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Abstract 

This Master thesis consists of six chapters, which are mainly concerned with the tability 

and bifurcation analysis of a Nutrient (N), Phytoplankton (A) model. 

In chapter 1, some existing Nutrient-Phytoplankton models and the motivation for this 

work are presented. 

In chapter 2, we introduce a two dimensional (N, A) model to describe the nutrient­

phytoplankton interactions, and investigate the dynamical properties of this model. We 

show the existence of a boundary equilibrium point, and use geometerical and analytical 

methods to find conditions for the existence of none, one, or at most two positive equilib­

rium points. We then analyze the stability of each equilibrium point. 

In chapter 3, we modify the previous model by introducing a time delay T, and discuss 

its effect on the stability of each equilibrium point, by investigating the distribution of the 

roots in the corresponding characteristic equation. 

In chapter 4, we discuss the bifurcations. By using the projection method, we prove 

the existence of a saddle-node bifurcation for the system without delay. And by using the 

center manifold theory and normal form method, we study the direction of Hopf bifurcation 

and the stability of the periodic solutions for both systems, and we prove the existence of 

Hopf-Zero bifurcation for the system with delay. 

In chapter 5, we provide numerical simulations to verify our theoretical predictions in 

the previous chapters, and biological interpretations based on these simulations. 

In the last chapter, we summarize the results obtained in the previou chapter and 

provide suggestions to improve the model. 
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Chapter 1 

INTRODUCTION 

The theory of dynamical system is used to describe the long term qualitative behavior of a 

complex real system. The initial state of such a system and the laws governing its evolution 

are expressed in terms of differential equations. Since many differential equations cannot 

be solved conveniently by analytical methods, it is important to consider what qualitative 

information can be obtained about their solutions without actually solving the equations. 

This approach is geometrical in character and leads to a qualitative understanding of the 

behavior of solutions rather than detailed quantitative information. 

A dynamical system usually has several independent parameters, it is essential to un­

derstand the qualitative properties of the system as the parameters vary. Stability and bi­

furcation analysis are two of the fundamental tasks in dynamical theory. Studying the 

stability determines whether the system settles down to equilibrium or keeps repeating in 

cycles. With the varying of system parameters the stability can be lost, then the qualitative 

properties have significant change which is called a bifurcation. 
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Bifurcation theory attempts to explain various phenomena that have been discovered 

and described in the natural sciences over the centuries. The principle theorie for deal­

ing with bifurcation analysi at fixed points involve the center manifold and normal form. 

Both of them are fundamental and rigorous mathematical techniques in the local theory 

of dynamical systems. They are used to reduce the dimensionality of the system without 

changing the dynamical behavior. 

Dynamics has many applications in a wide range of discipline , including biology, 

chemistry, engineering, ecology, economics, and even sociology [1, 2, 3]. The increasing 

use of mathematics in biology is inevitable as biology becomes more quantitative. Popula­

tion dynamics is an important subject in mathematical biology, study the long-time behav­

ior of the systems governed by various evolutionary equations represent the interactions of 

population and its environment. The most widely studied models in population dynamics 

include predator prey, competition, and cooperation models. In predator prey models, some 

species serve as food for the others. In competition models several species compete for the 

same resources, where an increase in the size of either population tend to decrease the 

growth rate of the other population [4]. In cooperation models different species help each 

other to exist. 

In this thesis we consider the interaction of phytoplankton and nutrient modelled as a 

predator-prey relationship. Phytoplankton are microscopic plants that live in the surface 

layer of an ocean, sea, lake, or other body of water. They use inorganic nutrient , uch as 

nitrate and phosphate for growth, and the dead phytoplankton bioma s i converted again 

into nutrients. Phytoplankton form the basis of marine food web and they upport the life 

of all higher marine organisms. 
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One of the important features associated with a phytoplankton population is the occur­

rence of phytoplankton bloom, which is a dense populations that occurs in a wide range of 

water systems, at different times of the year. Biologically, the main reason of phytoplank­

ton bloom is the excessive loading of external nutrients such as nitrogen and phosphorous, 

which is a result of increasing human population, the extensive development in agricultural, 

industrial, social and other human activities. Phytoplankton bloom has many biological and 

commercial hazards. One of its biological impacts is the growth of some toxins, such as 

the blue green algae, which contaminate water supplies of wild and domestic animals and 

change the decomposition of various organisms in the environment. One of the commer­

cial hazards of phytoplankton bloom is the unpleasant changes in the odor and the taste of 

water, which results in loss of human access for swimming, sailing, and other recreational 

activities. 

Studying the interaction of phytoplankton and nutrient is very important in a phyto­

plankton ecosystem. To better understand and control the phytoplankton bloom, from a 

mathematical point of view, modeling of the phytoplankton population is an essential tool 

to improve our understanding of the physical and biological processes that lead to phy­

toplankton bloom. There are numerous mathematical models describing the dynamics of 

marine plankton since the pioneering paper of Riley et al [5]. Some paid more attention 

on the interplay of various physical factors (light, temperature, hydrodynamics), [6, 7, 8]; 

some focused on the biological factors (nutrient supply, predation), [9, 10, 11 , 12]. The 

chemostat is an experimental system used to simulate the nutrient-phytoplankton interac­

tions in an environment very similar to the natural biological system. It can be used to 

investigate the role of different factors that affect nutrient-phytoplankton interactions in 
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a controlled environment. Hsu et al [13], Waltman et al [14], Caperon [15], Powell and 

Richerson et al [16], Buttler et al [17], Butler and Wolkowicz [18] have proposed models 

based on chemostat type equations to simulate the growth of phytoplankton communities. 

However, there is an important difference between a chemostat and a real water system 

(river, lake or ocean). A real water system has a regeneration of nutrient due to bacterial 

decomposition of the dead biomass. Nisbet and Gurney [19], Nisbet et al [20], Ulanowicz 

[21], Powell and Richerson [22] have proposed nutrient-phytoplankton models with instan­

taneous nutrient recycling. Ruan [23] discussed the effect of both the discrete delay and 

the distributed delay on dissipativity, stability of the interior equilibrium and persistence. 

Huppert et al [24] considered a simple nutrient-phytoplankton model to illustrate the dy­

namical properties of phytoplankton bloom. Apart from simulation studies, they found the 

effect of a threshold analytically and traced the appearance of bloom depending on the ini­

tial condition. Since the simplified model is "far away" from the real system they gave a 

more general model without any theorical discussion. 

All of us know that, in the system of ordinary differential equations (ODE), the future 

state of the system is independent of the past state and is determined solely by the present. 

However, it is getting apparent that this gives only the first approximation of the considered 

real system [25]. 

From real observation in the natural phytoplankton-nutrient system, it is well known 

that time is required to regenerate nutrient from dead phytoplankton biomass by bacterial 

decomposition. 

The goal of this thesis is to construct a more realistic nutrient-phytoplankton model, 

study the dynamical properties including the stability and bifurcation of the model by us-
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ing the theory of dynamical system, then provide biological interpretations based on the 

mathematical results. At first, we construct and analyze a ODE model, then modify the 

model with delayed nutrient recycling and discuss the effect of time delay. Accordingly, 

the thesis is organized as follows: 

In the next chapter we present the nutrient-phytoplankton model with instantaneous nu­

trient recycling, where we use an uptake function which is a generalization of those used 

by many authors. We investigate the dynamical properties of this model by showing the 

existence of a boundary equilibrium point, and using a geometrical method to find the con­

ditions for the existence of one or two positive equilibrium points. Moreover, geometrical 

and analytical methods are used to determine the local stability of the different equilibrium 

points, and a sufficient condition for the global stability of the boundary equilibrium point is 

given. We also discuss the possibility of the existence of saddle-node or Hopf bifurcations 

under different conditions. 

In chapter 3 we modify the previous model by introducing the delayed nutrient re­

cycling. By investigating the distribution of the roots in the corresponding characteristic 

equation and discussing the effect of time delay on the stability of the different equilibrium 

points, sufficient conditions are given, respectively, for the occurrence of stability switches 

and Hopf-Zero bifurcation. 

In chapter 4 we focus on the study of the bifurcations for both the instantaneous and 

delayed models, where we use the projection method, center manifold theorem and normal 

form approach to discuss the saddle-node bifurcation for the instantaneous system, Hopf 

bifurcations can occurfor the systems with or without delay. The Hopf-Zero bifurcation 

occurs only for the system with delay. 
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Numerical simulations are given in chapter 5 to illustrate the theoretical predictions 

provided in the previous chapters. Biological interpretations of these simulations are ad­

dressed. 

In the last chapter we provide conclusions that summarize the results obtained in this 

research project, and provide suggestions to improve the model. 
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Chapter 2 

STABILITY ANALYSIS OF THE TWO 

DIMENSIONAL (N, A) SYSTEM 

In this chapter we present the two dimensional mathematical model to describe the interac­

tions between nutrient N and phytoplankton A in Section 1, and investigate the existence 

of the equilibrium points in Section 2. The stability analysis of these equilibrium points is 

given in Section 3. 

2.1 The Model 

Huppert et al [24] have proposed a simple nutrient-phytoplankton model that consist of 

only two variables; nutrient level N, and phytoplankton biomass A. It assumes that nutrient 

input flows into the system, and is lost from the system by sedimentation. The phytoplank­

ton A rely on nutrient "uptake" for growth, and is removed from the water column through 

mortality and sinking. This gives the following system 
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N = input - uptake - loss, 

A = uptake - death - sinking. 

and they choose nutrient input as a constant and use the bilinear Lotka-Voltera interac­

tion term to describe the nutrient uptake by phytoplankton. Although this model is of a 

very simple structure, it is useful, and its dynamics is important to more complex nutrient­

phytoplankton models. 

To make the model more realistic, we modify it by adding the nutrient recycling which 

gives the following general system 

N = input- loss - uptake + recycling, 

A = uptake - death - sinking. 

and we choose the nutrient uptake by phytoplankton as a nonlinear uptake function which 

is a product of Holling Types II and III functional responses [26], namely F(N)G(A)A. It 

describes how the consumption of nutrients by phytoplankton depends on both densities. 

F(N) is Holling type II functional response in which the phytoplankton consumption rate 

rises gradually with nutrient density, until it reaches a relatively constant level at which the 

consumption rate remains constant irrespective of nutrient density [27]. G(A)A is Holling 

type III functional response in which G(A) describes how the nutrient biomass is consumed 

by phytoplankton. It increases first and then decreases with increasing phytoplankton den­

sity. Explicit formulas of Holling Types II and III functional responses have been proposed 

by many authors [28, 29, 30, 31]. More generally, we assume that the functions F(N), 

G(A) satisfy the following conditions 

( C 1) F' > 0 , F" < 0 , F ( 0) = 0 limN-+oo F(N) = 1. 

G(O) = 0 limA-+oo G(A) = 0 , and there exists a maximum point A* 
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such that G'(A*) = 0 , G'(A) > 0 for all A< A* , G'(A) < 0 for all A> A*. 

For instance 

NP 
F(N) = NP + hJ1 (p > 0) 

Aq- 1 
G(A)- -Aq_+_k_q (q > 1). 

are functions satisfying ( C1) and ( C2 ) respectively, where h, k are the half saturation con-

stants of nutrient and phytoplankton, respectively. The sample graphs ofF and G are given 

in Figure (2.1 ). 

1 ---- · --------------·--------------------------·-·-

G(A) 

F(N) 

N A* A 

(a) (b) 

Figure 2.1: The schematic graph of (a) F(N), and (b) G(A). 

More specifically we choose the nutrient input as a constant, and assume that the nu-

trient loss by sedimentation, the nutrient recycling and the phytoplankton mortality are all 

linear functions, and the nutrient uptake by phytoplankton is represented by the proposed 

nonlinear uptake function, yielding the following 

dN 

dt 
dA 
dt 

L - sN- r F(N)G(A)A + bA = H1 (N, A) , 

- grF(N) G(A)A - mA = H2(N, A) , 

9 
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where the parameter L represents the rate of N input, s is the rate of N output due to 

sedimentation, r is the maximum per-capita grazing rate, b is the rate of nutrient recycling 

of the dead phytoplankton biomass by bacterial decomposition, g is the conversion rate of 

nutrient into phytoplankton, and m is the phytoplankton mortality rate. All the parameters 

L, s, r, b, g, and m are positive. 

We will analyse the system (2.2) mathematically. First, we have the following result 

about its solution. 

Theorem 2.1.1. All the solutions in (2.1) are bounded. 

Proof: 

dA 
From dt = gr F(N)G(A)A- mA ::; (grG(A) - m)A. Since limA-.= G(A) = 0, 

there exists A 0 such that when A> A0 , G(A) < m, i.e, ddA < 0 for A> A0 , hence, there 
gr t 

exists MA such that A ::; MA for A > A0 ::::;. A is bounded. 

dN L+bMA 
From dt = L-sN -rF(N)G(A)A+bA::; L+bMA -sN, when N > 

8 
= N0 , 

dN . 
dt < 0 ::::;. N 1s bounded as well. 

In the following section we discuss the existence of the equilibrium points of system 

(2.1). 

2.2 The Equilibrium Points 

The equilibrium points of (2.1) satisfies H1(N, A) = H2(N, A) 

boundary equilibrium point E0 = ( L, 0) always exists. 
s 

0. Obviously, the 

To discuss the existence of the positive equilibrium points, from (2.1) we work on the 
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equations 

and 

F(N)G(A) = m , 
gr 

N = h(A) = ~[£- m - bg A] . 
s g 

(2.2) 

(2.3) 

m 1 m 
From F(N) = gr · G(A) and 0 ::; F(N) < 1, we have gr < G(A) . Since G(A) ::; 

G(A*) from (C2 ), if the positive equilibrium points exists in (2.2),(2.3) then the parameters 

m 
m, g, r satisfy - < G(A*), therefore, the values of A which satisfy Eq. (2.2) must fit the 

gr 

inequality m < G(A) < G(A*). 
gr 

Due to the continuity of G(A), it is obvious that there exists 0 < A1 < A* < A2 such 

that 

The solution of (2.2) satisfies A1 < A < A2 . Moreover, from F (N ) = ; · c!A) = j (A), 

we haveN= F - 1(J(A)) = h(A). Since f(AI) = j(A2) = 1, and limN--oo F(N) = 1, 

<0 i f A1 < A < A*, 
, m G'(A) 

From f (A) =-gr G2(A) = = 0 if A = A*, by the assumption ( C2), 

>0 i f A* < A< A2 , 
and 

f' (A)= dF- 1(J(A)) = dF- 1(J (A) ) . df(A) 
2 dA df(A) dA ' 

we have 

11 



< 0 i f A 1 < A < A*, 

!~(A)= = 0 i f A = A*, 

> 0 i f A* < A < A2, 

dF- 1(f(A)) 
ince df(A) > 0 due to the monotonic property of the function F. 

The previous facts sugge t that the graph of the function h (A) is as follows 

{,(A) 

A* A, A 

Figure 2.2: The schematic graph of h (A). 

Therefore, geometrically, the positive equilibrium points are the intersection points of 

the two curves !I (A) and h(A) which suggests that there exists at most two po itive equi-

librium points. See Figure (2.3). 

Us //A! 

N 
/lA) N 

Us 

N 

Us 

gU(m- bK) A 

(a) (b) (c) 

Figure 2.3 : The schematic graphs of !I (A) , h(A) (a) m > bg, (b) m = bg, (c) m < bg. 
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Although we can observe the possible existence of positive equilibrium points from 

Figure (2.3), to find the conditions under which the system has none, one or two positive 

equilibrium points, and further to discuss their stabilities, we need to solve the two Eqs. 

(2.2) and (2.3) simultaneously. Substituting (2.3) into (2.2) gives the equation 

F { ~ [ L - m - bg A]} · G (A) = m. 
s g gr 

(2.4) 

Let the function in the left-hand side of (2.4) be H(A) 

H(A) = F{ ~[L - m - bg A]}· G(A). 
s g 

It is easy to see that H(A) 2: 0, H(O) = 0. Obviously, when m > bg the domain of H (A ) 

is 0 :::; A :::; gL and H( gL ) ) = 0, while when m :::; bg the domain of H(A) is 
m- bg m- bg 

A 2: 0 and limA-+oo H(A) = 0. Also 

H'(A) = - m- bg F'{ ~[L - m- bg A]}· G(A) + F{ ~[L- m- bg A]}· G'(A) (2.5) 
gs s g s g 

We have the following Lemma about the sign of H' (A). 

Lemma 2.2.1. There exists A such that, 

>0 if A< A , <A* if m > bg, 

(l)H'(A) = = 0 if A=A ' 
Moreover, (2JA = = A* if m= bg, 

<0 if A> A. > A* if m < bg. 

Proof: 

First we consider the case m > bg. Since F > 0, F' > 0, G > 0, there exists A uch 

that G'(A) > 0 and satisfies H'(A) = 0 in (2.5). In addition, we can locate A < A* from 
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(2.1). h (A)= ~[L- m- bg A] is a decreasing function, and F' > O,F" < 0. By noticing 
s g 

the domain of H(A) form > bg is [0, gL ], we have the following 
m-bg 

i)whenA <A< A*, 

~[L - m- bg A]> ~[L- m- bg A], 
s g s g 

F( ~[L - m- bg A]) > F( ~[L- m- bg A]) ;::: 0, 
s g s g 

0 < F'(~[L- m- bg A])< F'(~[L - m - bg A]), 
s g s g 

o ::; G(A) < G(A) , G'(A) > G'(A) > o. 

Consequently in (2.5) 

H'(A) > - m- bg F'( ~[L-m- bg A])G(A)+F( ~[L- m - bg A])G'(A) = H'(A) = o. 
gs s g s g 

ii) when A < A < A*, 

~[L- m- bg A]< ~[L- m- bg A], 
s g s g 

0 < F(~[L- m- bg A])< F(~[L- m- bg A]), 
s g s g 

F'(~[L- m- bg A])> F'(~[L- m- bg A])> 0, 
s g s g 

G(A) > G(A) ;::: 0 , 0 < G'(A) < G'(A), 

hence, 

H'(A) < - m- bg F'( ~[L- m - bg A])G(A)+F( ~[L- m - bg A])G'(A) = H'(A) = 0. 
gs s g s g 

iii) when A* < A < gL , 
- - m- bg 
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~[L- m - bg A] ::; ~[L - m- bg A*], 
s g s . g 

0::; F(~[L - m- bg A])::; F(~[L- m- bg A*]), 
s g s g 

F'(~[L- m- bg A])~ F'(~[L- m- bg A*])> 0, 
s g s g 

0 < G(A) ::; G(A*) , G'(A) ::; G'(A*) = 0, 

consequently 

H'(A) <-m- bg F'( ~ [L - m- bg A*])G(A*) + F( ~[L- m- bg A*])G'(A*) < 0. 
gs s g s g 

therefore, for any A E [0, gL b ] the results (1) and (2) hold. Similarly we can prove the 
m- g 

results when m ::; bg. 

H(A 

The previous facts suggest that the function H (A) has the following shape, Figure (2.4). 

(a) (b) (c) 

Figure 2.4: The schematic graph of H(A) (a) m > bg, (b) m = bg, (c) m < bg. 

The roots of Eq.(2.4), (i.e; H(A) = m) are the intersections between the graph of 
gr 

the function H (A) and the horizontal line m . In the following we determine the different 
gr 

cases in which Eq.(2.4) has none, one or two positive roots. Furthermore, we determine the 
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location of each positive root with respect to A and A*, since we will need this information 

in Section 3 to determine the stability of the corresponding equilibrium points. 

Case 0: H(A) < m (Figure (2.5)). Since there is no intersection between the graph of 
gr 

H(A) and the horizontal line m, hence Eq.(2.4) has no positive root. 
gr 

mlgr 
miRr f----------- mlgr f--------

H(A) 

H(A) ·•· ••· •• ······· · 

II( A ) 

A =A A 

(a) (b) (c) 

~ m 
Figure 2.5: Case 0 H (A) < -(a) m > bg, (b) m = bg, (c) m < bg. 

gr 

Case 1: H(A) = m (Figure (2.6)). The horizontal line m is tangent to the curve of 
gr gr 

H(A) at the point (A, H(A)), implies Eq.(2.4) has one positive root Ai satisfying Ai 

A < (~)A* when m > (~)bg. 

" ' 
H(A )=mlgr 1----..,....,---- ' 

H(A)=nvgr f---____,.., 
li(A)=nVgr 
~-__,...,.__ 

H(A) 1/(A) 

A =A 

(a) (b) (c) 

~ m 
Figure 2.6: Case 1 H(A) = -(a) m > bg, (b) m = bg, (c) m < bg. 

gr 
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Case 2: H(A*) < m < H(A) (m ::J bg)(Figure (2.7)). There are two intersection 
gr 

points between the graph of H(A) and the horizontal line m, and hence Eq.(2.4) has two 
gr 

positive roots Ai and A2 satisfying Ai < A < A2 < A* when m > bg, and A* < Ai < 

A < A2 when m < bg. 

A . 
H (A) H(A) 

mlgr mlgr f------,~~--

1/(A') --- -- ---

H (A"/ •••••. 'T ; H(A) 

(a) (b) 

m ~ 

Figure 2.7: Case 2 H(A*) < - < H(A) (a) m > bg, (b) m < bg. 
gr 

Case 3: H(A*) :2: m (Figure (2.8)). There are two intersection points Ai and A2 as 
gr 

well. Where Ai <A< A* ~ A2 when m > bg, Ai <A*= A< A2 when m = bg, and 

Ai ~A*< A< A2 when m < bg. 

A . 
H(A) --------------- H(A) 

H(A) ---- --------- ---
H(A*) 

A,* A* A,* A 

(a) (b) (c) 

Figure 2.8: Case 3 H (A*) :2: m (a) m > bg, (b) m = bg, (c) m < bg. 
gr 
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The following table summarizes the conditions for the existence of roots in (2.4) 

Case# Condition Roots of Eq.(2.5) 

A m 
0 H (A ) <- No positive roots exist 

qr 
A m 

Ai = A< A* H (A) = -,m > bg 
gr 

A m 
1 H (A) = -, m = bg A*- A- A* 

gr 
1- -

A m 
Ai =A> A* H (A) = -, m < bg 

gr 
m A 

Ai < A < A2 <A* 2 H (A*) < - < H (A), m > bg 
gr 
m A 

A*< Ai <A < A2 H (A*) <- < H(A), m < bg 
qr 

m 
A* < A < A* < A* H (A*) 2: -, m > bg 

gr 1 - 2 

m 
Ai <A*= A< A2 3 H (A*) 2: -, m = bg 

gr 
m 

A* < A*< A< A* H (A*) 2: qr, m < bg 1- 2 

Table 2.1 

After obtaining the values of Ai and A2, the corresponding values of N{ and N2 can be 

determined by Eq.(2.4). Therefore, we can obtain the positive equilibrium points in (2. 1) 

denoted by E1 = (N;, Ai) and E2 = (N2, A2). 

In the following section we determine the stability type of each equilibrium point in 

each case. 

2.3 Stability Analysis 

The local stability of an equilibrium point can be determined by calculating the eigenvalues 

of the Jacobian matrix at this point. For the two dimensional system (2.2), if the two eigen-
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values have negative real parts then the corresponding equilibrium point is locally asymp-

totically stable. If at least one eigenvalue has a positive real part then the corresponding 

equilibrium point is unstable. 

The Jacobian matrix of system (2.1) is 

J(N, A) 
( 

8H1 fJH1 ) 
oN fJA 
8Hz fJH2 
-- --oN fJA 

= 
( 

-s- r F'(N)G(A)A 

gr F' ( N) G (A) A 

-rF(N)G'(A)A- rF(N)G(A) + b ) 

grF(N)G' (A)A + grF(N)G(A)- m 

Case 0: (There is no positive equilibrium point)(See Figure (2.5)). 

L 
In this case the only equilibrium point is the boundary equilibrium point Eo = ( ~, 0). 

s 

The Jacobian matrix at this point is 

and so the two eigenvalues are .\1 = -s < 0, .\2 = -m < 0. Hence E0 is always locally 

asymptotically stable. 

Moreover, under certain condition, E0 can be globally asymptotically stable. 

Theorem 2.3.1. lfG(A*) ::; m , then the boundry equilibrium point E 0 is globally asymp­
gr 

totically stable in R~ = { (N, A) E R2 
: N > 0, A 2:: 0}. 

Proof: 

From G(A) ::; G(A*) , 0 ::; F(N) < 1 we have 
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dA dt = grF(N)G(A)A- mA < grG(A*)A- mA = (grG(A*)- m)A 

Since G(A*) ::; m, ddA < 0, and limt_,oo A(t) = 0. Substituting A = 0 into (2.2) gives 
gr t 

L L 
N' = L - sN ==::::} N(t) = - + ce-st, therefore limt_,00 N(t) = -, implying that E0 is 

s s 

globally asymptotically stable. 

~ m 
Remark 2.3.1. When H(A) < - < G(A*), there are no positive equilibrium points (See 

gr 

Figure (2.5)). The boundary equilibrium point E0 is the unique equilibrium point. We can 

conject that E0 is also globally asymptotically stable, although we can't prove it rigorously. 

However, numerical simulation can support this conjecture. We choose F(N) = NN , 
+ 1 

A 
G(A) = A

2 
+ 

1
, L = 0.2, s = 0.05, b = 0.15, g = 1, m = 0.24, and r = 0.6. Then 

H(A) = 0.35 < m = 0.4 < G(A*) = 0.5. The phase portrait (Figure (2.9)) illustrates the 
gr 

global stability of the boundary equilibrium point. 

Figure 2.9: The phase portrait of system (2.2). 

In the following we study the local stability of the positive equilibrium points in Cases 

1,2 and 3. 
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The positive equilibrium points E 1 = (N{, Ai), E 2 = (N2, A2) satisfy 

F(Nt)G(A;) = ; . (i = 1, 2). 

The Jacobian matrix at each equilibrium point is 

( 

-s- rF'(Nt )G(Ai )Ai 
J(Nt, Ai) = 

gr F'(Nt)G(Ai)Ai 

-rF(Nt)G'(Ai)Ai -; + b ) 

grF(Nt )G'(Ai)Ai 

Let K 1 = F' (N*)G(A~)A~ K 2 = F(N*)G'(A~)A* 
t t 1. 1. ' 'l. t t t ' 

( 

1 
2 m ) -s- rKi -rKi -- + b 

J(N.* A~)= 9 
t ' t 

grKl grKf 

detJ = -sgrKf + rKl(m - bg) , T r J = - s - rKl + gr1{t 

Lemma 2.3.2. If Ai < (2: A) then detJ < (2:)0. 

Proof: 

It is easy to see that K l > 0. When Ai < (2: A), H'(Ai) > (:::; 0) (from Lemma 2.2.1). 

Ai H'(Ai) m ~ bg F'(Nt)G(Ai)Ai + F(Nt)G'(A;)Ai, 

m- bg}(l K2 t+ p gs 

~ [gsKf- (m - bg)Kl ], 
gs 

--
1
- detJ I > (:::; 0). 

gsr A~ 
' 

therefore detJ~A~ < (2: 0) for Ai < (2: A). 
' It is noted that when Ai < (2:)A*, G'(Ai) > (:::;)0 (from (2.1)), so K f > (:::;)0. 

Moreover, if K f :::; 0, Tr J < 0 is obvious, while when K f > 0, then the sign of Tr J is 

changeable. 
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Combining the information given in Table 2.1, the stability type of the positive equilib-

rium points in Cases 1,2 and 3 can be determined as follows 

Case 1: (There exists only one positive equilibrium point E 1 = (N;, Ai) = (N, A) )(See 

Figure (2.6)). 

1) When m > bg, A;'= A< A*, detJ = 0 and Kf > 0, hence, 

s + rK1 
. . 

if Kf < 1
, then TrJ < 0, the eigenvalues are .A1 = 0, .A2 < 0, that means E 1 IS a 

gr 

degenerate stable equilibrium point; 

s+rK1 . 
if Kf = 1

, then TrJ = 0, the eigenvalues are .A1 = .A2 = 0, that means E1 is a 
gr 

degenerate equilibrium point, and we can not determine the stability from the linearized 

system; 

.f K 2 8 + r Kf h T J 0 I ' ' 0 th E I 1 > , t en r > , the eigenva ues are "'1 = 0, "'2 > , at means 1 
gr 

s + rK 1 
. 

is an unstable equilibrium point. Therefore, when Kf = 1 
, there IS a steady-state 

gr 

bifurcation. 

2) When m ::; bg ,A;' = A ~ A*, detJ = 0 and Tr J < 0 since Kf ::; 0, the eigenvalues 

are .A1 = 0, .A2 < 0, that means E 1 is a degenerate stable equilibrium point. 

Case 2: (There exists two positive equilibrium points E 1 = ( N;, A;'), E2 = ( N2, A2) )(See 

Figure (2.7)). 

1) When m > bg, Ai < A < A2 < A*, detJI < 0, so E 1 is a saddle point. Also, 
Aj 

detJI > 0 and Ki > 0, hence, 
A2 

If Ki < , then Tr J < 0, the eigenvalues are .A1 < 0, .A2 < 0, then E 2 IS locally . s + rKi I . . 
gr A2 

asymptotically stable equilibrium point. 

If Ki = 2
, then TrJ = 0. The eigenvalues are .A 1,2 = ±iw. Then there is a s + rK

1 I . 
gr A2 
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possibility of the existence of a Hopf bifurcation. 

s + rK
1 I If K? > 2

, then TrJ > 0. The eigenvalues are )q > 0, .\2 > 0. Then E 2 is an 
gr A* 

2 

unstable equilibrium point. 

2) When m < bg, A* < Ai < A < A;, detJI < 0 and TrJ I < 0, E 1 is a saddle 
Aj Aj 

point. While detJI > 0 and TrJI < 0, hence, E 2 is locally asymptotically stable. 
A2 Ai 

Case 3: (There exist two positive equilibrium points E1 = (N;, Ai) , E 2 = (N2, A;))(See 

Figure (2.8)). 

Similarly, by determining the signs of detJ and TrJ at each Ei (i = 1, 2) we know E 1 

is a saddle point and E 2 is locally asymptotically stable. 

Therefore, the stability of the positive equilibrium points in the different cases is sum-

marized as following 

Case# Condition 2 s + rF<; 2 s + ri<; 2 s+rK; 
J( i < ----q:;:- J( . =--- I<; > ----q:;:-' qr 

• m 
I H(A) = -,m > bg 

gr 
Et is degenerate stable Et is degenerate Et unstable 

• m 
H(A) = ar, m ~ bg Et is degenerate stable - -

Et saddle Et saddle Et saddle 

H(A*) < m < H(A) , m > bg 
gr 

£2 asymptotically £2 :there is a possibility of the £2 unstable 

2 stable (AS) existence of a Hopf bifurcation 

m . 
H(A*) < - < H(A),m < bg E1 saddle - -

gr 

£2 AS - -

3 H(A*)~ m 
gr 

E1 saddle Et saddle Et saddle 

E2 AS - -

Table 2.2 

Where"-" means does not exist. 
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Chapter 3 

STABILITY ANALYSIS OF THE TWO 

DIMENSIONAL (N , A) SYSTEM 

WITH TIME DELAY T 

There is a time required to regenerate nutrient from dead phytoplankton biomass by bac-

terial decomposition. Such a delay is always present in natural systems and increases with 

decreasing temperature [32]. Therefore, it is necessary to study the nutrient-phytoplankton 

system (2.2) with delayed nutrient recycling, and to discuss the effects of introducing this 

time delay on the stability of its equilibrium points. · 

Consider the following (N, A) model with time delay T 

dN 

dt 
dA 
dt 

L - sN- rF(N)G(A)A + bA(t- T) , 

grF(N)G(A)A- mA. (3.1) 

this system has the same equilibrium points as system (2.2) under the same conditions. 
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3.1 Stability Analysis 

First, we consider the stability of the boundary equilibrium point E0 = ( L , 0). 
s 

L 
The following transformation of variables x = N - - and y = A transforms E0 to the 

s 

trivial equilibrium point (0, 0), and gives 

L L L 
F(N) = F(x + - ) = F(-) + xF'(-) +0(x2

) , 
s s s 

G(A) = G(y) = G(O) + yG'(O) + O(y2
) = yG'(O) + O(y2

). (3.2) 

Substituting (3 .2) into the model (3 .1 ) yields the following system 

x -sx + by(t- T ) + O(x2 + y2
), 

(3.3) 

The characteristic matrix at the trivial solution (0, 0) is 

( 
,\ + s - be->..7 

) 

6 (..\) = 

0 .A + m 

which has two eigenvalues ..\1 = -s < 0, ..\2 = - m < 0, implying that (0, 0) is always 

locally asymptotically stable for any T 2: 0, this indicates that the time delay T does not 

affect the stability of the boundary equilibrium point E0 . 

Now we study the stability of the positive equilibrium point ( N, A} 

Let x = N - Nand y = A - A then model (3 .1) becomes 

x -x(s + rF'(N)G(A)A)) - y(m + rF(N)G'(A )A) + by(t - T ) + O(x2 + y2
). 

g 

y grF'(N )G(A)Ax + grF(N )G'(A )Ay + O(x2 + y2
). (3.4) 
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Let K 1 = F'(N)G(A)A, K 2 = F(N)G'(A)A, the characteristic matrix at the origin is 

( 

>. + s +rK1 

6(.\) = 
- grK1 

then the characteristic equation is 

.€(>., 7) ~ .\2 + (s + rK1 - grK2 )>. + rK1m- sgrK2 - grK1be->.r 

>. 2 + a>. + (3 + 1e->.r = 0 
(3.5) 

Since (3.4) is an infinite dimensional system, (3.5) is usually transcendental, hence, 

the distribution of the roots in (3.5) is usually more complicated than that for the finite 

dimensional system without delay. The following Lemma investigates the distribution of 

the roots in (3.5). 

Lemma 3.1.1. 

In E.q (3.5) 

1) If (Hn) : (3 + 1 > 0 and (H12) : a 2: y'21J, then all the roots have negative real 

parts. 

If (H2I) : (3 + 1 = 0, and 7 ::; ~. a < 0, then there exists a zero root and all other 
I 

roots have negative real parts. 

If (H3I) : (3 + 1 < 0 or (H32) : (3 + 1 = 0, and 7 > a, a < 0, then there exists at 
I 

least one root with positive real part. 

2) If (H41 ) : lf31 < -1, then there exists one pair of purely imaginary roots A = ±iw+, 

at a sequence of critical values of 7. 

a2 
If (Hs1 ) : (3 = -1 > 2 , then there exists a zero root and one pair of purely 
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imaginary roots A = ±iw+, at a sequence of critical values ofT. 
a2 

If (H61) : {3 > max{ -1, 2 }, and (H52) : (a2 - 2{3)2 > 4({32 - 1 2), then there 

exists two pairs of purely imaginary roots A± = ±iw± with w+ > w_ > 0, at two 

sequences of critical values ofT. 

Proof: 

1) It is easy to check that when {3 + 1 > 0, A= 0 is not a root ofEq. (3 .5). 

Substituting A = u + iv into (3.5) yields 

(u + iv)2 + a(u + iv) + {3 + 1e-(u+iv)r = 0. 

Expanding the last equation and equating the real and imaginary parts to zero gives 

u2 - v2 + au + {3 + 1e-ur cosvT = 0, 2uv + av - 1e-ur sinvT = 0 

therefore 

e-2ur < 1 for u > 0 , then 1 2e-2ur < 1 2 and the last equation gives 

Since 1 < 0, so from {3 + 1 > 0, we have {3 > 0 and {32 
- 1 2 > 0, so, if u > 0 and 

a ~ V27J, (3.6) is impossible. Hence, we know that under assumptions (H11 ) and (H12 ) 

all roots in Eq.(3 .5) have negative real parts. 

From assumption (H21) , since {3 + 1 = 0, then 
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£(0, T) = {3 +I= 0. 

so>. = 0 is a root of Eq.(3.5). 

Moreover, 

= a - Tl ~ 0 if (H21) holds. 

In addition, 

therefore, all the roots of Eq.(3.5) except zero have negative real parts. 

Similarly, from assumptions (H31 ) or (H32 ), we have 

of(A,T) 
£(0, T) = {3 + I :::; 0, ()). =a- Tl < 0, and lim>._,00 £(>. , T) = +oo. 

Therefore, there exists >.0 > 0 such that £(>.0 , T) = 0, i.e, Eq.(3.5) has at least one positive 

root. 

2) Substituting A = iw into Eq.(3.5) gives 

-w2 + awi + {3 + 1(coswT- isinwT) = 0. 

Separating the real and imaginary parts gives the following two equations 

ICOSWT - w2 
- {3, 

1sinwT aw, (3.7) 

which yields 

(3.8) 
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that is, 

Solving the above equation gives, 

(3.9) 

If {32 < 1 2 (i.e.,l fJ I < -1), then Eq. (3.9) determines only one w+ > 0. From (3.7) we can 

determine a sequence of critical values of time delay r corresponding tow+ 

()1 + 27Tn 
Tn,1 = 

w+2
- {3 . aw+ 

where 0 :::; ()1 < 27T, n = 0, 1, 2, .. and cos()1 = , sm()1 = --. 
I I 

2 

If {3 = -1 > ~ then A = 0 is a root of (3.5) and Eq.(3.9) determines only one w+ > 0, at 

the sequence of the critical values of the time delay Tn, 1· 

2 

When {32 > 1 2 (i.e.,l fJ I > -1). 2{3 > a 2
, which are equivalent to {3 > max{ -1, ~ } , 

and if, in addition (o:2 - 2{3) 2 > 4({32 - 1 2 ) then both W± in Eq.(3.9) are positive, at two 

sequences of critical values of r given by rn,l and Tn, 2 where 

Tn,2 = w_ 

() () 
w_ 2 

- {3 . () o:w_ 
where 0:::; 2 < 27T, n = 0, 1, 2, ... and cos 2 = , s'ln 2 = --. 

I I 

The proof of Lemma 3 .1.1 is completed. 

To see the variation of Re(A(r)) with the change of r near the purely imaginary eigen-

. dReA(r) 
values we check the s1gn of dr 
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Differentiating the characteristic equation (3.5) with respect to T gives 

Hence, 

S Re(
d.A) - 1 

O, dT 

Therefore 

I.e., 

(dA)_1 = (2A + a)eAT- T"'f = (2A + a)eAT 
dT A"'/ A"'f 

-\=iw 

a 2 + 2(w2
- fJ) 

a2w2 + (w2 _ fJ)2 

± J (a2 _ 2/3)2 _ 4(fJ2 _ 1 2 

"'/2 

. dRe.A 
s1gn~ = sign(±J(a2- 2/3)2- 4(fJ2- 1 2). 

-\=iw 

dRe.A 
dT 

>0 
dT 

< 0. 
dRe.A 

1 w2 - fJ 
Consider the function Tn(w) = -(arccos( + 2mr).Then 

w "'! 

dTo 1 w2
- fJ 2 

- = --arccos( ) - < 0. 
dw w2 "'! V"'/2 _ (w2 _ fJ)2 

27r 27r 
Since w + > w_ > 0, To 1 < To 2. also Tn+1 1 - Tn 1 = - < - = Tn+1 2 - Tn 2· 

1 1 I I w+ w_ l I 

Based on the above analysis and Lemma 3.1.1 we have 

Theorem 3.1.2. 

(3. 10) 

1) If assumptions (H11 ) and (H12) are satisfied, then the trivial equilibrium point is 

Locally asymptotically stable for all T > 0. 
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2) If ( H 21 ) is satisfied, then the trivial equilibrium point undergoes a steady-state bifur-

cation. 

3) If ( H31 ) is satisfied then the trivial equilibrium point is unstable for any T > 0. If 

(H32 ) is satisfied, then it is unstable for any T > ~. 
I 

4) Under (H41), 

if the trivial equilibrium point is asymptotically stable for T = 0, then it remains 

asymptotically stable forT E (0, To,1 ) and it is unstable for T > 7'0,1, where a Hopf 

bifurcation occurs at T = 70,1; 

if the trivial equilibrium point is unstable forT = 0, then it remains unstable for any 

7' :::: 0. 

5) If (H51 ) is satisfied, then the trivial equilibrium point undergoes a Hopf-zero bifur-

cation at a sequence of critical values of Tn,l· 

6) If (H61 ) and (H62 ) are satisfied then a stability switch occurs, that is, if the trivial 

equilibrium point is stable (unstable)for T = 0 then there can be only a finite number 

of switches between stability (instability) and instability (stability), and there exists 

a critical value f such that at T = f a stability switch occurs from stable to unstable 

and forT > f the solution remains unstable. 

In the following we seek conditions in Lemma 3.1.1 in terms of the parameters s, r, g, m, b 

in system (3 .1) and K 1, K 2 which are related to the equilibrium point ( N, A). 
K 2 m- bg 

(Hu): f3+! > 0 <* Kl < , 
gs 

(H12): o: :=:: -!213 <=? s + rK1
- grK2 :=:: J2r(K1m- sgK2 ), and K 1m > sgK2

, 
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K 2 m - bg a gr K 2 
- s - r K 1 

(H21 ) : (3 + 1 = 0 {::} ; v- I = and T :=:; - {::} T :=:; bKl , and 
·\ gs 1 gr 

a < 0 ~ gr K 2 
- s - r K 1 > 0, 

K 2 m- bg 
(H31): fJ + 1 < 0 {::} K 1 > , 

gs 
K 2 m-bg a gTK2 -s- rK1 

(H32 ) : (3 + 1 = 0 {::} ;v-1 = and T > - {::} T > bKl , and 
\ gs 1 gr 

a < 0 ~ gr K 2 
- s - r K 1 > 0, 

(H4I): lf31 < -1 {::} IK1m- sgK2
1 < gbK1

, 

(
H ) . (3 _ _ a 2 K 2 

_ m - bg (s + rK 1
- gr K 2

)
2 K 1 

51 . - I > 2 {::} Kl - gs ' 2rgb < ' 
a 2 (s + rK 1

- grK2
)
2 

(H61) : (3 > max { -1, 2 } {::} K 1m - sgK2 > m ax{gbK 1
, 

2
r }, 

(H62 ) : (a 2 - 2(3)2 > 4((32 _12) {::} a2(a2 - 4(3) + 412 > 0 {::} 

To discuss the effect of time delay on the stability of the positive equilibrium points, we 

need to check which assumptions are satisfied for each positive equilibrium point in Cases 

1,2 and 3 using the information given in Table (2.2) and Theorem 3.1.2. 

Case 1: (There exists only one positive equilibrium point E 1). 

At E 1, KKf = m- bg, i.e, (3 + 'Y = 0, it is obvious to see that (H21), (H32), and (Hsi) are 
I gs 

possible. 

If ( H 21) is satisfied, i,e. Kf > 8 + r Kr (a < 0), then E 1 is unstable for T = 0 and it 
gr 

gr K 2 - s- r K 1 

undergoes a steady state bifurcation for any T :=:; 1 bK1 
1 (Theorem 3.1.2(2)). 

gr 1 

If (H32) is satisfied, i,e. Kf > 8 + r KJ (a < 0), then E 1 is unstable for T = 0 and it 
gr 

grK2 - s - r K 1 

remains unstable for any T > 1 bK1 
1 (Theorem 3.1.2(3)), implying that suffi-

gT 1 

ciently large time delay T does not affect the stability of E 1. 
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If (H51 ) is satisfied, when T = 0, E1 is degenerate, and is either stable or unstable. While 

when T > 0, there exists a Hopf-Zero bifurcation at a sequence of critical values of T = Tn,l 

(Theorem 3.1.2(5)). 

Case 2: (There exists two positive equilibrium points E 1 ,E2). 

At E1, }~r > m- bg, i.e, {3 + 1 < 0. Obviously, (H31 ) is satisfied and (H41) is possible . 
. \1 gs 

Since E 1 is an unstable (saddle) point when T = 0, it stays unstable for any T > 0 under 

(H31) or (H41 ) (Theorem 3.1.2(3,4)), implying the time delay T does not affect its stability. 

K2 
At E2, K~ 

2 

possible. 

< m- bg, i.e, {3 + 1 > 0, only (H11 ) is satisfied. Both (H61 ) and (H52) are 
gs 

At T = 0, if K? < 8 + r Ki (a > 0), then E 2 is locally asymptotically stable. Hence (H12) 
gr 

is possible. Furthermore, if (H12) holds, then E2 is also locally asymptotically stable for 

any T > 0 (Theorem 3.1.2(1)), implying the time delay T does not affect its stability. 

If (H61) and (H62) are satisfied, then a stability switch occurs (Theorem 3.1.2(6)). When 

T = 0, E 2 is either stable, unstable, or it may undergoe a Hopf bifurcation. 

Case 3: (There exists two positive equilibrium points E 1 ,E2). 

We have the same re ults as in Case 2. 

In summary, the time delay T does not affect the stability of the positive equilibrium 

points except in Case 1 when assumption (H51 ) is satisfied. Then the characteristic equation 

(3.5) has a zero root and a single pair of purely imaginary eigenvalues. In Cases 2 and 3 

when (H61) and (H62) are satisfied, then the characteristic equation (3.5) has two pairs of 

purely imaginary eigenvalues. 
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Chapter 4 

BIFURCATION ANALYSIS 

A Bifurcation is a qualitative change in a dynamical system as its parameters pass through 

a bifurcation (critical) value. The number of parameters which must be varied for the bi­

furcation to occur is called the codimension of the bifurcation. For example, addle-node 

and Hopf bifurcations are codimension one bifurcations, while a Hopf-Zero bifurcation is 

a codimension two. Center manifold theorem and the normal form approach are two of 

the fundamental techniques in bifurcation analysis. They are used to reduce the dimension 

of the system without los ing significant dynamical properties. Then the existence and na­

ture of bifurcations and the stability of the bifurcating olutions are completely determined 

by analysing the dynamic on the center manifold. In this chapter we use the projection 

method, the normal form and the center manifold theorems to study the bifurcations of 

systems (2.2) and (3.1). 
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4.1 Bifurcations when 1 = 0 

We found in chapter 2 that under certain conditions, the characteristic equation of system 

(2.2) has either one zero or one pair of pure imaginary eigenvalues, implying the existence 

of a steady-state bifurcation or the possibility of the existence of a Hopf bifurcation under 

respective conditions. 

Suppose the existence of a bifurcation at the equilibrium point CN, A) . The following 

transformation of variables N = x1 + N and A = x2 + A transforms the equilibrium point 

(N, A) to the trivial equilibrium point (0, 0). Expanding F(N) and G(A) up to second 

order, and substituting into system (2.2) we have 

where 

with 

x' 1 

x' 2 

-(s + rK1)x1 + (-m- rK2 + b)x2 - rh(x1, x2) + O(xf + x~) , 
g 

grK1x 1 + grK2x2 + grh(x1, x2) + O(xf + x~). 

au = F'(N)G(A) + F'(N)G'(A)A, 

1 - - -
a2o = "2F"(N)G(A)A, 

a02 = F(N)G'(A) + ~F(N)G"(A)A, 
a12 = F'(N)G(A) + ~F'(N)G"(A)A, 
a21 = ~F"(N)G(A) + ~F"(N)G'(A)A, 

1 - -
ao3 = 2F(N)G"(A). 
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Rewrite (4.1) as 

x' = Ax+ F(x ), (4.2) 

where 

( 

-s- rK 1 

A= 
gr K 1 

m 
2 

) 
-g- rK + b ' 

grK 2 

The characteristic equation of the linearized system x' = Ax is 

(4.3) 

To do the bifurcation analysis, we choose s as the perturbation parameter for system 

(2.2) and fix the other parameter values. 

4.1.1 Saddle-Node Bifurcation 

Suppose at the parameter value s = s0 the following two conditions 

and 

are satisfied . Then system (2.2) has a nonhyperbolic equilibrium point CN, A), with one 

zero (>, 1 = 0) and one negative (>.2 = - s0 - r K 1 + gr K 2
) eigenvalue (From (4.3)). 

We use the projection method to compute the one-dimensional center manifold. 

From(>.1I - A)q = 0, the eigenvector corresponding to>. 1 = 0 IS q = ( 
1 

) 

b/~0m . 

Let p = (p1 , p2f E R2 be the adjoint eigenvector. Then 
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p= 
grK2 - s0 - rK1 

K 2 (so + r K 1
) 

J<I (gr J<2 - so - r J<I) 

ati fying < p, q >= 1. 

where < ., . > is the standard scalar (inner) product in R2
. 

We have the following Lemma From [33]. 

Lemma 4.1.1. Fredholm Alternative: Let rsu denote an 1-dimensionallinear eigenspace 

of A corresponding to the negative eigenvalue >.2 < 0. Then y E rsu if and only if 

<p,y >= 0. 

Let y = (y1 , y2f E R 2 such that < p, y >= 0. Using Lemma4.1.1 , we can decompose 

any vector X E R 2 as X = uq + y with uq E rc, y E rsu, where rc i the complementary 

pace of rsu in R 2. If q and p are normalized as above, one can get the explicit ex pre sions 

for u andy. Since u =< p, x > , y = x- < p, x > q we have 

u' =< p, x' >=< p, F(uq + y) > 

Since F(uq + y) = O(u2 ) , using Taylor expression, we have 

1 
u' = -au2 + O(u3

) = f(u). 
2 

When the lowest order term is nonzero, we can choosey = 0. Then 

a 
82 

au 2 < p, F ( uq + y) > 
u= O,y= O 

g2 s6 gsa gr soi<2 

2(ao2(b )2 -anb +a2o)J<1( !{2 }"'I) g - m g - m gr - s0 - r • 
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If a =f. 0, then f'(u) = 0, f"(u) =f. 0, hence, Theorem 3.1 in [33] implies the existence of 

invertible coordinate and parameter changes tran forming system ( 4.2) into 

where (3 E R is a perturbation parameter. Thi system is locally topologically equivalent 

near the origin to one of the normal forms r!' = (3 ± ry2 (Theorem 3.2 in [33]), implying the 

existence of a saddle-node bifurcation near the origin. 

4.1.2 Hopf Bifurcation 

Suppose at the parameter value s = s1 the following two conditions 

and 

are atisfied, then the Jacobian matrix A in (4.2) has one pair of purely imaginary eigenval-

Differentiating the characteristic equation ( 4.3) with respect to s gives 

Hence, 

d).. grK2 - ).. 
-

ds 2).. + s + rK1 - grJ<2' 

d).. 

d 
s=s1 ,>.=±iwo 

1 gr K 2
. 

= -- =f --2, 
2 2wo 

which imp lie the existence of Hopf bifurcation at = 1 since 
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Red).. 
ds 

s=s 1 ,..\= ±iwo 

= a'(s1) = -~ < 0. 

Similar to the procedure in Section 4.1 , we transfer ystem (2.2) to sy tern ( 4.2) where 

-s1 - rK --- rK + b 
A = g , 

( 

1 
m 2 ) 

grK1 grK2 

Let q = (q1 , q2f be the eigenvector corre ponding to >. 1 = iw0 . Then, 

- + --'/, c 

( 

s
1 + r K

1 

w
0 

. ) ( ) 
q = gr K2 1 gr J<1 = 1 , 

where 

s1 + r K 1 wo . gr K 2 wo . K 2 wo . 
c = - gr K2 + gr K 1 

2 = - gr K 1 + gr K 1 
2 = - K 1 + gr K 1 'l. 

Con ider the matrix 

Using the tran formation of variable x = P z , ystem (4.2) becomes 

z = p - 1 APz + p - 1 F(Pz ) = B z + G(z), 

where 

B= 
( 

iw

0

o 
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G(z) = p-1F(Pz) = ( ~~ f _ 
c-c 

-~~c ) . ( -rh(cz+cz,z+z) ) _ 

--_ grh(cz + cz z + z) 
c-c 

(

g(z,z) ) 

g(z z) 

and 

1 + -
g(z, z) = -( g_c )rh(cz + cz, z + z) . 

c-c 

Using Taylor expansion we have 

where 

1 + gc 2 g20 = - 2r( _ )(a2oc + auc + ao2) , 
c-c 

1 + gc _ _ 
g11 = - r( _ )(2a2occ + au(c +c)+ 2ao2)), 

c-c 

1 + gc _2 _ 
g02 = -2r( _ )(a2oc + auc + ao2), 

c-c 

1 + gc 2 
g21 = - 2r( _ )(a12(c + 2c) + a21 (2cc + c ) + 3aoJ), 

c-c 

1 + gc 2 
g12 = - 2r( _ )(ai2(2c +c)+ a21 (c + 2cc) + 3aoJ), 

c-c 

Thus we can define the following quantities (from [34]) 

i ( 2 1 1 12 g21 cl (0) - 2wo g20gll - 2lgu l - 3 g02 ) + 2' (4.5) 

r Re{C1(0)} 
a'(si) 

n - 2Re{ C1 (o) } . 
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r determines the direction of the Hopf bifurcation. The Hopf bifurcation occurs as s 

crossess sl to the right if r > 0 and to the left if r < 0. n determines the stability of 

the bifurcating periodic solutions. The bifurcating periodic solutions are orbitally stable 

(unstable) if n < o(n > 0). 

4.2 Bifurcations when T =I 0 

From the discussion in chapter 3 we found that the time delay T affects the stability of the 

positive equilibrium points either when assumptions (H61) and (H62) are satisfied, where 

Eq.(3.5) has two pairs of pure imaginary eigenvalues at which the tran versality condition 

is satisfied, and a stability switch occurs, or when assumption (H51) is satisfied, where 

Eq.(3 .5) has one zero and one pair of pure imaginary eigenvalues at which the transversality 

condition is satisfied, and a Hopf-Zero bifurcation occurs. 

In this section we perform bifurcation analysis of system (3 .1 ), where we let the time 

delay T be the perturbation parameter. 

4.2.1 Hopf Bifurcation 

We found in chapter 3 that if assumptions (H61) , (H62 ) are satisfied, then Eq.(3.5) has two 

pairs of purely imaginary eigenvalues >. = ±iw±, at the sequences Tn, 1, Tn,2 of the time 

delay T , where the transversality condition is satisfied, implying the existence of Hopf-

bifurcations when T = Tn 1 or T = Tn 2 · . . 
In this section, we use the same procedure in [35], which is based on the normal form 

method and the center manifold theory to study the direction and stability of the bifurcating 

periodic solution. 
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For convenience, let T = f + 1-£, (f can be Tn,l or Tn,2 ), 1-£ E R. Then 1-l = 0 is the Hopf 

bifurcation value for system (3.1). Choose the phase space as C = C([-f, 0], R 2
) . For 

¢ E C, let 

(4.6) 

where 

_ ( -s- rK
1 

- m - rK
2

) _ ( 0 b ) 
Al- g ' Bl - ' 

grK1 grK2 0 0 

By the Riesz representation theorem, there exists a matrix whose components are bounded 

variation functions rJ(B , ~-t) in 8 E [-f, 0) such that 

In fact, we can choose 

where 15 is defined by 15(0) ~ { 

For ¢ E C 1
, define 

and 

o e =1 o, 

1 e = o. 

e = o, 

e E [-f, o). 

, Then ( 4. 7) is satisfied. 
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e = o. 
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0 E [-7, OJ, 

e = o. 

Hence, we can rewrite y tern (3.1) as the following form 

where 

(4.8) 

( 

-s- rK1 

A(O)= 9 , and Xt( B) = x(t + 0), forB E [-7, OJ. 
- m - r K2 + beiwf ) 

grK1 grK2 

For '1/J E C 1 [O,T], define 

--- s E [O,T], 
A*¢(s ) = ds 

{ 

d'lj;(s) 

J~f d'l7(t , 0) '1/J( -t) s = 0. 

Define the bilinear form 

< 1/J, 4> >= {f;(0}¢(0} - 1: {. {[;(€ - O}dry(0)4>(0d€, (4.9) 

where 17(B) = 17(B, 0). Then A* and A(O) are adjoint operators. 

We have .-\1,2 = ±iw (w can be w+ or w_ ) are eigenvalues of A(O), thus they are also 

eigenvalues of A*. By direct computation, we obtain that 

where M = 

the eigenvector of A(O) corresponding to iw; and 

43 



--- --------------------------------------

q' ( s) ~ D ( 7 r e~', 
is the eigenvector of A* corresponding to -iw. From < q*, q > = 1, we have 

Define 

z(t) =< q*,xt > , W(t , e) = Xt(e) - 2Re{z(t )q(e)}. 

On the center manifold 
z2 22 z3 

W(t , e) = W (z(t), 2(t) , e) = W2o(e)
2 

+ Wu (e) z2 + Wo2(e)2 + W3o(e)6 + ...... 

z and 2 are local coordinates for center manifold in the direction of q* and q* . 

Then at p, = 0, 

where 

z (t) - iwz+ < q*(e) , F(O, W( z, 2, 0) + 2Re{z(t)q(e)} ) > 

- iwz + q*(O)F(O, W(z, 2, 0) + 2Re{z(t)q(O)}) 

- iwz + g(z, 2). 

g(z,2) q*(O)F(O, W(z, 2, 0) + 2Re{z(t )q(O)} ) 

By (4.8) and (4.10), we have 

W _ it_ i q _ zq _ { AW- 2Re{q*(O)Fq(e)} , 

AW - 2Re{q*(O)Fq(e)} + F, 

- AW + H (z, 2, e) 
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e = o. 
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Expanding 

(4. 12) 

and comparing the coefficients, we obtain 

(A-2iwi)W20 (e) =-H2o(e), AWu(e) =-Hn (e), (A+2iwi)Wo2(e)=-Ho2(e) (4.13) 

Notice that q*(O) = D(M, 1), and 

Xt(e) = x(t + e) = W(t, e)+ zq(e) + zq(e) =} x(t) = W(t , 0) + zq(O) + zq(O), 

2 ~ 

hence, x1 (t) = z + z + W:f0(0) ~ + WA (O) zz + WJ2(0) z
2 

+ ... and 
2 - 2 

x2(t) = M z + M z + Wi0(0) ~ + Wf1 (O)zz + W52(0) ~ + ... 

Finally, we have 

g(z, z) = q*(O)F 

_ ( -rh(x1(t) , x2(t)) ) 
D(M, 1) 

grh(x1(t), x2(t)) 

D(g - M)rh(x1(t ),x2(t)) 

r D(g- M)[a2oxf + aux1x2 + ao2X~ + a21xfx2 + a12x1x~ + ao3xg] + h.o.t 
2 

- 2 z - -
rD(g- M){(2auM + 2a20 + 2a02M )2 + (au[M + M ] + 2a2o + 2ao2M M)zz + 

-2 

(2auM + 2a2o + 2ao2M2) ~ + (2a12M2 + 4al2M M + 2a21M + 6ao3M2 M + 

[2a2o + auM]W2
1
0(0) +[an + 2ao2M]Wi0(0) + [2auM + 4a2o]W1\ (0) + 

z2z 
[2an + 4ao2M]W1

2
1(0))2 }. 

Comparing the coefficients with ( 4.11 ), we have 
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--------------------------------------

- 2 r D(g - M)(2anM + 2a2o + 2ao2M ), 

rD(g- M)(a11 [M + M] + 2a2o + 2ao2MM) , 

- - - 2 
rD(g- M)(2a11 M + 2a2o + 2ao2M ), 

rD(g- M)(2a12 M 2 + 4a12MM + 2a21M + 6ao3M2M + [2a2o + anM]Wi0 (0)+ 

[an+ 2ao2M]Wi0 (0) + [2anM + 4a2o]W1\ (0) + [2an + 4ao2M]Wt1 (0)) 0 

We still need to compute W20 (B) and W11 (B) , for B E [ -i, 0) 0 From 

H(z,z, B) - 2Re{ q*(O)Fq(B)} 

- gq(B) - gq(B) 

- ( g2o z; + gu zz + go2 z; + .. o) q(B) - ( g2o ~
2 

+ gu zz + go2 z; + .. 0
) q(B) 

comparing the coefficients with ( 4012) gives that 

It follows from (4013) that 

Solving for W20 (B), we obtain 

w (B)= g2oq(O)eiwB _ g2o q-(o)e-iwB + E e2iwB 
20 0- 3 0- 1 ) zw zw 

(4.14) 

and similarly 

( 4.15) 

where E 1 and E 2 are both two-dimensional vectors, and can be determined by setting B = 0 

in H 0 In fact, since 

46 



H( z, z, 0) = -2Re{q*(O)Fq(O)} + F, 

we have 

and 

_ _ _ ( -r(a11 (M + M) + 2a2o + 2ao2MM) ) 
Hu (0) - - g11 q(O) - g11 q(O) + . 

gr(a11 (M + M) + 2a2o + 2ao2MM) 

From (4.13) we have 

and 

Substituting (4.14) into (4.18) we have 

Substituting ( 4.16) into this, we get 

( 

-s- r K 1 
- 2iw 

grK1 
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Solving this equation for (Ei1
), E?)f = E 1, we obtain 

E(l) = r(2anM + 2a2o + 2a02 M2)(bge-2
iwf- 2iw) 

1 -sgrK2 - 4w2 - 2( -s- rK1 + grK2)iw + rK1(m- bg - 2iwf) ' 

E (2) = gr(2anM + 2a20 + 2a02M 2)(s + 2iw) 
1 -sgrK2 - 4w2 - 2( -s- rK1 + grK 2 )iw + rK1(m- bge- 2iwf) · 

Similarly, we can get 

and hence, 

E(1) = r(an(M + M) + 2a20 + 2a02 MM)(bg- m) 
2 r K 1(m- bg)- sgrK2 ' 

E(2) = sgr(au(M + M) + 2a2o + 2a02MM) 
2 r K 1(m- bg)- sgrK2 · 

Based on the above analysis, we can see that each g1J in (4.10) is determined by the pa­

rameters and the delay f. Similarly we can obtain the values of C1(0) , r , and n in (4 .5). 

Iff > 0 ( < 0), then the Hopf bifurcation is supercritical (subcritical) and the bifurcating 

periodic solutions exist for T > f ( < f) . Furthermore, the bifurcating periodic solutions 

are orbitally stable (unstable) if n < 0, (> 0) . 

4.2.2 Hopf-Zero Bifurcation 

We fix all the parameter values of system (3.1) except s and T, and assume that at the 

parameter values s = s0 and T = Tn,l• (H51) is satisfied,i.e, 
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Then Eq.(3.5) has a single zero and a simple pure imaginary eigenvalue. 

By time rescaling, t ~ !, the system 
T 

m 
x~ (t) = -(s + r K 1 )x1 - (- + r K 2)x2 + bx2(t- T) - rh(x1 , x2) + h.o.t 

g 

x~(t) = gr K 1x1 + gr K 2x2 + grh(x1, x2) + h.o.t 

becomes 

X~ (t) 

x~(t) 

T[- (s + rK1)x1- (m + r K 2)x2+bx2(t - 1)-rh(x1 , x2)]+h.o.t (4.20) 
g 

T[gr K 1x1 + gr K 2x2 + gr h(x1, x2 )] + h.o.t 

We can check that the linearized system 

m 
x~(t) = T[-(s + rK1)x1 - (- + rK2)x2 + bx2 (t - 1)], 

g 

x~ (t) = T[gr K 1x1 + gr K 2x2], 

has a simple zero eigenvalue and a simple pair of pure imaginary eigenvalues under as-

aw -
sumption (H51) at T = 7 = . _ ,where w solves h(w) = rya2cosw- ry2sin2w + (3a2, 

"(S'mW 

and a= s0 + rK1 - grK2, (3 = rK1m - s0grK2, 'Y = -grbK1. 

Therefore, the local center manifold near the origin is in a three-dimensional subspace. 

LetT = 7 + f.-l l , s = s0 + f.-l2 then Eq.(4.20) can be rewritten as 

x~(t) = (T-+ f.-ld[ - (so+f.-l2+rK1)x1 - (m +rK 2)x2+ bx2(t - 1)-rh(x1,x2) ]+h.o.t 
g 

x~ (t) = (7 + f.-ld [gr K 1x 1 + gr K 2x2 + grh(x1, x2)] + h.o.t 

To obtain the center manifold, we use the bilinear form 
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to decompose C as C = P EB Q, where P is an invariant finite dimensional subspace and 

Q is the associated invariant infinite dimensional complementary subspace, and ry(B) is a 

bounded invariant function. 

We choose the basis in P as <I> (B) = ((PI , (h , <jJ3) , where 

with 

the basis in Q can be obtained as w ( s) 

'lj;3 = d2</J3T· 

Then from < W, <I> >= I we can determine the values of d1 , d2 as 

d1 = (1 + M M - i n,1Mbe-iw:r )- 1, 
2 2 

d2 = (1 + g so + gso bi )- 1. 
( m - bg )2 m - bg 

Hence the dynamical behavior of the system is determined by 

x' = Bx + w(O)F(<I>x, J-L ) 

where 

'/,W 0 0 

B = o -iw o 

0 0 0 
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'li (O) = d1 d1M 

d2 gso d2 
bg-m 

We can further reduce Eq.(4.21) to the normal form 

where 

x' 3 (4.22) 

dli.LI[-(s0 + rK1)- (m + rK2)M + grM(K1 + MK2) + bMe-iw + fJ,27'], 
g 

rd1i(gM- 1)[2a2o + auM +(au+ 2a20M) b 
980 

], 
g-m 

g2s gs g2s2 
- -rd2i( b + l )(a2o- au b + ao2 ( b )2 ). m- g m- g m- g 

Using the transformations 

w1 =peas~ 

w2 = psin~ 
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subsequently, we can change Eq.(4.22) to real then cylindrical coordinates, 

p R e(mu )P + Re(m12)zp + h.o.t , 

( w + h.o.t , 

z (4.24) 

Since Re(m12 ), m22 =f. 0 (note that m22 is real), the higher-order terms have no qualitative 

effects . Therefore, we have the following conclusion. 

Theorem 4.2.1. If the parameters satisfy assumption ( H51) , and T = Tn, b then the flow of 

system ( 3.1) on the local center manifold is given in cylindrical coordinates by ( 4.24 ). 
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Chapter 5 

NUMERICAL SIMULATION 

In this chapter we provide numerical simulations to illustrate our theoretical predictions in 

the previous chapters by choosing functions and parameter values satisfying the hypothesis. 

N A 
For instance, we choose the two particular functions F(N) = N and G(A) = -A.,--2 -

+1 +1 
1 

which satisfy conditions (C1) and (C2). Obviously, the maximum value of G(A) is 2 at 

A = A* = 1. In real ecological systems the parameter values are usually lying in certain 

regions provided in the following table (see [36]) 

Symbol Description Reported range 

L The rate of N input 0.00005-0.26gCm - 3day - 1 

s The rate of N output due to respiration and edimentation 0.0008-0. 13 day- 1 

r The maximum per capita grazing rate 0.5- 1.5 gCm - 3day- 1 

b The phytoplankton respiration rate 0.05-0. 15 day- 1 

g Conversion rate of nutrient into phytoplankton 0.5- l .5gCm- 3day- 1 

m The phytoplankton mortality rate 0.0828-0.36 day- 1 
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In the numerical simulations, we fix L = 0.200, r = 0.700, b = 0.100, g = 1.000, 

m . 
m = 0.250, then -= 0.357 < G(A*) , and choose s as a perturbatiOn parameter. 

gr 

In the following we use the dynamical package XPPAUT to examine the bifurcations 

and to integrate and observe trajectories of systems (2.2) and (3 .1 ). 

5.1 Bifurcations when T = 0 

From the discussion in Section 4.1 we know that when s is chosen as a perturbation pa-

rameter, then system (2.2) undergoes either a saddle-node or Hopf bifurcations, which are 

codimension one bifurcations, under certain conditions. The following bifurcation dia-

grams illustrate how the dynamical behavior of system (2.2) changes as the parameter s is 

varied 

, L-~--~--~~--~--~~-
0,02 O.Oll 0.02A 0.026 0.0"..3 O.QJ O.O.ll 0.004 

(a) . 

.. --··· -------

(b) • 

Figure 5.1: The bifurcation diagrams of (a) N vs s, and (b) A vs s. 

In Figure (5.1), the solid line denotes stable equilibrium points, and the dashed line denotes 

unstable ones. The filled circles represent the appearance of stable periodic orbits and open 

circles represent the appearance of unstable ones. Obviously, as s increases there is change 

either in the number or stability of the positive equilibrium points. 
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When sis relatively small (s E [0, 0.0276)), there exist two positive equilibrium points, 

E1 is unstable (saddle) point, and E2 is locally asymptotically stable. For example, at s = 

0.025, E 1 = ( 4.450, 0.600) and E 2 = (2.600, 0.860) . Figure (5.2) shows the trajectories 

of system (2.2) for initial conditions near the positive equilibrium points. Obviously, they 

all approach to the equilibrium point E2 , it indicates that E1 is unstable and E2 is locally 

asymptotically stable 

(a) ' 

Figure 5.2: Trajectories of system (2.2) for s = 0.025.1C (N, A)= (4.4, 0.7), (2.5, 1.0). 

When s increases to the intermediate value (s E (0.0276, 0.0284) ) , the system pos-

sesses multistability. More specifically, in addition to the existence of stable or unsta-

ble solutions, we observe the appearance of unstable periodic orbits. For example, when 

s = 0.028, Figure (5.3) shows that the solution could be stable, unstable, or becomes 

unstable periodic, depending on the initial condition. 
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10 ,-------.--~--~---.----, 

100 <00 600 100 1000 

(a) , (b) ' 

Figure 5.3: Trajectories of system (2.2) for s = 0.028. IC(N, A) = ( 4.0, 0.7), (2.5, 0.8) , 
(2.6, 0.9), Here the horizontal line represents the equilibrium point. 

For higher s values (s E (0.0284, 0.030)), E 1 keeps unstable while E2 becomes unsta­

ble. For instance, when s = 0.029, we can obtain E 1 = (3.45, 0.64), E2 = (2.80, 0.80), 

Figure (5.4) shows that both of them are unstable. All the near-by trajectories approach to 

the boundary equilibrium point. 

0.6 

.. 
02 

• ., 600 1000 <00 600 1000 

(a) , (b) ' 

Figure 5.4: Trajectories of system (2.2) for s = 0.029.IC(N, A)=(3.5, 0.65), (2.82, 0.82) 

Finally when s is big enough (s > 0.030), the only equilibrium point is the boundary 

equilibrium point E0 which is globally asymptotically stable. Figure (5.5) shows the global 

stability of E0 at s = 0.031 
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20 

.. , 

oL---~--~--~--~--~--~ 
0 100 150 200 2."l JOO ..0 tiO 10 100 12lJ 140 

(a) ' (b) ' 

Figure 5.5: Trajectories of system (2.2).IC (N , A) = (5.0, 1.0), (10, 2.0) , (20, 3.0). 

It is obvious from the previous figures that when the nutrient output rate s is small 

enough, the system has two positive equilibrium points, one is an unstable (saddle) point, 

and the other is locally asymptotically stable. For higher s values the system exhibits 

multistability, where unstable periodic solutions occur. If the parameter s increased further, 

the stable equilibrium point loses its stability. When s is big enough, then the two positive 

equilibrium points disappear, and the boundary equilibrium point is the only equilibrium 

point which is globally asymptotically stable. 

Since the number of the positive equilibrium points changes from two to zero as s 

crosses the critical parameter value s0 = 0.030, and E 2 change its stability from stable to 

unstable at s 1 = 0.0284, bifurcations occur at the critical points s = s0 and s = s 1. In the 

following, we discuss these bifurcations in detail. 

Saddle-Node Bifurcation 

It is clear from Figure (5 .1) that when s > s0 , there is no positive equilibrium point, and 

when s < s0 there exists two positive equilibrium points E 1,E 2 , implying the existence of 
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a saddle-node bifurcation. 

The following figure shows the nullclines and the phase portrait of system (2.2) at 

s = s0 
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Figure 5.6: (a) The nullclines, and (b) the phase portrait of system (2.2) for s = 0.030. 

It is obvious from Figure (5.6) that there exists only one positive equilibrium point E 1 = 

(Nr, Ai) = (3.000, 0.730), which is unstable. We can calculate K~ = m- bg = 5.000 
K 1 gso 

s0 + rK[ 
and K? = 0.054 < = 0.065, which confirms the existence of saddle-node 

gr 

bifurcation (see Section 4.1.1). In fact, we have maxH(A) = 0.357 at A = A = 0.740, 

satisfying H(A) = m, so it belongs to Case 1 in Table 2.1, also, we can calculate the two 
gr 

eigenvalues )q = 0, >.2 = 0.008. 

Increasing s slightly, for example at s = 0.035 > s0 , figure (5.7) shows the nullclines and 

the phase portrait 

58 



,------------------------------- · ----· ·-

1.1 

1.6 

1.< dN/dt=O 

1.2 

0.1 

0.6 

"' 
"' 

0 
0 

I 
I 

' 
(a) ' 

,.,./ 
/ 

.... · 

l 

(b) N 

Figure 5.7: (a) The nullclines, and (b) the phase portrait of system (2.2) for s = 0.035. 

L 
Clearly, the only equilibrium point is the boundary equilibrium point E0 = ( - , 0) = 

s 

(5. 714, 0) which is globally asymptotically stable. Furthermore, we can check that H(A) = 
A m · 

H(O. 700) = 0.340, then H(A) < -,so it corresponds to Case 0 in Table 2.1. 
gr 

If we chooses = 0.025 < s0 , then the nullclines and the phase portrait of system (2.2) are 

depicted in Figure (5 .8) 
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Figure 5.8: (a) The nullclines, and (b) the phase portrait of system (2.2) for s = 0.025. 

Obviously there exists two positive equilibrium points E 1 = (4.450, 0.600), which is a 
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saddle point and E2 = (2.600, 0.860) which is locally asymptotically stable. Similarly, we 

can calculate H(A) = H(0.700) = 0.375, H (A*) = 0.333, which satisfies H(A*) < m < 
gr 

H(A), therefore, it belongs to Case 2 in Table 2.1. 

The previous figures confirm the change of the number of the positive equilibrium 

points from two to zero as the parameter s crosses the critical parameter value s0 to the 

right, indicating the existence of saddle-node bifurcation at s = s0 . 

Hopf Bifurcation 

We notice from Figure (5.1) that the unstable branch emanates from Hopfbifurcation at the 

critical parameter value s 1 = 0.0284 and bends to the left, while the steady state solution 

loses the stability to the right. Therefore, Hopf bifurcation is subcritical, implying that 

when s is decreased there exists periodic solution which is unstable ( corresponds to the 

open circles in Figure (5.1)). In fact, we can calculate the first Liapunov coefficient at 

S = S1 , f2 = 1.8 > 0 (from (4.5)) indicate that the bifurcating periodic solutions are 

unstable. 

Actually, we can check that at s = s 1, system (2.2) has two positive equilibrium points, 

E 1 = (3.650, 0.640) which is a saddle point, and E2 = (2.650, 0.840) which satisfies 

K 2 _ s 1 + r K J K~ m - bg 
2 - = 0.045 and - 1 = 9.000 > = 5.357, implying the existence of 

gr K 2 gs1 

a Hopf Bifurcation (see Section 4.1.2 ). 

When we choose s = 0.028 < s 1, then from the discussion in the first part of this section 

we know that the system exhibits multistability at this parameter value (see Figure (5.3). 

The phase portrait is depicted in Figure (5.9) 

60 



IJ l U ) U 4 U ' " 6 

" 

Figure 5.9: The phase portrait of system (2.2) for s = 0.028. 

From the biological point of view, when the nutrient output rate (s) is very small , there 

exists a stable steady-state with high phytoplankton density and low nutrient density, im-

plying high probability of the occurance of phytoplankton bloom. As the nutrient output 

rate increases, the phytoplankton biomass decreases rapidly, whereas the nutrient biomass 

increases slowly, at this stage, the bloom declines. However, when the nutrient output rate 

reaches a proper value, the system becomes oscillatory, then the phytoplankton concentra-

tion can increase abruptly to reach levels much higher than those attained by any steady-

state value, which corresponds to the occurance of the bloom. When the nutrient output 

rate is big enough, the nutrient concentration becomes very small to a degree that it can't 

support the phytoplankton growth, hence, the phytoplankton go to extinction. Therefore, 

the phytoplankton bloom can be controlled by increasing the nutrient outpout rate. This 

can be achieved by precipitating the nutrient to the sediments using chemical treatment, 

then by removing these sediments to prevent nutrients from being recycled again into the 

water system. 
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5.2 Bifurcations when T -I 0 

We know from the discussion in Section 4.2 that because of the involvement of the time 

delay, system (3.1) exhibits rich dynamical properties which may not occur in the system 

without delay. If we choose the time delay T as a bifurcation parameter of system (3.1), 

then much more interesting dynamical behavior can be observed. For example, stability 

switches occur under assumptions (H61 ) and (H62 ) . Then at a sequence of critical values 

ofT, there exist Hopf bifurcations with different amplitudes in the oscillatory trajectories. 

Similar to the system without time delay, when we take s as the first bifurcation parame-

ter of system (3.1), a steady-state bifurcation occurs, the combination of the steady-state 

bifurcation and the Hopf bifurcation at a critical value of T yields a Hopf-Zero bifurcation 

under assumption (H51 ) , which is a codimension two bifurcation. 

Stability Switches 

We recall from Section 4.2.1 that if assumptions 

(s + rK1
- grK2

)
2 

(H61 ) : K 1m- sgK2 > max{gbK1
, }, and 

2r 

(H62): (s+rK1 - grK2
)

2 ((s+rK1 - grK2
)
2 -4r(K1m -sgK 2 )) +4g2r 2K 12b2 > 0 

are satisfied, then stability switches occur in system (3.1) at two sequences of critical values 

OfT = Tn 1 , Tn 2· 
' ' 

First, we choose s2 = 0.025, then system (2.2) has two positive equilibrium points, 

E 1 = (4.450, 0.600), and E 2 = (2.600, 0.860), when T = 0, E 1 is a saddle point and E 2 is 

locally asymptotically stable. 

(s2 + rK1
- grK2

)
2 

At E2, we can calculate Kim-s2gKi_ = 0.007, gbKi = 0.003, 2 2 
2r 
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Therefore, assumptions (H6I) and (H62 ) are satisfied, implying the existence of two purely 

. · A · "th 0 083 0 051 4·124 + 21rn d 1magmary roots = 'LW±, WI w+ = . , w_ = . , at Tn,I = 0.0
83 

, an 

4.851 + 2nn .. 
Tn,2 = 

0 0 
, n = 0, 1, 2, .... We can calculate the first couple of the cnt1cal values 

. 51 

as To,l = 49.688, Tl,l = 125.389, T2,l = 201.090, To,2 = 95.125, T1,2 = 218.325. 

Since 0 < To,1 < To,2 < T1,1 < T2,1 < T1,2 < ... then from Theorem 3.1.2(6) we 

have that, E2 is locally asymptotically stable when T E [0, To, I) U ( To,2 , T1,I) and unstable 

when T E (To,1, To,2) U (T1,1, oo), and there exist Hopf bifurcations at the critical values 

To,1, To,2, and TI,I· This means that as the delay T varies, E2 switches two times from stable 

to unstable, then to stable, and finally becomes unstable. 

Now letT be a perturbation parameter. When T = 49 E [0, To,1). Figure (5.10) shows 

that E2 is asymptotically stable, although it converges very slow. 

'·""' 

2.~1" L___,____~~~-~_.___,__,___.__.J 

10000 10500 11000 11500 12000 11500 1)000 IJ.SOO 14000 14500 l!i«Xl !MOO 11000 11.500 12000 11300 IJOOO 11500 I400J 14!100 I.SOOO 

(a) 
, 

(b) , 

Figure 5.10: The solutions, (a) N vs t, (b) A vs t, when T = 49. 

When T = To,1 = 49.688, there exists a Hopf Bifurcation. Figure (5.11) represents the 

corresponding periodic solutions. 
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Figure 5.11: The periodic solutions, (a) N vs t, (b) A vs t, when T = T0,1 . 

The first Liapunov coefficient at T = To,l is n = - 1.8 < 0 implies the appearance of a 

stable limit cycle. 

If T = 50 E ( To,1 , To,2 ), the solution curves depicted in Figure (5.12) show that E2 becomes 

unstable. 
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Figure 5.12: The solutions, (a) N vs t, (b) A vs t, when T =50. 

The first Liapunov coefficient at T = To,2 is n = 0. 7 > 0 which confirms the appearance of 

an unstable limit cycle. 

When T = 95.5 E (T0 ,2 , T1,I), E2 becomes asymptotically stable again. See Figure (5.13) 
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(a) ' (b) ' 

Figure 5.13: The solutions, (a) N vs t, (b) A vs t, when T = 95.5. 

Finally when T > T 1,1 the solution loses the stability and remains unstable. Figure (5 .14) 

shows the solution is unstable when T = 140 > T1,1 
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Figure 5.14: The solutions, (a) N vs t, (b) A vs t, when T = 140. 

The previous figures show that when the time delay increases, E2 switches twice, from 

stable to unstable, then to stable again, and finally becomes unstable. 

Biologically, if the recycling time required to regenerate nutrient from dead phytoplank-

ton biomass is very small, then the stable steady-state keeps its stability, implying that both 

nutrient and phytoplankton coexist. If the recycling time increases till it crosses the first 
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critical value, then the steady-state loses its stability, and the amplitudes of the phytoplank-

ton and nutrient becomes oscillatory, with high levels of phytoplankton and low levels of 

nutrients. However, if the recycling time gets larger, and it crosses the second critical value, 

the steady state gains its stability again, hence, both of the biomasses can exist equilibrium-

lly. If the dead phytoplankton biomass is very hard to convert into nutrient, the steady-state 

becomes unstable again and the phytoplankton disappears. This partially explains the col-

lapse of the bloom during the cold seasons, since the water temperature reaches very low 

levels, and consequently the time required to regenerate nutrient from dead phytoplankton 

biomass increases. 

Hopf-Zero Bifurcation 

We know from Section 4.2.2 that if assumption 

is satisfied, then system (3 .1) undergoes Hopf-Zero bifurcation when s = s0 , at a sequence 

of critical values ofT = Tn 1 . 
' 

Let s0 = 0.030, then system (2.2) has one positive equilibrium point E 1 = (3.000, 0. 730), 

K 2 m - bg (so + rK1
- grK 2

)
2 

which is unstable at T = 0. We can check ---1- = = 5.000, 1 b 1 

K 1 gso 2rg 

6.820 x 10- 3 < Ki = 0.022, hence, condition (H51) is satisfied, implying the existence of 

a Hopf-Zero bifurcation at the parameter value To,1 = 18.375. 

Since Hopf-Zero bifurcation is a codimension two bifurcation, we choose both s and T 

as the bifurcation parameters, and investigate the solutions of system (3.1) near the critical 

values of s = s0 and T = T0,1 . 
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If we fix s = s0 , and choose T = 18.370 < To, 1, E 1 is unstable. See Figure (5.15) 
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Figure 5.15: The solutions, (a) N vs t, (b) A vs t, when (s, T) = (0.030, 18.370) . 

While for T= 18.380 > T0,1 , Figure (5.16) shows that E 1 becomes asymptotically stable. 
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Figure 5.16: The solutions, (a) N vs t, (b) A vs t, when (s, T) = (0.030, 18.380). 

67 



Chapter 6 

CONCLUSION 

In this project, we consider a ODE model and a modified DDE model. At first, we present a 

mathematical model including two ordinary differential equations to describe the nutrient­

phytoplankton interactions, where an uptake function which is a generalization of those 

used by many authors, and instantaneous nutrient recycling are used. The boundedness of 

the model's solutions is proved, then its dynamical properties are investigated. Our results 

show the existence of a boundary equilibrium point, and we use geometrical methods to 

find conditions for the existence of none, one, or at most two positive equilibrium points. 

After obtaining the equilibrium points, analytical and geometrical methods are used to 

analyze the local stability of each equilibrium point. We can prove that the boundary equi­

librium point is always locally asymptotically stable, and it can be globally asymptotically 

stable under certain sufficient condition. A conjecture is given for the global stability of the 

boundary equilibrium point when it is the only equilibrium point (partially proved). If the 

system has only one positive equilibrium point, then it is degenerate (either stable or unsta-
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ble), whereas, when two positive equilibrium points exist, one of them is always a addle 

point, while the other one could be either locally asymptotically stable or unstable. The 

possibility of the exi tence of saddle-node or Hopf bifurcations under different conditions 

is discussed. 

Second, we modify the previous model by introducing the delayed nutrient recycling. 

The effect of the time delay on the stability of the equilibrium points is discussed, by 

investigating the distribution of the roots of the corresponding transcendental characteristic 

equation. Our result shows that the time delay does not affect the stability of the equilibrium 

points except when a Hopf-Zero bifurcation or stability switch may occur under certain 

conditions. 

As we vary the parameters, stability may be lost. The system can undergo bifurcations. 

Therefore, the bifurcations of both the instantaneous system and the system with delay are 

studied. Particularly, the nutrient output rate is chosen as the bifurcation parameter and 

the other parameter values are fixed. By using the projection method, the existence of 

a saddle-node bifurcation for the system without time delay is proved. Furthermore, the 

normal form approach and the center manifold theorem are used to determine the direction 

of Hopf bifurcation and the stability of the bifurcating periodic solutions in both systems, 

and to prove the existence of Hopf-Zero bifurcation for the system with delay. 

Numerical simulation results are given to further verify the theoretical predictions. 

Where the nutrient output rate is used again as a varying parameter. The bifurcation di­

agrams of the system without delay is given to show the significant change either in the 

number or stability of the positive equilibrium points as the parameter (nutrient output 

rate) is varied. The existence of two critical parameter values at which a saddle-node and 
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Hopf bifurcations occur can be observed from the bifurcation diagrams as well. More­

over, the trajectories with different initial conditions are given to confirm the stability of 

each positive equilibrium point for different values of the parameter. Furthermore, numer­

ical simulations are given to show the existence of stability switches and the occurance of 

Hopf-Zero bifurcation for the model with delay. 

Biological interpretations based on the bifurcation diagrams of the system are given to 

gain the insight that the phytoplankton bloom occurs for small nutrient output rate and col­

lapses for high one. Therefore, the phytoplankton bloom can be controlled by keeping the 

nutrient outpout rate at high level, which can be achieved by using chemicals to precipitate 

the nutrient to the sediments, then by removing these sediments to prevent nutrients from 

being recycled again into the water system. Moreover, the time required to regenerate nutri­

ent from dead phytoplankton biomass determines whether both nutrient and phytoplankton 

coexist, or if they oscillate with high levels of phytoplankton and low levels of nutrients. 

Although our model includes the main factors that affect the nutrient-phytoplankton 

interactions, it can be improved by many ways. For example, we can consider the effect of 

other biological factors such as higher predation, and physical factors such as light intensity 

and water temperature. Furthermore, we can add a term which represents the internal 

nutrient storage to incorporate the fact that phytoplankton consume nutrient in excess of 

their immediate need, and they continue to grow and divide for quite some time even when 

the external nutrient is depleted [37, 38]. Moreover, our model can be improved by using 

periodic nutrient input or distributed delay nutrient recycling. 
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