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Abstract 

This thesis is specifically related to the fi hing industry. In th first part of thi 

thesis, literature review is done on estimating the size-selectivity of gillnet. There are 

currently five widely-used methodologies about the size-selectivity of gillnet. After 

briefly describing all of them, respective examples about these five th orie are given. 

The purpose of the first part is to clarify some useful statistical procedures for the 

problem encountered by fishing industries. 

In the second part of this thesis the approach by Millar and Hoslt (1997) 

employed and compared with the log-linear model. Using the data from fleet EW 

and fleet JV, it is found that the normal scale model yields the smallest deviance 

for JV, but not significantly smaller than that from the normal location model. For 

EW, the normal location model produces the smallest deviance, but not significantly 

smaller than the normal scale model. For both data sets, the Lognormal model yields 

the largest deviance. 

v 



--- - -------

Acknowledgements 

I like to take this chance to express my sincere appreciation towards my thesis super­

visor, Prof. Hong \Vang, for leading me to the research field in this thesis. This work 

would not have been completed without his guidance, advice, and encouragement. 

I especially like to thank both the School of Graduate Studies and the Department 

of Mathematics and Statist ics for providing me the financial support during my stay 

in MUN. 

Many thank to Drs. B. Sutradhar, G. Sneddon, and Mr. Haiyan Yang for their 

kindly help during my study in MUN. 

Finally, my sincere thanks go to Dr. C. Lee, the former deputy head of the 

Department of Mathematics and Statistics for providing me with a very friendly 

atmosphere in MUN. I wish his soul would rest well in heaven. 

vi 



List of Tables 

4.1 Results for Fleet EW, the degrees of freedom is 180 .... . .. 2 

4.2 Results By Millar and Holst (1997) , the degrees of freedom is 75 28 

4.3 Results for Fleet EW, the degrees of freedom is 180 29 

4.4 Results for Fleet JV, the degrees of freedom is 180 . 29 

4.5 Deviance for EW and JV . . . . •• 0 0 ••••••• 29 

A.l The catch data from fleet EW 1 78 

A.2 The catch data from fleet EW 2 79 

A.3 The catch data from fleet EW 3 80 

A.4 The catch data from fleet EW 4 81 

A.5 The catch data from fleet EW 5 82 

A.6 The catch data from fleet JV 1 3 

A.7 The catch data from fleet JV 2 4 

A.8 The catch data from fleet JV 3 5 

A.9 The catch data from fleet JV 4 6 

A.10 The catch data from fleet JV 5 87 

vii 



List of Figures 

4.1 EW Normal Location Fitted Catch 31 

4.2 JV Normal Location Fitted Catch . 32 

4.3 Deviance Residuals of Normal Location for EW 34 

4.4 Deviance Residuals of Normal Location for JV . 35 

4.5 EW Nor mal Location Selection Curves 37 

4.6 JV Normal Location Selection Curves . 38 

4.7 EW Normal Scale Fitted Catch 40 

4.8 JV Normal Scale Fitted Catch . 41 

4.9 Deviance Residuals of Normal Scale for EW 43 

4.10 Deviance Residuals of Normal Scale for JV . 44 

4.11 EW Normal Scale Selection Curves 46 

4.12 JV ormal Scale Selection Curves . 47 

4.13 EW Lognormal (mesh 1) Fitted Catch 49 

4.14 EW Lognormal (mesh 2) Fitted Catch 50 

4.15 EW Lognormal (mesh 3) Fitted Catch 51 

4.16 JV Lognormal (mesh 1) Fitted Catch 52 

4.17 JV Lognormal (mesh 2) Fitted Catch 53 

4.18 JV Lognormal (mesh 3) Fitted Catch 54 

4.19 Deviance Residuals of Lognormal (meshl) for EW 56 

viii 



4020 Deviance Residuals of Lognormal (mesh2) for EW 0 57 

4021 Deviance Residuals of Lognormal (mesh3) for EW 58 

4022 Deviance Residuals of Lognormal (mesh1) for JV 59 

4023 Deviance · Residuals of Lognormal ( mesh2) for JV 60 

4024 Deviance Residuals of Lognormal (mesh3) for JV 61 

4025 EW Lognormal Selection Curves 0 63 

4026 JV Lognormal Selection Curves 64 

4027 EW Gamma Fitted Catch 66 

4028 JV Gamma Fitted Catch 0 67 

4029 Deviance Residuals of Gamma for EW 69 

4030 Deviance Residuals of Gamma for JV 0 70 

4031 EW Gamma Selection Curves 72 

4.32 JV Gam~a Selection Curves 0 73 

ix 



Chapter 1 

Introduction 

Fishing communities across Canada gain social and economic value from using our 

oceans resources. The fundamental objective of any responsible fishing operation is 

to maximize returns to the operator with minimum influences on the fish populations 

and the environment. A 2003 assessment of turbot off eastern ewfoundland and 

Labrador indicated that the stock is expected to decline in abundance. A rebuilding 

plan that includes severe harvest reductions has therefore been put in place, beginning 

in 2004. Knowledge of the size-selectivity of commercial fishing gears is crucial to 

management of a fishery for purposes of maximizing yield and protecting juvenile 

fish (Gulland, 1983; Wileman et al., 1996). Moreover, fishing gears may be used as 

research tools for monitoring the length distribution of the stock by using the m sh 

size-selectivity of the gears to adjust the length distribution of the catches. Gillnets 

selectivity is the focus of this thesis. 

Selective fishing is defined as the ability to avoid non-target fish, invertebrates, 

seabirds, and marine mammals or if encountered, to release them alive and unharmed 

(Fisheries and Oceans Canada 2001). Research in fishing gear selectivity is a very 

important area for fishery management. For commercial fishing activitie carri d 

1 
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out at sea, fishing gear should be designed to allow undersized fish to e cape while 

the target fish is retained. In this dissertation we shall assume turbot is the target 

species of fish. Thrbot are found in deep waters from the Arctic south to George 

Bank. In Canada, the fishery is mostly confined to the deep bays of Newfoundland 

and Labrador Baffin Island, and the Gulf of St. Lawrence. Traditionally a line trawl 

fishery, gillnets are also used both inshore and offshore, while otter trawl are u ed 

mainly in offshore fisheries. For simplicity, we will not consider other factors such as 

by-catches. 

Mode of fishing influences the selectivity of fishing as well as the choice of m a­

surement technique. Fishing gear can be classified into two groups, mobile and static. 

Mobile gear, as the name implies, is actively moved through the water, catching fi h 

as they are encountered. In contrast, static gear remains still and it is the fish that 

move and expose to the gear. 

1.1 Mobile Gear 

Trawling is recognized as an important harvesting technology in terms of landings. 

Therefore, the main analysis discussed under mobile gear will focus on trawling. The 

term "trawl" is used here to represent a wide range of gear variation including otter 

trawls, mid-water trawls, beam trawls and so on. In simplified terms, a trawl is a 

cone-shaped net which is made of a series of panels of netting that ar towed along 

the seabed or midway through the water column to capture fish. 

1.1.1 Capture Process 

As the trawl is towed along, fish are herded into the path of the net and are overtaken 

by it. Once the fish are herded in the net, they eventually fall back to be held in 
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the end part of the net- the codend. As a conventional trawl codend fills with fish, 

the meshes along its length tend to close. The reason is that the increasing drag 

of the catch creates more tension in the net. After a period of towing, the trawl is 

removed from the water, the cod end is brought back to the vessel and the catch from 

the codend recovered. 

1.1.2 Factors Influencing the Selectivity of Trawl 

This capture process reveals the importance of mesh shape and size, towing time 

(Liangzhuang Ma, 2004) towing speed, codend design and other factors (Measurement 

of Fishing Gear Selectivity, 1995) in the selectivity of gear(Liangzhuang Ma, 2004). 

Heightened environmental concern, in recent years, has resulted in many design and 

operational changes which aimed at improving selectivity. 

The mesh size is defined as the distance betw en opposite corners of the mesh when 

it is fully stretched. Mesh size and shape have been widely used as the traditional 

means of affecting selectivity in trawls. Usually, the larger the mesh size, the higher 

the probability of small fish escaping through the gaps in the netting. In practice, 

many other factors affect the theoretical impact of mesh size in determining the 

escapement of undersized fish from trawls. These factors include: 

• trawl geometry 

• ground gear 

• pre-selection devices 

• lastridge ropes 

• separator panels 
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• grids/grates 

Research has shown that under certain conditions, mesh shape has a greater im­

pact than mesh size. At high towing speeds, for example, diamond-shaped mesh 

openings tend to become elongated and can theoretically close altogether, regardl ss 

of their sizes. A similar effect is experienced when catch rates are high and the codend 

becomes full . In some instances, mesh configuration (size and shape) is ineffective in 

achieving improved selectivity (Measurement of Fishing Gear Selectivity, 1995). 

Towing time has a great impact on affecting selectivity in trawls. Although pro­

longed towing time destroys some fish, it will increase the retention rate of th un­

dersized fish. The longer the gear stays in the water, the more time the under iz d 

fish can escape from the gear. If the gear stays in the water for too long until almost 

all the mesh is blocked in the codend component, there will be no chance for tho 

undersized fish to escape (Liangzhuang Ma, 2004). 

As with most fishing gear, environmental and tidal conditions play an important 

role in trawl performance. Increasingly, it is held that differences in the active and 

passive behaviour of intermixed species can be exploited to achieve selectivity prior 

to fish entering the trawl. In principle, certain species and sizes of fish ar more apt 

to avoid trawl components which are highly visible in appearance. Thi means that 

selectivity can be affected not only by the visual appearance of gear but also by the 

amount of light available to make it visible (Liangzhuang Ma, 2004). 

1.2 Static Gear 

Static gear is often associated with bait or food stimulus which attracts fish and 

encouraging them to move toward the gear and become captured. Som fix d gear , 

however, such as gillnets and cod traps operate without baits, and it is the natural 
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daily movement of fish that precipitates capture in these gears. Capture, in this 

instance, is usually assisted by water movements such as tidal and other currents in 

the sea or stream flow in fresh water (Measurement of Fishing Gear Selectivity, 1995) . 

A gillnet is made up of a long rectangular web of netting which is set in the water 

to form a vertical wall. A buoyant headline and a weighted groundrope ensure that 

the net wall remains in a vertical position. Spatial orientation is controlled by a 

variety of methods depending on the type of fishing desired. If the gillnet is being 

fished on the bottom, one or both ends of the net are secured to the ocean floor 

to ensure that the spatial orientation is maintained (Measurement of Fishing Gear 

Selectivity, 1995). 

To accommodate fishing on the surface or in midwater, the buoyancy of the head­

line and the weight of the groundrope are adjusted to allow the wall effect of the 

netting to be maintained. A surface fishing net, independent of a fishing vessel, may 

be attached to land at one end and have an anchor at the other or it may have anchors 

at both ends. If the net remains attached to a fishing vessel, it is usually referred to 

as a drift net and can be many kilometers in length (Measurement of Fishing Gear 

Selectivity, 1995). 

1.2.1 Capture Process 

Fish are caught in a gillnet in one of three ways: (a) wedging , a fish held tight around 

the body by a mesh; (b) gilling , a fish that enters the net is too large to pass through, 

and is prevented from retreating by twine that catches the fish behind the gill; and 

(c) tangling , a fish that has not necessarily penetrated a mesh is caught in the n t 

by teeth, maxillaries or other projections. 

There are many factors which may affect the selectivity of gillnet fishing. M h 
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size is considered to be the most important. Other factors include the environment 

in which the gear is operating and characteristics of the gear such as twine and gear 

design. Our study will focus on the factor of mesh size. 

' 
Capture by gilling, wedging and tangling are dependent on the shape of particular 

species of fish encountered. Therefore, gillnets are size and species sel ctive. The 

processes of "wedging" and "gilling" are the most common ways by which a fish 

becomes meshed in a gillnet. "Wedging" is a function of the maximum girth of 

a given species and length of fish . "Gilling" is a function of the head girth. Th 

smallest fish caught has a maximum girth equal to the p rimeter of the mesh; the 

largest fish caught has a head girth equal to the perimeter of the mesh. Most fish 

between these two sizes would be caught. There is an optimum size at which a fish 

is most likely to be held for sure, being unable to escape. Fish below and above this 

optimum size, but within the capture range, are less likely to be captured. Und r 

these conditions, the size selection curve for a gillnet is u ually a symmetrical bell-

shaped curve in which the mode (peak) corresponds to the optimum length and the 

curve falls away on each side to zero. Therefore, the knowledge of the size-selectivity 

is crucial for purposes of maximizing yield and protecting juvenile fish. 

1.2.2 Factors Influencing the Selectivity of Gillnet 

Twine material, gear construction, and mesh size are all important factors whi h 

can affect the fish tapture process and thus the selectivity of the gear. Design and 

construction of nets are aimed at minimizing visibility and maximizing elasticity and 

strength of the twine. Good strength is necessary to avoid damage as fish attempt to 

free themselves or as the gear is recovered. The construction, flotation, and weighting 

of the gear affect net behavior in the water which in turn affect both the selectivity 
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and the efficiency of fishing. The headline and groundropes and their relative magni­

tudes are important in ensuring that the net shape and fishing power are maintained. 

Similarly, the hanging ratio of the web on the headline and the attachment ratio on 

the groundline can all influence selectivity. 

The mesh location, mesh amount, and mesh orientation of fishing gear can effec­

tively pre-select the fish that will be encountered by the net. The soak time before 

retrieval can affect the efficiency and sometimes the selectivity of a gillnet . The 

net may become dirty with slub and detritus as the soak time increases, resulting 

in increased visibility and decreased efficiency. As fish accumulate, the electivity 

of the gear may decrease resulting in the capture of unwanted species and sizes of 

fish or selectivity may increase due to fish being attracted to fish caught in the net 

(Measurement of Fishing Gear Selectivity, 1995). 

In this thesis, we will focus on gillnet and the factor of m sh size. 



Chapter 2 

Literature Review 

Gillnet selectivity fits the broad definition of selectivity (the ratio of the numb r of 

fish caught by the experimental net to the number of fish exposed to the gear for a 

given species and size of fish). The number of fish caught by the experimental n t is 

readily obtained; however, the number of fish exposed to the gear is not always easily 

obtained. What follows is a description of various methods used to determine gillnet 

selectivity and partial research about the size selectivity of gilln t. 

2.1 Population Known 

If the size distribution of the fish population is known, th selectivity of gilln ts can 

be calculated by the following method. 

l 
. . a 

se ectwdy = b (2.1) 

where a is the number of fish caught and b is the number of fish exposed to the gear. 

This method is usually the most reliable estimate available. However, it i not 

commonly used as the size population of fishes is difficult to predict. This method 

is used predominately to check on the validity of the assumptions utilized in other 

8 
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methods. If the unknown population is estimated, then the assumptions must be 

considered in the analysis. With regard to the known population, generally any 

assumptions made in calculating the estimate will govern both the accuracy and 

precision of the estimates (Measurement of Fishing Gear Selectivity, 1995). 

2.2 Comparison with a Gear of Known Selectivity 

If the size distribution of the fish population is known from results of fishing with a 

net of known selectivity, gillnet selectivity can be estimated by comparing the catch of 

the experimental gear with the population estimate from the net of known electivity. 

When possible, gillnet catches should be compared with a relatively non-selective 

gear such as a small- meshed codend. This comparison assumes that the catch of th 

non-selective gear fully reflects the size and species distribution of the fish population 

exposed to the gear (Measurement of Fishing Gear Selectivity, 1995). 

2.3 Comparison of Fish Caught by Gillnets with 

Different Sized Meshes 

Using this method, we calculate selectivity curves by comparing the catches of one 

size class of fish from nets of several sizes (also known as "type B" selectivity curv s). 

Methods based on this concept do not require the size distribution of the fish pop­

ulation, but instead, rely on assumptions about the shape and height of electivity 

curves. Initially, it is necessary to estimate the shape of the curve showing the selec­

tivity of the length group at different mesh sizes. All mesh sizes, when fish d with the 

same effort, are equally likely to be encountered by fish and thus the catches are pro­

portional to the selectivities. Plotting the catches against the mesh sizes will generate 
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a type B selectiv:ty curve for a given size class. The same can be done for the other 

major size classes and all the curves. So we can composite three-dimensional display 

with selectivity presented as a function of both mesh size and fish length. It should 

be noted that this method has received little attention since the 1960s (Measurement 

of Fishing Gear Selectivity, 1995). 

2.3.1 Selectivity of Gillnets, Especially to Lake Whitefish, 

Regier and Robson 1966 

Regier and Robson re-examined five methods previously described for stimating th 

selectivity of gillnets by mesh size, and introduces four more. They used the data 

on whitefish from South Bay, Manitoulin Island, Ontario (1958-1963) to estimate 

selectivity characteristics. 

The methods considered most reliable yielded estimates of selectivity curves for 

whitefish resembling the normal probability function with a positive skew. The length 

at which the mode occurred was a significantly nonlinear function of mesh size, the 

variance was approximately proportional to the square of the mesh size, and th 

coefficient of skewness is not related to mesh size. 

An implication of these findings is that, for general sampling purposes, standard 

gangs in which mesh sizes increased in a certain geometric progression would be more 

efficient than those with mesh sizes in the usual arithmetic progression. 

2.3.2 Review of Gillnet Selectivity, Hamley 1975 

Hamley reviewed studies on gillnet selectivity; the relevant characteri tic of fish and 

nets, graphical and mathematical representation of selectivity curves, and method 

of estimation. 
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Selectivity depends mainly on fish size and shape and mesh size, but is also affected 

by the thickness, material, and color of net twine, hanging of net, and method of 

fishing. The left slopes of selectivity curves represent smaller fish wedged in the 

meshes; the right slopes, larger fish mainly tangled by head parts. The curves may 

be very skewed or•multimodal for fish that are easily tangled. 

The most reliable, though expensive, estimates of gillnet selectivity are by 'direct 

methods of fishing a population of known size-frequency distribution. The more 

popular but biased "indirect" estimates compare catches by two or more mesh size . 

Other methods used are prediction from girth measurements and the D Lury method. 

2.3.3 A New Method of Estimating Gillnet Selectivity, with 

An Ex ample for spotted seatrout, Helser et al 1991 

Helser et al (1991) proposed a new method of estimating the selectivity of gill­

nets. This new method is applied to spotted seatrout ( Cynocion nebulus) in coastal 

Louisiana and used to estimate the relative abundance of the various size-classes of 

fish in the population. Using data on the distribution of fish lengths from the catch s 

of various meshes, a system of m equations and n unknown coefficients is simultan -

ously solved describing the functional relationship of the moments from an assumed 

mathematical model across mesh size and size class of fish. The solution to the mod 1 

is a re ponse surface describing the probability of capture of fish of size-clas j in 

mesh i. 

Helser et al (1991) suggested that this approach for stimating gillnet selectivity 

has several advantages over other methods: it is very flexible in term of choosing a 

mathematical model which would best represent the data; it take full advantage of 

the empirical data allowing catch information, nij, to contribute to th final solution 



CHAPTER 2. LITERATURE REVIEW 12 

both as a function of mesh size and size-class; and it offers simplicity and elegance in 

its overall iterative least squares approach and is tractable in terms of assessing the 

reliability of the parameters and model used. 

2.3.4 Estimating Size Composition and Associated Variances 

of A Fish Population from Gillnet Selectivity, with An 

Example for Spotted Seatrout, Helser et al 1994 

Helser et al (1994) presented a method of estimating the corrected size composition 

and associated variances of a fish population and develop d a new method of es­

timating gillnet selectivity which uses a non-linear iterative least-squares approach. 

Helser et al (1994) applied the selectivity model and variance estimation procedur to 

the experimental gillnet catches of spotted seatrout from 1988 to 1990 and examin d 

model selection parameters estimates, corrected population size compositions, and 

th ir variances. 

Helser et al (1994) presented a modification to the selectivity equation used in 

an earlier approach which reduces heterogeneous error variance. on-linear least­

squares parameters are used to estimate the population size composition corrected 

for the effects of mesh selectivity and a procedure is described to estimate their vari­

ances. Likelihood ratio tests indicated that model selection parameter stimates w re 

significantly different between the sexes, suggesting that factors which affect the se­

lection process may differ between the sexes. Corrected size compositions for female 

and male spotted seatrout population were found to differ substantially from the ob­

served catch frequencies, indicating negative bias for smallest size classes. Variability 

associated with corrected size composition estimates, as expressed by 95% confidence 

intervals, indicated that in general, precision associated with those quantities is good. 



CHAPTER 2. LITERATURE REVIEW 13 

2.4 Estimating Selectivity by Inference from Girth 

Measurements 

This method does 'not require size distributions to be obtained from gillnet catches. 

Instead the selection range, the shape and the modal length are all estimated from 

girth measurements of the fish. The assumption is made that to be gilled or wedged 

a fish must be able to pass through the mesh beyond its gilled covers but only as 

far as its maximum girth will allow. Thus, by ignoring all other means of capture, 

selectivity can be modeled from measurements of head girth and maximum girth for 

a given mesh size and species of fish. Under these conditions, the selection range of a 

net consists of those fish whose maximum girth is larger, and the head girth smaller, 

than the perimeter of the mesh. The selection range can then be obtained using th 

relationships among fish length, maximum girth and length versus head girth. Th 

peak of the selection curve can be estimated roughly according to the principle that 

the girths of the most efficiently caught fish are proportional to the mesh size: 

Maximum girth= 1.25 x mesh perimeter (2.2) 

(Measurement of Fishing Gear Selectivity, 1995) 

2.5 Estimating Selectivity by Fitting a Pre-determined 

Distribution 

Holt (1963) devised a method of determining gillnet selectivity that allows selectivity 

curves to be obtained by comparing the catches from two or more gilln ts, each of 

which has a slightly different mesh size but is fished with the same effort. And aft r 

that, many researchers developed new methods according to the theory of Holt. These 
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kind of methods have been proven to be the most popular methods for determining 

the size-selectivity of gillnets (Measurement of F'ishing Gear Selectivity, 1995). 

2.5.1 A Method for Determining Gear Selectivity and Its 

Application, Holt 1963 

This method is applied to data for the Fraser River sockeye salmon and it is shown 

that the gillnet mesh selection curve is approximately normal. Holt hawed that it is 

possible to determine the parameters of a gillnet selection curve from the results of 

comparative fishing experiments by using only gillnets, provided the general form of 

the selection curve is known. In this study Holt build up a body of knowledge about 

the shapes of selection curves for particular types of gear. The mean of the length 

selection curve is proportional to the size of the mesh, and the girth of a fish of the 

mean selection length is approximately equal to the perimeter of the mesh. 

2.5.2 Gill Net Mesh Selectivities for Gummy Shark, Muste lus 

Antacticus Gunther, Taken in South-eastern Australian 

Waters, Kirkwood and Walker 1986 

Kirkwood and Walker reviewed existing methods for estimating mesh selectivitie , 

and described a new method to overcome some problems in the xisting methods. 

In this method, an assumed selectivity function is fitted directly to catch data for a 

number of different mesh sizes, with the parameters of the selectivity function being 

estimated simultaneously across mesh sizes and length-classes. 

The new method is used to estimate selectivities for the gummy shark data in 

south-eastern Australian water (1973-1976). This new method assumed that the 
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selectivity function takes the shape of a gamma distribution. Data from 2in and 3in. 

mesh nets did not satisfy the assumptions of the procedure, but estimates of mesh 

selectivities were successfully obtained for the 4in - 9in mesh nets. 

2.5.3 Simultaneous Determination of Gillnet Select ivity and 

Population Age-class Distribution for Two Cyprinids, 

Boy and Crivelli 1988 

Boy and Crivelli proposed a new indirect method for estimating gillnet selectivity. 

This new method is applied to two species of cyprinid caught in Lake Mikri Prespa, 

orth Western Greece (1984-19 5). They used the data on the distribution of fish 

length for each age class plus length distribution for each mesh size to calculate both 

the selectivities and the proportion of each age class in the population. 

Boy and Crivelli made no assumptions concerning the shape of the curves, but 

they did assume that for each mesh size the maximum selectivity is equal to on . 

In the case where the number of age classes is greater than the number of different 

mesh sizes, Boy afid Crivelli are conscious of introducing a bias in ignoring certain 

age classes. 

2.5.4 A Method for Estimating Gillnet Select iv ity of Wall­

eye(Stizostedion Vitreum Vitreum) in Multimesh Mul­

tifilament Gillnets in Lake Erie, and Its Application, 

Henderson and Wong 1991 

Henderson and Wong (1991) described a new method for assessing a systematic com­

ponent of bias associated with the retention characteri tic of multime h gillnets. This 
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new method is applied to twelve years (1978-89) of walleye catches. From this data, 

Henderson and Wong (1991) derive frequency distributions of the ratio of fish girth 

and mesh perimeter for mesh size. 

This method is an indirect method that fits an assumed probability distribution 

to empirical data. An encounter model based on swimming speed of walleye was u ed 

to estimate the probability of walleye encountering gillnets. Adjustment were made 

to walleye catches for both retention and encounter probabilities. 

2.5.5 Estimating the Size-selectivity of Fishing Gear by Con­

ditioning on the Total Catch, Millar 1992 

Millar used a conditional maximum likelihood model to estimate the size-selectivity 

of trawls, gillnets and hooks when the data are obtained by simultaneous fishing with 

meshes or hooks of different size and/or shape. 1illar used the catch of haddock from 

an alternate haul study (from Pope et al. 1975, p.48) to apply th method about 

trawls and used the catch of snapper(Pristipomoides zonatus) on two different siz 

of circle hook to apply the method about gillnets and hooks. 

Size-selectivity is expressed there by the selection curve, r(l), the probability that 

a fish of length l , if contacting the gear, will be retained (caught). In many other 

previous selectivity studies, r(l) is fitted either by eye, by heuristic means, or by 

improper application of generalized linear models. Then it is not possible to mak 

legitimate statistical inference about r(l), or a~out asses ments of the tate of the 

fishery if those assessments use r(l). Millar showed that by conditioning on the total 

catch, selectivity data can be modeled as binary data, or polytomous data on interval 

scales. Application of the model to trawl and hook data demonstrates that selection 

curves can be fitted using generalized linear models, which may require non tandard 
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link functions or link functions with parameters. 

The methods of Kirkwood and Walker (19 G) and Millar(1992) utilize the same 

underlying statistical model and we will develop this model further here. The other 

approaches do use statistical tools (e.g. linear or non-linear regres ion) to varying 

degrees, but they are used outside of the context of a statistical model appropriate 

to gillnet catch d~ta. For example, the linear regression approach of Holt (1963) 

does not model the data as counts and must be applied multiple times because it can 

only be applied to pairs of gillnets. Hence, the statistical properties of the resulting 

selectivity estimates are largely unknown. The studies of Helser et al (1991,1994) and 

Henderson and Wong (1991) do not model selectivity but instead follow an historical 

approach (Hamley,1975) of referring to the catch length distribution as the selection 

curve. 

In this thesis, we shall present a general statistical model that is appropriate for the 

estimation of gillnet selection curves (i.e. retention probabilities) from comparative 

gillnet catch data. In many cases, the model is log-linear . Indeed, it was the log-linear 

reduction that was utilized by Holt(1963) to estimate normal shaped selection curves 

using catch data from pairs of similar sized mesh gillnets. We make it appropriate to 

count data from an arbitrary number of mesh sizes and to other shapes of selection 

curve. 



Chapter 3 

Terms and Preliminaries 

Some selectivity terminology, symbolic notations, definitions and as umptions are 

introduced in this Chapter. Theoretical background of this work is also provided. 

The explanations of the following terms and definitions are taken from publish d 

materials and/or industry standard. 

Selectivity: the ratio of the number of fish caught by the experimental net to 

the number of fish exposed to the gear for a given species and size of fi h. 

Soak Time:the time static gear remains in the water. 

W edging: a fish held tight around the body by a mesh. 

Gilling: a fish that enters the net is too large to pass through, and i prevented 

from retreating by twine that catches the fish behind the gill. 

Ta ngling: a fish that has not necessarily penetrated a mesh is caught in the 

net by teeth, maxillaries or other projections. 

R et ention Probability: the probability that a fish, if contacting th gear 

component, will be retained. It is a function of fish length. 

Fishing Effort: The fishing effort is a measure of the amount of fishing, uch 

as the number of hours or days spent fishing, numbers of hooks used (in long line 

18 
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fishing), kiiometers of nets used, etc. 

Fishing Power: The fish being caught by a particular gear or vessel from 

a given density of fish during a certain time interval. Larger vessels have a greater 

ability to catch more fish and thus have greater fishing power. Also, the improvements 

in a vessel or gear, · such as by adding fish finders, loran, etc., can increase the fishing 

power. 

Capture Range: The smallest fish caught has a maximum girth equal to the 

perimeter of the mesh; the largest fish caught has a head girth equal to th perimeter 

of the mesh. Fish between these two sizes are caught. 

Selection Range: the difference in length between the fish that has a 75% 

probability of retention and that with a 25% probability of retention for a certain 

gear component. Selection range is a measure of sharpness of selection. 

Selection Curve: the graphical out-put of the retention probability for th 

respective length class of fish: the horizontal axis indicates fish length and the vertical 

axis indicates retention probability for fishes with given length. 

The size selection curve for a gillnet is usually a symmetric bell-shaped curve, in 

which the mode (peak) corresponds to the optimum length and the curve falls away 

on each side to zero. The explanation is as following: the processes of "wedging" and 

"gilling" are the most common ways by which a fish becomes meshed in a gillnet. 

"Wedging" is a function of the maximum girth of a given species and l ngth of fi h . 

"Gilling" is a function of the head girth. The smallest fi h caught has a maximum 

girth equal to the perimeter of the mesh; the largest fish caught has a head girth qual 

to the perimeter of the mesh. Most fish between these two sizes would be caught. 

There is an optimum size at which a fish is most likely to be held for sure, being 

unable to escape. Fish below and above this optimum size, but within the captur 

range, are less likely to be captured. 
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The height at a given point on selection curve describes how efficiently the net 

captures fish with a given size of fish of specific species, while the width and shape of 

the curve describe the selection range of the gear and the sharpness of its selectivity. 

Poisson Process: A Poisson process, named after the French mathematician 

Simon-Denis Poisson (1781 - 1840), is a stochastic process which is defin d in terms 

of the occurrences of events. This counting process, given as a function of time N(t), 

Poisson process represents the number of events in the time interval [0, t] . Also, the 

number of events between time a and time b is given as N(b)- N(a). 

In probability theory and statistics, the Poisson distribution is a di crete prob­

ability distribution that expresses the probability of a number of events occurring 

in a fixed period of time, if these events occur with a known average rate, and ar 

independent of the time since the last event. The probability that there are exactly 

k occurrences (k being a non-negative integer, k = 0, 1, 2, ... ) is 

e-A )..k 
P(k) = j(k , )..) = - k!- (3.1) 

where ).. is a positive real number, equal to the expected number of occurrences 

that occur during the given time interval. 

Overdispersion: If a count has a Poisson distribution, its variance is equal to 

its expected value. However, the count data from biological experiments often exhibit 

excess variances. This is known as overdispersion. It could be induced by grouping 

behaviour such as the schooling of fish. But general practice indicates that the effect 

of overdispersion on estimated parameters is negligible and inferential procedures can 

be suitably amended (McCullagh and Neider, 1989, p.200) 

Likelihood Function: Let X= (X1 , ... , Xn) be a random vector and 

Ux(x I e) , e E 8}, 
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a statistical model parameterized by e = (81, .... ek) , the parameter vector in the 

parameter space 8. The likelihood function is a map L: 8-+ 3t given by 

L(B I x) = fx(x I e). 

In other words, the likelihood function (pdf) is functionally the same form as a 

probability density function. However, the emphasis is changed from X to e. The pdf 

is a function of the x's while holding the parameters B's constant, while the likelihood 

is a function of the parameters B's, while holding the x's constant. When there is no 

confusion, L( e I X) is abbreviated to be L( B) 0 

The parameter vector {J such that L( e) ~ L( B) for all 8 E 8 is called a maximum 

likelihood estimate, or MLE, of e. 
Maximum Likelihood Estimation: Maximum likelihood stimation begins 

with writing a mathematical expression known as the Likelihood Function of th 

sample data. Loosely speaking, the likelihood of a set of data is the probability of 

obtaining the particular set of data, given the chosen probability distribution model. 

This expression contains the unknown model parameters. The valu s of these pa­

rameters that maximize the sample likelihood are known a the Maximum Likelihood 

Estimator or MLE. The general math matical technique for solving for MLE involves 

setting partial derivatives of ln( L) (the derivatives are taken with r pect to th 

unknown parameters) equal to zero and solving the resulting equations. 



Chapter 4 

The Applications of Log-Linear 

Models 

In this chapter, we will use statistical methods to analyze gillnet data. 

4.1 Basic Theories 

Millar and Holst (1997) present a general statistical log-linear mod l which is appro­

riate for the estimation of gillnet selection curves (i.e. retention probabilities) from 

comparative gillnet catch data. We will use their method to do analy is. 

Indeed, it was the log-linear reduction that was utilized by Holt (1963) to estimat 

normal shaped election curves catch from pairs of similar sized m sh gillnets. Millar 

and Holst (1997) refined the method by Holt (1963) and mad it appropriate for 

count data from an arbitrary numb r of mesh siz s, to other s l tion curv shape , 

and explicitly consider the issue of relative fi hing power of th meshes. They fitt d 

several such models to gillnet catch data of Fraser River sockeye almon (Holt, 1963). 

The following are the details of their · ethod. 

22 
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For gillnets and hooks, a fish may make multiple contact with the gear if it is 

not caught on the first occasion. Therefore, in using the method presented here, one 

must be willing to accept that, with regard to the statistical distribution of the catch 

frequencies, multiple contact of a single fish is adequately modeled as single contact 

by multiple fish (Millar, 1992). 

The number Yl ,j, standing for the fish with a length of l that encounter the jth 

gillnet are assumed to be Poisson Process with parameter >.1 based on the following: 

a)the probability of a length li fish coming in contact with the gear in any short 

time interval [t,t+.6t] is approximately >.1.6t, which is approximately proportional to 

the length of the interval for all values oft; 

b)the probability of more than one length li fish coming in contact with the gear 

in interval [t,t+.6t) is almost 0, when .6t ---+ 0; 

c)the number of length li fish coming in contact with the gear in any interval of 

time is independent of the number of length li fish coming in contact with the gear 

in any other non-overlapping interval of time. 

So Yl,j is identified as Poisson Process 

( 4.1) 

where the expected count, Pi Al, is the product of the abundance of fish with length 

class l (>.1), and the relative fishing intensity of gillnet j (pj)· 

Let rj(l) denote the retention probability of fish with length l in the jth gear. 

It then easily follows that the number n1j, standing for the observed number of the 

length l fish caught in the jth net , can be described as observations from independent 

Poisson distributio.ns N1,j 

(4.2) 
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Likewise it is natural to model the abundance over length classes as a continuou 

function, rather than by using discrete parameters for the individual length classes. 

For a valid and useful application of the extended model, which includes fitting of 

a continuous population, it is necessary to collect information on the structure of 

abundance in order to enable a reasonable choice of the functional form. This is 

often not the case. And hence the simple analysis, aimed only at fitting the selection 

curves, will probably be the most common practise. No precise guidelines can be 

given on this topic, but if reliable information can be collected, either from direct 

experiments,previous studies, biological knowledge or in other ways , the (pre-)analysi 

should include an estimation of the abundance )..1. The same concerns also apply for 

modeling the intensity parameter. An example of a useful application of such is in 

the case where not all the nets are with the same length. Und r that situation, th 

efficiency of the jth net can be suitably modeled to be proportional to the length of 

that net 

(4.3) 

where lj is the length of the jth net and c is a constant. The likelihood function is 

(4.4) 

where v1j = pjA1r 1(j). Hence, the log likelihood function becomes 

l ,j l ,j 

where the term- log(nlj !) has been omitted. 

However, for a large range of choice for the components pj, )..1, and r j (l) , it is 

likely to get 
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log(v11) = log(p1) + log(>.l) + log(r1(l)) = L adi(l, j) (4.6) 
i 

where fi(l j) are functions depending only on mesh-size and/or 1 ngth-classes. The 

advantage of using this transcription is that it greatly facilitates the estimation. 

4.1.1 Normal Location 

If the selection curves ( r 1 ( l)) are assumed to be normal location 

we can get 

log(v11 ) log(pj) + log(>.l) + log(r1(l)) 

(l- km ·)2 

log(p1) + log(>.l)-
2

0'2 J 

l2 - 2lkmj + k2m 2 

= log(p1) + log(>.l)-
2

0'2 J 

l2 klm · k2m2 
log(pj) + log(>.l)- 20'2 + 0'2 J - 20'/ 

log(p1) + log(>.l) + ao + a1lm1 + a2mJ 

4.1.2 Normal Scale 

If the selection curves are assumed to be normal scale, then we g t 
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If geometric similarity is assumed, the spread of jth gillnet CJj is proportional to 

the mesh size,mj. A convenient parametrization is f..Lj=k1mj and CJJ=k2m J, here k1 

and k2 are to be estimated. Then, 

4 .1.3 Gamma 

If the selection curves are assumed to be gamma, then we get 

rj(l) = ( ( ) l k r:t-l * exp(a - 1 - k l ) 
a- 1 * * mj * mj 

so we can get 

log(vlj) 

l l 
log(pj ) + log(>.1) +(a - 1)log((a _ 1) * k * m j) +(a - 1 - k * m j ) 

1 l l 
= log(pj ) + log(>.1) + (a -1)log((a _ 1) * k * m j) +(a- 1 - k * mj ) 

1 l 
= log(p_1) + log( >-1) +(a - 1)log(( ) k) +a - 1 +(a - 1)log(-)- k 

a- 1 * mj * mj 
1 l 1 l 

= log(pj ) + log(>.1) + (a- 1)log(( ) k) +a - 1 +(a - 1)log(-)- -k * -
a -1 * mj mj 

. l l 
= log(pj ) + log(>.l) + ao + a1log( - ) + a2(-) 

ffi j ffij 
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4.1.4 Lognormal 

If the selection curves are assumed to be lognormal, then we get 

(
l) 1 ( l (m1 ) a-2 (log(l)- J11 -log(~ ))2

) 
rj = yexp J11 + og -m

1 
- 2 - ----2-o--=-2 -~'----

so we can get 

log(v1j) = log(p1) + log(>.1) + log(r1(l)) 
m1 o-2 (log(l)- J11 - log(!!3:L ))2 

= log(pj) + log(>.t) + P,1 +log(-)- -
2 

-
2 2 m

1 -log(l) 
ml o-

o-2 mj (log(l) - J11 -log(!!3:L ))2 
= log(p1) + log(>.1) + J11 - -

2 
- log(l) +log(-)-

2 2 m
1 

ml o-
o-2 m . 

= log(p1) + log(>.t) + J11 - - - log(l) + log(-1 ) 
2 m1 

((log(l)- p,1 ) 2 - 2(log(l) - p, 1 )log(~) + log(~ )2 

2a-2 
o-2 m . Ill m · 

= log(pj) + log(>.t) + J11- -
2 

- log(l) + log( - 1
)- 2log(-1 ) 

m 1 a- m1 

((log(l)- p,I)2
- 2log(l)log(~) +log(~ )2 

2a-2 
o-2 (log(l) - p,I)2 mj J11 mj 

= log(p1) + log(>.1) + p,1 --- log(l) + 
2 2 + log( - )- 2log( - ) 

2 a- m1 a- m1 

-2log(l)log(~) +log(~ )2 

2o-2 
o-2 (log(l) - J11? 

log(p1 ) + log(>.t) + J11 - 2 - log(l) + 
2

o-2 

+2_(log(l)log( mj) - ~log( mj )2) + (1 - Ill )log( mj) 
o-2 m 1 2 m1 o-2 m1 

= log(pj) + log(>.t) + ao + a 1 (log(l)log( mj) - -
2
1

log( mj )2
) + a2 log( mj) 

m 1 m1 m1 

where a = II. - u
2 

- log(l) + (tog(t)-J.'J)
2 

a = 1 a =(1 - J.L1 ). 0 rl 2 2u2 , 1 ~' 2 ~ 

From the above, we can get the following four models that w hall use in thi 

thesis. 
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Model Selection Curve Tj( l) l:Jo;] * f;(l,j) 

Normal Location ( (t - h m;)") 
exp - 2" 2 

k k 2 2} l;;rJ * {l * mj } + 1-2c;7] * {mj 

Normal Scale ex (-(l-k1 •m~)" ) 
p 2k2•m . lhJ * { ...L. } + 1- _L] * ( .1..-)2 

k2 m 1 2k2 m 1 

Gamma ((o l ) 0 - 1 Hxp(a 1 1 ) 
l) • k • mi - - k • m 1 Ia - 1] * {log(~ )} + 1- tJ * {,~ 1 } 

Lognormal iexp(J.Ll + log(~) - (72 - 1;;\J * {log(l) * log(~)- ~ log2(~)} + 11-ml 2 
(log( l )-1'1- l og( ~ ))2 

2a12 ml ) ;t) * {log(~)} 

Table 4.1: Results for Fleet EW, the degrees of freedom is 1 0 

4.2 Results and Conclusion 

In this section, we will discuss the results by Millar and Holst (1997) and our results. 

4.2.1 Results By Millar and Holst (1997) 

Equal fishing power 
1 

Fishing power a me h-size 

Model Deviance D Deviance D 
dj dj 

Normal Location 862.9 11.505 883.6 11.7 1 

Nor mal Scale 772.8 10.304 773.2 10.309 

Gamma 719.3 9.591 719.3 9.591 

Log normal 704.3 9.391 704.3 9.391 

Table 4.2: Results By Millar and Holst (1997), the degrees of freedom is 75 

Millar and Holst (1997) fitted each selection curve twice, first under the assump­

tion of equal fishing power of the gillnets and then again assuming fishing power to 

be proportional to mesh size (Table 4.2). In our analysis, we will only fit th selection 

curve under the assumption of equal fishing power . 

They used deviance (D ) as a tool to measure t he overall goodness of fi t . Overall 

the lognormal selection curve provided the best fit . However , the model deviance(D) 

is 704.30 on 75 d.f. indicates overdispersion and/ or severe lack of fit. 
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4 .2.2 Our Results 

By using the above. methods, we can get the following results. 

The original data and splus source code can be found in appendix. 

Mesh 1 Mesh 2 Mesh 3 

Model Parameters Deviance Parameters Deviance Parameters Deviance 

Normal Location (J.J., <7)=(68.56,12.08) 421.86 (J.J., <7)=(74. 79,12.08) 421.86 (J.J., <7)=(81.02,12.08) 421.86 

Normal Scale (J.J., <7)=(69. 74,19. 70) 427.11 (J.J., <7)=(76.08,21.49) 427.11 (J.J., <7)=(82.42,23.28) 427.11 

Gamma (a, .6)=(38.95,1.81) 422.07 (a, ,6)=(38.95,1.98) 422.07 (a, .6)=(38.95,2.14) 422.07 

Log normal (J.J., <7)=(4.26,0.17) 431.74 (J.J., <7)=(4.34,0.17) 431.74 (J.J., <7)=(4.42,0.17) 431.74 

Table 4.3: Results for Fleet EW, the degrees of freedom is 180 

Mesh 1 Mesh 2 Mesh 3 

Model Parameters Deviance Parameters Deviance Parameters Deviance 

Normal Location (J.J., u)=(69. 72,10.97) 667.20 (J.J., <7)=(76.06,10.97) 667.20 (J.J., <7)=(82.40,10.97) 667.20 

Normal Scale (J.J., <7)=(68.38,12.46) 617.86 (J.J., <7)=(74.59,13.59) 617.86 (J.J., o-)=( 0. 1,14.73) 617. 6 

Gamma (a, 13)=( 47. 78,1.50) 669.16 (a, .B)=( 47. 78,1.63) 669.16 (o,,l3)=(47.7 ,1.77) 669.16 

Log normal (J.J., <7)=(4.31 ,0.17) 705.20 (J.J., <7)=(4.39,0.17) 705.20 (J.J., <7) =(4.47,0.17) 705.20 

Table 4.4: Results for Fleet JV, the degrees of freedom is 180 

The result of deviance (D) and ~ (Manual for Gillnet Selectivity, 1996) are shown 

in table 4 3 and 4 4 .. 

EW JV 

Model Deviance D Deviance D 
dj dj 

Nor mal Location 421.86 2.344 667.20 3.701 

Normal Scale 427.11 2.373 617.86 3.433 

Gamma 422.07 2.345 669.16 3.718 

Log normal 431.74 2.399 705.20 3.918 

Table 4.5: Deviance for EW and JV 



CHAPTER 4. THE APPLICATIONS OF LOG-LINEAR MODELS 30 

~ can be used to check if the data is overdispersed or lack of fit (Millar and 

Hoslt, 1997). We .:::an find the ~ of our results are much less than their of Millar 

and Holst (1997), which means the method of Millar and Hoslt can be used to fit our 

turbot data. There maybe are several reasons for that. Firstly, sockeye and turbot 

are different fish. Their girth and headgirth are different. So the fishing process 

are different. Secondly, the data of Holt (1963) have 8 different mesh sizes and 11 

different fish lengths. However, our data have 3 different mesh sizes and 91 different 

fish lengths. 

We will analysis the result of each model. 

Normal Location Model 

Firstly, we can get plots of fitted catch for Normal Location Model. 
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Secondly, we can get deviance residuals plots (McCullangh and Nelder, 1989) for 

Normal Location Model. If$ are greater than 1, the deviance residuals plots can be 

used to check if the data is overdispersed or lack of fit. 
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From the above deviance residuals plots (McCullangh and Nelder, 1989) , we can 

find there is indeed lack of fit. 

Finally, we can plot the selection curve, which is a convenient presentation of the 

overall fit. Plot of selection curve gives a quick and qualitative impression of the fit, 

that is an intuitive assessment of its plausibility. And plots of selection curve are 

more of visual interest rather than an actual quantitative justification. 
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Normal Scale Model 

Firstly, we can get plots of fitted catch for Normal Scale Model. 
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Secondly, we can get deviance residuals plots (McCullangh and Neider, 1989) for 

Normal Location Model. If~ are greater than 1, the deviance residuals plots can be 

used to check if the data is overdispersed or lack of fit. 
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From the above deviance residuals plots (McCullangh and Neider, 1989), we can 

find there is indeed lack of fit. 

Finally, we can get plot of selection curve, which is a convenient presentation of 

the overall fit. Plot of selection curve gives a quick and qualitative impression of the 

fit, that is an intuitive assessment of its plausibility. And plots of selection curve are 

more of visual interest rather than an actual quantitative justification. 
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Figure 4.11: EW Normal Scale Selection Curves 
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Lognormal Model 

Firstly, we can get plots of fitted catch for Lognormal Model. 
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Secondly, we can get deviance residuals plots (McCullangh and elder, 1989) for 

Normal Location Model. If~ are greater than 1, the deviance residuals plots can be 

used to check if the data is overdispersed or lack of fit. 



- ---------------------

CHAPTER 4 . THE APPLICATIONS OF LOG-LINEAR MODELS 

~ 
(() 

'2 
~ 
N 

Cl ·u; 
.c (() 

Vl 
Q) 

~ 

a:l 
l() 

....-----------------···-····----.. ---.......................... - ---------, 

20 

...... · I · •• · •• l .. • · t Ot O•O · o{):JOQ • •• · ••••••• · •· · Q•oO•O · •• • •OI · • · • Ou • 

ooO ·O•o•O••• • · ·· 1111•• ·••0QoOC()•·000•• 111 0 I•• t Ot • o•a•o•· 

I 

40 

I 

60 

Length( em) 

I 

80 

I 

100 

Figure 4.19: Deviance Residuals of Lognormal (meshl) for EW 

56 



CHAPTER 4. THE APPLICAT IONS OF LOG-LINEAR MODELS 

f 
¥ 
N 
'ii) 

r. 
f/) 
ill 
~ 

(\J 

ui 

~ -
(!) 

co -I!) 

~ 
l!l I 

20 

···· 1• · · ·-·l · · l• o ·cx:xx::xJoOO • · ••• ·· I •· ••• · · • · •· ·· • ·O ·0· • · • •· · 

• · · · I ···· · • • ·I · · • · • O• O•O oQ:>oQ • • • · ••lttl t · · Q•OO • O · •• • •01 · • • Oo · • 

OoQ Q• O•O• • • · • " llllt • · oo tO()oOC(} •000 • • ott o e et t O• 

I 

40 

I 

60 

Length( em) 

I 

80 

I 

100 

Figure 4.20: Deviance Residuals of Lognormal (mesh2) for EW 

57 



CHAPTER 4. THE APPLICAT IONS OF LOG-LINEAR MODELS 

c 
~ 
N 
'Vi 
l: 
rJl 
(j) 

~ 

<t: -
10 

"l 
10 

q 
10 

co 
\!) 

10 
\!) 

" ·It · • ...... · l• o ·o:::xx::x:>oOO• · • •• • •I • , ,, .. • ' " o•Q .. O·• • • • · 

ooQ Q•O • O• • • · t • • llfll t •• oO()oOC(} ·OQQt• 11 1 0 I t• · • 0 • O• OtOt• 

<t 
~ ~--~----------,------------,~------------·~------------T~ --------~ 

20 40 60 80 100 

Length(cm) 

Figure 4.21: Deviance Residuals of Lognormal (mesh3) for EW 

58 



CHAPTER 4. THE APPLICATIONS OF LOG-LINEAR MODELS 59 

. • • ·••·•·•• · .. ·C():(]):XD>·o• .•• ,,,, .. , . · ·O e~ .. '" o • 

N 
<D 

c 
Q) 
N 0 '(ii 

(() 
.c 

.. . . t ..... 1 • o ocx:()r.:o. . , •I • 1 • • " .. o · o . • .. . • . o o · • • 

(/) 
ill 
~ 

<Xl 
ll) 

· o •·D•o:®oo•· · •• .. ll• oo ·ooOOoO()oOCOoO·OO · ... , . • •.. 

~ -<,----- --..,--------,----·-·-r--- ----T-- ·-_j 
20 40 60 80 100 

Lenglh(cm) 

Figure 4.22: Deviance Residuals of Lognormal (meshl ) for JV 



CHAPTER 4 . THE APPLICATIONS OF LOG-LINEAR MODELS 

,..., 
c 
v 
Q) 
N 
'iii 
.c 
(/) 
Q) 

~ 

(\J 

1.0 

0 
<D 

(X) 

l!l 

1.0 
l!l 

'<t 

·· I I . , .... ,,, , ... . a::o::oro·Oo · •IIIUooi .. •O· '" • '" o • 

, , •·•+••••oocx:{)X::o• · ••1•1• • · · ·· O., •• · •· ·• ·o o •• • 

• o • ·O•o:Q):ooo• · · ••1111• • o · ooQOoo()oO()JoQ·OO • • • o · • • . • 

l!l --~ 

20 40 60 80 100 

Lenglh(cm) 

Figure 4.23: Deviance Residuals of Lognormal (mesh2) for JV 

60 



CHAPTER 4. THE APPLICATIONS OF LOG-LINEAR MODELS 

,..... 
c 
'-' 
Q) 
N 
'iii 
.c 
(/J 
Q) 

~ 

(!) 

(!) 

N 
(!) 

0 
(!) 

ro 
l() 

· 1 · 1 · lll ·••lo• .... C(t(()JJ)>•OI · •ltlll ooi• .. Q , .. • "' 0 • 

.. , . , . • ....... 00~· · ••• • •• • · ·· · 0 · 0 · • · ·· . .. , . o 0 . • • . • 

• o • ·O•o:(J):xloo• · · , , .... , . • · • •OOoO()oo(XJoQ·OO · · • • · o · • • · · 

~ ~----------.-----------,---­l() 
-..--- --~-- __j 

20 40 60 80 100 

Length( em) 

Figure ...!.24: Deviance Residuals of Lognormal (mesh3) for JV 

61 



CHAPTER 4. THE APPLICATIONS OF LOG-LINEAR MODELS 62 

From the above deviance residuals plots (McCullangh and elder, 1989) , we can 

find there is indeed lack of fit. 

Finally, we can get plot of selection curve, which is a convenient presentation of 

the overall fit. Plot of selection curve gives a quick and qualitative impression of the 

fit, that is an intuitive assessment of its plausibility. And plots of selection curve are 

more of visual interest rather than an actual quantitative justification. 
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Gamma Model 

Firstly, we can get plots of fitted catch for Gamma Model. 
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Secondly, we can get deviance residuals plots (McCullangh and Neider, 1989) for 

Normal Location Model. If~ are greater than 1, the deviance residuals plots can be 

used to check if the data is overdispersed or lack of fit . 
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From the above deviance residuals plots (McCullangh and Neider, 1989), we can 

find there is indeed lack of fit . 

Finally, we can get plot of selection curve, which is a convenient presentation of 

the overall fit. Plot of selection curve gives a quick and qualitative impression of the 

fit, that is an intuitive assessment of its plausibility. And plots of selection curve are 

more of visual interest rather than an actual quantitative justification. 
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The results of the data fitted by the respective five models are given in Table 2 

and Table 3 

4.3 Conclusion 

It is seen that the normal scale model produces the smallest deviance,617.86, for Jv, 

but not significantly smaller than th normal location model. For EW, the normal 

location model produces the smallest deviance,421.86, but not significantly smaller 

than the normal scale model. For both data set, the Lognormal model yields th 

largest deviance. 



Bibliography 

[1] Boy,V., and Crivelli , A. J. Simultaneous determination of gillnet selectivity and 

population age-class distribution for two cyprinids Fisheries Research(1988). 

[2] Department of Fisheries and Oceans, Ottawa, Ontario (Canada),Responsible 

Fishing Operations. Manual for gillnet sel.ectivity(1996). 

[3] Hamley, J. A. Review of gillnet selectivity Journal of the Fisheries Research 

Board of Canada(1975). 

[4] Helser, T. E., Condrey, R. E., and Geaghan, J. P. A new method of estimating 

gillnet seleCtivity, with an example for spotted seatrout Canadian Journal of 

Fisheries and Aquatic Sciences( 1991). 

[5] Helser, T. E., Geaghan, J. P., and Condrey, R. E. Estimating size composition 

and associated variances of a fish population from gillnet selectivity, with an 

example for spotted seatrout Fisheries Research(1994). 

[6] Henderson, B. A., and Wong, J. L. A method for estimating gillnet selectivity 

of walleye(Stizostedionvitreumvitreum) in multimesh multifilament gill nets 

in Lake Erie; and its application Canadian Journal of Fisheries and Aquatic 

Sciences ( 1991) . 

75 



BIBLIOGRAPHY 76 

[7] Holt, S. J. A method for determining gear selectivity and its application ICNAF 

Special Publication(1963). 

[8] Gulland. Effort and catch per unit effort Measurement of Fishing Gear S lec­

tivity(1995). 

[9] Kirkwood, G. P., and Walker, T. Gill net mesh selectivities for Gummy Shark, 

Mustelusantacticus Gunther, taken in south-eastern Austrilian waters Au -

tralian Journal of Marine and Freshwater Research(1995). 

[10] McCullagh, P., and elder, J , A. Generlized linear model 2nd edit Chapman 

and Hall, London(1989) . 

[11] Millar, R. B. Estimating the size-selectivity of fishing gear by condtioning on 

the total catch Jouanal of the American Statistical Association(1992). 

[12] Reigier, H. A., and Robson, D. S. Selectivity of gillnets, especially to lake 

whitefish Journal of the Fisheries Research Board of Canada(1966). 

[13] Russell B. Millar and Rene Holst. Estimation of gillnet and hook selectivity 

using log-linear models ICES Journal of Marine Sciencc(1997). 

[14] Holst R, Madsen N,Moth-Poulsen T , et al. Manual for gillnet selectivity(1996) . 

[15] Wileman, D.A., Ferro R.S.T, Fonteyne, R. and Millar, R.B. Manual of methods 

of measuring the selectivity of towed gears ICES Coop(1996). 



Appendix A 

DATA DESCRIPTION 

' . , 

' . 

The data used in this thesis consists of two data sets, one data set is the total catch 

data from fleet EW, the other data set is the total catch from fleet JV. Th meshsize 

is 5.5 6.0,and 6.5(in) , the length class s ar from 23 em to 113 em with increment 1 

em. 
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EW Mesh Sizes 

Length Classes 5.5 6.0 6.5 

23 0 I O 0 

24 0 lo 0 I 

25 0 lo 0 

' 26 0 0 0 

27 0 0 0 

28 0 10 0 

29 0 lo 0 

30 0 0 0 

31 0 0 0 
I 

32 0 0 0 

33 0 1 0 

34 0 0 0 

35 0 0 0 

36 0 0 0 

37 0 0 0 

38 1 0 0 

39 0 1 0 

40 2 1 1 

41 0 2 1 

42 1 0 0 

43 0 6 0 

Table A.1: The catch data from fleet EW 1 
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EW Mesh Sizes 

Length Classes 5.5 6.0 6.5 

44 4 2 1 

45 2 1 3 

46 7 1 4 

47 9 4 6 

48 2 3 0 

49 9 1 7 

50 5 5 1 

51 17 3 3 

52 9 3 7 

53 14 2 5 

54 19 8 1 

55 19 5 3 

56 45 3 5 

57 51 11 1 

58 48 11 1 

59 53 10 3 

60 62 25 5 

61 55 29 6 

62 49 37 12 

63 52 42 9 

64 49 35 10 

Table A.2: The catch data from fleet EW 2 
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EW Mesh Sizes 

Length Classes 5.5 6.0 6.5 

65 40 42 17 

66 31 37 17 

67 26 47 18 

68 28 52 33 

69 18 30 13 

70 22 42 21 

71 14 32 24 

72 7 21 29 

73 21 23 26 

74 14 12 10 

75 11 20 25 

76 7 18 22 

77 4 13 21 

78 13 5 13 

79 8 5 7 

80 9 8 16 

81 13 7 13 

82 9 5 6 

83 9 3 7 

84 3 11 13 

85 3 5 6 

Table A.3: The catch data from fleet EW 3 
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EW Mesh Sizes 

Length Classes 5.5 6.0 6.5 

86 8 4 5 

87 6 4 6 

88 6 9 2 

89 2 2 5 

90 5 1 9 

91 0 7 1 

92 3 3 4 

93 2 5 3 

94 0 2 3 

95 0 1 0 

96 0 0 5 

97 0 . 0 3 

98 0 2 4 

99 0 1 3 

100 0 0 1 

101 0 0 0 

102 0 0 0 

103 0 0 0 

104 0 0 1 

105 0 ' 0 1 

106 0 0 0 

Table A.4: The catch data from fleet EW 4 
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APPENDIX A. DATA DESCRIPTION 2 

EW Mesh Sizes 

Length Classes 5.5 6.0 6.5 

107 0 0 0 

108 0 0 0 

109 0 0 0 

110 0 0 0 

111 0 0 0 

112 0 0 0 

113 0 Ia 0 

Table A.5: The catch data from fleet EW 5 
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JV Mesh Sizes 

Length Classes 5.5 6.0 6.5 

23 0 0 0 

24 0 0 0 

25 0 0 0 

26 0 0 0 

27 0 0 0 

28 0 10 
0 

29 0 
10 

0 

30 0 0 
10 

31 0 0 0 

32 0 0 0 

33 0 1 0 

34 0 0 0 

35 1 0 1 

36 0 0 0 

37 0 0 1 

38 0 0 0 

39 1 2 0 

40 4 1 1 

41 0 4 2 

42 3 0 3 

43 5 12 1 

Table A.6: The catch data from fleet JV 1 



APPENDIX A. DATA DESCRIPTION 84 

JV Mesh Sizes 

Length Classes 5.5 6.0 6.5 

44 8 7 4 

45 4 12 7 

46 8 19 6 

47 10 15 3 

48 10 11 4 

49 10 10 3 

50 22 16 4 

51 23 13 2 

52 41 7 5 

53 54 11 4 

54 67 10 5 

55 95 15 2 

56 121 18 2 

57 129 I 26 7 

58 126 20 4 

59 142 33 5 

60 133 51 10 

61 106 50 8 

62 112 51 9 

63 86 161 15 

64 61 ! 53 19 

Table A. 7: The catch data from fleet JV 2 
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JV Mesh Sizes 

Length Classes 5.5 . 6.0 6.5 

65 58 57 12 

66 29 40 24 

67 28 47 17 

68 22 : 27 15 

69 14 18 20 

70 12 16 29 

71 6 9 12 

72 6 9 16 

73 5 10 17 

74 1 9 11 

75 3 3 11 

76 0 4 8 

77 3 2 6 

78 0 3 5 

79 0 2 7 

80 2 1 4 

81 2 3 4 

82 3 1 1 

83 4 4 0 

84 2 3 3 

85 0 2 2 

Table A.8: The catch data from fleet JV 3 
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JV Mesh Sizes 

Length Classes 5.5 6.0 6.5 

86 1 1 0 

87 2 1 1 

88 0 0 1 

89 1 3 3 

90 1 0 1 

91 0 0 0 

92 1 0 2 

93 0 0 0 

94 0 1 0 

95 1 0 0 

96 0 1 0 

97 0 0 0 

98 1 1 0 

99 0 0 0 

100 0 I 1 0 

101 0 
10 

0 

102 0 0 0 

103 0 0 0 

104 0 0 0 

105 0 0 0 

106 0 0 0 

Table A.9: The catch data from fleet JV 4 
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JV Mesh Sizes 

Length Classes 5.5 6.0 6.5 

107 0 0 1 

108 0 0 0 

109 0 0 0 

llO 0 0 0 

ll1 0 0 0 

ll2 0 0 0 

ll3 0 1 0 

Table A.10: The catch data from fleet JV 5 



Appendix B 

SPLU S SOURCE CODE 

\#\#the data file $=$ EWSum (913 matrix from Dr. Wang's code ) 

EW.SUM <- read. t able(' 'EW.SUM.dat", head=T) 

cat (' ' The Catch Data Set From EW Is:") 

Print(EW.SUM) 

msizes <- c(5.5,6 .0,6 . 5) 

msizes . rep <- rep(msizes, rep(91.3)) 

lens<- c(23:113) 

lens .rep <- rep(lens, length=91*3) 

var1 <- lens.rep*msizes.rep 

var2 <- msizes.rep$~ 2$ 

EW.catch <- c(EW.SUM[,1] ,EW .SUM[,2] ,EW.SUM[ , 3]) 

legend<- c(''Mesh1(5.5)",''Mesh1(6 .0)", ' 'Mesh1(6.5)" ) 

\ #\ #glm Normal Location model 

EW . loc.fit <- glm(EW.catch- var1 + var2 

+as . factor(lens . rep),family=poisson) 

x <- EW.loc.fit&coef [c(' 'var1"),' ' var2")] 
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EW .mean <- -2*msizes*x[2]/x[1] 

st.dev <- sqrt(-2*x[2]/(x[1]*x[1])) 

cat(''The mean St. Dev. of Normal loc for EW is:") 

print(EW.mean) 

print(st.dev) 

\ #\#observation curve for Ew 

postscript (' 'EW. obs .ps") 

par(mfrow=c(1,1)) 

plot (lens, EW. SUM [, 1] , xlim=c (min (lens) ,max (lens)) , xlab=' 'Length (em)", 

ylim=c(O,max(EW.SUM)), ylab=''Nu.mber of Fish", 

main=' 'EW Observation Catch", type=' 'l", l ty=1) 

for(j in 2: dim(EW.SUM) [2])\{lines(lens, EW.SUM[,j] ,lty=j)\} 

legend(BO, 50, legend =legend, lty=1:3) 

graphics. off() 

\#\#normal location curve 

postscript (' 'EW .loc. ps") 

par(mfrow=c(1,1)) 

Floor <- floor(min(EW.mean - 3* st .dev)) 

Ceiling <- ceiling(max(EW.mean + 3* st.dev)) 

XX <- matrix(O, 100, dim(EW.SUM) [2]) 

for (i in 1: dim(EW . SUM) [2]) { 

XX[,i] <- seq(23, 113, length=100) 

} 

plot(XX[,1], sqrt(2*pi)* st.dev*dnorm(XX[,1], 

EW.mean[1], st.dev), type=''l", lty=1, 
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xlim=c(23, 113), ylim=c(O,l.O), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''EW Selection Location Curves") 

for(i in 2:dim(EW.SUM) [2]) { lines(XX[,i], sqrt(2*pi))* st.dev 

*dnorm(XX[,i], EW.mean[i], st.dev), lty=i} 

Legend(90, 0.87, legend =Legend, lty=1:3) 

graphics. off() 

\#\#Residual matrix for normal location 
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EW.loc.res <- round(matrix(resid(EW.loc.fit,type=' 'deviance"), 91, 3), dig=4) 

EW . loc.res.tab <- round(matrix(resid(EW.loc.fit,type=''deviance"), 91, 3), dig=3) 

cat(''The Residuals for Location Model of is: ") 

print(EW.loc.res.tab) 

postscript(''EW.loc.res.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size (in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=''Deviance Residuals of Location for EW", type=''n") 

for(i in 1:nrow(EW.SUM)) 

for(j in 1:ncol(EW.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(EW.loc.res[i,j]>0,16,1), 

mkh=abs(EW . loc .res[i,j])*3/100) 

graphics. off 0 

\#\#fitted curve for normal location 
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EW.loc.pred <- predict(EW.loc.fit) 

EW.loc.pred <- exp(EW.loc.pred) 

EW.loc.pred <- matrix(EW.loc.pred,91,3) 

EW.loc .pred . tab <- round(EW . loc.pred, dig=O) 

cat("\\n\\nThe fitted Catch for Location Model of EW is: \\n") 

print(EW.loc.pred.tab) 

postscript("EW.loc . fit.ps") 

par(mfrow=c(1,1)) 
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plot (lens, EW .loc. pred [, 1] , xlim=c (min (lens) ,max (lens)) , xlab=' 'Length (em)", 

ylim=c(O,max(EW.loc.pred)), ylab=''Number of Fish", 

main=' 'EW Normal location Fitted Catch", type="l", lty=1) 

for(j in 2:ncol(EW . SUM))\{ 

lines(lens, EW.loc.pred[,j], lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs for normal location 

rm(var1,var2,EW.mean,st.dev,x,EW.loc.fit,XX,Floor,Ceiling) 

rm(EW.loc.res) 

rm(EW . loc.pred) 

rm(EW.loc . res.tab,EW.loc.pred.tab) 

\#\#normal scale model 

var1 <- lens.rep/msizes.rep 

var2 <- msizes.rep$-2$ 
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\#\#glm Normal scale model 

EW.scale.fit <- glm(EW.catch- var1 + var2 

+as.factor(lens.rep),family=poisson) 

x <- EW.scale.fit&coef[c(''var1"),''var2")] 

EW.mean <- -x[1]*msizes/2*x[2] 

st.dev <- -msizes/(2*x[2]) 

\#\#normal scale curve for EW 

postscript(' 'EW.scale.ps") 

par(mfrow=c(1,1)) 

Floor <- floor(max(23,min(EW.mean - 3* st.dev))) 

Ceiling <- ceiling(min(113, max(EW.mean + 3* st.dev))) 

XX<- matrix(O, 100, dim(EW.SUM) [2]) 

for (i in 1: dim(EW.SUM)[2])\{ 

XX[,i] <- seq(from=(max(23,EW.mean[i]-3*st.dev[i])), 

to=(min(113,EW.mean[i]+3*st.dev[i])), length=100) 

\} 

plot(XX[,1] [XX[,1]> Floor & XX[,1]< Ceiling], 

sqrt(2*pi)* st.dev*dnorm(XX[,1] [XX[,1]> Floor & XX[,1]< Ceiling], 

EW.mean[1], st.dev[1]), type=' 'l", lty=1, 

xlim=c(Floor , Ceiling), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main= ' 'Evl Mesh Size Scale Curves") 
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for(i in 2:dim(Evl.SUM) [2]) { lines(XX[,i] [XX[,1]> Floor & XX[,1]< Ceiling], 

sqrt(2*pi))* st.dev[i]*dnorm(XX[,i] [XX[,1]> Floor & XX[,1]< Ceiling], 

EW.mean[i], s~.dev[i]), lty=i} 

Legend(29, 0.91, legend =Legend, lty=1:3) 
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graphics. off 0 

\#\#Residual matrix for normal scale 

EW.scale.res <- round(matrix(resid(EW.scale.fit,type=''deviance 11
), 91, 3), dig=4) 

EW.scale.res.tab· <- round(matrix(resid(EW.scale.fit,type=''deviance 11
), 91, 3), dig=3) 

cat(''The Residuals for Scale Model of EW i.s: 11
) 

print(EW.Scale.res.tab) 

postscript (' 'EW. scale. res. ps 11
) 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm) 11
, 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab="Mesh size(in) 11
, 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of scale for EW 11
, type=' 'n11

) 

for(i in 1:nrow(EW.SUM)) 

for(j in 1:ncol(EW.SUM)) 

points(lens[j) .msizes[j] ,pch=ifelse(EW.scale.res[i,j]>0,16,1), 

mkh=abs(EW.scale.res[i,j])*3/100) 

graphics. off 0 

\#\#f itted curve for normal scale 

EW . scale.pred <- predict(EW.scale.fit) 

EW.scale.pred <- exp(EW.scale.pred) 

EW . scale.pred <- matrix(EW.scale.pred,91,3) 

EW.scale .pred.tab <- round(EW.scale.pred, dig=O) 

cat (' 'The fitted Catch for Scale Model of EW is: 11
) 

print(EW.scale.pred . tab) 
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postscript(''EW.scale.fit.ps") 

par(mfrow=c(1,1)) 

plot(lens, EW.scale.pred[,1], xlim=c(min(lens),max(lens)), 

xlab=' 'Length(cm)", 

ylim=c(O,max(EW.scale.pred)), ylab=''Number of Fish", 

main=' 'EW scale Fitted Catch", type=' 'l", lty=1) 

for(j in 2:ncol(EW.SUM))\{ 

lines(lens, EW.scale.pred[,j], lty=j)\} 

Legend(78, 45, 3egend =Legend, lty=1:3) 

graphics . off() 

\#\#clean jobs for normal location 

rm(var1,var2,EW .m~an,st.dev,x,EW.scale.fit,XX,Floor,Ceiling) 

rm(EW.scale.res) 

rm(EW.scale.pred) 

rm(EW.scale.res . tab,EW.scale.pred.tab) 

\#\#Lognormal for three mesh sizes 

\#\#for msizes[1] 

rmsizes.rep1 <- msizes.rep/msizes[1] 

var11 <- log(lens.rep)*log(rmsizes . rep1) -0.5* (log(rmsizes.repl))$-2$ 

var21 <- log(rmsizes.rep1) 

\#\#glm for meshsizes[1] 

EW.log.fit1 <- glm(EW.catch- var11 + var21 

+as.factor(lens.rep),family=pois son) 
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x1 <- EW . log.fit1&coef[c(' 'var11"),''var21" ) ] 

EW.mean1 <- -(1-x1[2])/x1[1] 

st.dev1 <- -sqrt(1/x1[1]) 

\#\#Residual matrix for meshsize1 
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EW.log . res1 <- round(matrix(resid(EW.log.fit1,type= '' deviance"), 91, 3), dig=4) 

postscript(''EW.log.res1.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab= ' 'Length (cm) ", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes) - min(msizes ) ), 

ylab=' 'Mesh size(in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=''Deviance Residuals of Lognormal(Mesh1) for EW " , t ype='' n" ) 

for(i in 1:nrow(EW.SUM)) 

for(j in 1:ncol(EW . SUM)) 

points(lens [i] .msizes[j] ,pch=i felse(EW . log.res1[i,j]>0,16,1), 

mkh=abs(EW.log.res1[i,j])*3/100) 

graphics. off() 

\#\#fitted curve for meshsize 1 

EW.log.pred1 <- predict(EW.log .pred1) 

EW.log.pred1 <- exp(EW.log.pred1) 

EW.log.pred1 <- matrix(EW.log.pred1,91,3) 

postscript(' 'EW.log .fit1.ps") 

par(mfrow=c(1,1)) 

plot (lens, EW .log. pred1 [, 1] , xlim=c (min (lens) ,max (lens)) , xlab=' ' Length (em) " , 
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ylim=c(O,max(EW.log.pred1)), ylab=''Number of Fish", 

main=' 'EW J.ognormal(Mesh1) Fitted Catch", type=' 'l", lty=1) 

for(j in 2:ncol(EW.SUM))\{ 

lines(lens, .EW.log.predl[,j], lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs 

rm(x1,var11,var21,rmsizes.rep1,EW.log.fit1,EW.log.res1) 

rm(EW . log.pred1) 

\#\#for msizes[2] 

rmsizes.rep2 <- msizes.rep/msizes[2] 

var12 <- log(lens.rep)*log(rmsizes.rep2) -0.5* (log(rmsizes.rep2))$~2$ 

var22 <- log(rmsizes . rep2) 

\#\ #glm for meshsizes[2] 
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EW.log.fit2 <- glm(EW.catch- var12 + var22 +as.factor(lens . rep),family=poisson) 

x2 <- EW.log.fit2&coef[c(''var12"),''var22")] 

EW.mean2 <- -(1-x2[2])/x2[1] 

st.dev2 <- -sqrt(1/x2[1]) 

\ #\ #Residual matrix for meshsize2 

EW.log.res2 <- round(matrix(resid(EW.log.fi~2,type=' 'deviance"), 91, 3) , dig=4) 

postscript("EW.log.res2.ps") 
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par(mfrow=c(l,l)) 

plot(lens.rep, msizes . rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm) " , 
.. 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab="Mesh size(in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of Lognormal(Mesh2) for EW", type=' ' n") 

for(i in l:nrow(EW.SUM)) 

for(j in l~ncol(EW.SUM)) 

points(lens[i] .msizes[j] ,pch=ifelse(EW.log.res2[i,j]>0,16,1), 

mkh=abs(EW.log.res2[i,j])*3/100) 

graphics. off () 

\ #\#fitted curve for meshsize 2 

EW.log.pred2 <- predict(EW.log.pred2) 

EW.log.pred2 <- exp(EW.log.pred2) 

EW.log.pred2 <- matrix(EW.log.pred2,91,3) 

postscript (' 'EW .log. fit2 .ps") 

par(mfrow=c(l,l)) 

plot (lens, EW.log.pred2[,1], xlim=c(min(lens) ,max(lens)), xlab= ' 'Length(cm) ", 

ylim=c(O,max(EW.log.pred2)), ylab=''Number of Fish", 

main=''EW lognormal(Mesh2) Fitted Catch", type= ' 'l", lty=l) 

for(j in 2:ncol(EW.SUM))\{ 

lines(lens , EW.log.pred2[,j], lty=j)\} 

Legend(76, 45, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs 
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rm(x2,var12,var22,rmsizes.rep2,EW.log.fit2,EW.log.res2) 

rm(EW.log.pred2) 

\#\#for msizes[3] 

rmsizes.rep3 <- msizes.rep/msizes[3] 

var13 <- log(lens.rep)*log(rmsizes.rep3) -0.5* (log(rmsizes.rep3))$~2$ 

var23 <- log(rmsizes.rep3) 

\#\#glm for meshsizes[3] 
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EW.log.fit3 <- glm(EW.catch- var13 + var23 +as.factor(lens.rep),family=poisson) 

x3 <- EW.log.fit3&coef[c(''var13"),''var23")] 

EW.mean3 <- -(1·-x3[2])/x3[1] 

st.dev3 <- - sqrt(1/x3[1]) 

\#\#Residual matrix for meshsize3 

EW.log.res3 <- round(matrix(resid(EW.log.fit3,type=' 'deviance"), 91, 3), dig=4) 

postscript(''EW.log.res3.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=' 'Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes) - min(msizes)), 

ylab=' 'Mesh size (in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of Lognormal(Mesh3) for EW", type=' 'n") 

for(i in 1:nrow(EW.SUM)) 

for(j in 1:ncol(EW.SUM)) 

points(lens[i] .msizes[j] ,pch=ifelse(EW.log.res3[i,j]>0,16,1), 
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mkh=abs(EW.log.res3[i,j])*3/100) 

graphics. off 0 

\#\#fitted curve for meshsize 3 

EW.log.pred3 <- predict(EW.log.pred3) 

EW.log.pred3 <- exp(EW . log.pred3) 

EW.log.pred3 <- matrix(EW.log.pred3,91,3) 

postscript(' 'EW.log.fit3.ps") · 

par(mfrow=c(1,1)) 
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plot(lens, EW.log.pred3[,1], xlim=c(min(lens) ,max(lens)), xlab= ' 'Length(cm)", 

ylim=c(O,max(EW . log.pred3)), ylab= ''Number of Fish", 

main=' 'EW lognormal(Mesh3) Fitted Catch", type=' ' 1", lty=1 ) 

for(j in 2:ncol(EW.SUM))\{ 

lines(lens, EW.log . pred3[,j], lty=j)\} 

Legend(76, 45, legend =Legend, lty=1:3) 

graphics. off 0 

\#\ #clean jobs 

rm(x3,var13,var23,rmsizes.rep3,EW . log .fit3,EW.log.res3) 

rm(EW.log .pred3) 

\#\ #lognormal selectivity curve 

EW.mean <- c(EW.mean1, EW.mean2, EW.mean3) 

st.dev <- c(st.dev1, st.dev2, st .dev3) 

postscript (' 'EW .log. ps") 

par(mfrow=c(1,1 ) ) 

XX <- matrix(O, 100, dim(EW.SUM) [2]) 
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for (i in 1: dim(EW.SUM) [2])\{ 

XX[,i] <- seq(from=23, to=113, length=100) 

\} 

plot(XX[,1] ,dlnorm(XX[,1] ,EW.mean[1], st.dev[1])/max(dlnorm(XX[,1], 

EW.mean[1], st.dev[1])), type= ' 'l", lty=1, 

xlim=c(23, 113), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''EW Mesh Size Lognormal Curves") 

for(i in 2:dim(Evl.SUM) [2])\ { lines(XX[,i], 

dlnorm (XX [, l] , EW. mean [1] , st. dev [1]) /max (dlnorm (XX [, 1] , 

EW.mean[1], st.dev[1])), lty=i)\} 

Legend(30, 0 . 93, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs 

rm(EW.mean,EW.mean1,EW.mean2,EW.mean3,st .dev1) 

rm(st.dev2,st.dev3,st.dev,XX,Floor,Ceiling) 

\#\#Gamma model 

var1 <- log(lens.rep/msizes.rep) 

var2 <- lens.rep/msizes.rep 

\#\#glm Gamma model 

EW.gamma.fit <- glm(EW.catch- var1 + var2 

+as.factor(lens.rep),family=poisson) 

x <- EW.gamma.fit&coef[c(' ' var1"),' 'var2")] 

alpha <- 1 + x[1] 
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beta <- -msizes/x[2] 

\#\#Residual matrix for gamma 

EW.gamma.res <- round(matrix(resid(EW.gamma.fit,type=''deviance 11
), 91, 3), dig=4) 

EW.gamma.res.tab <- round(matrix(resid(EW.gamma.fit,type=''deviance 11
), 91, 3), dig=3) 

cat(''The Residuals for Gamma Model of EW is: 11
) 

print(EW.gamma.res.tab) 

postscript ( 11 EW. gamma. res. ps 11
) 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm) 11
, 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size (in) 11 
, 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main-''Deviance Residuals of gamma for EW 11
, type-''n 11

) 

for(i in 1:nrow(EW.SUM)) 

for(j in 1:ncol(EW.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(EW.gamma.res[i,j]>0,16,1), 

mkh=abs(EW.gamma.res[i,j])*3/100) 

graphics. off 0 

\#\#gamma curve for Ew 

postscript(' 'EW.gamma.ps 11
) 

par(mfrow=c(1,1)) 

XX <- matrix(O, 1000, dim(EW.SUM) [2]) 

for (i in 1: dim(EW.SUM) [2])\{ 

XX[,i] <- seq(from=23, to=113, length=1000) 

\} 
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plot(XX[,1],dgamma([XX,1] ,alpha,1/beta[1])/max(dgamma([XX,1] ,alpha,1/beta [1])) , 

type=' 'l", lty=1, 

xlim=c(23, 113), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''EW Mesh Size Gamma Curves") 

for(i in 2:dim(EW.SUM) [2]) \{ lines(XX[,i], 

dgamma( [XX, i], alpha, 1/beta [1]) /max (dgamma( [XX, 1] , alpha, 1/beta [1])), 

lty=i\} 

Legend(33, 0.95, legend =Legend, lty=1:3) 

graphics. off() 

\#\#fitted curve' for gamma 

EW.gamma.pred <- predict(EW.gamma.fit) 

EW .gamma .pred <- exp(EW.gamma.pred) 

EW.gamma .pred <- matrix(EW.gamma.pred,91,3) 

EW.gamma .pred.tab <- round(EW.gamma.pred, dig=O) 

cat(' 'The fitted Catch for Gamma Model of EW is: ") 

print(EW.gamma.pred.tab) 

postscript(' 'EW.gamma.fit.ps") 

par(mfrow=c(1,1)) 

plot(lens, EW.gamma.pred[,1], xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(O,max(EW.gamma.pred)), ylab=''Number of Fish", 

main=' 'EW gamma Fitted Catch", type=' 'l", lty=1) 

for(j in 2:ncol(EW.SUM))\{ 

lines(lens, EW .gamma.pred[,j], lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 

graphics. off() 
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\#\#clean jobs for gamma 

rm(varl,var2,alpha,beta,x,EW.gamma.fit,XX,Floor,Ceiling) 

rm(EW .gamma. res) ·· 

rm(EW.gamma.pred) 

rm (EW. gamma. res. tab, EW. gamma. pred. tab) 

\#\#the data file $=$ JVSum (913 matrix from Dr. Wang's code) 

JV.SUM <- read.table("JV.SUM.dat", head=T) 

cat('' The Catch Data Set From JV Is:") 

Print(JV.SUM) 

msizes <- c(5.5,6.0,6.5) 

msizes.rep <- rep(msizes, rep(91.3)) 

lens <- c(23:113) 

lens.rep <- rep(lens, length=91*3) 

varl <- lens.rep*msizes.rep 

var2 <- msizes.rep$- 2$ 

JV.catch <- c(JV . SUM[,l] ,JV.SUM[,2] ,JV .SUM[,3]) 

legend<- c(''Mesh1(5.5)",''Mesh1(6 .0)",''Mesh1(6.5)") 

\#\#glm Normal Location model 

JV.loc.fit <- glm(JV.catch- varl + var2 

+as.factor(lens.rep),family=poisson) 

x <- JV.loc.fit&coef[c("varl"),"var2")] 

JV.mean <- -2*msizes*x[2]/x[l] 

st.dev <- sqrt(-2*x[2]/(x[l]*x[l])) 
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cat("The mean St. Dev. of Normal loc for JV is:") 

print (JV .mean) 

print(st.dev) 

\#\#observation curve for JV 

postscript(''JV.obs.ps") 

par(mfrow=c(1,1) ) 

plot(lens, JV.SUM[,1], xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(O,max(JV.SUM)), ylab=''Number of Fish", 

main=' 'JV Observation Catch", type=' 'l", l ty=1) 

for(j in 2: dim(JV.SUM)[2])\{lines(lens, JV.SUM[,j],lty=j)\} 

legend(BO, 50, l~gend =legend, lty=1:3) 

graphics. off() 

\#\#normal location curve 

postscript (' 'JV .loc. ps") 

par(mfrow=c(1,1)) 

Floor <- floor(min(JV.mean - 3* st.dev)) 

Ceiling <- ceiling(max(JV.mean + 3* st.dev)) 

XX <- matrix(O, 100, dim(JV.SUM) [2]) 

for (i in 1: dim(JV.SUM) [2]) { 

XX[,i] <- seq(23, 113, length=100) 

} 

plot(XX[,1], sqrt(2*pi)* st.dev*dnorm(XX[,1], 

JV.mean[1], st.dev), type="l", lty=1, 

xlim=c(23, 113), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=''Selectivity", 
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main=''JV Selection Location Curves") 

for(i in 2:dim(.TV.SUM)[2]) { lines(XX[,i], sqrt(2*pi))* st.dev 

*dnorm(XX[,i], JV .mean[i], st.dev), lty=i} 

Legend(90, 0.87, legend =Legend, lty=1:3) 

graphics. off() 

\#\#Residual matrix for normal location 
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JV.loc.res <- round(matrix(resid(JV.loc.fit,type=' 'deviance"), 91, 3), dig=4) 

JV.loc.res.tab <- round(matrix(resid(JV.loc .fit,type=''deviance"), 91, 3), dig=3) 

cat(' 'The Residuals for Location Model of is: ") 

print(JV.loc.res.tab) 

postscript(''JV.loc.res.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes) -min(msizes)), 

ylab="Mesh size(in)", 

yaxp=c(min(msizes),max(sizes),length(msizes) - 1), 

main=''Deviance Residuals of Location for JV", type=''n") 

for(i in 1:nrow(JV.SUM)) 

for(j in 1:ncol(JV.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(JV.loc.res[i,j]>0,16,1), 

mkh=abs(JV . loc.res[i,j])*3/100) 

graphics. off() 

\#\#fitted curve for normal location 

JV.loc.pred <- predict(JV.loc . fit) 

JV.loc.pred <- exp(JV.loc .pred) 
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JV.loc.pred <- matrix(JV.loc.pred,91,3) 

JV.loc.pred.tab <- round(JV.loc.pred, dig=O) 

cat("\\n\\nThe fitted Catch for Location Model of JV is: \\n") 

print(JV.loc.pred.tab) 

postscript("JV.loc.fit.ps") 

par(mfrow=c(1,1)) 
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plot(lens, JV.lo~.pred[,1], xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c (0 ,max (JV .loc. pred)), ylab=" Number of Fish", 

main=''JV Normal location Fitted Catch", type="l", lty=1) 

for(j in 2:ncol(JV.SUM))\{ 

lines(lens, JV.loc.pred[,j], lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 

graphics. off() 

\ #\#clean jobs for normal location 

rm(var1,var2,JV.mean,st . dev,x,JV.loc.fit,XX,Floor,Ceiling) 

rm(JV .loc. res) 

rm (JV . loc. pre d) 

rm(JV.loc.res.tab,JV.loc.pred.tab) 

\#\#normal scale model 

var1 <- lens.rep/msizes.rep 

var2 <- msizes.rep$-2$ 

\#\#glm Normal scale model 

JV.scale.fit <- glm(JV.catch- var1 + var2 

+as . factor(lens.rep),family=poisson) 
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x <- JV. scale . fit&coef [c (' 'var1 "),' 'var2")] 

JV.mean <- -x[1]*msizes/2*x[2] 

st.dev <- -msizes/(2*x[2]) 

\#\#normal scale curve for JV 

postscript(''JV.scale.ps") 

par(mfrow=c(1,1)) 

Floor <- floor(max(23,min(JV.mean - 3* st.dev))) 

Ceiling <- ceiling(min(113, max(JV.mean + 3* st.dev))) 

XX<- matrix(O, 100, dim(JV.SUM) [2]) 

for (i in 1: dim(JV.SUM) [2])\{ 

XX [, i] <- seq(fr'om=(max(23, JV .mean[i] -3*st .dev [i))), 

to=(min(113,JV.mean[i]+3*st.dev[i])), length=100) 

\} 

plot(XX[,1] [XX[,1]> Floor & XX[,1]< Ceiling], 

sqrt(2*pi)* st.dev*dnorm(XX[,1) [XX[,1)> Floor & XX[,1)< Ceiling], 

JV. mean [1], st . dev [1]), type=" l", l ty=1, 

xlim=c(Floor, Ceiling), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''JV Mesh Size Scale Curves") 
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for(i in 2:dim(JV.SUM)[2)) { lines(XX[,i] [XX[,1]> Floor & XX[,1] < Ceiling] , 

sqrt(2*pi))* st.dev[i]*dnorm(XX[,i] [XX[,1]> Floor & XX[,1]< Ceiling], 

JV.mean[i], st.dev[i]), lty=i} 

Legend(29, 0.91, legend =Legend, lty=1:3) 

graphics. off 0 

\#\#Residual matrix for normal scale 
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JV.scale.res <- round(matrix(resid(JV.scale.fit,type=''deviance 11
), 91, 3), dig=4) 

JV.scale.res.tab <- round(matrix(resid(JV.scale.fit,type=''deviance 11
), 91, 3), dig=3) 

cat (' 'The Residuals for Scale Model of JV is: 11
) 

print(JV.Scale.res.tab) 

postscript(''JV.scale.res.ps 11
) 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes . rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm) 11
, 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size (in) 11 
, 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of scale for JV 11
, type=' 'n11

) 

for(i in 1:nrow(JV.SUM)) 

for(j in 1:ncol(JV.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(JV.scale.res[i,j]>0,16,1), 

mkh=abs(JV.scale.res[i,j])*3/100) 

graphics. off 0 

\#\#fitted curve for normal scale 

JV.scale.pred <- predict(JV.scale.fit) 

JV.scale.pred <- exp(JV.scale.pred) 

JV.scale.pred <- matrix(JV.scale.pred,91,3) 

JV .scale.pred.tab <- round(JV.scale.pred, dig=O) 

cat(' 'The fitted Catch for Scale Model of JV is: 11
) 

print (JV. scale. pred. tab) 

postscript(''JV. scale.fit.ps 11
) 

par(mfrow=c(1,1)) 

plot(lens, JV.scale.pred[,1], xlim=c(min(lens),max(lens)), 
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xlab=' 'Length(cm) ", 

ylim=c(O,I!Iax(JV.scale.pred)), ylab=''Number of Fish", 

main=' 'JV scale Fitted Catch", type=' '1", 1 ty=l) 

for(j in 2 :ncol(JV.SUM))\{ 

lines(lens, JV.scale.pred(,j], lty=j)\} 

Legend(78, 45, iegend =Legend, lty=1:3) 

graphics. off 0 

\#\#clean jobs for normal location 

rm(var1,var2,JV .mean,st.dev,x,JV.scale.fit,XX,Floor,Ceiling) 

rm(JV . scale . res) 

rm(JV.scale.pred) 

rm(JV.scale.res.tab,JV.scale.pred.tab) 

\#\#Lognormal for three mesh sizes 

\#\#for msizes[l] 

rmsizes.repl <- msizes.rep/msizes[l] 

var11 <- log(lens.rep)*log(rmsizes . repl) - 0.5* (log(rmsizes.repl ))$- 2$ 

var21 <- log(rmsizes.repl) 

\#\#glm for meshsizes[l] 

JV.log.fitl <- glm(JV.catch- var11 + var21 

+as.factor(lens.rep),family=poisson) 

xl <- JV . log.fitl&coef [c(' 'var11"),' 'var21")] 

JV.meanl <- - (1-x1[2])/x1[1] 

st .devl <- - sqrt(1/x1[1]) 
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\ #\#Residual matrix for meshsize1 

JV.log.res1 <- round(matrix(resid(JV.log . fit1,type=' 'deviance"), 91, 3), dig=4) 

postscript(''JV.log.res1.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)•c(-1,1)*(max(msizes)-min(msizes)), 

ylab="Mesh size(in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of Lognormal(Mesh1) for JV", type=' 'n") 

for(i in 1:nrow(JV.SUM)) 

for(j in 1:ncol(JV.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(JV . log.res1[i,j]>0,16,1), 

mkh=abs(JV.log.res1[i,j])*3/100) 

graphics. off() 

\#\#fitted curve for meshsize 1 

JV . log.pred1 <- predict(JV.log.pred1) 

JV.log.pred1 <- exp(JV .log.pred1) 

JV.log.pred1 <- matrix(JV.log.pred1,91,3) 

postscript (' 'JV .log. fi t1. ps ") 

par(mfrow=c( 1,1)) 

plot (lens, JV . log .pred1 [, 1], xlim=c(min(lens) ,max (lens)), xlab=' 'Length(cm)", 

ylim=c(O,max(JV.log.pred1)), ylab=''Number of Fish", 

main=" JV l<?gnormal (Mesh1) Fitted Catch" , type=" l", l ty=1) 

for(j in 2:ncol(JV.SUM))\{ 

lines(lens, JV.log . pred1[,j] , lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 
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graphics. off() 

\#\#clean jobs 

rm(x1,var11,var21,rmsizes.rep1,JV.log .fit1;JV.log.res1) 

rm(JV.log.pred1) 

\#\#for msizes[2] 

rmsizes.rep2 <- msizes.rep/msizes[2] 

var12 <- log(lens.rep)*log(rmsizes.rep2) -0.5* (log(rmsizes.rep2))$-2$ 

var22 <- log(rmsizes.rep2) 

\#\#glm for meshsizes[2] 
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JV.log.fit2 <- glm(JV.catch- var12 + var22 +as.factor(lens.rep),family=poisson) 

x2 <- JV .log . fi t2&coef [c (' 'var12"),' 'var22")] 

JV.mean2 <- -(1-x2[2])/x2[1] 

st.dev2 <- -sqrt(1/x2[1]) 

\#\#Residual matrix for meshsize2 

JV .log.res2 <- round(matrix(resid(JV . log . fit2,type=' 'deviance"), 91, 3), dig=4) 

postscript("JV.log .res2.ps ") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size (in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of Lognormal(Mesh2) for JV", type=' 'n") 

for(i in 1:nrow(JV.SUM)) 
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for(j in 1:ncol(JV.SUM)) 

points(lens[i] .msizes[j] ,pch=ifelse(JV.log.res2[i,j]>0,16,1), 

mkh=abs(JV.log.res2[i,j])*3/100) 

graphics. off 0 

\#\#fitted curve for meshsize 2 

JV.log .pred2 <- predict(JV.log.pred2) 

JV.log.pred2 <- exp(JV.log.pred2) 

JV.log .pred2 <- matrix(JV.log .pred2,91,3) 

postscript (' 'JV .log. fit2 .ps") 

par(mfrow=c(1,1) ) 
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plot(lens, JV.log .pred2[,1], xlim=c(min(lens) ,max(lens)), xlab=' ' Length(cm)", 

ylim=c(O,max(JV.log.pred2)), ylab=' ' Number of Fish", 

main=''JV lognormal(Mesh2) Fitted Catch", type=' ' l", lty=1) 

for(j in 2:ncol(JV.SUM))\{ 

lines(lens, JV.log.pred2[,j], lty=j)\} 

Legend(76, 45, legend =Legend, lty=1:3) 

graphics . off() 

\#\#clean jobs 

rm(x2,var12,var22,rmsizes.rep2,JV.log.fit2,JV.log.res2) 

rm(JV.log.pred2) 

\#\#for msizes[3j 

rmsizes.rep3 <- msizes.rep/msizes[3] 

var13 <- log(lens.rep)*log(rmsizes.rep3) -0.5* (log(rmsizes.rep3))$-2$ 

var23 <- log(rmsizes.rep3) 
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\#\#glm for meshsizes[3] 

JV.log .fit3 <- glm(JV.catch- var13 + var23 +as.factor(lens.rep),family=poisson) 

x3 <- JV.log.fit3&coef[c(''var13"),''var23")] 

JV .mean3 <- -(1-x3[2])/x3[1] 

st.dev3 <- -sqrt(1/x3[1]) 

\#\#Residual matrix for meshsize3 

JV.log.res3 <- round(matrix(resid(JV.log.fit3,type=''deviance"), 91, 3), dig=4) 

postscript(''JV.log.res3.ps") 

par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size(in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of Lognormal (Mesh3) for JV", type=' 'n") 

for(i in 1:nrow(JV.SUM)) 

for(j in l:ncol(JV.SUM)) 

points(lens[i] .msizes[j],pch=ifelse(JV.log.res3[i,j]>0,16,1), 

mkh=abs(JV.log.res3[i,j])*3/100) 

graphics. off() 

\#\#fitted curve for meshsize 3 

JV . log.pred3 <- predict(JV.log.pred3) 

JV.log.pred3 <- exp(JV.log.pred3) 

JV . log.pred3 <- matrix(JV.log.pred3,91,3) 

postscript(' 'JV.log . fit3.ps") 
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par(mfrow=c(1,1)) 

plot(lens, JV.log.pred3[,1], xlim=c(min(lens),max(lens)), xlab= ' 'Length(cm)", 

ylim=c(O,max(JV.log.pred3)), ylab=''Number of Fish", 

main="JV lognormal(Mesh3) Fitted Catch", type="l", lty=1) 

for(j in 2:ncol(JV.SUM))\{ 

lines(lens, JV.log.pred3[,j], lty=j)\} 

Legend(76, 45, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs 

rm(x3,var13,var23,rmsizes.rep3,JV.log.fit3,JV.log . res3) 

rm(JV.log.pred3) · 

\#\ #lognormal selectivity curve 

JV.mean <- c(JV.mean1, JV.mean2, JV.mean3) 

st.dev <- c(st.dev1, st.dev2, st.dev3) 

postscript (' 'JV .log . ps") 

par(mfrow=c(1,1)) 

XX<- matrix(O, 100, dim(JV.SUM) [2]) 

for (i in 1: dim(JV.SUM) [2])\{ 

XX[,i] <- seq(from=23, to=113, length=100) 

\} 

plot (XX[, 1] , dlnorm (XX [, 1] , JV. mean [1] , st . dev [1]) /max (dlnorm (XX [, 1] , 

JV.mean[1], st.dev[1])), type="l", lty=1, 

xlim=c(23, 113), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''JV Mesh Size Lognormal Curves") 
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for(i in 2:dim(JV.SUM) [2])\ { lines(XX[,i], 

dlnorm(XX[,1] ,JV.mean[1], st .dev[1))/max(dlnorm(XX[,1], 

JV.mean[1], st.dev[1])), lty=i)\} 

Legend(30, 0.93, legend =Legend, lty=1:3) 

graphics . off() 

\#\#clean jobs 

rm(JV.mean,JV.mean1,JV.mean2,JV.mean3,st.dev1) 

rm(st.dev2,st .dev3,st.dev,XX,Floor,Ceiling) 

\#\#Gamma model 

var1 <- log(lens.rep/msizes.rep) 

var2 <- lens.rep/msizes.rep 

\#\#glm Gamma model 

JV.gamma.fit <- glm(JV.catch- var1 + var2 

+as.factor(lens.rep),family=poisson) 

x <- JV.gamma.fit&coef [c(' 'var1"),' 'var2")] 

alpha <- 1 + x[1] 

beta <- -msizes/x[2] 

\#\#Residual matrix for gamma 
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JV.gamma.res <- round(matrix(resid(JV .gamma . fit,type=' 'deviance") , 91, 3), dig=4) 

JV.gamma.res.tab <- round(matrix(resid(JV.gamma.fit,type='' deviance"), 91, 3), dig=3) 

cat(' 'The Residuals for Gamma Model of JV is : ") 

print(JV.gamma.res . tab) 

postscript("JV.gamma.res.ps") 
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par(mfrow=c(1,1)) 

plot(lens.rep, msizes.rep, xlim=c(min(lens),max(lens)), xlab=''Length(cm) " , 

ylim=c(min(msizes),max(msizes))+(3/50)*c(-1,1)*(max(msizes)-min(msizes)), 

ylab=' 'Mesh size (in)", 

yaxp=c(min(msizes),max(sizes),length(msizes)-1), 

main=' 'Deviance Residuals of gamma for JV", type=' 'n") 

for(i in 1:nrow(JV.SUM)) 

for(j in 1:ncol(JV.SUM)) 

points(lens[i] .msizes[j] ,pch=ifelse(JV.gamma.res[i,j]>0,16,1), 

mkh=abs(JV.gamma.res[i,j])*3/100) 

graphics. off() 

\#\#gamma curve for JV 

postscript (' 'JV. gamma. ps") 

par(mfrow=c(1,1)) 

XX <- matrix(O, 1000, dim(JV.SUM) [2]) 

for (i in 1: dim(JV.SUM) [2])\{ 

XX[,i] <- seq(from=23, to=113, length=1000) 

\} 

plot(XX[,1],dgamma([XX,1],alpha,1/beta[1])/max(dgamma([XX,1] ,alpha,1/beta [1]) ) , 

type=''P, lty=1, 

xlim=c(23, 113), ylim=c(0,1.0), 

xlab=' 'Length Class", ylab=' 'Selectivity", 

main=''JV Mesh Size Gamma Curves") 

for(i in 2:dim(JV.SUM) [2]) \{ lines(XX[,i], 

dgamma([XX,1] ,alpha,1/beta[1])/max(dgruruna([XX,1] ,alpha,1/beta[1])), 

lty=i\} 
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Legend(33, 0.95, legend =Legend, lty=1:3) 

graphics. off() 

\#\#fitted curve for gamma 

JV.gamma.pred <- predict(JV.gamma.fit) 

JV.gamma.pred <- exp(JV .gamma.pred) 

JV.gamma.pred <- matrix(JV.gamma .pred,91,3) 

JV.gamma .pred.tab <- round(JV .gamma.pred, dig=O) 

cat("The fitted Catch for Gamma Model of JV is: ") 

print(JV.gamma.pred.tab) 

postscript(''JV.gamma.fit.ps") 

par(mfrow=c(1,1)) 
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plot(lens, JV.gamma.pred[,1], xlim=c(min(lens),max(lens)), xlab=''Length(cm)", 

ylim-=c(O,max(JV.gamma.pred)), ylab=''Number of Fish", 

main="JV gamma Fitted Catch", type="l", lty=1) 

for(j in 2:ncol(JV.SUM))\{ 

lines(lens, JV.gamma.pred[,j], lty=j)\} 

Legend(78, 45, legend =Legend, lty=1:3) 

graphics. off() 

\#\#clean jobs for gamma 

rm(var1,var2,alpha,beta,x,JV.gamma.fit,XX,Floor,Ceiling) 

rm(JV.gamma.res) 

rm(JV.gamma.pred) 

rm(JV.gamma . res.tab,JV.gamma.pred.tab) 










