

Side Channel Analysis of

Stream Cipher Hardware

by

© Jonathan Anderson, B.Eng.

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Engineering in Computer Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

September 2008

St. John 's, Newfoundland

Abstract

In today's world of ubiquitous connectivity, communications security is an ever

present concern. In order to protect sensitive information from eave dropping by

foreign governments, identity thieves and other curious individuals and organiza

tions, cryptography is today deployed on a wide scale. o longer strictly the domain

of large banks and governments, cryptographic systems ar found in such everyday

places as building passes and vehicl ignition k ys. Cryptanaly i is the study of

methods - called attacks - that can be used to extract secret information from these

cryptographic systems. It is largely a statis tical discipline, but out of it has grown a

more hands-on approach: side channel analysis.

Side channel analysis is an exciting field of study which attempts to extract seer t

information from cryptographic systems though the careful measurement of physical

characteristics such as power usag and execution time. These characteristics pro

vide "side channels" of information flow that algorithm design rs may not anticipat .

This research focuses of the power side channel, which extracts information from th

instantaneous power either used or radiated by a cryptographic system. Traditional

forms of power analysis are ineffective against a large class of ciphers called stream

ciphers, but a recently-introduced group of techniques - template attacks - have

been shown to be effective against microcontroller-based implementations of stream

ciphers.

II

This thesis describes the theory behind template attacks, and describes how we

have applied them to perform power analysis of hardware imp! m ntations of stream

ciphers. We have built hardware for this purpose, called the Side Channel Analysis

Board (SCAB) as well as designed software to perform the neces ary analysis. We

used our experimental setup to measure the power usage of FPGA-based hardware

- specifically the Actel ProASIC3 - running a stream cipher building block call d

LFSR-16. We have also simulated and analysed the power usage of LFSR-16 and a

functional str am cipher, Trivium. Trivium is a hardware-focused stream cipher t hat

was vetted by the r cent eSTREAM initiative, and is thus of great importanc . In

both simulation and hardware, we were able to extract secret k y information with

a probability greater than we would expect to achieve through random guessing. In

the case of the cipher building block LFSR-16, we were able to correctly classify

four key bits with accuracy greater than 90%. In the case of the stream cipher

Trivium, average classification success exce ded 20% where random guessing would

have achieved a success rate of just 6.25%.

Thus, we may state that the template attack technique is applicable to hardware

based stream ciphers, and that implementers of such ciphers must be aware of such

techniques and attempt to apply appropriate countermeasures wh re possible.

Acknowledgements

Chrissy, my wife, has been an unfailing source of encouragement and joy.

Dr. Howard Heys, my supervisor, has provided me with the freedom to explore

and the guidance to succeed .

Mr. Chris Batten, of MUN Technical Services, lent his invaluable aid in assembling

the SCAB platform. After a design flaw was discovered in SCAB Mk I, his st ady

hand re-routed a single signal from a 208-pin surface-mount chip, and saved a month 's

worth of refabrication.

This research was supported by the Natural Sciences and Engineering Research

Council (NSERC), through the Canada Graduate Scholarship and Discovery Grant

program .

Soli Deo gloria.

lll

Contents

1 Introduction 1

2 Background 4

2.1 Cryptography 4

2.1.1 Goals and Actors 4

2.1.2 Ciphers and Attacks 6

2.1.2.1 Cryptanalysis 6

2.1.2.2 Public Key Cryptography 8

2.1.2.3 One-Time Pad 9

2.1.2.4 Block Ciphers . 10

2.1.2.5 Stream Ciphers 12

2.2 Sid Channel Analysis 13

2.2.1 Timing Analysis . 15

2.2.2 Fault Analysis . 16

2.2.3 Power Analysis & Electromagnetic Analysis 1

2.3 Summary 22

3 Template Attacks 24

3.1 ttack Overview 24

IV

CONTENTS

3.2 Attack Details

3.2.1 The Multivariate Normal Distribution

3.2.2 Maximum Likelihood Estimators

3.2.3 Signal Classification

3.2.4 Template Masking

3.3 Attack Application

3.3.1 Inapplicability of DPA

3.3.2 Applicability of Template Attacks

3.3.3 Applicability to Hardware Implementations

3.4 Summary

4 Experimental Setup

4.1 SCAB - Side Channel Analysis Board .

4.1.1 Design Constraints

4. 1.2 Power Analysis

4. 1.3 Fault Analysis .

4.1.4 Timing Analysis .

4.2 Other Hardware

4.3 Measurement Equipment

4.4 Software

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

Power 'frace Formatting

Calculating 'frace Mean Vectors

Simulating Power Usage

Viewing Power 'fraces

Building Templates . .

Classifying Power 'fraces

v

26

26

27

30

32

35

35

39

42

42

44

44

46

47

49

50

50

51

53

54

54

55

57

58

59

CONTENTS

4040 7 Evaluating Classification Success Rate

405 Summary 0 0 0 0 0 0 0 0 0 0 0 0 0 .

5 Experimental Results and Analysis

501 Initial Experiments

502 LFSR-16 0 0 0 0 0 0

502 01 Simulation Results

50202 Experimental Resul ts 0

503 Summary 0 0 0 0 0 0 0 0 0 0 0

6 Application of Template Attack to Trivium

601 Description 0 0 0 0

602 Simulation Results

60201 Classification Success Rate vso T mplate Size

60202 Classification Succes vso Thaining Samples 0 0

60203 Classification Success Rate vso Bits Under Attack

603 Thivium Hardware

604 Summary 0 0 0 0 0

7 Conclusions

A Detailed Results

Ao1 Simulation 0 0

Aol. l LFSR-16 0

Aol.2 Thivium

Aol. 20 1 One Key Bit

Aol.202 Two Key Bits

Aol.203 Four Key Bits 0

Vl

60

61

64

64

67

67

75

77

80

80

83

83

84

85

88

88

89

97

97

97

109

109

109

110

CONTENTS Vll

A.l.2.4 Eight Key Bits 113

A.2 Physical Measurement •• • 0 • 114

B Software Data Formats 115

B.1 Cleverscope Text Files 115

B.l.1 Header . 115

B.l.2 Body . . 117

B.2 Analog Trace Files 118

B.2.1 Text 118

B.2.2 Binary 119

B.3 Digital Trace Files 119

B.3.1 Text 120

B.3.2 Binary 121

B.4 Power Usage Files . 122

B.5 Power Simulation . 123

B.5.1 Power Model 125

B.5.2 Cipher Model 125

List of Tables

3.1 Stream ciphering operations

5.1 Power usage characteristics

5.2 Classification success rate vs. bits under attack

A.1 16 training samples per operation (lo- 8 W noise)

A.2 16 training samples per operation (lo- 7 W noise)

A.3 16 training samples per operation (lo- 6 W noise)

A.4 16 training samples per operation (10- 5 W noise)

A.5 16 training samples per operation (10- 4 W noise)

A.6 16 training samples per operation (10- 3 W noise)

A.7 16 training samples per operation (.01 W noise)

A.8 16 training samples per operation (.1 W noise)

A.9 16 training samples per operation (1 W noise)

A.10 32 training samples per operation (lo- 8 W noise)

A.ll 32 training samples per operation (10- 7 W noise)

A.12 32 training samples per operation (lo- 6 W noise)

A.13 32 training samples per operation (10-5 W noise)

A.14 64 training samples per operation (10- 8 W noise)

A.15 64 training samples per operation (lo- 7 W noise)

Vlll

28

66

72

97

98

98

99

99

100

100

101

101

102

102

103

103

104

104

LIST OF TABLES

A.16 64 training samples per operation (10- 6 W noise)

A.17 64 training samples per operation (lo- s W noise)

A.18 64 training samples per operation (10- 4 W noise)

A.19 64 training samples per operation (lo-3 W noise)

A.20 64 training samples per operation (10- 2 W noise)

A.21 64 training samples per operation (.1 W noise)

A.22 64 training samples per operation (1 W noise)

A.23 128 training samples per operation (lo- 6 W noise) .

A.24 128 training samples per operation (lo- s W noise) .

A.25 256 training samples per operation (lo-7 W noise) .

A.26 256 training samples per operation (lo-s W noise) .

A.271Tivium results- attacking one key bit .

A.28 Trivium results - attacking two key bits .

A.29 'Ifivium results - attacking four key bits, 64 samples,

A.30 'Ifivium results - attacking four key bits, 64 samples,

10- 8 peak noise

10- 7 peak noise

lX

105

105

106

106

106

106

106

107

107

108

108

109

110

111

111

A.31 'Ifivium results - attacking four key bits, 256 samples, 10- 8 peak noise 112

A.32 'Ifivium results - attacking four key bits, 256 samples, 10- 7 peak noise 112

A.33 'Ifivium results - attacking four key bits, 1024 samples, 10- 8 peak noise 113

A.34 'Ifivium results - attacking four key bits , 4096 samples, 10- 8 peak noise 113

A.35 'Ifivium results - attacking eight key bits

A.36 Physical measurement results

114

114

List of Figures

201 Alice, Bob and Eve 0 0 0 0 0 0 0

202 The one-time pad in operation 0

203 Block cipher operation 0

204 Stream cipher operation

205 An abstract model of a cipher

206 A more realistic model of a cipher

207 Data dependent branching 0 0 0 0

208 Power analysis and electromagnetic analysis

209 Simple Power Analysis 0 0 0 0 0 0 0 0 0 0 0 0

5

10

11

12

14

15

16

18

20

301 Inter-operation mean and standard deviation vectors for actual hardware 34

302

303

304

3°5

306

401

402

403

DPA key guesses

DPA bit guess 0 0

DPA trace difl'erences 0

Difference of averages - 1 sample

Diff renee of averages - 50 samples

SCAB - Side Channel Analysis Board

PCB Layout for SCAB

Experimental setup 0 0

X

36

37

38

40

41

45

48

50

LIST OF FIGURES

404 Switch debouncing circuit

405 Cleverscope PC interface

406 Workflow - data files

40 7 Partitioning trace 0 0

408 traceview showing the contents of a Cleverscope file

409 traceview used to select subtrace mask

4010 classify output

4011 success output 0

501 The "FlipFlopper" Circuit

502 FlipFlopper output and instantaneous power usage

503 Design of LFSR-16 0 0 0 0 0 0 0 0 0 0

504 Basic statistics of simulated LFSR-16

505 Classification success vso template size

506 Classification success vso template size

507 Classification success vs. peak noise 0 0

5.8 Inter-operation statistics: varying bits 0- 3

509 Inter-operation statistics: varying bits 4- 7

5.10 Inter-operation statistics: varying bits 8- 11 0

5011 Inter-operation statistics: varying bits 12- 15

501 2 Classification success vso training samples

5.13 Classification success vso template size

5.14 Hardware LFSR-16 statistics ... 0 ..

601 Trivium 0 . 0 0 0 . 0

602 Trivium initialization

6.3 Trivium keystream generation

Xl

51

52

53

56

58

59

60

61

65

66

67

69

70

71

72

73

73

74

74

75

76

78

81

82

82

LIST OF FIGURES

6.4 Classification success vs. template size - Trivium ..

6.5 Classification success vs. training samples - Trivium

6.6 Trivium classification success vs. bits being attacked

6.7 TI·ivium information leakage .

B.1 Cleverscope text file example

B.2 Example of a text-based AnalogTrace file .

B.3 Writing a binary AnalogTrace file . .

B.4 Example of a binary Analog'Il·ace file

B.5 Example of a text-based DigitalTrace file

B.6 Writing a binary AnalogTrace file . .

B. 7 Example of a binary Analog'Il·ace file

B.8 Example of a binary PowerUsage fi le

B.9 PowerUsageModel interface

B.10 Cipher interface

Xll

84

85

86

87

116

119

120

121

122

122

123

124

125

126

Chapter 1

Introduction

The world today is more connected than it has ever been. Business employees log

into corporate computers from home via Virtual Private etworks (VP s), banking

customers access th ir accounts via mobile phones and billions of dollars are spent

in online shopping and auctions. With all of this sensit ive information flowing acros

public networks, the incentive for criminals and others to eave drop i very high so

securi ty is a top priority.

The study of ecuring communications is cryptography, and it is concern d with

two central problems: how to safeguard s cret message , and how to bypass t he

safeguards of others. The solution to each problem benefits the other, as we cannot

build or select ecurity tools without understanding the attacks that may be applied

against th m. With this principle in mind, in the work pr sented in this thesis we

proceed to attack ciphers that have been implemented in digital har !ware, in an effort

to circumvent their protections and extract secret information.

The primary tools of cryptography are ciphers, which p rform encryption (to

protect information that is to be kept secret) and decryption (to render encrypted

data readable again). These ciphers can be classified as b longing to one of two ets:

1

CHAPTER 1. INTRODUCTION 2

block ciphers or stream ciphers. There are different applications for these cipher , bu t

both are important. In 2001 , the US National Institute of Standards and Technology

(IST) , after a competitive process, published the Advanced Encrypt ion Standard

(AES) [1], which has become the de facto global standard for block ciphers. In

2008, the European Union's eSTREAM process ident ified a por tfolio of strong stream

ciphers - F-FCSR-H v2 [21, Grain v2 [3], MICKEY v2 [4] and Trivium [5] - and it is

to this more recent ly recognized group that we turn our attention.

Our goal, then, is to extract secret information from stream ciphers surrept i

t iously; i. e. to attack them. Rather than the tradit ional (and w 11-studied) method

of cryptanalysis, whereby mathematical r lationships are found among secret infor

mation and encrypted data, we turn to the newer approach of side channel analysis

[6], which xtracts secret information from careful measurement of physical quantit ies

such as power consumption.

Traditional forms of side channel analysis are often ineffective against stream ci

phers, bu t a recent class of techniques known as template attacks [7] have proved effec

tive against microcontroller-based implementations of stream ciphers (see Chapter 3) .

Microcontrollers, however , ar large, complex systems. The qu stion before us was,

could such attacks be effective against hardware implementations of cryptographic

systems? Could we demonstrate their efficacy, not just against a theor tical model of

power usage, but against physical hardware? Such a demon tration would impact the

design and implementation of stream ciph r hardware in emb deled hardware such

as smart cards and RFIDs, which could impact on the payment and authen tication

technology sectors.

We built both hardware and software in an attempt to answer these questions.

This experimental setup, which is comprised of a custom FPGA-bearing PCB, a

purpose-bought mixed-signal o cilloscop and thousands of line of analysis software,

CHAPTER 1. INTRODUCTION 3

is described in detail in Chapter 4.

Finally, we discovered the answers to our questions: yes, template attacks are ef

fective against the power usage of hardware cryptosystems, and yes, this effectiven ss

can be demonstrated using physical hardware.

Chapter 2

Background

2.1 Cryptography

The word cryptography comes from the Greek xpun16s (seer t) and ypa<pw (writing)

[8]. Cryptography is the "science and art of designing ciphers," [9] which are used in

many application to make secret the messages communicated among two or more

parties. A basic understanding of cryptography, and its goals, is requisite to under

standing the purpose and methodology of the attack that we will pres nt in Chapter

3, and whose r suits we will give in Chapter 5.

2 .1.1 Goals and Actors

Cryptography has many goals, including confidentiality (the ability to keep secrets

from those who we wish not to know them), integrity (the ability to verify that

messages have not been altered), authentication and non-repudiation (the ability to

prove that a party sent a message, even if they choose to deny it lat r) . To illustrate

these goals, we will introduce three characters who figure prominently in the literature:

Alice, Bob and Eve.

4

CHAPTER 2. BACKGROUND 5

Alice and Bob In the literature, Alice and Bob are often used to repr ent any two

parties who wish to communicate in a secure manner [10, 11]. Since their communi

cations are of a sensitive nature, they use cryptographic tools to protect the content

of their messages from being discerned by avesdroppers (e.g. learning the name of

a reporter's source), to prevent adversaries from making undetectable changes to the

substance of their messages (e.g. changing a beneficiary's name in a will) , and if

desired , to prevent them from later denying that they sent a particular message (e.g.

an agreement to pay for a good or service). Stated more formally, they use cryptog

raphy to provide their communications with confidentiality, integrity, authentication

and non-repudiation.

Eve Eavesdroppers are commonly represented by an actor named Eve. Eve is as

sumed to have complete access to the communications channels that Alice and Bob are

using, even th ability to send messages to one or both parties, but good cryptography

will prevent her from understanding what Alice and Bob communicate (violating con

fidentiality), changing the meaning of messag s (violating integrity), masquerading

as either Alice or Bob (falsifying authentication) or helping either party deny their

communication (r pudiating transactions).

8
Figure 2.1: Alice, Bob and Eve

CHAPTER 2. BACKGROUND

2.1.2 Ciphers and Attacks

6

T he primary cryptographic tool used to provide confidentiality is the cipher. A cipher

transforms information that we wish to remain confidential - the plaintext - into a

stream of data - the ciphertext - that can be safely transmitted via untrusted channels

such as public networks. This transformation is called encryption, and it - as well as

the reverse transformation, decryption - is parametrized by secret information called

the key. Wit hout this key, an adversary in possession of ciphertext material should

not be able to decrypt any of the ciphertext to read the original plaintext.

2.1.2.1 Cryptanalysis

The field of cryptanalysis is dedicated to finding weaknesses in cryptographic algo

rit hms such as ciphers, whether for the purposes of better understanding cipher design

(as in academic settings) or eavesdropping on secret communications (as in some in

dustrial or governmental settings) . There are several methods that can be used to

attack a ciph r , all of which assume that the attacker knows the cipher being used

[12]:

Ciphertext-only attack In this type of attack, it is assumed that th attacker has

access to cipher text , as well as knowledge of the cipher algorithm. It should be com

putationally infeasible for the at tacker to ascertain any plaintext or key information.

T he most obvious such at tack is an exhaustive search (colloquially, a "bru te

force" attack) . In this approach, the attacker checks every possible key to ee if it can

be used to decrypt the given ciphertext into an intelligible plaintext. This approach

is very inefficient: for an n-bit key, the expected number of keys t he attacker must

CHAPTER 2. BACKGROUND 7

search, N, is

(2. 1)

For the block cipher DES (the Data Encryption Standard) [131, an attacker can exp ct

to search through 255 = 36 x 1015 keys. This can be achieved today using dedicated

ha rdware such as the "Deep Crack" machine [14], so newer encryption standards us

longer keys [1]. For instance, the smallest key permissible for use with AES is 128 bits

[1], so we would expect an exhaustive search to take N = 2127 = 1. 7 x 1077 decryption

operations. An attacker would have be be able to search over 1060 keys per second in

order to expect to finish this search before the death of our sun [15].

Known-plaintext attack In a known-plaintext attack, the attacker has knowl

edge of th cipher algorithm, ciphertext and corresponding plaintext. Even with full

knowledge of cipher input and out put, it should still be computationally infeasible

for the attacker to det rmine t h key (or to d rypt later ciphertext) .

Chosen-plaintext attack In this most powerful type of theoretical attack, not

only does t he attacker have full knowledge of cipher input and outpu t, but she can

actually choose plaintexts that ar conveni nt for her purpos s. A secure cipher will

resist chosen-plaintext attacks - it will still be compu tationally infeasible for the

attacker to determine any key information, or to be able to d crypt later ciphertexts

whose plaintexts are not known to the attacker.

Implementation attack Beyond the realm of strict cryptanalysis - attacks on

cipher algorithms - there is also a class of attacks that exploit physical properties of

cipher implementations. Such implementation attacks include timing analysis, fault

analysis, power analysis and electromagnetic analysis, and will be discussed in Section

CHAPTER 2. BACKGROU D

2.2.

2.1.2.2 Public K ey Cry p t ogr aphy

One of the fundamental problems of cia ical cryptography was the key distribution

problem 116]. People eparated by long distances could prot ct th ir communication

via ciphers, but thi protection was m a ningless unless a secret k y could be se urely

communicated. Banks and governments could use trusted couriers and diplomatic

pouches, but such means were beyond the means of privat individuals.

Key distribution remained an open problem unti l the 1970s, wh n public-key cryp

tography was inv nted. Public-key cryptography uses one-wa mathematical functions

- function who inverses, e.g. dis rete logarithms, are very hard to calculate - in

such a way that encryption can be p rformed by anyone, using a public key, bu t de

cryption is only feasible for the owner of a secret key. The quintessential public-k y

cryptosystem is RSA, named for its author : Rivest Shamir and dl man 116] . With

such a sy tern encryption keys could be published openly larg ly solving the key

distribution problem.

The fo cus of this thesis, however , is stream ciphers, which use symm tric key .

Symmetric-key (or secret-key) cryptography uses the same, secret k y for both en

cryption and d cryption. Symmetric-key ciphers are still important, as public-k y

cryptography i very computationally compl x, and is thus often used for the pur

poses of s tting up a session key - a s cr t key that traditional, lower-complexity

cryptosystems can use to provid confidentiality for a session . T his i th premis

behind systems such as PGP - Pretty Good Privacy [17].

CHAPTER 2. B CKGROU D 9

2.1.2.3 One-Time Pad

During World War I , Vernam proposed the idea of a simple cipher that could not be

broken: th one-time pad 118]. Shannon ubsequently demonstrated in 112] that this

cipher did indeed provide perfect secrecy - if the key is t ruly random, then intercepting

ciphertext provides the attacker with no information about t he plaint xt.

The critical r quirement for perfect security is that th t of possible keys b

at l ast as large as t he set of possible plaintexts. In a one-time pad , a long stream

of random bit i generated and distribu ted to both communicating parties (e.g. an

embassy's key could be encoded on optical tape and shipp d in a diplomatic bag [9]).

When a m s ag is ncrypted, each plaintext symbol is add d to a ymbol of k y

u ing Galois Field arithmetic, and that portion of key is discard d , n ver to be u eel

again . D ryption occurs via the inverse process: each ciph rtext symbol is added

to the Galois F ield inverse of an identical keystream symbol - which is afterwards

discarded - to produce the original plaintext. If the symbol alphabet i in GF(2),

then both encryption and decryption are imply the XOR operation.

Since there i as much key material a plaintext, and if that k y material is truly

random, then it is impossible to "break" the cipher. If th plaintext and key both

have an alphabet of L symbols, th n there are NL possible plaintexts and NL po -

sible keys, wh r N is the numb r of symbols transmitted. From the ciphert xt

"GDIFBALDKRPDFZLSB" it is impo sible to know which of the 17-letter plain

texts "MEETMEAT I ETODAY", 'MAXSMARTISAGENT86' or v n LOVEY

OUSWEETHEART" is correct, a each of th ir corresponding k y i equally lik ly

to be correct - as shown in Figure 2.2.

Because of th logistical co ts of g nerating and eli tributing vast amount of

key material th one-time pad i not u eel extensively out id of diplomatic and

CHAPTER 2. BACKGROUND

Plaintext I M IE IE IT I M IE I A IT IN I I IN IE IT I 0 I D I A I Y I
Key I U I A I E I M 1 .. ·I I I I I I I I I I I I I

Ciphertext I G I D I I I F I B I A I L I D I K I RIP I D I F I Z I L I 5 I B I

Plaintext I MIA I X I 5 I MIA I R IT I I I 5 I A I G IE IN IT IBI 61
Key I U I D I L I N 1 .. ·I I I I I I I I I I I I I

Ciphertext I G I D I I IF I B I A I L I D I K I RIP I D IF I Z I L I 5 I B I

Plaintext I L I 0 IV IE I Y I 0 I U I 5 I WI E IE IT I H IE I A I R IT I
Key I V I P I N I B 1 .. ·I I I I I I I I I I I I I

Ciphertext I G I D I I IF I B I A I LID I K I RIP I D I F I Z I L I 5 I B I

Figure 2.2: The one-time pad in operation

10

intelligence circles [9], but we will see in Section 2.1.2.5 how its principles are appli d

in many practical ciphers.

2.1.2.4 Block Cipher s

The last fifty years of symmetric-key cryptography have been dominated by the block

cipher. A block cipher is a cipher that operates on fixed-size blocks of data (typically

of 64 or 128 bits) , transforming plaintext blocks into ciphert xt blocks (encryption)

or vice versa (decryption) . An example is the Advanced Encryption Standard [1], a

block cipher selected in 2001 to be an official standard of the US National Institute

of Standards and Technology.

As shown in Figure 2.3, the unit of communication is a block of ciphertext. An

eavesdropper cannot decrypt a block without the secret key, providing confidentiality,

as a single bit difference between the correct key and the key guess will rend r the

entire block undecryptable. There are several modes of operation for block ciphers,

CHAPTER 2. BACKGROU D 11

• • Plaintext Ciphertext

Key-+ E D ~Key

Ciphertext Plaintext

• •
Figure 2.3: Block cipher operation

but all operate with two common characteristics:

• Complexity

Block cipher are often larg , complex hardware y t m whos power u -

age can vary greatly, dep nding on input elem nt su h as plaintext and

secret key

• Key Usage

- B cause of the overhead as ociated with changing encryption k y (both in

key management and cipher s tup) block cipher p rform many encryp

tions/ decryptions with a single key

While neither of the e characteristics interfere with block ciph r ' abili ty to operate

securely in a theoretical sense, they will become important wh n w discus imple

mentation attacks in Section 2.2.

CHAPTER 2. BACKGROUND 12

2.1.2.5 Stream Ciphers

Anoth r class of symmetric-key ciphers, typically associated with resource-constrained

environments, is the stream cipher. This clas of cipher, shown in Figure 2.4, u e

identical encryption and decryption modul , each of which produ es a very long

(e.g. 280 bits) pseudo-random stream of symbols that is parametrized or seeded by a

public bit vector - the initialization vector - and a secret key. This pseudo-random

stream is called the keystream, and it is an approximation of the one-time pad d -

scribed in Section 2.1.2.3. An example of such a cipher is Trivium 15], par t of the

eSTREAM portfolio of stream ciphers. Trivium and the eSTREAM portfolio will be

addressed in detail in Chapter 6.

Initialization Vector

Key- E

u
,,,,, ,, ,, EB
Plaintext

lll l l l lll

Ciphertext L_ _____ c_h_a_n_n_e_l ____ _,~

Initialization Vector

E

' ' !'''''' EB Ciphertext
ll!!lllll

Plaintext

Figure 2.4: Stream cipher operation

As in the case of the one-time pad, the keystream is added to the plaintext using

Galois Field arithmetic - typically in GF(2) , which is the binary XOR - to produce a

ciphert xt stream. The ciphertext is transmitted through the communication hann I,

where it is added to another keystream to produce plaintext again. If the secret key

at the transmitter and receiver are identical, then their keystreams will be as well, so

the original plaintext will be recovered. If the keys differ, however, ven by a single

. -- --

CHAPTER 2. BACKGROUND 13

bit, then the two keystreams will be very different, and the original plaintext will not

be recovered from the ciphertext.

Tho characteristics of stream ciphers that will become important in Section 2.2

are:

• Complexity

- Stream ciphers are typically very simple systems, and the power used by

their hardware implementations does not vary as greatly as that of block

ciphers

• Key Usage

- The internal state of many stream ciphers (e.g. Grain [3] and Trivium [5])

is initialized with the secret key, but continually changes in such a way

that key information is "mixed in" to the state, so no two bits of keystream

are generated from the same internal state.

2. 2 Side Channel Analysis

When cryptographers design a new cipher, the approach that they take is often very

abstract; many cryptographers would agree with [19] when it says that "essentially

a block cipher is a keyed permutive mapping (encryption) together with its inverse

(decryption)". Such an abstract, mathematical model of a cipher appears in Figure

2.5.

CHAPTER 2. BACKGROU D

Secre t Known to Attacker r------r-------------
11

:~ Plaintext
II
II
II
II
II
II
II

Key~ II E

Ciphertext

Figure 2.5: An abstract model of a ciph r

14

In this model, one assumes that the cipher algorithm is known to potential attack

ers, and pos ibly even pairs of plaintext (data to be encrypted) and ciphertext (n

crypted data). The key, which parametrizes the cipher, is not known to the atta ker;

it is this key that the attacker attempts to find using mathematical relationships

betwe n the plaintext and ciphertext.

o cryptographi function , however, exists as merely an abstra t algorithm; it is

not u eful unt il it has been implem nted in hardware or oftware. The operation of an

actual cryptographic cipher implementation can yield information about its internal

that the designer did not expect or plan for. This information i said to flow through

"side chann Is", which include:

• power u age - how much power a devi e uses

• electromagneti radiation - how much power a device radiate

• execution time - how long an operation takes

• respons to faults - how the device reacts to intentionally- ind u cd errors

A more realistic cipher model which incorporates these ide channels i hown in

F igure 2.6. Car fu l measurement and analysis of the signal in t h channels can

CHAPTER 2. BACKGROUND 15

capture information "leaking" out of the cipher. The techniques t hat cryptographers

use to exploit these correlations are collectively known as side channel analysis [6J.

Secret Known to Attacker r-----·r---------- ------ ------------ ----
11 I

:~ Plaintext :

1

1 + I 11 I
11 I
11 I
1
1 ~Execution Time 1

11 I
11 I

1
1 E ..-Induced Faults 1

Key~ ~Response to Faults
II
II
1
1 ~Power Usage

:: ~EM Radiation
II t II
II
II
11 Ciphertext

_____ j~--------------------------------

F igure 2.6: A more realistic model of a cipher

Most techniques of side channel analysis require some level of physical access to

the cryptographic device under attack. This was once an implausible assumption, but

as cryptography moves from secure server rooms to notebook PCs to smart cards in

our wallets, it becomes an increasingly realistic and important component of security

threat models.

2. 2.1 Timing Analysis

Timing Analysis, first demonstrated m [20], uses very precise measurement of al

gorithm execution time in order to infer bits of data upon which the algorithm is

operating. At first glance, there may not seem to be a correlation between these two

things, but in fact, execution time can be related to:

• key- or data-dependent branch instructions

• cache hits

CHAPTER 2. BACKGROU D 16

• long processor instructions (e.g. multiplication)

For instance, in public-key cryptography, mathematical operations are often p r

formed on very large (512- or 1024-bit) integers. In order to improv performance,

many public-k y implementations will use conditional (if/ els) oftware in t ruction

that depend on key or data bits, as in Figure 2.7.

for (i = .. .)
if (input & (1 << i) ! = 0)

output << 1
output *= input

Figure 2.7: Data dependent branching

This pseudocode, which could be part of a large-integer exponentiator, ha two

lines that only execute if an particular input bit is 1. If th input and output

variables in this pseudocode are 512-bit integers, ther will b a very ignificant

difference in execution time dep nding on how many bits of input are 1.

Timing attacks have been applied to block ciphers such a RC5 [21] and are even

applicable to careless implementation of the Advanced Encryption Standard 122].

2.2.2 Fault Analysis

Fault analysi attempts to induce small (u ually single-bit) rror into a ryptographi

computation 123]. The resu ltant ciphertext can be compared to th ciphertext that

would emerge if there were no error, and the differences between the two can yield

insight into internal bits that should be ecret.

CHAPTER 2. BACKGROUND 17

Fault Induction In [23], the theoretical effectiveness of fault analysis was demon

strated, but no concrete results against actual, physical cryptosystems were given.

Rather, it was assumed the attacker had the power to cause bits in the system to

"flip" from 0 to 1 or 1 to 0, as required by the attack. This model was first given in

[24], but more recent work has demonstrated practical fault induction.

More recently, [25] showed that, if such faults can be generated , then complete

AES keys can be recovered using as few as 128 faulty encryptions. Such faul ts have

been demonstrated in [26], where such commonplace equipment as lenses and camera

flashes were used to set individual bits of microcontroller memory with precise timing.

This does require opening the packaging of the chip, however. More insidious is the

attack in [271, which claims that arbitrary memory bits may be set or reset by an

attacker. If practical, such attacks would be very difficult to d fend against.

Clock Glitches Side channel analysis is often used against the "smart cards" that

control mobile phones, pay TV and satellite receivers, and in orne places, even power

meters. These devices are very small, and they usually hav no on-board power or

clock sources; they rely on connected equipment, and this can leave them vulnerable

to clock gli tches.

In [28], it was demonstrated that by sending a 20MHz puls to a smart card which

operates at 5MHz, faults could be introduced in the system. In fact , it wa shown

that individual instructions executing on a microcontroller could be bypassed by way

of such fau lts. Hence, the number of encryption rounds could be reduced , making

cryptanalysis trivial .

Chip Rewriting In [28], it was shown that single ROM bits could be overwritten

with a laser cutter microscope. Again , this could be used to attack data, but it is

CHAPTER 2. BACKGROUND 18

even more effective to attack the program, reducing encryption rounds to one or two

and allowing for trivial cryptanalysis of the system.

In [29], a focused ion beam is used to cut traces inside of a microchip, or even to

lay down new traces . This equipment is expensive, on the order of mi llions of dollars ,

but it can be rented for much less . Against such a powerful adversary, it is difficult

to imagine countermeasures that would have more efficacy than slowing the attacker

down. Indeed, [29] contains confirmations from "a senior agency official" and "a senior

scientist at a leading chip maker" that the contents of a microchip cannot be kept

secret indefin itely from a skilled, equipped and motivated attacker .

2 .2 .3 Power Analysis & Electromagnetic Analysis

The power usage and electromagnetic radiation side channels are closely related.

Power analysis attempts to find internal secrets by correlating them with how much

power an electronic device is consuming [30]. Electromagnetic analysis attempts to

find correlations with the power that a device is radiating, either from the entire

system or from a specific location on a chip [31] . The experimental setups involved

with both can be very simple, as shown in F igure 2.8.

l (a) (b)

Figure 2.8: Power analysis and electromagnetic analysis

CHAPTER 2. BACKGROUND 19

Both forms of SCA have their place: power analysis does not have to contend

with high levels of ambient noise, but electromagnetic analysis allows the attacker to

focus on a specific part of the device under attack - concentrating on cryptography

and ignoring unrelated hardware.

In Figure 2.8(a), we see a hardware device with a small resistor inserted between

its Vee terminal and the actual Vee supply. The power consumed by such a device

can easily be calculated as

p(t) = v(t). i(t) = Vt(t) . vh(t) ~ Vt(t). (2.2)

Figure 2.8(b) shows a small electromagnetic probe receiving radiation from the

cryptographic device. In both cases, deep memory oscilloscopes are used to record

the power being consumed or emitted.

A capture of the power usage over a complete cryptographic operation is referred

to as a power trace. While it is possible to correlate these traces with internal secrets,

it is often made difficult by a very low signal-to-noise ratio (SNR). An attacker may

be interested in whether a particular flip-flop in a cryptographic device changes from

0 to 1 or from 1 to 0, but there may be thousands of flip-flops in the device, each of

which has just as much effect on overall power usage as the bit being attacked. In

order to overcome this SNR problem, increasingly sophisticated methods of analysis

are being developed.

Simple Power Analysis (SPA) The first, and simplest, method of power analy

sis can be used to analyse the power consumption of microcontroller-based software

implementations. Na!ve implementations of ciphers may incorporate software tech-

CHAPTER 2. BACKGROUND 20

niques like branching instructions that depend on key bits. Such techniques build a

very high correlation between power usage and individual key bits, as the difference

in power traces where a branch was or was not taken can be obvious even to the

naked eye. In these situations, an attacker may be able to simply examine the power

trace and pick out key bits by observing whether or not power-intensive instructions

following branch instructions were executed.

For instance, Figure 2.9 shows a current trace from a DES operation. Arrows point

to dips in current characteristic of rotation functions, clearly showing the attacker that

one rotation occurred in one round and two in the next. Since the number of rotations

are key-dependent, being able to count rotations gives the attacking information about

the secret key .

.-..._ 5.0
q::
E 4.5

--.;...
..... 4.0
c::
(I) 3.5

E
:::J 3.0

0 2.5 i i
2.0

0 100 200 300 400 500 600 700 BOO

Time (pS)

Figure 2.9: Simple Power Analysis [30]

This technique is called simple power analysis (SPA) [30], and it relies on a rel

atively high SNR. It has been used practically, as shown in the SPA attack against

DES in [30], but it is a very simple matter for a cipher implementation to counter

act this threat: all that is required is for the designer and/ or implementer to ensure

that branching instructions do not depend on key bits. This may increase execution

time, but avoiding key-dependent shortcuts means that the high SNR necessary for

Simple Power Analysis is not attained, and so SPA is rendered ineffective against the

implementation.

CHAPTER 2. BACKGROU D 21

Differential Power Analysis (DPA) The differential power analysis (DPA) tech

nique [30], which is suitable for attacking hardware and software systems, attempts

to overcome low S R by analysing many power traces which u e the same key infor-

mation and statistically testing hypotheses concerning internal key bits. The great r

the number of traces used, the higher the resultant SNR, but there is a caveat: the at-

tacker may have to gather thousands of power traces from the device being attacked ,

which may b difficult to acquire without arousing suspicion.

It has been shown that DPA can be used in practical attacks on real cryp tosystem

involving block ciphers such as DES [30], but it is often not effectiv against stream

ciphers [32]. The reason is that, as stated in Section 2.1.2.5, the secret key often only

exists in the cipher's internal state for a few clock cycles, so th analysis described in

[30] does not work unless the attack can obtain many traces from cipher re-keyings.

Obtaining power traces of several thousand r -k yings, with th same key, from an in-

production device can be prohibitively difficult; this type of key re-use i purposefully

avoided in most protocols to minimize su ceptibili ty to traditional cryptanalysi .

Template Attacks A newer approach to the S R problem, which removes th

requirement for obtaining thousands of power traces from the device under attack, is

referred to as a template attack, as presented in [7]. We will pre ent this attack in

more detail in Chapter 3.

The template attack takes a two-step approach to power analysis:

1. Template Preparation

A cryptographic device identical to the one under attack is acquired 1 and t ern-

1 When we say that a device has been acquired, it may be either constructed or otherwise obtained
(e.g. by purchasing the same model of device). It is very realistic to assum that this is practical, as
many cryptographic systems are built with standard commercial components, such as !SO-standard
smart cards [33] ; only the secret keys are not available to the attacker.

CHAPTER 2. BACKGROUND 22

plates are built, which are multivariate Gaussian models of the noise associat d

with particular guesses a t key bits.

2. Actual Attack

In this st p , a single power trace is collected from an actual device in use and,

for each template, the probability that it belongs to that template is calculated.

Communications ngineers will se that this approach is analogous to using match d

filters to resolve received signals. The technique shows much promise, having b en

used to successfully attack a microcontroller-based implem ntation of the stream

cipher RC4 17]. To date, however, t he template approach has not been appli d to

hardware-based implementations of stream ciphers.

2.3 Summary

Cryptography is an important part of daily life in our networked world. One of the

most fundamental tools of cryptography is the cipher, which provides confidentiality

for parties wishing to communicate in the presence of an eavesdropping threat. These

ciphers may be attacked through methods of cryptanalysis, which may be classified

as ciphertext-only, known-plaintext, chosen-plaintext or implementation attacks.

Ciphers can be cat gorized as symmetric-key or asymmetric-key. Among symmetric

key ciphers, whi h this thesis is concern d with, there are two broad categories: block

ciphers and stream ciphers. Stream ciphers attempt to approximate the on -tim pad

- which has perfect secrecy - by generating long pseudo-random keystreams from se

cret keys. Encrypt ion consists of adding this keystream to the plaintext stream, and

decryption consists of adding it to the ciphertext stream. One important stream

cipher today is Trivium, which will be considered in detail in Chapter 6.

CHAPTER 2. BACKGROUND 23

Side channel analysis is a broad term for a class of implementation attacks that

attempt to extract secret information via careful measurement of various physical

characteristics, such as execution time, response to induced faults and the power con

sumed or radiated by a system. These measurements can be analysed by inspection,

partitioning-based statistics and multivariate Gaussian analysis. The latter approach

is called a template attack, and its details are the subject of Chapter 3.

Chapter 3

Template Attacks

The t emplate attack is a powerful method for extracting secret information from

cryptographic hardware. Chari et al. claimed in [7] that it is "the strongest form of

side channel attack possible in an information theoretic sense" (under certain assump

tions concerning the nature of the side channel - see Section 3.3.2) . The attack i

effective when physical access is limited- an attacker needs just one power trace from

the device under attack - and is even effective against stream iphers, which resist

traditional power analysis techniques such as simple power analysis and differential

power analysis (se Section 4.1.2 for more information on SPA and DPA) .

In this thesis , we focus on the power usage side chann l, but template attack

are not inherently limited to power analysis; they can also be applied to other side

channels such as electromagnetic radiation and execution time.

3.1 Attack Overview

Template attacks operate according to the principles of signal detection , and th y ar

optimal in the same sense that the matched filter approach is the optimal technique

24

CHAPTER 3. TEMPLATE ATTACKS 25

availabile in its domain. Unlike traditional power analysis techniques, template at

tacks are spli t into two steps, only one of which actually requires access to the device

under attack [7):

Template Preparation Analogous to the preparation of matched filters , this step

of the attack involves the construction of templates - collections of statistical in-

formation that will later be used to recognize secret parameters to cryptographic

operations.

Cryptographic hardware, similar or identical to the hardware to be attacked 1, is

run through the initial stages of operation many t imes - hundreds or even thousands

of times - with certain parameters (e.g. several bits of the secret key) set to known

values. Other parameters are permitted to vary randomly, so that, as the numer of

sample traces increases, the template comes to reflect only that side channel infor-

mation which depends on the parameters set above.

The side channel (power usage, timing, etc.) is measured carefully for each op

eration that the attacker chooses to target (e.g. one for each of the 16 possible

combinations of four particular key bits). Statistics are compiled , and a set of this

statistical data - the template - is generated. The set of templates - one per operation

- is then used in the second step of the attack.

Template Application In t his second step, the attacker captures traces from the

device under attack - just one sample can be sufficient, though additional traces can

increase the probability of success. Thes traces are then compared to each template

to determine which template each t race is "closest, to (see Section 3.9 on page 30 for

1 The assumption is t hat the attacker has access to similar or identical hardware, but this as
sumption is very realistic. From smart cards to tamper-resistant PC cards and associated libraries,
standard hardware and software is available on the open market for the would-be attacker to legally
acquire.

CHAPTER 3. TEMPLATE ATTACKS 26

a precise definition of closeness). The operation associated with thi template (.g.

a guess at a portion of the secret key) is assumed to be corr ct, and the attack can

repeat on other parameters, such as other k y bits.

3.2 Attack Details

The theory of template attacks is rooted in the statistics of multivariate normal di tri

butions, as presented in [34] and [35]. It is assumed that side channel measurement

can b characterized by such a distribu t ion; the validity of thi a sumption is consid

ered in Section 3.3.2.

3.2.1 The Multivariate Normal Distribution

Suppose we have a random variable which is an n x 1 vector. Sine it is both random

and a vector, it will be represented here by x. For the purpo e of the templat

attack, thi random variable could b a set of power or timing measurem nts. The

probability di tribu t ion of this v ctor can be represented by a mean vector and an

independant covariance matr·ix. The mean vector is defin ed a :

E {xd

E {x} =
E {x2}

(3.1) J-Lx.

E {xn}

where x is the n x 1 random variable, x i is an I ment in th random variable (e.g.

a single power or timing value), E {} i the expectation operator and i1 is the mean

vector. T he covariance matrix of th random variable is:

CHAPTER 3. TEMPLATE ATTACKS 27

Ex= cov (:X)= (3.2)

where CJij = E {(xi - 1-ti) (xj - /-t j)} is the covariance of i-th and j -th elements of the

n x 1 random variable :X, and I-ii = E {xi}.

We may now express the distribution 's probability density function (PDF) as

1 (- -)r,, - 1(- -) fx (x) = e x-J.Lx. ""'x. x - J.Lx.

v(2nt IExl '
(3 .3)

where x is an n x 1 vector, flx is the distribution's mean vector, Ex the covariance

matrix and I Ex I the determinant of the covariance matrix. This PDF is the general

(multi-dimensional) form of the well-known univariate Gaussian PDF:

1 (x-tt
f (x) = --e- 2a

X (J..j2if) (3.4)

where x is a real value, p, is the distribution's mean value and CJ is its standard

deviation.

Our side channel values (e.g. the power usage of the cipher when, say, the last

four key bits are 0110) can be represented by such a distribution, with each element

of the vector x being a different power measurement (e.g. power at t ime t = 20ns,

t = 40ns, etc.).

3.2.2 Maximum Likelihood Estimators

The template in a template attack is a maximum-likelihood estimation of j1 and E for

a set of possible side channel values, e.g. the power usage of a cipher for a particular

CHAPTER 3. TEMPLATE ATTACKS 28

I Operation I Description
Q(l) Cipher with last four key bits 0000
Q(2) Cipher with last four key bits 0010
0(3) Cipher with last four key bits 0011

Q(l6) Cipher with last four key bits 1111

Table 3.1: Stream ciphering operations

subset of key bits. After collecting a large number of side-channel values - hundreds

or thousands - we can calculate the maximum likelihood estimations of the actual

mean and covariance matrix.

Using the nomenclature of (7], we fi rst identify a number of operations t hat we

wish to study. If the identified operations are microprocessor instructions, t hen the

template attack will enable an attacker to identify when particular instructions ex-

ecute. In our case - attacking stream cipher hardware - an operation will be the

execution of a cipher with a particular subset of known key bits. For instance, the

initial round of attack may involve 16 operations, given in Table 3.1.

Again using the nomenclature of [7], we will now define several values important

to the attack:

K The number of operations we wish to study

L The number of sample traces we will measure per operation

N The number of data points in each sample trace

Note that, for reasons given below, L should be greater than or equal to N (and

in practice, L > 2N).

We may organize t he sample values into K matrices, one per operation , each

CHAPTER 3. TEMPLATE ATTACKS 29

denoted g (k), where k represents the operation, and containing L vectors of N points

of sid channel data:

g (k) = (3.5)

Having generated the matrix g (k), we may estimate the operation's mean vector. The

maximum-likelihood estimation of the true mean vector is simply the sample mean

vector, an arithmetic average of each sample trace. Let k be the number of the

operation being studied (in the range [1, K]) and ~k) be the j-th column of g(k). The

arithmetic average of all L samples of side channel measurements for operation Q (k)

is a vector of N values, represented by p,(k) and given by

~ (k)
J-L

L

tLsil
i=l

L

tLsi2
i= l

L

fLSiN
i=l

(3.6)

Once we have calculated an operation's sample mean vector, we may calculate the

noise vector, n~k) for each sample trace for operation Q (k), ~k) :

CHAPTER 3. TEMPLATE ATTACKS 30

(3.7)

The noise vectors of all L sample traces are used to calculate the maximum-likelihood

estimate of the operation's covariance matrix:

(3.8)

This N x N matrix is our maximum-likelihood estimate of the operation's covari

ance matrix E(k), and the template for operation Q (k) is (p,, t) .

3.2.3 Signal Classification

Having built J{ templates, one per operation, we can classify any signal s by calcu-

lating that signal's noise vector, fi, and th Mahalanobis distanc between that noise

vector and each operation's mean, il(k) [36]:

(3.9)

where t (k) is the sample covariance matrix for operation Q (k). Having calculated D~)

for each of the K templates, we may classify the signal s as belonging to the operation

Q(k) which has the smallest Mahalanobis distance D~) (n) .

The method introduced in [7] attempts to effect classification by using the multi

variate Gaussian PDF directly as a probability:

'... the noise probabili ty distribu tion is given by the N- dimensional

CHAPTER 3. TEMPLATE ATTACKS 31

multivariate Gaussian distribution PN; (-) where the probability of observ-

ing a noise vector n is:

where lEN, I denotes the determinant of EN; and EJ\r; is its inverse.' 17]

This is not strictly valid, as a point on a PDF is not a probability. The probability of

a point on a continuous distribution is vanishingly small, as probabilit ies are obtained

by integrating under a PDF and the area underneath a point is infinitesimal.

While the nomenclature is not precise, the method does work - it is concerned

with ratios of "probabilities" rather than the probabilities themselves. Indeed, though

a value of a point on the PDF may be much greater than 1, a ratio-based comparison

of PDF values can be an effective classification mechanism.

Given Equation 3.9, we see that t he PDF from 17] can be r presented as:

(3.10)

The ratio between PDF values for a given noise vector and two operations, Q (ko) and

Q(kJ), is:

J(ko) (n)
J(k!) (n)

CHAPTER 3. TEMPLATE ATTACKS 32

Since ex, x2 and Vx are monotonically increasing functions with respect to x (where

x ~ 0), we see that if IIS(ko) II = IIS(k1) II, then choosing the operation whose PDF

value is largest is equivalent to choosing the operation whose Mahalanobis distance

is smallest . Our experiments have shown that, while IIS(ko) II may not be equal to

IIS(k1) II, they are typically on the same order of magnitude, whereas eD~~o l(ii) and

eD~!l(fi) often differ by orders of magnatude. Thus, the method described in 171 is

effective , even if the nomenclature is imprecise .

3.2.4 Template Masking

Computing large templates can be computationally intensive: for L sample traces

and template size N, t he computationa l complexity is in the class:

8(LN + LN + LN2
)

- 8 (LN 2
) .

Fortunately, we are able to reduce the template size N though a process of masking,

as not all points in a side-channel trace are equally significant. Often, the power used

or emitted by a cryptographic device at the passing of a clock edge is mor significant

than the power used or emitted between clock pulses. Some clock cycles may b more

significant than others , as the change in Hamming weight may vary more because of

certain key bits than others at certain times.

We reduce the size of templat es by selecting for the template only those points

in t he side-channel trace which are significant. For instance, we may select 32 data

points out of 1600 measured , leading to a thousand-fold reduction in computational

complexity. This selection is accomplished as follows:

CHAPTER 3. TEMPLATE ATTACKS 33

1. The sample m an vector p,(k) is calculated for each operation Q (k).

2. An overall mean vector p, is calculated:

3. The int r-operation standard deviation of the mean vectors is calculated:

B=
1 I<
-"' ([t(k) - p,)2 J(L .

k=l

4. For a chosen value N (e.g. 32 points of interest), theN points with the greatest

inter-operation standard deviation are selected for template generation.

Actual inter-operation mean and standard deviation vectors are shown in Figure 3.1.

This data was d rived from the experimental setup to be describ d in Chapter 4,

and it illustrates just how significant differences can be among data points in the

inter-operation standard deviation.

The upper graph shows the inter-op ration mean vector. In this vector, we can s e

clear spikes of power usage whenever a clock edge occurs. T his behaviour is common

to all operations, and thus, it can be observed in the inter-operation mean. The

lower graph is the inter-operation standard deviation vector. This vector shows us

two important facts:

1. The greatest differences occur at clock edges.

2. The greatest differences occur early in the operations - before the secret k y

can "mix into" the cipher state.

' :

Fl~ lrlormation I Statisiics I Trac~ I P~wer u;age

Mean -

Stan:j3J"d Devumon

'":'t§lTx

,--------------------------------~.

0 000491099 w 1

Figure 3.1: Inter-operation mean and standard deviation vectors for actual hardware

Cl

~
'\:)

~
:::0
w

~
~
t:-<
~

~
~
1--j

~
~
(f)

CHAPTER 3. TEMPLATE ATTACKS

3.3 Attack Application

35

Template attacks have been applied in [7] against microcontrollers running th tr am

cipher ARC4 (the "Alleged RC4™", so called because the name "RC4" is still pro

tected by trad mark , though source code to produce data equivalent to RC4 has b en

available on the Internet since 1987). A a stream cipher , ARC4 is resistant to dif

ferential power analysis (see Section 2.2.3 on page 21), but is highly susceptible to

template attacks.

3.3.1 Inapplicability of DPA

Differential power analysis, which can be applied quite successfully to block cipher ,

is simply not applicable to most stream ciphers, including ARC4. The reason has

to do with the persistence of secret key information. We now turn our attention to

explaining this important distinction in detail.

DPA and B lock Ciphers When DPA is applied against a block cipher , the at

tacker makes several guesses at a subset of the secret key, as shown in Figure 3.2 on

the following page.

This figure shows a model of a block cipher with four encryption rounds, each

having S-boxes (providing non-linear substitution), a permutation layer (providing

linear diffusion) and a key mixing layer. This model is similar to t he ubstitut ion

permutation network presented in [371, but with the addition of a key mixing lay r

between each round. The block on the left-hand side of the figur r presents the key

scheduler, which converts the secret key into several round keys, whi h are added via

XOR in each round's key mixing layer. Th secret key shown is OxXXBXX7XX in

hexadecimal, where an 'X' digit represents bits of key that are not part of the current

CHAPTER 3. TEMPLATE ATTACKS

guess.

Key

X
X

X

Plaintext

7fhH.2~~~~
X

X

Ciphertext

Figure 3.2: DPA key guesses

36

After making this guess, the attacker observes a large number of blocks of cipher

text and records power traces associated with their production. T he secret k y gue s

allows the attacker to work backwards through the cipher to determine a sing! bit

whose value can be inferred if the key guess is correct.

In Figure 3.3, the guess of subkey bits, combined with knowledge of the key

scheduling algorithm, permutation layer and S-box construction allows the attacker

to evaluate a particular key bit entering an S-box in the last round of encryption. This

bit is used to partition the side channel data. into two set : those for which the internal

bit is 0, and those for which that bit is 1. If the attacker's key gues was incorrect,

then we expect traces whose internal bit was 0 and 1 to be evenly distributed among

t he two sets. If, however, the guess is corr ct, t hen the partitioning will be correct,

and there will be a. significant difference between the averages of t he two sets of side

channel data. Resultant trace differences are shown in F igure 3.4, which show four

CHAPTER 3. TEMPLATE ATTACKS

Key

graphs:

X
X

X

Plaintext

7-tH~~~~::s
X

X

Ciphertext

Figure 3.3: DPA bit guess

1. A refer nee current trace (from which power may be derived , since p =vi)

37

2. A graph showing the difference betw en the average of two ample trac s t

where the sets have been partitioned by a correct k y gu

3. Two graphs showing differences between the averages of two sampl s trace et

each, wher th ts have be n partitioned by an incorr t k y gues

The current spikes in the middle of the trace show that there is a material di~ renee

between th traces in the partition d s t . That is, the initial key gue was correct,

which made the partitioning effective. The attacker may now move on to anot her

subset of th k y, then another, unti l ev ntually the entire key is r v aled. In thi

way, the cr t key of a block cipher can be recovered in a linear way u ing a divid

and conquer approach instead of the 2N approach of exhau tiv ar h.

CHAPTER 3. TEMPLATE ATTACKS 38

20

15

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Time (JlS)

Figure 3.4: DPA t race differences j30]

DPA and Stream Ciphers Against stream ciphers, however, the differential

power analysis technique is ineffective. In order t o perform DPA, the attack must

gather a large number of ciphertext/ side channel pairs while the cipher 's secret k y

remains constant . A stream cipher 's internal state, however , is constantly changing;

the secret key is only found at init ialization, and by the t ime the keystream (and ,

thus, ciphertext) can be generated , the key has been mixed wit h an init ialization

vector (IV) so that the starting stat e is never the same twice.

A DPA a t tack might be effective if the attacker could obtain many ciphertext / -

CHAPTER 3. TENIPLATE ATTACKS 39

side channel pairs from a device using a constant key and initialization vector , bu t

cryptographic protocols are designed not to re-use IVs. Hence, an attack that does

not rely on a persistent secret key being used by the device unci r attack is ne dec!;

one such attack is the template at tack.

3.3.2 Applicability of Template Attacks

Figure 3.5 shows two graphs, each a difference between two power traces obtain d

from t he key initialization phase of ARC4. These graphs show:

1. The difference between two power traces produced u ing the sam key.

2. T he difference between two power traces produced using different keys.

These graphs do not reveal the striking differences tha t an attacker might expect

to see - differences like those in Figure 3.6. In fact, the first graph actually exhibi ts

larger differences than the second, even though its keys w r identical. T his is due to

the stochastic nature of power measurem nts: there is always noise associated with

unrela ted hardware or operations, so ident ical operations may be more dissimilar than

different op rations.

Figure 3.6 shows graphs for th same conditions - ARC4, the first graph for trace

using the same key and the second graph for t races using different keys - bu t unlike

Figure 3.5, the graphs show differences b tween averages of ets of traces and th re

are spikes of dissimilarity in the second graph which do not appear in the first (or in

Figure 3.5). This dissimilarity reveals that the two graphs were produced by dissimilar

operations, which in turn gives the attacker information about the secret key. It is

this informa tion t hat can be exploited by a template attack.

Template attacks assume t hat side channel information can be characterized by

a mul tivariate Gaussian distribut ion. This characterization may introduce error -

CHAPTER 3. TEMPLATE ATTACKS

40.-------.--------~--------~--------.--------.--------~

20

0

- 20

-40

- 60

-80 ~------~--------~--------~--------~------~--------~

40

0 500 1000 1500 2000 2500 3000

40.--------.--------~--------~------~.-------~--------~

30

20

10

0

- 10

- 20

-30L-------~---------L--------~--------~------~--------~

0 500 1000 1500 2000 2500 3000

Figure 3.5: Differenc of averages - 1 sample [7]

CHAPTER 3. TEMPLATE ATTACKS

15 .--------,---------,--------.---------.--------,--------~

10

5

0

- 5

- 10

- 15 ~------~--------~--------~--------~------~--------~

41

0 500 1000 1500 2000 2500 3000

30 ~------~--------~--------~--------~------~--------~

20

- 10

- 20

-30~------~--------~--------~--------~------~--------~

0 500 1000 1500 2000 2500 3000

Figure 3.6: Difference of averages - 50 samples 17]

CHAPTER 3. TEMPLATE ATTACKS 42

indeed, the interdependance of hardware elements suggests that the Gaussian distri

bution is not ideal - but the results in [7] show that it is a useful characterization.

Further study could better model the characteristics of side channels, but such study

is beyond the scope of this research.

3.3.3 Applicability to Hardware Implementations

Through template attacks, the classification success rate for ARC4 running on an

embedded microcontroller was shown in [7] to be 98.1% - 99.3%, a clear success.

Microcontrollers, while less resource-intensive than t radit ional CPUs, are still much

more complex systems than the "pure" hardware that many ciphers are implemented

in. The lower complexity of simply hardware implementations has been thought to

be a defense against side channel analysis:

"the only exposure for !fast cipher hardware] is the loading of the key bytes

from EEPROM which usually leaks the hamming weight" [71

The question that we set about answering was:

Can template attacks be used to differentiate secret keys on such a small scale of

power usage as seen in digital hardware?

3.4 Summary

Template attacks, based on the theory of signal detection and classification, are very

powerful side chann 1 attacks. If the noise associated with the side channel is Gaus

sian, then this technique is in fact optimal [7] .

Template attacks consist of two important stages:

1. Template Preparation

CHAPTER 3. TEMPLATE ATTACKS 43

(a) The attacker collects a large number of sample trac s from a cryptographic

syst m identical to the one being attacked.

(b) These traces are used to build templates - pairs, each consisting of a mean

vector and a covariance matrix - for a number of operations.

2. Template Application

(a) A small number of side channel traces (possibly just one) are taken from

the device being attacked.

(b) The traces are classified using their Mahalanobis distances to each opera

tion: for each trace, the operation whose Mahalanobis difference is smalle t

- or whose probability density function is largest - is selected as the pro

ducer of the trace.

Computational effort can be reduced by "masking" the trace data points used to

construct the t mplate; only those points with significant inter-operation standard

deviation are used. This pruning process may reduce computation time a thousand

fold , but often does not reduce the success rate of the attack by mor t han several

percentage points.

Template attacks are applicable to stream ciphering systems, though older tech

niques such as differential power analysis (DPA) are not. This is because, unlike

DPA, template attacks do not rely on a system using a persistent secret key. Tem

plate attacks have been shown to be very successful against microcontroller-based

cryptographic implementations, but we will show in Chapter 5 that they are also

effective against implementations in digital hardware.

First, however, we will describe the setup used in our experimentation. This

experimental setup is the subject of Chapter 4.

Chapter 4

Experimental Setup

For this thesis, we wished to both apply the template attack by simulating hardware

based on a model derived from actual physical characteristics - and also to apply the

attack to measurements taken of the characteristics of physical hardware. These char

acteristics, especially power usage, w re to be measured while real hardware p rforms

cryptographic operations. Simulating, measuring and analy ing th se characteristic

required:

1. A hardware platform on which we could run cryptographic op rations

2. Sensitive measurement equipment with suitable amounts of memory

3. Software to simulate hardware and analyse physical measurement data

4 .1 SCAB - Side Channel Analysis Board

The Side Channel Analysis Board (SCAB) , shown in Figure 4.1 , is a development

board intended to facilitate the study of side channel attacks (SCA) against crypto

graphic hardware. It was developed for th purpose of the research contained in this

44

CHAPTER 4. EXPERIMENTAL SETUP 45

thesis, but its long-term objective is to provide security res archers with a platform

on which any algorithm can run - thanks to reconfigurable hardware - and many

physical properties can be studied.

Figure 4.1: SCAB - Side Channel Analysis Board

In order to study arbitrary cryptograph ic operations we chose to make use of

reconfigurable hardware, namely Field Programmable Gate Arrays (FPGAs). After

studying many commercially available FPGA development kits, it was found that

none were suitable for our use, for several reasons:

• development boards include hardware extraneous to our purposes (e.g. LEDs,

keypads , media and storage I/ 0) that could obscure the FPGA's power usage

• many FPGA I/ 0 pins are tied to this extraneous hardware, making it difficult

to load and unload blocks of data and keys

• m asuring power usage, which requires inserting a resistor between Vee and the

FPGA, would require physically altering the board- cutting traces and inserting

CHAPTER 4. EXPERIMENTAL SETUP 46

the resistor

For these reasons, as well as the opportunity for learning, we decided to build our

own development board, SCAB.

4.1.1 Design Constraints

Although in this thesis, SCAB was used only for the application of template attacks

to the power usage side channel of stream cipher hardware, it was designed to be

a facility for subsequent researchers to also use. These researchers could focus on

any number of side channels, and any number of cryptographic systems that can be

implemented in hardware.

The design of SCAB had to satisfy several constraints, some external and some

owing to the intrinsic nature of the research:

• It must be possible to configure SCAB with large, fast implementations of mod

ern ciphers such as AES.

- To accommodate high-throughput designs like that found in [38], the min

imum acceptable gate count of the FPGA is 60k gates.

• It must be possible to transfer blocks of data through parallel I/ Os.

- To accommodate large, modern block ciphers, we wish to be able to transfer

128-bit blocks of data in a single clock period.

• It must be possible to assemble SCAB in Memorial's PCB facilities.

Non-local PCB construction was acceptable (and indeed, required), but

the assembly process required interaction with technicians, which would

not have been possible unless SCAB was assembled locally.

CHAPTER 4. EXPERIMENTAL SETUP 47

- High-pin count packages such as Ball Grid Array (BGA) may not be used;

only through-hole and surface-mount packages are acceptable.

• The design should be as simple as pos ible.

- Increased hardware complexity would increase the time required to design

SCAB.

- FPGA support chips would influence power usage and obscure side channel

information.

• Each type of SCA also presents its own requirements and constraints; they are

di cussed below.

In order to fulfill all of these requirements , we selected an Actel ProASIC3 FPGA

which has 125,000 gates, 131 digital I/ Os, independent core and I/ 0 power inputs,

surface-mount packaging- Quad Flat Package (QFP) - and on-board flash memory,

which eliminates the need for external memory chips on the board.

We would have liked to use an FPGA with at least 256 digital I/ 0 pins, but su h

chips require packaging technology which cannot be handled in a local assembly of

the PCB.

4.1.2 Power Analysis

In order to facilitate power analysis, SCAB has two independent power upply n ts:

Vee, which powers the FPGA's core logic, and Vee1 , which powers FPGA I/ 0 and

anything else whose power usage is not relevant to the research.

The former of these nets, Vee, has a resistor - R1 in Figure 4.2 - inserted in

series with the power supply so that the FPGA's current draw can be measured .

CHAPTER 4. EXPERIMENTAL SETUP 48

Figure 4.2: PCB Layout for SCAB

This resistor must have a very small value (we have selected 50) so as to keep Vee

from falling outside the FPGA's operating envelope. Vee may be powered by one

of two sources; when performing power analysis, a researcher will typically choose to

power Vee by the voltage regulator Vl. The other option - best for fault analysis -

is discussed in Section 4. 1.3.

The latter net, Veer, is independent of Vee, so that power used for FPGA I/ 0

does not affect the measurement of core power usage. Vee1 is powered by t h voltage

regulator V2, which ensures that I/ 0 voltage is always held steady, even during faul t

attacks (Section 4. 1.3) . This regulator is, in turn , connected to the DC power jack

J2 whenever the main power switch (S2) is closed.

CHAPTER 4. EXPERIMENTAL SETUP

4.1.3 Fault Analysis

49

SCAB also facilitates fault analysis, in which the researcher attempts to induce an

incorrect computation through externally-induced faul ts. Th sourc of these faults

may include gli tches in the clock signal or unusual power supply characteristics (e.g.

too high, too low, spikes). SCAB provides the access needed to study the effect of

such faults through its power supply design, external clock and large number of I/ 0

pms.

Power Supply As mentioned in Section 4.1.2, SCAB's Vee supply net may be

driven by a voltage regulator or, more interestingly for the purpose of faul t analysi ,

an external power source. This direct connection to the Vee net allow a researcher

to set up abnormal power supply conditions, including undervoltage or overvoltage

conditions as well as voltage spikes.

External Clock SCAB also supports timing fault analysis. Sine SCAB's clock is

driven ext rnally (connected via BNC), a researcher can modify clock signals, inducing

glitches and changing duty cycles and periods, in an attempt to induce erroneous

computation.

I/ 0 Pins Finally, SCAB's large I/ 0 bank allows a researcher to export up to 128

internal signals from a hardware design , which permits the direct observation of how

internal values change while the system is under external stre s (power, clock or

temperatur glitches, ionizing radiation, tc.). This level of access permits the study

of fau lt propagation, and it also allows researchers to verify existing fault models.

CHAPTER 4. EXPERIMENTAL SETUP

4.1.4 Timing Analysis

50

SCAB's external clock and large I/ 0 bank also supports timing analysis: as a re

searcher can manipulate clock signals at will and gain insight into the internals of a

hardware implementation, looking to see not just when an algorithm is complete, but

where sub-sections of it are complete.

4.2 Other Hardware

The complete experimental setup is shown in Figure 4.3.

Figure 4.3: Experimental setup

Besides SCAB, other hardware that can be seen in Figure 4.3 includes:

• oscilloscope used for measurement

• DC power supply

• DIP switches (used for parallel key and/ or IV bit inputs)

CHAPTER 4. EXPERIMENTAL SET UP 51

• momentary reset switch

• "go" switch

The latter of these switches provided t he hardware wit h the signal to start (and

cont inue) cryptographic operation. Interfacing this switch directly with the hardware

r quired debouncing to prevent momentary glitches in the "go" signal - caused by the

mechanical bouncing of switch elements - from reaching the cryptographic hardware.

The debouncing circuit is shown in Figure 4.4.

Vee

0"-~----- Debounce<l Signal

1

1'
Vee

Figure 4.4: Switch debouncing circui t

4.3 Measurement Equipment

The focus of our research is the application of template at tacks to the power usag

side channel of stream ciphers using SCAB. Our power m asurements w re all made

with the Cleverscope CS328A [39], a P C-based mixed-mode oscilloscope with high

t ime resolut ion (10 ns minimum period) and deep memory (up to one million data

points per channel). This scope allowed us to:

1. Generate clock signals

CHAPTER 4. EXPERIMENTAL SETUP 52

2. Monitor eight digital channels

3. Measure two analog voltage channels, using analog, digital and/ or external trig-

genng

The Cleverscope interface is shown in Figure 4.5.

1
\ ""
., ,. ., ' :: /,,

I . -

-, ··;, II \J\ '~' II r·\. ,. ~.:.·· j\r\, .. -·· I~ r·~'\ ' .. :::.!:
, f ~~ II VI ·c...- V "-" I ' \.r- / ":: ·---- '*.,.

I ''"

I ""
'1 . ,
I

~

Figure 4.5: Cleverscope PC interface

The eight digital channels were used to monitor the hardware being tested, in

cluding clock input and keystream output. The analog channels were used to measure

the voltage before and after the resistor Rl in Figure 4.2. Calculating instantaneous

power usage from these voltages is very simple:

(4 .1)

CHAPTER 4. EXPERIMENTAL SETUP 53

With one million data points per channel at our disposal, we were able to capture

thousands of points per key / IV pair, or approximately 50 data points per clock cycle.

This data allowed us to construct accurate templates (see Chapter 5).

The data captured by the Cleverscope was saved to t ext files and interpreted by

our software, described in the following section.

4.4 Software

Turning physical simulations or measurements into classification statistics requires

software. The software workflow is shown in Figure 4.6. We wrote approximately

10,000 lines of C++ to accomplish these tasks; the programs which accomplish them

are described here.

Hardware
Model

Physical Cleverscope
Measurement (.cscope)

'--------' C1.everscope .__ ____ __J

(from Cleverscope
manufacturer)

Trace Mean t raceview Subtrace Mask
(.mean) (.mask)

success

Success Statistics
(.success)

Figure 4.6: Workflow - data files

CHAPTER 4. EXPERIMENTAL SETUP

4.4.1 Power Trace Formatting

54

After taking physical measurements of side channel data, the output of the Clever

scope program is a file that , for every time increment, specifies the voltage for each

analog trace and logic value for each digital trace. We must take this information

and turn it into a format more amenable to interpretation L.

The powercat program reads voltage traces from input fil s (Clever cope, Tek

tronix GRAB2212 or our own analog trace format) and outputs them to binary trace

files. These fil s may be a concatenation of several trace files - hence the nam of the

program - and contain just a power trace and a digital "partitioning" trace (which is

described in Section 4.4.2, below).

A text fi le containing a full captur of Cleverscope memory occupies 50 MB of

disk space. If many such captures are required (e.g. when capturing output from

multiple keys), storage requirements quickly become enormous. Conv rting this data

to a binary format saves both storage space and computational complexity, as text

parsing is not r quired every time we load a power trace.

4.4.2 Calculating Trace Mean Vectors

The traceaverage program takes a power trace fi le, partitions it and averages all of

the subtraces.

Aside: Partitions and Subtraces A single power trace file may contain trac s

for many samples. Each of these subtraces is denoted by a single digital trace, called

the partitioning trace. This partitioning trace is shown in Figure 4.7, and it is u ed

by the traceaverage program (and others) to partition a long trace file into multiple

subtraces. T he partitioning trace is qual to 1 during encryption operation and 0

1 Details concerning fi le formats are given in Appendix B on page 115

CHAPTER 4. EXPERIMENTAL SETUP 55

between them. Thus, whenever the partitioning trace switches from 0 to 1, a new

subtrace (sample trace) has begun.

4.4.3 Simulating Power Usage

The simulate program simulates t he power usage of a hardware implementation of

a cryp tographic cipher. The user can specify a number of parameters:

• the cipher to simulate

- currently LFSR-16 or Trivium

• the secret key to use

- specified as OxXXXX or ObXXXX, where X can be:

* a value (0-1 for binary, 0-f for hex)

* the literal X, meaning "assign randomly for each sample"

• how much noise to add

• sampling period

• the number of samples to simulate

• the number of clock cycles to simulate per sample

• the number of samples to simulate per clock cycle

The power model used can be customized by writing a C++ class that implements

the PowerUsageModel interface (see Section B.5.1). This model tells the simulator

how much power is consumed by a flip-flop that either:

-· · OxOO.power- Trace Viewer

file !;:dit View J:!elp

-0 -

File 1 nformation Statistics Traces Power Usage

--

-- -- -

I

- -- - -- - --- --· A

- A

v

< - u
~~--~ ---1--------=---1--------IA

I

Figure 4.7: Partitioning t race

CHAPTER 4. EXPERIMENTAL SETUP 57

• changes from high to low,

• changes from low to high ,

• remains steady at low or

• remains steady at high.

Determining the number of flip-flops that maintain or change state is the job of

another C+ + class, one which inherits from the abstract class Cipher (see Section

B.5.2). This class tells the simulator , on each clock cycle, how its internal state has

changed ince the last cycle.

Using the power usage model and the cipher model , the simulator generates pow r

traces for part icular ciphers running on particular (simulat d) hardware.

The output of this simulation is a power trace file (.power extension) and a

su btrace mean file (. mean extension).

4.4.4 Viewing Power Traces

The traceview program is used for two purposes:

1. To view voltage and power trace files, as w 11 as simpl statistics about them

2. To view inter-operation statistics and choose subtrac masks (see Section 3.2.4

on page 32).

In the first mode, the program simply displays the contents of a trace fil , as in Figure

4.8.

In the second mode, several subtrace mean files are loaded (one per operation) , and

simple inter-operation statistics can be viewed. From the inter-operation standard

CHAPTER 4. EXPERIMENTAL SETUP 58

... oxoo.cecope . Trlot Vltwllf'

file { dit VIew t:t.•lp

-.,j 0 C"" .. •, • 1 I

Fllelnform•tfon St1tlstla 1'\"eces Power U11ge

Figure 4.8: tracevi ew showing the contents of a Clever cope fi le

deviat ion, we select a subtrace mask to apply when building templates. In Figure

4.9, we can see a line drawn acros t he inter-operation standard d viation. T his line

is the cutoff above which the subtrace mask will accept poin t and below which it

will reject them.

In th is case, 32 points in each sample trace wi ll become part of the templat ;

the templa te's size will be N = 32. This number N can b varied unt il the desired

value is reached , whether by inspection - placing the cutoff line above the level of

background noise, or to achieve a particular probability of clas ification succe s. See

Section 5 on page 64 for graphs of clas ifi ation success rate versu template size.

4.4.5 Building Templates

T he build- template program takes as inpu t a power trace (containing a number of

subt races) and an opt ional subtrace mask. Its ou tput is a template fi l ontaining

CHAPTER 4. EXPERIME TAL SETUP

.. Tt•~ Vltwtf

flle { dit View tt•lp

loJ 0 ' .,, I

File Information Statistics T1'1ces Power U.wg•

11..1.. .l I J.

••

M .. n

Stlr'K11rd Deviation

i). l l

Figure 4.9: traceview used to select subtrace mask

59

LLL L l .U '1 . ..
0 .00011492 w ~

the pair (p(k), f:(k)) for a particular operation Q(k) as explain d in Section 3.8 on

page 30. This file has a . template extension (see Figure 4.6 on page 53) and can be

read by the next program in the software workflow, classify.

4.4.6 Classifying Power Traces

The classify program takes as input a power trace file (. power) - whose subtraces

are known to have been generated by a particular operation Q(k) - a number of

template files (. template) and an optional subtrace mask fil (. mask). It partitions

the trace fil into subtraces, and classifies each as being likeliest to correspond to one

of the giv n templates. The output is a classification file (.classification) , whose

format is shown in Figure 4.10.

T he probabilities are derived using the procedure given in Section 3.2.3 on page 30,

with one modification: since the attacker knows that one of the generated templates

CHAPTER 4. EXPERIMENTAL SETUP 60

classify

Loading mask file: .. /mask32.mask
Opening templates: OxOO.template Ox01.template Ox02.

template Ox03.template Ox04.template Ox05.template Ox06
.template Ox07.template Ox08.template Ox09.template 0
xOa.template OxOb . template OxOc.template OxOd .template
OxOe . template OxOf . template

Done reading templates .
Reading data to classify ...
Opening ' .. I dut /0 xOO. power ' ...
[==] 100%
256 traces, sized [32-32] samples/trace
Trace 0:
Probability of template OxOO.template: 0 . 999997
Probability of template Ox01.template: 1.20044e -0 7
Probability of template Ox02.template: 1.66347e - 14
Probability of template Ox03.template: 5.76915e -08
Probability of template Ox04.template : 9 . 61753e - 07

Figure 4.10: classify output

is for the operation that generated the trace, t he probability density function values

are normaliz d such that they add to 1 and represent the probability that a particular

operation produced the trace, given that one of the templates is correct.

4.4. 7 Evaluating Classification Success Rate

The success program reads . classify files (one per operation) and produces sum

mary statistics, both on per-key and overall bases. The output of this program is

shown in Figure 4.11.

CHAPTER 4. EXPERIMENTAL SETUP

success
Opening output files .. .
OxOO . classification ... key : OxOO
255 correct guesses (99. 6094%, 98 . 3821% certainty)
1 incorrect guesses (0. 390625%, 85.6105% certaint y)
Ox01.classification ... key : Ox01

Lowest success rate :
Highest success rate:
Average success rate:

97 . 6562%
100%
99 . 3896%

Figure 4.11: success output

4.5 Summary

61

We have described t he experimental setup used to simulate, realize and measure the

characteristics of cryptographic hardware for this thesis.

The Side Channel Analysis Board (SCAB) was designed to be a platform for

security researchers to investigate many kinds of side channel analysis. It was designed

to meet the following constraints:

• It must be possible to reconfigure SCAB with large, fast implementations of

modern ciphers such as AES.

• It must be possible to transfer blocks of data through parallel I/ Os.

• It must be possible to assemble SCAB in Memorial's PCB facilities.

• The design should be as simple as possible.

• It should meet side channel-specific constraints:

Power Analysis

* SCAB should incorporate two independent supply nets, one for core

logic and one for I/ 0.

CHAPTER 4. EXPERIMENTAL SETUP 62

* The core logic supply should have a small-valued resistor inserted in

series with the power supply for measurement purposes.

Fault Analysis

* SCAB should incorporate both on-board - i. e. regulated - and exter

nal power supply options.

* SCAB should be driven by an external clock.

* SCAB should have a large number of I/ 0 pins to xpose internal state

and allow verification of fault models.

- Timing Analysis

* SCAB should be driven by an external clock.

* SCAB should have a large number of I/ 0 pins to expose internal state.

Other hardware m the setup included power supplies, switches and measurement

equipment.

This measurement equipment consisted of the Cleverscope CS328A, a PC-based

oscilloscope. It was purchased for this research, and performed its tasks well.

We also wrote 10,000 lines of C++ software to do many things:

• reformat power data

• calculate average power usage

• simula te power usage

• view power traces and select template masks

• build templates

• classify power traces

CHAPTER 4. EXPERIMENTAL SETUP 63

• calculate classification success rates

This experimental setup was used to apply template attacks to stream cipher hard

ware. The results of this application are given in the next two chapters.

Chapter 5

Experimental Results and Analysis

In this chapter, we present the initial results of our experimentation. These results

consist of basic measurements of hardware characteristics and the application of the

template attack technique to both simulated and measured power usage characteris

tics of a stream cipher building block.

5.1 Initial Experiments

One of the first uses of the experimental setup was to evaluate the difference between

the power consumed during the flip of a flip-flop and the power consumed at other

times. In order to test this, we built a very simple circuit called "Flip-Flopper,"

shown in Figure 5.1. This circuit used a large number of identical elements, acting in

parallel, to increase the ratio of data-dependent power usage to background noise.

This circuit consists of 512 D flip-flops switching in concert between the values

0 and 1. There is a counter and two comparators, one to check for a counter value

of 5 and the other to check for a counter value of 9. These comparators control the

changes of the flip-flops: after initializing all values to 0, the circuit counts five clock

64

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS

Counter
CLR

512 D
Flip-Flops

Q

Q

Figure 5. 1: The "F lipFlopper" Circuit

65

cycles, then a ll 512 flip-flops change their values from 0 to 1. After another nine clo k

cycles, a ll flip-flops change from 1 back to 0. The output of this simple circui t , as

well as its instantaneous power usage, is shown in F igure 5.2.

This power t race was determined according to Equation 4. 1, and it shows t hat

not only is the power consumed by a bit flip greater than the static power, bu t the

power consumed wh n the bi ts flip from 0 to 1 (approximately 11 mW in total, for

all 512 fl ip-flops) is greater than the power consumed wh n the bits fl ip from 1 to 0

(approximately 6 mW in total). T his differenc between types of bit flip provides u

with more information than we expected .

These initial resul ts provided us with the basic power characteristics of D fli p-flops

CHAPTER 5. EXPERIME TAL RESULTS AND ANALYSIS

~
Ql
01
Ill
Vl
::J
Ql

66

3:
~

lv,·
1

:

1.',!1~J~J!~J~ ~:.1 ll/wt~~.l},.b -~) ',!,.J~~J~,! .. \· r' 1.J\1':·~1.!"-·\!j\\JJ.:~: :1. 11)' \.!J~·! ... \.JlJ ~~}~.~ · ·~' ~ J,1l,!lv.,1
1

Time (s)

Figure 5.2: FlipFlopper output and instantaneous power usage

in our FPGA hardware, as given in Table 5.1. The values in thi table w re derived

by measuring the total power usage of the system and dividing by 512, the number

of flip-flop in the system.

Event I Minimum Power I Maximum Power I Mean Power I Power Rang

Static 10.0 J-LW 11.9 J-LW 11.9 J-LW ±.97 J-LW
Bit flip (1 to 0) 17.2 J-LW 18.0 J-LW 17.6 J-LW ± .39 J-LW
Bit flip (0 to 1) 21.3 J-LW 22.5 J-LW 21.9 J-LW ± .59J-LW

Table 5.1: Power usage characteristics

From the mean values in this table , we created a very simpl simulation model:

for every bit in a cryptographic system that remains the sam , power usage will be

11.9 ~W. For very bit that changes from 0 to 1, the power usage will be 21.9 ~W, and

for every bit that changes from 1 to 0, 17.6 ~ W. To this ideal value, we add additiv

white Gaus ian noise (AWGN); how much noi e we add is a parameter that we vary

while studying the attack's effectiven ss.

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 67

5.2 LFSR-16

Before attacking a fu ll-fledged stream cipher, we started by attacking a basic building

block of many stream ciphers , the linear feedback shift regist r (LFSR).

LFSRs are shift registers that feed back on themselves, inserting a new bit at their

tail every clock cycle which is a linear combination of other bits in the register. On

its own, an LFSR is not a stream cipher: it can be cryp tana lys d trivially because

of its linear nature. It is , however , a useful building block in the construction of real

stream ciphers.

We chose a simple 16-bit LFSR with the characteristic polynomial given in Equa-

t ion 5.1.

(5. 1)

This LFSR has a maximal period: assuming it is not loaded with 0, it will shift 216 - 1

times before it repeats a previous stat . A simple diagram of LFSR-16 is shown in

Figure 5.3.

Figure 5.3: Design of LFSR-16

5 .2. 1 Simulation Results

Using the power usage characteristic in Table 5. 1, we simulated LFSR-16 running on

an Actel ProASIC3 FPGA. The power usage of this cipher was simulat d using a 16-

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 68

bit initial state (key) that was determined randomly, except for t he most significant

four bits. These bits were fixed for any particular operation Q (k), so we were able to

generate 16 templates, one for each of the keys { OxOXXX, Ox1XXX ... OxfXXX },

where the most significant bit of the key i loaded into the left-most bit of th shift

register in Figure 5.3.

For each simulation of LFSR-16, we simulated a different numb r of sample traces

(16, 32, 64, 128 or 256). We also varied the amount of noise added to the power trace,

as well as th number of data points included in the template mask (e Section 3.2.4

on page 32). The detailed results of this analysis can be found in Appendix A, but

we present an overview here.

Figure 5.4 shows the basic inter-operation statistics for t h simulated LFSR-16

(64 samples, peak noise 10- 6). The top graph is the inter-operation mean, and the

bottom graph is the inter-operation standard deviation. As expected, the greatest

deviation is early in the sample traces, before the key bits "mix in" to the cipher'

tate.

The line aero s t he standard deviation graph shows the cutoff for trace rna king

with N = 8. Even with such a small number of data points, we are able to obtain

useful information from the trace so as to have very good classification success.

Figur 5.5 shows the classification succ ss rate for simulated LFSR-16 when we

use L = 64 training samples per operation and the noise present has peak values of

10- 5 . This noise value was chosen because it fits with the characteristics in Table

5.1. It hows the success rate increasing with template size, and even with template

size N < 5, the average classification success rate is greater than 6.25%, which i the

success rate we would expect if we were guessing randomly.

T he four lines on this graph are:

..,...... - Trace Viewer

file f dit View ttelp

File I rTformation Statistics Trace; Power Usage

Mean

! ' !llj~~ ~ ! j ~ I I ' I
I

I \H! . ~ l
I ,!II\ N '',,,/\ 11 ~I I 'l/

1

\ ·~ 1/i\ 1 1/ I

i i \f

Standard Deviation

Figure 5.4: Basic statistics of simulated LFSR-16

I ~~ ~ ~ .

II \ill \iii I ~
-
- -- -

~

A

v

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 70

1. Maximum success rate: the highest rate of correct classification for any opera-

tion

2. Average success rate: the average rate of correct classification over all operations

3. Minimum success rate: the lowest rate of correct classification for any operation

4. Guess rate: how successful we would expect to be if we guessed randomly

Simulated LFSR-16, 64 Samples, 1 e-5 W Noise
60.0%

Q) - 50.0% ro
0:::
(/)
(/) 40.0% Q)
(.)
(.) •,
::::J 30.0% \ (f)

' c
0

20.0% +='

~
<+=
'Vi 10.0%
(/)

~
0 0.0%

0 5 10 15 20 25 30

Template Size (N)

Figure 5.5: Classification success vs. template size

---·· Max
- Avg
· · Min
- Guess

Figure 5.6 shows the classification success rate versus template size when the noise

is much lower, with a power peak of 10- 7 W . This noise level is lower than observed,

but as we will see in Section 5.2.2, the results are a closer approximation to those

obtained through physical experiment than those obtained using the noise 1 vel of

w-s w (peak).

With this noise level, we were able to achieve > 90% average classification success

using as few as four data point and approximately 80% minimum success with as

few as 10 points, making this an attack of remarkably low computational complexity.

CHAPTER 5. EXPERIMENTAL RESULTS AND A ALYSIS

Simulated LFSR-16, 64 Samples , 1e-7 W Noise
120.0%

Q) -~ 100.0%
(/)
(/)
Q) 80.0%
(.)
(.)

:::::l
(/) 60.0%
c
0
~ 40.0%
(.)

~
(/) 20.0%
(/)
('0

()
0.0%

_ I

0

··---···-----·---···---··---···---··--- ----···---···---···--·

- .. - .
/

I

5 10 15 20

Template Size (N)

25 30

-.... Max

- Avg
· Min

- Guess

Figure 5.6: Classificat ion success vs . template size

71

Effect of Noise Increasing the amount of noise in the power t races has a negativ

effect on classification success, as shown in Figure 5.7. This graph shows a general

downwards trend in classification success as th peak noise increases from 10- 7 W.

Effect of Varying Bits Under Attack Varying which key bits templates were

constructed from also affected the success rates of t he template at tack. Inter-operation

statistics are shown in Figures 5.8, 5.9, 5.10 and 5.11 .

These figures show that attacking less significant bits leads to more similar op r-

ation means, as shown by fewer peaks in inter-operation standard deviation .

Correspondingly, we see in Table 5.2 that classification succ rate diminish as

we a ttack progressively less significant bits in the LFSR-16 key.

This behaviour can be explained by observing the feedback "taps" in LFSR-16.

The less significant the bits which vary according to operation, the more clock cycles

it will take them to reach the feedback taps and affect other bits. Once t he least

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS

Simulated LFSR-16, N=1 0, 16 Samples
120.0%

2 100.0%
co ' ' ' ,·.
0::
en
en
Q)
()
()
::::J

(f)

c
0

:;:::;
co
()

I+=
en en
co
u

80.0%

60.0%

40.0%

20.0%

\\
\\, . '

' '.

\

·.\\.
...... \ ---... _______ _

\ -··-----------.. -----

--
\.. ----- ---- --- --- --- ---
~

··---.

0.0% --- ----------

---·· tv1ax
---- Avg
- · Min
- Guess

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+O

Figure 5. 7: Classification success vs. peak noise

I Bits Under Attack I Minimum I Average I Maximum I
0 - 3 11.4% 19.3% 38.3%
4 - 7 9.7% 14.9% 26.9%

8 - 11 12.2% 17.2% 29.1%
12 - 15 10.3% 16.2% 25. 1%

Table 5.2: Classification success rate vs. bits under attack

72

significant bits have reached the feedback taps, however, the operation of the LFSR

will have caused internal states to vary just as greatly within operations as between

operations. Thus, inter-operation differences are reduced, as are classification su c ss

rates.

Effect of Number of Training Samples For a fixed number of sample points

in the template rna k, a higher number of training samples was more likely to yield

a correct result , as shown in F igure 5.12. With such low noise, classification is very

CHAPTER 5. EXPERIME TAL RESULTS A D A ALYSIS

Trace VIewer
file Eet View !:ialP

Flle lnl'ormatlon SIIIIIIIICS Trac• Poww u .. ~

Standwd OevuUlon

1.41085e·06W ~

Figur 5.8: Inter-operation statistics: varying bit 0- 3

Trace Vlewer

~le {Ct View tiiiP

\... 0 - :.- ~

1.32627•06 w ~

Figure 5.9: Inter-op ration tatistics: varying bits 4- 7

73

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS

Trace Vk!wer

Ble E_d1l View !:!alp

... o
FllelrtonnaUon Stahsllcs Traces Power Usaga

Mean

Standard Deviation

1.20602e-06 w ~

Figure 5.10: Inter-operation statistics: varying bits 8- 11

Trace VIewer

file Eat! View !:ieiP

- o r ,._ -·· .. -,
Al~t lntounatlon Staltshcs Ttaces Powtr Usage

Mean

Sttw"'dard Deviation

I 28436e-08 W ~

Figure 5.11: Inter-operation statistics: varying bits 12- 15

74

-- -- ---------------------------

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 75

successful even with a low number of training samples, but as we will see in Section

5.2.2, this level of classification success is realistic.

Simulated LFSR-16, N=12, 1e-7 W Noise
120.0%

(1)
ctl 100.0% 0:::
en
en 80.0% (1)
u u
:J 60.0% (/)

;----- - - ---
' I

----Max
--- A-.g

c: - - Min
0 40.0% :.;::; -Guess
ctl u - 20.0% ·u;
en
ctl

0.0% ()

0 50 1 00 150 200 250 300

Training Samples (L)

Figure 5.12: Classification success vs . training samples

With this success in hand, we proceed to apply template attacks to the LFSR-16

implemented in hardware.

5.2.2 Experimental Results

Having successfully attacked a simulated LFSR-16, we proceeded to a practical ap

plication of the template attack technique in real hardware. Using the SCAB and

Cleverscope described in Chapter 4, we carefully measured the power used by LFSR-

16 during its initialization. The secret key was set to { OxXXOO, ... OxXXOf }, and

256 samples were taken , allowing the hardware to initialize once with each possible

combination of unspecified key bits.

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 76

Figure 5.13 shows the classification success rate versus template size. A in the

simulated results, approximately 90% average success was achieved with low tem

plate sizes (N = 11) , and with N ~ 12, the minimum classification success was

approximately 80% or higher.

120.0%

100.0%

Q) -ro
0::: 80.0%
en
en
Q)
(.)
(.)

~ 60.0%
c
0

~
(.) 40.0%

<;::::
·u;
en
ro
0 20.0%

0.0%

0

Hardware LFSR-16 , 256 Samples

.- ·~ -·

'
/ ,,'

' ' ,~.: ,/
.•' ,'

/ //
i:' /
/,', ·--·,

! ii
! i I
' ' ' '

I

I

:' I
--1-

5 10

/

/
/

15 20 25 30 35 40 45

Template Size (N)

Figure 5.13: Classification success vs. template size

---- Max
--- Avg

-- Min

- Guess

The fact that the template attack performed better against real hardwar than

against simulated hardware has to do with information content. The simulated LFSR-

16's power usage carries information at the edge of a clock pulse, but the physical

LFSR-16 's trace carries some information during the rest of t he pulse, too - though

less than at the edge. The inter-operation standard deviation for the physical LFSR-

16 is shown in Figure 5.14; compared to Figure 5.4, we can see that there are many

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 77

data points per clock cycle whose standard deviation rises well above the background.

The line in Figure 5.14's standard deviation graph (the bot tom graph) shows that

48 points - all centred around five clock transit ions - can be selected from the t race

whose values are clearly more significant than the others.

Information cont nt also affects classification success in that, for implementation

reasons, the keys used for the hardware LFSR-16 had four fixed bits. As ment ion d

above, the secret keys were in the set { OxXXOO, .. . OxXXOF } , not { OxXXXO, ...

OxXXXF }. This is because keys were fed to the LFSR-16 via manual interaction, in

the form of DIP switches. To attack a full LFSR-16, we would have to build more

sophisticated off-board hardwar to load randomly-generated keys and ini tia lization

vectors. This, combined wit h the PC software to drive it, is beyond t he scope of this

research. To attack LFSR-16, we simply fixed four key bits to 0, set four more in an

operation-dependent manner and iterated through all 256 possibili ties for the eight

unfixed bits.

Inter-operation standard deviation p eaks are observed later in Figure 5. 14 than in

Figure 5.4; this is due to the loading of secret keys { OxXXOO, ... OxXXOF } and not

{ OxFOXX, ... OxFFXX }. The peaks st art occurring at clock edge 8 instead of clock

edge 0; this is precisely what we would expect if the difl'ering key bi ts were loaded

into the four righ t-most flip-flops in Figure 5.3.

5.3 Summary

In this chapter, we revealed the results of our initial experiments using the F lipFlopper

and LFSR-16 circuits.

Using the FlipFlopper circuit, we were able to measure the power usage charac

teristics of the FPGA on SCAB. These characteristics Jed us to a power model to use

---- -- --- - --- - ----------

~ · Trace Viewer

file ~dit View !:!elp

w 0 _.,. c: _ ' : _, '"'J -..:.

File Information Statistics Traces Power Usage

Mean

A

~--- --------- -------~-~ ---~-------~-------~-----------------~~<>v

Standard Deviation

Figure 5.14: Hardware LFSR-16 statistics

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 79

for simulating hardware on the FPGA.

Using this power model, we simulated the operation of LFSR-16 hardware, and

applied the template attack to its power usage. As expected , increased noise caused

a decrease in classification success, but we were able to recover information about the

secret key very successfully in many different noise conditions.

We then proceeded to apply the template attack to a real hardware implemen

tation of LFSR-16. We were able to correctly guess secret key bits over 90% of the

time, even with such small template sizes as N = 12.

Having successfully attacked LFSR-16 in both simulation and hardware, and hav

ing found good classification success with both , we proceeded to attack a simulated

implementation of a real stream cipher: Trivium.

Chapter 6

Application of Template Attack to

Trivium

Trivium is a candidate cipher for the eSTREAM stream cipher selection proces

(hardware profil) [5[. By applying Template Attacks, we were abl to extract secret

key material from a simulated version of thi cipher.

6.1 Description

Trivium is a stream cipher that was developed for eSTREAM, a four-year effort to

identify 'promi ing new stream ciph rs," orne targeting software imJ lementation and

orne targeting hardware [40]. Trivium i of the latter group , and it wa de igned "a

an exerci e in exploring how far a stream ipher can be implified without sacrificing

its security, sp d or flexibility" [5].

Trivium ha a 288-bit internal state which is updated through a combination of

linear and non-linear f edback. It can generate up to 264 bits of k ystream from an

80-bit seer t k y and 80-bit initialization ve tor. It was designed to be implement d

80

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 81

in a parallel fashion: no state bit is used for 64 clock cycles after it is updated, so up

to 64 iterations of the cipher can be calculated in parallel [5].

Precise specifications are given below, but intuitively, Trivium can be thought of

as a collection of Feedback Shift Registers, as shown in Figure 6.1.

-------..

Figure 6.1: Trivium [5]

Before the keystream can be generated, the internal state has to be initialized.

The state is initia lly loaded with the 80-bit secret key (state bits 0 - 79) and an 80-bit

initialization vector (state bits 93 - 172). Thre bits are then set to 1 (bits 286 - 288)

and the remaining 125 bits are set to 0. The initialization procedure from Figure 6.2

is then followed , where s [i] is the ith bit of the internal stat and t1 , t2 and t3 are

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 82

temporary variables.

for i =
t1 =

t2 =

t3 =

1 to 4 * 288 do
s [66] xor (s [91] and s [92]) xor s [93] xor s [171]
s[162] xor (s[175] and s[176]) xor s[177] xor s[264]
s [243] xor (s [286] and s [287]) xor s [288] xor s [69]

(s[1],s[2], ... ,s[93]) = (t3,s[1], . . . ,s[92])
(s[94] ,s[95] , .. . ,s[177]) = (t1,s[94] , ... ,s[176])
(s[178] ,s[279] , ... ,s[288]) = (t2,s[178] , ... ,s[287])

end for

Figure 6.2: Trivium init ialization

Keystream generation - shown in Figure 6.3 - is similar, but involves an output

variable z, which is t he current keystream output.

for i
t1
t2
t3

=
=
=

1 to N do
s [66] xor s [93]
s[162] xor s[177]
s [243] xor s [288]

z = t1 xor t2 xor t3

t1 = t1 xor (s[91] and s[92]) xor s[171]
t 2 = t 1 x or (s [1 7 5] and s [1 7 6]) x or s [2 6 4]
t3 = t 1 xor (s [286] and s [287]) xor s [69]

(s[1], s[2], ... , s[93]) = (t3, s[1], ... , s[92])
(s[94], s[95], ... , s[177]) = (t1, s[94], ... , s[176])
(s [178], s [279], . .. , s [288]) = (t2, s [178], ... , s [287])

end for

Figure 6.3: Trivium keystream generation

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 83

6.2 Simulation Results

Most Trivium simulations were performed with AWG added , at a peak power noise

of 10- 7 W. This is a value which we found , for LFSR-16, produced success rates

approximately equivalent to those obtained from hardware experimentation. In all

cases, the right-most key bits were varied according to operation; the remaining bits

were allowed to vary randomly.

6 .2.1 Classificat ion Success Rate vs. Template Size

Figure 6.4 shows our classification success rates for simulated Trivium versus template

size. There are four lines on the graph:

• Maximum success rate

- this is the highest classification success for any operation

- e.g. if four operations { Q(O), Q (l) , Q (2), Q (3) } had classification success

rates {45%, 32%,51%, 29%}, t he maximum success rate would be 51%

• Average success rate

- this is the average of classification success rates over all operations

- e.g. if four operations { Q(O) , Q (l) , Q (2) , Q (3) } had classification succes

rates {45%, 32%, 51%,29%}, the average success rate would be 39.25%

• Minimum success rate

- this is t he lowest classification success for any operation

- e.g. if four operations { Q (o), Q (l), Q (2) , Q (3) } had classification success

rates {45%,32%,51%, 29%}, the minimum success rate would be 29%

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 84

• "Guess" rate

- this is how successful we would expect to be if we guess d randomly

- t his rate is 2~, where n is the number of bits included in the template

* if we fixed four bits, we would have 24 = 16 operations and the prob

abili ty of a correct guess would be i4 = 6.25%

Simulated Trivium
4096 Training Samples, 1 e-8 W Noise, 16 Templates

70%

a.> 60%
co

cr::
(/) 50%
(/)
a.>
(.)

40% (.)
::J

C/)

c 30%
0

:.:::;

~ 20%
!E
(/)

10% (/)

~
0 0%

0

....... · ..
...•... / ... /······

_, · ,..,... ~ ·-- -- --
---;;>'"

--- -- --- --
5 10 15 20 25 30

Template Size (N)

35

····· Max
···· Avg
·· Min
- Guess

Figure 6.4: Classification success vs. template size - Trivium

These success rates are lower than for LFSR-16 with the same amount of added

noise but average success rates as high as 22% were achieved - better than the 6.25%

that we would expect to achieve through random guessing.

6.2.2 Classification Success vs. Training Samples

As expected, increasing the number of training samples increas d the probability of

success, though success rates increased roughly linearly for exponentially increasing

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 85

numbers of samples. This is shown in Figure 6.5, where we can see that the maximum,

average and minimum classification success rates are monotonically increa ing wit h

the number of training samples.

Simulated Trivium
N=32, 1 e-8 W Noise , 16 Templates

40%

35%
Q) _..

~ 30%
, ·

(/)
(/) 25% Q)

---·· tv1ax
(..)
(..)

20% :::J
(J)

---- Avg
-- Mn

c 15% 0 .· - Guess
~ ro
(..) 10%

----- -
'+= ·u;
(/) 5% ro
()

0%

10 100 1000 10000

Figure 6.5: Classification success vs . training samples - Trivium

For this research , we spent considerable time simulating the cipher under varying

conditions. Simulating Trivium with 4,096 training samples per operation might

only take an hour, but simulating the cipher's operation and performing analysis for

varying template sizes might take a day. Thus, while using more than 4,096 training

samples would be prohibitively time-consuming for this research, an individual or

organization mounting a serious side channel attack could spend significant t ime -

and computational power - building templates from many training samples.

6 .2.3 Classification Success Rate vs. B its Under Attack

With Trivium simulations, we also varied the number of bits under attack, running

simulations and analysis for one-bit templates (21 = 2 operations) , two-bit templates

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 86

(22 = 4 operations), four-bit templates (24 = 16 operations) and eight-bit templa.t s

(28 = 256 operations).

A linear increase in the number of bi ts under attack led to a. exponential increase in

the computation required to perform all simulation and a.na.ly i . On first inspection

however, maximum, average and minimum classification success rates all seem to

vary exponentially with the inverse of the number of bits being attacked, as shown

in F igure 6.6.

Simulated Trivium, 64 Samples , N=20, 1 e-8 W Noise

70%

Q) - 60%
ro

0:::
50% (/)

(/)
Q)
(.)

40% (.)
---· tv1ax

::J
(f)

--- Avg

c 30% 0
-- Min

+=> ro
(.)

20% ~
(/)

--.... --.... ---...
(/)

E1 10% u

0%

One Bit TIM:> Bits Four Bits Eight Bits

Bits Being Attacked

Figur 6.6: Trivium classification success vs. bits being attacked

What thi graph does not reveal, however, is how the classification success com

pares to the expected classification success rate if we had no information about the

cipher - i. e. if we guessed randomly. For n bits, we exp ct that random guessing

would yield the correct subkey 2~ of the time. Our improvement over th is rate tells

us how much information each guess must reveal to enable as many correct guesses

as we have made, and t his information leakage can be calculated by Equation 6.1:

CHAPTER 6. APPLI CATION OF TEMPLATE ATTACK TO TRIVI UM 87

Information Leakage vs. Template Size
Simulated Trivium, 64 Training Samples, 1e-8 W Noise

2.50

~

2 2.00
e
~ 1.50

Jl1
~ 1.00

.§ 0.50
ro
E
.E
£

0.00

-0.50

I
I .

1 2 3 4 6 B 10 12 14 16 20 24 32

Template Size (N)

- One Bit
· · Two Bits
· · Four Bits

Eight Bits

Figure 6.7: Trivium information leakage

l = B - log2 (~) , (6.1)

where l is the information leakage, B is the number of bits being attacked and s

is the classification success rate.

Figure 6.7 shows the information leakage for attacks on various numbers of bits.

From t his graph, we can see that the information obtained via attacking eight bi ts of

key can be approximately twice that obtained from attacking four bits of key.

The a ttack is stronger as more bits are attacked , but this greatly increases compu

tational complexity: if n is the number of bits being attacked , t hen 2n templates must

be generated , requiring L2n total template samples. As mentioned above, however,

a serious side channel at tack could be mounted on a system using resources such as

computing clusters. This would make practical attack a very realistic possibility.

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVI UM 88

6.3 Trivium Hardware

We did not apply template attacks to the power usage of Trivium hardware, as we did

with LFSR-16. The reason for this is entirely pract ical: £ ding random key and IV

values from attack software to the cipher hardware would require a more sophisticat d

experimental etup t han we currently have. While this would b a logical attack fo r

future work to implement, it is beyond the scope of this thesis.

Consid ring the similarity of our simulation and hardware results against LFSR-

16, however, we conjecture that template attacks could be applied against real hard

ware implementations of Trivium.

6.4 Summary

Trivium is a very simple stream cipher which has wit hstood the rigours of the eS

TREAM process, and is part of t he final eSTREAM portfolio. Because of this, a

well as its overwhelming populari ty among stream cipher researcher [41], it is a very

important cipher.

By applying template at tacks, we were able to ext ract secret key material from a

simulated version of Trivium. Our classification success rate was as high as 22% in

noi e condition that we saw were rea onable in Chapter 5. T hi uccess rate could

be increased by using more training samples p er operation or by capturing mul t ipl

traces from th device under attack and exploiting the joint information contained in

all of them.

We conjecture that these attacks could be realised against practical cryp to ystems.

Implementers of Trivium, and other practical stream ciphers, should take care to

ensure that their implementations are not vulnerable to thes attacks.

Chapter 7

Conclusions

As cryptography continues to be imp! mented in embedded systems such as smart

cards and RFIDs, implementers of cryptographic systems must consider threat model

that include adversaries having physical access to cipher hardwar . This physical

access enables attack via side channel analysis, including the powerful class of attack

known as template attacks.

In this thesis, we have demonstrated that template attacks can be applied to

stream ciphers implemented not just via microcontrollers, but also in reconfigurable

hardware. To this end, we have prepared an experimental setup that includes the

Side Channel Analysis Board (SCAB), measurement equipment and oftware. SCAB

is a custom PCB designed to support research in side channel analysis, with features

to aiel researcher in performing power analysis, electromagnetic analysi , faul t anal

ysis and timing analysis. In this research, we have used the power analy is features

of SCAB, measuring the power used by str am cipher hardware with a PC-ba eel

oscillo cope called Cleverscope. We have also written 10,000 lines of C++ code to

perform simulation and analysis of the power u age of cryptographic hardware.

sing this experimental setup, we measured the power usage characteristics of

89

CHAPTER 7. CONCLUSIONS 90

FPGA-based hardware. Having found that these characteristics could be exploited for

side channel analysis, we constructed a simple power usage model from them, which

included the above characteristics and Additive White Gaussian Noise (AWGN). We

simulated the opera tion of a stream cipher building block , a 16-bit Linear Feedback

Shift Register (LFSR-16), and applied template at tacks to its simulated power usag .

We were able to recover secret key material from these simulated power traces -

success rates depended on the amount of AWGN present , but even with very high

amounts of noise, success still exceeded the 6.25% rate t hat we would expect had

we made random guesses a t key bits. We then implemented LFSR-16 in ha rd ware,

measuring its power usage with the Cleverscope and analysing it with our software.

V·le were able to recover secret key bits wi th success rates greater than 90% even

with small template sizes (N < 20).

From this success, we simula ted the power usage of Trivium, a stream cipher that

has been vet ted by the eSTREAM init iative. For this complet stream cipher, we

were able to retri ve four correct bits of key information for over 20% of our guesses,

and our investigations indicate t hat higher success would be pos ible for a dedicated

attacker with reasonable computational resources.

We thus conclud that side channel analysis is a very real threat to stream cipher

hardware, and implementers of such hardware should take care to evaluat th ir

implementations for suscept ibili ty to this class of attacks.

Future Work

This thesis pres nts a black-box approach to a t tacking stream cipher hardware. Fu

ture work would in Jude attacking different group of bits within TI:·ivium to determine

the bits whi h are most or least suscept ible to Template Attacks, as well as xploring

CHAPTER 7. CONCLUSIONS 91

techniques to combine attacks so as to extract the maximum amount of key informa

tion possible.

Future work would also include more application of the method to physical hard

ware, especially the final eSTREAM portfolio ciphers (hardware focus) - F-FCSR-H

v2 12], Grain v2 [3], MICKEY v2 [4] and Trivium [5] . This work will require a more

elaborate experimental setup. The number of key and IV bits that mu t be deter

mined randomly will be much larger - approximately 80 bits each - which rules out

the current method of IV generation: exhaustive search. Rather, unfixed key bits

and all IV bits must be generated by hardware and/ or software external to the device

being tested - likely in software on the PC controlling the attack - and exported to

the hardware being analysed.

Other important future work is determining the effectiveness of traditional side

channel countermeasures against the Template Attack. Many counterm asures wer

designed to defeat Differential Power Analysis, but the principles of the Template At

tack are quite different. Whether or not they can be applied, and what techniques are

effective at foiling the Template Attack, should be of particular interest to hardware

designers.

Bibliography

[1] "Announcing the Advanced Encryption Standard ," National Instit ute of Stan

dards and Technology (IST), Tech. R p . FIPS 197, ov. 2001.

[2] F. Arnaul t and T . Berger, "F-FCSR: design of a new clas of tream cipher '

Fast Software Encryption-FSE, vol. 3557, pp. 83- 97, 2005.

[3] M. Hell , T. Johansson, and W. Meier , "Grain - a stream cipher for con

strained environments," eSTREAM - ECRYPT Stream Cipher Project, Tech.

Rep. 2005/ 010, 2005.

[4] S. Babbage and M. Dodd , "The stream cipher MICKEY-128,' eSTREAM -

ECRYPT Stream Cipher Project, Tech. Rep. 2005/ 016, 2005.

[5] C. de Canniere and B. Preneel, "Trivium Specifications," available fm m ES

TREAM (http://www. ecrypt. eu. orgj str·eamj triviump2. html) .

[6] J . Muir, "Techniques of Side Channel Cryptanalysis," Ma ter 's thesis, University

of Waterloo, 2001.

[7] S. Chari , J. Rao, and P. Rohatgi, "Template Attacks," in Proceedings of Crypto

graphic Hardware and Embedded Systems, vol. LNCS 2535, 2002, pp. 13- 28.

92

BIBLIOGR PHY 93

[8] L. Smith , Cryptography: The Science of Secret Writing. Dover P ublication

1955.

[9] R. ndcrson Security Engineering: A Guide to Building Dependable Distributed

Systems, 2001 .

[10] N. Ferguson and B. Schneier, Practical cryptography. John Wiley & Sons, 2003.

[11] W. Diffie, P. Oorschot, and M. W iener, "Aut hentication and authenticated k y

exchanges," Designs, Codes and Cryptography, vol. 2, no. 2, pp. 107- 125, 1992.

[12] C. Shannon "Communication th ory of secrecy system ."

[13] "Data En yption Standard (DES) ," ational Institute of Standards and T ch

nology (IST), T ch. Rep. FIPS 46-3, Oct. 1999.

[14] E. Foundation, M. Loukides, and J. Gilmore, Cracking DES: Secrets of Encryp

tion Research, Wiretap Politics and Chip Design. O'Reilly & A sociates, In .

Sebastopol A, USA, 1998.

[15[. Mowlavi, "The Fu ture of our Sun and Stars," The Future of the Universe and

the Future of our· Civilization, pp. 57- 69, 2000.

[16] R. Rive t , A. Shamir , and L. Adleman, "A method for obtaining digital signatures

and public-key cryptosystems," Communications of the ACM, vol. 21 no. 2, pp.

120- 126, 1978.

[1 7[S. Garfinkel, PCP: Pr·etty Good Privacy. O'Reilly, 1995.

[18] D. Kahn, The Codebreakers. N w York: Macruillan, 1967.

[19] J. Daemon , R. Govaerts and J . endewall , "A ew pproach Towards Block

Cipher Design," in Fast Software Encryption, FSE 2003. Springer-Verlag 1993.

BIBLIOGRAPHY 94

[20] P. C. Kocher , "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS ,

and Other Systems," in Advances in Cryptology: Proceedings of CRYPT0'96,

vol. 96. Springer-Verlag, 1996, pp. 104- 113.

[21] H. Handschuh and H. M. Heys, "A Timing Attack on RC5," Lecture Notes in

Computer Science 1556: Selected Areas in Cryptography- SAC '98, pp. 306- 318,

1999.

[22] D. Osvik, A. Shamir, and E. Tromer, "Cache attacks and countermeasures: the

case of aes," CT-RSA, pp. 1- 20, 2006.

[23] E. Biham and A. Shamir, "Differential Fault Analysis," in Advances in Cryptol

ogy: Proceedings of CRYPTO '97, vol. LNCS 1294. Springer-Verlag, 1997, pp.

513- 525.

124] D. Boneh , "On the Importance of Eliminating Errors in Cryptographic Compu

tations," Journal of Cryptology, vol. 14, no. 2, pp. 101- 119, 2001.

125] J . Blamer and J.-P. Seifert, "Fault based cryptanalysis of the advanced encryption

standard (aes)," LNCS 2742: FC 2003, pp. 162- 181 , 2003.

126] S. Skorobogatov and R. Anderson, "Optical fault induction attacks," Proceedings

of CHES '02, pp. 2- 12, 2002.

[27] J .-J. Quisquater and D. Samyde, "Eddy current for magnetic analysis with active

sensor," Proceedings of Int . Conf. on Research in Smart Cards (E-Smart 2002),

pp. 185- 194, 2002.

[28] R. Anderson and M. Kuhn , "Low Cost Attacks on Tamper Resistant Devices,"

in 5th International WoTkshop on Secur·ity Protocols, vol. LNCS 1361. Springer

Verlag, 1997, pp. 125- 126.

BIBLIOGRAPHY 95

[29] --, "Tamper Resistance - A Cautionary ote," in Proceedings of the Second

USENIX Workshop on Electronic Commerce, 1996.

[30] P. C. Kocher, J. Jaffe, and B . Jun, "Differential Power Analysis," in Proceedings of

the 19th Annual International Cryptology Conference on Advances in Cryptology,

1999, pp. 388- 397.

[31] K. Gandolfi, C. Mourtel, and F. Olivier, "Electromagnetic Analysis: Concrete

Resul ts," Cryptographic hardware and embedded systems-CHES 2001: Third In

ternational Workshop, Paris, Prance, May 14-16, 2001: Proceedings, 2001.

[32] C. Rechberg r and E . Oswald "Stream Ciphers and Side-Channel Analysis," in

Workshop on the State of the Art in Stream Ciphers, 2004, pp. 320- 326.

[33] Identification cards - Integrated circuit cards - Par·t 1: Physical characteristics,

International Standards Organization (ISO) , Oct. 1998.

[34] S. F. Arnold, The Theory of Linear Models and Multivariate Analysis, ser. Wiley

Series in Probability and Mathemetical Statistics. Wiley, 1981.

[35] C. S. Davis, Statistical Methods for the Analysis of Repeated Measurements, ser.

Springer Texts in Statistics. Springer, 2002.

[36] R. Duda, P. Hart et al., Pattern classification and scene analysis, 1973.

[37] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of Applied Cryptogra

phy. CRC Press, 1997.

[38] C. Su , T. Lin , C. Huang, and C. Wu, "A high-throughput low-cost AES proces

sor," Communications Magazine, IEEE, vol. 41, no. 12, pp. 86- 91, 2003.

[39] "Ciev rs ope." [Online] . Available: http: / j www.cleverscope.com/

BIBLIOGRAPHY 96

[40[The eSTREAM Project. [Online]. Available: http://www. crypt.eu.org/ str am/

[41] S. Babbage, C. D. Canniere, A. Canteaut, C. Cid , H. Gilbert, T. Johans on,

M. Parker, B. Preneel, V. Rijmen, and M. Robshaw, "The eSTREAM Portfolio,"

ECRYPT, Tech . Rep. , Apr. 2008.

[42] Qt cross-platform application framework. [Online]. Available:

http: / / trolltech.com/ products/ qt/

Appendix A

Detailed Results

A.l Simulation

A.l.l LFSR-16

All LFSR-16 data is for an attack against four key bits.

16 Training Samples per Operation

Table A.l contains the classification success rates when the peak power noise was

10- 8 W.

N I Minimum I Average I Maximum I
1 0 10.3% 51%
2 0 25.8% 56%
3 17% 48.5% 71%
4 40% 94.2% 100%
6 0 12.5% 100%
8 0 43.8% 100%
10 0 56.1% 100%
12 0 0 0
14 0 0 0

Table A.l: 16 training samples per operation (lo- 8 W noise)

97

- -~------------------------------

APPENDIX A . DETAILED RESULTS 98

Table A.2 contains the classification success rates when the peak power noise was

w-7 w.

N I Minimum I Average I Maximum I
1 0 9.8% 59%
2 2% 25.2% 56%
3 17% 52.1% 70%
4 42% 94.1% 100%
6 50% 94.4% 100%
8 48% 94.9% 100%
10 54% 93.6% 100%
12 58% 89.5% 100%
14 24% 75.8% 100%

Table A.2: 16 training samples per operation (lo- 7 W noise)

Table A.3 contains the classification success rates when the peak power noise was

w-6 w.

N I Minimum I Average I Maximum I
1 0 10.3% 59%
2 0 12.4% 30%
3 1% 14.9% 30%
4 9% 20.7% 39%
6 9% 21.8% 39%
8 11% 22.6% 36%
10 9% 22.9% 43%
12 4% 22.9% 41%
14 4% 23.6% 34%

Table A.3: 16 training samples per operation (lo- 6 W noise)

Table A.4 contains the classification success rates when the peak power noise was

w- 5 w.

APPENDIX A. DETAILED RESULTS 99

I N I Minimum I Average I Maximum I
1 0 6.1% 31%
2 0 6.6% 26%
3 0 7.7% 24%
4 0 8.1% 25%
6 0 9.8% 27%
8 0 10.7% 25%
10 0 12.8% 34%
12 0 12.4% 35%
14 0 12.6% 44%

Table A.4: 16 training samples per operation (lo- 5 W noise)

Table A.5 contains the classification success rates when the peak power noise was

10- 4 w.

N I Minimum I Average I Maximum I
1 0 6.7% 49%
2 0 7.9% 33%
3 0 7.9% 26%
4 0 8.8% 28%
6 0 10.2% 30%
8 0 11.6% 27%
10 0 12.3% 32%
12 0 12.8% 37%
14 0 12.5% 36%

Table A.5: 16 training samples per operation (10- 4 W noise)

Table A.6 contains t he classification success rates when the peak power noise was

10- 3 w.

APPENDIX A. DETAILED RESULTS 100

I N I Minimum I Average I Average I
1 0 6.5% 34%
2 0 6.6% 29%
3 0 6.4% 22%
4 0 8.1% 29%
6 0 9.4% 26%
8 0 9.5% 24%
10 0 11.3% 27%
12 0 12.3% 31%

Table A.6: 16 training samples per operation (10- 3 W noise)

Table A. 7 contains the classification success rates when the peak power noise was

.01 w.

I N I Minimum I Average I Maximum I
1 0 7.8% 46%
2 0 7.4% 31%
3 0 7.7% 25%
4 0 8.0% 21%
6 0 9.1% 21%
8 0 11.7% 23%
10 0 12.7% 28%
12 0 13.2% 30%

Table A. 7: 16 training samples per operation (.01 W noise)

Table A.8 contains the classification success rates when the peak power noise was

.1 w.

APPENDIX A . DETAILED RESULTS 101

I N I Minimum I Average I Maximum I
1 0 6.8% 59%
2 0 8.0% 56%
3 0 8.6% 70%
4 0 10.4% 100%
6 0 11 .5% 100%
8 0 14.3% 100%
10 0 16.8% 100%
12 0 19.8% 100%

Table A.8: 16 training samples per operation (.1 W noi e)

Table A.9 contains the classification success rates when the peak power noise wa

1 w.

I Minimum I Average I Maximum I
1 0 6.6% 48%
2 0 8.5% 26%
3 0 9.1% 23%
4 0 9.6% 21%

6 0 11.8% 23%
8 0 12.6% 21%
10 0 16.8% 22%
12 0 19.3% 28%

Table A.9: 16 training samples per operation (1 W nois)

32 Training Samples per Operation

Table A. 10 contains the classification success rates when t he peak power noi e was

10- 8 W.

APPENDIX A. DETAILED RESULTS 102

I N I Minimum I Average I Maximum I
1 0 8.2% 55%
2 0 28.2% 66%
3 16% 51.7% 77%
4 50% 95.0% 100%
6 53% 95.7% 100%
8 56% 95.9% 100%
10 54% 95.5% 100%
12 64% 96.2% 100%
14 72% 96.6% 100%
16 0 0 0
20 0 0 0
24 0 10.3% 89%

Table A.10: 32 training samples per operation (lo-s W noise)

Table A.ll contains the classification success rates when the peak power noise was

10- 7 W.

I Minimum I Average I Maximum I
1 0 10.1% 65%
2 0 28.0% 56%
3 14% 53.2% 78%
4 50% 94.8% 100%
6 53% 94.8% 100%
8 58% 95.3% 100%
10 59% 95.0% 100%
12 53% 94.8% 100%
14 51% 94.4% 100%
16 51% 94.3% 100%
20 50% 92.6% 100%
24 54% 90.4% 100%

Table A.ll : 32 training samples per operation (lo- 7 W noise)

Table A.12 contains the classification success rates when th e peak power noise was

10- 6 W.

APPENDIX A. DETAILED RESULTS 103

I N I Minimum I Average I Maximum I
1 0 10.7% 47%
2 0 14.8% 38%
3 2% 19.5% 43%
4 9% 24.8% 41%
6 14% 26.3% 39%
8 16% 27.0% 42%
10 15% 28.4% 41%
12 18% 29.6% 40%
14 26% 31.4% 43%
16 20% 31.2% 40%
20 14% 32.6% 40%
24 7% 33.9% 40%

Table A.12: 32 training samples per operation (lo- 6 W noise)

Table A.13 contains the classification success rates when the peak power noise was

w-5 w.

N I Minimum I Average I Maximum I
1 0 7.3% 43%
2 0 8.0% 24%
3 0 9.0% 23%
4 0 9.1% 24%
6 0 10.3% 26%
8 0 11.1% 32%
10 0 13.8% 32%
12 0 14.8% 37%
14 0 16.7% 40%
16 0 18.1% 44%
20 0 19.6% 45%
24 0 20.1% 43%

Table A.13: 32 training samples per operation (lo- 5 W noise)

64 Training Samples per Operation

Table A.14 contains the classification success rates when the peak power noise was

w-s w.

APPENDIX A . DETAILED RESULTS 104

I N I Minimum I Average I Maximum I
1 0 11.7% 40%
2 0 25.8% 58%
3 27% 53.5% 73%
4 52% 94.2% 100%
6 64% 95.8% 100%
8 62% 95.4% 100%
10 59% 95.1% 100%
12 56% 94.6% 100%
14 58% 94.9% 100%
16 56% 95.0% 100%
20 51% 94.9% 100%
24 41% 94. 1% 89%

Table A.l4: 64 training samples per operation (lo- s W noise)

Table A.l 5 contains the classification success rates when the peak power noise was

10- 7 W.

I N I Minimum I Average I Maximum I
1 0 12.4% 63%
2 0 28.2% 56%
3 14% 55.6% 70%
4 50% 94.1% 100%
6 53% 95.3% 100%
8 58% 96.4% 100%
10 59% 96.8% 100%
12 53% 96.6% 100%
14 51% 96.8% 100%
16 51% 97.1% 100%
20 50% 97.2% 100%
24 54% 97.9% 100%

Table A.l5: 64 training samples per operation (10- 7 W noise)

Table A.l6 contains the classification success rates when the peak power noise was

10- 6 w.

APPENDIX A. DETAILED RESULTS 105

I N I Minimum I Average I Maximum I
1 0 9.8% 48%
2 0 14.1% 36%
3 5% 18.3% 33%
4 3% 23.1% 38%
6 13% 26.0% 39%
8 10% 26.4% 42%
10 11% 29.6% 42%
12 13% 31.6% 49%
14 11% 32.8% 49%
16 12% 34.7% 50%
20 12% 38.1% 54%
24 8% 40.9% 61%

Table A.16: 64 training samples per operation (lo- 6 W noise)

Table A.17 contains the classification success rates when the peak power noise was

w-5 w.
N I Minimum I Average I Maximum I
1 0 7.6% 46%
2 0 8.8% 34%
3 0 9.7% 32%
4 0 9. 5% 24%
6 2% 11.0% 22%
8 5% 13.6% 23%
10 2% 15.2% 28%
12 2% 18.6% 32%
14 2% 20.6% 30%
16 4% 24.1% 34%
20 2% 32.3% 47%
24 2% 39.0% 55%

Table A.17: 64 training samples per opera tion (10- 5 W noise)

Beyond the full data sets we collected, we also collected partial sets at 64 training

samples for different noise values.

Table A.18 contains the classification success ra tes when the peak power noise was

w-4 w.

APPENDIX A. DETAILED RESULTS 106

I I Minimum I Average I Maximum I
1 24 1 1% 1 24.5% 1 57%

Table A.18: 64 training samples per operation (lo- 4 W noise)

Table A.19 contains the classification success rates when the peak power noise was

10- 3 W.

I N I Minimum I Average I Maximum I
1% 1 37.4% 1 53%

Table A.19: 64 training sampl s per operation (lo- 3 W noise)

Table A.20 contains the classification success rates when the peak power noise was

10- 2 vv.

I N I Minimum I Average I Maximum I
1 24 1 1% 1 26.s% 1 53% 1

Table A.20: 64 training samples per operation (lo- 2 W noise)

Table A.21 contains the classification success rates when the peak power noise was

.1 W.

I N I Minimum I Average I Maximum I
1 24 1 3% 1 37.4% 1 53% 1

Table A.21: 64 training samples per operation (.1 W noise)

Table A.22 contains the classification success rates when the peak power noise was

1 W.

I N I Minimum I Average I Maximum I
1 24 1 2% 1 21.o% 1 52% 1

Table A.22: 64 training samples per operation (1 W noise)

APPE DIX A. DETAILED RESULTS 107

128 Training Samples per Operation

Table A.23 contains the classification success rates when the peak power noise was

w-6 w.

N I Minimum I Average I Maximum I
1 0 10.8% 61%
2 0 14.4% 39%
3 5% 18.8% 33%
4 1% 22.1% 41%
6 7% 26.7% 46%
8 14% 28.9% 47%
10 14% 30.1% 52%
12 15% 31.1% 52%
14 11% 33.0% 58%
16 11% 34.2% 59%
20 11% 38.3% 65%
24 10% 42.8% 66%

Table A.23: 128 training samples per operation (lo- 6 W noise)

Table A.24 contains the classification success rates when the peak power noise was

w-5 w.

N I Minimum I Average I Maximum I
1 0 8.1% 47%
2 0 8.5% 38%
3 0 10.2% 36%
4 0 10.1% 34%
6 0 11.0% 31%
8 0 11.7% 30%
10 1% 12.9% 28%
12 1% 13.6% 29%
14 1% 14.9% 32%
16 0 16.9% 37%
20 0 22.1% 55%
24 0 26 .3% 57%
24 1% 34.9% 75%

Table A.24: 128 training samples per operation (lo- 5 W noise)

APPENDIX A. DETAILED RESULTS 108

256 Training Samples per Operation

Table A.25 contains the classification success rates when the peak power noise was

w-7 w.

N I Minimum I Average I Maximum I
1 0 10.5% 69%
2 1% 27.4% 62%
3 15% 54.6% 68%
4 58% 94.9% 100%
6 70% 96.5% 100%
8 70% 96.8% 100%
10 69% 96.3% 100%
12 70% 96.3% 100%
14 61% 95.9% 100%
16 60% 95.9% 100%
20 62% 96.4% 100%
24 66% 97.2% 100%

Table A.25: 256 training samples per operation (lo- 7 W noise)

Table A.26 contains the classification success rates when the peak power noise was

w-5 w.

N I Minimum I Average I Maximum I
1 0 7.3% 36%
2 0 8.0% 36%
3 0 7.2% 31%
4 0 6.6% 25%
6 2% 6.9% 18%
8 2% 7.1% 12%
10 4% 7.8% 20%
12 3% 7.8% 18%
14 2% 7.4% 19%
16 3% 7.8% 22%
20 2% 8.1% 24%
24 0 8.1% 29%

Table A.26: 256 training samples per operation (10- 5 W noise)

APPENDIX A. DETAILED RESULTS 109

A.l.2 Trivium

All Trivium simulations, unless otherwise specified, were performed with 256 training

samples and a peak power noise of 10- 8 W.

A.1.2.1 One Key Bit

The results of attacking one key bit (79 bits randomly assigned) are given in Table

A.27.

N I Minimum I Average I Maximum I
1 43% 49.5% 56%
2 43% 53.0% 63%
3 44% 53.0% 62%
4 48% 57.0% 66%
6 46% 53.5% 61%
8 50% 52.5% 55%
10 48% 52.0% 56%
12 45% 47.5% 50%
14 44% 51.5% 59%
16 44% 50.5% 57%
20 51 % 55 .0% 59%
24 39% 48.0% 57%
32 35% 49.0% 49%

Table A.27: Trivium results - attacking one key bit

A.1.2.2 Two Key Bits

The results of attacking two key bits (78 bits randomly assigned) are given in Table

A.28.

APPE DIX A. DETAILED RESULTS 110

I N I Minimum I Average I Maximum I
1 1% 27.0% 42%
2 9% 27.3% 48%
3 10% 27.3% 44%
4 19% 29.5% 41%
6 21 % 24.8% 29%
8 22% 25.0% 30%
10 17% 23.3% 27%
12 22% 24.3% 27%
14 24% 27.3% 30%
16 26% 26.8% 27%
20 22% 26.3% 31%
24 26% 29.0% 37%
32 23% 25.8% 39%

Table A.28: Trivium r suits- attacking two key bits

A .1.2.3 Four Key Bits

·when attacking four key bits (76 bits randomly assigned) , simulations were performed

with power noise of 10- 7 and 10- 8 for s vera) numbers of training samples .

64 Training Samples per Operation The a ttack re ults when the power noi

is 10- 8 W are given in Table A.29.

APPENDIX A. DETAILED RESULTS 111

I Minimum I Average I Maximum I
1 0% 7.25% 47%
2 0% 7.19% 29%
3 1% 7.19% 24%
4 0% 5.81% 25%
6 1% 6.19% 17%
8 3% 7.38% 12%
10 2% 6.81% 14%
12 3% 5.81% 11%
14 1% 8.56% 16%
16 8% 13.3% 20%
20 8% 12.1% 17%
24 5% 11 .3% 18%
32 5% 11.9% 16%

Table A.29: Trivium results - a ttacking four key bits, 64 samples, 10- 8 peak nois

The attack results when the power noise is 10- 7 W are given in Table A.30.

I N I Minimum I Average I Maximum I
1 0% 6.88% 32%
2 0% 7.00% 21%
3 1% 7.31% 21%
4 1% 6.00% 14%
6 2% 6.31% 12%
8 1% 5.94% 13%
10 1% 7.00% 14%
12 4% 6.50% 12%
14 1% 6.44% 13%
16 3% 6.69% 13%
20 1% 7.50% 13%
24 2% 6.25% 10%
32 2% 6.13% 10%

Table A.30: Trivium results - attacking four key bits, 64 samples, 10- 7 peak noise

256 Training Samples per Operation The attack results when the power noise

is 10- 8 W are given in Table A.31.

APPENDIX A. DETAILED RESULTS 112

I Minimum I Average I Maximum I
1 0% 7.2% 52%
2 0% 7.2% 34%
3 0% 7.2% 36%
4 0% 5.8% 28%
6 0% 6.2% 24%
8 1% 7.4% 22%
10 2% 6.8% 14%
12 2% 5.8% 14%
16 10% 13.3% 24%
20 6% 12.1% 21%
24 7% 11.3% 18%
32 8% 11.9% 18%

Table A.31 : Trivium results- attacking four k y bits , 256 samples, 10- 8 peak noise

The attack r sults when the power noise is 10- 7 W are given in Table A.32.

I N I Minimum I Average I Maximum /

1 0% 7.8% 32%
2 0% 8.5% 21%
3 0% 7.0% 21%
4 0% 7.8% 14%
6 1% 7.9% 12%
8 1% 7.7% 13%
10 2% 6.7% 14%
12 2% 7.6% 12%
16 3% 11.6% 13%
20 6% 10.2% 13%
24 4% 9.3% 10%
32 2% 8.5% 10%

Table A.32: Trivium results - attacking four key bits, 256 samples, 10- 7 peak noise

1024 Training Samples p er Operation The attack results when the power nois

is 10- 8 W are given in Table A.33.

-------------------- ---------· -----

APPENDIX A . DETAILED RESULTS 113

I N I Minimum I Average I Maximum I
1 0% 6.9% 55%
2 0% 7.1% 43%
3 0% 7.7% 36%
4 0% 7.5% 29%
6 1% 7.4% 23%
8 2% 7.0% 21 %
10 1% 7.4% 17%
12 1% 7.0% 17%
16 6% 16.6% 27%
20 10% 16.4% 28%
24 11% 20.1% 32%
32 12% 19.3% 29%

Table A.33: Trivium results - attacking four key bits, 1024 samples, 10- 8 peak noise

4096 Training Samples per Operation The attack results when th power noise

is 10- 8 W are given in Table A.31.

I N I Minimum I Average I Maximum I
1 0% 8.6% 58%
2 0% 8.0% 49%
3 0% 8.2% 46%
4 0% 8.1% 43%
6 0% 7.8% 40%
8 0% 8.1% 33%
10 0% 7.4% 30%
12 1% 7.2% 29%
16 8% 17.8% 27%
20 12% 22.1% 37%
24 11% 22.4% 35%
32 13% 21.6% 35%

Table A.34: Trivium results - attacking four key bits, 4096 samples, 10- 8 peak noise

A.1.2.4 Eight Key Bits

The results of attacking eight key bits (72 bits randomly assigned) are given in Table

A.35. 64 training samples were used in all cases.

APPENDIX A. DETAILED RESULTS 114

I N I Minimum I Average I Maximum I
1 0% 0.48% 21%
2 0% 0.54% 21%
3 0% 0.47% 9%
4 0% 0.49% 8%
6 0% 0.41% 9%
8 0% 0.46% 17%

10 0% 0.43% 4%
12 0% 0.49% 3%
14 0% 0.75% 5%
16 0% 0.92% 5%
20 0% 1.63% 5%
24 0% 1.39% 6%
32 0% 1.10% 5%

Table A.35: Trivium results - attacking eight key bits

A.2 Physical Measurement

Physical measurement was performed of the LFSR-16 cipher building block for 256

training samples. Results are given in Table A .36

I Minimum I Average I Maximum I
1 0 11 .3% 40.6%
2 0 26.7% 59.0%
3 29.7% 52.3% 58.6%
4 60.2% 65.9% 73.4%
6 65 .2% 73.0% 80.5%
8 72.3% 85.6% 95.7%
10 72.7% 88.2% 96.1 %
12 77.7% 91.6% 96.5%
16 85.2% 94.1% 97.7%
20 93.4% 97.4% 99.6%
24 95.7% 98.5% 100%
32 97.7% 99.4% 100%
40 98.8% 99.7% 100%

Table A.36: Physical measurement results

Appendix B

Software Data Formats

B.l Cleverscope Text Files

The Cleverscope text-based format has a header , beginning with the line " [Sample

Definition] " and a body, beginning wit h the line " [Data] ". An example of t his

format is shown in Figure B.l.

B .1.1 Header

The header of a Cleverscope text file contains several pieces of information impor tant

to our analysis:

• Usage of digital t races

- If digital t races were capt ured by the Cleverscope unit, the UseDig param

eter is TRUE; otherwise, it is FALSE .

• Analog scale, offset

115

APPENDIX B. SOFTWARE DATA FORMATS

[Sample Definition]
Type =Time
UseBuffer=FALSE
UseDig=TRUE
ChAscale=1.000000
ChAoffset =O.OOOOOO
ChBscale =1.000000
ChBoffset =O.OOOOOO
delta =0 . 0000000100
start =0.0006427900
nsample =7047
offset=O
Save Time = 8/20/2007 2:35:46 PM
[Data]
Time Chan A Chan B
0.00064279 1 . 50011814 1.48075295
0.00064280 1 . 49992914 1 . 47955595
0.00064281 1 . 50005514 1.48058195
0 . 00064282 1.49879514 1.47915695
0 . 00064283 1.49948814 1.47927095
0 . 00064284 1.49911014 1 . 47852995
0.00064285 1.49961414 1.47898595
0 . 00064286 1 . 49904714 1.47972695
0.00064287 1 . 49929914 1.47938495

Figure B.l : Cleverscope text file example

116

Dig
240 . 00000000
240 . 00000000
240 . 00000000
240.00000000
240.00000000
240 . 00000000
240 . 00000000
240 . 00000000
240.00000000

- Each analog channel (A and B) has a scale and an offset associated with

it; t hese values must be mult iplied with and added to, respectively, the

analog channel data specified below.

• Sampling period

- T he time between samples is given by the delta parameter. While the

sampling period does not affect template attacks directly, we do read and

store it to ensure that we only attempt to add or multiply traces with the

APPENDIX B. SOFTWARE DATA FORMATS 117

same sampling period.

• Number of samples

- The number of sample points in the trace is given by the nsample param

eter. After loading sample points from the file, we ensure that the entire

fil e was loaded by comparing the number of loaded points to nsample .

Other parameters, such as "Save Time", are not important for the research , but are

nonetheless parsed and saved.

B .1.2 B ody

The body of a Cleverscope text file contains tab-delimited lin s of data in four

columns:

1. Time: the time, in seconds, that the data was sampled

2. Chan A: the voltage measured by Channel A

3. Chan B: the voltage measured by Channel B

4. Dig: digital trace values

(a) This number varies between 0 and 255, and represents the values of all

eight digital traces

(b) Retrieving a particular trace's value is a matter of bit masking:

for(int j = 0; j < 8; j++)

digitalTraces[j]->append(value & (1 << j));

APPENDIX B. SOFTWARE DATA FORMATS

B.2 Analog Trace Files

An AnalogTrace C++ object has six attributes:

arne Type Description

my arne QString arne of the trace (e.g. "Channel A')

unit Unit* Unit of trace values (e.g. Volts, Watts)

timeDivision double T ime between samples

trace QList< double> Actual trace values

min Value double Smallest value in the trace

ma..."XValu double Largest value in the trace

118

QString and QList a re data structures from the Qt C++ toolki t [421, double i the

64-bit IEEE-standard C++ primitive and Unit is a class that we wrote to manage

trace units (e.g. dissimilar units cannot be added , multiplying an Amp by a Volt

produces a Watt).

Such a trace can be written to two types of files: text-based or binary.

B.2.1 Text

When writing small t races to fi le, we may choose to write them in a text-based format

that facilitates direct inspection. This is accomplished via the Qt cla s QTextStream.

A QTextStream object , vvhich is associated with a QFile object, can be used to r ad

or write primitives such as strings and double-precision floating-point numbers. An

example of the output is shown in Figure B.2.

APPENDIX B. SOFTWARE DATA FORMATS 119

AnalogTrace ("Mean Power Usage for Unnamed Trace", W, 192
values, 1e - 06s apart, range [1 . 11306e - 05:0.000221819]){

0.000221806 1 . 11333e-05 1 . 11326e -0 5 0.000221819
1 . 11322e-05 1 .1 1331e -05 0.000221815 1.11339e-05 1.11316
e-05 0.000221804 1 . 11328e-05 1.11315e - 05 0.000215942

}

Figure B.2: Example of a text-based AnalogTrace file

B.2.2 Binary

When writing files that are large or will be read many tim s, it is mor efficient to

write AnalogTrace objects in a binary format. Such a format is smaller than the

equivalent text-based format, and it saves the computational effort r quired to parse

floating-point numbers from text.

Writing a AnalogTrace to a binary file - or reading it back - is accomplished using

the Qt class QDataStream. Like QTextStream above, QDataStream object can b

used to r ad or write primitives such as strings and double-precision floating-point

numbers. The binary format includes a "magic" number - used to recognize the

format - and a binary format version (currently version 2). The procc s of writing

such a file is shown in Figure B.3, and a sample trace as viewed in a hex ditor is

shown in Figure B.7.

B.3 Digital Trace Files

Digital trace files are much simp! r than ana log traces , as they contain a binary

trace - there are no units or minimum/ maximum values to be concerned with. An

DigitalTrace C++ object has just two a ttributes:

APPENDIX B. SOFTWARE DATA FORMATS

QDataStream& power: :operator << (QDataStream& d,
AnalogTrace& trace)

{

120

d << (quint32) Ox5CABOOA7; II magic SCAB AT (Analog Trac4
d << (quint32) 2 ·

' II binary format
d << trace.name();
d << trace. units() . toString ();
d << trace. period();
d << trace.values() . size();

for(long inti= 0; i < trace.values().size(); i++)
d << trace.values()[i];

return d;
}

Figure B.3: Writing a binary AnalogTrace file

Name Type Description

timeDivision double Sampling period

trace QList< bool> Binary trace

Digital traces are are also simpler to parse than analog traces - there is only

one floating-point number per file - and in our usage, they are also much smaller,

since we only use them for subtrace masking, and ubtraces are much smaller than

full traces (see Section 4.4.2). Thus, we only write digital trace files in a text-bas d

format, though a binary representation is required when writing digital traces as part

of power usage files.

B.3.1 Text

The text-based digital trace file format is quite simple, as shown in Figure B.5, in-

corporating just the trace length , sampling period and actual trace values.

version

APPENDIX B. SOFTWARE DATA FORMATS

~ file:///home{jon/school/research/SCAB/software/ l ibscat;tests/ test.trace · KH exEct it

Eile f.dit ~iew .Documents .6.ookmarks Iools .S.ettings .tlelp

~
... - I l

[test. trace
"Magic .. Verst-an

0000 :0000 Sc 00 00 00 02
0000:0010 0 · 0 4
0000:0020 00 63 00 65 00 00 00 02
0000:0030 00 00 00 00 00 2a 00 00
0000:0040 00 00 00 00 00 00 3f fO
0000:0050 00 00 00 00 00 00 40 00
0000:0060 00 00 00 00 00 00 40 08
0000:0070 00 00 00 00 00 00 40 10
0000:0080 00 00 00 00 00 00 40 14
0000:0090 00 00 00 00 00 00 40 18
OOOO:OOaO 00 00 00 00 00 00 40 1c
0000:00b0 00 00 00 00 00 00 40 20
0000:00c0 00 00 00 00 00 00 40 22
0000:00d0 00 oa 00 00 00 00 40 24
0000:00e0 00 OG 00 00 00 00 40 26
0000:00f0 00 00 00 00 00 00 40 28
0000:0100 00 00 00 00 00 00 40 2a
0000:0110 00 00 00 00 00 00 40 2c
0000 :0120 00 00 00 00 00 00 40 2e
0000; 0130 00 00 00 00 00 00 40 30

Hex • J

~

00 00 00 18 00
00 20 00 54 00
00 41 3f aS 81
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

41 00
72 00
06 20
00 3f
00 3f
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40
00 40

Find

20
61
00
eO
f8
04
0c
12
16
1a
1e
21
23
25
27
29
2b
2d
2f
30

Trace Name

. * 70

.. ?o 7o
' . ' . ' . @ .. ' '. ' . @.
.... '. @ • . @.
.. @ .. . ' . . • @.
. @ @.
.. @ @.
. •... , @•. @.
.. " .. @ @!
. @" @#
' . . ' .. @$.. ' • .. @%
. .•.. ' @& @'
. . • .. ' @(. @)

' @*' '' . ', @+
' , @, . . ' . . . @-
' .• . ' . @ . .. ' ... @/
' @0 .. ' ' . . @0

r.\ 1

B.ickwards

121

-~

X

Signed 8 bit: 92 Signed 32 bit :

Unsigned 8 bit: 92 Unsigned 32 bit :

Signed 16 bit: 23723 32 bit float:

1554710695

1554710695

3.850635E+17

Hexadecimal:

Octal:

Binary :

5C

134

01011100

Unsigned 16 bit : 23723 64 bit float: 2.512192 E+ 138 Text:

Show l ittle endian decod ing Show .u.nsigned as hexadecimal Stream length: Fixed 8 Bit

Encoding: Default OVR Size: 390 Offset: 0000:0000-7 Hex RW

Figure B.4: Example of a binary AnalogTrace file

B .3.2 Binary

Like that of an AnalogTrace, the DigitalTrace's binary repre entation us s a "magic"

value for the purposes of format recognition and a format version - currently version

1. T he code to write such a file is shown in Figure B.6.

APPENDIX B. SOFTWARE DATA FORMATS

DigitalTrace (192 values, 1s apart){
100100100100100100100 ... 0000 }

Figure B.5: Example of a text-based DigitalTrace file

QDataStream& power: :operator << (QDataStream& ds,
DigitalTrace& t)

{

122

ds << (quint32) Ox5CABOOD7; II magic SCAB DT (Digital Tr ;

ds << (quint32) 1·
' II binary format versio

ds << t . period(); II sampling period
ds << t.size(); II size

const QList <bool > values = t. values();
ds << values;

return ds;
}

Figure B.6: Writing a binary AnalogTrace file

B.4 Power Usage Files

A PowerUsage file is a binary representation of two things:

• an AnalogTrace containing a power trace

• a DigitalTrace that partitions the t race into subtraces (see Section 4.4.2

This file consists of another "magic" number , a version (current version 1), two binary

values (to indicate the presence of an analog and digital trace, respectively) and then

the binary representations of the power trace and partitioning trace. An example of

this format is shown in Figure B.S.

APPENDIX B. SOFTvVARE DATA FORMATS 123

r G{ file:///home{jon/school/research/SCAB/software/ libscat/tests/ test.trace · KHexEdit)(

Eile .E.dit ~iew .Qocuments .6.ookmarks Iools .S.ettings tlelp

fS1 "-~ • ~agic" .·1
test.trace Trace Name
000G:OOOG Sc OG 00 GO 02 00 00 00 18 00 41 00 20
OOOG:0010 0 · 0 4 00 20 00 54 00 72 00 61
000G:0020 00 63 00 65 0G 00 00 02 00 41 3f aS 81 06 20 G0
000G:0030 00 GO 00 00 OG 2a 00 00 00 00 00 00 00 0G 3f eO * 70
0000 :0040 00 00 00 00 00 00 3f fO 00 00 00 00 00 00 3f fB 70 70
0000:0050 00 00 00 00 00 00 40 00 00 GO 00 00 00 00 40 04 @ @.
0000:0060 00 00 GO 00 OG 00 40 08 00 00 GO 00 00 OG 40 Gc @ @.
0000:007G 00 GO 00 00 00 00 40 10 00 00 00 00 00 0G 40 12 @ @.
0000:008G 00 GO 00 00 OG 00 40 14 00 00 00 00 00 00 40 16 @ @.
000G : 0090 00 Of.l 00 00 0G 00 40 18 00 00 00 00 00 00 40 la @ @.
OOOG: OOaO 00 00 00 00 OG 00 40 lc 00 00 00 00 00 00 40 1e @ @.
000G:00b0 00 00 00 00 00 00 40 20 00 00 00 00 00 00 40 21 @ @!
0000 :00c0 00 GO 00 00 0G 00 40 22 00 00 00 00 00 OG 40 23 @" @#
OOOG :OOdG 00 00 00 00 OG GO 40 24 00 00 00 00 00 00 40 25 @$ @%
OOOO :OOeO 00 GO 00 00 00 00 40 26 00 00 GO 00 00 00 40 27 @& @'
000G :OOfG 00 GO 00 00 OG 00 40 28 00 00 00 00 00 OG 40 29 @(...... @)
000G :0100 00 00 00 00 OG GO 40 2a 00 00 GO 00 00 OG 40 2b @* @+
OOOG :011G 00 00 00 00 00 00 40 2c 00 00 00 00 00 OG 40 2d @, @·
0000 :0120 00 GO 00 00 00 00 40 2e 00 00 00 00 00 OG 40 2f @ @/
OOOG :0 130 00 00 00 00 00 00 40 30 00 00 00 00 00 00 40 30 ' @0 @0 ,., ,. ,
Hex y II Find Bickwards X

Signed 8 bit: 92 Signed 32 bit :

Unsigned 8 bit: 92 Unsigned 32 bit :

Signed 16 bit : 23723 32 bit float:

1554710695

1554710695

3.850635E+17

Hexadecimal:

Octal:

Binary:

5C

134

01011100

Unsigned 16 bit: 23723 64 bit float: 2.512192E+138 Text:

Show little endian decoding Show _ynsigned as hexadecimal Stream length: Fixed 8 Bit

Encoding: Default OVR Size: 390 Offset: 0000:0000-7 Hex RW

F igure B.7: Example of a binary Analog'II·ace file

B.5 Power Simulation

Hardware was modeled in this work in two parts: first the hardware itself was char-

acterized , th n hardware power usage was simulated using these characteristics as a

model.

APPENDIX B. SOFTWARE DATA FORMATS 124

(Y file:///hometjon/school/researcl waveforrns/simulation/ LFSR-16/64·trials·64·cycles-le-8-noise/0x) y A "

file fdit Yiew Qocuments .6.ookmarks Iools .s_ettings .l:ielp

@ • ~ ~
PowerUsage "Magic" Version AnalogTrace "Magic"

ooo0:oooo c 00 4 ·o oo oo e 01 01 eo a oo oo \ O. B \ o.o.
0000:0010 o~o~~m-oM· O oo so oo Gf oo 65 oo 72 N.P .o .w. e . r
0000:0020 00 20 00 55 GO GO 61 00 67 00 65 00 20 GO 6t . . U. s .a g . e .. o
0000 :0030 00 66 GO 20 00 4c GO 46 00 53 00 52 00 2d GO 31 . f .. L.F .S. R. - . 1
OOOO :OG40 00 36 00 20 00 75 00 73 00 69 GO 6e GO 67 00 2G .6 . . u .s . i .n . g .
0000:0050 00 6b 00 65 00 79 00 2G 00 30 00 78 00 58 GO 58 . k .e . y . O. x . X. X
0000:0060 00 58 00 30 00 00 00 02 00 57 3e bO c6 f7 aO 00 . X.O W>OODD·
0000:0070 00 00 00 00 30 40 3f 30 92 d2 ef 00 00 00 3e e7 0@?0 .00· . . >0
GOOO:OOBO 53 ec 60 GO 00 00 3e e7 5d ld aO 00 00 00 3t 30 SO' ... >OJ .O ... 70
0000:0090 93 26 aB 00 00 00 3e e7 5c ec aO 00 00 00 3e e7 .&Q . . . >0\ 00· .. >O
OOOO:OOaO 59 dS 80 00 00 00 3f 30 95 80 e5 00 00 00 3e e7 YO ?0 . . o ... >0
OOOO :OObO 55 7b 40 00 00 00 3e e7 54 de 80 00 00 00 3f 30 U{@ ... > ?0
oooo:ooco 93 40 16 oo oo oo 3e e7 55 89 eo oo oo oo 3e e7 .@ >ou .o ... >O
OOOO:OOdO 5b Se 80 00 00 00 3f 2f be Be fO 00 00 00 3e e7 [A ?/0·0· ..
OOOO·OOeO 54 60 aO 00 00 00 3e e7 5b eB 80 00 00 00 3f 2e T' Q ... >0 [0 7 .
OOOO :OOfO e6 ec 08 00 00 00 3e e7 59 df 80 00 00 00 3e e7 DO >OYO
0000 :0100 5d Sa eO 00 00 00 3f 2d 7c 70 aO 00 00 00 3e e7 J .D ... 7-I PD· .. >0
0000:0110 57 a6 60 00 00 00 3e e7 57 20 aO 00 00 00 3f 2c WO' ... >OW D· .. ?,
0000 :0120 a3 45 6e 00 00 00 3e e7 5c 67 eO 00 00 00 3e e7 DEn ... >0\gQ .. . >O
0000 :0130 59 43 cO 00 00 00 3f 2b 3b 24 00 00 00 00 3e e7 YCO ... ?+ ; $
IHHH>. f.l 1 A () C: '7 0, ~f.l t:l() ()() (l(l .,~ ~'7 o::~ ., ... Af.l f.lt:l ()f.l /1/l .,4' .., hi n - n _a ') x

Hex • I Find B_gckwards

Signed 8 bit : 92 Signed 32 bit: 1554710594 Hexadecimal:

Unsigned 8 bit : 92 Unsigned 32 bit : 1554710594 Octal:

X

5C

134

Signed 16 bit: 23723 32 bit float: 3.850600E+l7 Binary: 01011100

Unsigned 16 bit: 23723 64 bit float: 2.512048E+138 T ext:

Show little endian decoding Show ynsigned as hexadecimal Stream length: Fixed 8 Bit

Encoding: Default OVR Size: 111310 Offset: 0000:0000-7 Hex RW

Figure B.8: Example of a binary PowerUsage file

APPENDIX B. SOFTWARE DATA FORMATS

class PowerUsageModel
{

} ;

public:
double noiseLevel() const;
void setNoiseLevel(double);

II
II

virtual float basic() const = 0;
virtual float zeroToOne() const 0;
virtual float oneToZero() const = 0;

protected:
float noise() const; I I
float noise(float scale) const; II

private:
double myNoiseLevel; II

! < Amount of
! < Set amount

! < Noise

125

AWG N in pc
of AWGN i 1

! < Noise in a specific +-

! < Amount of AWGN

Figure B.9: PowerUsageModel interface

B.5.1 Power Model

Once hardware has been characterized a C + class can be written which implements

the PowerUsageModel interface, which is shown in Figure B.9.

B.5.2 Cipher Model

Simulating hardware requires simulating the number of high-low and low-high tran-

sit ions of a cipher. A Qt / C++ class (a C++ class using t he Qt lass library and

preproces ed by Qt's Meta Obj ct Compiler - MOC) must be written which inherit·

from the abstract class Cipher , shown in Figure B.lO.

APPENDIX B. SOFTWARE DATA FORMATS

class Cipher
{

public QObject

public:
I I! Represents what
struct StateChange
{

II ...

happens when

int ll; int lh; int hl; int hh;
} ;

I I! The cipher 's name
virtual QString name() const O·

'

126

an cipher changes state

I I! Current cipher state (should be
virtual QString stateString() const = 0;

human - readable)

} ;

virtual int minimumKeySize () const = o· '
virtual int maximumKeySize () const = 0;

virtual int minimumiVSize () const o· '
virtual int maximumiVSize() const = O·

'

I I! Initialize the cipher
virtual void initialize(const

const

for use
Cryptovariable& key ,
Cryptovariable& iv)

virtual void initialize(const QList<bool>& key,
const QList<bool>& iv) = 0;

I**
* Cycle the clock

*

0;

* @returns a StateChange class
- >high and

representing the number of

* low
*I

virtual StateChange clock() = 0;

signals:
I I! The internal state has
void newState(QString state);

changed

Figure B.lO: Cipher interface

high ->low transiti ons etc

