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Abstract 

A three-dimensional circulation model IS applied to better 

understand the circulation and physical processes in Placentia Bay. The 

model is based on the fmite-volume coastal ocean model (FVCOM) with the 

vertical eddy viscosity calculated from a level 2.5 revised turbulence closure 

scheme with 21 unequally spaced vertical levels. The model is forced at the 

lateral open boundaries with 5 tidal constituents and at the surface with wind 

and heat flux based on meteorological observations at Argentia. The open 

boundary temperature and salinity and non-tidal sea level are derived from a 

larger-scale shelf model. Temperature and currents are hindcast for spring 

1999. Simulated tidal elevations agree well with tide-gauge data. The Root 

Mean Square Difference of the model tidal currents was 40% relative to 

observations. The model temperature and non-tidal currents show reasonable 

agreement with moored measurements. The model simulates many features 

of the Bay, including the seasonal evolution of stratification, cyclonic 

circulation in the out bay and late-spring upwelling on the western side of 

the outer bay. 
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1 Introduction 

1.1Placentia Bay 

Placentia Bay is located at the southern part of the Newfoundland 

Island and is bordered by Burin Peninsula to the west and the Avalon 

Peninsula to the east. The mean circulation is driven by the westward current 

from the inshore branch of the Labrador Current that flows into the bay on 

the eastern side, continues along the coastline and flows outside the bay on 

the western side (Hart et al., 1999; Schillinger et al. , 2000; Bradbury et al. , 

2000). There are important fisheries in the Bay which have received 

considerable interest recently because of potential ecological sensitivity and 

economic impacts (Bradbury et al., 2000). For example, Rose et al. (2000) 

found that Atlantic cod off the eastern coast of Newfoundland had undergone 

a rapid decrease in abundance and recognized the importance of localized 

coastal populations (Ruzzante et al., 2000; Snelgrove et al., 2008). In coastal 

areas such as Placentia Bay, currents may be less influenced by the cold 

Labrador Current and more by local processes, such as wind forcing 

(deYoung et al. 1993) which can contribute to the transport and changes in 

larval fish abundance (Pepin et al., 1995). For Atlantic cod, Gadus morhua, 

evidence is increasing that spawning occurs in multiple coastal areas of 
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Newfoundland (Smedbol et al. 1998; Lawson and Rose 2000). Compared 

with offshore habitats, coastal spawning may lead to increased survival due 

to decreased predation and higher growth rates resulting from higher prey 

densities (Frank and Leggett, 1982; Taggart and Leggett, 1987; Pepin et al. 

1995). As a result, following the right site hypothesis proposed by de Young 

and Rose (1993) for Atlantic cod, Placentia Bay is one of the few areas in 

Atlantic Canada where spawner biomass and, therefore, egg and larval 

supplies are reasonably healthy. Bradbury et al. (2000) and Bradbury et al 

(2008) found that spawning was concentrated in three areas: Perch Rock 

(eastern outer bay), Bar Haven (inner bay), and Oderin Bank (western outer 

bay). They also observed that the peak in late-stage eggs occurred on the 

western side of the bay. The upwelling along the head and western side of 

the bay during summer may cause enhanced primary and secondary 

production. There is also heavy ship traffic on the eastern side of Placentia 

Bay since many industrial and business activities occur there. As a result, 

there is an increasing need to understand physical dynamic processes in 

Placentia Bay. 

1.2 Oceanographic Observation in Placentia Bay 

In last two decades many in situ observations have been made in the 
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Placentia Bay region. Hart et al. (1999) and Scillinger et al. (2000) deployed 

four and seven moorings during two separate years in Placentia Bay to detect 

the mean circulation pattern and seasonal current variability. Temperature 

and salinity observations were also made to better understand the 

hydrography in Placentia Bay. 

Recently, extensive efforts have been made to understand the physical, 

chemical and biological processes of Placentia Bay such as the Smart Bay 

Project launched by the Marine Institute of Memorial University in early 

2000s (http://www.smartbay.ca/). The Smart Bay Project regularly collects 

oceanographic data at fixed stations along the western and eastern side of 

Placentia Bay. 

1.3Modeling in Placentia Bay 

Quantitative knowledge and dynamical understanding of the three­

dimensional shelf circulation has expanded for the Newfoundland and 

Labrador shelf and slope region including Placentia Bay. Petrie and 

Anderson (1983) estimated the mean circulation and transport based on 

various data sources. Greenberg and Petrie (1998) presented the barotropic 

mean circulation in the Grand Banks region of continental shelf off eastern 

Canada using a barotropic numerical model, showing notable discrepancies 
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between observed and modeled flows. Tang et al., (1996) studied several 

aspects of the circulation and volume transport using a linear three­

dimensional diagnostic model. Han (2005) investigated the barotropic wind­

driven circulation over the Newfoundland and Labrador shelf using a three­

dimensional finite element model. Han et al. (2008) examined the seasonal 

variability of the Labrador Current and shelf circulation off Newfoundland 

using a semi-prognostic model. These shelf models had insufficient 

resolution for Placentia Bay, and thus offer little insight into circulation in 

the Bay. Therefore, a high resolution numerical model focused on the 

Placentia Bay region is warranted to hindcast, nowcast and forecast 

circulation variability and to complement observations of the Smart Bay 

Project. 

1.4 Objective 

The objective of this study is to develop a three-dimensional (3D) 

high resolution ocean model for the Placentia Bay region to accurately 

simulate tidal currents and the wind- and density-driven circulation. This is a 

local-area simulation for Placentia Bay and the solution will be compared 

with hydrographic data from Hart et al. (1999). This is the first application of 
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a high resolution state-of-the-art 3D prognostic primitive equation ocean 

model in Placentia Bay. 

1.5 Outline of Thesis 

Section 2 describes the basic equations of the circulation model and 

boundary conditions including initial condition with hydrography data used 

for initial condition in input files, such as temperature and salinity, open 

boundary conditions and surface external forcing boundary conditions. The 

model domain and grid layout are presented in section 2. The data used for 

comparison are presented in section 3, and the mooring data are compared 

with the model results. Model results and the analysis method are also 

detailed in this section. In section 4, the observed and modeled tidal currents 

in Placentia Bay are presented and compared. Section 5 details the 

prognostic running to acquire the currents and temperature. The comparisons 

and statistics are also discussed. Section 6 provides a discussion and 

summary. 
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2 Hydrodynamic Equations 

2.1 Basic Equation 

The numerical model used for this study is an unstructured grid, 

fmite-volume, three-dimensional, primitive equation, fmite-volume coastal 

ocean model (FVCOM; Chen et al. , 2003). In general, two numerical 

methods are used in the ocean modelling. One is the [mite-difference method 

(Blumberg and Mellor 1987; Blumberg 1994 ), the other is fmite-element 

method (Lynch and Naimie 1993; Naimie 1996). The finite difference 

approach is computationally more efficient, but is less capable of resolving 

the complicated coastal boundary. Using the triangular mesh, the finite 

element method can more easily and most accurately fit the irregular coastal. 

This method, however, had difficulty to conserve mass and momentum. The 

fmite volume method integrates the momentum and tracers through 

individual unit control volume and solved numerically by flux through the 

volume boundaries to guarantee the conservation of mass and momentum. 

FVCOM is a sigma coordinate, free surface, hydrostatic model. It 

uses time splitting method for computational efficiency including the internal 

mode and external mode. Both modes are constrained by its Courant­

Friedriches-Levy (CFL) condition. A second order accuracy, fourth order 
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Runge-Kutta time stepping scheme is used for the external time integration, 

while a first order Euler time stepping scheme is selected for the internal 

time integration. A second order accurate upwind scheme, which is based 

piecewise for linear reconstruction of dynamic variable, is used for the 

spatial flux calculation for momentum and tracer values (Kobayashi et al., 

1999; Hubbard, 1999). Furthermore, Huang et al. (2008) have examined the 

hydraulic jump case and found a method, known as the multidimensional 

slope limiting method (Barth and Jespersen, 1989; Hubbard, 1999), had the 

advantage of reproducing the discontinuities without introducing oscillations 

associated with the finite volume scheme. For a more accurate estimation of 

sea level, currents, and the salt and temperature flux, velocity variables are 

placed at centroids, while all scalar variables are placed at nodes. 

The basic equations are presented in a bottom following, sigma 

coordinate system in order to obtain a smooth representation of irregular 

variable bottom topography. The a coordinate transformation is defined as 

z - ~ z - ~ . 
a = H + ( = D where a var1es from -1 at the bottom to 0 at the surface, z 

is the z coordinate, ~is the free sea level, H is the bottom depth and D is the 

water depth. Under this coordinate system, the momentum and continuity 

equations are given as (2-1) - (2-3), where u, v , w are the eastward, northward 
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and upward velocity, Km and p are the turbulent viscosity and potential 

density; and thermodynamic equations are as (2-4)-(2-6), where T and s are 

A 

the temperature and salinity, Kh is the vertical diffusivity and His the heat 

source term. 

8~ + 8Du + 8Dv + oOJ = O 
ot ox 8y oa 

auD + 8u
2 
D + 8uvD + 8uOJ _ fvD 

ot & 8y oa 

8~ gD 8 Jo . 8D 1 8 8u 
=-gD---[-(D pda )+ap-]+--(Km-)+DFx 

ox Po & a ox D oa oa 

fJvD + fJv
2 
D + 8uvD + fJvOJ + fuD 

ot 8y & oa 

8~ gD 8 Jo . 8D 1 8 fJv 
=-gD---[-(D pda )+ap-]+--(Km-)+DF 

& Po 8y a 8y D oa oa Y 

8TD + 8TuD + 8TvD + oTOJ = _!_~(Kh 8T) + DH + DFT 
ot ox 8y oa D oa oa 

oSD + OSuD + 8SvD + oSOJ =_!_~(K 8S )+DF 
ot & 8y oa D 8a h oa s 

p = p(T,S) 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

In the a coordinate system, the horizontal diffusion terms are 

defmed as: 

8 8u 8 OuOv 
DF ~-[2A H-]+-[A H(-+-)] 

x OX m & Gym OyOX 
(2-7) 

8 fJv 8 8u fJv 
DF ~-[2A H-]+-[A H(-+-)] 

Y 8y may OXm 8y& 
(2-8) 

8 8) 8 8 ( 2 2 D(Fr-Fs,F 2,F 2
1

) ~[-(AhH- +-(AhH-)] T,S,q ,q l) 
q q & & 8y 8y 

(2-9) 

where Am and Ah are the horizontal eddy and thermal diffusion coefficients, 
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respectively. 

2.2 Vertically Integrated Equation (External mode) 

The vertically integrated equation (2-10 to 2-12) illustrates the 

external mode based on the mode splitting method (Madala and Piacsek, 

1977). The external mode is for the fast moving motion, while the internal 

mode is responsible for the slow moving motion. Since a fast moving gravity 

wave exists in ocean, sea level should be computed for the external mode. 

Because sea level is proportional to the gradient of the water transport, it can 

be computed using the vertically integrated equations. Then the 3D internal 

model equations can be solved for a given sea level. 

a~ + o(uD) + o(vD) = 0 at ax ax ' (2-10) 

i -T -+ SX bx +DF +G x x• 
Po 

(2-11) 
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- -2 -

avD a(v D) a(uvD) f-D- D aq gD {L a (DL M ')d aD L •M } --+ + + u - -g --- - 1-"-"(J' (J' +- (J'J-IU'(J" at 8y ax 8y Po -1 8y u 8y -1 

(2-12) 

where Gx and GY are defmed as 

(2-13) 

(2-14) 

and the horizontal diffusion terms are approximately given by 

- - -
DF ~~[2AH8u]+ 8 [AH(8u + 8v) 

X ax m ax 8y m 8y ax (2-15) 

- - -
DF ~ ~[2A H 8v] +~[A H(8u + 8v) 

y 8y m 8y 8xm 8y8x (2-16) 

-8 8u 8 8u8v 
DF ~-2A H-+-A H(-+-) 

X ax max aym 8y ax' (2-17) 

- 8 8v 8 8u8v 
DF ~-2A H-+-A H(-+-) 

y 8y m 8y axm 8y ax' (2-18) 

The overbar "-"denote the vertical integration. ~and~ are vertical averaged 

eastward and northward velocity. -r sx and -r bx are the surface and bottom 

stress. 
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Equation (2-1 0), (2-11 ), and (2-12) are the continuity and momentum 

equations expressed in the sigma coordinate system. The right hand side of 

the momentum equations contains the barotropic, baroclinic, wind stress, 

horizontal diffusion and dispersion terms separately. 

2.3 Turbulent Closure Model and Horizontal Mixing Coefficient 

Km and Kh used in FVCOM are parameterized using the Mellor and 

Yamada (1982) level 2.5 turbulent closure scheme as modified by Galperin 

et al (1988) for flow-dependent vertical mixing coefficients. Furthermore, 

wave breaking process defmed as some processes to cause large amounts of 

wave energy to be transformed in turbulent kinetic energy when the 

amplitude of a breaking wave reaches a critical level, performs well in ocean 

surface temperature and surface boundary deepening (Stacey 1999; Burchard 

2001; Mellor and Blumberg, 2004). This wave physics processing was 

introduced into the modeling of surface boundary layer and the wave 

physical parameters were calculated through experiments and process of 

observation data (Terray et al., 1996, 1997, 2000). The basic equations are 

shown in (2-19) and (2-20). 

8q2 8q2 8q2 8q2 8 8q2 
-+u-+v-+w-=2(P +P. -e)+-(K -)+F ot 8x 8y & s b 8z q oz q (2-19) 
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8q2l 8q2l 8q 2l 8q2l w 8 8q 2l 
-+u-+v-+w-=ZE (P +P. --e)+-(K -)+F. (2-20) at ax ay az 1 

s b E
1 

az q az 1 

where q
2 is the turbulent kinetic energy and l is the turbulent macroscale. 

Kq is the vertically eddy diffusion coefficient of the turbulent kinetic energy, 

while Fq and ~ demonstrate the horizontal diffusion of the turbulent kinetic 

energy and macroscale. ~ and Pb term on the right hand side of these two 

equations represent the shear and buoyancy production of turbulent kinetic 

energy. e = q 3 
I Btl is the turbulent kinetic energy dissipation rate, and 

W = 1 + E2l
2 /(KL)2 is a wall proximity function where r 1 = (~- zr1 + (H + zr1

; 

1C = 0.4 is the von Karman constant. 

The turbulent kinetic energy and macroscale equations are closed by 

defining Km =lq~ ,Kh =lq~, Kq =0.2lqand 1e-4 is used as the background 

vertical eddy viscosity. S m and S h are defmed as the stability functions 

0 G 12g 
h S 

.4275-3.354 h 0.494 d G p s w ere = s - an h = - 2- z • m 
m (1-34.676Gh)(1-6.127Gh) ' h -l -34.676Gh q Po 

and Sh are functions of gradient Richardson number and depend on Gh 

which has an upper limit of 0.023 for the case of unstable stratification and a 

lower bound of -0.28 for the case of stable stratification. 

ParametersAt,A2,Bt, B2 and Ct are given as 0.92, 16.6, 0.74, 10.1 and 0.08 

respectively. 
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The horizontal mixing coefficient in FVCOM can be selected as a 

constant value or following the Smagorinsky eddy parameterization method 

(Smagorinsky, 1963). The diffusion coefficient of momentum and tracer 

value can be expressed by (2-21) using the Smagorinsky horizontal diffusion 

scheme. 

8u 2 8v 8u 2 8v2 
A = o.5cn (-) + o.5(-+ -) + (-) 

m Ox 8x 8y 8y 
(2-21) 

where C is a constant parameter from 0.1 to 0.2 and n is the area of the 

individual momentum control volume or the tracer control volume. 

2.4 Velocity and Temperature Boundary Treatment at the Surface and 
Bottom 

a) surface and bottom currents boundary condition are as follows. 

8u 8v D 
(-;-.-;-)=-K (rsx, -rsy ) 
ua ua Po m 

at the surface 

8u 8v D 
(-;-,.;-)=-K (-rbx ,-rby ) 
ua ua Po m 

at the bottom 

components of surface wind and bottom stresses. D = H + ~ . The drag 

coefficient Cdin FVCOM is determined by matching a logarithmic layer to 

K 2 
the model at a height zab above the bottom. cd =max[ ,0.0025], where 

In( zab ) 
zo 
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K = 0.4 is von Karman's constant and zo is the bottom roughness parameter 

(Chen et al., 2004b). 

A zero normal velocity was specified at the land boundary. 

b) Surface and bottom condition for temperature 

The surface and bottom boundary conditions for temperature are 

(2-22) 

where Qn(x,y,t) is the surface net heat flux and SW(x,y,~,t) is the short 

wave flux incident at the sea surface. a is the slope of the bottom 

bathymetry, and n is the horizontal coordinate (Pedlosky 1974; Chen et al., 

2004b). 

Knowledge of the distribution of solar radiation in the upper ocean 

1s important for modeling physical processes. To simulate the heat flux 

penetration process, Kraus (1972) frrst suggested an absorption profile for 

short wave radiation as a close simulation. This penetration procedure of the 

shortwave radiation can be expressed as an exponential equation involving 

two attenuation lengths. However, this assumption yields a poor 

approximation in the upper ocean. Based on the observations, downward 
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radiation effects upon the upper ocean in conjunction with wind stress 

conditions have been improved by (Paulson and Simpson, 1977; Simpson 

1981, a, b). Based on their conclusion, Chen et al., 2003b suggested that this 

approach leads to a more accurate prediction of near surface temperature. 

The shortwave profile scheme used in the present study is given by (2-23). 

HA ( ) 8SW(x,y,z,t) (R zla 1-R zlb ) x y z t = -e + --e 
' ' ' b peP a 

(2-23) 

where SW is the shortwave radiation, R is the ratio of the red component of 

the electromagnetic radiation in the total shortwave radiation and a and b are 

attenuation lengths for longer and short (blue-green) wavelength components 

of the shortwave irradiation. 

2.5 Model Domain and Model Grid 

The model domain is from 53 °W to 56 ow and 45.5 °N to 47.8 ° N. 

(Figure 2-1 ). The geometry of the domain features some coastal ocean banks. 

Starting from the east side of the domain, the Avalon Channel is relatively 

long and straight, extending into the eastern open boundary, connecting the 

Haddock Channel out of the south boundary. There, this channel joins Green 

Bank and Whale Bank which is a part of the Grand Banks. On the west side 

of the domain, lies part of the St. Pierre Bank, which forms two channels 
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with Green Bank and Burin Peninsula. The shoreline of the bay has many 

inlets, and is surrounded by fairly steep cliffs. Three small islands, located in 

upper Placentia Bay, are also a significant feature with the largest being 

Merasheen and the other two being Red and Long Islands. The center of the 

mouth of the bay is 200 m deep, while much of the remainder of the bay is 

roughly 100 m deep. The average depth is around 125 m. There are several 

areas with deep channels that run along the longitudinal axis of the bay. The 

east side of the bay has a regular, straight coastal line; while the western side 

of the bay has many islands and irregular, complicate coastal line. 

The governing equations of the model are solved over an 

unstructured triangular grid whose spacing is largest (3-5 km) along the open 

boundary and smallest (200m) along the coastline (Figure 2-2). There are 

21 unequally spaced levels in the vertical, with a minimum spacing of 

around 0.5 m near sea surface and seabed in order to resolve the shear 

current and thermodynamic process near surface and bottom. The 

distribution of sigma levels is 0,-0.005, -0.02,-0.045,-0.08,-0.125, -0.18,-

0.245, -0.32, -0.405, -0.5, -0.595, -0.68, -0.755, -0.82, -0.875, -0.92,-0.955,-

0.98,-0.995,-1. 

The bottom topography was mainly derived from the multibeam 
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bathymetry of the Canadian Hydrographic Service. To mmmuze the 

pressure gradient errors (Mellor et al., 1993), the bathymetry has been 

smoothed .The maximum ocean depth is 351m and the minimum depth is 5 

m. Smoothing can reduce or remove the pressure gradient errors along the 

places where depth change rapidly, but at the same time, some small 

topographic features are removed or reduced. 

Avalon 
Chann@l 

Figure (2-1 ): Map of model domain showing the major locations and features, 
bathymetry (lOOm contour, 200m contour). Complicated topography can be seen at the 
head of the Bay. (The bathymetry data is from ETOP5 before smoothing, and m _map is 
used to plot this figure) 
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~ Longitude(0
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Figure(2-2): The horizontal fmite element grid(named as pb during running) used in the 
numerical model. 

2.6 Open Boundary Condition and Treatment 

1) Open boundary conditions are inevitably involved in regional 

numerical models. The ideal open boundary schemes are transparent to fluid 

motion, such as sea level or velocity, which is generated within the model 
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domain and propagate to the open boundary. Unfortunately, it is not really 

possible to implement an ideal open boundary scheme. Consequently, the 

fluid motion is only partially transparent on the open boundary. Chapman 

(1985) examined seven different radiation open boundary schemes using a 

barotropic coastal ocean model with a straight coastline and uniform cross­

shelf bottom slope. He pointed out that the effect of different open boundary 

conditions can be determined by different bottom friction as well as the grid 

size and time step. However, with the inclusion of a varying density effect, 

open boundary conditions need to be considered with the temperature and 

salinity flux. Here, a sponge layer is used for velocity and sea-level is fixed 

at the open boundary. The treatment for temperature and salinity depends on 

the boundary flux direction. 

2) Sea-level at Open Boundary 

The open boundary elevation can be obtained through two ways. The 

first method, which is more accurate, is from tide-gauge data. The second 

method is from a coarse large model, essentially a nesting method. The 

second one is not accurate enough, but is widely used and easy to 

implement. In the current domain, sea level including the 5 tidal constituents 

( M 2 , S2 , N n K 1 & OJ at the open boundary is interpolated from model results 

19 



of the Newfoundland shelf simulated with FVCOM. To better estimate the 

seasonal transport and tidal propagation into the Placentia Bay domain, the 

Newfoundland Shelf mesh domain was forced with six hourly calculated 

surface heat flux, observed wind stress and monthly mean elevation at the 

open boundary from March to June, and then hourly sea level from April 1st 

to June 30th for the open boundary in Placentia Bay. 

3) Velocity on the Open Boundary 

The current version of FVCOM provides the sponge-layer method 

as a boundary condition treatment for velocity. This approach has a user­

defmed value to be set up before each running, and this coefficient attempts 

to trap the noise produced by numerical integration at each external time 

step. However, an excessive or deficient fraction can lead to over-damping 

or overflow into domain, then result in a velocity discontinuity along the 

open boundary after long time integrations. As also noted, the boundary 

velocity can be generated from the boundary sea level gradient. In the 

current FVCOM model, the sponge layer scheme can be explained based on 

a nudging scheme. The following equation is the nudging scheme. 

X a = y(X - X n) +X\ (2-24) 

where x a is the analysis variable after the nudging at the nth time step, X is 
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the value used for nudging, xn is the model value at the nth time step, and r 

is the nudging coefficient between 0 and 1. Here, if we treat X to be 0, then 

the equation becomes x a = xn- rxn used in the current FVCOM (X is the 

external velocity) and the model value, xa , will have a trend to become 0 

through model running time. r is the product of the user defmed value and 

relates to the ratio of the distance from the inner node to the boundary node 

over user defmed radius centered in the boundary node. We can explicitly 

see if we set r to be 1, the currents and sea level information can be damped 

to 0 at the open boundary. To let the 5 tidal constituents (M2 ,S2 ,N2 , K 1&01 ) 

information prorogate in, we then treat r as a damping time scale around 

the minimum tidal period( S2 ) for the 5 tidal constituents. 

4) Temperature and Salinity at Open Boundary 

The temperature and salinity open boundary conditions are from the 

same source as the sea level and velocity at open boundary. Results from a 

large scale model for the Newfoundland shelf are interpolated to provide the 

temperature and salinity boundary condition to better avoid underestimating 

the seasonal change in temperature. In FVCOM, temperature and salinity 

value at boundary are defined on the node of triangular cells and the volume 

flux is defmed by a net flux through the sections linked to centroids and the 
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mid-point of the adjacent sides in the surrounding triangles. If the volume 

flux at the open boundary is propagating out, then the temperature and 

salinity would be calculated by applying a second-order upwind differential 

scheme; otherwise, the value is based on the previous time step. Although it 

is considered a reasonable treatment for temperature and salinity at open 

boundary, it can also lead to a temperature and salinity jump caused by 

changing wind. Therefore, we used the Flux Corrected Transport (FCT) 

scheme which defmed as a conservative shock-capturing scheme to 

efficiently capture this jump. 

2. 7 Initial Conditions 

A) Hydrography Data 

The initial temperature and salinity condition have been taken 

from the monthly-mean temperature and salinity data (Geshelin et a/. ,1999). 

The temperature and salinity data are provided at standard z-level depths (0,-

10-20-30-50-75 -100-125-150 -200-250-300-400-500-600 -700-
' '' '' ' ' ' ' '' ' ' ' ' 

800-900-1000 -1100 -1200 -1300 -1400 -1500 -1750 -2000 -2500 -'' ' ' ' ' ' ' ' ' ' 

3000, -3500, -4000, -4500). Then the temperature and salinity data can be 

interpolated into sigma coordinates. The surface (bottom) temperature fields 

for spring and summer time are shown in Figure 2-3. 
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Figure 2-3 shows the initial temperature pattern for spring and 

summer time. In spring, around 0.6 oc contrasts can be found between the 

east and west side of the domain. The inshore branch of the Labrador 

Current carries fresher and colder water into the east side of domain 

producing temperature fronts as low as 0 oc shown in Figure 2-3(a). This 

front faces toward the channel between St. Pierre Bank and Green Bank 

(Figure 2-1 ). Warmer water can be seen in the 200 m deep basin, extending 

into the head of the bay, as displayed in the spring bottom temperature plot 

(Figure 2-3(b)). This plot also shows a significant feature that the weak 

inshore Labrador Current flows southward along the Avalon Channel, then 

entering the Haddock Channel. In summer, temperature increases to the 

south to 13 oc from the head of the bay to the outer open boundary. This 

regular temperature distribution suggests that the summer temperature in 

Placentia Bay is strongly influenced by short wave radiation in summer time 

compared with the dominant source from the Labrador Current in spring 

time (Figure 2-3( c)). The bottom temperature in summer presents similar 

thermal feature as in spring with a higher temperature area in the 200m deep 

basin (Figure 2-3(d)). 
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Figure 2-3: Climatological temperature CC) at (a) surface and (b) bottom in spring and 
at (c) surface and (d) bottom in summer. 

B) Initial Elevation and Velocity 

The initial values of elevation and velocity are specified based on 

model results of the Newfoundland shelf. 
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2.8 Meteorological Forcing 

Spatially uniform wind stress is used over the whole computational 

domain. Hourly wind speed and direction and air pressure data collected at 

Argentia are applied from April 1 to June 31, 1999. The air pressure data are 

used to calculate the inverse barometric effect to adjust the observed sea 

level for comparison with calculated sea level. Heat flux data are calculated 

from the air-sea toolbox including different functions to calculate shortwave 

radiation, longwave radiations, latent heat and sensible heat. Surface short 

wave heat flux was calculated using the relationships of Curry and Webster 

(1999). A revised function of Li et al., (2006) was used to calculate the 

albedo including the white cap effect (Monahan and MacNiocaill, 1986) 

while the modified TOGA COARE code (Fairall et al., 1996) was used to 

calculate the sensible and latent heat fluxes. The formulation of Fung et 

a/.,(1984) was used to estimate longwave radiation based on the sea surface 

temperature, air temperature, dew temperature, wind speed and cloud cover. 

Net heat flux and short wave radiation were mapped to the triangular nodes. 

2.9 Model Runs and Parameterization 

Restricted by the CFL condition, the external time step is 1 second 

and the internal time step is 1 0 seconds. The model was run for the period 
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from April 1 to July 1. The period from April 20 to June 18 is the model 

analysis interval. 
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3. Data 

3.1 Mooring Data for Comparison 

The mooring velocity, salinity and temperature data were taken 

from the report of Hart et al. ( 1999) which comprised seven current meter 

moorings deployed around the Bay from the spring to summer of 1999. The 

locations of the mooring are shown in (Figure 3-1). InterOcean S4's were set 

at 20 m depth at moorings M1, M2, M3, and M4, while Anderaa RCM7 

current meters were moored at 45 (for M4) or 55m at these same points. 

Acoustic Doppler Current Profiles (ADCPs) were used at moorings M5, M6, 

and M7 to measure the current velocities. Of these, two were deployed in 

upward looking mode (M5 and M6) at depth of 11Om, while the third was 

deployed in downward looking mode (M7) at depth of 1OOm. Unfortunately, 

we did not obtain the current data in M5, M6 and M7. 

The data are recorded in 20 minutes interval and last from year 

day 108 to 170. The mean and variance value for the 36-hour cutoff filtered 

data were calculated for each month in Table 3-1 to Table 3-6. M stands for 

the mean of the value and V stands for the variance; u and v have been 

converted to the along bay velocity and cross bay velocity defmed here. We 

determined the along-channel and cross-channel axes through a covariance 
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analysis, which maximized the variance along one component of a set of 

perpendicular axes. To rotate the co-ordinate system of the axes determined 

by the covariance analysis required a counter clockwise rotation of around 

45 o to the Earth axes coordinates at Ml and M2 and around 83 o at M3 and 

M4. For consistency, a counter clockwise rotation of 45 o to the Earth 

Coordinate was used. This rotation was set so that the positive x -axis was 

approximately parallel to the axis of the Bay. Mean currents at 20m and 55m 

(Table 3-1 and Table 3-2) show that the along bay velocity is greater than the 

cross-bay velocity and that the along-bay currents feature more variability 

based on the variance comparison. These two tables also demonstrate that 

the velocity decreases with depth; such velocity shear is expected. Seasonal 

change can be clearly seen with the decreasing strength in currents through 

April to June. As noted, currents are negative at Ml and M2 while in M3 and 

M4, the currents are positive. The currents at M3 and M4 on the east side are 

much stronger than at Ml and M2 on the west side. 

We also have temperature data at different depths (Table 3-3 to 

Table 3-5). Temperature increases with time and reaches a maximum at the 

end of June. Considering the available vertical temperature profile, the 

mixed layer could extend deeper to around 50m; and with the increased 
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surface temperature, the mixed layer depth shallows to around 20m in 

summer time. Salinity data are available from April to June at 20m and 55m. 

Shown in the table (Table 3-6), the salinity data at 55m all stay around 32psu 

and show little variability. However, at 20m, the salinity time series are more 

interesting with a significantly lower salinity at M2, perhaps caused by the 

river discharge or measurement error. An unusual high salinity value occurs 

in M4, with 34psu. We checked the observed salinity value in Station 27 

around St.john's, and found the 32 psu salinity value. Therefore, the high 

salinity value is probably an instrumental error. Thus, we will not make 

detailed comparisons with the salinity data. 

Table 3-1 
Statistics for the 20m observed currents for Ml to M4. Observed 

currents are separated into three months. M stands for the mean of the data 
and V means the standard deviation of the data. 

April May 
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V(m / s) 

v 

0.03 

0.03 

0.03 

0.03 



June 

Ml 

M2 

M3 

M4 

Table (3-2) 
Statistics for the 55m observed currents for Ml to M3 and 45m observed 

currents at M4. Observed currents are separated into three months. M stands 
for the mean of the data and V means the variance of the data. 

April May 

V(m/ s) 

v 
0.01 

0.04 

X 

0.02 

June 

U(m/ s) 

v v 
Ml 0.04 0.009 

M2 0.06 0.04 

M3 X X 

M4 0.05 0.02 
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Table 3-3 
Statistics for the observed temperature( o) for Ml to M4 at different 

depth of 1Om, 20m and 30m. Observed temperatures are separated into 
three months. M stands for the mean of the data and V means the variance 
of the data. 

X 

1.5 

1.5 

Table 3-4 
Statistics for the observed temperature( o )for Ml to M4 at different 

depth of 40m, 55m and 80m. Observed temperatures are separated into 
three months. M stands for the mean of the data and V means the variance 
of the data. 
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Ml 
- --

M2 
M3 . . - ·-
M4 

--~ ·-·----~ 

Table 3-5 
Statistics for the observed temperature( a) for M2, M3, M5, M6, and M7 

at different depth of 7 5m, 1OOm and 200m. Observed temperatures are 
separated into three months. M stands for the mean of the data and V means 
the variance of the data. 

Table 3-6 
Statistics for the observed salinity for M1 to M4 at different depth of 

20m and 55m. Observed salinity is separated into three months. M stands 
for the mean of the data and V means the variance of the data. There is 

150 at and we marked the star. 
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3.2. Tide-gauge Observation 

The tidal elevation observation dataset comprised a total of 2 

locations. One is located in Argentia and the other is at the very head of bay 

(Figure 3-1 ). 

0 
~ 
:::3 

~ 
...J 30' 

Figure (3-1): Map showing the locations of coastal tide gauge (NF-8, NF-9) with crosses, 
and current meter mooring sites with circle. These circle points have depths of 106m, 
182m, 165m, 55m, 428m, 304m and 147m separately. Ml and M2 are located at the west 
side of the bay, while M3 and M4 are at the east side of bay. M5, M6, and M7 are moored 
at the head of bay around the three main islands. 
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3.3 Data Analysis Method 

To evaluate the model solutions quantitatively, moored 

measurement data were used to compare with the model results. 

Temperature and salinity observation data were first filtered using 

an gth order low pass Butterworth filter with a cuttoff period of 36 hours. 

Seasonal temperature and salinity variability were better shown after 

removing the daily change. Considering the dominant five tidal constituents 

(M2 ,SnN2 , K 1&01 ), current mooring and pressure gauge data were filtered 

using an gth low pass Butterworth filter with a cuttoff frequency 

corresponding to a period of 36 hours. Data for tidal analysis were first 

filtered using an 8th order low pass Butterworth filter with a cutoff frequency 

corresponding to a period of 3 hours. After filtering, the data were sub­

sampled to 1 hour intervals and analyzed with t-tide software (Pawlowicz, R 

et al., 2002). 

Six primary goodness-of-fit indices were used here for the residual 

and tidal current. One is a velocity difference ratio (VDR) defmed as the 

ratio of the sum of the squared magnitudes of the vector velocity differences 

to the sum of the squared magnitudes of the observed velocities, that is, 

(3-1) 
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where vm is the horizontal model velocity and vo is the horizontal 

observational velocity. Lower VDR means better agreement. 

The second measure is a speed difference ratio (SDR) defmed as 

the ratio of sum of the Squared speed differences to the sum of the squared 

magnitudes of the observed velocities, that is, 

(3-2) 

The third measure is the root mean square error (RMS): 

L(Vm -Vo)2 

RMSerror = 
numel(Vm) 

(3-3) 

where numel(Vm) is the total number of the compared points. 

The fourth measure is the average of the absolute RMS error 

(abs_RMS), and the relative RMS error (rel_RMS) which are computed for 

semi-diurnal and diurnal constituents at each observation location of the 

observed value. 

abs RMS=r'~ D; - L....,L rel _ RMS =r'LrDI AM~ (3-4) 

where D is the RMS difference over a tidal cycle between model and 

observations, AM~ is the amplitude of observation and AMPm is the amplitude 

of model. 
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We also used y 2 to demonstrate the model's ability to simulate the 

variability of elevations and temperature which is defmed as the ratio of the 

hindcast error variance to the observed variance: 

y 2 = Var(O-M) (3-6) 
Var(O) 

where Var demotes the variance, and 0 and M represent observations and 

model calculated value respectively. A small y 2 indicates better agreement 

between the observed and simulated values. If the difference between model 

results and observation results in a value of Var (O-M) that is greater than 

Var (0), the y 2 value can be greater unity. We also note that y 2 does not take 

into account the model's bias and could be small if the observed variance is 

strong. 

The fmal measure is the correlation coefficient between the model 

and observed data. 
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4 Tides and Tidal Currents 

In this chapter we examine the tidal elevation and currents for the five 

primary tidal constituents ( M 2 , S2 , N 2 , K 1 & 0 1 ), which are obtained using 

harmonic analysis of the model output fromApril20 to June 18, 1999. 

4.1 Tidal elevation and Comparison 

Figure 4-1 shows the coamplitude and cophase charts of the computed 

M 2 and K 1 tidal constituents. The M 2 tide propagates from the Avalon 

channel westward through the model domain and northward toward the head 

of the bay, with a maximum amplitude of 70 em. The S2 and N 2 constituents 

(not shown) have similar spatial patterns but with amplitude smaller by four 

to five times, which is consistent with other studies of the semidiurnal tidal 

constituents in Newfoundland shelf and coastal line (Han, 2000). The diurnal 

constituent K 1 exhibits a significantly different spatial feature as the semi­

diurnal constituent. The coamplitude of K 1 increases from east to the west, 

consistent with an amphidromic point in the Laurentian Channel (Han et al., 

1996) west of the model domain. Statistics between computed tidal 

elevations and observations at coastal tidal gauge are given in Table 4-1. For 

these two coastal sites, the amplitude difference are below 5 em, and the 

phase difference is below 7 degree except for K 1 • The small root mean 
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square (RMS) differences, 3 em in amplitude and 4 degree in phase 

respectively except for K, , indicate good agreement of the model result with 

the observation data, . Other indicators are the absolute RMSerror and relative 

RMS e"or which account for the both amplitude and phase discrepancies. 

Compared with the diurnal constituents, the semidiurnal constituents have 

smaller absolute RMSmor and relative RMSmor values and therefore show 

better agreement with observations. 

(a)M2 coamplitude and cophase 
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(b) K, coampitude and cophase 

Figure 4-1: M 2 and K, coamplitude and cophase chart. Amplitude contour 
line is shown as red color and phase line is in blue color. 100 m and 200 m 
isobaths are displayed as a thin solid line. 

Table 4-1. 
Summary and statistics for observed and computed semidiurnal and 

diurnal tidal elevation and pressure gauge. AO is the amplitude of the 
observed site. PO is the phase of the observed site. AMO is the amplitude 
difference of observed and model results. PMO is the phase difference of 
observed and model results. 

.i -; . l :·:··. 
~_;- ..1.: . -· -~~ _: l.t. 

j ; • ' ~.: ... 
-~ ·-· 1.. ....___ ~-~:. ~..!.~ 

10.7% 

,• . -,-,'1 ,: 5.18 9.1% 

~ ----- --·-·-- .l~ --

39 



~l' /: '·-:~ . .:· :· 2.18 35% 
-~~~-:.:.....:... .... ~'! !._. ~-

4.2 Tidal Currents and Comparison 

The computed M 2 tidal current ellipses at the sea surface layer 

(o-=0.005) and the twentieth layer (o-=0.995) are shown in figure (4-2) (a) 

(b). A nearly rectilinear tidal flow (10 em / s) dominates the Avalon channel 

and along the coast of Avalon Peninsula. In the outer bay, the tidal flow has a 

magnitude of 3-5 em I s . The tidal current at the head of bay is weaker except 

near the coast. Relatively stronger tidal currents occur on the outer shallow 

banks, with amplitude approaching 10 em I s ; the spatial pattern of the 

bottom tidal current ellipses (Figure 4-2 (b)) is similar to that of the surface 

current, but the magnitude of the bottom current is dramatically reduced by 

the bottom friction. The S2 and N 2 tidal currents (not shown) have similar 

spatial patterns to the M 2 tidal constituent but with smaller magnitudes. 

The computed K 1 tidal current at the sea surface is relatively weak 

compared to the M 2 tidal current (Figure 4-2(c)). The K 1 tidal current 

exhibits a zonal rectilinear flow pattern with decreasing in magnitude toward 

the west and the maximum one around 6 em I s can be found in the outer shelf 

banks. The 0 1 tidal current pattern is similar to that for K 1 (Figure 4-2(d)), 
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but with much smaller magnitude. Both the K 1 and 0 1 bottom current 

magnitudes (not shown) are also reduced by bottom friction. The general 

surface current features in the present model are consistent with previous 

model results (Han, 2000) 

(a) M 2 at a = 0.005 
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(b) M 2 at a= 0.995 

(c) K 1 at a= 0.005 

~ 
Longitude(") 
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(d) 0 1 at a= 0.005 

Figure (4-2): M 2 tidal current ellipses (a) near surface and (b) near bottom, and (c) K 1 , 

(d) 0 1 current ellipses near surface. The 1OOm and 200m isobaths is displayed as a thin 
solid line. 

The computed magnitude and phase for zonal and meridional 

components of the M 2 tidal constituents are compared with the moored 

current meter measurements (see Table 4-2). Currents of the other four tidal 

constituents current are too small and not considered for current comparison. 

Altogether, 7 points at different depth are available for comparison and the 

RMS difference of the M 2 tidal current between model results and 

observation data is 1.8 em /sand 0.7 em / s for the zonal and meridional 
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velocity respectively. The relative RMSerror reaches 40.4% and 32.4%. Scatter 

diagram for M 2 tidal current was shown in Figure 4-3 which indicates a 

good agreement in comparison, especially in meridional velocity. Large 

differences for some points in zonal amplitude were examined and may 

relate to the smoothed bathymetry. 

Table 4-2. 
Statistics of model computed currents for M 2 compared with the 

observation data 
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Figure (4-3): Scatter diagram of the M 2 tidal current amplitude and phase for zonal and 
meridional velocity. ( a ) amplitude of U. ( b ) phase of U. ( c ) amplitude of V. ( d ) phase 
ofV 
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5 Current, temperature and salinity 

5.1 Sea level comparison at Argentia 
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Figure(5-l): (a) wind forcing in Argentia,(b) inverse barometric effect from st.john's 
station air pressure data, (c) 36 hour low pass filtered sea level comparison. 

A time-series comparison between hourly observed and modeled 

sea level is shown in Figure (5-1). We also plotted the hourly wind velocity 

vectors used to force the model (Figure5-l, a). The inverse barometric effect 

has been removed from the tide gauge data to enable comparison with the 

model sea level. There is a fair agreement in both amplitude and phase at this 

station, with the amplitude agreement best when the wind is strong. Thus, the 

sub-tidal sea level variations and the correlation with wind velocity vectors 

can be seen. From the day 110-120, the wind is upwelling-favorable at first 

and the sea level decreases to around -0.2 m; whereas when the wind 

changes to downwelling-favorable, the sea level increases to 0.2 m. Our 

model qualitatively reproduces this feature and the quantitative difference is 

probably from the inverse barometric effect generated from air pressure data 

in St.John' s airport instead of Argentia since there is no air pressure data 

47 



during the model running time. 

Quantitative comparisons are also made for low pass filtered times 

series. The RMS difference between the observed and model sea level is 5.2 

em and y 2 is 0.58 which demonstrates a relative reasonable agreement with 

the observed sea level. 

5.2Comparison of Observed and Simulated Temperature Values 

Both model and observed temperatures are shown in Figure 5-2, 

for M1-M6 at 10 m, 20 m, 30 m, 40 m, 55 m, 75 m, 80 m, 100 m. The 

model results correctly display the seasonal temperature variability at upper 

layer of the water column. The largest hourly difference between the 

observed and computed temperature value is about 4 oc. Averaged over 24 

hours, the difference is reduced to around 2.6 oc. Upper ocean temperature 

values range from 2 o C at the beginning to 8 o C at the end and is highly 

variable, especially in June. In contrast, the temperature at depths greater 

than 30 m was much less variable. Overall the model results agree well with 

seasonal observation. In the deeper ocean, model results present a 

decreasing trend in temperature which is consistent with the observational 

data, due to the low temperature inflow from the Labrador inshore flow. 

We note that the temperature fluctuations at M4 from days 147-160 
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show strong variability, even at 40 and 45 m. A temperature jump of about 7 

oc can be seen which may be due to the two strong and opposite direction 

wind during this period Figure5-l(a). The relation between the wind and 

temperature can be explicitly seen from wind time series. When the wind 

blows from northeast, the surface warm water will transport from the west to 

the east of the Bay, making the surface water mix down into the water 

column and leading the deepwater temperature to increase on the eastern 

bay. We can also roughly check the wind time series around day 146; the 

wind starts to blow northeasterly, then the temperature increase can be found 

at M4, especially at 40 and 45m. Therefore, when the wind blows southward, 

the temperature is expected to decrease at 40 and 45m along eastern Bay and 

the corresponding feature exists in Figure 5-2 (h,j) . Here, we also need to 

mention another important aspect affected the temperature fluctuation. As 

mentioned in Chapter 2, the cold trapped water inflow will come in through 

the open boundary and then pass M4. From the temperature transect in 

Figure 5-4, a cold mid layer can be found which will also affect the 

temperature at 40 m and 45 m at M4. These high frequency time-scale 

temperature variations are also associated with the M4 depth which is only 

5lm and easier to mix down. This can be examined by the close point M3 
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which is around 100 meters deep. For M3 temperature time series, strong 

variability can be hardly found during early summer time. With the above 

temperature fluctuation at M4, our model indeed demonstrates reasonable 

skill in producing these synoptic time-scale features at this site and performs 

well during day 14 7-160. 
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Figure(5-2): Time-series temperature comparison of filtered(36-h low-pass filter) 
observed(red line) and simulated(blue line) for six points at different depths (a)observed 
and model temperature for M1 and M2 at 10 m.(b) observed and model temperature for 
M3 and M4 at 10 m .(c) observed and model temperature for Ml at 20 m (d) observed 
and model temperature for M3 and M4 at 20m (e) observed and model temperature for 
Ml and M2 at 30m (f) observed and model temperature for M3 and M4 at 30m (g) 
observed and model temperature for M1 and M2 at 40 m (h) observed and model 
temperature for M3 and M4 at 40 m (i) observed and model temperature for M1 and M2 
at 55 m (j) observed and model temperature for M3 at 55 m and M4 at 45 m (k) observed 
and model temperature for M5 and M6 at 75meter(l) observed and model temperature for 
M2 and M3 at 80 m (m) observed and model temperature for M2 at 100 m. 
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Quantitative comparisons are made and summarized in Table 5-1 to 

5-4, respectively, for low pass filtered temperature times series. RMS 

difference, y2 and the correlation coefficient used for quantifying the 

agreements between the observed and model time series temperature. 

Considering the seasonal trend in the upper ocean, we separate the 

temperature statistics into two parts: above 30 m and below 30 m. We defme 

a comparison to be good for the upper 30 m when the RMS difference is 

around 1 oc and y 2 is less than 1. If y 2 is less than 0.5, the model results are 

treated to be at very good comparison. Considering the small variation in 

temperature time series in deeper water, we only calculate the RMS 

difference to determine the bias of the model results. This difference is then 

treated as an only indicator to determine if the comparison is good or not. X 

stands for no data in observation or model results. 

As can be seen (Table 5-1 to 5-3), the RMSerror at the upper 30m is 

around 1 oc and y 2 for upper 30 m is below 1 except M4 at 30m which 

indicate a good comparison. We also did data regression analysis and 

determined the correlation coefficient between the model and observed 

temperature at these depths which is around 0.9 with a high correlation of 

0.98 for M3 at 10m. The relative poor comparison for M4 at 30m may be 
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because of smoothed depth which leads to the shift of the value against to the 

observation. The deeper water temperature statistics at Ml-M6 are also 

examined and the RMSerror difference ranges from 0.5 to 1.7 oc which is a 

relatively good comparison. The temperature comparison statistics 

demonstrates overall good agreement between the observed and calculated 

results. Such good agreement at different depths suggest that our model 

strategy for Placentia Bay is justified in temperature, including the manner in 

which we specify the surface net heat flux and shortwave heat flux. Further 

improvement will require higher resolution time dependent weather 

condition to replace the six-hourly heat flux forcing for calculating the small 

time scale temperature features and spatial dependent wind or the use of data 

assimilation. For our purpose, however, data assimilation is not desirable 

since our goal is to understand from the seasonal temperature to synoptic 

time scales, requiring mass conservation over entire model simulation time. 

Table 5-1 

Statistics for 10 m model-observation temperature comparison at 
Ml,M2 M3 andM4 

Points 

Ml 

RMSmw 
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Correlation 

coefficient 



M2 1.79 

M3 1.73 

M4 1.58 

Table 5-2 

Statistics for 20m model-observation temperature comparison at Ml, M2, 

M3,M4 

Points 

Ml 

M2 

M3 

M4 

Table 5-3 

Correlation 

coefficient 

Statistics for 30 m model-observation temperature comparison at Ml, M2, 
M3 anM4 

.-~~---.--------

Points 

Ml 1.07 

M2 0.67 

M3 0.74 

M4 1.45 

Table 5-4 

Correlation 

coefficient 

RMS temperature difference between the observed and simulated value 
for six sites at 40 m, 55 m, 75 m, 80 m, and 100m. 

40 75 
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mC'C) 

Ml 0.57 

M2 

M3 

M4 

M5 

M6 
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5.3 Comparison of Observed and Simulated Vertical Temperature 
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Figure (5-3) Comparison of the vertical temperature profile between the model results and 
observation for the six points on (a) April15, (b) May 1, (c) June 15. 
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Figure 5-3 shows the comparison of the vertical temperature profile 

between the model results and the observation data at the middle of April, 

May and June, respectively. Fair agreement with the observed data can be 

found in general. There is approximate agreement in the thermocline 

formation and evolution from spring to summer time. In spring, temperature 

is more uniform from surface through deep water with the surface 

temperature below 5 oc. In summer, with the increasing temperature at the 

top 50 m, the thermocline layer can be clearly observed and surface 

temperature difference at different sites occurs. Surface temperatures at M4 

and M3 are 5 o c higher than at M2 probably because of the coastal 

upwelling on the west side of the Bay. 

5.4 Seasonal Surface Temperature Pattern 

The model reproduced two distinct circulation modes that reveal 

the differences in wind forcing from spring to summer season (Figure 5-4). 

During spring, the winds were generally southerly at frrst and then changed 

to northerly by the middle of the April. Here, we select the time after the 

middle of April. As a result, surface currents flowed westward along the 

coast (Figure 5-4 (a)).During June, upwelling along the west coast was 

generated by the strong southerly winds due to the Ekman flow (Figure 5-
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4(b)). 

The simulated surface temperatures from Placentia Bay were 

consistent with the general circulation patterns. The lower temperature water 

spread westward along the coast during spring time. On April 19, northerly 

winds pushed the cold water from ease coast into the inner Bay and further 

to the west along the west coast. Then a cold water layer around 0 

oc occurred. In contrast, on June 15, southwesterly winds pumped the low 

temperature water from deeper layer onto surface along west coast. This 

offshore transport of low temperature water was most notable near 4 7 

o Nwhere a pool of low temperature water is observed (Figure 5-4(b)). As the 

cold water spread southeast to contact with the warm water there, a cold 

water front formed and consequently, a thin layer with a gradient of 9 o C 

over 100 km occurred between the warm and cold water. As a result of the 

southwesterly winds, surface temperature along the east coast warmed. 
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(a) 

(b) 

Figure(5-4): Surface circulation and temperature surface field at two different times for 

(a):April-19-18:00 and (b): June-15-0:00 
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We also showed the temperature along 47 oN transect under the 

real forcing (Figure 5-5). To examine the seasonal pattern of the temperature 

profile along this transect, we select two times in April and June. The early 

spring temperature transects shows cold water at the surface and warm water 

trapped at the bottom of the deep basin in the center of the Bay. The middle 

part is the cold intermediate layer around -1 oc. Although the stratification is 

weak and the water column temperature is nearly uniform from the west 

coast to 100 m, this transect suggests weak upwelling on the western side 

and warmer water on the eastern side. The temperature pattern changes 

during the early summer. Temperature on the eastern side exhibits sharp 

thermocline and surface temperature reaching 13 o c . 
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Figure( 5-5): temperature transect along the 47 degree at two different time point 
(a):April-19-18:00 and (b) June-15-0:00. 
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5.5 Time Series Comparison of Currents 

In 1999, four current meter moorings were deployed across the 

outer portion of Placentia Bay. The current meter data provide important 

quantitative information of the circulation in Placentia Bay. For the 

simulation period, Currents at 20m and 55m were available for compared. 

All data were analyzed for flow at sub-tidal frequencies. 

The rotated model and the observed (Figure 5-6) velocity are shown 

for two depths: 20m and 55 m (45 m for M4). Here, we treat U as the along 

bay component and V as cross bay component. From the model, we sample 

the low pass filtered current data at the a -layer most closely matching the 

data sample depth since the current model employs a a -coordinate in the 

vertical. Figure 5-6 show that the alongshore component at these four 

stations are much stronger than the cross shore component and the velocity 

of the alongshore component decreased a little bit with depth!. Then, we 

defme a good comparison when model qualitatively reproduce the most 

feature of the observation and VDR is less than 1. As with the temperature 

and salinity the visual comparison for the hourly velocity components time 

series are quite good overall for M3 and M4. Quantitatively, The VDR and 

SDR at M3 and M4 are 0.31, 0.65 and 0.24, 0.5 at 20m respectively (Table 
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5-5 to 5-6) which indicate a good comparison at 20 m for M3 and M4. 

However, we still fmd some relatively poor comparison at M1 and M2 and 

the maximum RMS difference can reach 10 em Is with 1.1 for VDR at 20m 

at M1 (Table 5-5). Considering the location of these four points, M1 and M2 

are located on the west side of the Bay and the currents are partially 

influenced by inner bay due to the cyclonic circulation over the Placentia 

Bay. Therefore, further improvement may require including the river 

discharge at the head of bay since we found the river discharge can reach 200 

m3 Is during May in 1999 (Environment Canada) and more grids in the areas 

where depth changes rapidly. The river discharge will change the vertical and 

horizontal salinity distribution of the inner bay and further influence the 

baroclinic response of the current field over the inner bay. 
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Figure (5-6): Time-series currents comparison of filtered (36-h low-pass filter) observed 
(red line) and simulated (blue line) for four points at different depths. (a) observed and 
model along bay and cross bay currents for Ml and M2 at 20 m (b) observed and model 
along bay and cross bay currents for M3 and M4 at 20 m (c) observed and model along 
bay and cross bay currents for Ml and M2 at 55 m (d) observed and model along bay and 
cross bay currents for M4 at 40 m 
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Table 5-5 
Statistics for along bay and cross bay currents for four points at 20m. 

VDR and SDR index are calculated for currents. 
~ SDR 

error(m/ s) 

Ml along bay 0.1 0.73 

Ml cross bay 0.03 
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M2 along bay 0.06 0.22 

0.04 

M3 along bay 0.07 0.24 

M3 cross bay 0.09 

0.12 0.5 

M4 cross bay 0.03 

Table 5-6 
Statistics for along bay and cross bay currents for four points at 55m. 

VDR and SDR index are calculated for currents. 
RMSerror SDR 

Ml along 0.06 0.89 

0.02 

0.07 0.34 

0.04 

X X 

X 

0.07 0.9 

M4 cross bay 0.02 

5.6 Vertical Currents Section 

We examined the vertical temperature profile along 4 7 oN during 

the model run period. As shown in the Figure 5-7, vertical currents at three 
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different time all suggest the dominant flow is northward along the eastern 

side of the bay and southwards flow along the western side of the bay. These 

opposed flows can be explicitly seen in these three graphs. Except the near 

surface and bottom, a thin static layer occurs between the opposite direction 

flow. These two flows also indicate the seasonal variability probably caused 

by the seasonal transport. The northward flow is extremely strong in spring 

and becomes weak as summer progresses. The southward flow shows a 

similar seasonal scale. 
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Figure (5-7): velocity transect along the 47 oN at three different time point (a):April-
19-18:00 and (b) May-21-0:00 (c) June-15-0:00. 
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5. 7 Mean Circulation and Transport 

As shown in previous studies (Petrie and Anderson 1983; 

Greenberg and Petrie 1988; Han et al, 2008), the Labrador Current runs 

along the Newfoundland coast and shelf edge and splits into three branches 

at the north of Grand Bank, one of inshore weak branch of the Labrador 

current flows westward along Avalon Channel into the current model 

domain. To detect basic horizontal circulation over the current domain, 

model mean currents at 20 m are calculated from the mean of the whole 

model running period from year day 94.75 to day 182. As shown in Figure 5-

8( a), currents at 20m below the surface indicate a dominant counter 

clockwise flow along the coastline. An inshore current from Avalon Channel 

flows around Cape Race, and separates into two branches, one flowing 

offshore through Haddock channel, the other continuing along coastline into 

the eastside mouth of Placentia Bay with the shoreline on its right (following 

the f/H contour line, where f is the Coriolis parameter and H is the water 

depth). This topographically steered current has a magnitude of 10 em / s , 

reaches 47.5 oN, turns around Red Island to the east side of Placentia Bay, 

and moves along the eastern coastline of the Bay to flow out of the bay 

mouth on the other side. One of this outer bay current flows toward the St. 
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Pierre Bank to join the offshore Labrador Current, while the other follows 

the coastline as expected for the propagation of Kelvin Waves (de Young et 

al., 1993). The near bottom circulation is not substantial overall, but a 

bottom flow can be seen along the east coast of the Bay, indicating the 

importance of the barotropic effect there (Figure 5-8 (b)). 
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Figure (5-8): Model mean currents from year day 94.75 to 182 at the (a) 20m below the 
surface and (b) a = 0.995 circulation. 
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5. 8 Transport 

In this section we investigate the fluxes of water through various 

Placentia Bay cross sections and demonstrate that the FVCOM conserves 

mass over long simulation intervals. Two sections are across 4 7 oN and 

Avalon Channel (Figure 5-9a). Positive transport is eastward or northward. 

The mean transport during the model period through Avalon channel is 0.33 

Sv in the present study while the mean transport inshore 100 m isobath is 

0.40 Sv. The total transport through the Avalon channel was estimated to be 

0.39 Sv on the basis of current meter data (Greenberg and Petrie,1988). As 

shown in the Figure 5-9 (b), the Avalon Channel transport suggests a 

decreasing seasonal trend from spring to early summer time which is 

consistent with the previous seasonal transport study at near shore Flemish 

pass transect (Han et al. 2008).The synoptic timescale feature occurs over 

time because of shifting wind. Figure 5-9( c) shows the times series transport 

along 47 oN with a mean transport 0.0089 Sv to the north which means water 

flows into the inner bay through model time. The strong response with 0.12 

Sv at days 95 is primarily from the open boundary which is also shown in 

the Avalon Channel transport plot (Figure 5-9 (b)). The mean transport 

difference between the Avalon Channel and the 47 oN is 0.32 Sv 

corresponded to the large water out flow through Avalon Channel into the 
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shelf edge. Highly variable transports between positive and negative from 

day 99 to day 107 may be caused by the wind (see wind plot Figure5-l(a)). 

c 
Q) 
'0 
:I 

:!:::: -Ill 
...J 30' .. 

0 

"' 

(a) 

~ ~ ~ 
o:g Longitude(0

) ~ 

Figure(5-9): map showing the Placentia Bay. The isobaths displayed are 100 and 200m. 
Avalon channel{AC) (a) transect location1bree transport times series plots for (b) Avalon 
Channel (between lOOm contour) (c) transect at 47 °N. Values are detided using the 36 
cuttof frequency low filter. 
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6. Summary and future work 

The FVCOM 3D model provided a good simulation of circulation 

and temperature. The model correctly reproduced the bay circulation 

generated by northeasterly winds during the spring time, as well as the 

upwelling process caused by the southwesterly winds during the early 

summer time. The simulated cyclonic bay circulation patterns agree well 

with the previous field measurement (Hart et al., 1999). For the daily time 

scale features, our model can reproduce it, especially in M3 at 20m (Figure 

5-6) except the currents around day 120 due to the underestimate of input 

flux from open boundary. The relatively poor correlation between observed 

and simulated along-bay currents on the western side of bay (Figure 5-6 and 

Table 5-5) was likely due to the underestimation of the baroclinic effect 

caused by the poor knowledge of initial salinity distribution, neglect of the 

freshwater input at the head of the inner bay, and over-smoothing of 

bathymetry as moted in chapter 5. 

Semidiumal tidal constituents from model results were well 

predicted compared with the two tidal elevation gauge data and five tidal 

current mooring stations. The dominant M 2 tidal currents were well 

reproduced and thus justified model abilities to simulate the tide. Tidal 
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elevation spread as the path of Kelvin wave to be consistent of the previous 

knowledge of tidal development on Newfoundland shelf (Han 2000). 

The hydrographic distribution in Placentia Bay was examined and 

developed through spring time to early summer time. The seasonal 

temperature trend and stratification evolution are well represented by the 

model. With the RMS differences and y2 value showed in Table 5-1 to5-4, 

our model temperature shows a good comparison with the observation. 

However, we still fmd the RMS difference is relatively large around 1.5 oc at 

1 0 m. This temperature difference is due to the fact that model temperature is 

warmer than the observed value based on Figure 5-2 a,b,. This higher near 

surface temperature is probably because of the more shortwave input from 

the heat flux calculation (Curry and Webster, 1999) and insufficient turbulent. 

Furthermore, the temperature vertical transect also suggest the existence of 

the middle cold water layer. 

For future work, fresh water discharge needs to be added to force 

the inner bay salinity horizontal development and water flux distribution. 

Higher resolution with 100 m grids or even higher is required to better 

present the topography change over the inner bay. 

As we know, marine ecology plays an important role m the 
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development of cod or other manne lives in Placentia Bay. To better 

understand the ecology system in Placentia Bay, the model results will be 

applied to analysis the annual variability or even yearly trend of the ecology 

system in Placentia Bay such as the variability of the surface chlorophyll 

induced by currents and temperature. With enough knowledge of the ecology 

system in Placentia Bay, we can expect the spawning time of the cod in a 

particular year and some other cod events. 
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