

Side Channel Analysis of

Stream Cipher Hardware

by

(©Jonathan Anderson, B.Eng.

A thesis submitted to the
School of Graduate Studies
in ; tial fulfillment of the
requirements for the degree of
Master of E1 'n¢ i1 in Ci¢ _ uter Engineering
Faculty of .agineering and Applied Science

Memorial University of Newfoundland

Septeml 2008

St. John Newfoundland

Abstract

In today’s world of ubiquitor connectivity, con iunications sccurity is an ever-
present concern. In order to protect sensitive information from cavesdropping by
foreign governiments, identity thieves and other curious individuals and organiza-
tions, cryptography is today deployed on a wide scale. No longer strictly the domain
of large banks and governinents, cryptographic systems are found in such evervday
places as building passes and vehicle ignition keys. Cryptanalysis is the study of
methods - called attacks —~ that can be used to extract secret information from these
cryptographic systems. It is largely a statistical discipline, but out of it has grown a
more hands-on approach: side ™ annel analysis.

Side channel analysis is an exci g field of study which attemnpts to extract secret
information from cryptographic systems though the careful mecasurement of physical
characteristics such as power usage and exccution time. These characteristics pro-
vide “side channels” of information flow that algorithm designers may not anticipate.
This rescarch focuses of the power side channel, which extrac information from the
instantancous power cither used or radia 1 by a cryptographic system. Traditional
forms of power analysis are ineflective against a large class of ciphers called stream
ciphers, but a recently-introduced group of techniques template attacks have
been 1own to be effective agaii . microcontroller-based implementations of stream

ciph

This thesis describes the theory behind template attacks, and describes how we
have applied them to perform power analysis of hardware implementations of stream
ciphers. We have built hardware for this purpose, called the Side Channel Analysis
Board (SCAB) as well as designed software to perform the necessary analysis. We
used our experimental setup to measure the power usage of FPGA-based hardware

specifically the Actel ProASIC3 - running a stream cipher building block called
LFSR-16. We have also simulat: and analysed tI power usage of LFSR-16 and a
functional stream cipher, Trivium. Trivium is a hardware-focused stream cipher that
was vetted by the recent eSTREAM initiative, an is thus of great importance. In
both simulation and hardware, we were able to extract secret key information with
a probability greater than we would expect to achieve through random guessing. In
the case of the cipher building block LFSR-16, we were able to correctly classify
four key bits with accuracy greater than 90%. In the case of the i -eam cipher
Trivium, average classification ccc exceeded 20% where random guessing would
have achicved a success rate of just 6 %.

Thus, we may state that the temp te attack technique is applicable tol dware-
based stream ciphers, and tI . plemente: of such ciphers must be aware of such

techniques and attempt to apply appropriate countermeasures where possible.

Acknowledg m _nts

Chrissy, my wife, has been an unfailing source of encouragement and joy.

Dr. Howard Heys, iy supervisor, has provided me with the freedom to explore
and the guidance to succeed.

Mr. Chris Batten, of MUN Technical Services, lent his invaluable aid in assembling
the SCAB platform. After a design flaw was discovered in SCAB Mk I, his steady
hand re-routed a single signal from a 208-pin surface-mount chip, and saved a month'’s
worth of refabrication.

This research was supported by the Natural Sciences and Engineering Rescarch
Council (NSERC), through the Canar Graduate Scholarship and Discovery Grant
prograins.

Soli Deo gloria.

i

Contents

1 Introduction

2 Background

2.1 Cryptography
2.1.1 Goals and Actco
2.1.2 Ciphers and Attackso o000

2.1.2.1 Cryptanalysiso
~1.2.2 Public Key Cryptography
2123 OneT 1 1o oo 0
2.1.2.4 Block Ciphers o0
2.1.2.5 Stream Ciphers

2.2 Side Channel Analysiso
221 Timing Analysis. o000
2.2.2 Fault Analysis oo
2.2.3 DPower Analysis & Electromagnetic Analysis

2.3 SUIMALY o oo e e e e

3 Template Attac

3.1 Attack Overview e e e e

v

CONTENTS

3.2 Attack Details
3.2.1 The Multivariate Normal Distribution
3.2.2 Maximum Likelihood Estimators
3.2.3 S al Classification
3.24 Template Masking Lo

3.3 Attack Application oL
3.3.1 Imapplicability of DPAo
3.3.2 Applicability of Template Attacks
3.3.3 Applicability to Hardware Implementations

3.4 Summary

4 Experimental Setup

4.1 SCAB - Side Channel Analysis Boaxd
4.1.1 Design Constraints
4.1.2 Power Analysis o
4.1.3 Fault Analvsiso
4.1.4 Timing Analysis. oo

4.2 Other Hardwareo o o e

4.3 Measurement Equipmento 0000000

4.4 Software
4.4.1 Power Trace Formatting
4.4.2 Calculating Trace Mean Vectors
4.4.3 Simulating Pon Usage
4.4.4 Viewing Power Traces
4.4.5 Building "~ uaplate oo

4.4.6 Classifyh Power Traces

COI Y i .‘_JlVTS "i

4.4.7 Evaluating Classification Success Rate 60

4.5 SUMMATY o oo e e e e 61

5 Experimental Results and Analysis 64
5.1 Initial Experiments Lo G-
5.2 LFSR-16 o e 67
5.2.1 Simulation Results00 67

5.2.2 Experimental Results)

5.3 Summary . o.o. ... e e e e 77

6 Application of Template Attack to Trivium 80
6.1 Description 80
6.2 Simulation Results oo 83
6.2.1 Classification Success Rate vs. Template Size 83

6.2.2 Classification Success vs. T ning Samples 81

6.2.3 Classification Success Rate vs. Bits Under Attack 85

6.3 Trivium Hardware o o 88
G.4 Summary 88

7 Conclusions 89
A Detailed Results 97
Al Simulationo 97
A1l LFSR-16 97

A2 Trivinm ..o 109

A121 OneKeyBit 109

Al122 Twol /DBits. 109

A123 FourKeyBi 110

CONTENTS vil

Al124 E wKeyBits o000 113

A.2 Physical Measurement 114
B Software Data .ourmats 115
B.1 Cleverscope Text Files 115
B.1.1 Header 115
B.1.2 Body 117

B.2 Analog Trace Fileso 118
B.2.1 Text e 118
B.22 Binary 119

B.3 Digital Trace Files oo 0o 119
B.3.1 Text . . . e 120
B3.2 Binary 121

B.4 Power Usage Files 122
B.5 Power Simulation oo o oo 123
B.5.1 Power Model oo 125

B.5.2 Cipher Model oo 125

List of Tables

3.1 Stream ciphering operationso oL 28
5.1 Power usage characteristicso o o000 66
5.2 Classification success rate vs. bits under attack T2

A.1 16 training samples per operation (107® W noise) 97
A.2 16 training samples per operation (1077 W noise) 98
A.3 16 training samples per operation (107 W noise) 98
A.4 16 trainii samples per ope ion (107° W noise) 99
A.5 16 training samples per ope ion (107" W noise) 99
A.G 16 training samples per operation (1073 W noise) 100
A.7 16 training samples per operation (.01 W noise) 100
A.8 16 training samples per operation (.1 Wnoise) 101
A.9 16 trainii samples per operation (1 W noise) 101
A.10 32 trainit samples per operation (1078 W noise) 102
A.11 32 training samples per operation (1077 W noise) 102
A.12 32 training samples per operation (107 W noise) 103
A.13 32 training samples per op ation (107° W noise) 103
A.1464 tr nples per operation (107 W noise) 104
A.15 64 training samples per operation (1077 W noise) 104

viil

LIST OF TABLES iX

A.16 64 training samples per operation (107° W noise) 105
A.17 64 training samples per operation (107> W noise) 105
A.18 64 training samples per operation (1071 W noise) 106
A.19 G4 training samples per operation (1073 W noise) 106
A.20 64 training samples per operation (1072 W noise) 106
A.21 64 trainit samples per operation (.1 W noise) 106
A.22 64 training samples per operation (1 W noise} 106
A.23 128 training samples per operation (107 W noise) 107
A.24 128 training samples per operation (107° W noise) 107
A.25 256 training samples per operation (1077 W noise) 108
A.26 256 training samples per operation (107° W noise) 108
A.27 Trivium results - atta ronekey bito 109
A.28 Trivium results - attacking two key bitso 0. 110

A.29 Trivium results - attacking four key bits, 64 samples, 107% peak noise 111
A.30 Trivium results - atte ~~ four key bits, 64 samples, 1077 peak noise 111
A.31 Trivium results - at king four key bits, 256 samples, 107® pe: noise 112
A.32 Trivium results - attacking four key bits, 256 samples, 1077 peak noise 112
A.33 Trivium results - attackit four key bi 1024 samples, 107® peak noise 113
A.34 Trivium results - attacking four key bits, 4096 samples, 107® peak noise 113
A.35 Triviumn results - attacking eight key bits 114

A.36 Physical measurcment resultso 00000 L 114

List of Figures

3.1
3.2
3.3
3.4

3.6

4.1
4.2

Alice, Boband Eve oo 5
The one-time pad in operation L 10
Block cipher operation Lo 11
Stream cipher operationo 12
An abstract model of a cipher 00000 14
A more realistic model of a cipher00 00 15
Data dependent branchingo 16
Power analysis and electrom: etic analvsis 18
Simple Power Analysis00 20

Inter-operation mean and standard deviation vectors for actual hardware 34

DPA key guesses e 36
DPA bit guess 37
DPA trace differenceso Lo 38
Difference of averages = 1 sample 10
Difference of averages - 50 sampleso 41
SCAB - Side Channel Analysis woard 45
PCB Layout for SCAB 18
Experimental setup 0oL 50

LIST OF FIGURES

4.4 Switch debouncing circuit 0oL
4.5 Cleverscope PC interface,
4.6 Workflow datafiles L.
4.7 Partitioning traceo
4.8 traceview showing the contents of a Cleverscope file
4.9 tracev: v used to select subtrace mask ... 000000
4.10 classifyoutput
4.11 success output
5.1 The “FlipFlopper” Circuit
5.2 FlipFlopper output and instan 1eous power us: >
5.3 Design of LFSR-16 o
5.4 Basic statistics of simulated LFS1 6
5.6 Classification success vs. template size
5.6 Classification success vs. template size
5.7 Classification success vs. peak noise
5.8 Inter-operation statistics: varying bits0-3
5.9 Inter-operation statistics: varying bits4 7
5.10 Inter-operation statistics: varying bits 8-11
5.11 Inter-operation statistics: varying bits 12 15
5.12 Classification success vs. trainit samples
5.13 Classification success vs. template size
0.14 Hardware LFSR-16 statistics
6.1 Trivimm
6.2 .dvium initialization 00000000

6.3 Trivium keystream generation Lo

X1

LIST OF FIGURES Xii

6.4
6.5
6.6
6.7

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Classification success vs. template size — Trivium 84
Classification success vs. training samples Triviom 89
Trivium classification success vs. bits being attacked 86
Trivium information leakage o0 87
Cleverscope text file example00 0L 116
Example of a text-based AnalogTrace file 119
Writing a binary AnalogTrace file 120
Example of a binary AnalogTra file 121
Example of a text-based DigitalTrace file 122
Writing a binary AnalogTrace file 122
Example of a binary AnalogTrace file 123
Example of a binary PowerUsage file 124
PowerUsageModel interface o000 125

B.10 Cipher interface oo 126

CHAPTER 1. INTRODUCTION 2

block ciphers or stream ciphers. There are different applications for these ciphers, but
both are important. In 2001, the US National Institute of Standards and Technology
(NIST), after a competitive process, published the Advanced Encryption Standard
(AES) [1], which has become the de facto global standard for block ciphers. In
2008, the European Union’s eSTREANMI process identified a portfolio of strong streain
ciphers - F-FCSR-H v2 |2], Grain v2 3], MICKEY v2 [4] and Trivium |5] - and it is
to this more recently recognized group that we tur our attention.

Our goal, then, is to extract secret information from streamn ciphers surrepti-
tiously; i.c. to attack them. Rather than the traditional (and well-studied) methods
of cryptanalysis, whereby mathematical relationsh s are found among secret infor-
mation and encrypted data, we turn to the newer approach of side channel analysis
|6], which extracts secret information from careful measurement of physical quantities
such as power consumption.

Traditional forms of side channel analysis are often ineffective against stream ci-
phers, but a recent class of techniques known as template attacks [7] have proved effec-
tive against microcontroller-based implementations of stream ciphers (see Chapter 3).
Microcontrollers, however, are = 'ge, complex s ems. The question before us was,
could such attacks be cffective against hardware implementations of cryptographic
systems? Could we demonstrate their efficacy, not just against a theoretical model of
power usage, but against physical hardware? Such a demonstration would impact the
design and implementation of stream cipher hardware in eimbedded hardware such
as smart cards and RFIDs, which could impact on the payment and authentication
technology sectors.

We built both hardware and software in an attempt to answer these questions.
This experimental setup, which is comprised of a custom FPGA-bearing PCB, a

purpose-bought mixed-signal oscilloscope d thousands of lines of analysis software,

CHAPTER 1. INTRODUCTION 3

is described in detail in Chapter 4.
Finally, we discovered the answers to our quest ns: yes, template attacks are cf-
fective against the power usage of hardware cryptosystems, and yes, this effectiveness

can be demonstrated using physic hardware.

Chapte. 2

Background

2.1 Cryptography

The word cryptography comes from the Greek xpuntéc (seeret) and ypagea (writing)
[8]. Cryptography is the “science and art of designing ciphers,” |9] which are used in
many applications to make secret the messages ¢« municated among two or more
parties. A basic understanding of cryptography, and its goals, is requisite to under-
standing the purpose and methodolc 7 of the attack that we will present in Chapter

3, and whose results we will give in Chapter 5.

2.1 " Goals and Actors

Cryptographyv has many goals, including confidentiality (the ability to keep secrets
from those who we wish not to know them), int: ity (the ability to verify that
messages have not been altered), authentication and non-repud ion (the ability to
prove that a party sent a mess , cven if they choose to deny it later). To illustrate
these goals, we will introduce three characters who figure prominently in the literature:

Alice, Bob and Eve.

[eBa]

CHAPTER 2. BACKGROUND

Alice and Bob In the literature, Alice and Bob are often used to represent any two
parties who wish to communicate in a sccure manner [10, 11]. Since their communi-
cations are of a sensitive nature, they use cryptographic tools to protect the content
of their messages from being discerned by cavesdroppers (e.g. learning the name of
a reporter’s source), to prevent adversaries from making undetectable changes to the
substance of their messages (e.g. changing a beneficiary’s name in a will), and if
desired, to prevent them from later denying that they sent a particular message (e.g.
an agreement to pay for a good or service). Stated more formally, they use crypte

raphy to provide their communications with confidentiality, integrity, authentication

and non-repudiation.

Eve Eavesdroppers are commonly represented by an actor named Eve. Eve is as-
sumed to have complete access to the cominunications channels that Alice and Bob are
using, even the ability to send messages to one or both parties, but good cryptography
will prevent her from undc .anding wl Alice and Bob communicate (violating con-
fidentiality), changing the meaning of messages (violating integrity), masquerading
as cither Alice or Bob (falsifying authentication) or helping cither party deny their

communication (repudiating transactions).

> Bob

Figure 2.1: Alice, Bob and Eve

CHAPTER 2. BACKGROUND 6

2.1.2 Cipl -s and Attacks

The primary cryptographic tool used to provide confidentiality is the cipher. A cipher
transforms information that we wish to remain confidential - the plaintext — into a
stream of data the cipher™ |- that can be safely transmitted via untrusted channels
such as public networks. This transformation is called encryption, and it - as well as
the reverse transforimation, decryption — is parame zed by secret information called
the key. Without this key, an adversary in possession of ciphertext material should

not be able to decrypt any of the ciphertext to rea the original plaintext.

2.1.2.1 Cryptanalysis

The field of cryptanalysis is dedicated to finding weaknesses in cryptographic algo-
rithms such as ciphers, whether for the purposes of I ter understanding cipher design
(as in academic settings) or eavesdropping on secret communications (as in some in-
dustrial or governmental settings). There are several methods that can be used to
attack a cipher, all of which assume that the attacker knows the cipher being used

[12]:

Ciphertext-only attack In this type of attack, it is assumed that the attacker has
access to ciphertext, as well as knowledge of the cipher algorithm. It should be com-

putationally infeasible for the attacker to ascertain any plaintext or key information.

The most obvious such attack is an exhaustive search (colloquially, a “brute
force” attack). In this approach, the attacker checks every possible key to see if it can
be used to decrypt the given ciphertext into an intelligible p mtext. This approach

is very inefficient: for an n-bit kev, the expected number of keys the attacker must

CHAPTER 2. BACKGROUND 8

2.2,

2.1.2.2 Public Key Cryptography

One of the fundamental problems of classical cryptography was the key distribution
problem |16]. People separated by long distances could protect their communications
via ciphers, but this protection was meaningless unless a sccret key could be securely
communicated. Banks and el 1ents could use trusted couriers and diplomatic
pouches, but such means were bevond the means of private individuals.

Key distribution remained an open problem unt — the 1970s, when public-key cryp-
tography was invented. Public-key cryptc aphy uses one-way mathematical functions

functions whose inverses, ¢ discrete logarithis, are very hard to calculate in
such a way that encryption can be performed by anyone, usit — a public key, but de-
cryption is only feasible for the owner of a secret key. The quintessential public-key
cryptosystem is RSA, named for its authors: Rivest, Shamir and Adleman [16]. With
such a system, encryption keys could be published openly, largely solving the key
distribution problem.

The focus of this thesis, however, is stream ciphers, which use symmetric keys.
Symmetric-key (or secret-key) ¢ __togri 1y u . the same, secret key for both en-
cryption and decryption. Syn tric-key ciphers are still important, as public-key
cryptography is very computationally complex, 1 is thus often used for the pur-
poses of setting up a session key - a key that traditional, lower-complexity
cryptosystems can use to provic confidentiality for a session. This is the premise

behind systems such as PGP - . retty Good Privacy |17].

CHAPTER 2. BACKGROUND 9
2.1.2.3 One- ..me Pad

During World War I, Vernam proposed the idea of a simiple cipher that could not be
broken: the one-time pad [18]. Shannon subsequently demonstrated in [12] that this
cipher did indeed provide perfect secrecy - if the key is truly random, then intercepting
ciphertext provides the attacker with no information about the plaintext.

The critical requi nent for perfect sccurity is that the set of possible keys be
at least as large as the set of g ible plaintexts. In a one-time pad, a long stream
of random bits is generated and distributed to both comnunicating parties (c.g. an
embassy’s key could be encoded on optical tape and shipped in a diplomatic bag |9]).
When a message is encrypted, cach plaintext svinbol is added to a symbol of key
using Galois Ficld arithmetic, and that portion of key is discarded, nev — to be used
again. Decryption occurs via the inverse process: cach ciphertext symbol is added
to the Galois Field inverse of an identical keystream symbol — which is afterwards
discarded to produce the original p ntext. If the svinbol alphabet is in GF(2).
then both encryption and decryption are simply the XOR operation.

Since there is as much key material as plaintext, and if that key material is truly
random, then it is impossible to “break” the cipher. If the plaintext and key both
have an alphabet of L symbols, then there are N* possible plaintexts and N* pos-
sible keys, where N is the numl of symbols transmitted. Irom the ciphertext
“GDIFBALDKRPDFZLSB” it impossible to know which of the 17-letter plain-
texts “MEETMEATNINETODAY”, “MAXSMARTISAGENTS86” or even “LOVEY-
OUSWEETHEART” is correct, « ch of their corresponding keys is equa - likely
to be correct as shown m Figure 2.2,

Because of the 1 stical costs of me i1 and distributing vast amounts of

kev material, the one-time pad is not used extensively outside of diplomatic and

CHAPTER 2. BACKGROUND 11

HEHEH

Plaintext Ciphertext
—
Key —» D <«—Key
| -
Ciphertext Plaintext

111
1

Figure 2.3: Block cipher « eration
but all operate with two common characteristics:
e Complexity

— Block ciphers are often large, complex hardware systems whose power us-
age can vary greatly, depending on input elements such as plaintext and

secret key

e Key Usage

— Because of the overl 1 associated with changing encryption keys (both in
key management and cipher setup), block ciphers perform many encryp-

tions/decryptions with a single key

While neither of these characteristies interfere with block ciphers™ ability to operate
securely in a theoretical sense, they will become important when we discuss mple-

mentation attacks in Section 2.2.

CHAPTER 2. BACKGROUNMN._ 13

bit, then the two keystreams will be vy different, and the or’ 'nal plaintext will not
be recovered from the ciphertext.

Two characteristics of streamn ciphers that will become important in Section 2.2

are:
o Complexity

— Stream ciphers are typically very simple systems, and the power used by
their hardware implementations does not vary as greatly as that of block

ciphers
e Key Usage

— The internal state of many stream ciphers (c.g. Grain |3] and Triviumn [5])
is initialized with the secret key, but continually changes in such a way
that key information is * xed in” to the state, so no two bits of keystream

are ‘cnerated ” >m the same intert state.

2.2 Side Channel A-alysis

When cryptographers des” 1 a new cipher, the approach that they take is often very
abstract; many cryptographers would agree with [19] when it says that “cssentially
a block cipher is a keyed permutive mappii (encryption) t¢ ther with its inverse
(decryption)”. Such an abstract, mathematical model of a cipher appears in Figure

2.5.

CHAPTER 2. BACKGROUND 15

capture information “leaking” out of the cipher. The techniques that cryptographers

use to exploit these correlations arc collectively known as side channel analysis [6].

Secret Known to At 2

bty UG U S VG I) LA LOAID L s

N Plaintext

|

i

|

! —»-Execution Time

" <—|nduced Faults

X —»Resp se to Faults
il —»Power Usage

i —»EM Radiation

g

P
M
~<

lem e e = L

Figure 2.6: A more realistic model of a cipher

Most techniques of side channel analysis require some level of physical access to
the cryptographic device under attack. This was once an inplausible assumption, but
as cryptography moves from secure server rooms to notebook PCs to smart cards in
our wallets, it becomes an increasingly realistic and important component of sccurity

threat models.

2.2.1 Timing Ar_lysis

Timing Analysis, first demonst ed in [20], uses very precise measurement of al-
gorithm execution time in order to infer bits of data upon which the algorithm is
operating. At first glance, there n 7 not seem to be a correlation between these two

things, but in fact, execution time can be related to:
e key- or data-dependent b ch instructions

e cache hits

CHAPTER 2. BACKGROUN_ 16

e long processor instructions (e.g. multiplication)

For instance, in public-key cryptography, mathematical operations are often per-
formed on very large (512- or 1024-bit) integers. In order to improve perforniance,
many public-key p nentations will use conditional (if/else) software instructions

that depend on key or data bits, as in Figure 2.7.

for(i = ...)
if(input & (1 << 1) != 0)
output << 1
output *= input

Figure 2.7: Data dependent branching

This pscudocode, which could be part of a large-integer exponentiator, has two
lines that only execute if an particular input bit is 1. If the input and output
variables in this pseudocode are 512-bit integers, there will be a very significant
difference in execution time depending on how many bits of inj : are 1.

Timing attacks have been applied to block ciphers such as RC5 |21} and are even

applicable to careless implementations of the Advanced Encryption Standard [22].

2.2.2 Fault Analysis

Fault analysis attempts to induce small (usually single-bit) errors into a cryptographic
computation [23]. The resultant ciphertext can be compa 1 to the ciphertext that
would emerge if there were no ¢ r, and the differences between the two can yield

insight into intc 1l bits that should be sceret.

CHAPTER 2. BACKGROUND 19

Both forms of SCA have their place: power analysis does not have to contend
with high levels of ambient noise, but electromagnetic analysis allows the attacker to
focus on a specific part of the device under attack - concentrating on cryptography
and ignoring unrelated hardware.

In Figure 2.8(a), we see a hardware device with a small resistor inserted between
its Voo terminal and the actual Ve supply. The power consumed by such a device

can easily be calculated as

‘ Vh (t) — U[(t)'

- (2.2)

Figure 2.8(b) shows a small electromagnetic probe receiving radiation from the
crvptographic device. In both cases, deep memory oscilloscopes are used to record
the power being consumed or emitted.

A capture of the power usage over a complete cryptographic operation is referred
to as a power trace. While it is possible to correlate these traces with internal secrets,
it is often made difficult by a very low signal-to-noise ratio (SNR). An attacker may
be interested in whether a particular flip-flop in a cryptographic device changes from
0 to 1 or from 1 to 0, but there may be thousands of flip-flops in the device, each of
which has just as much effect on overall power usage as the bit being attacked. In
order to overcome this SNR problem, increasingly sophisticated methods of analysis

are being developed.

Simple Power Analysis (SPA) The first, and simplest, method of power analy-
sis can be used to analyse the power consumption of microcontroller-based software

implementations. Naive implementations of ciphers may incorporate software tech-

CHAPTER 2. BACKGROUND 20

niques like branching instructions that depend on key bits. Such techniques build a
very high correlation between power usage and individual key bits, as the difference
in power traces where a branch was or was not taken can be obvious even to the
naked eye. In these situations, an attacker may be able to simply examine the power
trace and pick out key bits by observing whether or not power-intensive instructions
following branch instructions were executed.

For instance, Figure 2.9 shows a current trace from a DES operation. Arrows point
to dips in current characteristic of rotation functions, clearly showing the attacker that
one rotation occurred in one round and two in the next. Since the number of rotations

are key-dependent, being able to count rotations gives the attacking information about

the secret key.

Ao
o O

35
30 ' |

et 1

20

Current (mA)

o 100 200 00 500 600 700 800

300 4
Time (uS)
Figure 2.9: Simple Power Analysis [30]

This technique is called simple power analysis (SPA) [30], and it relies on a rel-
atively high SNR. It has been used practically, as shown in the SPA attack against
DES in [30], but it is a very simple matter for a cipher implementation to counter-
act this threat: all that is required is for the designer and/or implementer to ensure
that branching instructions do not depend on key bits. This may increase execution
time, but avoiding key-dependent shortcuts means that the high SNR necessary for

Simple Power Analysis is not attained, and so SPA is rendered ineffective against the

implementation.

CHAPTER 2. BACKGROUND 22

plates are built, which are multivariate Gaussian models of the noise associated

with particular guesses at key bits.

2. Actual Attack

In this step, a single power trace is ¢« 7" cted from an actual device in use and,

for cach template, the probability that it belongs to that template is calculated.

Communications engineers will see that this approach is analogous to using matched
filters to resolve received s 1als. The technique shows much promise, having been
used to successfully attack a microcontroller-based implementation of the stream
cipher RC4 |7]. To date, however, tI template approach has not been applied to

hardware-based implementations of stream ciphers.

2.3 Summary

Cryptography is an important part of daily life in our networked world. One of the
most fundamental tools of cryptography is = > cipher, which provides confidentiality
for parties wishing to communicate in the presence of an eavesdropping threat. These
ciphers may be attacked throv 1+ methods of cryptanalysis, which may be c¢lassified
as ciphertext-only, known-plaintext, chosen-plaintext or implementation attacks.
Ciphers can be categorized as symmetric-key or asymmetric-key. Among symmetric-
kev ciphers, which this thesis is concerned with, there are two broad categories: block
ciphers and stream ciphers. St ciphers attempt to approximate the one-time pad
which has perfect secrecy by generating long pseudo-random kevstreams from se-
cret keys. Encerr | ion consists of adding this keystream to the plaintext stream, and
decryption consists of adding it to the ciphertext stream. Oue important streain

cipher today is Triviv which 1l be considered in detail in Chapter 6.

CHAPTER 2. BACKGROUND 23

Side channel analysis is a broad term for a class of implementation attacks that
attempt to extract secret information via carcful measurement of various physical
characteristics, such as execution time, response to induced faults and the power con-
sumed or radiated by a system. These measurements can be analysed by inspection,
partitioning-based statistics and multivariate Gaussian analysis. . ac latter approach

is called a template attack, and its details are the subject of Chapter 3.

Chupter 3

Templat . Attacl-=

The template attack is a pov ful method for extracting sccret information from
cryptographic hardware. Chari et al. claimed in 7] that it is “the strongest form of
side channel attack possible in an information theoretic sense” (under certain assump-
tions concerning the nature of the side channel - see Section 3.3.2). The attack is
effective when physical access is linited - an attacker needs just one power trace from
the device under attack - and is even cffective against stream ciphers, which resist
traditional power analysis techniques such as siinple power analysis and differential
power analysis (see Seetion 4.1.2 for more information on SPA and DPA).

In this thesis, we focus on the power usage side channel, but template attacks
arc not inherently limited to power analysis; they can also he applied to other side

channels such as clectromagnetic radiation and execution time.

3.1 Attack Overview

Template attacks |, crate accor”™ totl principles of s 1al detection, and they are

I

optimal in the same sense that the matel ter oach is the optimal technique

CHAPTER 3. TEMPLATE ATTACKS 20

a precise definition of closeness). The operation associated with this template (e.g.
a guess at a portion of the secret key) is assumed to be cor :t, and the attack can

repeat on other parameters, such as other key bits.

3.2 Attac _ etails

The theory of template attacks is rooted in the statistics of multivariate normal distri-
butions, as presented in [34] and [35]. It is assume that side channel measurements
can be characterized by such a d ribution; the validity of this assumption is consid-

cred in Section 3.3.2.

3.2.1 The Multivariate Normal Distribution

Suppose we have a random variable which is an n x 1 vector. Since it is both random
and a vector, it will be represented here by X. For the purposes of the template
attack, this random variable could be a set of power or timing measurements. The
probability distribution of this - tor can be represented by a rmean vector and an

independant covariance matric. The mean vector is defined as:

- E{x}

{x} = E{.x'")} : (3.1)

=l
x

| B} |

where X is the n x 1 random variable, x; is an clement in the random variable (c.g.
a single power or timing value), E {} is the expec ion opc :or and [is the ecan

vector. The covariance matr of " variable is:

CHAPTER 3. .. .IPLA1. A. ..CKS 27

r -
011 012 -+ O
. 021 Oz Oy

Lz =cov(X) = , (3.2)
| On1 Op2 - Onn

where 0;; = E {(x; — ;) (X; — ;) } is the covariance of i-th and j-th elements of the
n x 1 random variable X, and 1, = E {x;}.

We may now express the distribution’s probability density function (PDF) as

= (@—ix) " v (F-ix)
2 \T 2 % 3.3
S (@) V2m)" |2k (33)

where & is an n x 1 vector, i, is the distribution’s mean vector, ¥4 the covariance
matrix and |X,| the determinant of the covariance matrix. This PDF is the geueral

(multi-dimensional) form of the well-known univariate Gaussian PDI":

fole) — oA (3.9

ovim
where x is a real value, u is the distribution’s mean value and o is its standard
deviation.
Our side channel values (e.g. the power 1 1ge of the cipher when, say, the last
four key bits are 0110) can be represented by such a distribution, with each clement
of the vector T being a different power measurement (e.g. power at time ¢ = 20ns,

= 40ns, etc.).

3.2.2 Maximum Likelihood Estimators

The template in a template attack is a maximum-likelihood estimation of i and £ for

a set of possible side channel values, e.g. the power usage of a cipher for a particular

CHAPTER 3. TEMPLATE ATTACKS 29

denoted S| where k represents the operation, and con it L vectors of N points

of side channel da

S11 S12 SIN
5921 2 SaN
S31 831ttt S3N
—_] .
A) = . (3‘5)
Sq1 S41 0 SaN
Spy Spe2 ot SLN

Having generated the matrix S, we may estimate the operation’s mean vector. The
maximum-likclihood estimation of the true mean vector is simply the sample mean
vector, an arithmetic average of cach sample trace. Let k be the number of the
operation being studied (in the range [1, K]) and s?ﬁ.k) be the j-th column of S¥). The
arithimnetic average of all L samples of side channel measurements for operation O®)

is a vector of N values, represented by 4*) and given by

- L _
7251

i=1
942
(k)

)
|
——~
©w
(@)
Nl

L
%ZSiN
i=1

Once we have calculated an operation’s sample mean vector, we may calculate the

LR

. ~ (K . . .
noise vector, ng) for each sample trace for operation O™, 5

CHAPTER 3. TEMPLATE ATTACKS 30

S — [

Sip — fla

SiN T HN

The noise vectors of all L sample traces are used to calculate the maximuim-likelihood

estimate of the operation’s covariance matrix:

1‘ r
1 . bt 1 3 (N T
S _ Z}:(ggw R)(g-f.“_;,m) -7 [rﬁ“ (ﬁi”) } (3.8)
(=1

1=1 i=
This N x N matrix is our maximune-likelihood estimate of the operation’s covari-

(k

ance matrix S®) | and the template for operation O%) is ([1, i)

3.2.3 Signal Class.__:ation

Having built A templates, one per operation, we can classify any signal § by calcu-
lating that signal’s noise vector, 7, and the Mahalanobis distance be en that noise
vector and cach operation’s mean, @) [36):
® oy S (o) s 2
Dy () =4 /AT { E L, (3.9)

where £ is the sample covariance matrix for operation O). Having calculated D[(\I)
for each of the I\ templates, we mayv ¢ ssify the signal §as belonging to the operation

. : o k) [~
O™ which has the smal it Mahalanobis distan. Dr(w) ().

The method introduced in ., attempts to effect classification by using the multi-

variate Gaussian PDF directly as a probability:

“... the noise probability distribution is given by the N dimensional

CHAPTER 3. TEMPLATE ATTACKS 31

multivariate Gaussian distribution py, (+) where the probability of observ-
Ing a noise vector n is:

1 1 .,
PN, (N) = ————===cxp <—:n’ Z;,}n) ,

\/ YIS

where |Ep,| denotes the determinant of £y, and 3! is its inverse.” [7]
1]

This is not strictly valid, as a point on a PDF is not a probability. The probability of
a point on a continuous distribution is vanishingly small, as probabilities are obtained
by integrating under a PDF and the arc underncath a point is infinitesimal.

While the nomenclature is not precise, the method does work it 1s concerned
with ratios of “probabilities” rather than the probabilities themselves. Indeed, though
a value of a point on the PDF may be much greater than 1, a ratio-based comparison
of PDF values can be an effective ¢ ssification mechanism.

Given Equation 3.9, we sec that the PDF from [7] can be represented as:

_1(p%in)? 1
= 2 (Phi'n) S B

]

\/ (2m)™ (IS Ve sy (25)’

The ratio between PDF values for a given noise vector and two operations, O%) and

O | is:

f(,‘U) (I_..) (27T)N]IS(AI)” 6(1)5\’;1)(!1')>,.
FHD (47) DY ISk | ()(u;‘,‘o‘m)

TS|)(Dt";l)(ﬁ))z_([)‘\“"U)(ﬂ))."

\/ “D\"UIH

CHAPTER 3. TEMPLATE ATTACKS 33
1. The sample mean vector ¥ is calculated for cach operation OW).

2. An overall mecan vector g is calculated:

3. The inter-operation standard deviation of the mean vectors is calculated:

1 N

~ (L)
NOBTEE

k=1

QL
I

4. For a chosen value N (e 32 points of intere: 1, the N points with the greatest

inter-operation standard deviation are selected for template generation.

Actual inter-operation mean and standard deviatic vectors are shown in Figure 3.1,
This data was derived from the experimental setup to be described in Chapter .
and it illustrates just how significant differences can be among data points in the
inter-operation standard deviation.

The upper graph shows the inter-operation mean vector. In this vector, we can see
clear spikes of power usage whenever a clock edge occurs. This behaviour is commnion
to all operations, and thus, it can be observed in the inter-operation mean. The
lower graph is the inter-operation standard deviation vector. This vector shows us

two important facts:
1. The greatest differences occur at clock edges.

2. The greatest differences occur early in the operations before the secret key

can “mix into” the cipher state.

CHAPTER 3. T..IPLA.. A, JACKS 35

3.3 Attack Application

Template attacks have been applied in [7] ¢ unst microcontrollers running the stream
cipher ARC4 (the “Alleged RC4™”, 50 called because the name “RC4” is still pro-
tected by trademark, though source code to produce data equivalent to RC4 has been
available on the Internct since 1987). As a stream cipher, ARCH is resistant to dif-
ferential power analysis (sce Section 2.2.3 on page 21), but is highly susceptible to

template attacks.

3.3.1 Inapplicability of DPA

Differential power analysis, which can be applied quite successfully to block ciphers,
is simply not applicable to most stream ciphers, including ARC4. The reason has
to do with the persistence of secret key information. We now turn our attention to

explaining this important distinction in detail.

DPA and Block Ciphers WI 1 DPA is applied against a block cipher, the at-
tacker makes several guesses at a subset of the seeret key, as shown in Figure 3.2 on
the following page.

This figure shows a model of a block cipher with four encrvption rounds, each
having S-boxes (providing non-linear substitution), a permnutation layer (providing
lincar diffusion) and a key mizing layer. This model is similar to the substitution-
permutation network presented in [37], but with the addition of a key mixing layer
between cach round. The block on tl left-hand si : of the f 1re represents the Key
scheduler, which converts the secret key into several round keys, which are added via
Y7 R in cach ror kev ixing laz . T key o OxNXBXX7XX in

hexadecimal, whe — an "X’ digit represents bits of key that are not part of the current

CHAPTER 3. TEMPLATE ATTACKS 37

P TQXt
)
)
E
)
Key -
>
7
>
>

oy
Ciphertext
Figure 3.3: DPA bit guess
graphs:
1. A reference current trace (from which power may be derived, since p = i)

2. A graph showing the difference between the averages of two samples trace sets,

where the sets have been partitioned by a correct key guess

3. Two graphs showing differences between the averages of two samples trace sets

each, where the sets have been partitioned by an incorrect kev guess

The current spikes in the middle of the trace show that there is a material difference
between the traces in the partitioned sets. That is, the initial key guess was correct,
which made the partitioning effective. The at »r may now move on to another
subset of the key, then another, until eventually the entire kev is revealed. In this
way, the seeret 1 of a block cipher ¢ be recovered in a lincar way using a divide

. § ! J .
and conquer approach instead of the 2% approach of exhaustive search.

CHAPTER 3. TEMPLATE ATTACKS 39

side channel pairs from a device using a constant key and initialization vector, but
cryptographic protocols are designed not to re-use IVs. Hence, an attack that does
not rely on a persistent secret kev being used by the device under attack is needed:

one such attack is the template tack.

3.3.2 Applicability of Template Attacks

Figure 3.5 shows two graphs, each a difference between two power traces obtained

from the key initialization phase of ARCY. These graphs show:

1. The difference between two power traces produced using the same key.
2. The difference between two power traces produced using different kevs.

These graphs do not reveal the st1” 't differences that an attacker might expect
to sce - differences like those in F' are 3.6. In fact, the first graph actually exhibits
larger differences than the second, even though its keys were identical. This is due to
the stochastic nature of power measurements: there is always noise associated with
unrelated hardware or operations, so identical oper: ons may be more dissimilar than
different operations.

Figure 3.6 shows graphs for the same conditions - ARC4, the first graph for traces
using the same key and the second aph for traces using different keys — but unlike
Figure 3.5, the graphs show differen 3 between averages of ts of traces and there
are spikes of dissimilarity in the second | wph which do not appear in the first (or in
Figure 3.5). This dissimilarity reveals that the two aphs were produced by dissimilar
operations, which in turn gives the attacker information about the seeret key. It is
this information that can be exploited by a template attack.

Template attacks assume that side channel information can be characterized by

a multivariate Gaussian distribution. This characterization may introduce error

CHAPTER 3. TEMPLATE ATTACKS 42

indeed, the interdependance of I dware clements suggests that the Gaussian distri-
bution is not ideal — but the results in [7] show that it is a uscful characterization.
Further study could better model the characteristics of side channels, but such study

is beyond the scope of this research.

3.3.3 Applicability to Hardware Implementations

Through template attacks, the cla fication success rate for ARC4 running on an
embedded microcontroller was shown in [7] to be 98.1% — 99.3%, a clear success.
Microcontrollers, while less resource-intensive than traditional CPUs, are still much
more complex systems than the “pure” hardware that many ciphers are inplemented
in. The lower complexity of simply hardware implementations has been thought to

be a defense against side channel analysis:

“the only exposure for |fast cipher hardware| is the loading of the key bytes

from EEPROM which 1 1ally leaks the hamming weight” |7]

The question that we set about answering was:
Can template attacks be used to differentiate secret keys on such a small scale of

power usage as seen in d tal hardware?

3.4 Summary

Template attacks, based on the theory of signal de ‘tion and cl ification, are very
powerful side channel attacks. If the noise associated with the side channel is Gaus-
sian, then this technique is in fact optimal ..

Template attacks consist of two important stag

1. Template Preparation

CHAPTER 3. oMPLATT AL ..\CKS 43

(a) The attacker collects a large number of sample traces from a cryptographic

system identical to the one being attacked.

(b) These traces are used to build templates pa cach consisting of a mean

vector and a covariance matrix for a numnber of operations.
2. Template Application

(a) A small number of side channel traces (possibly just one) are taken from

the device being attacked.

(b) The traces are classified usih their Mahalanobis distances to each opera-
tion: for each trace, the opc :ion whose Mahalanobis difference is siallest
or whose probability density function is largest is selected as the pro-

ducer of the trace.

Computational effort can be reduced by “masking” the trace data points used to
construct the template; only those points with significant inter-operation standard
deviation are used. This pruning process may reduce computation time a thousand-
fold, but often does not reduce the success rate of the attack by more than several
percentage points.

Template attacks are appli Hle to st un ciphering systems, though older tech-
niques such as differential p o ¢ ilysis "7 PA) are not. This is because, unlike
DPA, tenmiplate attacks do not rely on a system using a persistent secret key. Tem-
plate attacks have been shown to be very succes 1l against microcontroller-based
cryptographic implementations, but we will show in Chapter 5 that they are also
cffective against implementations in digital hardware.

First, however, we will describe the setup used in our experimentation. This

experimental setup is the subject of Chapter 4.

Chapter 4

Experimental S tup

For this thesis, we wished to both apply the nplate attack by simulating hardware

based on a model derived from actual physical characteristics — and also to apply the
attack to mecasurements taken of the characteristics of physical hardware. These char-
acteristics, especially power usage, were to be measured while real hardware performs
cryptographic operations. Simulating, measuring and analysing these characteristics

required:
1. A hardware platform on which we could run cryptographic operations
2. Sensitive measurement cquipment with suitable amounts of memory
1 A

3. Software to simulate hardware and analyse physical measurement data

4.1 SCAB - Side Channel An¢ ysis Board

The Side Channel Analysis Board (SCAB), shown in Figure 4.1, is a development
board intended to facilitate the study of side chan 1 attacks (SCA) against crypto-

graphic hardware. It was developed for the purpose of the rescarch contained in this

44

CHAPTER 4. "XPERIMENTAL SETUP 40
the resistor

For these reasons, as well as the opportunity for learning, we decided to build our

own development board, SCAB.

4.1.1 De__zn Constraints

Although in this thesis, SCAB was used only for t - application of template attacks
to the power usage side channel of streamn cipher hardware, it was designed to be
a facility for subsequent rescarchers to also use. These rescarchers could focus on
any number of side channels, d any number of cryptographic systems that can be
implemented in hardware.

The design of SCAB had to satisfy several constraints, some external and sonie

owing to the intrinsic nature of the rescarch:

e It must be possible to conf 1re SCAB with large, fast implementations of mod-

ern ciphers such as AES.

— To accommodate high-throughput designs like that found in [38], the min-

imum acceptable gate count of the FPGA is 60k gates.
e [t must be possible to trar 1 blocks of data through parallel 1/Os.

— To accommodate large, modern block ciphers, we wish to be able to transfer

128-bit blocks of data in a si1 ¢ clock period.
e It must be possible to a. »mble SCAB in Memorial’s PCB facilities.

— Non-local PCB construction was acceptable (and indeed, required), but
the assembly process required interaction with technicians, which would

not have been possible unless SCAB was asseinbled locally.

CHAPTER 4. EXPERIMENTAL SETUP 19

4.1.3 Fault Analysis

SCAB also facilitates fault analysis, in which the researcher attempts to induce an
incorrect computation through externally-induced faults. The source of these faults
may include glitches in the clock signal or unusual power supply characteristics (e.g.
too h 1, too low, spikes). SCADB provides the access needed to study the effect of
such faults through its power supply design, external clock and large munber of 1,0

pins.

Power Supply As mentioned in Scction 4.1.2, SCAB’s Ve supply net may be
driven by a voltage regulator or, more interestingly for the purpose of fault analysis,
an cexternal power source. This direct con1 tion to the Ve net allows a researcher
to set up abnormal power supply conditions, including undervoltage or overvoltage

conditions as well as voltage spik

External Clock SCAB also supports timing 1lt analysis. Since SCAB’s clock is
driven externally (connected via BNC), a researcher can modify clock signals, inducing
glitches and char ng duty cycles and periods, in an attempt to induce erroncous

computation.

I/O Pins Finally, SCAB’s large 1/0 bank allows a researcher to export up to 128
internal signals from a hardware design, which permits the direct observation of how
internal values change while the system is under external stress (power, ¢lock or
temp cature glitches, ionizing radiation, ete.). 1 uis level of access permits the study

of fault propagation, and it also allows rescarchers > verify existing fault models.

CHAPTER 4. EXPERIME!...\L L. JP 51
e momentary reset switch
e “go” switch

The latter of these switches provided the hardware with the signal to start (and
continue) cryptographic o} ation. Interfacing this switch directly with the hardware
required debouncing to prevent momentary glitches in the “go” signal caused by the
mecchanical bouncing of switch clements - from reaching the cryptographic hardware.

The debouncing circuit is shown in Figure 4.4.

Yee

'
3 Debounced
2)

Figure 4.4: Switch debouncing circuit

4.3 Measurement " yuipment

The focus of our research is the application of template attacks to the power usage
side channel of stream ciphers using SCAB. Our power nicasurements were all made
with the Cleverscope CS328A |39], a PC-based mixed-mode oscilloscope with high
time resolution (10 ns minimum period) and deep memory (up to one million data

points per channel). This scope allowed us to:

1. Gemnerate clock signals

C
H—

CHAPTER 4. EXPERIMENTAL SETUP
4.4.1 Power Trace rormatting

After taking physical measurements of side channel data, the output of the Clever-
scope program is file that, for every tiime increment, specifies the voltage for cach
analog tracce and logic value for each digital trace. We must take this information
and turn it into a format more amenable to interpretation'.

The powercat program reads voltage traces from input files (Cleverscope, Tek-
tronix GRAB2212 or our own analog trace format) and outputs them to binary trace
files. These files mmay be a concatenation of several trace files hence the name of the
prograin and contain just a pc ot trace and digital “partitioning” trace (which is
described in Section 4.4.2, below).

A text file containing a full capture of Cleverscope memory occupies 50 MB of
disk space. If many such captures are required (c.g. when capturing output {rom
multiple keys), storage requirements quickly become enormous. Converting this data
to a binary format saves both storage space and computational complexity, as text

parsing is not required every time we load power trace.

4.4.2 Calculating Trac Mean V :tors

The traceaverage program takes a power trace file, partitions it and averages all of

the subtraces.

Aside: Partitic ar Subtraces A single power trace file may contain traces
for many samples. Each of these ibtra 1 is denoted by a single digital trace, called
the partitioning trace. This partitioning trace is shown in Figure 1.7, and it is used
by the traceaver 1e program (and others) to partition a lor trace file into multiple

subtraces. The partitioning trace is equ to 1 during encrvption operations and 0

'Details concerning file formats are given in Appendix B on page 115

(o)
(]

CHAPTER 4. EXPERIMENTAL SETUP

between them. Thus, whenever the partitioning trace switches from 0 to 1, a new

subtrace (sample trace) has bc 1.

4.4.3 Simulating Power Usz 2

The simulate program simulates the power usage of a hardware implementation of

a cryptographic cipher. The user can specify a number of parameters:
e the cipher to simulate
— currently LFSR-16 or Trivium
e the sccret key to use

— specified as 0xXXXX or ObXXXX, where X can be:

x a value (0-1 for binary, 0-f for hex)

x the literal X, m: 1ing “assign randomly for cacli sample”

how much noise to add

sampling period

the number of samples to simulate

the number of clock cycles to simulate per sample

the number of samples to simulate per clock cycle

The power model used can be customized by writing a C4 | class that implements
the PowerUsageModel in - ace (- ction B.5.1). This model tells the simulator

how much power is consumed by a flip-flop that ei er:

CHAPTER 4. EXPERIMENTAL SETUP 62

* The core logic supply should have a small-valued resistor inserted in

series with the power supply for measurement purposcs.
— Fault Analysis

x SCAB should inco | rate both on-board — i.e. regulated and exter-
nal power supply options.
* SCAB should be driven by an external clock.

* SCAB should have a large number of I/0 pins to expose internal state

and allow verification of fault models.
— Timing Analysis

x SCAB should be driven by an external clock.

* SCAB should have ala number of I/O pins to expose internal state.

Other hardware in the setup included power supplics, switches and measurement

equipment.

This measurement equipment consisted of the Cleverscope CS328A, a PC-based
oscilloscope. It was purchased for this research, an performed its tasks well.

We also wrote 10,000 lines of C+-- software to do many things:
e reformat power data

e calculate average power usage

¢ simulate power usage

e view power traces and select template masks

e build templates

o classify power traces

CHAPTER 4. EXPERIMENTAL SETUP 63

e calculate classification success rates

This experiinental setup was used to apply template attacks to stream cipher hard-

ware. The results of this application are given in t next two chapters.

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 67

5.2 LFSR-16

Before attacking a full-fledged streamn cipher, we started by attacking a basic building
block of many stream ciphers, the lincar feedback ift register (LFSR).

LFSRs are shift registers that feed back on themselves, inserting a new bit at their
tail every clock cycle which is a linear combination of other bits in the register. On
its own, an LFSR is not a stream cipher: it can be cryptanalysed trivially because
of its lincar nature. It is, however, a useful building block in the construction of real
stream ciphers.

We chose a simple 16-bit LFSR with the characteristic polynomial given in Equa-

tion 5.1.

et a2t +1 (5.1)

This LFSR has a marximal period: assuming it is not loaded with 0, it will shift 2'6—1
times before it repeats a previous ate. A simple diagram of LFSR-16 is shown in

Figure 5.3.

T

Figure 5.3: Design of LFSR-16

5.2.1 Simulation Results

Using the power usage characteristics in Table .1, we simulated LFSR-16 running on

an Actel ProASIC3 FPGA. The power usage of this cipher was stimulated using a 16-

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 68

bit initial state (key) that was determined randomly, except for the most significant
four bits. These bits were fixed for any particular operation O™ so we were able to
generate 16 templates, one for each of the keys { 0xOXXX, 0x1XXX ... 0xfXXX },
where the most significant bit of the key is loaded into the left-most bit of the shift
register in Figure 5.3.

For cach simulation of LFSR-16, we simulated a different number of sample traces
(16, 32, 64, 128 or 256). We also varied the amount of noise added to the power trace,
as well as the number of data points included in the template mask (see Section 3.2.4
on page 32). The detailed results of this analysis can be found in Appendix A, but
we present an overview here.

Figure 5.4 shows the basic inter-operation statistics for the simulated LFSR-16
(64 samples, peak noise 107%). The top graph is 2 inter-operation mean, and the
bottom graph is the inter-operation standard deviation. As expected, the greatest
deviation is early in the sample t :es, before the key bits “mix in” to the cipher’s
state.

The line across the standard deviation graph ¢ Hws the cutoff for trace masking
with N = 8. Even with such a small number of data points, we are able to obtain
useful information from the trac so as to have very good classification success.

F e 5.5 shc the class Jion ¢ ccess rate for simulated LFSR-16 when we
use L = (4 training samples per operation and the noise present has peak values of
107°. This noise value was chosen = rause it fits with the characteristics in Table
5.1. It shows the success rate increasing with temy e size, and even with template
size N < 5, the average classification success rate is greater than 6.25%, which is the
success rate we would expect if we were guessii randomly.

The four hnes on this graph are:

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 70

1. Maxinmum success rate: the highest rate of correct classification for any opera-

tion

)

Average success rate: the average rate of correct classification over all operations
3. Minimum success rate: the lowest rate of correct classification for any operation

4. Guess rate: how successful we would expect to be if we guessed randomly

Simulated LFSR-16, 64 Samples, > W Noise

60.0%
5 500%
@

[}
: 40.0% .
@ 30.0% —Avg
c - Min
-% 20.0% ~ Guess
"é 100%
o 00% - —

0 5 10 15 20 25 30

Template Size (N)

Figure 5.5: Classification success vs. template size

Figure 5.6 shows the classification success rate versus template size when the noise
is much lower, with a power peak of 1077 W. This noise level is lower than observed,
but as we will see in Section 5.2.2, the results arc a closer approximation to those
obtained through physical experiment than those obtained using the noise level of
1075 W (peak).

With this noise level, we were able to achieve ~90% average classification success
using as few as fc da pc’ s and apprc ~nately 80% minimum success with as

few as 10 points, making this an attack of remarkably low computational complexity.

CHAPTER 5. EXPERIMENTAL RESULTS AND ANALYSIS 7

data points per clock cycle whose standard deviation rises well above the background.
The linc in Figure 5.14's standard deviation graph (the bottom graph) shows that
48 points all centred around five clock transitions can be selected from the trace
whose values are clearly more significant than the others.

Information content also affects classification suceess in that, for implementation
reasons, the keys used for the hardware LFSR-16 had four fixed bits. As mentioned
above, the secret keys were in the set { Ox 00, ... 0xXXOF }, not { 0xNXXO, ...
OxXXXF }. This is because key were fed to the LFSR-16 via manual interaction, in
the form of DIP switches. To attack a full LFSR. 3, we would have to build more
sophisticated off-board hardwa to load randomly-gencrated keys and initialization
vectors. This, combined with the PC software to drive it, is bevond the scope of this
research. To attack L. OR-16, we simply fi: | four key bits to 0, set four more in an
operation-dependent manner and iterated through all 256 possibilities for the eight
unfixed bits.

Inter-operation standard deviation peaks are observed later in Figure 5.14 than in
Figure 5.4; this is due to the loading of sceret keys { 0xXX00, ... 0xXXOF } and not
{ 0xFOXX, ... OxFFXX }. The peaks start occurrir at clock edge 8 instead of clock
cdge 0; this is precisely what we would expect if the differing key bits were loaded

into the four righ nost fli ops in Figure 5.3.

5.3 Summary

In this chapter, we revealed the results of our initial experiments using the FlipFlopper
and LFSR-16 circuits.
Using the Flip. .opper circuit, we were Hle to 1easure the power usage charac-

teristics of the FPGA on SCAB. These characteristics led us to a power model to use

CHAPTER 5. EXPERIMENTAL RESULTS AN, ANALYSIS 79

for simulating hardware on the FPGA.

Using this power model, we simulated the operation of LFSR-16 hardware, and
applied the template attack to its power usage. As expected, increased noise caused
a decrcase in classification success, but we were able to recover information about the
secret key very successfully in many different noise conditions.

We then proceeded to apply the template attack to a real hardware implemen-
tation of LFSR-16. We were able to correctly guess secret key bits over 90% of the
time, even with such small template sizes as NV 12.

Having successfully attacked LFSR-16 in both s 1ulation and hardware, and hav-
ing found good classification success with both, we proceeded to attack a simulated

nnplementation of a real streany cipher: Trivium.

Chapter 6

Application of Template Attack to

Trivium

Trivium is a candidate cipher or tl ¢STREAM stream cipher selection process
(hardware profile) [5]. By applying Template Atta s, we were able to extract secret

key material from a simulated version of this cipher.

6.1 Description

Trivium is a strcam cipher that was developed for eSSTREAM, a four-year effort to
identify *promising new stre — ciphers,” some targeting software implementation and
some targeting hardware [40]. Trivium is of the latter group, and it was designed “as
an exercise in exploring how far a stream cipher ca be simplified without sacrificing
its security, speed or flexibility” [5].

Triviuin has a 288-bit internal ate which is updated through a combination of
lincar and non-lincar Iback. It can =1 1 up to 2% bi of keystream from an

80-bit secret key and 80-bit initialization vector. It was designed to be implemented

80

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 81

in a parallel fashion: no state bit is used for 64 clock cvcles after it is updated, so up
to G4 iterations of the cipher can be calculated in parallel |5].
Precise specifications are given below, but intuitively, Trivium can be thought of

as a collection of Feedback Shift Registers, as shov in Figure 6.1.

F e 6.1: Trivium)

Before the keystream can be generated, the internal state has to be nitialized.
The state is initially loaded with the 80-bit secret key (state bits 0 - 79) and an 80-bit
initialization vector (state bits 93 - 172). Three bits are then set to 1 (bits 286 - 288)
and the remaining 125 bits are set to 0. The initial tion procedure from Figure 6.2

is then followed, where s[i] is the ¢*" bit of the internal state and t1, t2 and t3 are

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 83

6.2 Simulation nesults

Most Trivium simulations were performed with AWGN added, at a peak power noise
of 1077 W. This is a value which we found, for LFSR-16, produced success rates
approximately equivalent to those obtained from hardware experimentation. In all
cases, the right-most key bits were varied according to operation; the remaining bits

were allowed to vary randomly.

6.2.1 Classification Success nate vs. .<cmplate Size

Figure 6.4 shows our classification success rates for . nulated Trivium versus template

size. There are four lines on the ‘aph:
e Maximum success rate

— this is the highest classification success for any operation
— c¢.g. if four operations {O(”),O“),O(Q),O(S)} had classification success
rates {46%, 32%, 51%, 29%}, the maximum success rate would be 51%

e Average success rate

— this is the average of classification success rates over all operations
— e.g. il four operations {0, 0W, 0% 0¥} had classification success
rates {45%, 32%, 51%, 29%}, the average success rate would be 39.25%

e Minimum success rate

— this is the lowest classification success for any operation

— ¢.g. if four operations {O(U),O(”,O(g),O(“)} had classification success

rates {45%, 32%,51%, 29%}, the minimum success rate would be 29%

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 84

e “Guess” rate

— this is how successful we would expect to be if we guessed randomly

— this rate is =, where n is the number of bits included in the template

AL

* if we fixed four bits. we would have 2! = 16 operations and the prob-

ability of a correct guess would be 2 = 6.25%

Simulated Trivium
4096 T1 ning Samples, © 8 W Noise, 16 Templates

70%
£ 60%
m \".
@ 50%
3 9 e Max
g 40% L - Avg
(D -_.\ .)
c 30% e -~ Min
-2 ’ — Guess
8 2 B
2 10% AR
Q —_— —_— T ﬁ‘ o .
O o4 = '

0 5 10 15 20 25 30 35

Figure 6.4: Classification success vs. template size Trivium

These suceess rates are lower t1 - for LFSR-16 with the same amount of added
noise, but average success rates as high as 22% were achieved better than the 6.25%

that we would expect to achieve through random guessing.

6.2 Classification Success vs. .raining Samples

As expected, inereasing the number of training samples increased the probability of

success, though 1ccess © ses increased roughly linearly for exponentially increasing

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 85

numbers of samples. This is shown in Figure 6.5, where we can sce that the maximum,
average and minimum classification success rates are monotonically increasing with
the number of training samples.

Simula 3 Trivi m
N=32,1 8 W Nois 16T mnp 5

40%
5
2
& 30%
B 25% - Max
(] ,/'. AV
© o [P 9
3 " P M
S 15% — Guess
3 10% - e
N —
= =
® 5% =
~ 0%
10 100 1000 10000

Figure 6.5: Classification success vs. training samples Trivium

For this rescarch, we spent considerable time :* ulating the cipher under varying
conditions. Simulating Trivium with 4,096 training samp per operation might
only take an hour, but simulating the cipher’s operation and performing analysis for
varyll template sizes might take a day. Thus, while using more than 4,096 training
samples would be prohibitively time-consuming for this rescarch, an individual or
organization mounting a serious side channel attack could spend significant time

and computational power - building templates from many training samples.

6.2.3 Classification Success Rate vs. Bits Under Attack

With Trivium simulations, we also varied the number of bits under attack, running

simulations and analysis for one-bit templates (2! = 2 operations), tw Hit templates

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 86

(22 = 4 operations), four-bit templates (2! 16 operations) and cight-bit templates
(2% = 256 operations).

A lincar increase in the number of bits under tack led to a exponential it -ease in
the computation required to perform all simulation and analysis. On first inspection,
however, maximum, average and minimum classification success rates all seem to
vary exponentially with the inverse of the number of bits being attacked, as shown
m Figure 6.6.

Simulated Trivium, ¢ ¢ mples, N=20, 1e-8 W Noise

70%
60%
50%

40% NN Max
NN -~ Avg

30% N - Min

cation Success Rate

20% T

10% T~

Clas:

R .
~— N
—

0% =
One Bit Ty s Four Bits Eight Bits

E leing £ 3l |

Figure 6.6: Trivium cla fication success vs. bits being attacked

What this graph does not reveal, however, is how the classification success com-
pares to the expected classification success rate if we had no information about the
cipher - i.c. if we guessed randomly. For n bits, we expect that random guessing
would vield the correct subkey “% of the time. Our improvement over this rate tells
us how much information each 1ess must reveal to enable as many correct guesses

as we have made, and this information leakage can be calculated by Equation 6.1:

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 87

Information Leakage vs. Template S 3
Simulated Trivium, 64 Training Samples, 1e-8 W Noise

2.50
2.00 ~
8, 1.50 / - ~—One Bit
8 - - Two Bits
§ 1.00 7y -~ _- - FourBits
Eight Bits
050 ~ /-
= == - e~ -~
E oop0 - e
-0.50

1 2 3 4 6 8 10 12 14 16 20 24 32
Template Size (N)

Figure 6.7: Trivium informa Hn leakage

1
| B-log, (-> (6.1)
S

where [is the information leak : B is the number of bits being attacked and s
is the classification success rate.

Figure 6.7 shows the information leakage for attacks on various numbers of bits.
From this graph, we can see that the information obtained via attacking cight bits of
key can be approximately twice that obtained froin attacking four bits of key.

The attack is stronger as more bits are attacked, but this greatly increases compu-
tational complexity: if n is the number of bits being attacked, then 2" templates must
be gencrated, requiring L2™ total template samples. As mentioned above, however,
a serious side channel attack could be mounted on a system using resources such as

computing clusters. This would make practical attack a very realistic possibility.

CHAPTER 6. APPLICATION OF TEMPLATE ATTACK TO TRIVIUM 88

6.3 Trivium Hardware

We did not apply template attacks to the power usage of Trivium hardware, as we did
with LFSR-16. The reason for this is entirely prac cal: feeding random kev and TV
values from attack software to the cipher hardware would require a more sophisticated
experimental setup than we currently have. While this would be a logical attack for
future work to implement, it is beyond the scope of this thesis.

Considering the similarity of our simulation and hardware results ¢ 1inst LFSR-
16, however, we conjecture that template attacks could be applied against real hard-

ware implementations of Trivium.

6.4 Summary

Trivium is a very simple streamn cipher which has withstood the rigours of the eS-
TREANM process, and is part of the final eSTREANM portfolio. Because of this, as
well as its overwhelming popularity among strean cipher researchers [11], it is a very
important cipher.

By applying template attacks, we were able to extract secret kev material from a
simulated version of Trivium. Our classification success rate was as high as 22% in
noise conditions that we saw were reasonable in Chapter 5. This sucecess rate could
be increased by using more training samples per operation or by capturing multiple
traces from the device under at - k and exploitit the joint information contained in
all of them.

We conjecture that these attacl could be realised against practical cryptosystems.
Implementers of Trivium, and o ~ r practical stream ciphers, should take care to

ensure that their implementations are not vulneral » to these attacks.

Chapter 7

Conclusions

As cryptography continues to be implemented in embedded systems such as smart
cards and RIFIDs, implementers of cryptographic systems must consider threat models
that include adversaries having physical access to cipher hardware. This physical
access enables attack via side channel analysis, including the powerful class of attacks
known as template attacks.

In this thesis, we have demonstrated that template attacks can be applied to
stream ciphers implemented not just via microcontrollers, but also in reconfigurable
hardware. To this end, we have prepared an experimental setup that includes the
Side Channel Analysis Board (SCAB), measurcment cquipment and software. SCAI3
is a custom PCB designed to support rese ch in side channel analysis, with features
to aid researchers in performing power analysis, electromagnetic analysis, fault anal-
ysis and timing analysis. In this research, we 1 ve used the power analysis features
of SCAB, mecasurit the power used by streain cipher hardware with a PC-based
oscilloscope called Cleverscope. We have also wri »n 10,000 lines of C1 1 code to
performm * ulation and a1 " # " of the power us » of eryptc aphic hardware.

Using this experimental sctup, we measured the power usage characteristics of

89

CHAPTER 7. CONCLUSIONS 90

FPGA-based hardware. Havir found that these characteristics could be exploited for
side channel analysis, we constructed a simple power usage model from them, which
included the above characteristics and Additive White Gaussian Noise (AWGN). We
simulated the operation of a stream cipher building block, a 16-bit Linear Feedback
Shift Register (LFSR-16), 1d applied template attacks to its simulated power usage.
We were able to recover secret key material from these simulated power traces
success rates depended on the amount of AWGN present, but cven with very high
amounts of noise, success still exceeded the 6.25% rate that we would expeet had
we made random guesses at key bits. We then implemented LESR-16 in hardware,
measuring its power usage with the Cleverscope and analvsing it with our software.
We were able to recover secret key bits with success rates greater than 90%. even
with small template sizes (N < 20).

From this success, we simnulated the power usage of Trivium, a stream cipher that
has been vetted by the eSTREANMI initiative. For this complete stream cipher, we
were able to retrieve four correct bits of key information for over 20% of our guesses.
and our investigations indicate that higher suce s would be possible for a dedicated
attacker with reasonable computational resources.

We thus conclude that side channel analysis is a very real threat to stream cipher
hardware, and implementers of such hardware should take care to evaluate their

implementations for susceptil — ty to this class of attacks.

Future Work
This thesis presents a b k-box approach to attacking streamn cipher hardware. Fu-
ture work would include attacking different groups of bits within Trivium to determine

the bits which are most or least susceptible to Template Attacks, as well as exploring

CHAPTER 7. CONCLUSIONS 91

techniques to combine attacks so as to extract the maximum amount of key informa-
tion possible.

Future work would also include more application of the method to physical hard-
ware, especially the final eSTREAM portfolio ciphers (hardware focus) F-FCSR-H
v2 [2], Grain v2 [3], MICKEY v2 |4] and Trivium |5]. This work will require a more
elaborate experimental setup. The number of key and IV bits that must be deter-
mined randomly will be much la 1 - approximately 80 bits cach which rules out
the current method of IV generation: exhaustive search. Rather. unfixed key bits
and all IV bits must be generated by hardware and/or software external to the deviee
being tested - likely in software on the PC controlling the attack and exported to
the hardware being analysed.

Other important future ork is de mining the effectiveness of traditional side
channel countermeasures against the Template Attack. Many countermeasures were
designed to defeat Differential Power Analysis, but the principles of the Template At-
tack arc quite different. Whether or not they can be applied, and what techniques are
effective at foiling the Template Attack, should be of particular interest to hardware

designers.

Bibliography

[

12|

[3]

4]

[6]

“Announcing the Advanced Encryption Standard,” National Institute of Stan-

dards and Technology (NIST), Tech. Rep. FIPS 197, Nov. 2001.

F. Arnault and T. Be r, “F-FCSR: design of a new class of stream ciphers,”

Fuast Software Encryption-FSE, vol. 3557, pp. 83 97, 2005.

M. Hell, T. Johansson, 1d W. Meier, “Grain a strcam cipher for con-
strained environments,” eSTREAM - ECRYPT Strcam Cipher Project, Tech.
Rep. 2005010, 2005.

S. Babbage and M. Dodd, “The stream cipher MICKEY-128." eSTREANI
ECRYDPT Stream Cipher Project, Tech. Rep.)05/016, ~)05.

C. de Cannicere and B. Prencel, “Triviumm Specifications,” available from FS-

CAEAM (hitp:/ www. ecrypt. cu. org/stream - triviwmp2. htinl).

J. Muir, “Techniques of Side Channel Cryptanalysis,” Master's thesis, University

of Waterloo, 2001.

S. Chari, J. Rao, and P. Rol gi, “Template Attacks,” in Proceedings of Crypto-

graphic Hardware and Embeq d Systerns, vol. LNCS 2535, 2002, pp. 13 28.

92

BIBLIOGRAPHY 93

[8] L. Smith, Cryptography: The Science of Secret Writing. Dover Publications,

19]

0]

1]

[12]

1955.

R. Anderson, Security Engineering: A Guide to Building Dependable Distributed

Systems, 2001.
N. Ferguson and B. Schuneier, Practical cryptography. John Wilev & Sons, 2003.

W. Diflie, P. Oorschot, and M. Wicner, “Authentication and authenticated key

exchanges,” Designs, Codes and Cryptography, vol. 2, no. 2, pp. 107-125, 1992.

C. Shannon, “Communication theory of secrecy systems.”

[13] “Data Encyption Standard (DES),” National stitute of Standards and Tech-

[14]

|16]

17]
18]

[19]

nology (NIST), Tech. Rep. FIPS 46-3, Oct. 1999.

E. Foundation, M. Loukides, i 1.J. Gilmore, Cracking DES: Sccrets of Encryp-
tion Research, Wiretap Politics and Chip Design. O'Reilly & Associates, Inc.
Sebastopol, CA, USA, 1998.

N. Mowlavi, “The Future of our Sun and Stars,” The Future of the Universe and

the Future of our Civilization, pp. 57 69, 2000.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.

120-126, 1978.
S. Garfinkel, PGP: Pretty Good Privacy. O'Reilly, 1995.
D. Kahn, The Codebreakers. New York: Macruillan, 1967.

J. Dacmon, R. Govaerts, ~ J. Vendewalle, *A New Approach Towards Block

Cipher Design,” in Fast Softt e Enc _ption, FSE 2003. Springer-Verlag, 1993.

BIBLIOGRAPHY 94

[20]

|21]

22|

23]

[24]

[25]

[26]

[27]

28]

P. C. Kocher, “Timing Attacks on Implementations of Diffic-Hellman, RSA, DSS,
and Other Systems,” in Advances in Cryptology: Proceedings of CRYPTQO’96,

vol. 96. Springer-Verlag, 1996, pp. 104-113.

H. Handschuh and H. M. Heys, “A Timing Attack on RC5,” Lecture Notes in
Computer Science 1556: Selected Areas in Cryptography - SAC 98, pp. 306 318,

1999.

D. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counterincasures: the

case of acs,” CT-RSA, pp. 1-20, 2000.

E. Biham and A. Shamir, “Differential Fault Analysis,” in Advances in Cryptol-
ogy: Proceedings of CRYPTO 97, vol. LNCS 1294. Springer-Verlag, 1997, pp.

013-525.

D. Boneh, “On the Importance of Eliminating Errors in Cryptographic Compu-

tations,” Journal of Cryptology, vol. 14, no. 2, pp. 101 119, 2001.

J. Blomer and J.-P. Seifert, “Fault b, »d cryptanalysis of the advanced encryption

standard (aes),” LNCS 2742: FC 2003, pp. 162 181, 2003.

S. Skorobogatov and R. Anderson, “Optical fault induction attacks,” Proceedings

of CHES 02, pp. 2-12, 2002.

J.-J. Quisquater and D. Samyde, “Eddy current for magnetic analysis with active
sensor,” Proceedings of Int. Conf. on Research in SmartCards (E-Smart 2002),

pp. 185-194, 2002.

R. Anderson and M. Kuhu, “Low Cost Attacks on Tamper Resistant Devices.”
in Sth International Wor! = on P ooco vol VT3 UL -

Verlag, 1997, pp. 125 126.

BIBLIOGRAPHY 96
[40] The eSTREANM Project. [Online|. Available: http:/ /www.ecrypt.cu.org/stream,’

|[41] S. Babbage, C. D. Canniére, A. Cantcaut, C. Cid, H. Gilbert, T. Johansson,
M. Parker, B. Preneel, V. Rijmen, and N. Robshaw, “The ¢STREANM Portfolio,”

ECRYPT, Tech. Rep., Apr. ~)08.

[42] Qt cross-platform application framework. [Online]. Available:

http://trolltech.com/products/qt/

Appendix B

Software Data Formats

B.1 Cleverscope Text Files

The Cleverscope text-based format has header, beginning with the line * [Sample
Definition]” and a body, beginning with the line “[Datal”. An cxample of this

format is shown in Figure B.1.

B.1.1 Header

The header of a Cleverscope text file contains several picces of information important

to our analysis:
e Usage of digital traces

— If digital traces were captured by the Cleverscope unit, the UseDig param-

cter is TRUE; otherwise, it is F” ™ 3E.

e Analog scale, offset

APPENDIX B. SOFTWARE DATA FORMATS

[Sample Definition]

Type=Time
UseBuffer=FALSE
UseDig=TRUE
ChAscale=1.000000
ChAoffset=0.000000
ChBscale=1.000000
ChBoffset=0.000000

delt =0.0000000100

start J).000¢ 27900

nsample=7(7

offset=0

Save Time = 8/20/2007 2:35:46 PM
[Datal

Time Ct n A Chan B
0.00064279 1.50011814 1.48075295
0.00064280 1.49¢ 2914 1.47955595
0.00064281 1.50005514 1.48058195
0.00064282 1.49879514 1.47915695
0.00064283 1.4 34881 1.47927095
0.00064284 1.49911014 1.47852995
0.00064285 1.49961414 1.47898595
0.00064286 1.49904714 1.47972695
0.00064287 1.49929914 1.47938495

Figure B.1: Cleverscope text file example

Dig

240.
240.
240.
240.
240.
240.
240.
240.
240.

116

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

— Each analog channel (A and B) has a scale and an offset associated with

it; these values must be multiplied with and added to, respectively, the

analog channel data specified below.

e Sampling period

— The time between samples is given by the «

samplit

store it to ensure that we only attempt to add or multiply traces with the

.ta parameceter

period does not affect template attacks directly, we do read and

While the

APPENDIX B. SOFTWARE DATA FORMATS 117

same sampling period.
e Number of samples

— The number of sample points in the trace is given by the nsample param-
eter. After lo ™ sample points from the file, we ensure that the entire

file was loaded by comparing the number of loaded points to nsample.

Other parameters, such as “Save Time”, are not important for the resecarch, but are

nonetheless parsed and saved.

B.1.2 Body

The body of a Cleverscope text file contains tab-delimnited lines of data in four

columns:
1. Tune: the time, in seconds, that the data was sampled
2. Chan A: the voltage measured by Channel A
3. Chan B: the voltage measured by Channel I3
4. Dig: digital trace values

(a) This number varies between 0 and 255, and represents the values of all

eight digital traces
(b) Retrieving a particular trace’s value is a matter of bit masking:

for(int j = 0; j < 8; j++)

digit - [31 U (1 <),

APPENDIX B. SOFTWARE ... A FORMA LS 118

B.2 Analog Trace Files

An AnalogTrace Ct 1 object has six attributes:

Name Type Description
myNaine QStri1 Name of the trace (e.g. “Channel A7)
unit Unit* Unit of trace values (¢ Volts, Watts)
timeDivision double Time between samples
trace QList<double:~ Actual trace values
minValue double Smallest value in the trace
max Value double Largest value in the trace

QString and QList arc data structures from the Qt C+ + toolkit [-12], double is the
64-bit IEEE-standard C + | primitive and Unit is a class that we wrote to manage
trace units (e.g. dissimilar units cannot be added, multiplving an Amp by a Volt
produces a Watt).

Such a trace can be written to two types of files: text-based or binary.

B.2.1 Text

When writing sinall traces to file, we may choose to write them in a text-based format
that facilitates direct inspection. This is accomplished via the Qt class QTextStream.
A QTextStream object, which is associated with a QFile object, can be used to read
or write primitives such as strings and double-precision floating-point numbers. An

example of the output is shown in Figure B.2.

APPENDIX B. SOFTWARE DATA FORMATS 119

AnalogTrace ("Me n Pov r Usage for Unnamed Trace", W, 192
valu 3, 1le-06s apart, rang [1.11306e-05:0.000221819]){
0.000221806 1.1133Z -05 1.11: 3e-05 0.000221819
1.11322e-05 1.11331e-05 0.000221815 1.11339e-05 1.11316
e-05 0.00C 21804 1.11328e-05 1.11315e-05 0.000215¢ 2

}

Figure B.2: Example of a t¢ -base AnalogTrace file
B.2.2 Binary

When writing files that are large or will be read many times, it is more efficient to
write AnalogTrace objects in a binary format. Such a format is smaller than the
equivalent text-based format, and it saves the computational effort required to parse
floating-point numbers from text.

Writing a AnalogTrace to a binary file or reading it back is accomplished using
the Qt class (QDataStream. Like QTextStream above, QDataStream object can be
used to read or write primitives such as strings and double-precision foating-point
numbers. The binary format includes a “magic” number v d to recognize the
format and a binary format version (currently version 2). The process of writing
such a file is shown in Figure B.3, and a sample 1ce as viewed in a hex editor is

shown in Figure B.7.

B.3 Digital Trace File.

Digital trace files are much simpler than analog traces, as they contain a binary
trace there are no units or min am;/maximum values to be concerned with. An

DigitalTrace Ct | object has just two attributes:

APPENDIX B. SOFTWARE DATA FORMATS 122

DigitalTrace (192 values, 1s apart){
100100100100100100100...0000 }

Figure B.5: Example of a text-based DigitalTrace file

QDataStream& power::operator << (QDataStreamé& ds,
Di (talTrace& t)

{
ds << (quint32) 0x5CABOOL.; // magic : SCAB DT (Digital Tr:
ds << (quint32) 1; /7 binary format versio
ds << t.period(); // sampling period
¢ << t.size(); /7 s: 2
const QList<bool> value = t.v lu 3Q);
ds << values;
1 turn ds;
}

Figure B.6: Writii a binary A logTrace file
B.4 Power Usage Files
A PowerUsage file is a binary representation of two things:
e an AnalogTrace containing a power trace
e a DigitalTrace that partitions the trace into . btraces (see Section 4.4.2

This file consists of another “magic” number, a version (current version 1), two binary
values (to indicate the presence of 1 1alog and digital trace, respective) and then
the binary representations of tt power trace and partitioning trace. An example of

this forinat is shown in Figure B.8.

APPENDIX B. SOFTWARE DATA FORMATS 125
cla: PowerUsageModel
{
public:
double noiselevel() const; // 1< Amount of AWGN in pq
void setNoisel L (double); // 1< Set amount of AWGN i1
virtual float basic() const = O0;
virtual float zeroToOne () const = 0;
virtual float oneToZero () const = 0;
protected:
float noise() const; // 1< Noise
float noise(flc : scal) const; // t< Noise in a specific +-
private:
double myNoiseLevel; // '< Amount of AWGN
};

Figure B.9: PowerUs. :Model interface

B.5.1 Power Model

Once hardware has been characterized, a Ct + class can be written which implements

the PowerUsageModel interface, which is sh vn in Figure B.9.

B.5.2 Cipher Model

Simulating hardv e requires simulating the nuinber of high-low and low-high tran-
sitions of a cipher. A Qt/Ct 1 class (a C1t 1 class using the Qt class library and
preprocessed by Qt’s Meta Object Compiler MOC) must be written which inherits

from the abstract class Cipher, shown in Figure B.10.

