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Based on samples of Atlantic salJoon slllOlts from 13 geographically

distinct home rivers, stocks frOll North A:rerica and Europe can be

distinguished by morphOlri!tric character sets using discriminant

analysis procedures. Character sets require morphometric measurements

of total length, standard length, predorsal length, dorsal to adipose,

head length, postorbital length, and left pectoral le:nqth.

quadratic discriminant analysis lias determined to be the most

appropriate technique to classify the salmon smalts as either European

or North American in origin. The analysis of the morphometric

characters provided strong statistical seperation between areas. A

classification of groups yielded 99.65\ correct classification between

European and Horth Airerican stocks.
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Chapter I

1.1 Background of the Froblem

A common problem in fisheries research is estimatinq the annu,11

proportion of different stods of fishc~ in a qiven fishery. In

particular, since first assessment of the crfect of the Grccrllalllj

fishery for l\l1antic salmon (Salmo salar I,.l on horncwater :.tocks ,lnd

fisheries, scientists have been irlterestcd in the anrlu,ll proporLion:: 01

North Merican and European salmon in PIC exploited populaLion of! \'i,~:;l

Greenland. These estimates arc then used to a~jsess the eflect. (,I I h,'

West Greenland fishery on stocks and fisheries in ~l()mc ·,I"Lers. In Illi:;

context, for exatrpl~, Riner, et al. (19801 a:isesscd 1.1:0. impill:l o! ttl"

West Greenland salmon fishery Or! stocks <l1.'J catches in tlorUI 1I:t_~r il:,l.

Their asseSslT,ent indicated that e:(ploitation of s,llmon <It We:;l

Greenland ...·as resulting in a reduced yield to all fishcri(::; in

I':cmcwaLers per recruit. ror every Lonne of salmflrl r:,llJf!lit <It ti.:s1.

Greenland, los~e~ lo hGrr.ew~lcr :;lot';i::; anrl fi.~b':ri":i r,ltl'i,·fj lrGI'. n,'.. ·; l.f

1.28 lonncs.

?here -HI! oth(:r simi ).)1' r,ff,IJJr:t:l5 ~,I ir:L':lf·,.I. r'.r (.;qq.),.,

idcntir:iing capo::ii:: SVi':~.S ifI C"I'I"rliMI l,tl.lIlt:,: ~·.Jl."!::, 'li~;l irlTl ::!::r.';

redr ish sr."'; iC5 i:; th'; l;';rth·.·.;.~t /,t !;Ji',t i r:, if:,:!,! i l y; !"! ~'..d: : : r," 'r':
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For the estimation of proportions of stocks in mixed stock

fisheries, some discrimination criterion is frequently used as the

statistical tool. For example, Lear and Misra (1978) dealt with scales

of adult Atlantic salmon collected from 18 river systems in eastern No[t~

America. They analyzed scale character variables including smalt age and

ciruli counts and found that significant differences occurred in each of

these variables between river systems. These differences were also found

to be significantly related to latitude. They found that the numbers of

circuli in each of the three growth zones (on the salmon scale) increased

from north to sOllth, while the smolt ages decreased from north to south.

They demonstrated that there were highly significant differences betlo/een

scale characteristics among samples of Atlantic salmon from northern

Labrador to Maine. The reason for the Lear and Misra study was that

commercial fisheries for Atlantic salmon in Newfoundland and Labrador

exploit mixed stocks of fish originating in river systems in Newfoundland,

Labrador, the Maritimes, Quebec and Maine, U.S.A.

Sharp, ''It a1. (1918) performed a multivariate discriminant

analysis on capelin using nine morphometric and eleven meristic

variables. The samples came from the St, Lawrence estuary, the Gulf of

St. Lawrence, the Grand 8anks, and Notre Dame Bay, Newfoundland. '1he

subsequent analysis of the meristic variables provided no evidence of

discrete stocks. Such analysis of meristic variables offered little

promise as a diagnostic tool in the classification of separate stocks

of capelln in the Canadian Atlantic area. However, analysis of morphometric

variables provided strong statistical separation between areas. Morphometric
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measurements used were eye diameter, snout length, head length, body

depth, snout-vent length, snout-dorsal origin, adipose fin base, pelvic­

pectoral distance, and pectoral fin length. Only snout length, eye

diameter, head length and body depth contributed significantly to the

separation obtained.

Misra and Ni (1983) analyzed morphometric data from 100 deepwater

redfish and 100 Labrador redfish. Twelve morphometric variables were

measured - body weight, head length, snout length, interorbital width,

preanal length, pectoral fin base, anal fin base, length of longest

pelvic ray, length of longest pectoral ray, width of caudal peduncle,

dorsal length of caueal peduncle, and standard length. They carried

out a classification study of the beaked redfishes, in which the

specimens of Labrador redfish were relatively smaller than those of

deepwater redfish. In their study, they used a discriminant function

with covariance. Adiscriminant function of several variables seperated

the species effectively with seven morphometric characters identified

as pertinent discriminators. They also found that a discriminant

function with covariance seperated species better than one without

covariance.

MacCrimmon and Claytor (1984) dealt with juvenile Atlantic salmon

of seven river stocks in northern, north-central, central and southern

Sweden. The purpose of their study was to identify the nature and

extent of taxonomic diversity occurring among Baltic salmon in various

S'iiedish rivers using meristic and morphometric data and to determine

if these variables could be used for the identification of regional
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and home river stocks by discriminant analysis. Morphometric

variables used in the study were head length, upper jaw length,

distance between pectoral and pelvic fins, distance between the pelvic

and anal fins, gape width, head width, body width, head depth, body

depth, caudal peduncle depth, pectoral fin length, pelvic fin length,

and standard length. In their study, they determined whether or not

meristic and morphometric variables could be used to identify regional and

home river origins. Morphometric varie:bles provided a better rnf!ans of

identification than meristic variables. However, while meristic

variable differences between river stocks were less pronounced, they

did have considerable power in discriminating regional stocks. They

conCluded that each of the Swedish river stocks examined may be

regarded as distinct using morphometric variables.

Reddin (1986) used scale character variables to develop and test a

statistical model to classify Atlantic salmon caught at West

Greenland, as either North American or European in origin. Scale samples

collected in 1980 from salmon caught in Europe and North America were

used as learning samples to identify variables and form a database.

More specifically, scale samples used as European standards were

obtained from adult salmon of known European origin, in namely, Ireland,

Scotland and Norway. Scale samples from the North American standard

came from specimens sampled from commercial catches at Twillingate and

Burgeo, Newfoundland. Astepwise discriminant analysis was used to

select the best variables, and it was determined that a quadratic

discriminant analysis was the most appropriate technique to classify
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the salmon. A test sample of known origin, independent of the

learning database used for the discriminant analysis, resulted in a

very low misclassification rate.

MacCrimmon and Claytor (1986) based their paper on a pooled sample

of 367 specimens of juvenile Atlantic slamon, from eight geographically

distinct home rivers. These specimens of juvenile Atlantic salmon

representative of each of four Newfoundland and four Scottish rivers

were obtained during 1982. They were distinguished by meristic and

morphometric variable sets using discriminant analysis procedures,

Meristic variables were used along with morphometric measurements of

standard length, pectoral and pelvic fin lengths, body depth, and gape

width. Based on their data, only the morphometric discriminant function

was highly accurate in identifying home river origins of the fish

examined with the discriminating power increasing with increased fish

size. 'ihe set of classification functions from these data provided a

good seperation of pooled fish from the eight home rivers into their

regional Newfoundland and Scottish origins. 'ihe classification of the

eight home river stocks was also high, with only one river falling below

a 75% accuracy. Their findings for juvenile fish indicated that

morphometric data sets would seem to offer the best possibility for

identifying the river of origins of adult Atlantic salmon in mixed~

stock fisheries.

Finally, Kenchington (19861 analyzed a set of morphological data

for two types of northwest Atlantic Redfishes, using multivariate

techniques. He examined 15 morphometric variables inclUding standard
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length, snout to anal fin distance, body depth, caudal peduncle depth,

head length, snout length, orbit height and inneroribital distance.

Although species were significantly different, they could not be fully

seperated using these variables. He suggested that electrophoretic

techniques were needed for precise identifications. He also found

that although the two types of redfishes of the Scotian shelf had

significantly different body forms, they could not be clearly

distinguished on the basis of these morphometric data, They were more

distinct" in their meristic characteristics. ,],his study was initiated to

reveal useful characters for discriminating between North American and

European salmon, their annual variation and variability between stocks.

It will be shown how discriminant analysis of morphological characters

can be used in discriminating a European from a North American origin

salmon. The specimens for the study were caught as smolts in European

rivers in 1969 and North American rivers in 1968 and 1969.

1.2 Plan of the Project

The plan of the project is as follows:

1. In order to study the distributional aspects of the data as

discussed in Section 2.1 of Chapter 2, Exploratory Data Analysis techniques

will be used. The Box and Cox 0964) method of shifted-power transformation

will be used to normalize the data set.

2. (al Discriminant functions will be developed to discriminate

Ii) North American and European origin salmon.

(iiI All salmon originating from the five sampled European

rivers.



(iii) All salmon originating from the six North American

rivers sampled in 1968: and the eight North American rivers sa:npled in

1969.

(iv) All salmon originating from the five common North

American rivers sampled in both 1968 and 1969.

(bl To verify classification procedures, the jackknife

classification technique will be used to determin~ the bias inherent

in basing classification decisions on that data set used to determine

the classification functions.

(c) The observations will also be classified using canonical

variables instead of the original discriminating variables. Thus, the

first two canonical variables will be plotted to show the seperation

of the g groups. These resulting classification boundary lines will be

superimposed over the plot of cases to obtain a better picture of how

cases are being classified.

J. Finally, the data of the g different groups will be combined to

form a single data set (ie. the five sampled European rivers: the

eight North American rivers sampled in 1969; etc.). A clustering technique

will be computed to determine if the g groups are well seperated. That

is, a discriminant analysis will be performed based on the clustering principle.

1. J Data Collection and Description

All specimens of salmon smalts used in the study were collected

from rivers in Europe and eastern North America during the months of .

MaYI June and July in the years 1968 and 1969. In E:urope l samples were

taken from Logan River, Sweden; River Almond, Scotland; River Boyne and

River Lee, Ireland; and River Usk/ Wales, In North
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America, samples were taken from EnfieWs Hatchery in Maine, U.S.A,;

at the Curventon fish enumeration facility, Miramichi River; Beechwood

Dam, Saint John River in New Brunswick; Koksoak River and Kaniapiskou

River in Ungava Bay, Quebec; Indian River Spawning Channel, Salmon River,

Harry's River and Salmonier Rive! in Newfoundland: and Sand Hill River in

Labrador. The location of these rivers are shown on the maps of figure

lola and l.Ib.

All specimens were kept frozen until examined. 'Jhc seven morphometric

variables measured on each specimen were:

(1) Total Length - the length of the salmon measured from the tip of

the snout to the farthest tip of the caudal fin. The measurement is a

straight line and is not taken over the curve of the body.

121 Standard Length - the distance between the tip of the snout

to the end of the vertebral colur.tn.

131 Predorsal Length - the distance between the tip of the snout to

the front structural base of the dorsal ray.

(4) Dorsal to Adipose - the distance between the back structurdl base

of the dorsal ray to the front structural base of the adipose.

/51 Head Length - the distance from the tip of the snout to the most

distant point on the opercular membrane.

(6) Postorbital Length - the distance from the closest point

of the orbital socket to the most distant point on the opercular

~mbrane.

(7) Left Pectoral Length - the distance between the two structural

bases of the left pectoral ray.
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These morphometric variables were measured to an accuracy of 0.1

millimetres except total length and standard length, which were measured

to the nearest millimetre. Each of the measurements are shown in the

diagram of figure 1.2.
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Locations of North ~Jl1erican Rivers

, - Enfield's Hatchery

2 - Miramlchi River

3 - Sai~t John River

4 - KQksoak RiV8l'

5 - Kanllpiskall River

6 - Indian River Spawning Channel

7 - SoIIlrnan River

8 - Harry's River

9 - 5almonier River

10 - Sa~d Hill RiV!r
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Figure l.lb Locations of European Rivers
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figure 1.2 I-Ieasu[ed I-k)[phomeldc Variables
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Chapter 2

EXPLORATORY ANALYSIS OF DATA

2.0 Introduction

Many statistical analyses assume that data consisting of more

than one variable follow a multivariate normal distribution. One

of the main reasons for this assumption is that the distributional

results under normality are well known. However, there are

situations where the normality assumptions may not be appropriate

and in these cases transformation of the data is required prior to

statistical analysis. If the underlying distribution is not normal

and the analysis is done assuming normality, the results might be

unreliable in certain cases. Thus, it is important to study the

the distributional pattern of the data. With this in mind, the

beginning of this chapter takes an initial look at the data. This is

traditionally known as "Exploratory Data Analysis". Further, in

Sections 2.1.1,2.1.2 and 2.1.3, confirmatory analysis on the

distributional pattern of the data is given.

The present analysis will be confined to the following three

samples: specimens sampled from European rivers in 1969; specilTlCns

sampled from North American rivers in 1969; and those sampled from

North American rivers in 1968. Only complete data will be used for

this analysis, i.e., specimens for which a 11 seven mcaS'.lremcnts arc



available because missing observations virtually destroy morphometries

{Pimentel, p. 191 119191 J.

As a part of the exploratory data analysis, the data is examined

for syrrunetry Box-plots are one of the appropriate graphical tools

by which we may cheek symmetrY. Boxplots can also help to identify the

outliers in a data set. Specifically boxplots show the middle of a data

set, from hinge to hinge, as a box with a Kfn indicating the median

(Hinges represent the upper and lOll'er quartilesl. The median can be

defined as the middle observation in an ordered data series. The boxplot

runs a solid line from each hinge to the corresponding extreme. At a

glance, impressions can be made of the overall distribution, amount of

spread, and symJtetry of the data. Figures A2.1, A2.2 and A2.3 (Appendix A)

show boxplots for all seven variables of European data sampled in 1969 and

North American data sampled in 1969 and 1968 respectively. These boxplots

are sUlMlarized in Sections 2.1, 2.2 and 2.3.

Some of these data series contain outliers, that is, values so

high or low, that they stand out from the rest of the data. Values

between the inner and outer fence are possible outliers, and are

plotted with a "*". Values beyond the outer fence are probable

outliers and are plotted with a "0". The inner and outer fence are

defined as follows:

inner fences" (lower hinge) - (1.5 x (H-spread))
and" (upper hinge) + (1.5 x (H-spread})

outer fences" (lower hingel - (3 x (H-spreadl)
and" (upper hinge) + (3 x (H-spreadl)

where H-spread = (upper hinge) - (lower hingel
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If a measurement is determined to be a proooble or possible outlier,

the whole observation (or record) is deleted from the data set. Note

that in some cases valid data points may be dropped because they are

atypical of the .ass of data under analysis. However, because of the

large sarr;ple size, this will not significantly affecl. the results of

this particular analysis.

After the rellOval of outliers, there were 495 observations for

European data salllpled in 1969, 915 observations for North American

data sampled in 1969 and 724 observations for North American data

sampled in 1968. These sample sizes will be used for the remaining

analysis.

Histograms were then displayed for each of seven variables for each of

the three groups. The outliers were excluded ",hile constructing the

histogram and subsequently for the remainder of the analysis. The

histograms are shown in Appendix A for all seven characters. '1he

histograClS for European data of 1969, North Merican data of 1969, and

North Merican data if 1968 are displayed in figures A2.4, -'2.5 and A2.6

respectively.

'1he histograllS contained in figure A2.4 are SUlllIarlzed in Section

2.l.1. Similarly the histograras of figures A2.5 and A2.6 are

su:nmarized in Sections 2.1.2 and 2.l.3 respectively.

In the preceding analysis, graphical sUR'¥l'Iaries of the data have been

presented using relative frequency histograms and bor-plots. Further

analysis will investigate the data series using numerical summaries.

For the seven variables in each group, the letter-value spreads II, F:, U, e,

B, A, z, Yand X are recorded IVelleman and floaqlin, (1981)1. The median,
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H, splits an ordered data series in half. If the number of observations, n,

is odd, the median, ro, is found by the [~)th observation. If n is

even, the median is the average of the [~)th and the {~]th

observations.

The letter H denotes the hinges which are the surrunary values in

the middle of each half of the data. They are about a quarter of the

way in from each end of the ordered batch. Similarly, the letter E

denotes the eighths and they are the middle values for the outer

quarters of the data. These values are about an eighth of the way in

from each end of the ordered batch. '1he pattern is continued.for the

letter-values 0, C, a, A, Z, Y and X.

'1he difference between the lower hinge and upper hinge is knO~'n as

the H-spread. Si.milarly, the E-spread is the difference between the

lower eighth and the upper eighth, that is, the E-spread gives ~ '.:!

range of the middle three-quarters of the data. The D-spread gives

the range of the middle seven-eighths, and so on. These spreads are

compared to the spreads for the normal, or Gaussian, distribution.

The standard Gaussian spreads are: H-spread =1.35, E-spread =2.30,

O-spread = 3.07, C-spread = 3.72, a-spread = 4.31, A-spread = 4.84,

Z-spread =5.32, Y-spread = 5.76 and X-spread = 6.18. The spreads

of the data are compared with the Gaussian spreads by quotients of the

spread values of the data to the Gaussian spread values. A trend in

the quotients provides an indication of how the data depart from

normality. If the quotients increase, the tails of the distribution are

heavier than the tails of the Gaussian-shape. If the quotients shrink,
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the tails of the data are lighter.

The average value of any two pair of letter values, called the mid­

summary is also observed. Specifically, the average of the two hinges

is called the mid-hinge; the average of the tilO eighths is called the

mid-eighth, and so on. By observing a trend in the midsumnaries, one can

learn about the syrrunetry of the data. If the midsummaries become

progressively larger, the data is skewed to the right. If they decrease

steadily, the data is skewed to the left. Tables 11.2.1, 1\2.2 and A2.3

in Appendix A display the midsunwaries, spreads and quotients for all

seven characters for European data of 1969 and North American data of

H69 and 1968 respectively.

The variables from each group can be summarized by studying

histograms (figures 1\2.4, 11.2.5 and 11.2.6), midswrrnaries, spreads and

quotients (tables 11.2.1, A2.2 and 11.2.3). These summaries, both graphical

and numerical, give indications about the distributional shape of the

data.

2.1.1 Description of Variables for European Data Sampled in 1969

Total Length - This histogram (figure A2.4a, Appendix A) gives the

impression of a bimodal distribution, that is, a distribution

consisting of two peaks. The increasing values of the midsummaries

indicates a slight skewness to the right of the data. The smaller

second peak indicated in the histogram could be a reason for this

shift. Also, the decreasing values of the quotients indicate a

light-tailed distribution. There-fore, the normality of this
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distribution is questionable.

Standard Length - The distributional shape of this variable is similar

to the distribution of the variable total length. There are two peaks

in the data and the increasing values of the midsumaries indicates a

skewness to the right of the data. The quotients are also

decreasing which indicates, as before, a light-tailed distribution.

Again, the normality of this distribution is questionable.

I?redorsal - The histogram (figure A2.4c, Appendix A) shows a

concentration of the data toward the centre of the distribution. This

indicates a light- tailed distribution which is verified by the

decreasing quotient values. The mid-sunrnary values show no indication

of skewness. Thus, the distribution of this variable may be close in

shape to the normal distribution.

Dorsal to Adipose - Abimodel distribution is observed similar to the

distributional shape of variables total length and standard length. The

slight increasing values of the mid-summaries indicates that the data

are slightly skewed to the right. The decreasing quotient values

indicate a light-tailed distribution, If there is any deviation from

normality, it will be very small.

Head - The histogram tor this data (figure A2.4e, Appendix A) also

shows a concentration toward the centre of the distribution (similar to
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the distribution of the variable predorsalJ. The decreasing quotient

values indicate a light-tailed data series. The mid-summary values do

not show any significant increasing or decreasing trend, therefore

indicating a near synunetrical distribution with no skewness. As a

result, this distribution can be considered as being close to

normality.

Postorbital - The mid-summary values do not show any increasing or

decreasing trend, indicating a symetrical distribution. The quotient

values show a slight decreasing trend for the H, E and D spreads,

but remain relatively constant for the remainder of the spread values.

This may indicate a slight light-tailed distribution. Therefore, this

distribution can also be considered being close to normal.

Left Pectoral - The information obtained from the histogram

(figure A2.4g, Appendix A) indicates that this data batch approximates

normality better than any of the previous variables. The slightly

increasing mid-suiiunary values suggest that there is a small skewness to

the right. The quotient values remain relatively constant, indicating

normal tails. Therefore, this data series approximates the normal

distribution quite well.

In summary, it is seen that four variables out of seven approximately

follow the normal distribution. Most questionable are the variables

total length, standard length and dorsal to adipose. These characters

have bimodal distributions, are skewed to slightly to the right and
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may be light-tailed in their distributional shape. However, these

deviations from normality are not extreme. Further review

(Sections 2.2 and 2.3)101111 show that these deviations will not

significantly influence the analysis.

2.1.2 Description of Variables for North American Data Sampled in 1969

Total Length - The histogram for the data series (figure 1\2.Sa,

Appendix Al give no indication of skewness, but the mid-sullU1lary values

show a decreasing trend, indicating that the data is skewed to the

left. The quotient values are constant except for the A, Z, Y and X

letter values, which show an increasing trend, indicating the

possibility of a heavy-tailed distribution. However, no strong

deviations from normality are apparant,

Standard Length - This distribution behaves similar to the distribution

for total length. The mid-summary values show a decreasing trend,

indicating skewness to the left, but there is no evidence of this from

the histogram. The quotient values are also constant except for the

A, Z, Y or X letter values. Therefore, the distributional shape of

this variable is close to normality.

Predorsal - Again, this distribution has similar qualities to the

distribution of the previous two variables. The mid-summary values are

decreasing, indicating a skewness to the left, and the quotient. values
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remain constant except for the A, Z, Y and X spreads. This variable

has a distributional shape which is close to normality.

Dorsal to Adipose - The mid-sUlMlary values for this distribution are

relatively constant, decreasing a little for the last few letter values.

However, the histogram (figure A2.5d, Appendix A) does not indicate

any skewness and the quotient values show an increasing trend, maybe

indicating a heavy-tailed distribution. Therefore, this indicates that

the distribution follows normality relatively well.

Head - The distributional shape of data is again similar to previous

variables in this group. Decreasing mid-summary values may

indicate a slight skewness to the left. Increasing quotient values

may indicate a heavy-tailed distribution. However, these deviations

are very slight, indicating that the distribution is close to

normal.

Postorbital - Once again, this distribution has similar properties.

Decreasing mid-summary values indicate a slight skewness to the left.

This slight skewness can be detected in the histogram. The increasing

quotient values also indicate a heavy-tailed distribution. However,

despite these slight deviations, it can be said that the distribution

is relatively close to normal.
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Left Pectoral - This is another distribution with similar characteristics.

Skewnp.ss to the left is indicated by the decreasing mid-summary values

although the histogram looks to be symmetrical. A trend does not exist

for the quotient values except for the 11, Z, Y and X letter values.

Therefore, the distribution is approximately normal.

In summary, it can be seen that all variables for this particular

group have similar distributional properties. All variables show

pl)ssible signs of a skewness to the left, however, if a skewness

exists, it is very slight. Another feature common amongst these

variables is a heavy-tailed distribution. Again, this is not an

extreme deviation. Therefore, all variables in this particular group

can be said to approximate a normal distribution.

2.1.3 Description of Variables for North American Data Sampled in 1968

Total Length - The distributional shape of the hist09ram (figure A2. 6a,

lIppendix A) does not show any deviations from normality, The quotient

values do not show an increasing or decreasing trend but the

mid-summary values do show an increasing trend, indicating a possible

skewness to the right. However, it is very minimal since it cannot be

detected from the histogram. Therefore, this distribution seems close

to normal.

Standard Length - The mid-summary values as well as the quotient values

show no significant trend. No skewness is indicated by the histogram.
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Therefore, it is safe to assume that this distribution is normal.

Predorsal - Again, no skewness is present in the histogram. The mid­

summary values are constant but the quotient values are decreasing

very slightly, which may indicate a light-tailed distribution. However,

these deviations are very small which leads one to believe that the

distributional shape is normal.

Dorsal to Adipose - The quotient values do not show a trend for this

distribution. However, the mid-summary values show a slight increasing

trend, indicating a distribution that is skewed to the right, and the

histogram does not show any skewness at all. Therefore, any skewness

present in this distribution is very minimal. Thus, indications are

that this distribution is normal.

Head - Although the histogram shows what appears to be a skewed

distribution, there isn't any indication of this from the mid-summaries.

Also, the quotient values do not show an increasing or decreasing

trend. Thus, this distribution can be assumed to be approximately

normal.

Postorbital - Once again, there is no trend in the mid-summary values

and quotient values and there is no indication of skewness in the

histogram. Therefore, this distribution is close to normal.
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Left Pectoral - Again, there is not an indication of skewness from the

histogram and mid-summaries and the quotient values show neither an

increasing or decreaasing trend. Thus this distribution follows an

approximate normal shape.

In summary, it is seen that all variables of this group follow the

normal distribution. There are no indications of a light-tailed or

heavy-tailed data series. Any variables which were shown to have a

skewed distribution, were skewed very slightly.

So far, the distributions for each of the seven variables sampled

from European rivers in 1969 and North American rivers in 1968 and 1969

have been studied. Most of the variables were found to satisfy the

property of the normal distribution. The possible exceptions are

total length, standard length and dorsal to adipose variables sampled

from European rivers.

However, marginal normality does not necessarily imply the joint

multivariate normality of all characters (Anderson, 1958), although,

it gives a good i.ndication. In the following section, the joint

distributional features of each group is studied.

Note that although the variable total length was included in this

section, it will not be included in the following analysis. Recall

from Section 1.3 the definitions of the measurements total length and

standard length. Total length is the greatest dimension between the

tip of the specimen1s snout and the furthest tip of the caudal fin
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measured in a straight line. Standard length is the distance between

the tip of the snout back to the end of the vertebral column. Since

these two variables are very similar measurements (their distributional

patterns are also similar), one of the two variables can be dropped.

On some specimens, the caudal fin may be ragged or torn, thus giving an

inaccurate measurement for the variable total length. 'Jherefore, standard

length was selected over total length.

2.2 Numerical Test for Normality - the Univariate Case

One of the assumptions in attempting a discriminant analysis is

that the variables in a group follow a multivariate normal distribution.

If the data do not follow a multivariate distribution, then transfor­

mation of data is performed to obtain a normal data set.

Box and Cox (H64j proposed a method of shifted-power transformation

of a single non-negative variate X to Y where

y = IIX' - III.

ltnx
• • 0

.=0

More extensive computations would be involved in considering analogues

of the more general class of shifted power transformation, that is,

X may be replaced with X + E in the above. Assuming that (E,A) is

the pair yielding normality, the MI,E of E and A is obtained. Then



-26-

where ~x(E,).) is the maximum likelihood estimate (MLEI of E and

)., and X;,a is the upper (l~point of 'f with 2 degrees of freedom.

If this region contains ). = 1, the hypothesis of normality is accepted.

'l'his idea was used to determine which characters, if any, deviated

from normality. Only European data needed to be tested and initially

each character was tested for univariate normality (the testing of

multivariate normality is dealt with in the next section). 'l'he tn [Lmax (}.j ]

was calculated for). = 0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50

and 3.00 using equation 2.3.1 of Section 2.3. The maximum value of

tn{Lmax().ll determined Ai' the coefficient for transformation to

normality. The following table show the results:

Table 2.1, Values of InILmaxl~Jl

Standard Left
). Length Predorsal Dorsal Head Postorbital Pectoral

0.00 -1408.7218 -919.1898 -814.9882 -574.1053 -306.9319 -370.4496'
0.25 -1407.7521 -918.1089 -809.3297 -571.4026' -300.1801 -371.1551
0.50 -1407.lJ32 -977.0673 -806.4337 -511.5027 -298.9677 -371.6917
0.75 -1106.7924' -976.6109' -804.1299 -572.0068 -298.8820' -372.8702
1.00 -1407.1436 -916.8740 -803.0921' -512.4505 -299.1438 -374.0129
1.50 -1410.0227 -919.1631 -804.3463 -574.5005 -301.0980 -377.5385
2.00 -1415.7861 -983.7908 -810.0248 -577.9480 -304.9042 -382.3832
2.50 -1424.4146 -990.7092 -820.0454 -582.7810 -310.5352 -388.5293
3.00 -1435.8789 -999.8643 -834.1,108 -588.9846 -317.9702 -395.9617

X' 0.7024 0,5262 0,0000 2.0958 0.5236 7.1266"

* maximum value of tnl(Lmax(~ll
** significant at (l = 0.01
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As seen from table 2.1, the only transformation significant in

testing for normality was "" 0 for the variable left pectoral (this

is the natural log transfonnationl.

2.3 Numerical Test for Nonnality - the Multivariate Case

Andrews, Gnanadesikan and Warner (1971) extended the univariate

transforJlk1tion on the responses to the multivariate case. Let ~ be

a p X N vector where p is the number of variables and N is the

number of observations, and each element Xij > O. 1et ~ '" 0'1' "2'
... , "pl' be a vector of powers defined by

1
(\1

y... IX" - II/A, A,' 0
') (niX,,) A, • 0 .

Then the transformed data matrix may be described as a p-variate

normal model with a mean vector ~ and a covariance matrix t.
Consequently, it can be shown that

One can find ~ by maximizing 10g[Lmax(~II. The hypothesis of normality,

Le. ~"1, may be tested based on the statistic

2{(nILmaX(!1 - (nILma,ljp)J}, ip • 0, 1, ... , 11' 12.3.21

which is asymptotically distributed as X2 with p degrees of freedom.

As seen in the previous section, the only questionable variable in testing

for univariate normality was the variable left pectoral. All variables
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were tested for multivariate normality where }.i' i = 1, ... , 5, the

coefficients for transformation to normality corresponding to the

variables standard length, predoual, dorsal, head and postorbital

remain constant. The coefficient corresponding to the variable left

pectoral, }.6' varied from 0.00 up to 3.00 as before. The following

table summarizes the results:

Table 2.2: Values of tn[LrnaX(~)l

!n[LmaXI~IJ

0.00 -1139.0598

0.25 -1731.1512*

0.50 -1133.1260

0.75 -1733.8470

1.00 -1734.2043

1.50 -1737.7616

2.00 -1738.9448

2.50 -1753.7422

3.00 -1761.8872

-maximum value of !n[LmaXI~Jl

Here, X2
= 6.1062 and X~l. 5 = 9.236. Therefore, the test is not

significant at the 10% level of significance and it is concluded that

there is no significant departure from multivariate normality. No

transformations will be necessary in the remainder of the analysis.
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Chapter 3

OISCRIMINANT ANALYSIS

3.0 Introduction

As mentioned in Chapter I, it is very important to E'stimate the

proportions of North American and European Atlantic salmon in the

population of salmon the fishery at West Greenland. To estimate these

proportions one requires the identification of specimens of unknown

origin. By identification of a specimen, it is specifically meant that

a salmon whose home river is in Europe should be identified as a

European origin salmon, and a sa1a:)n whose home river is in North

America should be identified as a North American origin salmon. Once

the identity of the specimen is detemned, the proportions of North

American to European sa1llon off West Greenland can be estimated.

The iq>ortance of the above identifications to estimate proportions

of North America and Europl:an salmon is well discussed in the

literature. For example, Ritter, Marshall, Reddin and Doubleday (19801

assessed the impact of the West Greenland fishery on stocks and catchec

in North America. At that time, for each tonne of North American origin

salmon caught at West Greenland, the loss to homewater stocks was

estimated to range from 1.70 ~(\ 2.42 tonnes. Similarly, the loss to

homewater catches was projected to range from 1.58 to 2.11 tonnes.
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As a result, the yield increase to all fisheries with any reduction in

catch of North American origin salJlKln at Greenland was estimated to

range from 58\ to 111\. 'rheir assesSEnt indicated that the

exploitation of sallKln at West Greenland was resulting in a reduced

yield to all fisheries in homewaters.

Since salmon is economically an important species to many

cc.untries, the smelt data sampled from European rivers in 1969 and

data sampled from North American rivers in 1968 and 1969 are chosen.

Thus, any salmon caught. at West Greenland can be sampled to study their

identification through the classification technique.

Note that there is vast literature on classification techniques.

In order to classify an observation into one of toe populations, in an

early paper, Fisher (1936) suggested, as a basis for classifir:ation

decisions, the use of a discriminant function linear in the components

of the observations. Other bases for classification have included

likelitlood ratio tests (Anderson, 1958), information theory (KullbacJ:,

1959), and Bayesian techniques (Geisser, 19641. In all cases, sanvling

theories have been considered under the ass~tion that the populations

involved are multivariate normal. As the six variables: slandaro

length, predorsal, dorsal, head, postorbital and left pectoral were

found to follow the multivariate distribution, for the classification

problem, classical methods of discrimination based on the multivariate

normal distribution can be utilized.
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3.1 Eliminating the Effect of Size

Morphometric variables, that is, variables that describe body form,

are measures of the absolute sizes of body parts. Reist (1985) reported

that for specimens in which determinate growth exists, there is a

variation in absolute size within and between groups of specimens.

Furthermore, any heterogeneity in size across samples will result in

heterogeneity in shape. Thus, the differences in shape O'oo1y be the

result of size variation and may not reflect any new information.

Alternatively, the shape of the specimen at a particular size may vary

across samples and thus reflect a difference between specimens.

Therefore, comparison of samples should be in terms of variables free

from the effect of size.

Different methods have been proposed to eliminate the effect o~

size in comparing samples. One technique widely used is the

creation of a ratio between each of the p variables, (Xl' X2, .. " Xpl,

and some standard measure, Z (standard length in this analysis). 'rhe

shape estimate for the jth specimen of the ith variable in a single

population would be:

However, this ratio method has come under criticism for its

undesirable statistical properties, for example, we refer to Atchley,

Gaskins and Anderson (19761, but its use still continues (cf. Mosimann

and James, 1979; Shaklee and 'famaru, 1981; Wilk et. a1., 1980). Further­

more, ratios do not completely remove the influence of size variation
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from the data (Albrecht, 1978; Atchley, Gaskins and Anderson, 1976;

Dodson, 1978).

Another technique used in the adjustment of size variation in the

data is the regression technique. The appropriate regression equation

is:

y • , - PI' - 'I [3.1.1]

each of the p variables, X is the original unadjusted measurement, Z is

the standard measure of the invidiual, Z is the grand mean of the

standard length across all individuals, and ~ is the slope of the

relationship between X and Z. This technique enables one to predict

a specimen's size for a particular variable given that the specimen has a

mean standard length. This technique can be used to remove the effect

of the standard length for the remaining five variables of the

analysis. These five "adjusted" variables will be used in the

discrimination analysis.

Let Xl' X2, X3, X4 and Xs represent the variables predorsal

length, dorsal to adipose, head length, postorbital length and left

pectoral length respectively and let Z represent the covariate

standard length. By 3.1.1

! '" ~ - ~(Z - Zl, where! '" [YI , Y2, Y3, Y4, YS]' ,

~ • [Xl' X2, Xl' X4, '5]' , [3.1.2]

and ~. 'PI' P2, Pl , P4, PS]'
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where

I •xx

Cov(X1,ZI

COV(X2,ZI

Exz '" Cov(X
3

,ZI

Cov(X
4

,ZI

COV(X5,Z)

and l:zz '" Var(Zj

Using the above notations, 3.1.1 can be rewritten as

Cov(X.,ZI
Since ~i "Var(~l then, from 3.1.2
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[3.1.3]

As it has been demonstrated in the last chapter that [~' Z] has a

six dimensional multivariate normal distribution, one writes

Consequently,

13.1.4]

Le.

and

E(XIZ=zl = Ilx +Lxzt;~(Z - Ilz1 ,

V(XIZ",z) • ~xx - Ix'lo~;~I'lox .

13.1.5]

[3.1.6]

By using 3.1.5 and 3.1.6 in 3.1.3,

and VIYIZI = VIXIZ) •

These conditional means and conditional variances will be estimated by

X and Sxx - Sx'loS;;Szx respectively where Sxx '" r(x i - xl (Xi - xlI

and Sx'lo:: r{xi - xl ('lot - z)'.

In summary, the analysis of covariance will adjust each of the

variables for each group to the overall mean st'lndard length according

to the formula:
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where ~ is the original vector, Z is the standard length of each

individual specimen and ! is the covariate of the adjusted variables.

In the following, the conditional variables X where Z is given,

are considered, such that Z = z.

3.2 Testing the Differences Between Groups

Prior to discriminant analysis, it is necessary to test whether

or not a significant separation exists between any two groups.

That is, HO:lJ.1y - 1J.
2Y

= 0 is tested against H
l
:~1Y - J1 2y t. 0,

where illY is-the m~an of the five conditional Y -variables of the

first population and 1l2y is the mean of the five conditional Y

variables of the second population. Let !ij be the five dimensIonal

variables for the jth observation in the ith population, and let

11 be the sample mean vector for the ith sample. Then the above

hypothesis may be tested by the Mahalanobis generalized sample squared

distance, D2
:

where

IJ.2.11

and where

s
p

(01 - 1)5
1

+ (n
2

- 1)5
2

n
1

+ n
2

- 2 IJ.l.ll

IJ.l.ll
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and n3. and 02 are lh~ respective sample shes. The value of Sp

is often referred to as the pooled variance-covariance matrix. One

can now use the distribution of 02 to test if there are significant

differences between the two groups. The statistic (often referred to

as Rotelling's 12 statistic) is given by

13.2.51

where 02 is as in (3.2.11 and k is the number of variables.

It is well known that (ct. Johnson and Wichern, 1982) under

HO' Ii - F lk,n3. +n
2

- k - 1). The larger the value of 02
, the

greater the distance between the groups, and as a result, the

large value of W would lead to the rejection of the null hypothesis.

Wand the corresponding p-values are calculated in testing the

significance of the separation of any two populations (pairliise)

con:ddered in the study. The results in tabular form are shown in

Appendix A. A brief description of these results is also given in the

following.

In Table A3 .1, Appendix A, the separation between the two populations l

North America and Europe, is examined. 'Jhe value of Ii is very large,

yielding a very small p-value. Thus, the populations are well separated.

Similar comparisons have been made between the five rivers of Europe in

Table A3.2. All values of W were large implying that a selected river

is well-seperated statistically from any other river. Similarly Tables

A3.3 and A3.4 show the same results for the six rivers of North America (1968)

and the eight rivers of North America (1969) respectively.
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In summary, it has been determined in this section that all pairwise

populations are significantly different about the five conditional

variables. Group 1 will be referred to as the whole data set consisting of

North American (1969) and ~uropean salmon. Similarly, group 2 will be

referred to as the European data set and groups 3 and 4 as the North

limerican (1969) and North American (1968) data sets respectively.

Since any two rivers under any of the four groups are well sepcrated,

a discriminant analysis can be performed in order to assign a specimen

to its population.

Note, however, that although the rivers under a group are well­

seperated, they still may overlap each other to a certain extent.

Consequently, there may be errors in assigning the specimens. This

is a misclassification problem which will be discussed in Section 3.6.

3.3 Determination of Discriminant E'unctions

The general underlying theory for the determination of

discriminating functions will be as follows: Let Yo = (YI0' Y20' Y30'

Y40' Y50) be an observation which may arise due to one of the

populations: ](1' 1t
2

, ... , 1tk, .. ., ltg' where g = 2 for group 1, g =

5 for group 2, 9 ::: 8 for group 3 and g = 6 for group 4.

As shown in Chapter 2, the samples can be considered to be multivariate

normal. Therefore, it can be considered without any loss of information thal

It! - N(~i'~il, where Il i is the population vector mean "Ind L1 is

the population variance·covariance matrix. The appropriate

classific~tion criterion, under the assumption of equal misclassi[i-



cation costs, for assigning :io to one of the Ii'S is given by:

Allocate ~o to It if

to p,f,1Yl • (niP,) - (~)lnI2l1 - I(nl~kl - II!. - ~,) 'l\'I!o - ~,)

~ maximum value of Pif i IYI

for i:: 1, 2, ... , 9,

13.3.1)

and where Pi:: prior probability of the observation being contained in

the ith population and f i III are multivariate normal densities (ref.

Johnson and Wichern, 1982).

'l'he constant (1)fn(211) can be ignored in equation 3.3.1 since it

is equal for all populations. The quadratic discrimination score for

the ith population is now defined as:

for i:: 1, 2, ... , 9 .

the quadratic score, d~ (!l, is c~sed of contributions froD the

generalized variance IEi I, the prior probability Pi' and the squared

distance froll ! to the population mean ~i' Using discriminant

scores, the classification rule of 13.3 .2J becores the following:

Allocate!O to 1t:k if d~I!)=Max[d~(!),d~(!),"'f d~(!)]

where d~(!) 1s given by equation 13.3.2].

This can be referred to as the Minimum Total Probability of Misclass­

ification Rule for Normal Populations.
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Note that ~i and ~i in [3.3.2J are unknown. In order to

compute all necessary discrimination scores, the following estimates are

used:

~i ;: ~i ;: gi -~~~l~i~)-l (:i - ~il

I,. ;: S ;: S(i) ;: S(il _ S(il
S

(ij-1
S

(!l
1 _i _y _xx _xz zz _zx

where ¥i and ~i are the 5 X I sar.tple mean vector and 5 x 5 sample

covariance matrix respectively. The estimate of the quadratic

discrimination score d~(~l is then:

d~(~) =-~tnl~i I - ~(~o - ~il ,~~l(!O - ~i) + tn{Pi) [3.3.3]

and the classification rule based on the sample is as follows:

Allocate ~a to 1tk if d~(~l;: MaX[d~(~), d~(!l, ... , d~(~ll

whece d~(~} is given by equation 3.3.3.

In sUlMIary, given a vector of observations of a specimen coming

from an unknown population, and given 9 number of populations to

choose from, ~o can be sUbstituted into each of the g equations.

If the kth equation gives the largest cesult, the specimen belongin-J to

these pacticular observations should originate from the kth population.

However, there is always the chance of misclassiflcation, that is,

concluding that a specimen belongs to a certain population when, in

reality, it belongs to some other population. Also, for developing

proportions, ie. the West Greenland fishery, there may be a problem

.... ith the error rate. Because fish are unclassed and because the

nUnU:Jer from each group are not necessarily equal, the proportions
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developed from a given discriminant analysis may be biased. This

misclassification problem will be discussed in Section 3.4.

3.3.1 Selection of Discriminating Variables: Considerations

In doing different studies and analyses, one may encounter several

potential discriminating variables but may be uncertain whether all of

them are valuable and necessary. In these situations, one or more of

the variable3 may be poor discriminators because one or more of the

means may be relatively "close". Also, two or more of the discrimin·

ating variables may be individually good discriminators, but may share

the same discriminating information. Even though they may be good

discriminators in a multivariate analysis, they do not contribute to a

multivariate an~lysis because their unique characteristics are insufficient.

One way to eliminate unnecessary variables is by using a stepwise

procedure to select the most important variables. There are three

ways in which this can be done. The first method is a forward step-

wise procedure. This procedure begins by selecting the individual

variable which provides the best univariate discrimination. (This can

be determined on the basis of several well-known criteria which will

be covered in the next section.) The procedure then pairs this first

variable with each of the remaining variables, one at a time, until a

combination is found which produces the best discrimination. The procedure

then goes on to combine this pair with each of the remaining variables until

a combination of three is found which produces the greatest discrimination.



T~is procedure continues until all possible variables have been selected

or the remaining variables do not contribute enough to the discriminating

power.

The second method is a backward stepwise procedure. T~is

procedure works in a backward direction in which all variables are

initially included, and then the worst variable is cast out at

each step.

Thirdly, these two procedures can be combined. 'this involves a

forward selection procedure with each step starting with a review of

the variables previously selected. If any of these variables no

longer makes a sufficient contribution to the discrimination, then

that variable is cast out, although it will be eligible to be selected

again at any future step.

As the last procedure clearly has t.he advantage over the other two, it

will be used in the selection of discriminating variables for this

analysis.

Note that in order to choose the best solution of discriminating

variables, one would have to test all possible comhinations {all

possible pairs, all possible combinations of three, etc .l. Such

testing would be very costly and time consuming. Thus, such testing

is not attempted here.

Stepwise procedures used in a discriminant analysi s must enter and

remove variables one at a time, selecting them on the basis of certain

criteria. There are several well-known criterion, for example, Wilk's

lambda, Rao I s V, Mahalanobis squared distance bet'ileen closest groups,
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Between-groups-F, and Minimizing Residual Variance.

The criteria chosen in this analysis will be wilk I s lambda.

The reason is that this criterion takes into account both

the differences between groups and the homogeneity within groups.

Unlike other selection criteria, a variable which increases homogeneity

without changing the separation between group centroids may be selected

over a variable which increases sepil.ration without changing homogeneity.

Here, wilk's lambda, denoted by A, is given by:

where

"i

j:l (!i.j - ~i' J(~lj - ~i' l '

3.3.2 Discriminating Variables for the Salmon Data

To see hOil the selection technique described in the previous

section works, a detailed explanation will be given for the st.epwise

discriminant analysis involving the two groups of salmon sampled from

European and North American rivers in 1969. Results of other stepwise

discriminant analysis will be given without any discussion.

The five variables taken into consideration are: Predorsal

(PREDOR), Dorsal to Adipose (DORS), Head (HEAD), Postorbital {paSTOR),
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and Left Pectoral {LF'l'PECT), all free from the effect of Standard

Length. Before a variable is to be tested on the selection criterion,

it must pass certain minimum conditions. These conditions are a

tolerance test to assure computational accuracy; a partial F statistic

to assure that the increased discrimination exceeds A; and

a checJc of the list of variables already entered to determine if any

should be deleted.

Tolerance: This test is designed to preserve computational

accuracy. The tolerance of a variable not yet selected is one minus

the squared multiple correlation between that variable and all other

variables already entered. The correlations are based on the within­

group correlation matrix.

F-to-Enter: This is a partial multivariate F statistic which takes

into account the discrimination achieved by the other variables

already entered and tests the additional discrimination introduced by

the variable being considered. If the F is small, it is not desirable

to enter this variable because it will not add enough to the overall

discrimination

F-to-Remove: This is also a partial multivariate F-statistic, but

it tests the significance of the decrease in discrimination should

that variable be removed from the variables already selected. This

test is done at the beginning of each step to see if there are any

variables which no longer make a sufficiently large contribution t.o

discrimination. A varlable that '~as a good choice earlier may not be

valuable now because other variables could have been entered that



duplicatp. its contribution.

The results of the stepwise procedure are recorded in Table 3.1.

On the first step, the tolerance level is always 1.0 because no

variables have been entered and the F-to-enter corresponds to th:.:

univariate F-statistic. The fifth column gives the values for Wi!k 1s

lambda among which the smallest is selected. The value 0.2H07

is produced by the variable PREDOR and the p-value of F-to-remove is

0.0000, which is less than 0.01. This is the first entry at step 1.

Notice here that the variable PREDOR has an F-to-remove significance

of 0.0000. (Recall that the F-to-remove is a partial F for the

discrimination added by PREOOR after all other variables has created

as much discrimination as possible. In this case there are no other

variables.) Since this p-value is less than 0.01, it stays in and

anoti.er variable is selected from the four remaining variables. At this

stage, all relevant statistics are usually computed, taking into

account that PREDOR has already been entered. Now the tolerance is

less than one since it represents one minus the squared correlation

between PREDOR and the respective variable. The F-to-enter is now the

partial F for the discrimination added by the respective variable

after PREOOR has created as much discrimination as possible. Thus the

smallest Wilk's lambda is 0.16388 produced by the variable DORS, and

since the p-value of the F-to-enter is 0.0000, the variable DORS is

entered at this step.

In step 2, PREDOR and DORS are tested for removal, and both

stay in since the p-value of the F-to-remove for both variables is

O.OOOG The variable HEAD is now entered since it has the smallest
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Wilk's lambda (0.12289) and the p-value for the F-to-enter is o.oono.
The remaining steps proceed in a similar fashion until all the

variables have been entered that meet the requirerrents. Note that

for this analysis, all variables were entered, so all variables ...ill

be used in deteraining the classification functions.



Table 3.1

Entry Statistics for Stepwise selection@

(North America (l9691 vs Europe (1969))

Variable Tolerance Significance win 's
F-to-Enter F-to-Remove Lambda

0.12194
0.11809'

0.14324
0.19593
0.13353
0.11809
0.12194

0.11727*

0.12287*
0.14636
0.14216

0.14408
0.19591
0.14216
0.12289

0.14808
0.21428
0.16388

0.16388'
0.21428
0.24002
0.22451

0.30123
0.21901

0.27907*
0.30123
0.31103
0.43965
0.55968

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0,0000

0.0000
0.0000

0.0000

0.0000
0,0000
0,0000
0.0018
0.0000

0.0000

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.9984149
0.9134243
0.9411196
0.9992086

0.9984149
0.9984149

lliQJt J~M~bles not in) 1.0

DORS 1.0
HeAD 1.0
POSTOR 1.0
LF'JPEC'J 1.0

~ (Variables in)
PReDOR 1.0

(Variables not in)
DORS
HEAD
POS'l'OR
LFTPECT

llilL.f. (Variables in)
PREDOR
DORS

(Variables not in)
HeAD 0.8688658
POSTOR 0.9381055
LFTPECT 0.9987843

~ (Variables in)
PReOOR 0.9126915
DORS 0.9491615
HEAD 0.8688658

(Variables not in)
POSTOR 0.4506181
L,TPECT 0.9140920

~ (Variables in)
PReDOR 0.9001291
DORS 0.9411433
HEAD 0.7951900
LFTPeCT 0.9140920

(Variables not in)
POSTOR 0.4505364 0.0018

~ (Variables in)
PReDOR 0.8991120
DORS 0.9261311
HeAD 0.3911323
POSTOR 0.4505364
LFTPeCT 0.9139263

@nunlmum tolerance level '" D.DDl
lIIinimum significance of F-to-enter '" 0.01

N~~~~mu~_~~1~~;~~:~~e n6~ l~~f~d:~or~ th~' ~~ove table because of space
restrlctlons.



3.3.3 Discriminant Functions

The following tables (3.2 - 3.7) show Fisher's Linear

Discriminant Functions for each of the six stepwise discriminant

analysis. All five variables entered and remained in the stepwise

procedure for each analysis. Table 3.6 and 3.7 show classification

function coefficients for the five corronon rivers in North America from

the 1968 and 1969 data. This allows one to determine the amount of

variation in the functions between 1968 and H69, A better comparison

may be obtained when the first two canonical functions are graphed

later in Section 3.5. Fisher's linear discriminant functions for the

stepwise discrminant analysis of Europe (1969) and North America (1969)

are:

f(EurOpe} '" -1078.023 f 17.84350('11) f 14.05400('12) + 22.92478('13)

-7.369561\'1
4

) + 9.887239lYs)

f(N.America) = -1353.518 f 19.56596(Yl) f 16.475170'2) + 26.00119('17.)

- 8.3660541Y,1 +10.8204211,1

The coefficients of the two classification functions are presented in

tabular form in Table 3.2. Note that for remaining comparisons,

the discriminating functions will be presented in tabular form only.
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Discrimination Coefficients for
Europe 11969J I North AJIIeflca 11969)

Europe (19691 N. America (1969)

PREDDR 11.84350 19.56596
DORS 14.05400 16.47511
HEAll 22.92478 26.00119
POSTOR -1.369561 -8.366054
LFTPECT 9.8E1239 10.82042
(constant1 ~-1",01",8",.0,.2,,-3__----=-"'13"'5"'3."'51"'8__

Table 3.3 Discrimination Coefficients for

~~eAr~~~d:u~~Pg~~nJ~9~~}J~:eft: ust:
gan

R.,

Logan Almond Boyne Lee USK

PREDOR 32.13552 23.94184 25.60663 28.55410 31.16148
DORS 15.96818 12.17664 13.51858 16.00958 11.18150
HEAll 44.49165 36.00499 35.15811 40.00145 4U3131
POSTOR -33.94361 -16.94434 -15.11131 -18.93118 -31.16113
LFTPECT 3.926011 5.922640 4,653036 6.112811 5.130191
{constant) -1696.883 -1061.011 -1161.193 -1487.166 -1734.043

Salmon R.

Maine Miramichi Saint John Indian Salmon Salmonier

PREDOR 36.24010 11.80346 32.11585 31.25350 31.53015 30.40144
DORS 31.85601 15.81186 30.01713 18.19061 30.14129 18.64441
HEAll 36.10443 31.54166 35.00321 30.91661 39.41300 31.63644
POSTOR -1.541365 1.615035 1.116538 6.914666 -0 .1103531 -~. 800655
LFTPECT 16.61139 14.59491 15.40B41 15.03115 16.69534 15.23686
(constantl -2579.921 -1190.138 -1256.800 -1134,665 -1418.564 -1111.504



Indian R.

'REDDR 23.81917 19.21030
DORS 11.53543 15.08423
HEAD 39.46106 34.84530
'OSTUR 0.1411219 1.638135
LFT'ECT 10.86295 10.20434
(constant) -1933.170 -1425.540

24.05127 22.25444
18.24102 16.68330
31.56235 35.38183
6.871814 0.3208130
10.52034 11.18892

-2009.915 -1666.305

Table 3.5 (cont1d)

Indian Salmon Karryt s Sand Hill

PREDOR 21.41158 20.89512 18.16904 22.16049
OaRS 16.23586 15.9602' 13.90223 11.81514
HEAD 31.43541 31.83026 32.82964 39.88664
paSTOR 1.004188 -0.3519694 1.041672 2.163119
LFTPECT 9.19"1149 10.27874 9.726439 10.19514
(constant) -1631.720 -1610.415 -1285.565 -1913.869

Table 3.6
1968 Rivers

nlan

Indian Salmon

PREOOR 33.08410 25.35185 29.43014 29.31118 29.11316
OORS 28.10610 23.20265 21.12595 25.31415 21.02385
HEAD 39.23114 35.16950 31.81103 33.81011 42.41194
'OSTDR -6.931315 -1.983088 -3.321890 1.840192 -5.992241
LE'TPECT 16.11321 14.11866 14.98599 14.56108 16.23285
(constant) -2424.869 -1689.012 -2l22.J23 -2003.848 -21 84.901.
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Maine Miramichi Saint John Indian Salmon

PREOOR 29.01089 23.60305 29.45414 26.03939 25.50514
OQRS 20.61146 11.16342 21.41219 19.08929 18.81403
HEAD 33.51229 29.96985 31.20832 32.20832 32.13199
POSTOR 4.416091 4.617626 11.18210 4.25.85. 2.682117
LFTPEC'I 12.66405 11.44626 12 .•0168 10.83586 11.11958
(constant) -.fj21",0.,-,.-"98",5~-1C!5,-,4J",.2,,,6,-9--,-:,;2",19",3,.].0",42'--..::-,-11"-10lW,,,"51,,,,~-1,,-1,-,44,,-.2=09

3.4 Results of Misclassification Probabilities

Recall from Secti{j(l 3.2 that Hotellings' T2 test showed that the

populations (for eltample, North America and European rivers) are well

seperated. However, this does not mean total non- overlapping of the

distributions. Consequently, there remains the possibility that a

random observation, may be misclassed into the wrong population. In

order to judge the efficiency of the discrimination criterion discussed

in the last section, the following procedure is taken: 0) An

observation is taken from the existing samples and the discrimina- tion

criterion is applied to determine the population in which it belongs.

This is repeated and continued for all observations. Next, the total

number of cases that were correctly classified, denoted by nc 1 is

counted and divided by the total number of cases in the sample, denoted

by n.. The result is multiplied by 100 to give the percentage of

correctly classified cases, denoted by P. Hence, P is calculated

by:

n
P '" if (100)
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(2) A proportional reduction in error statistic (Klecker, 1980) gives

a standardized measure of improvenent regardless of the number of

groups. This statistic, called tau, is simply:

9

lie - 1: Pilli

tau"~
II. - 1: Pini

'-1
where lie and n. are defined above, ni is the 'lumber of cases in

the ith group and Pi is the prior probability of group membership in

the ith group. The maximum value for tau is 1.0, and it occurs when there

are no errors in prediction. A value of zero indicates no improvement and

negative results indicate no discrimination between the groups.

3.4.1 Results of Classification

The following ta!,'es contain classification results for each of

the six sets of classification functions. T3bles 3.8-3.13 give the number

of observations in each group (nil i the number and percentage of

observations correctly and incorrectly classified for each group; the

percentage of all observatiolls correctly classified, Pi; and the

proportional reduction in error statistic, tau.

Table 3.8 gives the classification results [or lhe discdminant

analysis between North American and European salmon sampled in 1969.

The overall misclassification rate (or error rale) was only 0.3)\ and a

greater but insignificant proportion of European salmon was clas3ificd as

North American than the converse. The actual proporlion of North i\mcrici!n
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to European-origin salmon was 0.351:0.649, and the predicted proportion

from classification was 0.349:0.651. Thus, there is an error rate of 0.2%

in favour of European salmon, which is an extremely small percentage.

European 119691. North America 119691

Actual Group ni
Predicted Group

Europe North America

Europe 495 m 4
199.211 10.811

North America 915 1 914
10.111 199.911

ni '" 1410

ne '" 1405

p = 99.651

tau'" 0.9929

The tau value of 0.9929 indicates that classification based on the

five discriminating variables made 99.29% fewer errors than would be

expected by random assignment.

Table 3.9 gives the classification results for the discriminant

analysis between the salmon sampled from the five European rivers in

1969. The overall misclassHication rate was 3.~4%, ranging from

1.3% for River Almond to 8.3% for River Usk. The tau value of 0.9520

indicates that classification based on the five discriminating

variables made 95.20% feloler errors than would be expected by random

assignment.

Table 3.10 displays the classification matrix for the discriminant



-53-

analysis between the salmon sampled from the six North American

rivers in 1968, The overall misclassification rate was only 5.52%,

ranging from 0,0% for Miramichi to 13.5% for Saint John. The tau

value of 0.9337 shows that classification based on the five discriminating

variables made 93,87% felrl'er errors than would be expected by random

assignment.

In Table 3,11, the classification results fOl the discriminant

analysis between the salmon sampled from each of the eight North American

rivers in 1969 is given. The overall Llisclassification rate for the

eight rivers was only 17.13\, ranging from 5.6% for Harry's River to

3~.8% for Sand Hill River. The tau value of 0.8042 shows that

classification based on the five discriminating variables made 80,42%

fewer errors than would be expected by random assignment,

Tables 3.12 and 3,13 give the Classification results for the

discriminant analysis between the salmon sarrpled from each of the five

"common" rivers in 1968 (Table 3.121 and 1969 (table 3.13). The

overall misclassification rate for 1968 was 4,54\ whereas it was

11.41% for the 1969 data, That is, more than 2~ times more salmon

were misclassified for the same regions in 1969. In 1968, the range

of misc1assification went from 0.0\ for Miramichi to 8.n for Saint

John. In 1969, the range was from 4.~\ to 26.8\ for Miramichi and

Salmon River respectively. The tau values of 0.9433 for 1968 and

0,8567 for 1969 indicate that the classification based on the

discriminating variables made 94,33\ and 85,61% fewer errors respect ively

than would be ezpected by random assignment.
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Table 3.9

European Rivers

Actual Group Q, Actual Group

Logan Almond Bayne Lee Usk

Logan 117 110 0 0 0 7
194.011 10.011 10.011 10.011 16.01)

Almond 158 0 156 2 0 0
10.011 198.7\1 lUI) 10.011 10.01)

Boyne 50 0 0 49 1 0
10.01) 10.011 198.011 12.011 10.01)

Lee 98 0 0 0 95 3
10.011 10.011 10.011 196.911 13.111

Usk 12 6 0 0 0 66
18.311 10.011 10.01) 10.011 191.711

n. == 495 , " 96.161

n, " 476 tau = 0.9520

Table 3.10

North ArneriColl (968) Rivers

Actual Group Q, Predicted Group

Maine ~liramichi Saint John Indian Salmon Salmonier

Maine 81 78 0 1 0 2 0
196.51) 10.01) 11.211 10.011 12.511 10.011

Miramichi 147 0 147 0 0 0 0
10.011 1100.011 10.011 10.01) 10.01) 10.011

Saint John 148 1 0 128 3 8 8
10.7\1 10.011 186.511 12.01) 15.41) 15.411

Indian 50 0 0 2 48 0 0
10.011 10.011 14.011 196.011 10.011 10.011

Salmon 147 0 0 7 0 139 1
10.01) 10.011 14.811 10.011 194.611 10.711

Salmonier 151 0 0 7 0 0 144
10.011 10.011 14.611 10.011 10.011 195.411

ni '" 724 , " 94.481

n, .,. 5~4 tau" 0.9337



Table 3.11

North American (1969) Rivers

Actual Group n, Predicted Group

Maine Mira- Saint Koksoak Indian Salmon Harryls Sand
michi John Hill

Maine 142 119 0 4 0 1 0 0 18
183.8%1 (0.011 (2.811 (0.01) (0.111 (0.01) (0.011 112.11

Miramichi 151 0 139 0 1 0 3 8 0
(0.011 (92.111 (0.011 (0.111 (0.011 (2.01) (5.31) [0.01

Saint John 73 4 0 62 0 0 0 0 1
(5.51) (0.01) (84.91) 10.011 (0.01) (0.011 10.01) (9.61

Koksoak 130 0 0 0 111 5 6 0 2
(0.01) 10.01) (0.01) (90.01) (3.81) 14.611 10.01) (1.5%

Indian 125 0 2 0 5 95 23 0 0
(0.011 11.611 10.011 14.011 (16.011 118.41) 10.011 10.01

Salmon 41 0 1 0 0 9 31 0 0
(0.011 (2.411 (0.011 (0.01) (22.011 (15.61) (0.01) (0.01

Harry's 89 0 5 0 0 0 0 84 0

Sand Hill
(0.011 (5.611 10.011 (0.01) (0.01) 10.01) 194.41) [0.01

148 26 0 23 1 a 0 0 98
117.61) 10.01) 115.511 /O.1\l (0.01) 10.011 10.011 (66/21

n
1

= 899 , • 82.811

n, = 145 tau = 0.8092

Table 3.12

Common North American (19681 Rivers

Actual Group n, Predicted Group

Maine Miramichi Saint John Indian Salmon

Maine 81 71 0 1 0 3
(95.11) 10.01) 11.211 10.01) (3.111

Miramichi 147 0 141 0 0 0
10.01) 1100.011 10.011 10.011 (0.011

Saint John 148 1 0 136 3 8
10.11) (0.01) (91.911 12.011 (5.411

Indian 50 0 a 2 48 0
10.011 (0.011 14.011 196.011 (0.01)

Salmon 141 0 0 0 0 139
.JM!L (0.011 (0.011 (0.011 (94.611

n, =573 = 95.461

"i = 50 tau =0.9433
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Common North American (19691 Rivers

Maine Miramichi Saint John Indian Salmon

Maine 133 0 7 1 1
193.71) 10.01) 14.91) lUI) 10.11)

Miramichi 0 144 0 0 7
10.011 195.41) 10.01) 10.011 14.6%1

Saint John 7 0 66 0 0
19.61) 10.01) 190.41) 10.01) 10.011

Indian 0 2 0 98 25
10.011 11.611 10.01) (78.411 120.011

Salmon 0 2 0 9 30
(0.011 14.91) 10.01) 122.011 173.2%1

n. = 532 P = 88.531

ni " 471 tau'" 0.8567

Notice here that the observations used to determine the

discriminating functions were also used to calculate the percentage of

cases correctly classified. Many authors (c.f. Lachenbruch and Mickey,

1968; Srivastava and Carter, 1983) suggest that this method of estimating

classification rate tends to overestimate the power of the classification

procedure because the validation is based on the same cases used to

derive the classification functions. The next section will determine

the reality of this problem for the ana.lysis.

3.5 Verification of Classification Results: The Jackknife Technique

The classification procedure used in the previous section is verified

by using the jackknife classification technique. This technique is used

to remove some of the bias inherent in basing classification decisions
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on that data set used to determine the classification functions. However,

it has been determined that when large samples are available, it is not

necessary to use the Jackknifing technique because the bias has already

been reduced to a very low leveL This will be shown in the following

sUbsection.

1J..:.L Generation I"lf Random Numbers to Select Observations

For the jackkifing technique, random numbers are generated such

that each observation has a predetermined probability of being

selected. For example, given that the total sample size is n and one

wants, on the average, h specimens excluded for each jackknife, then one

would choose

p = 1 _ h .
n

To determine which of the n specimens are excluded, a number

ranging from 0 to 1 is assigned to each of the n observations. If

the random number for a particular specimen is p or less, then that

observation remains. However, if the random number is greater than

P, then that observation is excluded. The observations not

excluded are then used to determine the classification functions and

these functions are used to classify the remaining unselected

observations.
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3.5.2 Results

(Al North America (1969) versus Europe

For the discriminant analysis of North American and European

origin salmon, there is a total of 1410 observations. Using the

jackknife technique (Appendix B), samples were taken such that each

observation had a probability of 0,gS58 of being selected. This gives

approximately 1390 selected observations and 20 unselected observations

per sample (refer to Appendix B). The discriminating coefficients were

then determined for each sample and were used to classify the remaining

unselected observations. One can now calculate the number classified

correctly and incorrectly for these unselected cases. 'l'his was

repeated 500 times for a total of g991 unselected observations classified.

The result.!: showed 32 misclassified and 9959 correctly classified cases, Le.

0.32% misclassified and 99.68\ correctly classified (see last row of

the table in Appendix B). This percentage is actually 0.03% higher than

the 99.65% originally classified correctly. Therefore, no bias was

evident in this analysis.

(8) Five European Rivers

This jackknife procedure was used on the European origin salmon

taken from five rivers in 1969. Samples were taken from the 495

observations such that each observation has a probability of 0.9494 of

being selected. This gives approximately 470 selected and 25 unselected

cases per sample. The unselected cases were again classified by using

the discriminant functions derived from the selected observatit ',.

This was repeated 400 times for a total of 10,062 unselected cases of whicr.
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470 observations (4.67\) were misclassified and 9592 observations (95.33\)

were correctly classified (Appendix Cl. This classification rate is only

0.83% lower than the original rate of 96.16\.

In summary, it was found that for n = 495, the bias was less than 1%

and for n = 1410, the bias was negligible. Therefore, if one assumes a

decreasing bias for an increasing sample she, then it is safe to base

classification decisions on the data sets used to determine the

classification functions. 'that is, the samples are large enough to

reduce the bias to a minimal level.

3.6 Canonical Discriminant Functions

Classification can also be done with the canonical variables

instead of using the original discriminating vari~l)les. The final

classifications will generally be identical; however, a D~tter picture

of how cases are being classified can be obtained by superimposing the

classification boundary lines over a plot of cases. These

classification plots are useful for examining the relationship of

groups to each other and graphically depicting misclassifications. In

general, the first n canonical variables will produce an n

dimensional graph. Therefore, for convenience, the first two canonical

variables will be plotted. The underlying theory for this methodology

is explained in the following:

Suppose there are p variables in a discriminant analysis of g

groups. It is desirable to find new variables that are independent and

have the largest F-values fot testing equalit~' of the g means. Thus,
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one wishes to find a vector

a = (a
l

, ••• , a
p
)' such that

is a maximum (cf. Srivastava and Carter, 1983), where Y
i

is the mean

vector of the ith population, n
i

is the number of observations from the

ith population, y is the average of all the observations, and ~p is

the pooled covariance matrix (see Section 3.2).

The maximum of 3.6.1 occurs when

(8 - ls )a ·0
-p -

satisfies the equation

{3.'.21

where B is the between groups mean sum of squares given by

clnd A. is the maximum eigenvalue of ~;lB.

Since the first two canonical variables are of interest (as long

as the minimum of and g - 1 is greater than one), one calculate

i= 1, 2,

wllere ai is the solution of 3.6.2 for A equal to the ith largest

eigenvalue of S-lB. Then, the first two canonical variables are

plotted to show the separation of the g groups.

To get a better picture of how cases are being classified,
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the classification boundary lines are superimposed over the plot of cases.

In rigures 3.1 to 3.4, the broken lines seperating the groups represent

these classification boundaries and the solid lines represent the

boundaries for the plot of cases. Note here that a plot for the

analysis of European origin salmon versus North American origin salmon

was not included because there was only one canonical discriminant

function obtabed from the two groups. Also, the plot for the analysis

of the eight North American rivers sampled in 1968 was not included

because with so many plots of cases, it was difficult to distinguish one

plot from the other. 'l'he results are as follow:

(11 Five European Rivers

rigure 3.1 shows the plots and boundaries of the first two

canonical discriminant functions extracted from the stepwise

discriminant analysis procedure. These two canonical functions

represent 98.69\ of the total variability between the groups. River Almond

(2) and River Boyne I3l are well seperated [rom the other rivers. However,

Logon River (1) and River Usk (5) have a large percentage of overlap,

which leads to a large misc1assification between them.

121 six North American Rivers - 1968

Figure 3.2 shows the plots and boundaries of the first two

elttracted canonical discriminant functions. These two canonical

functions represent 94.57% of the total variability between the

groups. Miramichi (2) is well seperated from all other

qroups, but Saint John (3) tends to overlap Indian Rivec(4l, Salmon
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River (5) and SallllOnier River (6). Otherwise, the groups of Maine (II,

Indian River, Salmon River and Salmonier River are seperated relatively

well.

pI Five Common Rivers of North America (19681

Figure 3.3 shows the plots and boundaries of the first two

extracted canonical discriminant functions. 'the two functions

represent 96.45% of the total variability between groups. The figure

indicates Hiramichi (2) as having good separation from the other groups.

However, some overlap exists bet\/een Saint John (3) and Indian River

(4); and Saint John and Salmon River (5).

(4) rive Common Rivers of North America (19691

Figure 3.4 shows the plots and boundaries of the first two

extracted canonical discriminant functions. The two functions represent

98.46% of the total variation between groups. Haine 0) and Saint John

(3) are clearly seperated from the remaining groups. However, there is

overlap present between Maine and Saint John; and Indian River (4) and

Salmon River (5) have relatively large overlaps. This large overlap is

evident in the classification table (Table 3.131.

Since Figures 3.3 and 3.4 are plots of the same rivers sampled in

1968 and 1969, one would expect some similarity. However, the

classification percentages were not the same (95.46% and 88.53%) and

the positions of the group plots shifted very significantly. ror

example, Indian River and Salmon River were virtually without overlap

in 1968, however a relatively large overlap existed in 1969.
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Also, Miramichi, which overlapped wit~ Indian River and Saloon

River in 1968, was very well seperated from these two rivers in 1969.

The reasons for these differences are not determined ~ere but is left

for further study.

There are certain situations when the classifications and canonical

discriminant functions will not necessarily provide the same results.

In particular, this is true when the group covariance matrices are not

equal. This is because the pooled variance-covariance matrix must be

used when calculating the canonical discriminant functions. Unfortunately,

there is no clear guidelines for dete!l1lining how different the group

covariance matrices must be before the use of canonical discriminant

functions becomes unjustified. However, Tatsuoka (1911, p. 232-33)

reports evidence that the canonical discriminant function procedure

yields similar results and can be used unless the group covariance

matrices are "drastically" different. from this point of view, tests

reqarding equality of. variances might have been more appropriate but

were not chosen in the present report.



Fiqure 3.1
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Plots and 8ounda~ies of the firs~ t:..o Canonicaillariates ~O~
the rive £ur0t=ean ~i'Je:s,



figure 3.3

f'igure 3.4
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Plots anc ECt:ndaries of the first t ..o Canonical Variates for t:.~
FiIJe CCi!lr.lon North ft.me!'ican RiIJers l!96al

Plots and Boundaries of the first t ..o CanonicJl Variates for t~=
~i·Je Common North ;'~"e;dcan Rivers (19691
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Chapter 4

CLUSTERING APPROACK FOR DISCRIMINATION

4.0 Introduction

It is well known that the basic aim of cluster analysis is to find

the "natural groupings·, if any, of a set of. specimens. Thus, cluster

analysis aims to allocate the set of specimens to a set of mutually

exclusive, exhaustive groups such that specimens within a group ate

similar to one another while being dissimilar from specimens in other

groups. In discriminant analysis, one begins with apriori well

defined groups and asks how the given groups differ. However, in

cluster analysis, one begins with a gtoup aoo asks whether the given

group can be partitioned into sub-groups that differ in SOllie

meaningful way.

As cluster analysis is, in general, able to construct seperate

groups, the techniques of clustering are applied to the adjusted data

(Y1, Yz ' YJ , Y
4

, Ys ) and examine the validity of seperation between

groups is examined. Thus, the aim of the present analysis is fundamentally

different from that of usual cluster analysis. More specifically, the

adjusted data of k groups is combined to form a single data set and

then clustering techniques are applied to see whether the k groups are

well seperated or not. Hence t it is a discrimination analysis based on
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the clustering principle.

One may describe the clustering principle, in general, as follows:

First, k measurements are taken on each of the n specimens. The

n by k matrix of raw data is then transformed into an n by n

matrix of distance measures where the distances are computed between

pairs of Objects across the k variables. Next, a clustering

algodthm is selected, which defines the rules concerning how to

cluster the objects into subgroups on the basis of the distance

measures. Finally, the uncovered clusters are contrasted, or

profiled, in terms of their mean values on the k variables or other

characteristics of interest.

4.1 Similarity Measures

Fundamental to the use of any clustering technique is the

co:nputation of a measure of similarity or distance between the objects

(specimens) concerned. These distance measures can be seperated into

two broad classes in two distinct ways, depending on the nature of the

data. For data having qualitative components, a matching-type measure

is appropriate. However, since the data is quantitative, a distance­

type measure will be used.

E:ach k-dirnensional specimen is represented by the vector ~ '" 1\,

Yz' ••. , Y",} where k" 5. The notation Y
i

is used to denote

the measurements collected on the ith specimen, that is, yi "

(Yil , Yil' ... , Yik)' The familiar Euclidean distance, dl:l' bet\<leen

two specimens i and j is denoted as
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and the squared-Euclidean distance is

... , n

... , n [U.1J

d'j:: r (Y' l - y
J
.()2 I ~: ~: :::; ~ . [4.1.2]

l. (-1 l. 1 t- )

This will be used as a basis to define appropriate Euclidean distances

in Section 4.3 for the purpose of clustering.

4.2 Clustering Techniques

The next step is to select a particular type of computational

algorithm. Two of the most popular types of clustering techniques are

hierarchical and partitioning. Hierarchical techniques cluster the

clusters themselves at various levels, whereas partioning techniques

form clusters by optimizing some specific clustering criterion,

Hierarchical Techniques perform successive fusions or divisions

of the data. One of the main features distinguishing hierarchical

techniques from other clustering algorithms is that once an object

joins a cluster, it is never removed and fused with other objects

belonging to some other cluster. Agglomerative methods proceed by

forming a series of fusions of the n specimens into groups.

Divisive methods partition the set of n specimens into finer and

finer subdivisions. The output from these methods is typically

summarized by the use of a dendrogram. This is a two-dimensional
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tree-like diagram illustrating the fusions or partitions that have been

construcLed at each successive level. Everitt (IS80) I Dillon and Gold­

stein (1984), and Chatfield and Collins (1980), among others, discuss

these techniques in further detail.

Partitioning Technigues Unlike hierarchical clustering techniques,

methods that affect a partition of the data do not require that the

allocation of an object be irreversible. Thus, objects may be

reassigned if their initial placements are inaccurate. These

techniques partition the data based upon optimizing some predefined

criterion. The use of partitioning techniques usually assumes that

the number of final clusters is known and specified in advance,

although some methods will allow the number to vary. There are many

partitioning techniques, and they differ with respect to (1) how

clusters are initiated, (2) how objects are allocated to clusters, and

(31 hOIi some or all of the objects already clustered are reallocated

to other clusters.

For the data used in this study, it i felt that partitioning

techniques were selected because it was desirable to obtain a

predefined number of clusters. In other words, a partitioning algorithm

allows one to specify the final number of clusters in advance. The

algorithm produces clusters by finding cluster centres based on the

values of the cluster variables and assigns cases to the centres that

are nearest. The basis of this partitioning algorithm is described in

the following section.
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4.3 Algorithm for partitioning Technique

Denote the conditional variable Yijl the value of the jth

specimen on the ith variable, i =- 1, 2, ... , k; j = 1, 2, ... , 0, as

before. Let P
nk

be the partition that results in each of the n

specimens to be allocated to one of q clusters. The mean of the ith

variable in the tth It =- I, ... , g) cluster will be denoted by fit'

and the number of individuals belonging to the !th cluster by n
t

.

Following equation 4.1.2, the squared Euclidean distance between the

jth specimen and tth cluster is expressed as

IU.l)

The error component of the partition is defined as

[4.3.2)

where t(il is the cluster that contains the jth specimen, and 0j,t{j)

is the squared Euclidean distance between specimen j and the cluster

mean of the cluster containing the specimen. The procedure is as

follows:

(1) Firstly, the initial cluster centres are selected. A centre is

an estimate of the average value of each clustering variable for the

cases in a cluster. (A centre includes one value for each variable).

This can be obtained in various ways. One method is to select the k
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cases with well seperated values as initial centres, where k is the

number of final clusters desired. Then, the sample means of the variables

can be used for each group as the inittal cluster centres.

(2) Next, the values of the initial cluster centres are updated to

derive the classification cluster centres. Each case is assigned, in

turn, to the nearest cluster centre lmeasured by the squared Euclidean

distance, Di£l such that E(Pnkl (equation 4.1.4) is minimized.

When a case is assigned, the procedure updates the centre to a mean

for the cases that are thus far in the cluster. Therefore, ~s the

cases are processed, the centres migrate to concentrations of

observations.

(3) 'l'he final step ressigns each case to the nearest of the

updated lclassification) cluster centres. The reassignment yields the

final clusters, and the final cluster centres result from the variable

means for the cases in the final cluster.

4.4 Construction of Appropriate Clusters based on Partitioni.ng Techniques

al The k Most Seoerated Observation as Initial Centres

The above procedure, using the k most seperated observations as

the initial cluster centres, were used to cluster the samples of

(I) North American salmon sample in 1969, 12l North American salmon

(1968), (31 European salmon (1969) and (4) the combined sample of

North American and European salmon saflllled in 1969. Since the number

of groups are known for each of the four samples, k is initialized to
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equal the number of groups represented in the sample.

However, the results of this method were flawed by the presence of

extreme values in some of the groups. Although outliers were removed

from the data (re: Chapter 21, there were relatively extreme cases

that remained. As a result, some of these cases were choser. as

initial cluster centres and, since these cases are far removed from

the rest of the data, no observations (or very few) were aS3igned to

them. Thus, it resulted in some clusters containing few observations

(sorrdimes only one), while other clusters contained a large portion of

the data.

QUhe k Sample Means as Initial Cluster Centres

11 much more effective method can be used by taking the k sample

means as the initial cluster centres. The procedure of Section 4.3

was again implemented using these k sample means instead of k most

seperated observations. This method was used to cluster the samples

of (1) North American (1969) salmon, (2) North American (1968)

salmon, (3) European salmon, and (4) North American (1969) and

European salmon. Again, k is utilized to equal the number of groups

represented in the sa~ple. The following section describes the "esults of

this clu~tering procedure applied to the four populations.

1. The Eight Regions of North America !l9691

The above procedure was used to cluster the sample of North

American (1969) salmon into eight groups. Eight cluster centres were

initialized (Table 4.11 from the eight vector means. Tables 4.2 and
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4.3 show the classification and final cluster centres respectively,

which were calculated f)n the basis of equations 4.3.1 and 4.3.2.

Table 4.4 display the squared Euclidean distances, d~j (equation

4.1.21, between all pairwise final cluster centres i and j.

Since the origin of the observations are already known,

a classification table can be produced to determine the results of the

clustering procedure (Table 4 5). In a practical situation, a

classification table would not be used when doing a clustering

procedure. 'Fhis is because a cluster analysis is usually only used

when the origin of the specimens is not known. However, it

is very informative for the purpose of this study.

It is shown in the classification table that the clustering

procedure maintained n. 64% of the original groupings. This

percentage suggests that there is good seperatio!l between the eight

groups. Recall that using discriminant analysis for this sample, the

percentage of correctly classified cases was 82.87%. This difference of

approximately 10% is not unlikely. Since the clustering procedure does

not take into consideration the variance-covariance matrix, a lower

classification rate is expected using this method.

2. The Six Regions of North America 119681

This procedure was again used to cluster the sample of North

American (1968) salmon into six -Jroups. six cluster centres were

initialized (Table 4.61 from the six vertor means. Tables 4.1

and 4.8 show the classification and final cluster centres respectively



and Table 4.9 displays the Euclidean distances between all pairwise

final cluster centres.

The results of the classification table indicates that the

clustering procedure maintained 86.05\ of the original groupings

(Table 4.101. This suggests that the six groups are well seperated.

Notice that this classificat ion table is very similar to T3ble

3.10 of Chapter 3 according to where groups are misclassified.

3. The Five Rivers of Europe

The third analysis deals with the clustering o~ the sample of

European salmon into five groups. Five cluster centres were once

again initialized (Table 4.111 from the five vector means. The

classification and final cluster centres are displayed in Tables 4.12

and 4.13 respectively and the Euclidean distances between all pairwise

final cluster centres are given in Table 4.14.

Table 4.15 displays the classification results for the clustering

procedure. The percentage of correctly grouped observations is 85.25%.

This suggests that the group meansare well seperated. Other than

River Usk, this tahle is very similar to the classifintion table for

these rivers in Chapter 3 (Table 3.10).

4. The Two Groups of North America 119691 and Europe

Finally, the clustering procedure was used to cluster the sample

of North American (1969) and European origin salmon into two groups.
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The two cluster centres were initialized 'Table 4.16) from the two

vector lri!ans. Tables 4.17 and 4.18 show the classification and final

cluster centres respectively and Table 4.19 displays the Euclidean

distance between the tvo cluster centres.

The results of the classification table indicate that the

clustering procedure maintains 99.51\ of the original groupings ('fable

4.201. This is an extremely high percentage, and is only slightly

less than the classification percentage of the classification table of

Chapter 3 (Table 3.8). This is a strong indication that these two

groups are very well seperated.

In summary, all clusterir:g methods maintain a high percentage of

the original groupings. Compared to the discriminant analysis, the

clustering procedure failed to seperate approximately 10\ )OOre salmon

than the discriminant analysis. This is !)ecause, as explained earlier,

the variance-covarian"e matrix is not used in clustering procedures.

However, the clustering did determine the seperation amongst groups

and supported the results of the Hotelling's ,2 statistics and tests

of Chapter 3.



Table 4.1
CLUSTER PREDORSlIL

1 63.UO
2 52.582
3 63.904
4 58.402
5 51.m
6 56.529
1 50.693
8 61.501

Initial Cluster Centres
DORSAL READ POSTORBITAL
35.199 36.101 18.510
29.852 31.713 16.473
36.931 36.636 19.940
34.051 32.104 16.822
32.350 33.665 11.330
31.595 33.622 11.080
27,374 30.093 15.542
35.648 36.336 18.924

LEFT PECTORJIL
21.651
24.940
27.677
26.m
24.686
25.801
23.720
27.643

Table 4.2
CLUSTER PREDORSAL

1 6'.0166
2 52.8225
3 63.7125
4 59.0299
5 51.3588
6 56.3060
1 50.938'
8 61.1235

Classification Cluster Centres
DORSAL READ f .:U'O"RB"Ifl'A",L---,L",EFU'-:,P",EC"""ORA""L
34.7222 36.6875 19.1648 27.5777
30.7478 31.7Hl 16.3737 24.8915
31.0862 36.5809 19.9311 21.844'
34.0170 33.4704 17 .2110 26.6839
32.3291 33.8912 17 .3433 24.6934
31.3122 33.4865 17 .0123 25.8056
27.3986 30.0396 15.4655 23.7447
36.3412 36.050' 18.9852 21.4161

Table 4.3
~LUSTER PREDORSAL

1 63.5578
2 52.5169
3 63.8963
4 58.6547
5 51.6525
6 56.4112
1 50.8619
8 61.0525

Final Cluster Centres
DORSAL HEAD POSTORBI'l'AL
3'.5053 36.4"5 18.8152
30.1946 31.13'0 16.'852
31.2914 36.5865 19.5530
34.3'0532.9565 16.9651
32.4228 33.6961 11.3113
31.3439 33,3148 17.0H5
21.4548 30.3050 15.6610
35.933535.9184 18.69'1

LEFT PEC'l'ORAL
27.7362
24.9693
28.0397
26.6'16
2'.'655
25.9564
23.8'21
21.3939



Distances Between Final Cluster Centres
2 3 4 5 6

Table 4.4
CLUSTER

1
2
3
4
5
6
7
8
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1
0.0000

13.21810.0000
2.906714.86200.0000
6.4094 7.6583 7.6165 0.0000
7.7384 5.9603 9.4240 3.1764
8.73594.012210.56313.7858

16.5553 3.799718.408511.1671
2.946811.5562 3.3845 4.5800

0.0000
2.2295
9.2428
6.2899

0.0000
7.8864 0.0000
7.332615.1571 0.0000

Table 4.5 Classification Results for Cluster Analysis of
the Elght North Mlencan (1969) Rlvers

Actual Group Cluster

2 6 '1
Maine 83 0 26 2 1 0 0 30 14

158.511 10.011 118.311 11.411 10.711 10.011 10.011 121.1\1
Miramichi 0 121 0 0 0 9 21 0 15

10.011 180.111 10.011 10.011 10.011 16.011 113.911 10.0\1
Saint John 16 0 48 0 0 0 0 9

121.911 10.011 165.811 10.011 10.011 10.011 10.011 112.3\1
Koksoak 0 0 0 101 6 19 0 4 13

10.01) 10.01) 10.011 (77.711 14.611 (lUll 10.011 (3.nl
Indian 0 2 0 9 90 24 0 0 12

10.011 11.611 10.011 17.211 (12.011 (19.211 (0.011 10.0\1
Salmon 0 3 0 1 8 29 0 0

10.011 17.311 10.011 12.4\1 119.511 (10.711 10.011 10.0"1
Harry's 0 2 0 0 0 0 87 0

10.011 12.211 10.011 10.011 10.011 10.011 197.811 10.0'1
Sand Hill 22 0 24 8 0 0 0 94 14

(lUll 10.011 (16.211 15.411 10.011 10.011 10.011 163.5,1

n. = 899 , • 72.641

,
0

'653 tau = ,6873



Table 4.6
CLUSTER PREDORSAL

1 65.020
2 51.989
3 58.968
4 58.820
5 60.702
6 56.501

Table 4.7
CWSTER PREOORSAL

1 64.0886
2 52.0625
3 59.1832
4 58.9611
5 60.8985
6 56.8950

Table 4.8
CLUSTER PREDORSAL

1 64.9837
2 51.9893
3 59.2109
4 59.0975
5 60.8492
6 sum

-'18-

Initial Cluster Centres
DORSAL HEAD POSTORBITAL
36.207 34.326 15.985
28.849 30.931 15.090
34.449 33.257 16.070
31.608 32.360 16.602
33.552 35.891 16.805
32.210 33.266 15.189

Classification Cluster Centres
DORSAL HEAD Pos'rORBITAL

35.8620 34.4046 15.9950
28.858030.7895 15.1945
35.195833.2843 16.0499
32.1427 32.6099 16.2438
33.151935.4816 16.8014
32.4651 33.3535 15.5177

Final Cluster Centres
DORSAL HEAD POSTORBITAL
36.188034.3453 16.0108
28.8470 30.9314 15.0898
35.1718 33.3149 16.0349
31.841632.7960 16.2792
38.3023 36.1153 16.9605
32.3731 )3.2206 15.3088

LEFT PECTORAL
25.972
23.220
24.517
24.036
26.647
24.383

LEFT PECTORAL

25.8256
23.1692
24.3491
24.1071
26.4011
24.4467

LEFT PECTORAL
25.9506
23.2198
24.5755
24.1094
268929
24.4011
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Distances Between Final Cluster Centres
2 3 4 5 6

Table 4.9
CLUSTER

1
2
3
4

5
6

1
0.0000

15.5190 0.0000
6.108310.0283
1.1011 8.0129
5.508511.9253
9.5334 6.2136

0.0000
3.4130
4.4998
3.9764

0.0000
4.9431 0.0000
2.87996.09900.0000

Table 4.10 Classification Results for Cluster Analysis of
the Six North American (1968) Rivers !Regions)

Actual Group Cluster

"1

Maine 19 0 1 0 1 0 81
191.511 (0.011 11.2311 10.011 (1.2311 10.011

Miramichi 0 141 0 0 0 0 147
10.0%1 (100.0%1 (0.0%1 10.0%1 10.011 10.0%1

Saint John 1 0 95 24 9 19 148
10.1%1 10.011 164.2%1 (16.211 16.11) 112.811

Indian 0 0 1 41 2 6 50
10.011 (O.Ot, 12.011 182.011 (2.0%1 (12.011

Salmon 3 0 18 5 119 2 141
12.011 10.01) (12.211 13.411 181.011 i1.411

Salmonier 0 0 3 6 0 142 151
~I 10.011 (2.011 (4.011 (0.01) 191.011

n. a 724 "86.051

", • 623 tau= .8326
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'rable 4.11 Initial Cluster Centres

CLUS'rER PREDORSAL DORSAL HEAD POS'rORBITAL LEF'r PECTORAL

1 59.131 30.625 32.922 16.961 23.635
2 45.564 22.391 21.802 14.052 22.115
3 48.130 25.688 28.166 14,980 21.436
4 54.454 30.515 31.)29 16.538 24.980
5 58.911 33.025 33.525 11.442 25.840

Table 4.12 Classification Cluster Centres

CLUSTER PREDORSAL DORSAL HEAD POSTORaI'l'AL LEFT PECTORAL

1 59.4858 30.4303 32.1915 16.1512 23.2396
2 45.1243 22.3121 21.8514 14.1128 22, 56~4
3 41.1626 25.2664 21.9160 14.1411 21.6014
4 56.3029 32.0214 32.1005 16.1309 25.3049
5 60.8631 31.9429 33.9931 17.7272 25.5635

Table 4.13 Final Cluster Centres
CLUSTER PREDORSAL DORSAL HEAD POSTORBI'l'AL LEFT PECTORAL

1 59.3660 30.2502 32.6814 16.1580 23.2611
2 45.5338 22.2952 21.8050 14.0449 22.1869
3 48.3848 25.4911 28.0220 14.8163 21.5343
4 55.2552 31.1151 31.1301 16.6399 25.0113
5 60.4339 32.5288 33.9062 11.1190 25.6889

Distances Between F'inal Cluster Centres
2 3 4 5

0.0000
5.92110.0000

1
0.0000

16.91260.0000
13.0944 4.5488 0.0000

4.6860 14.1614 10.4310
3.840819.655215.9665

Table 4.14
CLUSTER

1
2
3

4

5



-81-

Table 4.15 Classification Results for Cluster Analysis
of the Five European Rivers

Actual Group
1 2 3 4 5 n\

Logan 85 0 0 6 26 117

171.611 10.01) 10.011 15.11) 122.211
Almond 0 152 6 0 0 158

10.0\} 196.211 13.8\1 10.011 10.011
Boyne 0 0 49 1 0 50

10.011 10.011 198.011 12.01) 10.0\)
Lee 1 0 0 91 0 98

(LOll (0.011 (0.01) (99.011 10.01)
Us, 5 0 0 28 39 71

(6.911 10.011 (0.011 (38.91) (54.21)

n. '" 495 , • 85.251

n
i

'" 422 tau" .8157

Table 4.16
CWStER 'REDORSAL

1 52.942
2 58.306

Table 4.11
CLUSTER "EOORSAL

1 54.0904
2 58.3163

Initial Cluster Centres
DORSAL READ POSTORBITAL
21.825 30.515 15.818
33.125 33.954 11.620

ClassHication Cluster Centres
DORSAL READ POSTORBITAL
21.4218 30.1911 15.1119
33.058~ 33.6189 11.1684

LEFT PECTORAL
23.125
26.216

LEFT PECTORAL
23.1568
25.9015
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Table 4.18
CLUSTER PREDORSAL

Final Cluster Centres
DORSAL HEAD POSTORBITAL LEFT PECTORAL

1 52.9039
2 58.3034

21.185930.5153 15.8166
33.1229 33.9385 11.6132

23.1115
26.2091

Distances Between Final Cluster Centres
21

0.0000
8.85310.0000

Table 4.19
CLUSTER

1
2

Table 4.20 Classificat\on Results for Cluster Analysis
of North American /19691 and European /19691 Rivers

Actual Group Cluster
_1 2 ,)

Europe 490 5 495
199.011 (LOll

North America 1 914 915
(0.111 199.911

'. = 1410 p = 99.511

ne = 1404 tau = 1404
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CHAP'lER5

Initially, the underlying distribution of the data was determined

in Chapter 2 by means of -Exploratory Data Analysis". By the use of

graphical and numerical sunvnaries, normality was indicated for each of

the three data groups. Next, the method of shifted power

transformation was used to confirm that insignificant departure from

multivariate normality existed and that no transformation of the data

was necessary for any of the three data groups.

Analysis of covariance was applied to adjust each of the variables

for each group to the overalllllt!an standard length in Section 3.2 of

Chapter 3. By applying the Kahalanobis generalized sample squared

distance technique to the adjusted variables, it ws found that the

populations were significantly different pairvis,·.

11 quadratic stepwise discriminant analysis (Section 3.3, Chapter

3) gave the best results using Fisher's linear discriminant functions.

For each of the six analyses, all five conditional variables entered

and remained in the stepwise procedure. In discriminating European

and North American salmon, the misclassification rate was only 0.35\

with an overall bias of 0.2\ in favour of European salmon. The

discriminant analysis of the ftve European rivers resulted in a

misclassification rate of 3.84\: the six North American rivers samvled



in 1968 resulted in a 5.52% misclassification rate; and finally the

eight North American rivers sampled in 1969 gave a misclassification

rate of 17 .13%.

To verify these classification procedures, the jackknife

classification technique lSection 3.5, Chapter 3) was used to determine

the bias Which may have resulted in basing classification decisions on

that data set used i:o determine the classification functions. For the

analysis of North American versus European data, the jackknife

technique correctly classified 99.68% of the cases. This percentage ws

actually 0.3\ higher than the 99.65% originally classified correctly.

For the analysis of the five European :::ivers, 95.33% were correctly

classified llsing the jackknife technique. This was only 0.83% lower

than the original classification rate of 96.16%. ThUS, the jackknife

procedure supports the original classification procedure.

Next, canonical variables were used as a means of classification

instead of the original discriminating variables (Section 3.6, Chapter

3). Thus, by plotting the first two canonical variables with the plot

of casp.s, it can graphically be seen how well the discriminating

variables are classifying the cases. For all cases tested, results

closely matched the previous misclassification rates.

finally, a discrimination analysis based on the clustering

principle was examined. In particular, the partitioning technique

using the k sample means as initial cluster centres were used.
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The results matched well with the discriminant analysis. However,

the clustering procedure generally failed to separate approximately

10% more salmon than the discriminate analysis. This is because the

variations among the variables are not considered in clustering

techniques.
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APPENDIX A
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Table 71.1.1 Basic Statistics for European Data

PREDOR DORS HEAD POSTOR LFTPECT STNOLEN
Logan R. 117 59.131 1 30.625 32.922 16.961 23.635 131.564

4.1812 3.122 2.126 1.467 1.622 9.987
R. Almond 158 45.564 22.391 27.802 14.052 22. JJ5 102.247

3.962 2.850 2.002 1.112 1.580 9.689
R. Bayne 50 48.730 25.688 28.166 14.980 21.436 110.480

3.098 3.272 2.097 1.187 1.626 8.811
R. Lee 98 54.454 30.515 31.329 16.538 24.980 125.653

2.938 2.174 1.833 0.996 1.599 6.354
R. Usk J2 58.971 33.025 33.525 17.442 25.840 139.444

5.144 3.394 2.523 1.321 1.993 12.529
Europe 495 52.942 27.825 30.575 15.818 23. J25 120.053

7.196 5.065 3.179 1.830 2.129 17.162

1 - mean
2 - standard deviation
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Table A1.2 Basic Statistics for North American Data (1968 and 19691

PREDOR DORS HEAD POSIOR LFTPECT STNDLEN
1969
Maine 142 63.1101 35.199 36.101 18.510 21.6519 144.359

3.9482 3.341 1.810 1.096 1.669 9.210
MJ.ramichi R. 151 52.582 29.852 31.1l3 16.413 24.940 122.205

4.932 3.318 2.858 1.514 1.189 11.036
Saint John R. 13 63.904 36.931 36.636 19.940 21.611 146.241

6.310 4.132 3.215 1.843 2.691 14.136
Koksoak 130 58.402 34.051 32.104 16.822 26.639 135.515

10.391 1.114 5.393 2.901 3.632 23.932
Indian R. 125 51.398 32.350 33.665 11.330 24.686 132.516

4.305 3.050 2.211 1.244 1.481 10.242
Salmon R. 41 56.529 31.595 33.622 11.080 25.801 130.683

8.828 6.349 5.003 2.100 3.048 21.501
Harry l s R. 89 50.693 21.314 30.094 15.542 23.120 116.331

4.615 3.111 2.511 1.428 1.626 11.296
Sand Hill R. 148 61.501 35.648 36.336 18.m 21.643 143.635

4.101 3.641 2.226 U9l 1.631 11.345
North America 915 58.306 33.125 33.954 11.620 26.216 134.149

1.612 5.268 3.814 2.183 2.653 11.606

1 - mean
2 - standard deviation
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Table Al.2 (coot'd)
n PREDOR DORS HEAD POSTOR LFTPECT STNDLEN

1968
Maine 81 65.020 36.207 34.326 15.985 25.972 143.284

4.509 3.619 2.080 1.283 1.892 10.532
Miramichi 147 51.989 28.847 30.931 15.090 23.220 117.048

3.338 2.332 1.602 0.949 1.318 7.496
Saint John 148 58.968 34.339 33.357 16.070 24.517 136.628

5.545 3.856 2.713 1.603 1.926 13.656
Indian R. 50 58.820 31.608 32.360 16.602 24.036 129.940

4.223 2.837 2.141 l.l91 1.576 9.859
Salmon R. 147 60.702 33.502 35.891 16.805 26.647 138.891

3.616 2.920 1.799 1.001 1.343 8.594
Salmonier R. 151 56.501 32.210 33.266 15.189 24.383 128.901

4.223 3.144 2.319 1.117 1.130 10.241
North Amenca 124 58.055 32.663 33.379 15.864 24.18B 131. /83

5.775 3.897 2.693 1.385 2.025 13.447
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Boxolots of 1968 North I\l:'.cdcan Data
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figure A2.4 Character Distributions of 19,9 European Spedttens
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figure .~2.4 c~nti!'l\:ed
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::'gure A2.5 Character Distributions of 1969 North American Specimens
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Figure A2.5 continued
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Figure A2.5 continued
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figure A2.6 Character Distributions of 1968 Ncr~h American Specimens

Total Lenglh

1-._-

Ir-

~ ~IL.-.A
1 8 g 10 n 12 13 14. '5 18

Value

b) Sti.ndardL.!roglll

'oil
4.°,-1,,-

1 2 :) 4. 5 8 1 8 g 10 11 ~ lJ I. I~ 18 17 '9 19 20

Value



-102-

Figure A2. 6 conti:lued
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Figure A2.6 continued
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figure Al.6 continued
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Table A2.1 lliQ sUJllIIIeries, Spreads and Quotients
for Europe 11969\

a) Total Length
Depth Lower Uoper Mid Spread Ouotient

W 128.0 158.0 143.00 30.00 1.11
E 119.0 161.0 143.00 48.00 1.04
0 114.0 176.0 145.00 62.00 1.01
C 111.0 180.5 145.15 69.50 0.93
8 108.5 190.5 149.5 82.00 0.95, 103.0 195.5 149.25 92.50 0.95, 100.5 196.0 148.25 95.50 0.90
y 98.5 191.5 148.0 99.00 0.86

b) Standard Length
Depth Lower Upper Mid Spread Ouotient

H 106.0 132.0 119.00 26.00 1.09
E 98.0 140.0 119.00 42.00 1.03
0 94.0 147.0 120.50 53.00 0.98
C 91.0 152.5 121.15 61.50 0.94
8 88.5 160.5 124.50 12.00 0.95, 85.0 164.5 124,15 79.50 0.93

82.5 161.0 124.75 84.50 0.90
81.5 169.0 125.25 81.50 0.86

c) Predorsal
Depth Lower Upper Mid Spread Ouotient

H 47 .20 58.55 52.88 11.35 1.13
8 44.00 61.50 52.75 11.50 1.02
0 '2.10 6UO 53.20 22.20 0.96
C '1.10 66.40 53.75 25.30 0.91
8 39.35 61.65 53.50 28.30 0.88
A 38.10 68.55 53.63 29.85 0.82
Z 37.'0 12.60 55.00 35.20 0.88
y 36.30 16.60 56.45 40.30 0.93
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TableA2.1 (cont 1 d)

d) Dorsal to Adipose
Depth Loller Upper Hid Spread Quotient

H 23.50 31.85 21.6B B.35 1.19
E 21.20 33.70 21.45 12.50 1.05
0 20.00 35.00 21.50 15.00 0.94
C 19.35 36.25 21.80 16.90 0.91
B 18.35 38.60 2B.48 10.25 0.91
A 11.00 39.70 28.35 12.70 0.90
Z 16.35 41.40 28.88 15.05 0.91
y 16.05 42.25 29.15 16.20 0.88

e) Head
Depth Lower Upper Mid Spread Quotien~

H 18.00 32.90 30.45 4.90 1.01

E 16.50 34.70 30.60 B.20 1.06
0 26.00 35.70 30.85 9.10 0.94
C 25.45 36.35 30.90 10.90 O.Bl
B 24.10 31.45 31.08 11.15 0.B8
A 13.65 38.05 3Q.85 14.40 0.88
Z 13.00 39.50 31.15 16.50 0.91
y 19.15 41.20 30,48 11.45 1.11

f) Postorbital
Depth Lower Upper Mid Spread Ouotient

H 14.40 11.20 15.80 1.80 1.01
E 13.50 18.00 15.15 <.50 1.01
0 13.10 1B.70 15.90 5.60 0.94
C 11.85 19.30 16.0B 6.45 0.90
B 11.40 19.50 15.95 1.10 0.85
A 11.00 10.40 16.10 8.40 0.90
Z 11.55 11.15 16.35 9.60 0.93
y 11.45 11.85 16.65 10.40 0.94
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Table A2.1 (cont ldl

,) Left Pectoral
Depth Lower Upper Mid Spread Quotient

H 22.20 25.10 23.65 2.90 0.98

• 21.30 26.30 23.80 5.00 0.99
0 20.10 21.50 24.10 6.80 1.01
C 19.90 28.30 24.10 8.40 1.03
8 19.50 28.15 24.13 9.25 0.98
A 19.30 29.55 24.43 10.25 0.96
Z 19.00 30.00 24.50 11.00 0.94
y 18.55 30.25 24.40 11.10 0.93

Table A2.2 Mid sUlMIaries. Spreads and Quotients
for North America (1969)

a} Total Length
Depth Lower Upper Mid Spread Quotient

H lH.O 171.5 163.25 28.50 0.93
E 136.0 186.0 161.00 50.00 0.96
D 128.0 193.0 160.50 65.00 0.93
C 118.0 201.0 159.50 83.00 0.98
B 110.0 201.0 158.50 91.00 0.99
A 95.0 212.0 153.50 111.00 1.06
Z 12.5 219.0 145.15 146.50 1.21
y 61.0 223.5 142.25 162.50 1.24
X 60.5 228.0 144.25 161.50 1.19



-108-

Table A2.2 (cont'dl

b) Standard Length
Depth Lower Upper Mid Spread Quotient

H 123.0 146.0 135.00 24.00 0.94
B 112.0 154.0 133.00 42.00 0.96
D 106.0 161.0 133.50 55.00 0.94
c 97.0 166.5 lll.75 69.50 0.98
8 90.0 171.0 llO.50 81.00 0.99

• 78.0 177.0 127.50 99.00 1.08
Z 59.5 181.5 120.50 122.00 1.21
y 50.0 184.0 117 .00 134.00 1.23
X 50.0 188.0 119.00 138.00 1.18

c) Predorsal
Depth Lower Upper Mid Spread Quotient

H 53.10 64.00 58.55 10.90 0.99
E 48.70 66.10 57.10 18.00 0.96
D 45.50 69.05 57.28 23.55 0.94
C 41.85 71.70 56.78 29.85 0.98
8 39.80 73.90 SUS 34.10 0.97

• 33.60 76.00 54.80 42.40 1.01
Z 21.45 78.40 52.93 50.95 1.17
y 24.00 81.55 52.18 57.55 1.23
X 23.20 82.85 53.03 59.65 1.18

d) Dorsal to Adipose
Depth Lower Upper Mid Spread Quotient

H 29.70 36.10 33.20 7.00 0.93
E 26.90 38.70 32.80 11.80 0.92
D 2<.50 40.65 32.58 16.!5 0.94
c 22.60 43.45 33.03 20.85 1.00
8 19.80 45.00 32.40 25.10 1.04

• 16.90 46.00 31.45 29.10 1.01
Z 12 .3~ 46.95 19.65 34.60 1.16
y 10.60 48.85 29.13 3U5 1.19
X 9.95 52.00 30,98 12.05 1.22
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Table A2.2 {cont1dl

,) Head
Depth Lower Upper Hid Spread Ouotient

H 31.55 36.60 34.08 5.Q5 0.89

E 29.10 38.00 33.55 8.90 0.92

0 27.45 39.00 33.23 11.55 0.90
c 24.75 40.10 32.43 15.35 0.98
8 7.2.70 41. 40 32.05 18.70 1.03
A 20.10 42.50 31.30 22.40 1.10
Z 16.90 43.85 30.38 26.95 1.21
y 14.60 44.90 29.75 30.30 1.26
X 14.05 46.40 30.23 32.35 1.25

f) Postorbital
Depth Lower Upper Hid Spread Quotient

H 16.30 19.10 11.10 2.80 0.88
E 15.10 20.00 17,55 4.90 0.90
0 13.90 20.60 11,25 6.70 0.93

C 12.50 21. 40 16.95 8.90 1.02
B 11.70 22.00 16.85 10.30 1.01

A 10.00 23.00 16,50 13.00 1.14
Z 8.30 23.60 15.95 15.30 1.22
y 7,20 24.20 15.70 11.00 1.25
X 6.85 25.35 16.10 18.50 1.27

gj Left Pectoral
Depth Lower Upper Mid Spread Ouotient

H 24.40 28.00 26.20 3.60 0.93
E 23,00 29.30 26.15 6.30 0.95
D 22.00 30.20 26.10 8.20 0.93
C 21.05 31.00 26.03 9.95 0.93
B 19.60 31.40 25,50 11.80 0.95
A 16.60 32.30 24,45 15.70 1.13

Z 14.00 33.25 23,63 19.25 1.26
y 12.45 34.55 23,50 22.10 1.34
X 12.00 34.95 23,48 22.95 1.29
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Table A2 .3 Mid sUlmlaries. Spreads and Quotients for
North America (1968)

,) Total Length
Depth Lower Upper Mid Spread Ouotient

H 147 .0 170.0 158.50 23.00 0.71
E 140.0 179.0 159.50 31.00 0.71
0 135.0 185.0 160.00 50.00 0.68
C 132.0 110.5 161.25 58.50 0.66
B 128.0 195.0 161.50 67.00 0.65
A 125.5 119.5 162.50 74.00 0.64
Z 122.0 206.0 164.00 84.00 0.66
y 122.0 209.0 165.50 87.00 0.63

b) Standard Length
Depth Lower Upper Mid Spread Ouotient

H 122.0 142.0 132.00 20.00 0.71
E 115.0 148.0 131.50 33.00 0.72
0 112.0 153.0 132.50 41,00 0.67
C 101.0 157.5 133.25 48.50 0.65
B 106.0 164.0 135.00 58.00 0.68
A 103.0 166.5 134.75 63.50 0.66
Z 100.0 169.5 134.75 61.50 0.65
Y 100.0 174.0 137.00 74.00 0.6'

e) Predorsal
Depth Lower Upper Mid Spread Quotient

H 53.80 62.00 5nO 8.20 0.70
E 51.30 65.20 58.25 13.10 0.61
0 49.65 67.10 58.78 18.25 0.68
C 48.55 70.00 51.28 21.45 0.66
B 46.90 7l.10 59.00 14.20 0.64
A 46.45 73.40 5!.!3 26.15 0.6'
Z 45.15 76.15 60.65 31.00 0.67
Y 45.00 76.BO 60.10 31.80 0.63
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Table A2.3 (cont'dl

d) Dorsal to Adipose
Depth Lower Upper Mid Spread Quotient

H 29.80 35.50 32.65 5.7U 0.71

E 28.30 37.30 32.80 9.00 0.66

0 21.05 39.05 33.05 12.00 0.66

C 26.10 40.70 33.40 lUO 0.66

B 25.50 42.30 33.90 16.80 0.66

A 24.50 44.00 34.15 19.50 0.68

z 23.80 45.35 34.18 21.55 0.68
y 23.20 45.70 34.45 22.50 0.66

e) Head
Depth Lower Upper Mid Spread Quotient

H 31.40 35.30 33.35 3.90 0.76

E 30.20 36.70 33.45 6.50 0.74

D 29.50 31.80 33.65 8.30 0.71

C 28.90 38.85 33.88 9.95 0.70

B 28.40 39.70 34.05 11.30 0.69
A 21.45 40.75 34.10 13.30 0.73

z 26.70 42.35 34.13 15.65 0.77

Y 25.90 43.90 34.90 18.00 0.12

f) Postorbital
Depth Lower Upper Mid Spread Ouotient

H 15.00 16.80 15.90 1.80 0.66
E 14.20 11.50 15.85 3.30 0.71

D 13.85 18.05 15.95 4.20 0.67

C 13.50 18.80 16.15 5.30 0.70
B 13.20 19.50 16.35 6.30 0.72

A 12.60 19.95 16.28 7.35 0.75

z 12.20 20.40 16.30 8.20 0.76
y 11.80 21.00 16.40 9.20 0.79
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Table A2.3 (cont'dl

g) Left Pectoral
Depth Lower Upper Mid Spread Ouotient

H 23.30' 26.30 :"4.80 3.00 1.07, 22.50 27.30 24.90 4.80 l.00
0 22.00 28.20 25.10 6.20 0.97
C 21.30 28.70 25.00 7.40 0.96
8 20.70 29.20 24,95 8.50 0.95
A 20.30 29.75 25.03 9.45 0.94
Z 20.00 30.65 25.33 10.65 0.97
y 19.70 n.oo 25.35 11.30 0.95
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Table 11.3.1

02, Wand p-values

D2 - First entry
W - Second entry

p-value - Third entry

Europe (1969)
North~

America 2,117.72

119691 0.00003

Table 11.3.2
Logan R. R. Almond R. Boyne R. Lee
11,415.3

R. Almond 2249.6
0.0000

3811.60 496.190
R. Bayne 743.84 91.311

0.0000 0.0000

1453.19 4988.51 1422.52
R. Loae 285.18 981.99 27L 71

0.0000 0.0000 O.OCOO

371.169 8856.38 3513.16 852.959
R. Usk 12.646 1"140.2 619.21 166.53

0.0000 0.0000 0.0000 0.0000
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Table A3.3
r:aine Hiramichi Saint John Indian R. SalllK)n R.

8816.61
Kiramichi 1143.9

0.0000

1605.34 4521.63
Saint John 315.41 891.98

0.0000 0.0000

2055.25 1568.52 458.763*
Indian R. 369.65 301.27 89.880

0.0000 0.0000 0.0000

1398.45 7175.80 963.858 1405.79
Salmon R. 274.74 1415.5 190.14 275.39

0.0000 0.0000 0.0000 0.0000

3422.83 2487.92 898.552' 935.249' 1673.16
Salmonier R. 612.66 490.86 171.29 183.29 330.11

0.0000 0.0000 0.0000 0.0000 0.0000
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Table A3.4

Maine Miramichi Saint Johil Koksoak R. Indian R. Salmon R. Harryls R

22,208.8
Miramichi 4380.7

0.0000

83.158* 17,348.6
Saint John 14.437 3407.2

0.0000 0.0000

4124.20 6481.42 3500.57
Koksoak R. 812.62 1277.7 764.59

0.0000 0.0000 0.0000

5947.78 4346.20 5378.77 176.175
Indian R. 1171.6 856.55 1053.8 34.678

0.0000 0.0000 0.0000 0.0000

3804.37 1385.93 3999.07 302.152 64.432*
Salmon R. 744.06 271.35 77l.25 59.000 12.572

0.0000 0.0000 0.0000 0.0000 0.0004

23,182.94 548.67119,381.2 8636.19 6431.35 2665.03
Harry l s R. 4555.6 107.89 3780.5 1695.4 1262.0 516.35

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

513.887 16,214.2 776.941 1821.60 3126.90 2l8!.S9 11,833.6
Sand Hill R. 101.35* 3211.0 152.55* 359.04 616.15 428.55 3506.0

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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APPENDIX B



% Correctly
Classified
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Jackknife of Europe '69 Y.§. N. America 169

All vo.riables entered with covariate STNDLEN

n '" 1410
5~O '"s~~~~~~

Number of Observations Number
Excluded Misclassified

Europe
8
7

5
5
9

10
12
5
8
9
6
8
9
4

11
6
5
5
4
7
6
8

6
8
J

3
6

NA 69
15
16
12
21
11
12
12
11
12
12
13
12
11
9

12
14
13
7

12
15
16
10
19
13
13
8

16

100.00
100.00
100.00
100.00
100.00
100.00
100.00
93.75

100.00
95.24

100.00
100.00
100.00
100.00
100.00
100.00
94.44

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00



-118-

NllJ\ber of Observations Humber \ Correctly
Excluded Hisclassified Classified

Europe HAi9
4 12 0 100.00
5 10 0 100.00
8 8 0 100.00
5 7 0 100.00
9 11 0 100.00
5 19 0 100.00
5 12 0 100.00
7 14 0 100.00
7 18 0 100.00
8 12 0 100.00
8 13 0 100.00
4 6 0 100.00
7 10 0 100.00
5 20 0 100.00
4 9 0 100.00
8 11 0 100.00

11 13 0 100.00
5 11 0 100.00
7 11 0 100.00
8 13 0 100.00
3 18 0 100.00
4 6 1 90.00

15 10 0 100.00
8 14 0 100.00
9 21 0 100.00
5 12 1 94.12
6 19 0 100.00
5 3 0 100.00

10 10 0 100.00
6 20 0 100.00

12 15 0 100.00
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Number of Observations Number , Correctly
Excluded Misc1assified Classified

Europe NA 69
10 9 0 100.00
6 9 0 100.00

10 6 0 100.00
8 14 0 100.00
8 25 0 100.00

10 14 0 100.00
10 10 0 100.00
8 8 0 100.00
5 17 1 95.45
1 11 0 100.00
2 11 0 100.00
6 10 0 100.00

10 10 0 100.00

9 18 0 100.00
1 13 0 100.00

11 19 0 100.00
3 18 0 100.00
1 15 0 100.00
5 9 0 100.00

12 11 0 100.00
5 11 0 100.00
8 19 0 100.00
8 13 0 100.00
1 16 0 100.00
5 8 0 100.00
5 13 0 100.00
9 19 1 96.43
5 9 0 100.00
8 11 0 100.00
4 8 0 100.00
8 10 0 100.00
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Number of Observations Number 1: Correctly
Excluded Misclassified Classified

Europe NA 69
6 1\ 0 100.00
8 8 0 100.00

11 14 0 100.00
10 16 0 100.00
10 6 0 100.00
1 19 0 100.00
6 12 0 100.00
8 19 1 96.30
4 21 0 100.00

10 1\ 0 100.00
8 12 0 100.00

12 1\ 0 100.00
6 11 0 100.00

10 1\ 0 100.00
13 19 0 100.00
4 19 0 100.00
8 16 0 100.00
9 11 0 100.00
8 11 0 100.00
7 9 0 100.00

12 12 0 100.00
\ 16 0 100.00
6 11 0 100.00
1 8 0 100.00
\ 13 0 100.00
6 6 0 100.00
4 18 0 100.00
7 18 0 100.00
4 12 0 100.00
7 20 0 100.00
1 11 0 100.00
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Number of Observations Number
Excluded Misclassified

Europe NA 69
12 12

9 16
6 11
8 20

10 6
6 9
8 15
5 12

6 12

9 15
11 14

4 12

1 11
8 20
6 13
1 15
8 16
8 19

4 6
11 10
5 12

9 11

8 10
8 13
) 10
6 1
1 12

1 8
5 1)

6 11
4 8

, Correctly
Classified

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
91.61
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Number of Observations NllIliler \ Correctly
Excluded Kisclassified Classified

Europe NA 69
9 1J 0 100.00

11 6 0 100.00
5 12 0 100.00

10 10 0 100.00
8 8 0 100.00
7 18 0 100.00

1J 8 0 100.00
6 6 0 100.00
6 25 0 100.00
7 1J 0 100.00
4 8 0 100.00
5 17 0 100.00

10 15 0 100.00
11 1J 0 100.00
9 23 0 100.00
7 16 0 100.00
7 14 0 100.00
8 12 0 100.00
7 6 0 100.00

10 12 0 100.00
5 13 I 54.44

10 9 0 100.00
15 0 100.00

10 16 0 100.00
5 10 0 100.00
6 6 0 100.00

10 15 I 96.00
5 12 0 100.00
3 20 0 100.00
8 17 0 100.00
6 16 0 100.00



NurOOer of Observations
Excluded

Europe NA 69
9 12
6 17
8 8
5 7
3 13
5 9
9 6
7 13
7 6
7 15
3 12
5 11
8 10

12 12
6 15
8 9

11 16
6 15
6 15
4 20
5 14
7 12
8 10
9 15
9 19
5 7

10 20
10 16
10 12

6 14
5 9

-123-

Number

Hisclassified
, Correctly
Classified

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
laO.OO
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
96.15

100.00
95.00

100.00
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NUIlber of Observations Number
Excluded Misclassified

Europe NA 69
10 11
10 9
8 16

11 10
9 11
5 15
7 15
6 8
2 18

11 12
6 14
5 7
8 14

4 11
9 12
3 9
9 10
2 16
9 17

9 13
7 9
7 11
6 16
4 14
5 20

10 6
9 11

10 13
B 12
8 9

16 10

, Correctly
Classified

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
iOO.OO
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Nunrber of Observations N_r \ Correctly

~Il.ded Hisclassified Classified
Europe NA 69

11 9 0 100.00

4 15 0 100.00

6 18 0 100.00

8 8 0 100.00

5 23 0 100.00

2 15 0 100.00

4 5 0 100.00

1 10 0 100.00

11 14 1 96.00

5 15 0 100.00

5 9 0 100.00

8 15 1 95.65

8 1 0 100.00
6 12 0 100.00

11 8 0 100.00

6 16 0 100.00
4 14 0 100.00

6 12 0 100.00
1 10 0 100.00
8 14 0 100.00

3 21 0 100.00
5 14 0 100.00
8 15 0 100.00

10 11 0 100.00
10 10 1 95.00
4 14 1 94.44
1 16 0 100.00

9 10 0 100.00
9 8 0 100.00
6 10 0 100.00
1 9 0 100.00
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Number of Observations NUlIi>er
Excluded Misclassified

, Correctly
Classified

Europe
5

1l
6

12
4
6
6
6
6
8

10
6

1l
6

5
5
9
4
6

6
1
6
8
5
1
9

1l

l'
6
8
8

NA 69
20
12
11
10
12
19
14
8

11
14
10
10
10
15
13
14
15
5

10
1l
15
9
9

14
18
19
16
11
11
14
24

100.00
100.00
100.00
100.00
100.00
100.00
100.CO
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
94.12

100.00
100.00
100.00
100.00
95.65

100.00
100.00
96.88
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Number of Observations N_r , Correctly
Excluded Misclassified Classified

Europe NA 69
11 11 100.00
7 10 100.00
6 8 100.00
4 14 94.44
3 13 100.00
5 9 100.00
9 17 100.00
7 9 100.00
6 9 100.00
6 14 100.00
6 11 100.00

12 11 100.00
7 13 100.00
1 14 100.00
2 14 100.00
8 13 100.00

11 15 100.00
8 18 100.00
8 18 96.15
5 11 100.00
4 10 100.00
7 16 100.00
6 12 100.00
7 7 100.00
5 9 100.00
6 16 100.00
7 7 100.00
7 11 100.00
4 11 100.00
7 10 100.00
9 21 100.00
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Number of Observations Number
Excluded Misclassified

Europe Nfl 69
7 8
9 10
6 15

6 13
10 16
3 12
1 11
4 20
2 10

10 6
10 16
1 18

13 12
8 3J

11 12
9 16

5 9
a 15

2 11
1 16
1 9
5 11
8 14
2 15

5 10
6 10

11 10

9 13
6 18
1 12

11 13

% Correctly
Classified

300.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

95.2'
95.'5

100.00
100.00
JOO.OO
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Number of Observations Numher % Correctly
Excluded Misclassified Classified

Europe NA 69
9 16 100.00

5 11 100.00
4 8 100.00
8 11 100.00
6 15 100.00
3 12 100.00
9 12 100.00
6 9 100.00
6 I' 100.00
7 15 100.00
9 14 100.00
8 13 95.45
5 14 100.00
4 13 95.24

12 20 100.00
7 11 100.00
3 11 100.00
6 15 100.00
5 12 100.00
9 11 100.00
9 20 100.00
6 13 100.00
6 12 100.00

12 15 100.00
5 11 100.00
5 15 100.00
5 18 100.00
5 8 100.00
8 15 100.00
2 I. 100.00
9 13 100.00
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Number of Observations Number
Excluded Misclassified

Europe NA 69
5 14
8 1l
, 12

9 20
11 10
9 6
4 10
2 20
4 9
9 11

13 18

5 12
12 16
, 13

4 14
8 6
6 12

8 13
11 16, ,
, 11

6 10
, 9

7 11
5 9
5 5
, 12

7 18

12 II
, 14

7 10

, Correctly
Classified

100.00
100.00
100.00
100.00
95.24

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
92.86

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00



Nunber of Observations NUI:lber
Excluded Misclassified

Europe HA 69
4 14
1 13

13 11
1 8
5 14
6 14
8 11
6 I
1 11

10 11
3 14
5 11
6 15
9 18

1 6

I 12
6 18

1 18

4 12
1 11
8 11
6 10
3 11
5 14
1 12
6 16
1 14
6 9
1 11
5 23
1 13

, Correctly
Classified

14.44
100.00
100.00
n.ll

100.00
100.00
100.00
100,00

14.44
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100,00
100,00
100.00
100.00
100.00
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Number of Observations Number
Excluded Misclassified

Europe NA 69
9 14
7 20
4 9
5 11
5 15
3 10
6 13

10 12
7 11

10 10
5 6

7 19
5 14
8 6
7 16
8 14
9 14

13 10
8 12
9 13
4 12
9 14
7 15

11 16
4 14
7 20

11 8
7 12
7 10

10 15
6 1l

%Correctly
Classified

95.65
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
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Number of Observations N_r % Correctly
Excluded Misclassified Classified

Europe N' 69
5 12 100.00
5 13 100.00
6 12 100.00
7 7 100.00
7 14 100.00
8 14 100.00

Total 3526 6465 J2 99.681
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APPENDIX C
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JACKKNIFE OF 5 EUROPEAN RIVERS

All variables entered with covariate STNDLEN

n= 495

4~O" s~~~~;~

Number of Observations Excluded Number % Correctly
Logan Almond Boyne Lee Usk Misclassified Classified

9 6 2 4 3 88.46
6 9 2 2 3 81.50
5 1 4 5 0 100.00
6 11 1 3 2 90.91
6 3 5 1 1 94.14
3 1 2 2 1 95.24
9 4 4 5 2 92.31
6 1 2 4 4 81.82
9 12 8 2 1 91.30
2 8 2 8 1 96.00
8 9 3 5 0 100.00
6 1 3 5 2 92.59
6 11 3 1 1 96.61
9 6 4 1 1 95.45
7 4 4 0 1 95.00
4 1 4 4 0 100.00
8 1 4 3 1 96.30
2 1 3 4 2 88.89
8 15 4 3 3 91.43
8 9 2 4 1 96.43
6 6 4 3 1 95.83

8 5 3 4 85.11
4 2 5 1 94,44
8 1 3 0 100.00
6 2 3 0 100.00
9 2 5 2 92.59

15 2 2 0 100.00
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Number of Observations Excluded Numrer • Correctly
Logan Almond Boyne Lee Usl Misclassified Classified
5 9 1 2 0 0 100.00
4 I 6 7 3 0 100.00
6 9 2 12 5 1 9U6
1 7 3 5 4 0 100.00
I 9 4 5 3 0 100.00
6 4 2 6 3 2 90.48
7 7 0 10 6 2 93.33

12 8 0 4 0 1 95.83
7 8 1 3 3 1 95.45
4 10 I 3 2 2 90.00
5 4 I 8 2 1 95.00
1 12 4 4 5 0 100.00
1 10 0 3 5 1 96.00
9 7 0 2 5 1 95.65
9 7 4 8 3 1 96.11
4 II I 8 4 3 89.29
1 12 5 7 6 0 100.00
I 10 4 2 4 2 9UO
6 7 1 6 2 0 100.00
5 10 2 4 6 0 100.00
1 7 4 4 2 2 91.67
1 5 4 5 5 I 96.15
6 5 3 4 4 1 95.45

lJ 10 I 7 5 2 94.14
2 8 4 8 1 1 95.65
4 14 2 8 5 3 9D.91
5 8 3 5 6 0 100.00
6 10 4 2 1 1 95.65
0 5 0 9 5 0 100.00
6 1 0 4 6 3 86.96
1 9 2 9 6 0 100.00
5 4 4 7 I I 95.24
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Number of Observations Excluded ._r \ Correctly

12lli> A1Ilond Bovne l<!' Usk Hisclassified Classified
7 12 1 8 2 1 96.67

3 4 1 3 I 0 100.00
7 8 2 II I 0 100.00
6 8 1 7 2 1 95.83
4 7 0 6 4 1 95.2'

• IJ 3 • 6 0 100.00
6 10 • 8 4 1 96.88
3 8 1 1 8 0 100.00
5 6 3 5 1 0 100.00
5 6 5 4 3 3 86.96
8 7 I 4 • 2 91.67

lJ 8 • 6 3 1 97.06
6 9 5 3 3 1 96.15
6 8 3 5 2 2 91.67
2 10 6 7 6 2 93.55
I 6 2 4 3 0 100.00
6 8 1 J 7 1 96.00
4 5 0 1 5 I 95.2'
J 12 1 1 7 0 100.00
6 5 2 8 4 I 96.00
6 7 2 J 1 0 100.00
6 5 I 1 4 1 95.65
4 12 6 5 2 0 100.00
J 6 I 4 4 0 100.00
8 8 2 10 2 0 100.00
6 4 • 5 1 1 95.00
7 11 5 1 J 1 96.97
5 12 1 J 1 0 100.00
4 10 4 10 6 2 94.12
4 5 5 5 4 1 95.65
6 8 J 7 3 5 81.48
6 8 2 9 3 0 100.00
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NUlbec of Observations Excluded Nuober I Correctly
Logan AlRlnd Boyne Lee Usk Misclassified Classified

3 1 5 0 100.00
6 6 1 I 96.00
9 8 ( 1 96.00
4 6 3 0 100.00
6 8 9 1 96.88
3 8 9 2 92.00
8 10 1 1 96.43
4 10 3 0 100.00
2 II 5 0 100.00
9 10 10 1 91.56
4 8 3 0 100.00
6 8 1 0 100.00
6 9 8 0 100.00
8 6 2 1 96.00
5 8 2 0 100.00
7 10 6 0 100.00
6 8 6 I 96.15
7 6 5 0 100.00

10 9 2 0 100.00
8 9 4 I 95.45

10 8 2 1 96.67
6 II 5 0 100.00
4 6 3 0 100.00
7 6 4 0 100.00
5 6 3 0 100.00
4 10 ( 1 95.83
8 9 5 3 89.29
5 6 6 0 100.00
4 4 6 2 90.91

10 7 4 1 96.55
4 6 4 0 100.00
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Number of Observations Excluded Number %Correctly
Logan Almond Boyne Lee Usk Misclassified Classified

12 0 4 3 0 100.00
6 0 2 3 0 100.00

10 1 5 2 1 95.24

0 4 8 2 1 94.74

8 2 6 3 1 96.15
6 4 9 6 2 !l.75

7 1 5 4 4 84.62

11 2 5 7 2 92.86
10 5 3 3 0 100.00

13 5 7 2 3 90.91

9 2 5 8 0 100.00

9 4 2 4 1 95.83

6 3 3 8 0 100.00
5 8 6 0 0 100.00

9 1 6 6 4 85.71

9 2 7 5 2 92.86

6 5 4 9 1 96.88
5 1 3 2 2 86.67

9 2 3 2 0 100.00

8 3 4 6 1 95.65
7 2 5 2 1 95.83

18 6 4 3 0 100.00
4 5 6 2 2 90.00

10 1 10 4 2 92.59
11 1 7 0 0 100.00
6 2 6 2 0 100.00

12 1 5 4 3 89.29
7 1 9 9 0 100.00
5 1 7 2 1 94.74

11 1 5 6 0 100.00
5 4 2 5 2 90.00

II 1 6 3 0 100.00
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Number of Observations Excluded "wOOer , Correctly
Iman Almond Boyne Lee Usk Hisclassified Classified
5 6 2 4 4 I 95.24
9 6 3 3 5 a 100.00
6 10 4 5 5 2 93.33
1 II 3 5 4 2 93.33
1 16 5 4 3 2 91.43
6 8 a 9 4 I 96.30
2 5 I 1 2 I 94.12
4 9 I 9 5 I 96.43
2 II 3 6 5 2 92.59
9 8 3 6 2 a 100.00
J 9 2 4 5 a 100.00
2 6 3 8 2 Q 100.OQ
3 6 4 3 3 84.21
3 6 3 4 1 95.65

II 12 1 8 2 94.12
8 1 2 5 3 100.00
1 II 4 3 I 100.00
3 1 3 2 I 100.00
4 13 2 2 5 96.15
1 1 4 3 3 100.00
1 8 1 6 3 94.14
6 8 2 5 5 92.31
1 1 3 7 3 88.89
5 9 a 6 5 96.00
5 10 1 9 4 96.55
I 2 2 2 1 n.86
8 9 3 6 6 96.88
4 10 3 6 4 88.89
6 5 3 3 4 90.48
5 15 2 5 3 96.61

II 20 2 10 4 93.62
3 14 4 4 4 100.00
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Number of Observations Excluded Numbet \ Correctly
Logan Alm::md Boyne Lee Usk Hisclassified Classified
10 4 6 6 96.30
5 12 1 2 86.96
7 10 7 1 96.15
4 1 5 9 89.29

12 5 6 5 100.00
1 8 9 6 92.31
7 1 5 3 92.31
4 11 2 5 92.31
1 12 6 2 100.00
7 6 1 5 93.10
5 4 4 2 82.J5
7 4 3 2 100.00
3 6 2 6 95.65
4 1 5 5 100.00
4 4 2 4 100.00

12 4 8 3 94 .2~

5 9 5 6 92.59
6 5 2 4 95.24
6 8 3 3 95.24

10 14 4 1 93.55
8 1 7 6 96.11
7 9 6 1 92.00
6 11 8 4 100.00
4 9 6 4 100.00
6 7 1 3 85.00
7 11 7 2 96.67
3 4 2 4 94.12
7 5 2 5 80.00
8 6 4 4 100.00
5 2 2 5 92 .86
8 5 6 2 100.00
8 6 8 8 8J.88
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Number of Observations Excluded Number , Correctly
Logan Almond Boyne Lee Usk Hisclassified Classified
6 7 6 3 1 96.15

10 9 5 3 0 100.00
6 4 4 6 3 85.71
4 9 4 5 4 84.62
4 5 3 5 I 95.00

11 6 4 3 2 92.00
2 5 3 4 0 100.00
5 9 7 4 2 92.59
5 7 2 2 0 100.00
5 6 5 4 0 100.00
5 11 2 6 1 96.55
6 11 3 3 0 100.00
8 8 5 4 I 96.00
6 6 6 4 2 92.59
4 3 4 3 I 93.33
3 9 4 5 I 96.00
2 9 3 3 2 89.47
8 3 7 3 0 100.00
7 10 2 3 1 96.00

11 5 6 5 5 82.76
6 12 0 2 3 87.50
8 4 5 I 0 100.00
6 6 4 7 1 96.15
5 10 4 4 1 96.00

13 6 5 3 0 100.00
3 5 4 4 1 94.74
5 11 3 4 4 84.00
5 9 1 4 2 92 .00
8 10 3 7 1 96.77
9 10 4 3 1 96.15
4 8 5 3 1 95.24
3 8 6 3 0 100.00
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Number of Observations Excluded Number \ Correctly
Logan Almond Boyne Lee Usk Misclassified Classified
4 5 2 6 2 0 100.00
2 10 3 4 6 0 100.00
4 11 5 2 4 1 96.15
5 1 2 8 4 1 96.15
6 1 0 6 5 2 91.61
4 6 3 1 5 2 92.00
4 6 3 8 3 1 95.83
5 10 0 1 2 1 95.83
6 8 3 4 2 1 95.65

• 10 2 4 2 2 90.91
5 5 2 4 5 0 100.00
5 8 2 6 5 1 96.15
3 3 0 4 6 0 100.00
1 1 4 4 1 2 88.2'
4 1 2 4 2 90.91
4 6 4 1 0 100.00
9 4 0 4 2 90.00
5 4 4 1 2 90.48
8 12 5 1 2 92 .86
1 9 1 3 0 100.00
6 13 3 4 2 93.55
5 3 5 8 0 100.00

11 8 1 1 2 92.00
9 13 0 5 3 91.18
6 11 2 1 0 100.00
5 9 2 4 1 95.65
1 13 2 4 1 96.11
6 9 5 4 1 96.30
1 13 2 5 1 96.88
6 6 4 6 2 91.30
6 5 1 1 1 96.15
8 1 3 1 2 92.86
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Number of Observations Excluded Number % Correctly
Logan Almond Boyne Lee Usk Misclassified Classified

8 5 5 1 96.30
9 4 2 0 100.00
5 4 3 0 100.00
3 4 4 2 91.61
4 10 4 2 89.47
4 6 3 2 90.00

12 6 4 1 91.06
4 5 5 2 90.48

11 5 4 1 96.43
11 4 5 2 93.10
1 1 2 0 100.00
9 2 3 0 100.00
4 8 3 1 95.65
4 3 4 1 94.12

13 8 5 1 96.91
10 6 5 3 90.32
9 2 5 1 95.45
~ 3 2 1 94.12
8 6 5 1 96.67
9 2 2 1 94.74
3 1 2 1 94.74
7 2 4 2 90.91
6 8 6 2 91.61
3 2 5 1 95.24
3 8 9 4 84.62

10 1 5 0 100.00
9 6 1 0 100.00
9 6 8 3 91.43

11 5 4 1 96.15
6 6 4 I 96.15
9 6 1 I 96.55
7 4 2 0 100.00
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Humber of Observations Excluded NImiJe[ , Correctly
Logan Almond Boyne Lee Usk Hisclassifie<i Classified
5 10 2 3 3 86.96
6 5 3 1 3 95.83

10 1 3 6 4 96.61

3 1 3 4 3 100.00
1 1 2 5 5 88.46
1 1 4 5 4 92.59
5 8 5 1 3 92.86
4 9 1 1 2 86.96
5 9 3 5 0 ·95.45

9 6 4 2 5 92.31
5 5 4 2 1 100.00
8 13 1 8 2 93.15
9 1 1 9 5 90.32
9 8 0 1 1 90.32
6 8 4 5 3 96.15
7 5 3 5 6 96.15
6 8 3 3 3 91.30

10 6 2 6 3 81.48
10 5 2 1 6 95.83
2 9 4 6 2 95.65
2 8 4 5 1 85.00
2 1 3 4 1 100.00
8 11 I 3 I 91.61
5 9 3 5 0 95.45

10 13 1 1 3 100.00
6 10 2 1 5 9,.00

9 1 0 1 4 90.48
13 5 2 6 3 93.10
5 2 4 5 1 95.65
6 10 4 5 2 96.30
1 4 6 4 6 92.59
2 6 1 2 2 100.00
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Number of Observations Excluded N~[ \ Correctly
Logan Almond Boyne Lee Usk Misclassified Classified
1 1 2 4 0 100.00
7 7 4 4 1 95.83
8 4 9 3 0 100.00
7 12 9 4 1 97.06
6 13 5 2 0 100.00
9 8 4 3 2 91.67
9 8 4 6 2 93.10

10 8 6 5 0 100.00
10 3 3 5 1 96.30
4 5 5 4 1 94.74
6 1 2 3 0 100.00
4 6 6 3 2 91.30

10 12 4 1 1 96.43
7 1 11 1 0 100.00
6 9 6 3 0 100.00
6 9 9 4 1 91.06
9 9 4 4 2 93.10
9 14 5 6 2 9U4
3 7 2 3 0 100.00
4 10 8 3 0 100.00
3 1 1 6 1 94.44
3 6 6 2 1 95.24
6 12 9 7 0 100.00
4 5 6 3 2 88.89
6 6 5 1 0 100.00
8 11 3 8 2 94.12
8 13 4 3 2 93.55
2 7 4 3 0 100.00
4 5 8 3 3 86.36
8 11 5 3 2 92.86
9 11 3 2 \ 9&.30
4 11 9 2 1 96.77



Number of Observations Excluded Number % Correctly
Logan Almond Boyne Lee Usk Misclassified Classified
5 5 1 1 93.33
5 6 3 6 100.00, 3 0 , 100.00, 12 1 5 92.00
6 6 4 4 92.00
5 13 1 , 92.59
7 10 6 3 93.55
5 8 3 6 100.00

3 8 1 1 94.12
7 10 2 0 '100.00

5 8 2 3 95.83
5 5 8 4 96.00
1 9 6 3 95.65
8 6 5 3 9~ .59

11 6 5 5 84.38
5 5 1 2 100.00
5 11 2 5 92.59
7 11 1 6 96.88
6 1 2 3 100.00
8 10 2 3 92.59
5 7 2 1 94.74
9 1 5 5 92.86

2316 3161 1081 2020 148' no 95.34% Tot~1
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