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Abstract 

In today's world of ubiquitous connectivity, communications security is an ever­

present concern. In order to protect sensitive information from eave dropping by 

foreign governments, identity thieves and other curious individuals and organiza­

tions, cryptography is today deployed on a wide scale. o longer strictly the domain 

of large banks and governments, cryptographic systems ar found in such everyday 

places as building passes and vehicl ignition k ys. Cryptanaly i is the study of 

methods - called attacks - that can be used to extract secret information from these 

cryptographic systems. It is largely a statis tical discipline, but out of it has grown a 

more hands-on approach: side channel analysis. 

Side channel analysis is an exciting field of study which attempts to extract seer t 

information from cryptographic systems though the careful measurement of physical 

characteristics such as power usag and execution time. These characteristics pro­

vide "side channels" of information flow that algorithm design rs may not anticipat . 

This research focuses of the power side channel, which extracts information from th 

instantaneous power either used or radiated by a cryptographic system. Traditional 

forms of power analysis are ineffective against a large class of ciphers called stream 

ciphers, but a recently-introduced group of techniques - template attacks - have 

been shown to be effective against microcontroller-based implementations of stream 

ciphers. 



II 

This thesis describes the theory behind template attacks, and describes how we 

have applied them to perform power analysis of hardware imp! m ntations of stream 

ciphers. We have built hardware for this purpose, called the Side Channel Analysis 

Board (SCAB) as well as designed software to perform the neces ary analysis. We 

used our experimental setup to measure the power usage of FPGA-based hardware 

- specifically the Actel ProASIC3 - running a stream cipher building block call d 

LFSR-16. We have also simulated and analysed the power usage of LFSR-16 and a 

functional str am cipher, Trivium. Trivium is a hardware-focused stream cipher t hat 

was vetted by the r cent eSTREAM initiative, and is thus of great importanc . In 

both simulation and hardware, we were able to extract secret k y information with 

a probability greater than we would expect to achieve through random guessing. In 

the case of the cipher building block LFSR-16, we were able to correctly classify 

four key bits with accuracy greater than 90%. In the case of the stream cipher 

Trivium, average classification success exce ded 20% where random guessing would 

have achieved a success rate of just 6.25%. 

Thus, we may state that the template attack technique is applicable to hardware­

based stream ciphers, and that implementers of such ciphers must be aware of such 

techniques and attempt to apply appropriate countermeasures wh re possible. 
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Chapter 1 

Introduction 

The world today is more connected than it has ever been. Business employees log 

into corporate computers from home via Virtual Private etworks (VP s), banking 

customers access th ir accounts via mobile phones and billions of dollars are spent 

in online shopping and auctions. With all of this sensit ive information flowing acros 

public networks, the incentive for criminals and others to eave drop i very high so 

securi ty is a top priority. 

The study of ecuring communications is cryptography, and it is concern d with 

two central problems: how to safeguard s cret message , and how to bypass t he 

safeguards of others. The solution to each problem benefits the other, as we cannot 

build or select ecurity tools without understanding the attacks that may be applied 

against th m. With this principle in mind, in the work pr sented in this thesis we 

proceed to attack ciphers that have been implemented in digital har !ware, in an effort 

to circumvent their protections and extract secret information. 

The primary tools of cryptography are ciphers, which p rform encryption (to 

protect information that is to be kept secret) and decryption (to render encrypted 

data readable again). These ciphers can be classified as b longing to one of two ets: 

1 



CHAPTER 1. INTRODUCTION 2 

block ciphers or stream ciphers. There are different applications for these cipher , bu t 

both are important. In 2001 , the US National Institute of Standards and Technology 

( IST) , after a competitive process, published the Advanced Encrypt ion Standard 

(AES) [1], which has become the de facto global standard for block ciphers. In 

2008, the European Union's eSTREAM process ident ified a por tfolio of strong stream 

ciphers - F-FCSR-H v2 [21, Grain v2 [3], MICKEY v2 [4] and Trivium [5] - and it is 

to this more recent ly recognized group that we turn our attention. 

Our goal, then, is to extract secret information from stream ciphers surrept i­

t iously; i. e. to attack them. Rather than the tradit ional (and w 11-studied) method 

of cryptanalysis, whereby mathematical r lationships are found among secret infor­

mation and encrypted data, we turn to the newer approach of side channel analysis 

[6], which xtracts secret information from careful measurement of physical quantit ies 

such as power consumption. 

Traditional forms of side channel analysis are often ineffective against stream ci­

phers, bu t a recent class of techniques known as template attacks [7] have proved effec­

tive against microcontroller-based implementations of stream ciphers (see Chapter 3) . 

Microcontrollers, however , ar large, complex systems. The qu stion before us was, 

could such attacks be effective against hardware implementations of cryptographic 

systems? Could we demonstrate their efficacy, not just against a theor tical model of 

power usage, but against physical hardware? Such a demon tration would impact the 

design and implementation of stream ciph r hardware in emb deled hardware such 

as smart cards and RFIDs, which could impact on the payment and authen tication 

technology sectors. 

We built both hardware and software in an attempt to answer these questions. 

This experimental setup, which is comprised of a custom FPGA-bearing PCB, a 

purpose-bought mixed-signal o cilloscop and thousands of line of analysis software, 
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is described in detail in Chapter 4. 

Finally, we discovered the answers to our questions: yes, template attacks are ef­

fective against the power usage of hardware cryptosystems, and yes, this effectiven ss 

can be demonstrated using physical hardware. 



Chapter 2 

Background 

2.1 Cryptography 

The word cryptography comes from the Greek xpun16s (seer t) and ypa<pw (writing) 

[8]. Cryptography is the "science and art of designing ciphers," [9] which are used in 

many application to make secret the messages communicated among two or more 

parties. A basic understanding of cryptography, and its goals, is requisite to under­

standing the purpose and methodology of the attack that we will pres nt in Chapter 

3, and whose r suits we will give in Chapter 5. 

2 .1.1 Goals and Actors 

Cryptography has many goals, including confidentiality (the ability to keep secrets 

from those who we wish not to know them), integrity (the ability to verify that 

messages have not been altered), authentication and non-repudiation (the ability to 

prove that a party sent a message, even if they choose to deny it lat r) . To illustrate 

these goals, we will introduce three characters who figure prominently in the literature: 

Alice, Bob and Eve. 

4 



CHAPTER 2. BACKGROUND 5 

Alice and Bob In the literature, Alice and Bob are often used to repr ent any two 

parties who wish to communicate in a secure manner [10, 11]. Since their communi­

cations are of a sensitive nature, they use cryptographic tools to protect the content 

of their messages from being discerned by avesdroppers (e.g. learning the name of 

a reporter's source), to prevent adversaries from making undetectable changes to the 

substance of their messages (e.g. changing a beneficiary's name in a will) , and if 

desired , to prevent them from later denying that they sent a particular message (e.g. 

an agreement to pay for a good or service). Stated more formally, they use cryptog­

raphy to provide their communications with confidentiality, integrity, authentication 

and non-repudiation. 

Eve Eavesdroppers are commonly represented by an actor named Eve. Eve is as­

sumed to have complete access to the communications channels that Alice and Bob are 

using, even th ability to send messages to one or both parties, but good cryptography 

will prevent her from understanding what Alice and Bob communicate (violating con­

fidentiality), changing the meaning of messag s (violating integrity), masquerading 

as either Alice or Bob (falsifying authentication) or helping either party deny their 

communication (r pudiating transactions). 

8 
Figure 2.1: Alice, Bob and Eve 



CHAPTER 2. BACKGROUND 

2.1.2 Ciphers and Attacks 

6 

T he primary cryptographic tool used to provide confidentiality is the cipher. A cipher 

transforms information that we wish to remain confidential - the plaintext - into a 

stream of data - the ciphertext - that can be safely transmitted via untrusted channels 

such as public networks. This transformation is called encryption, and it - as well as 

the reverse transformation, decryption - is parametrized by secret information called 

the key. Wit hout this key, an adversary in possession of ciphertext material should 

not be able to decrypt any of the ciphertext to read the original plaintext. 

2.1.2.1 Cryptanalysis 

The field of cryptanalysis is dedicated to finding weaknesses in cryptographic algo­

rit hms such as ciphers, whether for the purposes of better understanding cipher design 

(as in academic settings) or eavesdropping on secret communications (as in some in­

dustrial or governmental settings) . There are several methods that can be used to 

attack a ciph r , all of which assume that the attacker knows the cipher being used 

[12]: 

Ciphertext-only attack In this type of attack, it is assumed that th attacker has 

access to cipher text , as well as knowledge of the cipher algorithm. It should be com­

putationally infeasible for the at tacker to ascertain any plaintext or key information. 

T he most obvious such at tack is an exhaustive search (colloquially, a "bru te 

force" attack) . In this approach, the attacker checks every possible key to ee if it can 

be used to decrypt the given ciphertext into an intelligible plaintext. This approach 

is very inefficient: for an n-bit key, the expected number of keys t he attacker must 
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search, N, is 

(2. 1) 

For the block cipher DES (the Data Encryption Standard) [131, an attacker can exp ct 

to search through 255 = 36 x 1015 keys. This can be achieved today using dedicated 

ha rdware such as the "Deep Crack" machine [14], so newer encryption standards us 

longer keys [1]. For instance, the smallest key permissible for use with AES is 128 bits 

[1], so we would expect an exhaustive search to take N = 2127 = 1. 7 x 1077 decryption 

operations. An attacker would have be be able to search over 1060 keys per second in 

order to expect to finish this search before the death of our sun [15]. 

Known-plaintext attack In a known-plaintext attack, the attacker has knowl­

edge of th cipher algorithm, ciphertext and corresponding plaintext. Even with full 

knowledge of cipher input and out put, it should still be computationally infeasible 

for the attacker to det rmine t h key (or to d rypt later ciphertext) . 

Chosen-plaintext attack In this most powerful type of theoretical attack, not 

only does t he attacker have full knowledge of cipher input and outpu t, but she can 

actually choose plaintexts that ar conveni nt for her purpos s. A secure cipher will 

resist chosen-plaintext attacks - it will still be compu tationally infeasible for the 

attacker to determine any key information, or to be able to d crypt later ciphertexts 

whose plaintexts are not known to the attacker. 

Implementation attack Beyond the realm of strict cryptanalysis - attacks on 

cipher algorithms - there is also a class of attacks that exploit physical properties of 

cipher implementations. Such implementation attacks include timing analysis, fault 

analysis, power analysis and electromagnetic analysis, and will be discussed in Section 
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2.2. 

2.1.2.2 Public K ey Cry p t ogr aphy 

One of the fundamental problems of cia ical cryptography was the key distribution 

problem 116]. People eparated by long distances could prot ct th ir communication 

via ciphers, but thi protection was m a ningless unless a secret k y could be se urely 

communicated. Banks and governments could use trusted couriers and diplomatic 

pouches, but such means were beyond the means of privat individuals. 

Key distribution remained an open problem unti l the 1970s, wh n public-key cryp­

tography was inv nted. Public-key cryptography uses one-wa mathematical functions 

- function who inverses, e.g. dis rete logarithms, are very hard to calculate - in 

such a way that encryption can be p rformed by anyone, using a public key, bu t de­

cryption is only feasible for the owner of a secret key. The quintessential public-k y 

cryptosystem is RSA, named for its author : Rivest Shamir and dl man 116] . With 

such a sy tern encryption keys could be published openly larg ly solving the key 

distribution problem. 

The fo cus of this thesis, however , is stream ciphers, which use symm tric key . 

Symmetric-key (or secret-key) cryptography uses the same, secret k y for both en­

cryption and d cryption. Symmetric-key ciphers are still important, as public-k y 

cryptography i very computationally compl x, and is thus often used for the pur­

poses of s tting up a session key - a s cr t key that traditional, lower-complexity 

cryptosystems can use to provid confidentiality for a session . T his i th premis 

behind systems such as PGP - Pretty Good Privacy [17]. 
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2.1.2.3 One-Time Pad 

During World War I , Vernam proposed the idea of a simple cipher that could not be 

broken: th one-time pad 118]. Shannon ubsequently demonstrated in 112] that this 

cipher did indeed provide perfect secrecy - if the key is t ruly random, then intercepting 

ciphertext provides the attacker with no information about t he plaint xt. 

The critical r quirement for perfect security is that th t of possible keys b 

at l ast as large as t he set of possible plaintexts. In a one-time pad , a long stream 

of random bit i generated and distribu ted to both communicating parties (e.g. an 

embassy's key could be encoded on optical tape and shipp d in a diplomatic bag [9]). 

When a m s ag is ncrypted, each plaintext symbol is add d to a ymbol of k y 

u ing Galois Field arithmetic, and that portion of key is discard d , n ver to be u eel 

again . D ryption occurs via the inverse process: each ciph rtext symbol is added 

to the Galois F ield inverse of an identical keystream symbol - which is afterwards 

discarded - to produce the original plaintext. If the symbol alphabet i in GF(2), 

then both encryption and decryption are imply the XOR operation. 

Since there i as much key material a plaintext, and if that k y material is truly 

random, then it is impossible to "break" the cipher. If th plaintext and key both 

have an alphabet of L symbols, th n there are NL possible plaintexts and NL po -

sible keys, wh r N is the numb r of symbols transmitted. From the ciphert xt 

"GDIFBALDKRPDFZLSB" it is impo sible to know which of the 17-letter plain­

texts "MEETMEAT I ETODAY", 'MAXSMARTISAGENT86' or v n LOVEY­

OUSWEETHEART" is correct, a each of th ir corresponding k y i equally lik ly 

to be correct - as shown in Figure 2.2. 

Because of th logistical co ts of g nerating and eli tributing vast amount of 

key material th one-time pad i not u eel extensively out id of diplomatic and 
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Plaintext I M IE IE IT I M IE I A IT IN I I IN IE IT I 0 I D I A I Y I 
Key I U I A I E I M 1 .. ·I I I I I I I I I I I I I 

Ciphertext I G I D I I I F I B I A I L I D I K I RIP I D I F I Z I L I 5 I B I 

Plaintext I MIA I X I 5 I MIA I R IT I I I 5 I A I G IE IN IT IBI 61 
Key I U I D I L I N 1 .. ·I I I I I I I I I I I I I 

Ciphertext I G I D I I IF I B I A I L I D I K I RIP I D IF I Z I L I 5 I B I 

Plaintext I L I 0 IV IE I Y I 0 I U I 5 I WI E IE IT I H IE I A I R IT I 
Key I V I P I N I B 1 .. ·I I I I I I I I I I I I I 

Ciphertext I G I D I I IF I B I A I LID I K I RIP I D I F I Z I L I 5 I B I 

Figure 2.2: The one-time pad in operation 

10 

intelligence circles [9], but we will see in Section 2.1.2.5 how its principles are appli d 

in many practical ciphers. 

2.1.2.4 Block Cipher s 

The last fifty years of symmetric-key cryptography have been dominated by the block 

cipher. A block cipher is a cipher that operates on fixed-size blocks of data (typically 

of 64 or 128 bits) , transforming plaintext blocks into ciphert xt blocks (encryption) 

or vice versa (decryption) . An example is the Advanced Encryption Standard [1], a 

block cipher selected in 2001 to be an official standard of the US National Institute 

of Standards and Technology. 

As shown in Figure 2.3, the unit of communication is a block of ciphertext. An 

eavesdropper cannot decrypt a block without the secret key, providing confidentiality, 

as a single bit difference between the correct key and the key guess will rend r the 

entire block undecryptable. There are several modes of operation for block ciphers, 
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• • Plaintext Ciphertext 

Key-+ E D ~Key 

Ciphertext Plaintext 

• • 
Figure 2.3: Block cipher operation 

but all operate with two common characteristics: 

• Complexity 

Block cipher are often larg , complex hardware y t m whos power u -

age can vary greatly, dep nding on input elem nt su h as plaintext and 

secret key 

• Key Usage 

- B cause of the overhead as ociated with changing encryption k y (both in 

key management and cipher s tup) block cipher p rform many encryp­

tions/ decryptions with a single key 

While neither of the e characteristics interfere with block ciph r ' abili ty to operate 

securely in a theoretical sense, they will become important wh n w discus imple­

mentation attacks in Section 2.2. 
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2.1.2.5 Stream Ciphers 

Anoth r class of symmetric-key ciphers, typically associated with resource-constrained 

environments, is the stream cipher. This clas of cipher, shown in Figure 2.4, u e 

identical encryption and decryption modul , each of which produ es a very long 

(e.g. 280 bits) pseudo-random stream of symbols that is parametrized or seeded by a 

public bit vector - the initialization vector - and a secret key. This pseudo-random 

stream is called the keystream, and it is an approximation of the one-time pad d -

scribed in Section 2.1.2.3. An example of such a cipher is Trivium 15], par t of the 

eSTREAM portfolio of stream ciphers. Trivium and the eSTREAM portfolio will be 

addressed in detail in Chapter 6. 

Initialization Vector 

Key- E 

u 
,,,,, ,, ,, EB 
Plaintext 

lll l l l lll 

Ciphertext L_ _____ c_h_a_n_n_e_l ____ _,~ 

Initialization Vector 

E 

' ' !'''''' EB Ciphertext 
ll!!lllll 

Plaintext 

Figure 2.4: Stream cipher operation 

As in the case of the one-time pad, the keystream is added to the plaintext using 

Galois Field arithmetic - typically in GF(2) , which is the binary XOR - to produce a 

ciphert xt stream. The ciphertext is transmitted through the communication hann I, 

where it is added to another keystream to produce plaintext again. If the secret key 

at the transmitter and receiver are identical, then their keystreams will be as well, so 

the original plaintext will be recovered. If the keys differ, however, ven by a single 
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bit, then the two keystreams will be very different, and the original plaintext will not 

be recovered from the ciphertext. 

Tho characteristics of stream ciphers that will become important in Section 2.2 

are: 

• Complexity 

- Stream ciphers are typically very simple systems, and the power used by 

their hardware implementations does not vary as greatly as that of block 

ciphers 

• Key Usage 

- The internal state of many stream ciphers (e.g. Grain [3] and Trivium [5]) 

is initialized with the secret key, but continually changes in such a way 

that key information is "mixed in" to the state, so no two bits of keystream 

are generated from the same internal state. 

2. 2 Side Channel Analysis 

When cryptographers design a new cipher, the approach that they take is often very 

abstract; many cryptographers would agree with [19] when it says that "essentially 

a block cipher is a keyed permutive mapping (encryption) together with its inverse 

(decryption)". Such an abstract, mathematical model of a cipher appears in Figure 

2.5. 
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Secre t Known to Attacker r------r-------------
11 

:~ Plaintext 
II 
II 
II 
II 
II 
II 
II 

Key~ II E 

Ciphertext 

Figure 2.5: An abstract model of a ciph r 

14 

In this model, one assumes that the cipher algorithm is known to potential attack­

ers, and pos ibly even pairs of plaintext (data to be encrypted) and ciphertext ( n­

crypted data). The key, which parametrizes the cipher, is not known to the atta ker; 

it is this key that the attacker attempts to find using mathematical relationships 

betwe n the plaintext and ciphertext. 

o cryptographi function , however, exists as merely an abstra t algorithm; it is 

not u eful unt il it has been implem nted in hardware or oftware. The operation of an 

actual cryptographic cipher implementation can yield information about its internal 

that the designer did not expect or plan for. This information i said to flow through 

"side chann Is", which include: 

• power u age - how much power a devi e uses 

• electromagneti radiation - how much power a device radiate 

• execution time - how long an operation takes 

• respons to faults - how the device reacts to intentionally- ind u cd errors 

A more realistic cipher model which incorporates these ide channels i hown in 

F igure 2.6. Car fu l measurement and analysis of the signal in t h channels can 
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capture information "leaking" out of the cipher. The techniques t hat cryptographers 

use to exploit these correlations are collectively known as side channel analysis [6J. 

Secret Known to Attacker r-----·r---------- ------ ------------ ----
11 I 

:~ Plaintext : 

1

1 + I 11 I 
11 I 
11 I 
1
1 ~Execution Time 1 

11 I 
11 I 

1
1 E ..-Induced Faults 1 

Key~ ~Response to Faults 
II 
II 
1
1 ~Power Usage 

:: ~EM Radiation 
II t II 
II 
II 
11 Ciphertext 

_____ j~--------------------------------

F igure 2.6: A more realistic model of a cipher 

Most techniques of side channel analysis require some level of physical access to 

the cryptographic device under attack. This was once an implausible assumption, but 

as cryptography moves from secure server rooms to notebook PCs to smart cards in 

our wallets, it becomes an increasingly realistic and important component of security 

threat models. 

2. 2.1 Timing Analysis 

Timing Analysis, first demonstrated m [20], uses very precise measurement of al­

gorithm execution time in order to infer bits of data upon which the algorithm is 

operating. At first glance, there may not seem to be a correlation between these two 

things, but in fact, execution time can be related to: 

• key- or data-dependent branch instructions 

• cache hits 
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• long processor instructions (e.g. multiplication) 

For instance, in public-key cryptography, mathematical operations are often p r­

formed on very large (512- or 1024-bit) integers. In order to improv performance, 

many public-k y implementations will use conditional (if/ els ) oftware in t ruction 

that depend on key or data bits, as in Figure 2.7. 

for (i = .. . ) 
if (input & (1 << i) ! = 0) 

output << 1 
output *= input 

Figure 2.7: Data dependent branching 

This pseudocode, which could be part of a large-integer exponentiator, ha two 

lines that only execute if an particular input bit is 1. If th input and output 

variables in this pseudocode are 512-bit integers, ther will b a very ignificant 

difference in execution time dep nding on how many bits of input are 1. 

Timing attacks have been applied to block ciphers such a RC5 [21] and are even 

applicable to careless implementation of the Advanced Encryption Standard 122]. 

2.2.2 Fault Analysis 

Fault analysi attempts to induce small (u ually single-bit) rror into a ryptographi 

computation 123]. The resu ltant ciphertext can be compared to th ciphertext that 

would emerge if there were no error, and the differences between the two can yield 

insight into internal bits that should be ecret. 
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Fault Induction In [23], the theoretical effectiveness of fault analysis was demon­

strated, but no concrete results against actual, physical cryptosystems were given. 

Rather, it was assumed the attacker had the power to cause bits in the system to 

"flip" from 0 to 1 or 1 to 0, as required by the attack. This model was first given in 

[24], but more recent work has demonstrated practical fault induction. 

More recently, [25] showed that, if such faults can be generated , then complete 

AES keys can be recovered using as few as 128 faulty encryptions. Such faul ts have 

been demonstrated in [26], where such commonplace equipment as lenses and camera 

flashes were used to set individual bits of microcontroller memory with precise timing. 

This does require opening the packaging of the chip, however. More insidious is the 

attack in [271, which claims that arbitrary memory bits may be set or reset by an 

attacker. If practical, such attacks would be very difficult to d fend against. 

Clock Glitches Side channel analysis is often used against the "smart cards" that 

control mobile phones, pay TV and satellite receivers, and in orne places, even power 

meters. These devices are very small, and they usually hav no on-board power or 

clock sources; they rely on connected equipment, and this can leave them vulnerable 

to clock gli tches. 

In [28], it was demonstrated that by sending a 20MHz puls to a smart card which 

operates at 5MHz, faults could be introduced in the system. In fact , it wa shown 

that individual instructions executing on a microcontroller could be bypassed by way 

of such fau lts. Hence, the number of encryption rounds could be reduced , making 

cryptanalysis trivial . 

Chip Rewriting In [28], it was shown that single ROM bits could be overwritten 

with a laser cutter microscope. Again , this could be used to attack data, but it is 
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even more effective to attack the program, reducing encryption rounds to one or two 

and allowing for trivial cryptanalysis of the system. 

In [29], a focused ion beam is used to cut traces inside of a microchip, or even to 

lay down new traces . This equipment is expensive, on the order of mi llions of dollars , 

but it can be rented for much less . Against such a powerful adversary, it is difficult 

to imagine countermeasures that would have more efficacy than slowing the attacker 

down. Indeed, [29] contains confirmations from "a senior agency official" and "a senior 

scientist at a leading chip maker" that the contents of a microchip cannot be kept 

secret indefin itely from a skilled, equipped and motivated attacker . 

2 .2 .3 Power Analysis & Electromagnetic Analysis 

The power usage and electromagnetic radiation side channels are closely related. 

Power analysis attempts to find internal secrets by correlating them with how much 

power an electronic device is consuming [30]. Electromagnetic analysis attempts to 

find correlations with the power that a device is radiating, either from the entire 

system or from a specific location on a chip [31] . The experimental setups involved 

with both can be very simple, as shown in F igure 2.8. 

l (a) (b) 

Figure 2.8: Power analysis and electromagnetic analysis 
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Both forms of SCA have their place: power analysis does not have to contend 

with high levels of ambient noise, but electromagnetic analysis allows the attacker to 

focus on a specific part of the device under attack - concentrating on cryptography 

and ignoring unrelated hardware. 

In Figure 2.8( a), we see a hardware device with a small resistor inserted between 

its Vee terminal and the actual Vee supply. The power consumed by such a device 

can easily be calculated as 

p(t) = v(t). i(t) = Vt(t) . vh(t) ~ Vt(t). (2.2) 

Figure 2.8(b) shows a small electromagnetic probe receiving radiation from the 

cryptographic device. In both cases, deep memory oscilloscopes are used to record 

the power being consumed or emitted. 

A capture of the power usage over a complete cryptographic operation is referred 

to as a power trace. While it is possible to correlate these traces with internal secrets, 

it is often made difficult by a very low signal-to-noise ratio (SNR). An attacker may 

be interested in whether a particular flip-flop in a cryptographic device changes from 

0 to 1 or from 1 to 0, but there may be thousands of flip-flops in the device, each of 

which has just as much effect on overall power usage as the bit being attacked. In 

order to overcome this SNR problem, increasingly sophisticated methods of analysis 

are being developed. 

Simple Power Analysis (SPA) The first, and simplest, method of power analy­

sis can be used to analyse the power consumption of microcontroller-based software 

implementations. Na!ve implementations of ciphers may incorporate software tech-
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niques like branching instructions that depend on key bits. Such techniques build a 

very high correlation between power usage and individual key bits, as the difference 

in power traces where a branch was or was not taken can be obvious even to the 

naked eye. In these situations, an attacker may be able to simply examine the power 

trace and pick out key bits by observing whether or not power-intensive instructions 

following branch instructions were executed. 

For instance, Figure 2.9 shows a current trace from a DES operation. Arrows point 

to dips in current characteristic of rotation functions, clearly showing the attacker that 

one rotation occurred in one round and two in the next. Since the number of rotations 

are key-dependent, being able to count rotations gives the attacking information about 

the secret key . 
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q:: 
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..... 4.0 
c:: 
(I) 3.5 

E 
:::J 3.0 

0 2.5 i i 
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Figure 2.9: Simple Power Analysis [30] 

This technique is called simple power analysis (SPA) [30], and it relies on a rel­

atively high SNR. It has been used practically, as shown in the SPA attack against 

DES in [30], but it is a very simple matter for a cipher implementation to counter­

act this threat: all that is required is for the designer and/ or implementer to ensure 

that branching instructions do not depend on key bits. This may increase execution 

time, but avoiding key-dependent shortcuts means that the high SNR necessary for 

Simple Power Analysis is not attained, and so SPA is rendered ineffective against the 

implementation. 
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Differential Power Analysis (DPA) The differential power analysis (DPA) tech­

nique [30], which is suitable for attacking hardware and software systems, attempts 

to overcome low S R by analysing many power traces which u e the same key infor-

mation and statistically testing hypotheses concerning internal key bits. The great r 

the number of traces used, the higher the resultant SNR, but there is a caveat: the at-

tacker may have to gather thousands of power traces from the device being attacked , 

which may b difficult to acquire without arousing suspicion. 

It has been shown that DPA can be used in practical attacks on real cryp tosystem 

involving block ciphers such as DES [30], but it is often not effectiv against stream 

ciphers [32]. The reason is that, as stated in Section 2.1.2.5, the secret key often only 

exists in the cipher's internal state for a few clock cycles, so th analysis described in 

[30] does not work unless the attack can obtain many traces from cipher re-keyings. 

Obtaining power traces of several thousand r -k yings, with th same key, from an in-

production device can be prohibitively difficult; this type of key re-use i purposefully 

avoided in most protocols to minimize su ceptibili ty to traditional cryptanalysi . 

Template Attacks A newer approach to the S R problem, which removes th 

requirement for obtaining thousands of power traces from the device under attack, is 

referred to as a template attack, as presented in [7]. We will pre ent this attack in 

more detail in Chapter 3. 

The template attack takes a two-step approach to power analysis: 

1. Template Preparation 

A cryptographic device identical to the one under attack is acquired 1 and t ern-

1 When we say that a device has been acquired, it may be either constructed or otherwise obtained 
(e.g. by purchasing the same model of device). It is very realistic to assum that this is practical, as 
many cryptographic systems are built with standard commercial components, such as !SO-standard 
smart cards [33] ; only the secret keys are not available to the attacker. 
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plates are built, which are multivariate Gaussian models of the noise associat d 

with particular guesses a t key bits. 

2. Actual Attack 

In this st p , a single power trace is collected from an actual device in use and, 

for each template, the probability that it belongs to that template is calculated. 

Communications ngineers will se that this approach is analogous to using match d 

filters to resolve received signals. The technique shows much promise, having b en 

used to successfully attack a microcontroller-based implem ntation of the stream 

cipher RC4 17]. To date, however, t he template approach has not been appli d to 

hardware-based implementations of stream ciphers. 

2.3 Summary 

Cryptography is an important part of daily life in our networked world. One of the 

most fundamental tools of cryptography is the cipher, which provides confidentiality 

for parties wishing to communicate in the presence of an eavesdropping threat. These 

ciphers may be attacked through methods of cryptanalysis, which may be classified 

as ciphertext-only, known-plaintext, chosen-plaintext or implementation attacks. 

Ciphers can be cat gorized as symmetric-key or asymmetric-key. Among symmetric­

key ciphers, whi h this thesis is concern d with, there are two broad categories: block 

ciphers and stream ciphers. Stream ciphers attempt to approximate the on -tim pad 

- which has perfect secrecy - by generating long pseudo-random keystreams from se­

cret keys. Encrypt ion consists of adding this keystream to the plaintext stream, and 

decryption consists of adding it to the ciphertext stream. One important stream 

cipher today is Trivium, which will be considered in detail in Chapter 6. 
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Side channel analysis is a broad term for a class of implementation attacks that 

attempt to extract secret information via careful measurement of various physical 

characteristics, such as execution time, response to induced faults and the power con­

sumed or radiated by a system. These measurements can be analysed by inspection, 

partitioning-based statistics and multivariate Gaussian analysis. The latter approach 

is called a template attack, and its details are the subject of Chapter 3. 



Chapter 3 

Template Attacks 

The t emplate attack is a powerful method for extracting secret information from 

cryptographic hardware. Chari et al. claimed in [7] that it is "the strongest form of 

side channel attack possible in an information theoretic sense" (under certain assump­

tions concerning the nature of the side channel - see Section 3.3.2) . The attack i 

effective when physical access is limited- an attacker needs just one power trace from 

the device under attack - and is even effective against stream iphers, which resist 

traditional power analysis techniques such as simple power analysis and differential 

power analysis (se Section 4.1.2 for more information on SPA and DPA) . 

In this thesis , we focus on the power usage side chann l, but template attack 

are not inherently limited to power analysis; they can also be applied to other side 

channels such as electromagnetic radiation and execution time. 

3.1 Attack Overview 

Template attacks operate according to the principles of signal detection , and th y ar 

optimal in the same sense that the matched filter approach is the optimal technique 

24 
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availabile in its domain. Unlike traditional power analysis techniques, template at­

tacks are spli t into two steps, only one of which actually requires access to the device 

under attack [7): 

Template Preparation Analogous to the preparation of matched filters , this step 

of the attack involves the construction of templates - collections of statistical in-

formation that will later be used to recognize secret parameters to cryptographic 

operations. 

Cryptographic hardware, similar or identical to the hardware to be attacked 1, is 

run through the initial stages of operation many t imes - hundreds or even thousands 

of times - with certain parameters (e.g. several bits of the secret key) set to known 

values. Other parameters are permitted to vary randomly, so that, as the numer of 

sample traces increases, the template comes to reflect only that side channel infor-

mation which depends on the parameters set above. 

The side channel (power usage, timing, etc.) is measured carefully for each op­

eration that the attacker chooses to target (e.g. one for each of the 16 possible 

combinations of four particular key bits). Statistics are compiled , and a set of this 

statistical data - the template - is generated. The set of templates - one per operation 

- is then used in the second step of the attack. 

Template Application In t his second step, the attacker captures traces from the 

device under attack - just one sample can be sufficient, though additional traces can 

increase the probability of success. Thes traces are then compared to each template 

to determine which template each t race is "closest, to (see Section 3.9 on page 30 for 

1 The assumption is t hat the attacker has access to similar or identical hardware, but this as­
sumption is very realistic. From smart cards to tamper-resistant PC cards and associated libraries, 
standard hardware and software is available on the open market for the would-be attacker to legally 
acquire. 
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a precise definition of closeness). The operation associated with thi template ( .g. 

a guess at a portion of the secret key) is assumed to be corr ct, and the attack can 

repeat on other parameters, such as other k y bits. 

3.2 Attack Details 

The theory of template attacks is rooted in the statistics of multivariate normal di tri­

butions, as presented in [34] and [35]. It is assumed that side channel measurement 

can b characterized by such a distribu t ion; the validity of thi a sumption is consid­

ered in Section 3.3.2. 

3.2.1 The Multivariate Normal Distribution 

Suppose we have a random variable which is an n x 1 vector. Sine it is both random 

and a vector, it will be represented here by x. For the purpo e of the templat 

attack, thi random variable could b a set of power or timing measurem nts. The 

probability di tribu t ion of this v ctor can be represented by a mean vector and an 

independant covariance matr·ix. The mean vector is defin ed a : 

E {xd 

E {x} = 
E {x2} 

(3.1) J-Lx. 

E {xn} 

where x is the n x 1 random variable, x i is an I ment in th random variable (e.g. 

a single power or timing value), E {} i the expectation operator and i1 is the mean 

vector. T he covariance matrix of th random variable is: 
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Ex= cov (:X)= (3.2) 

where CJij = E {(xi - 1-ti) (xj - /-t j )} is the covariance of i-th and j -th elements of the 

n x 1 random variable :X, and I-ii = E {xi}. 

We may now express the distribution 's probability density function (PDF) as 

1 (- - )r,, - 1(- - ) fx (x) = e x-J.Lx. ""'x. x - J.Lx. 

v(2nt IExl ' 
(3 .3) 

where x is an n x 1 vector, flx is the distribution's mean vector, Ex the covariance 

matrix and I Ex I the determinant of the covariance matrix. This PDF is the general 

(multi-dimensional) form of the well-known univariate Gaussian PDF: 

1 (x-tt 
f (x) = --e- 2a 

X (J..j2if ) (3.4) 

where x is a real value, p, is the distribution's mean value and CJ is its standard 

deviation. 

Our side channel values (e.g. the power usage of the cipher when, say, the last 

four key bits are 0110) can be represented by such a distribution, with each element 

of the vector x being a different power measurement (e.g. power at t ime t = 20ns, 

t = 40ns, etc.). 

3.2.2 Maximum Likelihood Estimators 

The template in a template attack is a maximum-likelihood estimation of j1 and E for 

a set of possible side channel values, e.g. the power usage of a cipher for a particular 
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I Operation I Description 
Q(l) Cipher with last four key bits 0000 
Q(2) Cipher with last four key bits 0010 
0(3) Cipher with last four key bits 0011 

Q(l6) Cipher with last four key bits 1111 

Table 3.1: Stream ciphering operations 

subset of key bits. After collecting a large number of side-channel values - hundreds 

or thousands - we can calculate the maximum likelihood estimations of the actual 

mean and covariance matrix. 

Using the nomenclature of (7], we fi rst identify a number of operations t hat we 

wish to study. If the identified operations are microprocessor instructions, t hen the 

template attack will enable an attacker to identify when particular instructions ex-

ecute. In our case - attacking stream cipher hardware - an operation will be the 

execution of a cipher with a particular subset of known key bits. For instance, the 

initial round of attack may involve 16 operations, given in Table 3.1. 

Again using the nomenclature of [7], we will now define several values important 

to the attack: 

K The number of operations we wish to study 

L The number of sample traces we will measure per operation 

N The number of data points in each sample trace 

Note that, for reasons given below, L should be greater than or equal to N (and 

in practice, L > 2N). 

We may organize t he sample values into K matrices, one per operation , each 
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denoted g (k), where k represents the operation, and containing L vectors of N points 

of sid channel data: 

g (k) = (3.5) 

Having generated the matrix g (k), we may estimate the operation's mean vector. The 

maximum-likelihood estimation of the true mean vector is simply the sample mean 

vector, an arithmetic average of each sample trace. Let k be the number of the 

operation being studied (in the range [1, K]) and ~k) be the j-th column of g(k). The 

arithmetic average of all L samples of side channel measurements for operation Q (k) 

is a vector of N values, represented by p,(k) and given by 

~ (k) 
J-L 

L 

tLsil 
i=l 

L 

tLsi2 
i= l 

L 

fLSiN 
i=l 

(3.6) 

Once we have calculated an operation's sample mean vector, we may calculate the 

noise vector, n~k) for each sample trace for operation Q (k), ~k) : 
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(3.7) 

The noise vectors of all L sample traces are used to calculate the maximum-likelihood 

estimate of the operation's covariance matrix: 

(3.8) 

This N x N matrix is our maximum-likelihood estimate of the operation's covari­

ance matrix E(k), and the template for operation Q (k) is (p,, t) . 

3.2.3 Signal Classification 

Having built J{ templates, one per operation, we can classify any signal s by calcu-

lating that signal's noise vector, fi, and th Mahalanobis distanc between that noise 

vector and each operation's mean, il(k) [36]: 

(3.9) 

where t (k) is the sample covariance matrix for operation Q (k). Having calculated D~) 

for each of the K templates, we may classify the signal s as belonging to the operation 

Q(k) which has the smallest Mahalanobis distance D~) (n) . 

The method introduced in [7] attempts to effect classification by using the multi­

variate Gaussian PDF directly as a probability: 

'... the noise probabili ty distribu tion is given by the N- dimensional 
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multivariate Gaussian distribution PN; (-) where the probability of observ-

ing a noise vector n is: 

where lEN, I denotes the determinant of EN; and EJ\r; is its inverse.' 17] 

This is not strictly valid, as a point on a PDF is not a probability. The probability of 

a point on a continuous distribution is vanishingly small, as probabilit ies are obtained 

by integrating under a PDF and the area underneath a point is infinitesimal. 

While the nomenclature is not precise, the method does work - it is concerned 

with ratios of "probabilities" rather than the probabilities themselves. Indeed, though 

a value of a point on the PDF may be much greater than 1, a ratio-based comparison 

of PDF values can be an effective classification mechanism. 

Given Equation 3.9, we see that t he PDF from 17] can be r presented as: 

(3.10) 

The ratio between PDF values for a given noise vector and two operations, Q (ko ) and 

Q(kJ), is: 

J(ko) ( n) 
J(k!) ( n) 
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Since ex, x2 and Vx are monotonically increasing functions with respect to x (where 

x ~ 0), we see that if IIS(ko) II = IIS(k1 ) II, then choosing the operation whose PDF 

value is largest is equivalent to choosing the operation whose Mahalanobis distance 

is smallest . Our experiments have shown that, while IIS(ko) II may not be equal to 

IIS(k1) II, they are typically on the same order of magnitude, whereas eD~~o l(ii) and 

eD~!l(fi) often differ by orders of magnatude. Thus, the method described in 171 is 

effective , even if the nomenclature is imprecise . 

3.2.4 Template Masking 

Computing large templates can be computationally intensive: for L sample traces 

and template size N, t he computationa l complexity is in the class: 

8(LN + LN + LN2
) 

- 8 (LN 2
) . 

Fortunately, we are able to reduce the template size N though a process of masking, 

as not all points in a side-channel trace are equally significant. Often, the power used 

or emitted by a cryptographic device at the passing of a clock edge is mor significant 

than the power used or emitted between clock pulses. Some clock cycles may b more 

significant than others , as the change in Hamming weight may vary more because of 

certain key bits than others at certain times. 

We reduce the size of templat es by selecting for the template only those points 

in t he side-channel trace which are significant. For instance, we may select 32 data 

points out of 1600 measured , leading to a thousand-fold reduction in computational 

complexity. This selection is accomplished as follows: 
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1. The sample m an vector p,(k) is calculated for each operation Q (k). 

2. An overall mean vector p, is calculated: 

3. The int r-operation standard deviation of the mean vectors is calculated: 

B= 
1 I< 
-"' ([t(k) - p,)2 J(L . 

k=l 

4. For a chosen value N (e.g. 32 points of interest), theN points with the greatest 

inter-operation standard deviation are selected for template generation. 

Actual inter-operation mean and standard deviation vectors are shown in Figure 3.1. 

This data was d rived from the experimental setup to be describ d in Chapter 4, 

and it illustrates just how significant differences can be among data points in the 

inter-operation standard deviation. 

The upper graph shows the inter-op ration mean vector. In this vector, we can s e 

clear spikes of power usage whenever a clock edge occurs. T his behaviour is common 

to all operations, and thus, it can be observed in the inter-operation mean. The 

lower graph is the inter-operation standard deviation vector. This vector shows us 

two important facts: 

1. The greatest differences occur at clock edges. 

2. The greatest differences occur early in the operations - before the secret k y 

can "mix into" the cipher state. 
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3.3 Attack Application 

35 

Template attacks have been applied in [7] against microcontrollers running th tr am 

cipher ARC4 (the "Alleged RC4™", so called because the name "RC4" is still pro­

tected by trad mark , though source code to produce data equivalent to RC4 has b en 

available on the Internet since 1987). A a stream cipher , ARC4 is resistant to dif­

ferential power analysis (see Section 2.2.3 on page 21), but is highly susceptible to 

template attacks. 

3.3.1 Inapplicability of DPA 

Differential power analysis, which can be applied quite successfully to block cipher , 

is simply not applicable to most stream ciphers, including ARC4. The reason has 

to do with the persistence of secret key information. We now turn our attention to 

explaining this important distinction in detail. 

DPA and B lock Ciphers When DPA is applied against a block cipher , the at­

tacker makes several guesses at a subset of the secret key, as shown in Figure 3.2 on 

the following page. 

This figure shows a model of a block cipher with four encryption rounds, each 

having S-boxes (providing non-linear substitution), a permutation layer (providing 

linear diffusion) and a key mixing layer. This model is similar to t he ubstitut ion­

permutation network presented in [371, but with the addition of a key mixing lay r 

between each round. The block on the left-hand side of the figur r presents the key 

scheduler, which converts the secret key into several round keys, whi h are added via 

XOR in each round's key mixing layer. Th secret key shown is OxXXBXX7XX in 

hexadecimal, where an 'X' digit represents bits of key that are not part of the current 
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guess. 

Key 

X 
X 

X 

Plaintext 

7fhH.2~~~~ 
X 

X 

Ciphertext 

Figure 3.2: DPA key guesses 
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After making this guess, the attacker observes a large number of blocks of cipher­

text and records power traces associated with their production. T he secret k y gue s 

allows the attacker to work backwards through the cipher to determine a sing! bit 

whose value can be inferred if the key guess is correct. 

In Figure 3.3, the guess of subkey bits, combined with knowledge of the key 

scheduling algorithm, permutation layer and S-box construction allows the attacker 

to evaluate a particular key bit entering an S-box in the last round of encryption. This 

bit is used to partition the side channel data. into two set : those for which the internal 

bit is 0, and those for which that bit is 1. If the attacker's key gues was incorrect, 

then we expect traces whose internal bit was 0 and 1 to be evenly distributed among 

t he two sets. If, however, the guess is corr ct, t hen the partitioning will be correct, 

and there will be a. significant difference between the averages of t he two sets of side 

channel data. Resultant trace differences are shown in F igure 3.4, which show four 
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Key 

graphs: 
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Plaintext 

7-tH~~~~::s 
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Ciphertext 

Figure 3.3: DPA bit guess 

1. A refer nee current trace (from which power may be derived , since p =vi) 
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2. A graph showing the difference betw en the average of two ample trac s t 

where the sets have been partitioned by a correct k y gu 

3. Two graphs showing differences between the averages of two sampl s trace et 

each, wher th ts have be n partitioned by an incorr t k y gues 

The current spikes in the middle of the trace show that there is a material di~ renee 

between th traces in the partition d s t . That is, the initial key gue was correct, 

which made the partitioning effective. The attacker may now move on to anot her 

subset of th k y, then another, unti l ev ntually the entire key is r v aled. In thi 

way, the cr t key of a block cipher can be recovered in a linear way u ing a divid 

and conquer approach instead of the 2N approach of exhau tiv ar h. 
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Figure 3.4: DPA t race differences j30] 

DPA and Stream Ciphers Against stream ciphers, however, the differential 

power analysis technique is ineffective. In order t o perform DPA, the attack must 

gather a large number of ciphertext/ side channel pairs while the cipher 's secret k y 

remains constant . A stream cipher 's internal state, however , is constantly changing; 

the secret key is only found at init ialization, and by the t ime the keystream (and , 

thus, ciphertext) can be generated , the key has been mixed wit h an init ialization 

vector (IV) so that the starting stat e is never the same twice. 

A DPA a t tack might be effective if the attacker could obtain many ciphertext / -
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side channel pairs from a device using a constant key and initialization vector , bu t 

cryptographic protocols are designed not to re-use IVs. Hence, an attack that does 

not rely on a persistent secret key being used by the device unci r attack is ne dec!; 

one such attack is the template at tack. 

3.3.2 Applicability of Template Attacks 

Figure 3.5 shows two graphs, each a difference between two power traces obtain d 

from t he key initialization phase of ARC4. These graphs show: 

1. The difference between two power traces produced u ing the sam key. 

2. T he difference between two power traces produced using different keys. 

These graphs do not reveal the striking differences tha t an attacker might expect 

to see - differences like those in Figure 3.6. In fact, the first graph actually exhibi ts 

larger differences than the second, even though its keys w r identical. T his is due to 

the stochastic nature of power measurem nts: there is always noise associated with 

unrela ted hardware or operations, so ident ical operations may be more dissimilar than 

different op rations. 

Figure 3.6 shows graphs for th same conditions - ARC4, the first graph for trace 

using the same key and the second graph for t races using different keys - bu t unlike 

Figure 3.5, the graphs show differences b tween averages of ets of traces and th re 

are spikes of dissimilarity in the second graph which do not appear in the first (or in 

Figure 3.5). This dissimilarity reveals that the two graphs were produced by dissimilar 

operations, which in turn gives the attacker information about the secret key. It is 

this informa tion t hat can be exploited by a template attack. 

Template attacks assume t hat side channel information can be characterized by 

a mul tivariate Gaussian distribut ion. This characterization may introduce error -
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indeed, the interdependance of hardware elements suggests that the Gaussian distri­

bution is not ideal - but the results in [7] show that it is a useful characterization. 

Further study could better model the characteristics of side channels, but such study 

is beyond the scope of this research. 

3.3.3 Applicability to Hardware Implementations 

Through template attacks, the classification success rate for ARC4 running on an 

embedded microcontroller was shown in [7] to be 98.1% - 99.3%, a clear success. 

Microcontrollers, while less resource-intensive than t radit ional CPUs, are still much 

more complex systems than the "pure" hardware that many ciphers are implemented 

in. The lower complexity of simply hardware implementations has been thought to 

be a defense against side channel analysis: 

"the only exposure for !fast cipher hardware] is the loading of the key bytes 

from EEPROM which usually leaks the hamming weight" [71 

The question that we set about answering was: 

Can template attacks be used to differentiate secret keys on such a small scale of 

power usage as seen in digital hardware? 

3.4 Summary 

Template attacks, based on the theory of signal detection and classification, are very 

powerful side chann 1 attacks. If the noise associated with the side channel is Gaus­

sian, then this technique is in fact optimal [7] . 

Template attacks consist of two important stages: 

1. Template Preparation 
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(a) The attacker collects a large number of sample trac s from a cryptographic 

syst m identical to the one being attacked. 

(b) These traces are used to build templates - pairs, each consisting of a mean 

vector and a covariance matrix - for a number of operations. 

2. Template Application 

(a) A small number of side channel traces (possibly just one) are taken from 

the device being attacked. 

(b) The traces are classified using their Mahalanobis distances to each opera­

tion: for each trace, the operation whose Mahalanobis difference is smalle t 

- or whose probability density function is largest - is selected as the pro­

ducer of the trace. 

Computational effort can be reduced by "masking" the trace data points used to 

construct the t mplate; only those points with significant inter-operation standard 

deviation are used. This pruning process may reduce computation time a thousand­

fold , but often does not reduce the success rate of the attack by mor t han several 

percentage points. 

Template attacks are applicable to stream ciphering systems, though older tech­

niques such as differential power analysis (DPA) are not. This is because, unlike 

DPA, template attacks do not rely on a system using a persistent secret key. Tem­

plate attacks have been shown to be very successful against microcontroller-based 

cryptographic implementations, but we will show in Chapter 5 that they are also 

effective against implementations in digital hardware. 

First, however, we will describe the setup used in our experimentation. This 

experimental setup is the subject of Chapter 4. 



Chapter 4 

Experimental Setup 

For this thesis, we wished to both apply the template attack by simulating hardware ­

based on a model derived from actual physical characteristics - and also to apply the 

attack to measurements taken of the characteristics of physical hardware. These char­

acteristics, especially power usage, w re to be measured while real hardware p rforms 

cryptographic operations. Simulating, measuring and analy ing th se characteristic 

required: 

1. A hardware platform on which we could run cryptographic op rations 

2. Sensitive measurement equipment with suitable amounts of memory 

3. Software to simulate hardware and analyse physical measurement data 

4 .1 SCAB - Side Channel Analysis Board 

The Side Channel Analysis Board (SCAB) , shown in Figure 4.1 , is a development 

board intended to facilitate the study of side channel attacks (SCA) against crypto­

graphic hardware. It was developed for th purpose of the research contained in this 

44 
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thesis, but its long-term objective is to provide security res archers with a platform 

on which any algorithm can run - thanks to reconfigurable hardware - and many 

physical properties can be studied. 

Figure 4.1: SCAB - Side Channel Analysis Board 

In order to study arbitrary cryptograph ic operations we chose to make use of 

reconfigurable hardware, namely Field Programmable Gate Arrays (FPGAs). After 

studying many commercially available FPGA development kits, it was found that 

none were suitable for our use, for several reasons: 

• development boards include hardware extraneous to our purposes (e.g. LEDs, 

keypads , media and storage I/ 0) that could obscure the FPGA's power usage 

• many FPGA I/ 0 pins are tied to this extraneous hardware, making it difficult 

to load and unload blocks of data and keys 

• m asuring power usage, which requires inserting a resistor between Vee and the 

FPGA, would require physically altering the board- cutting traces and inserting 
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the resistor 

For these reasons, as well as the opportunity for learning, we decided to build our 

own development board, SCAB. 

4.1.1 Design Constraints 

Although in this thesis, SCAB was used only for the application of template attacks 

to the power usage side channel of stream cipher hardware, it was designed to be 

a facility for subsequent researchers to also use. These researchers could focus on 

any number of side channels, and any number of cryptographic systems that can be 

implemented in hardware. 

The design of SCAB had to satisfy several constraints, some external and some 

owing to the intrinsic nature of the research: 

• It must be possible to configure SCAB with large, fast implementations of mod­

ern ciphers such as AES. 

- To accommodate high-throughput designs like that found in [38], the min­

imum acceptable gate count of the FPGA is 60k gates. 

• It must be possible to transfer blocks of data through parallel I/ Os. 

- To accommodate large, modern block ciphers, we wish to be able to transfer 

128-bit blocks of data in a single clock period. 

• It must be possible to assemble SCAB in Memorial's PCB facilities. 

Non-local PCB construction was acceptable (and indeed, required), but 

the assembly process required interaction with technicians, which would 

not have been possible unless SCAB was assembled locally. 
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- High-pin count packages such as Ball Grid Array (BGA) may not be used; 

only through-hole and surface-mount packages are acceptable. 

• The design should be as simple as pos ible. 

- Increased hardware complexity would increase the time required to design 

SCAB. 

- FPGA support chips would influence power usage and obscure side channel 

information. 

• Each type of SCA also presents its own requirements and constraints; they are 

di cussed below. 

In order to fulfill all of these requirements , we selected an Actel ProASIC3 FPGA 

which has 125,000 gates, 131 digital I/ Os, independent core and I/ 0 power inputs, 

surface-mount packaging- Quad Flat Package (QFP) - and on-board flash memory, 

which eliminates the need for external memory chips on the board. 

We would have liked to use an FPGA with at least 256 digital I/ 0 pins, but su h 

chips require packaging technology which cannot be handled in a local assembly of 

the PCB. 

4.1.2 Power Analysis 

In order to facilitate power analysis, SCAB has two independent power upply n ts: 

Vee, which powers the FPGA's core logic, and Vee1 , which powers FPGA I/ 0 and 

anything else whose power usage is not relevant to the research. 

The former of these nets, Vee, has a resistor - R1 in Figure 4.2 - inserted in 

series with the power supply so that the FPGA's current draw can be measured . 
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Figure 4.2: PCB Layout for SCAB 

This resistor must have a very small value (we have selected 50) so as to keep Vee 

from falling outside the FPGA's operating envelope. Vee may be powered by one 

of two sources; when performing power analysis, a researcher will typically choose to 

power Vee by the voltage regulator Vl. The other option - best for fault analysis -

is discussed in Section 4. 1.3. 

The latter net, Veer, is independent of Vee, so that power used for FPGA I/ 0 

does not affect the measurement of core power usage. Vee1 is powered by t h voltage 

regulator V2, which ensures that I/ 0 voltage is always held steady, even during faul t 

attacks (Section 4. 1.3) . This regulator is, in turn , connected to the DC power jack 

J2 whenever the main power switch (S2) is closed. 
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4.1.3 Fault Analysis 
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SCAB also facilitates fault analysis, in which the researcher attempts to induce an 

incorrect computation through externally-induced faul ts. Th sourc of these faults 

may include gli tches in the clock signal or unusual power supply characteristics (e.g. 

too high, too low, spikes). SCAB provides the access needed to study the effect of 

such faults through its power supply design, external clock and large number of I/ 0 

pms. 

Power Supply As mentioned in Section 4.1.2, SCAB's Vee supply net may be 

driven by a voltage regulator or, more interestingly for the purpose of faul t analysi , 

an external power source. This direct connection to the Vee net allow a researcher 

to set up abnormal power supply conditions, including undervoltage or overvoltage 

conditions as well as voltage spikes. 

External Clock SCAB also supports timing fault analysis. Sine SCAB's clock is 

driven ext rnally (connected via BNC), a researcher can modify clock signals, inducing 

glitches and changing duty cycles and periods, in an attempt to induce erroneous 

computation. 

I/ 0 Pins Finally, SCAB's large I/ 0 bank allows a researcher to export up to 128 

internal signals from a hardware design , which permits the direct observation of how 

internal values change while the system is under external stre s (power, clock or 

temperatur glitches, ionizing radiation, tc.). This level of access permits the study 

of fau lt propagation, and it also allows researchers to verify existing fault models. 
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4.1.4 Timing Analysis 
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SCAB's external clock and large I/ 0 bank also supports timing analysis: as a re­

searcher can manipulate clock signals at will and gain insight into the internals of a 

hardware implementation, looking to see not just when an algorithm is complete, but 

where sub-sections of it are complete. 

4.2 Other Hardware 

The complete experimental setup is shown in Figure 4.3. 

Figure 4.3: Experimental setup 

Besides SCAB, other hardware that can be seen in Figure 4.3 includes: 

• oscilloscope used for measurement 

• DC power supply 

• DIP switches (used for parallel key and/ or IV bit inputs) 
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• momentary reset switch 

• "go" switch 

The latter of these switches provided t he hardware wit h the signal to start (and 

cont inue) cryptographic operation. Interfacing this switch directly with the hardware 

r quired debouncing to prevent momentary glitches in the "go" signal - caused by the 

mechanical bouncing of switch elements - from reaching the cryptographic hardware. 

The debouncing circuit is shown in Figure 4.4. 

Vee 

0"-~----- Debounce<l Signal 

1 

1' 
Vee 

Figure 4.4: Switch debouncing circui t 

4.3 Measurement Equipment 

The focus of our research is the application of template at tacks to the power usag 

side channel of stream ciphers using SCAB. Our power m asurements w re all made 

with the Cleverscope CS328A [39], a P C-based mixed-mode oscilloscope with high 

t ime resolut ion (10 ns minimum period ) and deep memory (up to one million data 

points per channel). This scope allowed us to: 

1. Generate clock signals 
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2. Monitor eight digital channels 

3. Measure two analog voltage channels, using analog, digital and/ or external trig-

genng 

The Cleverscope interface is shown in Figure 4.5. 

1
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Figure 4.5: Cleverscope PC interface 

The eight digital channels were used to monitor the hardware being tested, in­

cluding clock input and keystream output. The analog channels were used to measure 

the voltage before and after the resistor Rl in Figure 4.2. Calculating instantaneous 

power usage from these voltages is very simple: 

(4 .1) 
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With one million data points per channel at our disposal, we were able to capture 

thousands of points per key / IV pair, or approximately 50 data points per clock cycle. 

This data allowed us to construct accurate templates (see Chapter 5). 

The data captured by the Cleverscope was saved to t ext files and interpreted by 

our software, described in the following section. 

4.4 Software 

Turning physical simulations or measurements into classification statistics requires 

software. The software workflow is shown in Figure 4.6. We wrote approximately 

10,000 lines of C++ to accomplish these tasks; the programs which accomplish them 

are described here. 

Hardware 
Model 

Physical Cleverscope 
Measurement ( .cscope) 

'--------' C1.everscope .__ ____ __J 

(from Cleverscope 
manufacturer) 

Trace Mean t raceview Subtrace Mask 
(.mean) (.mask) 

success 

Success Statistics 
(.success) 

Figure 4.6: Workflow - data files 
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4.4.1 Power Trace Formatting 
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After taking physical measurements of side channel data, the output of the Clever­

scope program is a file that , for every time increment, specifies the voltage for each 

analog trace and logic value for each digital trace. We must take this information 

and turn it into a format more amenable to interpretation L. 

The powercat program reads voltage traces from input fil s (Clever cope, Tek­

tronix GRAB2212 or our own analog trace format) and outputs them to binary trace 

files. These fil s may be a concatenation of several trace files - hence the nam of the 

program - and contain just a power trace and a digital "partitioning" trace (which is 

described in Section 4.4.2, below). 

A text fi le containing a full captur of Cleverscope memory occupies 50 MB of 

disk space. If many such captures are required (e.g. when capturing output from 

multiple keys), storage requirements quickly become enormous. Conv rting this data 

to a binary format saves both storage space and computational complexity, as text 

parsing is not r quired every time we load a power trace. 

4.4.2 Calculating Trace Mean Vectors 

The traceaverage program takes a power trace fi le, partitions it and averages all of 

the subtraces. 

Aside: Partitions and Subtraces A single power trace file may contain trac s 

for many samples. Each of these subtraces is denoted by a single digital trace, called 

the partitioning trace. This partitioning trace is shown in Figure 4.7, and it is u ed 

by the traceaverage program (and others) to partition a long trace file into multiple 

subtraces. T he partitioning trace is qual to 1 during encryption operation and 0 

1 Details concerning fi le formats are given in Appendix B on page 115 
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between them. Thus, whenever the partitioning trace switches from 0 to 1, a new 

subtrace (sample trace) has begun. 

4.4.3 Simulating Power Usage 

The simulate program simulates t he power usage of a hardware implementation of 

a cryp tographic cipher. The user can specify a number of parameters: 

• the cipher to simulate 

- currently LFSR-16 or Trivium 

• the secret key to use 

- specified as OxXXXX or ObXXXX, where X can be: 

* a value (0-1 for binary, 0-f for hex) 

* the literal X, meaning "assign randomly for each sample" 

• how much noise to add 

• sampling period 

• the number of samples to simulate 

• the number of clock cycles to simulate per sample 

• the number of samples to simulate per clock cycle 

The power model used can be customized by writing a C++ class that implements 

the PowerUsageModel interface (see Section B.5.1). This model tells the simulator 

how much power is consumed by a flip-flop that either: 
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Figure 4.7: Partitioning t race 
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• changes from high to low, 

• changes from low to high , 

• remains steady at low or 

• remains steady at high. 

Determining the number of flip-flops that maintain or change state is the job of 

another C+ + class, one which inherits from the abstract class Cipher (see Section 

B.5.2). This class tells the simulator , on each clock cycle, how its internal state has 

changed ince the last cycle. 

Using the power usage model and the cipher model , the simulator generates pow r 

traces for part icular ciphers running on particular (simulat d) hardware. 

The output of this simulation is a power trace file ( .power extension) and a 

su btrace mean file ( . mean extension). 

4.4.4 Viewing Power Traces 

The traceview program is used for two purposes: 

1. To view voltage and power trace files, as w 11 as simpl statistics about them 

2. To view inter-operation statistics and choose subtrac masks (see Section 3.2.4 

on page 32). 

In the first mode, the program simply displays the contents of a trace fil , as in Figure 

4.8. 

In the second mode, several subtrace mean files are loaded (one per operation) , and 

simple inter-operation statistics can be viewed. From the inter-operation standard 
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... oxoo.cecope . Trlot Vltwllf' 

file { dit VIew t:t.•lp 
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Fllelnform•tfon St1tlstla 1'\"eces Power U11ge 

Figure 4.8: tracevi ew showing the contents of a Clever cope fi le 

deviat ion, we select a subtrace mask to apply when building templates. In Figure 

4.9, we can see a line drawn acros t he inter-operation standard d viation. T his line 

is the cutoff above which the subtrace mask will accept poin t and below which it 

will reject them. 

In th is case, 32 points in each sample trace wi ll become part of the templat ; 

the templa te's size will be N = 32. This number N can b varied unt il the desired 

value is reached , whether by inspection - placing the cutoff line above the level of 

background noise, or to achieve a particular probability of clas ification succe s. See 

Section 5 on page 64 for graphs of clas ifi ation success rate versu template size. 

4.4.5 Building Templates 

T he build- template program takes as inpu t a power trace (containing a number of 

subt races) and an opt ional subtrace mask. Its ou tput is a template fi l ontaining 
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the pair ( p(k), f:(k) ) for a particular operation Q(k) as explain d in Section 3.8 on 

page 30. This file has a . template extension (see Figure 4.6 on page 53) and can be 

read by the next program in the software workflow, classify. 

4.4.6 Classifying Power Traces 

The classify program takes as input a power trace file (. power) - whose subtraces 

are known to have been generated by a particular operation Q(k) - a number of 

template files (. template) and an optional subtrace mask fil (. mask). It partitions 

the trace fil into subtraces, and classifies each as being likeliest to correspond to one 

of the giv n templates. The output is a classification file ( .classification) , whose 

format is shown in Figure 4.10. 

T he probabilities are derived using the procedure given in Section 3.2.3 on page 30, 

with one modification: since the attacker knows that one of the generated templates 



CHAPTER 4. EXPERIMENTAL SETUP 60 

classify 

Loading mask file: .. /mask32.mask 
Opening templates: OxOO.template Ox01.template Ox02. 

template Ox03.template Ox04.template Ox05.template Ox06 
.template Ox07.template Ox08.template Ox09.template 0 
xOa.template OxOb . template OxOc.template OxOd .template 
OxOe . template OxOf . template 

Done reading templates . 
Reading data to classify ... 
Opening ' .. I dut /0 xOO. power ' ... 
[==================================================] 100% 
256 traces, sized [32-32] samples/trace 
Trace 0: 
Probability of template OxOO.template: 0 . 999997 
Probability of template Ox01.template: 1.20044e -0 7 
Probability of template Ox02.template: 1.66347e - 14 
Probability of template Ox03.template: 5.76915e -08 
Probability of template Ox04.template : 9 . 61753e - 07 

Figure 4.10: classify output 

is for the operation that generated the trace, t he probability density function values 

are normaliz d such that they add to 1 and represent the probability that a particular 

operation produced the trace, given that one of the templates is correct. 

4.4. 7 Evaluating Classification Success Rate 

The success program reads . classify files (one per operation) and produces sum­

mary statistics, both on per-key and overall bases. The output of this program is 

shown in Figure 4.11. 
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success 
Opening output files .. . 
OxOO . classification ... key : OxOO 
255 correct guesses (99. 6094%, 98 . 3821% certainty) 
1 incorrect guesses (0. 390625%, 85.6105% certaint y) 
Ox01.classification ... key : Ox01 

Lowest success rate : 
Highest success rate: 
Average success rate: 

97 . 6562% 
100% 
99 . 3896% 

Figure 4.11: success output 

4.5 Summary 
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We have described t he experimental setup used to simulate, realize and measure the 

characteristics of cryptographic hardware for this thesis. 

The Side Channel Analysis Board (SCAB) was designed to be a platform for 

security researchers to investigate many kinds of side channel analysis. It was designed 

to meet the following constraints: 

• It must be possible to reconfigure SCAB with large, fast implementations of 

modern ciphers such as AES. 

• It must be possible to transfer blocks of data through parallel I/ Os. 

• It must be possible to assemble SCAB in Memorial's PCB facilities. 

• The design should be as simple as possible. 

• It should meet side channel-specific constraints: 

Power Analysis 

* SCAB should incorporate two independent supply nets, one for core 

logic and one for I/ 0. 
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* The core logic supply should have a small-valued resistor inserted in 

series with the power supply for measurement purposes. 

Fault Analysis 

* SCAB should incorporate both on-board - i. e. regulated - and exter­

nal power supply options. 

* SCAB should be driven by an external clock. 

* SCAB should have a large number of I/ 0 pins to xpose internal state 

and allow verification of fault models. 

- Timing Analysis 

* SCAB should be driven by an external clock. 

* SCAB should have a large number of I/ 0 pins to expose internal state. 

Other hardware m the setup included power supplies, switches and measurement 

equipment. 

This measurement equipment consisted of the Cleverscope CS328A, a PC-based 

oscilloscope. It was purchased for this research, and performed its tasks well. 

We also wrote 10,000 lines of C++ software to do many things: 

• reformat power data 

• calculate average power usage 

• simula te power usage 

• view power traces and select template masks 

• build templates 

• classify power traces 
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• calculate classification success rates 

This experimental setup was used to apply template attacks to stream cipher hard­

ware. The results of this application are given in the next two chapters. 



Chapter 5 

Experimental Results and Analysis 

In this chapter, we present the initial results of our experimentation. These results 

consist of basic measurements of hardware characteristics and the application of the 

template attack technique to both simulated and measured power usage characteris­

tics of a stream cipher building block. 

5.1 Initial Experiments 

One of the first uses of the experimental setup was to evaluate the difference between 

the power consumed during the flip of a flip-flop and the power consumed at other 

times. In order to test this, we built a very simple circuit called "Flip-Flopper," 

shown in Figure 5.1. This circuit used a large number of identical elements, acting in 

parallel, to increase the ratio of data-dependent power usage to background noise. 

This circuit consists of 512 D flip-flops switching in concert between the values 

0 and 1. There is a counter and two comparators, one to check for a counter value 

of 5 and the other to check for a counter value of 9. These comparators control the 

changes of the flip-flops: after initializing all values to 0, the circuit counts five clock 

64 
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Figure 5. 1: The "F lipFlopper" Circuit 
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cycles, then a ll 512 flip-flops change their values from 0 to 1. After another nine clo k 

cycles, a ll flip-flops change from 1 back to 0. The output of this simple circui t , as 

well as its instantaneous power usage, is shown in F igure 5.2. 

This power t race was determined according to Equation 4. 1, and it shows t hat 

not only is the power consumed by a bit flip greater than the static power, bu t the 

power consumed wh n the bi ts flip from 0 to 1 (approximately 11 mW in total, for 

all 512 fl ip-flops) is greater than the power consumed wh n the bits fl ip from 1 to 0 

(approximately 6 mW in total). T his differenc between types of bit flip provides u 

with more information than we expected . 

These initial resul ts provided us with the basic power characteristics of D fli p-flops 
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Figure 5.2: FlipFlopper output and instantaneous power usage 

in our FPGA hardware, as given in Table 5.1. The values in thi table w re derived 

by measuring the total power usage of the system and dividing by 512, the number 

of flip-flop in the system. 

Event I Minimum Power I Maximum Power I Mean Power I Power Rang 

Static 10.0 J-LW 11.9 J-LW 11.9 J-LW ±.97 J-LW 
Bit flip (1 to 0) 17.2 J-LW 18.0 J-LW 17.6 J-LW ± .39 J-LW 
Bit flip (0 to 1) 21.3 J-LW 22.5 J-LW 21.9 J-LW ± .59J-LW 

Table 5.1: Power usage characteristics 

From the mean values in this table , we created a very simpl simulation model: 

for every bit in a cryptographic system that remains the sam , power usage will be 

11.9 ~W. For very bit that changes from 0 to 1, the power usage will be 21.9 ~W, and 

for every bit that changes from 1 to 0, 17.6 ~ W. To this ideal value, we add additiv 

white Gaus ian noise (AWGN); how much noi e we add is a parameter that we vary 

while studying the attack's effectiven ss. 
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5.2 LFSR-16 

Before attacking a fu ll-fledged stream cipher, we started by attacking a basic building 

block of many stream ciphers , the linear feedback shift regist r (LFSR). 

LFSRs are shift registers that feed back on themselves, inserting a new bit at their 

tail every clock cycle which is a linear combination of other bits in the register. On 

its own, an LFSR is not a stream cipher: it can be cryp tana lys d trivially because 

of its linear nature. It is , however , a useful building block in the construction of real 

stream ciphers. 

We chose a simple 16-bit LFSR with the characteristic polynomial given in Equa-

t ion 5.1. 

(5. 1) 

This LFSR has a maximal period: assuming it is not loaded with 0, it will shift 216 - 1 

times before it repeats a previous stat . A simple diagram of LFSR-16 is shown in 

Figure 5.3. 

Figure 5.3: Design of LFSR-16 

5 .2. 1 Simulation Results 

Using the power usage characteristic in Table 5. 1, we simulated LFSR-16 running on 

an Actel ProASIC3 FPGA. The power usage of this cipher was simulat d using a 16-
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bit initial state (key) that was determined randomly, except for t he most significant 

four bits. These bits were fixed for any particular operation Q (k), so we were able to 

generate 16 templates, one for each of the keys { OxOXXX, Ox1XXX ... OxfXXX }, 

where the most significant bit of the key i loaded into the left-most bit of th shift 

register in Figure 5.3. 

For each simulation of LFSR-16, we simulated a different numb r of sample traces 

(16, 32, 64, 128 or 256). We also varied the amount of noise added to the power trace, 

as well as th number of data points included in the template mask ( e Section 3.2.4 

on page 32). The detailed results of this analysis can be found in Appendix A, but 

we present an overview here. 

Figure 5.4 shows the basic inter-operation statistics for t h simulated LFSR-16 

(64 samples, peak noise 10- 6 ). The top graph is the inter-operation mean, and the 

bottom graph is the inter-operation standard deviation. As expected, the greatest 

deviation is early in the sample traces, before the key bits "mix in" to the cipher' 

tate. 

The line aero s t he standard deviation graph shows the cutoff for trace rna king 

with N = 8. Even with such a small number of data points, we are able to obtain 

useful information from the trace so as to have very good classification success. 

Figur 5.5 shows the classification succ ss rate for simulated LFSR-16 when we 

use L = 64 training samples per operation and the noise present has peak values of 

10- 5 . This noise value was chosen because it fits with the characteristics in Table 

5.1. It hows the success rate increasing with template size, and even with template 

size N < 5, the average classification success rate is greater than 6.25%, which i the 

success rate we would expect if we were guessing randomly. 

T he four lines on this graph are: 
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1. Maximum success rate: the highest rate of correct classification for any opera-

tion 

2. Average success rate: the average rate of correct classification over all operations 

3. Minimum success rate: the lowest rate of correct classification for any operation 

4. Guess rate: how successful we would expect to be if we guessed randomly 

Simulated LFSR-16, 64 Samples, 1 e-5 W Noise 
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Figure 5.5: Classification success vs. template size 
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Figure 5.6 shows the classification success rate versus template size when the noise 

is much lower, with a power peak of 10- 7 W . This noise level is lower than observed, 

but as we will see in Section 5.2.2, the results are a closer approximation to those 

obtained through physical experiment than those obtained using the noise 1 vel of 

w-s w (peak). 

With this noise level, we were able to achieve > 90% average classification success 

using as few as four data point and approximately 80% minimum success with as 

few as 10 points, making this an attack of remarkably low computational complexity. 
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Simulated LFSR-16, 64 Samples , 1e-7 W Noise 
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Figure 5.6: Classificat ion success vs . template size 
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Effect of Noise Increasing the amount of noise in the power t races has a negativ 

effect on classification success, as shown in Figure 5.7. This graph shows a general 

downwards trend in classification success as th peak noise increases from 10- 7 W. 

Effect of Varying Bits Under Attack Varying which key bits templates were 

constructed from also affected the success rates of t he template at tack. Inter-operation 

statistics are shown in Figures 5.8, 5.9, 5.10 and 5.11 . 

These figures show that attacking less significant bits leads to more similar op r-

ation means, as shown by fewer peaks in inter-operation standard deviation . 

Correspondingly, we see in Table 5.2 that classification succ rate diminish as 

we a ttack progressively less significant bits in the LFSR-16 key. 

This behaviour can be explained by observing the feedback "taps" in LFSR-16. 

The less significant the bits which vary according to operation, the more clock cycles 

it will take them to reach the feedback taps and affect other bits. Once t he least 
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Simulated LFSR-16, N=1 0, 16 Samples 
120.0% 

2 100.0% 
co ' ' ' ,·. 
0:: 
en 
en 
Q) 
() 
() 
::::J 

(f) 

c 
0 

:;:::; 
co 
() 

I+= 
en en 
co 
u 

80.0% 

60.0% 

40.0% 

20.0% 

\\ 
\\, . ' 

' '. 

\

·.\\. 
...... \ ---... _______ _ 

\ -··-----------.. -----

--
\.. ----- ---- --- --- --- ---
~ 

··---. 

0.0% ........ --- ----------

---·· tv1ax 
---- Avg 
- · Min 
- Guess 

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+O 

Figure 5. 7: Classification success vs. peak noise 

I Bits Under Attack I Minimum I Average I Maximum I 
0 - 3 11.4% 19.3% 38.3% 
4 - 7 9.7% 14.9% 26.9% 

8 - 11 12.2% 17.2% 29.1% 
12 - 15 10.3% 16.2% 25. 1% 

Table 5.2: Classification success rate vs. bits under attack 

72 

significant bits have reached the feedback taps, however, the operation of the LFSR 

will have caused internal states to vary just as greatly within operations as between 

operations. Thus, inter-operation differences are reduced, as are classification su c ss 

rates. 

Effect of Number of Training Samples For a fixed number of sample points 

in the template rna k, a higher number of training samples was more likely to yield 

a correct result , as shown in F igure 5.12. With such low noise, classification is very 
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successful even with a low number of training samples, but as we will see in Section 

5.2.2, this level of classification success is realistic. 

Simulated LFSR-16, N=12, 1e-7 W Noise 
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Figure 5.12: Classification success vs . training samples 

With this success in hand, we proceed to apply template attacks to the LFSR-16 

implemented in hardware. 

5.2.2 Experimental Results 

Having successfully attacked a simulated LFSR-16, we proceeded to a practical ap­

plication of the template attack technique in real hardware. Using the SCAB and 

Cleverscope described in Chapter 4, we carefully measured the power used by LFSR-

16 during its initialization. The secret key was set to { OxXXOO, ... OxXXOf }, and 

256 samples were taken , allowing the hardware to initialize once with each possible 

combination of unspecified key bits. 
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Figure 5.13 shows the classification success rate versus template size. A in the 

simulated results, approximately 90% average success was achieved with low tem­

plate sizes (N = 11) , and with N ~ 12, the minimum classification success was 

approximately 80% or higher. 
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The fact that the template attack performed better against real hardwar than 

against simulated hardware has to do with information content. The simulated LFSR-

16's power usage carries information at the edge of a clock pulse, but the physical 

LFSR-16 's trace carries some information during the rest of t he pulse, too - though 

less than at the edge. The inter-operation standard deviation for the physical LFSR-

16 is shown in Figure 5.14; compared to Figure 5.4, we can see that there are many 
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data points per clock cycle whose standard deviation rises well above the background. 

The line in Figure 5.14's standard deviation graph (the bot tom graph) shows that 

48 points - all centred around five clock transit ions - can be selected from the t race 

whose values are clearly more significant than the others. 

Information cont nt also affects classification success in that, for implementation 

reasons, the keys used for the hardware LFSR-16 had four fixed bits. As ment ion d 

above, the secret keys were in the set { OxXXOO, .. . OxXXOF } , not { OxXXXO, ... 

OxXXXF }. This is because keys were fed to the LFSR-16 via manual interaction, in 

the form of DIP switches. To attack a full LFSR-16, we would have to build more 

sophisticated off-board hardwar to load randomly-generated keys and ini tia lization 

vectors. This, combined wit h the PC software to drive it, is beyond t he scope of this 

research. To attack LFSR-16, we simply fixed four key bits to 0, set four more in an 

operation-dependent manner and iterated through all 256 possibili ties for the eight 

unfixed bits. 

Inter-operation standard deviation p eaks are observed later in Figure 5. 14 than in 

Figure 5.4; this is due to the loading of secret keys { OxXXOO, ... OxXXOF } and not 

{ OxFOXX, ... OxFFXX }. The peaks st art occurring at clock edge 8 instead of clock 

edge 0; this is precisely what we would expect if the difl'ering key bi ts were loaded 

into the four righ t-most flip-flops in Figure 5.3. 

5.3 Summary 

In this chapter, we revealed the results of our initial experiments using the F lipFlopper 

and LFSR-16 circuits. 

Using the FlipFlopper circuit, we were able to measure the power usage charac­

teristics of the FPGA on SCAB. These characteristics Jed us to a power model to use 
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for simulating hardware on the FPGA. 

Using this power model, we simulated the operation of LFSR-16 hardware, and 

applied the template attack to its power usage. As expected , increased noise caused 

a decrease in classification success, but we were able to recover information about the 

secret key very successfully in many different noise conditions. 

We then proceeded to apply the template attack to a real hardware implemen­

tation of LFSR-16. We were able to correctly guess secret key bits over 90% of the 

time, even with such small template sizes as N = 12. 

Having successfully attacked LFSR-16 in both simulation and hardware, and hav­

ing found good classification success with both , we proceeded to attack a simulated 

implementation of a real stream cipher: Trivium. 



Chapter 6 

Application of Template Attack to 

Trivium 

Trivium is a candidate cipher for the eSTREAM stream cipher selection proces 

(hardware profil ) [5[. By applying Template Attacks, we were abl to extract secret 

key material from a simulated version of thi cipher. 

6.1 Description 

Trivium is a stream cipher that was developed for eSTREAM, a four-year effort to 

identify 'promi ing new stream ciph rs," orne targeting software imJ lementation and 

orne targeting hardware [40]. Trivium i of the latter group , and it wa de igned "a 

an exerci e in exploring how far a stream ipher can be implified without sacrificing 

its security, sp d or flexibility" [5]. 

Trivium ha a 288-bit internal state which is updated through a combination of 

linear and non-linear f edback. It can generate up to 264 bits of k ystream from an 

80-bit seer t k y and 80-bit initialization ve tor. It was designed to be implement d 

80 
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in a parallel fashion: no state bit is used for 64 clock cycles after it is updated, so up 

to 64 iterations of the cipher can be calculated in parallel [5]. 

Precise specifications are given below, but intuitively, Trivium can be thought of 

as a collection of Feedback Shift Registers, as shown in Figure 6.1. 

-------.. 

Figure 6.1: Trivium [5] 

Before the keystream can be generated, the internal state has to be initialized. 

The state is initia lly loaded with the 80-bit secret key (state bits 0 - 79) and an 80-bit 

initialization vector (state bits 93 - 172). Thre bits are then set to 1 (bits 286 - 288) 

and the remaining 125 bits are set to 0. The initialization procedure from Figure 6.2 

is then followed , where s [i] is the ith bit of the internal stat and t1 , t2 and t3 are 



CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 82 

temporary variables. 

for i = 
t1 = 

t2 = 

t3 = 

1 to 4 * 288 do 
s [66] xor (s [91] and s [92]) xor s [93] xor s [171] 
s[162] xor (s[175] and s[176]) xor s[177] xor s[264] 
s [243] xor ( s [286] and s [287]) xor s [288] xor s [69] 

(s[1],s[2], ... ,s[93]) = (t3,s[1], . . . ,s[92]) 
(s[94] ,s[95] , .. . ,s[177]) = (t1,s[94] , ... ,s[176]) 
(s[178] ,s[279] , ... ,s[288]) = (t2,s[178] , ... ,s[287]) 

end for 

Figure 6.2: Trivium init ialization 

Keystream generation - shown in Figure 6.3 - is similar, but involves an output 

variable z, which is t he current keystream output. 

for i 
t1 
t2 
t3 

= 
= 
= 

1 to N do 
s [66] xor s [93] 
s[162] xor s[177] 
s [243] xor s [288] 

z = t1 xor t2 xor t3 

t1 = t1 xor (s[91] and s[92]) xor s[171] 
t 2 = t 1 x or ( s [ 1 7 5] and s [ 1 7 6] ) x or s [ 2 6 4] 
t3 = t 1 xor ( s [286] and s [287]) xor s [69] 

(s[1], s[2], ... , s[93]) = (t3, s[1], ... , s[92]) 
(s[94], s[95], ... , s[177]) = (t1, s[94], ... , s[176]) 
(s [178], s [279], . .. , s [288]) = (t2, s [178], ... , s [287]) 

end for 

Figure 6.3: Trivium keystream generation 
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6.2 Simulation Results 

Most Trivium simulations were performed with AWG added , at a peak power noise 

of 10- 7 W. This is a value which we found , for LFSR-16, produced success rates 

approximately equivalent to those obtained from hardware experimentation. In all 

cases, the right-most key bits were varied according to operation; the remaining bits 

were allowed to vary randomly. 

6 .2.1 Classificat ion Success Rate vs. Template Size 

Figure 6.4 shows our classification success rates for simulated Trivium versus template 

size. There are four lines on the graph: 

• Maximum success rate 

- this is the highest classification success for any operation 

- e.g. if four operations { Q(O), Q (l ) , Q (2), Q (3) } had classification success 

rates {45%, 32%,51%, 29%}, t he maximum success rate would be 51% 

• Average success rate 

- this is the average of classification success rates over all operations 

- e.g. if four operations { Q(O) , Q (l ) , Q (2) , Q (3) } had classification succes 

rates {45%, 32%, 51%,29%}, the average success rate would be 39.25% 

• Minimum success rate 

- this is t he lowest classification success for any operation 

- e.g. if four operations { Q (o), Q (l ), Q (2) , Q (3) } had classification success 

rates {45%,32%,51%, 29%}, the minimum success rate would be 29% 
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• "Guess" rate 

- this is how successful we would expect to be if we guess d randomly 

- t his rate is 2~, where n is the number of bits included in the template 

* if we fixed four bits, we would have 24 = 16 operations and the prob­

abili ty of a correct guess would be i4 = 6.25% 

Simulated Trivium 
4096 Training Samples, 1 e-8 W Noise, 16 Templates 
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Figure 6.4: Classification success vs. template size - Trivium 

These success rates are lower than for LFSR-16 with the same amount of added 

noise but average success rates as high as 22% were achieved - better than the 6.25% 

that we would expect to achieve through random guessing. 

6.2.2 Classification Success vs. Training Samples 

As expected, increasing the number of training samples increas d the probability of 

success, though success rates increased roughly linearly for exponentially increasing 



CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 85 

numbers of samples. This is shown in Figure 6.5, where we can see that the maximum, 

average and minimum classification success rates are monotonically increa ing wit h 

the number of training samples. 

Simulated Trivium 
N=32, 1 e-8 W Noise , 16 Templates 
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Figure 6.5: Classification success vs . training samples - Trivium 

For this research , we spent considerable time simulating the cipher under varying 

conditions. Simulating Trivium with 4,096 training samples per operation might 

only take an hour, but simulating the cipher's operation and performing analysis for 

varying template sizes might take a day. Thus, while using more than 4,096 training 

samples would be prohibitively time-consuming for this research, an individual or 

organization mounting a serious side channel attack could spend significant t ime -

and computational power - building templates from many training samples. 

6 .2.3 Classification Success Rate vs. B its Under Attack 

With Trivium simulations, we also varied the number of bits under attack, running 

simulations and analysis for one-bit templates (21 = 2 operations) , two-bit templates 
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(22 = 4 operations), four-bit templates (24 = 16 operations) and eight-bit templa.t s 

(28 = 256 operations). 

A linear increase in the number of bi ts under attack led to a. exponential increase in 

the computation required to perform all simulation and a.na.ly i . On first inspection 

however, maximum, average and minimum classification success rates all seem to 

vary exponentially with the inverse of the number of bits being attacked, as shown 

in F igure 6.6. 

Simulated Trivium, 64 Samples , N=20, 1 e-8 W Noise 
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Figur 6.6: Trivium classification success vs. bits being attacked 

What thi graph does not reveal, however, is how the classification success com­

pares to the expected classification success rate if we had no information about the 

cipher - i. e. if we guessed randomly. For n bits, we exp ct that random guessing 

would yield the correct subkey 2~ of the time. Our improvement over th is rate tells 

us how much information each guess must reveal to enable as many correct guesses 

as we have made, and t his information leakage can be calculated by Equation 6.1: 
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Information Leakage vs. Template Size 
Simulated Trivium, 64 Training Samples, 1e-8 W Noise 

2.50 

~ 

2 2.00 
e 
~ 1.50 

Jl1 
~ 1.00 

.§ 0.50 
ro 
E 
.E 
£ 

0.00 

-0.50 

I 
I . 

1 2 3 4 6 B 10 12 14 16 20 24 32 

Template Size (N) 

- One Bit 
· · Two Bits 
· · Four Bits 

Eight Bits 

Figure 6.7: Trivium information leakage 

l = B - log2 ( ~) , (6.1) 

where l is the information leakage, B is the number of bits being attacked and s 

is the classification success rate. 

Figure 6.7 shows the information leakage for attacks on various numbers of bits. 

From t his graph, we can see that the information obtained via attacking eight bi ts of 

key can be approximately twice that obtained from attacking four bits of key. 

The a ttack is stronger as more bits are attacked , but this greatly increases compu­

tational complexity: if n is the number of bits being attacked , t hen 2n templates must 

be generated , requiring L2n total template samples. As mentioned above, however, 

a serious side channel at tack could be mounted on a system using resources such as 

computing clusters. This would make practical attack a very realistic possibility. 
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6.3 Trivium Hardware 

We did not apply template attacks to the power usage of Trivium hardware, as we did 

with LFSR-16. The reason for this is entirely pract ical: £ ding random key and IV 

values from attack software to the cipher hardware would require a more sophisticat d 

experimental etup t han we currently have. While this would b a logical attack fo r 

future work to implement, it is beyond the scope of this thesis. 

Consid ring the similarity of our simulation and hardware results against LFSR-

16, however, we conjecture that template attacks could be applied against real hard­

ware implementations of Trivium. 

6.4 Summary 

Trivium is a very simple stream cipher which has wit hstood the rigours of the eS­

TREAM process, and is part of t he final eSTREAM portfolio. Because of this, a 

well as its overwhelming populari ty among stream cipher researcher [41], it is a very 

important cipher. 

By applying template at tacks, we were able to ext ract secret key material from a 

simulated version of Trivium. Our classification success rate was as high as 22% in 

noi e condition that we saw were rea onable in Chapter 5. T hi uccess rate could 

be increased by using more training samples p er operation or by capturing mul t ipl 

traces from th device under attack and exploiting the joint information contained in 

all of them. 

We conjecture that these attacks could be realised against practical cryp to ystems. 

Implementers of Trivium, and other practical stream ciphers, should take care to 

ensure that their implementations are not vulnerable to thes attacks. 



Chapter 7 

Conclusions 

As cryptography continues to be imp! mented in embedded systems such as smart 

cards and RFIDs, implementers of cryptographic systems must consider threat model 

that include adversaries having physical access to cipher hardwar . This physical 

access enables attack via side channel analysis, including the powerful class of attack 

known as template attacks. 

In this thesis, we have demonstrated that template attacks can be applied to 

stream ciphers implemented not just via microcontrollers, but also in reconfigurable 

hardware. To this end, we have prepared an experimental setup that includes the 

Side Channel Analysis Board (SCAB), measurement equipment and oftware. SCAB 

is a custom PCB designed to support research in side channel analysis, with features 

to aiel researcher in performing power analysis, electromagnetic analysi , faul t anal­

ysis and timing analysis. In this research, we have used the power analy is features 

of SCAB, measuring the power used by str am cipher hardware with a PC-ba eel 

oscillo cope called Cleverscope. We have also written 10,000 lines of C++ code to 

perform simulation and analysis of the power u age of cryptographic hardware. 

sing this experimental setup, we measured the power usage characteristics of 
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FPGA-based hardware. Having found that these characteristics could be exploited for 

side channel analysis, we constructed a simple power usage model from them, which 

included the above characteristics and Additive White Gaussian Noise (AWGN). We 

simulated the opera tion of a stream cipher building block , a 16-bit Linear Feedback 

Shift Register (LFSR-16), and applied template at tacks to its simulated power usag . 

We were able to recover secret key material from these simulated power traces -

success rates depended on the amount of AWGN present , but even with very high 

amounts of noise, success still exceeded the 6.25% rate t hat we would expect had 

we made random guesses a t key bits. We then implemented LFSR-16 in ha rd ware, 

measuring its power usage with the Cleverscope and analysing it with our software. 

V·le were able to recover secret key bits wi th success rates greater than 90% even 

with small template sizes (N < 20). 

From this success, we simula ted the power usage of Trivium, a stream cipher that 

has been vet ted by the eSTREAM init iative. For this complet stream cipher, we 

were able to retri ve four correct bits of key information for over 20% of our guesses, 

and our investigations indicate t hat higher success would be pos ible for a dedicated 

attacker with reasonable computational resources. 

We thus conclud that side channel analysis is a very real threat to stream cipher 

hardware, and implementers of such hardware should take care to evaluat th ir 

implementations for suscept ibili ty to this class of attacks. 

Future Work 

This thesis pres nts a black-box approach to a t tacking stream cipher hardware. Fu­

ture work would in Jude attacking different group of bits within TI:·ivium to determine 

the bits whi h are most or least suscept ible to Template Attacks, as well as xploring 
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techniques to combine attacks so as to extract the maximum amount of key informa­

tion possible. 

Future work would also include more application of the method to physical hard­

ware, especially the final eSTREAM portfolio ciphers (hardware focus) - F-FCSR-H 

v2 12], Grain v2 [3], MICKEY v2 [4] and Trivium [5] . This work will require a more 

elaborate experimental setup. The number of key and IV bits that mu t be deter­

mined randomly will be much larger - approximately 80 bits each - which rules out 

the current method of IV generation: exhaustive search. Rather, unfixed key bits 

and all IV bits must be generated by hardware and/ or software external to the device 

being tested - likely in software on the PC controlling the attack - and exported to 

the hardware being analysed. 

Other important future work is determining the effectiveness of traditional side 

channel countermeasures against the Template Attack. Many counterm asures wer 

designed to defeat Differential Power Analysis, but the principles of the Template At­

tack are quite different. Whether or not they can be applied, and what techniques are 

effective at foiling the Template Attack, should be of particular interest to hardware 

designers. 
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Appendix A 

Detailed Results 

A.l Simulation 

A.l.l LFSR-16 

All LFSR-16 data is for an attack against four key bits. 

16 Training Samples per Operation 

Table A.l contains the classification success rates when the peak power noise was 

10- 8 W. 

N I Minimum I Average I Maximum I 
1 0 10.3% 51% 
2 0 25.8% 56% 
3 17% 48.5% 71% 
4 40% 94.2% 100% 
6 0 12.5% 100% 
8 0 43.8% 100% 
10 0 56.1% 100% 
12 0 0 0 
14 0 0 0 

Table A.l: 16 training samples per operation (lo- 8 W noise) 
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Table A.2 contains the classification success rates when the peak power noise was 

w-7 w. 

N I Minimum I Average I Maximum I 
1 0 9.8% 59% 
2 2% 25.2% 56% 
3 17% 52.1% 70% 
4 42% 94.1% 100% 
6 50% 94.4% 100% 
8 48% 94.9% 100% 
10 54% 93.6% 100% 
12 58% 89.5% 100% 
14 24% 75.8% 100% 

Table A.2: 16 training samples per operation (lo- 7 W noise) 

Table A.3 contains the classification success rates when the peak power noise was 

w-6 w. 

N I Minimum I Average I Maximum I 
1 0 10.3% 59% 
2 0 12.4% 30% 
3 1% 14.9% 30% 
4 9% 20.7% 39% 
6 9% 21.8% 39% 
8 11% 22.6% 36% 
10 9% 22.9% 43% 
12 4% 22.9% 41% 
14 4% 23.6% 34% 

Table A.3: 16 training samples per operation (lo- 6 W noise) 

Table A.4 contains the classification success rates when the peak power noise was 

w- 5 w. 
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I N I Minimum I Average I Maximum I 
1 0 6.1% 31% 
2 0 6.6% 26% 
3 0 7.7% 24% 
4 0 8.1% 25% 
6 0 9.8% 27% 
8 0 10.7% 25% 
10 0 12.8% 34% 
12 0 12.4% 35% 
14 0 12.6% 44% 

Table A.4: 16 training samples per operation (lo- 5 W noise) 

Table A.5 contains the classification success rates when the peak power noise was 

10- 4 w. 

N I Minimum I Average I Maximum I 
1 0 6.7% 49% 
2 0 7.9% 33% 
3 0 7.9% 26% 
4 0 8.8% 28% 
6 0 10.2% 30% 
8 0 11.6% 27% 
10 0 12.3% 32% 
12 0 12.8% 37% 
14 0 12.5% 36% 

Table A.5: 16 training samples per operation (10- 4 W noise) 

Table A.6 contains t he classification success rates when the peak power noise was 

10- 3 w. 
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I N I Minimum I Average I Average I 
1 0 6.5% 34% 
2 0 6.6% 29% 
3 0 6.4% 22% 
4 0 8.1% 29% 
6 0 9.4% 26% 
8 0 9.5% 24% 
10 0 11.3% 27% 
12 0 12.3% 31% 

Table A.6: 16 training samples per operation (10- 3 W noise) 

Table A. 7 contains the classification success rates when the peak power noise was 

.01 w. 

I N I Minimum I Average I Maximum I 
1 0 7.8% 46% 
2 0 7.4% 31% 
3 0 7.7% 25% 
4 0 8.0% 21% 
6 0 9.1% 21% 
8 0 11.7% 23% 
10 0 12.7% 28% 
12 0 13.2% 30% 

Table A. 7: 16 training samples per operation ( .01 W noise) 

Table A.8 contains the classification success rates when the peak power noise was 

.1 w. 
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I N I Minimum I Average I Maximum I 
1 0 6.8% 59% 
2 0 8.0% 56% 
3 0 8.6% 70% 
4 0 10.4% 100% 
6 0 11 .5% 100% 
8 0 14.3% 100% 
10 0 16.8% 100% 
12 0 19.8% 100% 

Table A.8: 16 training samples per operation (.1 W noi e) 

Table A.9 contains the classification success rates when the peak power noise wa 

1 w. 

I Minimum I Average I Maximum I 
1 0 6.6% 48% 
2 0 8.5% 26% 
3 0 9.1% 23% 
4 0 9.6% 21% 

6 0 11.8% 23% 
8 0 12.6% 21% 
10 0 16.8% 22% 
12 0 19.3% 28% 

Table A.9: 16 training samples per operation (1 W nois ) 

32 Training Samples per Operation 

Table A. 10 contains the classification success rates when t he peak power noi e was 

10- 8 W. 
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I N I Minimum I Average I Maximum I 
1 0 8.2% 55% 
2 0 28.2% 66% 
3 16% 51.7% 77% 
4 50% 95.0% 100% 
6 53% 95.7% 100% 
8 56% 95.9% 100% 
10 54% 95.5% 100% 
12 64% 96.2% 100% 
14 72% 96.6% 100% 
16 0 0 0 
20 0 0 0 
24 0 10.3% 89% 

Table A.10: 32 training samples per operation (lo-s W noise) 

Table A.ll contains the classification success rates when the peak power noise was 

10- 7 W. 

I Minimum I Average I Maximum I 
1 0 10.1% 65% 
2 0 28.0% 56% 
3 14% 53.2% 78% 
4 50% 94.8% 100% 
6 53% 94.8% 100% 
8 58% 95.3% 100% 
10 59% 95.0% 100% 
12 53% 94.8% 100% 
14 51% 94.4% 100% 
16 51% 94.3% 100% 
20 50% 92.6% 100% 
24 54% 90.4% 100% 

Table A.ll : 32 training samples per operation (lo- 7 W noise) 

Table A.12 contains the classification success rates when th e peak power noise was 

10- 6 W. 
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I N I Minimum I Average I Maximum I 
1 0 10.7% 47% 
2 0 14.8% 38% 
3 2% 19.5% 43% 
4 9% 24.8% 41% 
6 14% 26.3% 39% 
8 16% 27.0% 42% 
10 15% 28.4% 41% 
12 18% 29.6% 40% 
14 26% 31.4% 43% 
16 20% 31.2% 40% 
20 14% 32.6% 40% 
24 7% 33.9% 40% 

Table A.12: 32 training samples per operation (lo- 6 W noise) 

Table A.13 contains the classification success rates when the peak power noise was 

w-5 w. 

N I Minimum I Average I Maximum I 
1 0 7.3% 43% 
2 0 8.0% 24% 
3 0 9.0% 23% 
4 0 9.1% 24% 
6 0 10.3% 26% 
8 0 11.1% 32% 
10 0 13.8% 32% 
12 0 14.8% 37% 
14 0 16.7% 40% 
16 0 18.1% 44% 
20 0 19.6% 45% 
24 0 20.1% 43% 

Table A.13: 32 training samples per operation (lo- 5 W noise) 

64 Training Samples per Operation 

Table A.14 contains the classification success rates when the peak power noise was 

w-s w. 
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I N I Minimum I Average I Maximum I 
1 0 11.7% 40% 
2 0 25.8% 58% 
3 27% 53.5% 73% 
4 52% 94.2% 100% 
6 64% 95.8% 100% 
8 62% 95.4% 100% 
10 59% 95.1% 100% 
12 56% 94.6% 100% 
14 58% 94.9% 100% 
16 56% 95.0% 100% 
20 51% 94.9% 100% 
24 41% 94. 1% 89% 

Table A.l4: 64 training samples per operation (lo- s W noise) 

Table A.l 5 contains the classification success rates when the peak power noise was 

10- 7 W. 

I N I Minimum I Average I Maximum I 
1 0 12.4% 63% 
2 0 28.2% 56% 
3 14% 55.6% 70% 
4 50% 94.1% 100% 
6 53% 95.3% 100% 
8 58% 96.4% 100% 
10 59% 96.8% 100% 
12 53% 96.6% 100% 
14 51% 96.8% 100% 
16 51% 97.1% 100% 
20 50% 97.2% 100% 
24 54% 97.9% 100% 

Table A.l5: 64 training samples per operation ( 10- 7 W noise) 

Table A.l6 contains the classification success rates when the peak power noise was 

10- 6 w. 
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I N I Minimum I Average I Maximum I 
1 0 9.8% 48% 
2 0 14.1% 36% 
3 5% 18.3% 33% 
4 3% 23.1% 38% 
6 13% 26.0% 39% 
8 10% 26.4% 42% 
10 11% 29.6% 42% 
12 13% 31.6% 49% 
14 11% 32.8% 49% 
16 12% 34.7% 50% 
20 12% 38.1% 54% 
24 8% 40.9% 61% 

Table A.16: 64 training samples per operation (lo- 6 W noise) 

Table A.17 contains the classification success rates when the peak power noise was 

w-5 w. 
N I Minimum I Average I Maximum I 
1 0 7.6% 46% 
2 0 8.8% 34% 
3 0 9.7% 32% 
4 0 9. 5% 24% 
6 2% 11.0% 22% 
8 5% 13.6% 23% 
10 2% 15.2% 28% 
12 2% 18.6% 32% 
14 2% 20.6% 30% 
16 4% 24.1% 34% 
20 2% 32.3% 47% 
24 2% 39.0% 55% 

Table A.17: 64 training samples per opera tion ( 10- 5 W noise) 

Beyond the full data sets we collected, we also collected partial sets at 64 training 

samples for different noise values. 

Table A.18 contains the classification success ra tes when the peak power noise was 

w-4 w. 
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I I Minimum I Average I Maximum I 
1 24 1 1% 1 24.5% 1 57% 

Table A.18: 64 training samples per operation (lo- 4 W noise) 

Table A.19 contains the classification success rates when the peak power noise was 

10- 3 W. 

I N I Minimum I Average I Maximum I 
1% 1 37.4% 1 53% 

Table A.19: 64 training sampl s per operation (lo- 3 W noise) 

Table A.20 contains the classification success rates when the peak power noise was 

10- 2 vv. 

I N I Minimum I Average I Maximum I 
1 24 1 1% 1 26.s% 1 53% 1 

Table A.20: 64 training samples per operation (lo- 2 W noise) 

Table A.21 contains the classification success rates when the peak power noise was 

.1 W. 

I N I Minimum I Average I Maximum I 
1 24 1 3% 1 37.4% 1 53% 1 

Table A.21: 64 training samples per operation (.1 W noise) 

Table A.22 contains the classification success rates when the peak power noise was 

1 W. 

I N I Minimum I Average I Maximum I 
1 24 1 2% 1 21.o% 1 52% 1 

Table A.22: 64 training samples per operation (1 W noise) 
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128 Training Samples per Operation 

Table A.23 contains the classification success rates when the peak power noise was 

w-6 w. 

N I Minimum I Average I Maximum I 
1 0 10.8% 61% 
2 0 14.4% 39% 
3 5% 18.8% 33% 
4 1% 22.1% 41% 
6 7% 26.7% 46% 
8 14% 28.9% 47% 
10 14% 30.1% 52% 
12 15% 31.1% 52% 
14 11% 33.0% 58% 
16 11% 34.2% 59% 
20 11% 38.3% 65% 
24 10% 42.8% 66% 

Table A.23: 128 training samples per operation (lo- 6 W noise) 

Table A.24 contains the classification success rates when the peak power noise was 

w-5 w. 

N I Minimum I Average I Maximum I 
1 0 8.1% 47% 
2 0 8.5% 38% 
3 0 10.2% 36% 
4 0 10.1% 34% 
6 0 11.0% 31% 
8 0 11.7% 30% 
10 1% 12.9% 28% 
12 1% 13.6% 29% 
14 1% 14.9% 32% 
16 0 16.9% 37% 
20 0 22.1% 55% 
24 0 26 .3% 57% 
24 1% 34.9% 75% 

Table A.24: 128 training samples per operation (lo- 5 W noise) 
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256 Training Samples per Operation 

Table A.25 contains the classification success rates when the peak power noise was 

w-7 w. 

N I Minimum I Average I Maximum I 
1 0 10.5% 69% 
2 1% 27.4% 62% 
3 15% 54.6% 68% 
4 58% 94.9% 100% 
6 70% 96.5% 100% 
8 70% 96.8% 100% 
10 69% 96.3% 100% 
12 70% 96.3% 100% 
14 61% 95.9% 100% 
16 60% 95.9% 100% 
20 62% 96.4% 100% 
24 66% 97.2% 100% 

Table A.25: 256 training samples per operation (lo- 7 W noise) 

Table A.26 contains the classification success rates when the peak power noise was 

w-5 w. 

N I Minimum I Average I Maximum I 
1 0 7.3% 36% 
2 0 8.0% 36% 
3 0 7.2% 31% 
4 0 6.6% 25% 
6 2% 6.9% 18% 
8 2% 7.1% 12% 
10 4% 7.8% 20% 
12 3% 7.8% 18% 
14 2% 7.4% 19% 
16 3% 7.8% 22% 
20 2% 8.1% 24% 
24 0 8.1% 29% 

Table A.26: 256 training samples per operation (10- 5 W noise) 
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A.l.2 Trivium 

All Trivium simulations, unless otherwise specified, were performed with 256 training 

samples and a peak power noise of 10- 8 W. 

A.1.2.1 One Key Bit 

The results of attacking one key bit (79 bits randomly assigned) are given in Table 

A.27. 

N I Minimum I Average I Maximum I 
1 43% 49.5% 56% 
2 43% 53.0% 63% 
3 44% 53.0% 62% 
4 48% 57.0% 66% 
6 46% 53.5% 61% 
8 50% 52.5% 55% 
10 48% 52.0% 56% 
12 45% 47.5% 50% 
14 44% 51.5% 59% 
16 44% 50.5% 57% 
20 51 % 55 .0% 59% 
24 39% 48.0% 57% 
32 35% 49.0% 49% 

Table A.27: Trivium results - attacking one key bit 

A.1.2.2 Two Key Bits 

The results of attacking two key bits (78 bits randomly assigned) are given in Table 

A.28. 



APPE DIX A. DETAILED RESULTS 110 

I N I Minimum I Average I Maximum I 
1 1% 27.0% 42% 
2 9% 27.3% 48% 
3 10% 27.3% 44% 
4 19% 29.5% 41% 
6 21 % 24.8% 29% 
8 22% 25.0% 30% 
10 17% 23.3% 27% 
12 22% 24.3% 27% 
14 24% 27.3% 30% 
16 26% 26.8% 27% 
20 22% 26.3% 31% 
24 26% 29.0% 37% 
32 23% 25.8% 39% 

Table A.28: Trivium r suits- attacking two key bits 

A .1.2.3 Four Key Bits 

·when attacking four key bits (76 bits randomly assigned) , simulations were performed 

with power noise of 10- 7 and 10- 8 for s vera) numbers of training samples . 

64 Training Samples per Operation The a ttack re ults when the power noi 

is 10- 8 W are given in Table A.29. 
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I Minimum I Average I Maximum I 
1 0% 7.25% 47% 
2 0% 7.19% 29% 
3 1% 7.19% 24% 
4 0% 5.81% 25% 
6 1% 6.19% 17% 
8 3% 7.38% 12% 
10 2% 6.81% 14% 
12 3% 5.81% 11% 
14 1% 8.56% 16% 
16 8% 13.3% 20% 
20 8% 12.1% 17% 
24 5% 11 .3% 18% 
32 5% 11.9% 16% 

Table A.29: Trivium results - a ttacking four key bits, 64 samples, 10- 8 peak nois 

The attack results when the power noise is 10- 7 W are given in Table A.30. 

I N I Minimum I Average I Maximum I 
1 0% 6.88% 32% 
2 0% 7.00% 21% 
3 1% 7.31% 21% 
4 1% 6.00% 14% 
6 2% 6.31% 12% 
8 1% 5.94% 13% 
10 1% 7.00% 14% 
12 4% 6.50% 12% 
14 1% 6.44% 13% 
16 3% 6.69% 13% 
20 1% 7.50% 13% 
24 2% 6.25% 10% 
32 2% 6.13% 10% 

Table A.30: Trivium results - attacking four key bits, 64 samples, 10- 7 peak noise 

256 Training Samples per Operation The attack results when the power noise 

is 10- 8 W are given in Table A.31. 
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I Minimum I Average I Maximum I 
1 0% 7.2% 52% 
2 0% 7.2% 34% 
3 0% 7.2% 36% 
4 0% 5.8% 28% 
6 0% 6.2% 24% 
8 1% 7.4% 22% 
10 2% 6.8% 14% 
12 2% 5.8% 14% 
16 10% 13.3% 24% 
20 6% 12.1% 21% 
24 7% 11.3% 18% 
32 8% 11.9% 18% 

Table A.31 : Trivium results- attacking four k y bits , 256 samples, 10- 8 peak noise 

The attack r sults when the power noise is 10- 7 W are given in Table A.32. 

I N I Minimum I Average I Maximum / 

1 0% 7.8% 32% 
2 0% 8.5% 21% 
3 0% 7.0% 21% 
4 0% 7.8% 14% 
6 1% 7.9% 12% 
8 1% 7.7% 13% 
10 2% 6.7% 14% 
12 2% 7.6% 12% 
16 3% 11.6% 13% 
20 6% 10.2% 13% 
24 4% 9.3% 10% 
32 2% 8.5% 10% 

Table A.32: Trivium results - attacking four key bits, 256 samples, 10- 7 peak noise 

1024 Training Samples p er Operation The attack results when the power nois 

is 10- 8 W are given in Table A.33. 
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I N I Minimum I Average I Maximum I 
1 0% 6.9% 55% 
2 0% 7.1% 43% 
3 0% 7.7% 36% 
4 0% 7.5% 29% 
6 1% 7.4% 23% 
8 2% 7.0% 21 % 
10 1% 7.4% 17% 
12 1% 7.0% 17% 
16 6% 16.6% 27% 
20 10% 16.4% 28% 
24 11% 20.1% 32% 
32 12% 19.3% 29% 

Table A.33: Trivium results - attacking four key bits, 1024 samples, 10- 8 peak noise 

4096 Training Samples per Operation The attack results when th power noise 

is 10- 8 W are given in Table A.31. 

I N I Minimum I Average I Maximum I 
1 0% 8.6% 58% 
2 0% 8.0% 49% 
3 0% 8.2% 46% 
4 0% 8.1% 43% 
6 0% 7.8% 40% 
8 0% 8.1% 33% 
10 0% 7.4% 30% 
12 1% 7.2% 29% 
16 8% 17.8% 27% 
20 12% 22.1% 37% 
24 11% 22.4% 35% 
32 13% 21.6% 35% 

Table A.34: Trivium results - attacking four key bits, 4096 samples, 10- 8 peak noise 

A.1.2.4 Eight Key Bits 

The results of attacking eight key bits (72 bits randomly assigned) are given in Table 

A.35. 64 training samples were used in all cases. 
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I N I Minimum I Average I Maximum I 
1 0% 0.48% 21% 
2 0% 0.54% 21% 
3 0% 0.47% 9% 
4 0% 0.49% 8% 
6 0% 0.41% 9% 
8 0% 0.46% 17% 

10 0% 0.43% 4% 
12 0% 0.49% 3% 
14 0% 0.75% 5% 
16 0% 0.92% 5% 
20 0% 1.63% 5% 
24 0% 1.39% 6% 
32 0% 1.10% 5% 

Table A.35: Trivium results - attacking eight key bits 

A.2 Physical Measurement 

Physical measurement was performed of the LFSR-16 cipher building block for 256 

training samples. Results are given in Table A .36 

I Minimum I Average I Maximum I 
1 0 11 .3% 40.6% 
2 0 26.7% 59.0% 
3 29.7% 52.3% 58.6% 
4 60.2% 65.9% 73.4% 
6 65 .2% 73.0% 80.5% 
8 72.3% 85.6% 95.7% 
10 72.7% 88.2% 96.1 % 
12 77.7% 91.6% 96.5% 
16 85.2% 94.1% 97.7% 
20 93.4% 97.4% 99.6% 
24 95.7% 98.5% 100% 
32 97.7% 99.4% 100% 
40 98.8% 99.7% 100% 

Table A.36: Physical measurement results 
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Software Data Formats 

B.l Cleverscope Text Files 

The Cleverscope text-based format has a header , beginning with the line " [Sample 

Definition] " and a body, beginning wit h the line " [Data] ". An example of t his 

format is shown in Figure B.l. 

B .1.1 Header 

The header of a Cleverscope text file contains several pieces of information impor tant 

to our analysis: 

• Usage of digital t races 

- If digital t races were capt ured by the Cleverscope unit, the UseDig param­

eter is TRUE; otherwise, it is FALSE . 

• Analog scale, offset 

115 
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[Sample Definition] 
Type =Time 
UseBuffer=FALSE 
UseDig=TRUE 
ChAscale=1.000000 
ChAoffset =O.OOOOOO 
ChBscale =1.000000 
ChBoffset =O.OOOOOO 
delta =0 . 0000000100 
start =0.0006427900 
nsample =7047 
offset=O 
Save Time = 8/20/2007 2:35:46 PM 
[Data] 
Time Chan A Chan B 
0.00064279 1 . 50011814 1.48075295 
0.00064280 1 . 49992914 1 . 47955595 
0.00064281 1 . 50005514 1.48058195 
0 . 00064282 1.49879514 1.47915695 
0 . 00064283 1.49948814 1.47927095 
0 . 00064284 1.49911014 1 . 47852995 
0.00064285 1.49961414 1.47898595 
0 . 00064286 1 . 49904714 1.47972695 
0.00064287 1 . 49929914 1.47938495 

Figure B.l : Cleverscope text file example 
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Dig 
240 . 00000000 
240 . 00000000 
240 . 00000000 
240.00000000 
240.00000000 
240 . 00000000 
240 . 00000000 
240 . 00000000 
240.00000000 

- Each analog channel (A and B) has a scale and an offset associated with 

it; t hese values must be mult iplied with and added to, respectively, the 

analog channel data specified below. 

• Sampling period 

- T he time between samples is given by the delta parameter. While the 

sampling period does not affect template attacks directly, we do read and 

store it to ensure that we only attempt to add or multiply traces with the 
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same sampling period. 

• Number of samples 

- The number of sample points in the trace is given by the nsample param­

eter. After loading sample points from the file, we ensure that the entire 

fil e was loaded by comparing the number of loaded points to nsample . 

Other parameters, such as "Save Time", are not important for the research , but are 

nonetheless parsed and saved. 

B .1.2 B ody 

The body of a Cleverscope text file contains tab-delimited lin s of data in four 

columns: 

1. Time: the time, in seconds, that the data was sampled 

2. Chan A: the voltage measured by Channel A 

3. Chan B: the voltage measured by Channel B 

4. Dig: digital trace values 

(a) This number varies between 0 and 255, and represents the values of all 

eight digital traces 

(b) Retrieving a particular trace's value is a matter of bit masking: 

for(int j = 0; j < 8; j++) 

digitalTraces[j]->append(value & (1 << j)); 
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B.2 Analog Trace Files 

An AnalogTrace C++ object has six attributes: 

arne Type Description 

my arne QString arne of the trace (e.g. "Channel A') 

unit Unit* Unit of trace values (e.g. Volts, Watts) 

timeDivision double T ime between samples 

trace QList< double> Actual trace values 

min Value double Smallest value in the trace 

ma..."XValu double Largest value in the trace 
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QString and QList a re data structures from the Qt C++ toolki t [421, double i the 

64-bit IEEE-standard C++ primitive and Unit is a class that we wrote to manage 

trace units (e.g. dissimilar units cannot be added , multiplying an Amp by a Volt 

produces a Watt). 

Such a trace can be written to two types of files: text-based or binary. 

B.2.1 Text 

When writing small t races to fi le, we may choose to write them in a text-based format 

that facilitates direct inspection. This is accomplished via the Qt cla s QTextStream. 

A QTextStream object , vvhich is associated with a QFile object, can be used to r ad 

or write primitives such as strings and double-precision floating-point numbers. An 

example of the output is shown in Figure B.2. 
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AnalogTrace ("Mean Power Usage for Unnamed Trace", W, 192 
values, 1e - 06s apart, range [1 . 11306e - 05:0.000221819]){ 

0.000221806 1 . 11333e-05 1 . 11326e -0 5 0.000221819 
1 . 11322e-05 1 .1 1331e -05 0.000221815 1.11339e-05 1.11316 
e-05 0.000221804 1 . 11328e-05 1.11315e - 05 0.000215942 

} 

Figure B.2: Example of a text-based AnalogTrace file 

B.2.2 Binary 

When writing files that are large or will be read many tim s, it is mor efficient to 

write AnalogTrace objects in a binary format. Such a format is smaller than the 

equivalent text-based format, and it saves the computational effort r quired to parse 

floating-point numbers from text. 

Writing a AnalogTrace to a binary file - or reading it back - is accomplished using 

the Qt class QDataStream. Like QTextStream above, QDataStream object can b 

used to r ad or write primitives such as strings and double-precision floating-point 

numbers. The binary format includes a "magic" number - used to recognize the 

format - and a binary format version (currently version 2). The procc s of writing 

such a file is shown in Figure B.3, and a sample trace as viewed in a hex ditor is 

shown in Figure B.7. 

B.3 Digital Trace Files 

Digital trace files are much simp! r than ana log traces , as they contain a binary 

trace - there are no units or minimum/ maximum values to be concerned with. An 

DigitalTrace C++ object has just two a ttributes: 
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QDataStream& power: :operator << (QDataStream& d, 
AnalogTrace& trace) 

{ 
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d << (quint32) Ox5CABOOA7; II magic SCAB AT ( Analog Trac4 
d << (quint32) 2 · 

' II binary format 
d << trace.name(); 
d << trace. units() . toString (); 
d << trace. period(); 
d << trace.values() . size(); 

for(long inti= 0; i < trace.values().size(); i++) 
d << trace.values()[i]; 

return d; 
} 

Figure B.3: Writing a binary AnalogTrace file 

Name Type Description 

timeDivision double Sampling period 

trace QList< bool> Binary trace 

Digital traces are are also simpler to parse than analog traces - there is only 

one floating-point number per file - and in our usage, they are also much smaller, 

since we only use them for subtrace masking, and ubtraces are much smaller than 

full traces (see Section 4.4.2). Thus, we only write digital trace files in a text-bas d 

format, though a binary representation is required when writing digital traces as part 

of power usage files. 

B.3.1 Text 

The text-based digital trace file format is quite simple, as shown in Figure B.5, in-

corporating just the trace length , sampling period and actual trace values. 

version 
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~ file:///home{jon/school/research/SCAB/software/ l ibscat;tests/ test.trace · KH exEct it 

Eile f.dit ~iew .Documents .6.ookmarks Iools .S.ettings .tlelp 

~ 
... - I l 

[ test. trace 
"Magic .. Verst-an 

0000 :0000 Sc 00 00 00 02 
0000:0010 0 · 0 4 
0000:0020 00 63 00 65 00 00 00 02 
0000:0030 00 00 00 00 00 2a 00 00 
0000:0040 00 00 00 00 00 00 3f fO 
0000:0050 00 00 00 00 00 00 40 00 
0000:0060 00 00 00 00 00 00 40 08 
0000:0070 00 00 00 00 00 00 40 10 
0000:0080 00 00 00 00 00 00 40 14 
0000:0090 00 00 00 00 00 00 40 18 
OOOO:OOaO 00 00 00 00 00 00 40 1c 
0000:00b0 00 00 00 00 00 00 40 20 
0000:00c0 00 00 00 00 00 00 40 22 
0000:00d0 00 oa 00 00 00 00 40 24 
0000:00e0 00 OG 00 00 00 00 40 26 
0000:00f0 00 00 00 00 00 00 40 28 
0000:0100 00 00 00 00 00 00 40 2a 
0000:0110 00 00 00 00 00 00 40 2c 
0000 :0120 00 00 00 00 00 00 40 2e 
0000; 0130 00 00 00 00 00 00 40 30 

Hex • J 

~ 

00 00 00 18 00 
00 20 00 54 00 
00 41 3f aS 81 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

41 00 
72 00 
06 20 
00 3f 
00 3f 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 
00 40 

Find 

20 
61 
00 
eO 
f8 
04 
0c 
12 
16 
1a 
1e 
21 
23 
25 
27 
29 
2b 
2d 
2f 
30 

Trace Name 

. .... * . .. . ... . 70 

.. .... ?o . ..... 7o 
' . ' . ' . @ .. ' '. ' . @. 
.... '. @ . . ... • . @. 
.. . .. . @ .. . ' . . • @. 
. . . .. . @ . . . . . .. @. 
.. . . .. @ .. .. . .. @. 
. •... , @ . .. ..•. @. 
.. " .. @ .. ... . @! 
. .. ... @" .. . . .. @# 
' . . ' .. @$ .. ' • .. @% 
. .•.. ' @& . .. . .. @' 
. . • .. ' @( . .. ... @) 

' . . . . . @*' '' . ', @+ 
' .... , @, . . ' . . . @-
' .• . ' . @ . .. ' ... @/ 
' .... . @0 .. ' ' . . @0 

r.\ 1 

B.ickwards 
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-~ 

X 

Signed 8 bit: 92 Signed 32 bit : 

Unsigned 8 bit: 92 Unsigned 32 bit : 

Signed 16 bit: 23723 32 bit float: 

1554710695 

1554710695 

3.850635E+17 

Hexadecimal: 

Octal: 

Binary : 

5C 

134 

01011100 

Unsigned 16 bit : 23723 64 bit float: 2.512192 E+ 138 Text: 

Show l ittle endian decod ing Show .u.nsigned as hexadecimal Stream length: Fixed 8 Bit 

Encoding: Default OVR Size: 390 Offset: 0000:0000-7 Hex RW 

Figure B.4: Example of a binary AnalogTrace file 

B .3.2 Binary 

Like that of an AnalogTrace, the DigitalTrace's binary repre entation us s a "magic" 

value for the purposes of format recognition and a format version - currently version 

1. T he code to write such a file is shown in Figure B.6. 
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DigitalTrace (192 values, 1s apart){ 
100100100100100100100 ... 0000 } 

Figure B.5: Example of a text-based DigitalTrace file 

QDataStream& power: :operator << (QDataStream& ds, 
DigitalTrace& t) 

{ 
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ds << (quint32) Ox5CABOOD7; II magic SCAB DT ( Digital Tr ; 

ds << (quint32) 1· 
' II binary format versio 

ds << t . period(); II sampling period 
ds << t.size(); II size 

const QList <bool > values = t. values(); 
ds << values; 

return ds; 
} 

Figure B.6: Writing a binary AnalogTrace file 

B.4 Power Usage Files 

A PowerUsage file is a binary representation of two things: 

• an AnalogTrace containing a power trace 

• a DigitalTrace that partitions the t race into subtraces (see Section 4.4.2 

This file consists of another "magic" number , a version (current version 1), two binary 

values (to indicate the presence of an analog and digital trace, respectively) and then 

the binary representations of the power trace and partitioning trace. An example of 

this format is shown in Figure B.S. 
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r G{ file:///home{jon/school/research/SCAB/software/ libscat/tests/ test.trace · KHexEdit )( 

Eile .E.dit ~iew .Qocuments .6.ookmarks Iools .S.ettings tlelp 

fS1 "-~ • ~agic" .·1 
test.trace Trace Name 
000G:OOOG Sc OG 00 GO 02 00 00 00 18 00 41 00 20 
OOOG:0010 0 · 0 4 00 20 00 54 00 72 00 61 
000G:0020 00 63 00 65 0G 00 00 02 00 41 3f aS 81 06 20 G0 
000G:0030 00 GO 00 00 OG 2a 00 00 00 00 00 00 00 0G 3f eO . .... * ........ 70 
0000 :0040 00 00 00 00 00 00 3f fO 00 00 00 00 00 00 3f fB . . . . .. 70 ..... . 70 
0000:0050 00 00 00 00 00 00 40 00 00 GO 00 00 00 00 40 04 ... . .. @ ....... @. 
0000:0060 00 00 GO 00 OG 00 40 08 00 00 GO 00 00 OG 40 Gc .. ... . @ ....... @. 
0000:007G 00 GO 00 00 00 00 40 10 00 00 00 00 00 0G 40 12 . ... .. @ ...... . @. 
0000:008G 00 GO 00 00 OG 00 40 14 00 00 00 00 00 00 40 16 . ... .. @ .. ..... @. 
000G : 0090 00 Of.l 00 00 0G 00 40 18 00 00 00 00 00 00 40 la . ... .. @ ...... . @. 
OOOG: OOaO 00 00 00 00 OG 00 40 lc 00 00 00 00 00 00 40 1e . .. ... @ .. . . ... @. 
000G:00b0 00 00 00 00 00 00 40 20 00 00 00 00 00 00 40 21 .... .. @ .. ... . @! 
0000 :00c0 00 GO 00 00 0G 00 40 22 00 00 00 00 00 OG 40 23 ..... . @" .. .. . . @# 
OOOG :OOdG 00 00 00 00 OG GO 40 24 00 00 00 00 00 00 40 25 ...... @$ ..... . @% 
OOOO :OOeO 00 GO 00 00 00 00 40 26 00 00 GO 00 00 00 40 27 ...... @& ...... @' 
000G :OOfG 00 GO 00 00 OG 00 40 28 00 00 00 00 00 OG 40 29 .. . ... @( ...... @) 
000G :0100 00 00 00 00 OG GO 40 2a 00 00 GO 00 00 OG 40 2b . . .. . . @* ...... @+ 
OOOG :011G 00 00 00 00 00 00 40 2c 00 00 00 00 00 OG 40 2d . . . . .. @, ...... @· 
0000 :0120 00 GO 00 00 00 00 40 2e 00 00 00 00 00 OG 40 2f ... .. . @ . .. . ... @/ 
OOOG :0 130 00 00 00 00 00 00 40 30 00 00 00 00 00 00 40 30 ' .. ... @0 ... . .. @0 ,., ,. , 
Hex y II Find Bickwards X 

Signed 8 bit: 92 Signed 32 bit : 

Unsigned 8 bit: 92 Unsigned 32 bit : 

Signed 16 bit : 23723 32 bit float: 

1554710695 

1554710695 

3.850635E+17 

Hexadecimal: 

Octal: 

Binary: 

5C 

134 

01011100 

Unsigned 16 bit: 23723 64 bit float: 2.512192E+138 Text: 

Show little endian decoding Show _ynsigned as hexadecimal Stream length: Fixed 8 Bit 

Encoding: Default OVR Size: 390 Offset: 0000:0000-7 Hex RW 

F igure B.7: Example of a binary Analog'II·ace file 

B.5 Power Simulation 

Hardware was modeled in this work in two parts: first the hardware itself was char-

acterized , th n hardware power usage was simulated using these characteristics as a 

model. 
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(Y file:///hometjon/school/researcl waveforrns/simulation/ LFSR-16/64·trials·64·cycles-le-8-noise/0x) y A " 

file fdit Yiew Qocuments .6.ookmarks Iools .s_ettings .l:ielp 

@ • ~ ~ 
PowerUsage "Magic" Version AnalogTrace "Magic" 

ooo0:oooo c 00 4 ·o oo oo e 01 01 eo a oo oo \ O. B .... .. \ o.o. 
0000:0010 o~o~~m-oM· O oo so oo Gf oo 65 oo 72 ..... N.P .o .w. e . r 
0000:0020 00 20 00 55 GO GO 61 00 67 00 65 00 20 GO 6t . . U. s .a g . e .. o 
0000 :0030 00 66 GO 20 00 4c GO 46 00 53 00 52 00 2d GO 31 . f .. L.F .S. R. - . 1 
OOOO :OG40 00 36 00 20 00 75 00 73 00 69 GO 6e GO 67 00 2G .6 . . u .s . i .n . g . 
0000:0050 00 6b 00 65 00 79 00 2G 00 30 00 78 00 58 GO 58 . k .e . y . O. x . X. X 
0000:0060 00 58 00 30 00 00 00 02 00 57 3e bO c6 f7 aO 00 . X.O .. ... W>OODD· 
0000:0070 00 00 00 00 30 40 3f 30 92 d2 ef 00 00 00 3e e7 . ... 0@?0 .00· . . >0 
GOOO:OOBO 53 ec 60 GO 00 00 3e e7 5d ld aO 00 00 00 3t 30 SO' ... >OJ .O ... 70 
0000:0090 93 26 aB 00 00 00 3e e7 5c ec aO 00 00 00 3e e7 .&Q . . . >0\ 00· .. >O 
OOOO:OOaO 59 dS 80 00 00 00 3f 30 95 80 e5 00 00 00 3e e7 YO .. . . ?0 . . o ... >0 
OOOO :OObO 55 7b 40 00 00 00 3e e7 54 de 80 00 00 00 3f 30 U{@ ... > . . .. ?0 
oooo:ooco 93 40 16 oo oo oo 3e e7 55 89 eo oo oo oo 3e e7 .@ .... >ou .o ... >O 
OOOO:OOdO 5b Se 80 00 00 00 3f 2f be Be fO 00 00 00 3e e7 [A . . .. ?/0·0· .. 
OOOO·OOeO 54 60 aO 00 00 00 3e e7 5b eB 80 00 00 00 3f 2e T' Q ... >0 [0 . . .. 7 . 
OOOO :OOfO e6 ec 08 00 00 00 3e e7 59 df 80 00 00 00 3e e7 DO .... >OYO .. . . 
0000 :0100 5d Sa eO 00 00 00 3f 2d 7c 70 aO 00 00 00 3e e7 J .D ... 7-I PD· .. >0 
0000:0110 57 a6 60 00 00 00 3e e7 57 20 aO 00 00 00 3f 2c WO' ... >OW D· .. ?, 
0000 :0120 a3 45 6e 00 00 00 3e e7 5c 67 eO 00 00 00 3e e7 DEn ... >0\gQ .. . >O 
0000 :0130 59 43 cO 00 00 00 3f 2b 3b 24 00 00 00 00 3e e7 YCO ... ?+ ; $ . . . . 
IHHH>. f.l 1 A () C: '7 0, ~f.l t:l() ()() (l(l .,~ ~'7 o::~ ., ... Af.l f.lt:l ()f.l /1/l .,4' .., .... hi n - n \_a ') x 

Hex • I Find B_gckwards 

Signed 8 bit : 92 Signed 32 bit: 1554710594 Hexadecimal: 

Unsigned 8 bit : 92 Unsigned 32 bit : 1554710594 Octal: 

X 

5C 

134 

Signed 16 bit: 23723 32 bit float: 3.850600E+l7 Binary: 01011100 

Unsigned 16 bit: 23723 64 bit float: 2.512048E+138 T ext: 

Show little endian decoding Show ynsigned as hexadecimal Stream length: Fixed 8 Bit 

Encoding: Default OVR Size: 111310 Offset: 0000:0000-7 Hex RW 

Figure B.8: Example of a binary PowerUsage file 



APPENDIX B. SOFTWARE DATA FORMATS 

class PowerUsageModel 
{ 

} ; 

public: 
double noiseLevel() const; 
void setNoiseLevel(double); 

II 
II 

virtual float basic() const = 0; 
virtual float zeroToOne() const 0; 
virtual float oneToZero() const = 0; 

protected: 
float noise() const; I I 
float noise(float scale) const; II 

private: 
double myNoiseLevel; II 

! < Amount of 
! < Set amount 

! < Noise 
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AWG N in pc 
of AWGN i 1 

! < Noise in a specific +-

! < Amount of AWGN 

Figure B.9: PowerUsageModel interface 

B.5.1 Power Model 

Once hardware has been characterized a C + class can be written which implements 

the PowerUsageModel interface, which is shown in Figure B.9. 

B.5.2 Cipher Model 

Simulating hardware requires simulating the number of high-low and low-high tran-

sit ions of a cipher. A Qt / C++ class (a C++ class using t he Qt lass library and 

preproces ed by Qt's Meta Obj ct Compiler - MOC) must be written which inherit· 

from the abstract class Cipher , shown in Figure B.lO. 



APPENDIX B. SOFTWARE DATA FORMATS 

class Cipher 
{ 

public QObject 

public: 
I I! Represents what 
struct StateChange 
{ 

II ... 

happens when 

int ll; int lh; int hl; int hh; 
} ; 

I I! The cipher 's name 
virtual QString name() const O· 

' 
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an cipher changes state 

I I! Current cipher state ( should be 
virtual QString stateString() const = 0; 

human - readable) 

} ; 

virtual int minimumKeySize () const = o· ' 
virtual int maximumKeySize () const = 0; 

virtual int minimumiVSize () const o· ' 
virtual int maximumiVSize() const = O· 

' 

I I! Initialize the cipher 
virtual void initialize(const 

const 

for use 
Cryptovariable& key , 
Cryptovariable& iv) 

virtual void initialize(const QList<bool>& key, 
const QList<bool>& iv) = 0; 

I** 
* Cycle the clock 

* 

0; 

* @returns a StateChange class 
- >high and 

representing the number of 

* low 
*I 

virtual StateChange clock() = 0; 

signals: 
I I! The internal state has 
void newState(QString state); 

changed 

Figure B.lO: Cipher interface 

high ->low transiti ons etc 










