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Abstract 

One of the problems encountered with intensive production of Atlantic 

cod (Gadus morhua) is inconsistent growth and survival from hatch 

through metamorphosis. This could be attributed in part to a poor 

understanding of the optimal culture conditions required for large

scale commercial production. Studies to date have indicated that cod 

larvae reared under higher light intensities perform better than larvae 

reared under lower light intensities. The present study examined the 

growth, survival and foraging behaviour of Atlantic cod larvae reared 

under varying light conditions and tank colour. Weekly length and 

weight measurements were taken, and foraging behaviour was 

observed twice a week and the orientation frequency, number of 

capture attempts, number of capture misses as well as the length of 

time spent swimming versus the amount of time the larvae spent 

motionless were recorded. 

In the first experiment, cod larvae were reared in three different light 

intensity regimes: treatment 1 used 2200 lux from 3 - 58 days post 

hatch (dph), treatment 2 used 2200 lux from 3 - 27 dph and 600 lux 
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from 28- 58dph, treatment 3 used 2200 lux from 3 - 39 dph and 600 

lux from 40- 58 dph. The results demonstrated that larvae reared in 

treatment 2 had better growth at the end of the experiment in terms of 

standard lengths (17.7 mm) and dry weights (0.068 mg) than the 

larvae reared in treatments 1 (12.3 mm, 0.0338mg) and 3 (14.1 mm, 

0.040 mg). Larvae reared in treatment 2 were also shown to be more 

efficient foragers than larvae from the other two treatments, based on 

the Modal Action Pattern (MAP) analysis. However, there were no 

significant differences in the survival between the three treatments. 

The results of this study indicated that beyond 27 dph it is not optimal 

to rear larvae under high light intensities and that the light intensity 

could be reduced at an earlier stage than previously thought. 

In the second experiment, larvae were reared in tanks with black 

walls and either light (beige) or dark (black) bottoms under the light 

regime from experiment one that provided the best growth. Results 

showed no signif icant differences in the growth, foraging behaviour or 

survival of Atlantic cod larvae in response to tank bottom colour 

indicating that larvae can be reared in lighter bottomed tanks without 
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any detrimental effects to the behaviour, growth and survival of the 

larvae. This finding is beneficial to the culturists as light coloured tank 

bottoms provide the opportunity to monitor larval development and 

behaviour closely. 
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1.0 Introduction and Overview 

In recent years, Atlantic cod (Gadus morhua) has been identified as a 

species that has great potential for commercial aquaculture 

production. As a result, research has focused on the development of 

methods and protocols directed towards successful mass production. 

It is suggested that the bottleneck to commercialization of marine 

finfish is the mass production of juveniles (Tilseth et al., 1992). One of 

the major problems encountered with intensive cod production is 

inconsistent survival and growth rates from hatch through to 

metamorphosis and weaning. A clear understanding of physical and 

biological constraints acting upon the larvae is essential to create 

protocols that maximize growth and survival under culture conditions 

(Downing and Litvak, 1999). If the problem of early growth and 

survival of Atlantic cod is to be resolved then further examination of 

the husbandry issues affecting the early life stages of larval cod 

should be prioritized . Light and tank background colour are important 

husbandry parameters that affect larval foraging , growth and survival 

(Planas and Cunha, 1999; Puvanendran and Brown, 2002). 



1.1 Light 

The limited success of intensive rearing of many marine finfish 

species to date is due in part to a poor understanding of the optimal 

culture conditions. In order to produce a large number of healthy 

juveniles, rearing conditions need to be better understood and 

consequently modified. Light is one of the least understood and most 

important physical parameters of the finfish rearing environment 

(Planas and Cunha, 1999) which influences the development from 

the egg stage to sexually mature adults (Manger-Jensen and 

Waiwood, 1995; Hansen et al. 2001 ). 

There have been a number of studies on the light requirements of 

different marine species. These studies have demonstrated that most 

marine fish larvae are visual feeders (Biaxter, 1986). When both 

olfactory and visual cues are present, the chemical stimulus is 

fundamental in causing the fish to orient towards the prey, whereas 

vision becomes important for ingestion once the fish are in close 

proximity to the prey (Mills et al. , 1984 ). It appears that the early 
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larval stages require a "threshold" light intensity to initiate feeding with 

feeding incidence increasing as light intensities increase (Biaxter, 

1986). Changes in light intensity may also result in a shift to feeding 

on food items that have different characteristics (size, motion, 

transparency, etc.). Mills et al. (1984) observed that young yellow 

perch (Perea flavescens) fed on large daphnids at low light intensity 

and shifted to smaller prey as light intensity increased. 

Studies have shown that larval response to a particular characteristic 

of light is species specific. Bolla and Holmefjord (1988) reported that 

Atlantic halibut (Hippog/ossus hippog/ossus) yolk sac larvae develop 

abnormally in the presence of light. Saka et al. (2001) reported that 

Gilthead sea bream (Sparus aurata) performed better under low light 

intensities, while Downing and Litvak (1999) reported larval haddock 

(Melanogrammus aeglefinus) performed better at higher light 

intensities. The determination of ideal light conditions for culturing 

larval finfish is further complicated by the fact that there may be 

different light requirements for different populations of the same 

species. Puvanendran and Brown (1998) reported that two 
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populations of Atlantic cod larvae grew and survived differently under 

the same light conditions. The response of finfish larvae to light could 

also be stage specific (Bolla and Holmefjord, 1988; Puvanendran and 

Brown, 2002). Boeuf and LeBail (1999) suggested that fish should be 

reared within a light range that is appropriate for the developmental 

stage and the species, as too much light can be stressful and too little 

light could affect their foraging . 

There have been a number of studies mentioned previously on the 

light requirements of different marine species (Bolla and Holmefjord, 

1988; Puvanendran and Brown, 1998; Downing and Litvak, 1999; 

Saka et al. 2001 ). These studies have shown that larval response to 

a particular characteristic of light is species specific. Blaxter (1986) 

stated that most marine fish larvae are visual feeders and as such 

require a minimum amount of light in order to initiate feeding once the 

yolk sac has been depleted and they are making the critical switch 

from endogenous to exogenous feeding . Intensities below this 

minimum intensity will result in a failure to forage, causing starvation 

and eventual death. Mills et al. (1984) stated that while olfactory 
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stimuli played an important role in enabling larval orientation towards 

the prey, vision was ultimately responsible for successful capture of 

the prey. 

Despite an impressive amount of research on the early life history of 

Atlantic cod larvae, only a few studies have examined the effects of 

light on growth and survival. Research has been conducted on the 

effect of light intensity on starving Atlantic cod larvae (Skiftesvik, 

1994 ), the growth of yolk sac larvae (Solberg and Tilseth, 1987), the 

feeding incidence of the first feeding larval stage (Huse, 1994 ), and 

the differential responsiveness of larvae from two populations to 

varying light intensities (Puvanendran and Brown, 1998). 

Puvanendran and Brown (2002) also investigated the effects of light 

intensity on growth and survival of a single population of larval 

Atlantic cod, and they reported a higher survival rate in Atlantic cod 

larvae reared under high light intensities (2400 lux) than their 

counterparts reared under lower light intensities (600 lux). In their 

study, larvae reared under low light intensities also showed reduced 

growth when compared to those reared under higher light intensities. 
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However, lack of significant differences in the growth rates of larvae 

among the treatments after 28 dph indicated that a lower light 

intensity might be sufficient or even optimal to obtain maximum 

growth and survival during late larval stages. However, it was not 

known from their study at what developmental stage the light intensity 

should be decreased, or by how much, in order to obtain optimal 

growth and survival. Therefore, the foraging behaviour, growth and 

survival of cod larvae in response to three different light intensity 

regimes at different developmental stages was investigated in the 

present study to determine if lower light intensity at the later larval 

stages would be beneficial. 

1.2 Tank Background Colour 

If growth and survival in culture conditions are to be maximized then 

the physical and biological factors that affect the development of the 

larvae need to be examined, understood and adjusted for each 

individual species. One such physical parameter that has been 

examined for a number of species is background colour. The effects 

of tank background colour and light intensity on larval fish foraging, 
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growth and survival are contradictory (Ostrowski, 1989; Chatain and 

Ounais-Guschemann, 1991 ). In choosing a light regime for larval 

culture, it is not sufficient to consider just light intensity, but also how 

the light disperses and reflects in response to tank background 

colour. The reflection and dispersion properties will consequently 

affect the contrast between the prey and background of the tank. In a 

fish tank, the light is usually provided from a single direct source. 

When light enters the water, part of it is absorbed and part of it is 

reflected and scattered by particles. With the light source above the 

tanks being highly directive, the reflective properties of the tank walls 

and bottom become very important (Naas et al., 1996). In the sea, the 

horizontal and downward vertical visual background is dark, while 

prey and predators reflect light and appear lighter than the 

background, giving good contrast (Naas et al., 1996). Naas et al. 

(1996) recommended using black tanks because they provide a light 

regime that best represents natural conditions. They argued that in 

nature and in black tanks the dispersion and scattering of light 

particles make prey appear bright in contrast to a dark background. In 

white tanks, reflection of light on the sides and bottom may create an 
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excessively bright environment that may interfere with the vision of 

the larvae and consequently prey capture. Conditions that maximize 

contrast between prey and environment should facilitate detection 

and the capture of food by larvae, particularly during the critical 

switch from endogenous to exogenous feeding . This contrasting 

visual field would allow the larvae to maximize their foraging success 

through a series of events that include prey encounter rate, attack 

frequency and the consequent capture of prey (Wanzenbock and 

Schiemer, 1989). Many culturists also recommend the use of dark 

tanks for marine finfish larval rearing because the larvae tend not to 

accumulate along the walls, resulting in less damage to the fish due 

to abrasion (Naas et al., 1996). Naas et al. (1996) stated that the 

black tanks seemed to be the best system to provide an illusion of 

natural conditions. The phototactic response of fish larvae, that 

causes them to swim towards a genetically programmed optimal 

illumination , may well lead them to a reflecting tank wall or bottom 

(Naas et al., 1996; Martin-Robichaud and Peterson, 1998; Tamazouzt 

et al. , 2000). If this hypothesis is true then the light walled , light 

bottomed tanks may be a trap. However, they also suggested that a 
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black walled tank with a light bottom might be an interesting 

alternative to consider. This new set-up would provide a lighting 

gradient toward the center of the tank, which would potentially bring 

the larvae away from the walls via positive phototaxis. This behaviour 

should ultimately prevent damage to the larvae due to tank abrasion. 

Optimal background colour for larviculture, like light intensities, varies 

among species. Studies have shown that black walled tanks were 

suitable for rearing herring ( Clupea harengus) (Biaxter, 1968) and 

turbot ( Scophthalmus maximus) (Howell, 1979) larvae and larval 

striped bass (Marone saxatilis) reared in black walled tanks started 

feeding earlier than larvae reared in white tanks (Martin-Robichaud 

and Peterson, 1998). Conversely, haddock (Melanogrammus 

aeglefinus) larvae, did not grow and survive well when raised in a 

black walled tank in combination with low light intensity (Downing and 

Litvak, 1999) and Chatain and Ounais-Guschemann (1991) reported 

better growth of gilthead sea bream (Sparus aurata) reared in white 

tanks, but higher survival in black tanks. However, all these studies 

examined the effects of background tank colour using a similar colour 
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for the bottom and side of the tanks and to my knowledge did not 

examine a combination of different wall and tank bottom colours. A 

study examining different combinations of bottom and tank wall 

colours (for example lighter and darker bottom colours with black side 

walls) could provide more insight into the effect of background colour 

on the behaviour, growth and survival of marine finfish larvae. If a 

species does indeed perform better in a lighter bottomed tank, then 

this would be advantageous from a husbandry perspective, because 

larvae would be more easily detected in light coloured than in dark 

coloured tank bottoms thus better facilitating larval observation and 

the monitoring of larval development. Many larval marine fish are 

positively phototactic which causes them to orient towards reflective 

surfaces (Naas et al., 1996; Martin-Robichaud and Peterson, 1998; 

Tamazouzt et al., 2000), which would cause the larvae to aggregate 

to the walls of light coloured tanks. Martin-Robichaud and Petersen 

(1998) reported that striped bass were distributed more 

heterogeneously throughout the water column in black tanks and 

tended not to accumulate at the edge of the water surface and along 

the tank walls as they did in the white tanks. 
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While there has been a considerable amount of research done on 

larval rearing with background colour, most of it was done with light 

and dark tank bottoms and walls but to the author's knowledge there 

has been little research comparing the same coloured walls with 

different coloured bottoms. With this in mind, the aim of the present 

experiment was to determine if larvae reared in light bottom tanks 

with black walls performed differently than larvae reared in black 

walled tanks with black bottoms. 

1.3 Vision 

For visually dependent planktivorous larvae, small eye size at the 

beginning of exogenous feeding when yolk reserves are being 

depleted can place constraints on visual function and consequently 

on foraging. Within the constraint of small eye size, photopic acuity is 

optimized at the expense of sensitivity by the presence of a "cone 

only" retina (Pankhurst and Hilder, 1998). The cone only retina limits 

visual function to near surface waters in nature where light intensities 

are high. Rods and double cone photoreceptors develop within the 

retina following the development of single cones (Pankhurst and 
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Eagar, 1996). As the fish grow, this has implications for vision 

dependent behaviours due to the fact that cones and rods have 

different functional roles in fish vision. Cone photoreceptors are 

associated with acute visual resolution and colour contrast 

discrimination under photopic conditions (Ali and Klyne, 1985) while 

rods are specialized for non-acute visual discrimination under very 

low light intensity. Having a cone only retina, the visual function of 

pelagic larval fish is limited. This limits their visual function and 

consequently, they require high light intensities to detect and capture 

prey successfully (Pankhurst and Hilder, 1998). It is important for 

pelagic fish larvae that are dependent upon vision for feeding and 

other behaviours to be able to accommodate the visual demands 

associated with the habitat or environmental shift to deeper waters 

during their ontogenic development. The ontogenic shift in vision that 

usually occurs around metamorphosis has been attributed to changes 

in retinal morphology whereby the ratio of rods to cells in the inner 

nuclear layer and the cells in the ganglionic layer increase causing an 

increase in resolution capabilities under lower light conditions (Shand, 

1997). 
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Several studies have indicated that most marine larvae at hatch have 

only a pure cone retina and that rods are added to the retina as the 

larvae grow (Brancheck, 1984) and the timing of the appearance of 

the rods depends on the species (Biaxter, 1986). Because rods 

facilitate vision under dark conditions (Biaxter and Staines, 1970), it 

has been speculated that larval cod may have developed rods in their 

retina by 28 dph (Puvanendran and Brown, 2002). This will enable 

larvae at low light to feed and grow at similar rates to larvae reared in 

higher light intensities after this point. With this in mind, treatment two 

of the first experiment examined the effect of lowering light intensity 

at 28 dph. 
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1.4 Foraging Behaviour and Growth 

If feeding, growth, and survival are to be optimized , both behavioural 

and physiological aspects of the larvae need to be considered. If we 

simply look at growth, important patterns of behaviour that influence 

development, growth and survival may be overlooked. Behavioural 

observations provide a better explanation of the growth and survival 

of larval finfish (Laurel et al. , 2001; Rabe and Brown, 2001 ; Brown et 

al. , 2003). There are a number of parameters used to measure the 

growth of larvae. Monitoring the increase in size of the fish will give 

an indication of the overall success of the larvae in terms of feeding 

and growth. The examination of growth, however, is complicated by 

a number of variables that influence the ability of the larvae to grow 

and survive. This includes, but is not limited to, temperature, 

dissolved oxygen, prey density, size and quality, and the factors to be 

examined in this study, light and tank background colour. These 

factors are somewhat easy to control under experimental conditions. 

However, in a commercial hatchery, where everything is conducted 

on a larger scale, it may be necessary to alter protocols to make large 
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scale production more feasible. By understanding the conditions in 

which larval fish forage most successfully, we will be better equipped 

to implement rearing protocols that will enhance mass production of 

cod on a commercial scale. 

First feeding of cod larvae occurs around 3-5 dph (Skiftesvik, 1992). 

The larvae then begin feeding on small zooplankton , and they must 

successfully capture these prey items to obtain the necessary energy 

and nutrient reserves that are required upon the depletion of the yolk 

sac. Yin and Blaxter (1987) found that the peak feeding rate and 

intensity in yolk sac larvae occurred on the day that the yolk sac 

became fully absorbed. They also observed that larvae would reach 

"a point of no return" (PNR) if the larvae did not initiate feed ing within 

3-5 days after the yolk sac is depleted. Beyond this point, the larvae 

will not initiate feeding and will not survive. Usually, a lack of prey of 

suitable concentration, type and/or size is the major cause of 

mortality, due to starvation, during the first few weeks after hatching. 

Puvanendran and Brown (1999) observed that cod larvae reared in 

prey densities of less than 1000 prey L-1 do not survive to 

15 



metamorphosis while unfavourable prey size at different larval stages 

would also cause larval mortality (Puvanendran et al. , 2004 ). 

Cod larvae are saltatory predators, meaning that their search for prey 

occurs when they are stationary and they search within the entire 

volume of the search space (Hunt von Herbing and Gallager, 2000). If 

the larva is not successful in catching prey, it will swim a short 

distance before it searches again. This pattern falls somewhere 

between cruising predators that move continuously throughout the 

water while searching for prey, and ambush predators that do not 

move for extended periods but remain still and wait for prey items to 

enter their search area (O'Brien et al. , 1986, 1989, 1990). 

The process of capturing prey requires energy (Griffiths, 1980). For 

larvae to grow and survive they must, to a certain extent, be able to 

balance the amount of energy reserves obtained from the prey with 

the energy expended to capture it. Hunt von Herbing and Gallager 

(2000) found that in Atlantic cod larvae the percentage of successful 
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attacks on prey increased with fish size. In all size classes successful 

attacks had smaller attack distances and faster attack speeds. 

Because unsuccessful attacks expend energy, smaller first feeding 

larvae seemed to prefer slow swimming prey, whereas larger larvae 

had higher swimming speeds and captured larger and faster prey. 

Therefore, throughout the larval development period one would 

expect to see ontogenic changes in foraging behaviour. The changes 

in the behaviour of larval cod start with the onset of exogenous 

feeding, where the level of activity increases but the swimming speed 

decreases (Skiftesvik, 1992). Munk (1995) reported that cod larvae 

seem to be quite flexible in their foraging behaviour. As the prey 

density decreased, the swimming activity and the responsiveness to 

prey increased, and prey size selectivity decreased. 

The accessibility of zooplankton prey to visually feeding larvae is a 

function of the reaction distance to particular prey. Visual acuity and 

reactive distance increase with increasing light intensity (Biaxter and 

Staines, 1970). Increased visual acuity and reactive distances 

increases the prey encounter rate and thus enhances foraging 
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efficiency (Mills et al., 1984 ). Thus reduced light intensities probably 

influence the relative ability to detect the prey, the reactive distance, 

encounter rate, and searching abilities (Puvanendran and Brown, 

2002). 

Previous studies (Downing and Litvak, 1999; Cerqueira and Brugger, 

2001; Puvanendran and Brown, 2002) showed that light intensity and 

tank background colour affect the foraging behaviour, growth and 

survival of finfish larvae. Thus in the present study, the foraging 

behaviour, growth and survival of larval Atlantic cod in response to 

three varying light intensity regimes and two different tank bottom 

colours were monitored with an aim to provide a better understanding 

of larval cod performance. It is expected that the present study would 

ultimately determine which light regime and bottom colour would 

provide maximum growth and survival of larval Atlantic cod. 
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2.0 Materials and Methods 

2.1 General Rearing Conditions 

Atlantic cod broodstock were held in captivity at the Ocean Sciences 

Centre of Memorial University of Newfoundland. During the summers 

of 2003 and 2004 fertilized eggs from two single egg batches of 

communal spawning broodstock were collected in an overflow 

collector attached to the tank. The first batch was incubated and used 

for experiment 1 (light intensity) and the second batch was incubated 

and used for experiment 2 (background color). Both batches were 

incubated in 250 L incubators with a conical bottom with the flow set 

at 2-3 liters per minute and each incubator had gentle aeration to 

keep the eggs circulating. Temperature was maintained at 5- 6°C 

and eggs were incubated under twenty-four hours of light 

photoperiod, with an intensity of approximately 400 lux (Puvanendran 

and Brown, 1998). Any dead eggs were removed daily from the 

bottom of the incubators. When 100% of the eggs hatched, larvae 

were transferred to 3m3 tanks that were 1.8 meters in diameter and 

1.5 meters high. The tanks were stocked at a density of 50 larvae L-1 
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(Puvanendran and Brown, 2002). Temperature in all tanks was 

maintained at approximately 1 0.5°C.The tanks were filled with 

seawater filtered to 20 microns using sand filtration. The flow rates 

were set at 2- 3 L min-1 initially and were increased as needed, on 

every tank on the same day throughout the experimental period to a 

maximum of 10 L min-1 at 50 dph. Ten litres of microalgae (T

/sochrysis sp.) was added to the tanks daily for the first 14 days. The 

tanks were under 24 hour light (Puvanendran and Brown, 2002) using 

flourescent light bulbs (day light). Larvae were fed rotifers 

(Brachionus plicatus) enriched with T -/sochrysis sp. for the first ten 

days of the experiment and rotifers enriched with Alga mac 2000® for 

the next thirty days. They were then switched to a mixture of enriched 

rotifers and Artemia for 5 days, then just enriched Artemia for the final 

five days. The Artemia were on a three day enrichment rotation , of 

DC DHA selco®, Algamac 2000® and Krill protein. Prey densities 

were maintained at 4000 prey L-1 and adjusted 3-4 times a day 

(Puvanendran and Brown, 1999). Prior to each feeding , a 1 L sample 

was taken from each tank and the amount of prey L-1 was counted 

and the densities were adjusted accordingly. 
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2.2 Experimental Groups 

2.2.1 Light Intensity Regime 

The first experiment was set up to investigate the effect of three 

different light regimes on the foraging behaviour, growth and survival 

of Atlantic cod larvae. Three treatments with two replicates were 

assigned based on the light regime (using two General Electric 32 

watt bulbs (32T8·SPX35) that they would receive during the 58- day 

experimental period. Initially, all six tanks received low light (300 lux) 

until 3 dph. The light regime was then adjusted as follows: (i) 2200 

lux from 3-58 dph (treatment 1) which was the current protocol , (ii) 

2200 lux from 3-27 dph and 600 lux from 28-58 dph (treatment 2) 

which was chosen based on the results obtained by Puvanendran 

and Brown (1998) where they obtained significant differences in 

growth under high light intensities up to 28 dph but no significant 

differences after 28dph and (iii) 2200 lux from 3-39 dph and 600 lux 

from 40-58 dph (treatment 3) which was chosen due to a larger prey 

item (Artemia) being introduced at this time. During this experiment 

light intensity was measured using a lux meter (SPER Scientific 
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840006) which measures the amount of visible light per square meter 

on a surface. This is based on a subjective impression of brightness. 

While some larval rearing experiments measure irradiance as well as 

light brightness a different meter, which was unavailable to us is 

required to take this measurement. 

2.2.2 Tank Bottom Colour 

The second experiment was set up to investigate the effect of tank 

bottom colour on foraging behaviour, growth and survival of cod 

larvae. Two treatments were set up with two replicates for an 

experimental period of 58 days. In treatment 1, the larvae were 

reared in tanks with black walls and light bottoms. In treatment 2, the 

larvae were reared in tanks with black walls and black bottoms. All 

tanks were subjected to an identical lighting regime. Initial light 

intensity was set at 300 lux, gradually increased to 2200 lux from 3-

27 dph and then decreased to 600 lux from 28-56 dph. This light 

regime was chosen based on the favourable results obtained from 

the first experiment. 
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2. 3 Data Collection 

On 1 dph, 20 larvae from each tank (40 per treatment), were 

arbitrarily chosen for morphometric measurements and dry weights. 

Thereafter, 20 larvae from each tank were sampled every seven days 

throughout the experiment. Using a Pixera® viewfinder camera 

mounted on a dissecting microscope, larvae were photographed and 

the digital images were analyzed to obtain standard lengths (length 

measured from tip of snout to end of notochord) using Matrox 

Inspector® software, which was calibrated using a calibration slide 

prior to each use. Three groups of 10 larvae per tank were rinsed with 

ammonium formate and suction filtered on a dried , pre-weighed 

Ahlstrom glass microfibre filter paper (grade 131, 2.5 em in diameter) 

and dried in an oven for 24- 48 hours at 65°C. Dry weights were 

measured to the nearest 0.0001 mg using an analytical scale. At the 

end of each experiment, the number of surviving larvae in each tank 

was recorded. 
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Behavioural observations were recorded from day 1 to day 55 dph for 

both experiments and were terminated when the majority of the 

larvae had completed metamorphosis. Metamorphosis was 

determined externally by the disappearance of a continuous finfold 

and formation of discrete fins. Twice a week, just after feeding , five 

larvae per tank were randomly chosen and visually followed, one at a 

time, for two minutes each, using the Focal Animal Technique 

(Altman, 197 4 ). The occurrence of four Modal Action Patterns (MAP) 

(orient, success, miss and pass) or two activities (swim or motionless) 

(Puvanendran and Brown, 1998) were recorded using an event 

recorder (Psion Workabout® 1998, Psion Industrial) and the 

Observer® behavioural software package (version 2.0 Noldus 

Information Technology). A single key was pre-assigned to each MAP 

or activity (Table 2.1 ). These data were summarized and analyzed for 

duration and frequency using the Observer® program. During this 

time, the general dispersal pattern of the larvae in the water column 

was also noted; however, it was not quantified. All observations were 

made between 1000 hrs and 1200 hrs by one person (JM). 
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The attack frequency was determined by: 

Number of Attacks = (number of successful attempts + number of 

unsuccessful attempts) 

The capture success was determined by: 

Capture success = (number of successful attempts I number of 

attacks) x 1 00 

(Puvanendran and Brown, 1998). 
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Table 2.1: Modal Action Patterns (MAPs) for larval Atlantic cod 

adapted from Puvanendran and Brown (1998). 

Modal Action Pattern 

Swim 

Motionless 

Orient 

Attempt 

Capture 

Miss 

Pass 

2.4 Data Analysis 

Description 

Forward movement of larvae through the water 

column accomplished by caudal fin action. 

Larva is not actively swimming. 

Larva is stationary and aligns itself toward a prey 

item. 

Larva lunges toward a prey item. 

Prey item is ingested by larva. 

An attempt is made but prey is not captured. 

Larva orients towards prey item but does not 

attempt to capture, then swims in different 

direction. 

For both morphometric and behavioural data, the results for each 

tank in each treatment were analyzed individually, using two-way 
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analysis of variance (ANOVA, p :5 0.05) to determine if there were 

differences within treatments when accounting for the interaction of 

treatment and age. If no tank effect was found then the data were 

pooled and assessed for differences among the three light intensity 

regimes using one-way analysis of variance (ANOVA, p :5 0.05). All 

data were tested for normality by examining residual values. Newman 

- Kuels test and critical ranges were used for subsequent post-hoc 

comparisons among different light treatments to determine which 

means differed. 

3.0 Results 

3. 1 Light Intensity Regime 

Larvae reared in treatment 2 showed a noticeable increase in growth 

beyond 28 dph. There were significant differences among treatments 

in mean standard lengths (F = 13.67, df = 2, p < 0.001 ; Fig . 3.1 .1) 

and dry weights (F = 5.80, df = 2, p < 0.003; Fig. 3.1.2) of the larvae. 

Larvae reared in treatment 2 had greater mean standard lengths 

(17. 7 mm) than larvae from treatment 1 (12.3 mm; p < 0.0001) and 

treatment 3 (14.1 mm; p < 0.0001 ). There was, however, no 
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significant difference in standard length between larvae in treatments 

1 and 3 (p = 0.3393). Larvae from treatment 2 had significantly larger 

mean dry weights (0.068 mg) than larvae from treatment 1 (0.0338 

mg; p = 0.008) and treatment 3 (0.040 mg; p = 0.003) and again no 

significant difference between treatment 1 and 3 (p = 0.9881 ). 

The results of the behavioural data showed significant differences in 

the swimming duration of in all three treatments (F = 325.81, df = 2, 

p < 0.0001; Fig. 3.1.3). Larvae in treatment 1 spent the most time 

swimming while treatment 2 spent the least amount of time swimming 

The amount of time spent swimming became immediately less when 

the intensity was decreased in treatment 2 at 28 dph. There were 

also significant differences in the number of times the larvae oriented 

towards prey among the three treatments (F = 97.96, df = 2, p < 

0.0001 ; Fig. 3.1.4.) Larvae in treatment 2 oriented least frequently 

towards prey and larvae in treatment 1 oriented towards prey most 

frequently. Consequently, there were also significant differences in 

the number of prey captured (F = 186.77, df = 2, p < 0.0001 ; Fig 

3.1.5) again with larvae in treatment 2 capturing the least number of 
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prey items and larvae in treatment 1 capturing the most prey items. 

This was also the case with number of prey capture misses (F= 

16.044, df = 2, p < 0.0001; Fig 3.1.6). Larvae in treatment 2 missed 

prey less often while larvae in treatment 1 missed more frequently. 

There was also a significant difference in the number of times larvae 

oriented towards the prey item but made no attempt to capture it 

(F=6.90, df = 2, p = 0.0011; Fig. 3.1.7). General observations 

indicated that when the light intensity was reduced in treatments 2 

and 3 these larvae became less active and were better dispersed 

throughout the water column. These larvae made less prey capture 

attempts (Fig. 3.1.8) but missed less frequently than larvae reared 

under a high intensity. Overall, the light regimes had a significant 

effect on the capture success (F = 4.00, df = 2, p = 0.0189; Fig. 

3.1.9). There were significant differences in the capture success of 

larvae between treatment 1 and treatment 2 (p = 0.0130) but there 

was no significant difference in the capture success of larvae in 

treatments 1 and 3 (p = 0.1247) or treatments 2 and 3 (p = 0.1962). 
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There were no significant differences in the survival of the larvae in all 

three treatments (F=3.8033, df = 2, p = 0.1504; Fig. 3.1.1 0) at the 

end of the experiment. Larvae in treatment 1 (high light throughout) 

had 3.7% survival , larvae in treatment 2 (light reduced at 28dph) had 

4.0°/o survival and those in treatment 3 (light reduced at 40dph) had 

4.2°/o survival. 
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Figure 3.1.1: Standard length (mm) (mean± s.e) of Atlantic cod 

larvae reared in three different light regimes. ( •) Treatment 1: 2200 

lux from 3-58 dph. ( o ) Treatment 2: 2200 lux for 3-27 dph and 600 lux 

from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 600 

lux from 40-58 dph. 
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Figure 3.1.2: Dry weights (mg) (mean ± s.e) of Atlantic cod larvae 

reared under three different light regimes. ( • )Treatment 1: 2200 lux 

from 3-58 dph. ( o) Treatment 2: 2200 lux for 3-27 dph and 600 lux 

from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 600 

lux from 40-58 dph. 
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Figure 3.1 .3: Swimming duration (s) (mean ± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 

600 lux from 40-58 dph. 
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Figure 3.1.4: Orients (number min -1)(mean ± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o ) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( 'Y) Treatment 3: 2200 lux for 3-39 dph and 

600 lux from 40-58 dph. 
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Figure 3.1.5: Captures (number min -1) (mean ± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o ) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 

600 lux from 40-58 dph. 
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Figure 3.1.6: Misses (number min -1) (mean± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o ) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 

600 lux from 40-58 dph. 
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Figure 3.1. 7: Passes( number min -1) (mean ± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 

6001ux from 40-58 dph. 
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Figure 3.1.8: Attempts (number min -1) (mean ± s.e) of Atlantic cod 

larvae reared under three different light regimes. ( •) Treatment 1: 

2200 lux from 3-58 dph. ( o) Treatment 2: 2200 lux for 3-27 dph and 

600 lux from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 

600 lux from 40-58 dph. 

38 



120 

100 

-~ 80 
Q 
'-' 
ri:J 
ri:J 
Q) 60 ~ 
~ 

= 00 
Q) 40 ... 
= -Q.. 
~ 20 u 

0 

-20 
0 10 20 30 

Age (dph) 

__._ Reduced @ 56 dph 
-o- Reduced @ 28 dph 
--T- Reduced @ 40 dph 

40 50 60 

Figure 3.1.9: Capture success (0/o) (mean± s.e) of Atlantic cod larvae 

reared under three different light regimes. ( •) Treatment 1: 2200 lux 

from 3-58 dph. ( o ) Treatment 2: 2200 lux for 3-27 dph and 600 lux 

from 28-58 dph. ( T) Treatment 3: 2200 lux for 3-39 dph and 600 

lux from 40-58 dph. 
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3.2 Tank Bottom Colour 

There were no significant differences in the growth data of the cod 

larvae between all treatments. Larvae cultured in the light bottomed 

tanks grew equally as well as larvae cultured in the dark bottomed 

tanks and overall there were no differences among the mean 

standard lengths of both treatments (F = 1.88, df = 1 , p = 0.059 ; 

Fig. 3.2.1 ). The only exception was at 56 dph when larvae cultured in 

the light bottomed tanks were significantly larger than their 

counterparts reared in the dark bottomed tanks (p = 0.0079). There 

was also no significant difference between the mean dry weight of 

cod larvae from both treatments (F = 0.5841, df = 1, p = 0.79; Fig. 

3.2.2). 

The results of the foraging data also showed similar trends as the 

morphometric data. There were no significant differences among any 

of the foraging behaviour of the larvae cultured in the light bottomed 

tanks and the larvae reared in the dark bottomed tanks. There were 

no significant differences between the treatments in the length of time 

the larvae spent swimming (F = 0.14, df = 1, p = 0.99; Fig. 3.2.3). 
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There were also no significant differences in the number of orients 

toward prey (F = 0.44, df = 1, p = 0.95; Fig. 3.2.4) or the number of 

attempts made to capture prey (F= 1.51 , df =1 , p = 0.11 ; Fig. 3.2.5). 

Similarly, no significant differences were seen between treatments in 

captures (F = 1.02, df = 1, p = 0.43; Fig. 3.2.6), misses (F = 1.18, df 

= 1, p = 0.29; Fig . 3.2.7), passes (F = 0.48 , df = 1, p = 0.94; Fig. 

3.2.8) and capture success (F = 1.07, df = 1 , p = 0.38; Fig . 3.2.9) of 

larvae. Finally, the number of surviving larvae in the treatments was 

also not significantly different (F = 6.23, df = 1, p = 0.13, Fig. 3.2.1 0). 
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Figure 3.2.1: Standard length (mm) (mean± se) of Atlantic cod larvae 

reared in two different coloured tank bottoms. ( •) Treatment 1: black 

bottomed and black sided tanks. ( o) Treatment 2: beige bottomed 

and black sided tanks. 
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Figure 3.2.2: Dry weight (mg) (mean± se) of Atlantic cod larvae 

reared in two different coloured tank bottoms. ( •) Treatment 1: black 

bottomed and black sided tanks. ( o) Treatment 2: beige bottomed 
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Figure 3.2.3: Swimming duration (s) (mean± se) of Atlantic cod 

larvae reared in two different coloured tank bottoms. ( •) Treatment 1: 

black bottomed and black sided tanks. ( o) Treatment 2: beige 

bottomed and black sided tanks. 
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Figure 3.2.4: Orients (number min-1) (mean± se) of Atlantic cod 

larvae reared in two different coloured tank bottoms. ( •) Treatment 1: 

black bottomed and black sided tanks. ( o ) Treatment 2: beige 

bottomed and black sided tanks. 
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Figure 3.2.6: Captures (number min-1) (mean± se) of Atlantic cod 

larvae reared in two different coloured tank bottoms. ( •) Treatment 1: 

black bottomed and black sided tanks. ( o) Treatment 2: beige 
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Figure 3.2.7: Misses (number min-1) (mean ± se) of Atlantic cod 

larvae reared in two different coloured tank bottoms. ( •) Treatment 1: 

black bottomed and black sided tanks. ( o ) Treatment 2: beige 

bottomed and black sided tanks. 
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Figure 3.2.8: Passes (number min-1) (mean± se) of Atlantic cod 
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Figure 3.2.9: Capture success(%) (mean± se) of Atlantic cod larvae 

reared in two different coloured tank bottoms. ( •) Treatment 1: black 

bottomed and black sided tanks. ( o) Treatment 2: beige bottomed 

and black sided tanks. 
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4.0 Discussion 

4. 1 Light Intensity Regime 

In experiment 1, larvae reared in treatment 2 (light reduced from 2200 

lux to 600 lux at 28dph) had better growth in terms of standard length 

and dry weight when compared to larvae reared in treatment 1 (2200 

lux from 3-58 dph) and treatment 3 (light reduced from 2200 lux to 

600 lux at 40dph). The results are consistent with the results obtained 

by Puvanendran and Brown (2002). They reported a significant 

difference in the growth between cod larvae reared under high light 

and larvae reared under low light until 28 dph, but no significant 

differences in the growth of the larvae after 28 dph. 

Light intensity is important in fish culture and fish must be reared 

within a light range that is appropriate for the developmental stage of 

the species (Boeuf and Le Bail, 1999). While it appears that fish 

larvae require a threshold light intensity to initiate feeding (Biaxter, 

1986), the feeding incidence increases with increasing light intensities 

(Puvanendran and Brown, 2002). Boeuf and LeBail (1999) stated that 

at a certain age too much light could create a stressful environment 

and, in some cases, may even be lethal for young fish. Previous 
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studies indicated that reduced light can have a calming effect on 

other species such as fat snook (Centropomus parallelus) larvae 

(Cerqueira and Brugger, 2001 ), as well as larval Atlantic salmon 

( Sa/mo salar) and sea bass (Marone saxati/is) (Chesney, 1989). The 

results of the present experiment showed that treatment 2 produced 

larger larvae and more efficient foragers, indicating that reducing the 

light intensity during a later developmental stage would be beneficial 

for the larvae. The results indicated that when the light intensity was 

reduced in treatment 2 at 28 dph and in treatment 3 at 40 dph, the 

larvae spent less time swimming. Swimming in larval fish is 

energetically demanding (Dowling et al., 2000) and larger larvae 

would have a smaller Reynolds number, a dimensionless number 

representing the ratio of inertial to viscous forces, proportional to fish 

size, swimming speed, water density and inversely proportional to the 

dynamic viscosity (Hunt Von Herbing, 2002), which would enable 

them to reduce the foraging cost (Hunt von Herbing et al., 2001 ). 

Therefore, in my study, the energy conserved through reduced 

swimming could have been directed towards growth of the larvae in 

treatments 2 and 3. Once the light intensity was decreased, the 

larvae became better dispersed throughout the water column. The 
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reduced activity levels, coupled with better dispersal, could have 

reduced the encounter rate with other larvae and consequently would 

have decreased competition. This dispersal pattern was evident 

throughout the day even prior to feeding. It was also observed that 

more prey (both rotifers and Artemia) concentrated near the surface 

of the water column under high light intensities, compared to low light 

intensities indicating that the light affects both the larvae and the prey 

causing them to become better dispersed in the water column under 

a lower light intensity. A high concentration of prey in a given area 

increases the concentration of larvae, which can increase confusion 

and may limit prey consumption (Gulbrandsen et al., 1996; Landeau 

and Terborgh, 1986). An even distribution of larvae in the water 

column at various times during the day indicates that this dispersal 

pattern is not solely caused by the dispersion of the prey items. 

The results showed that larvae reared in treatments 2 and 3 did not 

capture as much prey as the larvae reared in treatment 1. The larvae 

in treatments 2 and 3 also oriented less toward prey and made less 

attempts to capture prey in lower light. Exposure to high light 

intensities has been shown to increase larval swimming and food 
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searching activity (Batty, 1987). Increased swimming increased the 

predator's encounter rate with prey. Larvae in treatment 1 had higher 

prey encounters and eventually had increased prey captures 

compared to larvae in treatments 2 and 3. The possibility exists that 

an increase in predator-prey interactions would cause increased 

attempts to capture prey. This was indicated by the difference among 

treatments in the orientation frequency toward prey. Since cod larvae 

are saltatory predators (Hunt von Herbing and Gallager, 2000) any 

attempts to capture prey are energetically expensive. These attempts 

would be considerably more expensive if they result in failure to 

capture the prey item. The results showed that larvae reared in 

treatments 2 and 3 were more efficient in capturing prey than the 

larvae reared in treatment 1. Thus, larvae reared under low light not 

only conserved energy by swimming less; they would have also 

conserved energy by attempting to capture less prey. This increase in 

capture success could possibly be attributed to the extra energy that 

these fish have conserved from reduced swimming, reduced 

confusion due to less crowding of the prey in lower light, or reduced 

competition and aggression that the larvae experienced due to 

reduced encounters with other larvae. 
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The results indicated that in treatment 2, cod larvae captured prey 

more successfully beyond 28 dph and failures in capturing the prey 

were minimal. Marine fish larvae are mainly visual feeders and have 

cone cells in the retina at first feeding (Huse, 1994 ). During 

development, many pelagic fish larvae and juveniles shift to deeper 

water (Shand, 1993) where light intensities are considerably lower. 

This ontogenetic shift to deeper water coincides with changes in 

retinal morphology. As the larvae grow and develop, vision switches 

from single cone vision to double cone vision , and the cone, rod and 

ganglionic cell densities change (Shand, 1997). It has been proposed 

that the proportion of rods to ganglionic cells play a significant role in 

resolution under lower light conditions (Shand, 1997). In many fish 

this ontogenetic shift in vision occurs as the larvae become older, and 

usually occurs around the time of metamorphosis (Shand, 2000). 

Puvanendran and Brown (2002) speculated that larval cod may have 

developed this shift in their retina by 28 dph, thus enabling larvae at 

low light to feed and grow at a similar rate to fish reared under high 

intensity. Visual acuity and reactive distances increase with larval 

size (Biaxter and Staines, 1971; Shand, 2000) coinciding with 
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changes in visual capabilities. Morphological constraints also lessen 

as fish grow, in part due to increased mouth gape, larger gut capacity 

and increased manoeuvrability (Gill and Hart, 1996) and this enables 

an increase in successful prey captures. Mills et al. (1984) reported 

that young yellow perch (Perea flavescens) selectively fed on large 

daphnids at a low light intensity but switched to smaller prey as 

intensity increased. This indicates that as the larvae grow they may 

require less light to detect prey items. Thus decreasing the light 

intensity at 28dph will provide a less stressful, less distracting 

environment for the larvae to forage, while still providing sufficient 

light to enable efficient foraging , which in turn enables the larvae to 

direct more energy towards growth. 

The present results showed no significant differences in the survival 

of the larvae among the three treatments. The difference in size, 

however, may play a significant effect on survival during the grading 

process, which occurs usually between 60 and 65 dph. This is a very 

stressful procedure and usually results in a number of mortalities. 

Past experience in our culture facil ity indicates that larger cod larvae 

show a higher survival through this process. 
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It is important to note that many larval rearing experiments conducted 

measure light in microeinsteins as well as lux. Microeinsteins 

measures the quantity of radiant energy in Avogadro's number of 

photons whereas lux measures the amount of visible light in 

accordance with the colour sensitivity of the human eye and as a 

result certain wavelengths may go undetected. The conversion 

between lux to microeinsteins depends upon the light source. 

4.2 Tank Bottom colour 

The results of experiment 2 demonstrated that Atlantic cod larvae can 

be cultured in both black and light bottomed tanks without any 

significant differences in the growth, foraging behaviour or survival of 

the larvae. These results are consistent with results obtained by 

Downing and Litvak (1999) who reported that the growth of larval 

haddock was not impaired in white tank treatments compared to dark 

tank treatments. These results are also consistent with results 

obtained by Papoutsoglou et al. (2000) who indicated no differences 

in the body weight of scaled carp in response to black, green and 

white backgrounds. Duray et al. (1996) also found that grouper larvae 

can be reared in both tan and black tanks. However, due to the 
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contradictory results obtained for other marine finfish species on a 

combination of background tank colours, the optimal background 

colour and lighting should be examined and tailored for each 

individual species. Most of the previous experiments examined the 

larval growth and survival in response to dark tank walls and bottoms 

or light tank walls and bottoms. To my knowledge, no studies have 

investigated larval response to dark walled tanks in combination with 

light coloured bottoms. This study investigated the behaviour, growth 

and survival of larval cod between tanks with dark walls and bottoms 

to tanks with dark walls and light coloured bottoms, and found no 

significant differences in the growth, foraging behaviour or survival 

between Atlantic cod larvae reared in these two treatments. 

The results of this experiment are of great significance to cod 

culturists as this will enable the use of lighter bottomed tanks, which 

in turn will better enable the culturist to observe the larvae and 

monitor the behaviour and development, without any adverse effect 

on larval growth and survival. 
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The probability of prey detection in fish is proportional to reaction 

distance (Confer and Blades, 1975). There are a number of factors 

that influence reaction distance in larval fish , including predator size 

(Biaxter and Staines, 1970), physical conditions of the rearing 

environment such as light level, background colour and turbidity, and 

prey characteristics such as size, mobility, contrast and colour (Utne

Palm, 1999). Visibility of a prey depends upon the ability of the fish to 

detect contrast between prey and background (Utne-Palm, 1999). 

Thus, it is suspected that larval fish , with their smaller reaction 

distance, would benefit from the increased prey contrast provided by 

a dark background. Increased visual contrast will result in enhanced 

prey detection at close range. High visual contrast of prey items, 

achieved by a dark background, improved prey consumption in larvae 

of yellow perch, Perea flavescens (Hinshaw 1985) and striped bass, 

Marone saxatilis (Martin-Robichaud and Petersen, 1998). Fish larvae 

tend to keep a horizontal position in the water column (Hunt von 

Herbing and Gallager, 2000). Thus, as discussed previously, a 

foraging larva would be able to detect rotifers and Artemia against a 

dark wall with a light coloured tank bottom. According to Naas et al. 

(1996), a tank with a black wall and light coloured bottom could 
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provide a light gradient towards the center of the tank, thus, keeping 

the larvae away from the walls. This combination (i.e. dark walls and 

light coloured bottoms) will provide optimal culture conditions, in 

terms of larval feeding. At the same time, the light coloured bottoms 

will be beneficial to culturists as it will better enable them to monitor 

larval behaviour, development and tank conditions during the critical 

early larval stages. 

In the present experiment cortisol levels in response to different 

background colours was not measured. However, several other 

studies examined tank background colour and stress in fish and 

showed that lighter or white backgrounds tend to increase the stress 

level and affect the social interactions of fish (Arends et al. , 2000; 

Hoglund et al., 2002; Rotllant et al. , 2003). Rotllant et al. (2003) 

showed that red porgy (Pagrus pagrus) that were previously adapted 

to dark background tanks handled stress better in crowded conditions 

compared to fish previously adapted to white backgrounds. In our 

experiment, considering that the prey contrast may not be different 

which was suggested by similar foraging behaviours, growth and 

survival in both treatments, the difference in tank bottom colour might 
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not have caused any stress to larval cod from both treatments., It 

may, however be beneficial to examine this in a future experiment to 

determine if larvae exposed to light bottom tanks are indeed stressed 

since elevated stress levels over a prolonged period may cause 

increased incidents of disease. 
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5.0 Conclusion 

When rearing Atlantic cod larvae, reducing the light intensity at 28 

dph would provide a less distracting environment which would, in 

turn, provide the larvae with the opportunity to become more efficient 

foragers and to direct excess energy toward growth. Thus, reducing 

light at an earlier stage than was previously thought will improve 

growth and shorten the critical early larval period for Atlantic cod. 

Furthermore, Atlantic cod larvae can be reared in tanks that have 

dark sides and light bottoms, with similar growth, foraging behaviours 

and survival to larvae reared in tanks with dark sides and dark 

bottoms. This finding indicates that the culturist can use a light bottom 

colour without any adverse effect on the growth, survival and foraging 

behaviour of the developing cod larvae which will enable enhanced 

monitoring of larval development. 

6.0 Summary 

Atlantic cod (Gadus morhua) has been identified as a species that 

has much potential for commercial production. However, there are 

several constraints such broodstock nutrition, the mass production of 

healthy juveniles, and early maturation that are currently affecting the 
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commercialization of this species. The mass production of healthy 

juveniles has been identified as one of the major constraint and has 

been attributed to low and inconsistent survival and growth rates 

during the larval stage. A better understanding of the optimal larval 

culture conditions of this species will help in overcoming this problem. 

One such culture condition that required further investigation was that 

of lighting in the culture tanks. Light intensity and tank background 

colour interact with each other to change the environment in the 

culture tanks through the dispersal and reflection of light, thus, it is 

important to consider both light intensity and tank background colour 

when choosing a light regime for larval culturing. It is not sufficient 

just to consider light intensity, but also how the light would be 

dispersed and reflected in response to tank background colour. The 

reflection and dispersal properties consequently affect the contrast 

between the prey and background of the tank. In a research or 

laboratory environment, many of the culturing conditions and 

protocols are established. However, in a commercial hatchery, where 

everything is conducted on a much larger scale, it may be necessary 

to alter and refine protocols to make large-scale production more 

feasible. By understanding the conditions in which larval fish forage 
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more successfully, it is easier to implement rearing protocols that will 

enable the mass production of cod on a commercial scale. With this 

in mind, all experiments conducted in this study were carried out 

using large commercial size tanks and foraging behaviours were 

observed to complement the growth data to better understand how 

tank colour and light intensity affect larval performance. The present 

study investigated the growth, foraging behaviour and survival of 

Atlantic cod larvae in response to three varying light intensity regimes 

and two different tank bottom colours to determine which light regime 

and tank bottom colour would provide maximum growth and survival. 

The results indicated that larvae reared in a light regime that provided 

high light (2200 lux) until 28 dph and then a reduced light intensity 

(600 lux) had better growth in terms of standard length and dry weight 

when compared to larvae reared in high light (2200 lux) for the entire 

experimental period (56 dph) or larvae reared under high light to 40 

dph and then reduced light for the remainder of the experimental 

period. The results of this experiment also showed that larvae reared 

in 2200 lux were also more efficient foragers, which indicates that 

reducing the light intensity at an earlier developmental stage than 

previously thought is beneficial for the larvae. The behavioural results 
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indicated that when the light intensity was reduced the larvae spent 

less time swimming and became better dispersed throughout the 

water column. When the light was reduced at 28 dph the larvae spent 

less time swimming, made less attacks on prey and missed less 

frequently. This strategy would have enabled the larvae to conserve 

energy foraging and to invest it in their growth. 

In response to differing tank bottom colour there were no signif icant 

differences in the foraging behaviour, growth or survival between the 

larvae reared in black bottomed or light bottomed tanks. These 

results are of great significance to cod culturists as this will enable the 

usage of lighter bottomed tanks, without any adverse effect on the 

larvae, which will better enable the culturist to monitor larval 

behaviour, development and tank conditions during the critical early 

larval stages. Thus, the set up of dark walls and light bottoms will 

provide optimal culture conditions in that the black walls will provide a 

good background for prey contrast to help the larvae with prey 

detection. 
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7.0 Future Research 

While the results of the present study provide Atlantic cod culturists 

with some interesting information regarding the optimal light rearing 

conditions and background colour when culturing larval cod , there are 

other factors that need to be considered. One area that could be 

investigated further are other combinations of light intensities with 

tank colours i.e. light bottoms and walls in combination with high and 

low light intensities as the light will be reflected differently in tanks 

with lighter walls than in those with darker walls. An alternative set-up 

that may be worth examining in more detail would be whether there 

are any differences in the growth, survival and foraging behaviour 

between larvae reared in tanks with light bottoms and black walls and 

larvae reared in tanks with light walls and light bottoms. It would also 

be a good idea to look at cortisol levels in relation to background 

colour to identify if one environment is more stressful to the larvae 

than the other. 
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