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Abstract

The applicability of using stomach temperature probes 10 investigate the

feeding behaviour of seals was lested. Captive harp seals(~~)

were fed stomach temperature sensors and given pre-weighed meals 01 herring

(~~) and crushed ice. Ingestion of either substance caused a

decrease in stomach temperature (see also Gales and Renoul 1993). Results

suggested that the magnitude of stomach temperature change could indicate

whether the ingested substance was a prey item or ice. The duration of stomach

temperature change was significantly related to the quantity of fish consumed, but

it accounted for just 27% of the overall variation. This percentage was much less

than the 71% r1:lported by Gales and Renouf (1993), perhaps due in part to the

larger sample size used in the present study. Prey temperature was a significant

covariate in the relationship between meal mass and the corresponding duration

of stomach temperature change, but, overall it added very little to predictive power.

Both the magnitude and duration of the temperaturb change were related to the

quanlity of ice consumed. accounting for 69% of the variation. Subsequent

modelling of this relationship, however, revealed that it was not robust. Monitoring

the stomach temperatures of wild seals would tell us lillie about the quantity of

prey consumed, however. when used in conjunction with satellite-linked lime-depth

recorders they could provide valuable information on the location, timing and

frequency of prey consumption.



A harbour seal (~ vitulina) mother and pup were fed stomach

temperature probes throughout the lactation period. Behavioural observations

were conducted while stomach temperature was concurrently logged. Milk intake

caused a decrease in lhe pup's stomach temperature, and the duration of this

temperature change was related to the length of .the nursing bout. Laboratory

stomach simulAtions, which suggested a strong relationship between milk volume

and the subsequent duration of temperature change, were used 10 estimate the

volume of milk consumed by the pup. Suckling bout length and the estimated milk

intake per bout increased as a weekly average over the live week lactation period.

A temporal change in the suckling pattern was noted, with a progression from

largely nocturnal to daytime feedings. Although not Visually confirmed,

temperature data collected from the mother provided evidence 01 seawater

ingestion. Direct pup feeding experiments using known quantities of the mother's

milk, at a known temperature, would greatly improv.e the accuracy of these intake

estimates.

These studies indicate that, with sufficient samples, stomach temperature

probes may provide a valuable tool tor invesli~lating lactation energetics and other

aspects of the feeding ecology of marine endotherms.
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1.0 Chapter 1

General Introduction

Pinnipeds are a diverse group of aquatic mammals consisting of the fa:nilies

Phocidae (true seals), Otariidae (fur seals and sea lions) and Odobenidae (the

walrus). Although highly specialized for an aquatic lifestyle, these groups remain

tied to either land or ice for breeding, moulting and raising their pups. In contrast

to celaceans, which are exclusively aquatic, the terrestrial requirements of

pinnipeds have facilitated research Into aspects 01 maternal investment (Trillmich

1986; Stewart 1987; Higgins et al. 1988; see Kovacs and Lavigne 1992 for a

review of olariids and walruses), the energetics of lactation and moult (Fedak and

Anderson 1982; Costa et al. 1986; Bowen et al. 1992; Worthy el at 1992; Boyd

et at. 1993; Oftedal at a!. 1993), tha ontogeny of behaviour (Lawson and Aanouf

1987; Kovacs 1987a, 1987b; Rosen 1991) and behavioural aspects of reproduction

(McCann 1980; Lawson and Aenouf 1985; Le Boauf 1986; Amos et al. 1993).

While a large amount of data has been collected during periods when pinnipeds

are on land, relatively little is known of their behaviour at sea.

This situation is problematic as In recent years much allention has been

paid to the interaction of pinnlpeds and commercial fisheries throughout the world

(Harwood and Croxall 1988; Gales et al. 1993). Harwood and Croxall (1988)

review the information necessary to assess such interaction; dala on spatial and

temporal distributions of predator and prey species; estimates of population size;



the type, quantity, and size of prey taken by seals and fisheries; and behavioural

responses of all relevant groups to dynamic changes in resource availability.

The use of satellite-linked time-depth recorders has improved our

understanding of the daily and seasonal distribution and movements of pinnipeds,

including their behaviour at sea. The proportions of time spent rasting, travelling,

and foraging have been Inferred f,om diving profiles, and provide some Insight Into

the foraging ecology of seals (Le Boeuf et al. 1988; Hindell et al. 1991; Le Boeuf

et al. 1992). This study was undertaken to calibrate a technique which may make

it possible 10 directly investigate aspects of the feeding behaviour of wild seats.

Feeding behavlou r has commonly been inferred from dive records. although

unlil recently no direct method existed for detecting prey ingeStion. Wilson el at

(1992) developed an archival unit lhat could be placed in the ..itomach and was

capable of detecting and storing changes in temperature. It was reasoned that

since the body temperature of marine prey items would, in most cases, be lower

than that of the marine endotherm's stomach, ingestion could be indicated by a

decrease in stomach temperatu re. Data were reported from captive African

penguins~ demersus) intubated with seawater, and from fres*ranging

wandering albatrosses (Diomedea exulans) carrying the lo~gers. Seawater

Ingestion by the penguins caused precipitous drops in stomach temperatura

followed by exponential recoveries to the pre-ingestion temperature levels (Wilson

at al. 1992). Profiles of similar shape were obtained from albalrosses while at saa,



and were assumed to indicate instances of prey consumption. The integral of the

temperatul'e curve, wtl;ch outlined the progression of stomach temperature change

subsequent to ingestion, was used to estimate the mass of prey consumed by

these birds. Stomach temperature sensors have since been used to determine the

daily feeding patterns of other free-ranging wandering albatrosses (Weimerskirch

and Wilson 1992), and to examine foraging depth in relation 10 success for a

number of penguin species (Wilson et at 1993).

Gales and Renouf (1993) investigated the use of stomach temperature

telemetry to detect and measure food and water intake in captive harp seals

~groenlandica). VHF temperature transmitters were used to record changes

in stomach temperature as seals consumed ice, snow, seawater, and pre-weighed

meals of herring~ harengus). Ingestlon was followed by a rapid decrease

in stomach temperature. They found that the duration of stomach temperature

change following meals of herring was related to the mass of prey eaten.

This thesis further examined the efficacy of stomach temperature sensors

for detecting and estimating the feeding behaviou r of captive seals, for possible

application 10 studies of their wild counterparts. The main objective of the first

portion of the study was to further calibrate the technique for quantifying food

intake by harp seals. Wilson et al. (1992) concluded that estimates of the mass

of prey ingested by free-ranging birds could be calibrated if changes in stomach

temperature were examined after animals were fed meals of known mass and



temperature. Gales and Renoul (1993) also speculated that prey temperature

along with feeding duration and frequency would effect the predictive relatlonshlps

they found between meal mass and the rate of stomach temperature recovery.

These questions were examined by feeding known masses of herring and crushed

lee to captive harp seals.

In the second part of this study, a captive harbour seal~~

mother and her pup were fed stomach temperature probes during the lactation

period. This study represents the first attempt to use this technology to monitor

milk intake by seals. Given the preliminary nature of the study, coupled with lis

small sample size. this aspect 01 the study was more concerned with investigating

and allempting to calibrate the technique than in making allf fundamental

statements about the biology of lactation in harbour seals. The first and IOfemost

objective of this section of the work was to determine nnursing bouts could be

Identified from changes in stomach temperature, and if so, to determine whether

a relationship existed between the duration of a suckling session end the

subsequent length of stomach lemperature change. The possibility of using

remote sensing to detect milk intake and thereby to provide a means with which

to document ontogenetic changes in the temporal aspects of suckling behaviour

was also investigated.
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2.0 Chapter 2

Use of Stomaell Temperature Telemetry to Estimate Prey Consumption by

Harp Seals~ groenlandical

2.1 Introduction

Marine birds and mammals (seals and whales) are significant predators in

marine ecosystems. In order to assess the role of these predators in marine food

webs. rates of food consumpllon coupled with information on diel and population

size must be obtained (see Chapter 1). Various methods have been used to

estimate the type and quantity of food consumed by marine endotherms, but

perhaps the mosl widely used techniques 10 dats have been those of faecal and

stomach content analysis. The rale of labelled·waler turnover, serial changes in

mass, and extrapolation from studies of food intake and energy expenditure of

captive aolm als have also been used to estimate the energy consumption of wild

populations.

As discussed in Chapter 1, recent technological developments such as the

satellite-linked time-depth recorder and devices capable of recording changes in

stomach temperature have vastly improved our ability to understand the movement

and behavIour pallems of marine endotharms (Le Boeuf at al. 1988; Hlndell at al.

1991; Le Boaul at al. 1992; Wilson et al. 1992; Gales and Renouf 1993;

Weimerskirch and Wilson 1993; Wilson et al. 1993).

This study tasts the efficacy of using stomach temperature probes 10 both



delect and to quantify harp seal feeding behaviour, and provides the necessary

calibration prior to using this technology to study the feeding ecology of free-living

seals. The effects of feeding duration and prey temperature on the predictive

relationships between meal mass and the rales of stomach temperature recovery

were also investigated.

2.2 Methods and Materials

Seven captive harp seals (3 adult females, 2 adult males and 2 Juveniles ­

1male and 1 female) housed at the Ocean Sciences Centre, Memorial Universily

of Newfoundland, were used as subjects. The outdoor facility consisted of two

tanks (12.3 mdtres in dlametre, and 2.5 metres deep) filled with ambient

temperature seawater pumped continuously at a rate of 200 IiIreslminule from the

adjacent ocean. The tanks were surrounded by approximately 190 m2 of wooden

decking on which the seals could haul-out.

For two hours in the middle of each day the seals were fed 1!d !.i!2i1ll.m on

thawed herring, the temperature of which varied from a low of ~5.3 °C to a high

17.3 °C. Temperature-sensitive VHF transmitter probes (Biotrack, Dorset, UK)

were concealed Inside the herring and fed to the seals. The probes were retained

for periods ranging from 1 to 267 days. Crushed Ice was fed opporlunistically

either early in the morning or late in the afternoon; at such times the stomach was

likely to be empty and its temperature uninfluenced by digestion (Markussen 1993).



Data were collected between 14 April, 1992 and 23 july, 1993.

The transmitters were housed in watertight plastic cylinders (51.3 mil1imetres

long, 17.7 mlilimetres wide, weighing 11g). Pulses were received with a 2 or 3­

alement Vagi antenna and logged by a Lotek receiver (SAX 400; Lolek

Engineering Inc., Aurora, Onl.). The transmitters were calibrated in a 4 litre

waterbath prior to and following their administration to the seals. Sensors were

maintained for 15 minutes at each 5 GC interval between 0 and 40 GC and their

precision was determined to be within .t 0.2 GC of the waterbath temperature.

Sensors responded to changes in temperature within 1 minute. Curve·filled

polynomial equations were used to derive stomach temperature from logged pulse

durations.

For days on which the animals carried stomach transmitters, the time when

they consumed their first and final fish was recorded, as were the temperatures of

sUbsamples of these fish. and the meal mass. Similarly, when crushed ice was

fed the beginning and end of the feeding session, as well as the mass of the ice

consumed, was recorded.

Temperature changes in response to the ingestion of ice or fish were

analyzed according 10 3 operalionally·deflned points (as in Gales and Aenouf

1993): A) the time of departure from stable temperature prior to a meal, B) the

time al which stomach temperature reached its minimum during the meal, and C)

the lime at which a stable temperature to within .t 0.2 GC of A was reached



following the meal. In an attempt 10 incorporate all temperature changes in a

single parametre, the area enclosed by the temperature curve and bounded by

points A-C was calculated using a program wrillen in MS-DOS QBasic (Microsoft

Corp., USA) software version 5.0. As the curve defining changes In stomach

temperature was not strictly linear, area was calculated in a number of sections in

a manner such that errors in area estimation were less than 5% of the calculated

total. A number of the parametres used to characterize the changes In stomach

temperature following food intake were non-normally distributed. In such cases,

data were log-transformed prior to analysis, and checked for normality with

Kolmogorov-Smfrnov tests.

Many of the receiver's filter setlings were disabled in order 10 increase the

probability of receiving valid temperature points. As a result extraneous data

points were often logged (Figure 1). The operationally-defined points (A,B,C) were

first determined visually from the raw dala.

To test the validity of this approach results from a subset of the data (n =

27) were compared to those obtained when the points (A,B,C) were derived from

data which had been passed through a custom temperature filtering procedure (D.

Chabot, Department of Fisheries and Oceans, Mont·Joli, Quebec, Canada).

Initialty, double-Intervals (double-beats) were corrected to valid interval durations.

A valid interval duration was determined by examining the first 10 tines of each lite

and entering the most frequently occurring pulse duration. Temperature was then
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FIgure 1: Example of raw teremetty recordings obtaIned "from an adult female
harp seal during SElptember of 1992.
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calculated using the polynomial equations delived from the calibration curve for

thallransmilter. The data were then scanned visually for feeding episodes, and

any remaining temperatures which were lower than the lower limit caused by

feeding were deleted. For example, in Figure 1 temperatures below 10 "C were

deleted at this point. The remaining data were subjected to a filtering routine. A

valid entry temperature was chosen (one which fell within the range of expected

mammalian body temperatures 36 ·38" C; Schmidt-Nielsen 1983) from the first

10 lines of a particular file. Routines were implemented which compared each

temperature to the average of the previous 4 points, the point itself. and the

subsequent 4 points. The number of subsequent polnls included in the average

depended on the level of noise in the data. Each filtering routine used rules based

on the standard deviation of the mean temperature in deciding whether or not a

point was excluded. That is, decisions changed through time dependent on trends

in the data, and such lrends were indicated by a changing standard deviation. The

advantage of routines which examined data both prior to and subsequent to any

particular point was that they could deal with diel cycles in body temperature or

changes in temperature due 10 feeding (D. Chabot, personal communication).

Figure 1provides an example 0/ raw telemetry recordings, and Figure 2 shows the

same file after it had been passed through the filtering procedure, with the relative

positions of points A, Band C Indicated. The durations of stomach temperature

change (A-C) obtained from the filtered and un/illered temperature files were not
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through the filtering procedure. The relative points 01 A,B and C
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significantly different (Kruska~Wams one-way ANOVA.: I:l > 0.05).

The varIOus parametres charaaerizing changes in stomach temperature

following feeding were used Jl both lilear and multiple regression analyses 10

assess the ilRuences of the quantity of fish or ice ingested There are varying

opinions in the statistical literature regarding which variable should be treated as

independent and dependent in linear regressions 01 calibration dala (Williams

1959; Krutchkoff 1967; Martinelle 1970). It is arguable whether the regression

should be calculated according 10 the equation V= a +bx (where. in this case, y

would be the particular stomach temperature pararnalre. and x the meal mass;

called the classic approach) or according 10 the equation x =c + ely (Where. x

would be the meal m9.SS, and y the stomach temperature parametra; called the

inverse approach). Krutchkoff (1967) identifies the inverse approach as superiol'

due to its uniformly smaller mean squared error. However, Martinelle (1970)

condudes that this method is superior only when the sample size is sma•.

Further. W~liams (1959) slates thai in simple regressions 01 calibration data.

where both variables are subjeCt to error (or where both are measuredaccuratelyj.

that either the classic or inverse method may be used, and choice should depend

upon which variable Is to be later predicted. Because in this situation both lhe

changes in stomach temperature and the meal masses were measured with lillie

error, both classic and inverse regressIons were provided where appropriate.

Statistical analyses were performed using NCSS (Number Cruncher Statistical
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System, Kaysville, Utah) software version 5.03 and the Curve Fitter program 5.9.

Means and standard deviations were provided as appropriate, and probability

levers 01 less than 5% were accepted as statistically slgnHicant.

2.3 Results

Stomach temperatura data were obtained during 68 meats of fish and 29

Instances of ice consu01pticn. Table 1 provides a breakdown of the number of

meals of both fish and ice eaten by individual seals. Figure 3 illustrates astomach

temperature profile obtained from an adult female harp seal, durIng which she

consumed measured quantities of herring and crushed Ice. Points A, B, and Care

Indicated on this graph.

Meals of herring consumed during periods when stomach temperatures

were logged ranged from 514 10 7591 g, whi Ie masses 0I1c9 consumed ranged

from 53\07618 9 (Tables 2 and 3). Ingestion 01 either flsh or Ice h'as followed

by a decrease In stomach temperature. The overall magnitude otthls temperature

change (A-B) was greater when meals of ice were consumed (21.2 ± 8.6 0 C for

Ice versus 5.5 :t 2.2 0 C lor fish: Kruskal·Wallis one-way ANOVA, H = 41.5, df =

1, Q <0.001).

2.31 Herring Experiments

Unear regressions Indicated that Just three of the five stomach temperature



Table 1

Breakdown of the number of meals of fish and ice ealen per individual animal
(A:: adult; J = juvenile; M =male; F :::: female)

14

Sex and Age of Number of meals 01 Number of meals of
the Individual Fish Ice

AF1 19 11

AF2 18 4

AF3 2 1

AM1 10 0

AM2 12 4

JF1 2 5

JM1 5 4
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Figure 3: Stomach temperature profile obtained from an adult female harp seal on

30 september, 1992. Measured quantities of crushed Ice and herring

were led wtIlie stomach temperature was continually logged. The relative

positions of points A,B, and C are given. 1l1ese dala have undergone the

filtering procedure.



Table 2

Descriptive statistics of variables obtained from the herring experiments

16

Variable n Mean Standard Range
Deviation

Meal Mass (9) 66 4733.8 1635.6 514 - 7591

Fish 68 6.8 5A -5.3 - 17.3
Temperature ("C)

Log of Area Under 68 5.3 0.5 4.0 - 6.4
the Curve

Log alA to B 68 2.3 OA 1.1 - 3.3
(Minutes)

LogofAtoB 68 1.6 0.4 0.9 - 2.7
(Temperature,OC)

LogofBtoC 68 4.7 OA 3.6 - 5.5
(Minutes)

Log ciA to C 68 4.8 OA 3.8 - 5.6
(Minutes)

Length of 67 59.1 30.3 1 - 116
Feeding
(Minutes)



Table 3

Descriptive statistics of variables obtained from the ice experiments

17

Variable n Mean Standard Range
Deviation

Log of Meal Mass 29 6.2 1.3 4.0 - 9.0
(g)

Log of Area Under 23 5.7 0.9 3.4 - 7.5
the Curve

LogofAtoB 27 2.0 0.7 0-3.0
(Minutes)

Ala B 27 21.2 8.6 2.9 - 32.2
(Temperature,°C)

810 C 27 42.1 17.2 19 - 87
(Minutes)

LogofAIOC 29 3.9 0.5 3.0 - 4.8
(Minutes)

Log of Length of 29 1.9 0.9 0- 3.9
Feeding (Minutes)
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parametres (log Area, Log A·C, Log B-C) were significantly related 10 the quantity

of food consumed. Although significant, the proportion of meal mass variability

accounted for was low. and for each parametre it was less than 30%. Both classic

and inverse regressions of these dala are provided in Figures 4-6. In all cases,

the proportion of variance accounted for by the two regression methods was

equivalent, and the confidence limits on predictions were equally wide.

Due 10 the limited predictability generated from regressing individual

temperature parametres upon meal mass, aU variables summarized in Table 2

(with the exception of mass itsell) were used in multiple regression analyses.

Entering all variables listed in Table 2 into a mUlliple regression analysis accounted

for 50% of the variance in the mass of herring feet to the seals ~1.Y1:a.29. Q <

0.001). As metabolic rate in harp seals has been shown to vary with season, age,

sex and reproductive status (Renouf and Gales 1994). data were partitioned and

analyzed accordingly. Table 4 lists the resuns 01 stepwise regression analyses

performed on the fish consumption dala. A statistically significant prediction 01

meal mass was possible in all cases, but the proportion of variance accounted lor

in each analysis varied widely (44-86%). The length of feeding was a significant

predictor in six of the seven analyses. followed by the temperature of lhe fiSh,

which occurred in four of the predictive equations. log of the area under the

temperature curve and the log of the time from B-C appeared in three of the

equations, whereas the log of the time and tog of the temperature from A-B were
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Table 4
Results of stepwise regression procedures for predicting the mass of herring consumed by harp seals using all available
variables {Log of area under the curve, Log of A·B (min), Log of A·B (temp); log of B·C (min), Log of A·C (min), fish
temperature, and length of feedinQ (min)}. Analyses were performed using the entire data set, as well as when the data were
partitioned by season, age and sex of the subjects

Data Analyzed I F Rallo n Intercept (:l:SE) Co-Efficients Variable(s)
pleval (,SE)

FCUJI·19.1 67 -3951.3 (1874.5) 85.2 (27.7) Fish Temp 10.48
All Data p <0.0:11 20.7 (5.7) LgI Feeding

1449.0 (417.9) Log B-C min

Summer F[3,4:l)- 21,6 47 ·3331.5 (1901.9) 117.4 (31.3) Fish Temp 10.60
(Aprll-5eplember) p < 0.001 28.9 (5.6) 19t Feeding

1057.9 (378.7) log Area

Winter F[3.'81- 7.B 20 -4161.9 (4302.5) 3516.5 (1029.1) log Area 10.59
(October-March) p< 0.01 ·907.8 (744.4) Log A·B min

-4671.7 (1031.5) Log A·B lemp

Adults FlUII -16.7 60 -2534.5 (19392) 58.6 (29.8) FIsh Temp 10.47
P < 0.001 24.4 (5.7) 19t Feeding

l1n.6(426.1) log B-C min

Juveniles Frl,41- 12.1 7 ·909.4 (1313.4) 27.3 (5.B) 19t Feeding 10
.
86

p < 0.05 969.4 (487.4) log A-B min

Adult Males I F(3.17) - 26.3 21 -3337.5 (2029.7) 79.8 (43.8) Fish Temp 1 0.•2
p < 0.001 38.5 (5.3) 19t Feeding

1114.3 (388.7) log Area

Adult Females I F{Uli1 - 9.2 39 -4547.33 (2597.4) 13.5 (8.3) Lgt Feeding 10.44
P < 0.001 -92'.' (670.2) log A·B temp

2070.5 (599.0) Log B-C min

i:l
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both significant predictors In two 01 the analyeas.

Table 5 lists the results of stepwise regression analyses for predicting meal

mass using only those variables which would be available from a free-ranging

animal; the length of feeding and fish temperature have been excluded. When all

variables were entered Inlo a regression analysis, 28% of the meal mass variation

was accounted for ~5.B2l=4.94, g < 0.01), Although in six of the seven stepwise

analy.ses a significant prediction of meal mass was still possible, in mosl cases, the

proportion of variance accounted for decreased relative to the results In Table 4

and ranged from 24·800/0. With the length of feeding and fish temperature

removed, the log of B·C in minutes was a significant predictor variable in four of

the six analyses, while lhe log of A-B in temperature and lhe log of the area under

the curve appeared in two of the six analyses. The log of A-C and A-S in min

were both significanl mecd mass predictors in just one instance.

Although In Tables 4 and 5 many variables appe:Jr to be important

Inclusions in lhe predictive equations, log of the area under lhe curve, log of A-C

in min, and Jog of S-C In min are of particular Importance, as each alone Is

significantly related to meal mass (Figures 4-6). Table 6 shows the proportion of

meal mass variance accounted for when each of these variables was sequentfally

forced Into a regression analysis. Jn general, the addition of the parametres log

of S-C in min and log of the area under the curve did not account for more of the

meal mass variation than did log of A-C alone. The exceptions ware when the



Table 5

Results of stepwise regression procedures for predicting the mass of herring consumed by harp seals using only thosevariables
which would be available from free-ranging animaIs{Log of area under the curve, Log of A-B (min), Log of A-B (temp), Log of
B-C (min), and Log of A-e (min)). Analyses were performed using the entire data set, as weil as when the data were partitioned
by season, age and sex of the subjects.

Data Analyzed F Ratio n Intercept (:tSE) Co-Efflclents Variable(s)
p level (sSE)

All Data F t1 ,YJ '" 24.0 68 -5004.5 (1993.6) 2057.0 (419.5) Log B·C min 0.27
p < 0.001

Summer F(1.4Sl'" 16.5 48 -5504.3 (2483.4) 2179.0 (536.1) Log B-C min 0.26
(April-5eptember) p < 0.001

Winter F/3. 1Gl '" 7.8 20 -4161.9 (4302.5) 3516.5 (1029.1) Log Area 0.59
(October·March) p<0.01 -907.8 (744.4) Log A-a min

-4671.7 (1031.5) Log A-S temp

Adults F(l,s9}'" 18.4 61 -4089.3 (2117.8) 1900.3 (443.5) Log B-C min 0.24
p < 0.001

Juveniles F(2.4J- 8.0 7 -8546.0 (2927.6) -781.4 (428.6) Log Area 10.80
p < 0.05 3317.0 (1008.3) LogA-C min

Adult Males os
p > 0.05

Adult Females Fl2.34l .. 11 .9 I 39 1-6086.4 (2478.0) 19632 (686.4) ILog A-S temp 10.40
P < 0.001 2572.5 (526.8) Log B-C min

!l1
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Table 6

The proportion of variance accounted for (r') when three temperclture file
parameters {Log of A-e (mIn), Log of SoC (min), and Log of the area under the
curve} were each sequentially enlered into a regression analysis 10 predict meal
mass. Asterisks indicate significant increments in r'.

Log 01 A·C (min) Log of A-e (min)
Data Log of A-e and Log of B·C (min)

Analyzed (min) Log of B·C (min) and
Log of Area

All Data 0.27' 0.27 0.27

Summer 0.25' 0.27 0.27
(April·September)

Winter 0.23' 0.28 0.36'
(Oetober·March)

Adults 0.23' 0.24 0.24

Juveniles 0.64' 0.66 0.62'

Adult Males 0.15 0.15 0.16

Adult Females 0.36' 0.37 0.37
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data ,from juveniles and the data collected during winter were considered

separately. In these cases. knowledge of log of the area under the curve added

significantly to the predictive power of the log of A-C.

Possible covarying effects of fish temperature and the length of feeding

were examined by partitioning the meals of herring into three groups (0-3, 3-5, and

5·8 kg; Table 7) and comparing them using analyses of variance and covariance

with dala for three significant predictor variables (log of A-C min. log of B-C min.

log of the area under the curve; Table 8). Group differences were found in the

duration of stomach temperature change (log of A·C, log of B-C) following meals

of fjsh ~2,66l"5.70, Q < 0.01; ~U6J..5.78. g < 0.01, respectlvely). Specifically, the

duration of stomach temperature change was significantly ranger for meals ranging

from 5-8 kg than for those rangIng from 0-3 kg (Fisher's LSD procedure, 12 < 0.05

for both analyses). No significant differences were found among the meal size

groups with respect to Brea under the curve ~.ti5)=2.65. 12 > 0,05).

With the effects of fish temperature removed, the log of the area under the

curve was significantly different for meals of fish ranging from 0-3 kg and 5·8 kg

(F(:l,Il4J=3.9612 < 0.05; Fisher's LSD procedure, Q < 0.05). Fish temperature did not

significantly effect either the log of A-C or the log of e-c. Using the length of

feeding as a covariate did not result in more efficient tests of the dependent

variables, despite the fact that it was, itself, a significant covariate in all three

analyses (Table 8).



Table 7

Descriptive statistics for meals of herring when separated by mass.

27

Meal Mass n Meen (g) Standard
Error

0-3 kg 13 2284.8 177.74

3-5 kg 21 4027.1 139.84

5-8 kg 34 6106.7 109.90
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Table 8

Results of Analyses of Variance and Covariance performed with and without the
effects of covarlates (fish temperature and length of feeding) removed from three
different predictor variables. Meals of fish aTe categorized into 3 groups based on
mass (C-3 kg (1); 3·5 kg (2); 5-8 kg (3)}.~ comparisons were perfonned
using Fisher's LSD procedure, with all indicated differences having p < 0,05.

Covariate Predictor Variable

Tested Log of Area log of A-C log of B-C
Under the curve (Min) (Min)

F(z'65) = 2.53 F(2.GS) = 5.70 F(2,65) =5.78
None p:> 0.05 P < 0.01 P < 0.01

1 .3 1 .3

F(2,04) =3.96
Covariate not Covariate notFish p < 0.05

Temperature significant significant
(0G) 1 .3

Length of F(2,&:J) = 0.94 FlU") = 1.32 F(2,S3) = 1.38
Feeding p > 0.05 P > 0.05 P > 0.05

(Min)
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In order to develop and subsequently tesI a model for quantifying food

Intake, Ihe data sel was partitioned into two groups; the first was used to develop

the model using stepwise regressions (see Table 9) and the second used to lest

its usefulness, The groups were formed by assigning all data collected on even­

numbered Julian dates 10 one group, and those collected on odd-numbclred Julian

dales to a second group. 80lh groups were used, In tum, to both build and lest

the models. The proportIon of meal mass variance accounted for by Ihe two

models was widely different. While model 1 accounted for just 17% of the meal

mass variance, model 2 accounted for 59% of the variance. Results of the model

lesls are provided in Figure 7. Results were again variable. Model 1 was

relatively efficient at predicting the aclual quantity of food consumed (r2 = 0.50),

while model 2 provided much poorer predictions (f = 0.12).

2.32 Ice Experiments

Descript!ve statistics for the meals of ice consumed by the sears are

presented in Table 3. Four of the five parametres characterizing stomach

temperature changes (log of area under the curve, log of A-8 min, log of A-C min,

e-c min) were significantly related to the quanlily of ice consumed. The proportion

of ice mass variance accounted for by these individual parametres varied from 31­

60"/0. 80th classic and Inverse regressions of these data are provided in FIgures

8-11. Again, the proportion of variance accounted for by the two regression
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Table 9

Two models developed from data sub-sets to predict the quantity of food
consumed by harp seals from known changes in stomach temperature. Each
set of data subsequently served to lest the predictability of the alternate model.

Data used to create n Intercept Co-smclen! Variable f
the model (,SE) (, SE) and

p level

0.17
Data gathered on even· 42 -3915.9 1786.2 Log A-C min
numbered Julian days (,3067.1) (,633.6) p< 0.01

(Modal 1)

Data gathered on odd· 26 -6937.9 -1526.4 Log Area 0.59
numbered Julian days (,2566.6) (,738.0)

(Modal 2)
4163.6 Log B-C min p < 0.001

(,656.2)
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methods was equivalent, and confidence intervals were of comparable widths.

Similar analyses to lhose outlined for herring were performed on the ice

consumption dala. When all variables were enlered inlo 8 mulliple regression

analysis, 94% of (he meal mass variability was accounted for ~e.le)=43.22, 12 <

0.001). Tables 10 and 11 list rBRulls of the stepwise regression procedures. As

the dala set was smaller in this case, it was subdivided by season ooly. When all

variables were included, a significant prediction of the mass of ice consumed was

possible in all cases. The log of the length of feeding was always a significant

predictor variable. The log of the area under the CUNe was a significant predictor

In two of the three analyses and the log of the time from A·B and the time from 8·

C were significant predictor variables In just one instance. The prOf,lortion of

variance accounted for was large in all cases (89-94%: Table 10).

Table 11 provides the results for predicting ice consumption when all

variables except the log of the length of feeding were Included. When all

remaining variables were entered into a regression analysis, 71% of the ice mass

variability was accounted lor (F
l5

•17) = 8.46, Q < 0.001). When using stepwise

analyses, significant piedictions were possible for the data set as a whole, as well

as for data from the summer months (April·September). The proportion of

variance accounted for in these analyses was 69 and 78%, respectively. A·B in

temperature, SOC min and the log of the area under the curve were the only

significant parametres, each appearing in just one of the analyses.



Table 10

Results of stepwise regression procedures for prEHftCting the mass of Ice consumed by harp seals using all available variables
{Log of area under the curve, Log of A·B (min), A-B temperature, B-C (min), Log of A-G (min), and log of the length of feeding
(min)}. Analyses were performed using the entire data set, as well as when the data were partitioned by season.

Data Analyzed I F RaUo n Intercept (or.SE) Co-Efnclents Variable(s)
p level I.SE)

All Data I Fp.,.. - 02.6 23 3.7 (02) 0.02 (0.005) B-<:mln 10.93
P <0.001 -02(0.1) log A-S min

1.1 (0.1) Log Lgt Feeding

Summer Fl2-'" - 54.4 I. 0.1 (1.1) 0.8 (0.2) Log Me. TO.B'
(April-september) p <0.001 0.8 (0.2) Log Lgt Feeding

WlI1ter Fp..l- 32.9 7 5.1 (0.5) -02(0.1) Log Area 10.94
(OCtober-March) p < 0.01 1.0 (OJ) Log 19t Feeding

~



Table II

Results of stepwise regression procedures lor predicting the mass of Ice consumed by harp slJals using only those vatlables
which would be available from free-ranging animals {Log of area under the curve, Log of A·a (min), A-S temperature, SoC (min),
and Log 01 A-C (min)). Analyses were performed using the entire dala set, as well as when the data W9I'9 partitioned by season.

Data Analyzed F Rallo n Intercept (:SE) C().Eflldenls Variable(s)
p level (:5E)

AI Data FlUOl -22., 23 2.9 (0.5) 0.08 (0.02) A-8 temp 10.69
p < 0.001 0.03 (OJ>9) B-C min

Summer Fe',") • 49.4 16 ·2.5 (1.3) 1.4 (0.2) Log Area 10.78
(April-September) p < 0.001

Winler n.
(October'MaJdl) p> 0.05

III
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Similar to thai for herring, a model for quantifying ice conslITIption was

developed and tested by partitionilg the dala into two groups. The groups were

formed in the same mannefas described previously. In !hiscase, only one model

was created, as no adequate predictions COlJId be made from the dala collected

on odd-numbered Julian dales (Table 12). Even though the model ilseHaccounted

lor a large proportion of the ice mass variance (93%), when tested, the predictions

were unrelated to the actual quantity of ice consumed (Figure 12).

2.4 Discussion

The use of stomach temperature telemetry in captive harp seals has shown

thallhe ingestion olllSh and water {Iree and fro?:enl can be delected reliably (and

see Gales and Renouf 1993). This study also found that the ingestion of ice and

fish may be differentiated solely on the basis 01 stomach temperature parametres.

However, contrary 10 Gales and Renouf (1993), the use 01 stomach temperature

telemetry for quanlifying prey consumpUoo was not supported. AlthOlJltl

statistically significant predictions 01 lhe quantity 01 herrilg consumed were

possible (Table 5), lhe proportion 01 variance accounted lor (27%) was low.

Results pertaining to ice consumption were more promising, with the duration and

magnitude of the temperalUre changes being related to the mass of ice consumed,

accounting for 69% (Table 11) of the variance. However, lurlher testing proved

that this relationship was not robust.

The magnitude of the slomach temperature change may be a means to
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Table 12

A model developed from a portion of the data sa! to predict the quantUy of ice
consumed by harp seals from known changes In stomach temperature. The
model was subsequently tested using the remaining data.

Data used to create n Intercept Co-efficient Variable f
the model (i SE) (± SE) and

p lavel

-0.02 (,0.01) B·C min 0.93
Data gathered on even- 12 -4.9(,1.3)
numbered Julian days 2.0 (± 0.3) Log Area p <0.001

Data gathered on odd- 11 n,
numbered Julian days p,.O,05



41

•.,r-----:~-------..,.__---__,

~.
<L

m
o
--'

&.& ~pI'dIc~~=~-:.O;~+l.l(~r~lIIIl~)

P_O.08 0

5.2

l.'

2.'

1·'L.,-.0---',-.'---5=-..,-0-""'--,..,-'---7=-.-0------',.,
Log Re 0 1

Figure 12: Predicted versus the actual mass of ice consumed by harp seals. The
model was -:!liveloped from dala COllected during even·numbered JuJfan
days, and tested with data collected durlng odd-numbered Julian days.
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irKicate whether an ingested subslance is a prey item or ice. 'MIen the seals

coosumed Ice, the absolute change in stomach temperature WDS generally larger

than when they ale fish. For example, when an adult female coosumed 5430

grams 01 herring (mean T =-5.3 QC) stomach temperature dropped by only 6.5 "C.

However, aller consuming a similar amount of ice (5708 grams), a 32.2 "C drop

n stomach temperature was recorded. FUl1her, lhe smalleSt recorded meal of

crushed ice (53 grams) resulted n a 16.6·C change in stomach temperature,

surpassilglhe maxinum 15,4 °c temperature changeresulli1g from a 3793 gram

meal 01 fish (mean T '= 0.3 ·e).

Using 1 standard deviation as a criterion, these data suggest Ihal rapid

changes In stomach temperature which declease by a minimum 01 13.6 "C could

likely be allributed 10 the ingestion o! ice. Likewise, temperature changes of less

tl\an 7.8·C could be attributed to fish coosumption. With the present data set,

usi1g this criterioo would result in 6 of 68 (8.B%) meals 01 herring and 5 01 27

(19.0%) meals of ice being misinterpreted. Feeding bouts resutling in temperature

changes belween 8 and 14·C WOtIIcI have to be catfiously hterpreted.

The magnnooe and duralion ot stomach temperature change following a

feeding bout depends upon the rate of heat Rux from the body core 10 Ihe stomach

contents (Wilson and Culik 1991; Pulz and Bost 1994). Presumably, a number of

lactors Influence this flux, The rate Is dependent most simply upon the

cooductance of heallrom the centre of the stomach to the s!omachwall; this, in
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tum, depending upon both the temperature gradient between the areas, and upon

the thermal conductivity of the stomach contents (Wilson and Culik 1991). These

faclors coupled with differential digestive responses to various ingesta may help

explain tn't ':/ssimilarily in temperature profiles obtained from harp seals eating fish

and ice.

When food is ealen tlY a seal it is transported almost immediately to the

stomach, whereupon gastric juice secretion increases (Sanford 1992). The

stomach's main functions in the digestive process are directly related 10 motility

(WeisbrodI1985); the musculature must first Telale to accommodate the meal. and

then conlracllo mix the ingested food with gastric juices, allowing digestion to

begin. Finally, gastric motility is organized so as to propel the partially digested

contents into the small bowel (Weisbrodt 1985). When the stomach becomes full

peristaltic waves diminish in force, but subsequently increase in inverse proportion

to the amount of fat in the meal (Davenport 1982). The rate of transfer of material

from the stomach to the duodenum depends both upon the physical and chemical

composition 01 the meal (Davenport 1978, 1982; Weisbrodt 1985). However, as

a general rule, the greater the volume of gastric contents, the faster the rate of

emptying (Sanford 1992). Liquids pass through the stomach more quiCkly than

either solids or semi-solids (Davenport 1978), and the greater the concentration

of energy (kcaVml) in the gastric contents the lower the rate of transport to the

duodenum (Davenport 1978; Hunt 1980). Hunt and Stubbs (1975) report that
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when the stomach contains food, the rale of emptying is less than 10 mVmin,

whereas the maximum rale of emptying for a stomach containing a saline solution

is up to eight limes faster.

The rate ::-.~ which food heals up within the stomach depends partially upon

the degree of mixing (Wilson and Culik 1991); high degrees 01 mixing result in the

mosl rapid transfers of heat. When herring is eaten by a seal the rate of gastric

mixing and emptying may be relatively slow. Both the high energy conlent of the

food in general, and, nol independently, because of its high fat content (Forbes

and Swift 1944), herring may be expected to have a prolonged gul retention lime.

Given the slow rate of mixing, peripheral food could warm and subsequenlly

insulate the body core from the remaining ingesta, which would warm more slowly

(Wilson and Culik 1991). In contrast, when water or ice is ingested rigorous miKing

of the fluids would inhibit the formation of a thermal gradient within the stomach

(Wilson and Culik 1991), and ice would perhaps melt relatively quickly. It is also

possible that upon melting some of the water may be lost through dillusion across

the gastric wall. Considering the rapid rate at which liquids in general are emptied

from the stomach (Davenport 1978), the potential loss of water across the gastric

mucosa, and the lack of energy supplied to the seal by ingesting ice, the durations

of stomach temperature change would perhaps be minimized, and their

magnitudes maximized in comparison to those for meals of fish. The findings 01

this study were indeed consistent with these expectations (Tables 2 and 3). The
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ability to distinguish between fish and ice consumption may become important

when interpreting stomach temperature profiles from free-ranging animals.

The parametres which best predicted the mass of fish consumed by the

seats were those measuring the duration of slomach temperature change following

ingestion (log A·C min, log of B·C min) and Ihe log of the area under Ihe curve

(Tables 4 and 5), however, lhese relationships were relatively weak. Parlitioning

Ihe data by sex, season, 8'1d age of the subjects had lillie effect on the

predicabilily of meal size (Table 5), but Ihe number of sUbjects in each category

was small (Table 1). Knowledge of Ihe log of lime elapsed from B-C accounted

lor 27% of Ihe variability in the mass of herring fed to the seals. This amount

increased to 80% when data for the juvenile animals were considered alone, but

as in this case sample size was small (n :: 7), no definitive conclusions should be

drawn. The overall percentage 01 meat size variability accounted for in this study

was substantially less than the 71% reported by Gales and Renouf (1993). This

may perhaps reflect differences in the sample sizes used (n :: 11 vs 68 in this

stUdy), and the deleterious effects of spurious correlations, or seasonal differences

In metabolic rate (Aenouf and Gales 1994). Data in this study were collected

during a 15 month period, whereas those used by Gales and Renouf (1993) were

collected during 4 months (September 1991 to January 1992). However, as the

present data were partitioned and analyzed by season, this factor was unlikely to

have seriously affected interpretation.
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Testing the models created from sub-sels of the fish and ice consumption

data (Tables 9 and 12) provided conflicting outcomes regarding the adequacy of

the technique for quantifying rates of food and ice intake. The general trend being

the smaller the sample size used to create the model, the higher the proportion 01

meal mass variance accounted for. The strongest relationships between stomach

temperature parametres and meal mass were obtained with small sample sizes,

both in this study and in Gales and Aenouf (1993). This seems to indicate lhallhe

inherent variability in stomach temperature data becomes mosl evident with

extensive sampling, and caution must be utilized when drawing conclusions based

on limited sample sizes. II is recommended that large sample, species-specific

calibrations be carried out before using this technique to estimate rates of food

consumption.

One factor which seems particularly relevant for further determining the

adequacy of stomach temperature probes in predicting the quantity of prey

consumed by seals relates to an undetermined aspect of their foraging behaviour.

Neither the temporal spacing, diurnal patterning nor the quantity of prey consumed

during a meal is known for wild seals. In this study the majority of meals were

large, with just 13 (19%) of the meals weighing less than 3 kg. This fact may

prove problematic as it is unknown whether small and large sized meals can be

detected equally well from changes in stomach temperature, and it is possible that

this technique may prove most useful when larger discrete meals are eaten.
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However. from Gremillet and Plos's (1994) study of the feeding ecology of free­

living bank cormorants(~~), meals estimated to weigh as

small as 6 9 were readily identifiable from stomach temperature profiles. The

adequacy of quantifying small versus large sized meals, or meals containing

different sized prey item remains largely untested.

When Wilson at al. (1992) intubated African penguins with either 100 or 200

cm3 of seawater, the integral of the temperature curve was less than expected.

These results were explained on the basis thaI some of the seawater had been

voided from the stomach before reaching asymptotic temperature, causing the

smaller integral. It is possible thai, with the large meals fed to captive seals in this

study, some of the herring passed through to the intestine before being warmed

10 body temperature; resulting in an underestimate of the mass ingested. Support

for this explanation comes from Markussen (1993), who estimated the time

required for slomachs 01 harbour seals to empty. The stomachs of these seats,

which were fed meals of herring ranging in mass from 0.5 to 2.1 kg, began to

emply less than 1 hr after the end of feeding.

Further errors in this technique could result from the temperature sensors

not being in continuous contact with incoming, colder prey items. Although the

sensors were designed to sink in seawater (and in the stomach), we cannot say

with any certainty where in the stomach they were positioned during the feeding

experiments. Where multiple prey items were consumed during a meal, the
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sensors may have been covered and consequently insulated from the temperalUre

changes occuring as new prey items were eaten. PUlz and Bosl (1994) note thaI

stomach churning may potentially override this confound, but. as they conclude.

its overall affect on temperature profiles or upon the adequacy 01 meal size

prediction, is largely unknown.

Aside from differential digestive responses 10 various ingesta and potential

errors in the technique outlined above. the nature of the feeding paller WH .se

could obscure estimates of the quantity of prey consumed. The size and number

of prey items taken in a meal as well as incidental waler intake associated with

different prey items could introduce error inlo meal size calculations. Consider

differences in the water intake associated with meals consisting of limited numbers

of large prey items, as opposed 10 those containing larger numbers of small fish,

crustaceans, or cephalopods. Capturing numerous smaller prey items during a

meal would presumably result in greater incidental water intake Ihan would the

capturing of larger prey items. Where seasonal and geographic differences in diet

have been observed (Beck et a!. 1993; Gales el al. 1993; lawson et al. 1993), Ihe

accuracy of this technique may also be expected to shift accordingly. Within a

particular speCies, these laclors could combIne to provide intake estimates cauter

to actual.

Despite the potential problems with quantifying prey consumption, combining

the use of stomach temperalure sensors with satellite telemetry and time-depth
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recordings would provide valuable insight into the foraging ecology of seals.

Information could be obtained on the timing and locations where seals feed, the

temporal and geographic spacing 01 their meals, and the overall frequency of prey

consumption. II would also be possible to determine if seals feed preferentially in

certain portions altha water column and, as a resull, may provide additional insight

into the types of prey being consumed. Successful foraging dives could be readily

identified as lhosa containing rapid declines In stomach lemperalUre. It would be

interesting 10 compare success rales of dives with stomach temperature recorders

10 those which have traditionally been termed "foraging" and "non-foraging" dives

based solely on the shape of the dive profile (Hindell at al. 1991; Le Beeuf et al.

1992).

That seals redistribute blood flow during diving, saving the oxygenated blood

for the central nervous system and the heart (Schmidt-Nielsen 1983), may be

problematic when interpreting profiles from free-ranging seals. Blood flow to the

stomach would likely be reduced during dives, and rates of stomach perfusion and

motility would perhaps be reduced (pOtz and Bost 1994). However, as these

authors conclude, much of the heatllux to the stomach contents probably occurs

as a result of conductance, irrespective of blood flow, and would therefore be

unlikely to obscure interpretation of the data,

II is necessary to determine the distribution, diet and energy requirements

of pinnipeds to evaluate their effects on commercial fisheries, Examining the hard
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remains in stomach contents of seals have provided indication of both the type and

Ihe relative importance of particular prey items to Ihe diet. However, dilferenlial

degradation and passage rates of different prey types bias estimates of

consumption based on this method (Pierce and Boyle 1991). For example, the

percentage of otoliths fed to phocid seals which were subsequently recovered in

stomach contents dropped from 100 to 0% between 0 and 12.9 hours following

ingestion (Muria and LaVigne 1986). Thus, the estimated relative importance of

different fish species in the diel may be incorrect when USing solely otolith remains.

Alternately, the accumulation of cephalopod beaks in seal stomachs may over­

estimate the imporlance of these items to the diet (Bigg and Fawce1l1985). The

extent of tissue and hard part erosion increases with lime elapsed since feeding,

and would be most deleterious for prey which contain no hard remains.

For harp seals, quantitative descriptions of diet are further complicated by

seasonal and geographic changes in population distribution; animals are most

accessible for sampling during the brief lactation and moulting periods. The diet

of harp seals from the Gulf of St. Lawrence and Western Hudson Straight has

been shown to vary seasonally (Back at al. 1993). Further, considerable seasonal,

geographic and interannual varialion in the diet of harp seals in the Newfoundland

and labrador region has been found (lawson at al. 1993). These studies

demonstrate the necessity of using extended temporal and geographic sampling

regimes when estimating the impact of migratory seals on commercial fish slocks.
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Food Intake has also been estimated indirectly by measuring labelled-water

dilution rales. Such consumption estimates require knowledge of metabolic waler

production, prey composition and metabolic efficiency (Costa 1987). Animals must

be injected and recaptured within a lew days, which is possible only during

laclation and moult for mosl wild seals. Consumption estimates obtained in this

manner would be inappropriate for estimating annual rates of food consumption

for either harbour or harp seals, as the energy requirements of lhese animals vary

substantially over the year (Ranoul and Noseworthy 1991; Ranoul at al. 1993).

Energy requirements of seals have also been estimated from serial changes in

mass (Fedak and Anders(Jn 1987). Again, this method would be inappropriate for

harbour and harp seals, as the relationship between energy intake and body mass

is nol constant throughout the year (Renouf and Noseworthy 1991; Renouf et al.

1993). Finally, data obtained from long-term studies 01 the energy requirements

of captive seals may be used to estimate the food reqUirements of wild

popUlations. Such studies can provide details into particular aspects of the energy

bUdget such as basal energy requirements, digestive efficiencies and the costs of

swimming and digestion. If activity budgets are known for free-ranging individuals,

data obtained from captive animals might be scaled to esUmate the energy

requirements of their wild counterparts. It seems clear that in order to obtain

reasonable estimates of the type and rate of prey consumed by seals that a

comprehensive approach involving a variety of research methods is necessary.
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3.0 Chapter 3

Use of Temperature Telemetry to Monitor Ingestion by. H_bour Stal~

~ Mother and her Pup Throughout lactIitJon

3.1 Introduction

Relatively lillie Is known about the characteristics of pinniped suckling

behaviour despite its importance to the understanding of laclation strategies.

Bowen (1991) noted the difficulty in accuralF.lly measuring nursing events such 8S

bout duratlon, Inler-suckllng Interval and dally suckling duration per S9, along with

ontogenetic variation In these parametres. Where estimates exist, comparisons

between studies are often difficult as definitions of sucl<ling bout parametres and

methods of measurement are variable (Bowen 1991; PSfry and Stenson 1992).

Existing data on suckling behaviour have largely relied on vlsual

observations. As such, they afe typically restricted to daylight hours and to

animals within close proximity to the observer. Estimates of lotal daily suckling

duration are usually based on the assumption that bout lengths measured during

the day are representative of the entire 24 h period, even though diel variations

have been reported (Umberger et at. 1986). These uncertainties may be

compounded if the pallem of suckling changes over the lactation period. An

increase In the duration of suckling sessions with pup age has been reported for

northern and southern elephant seals~~, Bowen 1991), as well as for

harbour seals (Rosen 1991).
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Two methods have generally been used 10 quantify milk Intake by pinnlpeds

(Costa 1991). The first calculates the amount of milk necessary to meet a pup's

estimated energy metabolism and growth dumg lactation (Fedak and Anderson

1982; 198?). The second astmates milk intake by monitoring the decline of the

specifIC activity or cmcenlratlon of introduced labelled-waler (Costa at al. 1986;

OllOOal and Iverson 1987; Tedman and Green 1987; Higgins 81 at. 1988; Costa

1991; Lydersen at at 1992). In both methods, a cumulallv8 estimate of milk intake

Is obtained which provides no informalJon on the variance of daily or diurnal

suckling patterns. Knowledge of ontogenetic and temporal shifts In suckling

behaviour would compliment information provided by purely energetics research.

The development of archival units capable of detecting and r9COfding

changes i"l stomach temperature have widened the scope of feeding research in

mama endotherms (see Chapter 1). The present study used stomach

temperature probes to monitor ingestion by a female harbour seal and her nursing

pup. Due to its preliminary nature. and small sample sizo. the main purpose of the

study was to investigate the potential use of the stomach temperature technique

per se in this situation. Therefore. the most basic objective was to determine if

nursing bouts could be identlffed from changes in pup stomach temperature, and

if so., to determine whether a relationship existed between the duration of a

suckling session and the subsequent length of stomach temperature change. The

possibility of being able to remotely detect milk intake. and thereby providing a
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means through which to Investigate ontogenetic changes in suckling behaviour

could be were also Investlgated.

3.2 Methods and Materials

A 15-year-old harbour seal and her female pup bom on 24 June, 1992 at

the Ocean Sciences Centre, Memorial University of Newfoundland, Canada were

studied. The seals were housed in an outdoor tank (7.5 m diametrs) surrounded

by wooden decking. The lank was filled with 60,000 Iilres of seawater at amblenl

temperature (mean temperature during the study =9.2 °e, range:z7.5°C 10 13.0

°C) pumped continuously from the adjacent Logy Bay, The molher was fed pre­

weighed thawed herring~~ ID;t !l!?i1J.!.m for 30 minutes each

morning, and the mass of food she consumed each day was recorded. 80lh

mother and pup were weighed at least weekly using a platform suspended under

a Saller model 199 Thermoseale. Six days after birth, the pup was induced to

swallow a temperature-sensitive VHF transmiller (Blolrack, Dorset, UK) which she

retained throughout the lactation period. The mother was also given a similar

temperature transmiller, placed in a fish, on three consecutive occasions which

she retained for periods ranging from 1 to 9 days.

The temperature-sensitive VHF transmitters were housed in watertight

plastic cylinders (51.3 rom in height, 17.7 mm diameter, 11 g). Pulse duratlon was

received with a 2·elem ant Yagi antenna and logged by a lotek receiver (SAX 400;
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Lotek Engineering Inc.• Aurora, Ont.. Can.). Calibrations were performed in a

waterbath prior 10 the experiment. where sensors were maintained for 15 minutes

at each 5 °C inlerval between 0 and 40°C. Transmitters responded to

temperature changes within 1 minute, and were precise to within J: 0.2 °C of the

walerbalh temperature. Curve-fitled polynomial equations were used to calculate

stomach temperature from logged pulse durations.

Visual observations of the pair were conducted between 0900 and 1600 h

e8ch day. Records were kepI of the beginning and end of each suckling session,

as well as all on· and off-leal times. The duration of anyone suckling boul was

calculated as the cumulative amount of time the pup was attached to the teal.

provided that intermittent off-teat periods did not exceed 1consecutive minute in

duration. When the PUP had been unattached to the nipple for more than 1

mInute, any subsequent nursing was recorded as a new bout.

To eslJmale the amount of milk ingested, the pup's stomach was simulated

in the laboratory using an empty balloon that could be filled with milk, following the

method of Wilson et at (1992). The balloon was immersed In a 4 litre waterbath

set at the pup's mean stomach temperature (37.8 GC). Temperature changes

similar to those of the nursing pup were brought about by introducing various

quantities of low-fat cow's milk or cream, as an instantaneous volume, Inlo lhe

balloon. The milk or cream was introduced at 37. 1 ~C, a temperature which was

within 1 SD of mother's mean body temperature of 37.5 ~C. To accounl for the
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possible affect of changes in milk composition throughout the lactation period,

simulations were run using milk/cream with two different percentages of fat (20/0

milk fat n=13; 32% milk fal n:4). Temperature changes in the simulated stomach

were monitored with a VHF transmitter, From these trials a relationship was

determined between the volume of milk added 10 the balloon and the length o'lima

required for the introduced milk 10 warm to the bath temperature. Similar to

calibration results in Chapter 2, both classic and Inverse linear regressions of Ihese

dala y.rere provided.

Pup stomach temperature change following nursing W;J5 analyzed relative

10 two operationally defined points: (A) the time of departure from slable

temperature, and (C) the time at which a stable temperature (Within :i 0.1 0C) of

(A) was obtained subsequent to the nursing bout. Observed nursing bouts

precipitated measured stomach temperature drops followed by exponential or

linear returns to stable values. Nursing bouts which were inferred from the

temperature records followed an exponential recovery (Y=A(1_.!i!·B(K.cl; where

X=time, Y=temperature, and A,B,C are parametres estimated by the mathematical

model) in order to provide agreement between this and previously published work

(Wilson at al 1992, 1993; Waimarskirch and Wilson 1992). To reduce bias in

deciding which of the unobserved temperatura changes were indicative of nursing

activity, only those instances for which the preceding equation accounted for

greater than 90% of the variance in temperatures were included in the following
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analyses. Using 90% as the cut·off criterion resulted in just 5 of the 58 (8.6%)

potential nursing bouls being discardeoj. In much of the discarded data, stomach

temperatures followed a linear, as opposed to an exponential, relum 10 stable

value.

All data were analyzed using the Number Cruncher Statistical System

(NeSS, Kaysville, Utah) software version 5.03 and the Curve Filler program

version 5.9. In all cases, probability levels of less than 5% were accepted as

statistically significant.

3.3 Results

The pup weighed 11 kg at birth. During the first 27 days of lactation Its

mass increased 10 27.5 kg (Figure 13). The mother's mass declined by 24.6%, to

a low of 65 kg (Figure 14), although the amount 01 food she consumed per day

Increased during the same period (one-way ANOVA for mean food intake across

weeks; ~4,3»)=24.29, Q < 0.0001).

The mother-pup pair was observed for a total of 83.5 hours, and 131.0 and

457.5 hours of stomach temperature data were recorded from the mother and pup.

respectively, between 30 June and 31 July, 1992. On 17 occasions, temperature

profiles indicating nursing were matched by vIsual observation. Suckling bouts

were inferred from another 53 temperature profiles without visual confirmation.

Figure 15 provides an example of a daily temperattJ'e profile obtained from the
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Figure 14: Mean dally food Intake (g of herring) durIng the lactation period,
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represent 1 standard devJation.
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Figure 15: Dally stomach temperature profile of a suckling harbour seal pup,
obtained at 8 days of agp. Arrows Indicate the beginning and end
Of stomach temperature change following milk Intake (A and C). The

vertical line IndIcates the lime when observations ended for that day.
Stomach temperature changes marked 1·3 correspond with obs9IVed

nursing bouts.



61

nLlrsing pup. Temperature changes such as lhose occurring between the arrows

in Figure 15 followed ctserved nursing sessioos. The length of stomach

temperature change (A 10 C in minutes) following milk intake was linearly related

10 the duration 01 the nursing bout (Figure 16; r2=O.82, Q < 0.001, n =17).

In addition, 9 instances of nursing or nursing attempts were observed while

the pair ware in the waler; none of these nursing allempts coincided with

decreases in stomach temperature. However, in 5of lhese 9 instances the pair

hauled oulof the water and nursed, on average, 11.6 :l: 6.9 minutes after the

attempt had been observed. The overall non-feeding stomach temperatures of

mother and pup fell within the rangG of published values for mammals (Schmidt­

Nielsen 1983), and varied between 37.1-38.2°C and 37.2-38.5 °C fo:' mother and

pup, respectively. All telemelry analyses were of data collected between 1-28 July,

1992, and divided into 4 week-long blocks. It was during this time period that

sampling protocol by observers and the use of telemetry equipment was most

constant.

The introduction of milk or cream inlo the smulated stomach resulted in

temperature decreases (Figure 17). As no dHferences in recovery time were found

between simulations using substances with high and low percentages of fat (ona­

way ANOVA; Gl,l}=O' 11, Q > 0.05), all data were analyzed together. The lime

elapsed from temperature decrease to stable temperature recovery during the

simulation trials was significantly related to the volume of milk intrcxluced into the
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Figure 17; Typical temperature changes, recorded vla telemetry, in a mllk·flUed
balloon during stomach simulations. In this case 375 ml of milk at
37.1 Cwas added lathe balloon, at theUme Indicated by the arrow.

The points Aand C are also shown.
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balloon (Figure 18: ~=O.9B, Q < 0.001, n=17). There was no difference between

the classic and inverse methods with respecllo either the proportion of variance

accounted for or the signRicance level of the dala. The 9sllmats of errors for the

predicted values were also similar.

Extrapolating from thesa simulation experiments, the duration 01 stomach

temperature change was used to estimate the volume of milk ingested by the pup.

The time elapsed from onset of post-prandial temperature drop to stable

temperature recovery increased with pup age, as did the estimated mllk Intake per

bout (Table 13; one-way ANOVA; ~.01)=11.66, R < 0.0001 for both data sets).

Specifically, the duration of stomach temperature change following nursing bouts

was significantly lower In week 1 than subsequently (Fishers LSD test, g < 0.01).

A shift towards diumal nursing time was evident across weeks, with an

overall increase in milk intake during the hours of 06:00 to 18;00 (Figure 19;

Kruskal-WaUis one-way ANOVA; H=9.76. df=3, g < 0.05). The percentage of

nursing which occurred during the day in week 4 was significantly greater than in

week 1 (Dunn's multiple comparison test, J2 < 0.05). This trend was evident when

the length of stomach temperature change (A to C) was considered as a

percentage of the total for a given day, independent of the aclual number of

nursing sessions.

Figure 20 provides an example of stomach temperature data collected from

the mother. The rapid drops in temperature evident in this graph can only be
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Figure 18: a) Classic and b) Inverse regressions altha relationship between the
volume of milk added 10 a simulated stomach and the time required for
the Inlroooced milk to warm to the bath temperature. Confidence
intervals as In Figures 4·6.



66

Table 13

Changes over the lactation period in the total length of stomach temperature
change (A-C minutes) following milk ingestion. and the estimated amount of milk
consumed (millilitres). ~comparisons were performed with Fisher's LSD
procedure. with indicated differences being signKlcant altha 0.05 probability level
(a .. b; c "" d).

Duration of Estimated Milk
Tune Pup Age n Temperature Change Intake per Boul

(Weeks) (A·C min) (ml)
Mean SO Moen SO

Week 1 1-2 21 26.6" 10.5 488.1' 250.7

Week 2 2-3 23 45.9" 19.0 1019.6d 454.0

Week 3 3-4 9 52.4b 18.6 1104.7' 442.8

Week 4 4-5 18 56.9" 20.5 1210.Sd 489.6
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Figure 19: Percentage of total stomach temperature change occurring during

the day and night (06:00 to 18:00 and 18:00 to 06:00. respectively)
using the duration of temperature change (time from Ato C) as the
criterion.
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. lactating h8lbour seal. Temperature was Iogglld contbJally wtile the animal
had access tm'y to ambient temperature seawater.
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allrJbUled 10 seawater- drinking (mariposa) as the weather conditions and daily

feeding regime precluded the possibility of fresh water, Ice, snow, or food Intake

al these times.

3A Discussion

Temperature telemetry may prove to be useful as a 1001 for directly

monitoring milk intake in harbour seals. Unlike labelled-water techniques and

calculation of energy requirements during laclation, stomach temperature telemetry

provides detailed dala which can be partitioned over time. Such a1001, napplied

successfully to free-ranging seals, could provide avaluable means through which

to Investigate plnniped lactation strategies and matamal investment. For example,

differential maternal investment by pup sex could be comparatively addressed, as

could the allendal'\Cs patterns of mothers of different age and with differing levels

01 experience.

Although obtained in a captive situation, the mass changes exhibited by the

mother and her pup are similar to those reported for free-living harbour seals

(Boulva and McLaren 1979: Rosen 1991; Bowen etal. 1992). Thelactatlonperiod

of 36 days falls within the range of pUblished values (23-43 days: Bowen, 1991),

as does the 2.5-fold mass increase of the pup (Bowen et at 1992). Maternal

mass loss was somewhat less than that reponed for free-ranging females since

the mother in this study was fed (Bowen et al. 1992). However, that the female
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stI exhitited a 24% decrease in body mass from parturition 10 wear*lg despite

id.liQ1!ym feeding ~cates the ext9'lt of reserve depletion during lactation

The i1ferred Increase in suckling bout length with P'-'l age WI this study

(FlQUre 16 and Table 13) Is simiJarlo that seen in wild harbOur seal pups 00 the

western AUantic Island of Mlqueloo (Rosen 1991). However, as the present study

estimates the volume of mUk ingested per bout. it Is unknown whether the total

amount Ingested per day changed with pup age. Oftedal at al. (1991) reported

IMl milk Inlake was unaffected by lactation stage in harbou r seals on Sable Island.

with equal intake occurring In early (8~12 days) and late lactation (19-22 days).

The pup's changing nursing regime fn:rnlargely nocturnal to daytime during

(he study provideS data lhat woold be missed usilg a purely observalkmal

awroach. Thesedata, coupled wihobservatlons dmatemalmariposa (seawater

cP'lking), are intemsting fixlings.

Doctmenlallon of free-water ngeslJon Is critX:al to isotopic studies d food

consumjXioo and enElfgellcs which assume all water lnlake 10 be boU1d with~ the

prey or milk (Nagy and Costa 1980). This assumption is invalid in harbour seals

(present study), harp seals (Renoul el at 1990; Gales and Renouf 1993), ri'lged

seals~~; lydersen el al. 1992), grey seals~~;

Schweigert 1993) and Weddell seals~~: Tedman and Green

1987). SUCh mariposa would lead to overestimates of prey cOIlsumplioo by

pivlipeds.
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The overall importance of mariposa, snow and ice consumption 10

maintaining water balance in pinnipeds is not fUlly understood. Lydersen at at

(1992) suggested that snow consumption by a nursing ringed seal pup may have

been influenced by the length of time since the pup consumed its last meal. II

seems possible lhallhis explanation may be more generally applicable. When

feeding occurs frequently, pinnipeds may oblain sufficient amounts of water from

their food, and alternative sources may not be required. However, when fasting,

or when access 10 food is limited, animals may compensate by actively consuming

seawater, ice or snow. Support for this view is available from harp seals (Renouf

al at 1990), where daily fresh water and fish consumption were negatively related.

In the present study, no allempt was made to measure the temperature of

the milk as it came from the mother. Presumably, milk temperatur'tl would vary

with activity level and with variance in the mother's body temperature. it would be

desirable to quantify this variable in future studies. As noted by Wilson et 1::11.

(1992), who conceived using stomach simulations to estimate prey consumption

by freEr-ranging birds, direct feeding experiments using ingesta of known

temperature and volume would improve the accuracy of such indirect estimates.

Likewise. direct pup feeding experiments using known quantities of mother's milk

would be required to determine the accuracy of the indirect intake estimates in the

prese:nt study.

While it offered a simplified physical model, many inherent limitations were
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apparent when using the balloon method 10 estimate milk Intake by the seal pup.

The balloon is essentially a closed system, and is deficient at modelling the many

digestive processes which occurred In the stomach (see Chapter 2), For example.

the balloon model did not account for changes in temperature which may have

occurred as the milk mixed with either prior gastric conlents or from the in!lUl' of

secretions as milk reached the stomach. Perhaps most fundamentally, however,

the model did nol account for gastric motility. Considering its nature, milk would

likely be well mixed within the stomach, would warm rapidly, and would have a

relatively short gut retention lime. Also, as the balloon was in essence closed, II

did nol account for losses which occurred as milk passed on to the duodenum. or

as water diffused through the gastric wall. From this standpoint, the balloon model

perhaps overestimated the volume of milk ingested by the pup.

The duration of temperature change following nursing is affected by the

temperature and volume of milk ingested, the temperature difference between the

milk and the seal, as well as the many processes of digestion. Presumably, the

overall temperature change resulting from the addition of huge volumes of milk into

an empty balloon would be greater than that which would occur in the stomach of

a nursing pup. However, In this study, milk temperature (estimated from the

mother's body temperature) was not related to the subsequent duration of stomach

temperature change (r2:0.13, Q=O.28, n..11),

Stomach temperature telemetry, using the archival units described by
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Wilson at at (1992), would be a useful tool 101 estimating maternal prey

consumption and mariposa during lactation. These measures and methOOological

improvements would help refine estimates of mass and energy transfer for harbour

seals and other species which are known to feed during Jactatioo (Boness et at

1993; Lydersen and Kovacs 1993).



'+
4.0 Chapter 4

General Discussion

Results of the present research wilh captive seals indicate thai the use of

stomach temperature probes may provide a valuable 1001 for remotely monitoring

ingestion by free-ranging phocid seals. Chapter 2 explored the efficacy of using

stomach temperature probes 10 quantify harp seal feeding behaviour. Although

this use of the technique was not supported, the ingestion of both fish and ice

could be reliably detected (and see Gales and Ranouf 1993). In addition, results

indicated thallhe magnitude of the decrease in stomach temperature may indicate

whether the ingested substance was a prey item or ice.

In Chapter 3, dala were reported from a harbour seal mother and pup filled

with stomach temperature probes throughout the lactation period. Monitoring the

stomach temperature changes of nursing pups may provide a novel and relatively

nondisruptive method for both detecting and estimating the approximate volume

of milk consumed per nursing bout, as well as provide a useful means through

which the temporal aspects of nursing may be resolved. Once reasonably tested.

this technique may provide an advantage over behavioural observation alone, in

that continuous 24 hr records of nursing activity could be recorded.

An equally interesting application of this technique throughout the nursing

period could come from its use with the lactating females. Recently, diving records

from lactating harbour (80ness et al. 1993) and harp seals (Lydersen and Kovacs
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1993) suggest that Ihese species may forage throughout the lactation period.

Soness at at (1993) speculate that many of the smaller phocid seals may feed

extensively during lactation 10 support maintenance and growth of their pups, This

is in conlrasllo the belief held previously thai most female phocfd seals fast during

lactation (Bonner 1984; Cosla 1991; Soness at al. 1993; Lydersen and Kovacs

1993). Indeed, fasting as opposed to temporally dispersed foraging and

attendance cycles is cited as one of the major differences in the maternal

strategies of phocids and olariids. Deploying stomach temperatura probes in

conjunction with lime-depth recorders on other species of laclating females may

reveal the true exlent of this phocid/olarHd difference.

It Is plausible that stomach temperature telemetry In conjunction with

sQtelJite-linked lime-depth recorders1 will become a widely-used technique for

investigating the foraging ecology and energetics 01 free-ranging pinnlpeds, as it

has to investigate aspects of the foraging behaviour of free-living wandering

albatrosses (Weimerskirch et al. 1994). During the incubation and brooding

periods, Ihe foraging ranges and success rates of wandering albatrosses were

recorded. Data indicated that albatrosses foraged on widely dispersed prey Ite~s

which were encountered, on average, every 4.4 hours during daylight periods, and

II was estimated that they ingested 2.1 kg (If prey per day. Although it seems

R. Hill (Wildlife Computers) Is currently developing single-package satellite-linked
stomach temperature recorders which will enable direct detection of food
consumption In frae-living seals.
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likely thai prey ingestion could be detected using this technique in many species,

this thesis has demonstrated the necessity of performing large sample-sized,

species-specific calibrations prior 10 using the technique 10 estimate rales 01 prey

consumption. Different sizes and types of prey, as well as differences in body

temperature, stomach, and, indeed, lolal body size could potentially affect the

accuracy of equations predicting the mass of prey ingested.
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