dec.
1994.

BIBLIOGRAPHY 104

[38] D. K. P ter . Generating a test oracle from program documentation. M. Eng. the
sis, McMast r University Dept. of Electrical and Computer Engineering Hamil
ton, 0 Apr. 1995.

[39] D . K. Peter , M. Lawford and B. T. y Widemann. An IDE for oftware devel
opment using tabular expressions. In B. Spencer M.-A. Storey, and D. Stewart,
editors, Proc. Conf. of the Centre for Advanced Studies on Collaborative Research
(GASCON), pages 248- 251, Ontario, Canada, Oct. 2007.

[40] D. K. Peter::;, M. Lawford , and B. T. y Widernann. Software ::;pedficat.ion u::;
ing tabular expressions and omdoc. In M. Kauers, M. Kerber R. Miner , and
W. Wind teiger, editors, Proc. Calculemus/ MKM 2007 Work in Progre s num
ber 07-06 in RISC-Linz Report Series, pages 61- 75, J ohannes Kepler University,
A-4040 Linz, Austria, June 2007. Research Institute for Symbolic Computation .

[41] D. K. Peters and D. L. Parnas. Using test oracles generated from program
documentation. IEEE Trans. Software Engineering, 24(3): 161- 173, Mar. 199 .

[42] C. Quinn, S. Vilkomir, D. Parnas, and S. Kostic. Specification of software com
pan nt requirements using the trace function method. In Int 'l Conf. on Softwa1·e
Engineering Advances, page 50, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[43] D. J. Richardson, S. L. Aha, and T . 0 . O'Malley. Specification-ba ed te t oracle
for reactiv systems. In Proc. Int 'l Conf. Software Eng. (ICSE), pages 105- 11 ,
May 1992.

[44] D. S. Ro enblum. A practical approach to programming with assertions. IEEE
Tmn . Software Engineering, 21(1) :19- 31, J an. 1995.

[45] P. A. Stocks anrl D. A. Carrington . Test templates: A sprcification-basrrl t.C's t ing
fram work. In E. Straub, editor, Proc. Int 'l Conf. Software Eng. (ICSE), pages
405- 414, 1ay 1993.

[46] Q. M. Tan, A. Petrenko, and G. v. Bachmann. A test generation tool for specifi
caiton in the form of state machines. Technical Report 1016, Departm nt d 'IRO,
Universite de Montreal, 1996.

[47] Y. Wang. Specifying and Simulating the Externally Observable B ehavior of Mod
ules. PhD th is, Dept. of Computing and Information Science, Qu en 's Univ r
sity, Kingston, Ontario, Canada, 1994.

