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ABSTRACT

Based on samples of Atlantic salmon smolts from 13 geographically
distinct home rivers, stocks from North America and Europe can be
distinguished by morphometric character sets using discriminant
analysis procedures. Character sets require morphometric measurements
of total length, standard length, predorsal length, dorsal to adipose,
head length, postorbital length, and left pectoral length. A
quadratic discriminant analysis was determined to be the most
appropriate technique to classify the salmon smolts as either European
or North American in origin. The analysis of the morphometric
characters provided strong statistical seperation between areas. A
classification of groups yielded 99.65% correct classification between
European and North American stocks.
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Chapter 1

INTRODUCTEON

1.1 Backqround of the Problem

A common problem in fisheries rescarch is estimaling Lhe annual
proportion of different stocks of fishes in a given fishery. In
particular, since firslL assessment of Lhe effect of the Greenland
fishery for Atlantic salmon (Salmo salar L.) on homewater stocks and
fisheries, scientists have been interested in Lhe annual proportions of
North American and Furopean salmon in the exploiled population off Hest
Greenland. These estimates are Lhen used to assess Lhe effect of the
West Greenland fishery on stocks and fisheries in home waters. In this
context, for exarple, Ritter, ct al. (1980) assessed Lhe impact of the
West Greenland salmon fishery on stocks ard catches in North America.
Their assessment indicated that cxploitation of salmon at West

Greenland was resulting in a reduced yield Lo all fisherics in

homewaters per recruit. For every tonne of salmon caught at W
Greenland, losses to homewater stocks and fisheries ranged from 6,54 1
1.28 tonnes.

There are other similar problems of interest. For example,

identifying capelin stocks in Canadian AUlantic walers, distings

redfish g es in the B

et i ying Baltie stocre

frundland and Fenttioh steghs, of

vh, UG name Just g few,



For the estimation of proportions of stocks in mixed stock
fisheries, some discrimination criterion is frequently used as the
statistical tool. For example, Lear and Misra (1978) dealt with scales
of adult Atlantic salmon collected from 18 river systems in eastern North
mmerica. They analyzed scale character variables including smolt age and
ciruli counts and found that significant differences occurred in each of
these variables between river systems. These differences were also found
to be significantly related to latitude. They found that the numbers of
circuli in each of the three growth zones (on the salmon scale) increased
from north to south, while the smolt ages decreased from north to south.
They demonstrated that there were highly significant differences between
scale characteristics among samples of Atlantic salmon from northern
lLabrador to Maine. The reason for the Lear and Misra study was that
commercial fisheries for Atlantic salmon in Newfoundland and Labrador
exploit mixed stocks of fish originating in river systems in Newfoundland,
Labrador, the Maritimes, Quebec and Maine, U.S.A.

Sharp, et al. (1978) performed a multivariate discriminant
analysis on capelin using nine morphometric and eleven meristic
variables. The samples came from the St. Lawrence estuary, the Gulf of
St. Lawrence, the Grand Banks, and Notre Dame Bay, Newfoundland. The
subsequent analysis of the meristic variables provided no evidence of
discrete stocks. Such analysis of meristic variables offered little
promise as a diagnostic tool in the classification of separate stocks
of capelin in the Canadian Atlantic area. However, analysis of morphometric

variables provided strong statistical separation between areas. Morphometric



measurements used were eye diameter, snout length, head length, body
depth, snout-vent length, snout-dorsal origin, adipose fin base, pelvic-
pectoral distance, and pectoral fin length. Only snout length, eye
diameter, head length and body depth contributed significantly to the
separation obtained.

Misra and Ni (1983) analyzed morphometric data from 100 deepwater
redfish and 100 Labrador redfish. Twelve morphometric variables were
measured - body weight, head length, smout length, interorbital width,
preanal length, pectoral fin base, anal fin base, length of longest
pelvic ray, length of longest pectoral ray, width of caudal peduncle,
dorsal length of caucal peduncle, and standard length. They carried
out a classification study of the beaked redfishes, in which the
specimens of lLabrador redfish were relatively smaller than those of
deepwater redfish. In their study, they used a discriminant function
with covariance. A discriminant function of several variables seperated
the species effectively with seven morphometric characters identified
as pertinent discriminators. They also found that a discriminant
function with covariance seperated species better than one without
covariance,

MacCrimmon and Claytor (1984) dealt with juvenile Atlantic salmon
of seven river stocks in northern, north-central, central and southern
Sweden. The purpose of their study was to identify the nature and
extent of taxonomic diversity occurring among Baltic salmon in various
Swedish rivers using meristic and morphometric data and to determine

if these variables could be used for the identification of regional
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and home river stocks by discriminant analysis. Morphometric
variables used in the study were head length, upper jaw length,
distance between pectoral and pelvic fins, distance between the pelvic
and anal fins, gape width, head width, body width, head depth, body
depth, caudal peduncle depth, pectoral fin length, pelvic fin length,
and standard length. In their study, they determined whether or not
meristic and morphometric variables could be used to identify regional and
home river origins. Morphometric varizbles provided a better means of
identification than meristic variables. However, while meristic
variable differences between river stocks were less pronounced, they
did have considerable power in discriminating regional stocks. They
concluded that each of the Swedish river stocks examined may be
regarded as distinct using morphometric variables.

Reddin (1986) used scale character variables to develop and test a
statistical model to classify Atlantic salmon caught at West
Greenland, as either North American or European in origin. Scale samples
collected in 1980 from salmon caught in Europe and North America were
used as learning samples to identify variables and form a database.
More specifically, scale samples used as European standards were
obtained from adult salmon of known European origin, in namely, Ireland,
Scotland and Norway. Scale samples from the North American standard
came from specimens sampled from commercial catches at Twillingate and
Burgeo, Newfoundland. A stepwise discriminant analysis was used to
select the best variables, and it was determined that a quadratic

discriminant analysis was the most appropriate technique to classify



the salmon. A test sample of known origin, independent of the
learning database used for the discriminant analysis, resulted in a
very low misclassification rate.

MacCrimmon and Claytor (1986) based their paper on a pooled sample
of 367 specimens of juvenile Atlantic slamon, from eight geographically
distinct home rivers. These specimens of juvenile Atlantic salmon
representative of each of four Newfoundland and four Scottish rivers
were obtained during 1982. They were distinguished by meristic and
morphometric variable sets using discriminant analysis procedures.
Meristic variables were used along with morphometric measurements of
standard length, pectoral and pelvic fin lengths, body depth, and gape
width, Based on their data, only the morphometric discriminant function
was highly accurate in identifying home river origins of the fish
examined with the discriminating power increasing with increased fish
size. The set of classification functions from these data provided a
good seperation of pooled fish from the eight home rivers into their
regional Newfoundland and Scottish origins. The classification of the
eight home river stocks was also high, with only one river falling below
a 75% accuracy. Their findings for juvenile fish indicated that
morphometric data sets would seem to offer the best possibility for
identifying the river of origins of adult Atlantic salmon in mixed-
stock fisheries.

Finally, Kenchington (1986) analyzed a set of morphological data
for two types of northwest Atlantic Redfishes, using multivariate

techniques. He examined 15 morphometric variables including standard



length, snout to anal fin distance, body depth, caudal peduncle depth,
head length, snout length, orbit height and inneroribital distance.
Although species were significantly different, they could not be fully
seperated using these variables. He suggested that electrophoretic
techniques were needed for precise identifications. He also found
that although the two types of redfishes of the Scotian shelf had
significantly different body forms, they could not be clearly
distinguished on the basis of these morphometric data. They were more
distinct in their meristic characteristics. This study was initiated to
reveal useful characters for discriminating between North American and
European salmon, their annual variation and variability between stocks.
It will be shown how discriminant analysis of morphological characters
can be used in discriminating a European from a North American origin
salmon. The specimens for the study were caught as smolts in European

rivers in 1969 and North American rivers in 1968 and 1969.

1.2 Plan of the Project
The plan of the project is as follows:

1. 1In order to study the distributional aspects of the data as
discussed in Section 2.1 of Chapter 2, Exploratory Data Analysis techniques
will be used. The Box and Cox (1964) method of shifted-power transformation
will be used to normalize the data set.
2. (a) Discriminant functions will be developed to discriminate

(i)  North American and European origin salmon.

(1i) ALl salmon originating from the five sampled European

rivers.
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(1ii) All salmon originating from the six North American
rivers sampled in 1968; and the eight North American rivers sampled in
1969.

(iv) A1l salmon originating from the five common North
American rivers sampled in both 1968 and 1969.

(b) To verify classification procedures, the jackknife
classification technique will be used to determine the bias inherent
in basing classification decisions on that data set used to determine
the classification functions.

(c) The observations will also be classified using canonical
variables instead of the original discriminating variables. Thus, the
first two canonical variables will be plotted to show the seperation
of the g groups. These resulting classification boundary lines will be
superimposed over the plot of cases to obtain a better picture of how
cases are being classified.

3. Finally, the data of the g different groups will be combined to

form a single data set (ie. the five sampled European rivers; the

eight North American rivers sampled in 1969; etc.). A clustering technique
will be computed to determine if the g groups are well seperated. That

is, a discriminant analysis will be performed based on the clustering principle.

1.3 Data Collection and Description

ALl specimens of salmon smolts used in the study were collected
from rivers in Europe and eastern North America during the months of
May, June and July in the years 1968 and 1969. In Europe, samples were
taken from Logan River, Sweden; River Almond, Scotland; River Boyne and

River Lee, Ireland; and River Usk, Wales. In North



America, samples were taken from Enfield's Hatchery in Maine, U.S.A.;
at the Curventon fish emmeration facility, Miramichi River; Beechwood
Dam, Saint John River in New Brunswick; Koksoak River and Kaniapiskou
River in Ungava Bay, Quebec; Indian River Spawning Channel, Salmon River,
Harry's River and Salmonier River in Newfoundland; and Sand Hill River in
Labrador. The location of these rivers are shown on the maps of fiqure
1l.laand Llb.
All specimens were kept frozen until examined. The seven morphometric

varisbles measured on each specimen were:

(1) Total length - the length of the salmon measured from the tip of
the snout to the farthest tip of the caudal fin, The measurement is a
straight line and is not taken over the curve of the body.

(2) Standard Length - the distance between the tip of the smout
to the end of the vertebral colum.

(3) Predorsal Length - the distance between the tip of the snout to
the front structural base of the dorsal ray.

(4) Dorsal to Adipose - the distance between the back structural base
of the dorsal ray to the front structural base of the adipose.

5) Head length - the distance from the tip of the snout to the most
distant point on the opercular membrane.

6) Postorbital length - the distance from the closest point
of the orbital socket to the most distant point on the opercular
membrane .

(7) left Pectoral Length - the distance between the two structural

bases of the left pectoral ray.



g

These morphometric variables were measured to an accuracy of 0.1
millimetres except total length and standard length, which were measured
to the nearest millimetre. Each of the measurements are shown in the

diagram of fiqure 1.2.
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Figure 1.1a Locations of North American Rivers
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Locations of European Rivers

Figure 1.1b
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Figure 1.2 Measured Horphomelric Variables
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Chapter 2

EXPLORATORY ANALYSIS OF DATA

2.0 Introduction

Many statistical analyses assume that data consisting of more
than one variable follow a multivariate normal distribution. One
of the main reasons for this assumption is that the distributional
results under normality are well known. However, there are
sitvations where the normality assumptions may not be appropriate
and in these cases transformation of the data is required prior to
statistical analysis. If the underlying distribution is not normal
and the analysis is done assuming normality, the results might be
unreliable in certain cases. Thus, it is important to study the
the distributional pattern of the data. With this in mind, the
beginning of this chapter takes an initial look at the data. This is
traditionally knmown as "Exploratory Data Analysis"™. Further, in
Sections 2.1.1, 2.1.2 and 2.1.3, confirmatory analysis on the
distributional pattern of the data is given.

The present analysis will be confined to the following three
samples: specimens sampled from European rivers in 1969; specimens
sampled from North American rivers in 1969; and those sampled from
North American rivers in 1968. Only complete data will be used for

this analysis, i.e., specimens for which all seven measurements are



-14-

available because missing observations virtually destroy morphometrics
(Pimentel, p. 191 (1979)].

Bs a part of the exploratory data analysis, the data is examined
for symmetry Box-plots are one of the appropriate graphical tools
by which we may check symmetry. Boxplots can also help to identify the
outliers in a data set. Specifically boxplots show the middle of a data
set, from hinge to hinge, as a box with a ™" indicating the median
(Hinges represent the upper and lower quartiles). The median can be
defined as the middle observation in an ordered data series. The boxplot
runs a solid line from each hinge to the corresponding extreme. At a
glance, impressions can be made of the overall distribution, amount of
spread, and symtetry of the data. Figures A2.1, A2.2 and A2.3 (Appendix A)
show boxplots for all seven variables of European data sampled in 1969 and
North American data sampled in 1969 and 1968 respectively. These boxplots
are summarized in Sections 2.1, 2.2 and 2.3.

Some of these data series contain outliers, that is, values so
high or low, that they stand out from the rest of the data. Values
between the inner and outer fence are possible outliers, and are
plotted with a "*". Values beyond the outer fence are probable
outliers and are plotted with a "0". The imner and outer fence are
defined as follows:

inner fences = (lower hinge) - (1.5 x (H-spread))
= (upper hinge) + (1. 5 (H-spread))

(lower hinge) - (3 x (H-spread))

outer fences =
and = (upper hinge) + (3 x (H-spread))

where H-spread = (upper hinge) - (lower hinge)
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If a measurement is determined to be a probable or possible outlier,
the whole observation (or record) is deleted from the data set. Note
that in some cases valid data points may be dropped because they are
atypical of the mass of data under analysis. However, because of the
large sample size, this will not significantly affect the results of
this particular analysis.

After the removal of outliers, there were 495 observations for
European data sampled in 1969, 915 observations for North American
data sampled in 1969 and 724 observations for North American data
sampled in 1968. These sample sizes will be used for the remaining
analysis.

Histograms were then displayed for each of seven variables for each of
the three groups. The outliers were excluded while constructing the
histogram and subsequently for the remainder of the analysis. The
histograms are shown in Appendix A for all seven characters. The
histograms for European data of 1969, North American data of 1969, and
North American data if 1968 are displayed in figures A2.4, A2.5 and A2.6
respectively.

The histograms contained in figure A2.4 are summarized in Section
2.1.1. Similarly the histograms of figures A2.5 and A2.6 are
summarized in Sections 2.1.2 and 2.1.3 respectively.

In the preceding analysis, graphical summaries of the data have been
presented using relative frequency histograms and boxplots. Further
analysis will investigate the data series using numerical summaries.

For the seven variables in each group, the letter-value spreads H, E, D, C,

B, A, Z, Yand X are recorded [Velleman and Hoaglin, (1981)]. The median,
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M, splits an ordered data series in half. If the number of observations, n,
is odd, the median, m, is found by the [%l}th observation. If n is
even, the median is the average of the [%)th and the [%ZJth
observations.

The letter H denotes the hinges which are the summary values in
the middle of each half of the data. They are about a quarter of the
way in from each end of the ordered batch. Similarly, the letter E
denotes the eighths and they are the middle values for the outer
quarters of the data. These values are about an eighth of the way in
from each end of the ordered batch. The pattern is continued for the
letter-values D, C, B, &, 2, ¥ and X.

The difference between the lower hinge and upper hinge is known as
the H-spread. Similarly, the E-spread is the difference between the
lower eighth and the upper eighth, that is, the E-spread gives ®'.2
range of the middle three-quarters of the data. The D-spread gives
the range of the middle seven-eighths, and so on. These spreads are
compared to the spreads for the normal, or Gaussian, distribution.

The standard Gaussian spreads are: H-spread = 1.35, E-spread = 2.30,
D-spread = 3.07, C-spread = 3.72, B-spread = 4.31, A-spread = 4.84,
Z-spread = 5.32, Y-spread = 5.76 and X-spread = 6.18. The spreads

of the data are compared with the Gaussian spreads by quotients of the
spread values of the data to the Gaussian spread values. A trend in
the quotients provides an indication of how the data depart from
normality. If the quotients increase, the tails of the distribution are

heavier than the tails of the Gaussian-shape. If the quotients shrink,
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the tails of the data are lighter.

The average value of any two pair of letter values, called the mid-
summary is also observed. Specifically, the average of the two hinges
is called the mid-hinge; the average of the two eighths is called the
mid-eighth, and so on. By observing a trend in the midsummaries, one can
learn about the symmetry of the data. If the midsummaries become
progressively larger, the data is skewed to the right. If they decrease
steadily, the data is skewed to the left. Tables A2.1, A2.2 and A2.3
in Appendix A display the midsummaries, spreads and quotients for all
seven characters for European data of 1969 and North American data of
1969 and 1968 respectively.

The variables from each group can be summarized by studying
histograms (figures A2.4, A2.5 and A2.6), midsummaries, spreads and
quotients (tables A2.1, A2.2 and A2.3). These summaries, both graphical
and numerical, give indications about the distributional shape of the
data.

2.1.1 Description of Variables for European Data Sampled in 1969

Total Length - This histogram (figure A2.4a, Appendix A) gives the
impression of a bimodal distribution, that is, a distribution
consisting of two peaks. The increasing values of the midsummaries
indicates a slight skewness to the right of the data. The smaller
second peak indicated in the histogram could be a reason for this
shift. Also, the decreasing values of the quotients indicate a
light-tailed distribution. There-fore, the normality of this
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distribution is questionable.

Standard Length - The distributional shape of this variable is similar
to the distribution of the variable total length. There are two peaks
in the data and the increasing values of the midsummaries indicates a
skewness to the right of the data. The quotients are also

decreasing which indicates, as before, a light-tailed distribution.

Again, the normality of this distribution is questionable.

Predorsal - The histogram (figure A2.4c, Appendix A) shows a
concentration of the data toward the centre of the distribution. This
indicates a light- tailed distribution which is verified by the
decreasing quotient values. The mid-summary values show no indication
of skewness. Thus, the distribution of this variable may be close in

shape to the normal distribution.

Dorsal to Adipose - A bimodel distribution is observed similar to the
distributional shape of variables total length and standard length. The
slight increasing values of the mid-summaries indicates that the data
are slightly skewed to the right. The decreasing quotient values
indicate a light-tailed distribution. If there is any deviation from

normality, it will be very small.

Head - The histogram for this data (figure A2.4e, Appendix A) also

shows a concentration toward the centre of the distribution (similar to
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the distribution of the variable predorsal). The decreasing quotient
values indicate a light-tailed data series. The mid-summary values do
not show any significant increasing or decreasing trend, therefore
indicating a near symmetrical distribution with no skewness. As a
result, this distribution can be considered as being close to

normality.

Postorbital - The mid-summary values do not show any increasing or
decreasing trend, indicating a symmetrical distribution. The quotient
values show a slight decreasing trend for the H, E and D spreads,
but remain relatively constant for the remainder of the spread values.
This may indicate a slight light-tailed distribution. Therefore, this

distribution can also be considered being close to normal.

Left Pectoral - The information obtained from the histogram

(figure A2.4qg, Appendix A) indicates that this data batch approximates
normality better than any of the previous variables. The slightly
increasing mid-summary values suggest that there is a small skewness to
the right. The quotient values remain relatively constant, indicating
normal tails. Therefore, this data series approximates the normal

distribution quite well.

In summary, it is seen that four variables out of seven approximately
follow the normal distribution. Most questionable are the variables
total length, standard length and dorsal to adipose. These characters

have bimodal distributions, are skewed to slightly to the right and
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may be light-tailed in their distributional shape. However, these
deviations from normality are not extreme. Further review
(Sections 2.2 and 2.3)will show that these deviations will not

significantly influence the analysis.

2.1.2 Description of Variables for North American Data Sampled in 1969

Total Length - The histogram for the data series (figure A2.5a,
Appendix A) give no indication of skewness, but the mid-summary values
show a decreasing trend, indicating that the data is skewed to the
left. The quotient values are constant except for the A, 2, Y and X
letter values, which show an increasing trend, indicating the
possibility of a heavy-tailed distribution. However, no strong

deviations from normality are apparant.

Standard Length - This distribution behaves similar to the distribution
for total length. The mid-summary values show a decreasing trend,
indicating skewness to the left, but there is no evidence of this from
the histogram. The quotient values are also constant except for the
R, 2, Y or X letter values. Therefore, the distributional shape of

this variable is close to normality.

Predorsal - Again, this distribution has similar qualities to the
distribution of the previous two variables. The mid-summary values are

decreasing, indicating a skewness to the left, and the quotient values



-21-

remain constant except for the A, Z, Y and X spreads. This variable

has a distributional shape which is close to normality.

Dorsal to Adipose - The mid-summary values for this distribution are
relatively constant, decreasing a little for the last few letter values.
However, the histogram (figure A2.5d, Appendix A) does not indicate
any skewness and the quotient values show an increasing trend, maybe
indicating a heavy-tailed distribution. Therefore, this indicates that

the distribution follows normality relatively well.

Head - The distributional shape of data is again similar to previous
variables in this group. Decreasing mid-summary values may
indicate a slight skewness to the left. Increasing quotient values
may indicate a heavy-tailed distribution. However, these deviations
are very slight, indicating that the distribution is close to

normal .

Postorbital - Once again, this distribution has similar properties.
Decreasing mid-summary values indicate a slight skewness to the left.
This slight skewness can be detected in the histogram. The increasing
quotient values also indicate a heavy-tailed distribution. However,
despite these slight deviations, it can be said that the distribution
is relatively close to normal.
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Left Pectoral - This is another distribution with similar characteristics.
Skewness to the left is indicated by the decreasing mid-summary values
although the histogram looks to be symmetrical. A trend does not exist
for the quotient values except for the A, Z, Y and X letter values.

Therefore, the distribution is approximately normal.

In summary, it can be seen that all variables for this particular
group have similar distributional properties. All variables show
possible signs of a skewness to the left, however, if a skewness
exists, it is very slight. Another feature common amongst these
variables is a heavy-tailed distribution. Again, this is not an
extreme deviation. Therefore, all variables in this particular group

can be said to approximate a normal distribution.

2.1.3 Description of Variables for North American Data Sampled in 1968

Total Length - The distributional shape of the histogram (figure A2.6a,
Bppendix A) does not show any deviations from normality. The quotient
values do not show an increasing or decreasing trend but the
mid-summary values do show an increasing trend, indicating a possible
skewness to the right. However, it is very minimal since it cannot be
detected from the histogram. Therefore, this distribution seems close

to normal.

Standard Length - The mid-summary values as well as the quotient values

show no significant trend. No skewness is indicated by the histogram.
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Therefore, it is safe to assume that this distribution is normal.

Predorsal - Again, no skewness is present in the histogram. The mid-
summary values are constant but the quotient values are decreasing
very slightly, which may indicate a light-tailed distribution. However,
these deviations are very small which leads one to believe that the

distributional shape is normal.

Dorsal to Adipose - The quotient values do not show a trend for this
distribution. However, the mid-summary values show a slight increasing
trend, indicating a distribution that is skewed to the right, and the
histogram does not show any skewness at all. Therefore, any skewness
present in this distribution is very minimal. Thus, indications are

that this distribution is normal.

Head ~ Although the histogram shows what appears to be a skewed
distribution, there isn't any indication of this from the mid-summaries.
Also, the quotient values do not show an increasing or decreasing
trend. Thus, this distribution can be assumed to be approximately

normal.

Postorbital - Once again, there is no trend in the mid-summary values
and quotient values and there is no indication of skewness in the

histogram. Therefore, this distribution is close to normal.
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Left Pectoral - Again, there is not an indication of skewness from the
histogram and mid-summaries and the quotient values show neither an
increasing or decreaasing trend. Thus this distribution follows an

approximate normal shape.

In summary, it is seen that all variables of this group follow the
normal distribution. There are no indications of a light-tailed or
heavy-tailed data series. Any variables which were shown to have a

skewed distribution, were skewed very slightly.

So far, the distributions for each of the seven variables sampled
from European rivers in 1969 and North American rivers in 1968 and 1969
have been studied. Most of the variables were found to satisfy the
property of the normal distribution. The possible exceptions are
total length, standard length and dorsal to adipose variables sampled
from European rivers.

However, marginal normality does mot necessarily imply the joint
multivariate normality of all characters (Anderson, 1958), although,
it gives a good indication. In the following section, the joint
distributional features of each group is studied.

Note that although the variable total length was included in this
section, it will not be included in the following analysis. Recall
from Section 1.3 the definitions of the measurements total length and
standard length. Total length is the greatest dimension between the

tip of the specimen's snout and the furthest tip of the caudal fin
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measured in a straight line. Standard length is the distance between

the tip of the snout back to the end of the vertebral column. Since

these two variables are very similar measurements (their distributional
patterns are also similar), one of the two variables can be dropped.

On some specimens, the caudal fin may be ragged or torn, thus giving an
inaccurate measurement for the variable total length. Therefore, standard

length was selected over total length.
2.2 Numerical Test for Normality - the Univariate Case

One of the assumptions in attempting a discriminant analysis is
that the variables in a group follow a multivariate normal distribution.
If the data do not follow a multivariate distribution, then transfor-
mation of data is performed to obtain a normal data set.

Box and Cox (1964) proposed a method of shifted-power transformation

of a single non-negative variate X to Y where

.- -0 A#o
e x h=0

More extensive computations would be involved in considering analogues

of the more general class of shifted power transformation, that is,

X may be replaced with X + ¢ in the above. Assuming that (£,A) is
the pair yielding normality, the MLE of € and A is obtained. Then

ity €1 -ttt ) € 12
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where Lmax(z,l) is the maximum likelihood estimate (MLE) of € and

A, and xi'u is the upper 0-point of %2 with 2 degrees of freedom.

If this region contains A =1, the hypothesis of normality is accepted.
This idea was used to determine which characters, if any, deviated

from normality. Only European data needed to be tested and initially

each character was tested for univariate normality (the testing of

multivariate normality is dealt with in the next section). The £n[Lmax(l)]

was calculated for A = 0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50

and 3.00 using equation 2.3.1 of Section 2.3. The maximum value of

fn(Imax(M)] determined ;'i' the coefficient for transformation to

normality. The following table show the results:

Table 2.1: Values of En[Lmax(ﬁ)]

Standard Left
A length  Predorsal  Dorsal Head Postorbital Pectoral
0.00 -1408.7278 -979.1898 -814.9882 -574.1053 -306.9319 -370.4496*
0.25 -1407.7521 -978.1089 -809.3297 -571.4026* -300.1801 -371,1551
0.50 -1407.1332 -977.0673 -806.4337 -571.5027 -298.9677 -371.6977
0.75 -1406.7924* -976.6109* -804.1299 -572.0068 -298.8820* -372.8702
1.00 -1407.1436 -976.8740 -803.0921*% -572.4505 -299.1438 -374.0129
1.50 -1410.0227 -979.1631 -804.3463 -574.5005 -301.0980 -377.5385
2.00 -1415.7861 -983.7908 -810.0248 -577.9480 -304.9042 -382.3832
2.50 -1424.4146 -990.7092 -820.0454 -582.7810 -310.5352 -388.5293
3.00 -1435.8789 -999.8643 -834.3308 -588.9846 -317.9702 -395.9617
)(2 0.7024 0.5262 0.0000 2.0958 0.5236 7.1266%*

* maximum value of ln[(Lmax(ﬁ.)]
** gignificant at o = 0.01
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As seen from table 2.1, the only transformation significant in
testing for normality was A = 0 for the variable left pectoral (this

is the natural log transformation).

2.3 Numerical Test for Normality - the Multivariate Case

Andrews, Gnanadesikan and Warner (1971) extended the univariate
transformation on the responses to the multivariate case. Let X be
a p XN vector where p is the number of variables and N is the
nunber of observations, and each element X , >0. Let b=, hy,

T lp)' be a vector of powers defined by

A
(x:j‘) SDA M #0
ij =

fn(x,,) =0

Then the transformed data matrix may be described as a p-variate
normal model with a mean vector |l and a covariance matrix I.

Consequently, it can be shown that
N A P N
In[max(M] = - 5 & 121 + [): (M, -1 x| (2.3.1)
L 27 = L P Ty Y

One can find i. by maximizing loq[LmaxQ)]. The hypothesis of normality,
i.e. ) =1, may be tested based on the statistic

2ftnfiaaz(h) - taflmax(j )1} 3, = (L 1 0 1 (23.2)

which is asymptotically distributed as 3? with p degrees of freedom,
As seen in the previous section, the only questionable variable in testing

for univariate normality was the variable left pectoral. All variables
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were tested for multivariate normality where A’i' ¥ =1y, oy BpothE
coefficients for transformation to normality corresponding to the
variables standard length, predorsal, dorsal, head and postorbital
remain constant. The coefficient corresponding to the variable left
pectoral, )'6' varied from 0.00 up to 3.00 as before. The following

table summarizes the results:

Table 2.2: Values of fInlimax(})]

i tattmax (b1
0.00 -1739.0598
0.25 17311512
0.50 -1733.7260
0.75 -1733.8470
1.00 ~1734.2043
1.50 -1737.7616
2.00 -1738.9448
2.50 11537422
3.00 -1761.8872

*maximum value of En[Lmax(g)]

Here, X? = 6.1062 and 121 gz 8 9.236. Therefore, the test is not
significant at the 10% level of significance and it is concluded that
there is no significant departure from multivariate normality. No

transformations will be necessary in the remainder of the analysis.
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Chapter 3

DISCRIMINANT ANALYSIS

3.0 Introduction

As mentioned in Chapter 1, it is very important to estimate the
proportions of North American and European Atlantic salmon in the
population of salmon the fishery at West Greenland. To estimate these
proportions one requires the identification of specimens of unknown
origin, By identification of a specimen, it is specifically meant that
a salmon whose home river is in Europe should be identified as a
European origin salmon, and a salmon whose home river is in North
Bmerica should be identified as a North American origin salmon. Once
the identity of the specimen is determined, the proportions of North
Bmerican to European salmon off West Greenland can be estimated.

The importance of the above identifications to estimate proportions
of North America and European salmon is well discussed in the
literature. For example, Ritter, Marshall, Reddin and Doubleday (1980)
assessed the impact of the West Greenland fishery on stocks and catches
in North America. At that time, for each tonne of North American origin
salmon caught at West Greenland, the loss to homewater stocks was
estimated to range from 1.70 *o 2.42 tonnes. Similarly, the loss to

homewater catches was projected to range from 1.58 to 2.11 tonnes.
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As 3 result, the yield increase to all fisheries with any reduction in
catch of North American origin salmon at Greenland was estimated to
range from 58% to 1113, Their assessment indicated that the
exploitation of salmon at West Greenland was resulting in a reduced
yield to all fisheries in homewaters.

Since salmon is economically an important species to many
countries, the smolt data sampled from European rivers in 1969 and
data sampled from North American rivers in 1968 and 1969 are chosen.
Thus, any salmon caught. at West Greenland can be sampled to study their
identification through the classification technique.

Note that there is vast literature on classification techniques.

In order to classify an observation into one of tie populations, in an
early paper, Fisher (1936) suggested, as a basis for classification
decisions, the use of a discriminant function linear in the components
of the observations. Other bases for classification have included
likelihood ratio tests (Anderson, 1958), information theory (Kullback,
1959), and Bayesian techniques (Geisser, 1964). In all cases, sampling
theories have been considered under the assumption that the populations
involved are multivariate normal. As the six variables: standard
length, predorsal, dorsal, head, postorbital and left pectoral were
found to follow the multivariate distribution, for the classification
problem, classical methods of discrimination based on the multivariate

normal distribution can be utilized.
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3.1 Eliminating the Bffect of Size

Morphometric variables, that is, variables that describe body form,
are measures of the absolute sizes of body parts. Reist (1985) reported
that for specimens in which determinate growth exists, there is a
variation in absolute size within and between groups of specimens
Furthermore, any heterogeneity in size across samples will result in
heterogeneity in shape. Thus, the differences in shape may be the
result of size variation and may not reflect any new information.
Alternatively, the shape of the specimen at a particular size may vary
across samples and thus reflect a difference between specimens.
Therefore, comparison of samples should be in terms of variables free
from the effect of size.

Different methods have been proposed to eliminate the effect of
size in comparing samples. One technique widely used is the
creation of a ratio between each of the p variables, (X0 Xy oo XP)
and some standard measure, % (standard length in this analysis). The
shape estimate for the jth specimen of the ith variable in a single
population would be:

. iﬂ
i3 g 13

However, this ratio method has come under criticism for its
undesirable statistical properties, for example, we refer to Atchley
Gaskins and Anderson (1976), but its use still continues (cf. Mosimann
and James, 1979; Shaklee and Tamaru, 1981; Wilk et. al., 1980). Further-

more, ratios do not completely remove the influence of size variation
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from the data (Albrecht, 1978; Atchley, Gaskins and Anderson, 1976;
Dodson, 1978).

Another technique used in the adjustment of size variation in the
data is the regression technique. The appropriate regression equation

is:
Y=X-B(z-3 [3.1.1]

each of the p variables, X is the original unadjusted measurement, Z is
the standard measure of the invidival, Z is the grand mean of the
standard length across all individuals, and P is the slope of the
relationship between X and Z. This technique enables one to predict
a specimen's size for a particular variable given that the specimen has a
mean standard length. This technique can be used to remove the effect
of the standard length for the remaining five variables of the
analysis. These five "adjusted" variables will be used in the
discrimination analysis.

Let Xl, Xz, Xs' X‘i and X5 represent the variables predorsal
length, dorsal to adipose, head length, postorbital length and left
pectoral length respectively and let 2 represent the covariate

standard length. By 3.1.1
Y=X-B(2-3), where Y= [, Yy Yy ¥, 510,
X=Xy Xy Xy Xy X510, [3.1.2]
and B = [By, By By By B5l' -
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The covariance matrix of X X,

follows: o
[ 2]

22

o Xyr Xy Xg and Z is partitioned as

where

Var(x,)
Cov(X,,X,) Var(X,)
L = Cov(X ,X;) Cov(X,,X,) Var(X;)
Cov(X ,X,) Cov(Xz,X‘) Cov(xa,x‘) Var(X,)
Cov(Xl,Xs) Cov(Xz,XS) Cov(xa,xs) Cov(x‘,xs) Var(Xs)

Cov(XI,Z)
Cov(X,,7)
L, = | Cov(X,,2) and I, =Var(z) .
Cov(X.,Z)
Cov(X,,2)

Using the above notations, 3.1.1 can be rewritten as

fex-he-a .

CDV(X‘,Z)
Since B‘ = er then, from 3.1.2
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1=x-3. 000 -10) . (3.1.3)

As it has been demonstrated in the last chapter that ([X,2] has a

six dimensional multivariate normal distribution, one writes

P
SRR e B
Consequently,
Xlz=z ~ N (b, + 5002 - W), T, - B 0008 ),
ie. E(XIz=z) = + L 522 -1, , [3.1.5)
and V(Kiz=z) = L - L 308 . [3.1.6]

By using 3.1.5 and 3.1.6 in 3.1.3,

E(Y17) = b + 5,500 - )

%222

and v(Ylz) = v(xlz) .

These conditional means and conditional variances will be estimated by
'

X and S, - 5,85, respectively where S, = 3, - B (x, - %)

and Sy, = I(x, - R fe, - 7).

In summary, the analysis of covariance will adjust each of the
variables for each group to the overall mean standard length according

to the formula:

r-1-ga-i

i
]
;
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where X is the original vector, % is the standard length of each
individual specimen and Y is the covariate of the adjusted variables.
In the following, the conditional variables Y where % is given,

are considered, such that 2 = z.

3.2 Testing the Differences Between Groups

Prior to discriminant analysis, it is necessary to test whether
or not a significant separation exists between any two groups.
That is, Hy:fy, = M,y = 0 is tested against Ho:p,, -,  #0,
vhere . is the mean of the five conditional Y variables of the
first popﬁlation and |, ~is the mean of the five conditional Y

variables of the second Eopulation. Let Y., be the five dimensional

3
variables for the jth observation in the ith population, and let
?1 be the sample mean vector for the ith sample. Then the above
hypothesis may be tested by the Mahalanobis generalized sample squared

distance, D?:

2.y -y )18 ly - ¥
DT =Yy - Y)Y - Y) (3.2.1]
where
(n, =18 + (n, - 1)8
1 1 2 2
I = [3.2.2]
P n oo, -2
and where

[3.2.3]

' [3.2.4])
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and n, and n, are the respective sample sizes. The value of Sp
is often referred to as the pooled variance-covariance matrix. One
can now use the distribution of D2 to test if there are significant
differences between the two groups. The statistic (often referred to
as Hotelling's 1% statistic) is given by

(n +n, -k=1)
W= [_;_H“l"z ] 2 (3.2.5]

(n, + n2-2)k n, tn,

where D2 is asin [3.2.1] and k is the number of variables.

It is well known that (cf. Johnson and Wichern, 1982) under

HO' W~F (k,nl i, = k- 1). The larger the value of Dz, the
greater the distance between the groups, and as a result, the

large value of W would lead to the rejection of the null hypothesis.

W and the corresponding p-values are calculated in testing the
significance of the separation of any two populations (pairwise)
considered in the study. The results in tabular form are shown in
Appendix A, A brief description of these results is also given in the
following.

In Table A3.1, Appendix A, the separation between the two populations,
North America and Europe, is examined. The value of W is very large,
yielding a very small p-value. Thus, the populations are well separated.
Similar comparisons have been made between the five rivers of Burope in
Table A3.2. ALl values of W were large implying that a selected river
is well-seperated statistically from any other river. Similarly Tables
A3.3 and A3.4 show the same results for the six rivers of North America (1%63)

and the eight rivers of North America (1969) respectively.
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In summary, it has been determined in this section that all pairwise
populations are significantly different about the five conditional
variables. Group 1 will be referred to as the whole data set consisting of
North American (1969) and European salmon. Similarly, group 2 will be
referred to as the European data set and groups 3 and 4 as the North
Mmerican (1969) and North American (1968) data sets respectively.

Since any two rivers under any of the four groups are well seperated,
a discriminant analysis can be performed in order to assign a specimen
to its population.

Note, however, that although the rivers under a group are well-
seperated, they still may overlap each other to a certain extent.
Consequently, there may be errors in assigning the specimens. This

is a misclassification problem which will be discussed in Section 3.6.

3.3 Determination of Discriminant Functions

The general underlying theory for the determination of
discriminating functions will be as follows: Let Yo = Wygr Yaor Yagr
Yyor Ygo) be an observation which may arise due to one of the

populations: %,

Tor voer Tr eny ng, where g =2 for growp 1, g =
5 for group 2, g = 8 for group 3 and g = 6 for group 4.

As shown in Chapter 2, the samples can be considered to be multivariate
normal. Therefore, it can be considered without any loss of information thal
T~ N(Ei'gi)' where |L, is the population vector mean and Zx is
the population variance-covariance matriz. The appropriate

classification criterion, under the assumption of equal misclassifi-
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cation costs, for assigning y, to one of the#,'s is given by:
Allocate y, to & if

B b 6! = taip,) - B)tnen - HIT, 1 - Jr, - ) Y, B

= maximum value of pifi(Y) B.3.11
for i=1,2,.., g,

and where p, = prior probability of the observation being contained in
the ith population and f;(Y) are multivariate normal densities (ref.
Johnson and Wichern, 1982).

The constant (g)ln(zn) can be ignored in equation 3.3.1 since it
is equal for all populations. The quadratic discrimination score for

the ith population is now defined as:
A =- iz -1 @ - IRy, - ), 3.3.2
S0 ==gtiZ ] -5 (Y - ) B, - By a(p), [3.3.2)
for L=, 2, sy G5

The quadratic score, d‘: (%), is composed of contributions from the
generalized variance ngl, the prior probability p ;o and the squared
distance fron Y tothe populationmean J,. Using discriminant
scores, the classification rule of [3.3.2) becomes the following:

Allocate Yy to ® if dR(1) = Max(dd(¥), d3(¥), ..., &A1)
where d2(¥) is given by equation [3.3.2).

This can be referred to as the Minimm Total Probability of Misclass-

ification Rule for Normal Populations.
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Note that i, and Ex in [3.3.2] are unknown. In order to
compute all necessary discrimination scores, the following estimates are

used:

-1 -
- gli)gd) %
S tan G k)

L -1
o = (i) - o(d) _ oli)gtd) (1)
2"i - § - .S.y - §xx §xz Szz §zx

where Yi and §i are the 5 X 1 sample mean vector and 5 X 5 sample
covariance matrix respectively. The estimate of the quadratic

A
discrimination score dg(‘l) is then:

1 1 = o =
& =-gtnis,l - 50ty - L)'5P e, - T + gy 13.3.9)

and the classification rule based on the sample is as follows:

F A o, @ e
Allocate Yy to m if dR(Y) = Max(d](Y), d3(¥), ..., dG(¥)]

where &?(X) is given by equation 3.3.3.

In summary, given a vector of observations of a specimen coming
from an unknown population, and given g number of populations to

choose from, can be substituted into each of the g equations.

%
If the kth equation gives the largest result, the specimen belonging to
these particular observations should originate from the kth population.
However, there is always the chance of misclassification, that is,
concluding that a specimen belongs to a certain population when, in
reality, it belongs to some other population. Also, for developing
proportions, ie. the West Greenland fishery, there may be a problem
with the error rate. Because fish are unclassed and because the

number from each group are not necessarily equal, the proportions
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developed from a given discriminant analysis may be biased. This

misclassification problem will be discussed in Section 3.4.

3.3.1 Selection of Discriminating Variables: Considerations

In doing different studies and analyses, one may encounter several
potential discriminating variables but may be uncertain whether all of
them are valuable and necessary. In these situations, one or more of
the variables may be poor discriminators because one or more of the
means may be relatively "close". Also, two or more of the discrimin-
ating variables may be individually good discriminators, but may share
the same discriminating information. Even though they may be good
discriminators in a multivariate analysis, they do not contribute to a
multivariate analysis because their unique characteristics are insufficient.
One way to eliminate unnecessary variables is by using a stepwise
procedure to select the most important variables. There are three
ways in which this can be done. The first method is a forward step-
wise procedure. This procedure begins by selecting the individual
variable which provides the best univariate discrimination. (This can
be determined on the basis of several well-known criteria which will
be covered in the next section.) The procedure then pairs this first
variable with each of the remaining variables, one at a time, until a
combination is found which produces the best discrimimation. The procedure
then goes on to combine this pair with each of the remaining variables until

a combination of three is found which produces the greatest discrimination.
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This procedure continues until all possible variables have been selected
or the remaining variables do not contribute enough to the discriminating
pover.

The second method is a backward stepwise procedure. This
procedure works in a backward direction in which all variables are
initially included, and then the worst variable is cast out at
each step.

Thirdly, these two procedures can be combined. This involves a
forward selection procedure with each step starting with a review of
the variables previously selected. If any of these variables no
longer makes a sufficient contribution to the discrimination, then
that variable is cast out, although it will be eligible to be selected
again at any future step.

As the last procedure clearly has the advantage over the other two, i‘t
#ill be used in the selection of discriminating variables for this
analysis.

Note that in order to choose the best solution of discriminating
variables, one would have to test all possible combinations (all
possible pairs, all possible combinations of three, etc.). Such
testing would be very costly and time consuming. Thus, such testing
is not attempted here.

Stepwise procedures used in a discriminant analysis must enter and
remove variables one at a time, selecting them on the basis of certain
criteria. There are several well-known criterion, for example, Wilk's

lambda, Rao's V, Mahalanobis squared distance between closest groups,
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Between-groups-F, and Minimizing Residual Variance.

The criteria chosen in this analysis will be Wilk's lambda.
The reason is that this criterion takes into account both
the differences between groups and the homogeneity within groups.
Unlike other selection criteria, a variable which increases homogeneity
without changing the separation between group centroids may be selected
over a variable which increases separation without changing homogeneity.

Here, Wilk's lambda, denoted by A, is given by:

AT
where
g M -
- ih o e R
g M - -
o ¥ LS

3.3.2 Discriminating Variables for the Salmon Data

To see how the selection technique described in the previous
section works, a detailed explanation will be given for the stepwise
discriminant analysis involving the two groups of salmon sampled from
European and North American rivers in 1969. Results of other stepwise
discriminant analysis will be given without any discussion.

The five variables taken into consideration are: Predorsal
(PREDOR), Dorsal to Adipose (DORS), Head (HEAD), Postorbital (POSTOR),
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and left Pectoral (LFTPECT), all free from the effect of Standard
Length. Before a variable is to be tested on the selection criterion,
it must pass certain minimum conditions. These conditions are a
tolerance test to assure computational accuracy; a partial F statistic
to assure that the increased discrimination exceeds A ; and

a check of the list of variables already entered to determine if any
should be deleted.

Tolerance: This test is designed to preserve computational
accuracy. The tolerance of a variable not yet selected is one minus
the squared multiple correlation between that variable and all other
variables already entered. The correlations are based on the within-
group correlation matrix.

F-to-Enter: This is a partial multivariate F statistic which takes
into account the discrimination achieved by the other variables
already entered and tests the additional discrimination introduced by
the variable being considered. If the F is small, it is not desirable
to enter this variable because it will not add enough to the overall
discrimination

F-to-Remove: This is also a partial multivariate F-statistic, but
it tests the significance of the decrease in discrimination should
that variable be removed from the variables already selected. This
test is done at the beginning of each step to see if there are any
variables which no longer make a sufficiently large contribution to
discrimination. A variable that was a good choice earlier may not be

valuable now because other variables could have been entered that
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duplicate its contribution.

The results of the stepwise procedure are recorded in Table 3.1.
On the first step, the tolerance level is always 1.0 because no
variables have been entered and the F-to-enter corresponds to thu
univariate F-statistic. The fifth column gives the values for Wilk's
lambda among which the smallest is selected. The value 0.27907
is produced by the variable PREDOR and the p-value of F~to-remove is
0.0000, which is less than 0.01. This is the first entry at step 1.
Notice here that the variable PREDOR has an F-to-remove significance
of 0.0000. (Recall that the F-to-remove is a partial F for the
discrimination added by PREDOR after all other variables has created
as much discrimination as possible. 1In this case there are no other
variables.) Since this p-value is less than 0.01, it stays in and
anoti.er variable is selected from the four remaining variables. At this
stage, all relevant statistics are usually computed, taking into
account that PREDOR has already been entered. Now the tolerance is
less than one since it represents one minus the squared correlation
between PREDOR and the respective variable. The F-to-enter is now the
partial F for the discrimination added by the respective variable
after PREDOR has created as much discrimination as possible. Thus the
smallest Wilk's lambda is 0.16388 produced by the variable DORS, and
since the p-value of the F-to-enter is 0.0000, the variable DORS is
entered at this step.

In step 2, PREDOR and DORS are tested for removal, and both
stay in since the p-value of the F-to-remove for both variables is

0.0006. The variable HEAD is now entered since it has the smallest
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Wilk's lambda (0.12289) and the p-value for the F-to-enter is 0.0000.
The remaining steps proceed in a similar fashion until all the
variables have been entered that meet the requirements. Note that
for this analysis, all variables were entered, so all variables will

be used in determining the classification functions.
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Table 3.1

¢

{North America (1969) vs Europe (1969

Variable Tolerance Significance ilk's
F-to-Enter F-to-Remove  Lambda
Step 0 (Variables not in)
PREDOR 1.0 0.0000 0.27907%
ORS 1.0 0.0000 0.30123
HEAD 1.0 0.0000 0.31703
POSTOR 1.0 0.0000 0.43965
Stepi X(;sTPE;JCgl i 1.0 0.0000 0.55968
ep ariables in
PREDOR 1.0 0.0000
(Variables not in)
DORS 0.9984749 0.0000 0.16388+
HEAD 0.9134243 .0000 0.21428
POSTOR 0.9417196 0.0000 0.24002
5 (L T Eg{ ) 0.9992086 0.0000 0.22457
Step 2 (Variables in
PREDOR 0.9984749 0.0000 0.30123
DORS 0.9984749 0.0000 0.27907
(Variables not in)
HEAD 0.8688658 .0000 0.12287%
POSTOR 0.9387055 0.0000 0.14636
g 3 %ETPECZI 0.9987843 0.0000 0.14216
tep ariables in)
PREDOR 0.9126915 0.0000 0.14808
0.9497675 0.0000 0.21428
. HEAD 0.8688658 .0000 0.16388
(Variables not in)
POSTOR 0.4506181 0.0000 0.12194
step 4 %'I‘P;Cgl i 0.9140920 0.0000 0.11809*
ep ariables in
PREDOR 0.9001297 0.0000 0.14408
DORS 0.9477433 0.0000 0.19597
EAD 0.7951900 .0000 0.14216
LFTPECT 0.9140920 0.0000 0.12289
(Variables not in)
step 5 kzgs’r()kbl in) 0.4505364  0.0018 0.0000 0.11727*
tep ariables in
PREDOR 0.8991120 0.0000 0.14324
DORS 0.9267317 0.0000 0.19593
HEAD 0.3977323 0.0000 0.13353
POSTOR 0.4505364 0.0018 0.11809
LETPECT 0.9139263 0.0000 0.12194
Bminimun tolerance level = 0.00

minimum significance of

restrictions.

F-to-enter = 0,01
ninimum significance of F-to-remove = 0.01
NOTE: F-values were not included in the above table because of space
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3.3.3 Discriminant Functions

The following tables (3.2 - 3.7) show Fisher's Linear
Discriminant Functions for each of the six stepwise discriminant
analysis. All five variables entered and remained in the stepwise
procedure for each analysis. Table 3.6 and 3.7 show classification
function coefficients for the five common rivers in North America from
the 1968 and 1969 data. This allows one to determine the amount of
variation in the functions between 1968 and 1969. A better comparison
may be obtained when the first two canonical functions are graphed
later in Section 3.5. Fisher's linear discriminant functions for the
stepwise discrminant analysis of Europe (1969) and North America (1969)

are:

£ (Europe) = ~1078.023 + 17.84350(¥,) + 14.05400(x,) + 22.92478(¥,)
-1.369561(Y,) + 9.887239(,)

£ (. Anerica) = ~1353.518 + 19.56596(¥,) + 16.47517(Y,) + 26.00119(¥,)
- 8.366054(Y,) + 10.82042(Y,)

The coefficients of the two classification functions are presented in
tabular form in Table 3.2. Note that for remaining comparisons,

the discriminating functions will be presented in tabular form only.



Table 3.2

Table 3.3

PREDOR
DORS
HEAD
POSTOR

LFTPECT
(constant)

Table 3.4

LFTPECT
(constant)
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Discrimination Coefficients for
Europe (1969), North America {1969

Europe (1969 N. America (1969
PREDOR 17.84350 19.56596
DORS 14.05400 16.47517
HEAD 22.92478 26.00119
POSTOR -7.36956 -8.366054
LFTPECT 9,887239 10.82042
(constant) _-1078.023 -1353.518

Dlscnmlnatmn Coefficients for
the Five European
R. Almond, R. Boyne, R. Iee, R. Usk.

Rivers - Logan R.,

Logan Almond Boyne Lee USK
3213552 23.94184  25.60663  28.55470  31.16748
15.96818 12.17664 13.51858  16.00958  17.28250
44.49765  36.00499  35.75827  40.00245 4413137
-33,94362 -26.94434 -25,22231 -28,93728 -32,76213
3.926077 5.922640  4.653036 6.172821  5.730297
-1696.883 —1062 011 -1162.793 -1487.766 =-1734.043

Dlscnmlnatmn Cceffxc;ents for

the

ort
Mame Miramicl 1 Samt John,

68

Rivers -
Indian R.

Salmon R

Salmonier R. :

Maine
36.24020

-2579 921

Miramichi

21, 80346

97
-1790..238

Saint John
32, 27585

-2256 800

Indian
32. 25350

-2134.665

Salmon _ Salmonier
32.53075  30.40244
30.14729  28.64447
39.41300 .63644
0.7203537 -2,800655

16.69534  15.23686
-2418.564 -2112.504
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Table 3.5 Discrimination Coefficients for

the Eight No: can Rivers - i
aine, Miramic 1 a ohn, Koksoak R., Indian R. i
Salmon R., Harry's R., Sand Hill R. !

Maine Miramichi Saint John Koksoak
PREDOR 23.87917  19.21030  24.05727  22.25444
DORS 7.5354. 23 18.24702 6.68330

15.084 .
HEAD 946708  34,84530  37.56235  35.38183
POSTUR 7477219 1,638135  6.871874  0,3208730
LFTPECT 0.86295 10.20434  10.52034 11.18892
(constant) -1933.770 -1425.540 -2009.915 -1666.305

Table 3.5 (cont'd)
Indian Salmon Harry's  Sand Hill

PREDOR 1.41758  20.89572  18.76904  22.76049
DORS 6.23586  15.96027 13.90223 17.81574
HEAD 7.43541  37,83026  32.82964  39.88664
POSTOR .004788 -0.3519694 1.047 72 163779
LETPECT 197749 10.27874  9.72643 0.79514

(constant) -1631.720 -1610.415 -1385. 565 -1913.869

Table 3.6  Discrimination Coefficients for
the Five "Common™ North American (1968) Rivers

- Maine, Miramichi, Saint John, Indian R.
Salmon R.

Maine Miramichi Saint John  Indian Salmon
PREDOR 33.08410  25.35785  29.43074  29.37118  29.71316
DORS 28.70610  23.20265 27.12595  25.31415  27.02385
HEAD 39.23774  35.16950  37.81103  33.87021 42.47194

POSTOR -6,937315 -1.983088 -3.321890  1.840792 -5,992241
LETPECT 16.17327  14.17866  14.98599  14.56708  16.23285
(constant) -2424.869 -1689.012 -2122.323 -2003.848 -2284.901




-50-

Table 3.7 Discrimination Coefficients for
the Five "Common™ North American (1969
ivers - Maine, Miramichi, Saint John
Indian R., Salmon R.

Maine Miramichi Saint John Indian Salmon
PREDOR 29.07089  23.60305 29.45414  26.03939  25.50514
DORS 20.67746  17.76342  21.41219 19.08929  18.81403
HEAD 33,57229  29.96985  31.20832  32,20832  32,73799
POSTOR 1 416097 4.617626  11.18270  4.254854  2.682117
LF" 12,6 11.44626 12,407 10.83586  11.71958

TPECT 6405 68
(constant) -2104. 985 -1543.269 -7193.042 -1790.514 -1744.209

3.4 Results of Misclassification Probabilities

Recall from Section 3.2 that Hotellings' T2 test showed that the
populations (for example, North America and European rivers) are well
seperated. However, this does not mean total non- overlapping of the
distributions. Consequently, there remains the possibility that a
random observation, may be misclassed into the wrong population. In
order to judge the efficiency of the discrimination criterion discussed
in the last section, the following procedure is taken: (1) An
observation is taken from the existing samples and the discrimina- tion
criterion is applied to determine the population in which it belongs.
This is repeated and continued for all observations. Next, the total
number of cases that were correctly classified, denoted by L is
counted and divided by the total number of cases in the sample, denoted
by n,. The result is multiplied by 100 to give the percentage of
correctly classified cases, denoted by P. Hence, P is calculated
by:

nc
B =7 (100)
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(2) A proportional reduction in error statistic (Klecker, 1980) gives
a standardized measure of improvement regardless of the number of

groups. This statistic, called tau, is simply:

where n and n, are defined above, ny is the number of cases in
the ith group and p, is the prior probability of group membership in
the ith group. The maximum value for tau is 1.0, and it occurs when there
are no errors in prediction. A value of zero indicates no improvement and

negative results indicate no discrimination between the groups.

3.4.1 Results of Classification

The following tar’'es contain classification results for each of
the six sets of classification functions. Tables 3.8-3.13 give the number
of observations in each group (n;); the number and percentage of
observations correctly and incorrectly classified for each group; the
percentage of all observations correctly classified, P.; and the
proportional reduction in error statistic, tau.

Table 3.8 gives the classification results for the discriminant
analysis between North American and European salmon sampled in 1969.
The overall misclassification rate (or error rate) was only 0.35% and a
greater but insignificant proportion of European salmon was classified as

North American than the converse. The actual proportion of North American
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to European-origin salmon was 0.351:0.649, and the predicted proportion
from classification was 0.349:0.651. Thus, there is an error rate of 0.2%
in favour of European salmon, which is an extremely small percentage.

Table 3.8

European (1969), North America (1969)

Actual Group  n; Predicted Group
Europe  North America

Europe 495

North America 915

491 4
(99.2%) (0.8%)
1 914
0.1% 99.9%

n, = 1410 P = 99.65%

3

n_ = 1405 tau = 0.9929

<

The tau value of 0.9929 indicates that classification based on the
five discriminating variables made 99.29% fewer errors than would be
expected by random assignment.

Table 3.9 gives the classification results for the discriminant
analysis between the salmon sampled from the five European rivers in
1969. The overall misclassification rate was 3.84%, ranging from
1.3% for River Almond to 8.3% for River Usk. The tau value of 0.9520
indicates that classification based on the five discriminating
variables made 95.20% fewer errors than would be expected by random
assignment.

Table 3.10 displays the classification matrix for the discriminant
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analysis between the salmon sampled from the six North American
rivers in 1968. The overall misclassification rate was only 5.52%,
ranging from 0.0% for Miramichi to 13.5% for Saint John. The tau

value of 0.9337 shows that classification based on the five discriminating

variables made 93.87% fewer errors than would be expected by random
assignment.

In Table 3.11, the classification results for the discriminant
analysis between the salmon sampled from each of the eight North American
rivers in 1969 is given. The overall misclassification rate for the
[ eight rivers was only 17.13%, ranging from 5.6% for Harry's River to
f 33.8% for Sand Hill River. The tau value of 0.8042 shous that
: classification based on the five discriminating variables made 80.42%

fewer errors than would be expected by random assignment.

Tables 3.12 and 3.13 give the classification results for the
i discriminant analysis between the salmon sampled from each of the five
g "common" rivers in 1968 (Table 3.12) and 1969 (table 3.13). The
i overall misclassification rate for 1968 was 4.54% whereas it was
11.47% for the 1969 data. That is, more than 2% times more salmon
were misclassified for the same regions in 1969. In 1968, the range
of misclassification went from 0.0% for Miramichi to 8.1% for Saint
John. 1In 1969, the range was from 4.5% to 26.8% for Miramichi and
Salmon River respectively. The tau values of 0.9433 for 1968 and
0.8567 for 1969 indicate that the classification based on the
discriminating variables made 94.33% and 85.67% fewer errors respectively

than would be expected by random assignment.



Actual Group

Logan
Almond
Boyne
Lee
Usk

Actual Group

Maine
Miramichi
Saint John
Indian
Salmon

Salmonier

117
158
50

12
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Table 3.9

European Rivers

Actual Growp

Logan _Almond  Bayne Lee Usk

(9%%3%) (0?0%) (0?0%) (0(.]0%) (6?0%)
(0.0%) (9%?7%) (1.3%)  (0.0%) (020%)
(060%) (0.0%) (98.0%)  (2.08) (050%)
(0.0%)  (0.0%)  (0.0%) (96.9%3)  (3.1%)
(8?3%) (0.0%) (0.0%) (0.0%) (91.7%)

n, = 495 P = 96.16%

n, =476 tau = 0.9520

Table 3.10

North Americeu (1968) Rivers

o, Predicted Group
Maine Miramichi Saint John Indian Salmon Salmonier
81 78 0 1 0 2 0
i (96.5%) (0.9%) (1.2%) (0.0%)  (2.5%)  (0.0%)
(0.0%) (100.0%) (0.0%) (0.0%)  (0.0%)  (0.0%)
148 1 12
(0.7%)  (0.0%) (86.5%) (2.0%)  (5.4%)  (5.4%)
50 0 4 0
(0.0%)  (0.0%)  (4.0%) (96.0%)  (0.0%)  (0.0%)
147 0 0 1 0 139 1
(0.0%)  (0.0%) (4.8%) (0.0%) (94.6%)  (0.7%)
151 0 0 7 144
(0.0%) (0.0%) (4.6%) (0.0%)  (0.0%) (95.4%
n, =72 P = 94.48%
n_ = &84 tau = 0,9337

°



Actual Group

Maine
Miramichi
Saint John
Koksoak
Indian
Salmon
Harry's
Sand Hill

Actual Group

Maine
Miramichi
Saint John
Indian

Salmon
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Table 3.11

North American (1969) Rivers

ng Predicted Group
Maine Mira-  Saint Koksoak Indian Salmon Harry's Sand
michi ohn Hill
142 119 0 4 0 1 0 0 18
454 (83.8%) (2.0%) (2.8%) (0.0%) (0.7%) (050%) (oéo%) (12ﬁ7%
(0.0%) (92.1%) (0.0%) (0.7%) (0.0%) (2.0%) (5.3%) (0.0%
3 4 62 0 0 0 0 1
(5.5%) (0.0%) (84.9%) (0.0%) (0.0%) (0,0%) (0.0%) (9.6%
130 0 117 5 6 0 2
(0.0%) (0.0%) (0.0%) (90.0%) (3.8%) (4.6%) (0.0%) (1.5%
125 2 23 0
i (060%) (liﬁ%) (0,08) (4.08) (76.0%) (18.4%) (060%) {0.0%
- (060%) (254%) (0,08) (060%) (22.0%) (75.6%) (0.0%) (0.0%
(0.0%) (5.6%) (0.0%) (0.0%) (0.0%) (0.0%) (94.4%) (0.0%
148 2 0 1 98
(17.6%) (0.0%) (15.5%) (0.7%) (0.0%) (0.0%) (0.0%) (66/2%
n, =899 P = 82.87%
n, =145 tau = 0.8092
Table 3.12
Common North American (1968) Rivers
o, Predicted Group
Maine Miramichi Saint John _ Indian  Salmon
81 77 0 1 0 3
(95.1%)  (0.0%) (1,28%) (0.0%) (3.7%)
147 0 147
(0.0%)  (100.0%) (0.0%) (0.03) (0.0%)
148 1 0 136
(0.7%) (0.0%) (91.9%) (2.0%) {5.4%)
50 0 0 2 4
(0.0%) (0.0%) (4.0%)  (96.0%) (0,0%)
147 0 0 0 0 139
(0.08) _ (0.08) (0.0%) (0.0%)  (94.6%)
n, =573 p = 95.46%
n, =547 tau = 0.9433

i
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Table 3.13

Common North American (1969) Rivers

Actual Group
Maine Miramichi Saint John Indian  Salmon

Maine 133 0 7 1 1
N (93.7%)  (0.0%) (4.9%)  (0,7%) (0,7%)
Miramichi 7
(0.0%)  (95.4%) (0.0%) (0.0%) (4.6%)
Saint John 7 0 66 0 0
(9.6%) (0.0%) (90.4%) (0.0%) (0.0%)
Indian 0
(0.0%) (1,6%) (0.0%)  (78.4%)  (20.0%)
Salmon 0
(0.0%)  (4.9%) (0.0%) (22.0%) (73.2%)
n, =532 P = 88.53%
n =47 tau = 0.8567

Notice here that the observations used to determine the
discriminating functions were also used to calculate the percentage of
cases correctly classified. Many authors (c.f. Lachenbruch and Mickey,
1968; Srivastava and Carter, 1983) suggest that this method of estimating
classification rate tends to overestimate the power of the classification
procedure because the validation is based on the same cases used to
derive the classification functions. The next section will determine

the reality of this problem for the analysis.

3.5 Verification of Classification Results: The Jackknife Technique

The classification procedure used in the previous section is verified
by using the jackknife classification technique. This technique is used

to remove some of the bias inherent in basing classification decisions
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on that data set used to determine the classification functions. However,
it has been determined that when large samples are available, it is not
necessary to use the jackknifing technique because the bias has already
been reduced to a very low level. This will be shown in the following

subsection.

3.5.1 Generation of Random Numbers to Select Observations

For the jackkifing technique, random numbers are generated such
that each observation has a predetermined probability of being
selected. For example, given that the total sample size is n and one
wants, on the average, h specimens excluded for each jackknife, then one

would choose

p=1-

To determine which of the n specimens are excluded, a number
ranging from 0 to 1 is assigned to each of the n observations. If
the random number for a particular specimen is p or less, then that
observation remains. However, if the random number is greater than
p, then that observation is excluded. The observations not

excluded are then used to determine the classification functions and
these functions are used to classify the remaining unselected

observations.
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3.5.2 Results

A) North America (1969) versus Europe

For the discriminant analysis of North American and European
origin salmon, there is a total of 1410 observations. Using the
jackknife technique (Appendix B), samples were taken such that each
observation had a probability of 0.9858 of being selected. This gives
approximately 1390 selected observations and 20 unselected observations
per sample (refer to Appendix B). The discriminating coefficients were
then determined for each sample and were used to classify the remaining
unselected observations. One can now calculate the number classified
correctly and incorrectly for these unselected cases. This was
repeated 500 times for a total of 9991 unselected observations classified.
The results showed 32 misclassified and 9959 correctly classified cases, i.e.
0.32% misclassified and 99.68% correctly classified (see last row of
the table in Appendix B). This percentage is actually 0.03% higher than
the 99.65% originally classified correctly. Therefore, no bias was

evident in this analysis.

B) Five European Rivers

This jackknife procedure was used on the European origin salmon
taken from five rivers in 1969. Samples were taken from the 495
observations such that each observation has a probability of 0.9494 of
being selected. This gives approximately 470 selected and 25 unselected
cases per sample. The unselected cases were again classified by using
the discriminant functions derived from the selected observatit .

This was repeated 400 times for a total of 10,062 unselected cases of which
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470 observations (4.67%) were misclassified and 9592 observations (95.33%)
were correctly classified (Appendix C). This classification rate is only
0.83% lower than the original rate of 96.16%.

In sutmary, it was found that for n = 495, the bias was less than 1%
and for n = 1410, the bias was negligible. Therefore, if one assumes a
decreasing bias for an increasing sample size, then it is safe to base
classification decisions on the data sets used to determine the
classification functions. That is, the samples are large enough to

reduce the bias to a minimal level.

3.6 Canonical Discriminant Functions

Classification can also be done with the canonical variables
instead of using the original discriminating varizbles. The final
classifications will generally be identical; however, a hatter picturse
of how cases are being classified can be obtained by superimposing the
classification boundary lines over a plot of cases. These
classification plots are useful for examining the relationship of
groups to each other and graphically depicting misclassifications. In
general, the first n canonical variables will produce an n
dimensional graph. Therefore, for convenience, the first two canonical
variables will be plotted. The underlying theory for this methodology
is explained in the following:

Suppose there are p variables in a discriminant analysis of g
groups. It is desirable to find new variables that are independent and

have the largest F-values for testing equality of the g means. Thus,
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one wishes to find a vector
2= () ey ap)‘ such that
H S psr ) -1

E n(a'y, -a'y) lg'§pg) [3.6.1]

i=1

is a maximum (cf. Srivastava and Carter, 1983), where i is the mean
vector of the ith population, n; is the number of observations from the
ith population, ; is the average of all the observations, and §p is
the pooled covariance matrix (see Section 3.2).

The maximun of 3.6.1 occurs when a satisfies the equation

(B -kgp)g =0 [3.6.2)

where B is the between groups mean sum of squares given by

end A is the maximum eigenvalue of §;1B.
Since the first two canonical variables are of interest (as long
as the minimum of p and g -1 is greater than one), one calculate

t, =ajy ={1; 2

where a; is the solution of 3.6.2 for A equal to the ith largest
eigenvalue of $7'B. Then, the first two canonical varisbles are
plotted to show the separation of the g groups.

To get a better picture of how cases are being classified,
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the classification boundary lines are superimposed over the plot of cases.
In Figures 3.1 to 3.4, the broken lines seperating the groups represent
these classification boundaries and the solid lines represent the
boundaries for the plot of cases. Note here that a plot for the
analysis of European origin salmon versus North American origin salmon
was not included because there was only one canonical discriminant
function obtained from the two groups. Also, the plot for the anmalysis
of the eight North American rivers sampled in 1968 was not included
because with so many plots of cases, it was difficult to distinguish one
plot from the other. The results are as follow:
1) Five European Rivers

Figure 3.1 shows the plots and boundaries of the first two
canonical discriminant functions extracted from the stepwise
discriminant analysis procedure. These two canonical functions
represent 98.69% of the total variability between the groups. River Almond
{2) and River Boyne (3) are well seperated from the other rivers. However,
Logon River (1) and River Usk (5) have a large percentage of overlap,
which leads to a large misclassification between them.
2) Six North American Rivers - 1968

Figure 3.2 shows the plots and boundaries of the first two
extracted canonical discriminant functions. These two canonical
functions represent 94.57% of the total variability between the
groups. Miramichi (2) is well seperated from all other

groups, but Saint John (3) tends to overlap Indian River(4), Salmon
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River (5) and Salmonier River (6). Otherwise, the groups of Maine (1),
Indian River, Salmon River and Salmonier River are seperated relatively
well.

(3) Five Common Rivers of North America (1968)

Figure 3.3 shows the plots and boundaries of the first two
extracted canonical discriminant functions. The two functions
represent 96.45% of the total variability between groups. The figure
indicates Miramichi (2) as having good separation from the other groups.
However, some overlap exists between Saint John (3) and Indian River
(4); and Saint John and Salmon River (5).

(4) Five Common Rivers of North America (1969)

Figure 3.4 shows the plots and boundaries of the first two
extracted canonical discriminant functions. The two functions represent
98.46% of the total variation between groups. Maine (1) and Saint John
(3) are clearly seperated from the remaining groups. However, there is
overlap present between Maine and Saint John; and Indian River (4) and
Salmon River (5) have relatively large overlaps. This large overlap is

evident in the classification table (Table 3.13).

Since Figures 3.3 and 3.4 are plots of the same rivers sampled in
1968 and 1969, one would expect some similarity. However, the
classification percentages were not the same (95.46% and 88.53%) and
the positions of the group plots shifted very significantly. For
exanple, Indian River and Salmon River were virtually without overlap

in 1968, however a relatively large overlap existed in 1969.
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Mlso, Miramichi, which overlapped with Indian River and Salmon

River in 1968, was very well seperated from these two rivers in 1969.
The reasons for these differences are not determined here but is left
for further study.

There are certain situations when the classifications and canonical
discriminant functions will not necessarily provide the same results.
In particular, this is true when the group covariance matrices are not
equal. This is because the pooled variance-covariance matrix must be
used when calculating the canonical discriminant functions. Unfortunately,
there is no clear guidelines for determining how different the group
covariance matrices must be before the use of canonical discriminant
functions becomes unjustified. However, Tatsuoka (1971, p. 232-33)
reports evidence that the canonical discriminant function procedure
yields similar results and can be used unless the group covariance
matrices are "drastically" different. From this point of view, tests
regarding equality of variances might have been more appropriate but
were not chosen in the present report.
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Figure 3.3 Plots and Boundaries of the first twc Canonical Variates for txz
Five Common Nerth American Rivers (1963)

Figure 3.4 Plots and Boundaries of the first two Canonical Variates for the
Five Common North American Rivers (1969)
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Chapter 4
CLUSTERING APPROACH FOR DISCRIMINATION

4.0 Introduction

It is well known that the basic aim of cluster analysis is to find
the "natural groupings", if any, of a set of specimens. Thus, cluster
analysis aims to allocate the set of specimens to a set of mutually
exclusive, exhaustive groups such that specimens within a group are
similar to one another while being dissimilar from specimens in other
groups. In discriminant analysis, one begins with apriori well
defined groups and asks how the given groups differ, However, in
cluster analysis, one begins with a group and asks whether the given
qgroup can be partitioned into sub-groups that differ in some
neaningful way.

As cluster analysis is, ingeneral, able to construct seperate
groups, the techniques of clustering are applied to the adjusted data
¥y, Y,
groups is examined. Thus, the aim of the present analysis is fundamentally

Y, ¥, Y) and exanine the validity of seperation betueen

different from that of usual cluster analysis, More specifically, the
adjusted data of k groups is combined to form a single data set and
then clustering techniques are applied to see whether the k groups are

well seperated or not. Hence, it is a discrinination analysis based on
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the clustering principle.

One may describe the clustering principle, in general, as follous:
First, k measurements are taken on each of the n specimens. The
n by k matrix of raw data is then transformed into an n by n
matrix of distance measures where the distances are computed between
pairs of objects across the k variables. Next, a clustering
algorithm is selected, which defines the rules concerning how to
cluster the objects into subgroups on the basis of the distance
measures. Finally, the uncovered clusters are contrasted, or
profiled, in terms of their mean values on the k variables or other

characteristics of interest.

4.1 similarity Measures

Fundamental to the use of any clustering technique is the
computation of a measure of similarity or distance between the objects
(specimens) concerned. These distance measures can be seperated into
two broad classes in two distinct ways, depending on the nature of the
data. For data having qualitative components, a matching-type measure
is appropriate. However, since the data is quantitative, a distance-
type measure will be used.

Each k-dimensional specimen is represented by the vector Y=,
Yy« ¥ ) where k=5. The notation A is used to denote
the measurements collected on the ith specimen, that is, ¥y
(Vg0 Yypr +oer ¥y) - The familiar Euclidean distance, dij, between

two specimens i and j 1is denoted as
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" b 1/2 i=1, .
dyy= li (Tip = Yy ' 3: %: ¢ n [4.1.1)
and the squared-Euclidean distance is
X i=1, o |
2 2 32
d” = l§1 (¥ le) ' g ; ljl mig M [4.1.2]

This will be used as a basis to define appropriate Euclidean distances

in Section 4.3 for the purpose of clustering.

4.2 Clustering Techniques

The next step is to select a particular type of computational
algorithm. Two of the most popular types of clustering techniques are
hierarchical and partitioning. Hierarchical techniques cluster the
clusters themselves at various levels, whereas partioning techniques

form clusters by optimizing some specific clustering criterion,

Hierarchical Techniques perform successive fusions or divisions
of the data. One of the main features distinguishing hierarchical
techniques from other clustering algorithms is that once an object
joins a cluster, it is never removed and fused with other objects
belonging to some other cluster. BAgglomerative methods proceed by
forming a series of fusions of the n specimens into groups.
Divisive methods partition the set of n specimens into Einer and
finer subdivisions. The output from these methods is typically

summarized by the use of a dendrogram. This is a two-dimensional
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tree-like diagram illustrating the fusions or partitions that have been
constructed at each successive level. Everitt (1980), Dillon and Gold-
stein (1984), and Chatfield and Collins (1980), among others, discuss

these techniques in further detail.

Partitioning Techniques Unlike hierarchical clustering techniques,
methods that affect a partition of the data do not require that the
allocation of an object be irreversible. Thus, objects may be
reassigned if their initial placements are inaccurate. These
techniques partition the data based upon optimizing some predefined
criterion. The use of partitioning techniques usually assumes that
the number of final clusters is known and specified in advance,
although some methods will allow the number to vary. There are many
partitioning techniques, and they differ with respect to (1) how
clusters are initiated, (2) how objects are allocated to clusters, and
(3) how some or all of the objects already clustered are reallocated
to other clusters.

For the data used in this study, it i felt that partitioning
techniques were selected because it was desirable to obtain a
precdefined number of clusters. In other words, a partitioning algorithm
allows one to specify the final number of clusters in advance. The
algorithm produces clusters by finding cluster centres based on the
values of the cluster variables and assigns cases to the centres that
are nearest. The basis of this partitioning algorithm is described in

the following section.
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4.3 Rlgorithm for Partitioning Technique

Denote the conditional variable ij' the value of the jth
specimen on the ith variable, i=1,2, ..., % j=1, 2, ..., n, as
before. let P be the partition that results in each of the n
specimens to be allocated to one of g clusters. The mean of the ith
variable in the fth (£ =1, ..., g) cluster will be denoted by Y
and the number of individuals belonging to the £th cluster by n,.
Following equation 4.1.2, the squared Euclidean distance between the

jth specimen and fth cluster is expressed as
¥ £ 5
Dyp = 2 (Y- Yy [4.3.1]
The error component of the partition is defined as

n
E[P ] = jfl e (4.3.2]

where £(j) is the cluster that contains the jth specimen, and Dj’“j)
is the squared Euclidean distance between specimen j and the cluster
mean of the cluster containing the specimen. The procedure is as
follows:

(1) Firstly, the initial cluster centres are selected. A centre is
an estimate of the average value of each clustering variable for the
cases in a cluster. (A centre includes one value for each variable).

This can be obtained in various ways. One method is to select the k
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cases with well seperated values as initial centres, where k is the
number of final clusters desired. Then, the sample means of the variables
can be used for each group as the initial cluster centres.

(2) Next, the values of the initial cluster centres are updated to
derive the classification cluster centres. Each case is assigned, in
turn, to the nearest cluster centre (measured by the squared Euclidean

distance, D such that E[P,,k] (equation 4.1.4) is minimized.

i2)
When a case is assigned, the procedure updates the centre to a mean
for the cases that are thus far in the cluster. Therefore, as the
cases are processed, the centres migrate to concentrations of
observations.

(3) The final step ressigns each case to the nearest of the
updated (classification) cluster centres. The reassignment yields the
final clusters, and the final cluster centres result from the variable

means for the cases in the final cluster.

4.4 Construction of Appropriate Clusters based on Partitioning Techniques

a) The k Most Seperated Observation as Initial Centres

The above procedure, using the k most seperated observations as
the initial cluster centres, were used to cluster the samples of
(1) North American salmon sample in 1969, (2) North American salmon
(1968), (3) European salmon (1969) and (4) the combined sample of
North American and European salmon sampled in 1969. Since the number

of groups are known for each of the four samples, k is initialized to
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equal the number of groups represented in the sample.

However, the results of this method were flawed by the presence of
extreme values in some of the groups. Although outliers were removed
from the data (re: Chapter 2), there were relatively extreme cases
that remained. As a result, some of these cases were choser as
initial cluster centres and, since these cases are far removed from
the rest of the data, no observations (or very few) were assigned to
them. Thus, it resulted in some clusters containing few observations
(somctimes only one), while other clusters contained a large portion of

the data.

bl The k Sample Means as Initial Cluster Centres
A much more effective method can be used by taking the k% sample

means as the initial cluster centres. The procedure of Section 4.3

was again implemented using these k sample means instead of k most
seperated observations. This method was used to cluster the samples

of (1) North American (1969) salmon, (2) North American (1968)

salmon, (3) European salmon, and (4) North American (1969) and

European salmon. Again, k is utilized to equal the number of groups
represented in the sample. The following section describes the “esults of

this clustering procedure applied to the four populations.

1. The Eight Regions of North America (1969
The above procedure was used to cluster the sample of North
American (1969) salmon into eight groups. Eight cluster centres were

initialized (Table 4.1) from the eight vector means. Tables 4.2 and
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4.3 show the classification and final cluster centres respectively,
which were calculated on the basis of equations 4.3.1 and 4.3.2.
Table 4.4 display the squared Euclidean distances, dij (equation
4.1.2), between all pairwise final cluster centres i and j.

Since the origin of the observations are already known,

a classification table can be produced to determine the results of the
clustering procedure (Table 4 5). In a practical situation, a
classification table would not be used when doing a clustering
procedure. This is because a cluster analysis is usually only used
when the origin of the specimens is not known. However, it

is very informative for the purpose of this study.

It is shown in the classification table that the clustering
procedure maintained 72.64% of the original groupings. This
percentage suggests that there is good seperation between the eight
groups. Recall that using discriminant analysis for this sample, the
percentage of correctly classified cases was 82.87%. This difference of
approximately 10% is not uniikely. Since the clustering procedure does
not take into consideration the variance-covariance matrix, a lower

classification rate is expected using this method.

2. The Six Regions of North America (1968

This procedure was again used to cluster the sample of North
American (1968) salmon into six yroups. Six cluster centres were
initialized (Table 4.6) from the six vector means. Tables 4.7

and 4.8 show the classification and final cluster centres respectively
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and Table 4.9 displays the Euclidean distances between all pairwise
final cluster centres.

The results of the classification table indicates that the
clustering procedure maintained 86.05% of the original groupings
(Table 4.10). This suggests that the six groups are well seperated.
Notice that this classification table is very similar to Table

3.10 of Chapter 3 according to where groups are misclassified.

3. The Five Rivers of Europe
The third analysis deals with the clustering oI the sample of

European salmon into five groups. Five cluster centres were once
again initialized (Table 4.11) from the five vector means. The
classification and final cluster centres are displayed in Tables 4.12
and 4.13 respectively and the Euclidean distances between all pairwise
final cluster centres are given in Table 4.14.

Table 4.15 displays the classification results for the clustering
procedure. The percentage of correctly grouped observations is 85.25%.
This suggests that the group meansare well seperated. Other than
River Usk, this table is very similar to the classifirition table for

these rivers in Chapter 3 (Table 3.10).

4. The Two Groups of North America (1969) and Europe

Finally, the clustering procedure was used to cluster the sample

of North American (1969) and European origin salmon into two groups.
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The two cluster centres were initialized ‘Table 4.16) from the two
vector means. Tables 4.17 and 4.18 show the classification and final
cluster centres respectively and Table 4.19 displays the Euclidean
distance between the two cluster centres.

The results of the classification table indicate that the
clustering procedure maintains 99.57% of the original groupings (Table
4.20). This is an extremely high percentage, and is only slightly
less than the classification percentage of the classification table of
Chapter 3 (Table 3.8). This is a strong indication that these two

groups are very well seperated.

In summary, all clusterirg methods maintain a high percentage of
the original groupings. Compared to the discriminant analysis, the
clustering procedure failed to seperate approximately 10% more salmon
than the discriminant analysis. This is hecause, as explained earlier,
the variance-covarianre matrix is not used in clustering procedures.
However, the clustering did determine the seperation amongst groups
and supported the results of the Hotelling's 2 statistics and tests
of Chapter 3.
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Table 4.1 Initial Cluster Centres
CLUSTER _ PREDORSAL  DORSAL HEAD POSTORBITAL _ LEFT PECTORAL
1 63.110 35.199  36.101 18.570 27.657
2 52.582 29.852  31.713 16.473 24.940
3 63.904 36.937  36.636 19.940 21.671
4 58.402 34.057  32.704 16.822 26.639
5 57.398 32.350  33.665 17.330 24.686
6 56.529 31.595  33.622 17.080 25.807
7 50.693 27.3714  30.093 15.542 23.7120
8 61.501 35.648  36.336 18.924 27.643
Table 4.2 Classification Cluster Centres
CLUSTER _ PREDORSAL  DORSAL HEAD [ .’TORBITAL _ LEFT PECTORAL
1 64.0166 34.7222  36.6875 19.1648 21.5171
2 52.8225 30.7478 31,7491 16.3737 24.8915
3 63.7125 37.0862 36.5809 19.9317 27.8444
4 59,0299 34.0170 33.4704 17.2110 26.6839
5 57.3588 32.3291 33.8912 17.3433 24.6934
6 56.3060 31.3122 33.4865 17.0123 25.8056
1 50.9384 27.3986 30.0396 15.4655 23.7447
8 61.1235 36.3412  36.0504 18.9852 21.47617
Table 4.3 Final Cluster Centres
CLUSTER __PREDORSAL _ DORSAL HEAD POSTORBITAL _ LEFT PECTORAL
1 63.5578 34.5053 36.4445 18.8752 27.7362
2 52.5769  30.1946 31.7340 16.4852 24.9693
3 63.8963 37.2914 36.5865 19.5530 28.0397
4 58.6547 34.3405 32.9565 16.9651 26.6416
S 57.6525 32.4228  33.6967 17,3173 24,4655
6 56.4772 31.3439 33.3148 17.0795 25,9564
7 50.8619  27.4548 30.3050  15.6610 23.8427
8 61.0525  35.9335 35.9784 18.6947 27.3939
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Table 4.4 Distances Between Final Cluster Centres
CLUSTER 1 2 3 4 5 6
ok 0.0000

13.2181 0.0000
2.9067 14.8620 0.0000
6.4094 7.6583 7.6165 0.0000

8.7359 4.5122 10.5631 3.7858 2.2295 0.0000

16.5553 3.7997 18.4085 11.1671 9.2428 7.8864 0.0000
2.9468 11.5562 3.3845 4.5800 6.2899 7.3326 15.1571 0.0000

2
3
4
5 7.7384 5.9603 9.4240 3.1764 0.0000
6
i
8

Table 4.5  Classification Results for Cluster Analysis of
the Eight North American (1969) Rivers

Actual Group Cluster
1 2 3 4 5 6 1 8 ny
Maine 83 0 26 2 i 0 0 30 14
e (58.5%) (0.0%) (18.3%) (1.4%) (0.7%) (0.0%) (0.0%) (21.1%)
Miramichi 0 121 0 0 0 9 21 15
(0.0%) (80.1%) (0.0%) (0.0%) (0.0%) (6.0%) (13.9%) (0.0%)
Saint John 16 0 48 0 0 0 7
(21.9%) (0.0%) (65.8%) (0.0%) (0.0%) (0.0%) (0.0%) (12.3%)
Koksoak 0 0 0 6 ] 13
(0.0%) (0,0%) (0.0%) (77.7%) (4.6%) (14.6%) (0.0%) (3.1%)
Indian 2 0 9 0 2 0 12
(0.0%) (1.6%) (0.0%) (7.2%) (72.0%) (19.2%) (0.0%) (0.0%)
Salmon 3 0 1 8 29 0 0 ]
0.0%) (7.3%) (0.0%) (2.4%) (19.5%) (70.7%) (0.0%) (0.0%)
Harry's 0 2 0 0 0 87 8
(0.0%) (2.2%) (0.0%) (0.0%) (0.0%) (0.0%) (97.8%) (0.0%)
Sand Hill 22 0 24 8 0 0 14
(14.95) (0.0%) (16.2%) (5.4%) (0.0%) (0.0%) (0.0%) (63.5%)

n, =899 P = 72.64%
n_ = 653 tau = ,6873
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Table 4.6 Initial Cluster Centres
CLUSTER __ PREDORSAL __ DORSAL HERD POSTORBITAL _ LEFT PECTORAL
1 65.020 36.207  34.326 15.985 25.972
2 51,989 28.849  30.931 15,090 23.220
3 58.968 34.449 33,257 16.070 24.517
4 58.820 31.608  32.360 16.602 24.036
5 60.702 33.552  35.891 16.805 26.647
6 56,501 32.210  33.266 15.189 24,383
Table 4.7 Classification Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL HEAD POSTORBITAL __ LEFT PECTORAL
1 64.0886 35.8620 34.4046 15.9950 25.8256
2 52.0625  28.8580 30.7895  15.1945 23.1692
3 59.1832 35.1958 33.2843 16.0499 24.3491
4 58.9611 32.1427 32.6099 16.2438 24,1071
5 60.8985 33,1519 35.4816  16.8014 26.4011
6 56.8950 32.4651 33.3535 15.5177 24.4467
Table 4.8 Final Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL HEAD POSTORBITAL _LEFT PECTORAL
1 64.9837  36.1880 34.3453  16.0108 25.9506
2 51.9893 28,8470 30.9314 15.0898 23.2198
3 59.2109 35,1718 33.3149 16.0349 24.5755
4 59.0975  31.8416 32.7960  16.2792 24.1094
5 60.8492  38.3023 36.1153  16.9605 26 8929
6 56.4882  32.3731 33.2206  15.3088 24.4011
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CLUSTER

1
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Distances Between Final Cluster Centres

1 2 3 4 5
0.0000
5.5790 0.0000
6.1083 10.0283 0.0000
7.7071 8.0729 3.4130 0.0000
5.5085 11.9253 4.4998 4.9431 0.0000

9.5334 6.2736 3.9764 2.8799 6.0990 0.0000

6

Table 4.10

Actual Group

Maine

Miramichi

Saint John

Indian

Salmon

Salmonier

Classification Results for Cluster Analysis of
the Six North American (1968) Rivers (Regions
Cluster
1 2 3 4 5 6 n;
79 0 1 0 1 0 81
(97.5%) (0.0%) (1.23%) (0.0%3) (1.23%) (0.0%)
0 147 0 0 0 0 47
(0.0%) (100.0%) (0.0%)  (0.0%) (0.0%)  (0.0%)
1 0 95 24 9 19 148
(0.7%) (0.0%) (64.2%) (16.2%) (6.1%) (12.8%
0 0 1 4 2 [ 50
(0.0%) (0.0%, (2.0%) (82.0%) (2.0%) (12.0%)
3 0 18 5 119 2 147
(2.0%) (0.0%) (12.2%)  (3.4%) (81.0%)  {L.4%)
0 0 3 [ 0 142 151
(0.0%) (0.0%) (2.0%) (4.0%) (0.0%) (94.0%
n, =724 P = 86.05%
n_= 623 tau = .8326
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Table 4.11 Initial Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL _ HEAD POSTORBITAL _LEFT PECTORAL
1 59.731 30.625 32.922 16.961 23.635
2 45.564 22.391  27.802 14.052 22.775
3 48.730 25.688  28.166 14.980 21.436
4 54.454 30.515  31.329 16.538 24.980
5 58.971 33.025 33.525 17.442 25.840
Table 4.12 Classification Cluster Centres
CLUSTER _ PREDORSAL  DORSAL HEAD POSTORBITAL _ LEFT PECTORAL
1 59.4858  30.4303 32.7975  16.7572 23.2395
2 45.7243 22,3127 27.8574 14,1128 22.56%4
3 47.7626  25.2664 27.9760  14.7471 21.6014
4 56.3029 32.0214 32.1005 16.7309 25.3049
g 60.8637 31.9429 33.9937 17.7272 25.5635
Table 4.13 Final Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL HEAD POSTORBITAL _ LEFT PECTORAL
1 59.3660 30.2502 32.6874 16.7580 23.2617
2 45,5338 22,2952 21.8050 14.0449 22.7869
3 48.3848  25.4977 28.0220  14.8763 21.5343
4 §5.2552 31.1751 31.7301 16.6399 25.0713
5 60.4339 32,5288 33.9062  17.7790 25.6889
Table 4.14 Distances Between Final Cluster Centres
CLUSTER 1 3 4 5
1 0.0000

16.9126 0.0000
13.0944 4.5488 0.0000

4.6860 14.1674 10.4310 0.0000

3.8408 19.6552 15.9665 5.9217 0.0000
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Table 4.15  Classification Results for Cluster Analysis
of the Five Buropean Rivers
Actual Group

1 2 3 4 5 0y
Logan 85 0 0 6 26 117
(72.6%) (0.0%) (0.0%)  (5.1%) (22.2%)
Almond 0 152 6 0 0 158
(0.0%) (96.2%) (3.8%)  (0.0%) (0.0%)
Boyne 0 0 49 1 0 50
(0.0%) (0.0%) (98.0%)  (2.0%) (0.0%)
Lee 1 0 0 97 0 98
(1.0%) (0.0%) (0.0%) (99.0%) (0.0%)
Usk 5 0 0 28 39 72
(6.9%) (0.0%) (0.0%) (38.9%) (54.2%)
n, =495 P = 85.25%
n, =422 tau = 8157
Table 4.16 Initial Cluster Centres
CLUSTER __ PREDORSAL _ DORSAL HEAD POSTORBITAL _ LEFT PECTORAL
1 52.942 27.825 30.575 15.818 23.725
2 58.306 33.125 33.954 17.620 26.216
Table 4.17 Classification Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL HEAD POSTORBITAL __ LEFT PECTORAL
1 54,0904 217.4278 30.7977 15.7779 23.1568

2 58.3763  33.0584 33.6789  17.7684 25.9015
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Table 4.18 Final Cluster Centres
CLUSTER _ PREDORSAL _ DORSAL HEAD POSTORBITAL __LEFT PECTORAL
1 52.9039 27.7859 30.5753 15.8166 23,7175
2 58.3034  33.1229 33.9385  17.6132 26.2097
Table 4.19 Distances Between Final Cluster Centres
CLUSTER 1 2
1 0.0000

2 8.8537 0.0000

Table 4.20  Classification Results for Cluster Analysis
of North American (1969) and European (1969) Rivers

Actual Group Cluster
1 2 n;
Europe 490 5 495
(99.0%)  (1.0%)
North America 1 914 915

0.1%) (99.9%
n, = 1410 P = 99.57%

n, = 1404 tau = 1404
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CHAPTER 5

CONCLUSIONS

Initially, the underlying distribution of the data was determined
in Chapter 2 by means of "Exploratory Data Analysis". By the use of
graphical and numerical summaries, normality was indicated for each of
the three data groups. Next, the method of shifted power
transformation was used to confirm that insignificant departure from
multivariate normality existed and that no transformation of the data
was necessary for any of the three data groups.

Analysis of covariance was applied to adjust each of the variables
for each group to the overall mean standard length in Section 3.2 of
Chapter 3. By applying the Mahalanobis generalized sample squared
distance technique to the adjusted variables, it ws found that the
populations were significantly different pairwis.'.

A quadratic stepwise discriminant amalysis (Section 3.3, Chapter
3) gave the best results using Fisher's linear discriminant functions.
For each of the six analyses, all five conditional variables entered
and remained in the stepwise procedure. In discriminating European
and North American salmon, the misclassification rate was only 0.35%
with an overall bias of 0.2% in favour of European salmon. The
discriminant analysis of the five European rivers resulted in a

misclassification rate of 3.84%; the six North American rivers sampled
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in 1968 resulted in a 5.52% misclassification rate; and finally the
eight North American rivers sampled in 1969 gave a misclassification
rate of 17.13%.

Te verify these classification procedures, the jackknife
classification technique (Section 3.5, Chapter 3) was used to determine
the bias which may have resulted in basing classification decisions on
that data set used to determine the classification functions. For the
analysis of North American versus European data, the jackknife
technique correctly classified 99.68% of the cases. This percentage ws
actually 0.3% higher than the 99.65% originally classified correctly.
For the analysis of the five European rivers, 95.33% were correctly
classified using the jackknife technique. This was only 0.83% lover
than the original classification rate of 96.16%. Thus, the jackknife
procedure supports the original classification procedure.

Next, canonical variables were used as a means of classification
instead of the original discriminating variables (Section 3.6, Chapter
3). Thus, by plotting the first two canonical variables with the plot
of cases, it can graphically be seen how well the discriminating
variables are classifying the cases. For all cases tested, results
closely matched the previous misclassification rates.

Finally, a discrimination analysis based on the clustering
principle was examined. In particular, the partitioning technique

using the k sample means as initial cluster centres were used.
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The results matched well with the discriminant analysis. However,
the clustering procedure generally failed to separate approximately
10% more salmon than the discriminate analysis. This is because the
variations among the variables are not considered in clustering

techniques.
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RPPENDIX A



Table B1.1
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Basic Statistics for European Data

n PREDOR ___DORS HEAD POSTOR __ LETPECT STNDLEN
Logan R. 117 59,7311 30,625 32,922 16.961 23.635 131.564
4.1812 3,122 2.126  1.467 1.622 9.987
R. Almond 158  45.564 22,391 27.802 14.052 22,775 102.247
3.962 2.850 2.002 1,112 1.580 9.689
R. Bayne 50 48.730 25.688 28.166 14.980 21.436 110.480
3.498 3.272 2.097 1.187 1.626 8.811
R. Lee 98 54.454 30.515 31.329 16.538 24.980 125.653
2,938 2.1714 1.833  0.996 1.599 6.354
R. Usk 72 58.971 33.025 33.525 17.442 25.840 139.444
5.144 3.394 2.523 1.321 1.993  12.529
Europe 495  52.942 27.825 30.575 15.818 23.725 120.053
7.196 5.065 3.179 1.830 2.129 17.162

1 - mean

2 - standard deviation
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Table Al.2 Basic Statistics for North American Data (1968 and 1969
n__PREDOR _ DORS HEAD _ POSTOR __ LFTPECT STNDLEN
1969
Maine 142 63.1201 35.199 36.101 18.570  27.6579 144.359
3.9482  3.347  1.870  1.09 1.669 9.270
Miramichi R. 151 52.582 29.852 31.713 16.473 24.940 122.205
4,932 3.318  2.858 1.514 1.789  11.036
Saint John R. 73 63.904 36.937 36.636 19.940  27.677 146.247
6.370  4.132  3.215 1.843 2,691  14.736

Koksoak 130 58,402  34.057 32.704 16.822 26.639 135.515
10397 7.114 5.393  2.907 3.632  23.932
Indian R. 125 57.398  32.350 33.665 17.330 24.686 132.576
4,305 3.050  2.211 1.244 1.481  10.242
Salmon R. 41 56.529 31.595 33.622 17.080  25.807 130.683

8.828  6.349  5.003  2.700 3.048  21.501
Harry's R. 89 50.693 27.374 30.094 15.542 23.720 116.337
4.675  3.711  2.517  1.428 1.626 11.296
Sand Hill R. 148 61.501 35.648 36.336 18.924  27.643 143.635
4.707  3.647 2.226 1.391 1.637  11.345
North America 915 58.306 33.125 33.954 17.620 26.216 134.749
7.612  5.268  3.874  2.183 2.653  17.606

1 - mean
2 - standard deviation



Table A1.2 (cont'd)

n__PREDOR

1968
Maine 81 65.020
4.509
Miramichi 147 51.989
3.338
Saint John 148 58.968
5.545
Indian R. 50 58.820
4.223

Salmon R. 147 60.702

w
=

Salmonier R. 151 56.501

orth America
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DORS

36.207
3.619
28.847
2.332
34.339
3.856
31.608
2.837
33.502
2.920
32.210
3.144

3897

HEAD

34.326
2.080
30.931
1.602
33.357
2.713
32.360
2.141
35.891
1.799
33.266
2.319

2.693

POSTOR

15.985
1.283
15.090
0.949
16.070
1,603
16.602
1.191
16.805
1.001
15.189
1.177

1.385

LFTPECT STNDLEN

25.972 143.284
1.892  10.532
23.220 117.048
1.318  7.496
24.517 136.628
1.926  13.656
24,036 129.940
1.576  9.859
26.647 138.891
1.343  8.5%4
24.383 128.901
1,730 10.241

) 31+
2,025 13.447
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Figure A2.1 Boxplots of 196¢ European Data
(A1l measurements in millimetres)
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Figure A2.2  Boxplots of 1969 North American Data
(A1l measurements in millimetres)
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Figure A2.3  Boxplots of 1968 North American Data
(A1l measurements in millimetres)
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Figure A2.4 Character Distributions of 1959 European Specimens
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Figure 82.4  continued

e) Head
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ure A2.5 Character Distributions of 1969 North American Specimens

a) Total Length
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Figure A2.5 continued

<) Precorsal
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Figure A2.5 continued

e) Head
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Figure A2.5 continued

8) Left Pectoral
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Figure A2.6  Character Distributions of 1368 Ncrth American Specimens

a) Total Length
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Figure A2.6 conti
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Figure A2.6  continued

e) Head
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Figure 2.6  continued

8) Left Pectoral
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Table A2.1  Mid summeries, Spreads and Quotients
for Europe (1969)

2) fotal length
Dept. Lower Upper Mid Spread  Quotient

H 128.0 158.0 143.00 30.00 L1
E 119.0 167.0 143.00 148.00 1.04
D 114.0 176.0 145.00 62.00 1.01
c 111.0 180.5 145.75 69.50 0.93
B 108.5 190.5 149.5 82.00 0.95
A 103.0 195.5 149.25 92.50 0.95
13 100.5 19.0 148.25 95.50 0.90
Y 98.5 197.5 148.0 99.00 0.86

b) tandard Length
Depth Lower Upper Mid Spread  Quotient

106.0 132.0 119.00 26.00 1.09
98.0 140.0 119.00 42.00 1.03
94.0 uno 120.50 53.00 0.98
91.0 152,5 121.75 61.50 0.94
88.5 160.5 124.50 72.00 0.95
85.0 164.5 124.75 79.50 0.93
82.5 167.0 124.75 84.50 0.90
815 169.0 125.25 87.50 0.86

< o> w0 O @m o=

) Predorsal
Depth Lower Upper Mid Spread  Quotient

47.20 58.55 52.88 11.35 1.13
44.00 61.50 52.75 17.50 1.02
42.10 64.30 53.20 22.20 0.96
41.10  66.40 53.75 25.30 0.91
39.35  67.65 53.50 28.30 0.88
38.70  68.55 53.63 29.85 0.82
37.40 72,60 55.00 35.20 0.88
36.30  76.60 56.45 40.30 0.93

< > w0 o m o=
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Table A2.1 (cont'd)

d) Dorsal to Adipose
Depth Lower Upper Mid Spread Quotient

H 23,50 31.85 21.68 8.35 1.19
E 21.20 33.70 27.45 12.50 1.09
D 20,00 35.00 21.50 15.00 0.94
C 19.35 36.25 217.80 16.90 0.91
B 18.35 38.60 28.48 20.25 0.91
A 17.00  39.70 28.35 22.70 0.90
Z 16.35  41.40 28.88 25.05 0.91
¥ 16.05  42.25 29.15 26.20 0.88
©) Bead
Depth Lover Upper Mid Spread Quotient
H 28.00  32.90 30.45 4.90 1.07
E 26,50  34.70 30.60 8.20 1.06
D 26.00  35.70 30.85 9.70 0.9
C 25.45 36.35 30.90 10.90 0.87
B 24,70 37.45 31.08 1275 0.88
A 23.65 38.05 30.85 14.40 0.88
2 23.00 39.50 31.25 16.50 0.92
Y 19.75 _ 41.20 30.48 21.45 1.11

£) Postorbital
Depth Lower Upper Mid Spread Quotient

14,40 17.20 15.80 2.80 1.07
13.50 18.00 15.75 50 .01
13.10 18.70 15.90 60 9

12,85 19.30 16.08
12,40 19.50 15.9%
12.00  20.40 16.20 40
1155 21.15 16.35 .60
1145 21.85 16.65 10.40

1

0

45 0
10 0.85

0

0

0

< N> WOO®ED
© @ oo




Table A2.1 (cont'd)
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8) Left Pectoral

Depth Lower Upper. Mid Spread Quotient
H 22,20 25.10 23.65 2.9 0.98
E 21.30  26.30 23.80 5.00 0.99
D 20.70  27.50 24.10 6.80 1.01
c 19.90  28.30 24.10 8.40 1.03
B 19.50  28.75 24.13 9.25 0.98
A 19.30  29.55 24.43 10.25 0.96
7 19.00  30.00 24.50 11.00 0.94
Y 18.55  30.25 24.40 11.70 0.93

Table A2.2 Mid summaries, Spreads and Quotients

for North America (1969)

a) Total Length
Depth Lover Upper.

%< < N> woomx

149.0
136.0
128.0
118.0
110.0
95.0
1.5
61.0
60.5

Mid Spread Quotient
177.5 163.25 28.50 0.93
186.0 161,00 50.00 0.96
193.0 160.50 65.00 0.93
201.0 159.50 83.00 0.98
207.0 158.50 97.00 0.99
212.0 153.50 117.00 1.06
219.0 145,75 146.50 1.2
223.5 142,25 162.50 1.24
228.0 144,25 167.50 1.19




Table A2.2 (cont'd)

b) Standard Length
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Depth Lower Upper Mid Spread  Quotient
H 123.0 146.0 135.00 24.00 0.94
E 112.0 154.0 133.00 42.00 0.96
D 106.0 161.0 133.50 55.00 0.94
c 97.0 166.5 131.75 69.50 0.98
B 90.0 171.0 130.50 81.00 0.99
A 78.0 171.0 127.50 99.00 1.08
Z §9.5 181.5 120.50 122.00 1.21
Y 50.0 184.0 117.00 134.00 1,23
X 50.0 188.0 119.00 138.00 1.18

<) Predorsal

Depth Lower Upper Mid Spread _ Quotient
H 53.10 64.00 58.55 10.90 0.99
E 48.70 66.70 57.70 18.00 0.96
D 45.50 69.05 57.28 23.55 0.94
c 41.85 71.70 56.78 29.85 0.98
B 39.80 73.90 56.85 34.10 0.97
A 33.60 76.00 54.80 42.40 1.07
z 27.45 78.40 52.93 50.95 L7
Y 24.00 81.55 52.78 57.55 1.23
X 23.20 82.85 53.03 59.65 1.18

d) Dorsal to Adipose

Depth Lower Upper Mid Spread _ Quotient

H 29.70 36.70 33.20 7.00 0.93
E 26.90 38.70 32.80 11.80 0.92
D 24.50 40.65 32.58 16.15 0.94
c 22.60 43.45 33.03 20.85 1.00
B 19.80 45.00 32.40 25.20 1.04
A 16.90 46.00 31.45 29.10 1.07
A 12.35 46,95 29.65 34.60 1.16
Y 10.60 48.85 29.73 38.25 1.19
X 9.95 52.00 30.98 42.05 1.22
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Table A2.2 (cont'd)

e) Head
Depth Lower Upper Mid Spread Quotient
B 31.58 36.60 34,08 5.05 0.89
E 29.10 38.00 33.55 8.90 0.92
D 27.45 39.00 33.23 11.55 0.9
C 24.75 40.10 32.43 15.35 0.9
B 22.70 41.40 32.05 18.70 1.03
a 20.10 42.50 31.30 22.40 1.10
2 16.90 43.85 30.38 26.95 1.21
Y 14.60 44.90 29.75 30.30 1.26
X 14.05 46.40 30.23 32.35 1.28

£) Postorbital
Depth Lover Upper Mid Spread Quotient

H 16.30 19.10 17,70 2.80 0.88
E 15.10 20.00 17.58 4.90 0.9
D 13.90 20.60 13.25 6.70 0.93
c 12.50 21.40 16.95 8.90 1.02
B 11.70 22.00 16.85 10.30 1.01
A 10.00 23.00 16.50 13.00 1.1
Z 8.30 23.60 15.95 15.30 1.22
Y 1.20 24.20 15.70 17.00 1.25
X 6.85 25.35 16.10 18.50 1.21

8) Left Pectoral
Depth Lover Upper Mid Spread Quotient
H 24.40 28.00 26.20 3.60 0.93
E 23,00 29.30 26.15 6.30 0.95
D 22.00 30.20 26.10 8.20 0.93
o} 21.05 31.00 26.03 9.95 0.93
B 19.60 31.40 25.50 11.80 0.95
A 16.60 32.30 24.45 15.70 1413
Z 14,00 33.25 23.63 19.25 1.26
Y 12.45 34.55 23,50 22.10 1.34
X 12.00 34.95 23.48 22.95 1.29
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Table A2.3  Mid summaries, Spreads and Quotients for
North America (1968)
a) Total Length
Depth Lower Upper Mid Spread Quotient

H 147.0 170.0 158.50 23.00 0.71
E 140.0 179.0 159.50 39.00 0.71
D 135.0 185.0 160.00 50.00 0.68
C 132.0 190.5 161.25 58.50 0.66
B 128.0 195.0 161.50 67.00 0.65
A 125.5 199.5 162.50 74.00 0.64
2 122.0 206.0 164.00 84.00 0.66
¥ 122.0 209.0 165,50 87.00 0.63
®) Standard length
Depth Lower Upper Mid Spread  Quotient
H 122.0 142.0 132.00 20.00 0.74
E 115.0 148.0 131.50 33.00 0.72
D 112.0 153.0 132.50 41.00 0.67
c 109.0 157.5 133.25 48.50 0.65
B 106.0 164.0 135.00 58.00 0.68
A 103.0 166.5 134.75 63.50 0.66
Z 100.0 169.5 134,75 69.50 0.65
b 100.0 174.0 137.00 14.00 0.64

) Predorsal
Depth Lower Upper Mid Spread  Quotient
H 53.80 62.00 57.90 8.20 0.70
E 51.30 65.20 58.25 13.90 0.69
D 49.65 67.90 58.78 18.25 0.68
(& 48.55 70.00 59.28 21.45 0.66
B 46.90 71.10 59.00 24.20 0.64
A 0
Z 0
he 0

46.45 73.40 59.93 26.95 .64
45.15 76.15 60.65 31.00 .67
45.00 76.80 60.90 31.80 .63




Table A2.3 (cont'd)

d) Dorsal to Adipose
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Depth Lover Upper Mid Spread Quotient
H 29.80 35.50 32.65 5.70 0.71
E 28.30 31.30 32.80 9.00 0.66
D 21.05 39.05 33.05 12.00 0.66
C 26.10 40.70 33.40 14.60 0.66
B 25.50 42.30 33.90 16.80 0.66
A 24.50 44.00 34.25 19.50 0.68
Z 23.80 45.35 34.58 21.55 0.68
Y 23.20 45.70 34.45 22.50 0.66

o) Head

Depth Lovwer Upper Mid Spread Quotient
H 31.40 35.30 33.35 3.90 0.76
E 30.20 36.70 33.45 6.50 0.74
D 29.50 31.80 33.65 8.30 0.71
e 28.90 38.85 33.88 9.95 0.70
B 28.40 39.70 34.05 11.30 0.69
A 27.45 40.75 34.10 13.30 0.73
Z 26.70 42.35 34.53 15.65 0.77
¥ 25.90 43.90 34.90 18.00 0.£2

£) Postorbital

Depth Lower Upper Mid Spread  Quotient
H 15.00 16.80 15.90 1.80 0.66
E 14.20 17.50 15.85 3.30 0.71
D 13.85 18.05 15.95 4.20 0.67
c 13.50 18.80 16.15 5.30 0.70
B 13.20 19.50 16.35 6.30 0.72
A 12.60 19.95 16.28 1.35 0.75
Z 12.20 20.40 16.30 8.20 0.76
Y 11.80 21.00 16.40 9.20 0.79
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Table A2.3 (cont'd)

8) Left Pectoral
Depth Lower Upper Mid Spread Quotient

23.30 - 26.30 24.80 3.00 1.07
22.50 27.30 24,90 4.80 1.00
22.00 28.20 25.10 6.20 0.97
21.30 28.70 25.00 7.40 9%

0
20.70 29.20 24.95 8.50 0
20.30 29.75 25.03 9.45 0.9
20.00 30.65 25.33 10.65 0
19.70 31.00 25.35 11.30 0

< N> @0 o ®mx
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Table A3.1

DZ, W _and p-values

p? - Pirst entry
W - Second entry
p-value - Third entry

Europe (1969)

North 1998,
America  2,117.72 :
(1969) 0.00003 Z
Table A3.2
Logan R. R. Almond R. Boyne R. Lee
11,415.3
R. Almond  2249.6
0.0000

3811.60  496.190
R. Bayne 743.84 97,311
0.0000  0.0000

1453.19  4988.51  1422,52
R. Lee 285.18  981.99 276,71
0.0000  0.0000  0.0000

371.169 8856.38 3513.16  852.959
R. Usk 72.646  1740.2  679.21  165.53
0.0000 _ 0.0000  0.0000 _ 0.0000
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Table A3.3
Haine Miramichi Saint John Indian R. Salmon R.
8876.61
Miramichi 1743.9
0.0000

1605.34  4521.63
Saint John 315.41  891.98
0.0000  0.0000

2055.25 1568.52  458.763*
Indian R. 369.65  307.27  89.880
0.0000  0.0000  0.0000

1398.45 7175.80 963.858  1405.79
Salmon R. 27474 1415.5  190.14  275.39
0.0000  0.0000  0.0000  0.0000

3422.83  2487.92  898.552* 935.249* 1673.16
Salmonier R.  672.66  490.86  177.29  183.29  330.11
0.0000  0.0000  0.0000  0.0000 _ 0.0000
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Table A3.

4

Maine Miramichi Saint John Koksoak R. Indian R. Salmon R. Harry's R

22,208.8
Miramichi  4380.7
0.0000

83.758* 17,348.6
Saint John 14,437  3407.2
0.0000  0.0000

4124.20  6481.42
Koksoak R.  812.62  1277.7
0.0000  0.0000

5947.78  4346.20
Indian R. 1171.6  856.55
0.0000  0.0000

3804.37 1385.93
Salmon R. 744.06  271.35
0.0000  0.0000

23,182.94 548.671
Harry's R.  4555.6  107.89
0.0000  0.0000

513.887 16,274.2
Sand Hill R. 101.35% 3211.0
0.0000  0.0000

1

3500.57
764.59
0.0000

5378.77
1053.8
0.0000

3999.07
771.25
0.0000

9,387.2
3780.5
0.0000

176.941
152.55%
0.0000

176.175
34.678
0.0000

302.152
59.000
0.0000

8636.19
1695.4
0.0000

1821.60
359.04
0.0000

64.432%
12.572
0.0004

6431.35
1262.0
0.0000

3126.90
616.15
0.0000

2665.03
516.35
0.0000

2189.59
428.55
0.0000

17,833.6
3506,0
0.0000
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APPENDIX B



Number of Observations

Europe NA 69

8

e
0SS wovoa

- o @ oo @

o W W@ o - o
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Jackknife of Europe '69 vs N. America '69
All variables entered with covariate STNDLEN

Excluded

n = 1410
500 samgles

Number
Misclassified

% Correctly
Classified

15
16
12
21
11

cocococococcococoRroc oo CcOOROHOOO OO oo

100.00
100.00
100.00
100.00
100.00
100.00
100.00

93.75
100.00

95.24
100.00
100.00
100.00
100.00
100.00
100.00

94.44
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
4 12 0 100.00
] 10 0 100.00
8 8 0 100.00
5 7 0 100.00
9 1 0 100.00
5 19 0 100.00
3 12 0 100.00
7 14 0 100.00
7 18 0 100.00
8 12 0 100.00
8 13 0 100.00
4 6 0 100.00
7 10 0 100.00
5 20 0 100.00
4 9 0 100.00
8 1 0 100.00
1 13 0 100.00
5 1 0 100.00
T 1 0 100.00
8 13 0 100.00
3 18 0 100.00
4 6 1 90.00
15 10 0 100.00
8 14 0 100.00
9 21 0 100.00
5 12 1 94.12
6 19 0 100.00
§ 3 0 100.00
10 10 0 100.00
] 20 0 100.00
12 15 0 100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
10 9 0 100.00
6 9 0 100.00
10 6 0 100.00
8 u 0 100.00
8 25 0 100.00
10 1 0 100.00
10 10 0 100.00
8 8 0 100.00
5 17 3 95.45
1 1 0 100.00
2 1 0 100.00
6 10 0 100.00
10 10 0 100.00
9 18 0 100.00
1 13 0 100.00
11 19 0 100.00
3 18 0 100.00
7 15 0 100.00
5 9 0 100.00
12 1 0 100.00
5 11 0 100.00
8 19 0 100.00
8 13 0 100.00
7 16 0 100.00
5 8 0 100.00
§ 13 0 100.00
9 19 1 96.43
5 9 0 100.00
8 17 0 100.00
q 8 0 100.00
8 10 0 100.00



=120~

Number of Observations Number $ Correctly
Excluded Misclassified Classified
Europe NA 69
6 15 0 100.00
8 8 0 100.00
1 i 0 100.00
10 16 0 100.00
10 6 0 100.00
i 19 0 100.00
6 12 0 100.00
8 19 1 96.30
4 21 0 100.00
10 15 0 100.00
8 12 0 100.00
12 15 0 100.00
6 1 0 100.00
10 15 0 100.00
13 19 0 100.00
4 19 0 100.00
8 16 0 100.00
9 1 0 100.00
8 1 0 100.00
7 9 0 100.00
12 12 0 100.00
5 16 0 100.00
(] 17 0 100.00
7 8 0 100.00
5 13 0 100.00
6 6 0 100.00
4 18 0 100.00
i} 18 0 100.00
4 12 0 100.00
7 20 0 100.00
1 11 0 100.00



Number of Observations

Europe NA 69

Excluded

12
16
1
20

6

9
15
12
12
15
14
12
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Number
Misclassified

B T T T e e e T =

% Correctly
Classified

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
9 13 0 100.00
1 6 0 100.00
5 12 0 100.00
10 10 0 100.00
8 8 0 100.00
1 18 0 100.00
13 8 0 100.00
6 6 0 100.00
6 25 0 100.00
1 13 0 100.00
4 8 0 100.00
5 17 0 100.00
10 15 0 100.00
1 13 0 100.00
9 23 0 100.00
1 16 0 100.00
7 14 0 100.00
8 12 0 100.00
7 6 0 100.00
10 12 0 100.00
5 13 1 54.44
10 9 0 100.00
7 15 0 100.00
10 16 0 100.00
5 10 0 100.00
6 6 0 100.00
10 15 1 96.00
5 12 0 100.00
3 20 0 100.00
8 17 0 100.00
6 16 0 100.00
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Number of Observations Number $ Correctly
Excluded Misclassified Classified
Europe NA 69
9 12 0 100.00
6 17 0 100.00
8 8 0 100.00
5 1 0 100.00
3 13 0 100.00
5 3 0 100.00
9 6 0 100.00
7 13 0 100.00
i 6 0 100.00
() 15 0 100.00
3 12 0 100.00
5 11 0 100.00
8 10 0 100.00
12 12 0 100.00
6 15 0 100.00
8 9 0 100.00
11 16 0 100.00
6 15 0 100.00
6 15 0 100.00
4 20 0 100.00
5 1 0 100.00
7 12 0 100.00
8 10 0 100.00
) 15 0 100.00
9 19 0 100.00
S 7 0 100.00
10 20 0 100.00
10 16 1 96.15
10 12 0 100.00
6 1 1 95.00
] 9 0 100.00



Number of Observations

Europe NA 69

Excluded
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Number
Misclassified

$ Correctly
Classified

14

9
16
10
1
15
15

8
18
12
14

P L R -

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
11 9 0 100.00
1 15 0 100.00
[] 18 0 100.00
) ) 0 100.00
5 23 0 100.00
2 15 0 100.00
4 H] 0 100.00
k) 10 0 100.00
1 1 1 96.00
5 15 0 100.00
5 9 0 100.00
8 15 1 95.65
8 7 0 100.00
] 12 0 100.00
11 ) 0 100.00
6 16 0 100.00
4 1 0 100.00
6 12 0 100.00
7 10 0 100.00
8 14 0 100.00
3 21 0 100.00
5 14 0 100.00
8 15 0 100.00
10 17 0 100.00
10 10 1 95.00
4 1 1 94.44
1 16 0 100.00
9 10 0 100.00
9 8 0 100.00
6 10 0 100.00
1 9 0 100.00



Number of Observations

Europe NA 69

Excluded

20
12
17
10
12
19
14

8
1n
1
10
10
10
15
13
14
15

5
10
1
15

9
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Number
Misclassified

P T e I e T e R T T TR Y

% Correctly
Classified

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

94.12
100.00
100.00
100.00
100.00



Number of Observations

Euro) NA 69

1
1

Penn e W o

2o oo

L T T I T RV s,

Excluded
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Number
Misclassified

$ Correctly
Clagsified

1
10

8
u
13

cCocococococcococncoco oo 00 OO

100.00
100.00
100.00

94.44
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

96.15
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00



Number of Observations

Excluded
Europe NA 69
1 8
9 10
6 15
6 13
10 16
3 12
1 1
4 20
2 10
10 6
10 16
1 18
13 12
8 13
11 12
9 16
5 9
8 15
2 1
7 16
1 9
5 11
8 14
2 15
H 10
6 10
1 10
9 13
6 18
1 12
1 13

~128~-

Number
Misclassified

% Correctly
Classified

C oo oo ocococococc oo oo cOcc o000 0 000 oo

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

95.24

95.45
100.00
100.00
100.00



Number of Observations

Europe NA 69

9

-

-
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Excluded
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Number
Misclassified

$ Correctly
Classified

16
17

8
17
15
12
12

9
1
15
1

Cocococococcoccoc0cOcCC0C0OROHOOO00000 00O

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

95.45
100.00

95.24
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
5 14 0 100.00
8 1 0 100.00
7 12 0 100.00
9 20 0 100.00
1 10 1 95.24
9 6 0 100.00
4 10 0 100.00
2 20 0 100.00
4 L 0 100.00
9 17 0 100.00
13 18 0 100.00
S 12 0 100.00
12 16 0 100.00
L 13 0 100.00
4 14 0 100.00
8 6 0 100.00
6 12 0 100.00
8 13 0 100.00
1 16 0 100.00
; 7 1 92.86
T 11 0 100.00
6 10 0 100.00
7 9 0 100.00
7 17 Q 100.00
5 9 0 100.00
5 5 0 100.00
il 12 [ 100.00
i 18 0 100.00
12 1 0 100.00
i 14 0 100.00
7 10 0 100.00
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Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
4 it} 1 94.44
3 3 0 100.00
3 1 0 100.00
1 8 1 93.33
5 u 0 100.00
] 1 0 100.00
8 1 0 100.00
6 ) 0 100.00
% 1 1 94.44
10 1 0 100.00
3 u 0 100.00
5 17 0 100.00
6 15 0 100.00
9 18 0 100.00
1 6 0 100.00
9 12 0 100.00
6 18 0 100.00
1 18 0 100.00
4 12 0 100.00
1 1 0 100.00
] 1 0 100.00
6 10 0 100.00
3 n 0 100.00
5 u 0 100.00
1 12 0 100.00
6 16 0 100.00
1 u 0 100.00
6 9 0 100.00
1 n 0 100.00
5 23 0 100.00
1 13 0 100.00
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Number of Observations Number % Correctly
Excluded Migclagsified Classified
Europe NA 69
9 14 1 95.65
T 20 0 100.00
4 9 0 100.00
5 1 0 100.00
5 15 0 100.00
3 10 0 100.00
6 13 0 100.00
10 12 0 100.00
7 1 0 100.00
10 10 0 100.00
5 6 0 100.00
7 19 0 100.00
5 14 0 100.00
8 6 0 100.00
y! 16 0 100.00
8 14 0 100.00
9 u 0 100.00
3 10 0 100.00
8 12 0 100.00
9 3 0 100.00
4 12 0 100.00
9 1 0 100.00
1 15 0 100.00
11 16 0 100.00
4 1 0 100.00
7 20 ) 100.00
1 8 0 100.00
i 12 0 100.00
1 10 0 100.00
10 15 0 100.00
6 13 0 100.00



-133-

Number of Observations Number % Correctly
Excluded Misclassified Classified
Europe NA 69
5 12 0 100.00
5 13 0 100.00
6 12 0 100.00
7 7 0 100.00
7 1 0 100.00
8 1 0 100.00

Total 3526 6465 32 99.68%
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JRCKKNIFE OF 5 EUROPEAN RIVERS
A1l variables entered with covariate STNDLEN

n = 495
400 samples
p=0.94%4
Number of Observations Excluded Number % Correctly
Logan Almond Boyne Lee Usk Misclassified Classified
9 6 2 5 4 3 88.46
6 9 2 5 2 3 87.50
5 7 4 8 5 0 100.00
6 11 1 1 3 2 90.91
6 3 5 4 1 1 94.74
3 7} 2 7 2 1 95.24
9 4 4 Ll 5 2 92.31
6 ) 2 3 4 4 81.82
9 12 8 6 2 1 97.30
2 8 2 5 8 1 96.00
8 9 3 2 5 0 100.00
6 v 3 6 5 2 92.59
6 11 3 9 1 1 96.67
9 6 4 2 1 1 95.45
1 4 4 5 0 1 95.00
1 7 4 8 4 0 100.00
8 o 4 5 3 1 96.30
2 7 3 2 4 2 88.89
8 15 4 H 3 3 91.43
8 9 2 5 4 < 96.43
6 6 4 5 3 1 95.83
5 8 5 7 3 4 85.71
3 4 2 1 § 1 94.44
7 8 1 5 3 0 100.00
4 [ 2 1 3 0 100.00
4 9 2 1 5 2 92.59
7 15 2 1 2 0 100.00
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Number of Observations Excluded Number $ Correctly
Logan Almond Boyne Lee Usk Misclassified Classified
0 100.00
100.00
97.06
100.00
100.00
90.48
93.33
95.83
95.45

90.00

95.00
100.00

96.00

95.65

96.77
89.29
100.00

91.30
100.00
100.00

91.67

96.15

95.45

9.14

95.65

90.91
100.00

95.65
100.00

86.96
100.00

95.24
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Number of Observations Excluded

E

-

OB DU T DWE DWW OS W ®L W o e Oy =

12

=
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nd__Boyne

Mo L L R o e R R D R O WO e ) e S R e

© - o

W o o R e R e e 1 W O N W W e W 0 o e RO R

Nurber

1

e S I T T T S e e = ]

% Correctly

an__Almo yn Lee Usk Misclassified Classified

96.67
100.00
100.00

95.83

95.24
100.00

96.88
100.00
100.00

86.96

91.67

97.06

96.15

91.67

93.55
100.00

96.00

95.24
100.00

96.00
100.00

95.65
100.00
100.00
100.00

95.00

96.97
100.00

94.12

95.65

81.48
100.00
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Number of Observations Excluded Number § Correctly
Logan Almond Boyne  [Lee Usk Misclassified Classified

100.00
96.00
96.00

100.00
96.88
92.00
96.43

100.00

100.00
97.56

100.00

100.00

100.00
96.00

100.00

100.00
96.15

100.00

100.00
95.45
96.67

100.00

100.00

100.00

100.00
95.83
89.29

100.00
90.91
96.55

100.00
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Number of Observations Excluded Number § Correctly
Logan Almond Boyne _Lee Usk Misclassified Classified
4 12 0 4 3 0 100.00
6 6 0 2 3 0 100.00
3 10 1 5 2 1 95.24
5 0 4 8 2 1 94.74
1 8 2 6 3 1 96.15
17 6 4 9 6 2 93.75
9 1 1 5 4 4 84.62
3 1 2 5 7 2 92.86
2 10 5 3 3 0 100.00
) 13 5 ¥ 2 3 90.91
8 9 2 5 8 0 100.00

5 9 4 2 4 1 95.83 2
6 6 3 3 8 0 100.00
3 5 8 6 0 0 100.00
6 9 1 6 6 4 85.71
6 9 2 7 5 2 92.86
8 6 S 4 9 1 96.88
4 5 1 3 2 2 86.67
5 9 2 3 2 0 100.00
2 8 3 4 6 1 95.65
8 7 2 5 2 1 95.83
5 18 6 4 3 0 100.00
3 4 § 6 2 2 90.00
2 10 1 10 4 2 92.59
1 1 1) 7 0 0 100.00
5 ] 2 6 2 0 100.00
§ 12 1 5 4 3 89.29
4 1 1 9 9 0 100.00
4 5 1 7 2 1 94.74
0 1 T 5 6 0 100.00
4 5 4 2 5 2 90.00
6 1 1 6 3 0 100.00



Number of Observations Excluded Number $ Correctly
logan Almond Boyne lee Usk Misclassified Classified
5 6 2 4 4 1 95.24
L) 6 3 3 ) 0 100.00
] 10 4 5 5 2 93.33
1 11 3 5 4 2 93.33
1 16 5 4 3 2 91.43
6 8 0 9 4 1 96.30
2 5 1 7 2 1 94.12
1 9 1 9 5 1 96.43
2 1 3 6 D 2 92.59
9 8 3 6 2 0 100.00
3 9 2 4 5 0 100.00
2 6 3 8 2 0 100.00
3 [ 4 3 3 3 84.21
3 6 3 4 7 1 95,65
1 12 1 8 2 2 94.12
8 7 2 5 3 0 100.00
1 1n 4 3 1 0 100.00
3 1 3 2 1 0 100.00
4 13 2 2 5 1 96.15
7 7 4 3 3 0 100.00
1 8 1 6 3 1 94.74
6 8 2 5 5 2 92.31
7 T 3 'I 3 3 88.89
5 9 0 6 5 1 96.00
5 10 il 9 4 1 96.55
1 2 2 2 1 1 92.86
8 9 3 6 6 1 96.88
4 10 3 6 4 3 88.89
6 5 3 3 L] 2 90.48
§ 15 2 5 3 1 96.67
11 20 2 10 4 3 93.62
3 u 1q 4 4 0 100.00
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Number of Observations Excluded

® o m U W o @

an Almond Boyne

W WO N EWWO RN WN &N ®WWASNS e e NN WeE W e

Lee

o

L N L L P A I N R L

Usk

@ U U N W O W WU W e WD e = N oy

Number
Misclassified
1

- w

O RO AR WO NENEHNMNNOOROWNONNNO W

% Correctly
Classified
96.30
86.96
96.15
89.29
100.00
92.31
92.31
92.31
100.00
93.10
82.35
100.00
95.65
100.00
100.00
94,20
92.59
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Number of Observations Excluded Number $ Correctly
logan Almond Boyne  lee Usk Misclassified Classified
] 1 4 6 3 1 96.15
10 9 5 5 3 0 100.00
] 4 il 4 6 3 85.71
4 9 4 4 5 1 84.62
4 5 3 3 5 1 95.00
1 6 1 4 3 2 92.00
2 § 6 3 4 0 100.00
5 % 2 i ] 4 2 92.59
5 1 4 2 2 0 100.00
5 ] 2 5 4 0 100.00
5 11 5 2 6 1 96.55
] 1 4 3 3 0 100.00
8 8 0 5 4 1 96.00
] ] 5 6 4 2 92.59
4 3 1 4 3 1 93.33
3 9 4 4 5 1 96.00
2 9 2 3 3 2 89.47
8 3 2 7 3 0 100.00
T 10 3 2 3 3 96.00
11 5 2 6 5 5 82.76
6 12 4 0 2 3 87.50
8 4 [ 5 i1 0 100.00
6 6 3 1 T 1 96.15
5 10 4 4 4 1 96.00
13 6 5 5 3 0 100.00
3 5 3 4 [l 1 94.74
§ 1 2 3 4 4 84,00
§ 9 6 1 L] 2 92.00
8 10 3 3 B 1 96.77
9 10 0 1 3 1 96.15
4 8 1 5 3 1 95.24
3 8 3 6 3 0 100.00



-143-

Number of Observations Excluded Number % Correctly
logan Almond Boyne  Lee Usk Misclassified Classified
4 5 2 6 2 0 100.00
2 10 3 4 6 0 100.00
1 11 5 2 4 i 96.15
5 1 2 8 4 1 96.15
6 7 0 6 5 2 91.67
4 6 3 7 5 2 92.00
4 6 3 8 3 1 95.83
5 10 0 7 2 1 95.83
6 8 3 4 2 1 95.65
4 10 2 4 2 2 90.91
5 5 2 4 5 0 100.00
5 8 2 6 5 1 96.15
3 3 0 4 6 0 100.00
1 1 4 4 1 2 88.24
4 7 2 4 H 2 90.91
4 6 4 7 6 0 100.00
9 4 0 4 3 2 90.00
5 4 4 1 1 2 90.48
8 12 5 1 2 2 92.86
1 9 1 3 6 0 100.00
6 13 3 4 5 2 93.55
5 3 5 8 1 0 100.00
11 8 1 53 4 2 92.00
9 13 0 5 J 3 91.18
6 1 2 7 ;! 0 100.00
5 9 2 4 3 1 95.65
1 13 2 4 5 1 96.77
6 9 5 4 3 1 96.30
17 13 2 5 5 1 96.88
6 6 4 6 1 2 91.30
6 5 1 1 1 1 96.15
8 7 3 i ) 2 92.86
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Number of Observations Excluded Number $ Correctly
logan Almond Boyne  Iee Usk Misclassified Classified
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Number of Observations Excluded Number % Correctly

Logan Almond Boyne  Lee Usk Misclassified Classified
10 2 3 3 3 86.96
6 ) 3 1 3 b | 95.83
10 T 3 6 ] 1 96.67
3 % 3 4 3 0 100.00
1 7 2 5 5 3 88.46
1 1 4 & 4 2 92.59
5 8 5 7 3 2 92.86
4 9 1 1 2 3 86.96
5 9 3 5 0 1 95.45
9 6 4 2 5 2 92.31
5 5 4 2 1 0 100.00
8 13 | 8 2 2 93.75
9 7 1 9 5 3 90.32
9 8 0 1 7 3 90.32
6 8 4 5, 3 1 96.15
7 5 3 H 6 1 96.15
6 8 3 3 3 2 91.30
10 [] 2 [ 3 5 81.48
10 5 2 1 ] 1 95.83
2 9 4 6 2 1 95.65
2 8 4 5 u§ 3 85.00
2 7 3 4 1 0 100.00
8 1n 1 3 1 2 91.67
5 9 3 5 0 1 95.45
10 13 it 7 3 0 100.00
6 10 2 7 5 3 9¢.00
9 7 0 1 4 b 90.48
13 5 2 6 3 2 93.10
5 2 4 5 7 1 95.65
6 10 1 § 2 1 96.30
i 4 6 4 6 2 92.59
2 6 1 2 2 0 100.00
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Number of Observations Excluded
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Number of Observations Excluded Number % Correctly
Logan Almond Boyne  Lee Usk Misclassified Classified
5 5 1 3 1 1 93.33
5 6 3 3 6 0 100.00
4 3 0 i 4 9 100.00
4 12 1 3 5 2 92.00
6 6 4 5 4 2 92.00
5 13 1 4 4 2 92.59
7 10 6 5 3 2 93.55
5 8 3 5 6 0 100.00
3 8 1 4 1 1 94.12
7 10 2 8 0 0 100.00
5 8 2 6 3 1 95.83
5 5 8 3 4 1 96.00
1 9 [ 4 3 1 95.65
8 [ 5 5 3 2 92.58
11 6 5 § § 5 84.38
5 5 1 5 2 0 100.00
5 un 2 4 5 2 92.59
7 1 1 1 6§ 1 96.88
6 1 2 1 3 0 100.00
8 10 2 4 3 2 92.59
5 7 2 4 1 1 94.74
9 7 5 2 5 2 92.86

2316 3161 1081 2020 1484 470 95.34% Total
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