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Abstract 

The current industry trend to using Test Driven Development (TDD) is a recognition 

of the high value of creating executable tests as part of the development process. In 

TDD, the test code is a formal documentation of the required behaviour of the com

ponent or system being developed, but this documentation is necessarily incomplete 

and often over-specific. An alternative approach to TDD is to develop the specifi

cation of the required behaviour in a formal notation as a part of the TDD process 

and to generate test oracles from that specification. In this thesis we present tool in 

support of this approach that allow formal specifications to be written in a readable 

manner that is tightly integrated with the code through an integrated development 

environment, and test oracles to be generated automatically. The generated test code 

integrates smoothly with test frameworks (e.g., JUnit) and so can be directly used in 

TDD. This approach has the advantage that the specifications can be complete and 

appropriately abstract but still support TDD. 
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Chapter 1 

Introduction 

Test-Driven Development (TOO) is a methodology that uses tests to help developer · 

make the right decisions at the right Lim . TOO is not about testing, it is about using 

tests to create software in a simple, incremental way. ot only does this improve the 

quality and design of the software, but it a lso simplifies the development process. The 

steps of TOO are illustra ted in the UML activity diagram of Figure 1.1. TOO is one of 

the core practices of Extreme Programming (XP)[6, 21]. Two key principles of TOO 

R.rC' 1) t.ha.t. no impiNnr.nta.t.ion C'OOe is written without first ha.ving; R. test C'R.SC' tha.t 

fa ils with the current implementation, and 2) that we stop writing the implementation 

as soon as all of the existing test cases pass. Although not all developers agree with 

all of the XP practices, the ideas of TOO have started to gain wide acceptance. 

In TOO, the test code is a formal documentation t hat describes the required 

behaviour for the component or the system being developed for the particular t t 

cases includ d. However, tests alone describe the properties of a program only in 

1 
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continues 

Pass, 
Development 
stops 

Figure 1.1: The Steps of Test-Driven Development (TDD)[2] 

2 

terms of examples and thus are not sufficient to completely describe the behaviour 

of a program . So, this documentation is unavoidably incomplete and often ov r-

specific. To solve this problem we propose an a lternative approach to TDD, which 

is to develop a formal specification of the required behaviour as a part of the TDD 

process and then generate test oracle from that specification. We thus propose a 

variation on the key TDD principles listed above: 1) No implementation code is 

written without first having a specification for the behaviour that i not satisfi ed by 

the current implementation , an I 2) we stop writing the implementation as soon as 

the implementation satisfies the current specification. By generating oracles direct ly 

from the specification we are a bl to quickly and accurately check if the specification 
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is satisfied by the implementation for the selected test cases. 

1.1 Purpose 

In the context of test driven development , tests specify the behaviour of a program 

before the code that implements th program is actually written . In addition, they are 

used as a main source of documentation in XP projects, together wi th the program 

code. 

An alternative approach to TDD i to develop a formal specification of the required 

behaviour as a part of the TDD process and then generate test oracles from that 

specifica tion. If a program has be n formally sp cified. it should be po sible to use 

t.hf' spPri fi rFt.tion Ft.S Ft.n omrle, so the expPcteci ou tput. neeci not. to be given by t lw user. 

This is par ticularly useful if the formal documenta tion is of a from that can be read 

and understood by both domain experts and programmers. Such documentation can 

be reviewed by t he domain experts to ensure that the specified behaviour is corr ct 

and then used to communicate their intentions to t he programmers. Generating 

an oracle from this documentation allows us to ensure that the documentation and 

prgram are consistent. 

The purpo e of this work is to develop tools in support of this approach that allow 

formal specification to be written in a readable manner that is t ight ly integrated 

with the code through an integrated development environment, and test oracles to 

be generated automatically. One of the tools t ha t we have developed is a Test Oracle 

Generator (TOG) tool that , given a relational program specification [33] using tabular 
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expres ·ion [34], will produce a program that will act as an oracle. This oracle program 

will take as input an (input, output) pair from the program under test and wi ll return 

true if the pair sat isfi e the relat ion described by t he specifi cation, or fa lse if it does 

not . 

1.2 Scope 

In t his t hesis, we considered applying our approach for Test Driven Develop

ment(TDD) on methods and classes which are the basic components for any software 

application. 

In our work, the kind of testing that we considered is the one composed of eval

uating executable parts of the software system. Testing is one of the methods used 

to verify t he software system, but in this work we didn't use t he software verificat ion 

since it has more wide meaning. We didn' t discuss the selection of suitable tests 

for a component and how efficient those tests are. Interested readers are referred to 

t he cited publication [46] for more details about t hese issues and a good survey of 

t he related literature. Also, the kind of programs that we considered in this work is 

the terminating programs. For the non-terminating programs, some terminating sub 

program (e.g. the body of an infinite loop) could be documented and test d using 

these methods. 

Our methods are applicable for programs wri tten in different kinds of program

ming languages but the tools that we have implemented to describe and explain these 

techniques only work for those wri tten in 'J ava' . 
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1.3 Types of Documents 

The documentation is very important for computer systems. The goal of softwar 

documentation is to describe software systems and software processes. According 

to information in [22], consistent, correct and complete documentation of a software 

system is an important vehicle for the maintainer to gain an understanding of th 

system, to ease the learning and /or relearning processes, and to make the system 

more maintainable. Poor system documentation, on the other hand , is th primary 

reason for quick software system quality degradation and aging. Proper process doc

umentation records the process, its stages and tasks, executing roles, their decisions 

and motivations, and the results of each individual process task. 

With reference to the set of documents described in [36] , in this work, we are 

focused on using module internal design documents [37] or module interface speci

fications to drive the development [42]. These two types of documents specify the 

behaviour of the module either in terms of the internal data structure and the effect 

of each access program on it , or in terms of the externally observabl behaviour of 

the module. 

1.4 Fillmore Software Project 

The Fillmore Software Project [39, 40], is a collaborative project between r searchers 

at Memori al University, McMaster University and the University of Limerick that 

was started in the Fall of 2006 and i · aimed at building a suite of tools to provide 
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better support for software specifications or descriptions of software behaviour. The 

purpose of these tools is to improve the quality of the developed software. 

Thi project attempts to develop a suite of tools for development, analysis and 

use of tabular software specifications. The set of tools that may be appropriate 

outcomes from this project is very large and includes powerful editors, document 

consistency checkers, verification systems, oracle generators, test case generators and 

model checkers. As a part of our work, we implemented the TOG part of the Fillmore 

Software Project. 

1.5 Outline of This Thesis 

Chapter 2 describes Lhe related work. Chapter 3 describes the content and Lhc formaL 

of the type of the program specification to be used for generating a te t oracle. The 

design of Lhe oracle itself and the design of the Test Oracle Generator are discussed 

in Chapter 4, and Chapter 5 discusses the Test Driven Development approach with 

oracles and formal specifications. Chapter 6 discusses the conclusions. 



Chapter 2 

Related Work 

2.1 Test Driven D evelopment 

This section first de cribes TDD practice in detail , then detail an empirical study 

of TDD that has been completed by researchers in Germany [26]. It also, describes 

some research that uses TDD. 

In the TDD, before writing implementation code, the developer writes automated 

unit test cases for the new functionality they are about to implement . After writing 

test cases that generally will not even compile, the developers write implementation 

code to pass these test cases. The developer writes a few test cases, implements the 

code, writes a few test cases, implements the code, and so on. The work is kept 

within the developers intellectual control because he or she is continuously making 

small de ign and implementation d cisions and increasing functionality at a relatively 

consistent rate. A new functionality is not considered properly implement d unles 

7 
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these n w unit test cases and every other unit test cases ever written for the code 

base run properly. 

Based on [16], TDD is considered preferable over other approaches. 

• In any process, there exists a gap between decision (design developed) and 

feedback (performance obtained by implementing that design). The favorable 

outcome of TDD can be ascribed to the lowering, if not eliminating, of Lhat gap, 

as the granular test-then-code cycle gives constant feedback to Lhe developer 

[7]. Consequently, bug and Lheir cau es can be easily determined the bug 

must lie in the code that was just written or in code with which the recently 

added code interacts. An often-cited tenet of Software Engineering, in concert 

with the Cost of Change [9], is that the longer a bug remains in a software 

system the more difficult and costly it is to remove. By using TDD. bugs are 

determined very quickly and the source of the bug is more easily determined. 

Therefore. it is this higher granularity of TDD that distinguish the practi e 

from other testing and development models. 

• TDD gives programmers the ability to write code that can be tested auLomati

cally, such as having functions/methods returning a value which can be checked 

against expected results. Some benefits of automated testing include: (1) pro

duct ion of reliable ystems, (2) improvement to the quality of the test effort , 

and (3) reduction of the test effort and minimization of the chedule. 

• The TDD test cases create a thorough regression test bed . By continuously 

running these automated test cases, one can easily determine if a new change 
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breaks anything in the existing system. T his test bed should also allow smooth 

integration of new functionali ty into the code base. 

Lately, there are studies to analyze the efficiency of the TDD approach. Muller 

and Hagner [26] reported an experiment to compare TDD with traditional program

ming. The experiment is done with 19 graduate students, evaluated the efficiency 

of TDD in terms of (1) programming speed , (2) program reliability and (3) program 

understanding. In this experiment, the subject were divided into two groups, TDD 

and control, with each group solving the same task. The task to be solved in thi 

experiment is called "GraphBase". It consists of implementing the main class of a 

given graph library containing only the method declarations and method comments 

but not the method bodies; the students completed the body of the necessary meth

ods. The programming was done in this way to give the researchers t he abili ty to 

assess automated acceptance testing for their analysis. 

The test cases that was specified by t he T DD group was implemented while the 

code was written, but the control group students wrote automated test cases after 

completing the code. Subjects work for the two groups was divided into two phases, 

an implementation phase (IP), during which the subjects solved their assignment 

unti l th y thought that their program would run correctly. This phase fin ished with 

t heir call for the acceptance-te t . An acceptance-test phase (AP), during which the 

subjects had to fix the faults that caused the acceptance-test to fail. The researchers 

found no difference between the groups in overall development t ime. The TDD group 

had lower reliability after the IP phase and higher reliability after the AP phase. 
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However the TDD groups had statistically significant fewer errors when th code was 

reused. Based on these results the researchers concluded that writing program in 

test-first manner neither leads to quicker development nor provides an increase in 

quality. However , the understandability of the program increases, measured in term 

of proper reuse of existing interfaces. 

Despite these results, this study is far from being a complete evaluation of test

first programming. The authors encourage other researchers to do the experiment 

again or to conduct a similar in order to extend the knowledge about test-first. 

There are some researchers who have described tools that can be used to combine 

formal specifications with test driven development without loosing the agility of te ·t 

driven development. In [5], Baumeister describes a tool that provides support to 

combine formal specifications with test driven development. This is done by using 

the tests, that drive the development of t he code, also to drive the development of 

the formal specification. By generating runt ime assertions from the specification it is 

possible to check for inconsistencies between code, specifications, and tests. Each of 

the three artifacts improves the quali ty of the other two, yielding bett r code qual it y 

and better program documentation in the form of a validated formal specification of 

the program. This method is exemplified by using the primes example with Java as 

the programming language, JUnit as the testing framework, and the Java Modeling 

Language (J ML) [24] for the formulation of class invariants and pre- and postcon

ditions for mrthods. Thry usc .JML since JML specifications arr rasily undrrstood 

by programmers, and because it comes with a runtime assertion checker [11], which 
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allows them to check invariants and pre- and postcondit ions of methods at runtime. 

Our work is different from the work above in that we use relations for the speci

fications, which characterize t he acceptable set of outcomes fo r a given input. Also, 

we u e test oracles t hat are generated automatically from the program specification 

to determine if the software behaviour is correct or not for a given te t input an I 

output . By generating oracles directly from the specification we are able to quickly 

and accurately check if the specification is satisfied by the implementat ion for the 

selected test cases. 

In [19], Herranz and Moreno- avarro have studied how the technology of For

mal Methods (FM) can interact with an agile process in general and with Extreme 

Programming (XP) in part icular. They have presented how some XP practices can 

admit the integration of Formal Methods and declarative technology. In particular, 

unit testing, refactoring, and, in a more detailed way, incremental development have 

been studied from the prism of FM. 

2.2 Oracle Generation 

The research t hat has been done on improving the efficiency of software testing is 

divided into two categories: one is focused on the test case selection [17, 15, 27 30], 

t he oth r has concentrated on developing tools to help generate, maintain and track 

the testing documentation or run tests in simulated environments [10, 1 , 31, 32] . 

All previous research areas arc support ive to, but is different from the work t hat has 

done in this t hesis. 
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Several r searchers have developed tools that give the user the ability to d termine 

if the re ·ult · of a test are correct or not. In [31], Panzl explained three different kinds 

of automatic oftware test drivers that can be used to automate the verification of 

test results. In [1 ] Hamlet described another automatic testing ystem based on 

fini te test-data sets, implemented l>y modifying a compiler. The disadvantages of 

these testing systems are: 1) The user should specify the expected result, which may 

be hard to acquire, and 2) The relational pecifications, which may accept more than 

one acceptable result for a given input, can't be used because th se systems only 

compare the expected and actual r suit. 

The last di advantage is partly solved by Chapman in [10]. This system de

scribes the design and implementation of a program testing assistant which aids a 

programmer in the definition execution, and modification of test cas during incn'

mental program development. Moreover, it gives the programmer th ability to set 

the succe s criteria for a test case or use the default criterion qual, which check for 

simple equali ty of a result and its correct value. Examples of other success criteria 

are set-equal, which checks two sets to ee that they contain the same elements and 

isomorphic, which checks that arbitrary structures, possibly including pointer cycles, 

are topologically identical. 

In [4 1] Peter and Parnas discuss the us of test oracles generat d from program 

documentation. They describe an algorithm that can be used to generate a test oracle 

from program documentation , and present the results of using a tool based on it to 

help test part of a commercial network management application. The results demon-
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strate that these methods can be effective a t detecting errors and greatly increase 

the speed and accuracy of test evaluation when compared with manual evaluation. 

design of test oracle generator they used allows using only C programming language 

in this prototype. If we need to choose among several programming languages we 

need to add ev raJ addit ional sub modules, one for each languag . 

In [38] P ters developed a prototyp automated Test Oracle Generator (TOG ) tool 

that, given a relational program specification using tabular expres ion , will produ e 

a program that will act as an oracle. This oracle program will takes input an input, 

output pair from the program under test and will return true if t he pair satisfies the 

relation J escribed by the specification, or false if it does not. 

Oth r kind of systems, such as ANNA [25] and APP [44], give the user the abili ty 

to write code annotated with assertions that are evaluated while the code is exe

cuted. Th(' e as ertions can be used as an omrlc if t hey arc completely sperifi('d anci 

accurately placed to define t he program specification. 

In [45], Stock and Carrington described a Test Template Framework (TTF) which 

a structured strategy and a formal fram work for Specification-based Testing (SBT) 

which is using the Z notation. In [43], Richardson et al. encourage Lhe process of 

generating te ' t oracle from formal specifications. 

Other researchers have explained generating test oracles for abstract data types 

(ADTs) that are defined using algebraic specifications, e.g [3, 8 14] or 'trace' specifi

cations 147]. These kind of specification approaches discuss another kinci of prohlcm 

which is cliff'erent from the specification approaches that is us d in thi work in that 
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they specify the desired properties of an ADT which is implemented by a group of 

programs, but the approaches that are used in this work are used specify the effect 

of a single program on some data structure. 



Chapter 3 

Methodology 

3.1 Formal Software Specifications 

Formal pecification are documentation methods that u e a mathematical descrip

tion of oftware or hardware which may be u ed to develop an implementation 

to drive automat d testing. The emphasis is on what the syst m hould do, not 

necessari ly how the system should do it. Also, formal software specifications are 

expressed in a language whose vocabulary, syntax and semantics are formally defined . 

Examples of such languages (or notations) are VDM, Z, and B. 

Formal specifications have several advantages over more traditional (informal) 

techniques: 

I Since they are precisely defined, there is little room for mi interpretation 

of the intended meaning. Thi is in tark contrast to natural language and 

15 
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other informal techniques, which leave lots of room for (mis)inLerpretation. 

II Formal Specifications are mathematical entities, so they may b analyz d 

using mathematical methods and Lools. 

III They can be processed automatically, so we can use them as an exchange 

medium for oftware tools that depend on it. 

IV They can b u ed as a guide for id ntifying appropriate test cases. 

V They can be used to objectiv ly d Lermine if the behaviour of a sysL m IS 

acceptable or not. 
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For automated testing some form of formal specification of the required b haviour i 

essential. In a traditional automated testing process, this specification is in the form of 

the testing code, which will implement comparisons or tests to determine if the actual 

behaviour i ac ptable. In this work we propose that the specification b expres ed in 

Fl. mMhcmatirFl.l notation Fl.nct thFl.t spcrifirFl.t.ion ran be uscct to Fl.Ut.om at i Fl.lly gcnc•rat<' 

testing code. 

3.2 Program Specifications 

A program pecification in our work, describe the required behaviour of a program 

either in I erms of the internal daLa. tructure and the effect. of each access program 

on it, or iu Lerms of t he externally observabl behaviour of th modul . IL consists of 

t hese components: constants, variables, auxiliary function and pr dicate definitions, 
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the program invocation, which gives the name and type of the program and lists all 

its actual argument program variables, and an expression that gives the semantics of 

t he program. The following explains these in more detail. 

3.2.1 Constants 

A constant is a special kind of variable whose value cannot be altered during pro

gram execution. Many programming languages make an explicit syntactic distinction 

between constant and variable symbols. For example, in Java the following are con

stants: 10 and "Any Text". 

3.2.2 Variables 

In the specification, variables are strings of characters used to represent either t he 

value of program variables in the initial stat e or final state of an execution, the value of 

rxprrssions pa..'>s~d as argumrnts in auxiliary defin itions, orR.'> (]Uanti firation indirrs. 

Variables which represent quantification indices are considered to represent a value 

only where they are bound. 

All variables mu t have a type and should be defined in the documentation. 

3.2.3 Aux iliary Function And Predicate D efinitions 

The definition of an auxi liary function consists of a name, a type, a li t of argument 

variables and an expression t hat defines the semantics of th auxiliary function . Also, 

the definition of the auxiliary predicate is the arne but t he expression is a. predicate 
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expression which is described in Section 3.2.4. 

3.2.4 Predicate Expressions 

A predicate expression is an expression that evaluates to true or false and consists of 

either quantified expression as described below, or a string of the form G !\ H , G V H , 

H ==? G or -.G, where G and H represents predicate expressions. 

3.2.5 Quantified Expressions 

In our te t oracle generator, quantification must be restricted to a finite et, which 

can be implemented as a java collection so that it can be auLomatically g nerated . 

T hit:i is done lJy permitting only the following forms of quantified exprcst:iioas, whcrl' 

i is a variable, known as the index variable of the quantification, G( i) is a collection 

and H(i) is any predicate expression of a permitted form : 

(Vi: G(i).H(i)) 

(:3i: G(i).H(i)) 

3.2.6 Tabular Expressions 

The nature of computer system behaviour often is that the system must react to 

changes in its environment and behave differently under different circumstances. The 

resul t is t hat the mathematics describing this behaviour consists of a large number 

of conditions and cases that must be described. It has been recognized for some time 
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that tables can be used to help in the effective presentation of such math rnatics 

[35, 1, 34, 20]. In our work we show such tabular representation of relations and 

function as an ignificant factor in making the documentation more r adable, and o 

we have specialized our tools to support them. 

A complete discussion of tabular expressions is beyond the scope of this thesis, 

so interested readers are referred to the cited publications. In their most basic form , 

tabular expre sions represent conditional expressions. For example, th function 

definition 3.1, could be represented by the tabular expression 3.2. 

x+y if X > 1 1\ y < 0 

x-y if X ::; 1 1\ y < 0 

df X 
f( x, y) 

if X> 1 1\ y = 0 
(3.1) 

xy if X ::; 1 1\ y = 0 

y if X> 1 1\ y > 0 

xjy if X ::; 1 1\ y > 0 

J(x, y) g£ (3.2) 

X> 1 X ::; 1 

y<O x+y x-y 

y = O X xy 

y>O y xjy 

Although 3.1 and 3.2 are clearly a nonsensical example, they are repre entative of 

the kind of condintional expression that occurs often in documentation of software 
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based systems. We have found that the tabular form of the expressions is not only 

easier to read , but, perhaps more importantly, it is also easier to write correctly. Of 

particular importance is that they make it very clear what the cases are, and that 

all cases are considered. 

Modern general purpose documentation tools, of course, have support for tables 

as part of the documents, but they are often not very good at dealing with tables as 

part of mathemat ical expressions. These tools al o encourage authors to focus effort 

on the wrong things: authors will work very hard to try to get the appearance of the 

table right, sometimes even to the detriment of readabili ty(e.g., shortening variable 

names so that expressions fit in the columns). 

3.2. 7 Sample Program Specification 

F igure 3.1, specifies a program 'ggcd' which compares an integer value ' i ' with anoth r 

integer value ' j ', ret urns the greatest common divisor of t hem if ' i > 0 1\ j > 0', 

otherwise returns 0. Additionally, it indicates if the two integers are positive by using 

the returned value, which is represented by a boolean variable 'result . 

3.3 Tool Support 

The tool support helped us to develop techniques and tools to facilitate the production 

of software design documentation that is 1) readable and understood by the users, 2) 

complete and accurate enough to allow analysis, both manually and mechanically and 
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Program Specification 
Boolean 
ggcd(Integer i , Integer j , Integer gcdvalue) 

i > O/\ j>O 
gcdvalue = max({x E [O,min(i,j )] lcDiv(i,j,x)}) 
result = TRUE 

Auxiliary Predicate D efinitions 
Boolean cDiv(Integer a, Integer b, Integer x) 

df 
= (a%x = 0) !\ (b%x = 0) 

i<ov·<o - J_ 
0 

FALSE 

Figure 3.1 : Ggcd Program Specification 
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3) suitable for use as a specification from which to produce an acceptable program. 

We can't get these things with the general word processor . 

3.3.1 OMDoc Document Model 

As describ d in [23] the OMDoc (Open Mathematical Documents) format is a con-

tent markup scheme for (collections of) mathematical documents including articles, 

textbooks, interactive books, and courses. OMDoc also serves as the content Jan-

guage for the communication of mathematical software. OMDoc is an extension of 

the Open Math and (content) MathML standards and concentrates on representing 

th meaning of mathematical formulae instead of their appearance. OpenMath and 

MathML are formats for individual mathematical expressions and 0 !Doc is a for-

mat for documents that include mathematics. The specifications in our work on ist 

of program specifications, which, in OMDoc terms arc symbol definitions contained 

within theories. Also, each symbol has a type and possibly other information. Con-
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sequently, this leads us to propose our specification model which consists of these 

OMDoc elements: 

Theory : a I heory is a self-contained part of a specification. It. could . for example, 

represent a requirements sp cification, a mod ule interface pecification, a mod

ule internal de ign document or a single program function . A theory contains 

zero or more sections of each of the following kind. 

Symbol : a syrubol is a basic component of a specification: a variable, function, 

relation or con tant. All symbols that are used in a specification must be 

defined omewhere, eit her by being declared to be a bound variable, defined 

in t h(' specification itself, dcfinr.d (glohally) in an importcci thr.ory, or from a 

standard set (e.g., standard OpenMath content dictionary) . A symbol has the 

following attributes: 

Name : for referring to the symbol (required) . 

TTS Role : indicRtcs how this symbol is used as part. of a SJWcific<-l.tion (op

tional). 

Type : all symbols should have a type supplied. 

Definition : a definition contains an expression that gives the semantics of a symbol. 

Presentation : a presentation contains the format for a mathematical symbol. A 

presentation element has for attribute which identifies the symbol represented. 
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Each presenta tion contains one or more use elements. For more details e 

section 4.2.5. 

Use : indicates how the symbol represented is in a specific language. A use element 

has the following attributes: 

Format : specifies the name of the language this use element applies to. It 

could be a programming language, a text processing language such as !aLex 

or could identify some other tool. 

Fixity : determines the placement of the symbol. Thi at tribute can be on of 

the keywords prefix, infix, and postfix. For prefix it is placed in front 

of the arguments. For infix it is placed between the arguments. Finally, 

for postfix it is placed behind the arguments. 

Separator : t his specifies the separator in t he argument list . 

lbrack/rbrack : these two attributes handle the brackets to be u ed in pr -

sentation . 

Code : is unparsed formal text and it is not needed in our documents but in some 

documents it is needed. 

Text : is unparsed informal text and it is important for readability of the document. 

Based on [4], any type of tabular expressions can be defined by providing: 

A restriction : each type of tabular expression must satisfy a stated restriction. 

A restriction is a predicate that states the condition that a tabular expression 
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should meet, which might be on such properties as the number of grids, the 

index sets of grids, the type of elements in each grid and some properties of Lhe 

grids. The restriction must be ob erved when the tables are constructed . 

An evaluation term : a tabular expression represents a relation which may be a 

function. The evaluation term of a tabular expression has to be evaluated Lo 

determine the value of the tabular expre sion for a given assignment. The eval

uation term is constructed using conventional and tabular expressions appear 

in the tabular expression as well as auxiliary functions. 

A set of auxiliary function definitions : these functions are applied in defining 

the restriction and the evaluation term and will be used in evaluating or checking 

the tab! . 

In OMDoc it is straightforward to add support for tabular expre sions, simply by 

defining appropriate (OpenMath) ymbols to denote them: we use a ymbol for "ta

ble", which, following the model presented in [4], takes four argument expressions 

representing 

1. The evaluation term, which expresses how the value of a tabular expression is 

defined in terms of the expressions in its grids. For (3.2) thi expre sion would 

express that the value is that of the element grid , T(Oj, which is indexed by 

indic of the true elements of each of the 'header" grid , T(lj a nd T(2j, as 

follow : T(Oj f elect(T(l j) elect(T(2/)J, where select is a function on a predicate 

grid LhaL giv the index of the cell that is true. 
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2. The tatic restriction, which defines a condition that must be true of the grids, 

independent of the expressions in the grids, but possibly dependent on their 

types. This is used, for example, to assert the conditions on the number and 

size of the grid ·( i. e., the shape of the table). For (3 .2) this would express LhaL 

the index set of the central grid should be power set of the index sets of Lhe 

header grids, and that the header grids must contain predicate expressions. 

3. The dynamic restriction, which rlcfincs a conctition that must br tnt<' of thr grid 

expressions. This is used to assert constraints on the table to ensure that it has 

a well defined meaning. For (3.2) this would assert than the header grids, Tfl / 

and T/2/, must be "proper" - only one cell expression should b t rue for any 

assignment. 

4. A list of grid , which are indexed sets, represented by n-ary applications with 

ymbol "grid" and taking pairs of cell index and cell contents as its arguments. 

3.3.2 The Eclipse Framework 

Eclipse is a software platform comprising extensible application frameworks, tools and 

a runtime library for software development and management. It is written primarily in 

Java to provide software developers and administrators an integrated development en

vironment (IDE). "Eclipse employs plug-ins in order to provide all of its functionality 

on top of (and including) the runtime system, in contrast to some other applications 

where functionali ty is typically hard coded" [13]. Using this framework to d velop our 

tool provides significant advantages over developing a stand-alone tool inclurling its 
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widespread use in the user community, its facilities for tight integration of documents 

with other software artifacts, and provision of support for software development tasks . 

3.3.3 Specification Editor 

As part of our tools, we are developing a specification editor to support production 

of software documents, which is illustrated in Figure 3.2. This Editor provides a 

"multi-page editor" (which provides different views of the same source file) for ".tts" 

files, which arc O:v1Doc files. Oue page of the editor is a structured view of t he doc

ument, another one shows the raw XML representation, and another gives a detailed 

view of the document giving the user the ability to view and edit the mathematical 

expressions. The support libraries in Eclipse provide techniques to ensure that t he 

views of the document are consistent. This editor is built using several open source 

libraries including the RIACA OpenMath Library. 

This editor is een as a primary means for the human users to interact with 

specification documents. 
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Specification Element Details 

.. mplqlrogr.JIJI.omdo< 

• !impleprogram_th<OI)' : thoory 

' ggcd : programfunction 
gcd :auxiliary 

1 Import Dedar~tions 

relat1cnl.omdoc : relation! 
lcgK!.omdCK : logic! 
function.omdCK : funct1on 
arithl.omdoc :arithl 

I D.uik Sptc X.Ml 
'--. ..... 

--~-- ·-·--·----
Oetaik for .. mplq>rogram. th<o!y: theory 

Name: !impleprosram_theory 

Figure 3.2: Screenshot of Edi tor 
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Chapter 4 

Oracle Generation 

This chapter describes the internal design of Lhe oracle that will be the output of the 

Test Oracle G nerator (TOG ). Th de ign i explained by u ing some examples from 

an oracle, which was produced for the sample 'ggcd' program specification given in 

3.2.7. This chapter also describes the requirements and design of the TOG. The work 

reported in this thesis is similar to the work in [41] but our approach for generating 

test oracles has th following characteristics that make it unique: 

• We are using OMDoc as a standardized torage and communication format for 

our spC'rifirations, ancl so we ran take aclvantFtgC' of other tools. 

• The semantic of tabular expressions have been generalized to allow more precis 

definit ion of a broader range of tabular expression types. 

• The test oracl generator is implemented using J ava. Thi make it asy to 

integrate with the Eclipse platform. 

2 
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• The oracle g nerator has a 'graphical user interface' which is shown in Figure 

3.2. Thi · interface gives the user the ability to select any program specification 

and g nerate the oracle from it. This has the advantage of enabling the u er to 

interact ea ily with the specifications. 

• Th generated test code integrates smoothly with test frameworks (e.g., J Unit) 

and hence it can be directly used to te t the behaviour of the program. 

4 .1 Oracle Design 

4 .1.1 Programming Language 

The oracle is implemented using Java. This decision should not be seen as a significant 

feature of the design- if the intended application were different, the ora le design 

could be translated with some change . 

4.1.2 Internal Design Overview 

The oracle can be viewed as a 'compiled ' version of the specification in that it is 

generated by tran lating the 'source' specification into an executable form (Java code). 

The oracle can be executed without reference to the specification from which it wa 

derived. So, it can be integrated smoothly with test framework (e.g., JUnit). This 

design ha an advantage is that it reduces the time required for oracle execution by 

giving the user the ability to use optimization techniques. 
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An alternative approach to design of the oracle is to build it as an 'interpr ter' 

which would represent the specification by data and evaluate it directly. This kind of 

design has an advantage that the oracle generation process is relatively simple and , 

since th re is no generated code involved in the oracle, the oracle programs will be the 

same for any specification, only the data. they usc is dcpcndcut ou the pccifkaLion . A 

disadvantage for thi design is that the oracle will need to interpret th semantics of 

the documentation during evaluation and so would probably be comparatively slow 

to execute. 

4.1.2.1 Expression Implementation 

Any expr ssion consists of one or more sub-expressions, th complexity of impl -

menting this xpre ·sion is managed by decompo ing each expression into it ' sub

expres ions and implementing each sub-expr sion individually. The oracle code thu , 

consists of a set of internal functions and objects, each of which implements a ub

expression and may call other internal functions or object methods. 

All programming languages in general, and Java in particular, provide support for 

basic logical and relational operators (i.e. A, V, •, >,<,=etc.), the e operators can be 

used to imp! ment orne of the expressions. Also, it is po siblc to use these operators 

for implementing an entire expres ion as a single J ava statement by tran ·lating it into 

a. purely scalar, quantifier free expre sion (by expanding the quantification to a serie · 

of conjunctions or disjunctions) but the resulting Java statement would consist of 

many lin s. While this would undoubtedly result in an oracle that execute r latively 
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quickly, since there would be none of the overhead associated with loops or function 

calls. It would , however, require significant effort on the part of the TOG to do the 

translation and would result in virtually incomprehensible oracle code. So, that is 

why the oracle is implemented using the Java logical and relational operators only 

where they directly represent the operators in the specification. 

Another way to implement expressions is to use a class of Java objects. A specific 

expression is implemented by instantiating the suitable objects, which include refer

ences to their sub-expression objects. This helps to simplify the oracle generation 

process for expressions that have complex semant ics such as tabular expressions. So, 

the T OG need only translate the expression into the suitable object constructor. In 

this work, we used the above two ways to implement the expressions. 

The code to implement each type of expression is explained in the following sec

tions below. 

4.1.3 Scalar Expressions 

Scalar( i. e. non-tabular) expressions can be translated into equivalent J ava statements 

as described below. 

4.1.3.1 Logical Operators 

The logical operators can be directly translated to their Java eqivalent, as given in 

Table 4.2. (G and H are arbitrary predicate expressions.) 
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Table 4.1: Logical Operator Conversions 
Logical Operator Java Equivalent 

-,Q !G 
GvH GIIH 
G I\ H G&&H 

So, given the expression (a > b 1\ a > 5) in the specifications, the corresponding 

Java code for tha t expression is: 

(a> b)&&(a > 5) 

4 .1.3 .2 Quantification 

Quantifier expres ions are implemented by using loops that call the suita ble proce-

dures to enumerate t he elements of the set characterized as an integer interval and 

the boundarie for t he interval given in the specifications. In our test oracle genera.-

tor, quantificat ion (V - for all , and :3 - t here exists) must l>c rcstrictcu to a fi nite 

set , which can be implemented a a java collect ion so t hat it can be automatically 

generated from the specificat ions. In the exampl below the boundari s are (0,10). 

One distinction between t he work reported in this thesis and that in [41] is that 

t he previous work used Inductively Defined Predicate to specify the rang for the 

quant ification but we u ed a java collection . 

The quantification '(Vi: {0 .. 10} .p_B [i] = p_x) ', can be implemented as fo llows. 

boolean r es u l t = true ; 

Int eger_ Int e rv a l bRange =new I n tege r_ I n te r va l ( 0 , 10 ); 
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I n t e g e r i =new I n t e g e r ( 0 ) · 

for ( It erator<Int ege r> it=bRange . it e r ator (); it .has ext()&&re ul t ;) 

{ 

i= i t . next(); 

r es u It = ( ( p _B [ i ]== p _x )&& result ) ; 

} 

4.1.4 Tabular Expressions 

Tabular expressions are implemented by instantiating an object of one of several 

lasses of (Java) table object which implement the various types of tabular expres

sions(normal, inverted and vector). These table classes contain all knowledge of th 

semantic of tabular expressions, so there is no need for this knowledg to be in the 

TOG. The expre sian in each cell of the table is implemented as J ava clas that ex

tends a Cel!Base class and therefore contains a procedure, eval, which evaluates the 

expression in the cell. 

Table objects have the following method, which is used to evaluate t he table: 

evaluateTable finds th index for t he main cell that should be evaluat d and returns 

t he content of that cell. 

The expre sian i > 0 1\ j > 0", which is in the first cell of t he column header of 

the ggcd tabular expression in Figure 3.1, is implemented as follow . 

p ack age o r acl s ; 

import ca . Fil l moresoftware . plugin . Or ac l eUt iliti es .*; 
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public class ggc d LG rid _2_ C e l LO extends Ce ll B ase { 

} 

private VarMap va rs; 

public ggc dLGrid _2 _C e lLO ( VarMap v a r s ){ 

this. va r s=v a rs; 

} 

public Obj ec t eva] () { 

} 

In tege r 

Int ege r 

i = (In tege r) v a rs . ge t V a lu e(" i "); 

j = (Int ege r ) v a r s . ge t Valu e (" j " ) ; 

return ( ( i > O)&&(j > 0)) ; 
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The other cells in each table are implemented in a similar fashion. The oracle 

design for the ggcd tabular expression in Figure 3.1 is illustrated in Figure 4. 1 and 

the design for the gcd tabular expression looks similar. 
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An alternative approach for implementing the tabular expressions that was con-

sidered is to convert the tabular expression into the equivalent scalar expression and 

implement the scalar expression as explained in the previous section. This approach 

has an disadvantage that the TOG would need to have the ability to do the transla-

tion. 

i?: CeiiBase 
r.~ ..... j~,.."t ...... J'U'''iJtv.· 

I G ggaii_GIId_l_Ceii_O G ggcdl_ G1ld _2 _ Cell_l 

t e..:) I f:\111:) f) e' • e.»~ 0 ~!(.• 

I J IP".~"'-~!· .:" · .. • . (!IJ'I'! <d.OJ .. .'O tf~_.,._,_JJJc /
1 

l'i#.:.nJ.:_c<.~: ' t w>"."'•).Cei.'U 

o ~:.n., 

Figure 4.1: Oracle Design of ggcd Tabular Expression 

4.1.5 Auxiliary Functions 

An auxiliary function is implemented as a procedure, with the expres ion, imple-

mented as described above, forming the body of the procedure. For example, consider 

the auxiliary function , which is used in the sample program specification in section 

3.2.7 defined as follows: 
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Boolean Div(Integer a, Integer b, Integer x) 

df 
= (a%x = 0) A (b%x = 0) 

This is implemented by the following procedure: 

package orac l e ; 

import ca .Fillmore o ft ware.plugin. Or acleUtiliLi es.*; 

publi c class AuxFunctions{ 

static public Boolean cDiv ( In tege r a , In teger b, In teger 

x){ 

return (a%x 0) && ( b % X 0). 

} 

} 

Suitable ails to this procedure are u d in the code that implements expressions 

using the auxiliary function . 
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4.1.6 Compilation and Execution 

The oracle in our approach consists of two kinds of code: that generated by the Test 

Oracle Generator (TOG), and the other kinds of classes, inc] uding Integer_lnterval, 

lnvertedTable, NormalTable and VectorTable, which are not generated by the TOG 

but are used by the TOG generated code. For more details about the above classes 

see section 4. 2 

The code below shows the implementation of the root class for the oracle (ggcdO

racle.java) for the sample program specification that described in section 3.2.7. To 

see the whole generated classes from the example see appendix B 

package orac l es; 

import ca. Fi ll moresoftware. plugin. O rac l eUtilities ·*· 

import static org. j unit. Assert.*; 

public class ggcdOr ac le { 

private VarMap vars; 

private Outggcdl tO; 

public ggcd Or ac le () { 

v ars=new VarMap (); 
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tO=new Outggcdl ( vars ) · 

} 

private Bool ean ggcdTOrac le( Int ege r i Int eger J, 

In teger gc dvalu e , B oolean resu lt ){ 

Boolean r e ul t Or acle; 

va rs .setV a lu e(" i " ,i); 

var .setVa lu e(" j ",j) ; 

vars.s tValue("gcdva lu e" ,gcdv a lu e); 

vars. set Value ("resu lt ", r es ult ); 

re ultOracle= tO. ggcdTl () · 

re turn r s ultOracl e; 

} 
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publi c void assertggcdTOracle ( Int ege r i , Int ege r J , 

Int ege r gcdvalue,Boolean r es ult ) { 

ass rtTrue(ggcdTOracl e( i , J ,gcdvalue , r es ul t)); 

} 

} 

Using the oracle involves implementing test code that calls th program under 

test a nd then a ils the oracle procedures. In this work the JUnit framework is used 

since it ha a number of advantages. One important advantage of JUnit i that it 

is widely used, which will make it easier for others to understand th Lest case and 

write new ones. In addition, it provides a graphical user interface (GUI) which makes 

it easier to write and test the program quickly and easily. JUnit shows t st progress 

in a !Jar that is green if testing is going fine ancl it t urns reel when a test fails . Thi · is 

makes it easy for th software developer to quickly identify failing te t cases as they 

are found . The cod below shows how to run the oracle generated from the sampl 

program pccifirati on in 3.2.7 with JUnit: 

package or a c I e s ; 

impo rt org . j unit . B e for e; 

impo rt org. j unit . T est; 
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public class Oracl eT es t extends juni t. fr a mework . T es tC ase{ 

} 

ggcdOrac le com; 

@Befor e 

public void setUp() throws Exception { 

com=new ggcdOracle (); 

} 

@T est 

public void tes tCon () { 

Int ege r g c=GCD. g c d ( 2 5 , 2 0 ) ; 

com . ass e r t g g c d T 0 r a c I e ( 2 5 , 2 0 , g c , true ) ; 

} 
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The previous code contains one test case to t est that the program correctly finds the 

greatest common divisor of (25 ,20) which is 5. The greatest common divisor is com

puted by the static method GCD .gcd(int,int) meant to implement the specification. 

The user can add any number of test cases. The result for the previous code is shown 

in Figure 4.2. 
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(11i_Poc~ge Explore [T: Hierorchy ·~ Jlfnit ~' = E'l 
Finishe:d after 0.061 seconds 

Runs: 1/1 E1 Errors: 0 D Fatlures; 0 

~ l!lU oracl6.0racleTest (Runner: JUnit 4) 

1!). ,1 testCon 

Figure 4.2: TestResult 

4.2 Test Oracle Generator Design 

4.2.1 Requirements 

The requirements for the TOG are that using a specification written in the form 

discussed in chapter 3, it will output the executable test oracle code as described in 

section 4.1. 

4.2.1.1 Assumptions 

The oracle code g nerated by the TOG uses two kinds of obje t classes: Tabular 

expressions (Normal Table, Vector Table and Inverted Table) and Integer Interval im-

plemented in NormalTable.java, VectorTable.java, InvertedTable.java and Integerln-

terval.j ava. These table classes contain all knowledge of the semantics of tabular 

expressions and provide several methods (addHeaderCell , add MainCell , getMainCell, 

evaluateTable) which give the user the ability to create and evaluate the tabular ex-

pressions. The Integer Interval class is a java collection used to implement the finite 

set containing th integers in a specified range for the quantifications. The e clas e 
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are assumed Lo be correct. 

4.2.1.2 User Interface 

The Fillmore oftware specification editor leverages the eclipse plug-in architecture 

to create a software specification editor . A part of the Fillmore oftware project is to 

build a plug-in for eclipse to view and edit formal software specification documents. 

Eclipse is an op n development platform that supports extension through a plug-in 

mechanism. The platform provides an advanced integrated development environment 

for software d velopment, and a wid range of available plug-in to upport such tasks 

as testing, modeling and documentation. This plug-in is seen as a primary mean for 

the u er to int ra t with software specification documents. This plug- in is used as a 

u er interfac to the TOG the plug-in is pictured in Figure 3.2. This interface gives 

the u er abi li ty to elect any program pecfication and generate the oracle from it. 

So, this is has th advantage that the user can interact easily with the pecification . 

In [41], they used a 'command line interface' for the oracle generator. 

4.2.1.3 Input Format 

T he input to the TOG i in the form of a specification file which follows our spe ifi

cation model and contains information as described in Chapter 3. The file consists of 

a rollcrtion of thcorirs and carh of whi h consists of symbols anct r, ch symbol ctrfinrs 

either a constant , variable, auxiliary function or program function. 
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4.2.1.4 Anticipated Changes 

The items that are likely to change during the development of the TOG in the fu ture: 

• The format of the specification file . It is possible to adrl new ekments to om 

specification file over time and change the existing elements. 

• The programming language that used to implement the oracle. Currently we 

are using Java to implement the oracle. It is possible in the future to use another 

language such as C++. 

• The de ign of the oracle. For example: each cell in the tabular expressions is 

implemented as Java class. It is possible in the future to implement all cells in 

one class. 

• The user interface that is used to interact with the specifications. We may add 

n w features to the user interface such as giving the user the abili ty to view the 

tree repre ·entation of the mathematical expressions. 

4.2.2 Package D esign 

The TOG is implemented as a set of packages, each of which contains a set of classes 

that encapsulate design decisions. Also, the packages can be divided into sub-packages 

which contain more specific design decisions. T his approach has advantages that the 

design i easier to understand because of this separation of concerns, and it is easi r 

to change the TOG ince the decisions affected by t he change are likely to be i alated. 
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To illustrate the system design, the class diagram is used. Figure 4.3 illu trates 

the package dependencies for the TOG. 

I I I 
fB ca.flllmoresoftware.specmodel #-~·~·!B ca.fillmoresoftware.plugin.actions ~·~!!....C!!,"> W ca.fil lmoresoftware.plugin.editors 

1 cinport, Cab 

I 
!B ca.fillmoresoftware.plugln.OracleUtilities 

ca.flllmoresoftware.plugln.OracleGen 

!B ca.flllmoresoftware.kernel fij ca.flllmoresoftware.plugln.preferences 

Figure 4.3: Packages Diagram 

4.2.3 New Packages Added To Fillmore 

The packages below are new packages written as part of this thesis work . 

4.2.3.1 Oracle Generator Actions (ca.Fillmoresoftware.plugin.actions ) 

This package represents the main controlling package for the TOG. It contains 

the actions used to access the TOG (e.g. generate oracle and generat auxil-

iary function). It uses ca.Fillmoresoftware. plugin.editors to read the specification 

from the fi le, ca.Fillmoresoftware. plugin.specmodel to acce s t he specification and 

ca.Fillmoresoftware.plugin.OracleGen to generate the oracles and auxiliary functions. 

Figure 4.4 is the class diagram for the ca.Fillmoresoftware.plugin.actions showing 

the relationships between the classes. This package contains three classes (Gener-
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ateAuxFunAction.java, GenerateOracleAction.java and Orad Action.java). The in-

terface to these classes dictated by the eclipse plug-in interface. 

0 OracleAction 

··-
oc OracleAction() 

cf run() 

selectionChanged() 

0 setActiveEd~or() 

-~ 
I l 

G GenerateOracleAction (3 GenerateAuxFunAction 

0 run() run() 

Figure 4.4: Actions Package Class Diagram 

4. 2. 3. 2 Oracle Generation (ca. Fillmoresoftware. pl ugin. Or acleGen) 

This pi'\.cki'\.ge is responsible for converting the spccifici'\.tion into the or-

acle implementation. It u es ca.Fillmoresoftware.plugin.specmodel and 

ca. Fillmoresoftware.plugin .kernel to access the tabular expressions. Figure 4.5 

is the lass diagram for the ca.Fillmoresoftware.plugin.OracleGen showing the 

relationships between the classes. This package contains eight classes (CodeFro-

mOMobj ct.java, CodeFromOMA.java, CodeFromOMI.java, CodeFromOMS.java, 

CodeFromOMV.java, CodeFromTheory.java, CodeFromTabularExp.java and Or-

acleModel.j ava) . For more details about the responsibilities for the classes se 

appendix A. 
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Figure 4.5: OracleGen Package Class Diagram 

4.2.3.3 Oracle Utilities ( ca.Fillmoresoftware.plugin.OracleUtilities) 
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This package provides classes that are necessary to run the test oracle. These class s 

are previously manually implemented and are used by the TOG generated code. These 

clas es are CellBase.java, Celllndex.java, Integer_Interval.java InvertedTable.java, 

ormalTable.java, TableGrid.java, VarMap.java and VectorTable.java. Figure 4.6 

is the class diagram for the ca.Fillmoresoftware.plugin.OracleUtilities and shows the 

relationships between the classes. 

4 .2.4 0 ld Packages In Fillmore 

These packages below came as part of Fillmore and are modifi d as part of this work . 
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Figure 4.6: OracleUtilities Package Class Diagram 

4.2.4.1 Specification Model (ca.Fillmoresoftware.plugin.specmodel) 
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This package used to construct our specification model that described in section 3.3. 1 

and provides classes that help us to access all parts of the specification . These classes 

arc ChangcNotificr.java, Dcfinit ion.java, DOMXMLWritcr.java, ElcrncntTag.java, 

ISpecModelListener.java, MObject.java, OMDOMReader.java, Presentation.java, 

SpecModel.j ava, SpecModelElement.j ava, SpecModelErrorHandler.java, SpecModel-

Parser.java, Symbol.java, Theory.java, TTSRole.java, Type.java and Use.java. This 
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package is modified to provide support for the "Presentation" and ''Use" el ments. 

4.2.4.2 Kernel ( ca.Fillmoresoftware.kernel) 

This package used to construct our specifications for the tabular expressions and 

provides classes that help us to access all parts of the tabular expre sions. These 

classes are EvalTerm.java, EvalTermFactory.java, GenRestFactor.java, Grid.java, In

dex.java, IndexFactory.java, InvertedEvalTerm.java, NormalEvalTerm.java, ormal

GenRest.java, OMUtil.java, Rectlndex.java, RectShape.java, RectShapeiterator.j ava, 

RectStructRest.java Shape.java, ShapeFactory.java, StructRest.java, StructRestFac

Lory.java, Symbol.java, Table.java, TableFactory.java and VectorEvalTerm .java. This 

package is modified to provide support for various kinds of tabular expre ions ( or

mal , Vector and Inverted). 

4 .2 .4.3 Editors (ca.Fillmoresoftware.plugin.editors) 

This package used to implement "multi-page editor" to give the user ability to 

access and edit the pecifications. This package consists of several classes (Ele

menLDialog.java, SpecEditor.java, SpecEditorContributor.java, SpecElementLabel

Provider.java, SpecErrorHandler.java, SpecOutlinePage.java and SpecTreeContent

Provider.java). This package is modified to give the user the ability to view the name 

of the imported fi les (Content Dictionarirs), which rontain the j:wa rcprcsr ntation of 

the symbols. 
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4. 2 .4. 4 Preferences ( ca.Fillmoresoftware. pl ugin. preferences) 

Edip e a!. o provides a Preferences APis used to add plug-in sperifir prcfrrr nrrs. T his 

is a two step process: 

• First the "org.eclipse.core.runtime. preferences" extension point is used to add 

a preference to initialize the plug-in. Preferencelnitializer class is contributed 

to ini t ialize all the preferences when the plug-in is first initialized . 

• Second the "org.eclipse.ui.preferencePages" extension point is used to add pref

erence pages. It is important to note that the preference pag s contributed 

must arrange themselves in a neat hierarchy to not interfere with other plug

ins. To accomplish this we add a base page name "Fillmore P references" and 

id "ca. Fillmoresoftware. plugin. preferences. FillmorePreferencePage" 

All the preference pages must include the id mentioned in the second step as their 

category. Every preference page contributed through the extension point mechani ·m 

can include a category attribute. The category attribute basically includ s the id 

path of the location of this preference page. For example the TOG preference page, 

which is contributed as a child to the Fillmore preference page, includes the id of the 

Fillmore preference page as it category attribute. The XML for this is shown below: 

<extension 

point="org.eclipse.ui . preferencePages "> 

<page 

class="ca.Fillmoresoftware .plugin.preferences.FillmorePreferencePage" 
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id="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage" 

name="Fillmore Preferences"/> 
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<page 

category="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage" 

class="ca.Fillmoresoftware .plugin.preferences.TestDraclePreferences'' 

id="ca.Fillmoresoftware.plugin.preferences.testOracle" 

name="Test Oracle Generator"/> 

</extension> 

<extension 

point="org.eclipse.core.runtime.preferences"> 

<initializer 

class="ca.Fillmoresoftware.plugin.preferences.Preferencelnitializer"/> 

</extension> 

Also, this package include these clas es FillmorePreferencePage.java Preference

Constants.java, Preferencelnitializer.java and TestOraclePreference .java which im

plement the preference pages. This package is modified to add preference page· for 

the Test Oracle Generator. These pages give the user the ability to sp cify: the path 

for the TOG output oracle code, the output package name and the imported libraries. 

4.2.5 Symbols Representation 

Functions and operators in OMDoc are ncoded as "symbols", which are defined 

either in Content Dictionaries, for the standard functions and operat rs , or in the 

documrnt itself, for fun ctions that arc particular to the given prrifiration. T lw 
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OY.!Doc "presentation·· element is used to define a representation of each symbol in 

Java so that the tool can translate expressions using these symbols into Java. 

To be more general and cover most of symbols, we have used presentation and 

use elements for specifying the notation of symbols. OMDoc supplies a et of abbr -

viations that arc sufficient for most presentation applications via the 'usc" clements 

that can occur as a children of "presentation" elements. Given the relevant infor

mation in the use elements, separate translation process generates the needed Java 

Code for the expression. The presentation element has the following attributes: 

for specifies the name of symbol that is represented . 

T he use element has these set of attributes: 

format specifies the name of the language that is used to represent the ymbol. 

lbrack/ rbrack handle the brackets to be used in presentation for a symbol. 

separator specifies the separator in the argument list of symbol. 

fixity determines the placement of the symbol. This attribute can b one of the 

keywords prefix, infix, and postfix. For prefix it is placed in front of the 

arguments . For infix it is placed between the arguments. Finally, postfix it is 

placed behind the arguments. 

4.2.5.1 Catagories of Symbols 

Infix Sy mbols these symbols are placed between the arguments. For exampl : plus, 

minus, times, d ivide, eq, It, gt, leq, geq, a.nd, or, dot. A few exa.mples of defining 
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symbols are necessary to illustrate the concept of defining the presentation for 

new symbols. So, these examples below illustrate how to represent the previous 

symbols. 

Plus Symbol: 

<presentation for="plus"> 

<use format="java" fixity="infix" lbrack="(" rbrack=")"> + </use> 

</presentation> 

If the children for this symbol were a and b. The Java Output CodE wil l be: 

(a+ b) 

Minus Symbol: 

<presentation for="minus"> 

<use format="java" fixity="infix" lbrack="(" rbrack=")"> - </use> 

</presentation> 

If the children for this symbol were a and b. The Java Output Code will be: 

(a-b) 

All symbols in this category have the same values of the attribu tes in the "use" 

clement but they arc different in the value between the start aud cnJ tag of the 

"use" element. The table below shows the values of the "use" element for the 

rest of the previous symbols and the generated java code if the children of t he 

symbols are a and b. 
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Table 4.2: Infix Symbols "Use" Values 
Symbol Value Generated Code 
Times * a*b 
Divide / a/b 

Equality == a==b 
Less than &It; a<b 

Greater t han &gt; a>b 
Less than or equal &lt;= a::; b 

Greater than or equal &gt;= a;::: b 
And &amp;&amp; a&&b 

Or II al lb 
Dot a.b 

Unary Symbols these symbols have one child and may be prefix or postfix. For 

exF~.mple: not Ftnd predefined functions thFtt have one child like: Ftb ·, sqrt Ftnd 

floor. 

These examples below illustrate how to represent the previous symbols. 

Not Symbol: 

<presentation for="not"> 

<use format="java " fixity="prefix" lbrack="(" rbrack=")"> </use> 

</presentation> 

If the children for this symbol was a . The J ava Output Code will be: 

(!a) 

All symbols in this category have the same values of the attributes in the "use" 

ekmmt but they Ftre different in t he vFtlur between the stFtrt Ftnd rnd tFtg of 
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the "use" element. Also, t hey are different in the value of fixity attribute. The 

symbol in t he table below have no fixi ty. The table below shows the values of 

the 'use element for the rest of the previous symbols and th generated java 

code if the children of the symbols is a . 

Tabl 4 3 U e .. nary S b 1 "U " V 1 es ym o s se au 
Symbol Value Generated Code 
Absolute abs abs(a) 

Square Root sqrt sqrt(a) 
Floor floor floor( a) 

FUnction Symbols these symbols are functions that have mor than one child. For 

example: any user defined function or predefined function . 

This example below illustra te how to represent the previou symbols. 

Power Function Symbol: 

<presentation for="pow"> 

<use format="java" lbrack="(" rbrack=")" separator ",">pow 

</use> 

</presentation> 

If the children for this symbol were a and b. T he Java Outpu t Code will be: 

(pow(a,b)) 

Irregular Symbols these symbols use combined fixity. So, the fixity attribute is 

not defined. For example: array_get and dot symbol . These example below 

illustrate how to represent the previous ymbol . 
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Array _get Symbol : 

<presentation for = "array_get"> 

<use format= "java" lbrack = "[" rbrack 

</presentation> 
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"]II/> 

If t his symbol has two children and they were A and i. The J ava Output Code 

will be: 

(A[i]) 

If t his symbol has three children and they were A, i and j . The J ava OutpuL 

Code will be: 

(A[i]U]) 

Dot Symbol: 

<presentation for = "bar"> 

"java" lbrack = "(" rbrack = ")" separator <use format 

</use> 

</presentation> 

II' II) • 

If t his ymbol has two children and they were a and b . The J ava Output Cod 

will be: 

(a.bar(b)) 

If this symbol has more than two children and they were a , b , c and d . The 

Java Output Code will be: 
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(a.bar(b,c,d)) 

If there is no presentation or use for the symbol then it is assumed to be a function 

so a normal function call is generated. For example, if the symbol is bar and the 

children are a and b. Then the generated code will be: 

bar(a,b) 

4.2.6 Algorithem Overview 

The alogrithm that we have used for generating test oracles is the same for the one 

which is used in [ 41] and consists of the following steps: 

1. Initialization: open files, init ialize data structures. 

2. Read specification from file . 

3. Create oracle program contexts. 

4. Code Auxiliary Definitions: Create a J ava function for each, code the expression. 

5. Code the oracle. 

6. Write and close fi les. 

7. Free data structures . 

4.2.6.1 Ex pression Coding 

The mathmematical expressions used in the specfications or in auxiliary definitions 

are translated into code in the following manner: The expression syntax tree is tra-
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versed using a depth-first traversal and each sub-expression is implemented in turn 

as described in section 4.1.2.1. The code that gives the value of each sub-expres ion 

is writ ten into a buffer which is used to construct the code for the 'parent' expres

sion. This process continues until the root expression has been implemented and the 

resulting code is used as the body of the procedure in the oracle. 



Chapter 5 

Test Driven Development With 

Oracles 

This chapter describes our new approach for TDD. It also describes examples which 

show how to apply this approach. 

5.1 Test Driven Development with Oracles 

This section int roduces an alternative approach to TDD that is to develop the speci

fication of the required behaviour in a formal notation as a part of the TDD process 

and to generate test oracles from that specification. 

The process looks like this: 

• Write the pecification for some required behaviour. 

• Generate the test oracle from the specification and elect test inputs. 

58 
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• Run the program under test in the test framework (e.g., J Uni t) using the test 

oracle to verify if it passes or fails. 

• If the test fails , write code until this test passes. 

• If the te t passes and the specification is not completed yet, add to or refine t he 

specification and redo the process again . 

• keep doing this process unt il t he pecificat ion is complete. 

The completeness in our work is determined by t he designer. Using these tools to 

do analysis of the test cases (e.g., coverage of t he specificat ion) is beyond this work. 

So, this is could be done in the future. 

The steps of TDD approach are illustrated in the flowchart in Figure 5. 1. 

TDD approach is applicable for methods and classes. This approach focuses on 

deriving test oracles from the module internal design document [37] for methods and 

module interface specification [42] for classes. 

5.1.1 Test Driven Development For Methods 

The illustration of TDD provided in [12, 29], in which a program is developed to con

vert decimal numbers into their roman numeral equivalent, serves as a good, although 

somewhat simplistic, illustration of this method. 

The following example shows the whole process for specification supported TDD. 

According to the TDD approach, the first step is to write a spccificatiou for sou1e 

required behaviour. So, start ing with this specification: 
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Figure 5.1: The Steps of TDD Approach 

String dToR(Integer i ) 

df 

i 2': 1 A i <4 

~ result = l subDToR(i ) 
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String subDToR(Integer i) 

df 

i = 3 "III" 

i = 2 "II" 

i = l ((I" 
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The above specification consists of two parts: the first part is the definition for 

dToR( i) function which is the program function, the second part is the definit ion for 

subDToR(i) function which is an auxiliary function. In program function drfini t ions, 

we use the convention that result represents the value returned by the function. 

The required behaviour that is repre ented by this specification is to upport th 

conversion of numbers ( 1- 3) into their corresponding roman numerals (I, II , III). 

After writing the specifications, generate the test oracle from it and run the test 

oracle to make sure that the program behaviour is consistent with the required be

haviour. Following the TDD approach, the test cases should initially fail since the 

program isn 't yet implemented . Then implement enough of the program to make the 

cases pass. 

The previous specification only specifies a behaviour for numbers in th range 1- 3, 

so if a test case outside that range is used then the test oracle will give an error that 

says "NoSuchElementException". Figure 5.2 shows that error. 

The pattern used in the previous specification (i.e. , explicitly specifying the corre

sponding roman numeral representation for each decimal number) is clearly not prac

tical for a very broad range of inputs. The previous specification can be re-written, 

as follows (where "+" on Strings is used to represent concatenation): 
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= Failure Trace 

Jv java.utii.NoSuchEiementException 

= at java.utii.Vector.firstEiement(Unknown Source) 

r-+D 
l.:£J 

: at ca.fillmoresoftware.plug in.OracleGen.OracleUtilities.Vector T able.evaluate T able(Vector T able.java:99) 

= at oracles.OutdToRl.dToRTI(OutdToRl.java:54) = at oracles.OracleOut.dT oR(OracleOut.java:31) = at oracles.OracleTest.testCon(OracleT est.java:20) 

Figure 5.2: oSuchElementException 

String dToR(Integer i ) 

df 
= 

i~l/\i<4 

I result = I subDToR(i) 

String subDToR(Integer i) 

df 

i > 0 A i < 4 "I" + subDToR(i - 1) 

i = 0 "" 
Then the domam of the previous speclf1catwn can be broaden as follows: 

String dToR(Integer i ) 

df 
= 

i ~ l /\ i <5 i ~ 5 V i < l 

I result = subDToR(i) "NA" 

62 
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String subDToR(Integer i) 

df 
= 

i=4 "IV" 

i > 0 A i <4 "I" + subDToR(i- 1) 

i = 0 tO) 

Trw prrv1ous sp~cifi rat.IOn rl.cfinrs the convrrsion of numhrrs from (1- 4) i nt.o t lwi r 

corresponding roman numerals (I, II, III , IV) and handles the error where subDToR 

is not defined by specifying the behaviour for those inputs. After refining the init ial 

specification, do the same steps as we did in the previous one. Again refine the 

implementation until the behaviour is consistent with the specification. then cont inue 

to revise the SJJccification, as follows. 

String dToR(Integer i ) 

df 

i~1 /\ i < 9 i ~ 9Vi < l 

I result = subDToR(i) "NA" 

String subDToR(Integer i) 

df 

i ~ 5/\i < 9 "V" subDToR(i - 5) 

i = 4 "IV" 

i >0A i <4 "I" + subDToR(i - 1) 

i = 0 "" 
The pec1ficatwn defines behaviOur for the conversion of numbers from (1- 8) into 

their corresponding roman numerals (I, II , III , IV, V, VI, VII , VIII). We do the arne 
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steps as before and after tha t, we continue to revise the specification, as follows. 

String dToR(Integer i ) 

df 
= 

i 2: 1 (\ i < 10 i 2: 10 V i < 1 

I result = subDToR(i) "NA" 

String subDToR(Integer i) 

df 
= 

i = 9 "IX" 

i 2: 5A i < 9 "V" + subDToR(i - 5) 

i = 4 "IV" 

i > 0 A i < 4 "I" + subDToR(i- 1) 

i = 0 "" 
Now, the spec1ficat1on defines the conversiOn of numbers from ( 1- 9) into their 

corresponding roman numerals (I, II, III, IV, V, VI, VII, VIII, IX). So, in every 

step we revise the specification to describe new behaviour and the specificat ion is 

represented in a formal way. Also, if the tests fail after we revise the specificaLiou 

we have to wri te some code to satisfy the specification, and after tha t we continue to 

revise the specifi ation. 

We keep doing this pror.ess until the sper.ification is complete and the code be-

haviour i consistent wit h the required behaviour that is described by t he specification. 

After we have done several steps using TDD approach to develop the specification 

and code together, the complete specification is as follows. 
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String dToR(Integer i) 

df 

i ~ 1 A i ~ 3999 i > 3999 v i < 1 

I r esult = subDToR(i) "NA" 

String su bDToR(Integer i) 

df 

i ~ 1000 

i ~ 900 A i < 1000 

i ~ 500 A i < 900 

i ~ 400 A i < 500 

i ~ 100 A i < 400 

i ~ 90 1\ i < 100 

i ~50 A i < 90 

i ~ 40 A i <50 

i ~ 10 A i < 40 

i = 9 

i ~5A i < 9 

i = 4 

i>0 A i <4 

i = 0 

' M" + subDToR(i - 1000) 

' CM" + subDToR(i- 900) 

"D" + subDToR(i - 500) 

"CD"+ subDToR(i - 400) 

"C" + subDToR(i - 100) 

"XC ' + subDToR(i - 90) 

"L" + subDToR(i - 50) 

"XL' + subDToR(i - 40) 

"X" + subDToR(i - 10) 

"IX" 

"V" + subDToR(i- 5) 

"IV" 

"I' + subDToR(i - 1) 

"" 
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Now, we have a complete spec1ficat10n that descnbes the whole required behavi ur 

for the program and presumably the working implementation developed along with 
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it using TDD. So, using this TDD approach results in a complete specification, im-

plementation and suite of test cases for the program. 

5.1.2 Test Driven Development For Classes 

We now consider applying our approach to modules or classes that have an inter-

nal data structure and methods for accessing or modifying the values of that data 

structure. As an illustrative example we use the bounded stack as developed in [28]. 

As before, the first step in our approach is to specify some required behaviour, in 

this case for creation of an empty stack: 

Data Stucture 

Integers[] 

Integer maxSize 

Integer length 

Program Functions 

Stack stack(Integer x) 

g; (result .isEmpty() 1\ result .maxDepth() = x) 

Boolean isEmpty() 

df 
= result = (length = 0) 

Integer maxDepth() 

df l s . = resu t = max 1ze 
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The pecification consists of the data structure description, the definition for 

stack(x) function, which is the program function specifying Lh behaviour of Lhc 

constructor and two program function specifying the behaviour of the methods 

isEmpty() and maxDepth(). 

After we write the specification, we generate the test oracle from it and write th' 

test code to call it (e.g., using JUnit). The test case will , of course, fail , so we should 

implement the con tructor and methods so that t he test cases pass and we have a 

program that is con istent with the spe ified behaviour. 

We then modify the pecification for push to cover Lhe case where the stack IS 

initially empty, and add two more methods: 

void push(Integer x) 

df 

p_this .size() = 0 

this.size() = p_this .size() + 1 

this I this.lastElement () = x 

Integer size() 

df 
= result = length 

Integer lastElement () 

df 
= result = s [length - 1] 

H re we use the naming convention of prepending "p_" to a program variable name 

(e.g., p_this ) to represent the value of the program variable (e.g., t h is) in the slate 

imm<'rlir~,t<'ly before the function was ex0cuted . The new behaviour rl<'fin<'rl by th<' 
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specification is to push an object on an empty stack. After the push the stack should 

contain that element and the ize for the stack after is increased by one. Again we 

generate the test oracle and implement a test case, which will init ially fail. T he stack 

code is then developed until t he test case pas es, and so it implements t he specified 

behaviour. 

As we see the previous specification only defines pushing on a.n empty stack, which 

is clearly not complete. We need to modify the specification to define behaviour for 

pushing on a. non-full stack: 

void push(Integer x) 

df 

p_this .size() 2: 0 A p_this .size () < this .maxDepth() 

this .size() = p_this .size() + 1 

Vi : [0, p_this .size()- 1].( 

this I this .elementAt (i) = p_this .elementAt (i))A 

(this.lastElement () = x) 

Integer elementAt (Integer i ) 

g£ result = s [i] 

Again we generate the test oracle and implement test cases, this time to push a. 

few elements onto t he stack. After modifying the implementation to ma.ke it pass the 

tests, we then modify the specification to cover the case where the sta.ck is full: 



5. Test Driven Development With Oracles 69 

void push(Integer x) 

df 
= 

p_this.size() 2: 0/\ p_this .size () = 

p_this.size () < this.maxDepth() this .maxDepth() 

this .size() = p_this.size () + 1 p_this .s ize () 

this I Vi : [0, p_this .size()- 1]. this = p_this 

(this elementAt(i) =) 
p_this .elementAt (i) 1\ 

(this .lastElement() = x) 

The new bchav10ur supported by th1s speclficatwn IS to attempt to pu I! an object 

on a full stack. The requirement is that the stack after the call returns is the same 

size and contains the same elements as the stack before the call. The new test case 

should check this behaviour by attempting to push on a full stack. Continuing th 

development we add the specification for pop on a non-empty stack: 

Integer pop() 

df 
= 

p_this .size() 2: 1 

this.size() = p_this .size () - 1 

this I 
( this.elementAt (i) =) 

Vi: [0, this.size() - 1]. 1\ 

p_this .elementAt ( i) 

(result = p_this .lastElement ()) 

Contmumg 111 th1s manner, we eventually reach t he full spec1ficat10n of the 

bounded stack, as below, and we have at the same time developed a full imple-



5. Test Driven D velopment With Oracles 70 

menta tion and a full suite of test cases. 

Data Stucture 

Integers [] 

Integer maxSize 

Integer length 

Program Functions 

Stack stack(Integer x) 

g,t: (result.isEmpty() 1\ result .maxDepth() = x) 

void push(Integer x) 

df 

p_this.size() ~ 01\ p_this .size () = 

p_this .size() < this .maxDepth() thi s.maxDepth() 

this .size() = p_thi s .size () + 1 p_this . s ize () 

this ! Vi : [0, p_this .size () - 1]. this = p_this 

(this elementAt (i) ~) 
p_this .elementAt (i) 1\ 

(this .lastElement() = x) 



5. Test Driven Development With Oracles 

Integer pop() 

df 

p_this.size () :2: 1 

this .size() = p_this .size() - 1 

this! 
(this elementAt(i) ~) 

Vi: [0, this.size() - 1]. !\ 

p_this .elementA t ('i) 

(result = p_thi s.lastElement ()) 

Integer top() 

~ result = this .lastElement () 

Boolean isEmpty() 

df 
= result = (length = 0) 

Integer maxDepth() 

df 1 s. = resu t = max 1ze 

Integer size() 

df 
= result = length 

Integer lastElement () 

~ result = s [length - 1] 

Integer elementAt (Integer i) 

~result = s [i] 
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Chapter 6 

Future Work and Conclusion 

6.1 Future Work 

Clearly a next step in this research and tool development will be to support test case 

generation from the specification as well, which will further reduce t he amount of 

'manual' test code development effort . 

Also, applying the techniques to real problems in a real-world development en

vironment will undoubtedly provide some insight and help to refine the techniques. 

Other possible improvements in the tool set (e.g., better visual editing etc.) could be 

done in the future development of these tools. In addition to that using these tools 

to do analysis of the test cases (e.g., coverage of the specifi cation). 
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6.2 Conclusions 

In test driven development, tests are used to specify the behaviour of the program, 

and the tests are additionally used as documentation of the program. However, 

tests are not sufficient to completely define the behaviour of a program because they 

only define the program behaviour by example and do not state general proper ties. 

So, the latter can be achieved by using our TDD approach, which uses a formal 

specification to specify the behaviour of the program and supports testing directly 

against that specification by generating oracles. The outcome of this technique i::; 

that, at the end of the development period, the developer has produced not only a 

working implementation , but also a complete specification and a full set of test cases. 



Appendix A 

Class Responsibility Collaborator 

(CRC) 

The UML diagrams for the packages in the system are described in chapter 4. 

A.l Class Responsibility Collaborator (CRC) Ta-

bles 

Table A.l: GenerateAuxFunAction Class Responsibility Collaborator 
(CRC) 

GenerateAuxFunAction 
Generates the code for auxiliary functions SpecModel 

SpecModelEiement 
Symbol 
Definition 
CodeFromOMobject 
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Table A.2: GenerateOracleAction Class Responsibility Collaborator 
(CRC) 

GenerateOracleAction 
Generates the code for oracles SpecModel 

SpecMode!Element 
Symbol 
Defiui tiou 
CodeFromOMobject 

Table A.3: OracleAction Class Responsibility Collaborator (CRC) 
GenerateOracleAction 
Abstract base class for all test oracle actions SpecEditor 

Table A.4: CodeFromOMobject Class Responsibility Collaborator (CRC) 
CodeFromOMobject 
Generates the code from the open math objects SpecModel 
Generates the context for the test oracle and auxiliary functions Table 

Cod FromTabularExp 
Defini tion 

Table A.5: CodeFromOMS Class Responsibility Collaborator (CRC) 
CodeFromOMS 
Generates the code from the open math symbol object SpecModel 

Definition 

Table A.6: CodeFromOMA Class R esponsibility Collaborator (CRC) 
CodeFromOMA 
Generates the code from the open math application object SpecModel 

Definition 
CodeFromTabular Exp 
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Table A.7: CodeFromOMI Class Responsibility Collaborator (CRC) 
CodeFromOMI 
Generates the code from the open math integer object 

Table A.8: CodeFromOMV Class Responsibility Collaborator (CRC) 
CodeFromOMV 
Generates the code from the open math variable object 
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Table A.9: CodeFromTabularExp Class Responsibility Collaborator 
(CRC) 

CodeFromOMobject 
Generates the code from the tabular expressions SpecModel 

Table 
CodeFromOMobj ct 
Definition 
StructRest 
Eva! Term 

Table A.lO: CodeFromTheory Class Responsibility Collaborator (CRC) 
CodeFromTheory 
Generates the code from the theory CodeFromOMobject 

SpecModel 
Theory 

Table A.ll: OracleModel Class Responsibility Collaborator (CRC) 
OracleModel 
Write all required files for the oracle 

Table A.12: CellBase Class Responsibility Collaborator (CRC) 
CellBase 
Represents the Cell Base that used to implement the tabular expressions 
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Table A.l3: Celllndex Class Responsibility Collaborator (CRC) 
Celllndex 
Represents the index for the cell 

Table A.14: Integer_lnterval Class Responsibility Collaborator (CRC) 
Integer _Interval 
Represents the interval for quantifiers expressions 

Table A.15: InvertedTable Class Responsibility Collaborator (CRC) 
Inverted Table 
Implements the inverted table and encapsulates all semantics knowledge Tab leG rid 
about the inverted table 

Table A.16: NormalTable Class Responsibility Collaborator (CRC) 
Normal Table 
Implements the normal table and ncapsulates all semantics knowledge TablcGrid 
about the normal table 

Table A.17: VectorTable Class Responsibility Collaborator (CRC) 
VectorTable 
Implements the vector table and encapsulates all semantics knowledge TableGrid 
about the vector table 

Table A.18: TableGrid Class Responsibility Collaborator (CRC) 
TableGrid 
R presents tab! grid that used to implement tabular expressions Celllndex 

Cell Base 
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A. Class Responsibility Collaborator (CRC) 

Table A.19: VarMap Class Responsibility Collaborator (CRC) 
VarMap 
Represents the values for variable that used in the specification 

Table A.20: SpecModel Class Responsibility Collaborator (CRC) 
SpecModel 
Top lcvd for thr- spr-cifi rF~.t ion model SpecMode!ElemenL 
The model provides an abstract API for accessing ErrorHandl r 
the content of a software specification ChangeN otifier 
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Table A.21: SpecModelElement Class Responsibility Collaborator (CRC) 
SpecModelElement 
Base las for all elements in a pecification SpecModel 

ElementTag 

Table A.22: SpecModelErrorHandler Class Responsibility Collaborator 
(CRC) 

SpecModelError Handler 
Handle the errors ErrorHandl r 

Table A.23: SpecModelParser Class Responsibility Collaborator (CRC) 
SpecModelParser 
A parser for specification models DocumenLBuilder 
It knows the details about how to validate t he specification SpecMode!ErrorHandler 
fi les against the Relax G schema 
To avoid unnecessary re-reading of the DTD and schema fi les 
and to conserve memory this is a singleton class 
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Table A.24: ISpecModelListener Class Responsibility Collaborator (CRC) 
ISpecModelListener 
Interfa~e for li teners for changes to the specification model 
Classc::; t hal want to be notified of changes to the specification 
model should implement this interface and register themselves 
via { link SpecModel#addListener(ISpecModelListener)} 

Table A.25: ChangeNotifier Class Responsibility Collaborator (CRC) 
ChangeN otifier 
Manage change notification to ISpecModelListeners ISpecModelListener 

ChangeNotificat.iou 

Table A.26: DOMXMLWriter Class Responsibility Collaborator (CRC) 
DOMXMLWriter 
Convert DOM to XML 
This class is based almost entirely on XMLtoTree 

Table A.27: OMDOMReader Class Responsibility Collaborator (CRC) 
OMDOMReader 
An OpenMath DOM reader 

Table A.28: ElementTag Class Responsibility Collaborator (CRC) 
Element Tag 
The possible kinds of elements in a sp cification 
(Defini tion, Symbol, Theory, Type, MObjed, Presentation, U::;e) 

Table A.29: Theory Class Responsibility Collaborator (CRC) 
Theory 
Represent an omdoc theory Symbol 

Presentation 
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Table A.30: Symbol Class Responsibility Collaborator (CRC) 
Symbol 
Repre ·ents a symbol declaration and defini tion TTSRole 
which is the main building block of a specification definit ion 

SpecModelElemeni 

Table A.31: TTSRole Class Responsibility Collaborator (CRC) 
TTSRole 
The po sible values for the tts:role attribute 
These classify a definition by the role the defined 
symbol plays in a specification 

Table A.32: Type Class Responsibility Collaborator (CRC) 
Type 
A representation of an omdoc element as specialized MObject 
for software specifications 

Table A.33: Definition Class Responsibility Collaborator (CRC) 
Definition 
A representation of an omdoc element as specialized MObjcct 
for software specifications and contains an open math 
expression that rlefines t he semantic meaning for t he symbol 

Table A.34: Presentation Class Responsibility Collaborator (CRC) 
Presentation 

Table A.35: Use Class Responsibility Collaborator (CRC) 
Use 
Represents the format for symbol 
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Table A.36: MObject Class Responsibility Collaborator (CRC) 
MObject 
A representation of an omdoc math object 

Table A.37: Table Class Responsibility Collaborator (CRC) 
Table 
A representation for the tabular expression Gri I 
A tabular expression consists of : Eva! Term 
An evaluation term GenRe t 
A structural restriction expression, the value StructRest 
of which must be independent of the value of the 
expressions in the table 
A general restriction expression, the value of which 
may depend on the value of the expressions in the table 
A sequence of grids, each of which is an indexed set of expressions 

Table A.38: TableFactory Class Responsibility Collaborator (CRC) 
TableFactory 

Table A.39: EvalTerm Class Responsibility Collaborator (CRC) 
EvalTerm 
Interface for the evaluation term 
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Table A.40: EvalTermFactory Class Responsibility Collaborator (CRC) 
EvalTermFactory 

Table A.41: GenRest Class Responsibility Collaborator (CRC) 
G enRest 
Interface for the general restriction 
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Table A.42: GenRestFactory Class Responsibility Collaborator (CRC) 
GenRestFactory 
Constructs the general restriction term for the tabular expressions 

Table A.43: Grid Class Responsibility Collaborator (CRC) 
Grid 
Represents a grid which has a shape (index set ) and Shape 
corresponding expressions represented by OMObject OMObject 

Index 

Table A.44: Index Class Responsibility Collaborator (CRC) 
Index 
Interface for the cell index 

Table A.45: lndexFactory Class Responsibility Collaborator (CRC) 
lndexFactory 
A factory class for generating shapes 

Table A.46: InvertedEvalTerm Class Responsibility Collaborator (CRC) 
InvertedEvalTerm 
Represents the inverted table evaluation term 

Table A.47: NormalEvalTerm Class Responsibility Collaborator (CRC) 
NormalEvalTerm 
Represents the normal table evaluation term 

Table A.48: VectorEvalTerm Class Responsibility Collaborator (CRC) 
VectorEvalTerm 
Represents the vector table evaluation term 
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Table A .49: NormalGenRest Class Responsibility Collaborator (CRC ) 
Nor mal GenRest 
Represents general restriction for the normal table 

Table A.50: OMUtil Class R esponsibility Collaborator (CRC) 
OMUtil 
Provides open math utlit ies 

Table A.51: Rectlndex Class Responsibility Collaborator (CRC) 
Rectlndex 
Selects a particular cell wi thin a grid 

Table A.52: R ectShape Class Responsibility Collaborator (C RC) 
RectShape 
Describes the index set for a rectangular grid 

Table A.53: RectShapelterator Class R esponsibilit y Collabora tor (CRC) 
RectShapelterator 
An Iterator to iterate over a RectShape RectShape 
RectShapelterator 's can be used to iterate over any grid Rectlndex 
that has a shape of type RectShape 

Table A.54: RectStructRest Class Responsibility Collaborator (CRC) 
R ectStructRest 
Represents the rectangular structure restriction for the tabular expressions 

Table A.55: Shape Class R esponsibility Collabora tor (CRC ) 
Shape 
An Interface for shape objects 
A Shape describes the index set for a grid 
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Table A.56: ShapeFactory Class Responsibility Collaborator (CRC) 
ShapeFactory 
A factory class for generating shapes 

Table A.57: StructRest Class Responsibility Collaborator (CRC) 
StructRest 
Interface for the structure restriction 

Table A.58: StructRestFactory Class R esponsibility Collaborator (CRC) 
S tructRestFactory 
Constructs the structure restriction for the tabular expressions 

Table A.59: ElementDialog Class Responsibility Collaborator (CRC) 
ElementDialog 
Specify parts of the specifications SpecModel 

Table A.60: ISpecModelSelectable Class R esponsibility Colla borator 
(CRC) 

ISpecModelSelectable 
This interface must be implemented by pages of the Spec 
Editor which need to be notified of changes to the selected 
element 

Table A.61: SpecEditor Class Responsibility Collaborator (CRC) 
SpecEditor 
A multipage editor with the following pages: XMLEditor 
XML Editor SFormEditor 

SpecModel 
SpecModelElement 
SpecOu tlinePage 
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Table A.62: SpecEditorContributor Class Responsibility Collaborator 
(CRC) 

SpecEditorContributor 
Manage· the installation/ deinstallation of global actions 
for multi-page editors 
Responsible for the redirection of global actions to the 
active ditor 
Multi-page contributor replaces the contributors for the 
individual editors in the multi-page editor 

Table A.63: SpecElementLabelProvider Class Responsibility Collaborator 
(CRC) 

SpecElementLabelProvider 
Provides labels for the sp cification elements 

Table A.64: SpecErrorHandler Class Responsibility Collaborator (CRC) 
SpecError Handler 
Handle the errors 

Table A.65: SpecOutlinePage Class Responsibility Collaborator (CRC) 
SpecOutlinePage 
Constructs the outline specifications SpecEditor 

Table A.66: SpecTreeContentProvider Class Responsibility Collaborator 
(CRC) 

SpecTreeContentProvider 
Adaptor for the SpecModel to ITreeContentProvider SpecModel 
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Table A.67: FillmorePreferencePage Class Responsibility Collaborator 
(CRC) 

FillmorePreferencePage 
Blank Preference page to properly organize all t he preference 
page for the plugin 

Table A.68: PreferenceConstants Class Responsibility Collaborator 
(CRC) 

PreferenceConstants 
Constant definitions for plug-in prdf'rC'llC<'s 

Table A.69: Preferencelnitializer Class Responsibility Collaborator (CRC) 
Preferencelnitializer 
Used to initialize default preference values 

Table A. 70: TestOraclePreferences Class Responsibility Collaborator 
(CRC) 

TestOraclePreferences 
Test oracle preferences page StringFieldEditor 



Appendix B 

The Generated Oracle Code 

B.l The Generated Oracle Code From The Sam

ple Example 

This section shows the classes genera ted from the sample 'ggcd' program specification 

given in 3.2.7 

package o r ac les; 

impor t ca. F i l lm o r eso f tware. plu g in . O rac leUt ili t i es .* ; 

import stat i c o r g .juni t. Assert . * ; 

p u b l ic class ggc d 0 r acle { 

privat e VarMap v a r s; 
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private Outggcd 1 tO ; 

public ggcdOr ac le () { 

vars=new VarMap (); 

tO=new Outggcdl ( vars) ; 

} 

private Bool ean ggcdTOr ac le ( Int ege r i , Int ege r J , 

Int ege r gcdvalue , Boolean result){ 

Boolean r es ul tOrac le; 

vars.setValu e(" i " ,i); 

vars.setValue("j" , j ); 

vars . set Va lu e(" gc dv a lu e" ,gc dv a lu e); 

vars.setValu e(" r es ult " , r es ult ); 
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r es ultOr ac l e=tO. ggcdTl (); 

return r es ultOrac l e; 

} 

public void as s e rtg gcdTOrac le (Int ege r i , Int ege r j , 

Int ege r gc dv a lu e , Boolean r es ult){ 

asse rtTru e(ggcdTOr ac le( i , j , gcdv a lu e, res ult )); 

} 

} 

package or ac l es; 

import j a v a . uti! .*; 

import ca. fillm o r eso ft wa r e. plugin. O rac l eU tili t i es . *; 

public class Outggcdl { 

private VarMap v a rs ; 

private V ec t o rT a bl e nTa ble; 
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public Outggcd1 ( VarMap v a r s) { 

this. v a r s=var s ; 

nT a bl e=new Vecto rT a bl e ( 3 ); 

Ce lllnd ex inHead e r 1 []= new C elllnd ex [ 2]; 

Ce lllnd ex inH ead er2 []= new Celllnd ex [ 2 ] ; 

for ( int kO = O;kO < 2;k0++) 

inHead erl [ kO] = new C e lllnd ex ( 1 ); 

for ( in t k 1 = 0; k 1 < 2; k 1 ++) 

inHead e r2 [ k1 ]= new C elllnd ex ( 1 ); 

Ce lllnd ex inM ain []= new C elllnd e x [ 4 ] ; 

for ( in t j = 0; j < 4; j ++) 

inM a in [ j ]= new C e lllnd ex ( 2) ; 

inH ead erl [0]. se t ( 0 ,0 ); 
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nT a b1e . a dd Head erC e1l ( 0 , in Head erl [ 0] , new 

ggc d LG rid_LC e 1LO ( va rs)); 

in H e ad e r1 [ 1] . se t ( 0 , 1 ) ; 

nT a ble . addHead erC e1l ( 0 , inHead erl [ 1] , new 

ggc dLGrid _LC e1L1 ( v a rs )); 

inHead e r2 [0] . s e t (0 ,0) ; 

nTa b1e. addHead erC e11 ( 1 , inHead er2 [ 0] , new 

ggc d LG rid _2_C e1LO ( v a rs )); 

inH ead e r2 [ 1 ]. se t ( 0 , 1 ); 

nT a b1e. a ddHead er Ce 11 ( 1 , inHead e r 2 [ 1] , new 

ggc dLGrid _2 _C e1L 1 ( v a rs)); 

int ind ex=O; 

for ( in t l 0 = 0; l 0 < 2; 1 0 ++) 

for ( i n t 11 = 0 ; 11 < 2 ; 11 ++) 

{ 

} 

inM ain [ ind ex ] . se t ( 0 , 10) ; 

in Main [ ind e x ] . se t ( 1 , 11 ) ; 

ind ex++; 
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n T a ble . add M a in C e 11 ( in M ain [ 0] , new g g c d L G rid _ 0 _ C e 1L 0 ( v a r s ) ) ; 
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nTable. addMain Cell ( inMain [ 1 ] , new ggcd LG rid _Q _Cel !_ 1 ( vars ) ); 

nT ab le.add 1ainCell ( in Main[2] , new ggcdLGr id _Q_Cell _2 ( vars ) ); 

n Tab I e . add Main C e II ( in Main [ 3] , new g g c d L G r i d _ 0 _ C e I !_ 3 ( v a r s ) ) ; 

} 

public Boo lean ggcdT1 () { 

Bool ean r es ul t = nTable. evaluateTabl e (); 

return result ; 

} 

} 

package orac les; 

import ca. F ill moresoftware. plugin . Ora c l eUL ili Li es . *; 

public class A uxFunctions { 

static public Boolean cDiv( In teger a,Integer b , Int ege r 

x){ 
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return (a% x 0) && (b % X 0 ); 

} 

} 

package o r ac les; 

import j a v a. uLil. *; 

import ca . fillmor es oftwar e . plugin. Or ac l eU tiliti es .*; 

public class ggcdLGrid _O_CelLO extends C e l!B ase { 

private VarMap va rs; 

public ggc d l _G rid _0 _C e lLO ( VarMap v a r s) { 

this . v a rs= v a r s; 

} 

public Obj ect e v a ! () { 

In tege r 

In tege r 

In tege r 

i = (lnt ege r ) v a r s . ge tV a lu e(" i " ); 

j = (In teger) v a rs. ge t V a lu e(" j "); 

x=( ln tege r) v a rs. ge tValu e ("x" ) ; 
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I nteger gcdvalu e=( I nt ege r) vars . get Value( " gcdvalu e " ) ; 

r e turn (gcdva lu e=A uxFun ctions.cD iv ( i , j ,x ) ); 

} 

} 

package o r a c 1 e s ; 

import java. u t i I . *; 

import ca. f ill mor eso ftwar e. pl ug in. Or ac l eUt il i t i es .*; 

public class ggcdLGr id_O _Ce lLl exte nds Ce l! Bas e { 

private VarMap va r s; 

public ggcd L Gr id _Q_Ce lLl (VarMap vars){ 

this . vars=var s; 

} 

public Object eva! () { 

I nteger gc d valu e=( In teger) vars . getVal ue (" g cdva l u e " ); 
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B . The Generated O racle Code 

return (gcdvalu e==O); 

} 

} 

package orac les; 

import java. u t i I . * ; 

import ca . f illm o r eso ftw are. plugin . O rac l eUti li t i es .* ; 

public class ggc dLGrid _Q_Ce!L2 extends Cel!Base{ 

private VarMap vars; 

public ggcd LG rid _Q _Ce !L2 (VarMap va r s ){ 

this. vars=vars; 

} 

public O bject eva! () { 

Boolean result=(Boolean) vars. getValue( " result " ); 
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B. The Generated Oracle Code 

return (r e s u 1 t = true ); 

} 

} 

package o r ac les; 

import j a v a . u t i 1 . *; 

import c a . f i 11m o r es oft wa r e . p 1 u g in . 0 r a c 1 e U t i 1 i t i e s . * ; 

public class g gc dLGrid _Q_C e lL3 extends C e llB ase { 

private VarMap va rs; 

public ggc dLGrid _Q_C e lL3 ( VarMap va r s){ 

this . v a r s=var s; 

} 

public O bj ect eva ] () { 

Boo lean r es ul t=( B oolean ) var s . get Va lu e(" res ult "); 

return ( r es ult= false ); 
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B. The Generated Oracle Code 

} 

} 

package o r a c l e s ; 

import j a va. u t il. *; 

import ca . fil l m o r eso ft w ar e. plu gin . Or ac l e Utili t i es . *; 

public class ggc dLGrid _LC e lLO extends Ce llB ase { 

private VarMap va rs; 

public ggc dLGrid _L Ce lLO (VarMap va r s){ 

this . va r s=va rs; 

} 

public Obj ect e v a l () { 

In tege r gc dv a lu e=(In te g e r) v a rs. ge tV a lu e (" gc dv a lu e " ) ; 

return gc d value; 

} 
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B. The Generated Oracle Code 

} 

package orac l es; 

import j ava. u t i I . *; 

import ca. fillm o r esoft w are . plu g in. O rac l e Ut ili t i es.*; 

public class ggc dLGrid _L Ce! L l extends Ce l! Base { 

private VarMap v a r s; 

public ggc dLG r id _LCe !L l (VarMap vars){ 

this . v ars=var s; 

} 

public O bject eva! () { 

Boo lean r es ult =( Boo lean ) vars. get V a lue(" res ul t") ; 

return res ul t; 

} 

} 
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B. The Generated Oracle Code 

package o r ac I es ; 

import j a v a. uti I . *; 

import ca . fillmor esof tw a r e . plu g in . Or ac l e Ut ili t i es.*; 

public class ggc dLGrid _2 _C e lLO extends Cell Base { 

private Vari\!Iap vars; 

public ggc dLGrid _2 _C eiLO (VarMap va r s ){ 

this. va r s=v a r s; 

} 

public Obj ec t eva l () { 

In tege r i =( Int ege r ) v a r s.getV a lu e(" i "); 

In tege r j = (In tege r ) v a r s . get V al ue(" j "); 

return (( i > O)&&(j > 0)); 

} 

} 
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B. The Generated Oracle Code 

package orac les; 

import j ava . u t i l . * ; 

import ca. fillm o r eso f twa r e . p l u g in . O rac l e Ut il i t i es.*; 

public class ggc dLGrid _2_Cel L1 extends Ce llB ase { 

private VarMap va r s; 

public ggc dLG r id _2 _Ce lL1 (VarMap va r s){ 

this . va r s=var s; 

} 

public O b j ect eva ! () { 

In teger i =( Int ege r ) v a r s. ge t V al u e(" i "); 

In tege r j =( Int ege r )vars.getV a lu e(" j "); 

r e turn (( i <= O)IJ( j <=0)); 

} 

} 
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