

















spectriim in the 1800-2800 em ! region might be useful to di nguish hetween the
two lowest cnergy structures. herefore, recore g the spectr 1 for the [(Thy,-H)-

Zu-(1LO)] cluster in this low Ty region is part of the future work.
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“A scientific truth does not mph by ¢ vineing its opponents and making them
sce the light, hut rather beean s oppon s eventually die ad a new generation

grows up that is funiliar with

- Max Planck -
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freguencies are obtain rin the IRMPD spectrum an - Lhe calenlated
values for structure A B are oxtracted from the predicted frequen-

cies at B3LYP/6-31+G(d.p)//LAD Zoscaled at 0956, 0 . 0L L 253
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form

Oy = U+ Veos Qf (2.3)

where Q( 271, fis the frequency in hertz) is the angular frequeney (in rad s N oof
the RE field

To understand how quacl instruments work, one has to first define the mo-
tion ol a charged particle guadrup. - ficld. It has been fonnd that the on
trajectories in a quadrupole i can be de ied by the solutions to the second-order
lnear dilferential equation des «d originally by Mathicu.* The canonical form of
the Mathieu equation is

b (an 2gqecos20)u — 0 (2.1)
-

Coo)2 (2.5)

where wis the coordinate axis v and z, ¢ is a dimensiouless parameter defined by

Equation 2.5 in which t is t o, a, and ¢, arc dimensionless trapping parameters

that contaim mformation abx 10 mass-to-charge ratio of the confined ions inside
the trap. It can be shown th change of variables from ¢ to t results in Lquation
2.0,
Fu QD o
— T TS (2.6)
> 1 0¢3
aud by substituting 15g. 2.5 26 in o 2.1 and multiplving the results by
mass of an ion, ni. one can ¢ tally deri an expression for the foree (mass times










































































































fional modes due to anharmonic effects are not taken into account in the harmonic
approximation. Using a scaliin  factor, based on comparing the experimental and
calculated frequencies is cor m A Sdr o scaling”™ has heen troduced by Halls
of al.™ which applics a small scaling fa o the high-lrequeney modes (larger
than 1800cm 1) due to their la 1 anharmonicity effects compared to the low-cnergy
wodes. Furthermore, by com yihie exper ental and con utational data, mod-

iied theoretical methods coul »derived.
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cxperimental IRMPD spectrum in the 700-2° 0 em™ ' region (see Fignre 3.3). Similar
to the glyeine proton-bound d  or, the (=0 stretehing absorptions in the alanine
proton-bound dimer are slightlv d=shifted compared to that of the neutral amino

acid™ (see Table 3.2).

Vibrational perimce b Predicted Ncutral
niodes D (¢ ') Spec alanine'
CO streteh (al) 1787 1712 I78T
'O stretel (a2) 1730 1633 -

NIy d-deform (al) 1593 1609 /1621 -

NIL, bend (al) - 1598 -

N1l s-deform 1189 1515 1612
C'OI bend (a2) 1-116sh 1397 -

C-O str/COI bend (at) 1182 11l -

NIy rock (al) [113sh [120/1098 [117/1153
(N str (a2) - 1098 -

N, wag (a2) 850/756/713 832 8H2
Table 3.2: The experimmen I ealeulated TR wavenumber positions in em ! for
alanine proton-bound dinic i—should & lanine labelled T in Figure 3.3,
a2—alanine labelled 2 in If RIS
It is pugzling that in the 1300 e ! range the experimental infensitios ave









Vibrational xperiment, Predicted Ncutral

modes IPD (cmm™!) Spectrum (A) valine'
CO streteh (v1) 1792 1735 1762
CO streteh (v2) 1721 1679 -
NH; d-deform (vl) 1602 1637 -
NII; bend (v2) - 1594 -
NH; s-deform 1488 1512 -
COH bend (v2) 1414 1392 -
COH bend/CHyyy deform (v 1166 1157 -
COH bend/NH, rock (vl) - 1138 -
OH oop (v2) 981 999/993 -
C-N str (v1) - 980 -
Table 3.3: The experiment saleulated TR absorption frequencics in cm™! for
valine proton-bound dimers. inc labc 11 in Figure 3.4, v2=  inc labelled

2 in Figurc 3.4.
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full speetrum in this region we not likely be very helpful. However, based on the

caleulated thermochemistry, 3.5 kJ mol ' difference in free energy. two very similar
isomers would be expected to st in a sample. The only region for dilleventiating
the two structures is the asyninetric stretehing v - ration for the central proton which
oceurs at 2595 and 2166 ¢ ! A and Al respectively, as we as hydrogen bonded
O-11 stretehing at around 30 P It s also determined 0t distinguishing the

proton-hound dimers compose diflerent alip e amino acids shoukd he possible

in the 2000 to 3200 cm ' range.
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Figure 4.1: y '€ d,p) struc of the four lowest-cnergy proton-

bound adcnince .












Structure

B3LYP/
6-31++G(d)
XYP/

6-31G(d,p)"*

11+G(d)"

MP2/6-311

++G(2d,p)

B3LYP/

6-31G+(d,p)

B2P3LYP/
cc-pVTZ//
B3LYP/

6-31G+(d,p)"

2.0

-t

0.0 (0.0)

23.1 (26.6)
25.5 (30.0)
21.5(28.6)
23.0 (26.1)
36.2 (35.8)
371 (31.5)

16.2 (39.7)

Table 4.2: Computed rela

structures.

“from referenee 9 and relative
e .
‘from reference 16,

298 K oenthalpies and (free en

1 parentheses). relative to st

0.0 (0.0)

¢ various adenine proton-hound dimer
































































































[Cu(Thy),-H]*

HEWN]
a
[Cu ol
KR
2187
SR "
b
[Cu(Thy)(Ade)(H,0)]*
LA
PRI
Ak
383 LR §1
=~ Pvsse s te N by
I T uwh
Figurce 5.3: (a) [IS] mass sp fa0.ln  CuCly solntion containing ~0. 1 m\I
thymine and a few drops of 0 adenine in 18 MO water. (b) same experiment
exceept with water  Horin the apole ac 1 tion cell.
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hexapole, it adds 1o the Lit ion.

5.4 Conclusions

Evidence is provided for t
mlation cell of a hybrid Q-1
HINICTOUS, our experience sho
energy i the hexapole, pressu
Lation time, and the chemical
it is possible to obtain very i
as IRNPD spectra, both of

for the species under investig,

tich is the  ost thermodynamically stable position,

eflicient solvation of cations in the hexapole acen-
While ¢ number of parameters to modily are

1t the most sensitive parameters are the collision
both argon and solvent in the hexapole. acennni-
vof the species. By solvating ions in the hexapole,
ing phr al data such as BIRD kincties as well

can be used to determine structural information

1o,
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is a zine ion-bound dimer with

sites and the water molecule is

Zn?t shared  etween the two thymines at N3O

tly attached to the zine ion. Recording an IRND

spectrinn in the 1800-2800 ¢ ! region may be  eneflicial in - inguishing between

the two lowest cnergy structia

A and B.






























in order to minimize the peak broadening.
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Appendix 4

Mass spectrum showing the of  of non-resonant absorption of the OPO laser by

(0 s NA)NE

P A Iy T
)

*

(N

e a °w Vi 1 I

269



Appendix 5

Mass spectrum showing the efl of resonar  absorption of the OO Taser by
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pendix 6

Mass spectrum showing the effect of non-resonant absorption of the OO laser by
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Appendix 8

Mass spectrum showing the effe of non-resonant absorption of the OO laser by

(C sNyLiTLO.
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