

TE T-DRIVEN DEVELOPME ' WITH
ORACLES AND FURMAL
SE C ICATIONS

By
SHADI G. ALAWNEH, B. ENG.

A Thesis
Submitted to the School of Graduate Stuc s
in Partial Fulfilment of the Requirements
1 the Degree of

Ma of Engineering

Memorial University of Newfoundland

«, Cop it by caadi G. Ala ely, June 2010

ii

MASTER OF ENGINEERING (2010) Memorial University of Newfoundland
(Electrical and Computer Engineering) St. John's, NewFoundland

TiTLE: Test-Driven Development with Oracles and Formal Specifications

AUTHOR: Shadi G. Alawneh, . Eng. (Jordan University « Science and Tech-
nology)

SUPERVISOR: Dr. Dennis K. Peters

NUMBER OF PAGES: xii, 104

Ack owledgements

I would like to express my sincere dpreciation for the assistance and guidance « Dr.
Dennis K. Peters in the preparation of this thesis.

Also, T gratefully acknowledge the financial assistance received from the Faculty
of Engineering and Applied Science, Memorial University and the Natural Sciences
and Engineering Research Council (SERC).

I woul specially like to thank the people in the CERL lab (Ala’a S. Al-habashna,
Al-Abbass Al-Habashneh and Rabie Almatarneh). It has been a lot of coffee with
them.

Last but not least my father (G i) and mother (Moyasser), just for being vou.

1

Con e.its

Abstract i
Acknowledgements ii
List of Acronyms xii
1 Introduction 1
1.1 Purposeo 3
1.2 Scope ... 1
1.3 Typesof Docurnents B
1.4 Fillmore Software Project o)
1.5 Outline of This Thesis 0
2 Related Work 7
2.1 Test Driven Development o 0 0 0 0 00000000000 n
2.2 Oracle Generation oo 11
3 Methodology 15

i

CONTENTS iv
3.1 Formal Software Specifications o0 15
3.2 rograin Specificationso o000 16

321 Constantso 17
322 Variables. 17
323 Auxiliary Function d Predicate Dehinitions o 00 0 0 0 L 17
3.2.4 Predicate Expressions o000 I8
3.2.5 Quantified Expressionso 00000 18
3.2.6 Tabular Expressions oL I8
3.2.7 Sample Program Specificationo 00 20)
3.3 Tool Support 20)
3.3.1 OANDoc Document Model 00 0000000000000 21
3.3.2 The Eclipse Framework 0 0 . o000 0000000 20
3.3.3 Specification Editor o000 0L 20

4 Oracle C cration 28

1.1 Oracle Design . . . 0 . 000 oo 29
11,1 Programming Language 29
1.1.2 Internal Design Overviewo 29

1.1.2.1 Expression nplementation 000 30
1.1.3 Scalar Expressions 000000 31
1.1.3.1 Logical O} ators 31
1.1.3.2 Quantification00 0L 32
1.1.1 Tabular Expressions o000 000 33

B

1

-

CONTENTS \%
1.1.5 Auxilary Functions00 oo 35
1.1.6 Compilation and Execution 37

1.2 Test Oracle Generator Design 11
2.1 Requirementso 11
1.2.1.1 Assumptionso 11
4212 UserInter e 12
1213 InputForm ot oo 12
1.2.1.1 Anticipate Changes 13
I 2 Package Design 13
4.2.3 New Packages Adde To Fillmore 11
4.2.3.1 Oracle Generator Actions
(ca.Fillmoresoftware.plugin.actions) 11
4.2.3.2 Oracle Ge ation (ca.I lmoresoftw: .plugin.OracleGen) 1
4.2.3.3 Oracle Utilities (ca.Fillinoresoftware.plugin.OracleUtilities) 16
1.2.4 Old Packages In Fillmore 16
4.2.4.1 Specification Model (ca.Fillmoresoftware.plugin.specniodel)
1.2.4.2 Kernel (ca illmoresoftware kernel) 13
4.2.4.3 Editors (ca.Fillmoresoftware.plugin.editors) 18
1.2.1.1 Preferences (ca.Fillmoresoftwarc.plugin.preferences) . 19
1.2.5 Symbols Representation 50
4.2.5.1 Catagories of Symbols 51
1.2.6 Algorithemn Overview 50

CONTENTS vi

1.2.6.1 Expression Coding o000 50

5 Test Iriven Developme t W h Oracles 58
5.1 st Driven Development v hOracles 3t
5.1.1 Test Driven Develo; ient For Methods 09

5.1.2 Test Driven Development For Classes 66

6 Futurc Work and Conclusion 72
6.1 Future Work T2
6.2 Conclusions 3

A Class _.esponsibility Collabc itor (CRC) 74
A.1 Class Responsibility Col orator (CRC) Tables 7

B The Generated Oracle Code 87

B.1 The Generated Oracle Code From The Sample Example 87

List o Figures

1.1

3.1

11

1.2

4.3

1.1

The Steps of Test-Driven I relopment (TDD)[2]. 2
Gged Program Specificationo 000 21
Screenshot of Editor L oo 27
Oracle Design of gged T' ular Expression 30
TestResult 11
Packages Diagram 11
Actions Package Class Diagram 15
o acleGen Package Class Diagram 16
OracleUtilities Package Class Diagram i
The Steps of TDD Approacli GO
NoSuchElementExceptico 62

vii

List o Tables

1.1 Logical Operator Conversions
1.2 x Symibols “Use™ Values00 o000

4.3 Unary Svinbols “Use”™ Values

A.1 GencrateAuxFunAction Cl. Respounsibility Collaborator (CRC)

A.2 GenerateOracleAction Class Responsibility Collaborator (CRC)

A.3 OracleAction Class Responsibility Collaborator (CRC)
A1 CodeFromOMobject Class sponsibility Collaborator (CRC)

A.5 CodeFromOMS Class Resp sibility Collaborator (C 2) .0
A.6 CodeFromOMA Class Responsibility Collaborator (¢ Z)
A.7 C leFromONMI Class Responsibility Collaborator (CRC)
A.8 CodeFromOMYV Class Responsibility Collaborator (C C)
A9 CodeFromTabularExp C Responsibility Collaborator (CRC)

A.10 CodeFromTheory Class Responsibility Collaborator (CRC)
A.11 OracleModel Class Responsibility Collaborator (CRC)

A.12 CellBase Class Responsibility Collaborator (CRC)

viii

LIST OF TABLES X

A.35 Use Class Responsibility Collaborator (CRC) 80
A.361 Dbject Class Responsibility Collaborator (CRC) 81
A.37 Table Class Respc ibility Collaborator (CRC) 81
A.38 bleFactory Class Responsibility Collaborator (CRC) 81
A.39 valTerm Class Responsibility Collaborator (CRC) 81
A0 EvalTermFactory Class Re onsibility Collaborator (CRC) 81
A.41 GenRest Class Responsibility Collaborator (CRC) 81
A.12 GenRestFactory Class Responsibility Collaborator (CRC) 82
A .43 Grid Class Responsibility Collaborator (CRC) 82
A.11 Index Class Responsibility Collaborator (CRC) 82
A .15 IndexFactory Class Responsibility Collaborator (CRC) 82
A .16 InvertedEvalTerm Class Responsibility Collaborator (CRC) 82
A .47 NormalEvalTerm Class Responsibility Collaborator (CRC) 82
A .48 VectorEvalTerm Class Responsibility Collaborator (¢ C) 82
A 19 NormalGenRest Class Responsibility Ci aborator (¢ C) 83
A.50 OMUtil Class Responsibility Collaborator (CRC) 33
A.51 Rectlndex Class Respousit ty Collaborator (CRC) 83
A .52 RectShape Class Responsibility Collaborator (C C) 83
A.53 RectShapelterator Class esponsibility Collaborator (CRC) 33
A.54 RectStructRest Class Responsibility Cc .bo or (CRC) 83
A .55 Shape Class Responsibility ollaborator (CRC) 83

A.56 ¢ apeFactory Class Respo bility Collaborator (CRC) 81

LIST OF TABLES xi
A.57 StructRest Class Respousibility Collaborator (C C) 81
A58 StructRestFactory Class Responsibility Collaborator (CRC) 81
A.59 ElementDialog Class Responsibility Collaborator (CRC) 81
A.GO If ecModelSelectable Class Responsibility Collaborator (CRC) 81
A.G1 SpecEditor Class Responsibility Collaborator (CRC) 81
A .62 SpecEditorContributor C ss Responsibility Collaborator (CRC) . . . 85
A.63 SpecElementLabelProvider Class Responsibility Collaborator (CRC') . 85
A.61¢ ocErrorHandler Class Responsibility Collaborator (CRC) 85
A.65 ¢ ccOutlinePage Class Responsibility Collaborator (CRC) 85
A.G6 SpecTreeContentProvider Class Responsibility Collaborator (CRC) 85
A 67 FillmorePreferenceP » Cl - Respounsibility Collabo tor (CRC) 86
A.G8 PreferenceConstants Cla Responsibility Collaborator (¢ C) 86
A.G9 Preferencelnitializer Class sponsibility Collaborator (CRC) 80
A.70 TestOraclePreferences Class Responsibility Collaborator (CRCY) 80

List o Acrc..yms

Acronym|Description
TOG |Test Oracle Generator
TDD 23t Driven Development
XP xtreme Programming
JMI [Java Modeling Language
TTS |Table Tool System
FM u Methods
ADT |Abstract Data Type

xii

Ch: ter 1

Intr hduction

Test-Driven Development (TDD) methodology that uses tests to hielp developers
make the right decisions at the right me. TDD is not about testing, it 1s about using
tests to create software in a simple, incremental way, Not only does this improve the
quality and design of the soltware, but it also simplifies the development process. The
steps of TDD are illustrated in the UML activity diagram of Figure 1.1. TDD is one of
the core ractices ol Extreme Programming (XP)[6, 21]. Twe 2y principles of TDD
arc 1) that no implementation code is written without frst having a test case that
[ails with the current implementation, and 2) that we stop writing the implementation
as soon as all of the existing test c: 3 pass. Although not all developers agree with
all of the 2 practices, the ideas of DD have started to gain wide acceptance.
InT , =2 test code is a formal documentation that describes the required
behaviour for the component or the system being developed Hr the particular test

cases included. However, tests alone desc e tl operties ol a am only in

1. Introduction 2

Add a test
e -.w_hlﬁ_,ww.w/
Pass T I TN
“ Run the tests
N e s i . s
l Fail
a little change l
L Pass.
BT SER Development
Fail Run the tests } contmues
Pass.
Development
- stops

Figure 1.1: The Steps of Test-Driven Development (TDD)[2]

terins of examples and thus ot suflicient to completely describe the behaviour
ol a program. So. this documentation is unavoidably incomplete and often over-
specific.) solve this problem we propose an alternative approach to TDD. which
is to develop a formal specification of the required behaviour as a part of the DD
process and then generate test oracles from that specificatic We thus propose a
variation on the kev TDD principles listed above: 1) No implc entation code is
written w out first having a specification for the behaviour — at is not satisfied by
the current implementation, and 2) we stop writing the implementation as soon as
the imp entation satisties the ¢ ent specification. By generating oracles direct]y

from the spec cation we are able to quickly and accurately check if the specification

1. Introduction 4

expressions |31, will produce a program that will act as an oracle. This oracle program
will take as input an (input, output) pair from the program under test and will return
true if the pair satisfies the relation deseribed by the specification. or false if it does

not.

1.2 Scope

In this thesis, we considered . ing our approach for Test Driven Develop-
ment (TDD) on methods and classes which are the basic components for any software
application.

In our work, the kind of testing that we con lered is the one composed of eval-
uating executable parts of the software system. Testing is one of the methods used
to verity the software system, but in this work we didn't use the software verification
since it 1 more wide meaning. > didn’t discuss the selection of suitable tests
for a component and how efficient those tests are. Interested readers are referred to
the cited publication [16] for more details about these issucs and a good survey of
the related literature. Also, the kind of programs that we considered in this work is
the terminating programs. For the non-terminating programs, some terminating sub
programs (e.g. the body of an infinite loop) could be documented and tested using
these methods.

Our methods are applicable for programs written in different kinds of program-
ming languages but the tools that we have implemented to describe and explain these

techniques only work for those written in *Java’.

(W]

1. Introduction

1.3 Types of Documents

The documentation is very import for comp er systems. The goal of software
documentation is to describe software svstems and software processes. According
to information in {22], consistent, correct and conmplete documentation of a software
system is an important vehicle for the maintainer to gain an understanding of the
syvstenn, to case the learning and /o relearning processes, and to make the svstem
more maintainable. Poor system documentation, on the o er hand, is the primary
reason for quick software systemr qu Ly degradation and aging. Proper process doc-
wnentation records the process, its ages and tasks, executing roles, their decisions
and motivations, and the results of cach individual process task.

With reference to the set of documents described in [30], in this work, we arce
focused on using module internal design documents [37] or 1 Hdule interface speci-
fications to drive the developmel]. These two types of documents specifv the
behaviour of the module either i terms of the internal data structure and the effect
of eacli access program on it, or in terms of the externally observable behaviour of

the module.

1.4 llmore Softwar Pi1 ject

The Fillmore Software Project [39, 10}, is a collaborative project between rescarchers
at Memortal University, MNMceMaster niversity and the University of Limerick that

was started in the Fall of 2006 and is aimed at building a suite of tools to provide

1. Intrc iction 6

better support for software specifications or descriptions of software behaviour. The
purpose of these tools is to improve the quality of the developed software.

This project attempts to develop a suite of tools for dev Hpment, analysis and
use of tabular software specifications. The set of tools that may be appropriate
outcomes {rom this project is very large and includes powe 1l editors, document
consistency checkers, verification systems, oracle generators, test case generators and
model checkers. As a part of our wo we implemented the TC 7 part of the Fillmore

Software roject.

1.5 o utline of This Thesis

Chapter 2 describes the related work. Chapter 3 describes the content and the format
of the tvpe of the program specification to be used for generating a test oracle. The
design of the oracle itself and the design of the Test Oracle Generator are discussed
in Chapter 1, and Chapter 5 discus 1 the Test Driven Development approach with

oracles and formal specifications. Chapter 6 discusses the conclusions.

Chs ter 2

Rel: t .4 Work

2.1 Test Driven Development

This section first deseribes TDD p o ctice in detail, then details an empirical study
of TDD t t has been completed by researchers in Germany [26]. It also, describes
some research that uses TDD.

In the DD, before writing implementation code, the developer writes automated
unit test cases for the new functionality they are about to implement. After writing
test cases that generally will not even compile, the developers write implementation
code to] s these test cases. The developer writes a few test cases, implements the
code, writes a few test cases, iimpl ents the code. and so on. The work is kept
within the developers intellectual control because he or she is continuously making
small design and iniplementation decisions and increasing functionality at a relatively

consistent rate. A new functionality is not considered properly implemented unless

2. Related Work 8

these new unit test cases and every other unit test cases ever written for the code
base run properly.

Based on [16]. TDD is considerc preferable over other approaches.

e In any process, there exists a gap between decision (design developed) and
feec ack (performance obtained by implementing that design). The favorable
outcome of TDD can be ascril to the lowering, if not eliminating, of that gap.
as the granular test-then-code cvele gives constant feedback to the deve per
[7). Conscquently, bugs and their causes can be easily determined the bug
must lie in the code that was just written or in code with which the recently
ad d code interacts. An often-cited tenet of Software Engineering, in concert
with the Cost of Change [9], is that the longer a bug remains in a software
system the more difficult and costly it is to remove. By using TDD. bugs are
determined very quickly and the source of the bug is more casily determined.
Therefore. it is this higher granularity of TDD that distinguishes the practice

from other testing and development models.

e TDD gives programmers the o ility to write code that can be tested automati-
cally. such as having functions/methods returning a value which can be checked
aga st expected results. Some benefits of automated testing include: (1) pro-
duction of reliable systems. (2) iinprovement to the qu ity of the test effort,

and (3) reduction of the test effort and minimization of the schedule.

e The TL test cases ereate a thorough regression test od. By comtinuously

running these automated test cases, one can casily determine if a new change

2. Related Work 9

breaks anything in the existing system. This test bed should also allow smooth

integration of new functionality into the code base.

Lately, there are studies to analyze the efliciency of the TDD approach. Aluller
and Hagner [26] reported an exp ment to compare TDD with traditional progra-
ming. The experiment is done with 19 graduate students, evaluated the efficiency
of TDD in terms of (1) programming speed, (2) program reliability and (3) program
understanding. In this experiment, the subjects were divided into two groups, TDD
and coutrol, with each group solving the same task. The ta to be solved in this
experiment is called “GraphBase™. consists of implementing the main class of a
given graph library containing only the mmethod declarations and method conmmments
but not the method bodies: the students completed the body of the necessary meth-
ods. The programming was done this wav to give the researchers the ability to
assess automated acceptance testing for their analysis.

The test cases that was specified by the TDD group was mmplemented while the
code was written, but the control group students wrote autc 1ated test cases alter
completing the code. Subjects work for the two groups was divided into two phases.
an implewentation phase (IP), during which the subjects solved their assigmment
until they thought that their program would run correctly. This phase finished with
their call for the acceptance-test. An acceptance-test phase (AP). during which the
subjects had to fix the faults that caused the acceptance-test to fa The researchers
found no difference between the groups in overall development me. The TDD group

had lower reliability after the IP phase and higher reliability after the AP phase.

2. Related Work 10

However the TDD groups had statistically significant fewer errors when the code was
reused. Based on these results the rescarchers concluded that writing programs in
test-first manner neither leads to quicker development nor provides an increase in
quality. However, the understandability of the program increases, measured in terms
of proper reuse of existing interfaces.

Despite these results, this study is far fromn being a complete evaluation of test-
first programming. The authors encourage other rescarchers to do the experiment
again or to conduet a similar in order to extend the knowledge about test-first.

There are some researchers wlho have described tools that can be used to combine
formal specifications with test drive development without loosing the agility of test
driven development. In [5], Baumecister describes a tool that provides support to
combine formal specifications with test driven development. This is done by using
the tests, that drive the development of the code, also to drive the development of
the formal specification. By generating runtime assertions froin the specification it is
possible to check for meonsistencies between code. specifications, and tests. Each of
the three artifacts improves the ¢ rof the other two, yielding better code quality
and better program documentati the form of a validated Hrmal specification of
the program. This method is exemplified by using the prines example with Java as
the programming language, JUnit as the testing framework, and e Java Modeling,
Language (JML) [24] for the formulation of class invariants and pre- and postcon-
ditions for methods. They use ML since JNL specifications are casily understood

by progrannmers, and because it comes with a runtime assertion checker [11], which

2. Related Work 11

allows them to check invariants and pre- and postconditions of methods at runtime.

Our work is different from the work above in that we use relations for the speci-
fications, which characterize the acceptable set of outcomes for a given input. Also.
we use te oracles that are generated automatically from the program specifications
to determine if the software behaviour is correct or not lor a given test input and
output. By generating oracles directly from the specification we are able to quickly
and accurately check if the specific ion is satisfied by the hmplementation for the
sclected test cases.

In [19]. Herranz and Moreno-Navarro have studied how ¢ technology of For-
mal Mcthods (FM) can interact with an agile process in general and with Extreme
Programming (XP) in particular. They have presented how some XP practices can
admit the integration of Formal Methods and declarative technology. In particular.
unit testing, refactoring, ¢ 1, in a mnore detailed way, incremental development have

been studied from the prisin ol FAL

2.2 (-racle Generation

The research that has been done on improving the efficiency of software testing is
divided into two categories: one is focused on the test case selection [17. 15, 27, 30].
the other has concentrated on developing tools to help genera . maintain and track
the testin docunentation or run 5 i simulated environments [10, 18, 31, 32|A
All previous rescarch arcas are supportive to, but is different from 1e work that has

done in this thesis.

2. Related Work 12

Several rescarchers have developed tools that give the user ¢ ability to determine
il the results of a test are correet or not. In [31]. Panzl explained three different kinds
of automatic software test drivers that can be used to automate the verification of
test results. In [18] Hamlet described another automatic o ing systemn based on
finite test-data sets, implemented by modifying a compiler. The disadvantages of
these testing systemus are: 1) The user should specify the expected result, which nay
be hard to acquire, and 2) The relational specifications. which may accept more than
one acceptable result for a given input, can’t be used because these systems only
compare e expected and actual result.

The last disadvantage is partly solved by Chapman in [10]. This svstem de-
scribes the design and implemen m of a program testing ssistant which aids a
prograimmer in the definition. execution, and modification of test cases during incere-
mental | ogram development. Moreover, it gives the prograr ner the ability to set
the success criteria for a test case or use the default criterion ual, which checks for
simple equality of a result and its correct value. Examples of other success criteria
are set-equal, which checks two sets to see that they contain 2 same clements and
isomnorphic, which checks that arbitrary structures, possibly incluc g pointer cveles,
arc topologically identical.

In[11] ters and Parnas disc s the use of test oracles generated from program
documentation. They describe an algorithm that can be used to generate a test oracle
from program documentation, and present the results of using a tool based on it to

lielp test part of a commercial network managenient application. The results demon-

2. Related Work 14

they specify the desired properties of an ADT which is impleinented by a group of
programs, but the approaches that are used in this work are used specify the effect

ol a single program on some data structure.

3. Mecthodology 16

other inforimal techniques, which leave lots of room for (inis)interpretation.

IT Formal Specifications are matliematical entities, so they may be analyzed

using mathematical methods and tools.

III They can he processed automatically, so we can use thein as an exchange

mec un for software tools that depend on it.
IV They can be used as a guide for identifving appropriate st cases.

V They can be used 1o objectively determine if the behaviour of a svstenn is

acceptable or not.

For automated testing some form of formal specification of the required behaviour is
essential. In a traditional automated testing process. this speci ation is in the form of
the testi ; code, which will iinplement comparisons or tests to deternine if the actual
hehaviour is acceptable. In this work we propose that the specification be expressed in
a mathematical notation and that specification can be used to antomatically generate

testing code.

3.2 Program Specifications

A prograni specification in our work, describes the required behaviour of a program
cither in terms ol the internal data structure and the elfect « each access prograimn
on it. or in terms of the externally observable behaviour of the module. It consists of

these components: constants, variables, auxiliary function an predicate definitions.

3. Methodology 17

the program invocation, which gives the name and type of the program and lists all
its actual argument program variables, and an expression that gives the semantics of

the program. The following explains these in more detail.

3.2.1 Constants

A constant is a special kind of var le whose value cannot be altered during pro-
gram cxcecution. Many programniing languages make an explicit svontactic distinetion
between constant and variable symbols. For example, in Java 1e following are con-

stants: 10 and ~Any Text™.

3.2.2 Variables

In the specification, variables are strings of characters used to represent either tlie
value of program variables in the initial state or final state of an execution, the value of
expressions passed as arguments in auxiliary definitions, or as quantification indices.
Variables which represent quantification indices are considered to represent a value
only where they arce bound.

All variables must have a type and should be defined in the documentation.

3.2.3 Auxiliary Function And Predicate Definitions

The definition of an auxiliary function consists of a name, a type, a list of argument
variables and an expression that defines the semantics of the auxiliary function. Also,

the definition of the auxiliary redi ¢ 1s the same but the expression is a predicate

3. Mecthodology 20

based systems. We have found that the tabular form of the expressions is not only
easier to read. but. perhaps more importantly, it is also casier to write correctly. Of
particular nuportance is that thev make it very elear what the cases are, and that

all cases . considered.

Modern general purpose docu entation tools, of course, have support for tables
as part of the docuiments, but they are often not very good at dealing with tables as
part of mathematical expressions. These tools also encourage authors to focus efforts
on the wrong things: authors will we ¢ very hard to try to get the appearance of the
table right, sometimes even to the detriment of readability(e . shortening variable

namnies so that expressions fit in the columns).

3.2.7 Sample Program Specification

Figure 3.1, specifies a progr: "gged’ which compares an integer value "i” with another
integer vi e 7, returns the greatest common divisor of them if "1 > 0Aj > 0.
otherwise returns 0. Additionally, it indicates il the two integers are positive by using,

the returr value, which i1s reprr nted by a boolean variable ‘result’.

3.3 »ol Support

The tool support hielped us to dev Hp techniques and tools to [acilit e the production
of soltware design documentation that is 1) read: le and understood by the users, 2)

complete and accurate enough to allow analysis, both manually and mechanically and

3. Methodology 21

Program Specification
Boolean
ggcd(Integer i, Integer j, Integer gcdvalue)

i>0A])>0 i<uvj<0
gcdvalue = max({a € [0, min{i, j)]|cDiv{(i, j,x)}) 0
result = || TRUE FALSE

Auxiliary Predicate Definitions

Boolean ¢Div(Integer a,Integer b, Integer x)

I (a%x = 0) A (Wix = 0)

Figure 3.1: Ggcd Program Specification

3) suitable for use as a specification from which to produce an acceptable program.

We can’'t get these things with the general word processors.

3.3.1 OMDoc Docume . Model

As described in [23], the OMDoc (€ en Mathematical Documents) format is a con-
tent markup scheme for (collections of) mathematical documents including articles,
textbooks, interactive books, and courses. OMDoc also serves as the content lan-
guage for the comnunication of mathematical software. ONDoc is an extension of
the Opendlath and (content) MathML standards and concentrates on representing
the meaning of mathematical formulae instead of their appearance. Opendlath and
MathML are formats for individual mathematical expressions and ONDoc is a for-
mat for documents that include mathematics. The specifications in our work consist
of program specifications. whicly, in OMDoc terms. are symbol definitions contained

within theories. Also, cacli svinbol has a tvpe and possibly ot r information. Con-

3. Mcthodology 22

sequently, this leads us to propose our specification model which consists of these

OMDoc clements:

Theory : a theory is a self-contained part of a specification. It could. for example.
represent a requirements specification, a module interface specification, a mod-
ule internal design document or a single program function. A theory contains

zero or more sections of each « the following kind.

Symbol : a symbol is a basic component of a specification: a variable, function.
relation or constant. All svi Hols that are used in a specification must be
defined somewhere, either by eing declared to be a bound variable, defined
i the specification itself, defined (globally) in an imported theory, or from a
standard set (e.g., standard OpenMlath content dictionary). A symbol has the

following attributes:

Name : for referring to the symbol (required).

TTS Role : indicates how tl 1 svinbol is used as part of a specification (op-

tional).
Type : all symbols should have a type supplied.
Definitic : a definition contains an expression that gives the semantics of a synibol.

Presentation : a presentation contains the format for a mathematical svinbol. A

presentation celement has for a ibute which identifies the svimbol represented.

3. Methodology 24

should meet, which might be on such properties as the number of grids, the
index sets of grids, the tvpe of elements in each grid and some properties of the

grids. The restriction must e observed when the tal s are constructed.

An eval ion term : a tabular expression represents a relation which may be a
function. The evaluation term of a tabular expression s to he evaluated to
determine the value of the tak ar expresston for a given assignment. The eval-
uation term is constructed using conventional and tabt i expressions appear

in the tabular expression as well as auxiliary functions.

A set of auxiliary function definitions : these functions are applied in defining
the restriction and the evaluation term and will be used in evaluating or checking

the able.

In OMDoc it is straightforward to add support for tabular expressions, simply by
defining appropriate (OpenMath) symbols to denote them: we use as: bol for “ta-
ble”, whi , following the model p sented in [4], takes four argument expressions

representing

1. The cvaluation term, which expresses how the value of tabular expression 1s
defined in terms of the expre: ns in its grids. For (3.2) this expression would
express that the value is that of the element grid, T/0/. which is indexed by
indices of the true elements of each of the “header” grids, T/1] and T/2/. as
follows: T[0] [select(T[1]).select(T[2])]. where select is a function on a predicate

grid that gives the index of the cell that is true.

3. Methodology 25

2. The static restriction, which defines a conc ion that must be true of the grids.
independent of the expressions in the grids, but possil - dependent on their
types. This is used, for example, to assert the conditions on the number and
size of the grids(i.e.. the shape of the table). For (3.2) is would express that
the index set of the central grid should be power set of the index sets of the

header grids, and that the header grids must contain predicate expressions.

3. The dynamic restriction, which defines a condition that must be true of the grid
oxpressions. This is used 1o assert constraints on the tal to ensure that it has
a well defined meaning. For (3.2) this would assert than the header grids. 771
and T/[2/, must be “proper™ - only one cell expression should be true for any

assignment.

1. A list of grids, which are indexed sets, represented by n-ary applications with

syn ol mgrid™ and taking 1 rs of cell index and cell contents as its arguments.

3.3.2 he Eclipse Framework

Eclipse is a software platform comprising extensible application frameworks. tools and
aruntiime brary for software development and management. It is written primarily in
Java to} ovide software devr Hpers and administrators an integrated development en-
viromment (IDE). “Eclipse emplo: plug-ins in order to provide all of its functionality
on top of (and including) the runtime systeni, in contrast to some other applications
where functionality is typically hard coded™[13]. Using this framework to develop our

tool provides significant advantages over developing a stand-alone tool including, its

3. Methodology 26

widespread use in the user community, its facilities for tight integration of documents

with other software artifacts, and provision of support for software development tasks.

3.3.3 " pecification Editor

As part of our tools, we are developing a specification editor » support production
of software documents, which is illustrated in Figure 3.2. This Editor provides a
“multi-page editor” (which provides different views of the sanie source file) for ».tts”
files, whit are OMDoc files. One page of the editor is a structured view of the doc-
ument. another one shows the raw XML representation, and another gives a detailed
view of the document giving the user the ability to view and edit the mathematical
expressions. The support libraries Eclipse provide technic s to ensure that the
views of e document are consiste: This editor is built using several open source
libraries including the RIACA OpenMath Library.

This ¢ tor is seen as a primary means for the human users to interact with

specification docuinents,

4. Oracle Generation 29

e The oracle generator has a ‘graphical user interface’ which is shown in Figure
3.2, This interface gi- the user the ability to select any program specification
and generate the oracle fronn it. This has the advantage of enabling the user to

interact casily with the specifications.

e The generated test code integrates smoothly with test frameworks (e.g.. JUnit)

and hence, it can be directly used to test the behaviour of the progran.

4.1 Oracle Des’ n

4.1.1 Programming Language

The oracle is implemented using Java. This decision should not be seen as a significant
feature of the design -if the intended application were different. the oracle design

could be trauslated with some changes.

4.1.2 1 rnal Design (verview

The oracle can be viewed as a “compiled’ version of the specification in that it is
generated v translating the ‘source’ specification into an exeer .ble form (Java code).
The oracle can be executed without reference to the specification from which it was
derived. So. it can be integrated smoothly with test frameworks (e.g., JUnit). This
design has an advantage is that it reduces the time required for oracle execution by

giving the user the ability to use optimization techniques.

4. Oracle Generation 30

An alternative approach to design of the oracle is to build it as an ‘interpreter’
which would represent the specification by data and evaluate it directlv. This kind of
design has an advantage that the oracle generation process is relatively simple and.
since there is no gencerated code involved in the oracle, the oracle programs will be the
same lor any specification, only the data they use is dependent on the specification. A
disadvantage for this design is that the oracle will need to mterpret the semantics of
the documentation during e uation, and so would probably ¢ comparatively slow

to execute.

4.1.2.1 xpression Implementation

Any expression consists of one or more sub-expressions, the complexity of imple-
menting this expression is managed by decomposing cach expression into its sub-
expressions and implementing each sub-expression individually. The oracle cc -+ thus
consists + a set of internal functions and objects, each ol which implements a sub-
expression and may call other internal functions or object methods.

All programming languages in g eral, and Java in particu -, provide support for
basic logical and relational operators (i.c. A, V, 0, >, <, = etc.), these operators can be
used to implement somne of the expressions. Also, it is possible to use these operators
for implementing an entire expression as a single Java stateme by trauslating it into
a purely scalar, quantifier free expression (by expanding the quantification to a series
ol conjunctions or disjunctions) b the resulting Java stat ent would consist of

many lines. While this would undoubtedly result in an oracle that executes relatively

4. Oracle Generation 31

quickly, since there would be none of the overhead associated with loops or function
calls. It would, however, require significant effort on the part of the TOG to do the
trauslation and would result in virtually incomprehensible oracle code. So, that is
why the oracle is implemented using the Java logical and relational operators only
where they directly represent the operators in the specification.

Another way to implement expressions is to use a class of Java objects. A specific
expression is implemented by instantiating the suitable objects, v ich include refer-
ences to their sub-expression objects. This helps to simplify the oracle generation
process for expressions that have complex semantics such as tabular expressions. So.
the TOG need only translate the expression into the suitable object constructor. In
this work, we used the above two ways to implement the expressions.

The code to iinplement each type of expression is explained in the following sec-

tions below.

4.1.3 Scalar Expressions

Scalar(i.e. non-tabular) expressions can be translated into equivalent Java statenients
as described below.

4.1.3.1 Logical Opcrators

The logical operators can be directly translated to their Java egivalent, as given

Table 1~ (G and H are arbitrary predicate expressions.)

4. Oracle Generation 32

able 4.1: Logical Operator Conversions

Logical Operator|Java Equivalent
-G G
I\ H (3’|| H
B S CLaan

So, given the expression {a > b A a > 5) in the spec cations. the corresponding

Java code for that expression is:

(a > b)&&(a > H)

4.1.3.2 Quantification

Quantifier expressions are implemented by using loops that call e suitable proce-
dures to enumerate the elements of the set characterized as an integer interval and
the boun ries for the interval given in the specifications. In our test oracle genera-
tor, quantification (V for all, and 3 — there exists) must be restricted to a finite
set, which can be implemented as a java collection so that it can be autonmatically
generated from the specifications. In the example below the boundaries are (0.10).
One distinction hetween the work reported in this thesis and that in [11] is that
the previous work used Inductively Defined Predicate to specify the range for the
quantilication but we used a java collection.

The quantification (V7 : {0..10}.p_B[i] = p-x)”. can be implemented as follows.

boolean result=true;

Integer_Interval bRange ew Integer_Interval (0.,10);

4. Oracle Gener: on 34

public class ggedl_Grid_ 2 'ell_0 extends CellBase{

prive 2 VarMap vars:

public ggedl.Grid.~ Cell_0(VarMap vars){

this.vars=vars;

public Object eval (){

Integer i=(Integer)vars.getValue(”i");

Integer j=(Integer)vars.getValue(”j");

return ((1>0)&&(j >0));

The other cells in each table are implemented in a simil fashion. The oracle
design for the gged tabular expression in Figure 3.1 is illustrated in Figure 1.1 and

the design for the ged tabular expression looks similar.

4. Oracle Generation

36

Boolcan ¢Div(Integer a.Integer b, Integer x)
df

= (a%x = 0) A (b%x = 0)

This is implemented by the following procedure:

package oracles;

import ca. Fillmoresoftware. plugin. OracleUtilitics .

public class AuxFunctions{

static public Boolean c¢Div(Integer a, Integer

x

return (a % x = 0) & (b % x = 0):

*

b, Integer

Suitable calls to this procedure are used in the code that implements expressions

using the auxiliary function.

4. Oracle Generation 37

4.1.6 Compilation and Execution

The oracle in our approach consists of two kinds of code: that generated by the Test
Oracle Generator (TOG). and the other kinds of classes, including Integer_Interval.
InvertedTable. NormalTable and VectorTable, which are not generated by the TOG
but are used by the TOG generated code. For more details about the above classes
see section 4.2

The code below shows the implementation of the root class for the oracle (ggedO-
racle.java) for the sample program specification that described in section 3.2.7. "To

see the whole generated classes from the example sce appendix B
package oracles

import ca.Fillmoresoftware. plugin. OracleUtil ies.x:
import static org.junit.A: 1t .*;

public class ggcdOracle{

priv 2 VarMap vars:

prive 2 Outggedl t0:

public ggedOracle (){

vars=new VarMap():

4. Oracle Generation

38

tO=new Outggedl(vars):

prive e Boolecan ggedTOracle(Integer 1,11 2ger

1teger gedvalue \Boolean result){

Boolean resultOracle;

vars.setValue("1”7 ,i);

vars.setValue (7)7]):

vars.setValue (Tgedve 1e”,gedvalue).

vars.setValue ("result” jresult);

resultOracle=t0.ggedT1():

ret 'n resultQOracle;

4. Oracle Generation 39

public void assertggedTOracle(Integer 1, Integer .

Integer gedvalue ,Boolean result){

assertTrue (ggedTOrac »(i,j,gedvalue result)):

Using the oracle involves implementing test code that ¢ s the program under
test and then calls the oracle proce wes. In this work. the JUnit amework is used
since it has a number of advantage Oune important advantage of JUnit is that 1t
is widely used, which will make it easier for others to understand the test cases and
write new ones. In addition, it provi s a graphical user interface (GUI) which makes
it easier to write and test the programm quickly and easily. JU t shows test progress
in a bar that is green if testing is going fine and it turns red wm a test fails. This s
makes it easy for the softy e developer to quickly identify failing test cases as they
are found. The code below shows how to run the oracle gen ued from the sample
program specification in 3.2.7 with JUmnit:
package oracles:
import org.junit. Before;

import org.junit.Test:

4. Oracle Generation 40

public class OracleTest extends junit.framework. TestCase{

ggedOracle com;
@ Beflore
public void setUp() throws Exception {

com=new ggcdOracle ();

3 Test

public void testCon(){

Integer ge=GCD.ged (25, 20);

com. assertggedTOracle (25, 20,gc , true);

The previous code contains one test case to test that the program correctly finds the
greatest common divisor of (25,20) which is 5. © ¢ greatest common divisor is com-
puted by the static method GCD.ged(int.int) meant to implement the specification.
The user can add any number of test cases. The result for the previous code is shown

in Figure 1.2.

4. Orac Generation 43

4.2.1.4 Anticipated Ct 1ges

The items that are likely to change ring the development ol 1e TOG in the future:

e The format of the spee -ation file. It is possible to add new elements to our

specification file over time and change the existing eletnents.

e The programming language that used to implement the oracle. Currently, we
are using Java to implement the oracle. It is possible in the future to usc another

language such as C++4.

e The design ol the oracle. For example: each cell in the tabular expressions is
nplemented as Java class. It is possible in the future to implement all cells in

one class.

e Tlhe user interface that is u 1 to interact with the spec ca ms. We may add
new features to the user interface such as giving the user the ability to view the

tree representation of the mathematical expressions.

1 2.2 acks “es

The TOG implemented as a set of packages, cach of which contains a sct of classes
that encapsulate design decisions. Also, the packages can be divided into sub-packages
which cor un more specifie design decisions. This approach has advantages that the
design is casier to understand because of this separation of ¢ erns, and it is easier

to change the TOG since the deci 1 affected by the change are likely to be isolated.

4. Oracle Generation 50

id="ca.Fillmoresoftware.plugin.preferences.Fillm« :PreferencePage"
n ="Fillmore Preferences"/>
<page
category="ca.Fillmoresoftware.plugin.preferences.FillmorePreferencePage"
cl "ca.Fillmoresoftware .ugin.prefer :es.TestOraclePreferences"
id="ca.Fillmoresoftware.pl .n.preferences.test0racle"
name="Test Oracle (|erator"/>
</extension>
<extension
point="org.eclipse.core.runtime.preferences">
<initializer
class="ca.Fillmoresoft re.plugin.preferences.Preferencelnitializer"/>

</extension>

Also. 15 package includes these classes FillmorePreferencePage.java. Preference-
Constants.java, Preferencelnitializer.java and TestOraclePreferences.java which im-
plement the preference pages. This package is modified to ar preference pages for
the Test + acle Generator. These 1 es give the user the ability to specify: the path

for the TOG output oracle code, the output package name and the imported libraries.

4.2.5 Symbols Representation

Functions and operators in ONMDoc are encoded as “symbols”™, which are defined
either in Content Dictionaries, for the standard functions and operators. or iu the

document itself, for functions that are particular to the given specification. The

4. Oracle Generation 52

symbols are necessary to illustrate the concept of defining the presentation for
new symbols. So, these examples below illustrate how to represent the previous

symbols.

Plus Symbol:

<presentation for="plus">
<use format="java" fixit 'infix" lbrack="(" rbrack=")"> + </use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:
(a4)

Minus Symbol:

<presentation for="minus'
<use format="java" fix: 'infix" lbrack="(" rbracl ')"> - </use>

</presentation>

If the children for this symbol were a and b. The Java Output Code will be:
(a-b)

All symbols in this category have the same values of the attributes in the “use”
clement but they are different in the value between the start and end tag of the
“usc” element. The table below shows the values of the “use” element for the
rest of the previous symbols and the generated java code if the children of the

symbols are a and b.

4. Ora:« @ Generation 55

Array_get Symbol:

<presentation for = "array_get">
<use format = "java" lbrack = "[" rl ack = "]"/>
</presentation>

If this symbol has two children and they were A and i. The Java Output Code

will be:

(Afi])
If this symbot has th children and they were A, i and j. The Java Output

Code will be:

(AL])

Dot Symbol:

<presentation for = "bar">

<use format = "ja ' 1t ack = "(" rbrack = ")" parator = ",">
</use>
</p: 11 ;ion>

If is svinbol has two children and they were a and b. The wa Output Code

wi oo
(a.bar(b))
If this symbol has more than two children and they were a, b, ¢ and The

Java Output Code will be:

4. Oracle Genceration 57

versed using a depth-first traversal and each sub-expression is implemented in turn
as described in section 4.1.2.1. The code that gives the value of each sub-expression
is written into a buffer which is usc to construct the code for the ‘parent’ expres-
sion. This process continues until t1 root expression has been implemented and the

resulting code is used as the body of the procedure in the oracle.

Cha ter 6

Future Wor': nd Conclus on

6.1 Ful_re Wor

Clearly a next step in this research and tool development w be to support test case
generation from the specification as well, which will further :duce the amount of
‘manual’ test code developinent ¢ nt.

Also, applving the techniques to real problemns in a real-world development en-
vironment will undoubtedly provide some insight and help to refine the technigues.
Other possible improvenients in the tool set (c.g.. better visual editing etc.) could be
done in the future developn 1 of these tools. In addition to 1at using these tools

to do analvsis of the test cases (e.g.. coverage of the specification).

72

6. Future Work and Conclusion 73

6.2 Conclusions

In test driven development, tests arc used to specify the behaviour of the program,
and the tests are additionally used as documentation of the prograni. However,
tests are not sufficient to completely define the behaviour of a rogram because they
only define the program behaviour by example and do not state general properties.
So, the latter can be achieved by ing our TDD approach, which uses a nwmal
specification to specify the behavic of the program and supports testing directly
against that specification by generating oracles. The outcome of this tecdmique is
that, at the end of the development period, the developer has produced not only a

working implementation, but also a complete specification and a fi ~ set of test cases.

Api 2ndix A

Cla 5 Responsi ility Colla »orator

(CRQC)

The UML diagrais for the packages in the system are descril 4 in chapter 1.

A.1 Class Respon: ility Collaborator (CRC) Ta-

bles

Table A.1: GenerateAuxFunAction Class Respons ility Collaborator
(CRC)

renerateAuxFur ction
Generates the code for auxiliary functions|Spechodel
SpechMo Element
Symbol
Definition
CodeFromOMobject

Appendix B

The Cenerated Oracle Co le

B.1 The Generate Oracle Code From The Sam-

ple Example

This section shows the classes generated from the sample ‘ggecd’ program specification

given in 3.2.7

package oracles;

import ca.Fillmoresoftware.plugin. OracleUtilities . x;
import atic org.junit.Assert.*:

public .ass ggcdOracle{

private VarMap vars:

87

B. The Generated Oracle Code

88

private Outggcdl t0;

publ ggcedOracle (){

vars=new VarMap ();

t0=new Outggcdl(vars):

private Boolean ggcdTOracle(Integer i,Integer J.

Integer gcdvalue,Boolean result){

Boc *an resultOracle;

vars.setValue (71" ,1);

vars.setValue("j" .j);

vars . setValue (Tgedvalue”™ (gedvalue):

vars.scetValue(“result”™ result);

B. The Generated Oracle Cnde 89

resultOracle=t0.ggedT1 ():

return resultOracle;

public void assertggcdTOracle(Integer 1, Integer j,

Integer gecdvalue ,Boolean result){

assertTrue (ggedTOracle (i, .gedvalue ,result)):

package oracles:
import java.util.*:
import ca.fillmoresoftware.plugin. OracleUtilities . «:

public class Outggedl{

priv: 2 VarMap vars;

private VectorTable nTable;

B. The Generated Oracle Code 90

public Outggedl (VarMap v rs){

this.vars=vars;

nTable=new VectorTable (3):

Celllndex inHeaderl[]=new Celllndex [2];

Celllndex inHeader2[]=new Celllndex [2]:

for (int k0=0:k0<2:k0++)

inHeader1 [kO]=new C¢ Index(1):

for (int kl1=0;kl<2:kl++)

inHeader2 [kl]=r - Celllndex (1):

Cellludex inMain[v Celllndex [4];

for (int j=0;j<4;j++)

inMain | j]=new Cecllludex (2);

inHeaderl [0]. set (0,0):

l
1

B. The Generated Oracle Code 92

nTable.addMainCell (inMain[1] ;new gged1l _Grid_0_Cell 1 (vars)):
nTable.addNMainCell (inMain (2] .new gged1_Grid 0_Cell 2 (vars)):

nTable. addNMainCell (inMain [3] .new gged1_Grid _0_Cell 3 (vars)):

public Boolean ggedT1(){

Boolean result=nTable.evaluateTable ():

return result

package oracles:

import ca. Fillmoresoftware. plugin. OracleUtilities . *:

public class AuxFunctions{

static public Boolean c¢Div{(Integer a,Integer Db,Integer

x){

B. The Generated Oracle Conde 93

return (a % x = 0) && (b % x = 0);

package oracles:
import java.util.*;:
import ca.fillmoresoftware. plugin. OracleUtilities . *:

public class ggedl_Grid 0 ell.0 extenc Cell ase{

private VarMap vars:

public ggcdl_Grid_0_Cell 0 (VarMap vars){

th . vars=vars;

public Object eval(){

Integer i=(Integer)ve s.getValue("1"):
Integer j=(Iuteger)vars.getValue("j"):

Integer x=(Integer)vars.getValue("x"):

B. The Generated Oracle Cnde

94

Integer gecdvalue=(1 .eger)vars.getValue("gcdvalue™):

return (gcedvalue==AuxFuuctions.ceDiv(i,j,x));

package oracles:

import java.util.*;

import ca.[illmoresoftwarc.plugin. OracleUtil ies.x;

public class ggcdl_Grid 0 ell.1 extends CellBasc{
private VarMap vars;

public ggcdl_Grid_0_Cell_1(VarMap vars){

th vars=vars;

public Object eval (){

Integer gecdvalue=(Integer)vars.getValue(”gedvalue™):

B. The Generated Oracle Code 95

return (gcedvalue==0):

package oracles;

import java.util . *:

import ca.fillmoresoftware.plugin. OracleUtil ics. *:

public class ggcdl_.Grid_0_Cell_2 extenc CellBase{
private VarMap vars;

public ggcdl _Grid_0_Cell 2 (VarMap vars){

th . vars=vars:

public vject eval (){

Boolean result=(Boc ran)vars.getValue("result™):

B. The Generated Oracle Code

96

return (result=true);

package oracles:

import java.util.x;:

import ca.fillmoresoftware.plugin.OracleUtilities.*:

public class ggcd1.Grid 0 ell.3 extends Cell 1ise{
private VarMap vars:

public ggcedl_Grid_0_.Cell_3(VarNMap vars){

th . vars=vars:

public Object eval (){

Boolean result=(Boolean)vars.getValue("result™);

return (result=false):

B. The Generated Oracle Code

package oracles;

import java.util.*;

import ca. llmoresoftware.plugin. OracleUtilities . «;

public class ggedl1.Grid_1_Cell_0 extends CellBase{
private VarMap vars:

public ggcdl_Grid_1_Cell 0 (VarMap vars){

this.vars=vars:

public Object eval (){

Integer gedvalue=(Integer)vars.getValue (" gedvalue™):

return gcdvalue;

B. The Generated Oracle Code

98

package oracles

import java.util.x;

import ca.fillmoresoftware. plugin. OracleUtil les.x*;

public class ggedl_Grid.1

private VarMap vars;

'ell.1 extends CellBase{

public ggedl.Grid_1_.Cell_1(VarMap vars){

th . vars=vars;

public Object cval (){

Boolean result=(»>ol

ret 'n result;

1)vars. getValue (" result ™)

B. The Gencrated Oracle Code 99

package oracles;
import java.util.x*;
import ca.fillmoresoftware.plugin.OracleUtil ies.x*;

public lass ggcdl_Grid_2_Cell.0 extends CellBase{

private VarMap vars;

public ggcdl_Grid_2_Cell_0(VarMap vars){

th vars=vars;

public Object eval (){

LERAR AL

Integer i=(Integer)ve 3.getValue("i");

Integer j=(Integer)vars.getValue("j"):

ret n ((i>0)&&(j >0));

B. The Generated Oracle Code 100

package oracles;
import java.util.x;
import ca.fillmoresoftware.plugin.OracleUtil 1e .x;

public class ggedl_Grid_2_Cell.1 extends CellBase{

private VarMap vars;

public ggcdl_Grid_2_Cell_1(VarMap vars){

this. vars=vars;

publ Object eval (){

Integer i=(Integer)vars.getValue(”i”);

In ser j=(Inte :r)vars. :tValue("j”);

bl

return ((i <=0)[[(j <=0));

Bib lography

1]

9]

10]

R. IF. Abraham. Evaluating generalized tabular expressions in software docunien-
tation. M. Eng. thesis, McMaster University. Dept. of Electrical and Computer
Eng weering, Hamilton, ON, Feb. 1997.

S. Ambler. Agile Database Techniques:Effective Strategies for the Agile Softwarc
Developer. Wiley Publishing, U ited States of America, 03.

S. Antoy and D. Hamlet. Self- ecking against formal specifications. In W. W,
Koczkodaj, P. E. Lauer, and A. A. Toptsis, editors, Proc. Int’l Conf. Computing
and Information (ICCI), pages 355 360. IEEE Computer Society Press. May
1992.

A. Balaban, D. Bane, Y. Jin, 1d D. Parnas. Mathematical model of tabular
expt ions. SQRL Document, 2000.

[I. Baumcister. Combining formal specifications with test d - en development.
pages 1 12, Springer Berlin/Heidelberg, 200-1.

K. Beck. Extreme Programming Erplained: Embrace Change. Addison-Wesley,
2000.

K. Beck. Test-Driven Devel nt by Erample. Addison-Wesley, 2003.

G. Bernot. M. Gaudel, and . Marre. Software testing based on formal speci-
fications: A theory and a tool. Software Engineering Jowrnal, 6:387 105, June
1990.

B. \W. Bochmn. Software Engineering Economics. Englewood Cliffs. NJ: Prentice-
Hall, Inc., 1981,

D. Chapman. A program testing assistant. Communications ACM, 25(9):625
631, -pt. 1982

101

BIBLIOGRAPHY 104

[38]

39]

40]

a5

|40]

[47]

D. K. Peters. Generating a test oracle from program documentation. M. Eng. the-
sis, McNaster University, Dept. of Electrical and Computer Engineering, Hamil-
ton, ON. Apr. 1995.

D. K. Peters, M. Lawford, and B. T. y Widemann. An IDE for software devel-
opment using tabular expressions. In B. Spencer, M.-A. Storey, and D. Stewart,
editors, Proc. Conf. of the Centre for Advanced Studies on Colluboralive Research
(CASCON), pages 248- 251, Ontario, Canada. Oct. 2007,

D. K. Peters, M. Lawford, and B. T. v Widemann. Software specification us-
ing tabular expressions and omdoc. In M. Kauers, M. Kerber, R. Miner, and
W. Windsteiger, editors, Proc. ‘alculemus/MKM 2007 Work in Progress. nuin-
ber L. 06 in RISC-Linz Report Series, pages 61-75, Johannes Kepler University.
A-1010 Linz, Austria, June 2007. Research Institute for ¢ nbolic Computation.

D. K. Peters and D. L. Parnas. Using test oracles ge rated from program
documentation. IEEE Trans. Software Engineering, 24(3):161 173, Mar. 1998.

C. Quinn, S. Vilkomir. D. Parnas, and S. Kostic. Specification of software com-
b
ponent requirements using the trace function method. In Int'l Conf. on Software
Engineering Advances, page 50, Los Alamitos, CA, USA, 2006. IEEE Computer
g g

Society,

D. J. Richardson, S. L. Aha, 1d T. O. O'Malleyv. Specification-based test oracles
for reactive svstems. In Proc. Int’l Conf. Software Eng. “SE), pages 105 118,
May)92,

t

D. S. Rosenblum. A practical proach to programming with asscrtions. [EEE
Trans. Software Engineering, © 1):19 31, Jan. 1995.

P. A. Stocks and D. A. Carrington. Test templates: A specification-based testing
framework. [n E. Straub, editor, Proc. Int’l Conf. Software Eng. (ICSE), pages
105 1.1, Nay 1993.

Q. M. Tan. A. Petrenko, and G. v. Bochmann. A test generation tool for specifi-
caiton in the fornr of state machines. Technical Report 10 3, Department d'TRO.
Université de Montréal, 1996.

Y. Wang. Specifying and Simulaling the Externally Observable Behavior of Mod-
ules. PhD thesis, Dept. of Computing and Information Science, Queen's Univer-
sity, Kingston, Ontario, Canada, 1991

