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Al ract

The impact of produced water from oil and gas operations is not only a function of its
chemical composition but also of the receiving environment (e.g. marine versus
freshwater organisms, high energy versus | v energy water etc...). The resulting toxicity
of produced waters is related to chemical compositions, and varies widely from nontoxic
(LCs5¢>100 % whole effluent) to moderately toxic (LCso<1 % whole effluent). The impact
of produced water tends to be chronic rather than acute and therefore determining the
agents in the produced water w  t ea timpact has proved difficult, particularly in
offshore operations where dilutic is rapid. However, the polycyclic aromatic
hydrocarbon (PAH) ictionintl ¢ pres inthe produced water has been proposed as
toxic agent.

In general, regulations prohibit the discharge of produced water containing more than 40
mg/L of oil. The purpose of this paper is to determine the effect of PAHs and phenols in
produced water that tend to partition in the water phase once discharged to the ocean, as
these compounds will be more readily bioavailable and therefore toxic. Experiments with
produced waters from the Hibernia offshore platform and Terra Nova offshore platforms
have been performed at Memorial University. The produced water contains dissolved and
dispersed oil. In these experin the relative amount of PAH and phenol which
partition into the water phase af t dispersed oil was separated, and was measured.
The results were then used to de  nine v  at the hazard quotient (HQ) is for each of the
identified PAHs and phenols in the water phase. A hazard index (HI) for PAHs and

phenols, which is the summation of all hazard quotients, was then calculated. The HI



gives an overview of the worst-case estime 1 hazard of PAHs and phenols to the marine
environment. It was found that there was a strong relation between dispersed oil and the
amount of naphthalenes and 4-6 rings PAHs as well as phenols but there was no relation
between the amount of dispersed oil in produced water and 2-3 r ;s PAHs. According to
the results of risk assessment for PAHs an phenols, there is no significant hazard from
either PAHs or phenols on marine organisms. Also, this study showed the importance of
dilution in reducing hazards of produced ater in marine organisms. However, it was

found there was no significant cancer risk f m 4-6 ring PAHs in human.
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1989, 1991, 1992). Treated produced water that is discharged into the ocean still has a
small amount of hydrocarbons, other organic chemicals, dissolved salts, and heavy metals
(Neff, 2002). A cert: 1 amounts of these chemicals remain in the oil phase but still some
amounts are water soluble, and then remain with produced water and are discharged into
the ocean with it (Neff, 2002). Table 2.2 shows the amount of production chemicals

which remain in the produced water at the North Sea platforms.

Table 2.2 Percentage of chemi s remaining in produced water in North Sea platforms

(van Hattum et al., 1992; Ynne: ~ ~ and Furuholt, 1994; Hudgins, 1994)

rroauction cnemicals 19%
Emulsifiers, oil o surractants, and scale | 50%
inhibitors

Corrosion inhibitor, oxygen scavengers, emulsion breakers, | <20%

defoamers, and gas treatment ag s.

2.1.3 Biocides

Biocides are added to the water treatment system for produced water for many reasons,
such as re-injection and use to control sulfide production by anaerobic arachea and
bacteria in the production stream. e bi ides, such as hypochlorides, when they are

reacting with organic matters, are easily destroyed (Hudgins, 1991).
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Setschenow constant Kg can be determined by using the followir  (Gold et. al., 1989):
Ks=1im V" /23 RT ’/dC;

Where, Cs is the electrolyte concer ation. This equation contains explicitly the pressure
(P) exerted by the electrolyte, R is the gas constant = 0.0821 L.atm K' mol’, T is
temperature.

The above equation shows that the solubility depends on temperature.

The following equation is used to ¢ :ulate 1e solubility for PAHs (Mackay et al, 1977):
R In X,* = -(AHm®/T) + (0.000408)(T - 291.15)>- ¢ + bT

Where, X,? is the mole fraction of solute  saturation at absolute temperature T, AH,° is
the molar heat of fusion of the pv  solid solute at the melting point, and b and ¢ are
determined by least-squares fit.

This equation has been found to describe hydrocarbon solubility as well. Table 2.15

shows the solubility of some PAHs at different temperature and different salinities.

Table 2.15: Solubility of some PAHs in different temperatures and different salinities

(Whitehouse, 1983):

PAH 1) at different Temperatures "'C
(ng/L) ‘ 4.6 8.8 12.9 17 21 253

Phenanthrene | v ‘ 2.U1 2.4 3.12 4va 494 6.16

(umole/l) | 100 | 1o 2o 202 3av 435 538
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phenanthrene, fluorine and fluoranthrene t¢ pi  tures ranging from 200C, 40°C and

60°C.

Increasing temperature has a great effect on thermodynamic properties of PAHs. The

Henry’s law constant could be determined by thermodynamic as follows: (Reza and

Trejo, 2004)

Hi= Ky Vinw /RT

Where, H; is Henry’s law constant, V., is the molar volume of water, R is the gas

constant, T is the temperature.

Activity coefficient for PAHs in water (Sandler, 1999; Reza and Trejo, 2004):

Lny"1 Xi= {AH st (Tras) [1- T/ T}y T - URT *[JACpidT +1/R "' [1 ACp,
/T dT]

Where: y activity coefficient, T the 1 :lting point temperature, AH’;, is the molar

enthalpy of fusion at Ty, and £ j is the difference in heat capacities between the liquid

and solid phases.

According to the above equatior any changes in the temperature will affect the

thermodynamic properties of PAHs.
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2.2.3.4 Effect of molecular weight

Molecular weight of PAHs has an effect on their solubility; with increasing molecular
weight solubility decreases. Due to this fact the tendency of PAHs with large molecular
weight to leave the water phase 1 attach to any solid phase increases (Varanasi, 1989)
Also increasing the number of aromatic rings decreases solubility of PAHs. (Neff, 1979).
Although of that the PAHs have a higher aqueous solubility than the alkane which have
the similar molecular weight. (McAuliffe, 1966).

The angular PAHs isomers have gher solubility than the linear ones. (Neff, 1979).
According to Whitehouse (1983) phenanthrene has solubility 25 times greater than
anthracene, we can explain this as follow: Both of phenanthrene and anthracene have
three aromatic rings but distrib  ons of them are different in phenanthrene the aromatic
rings are an angular shape but in anth hene are a straight line, i.e distribution of
aromatic rings in molecule has: zffect on its solubility.

The log S (solubility) of PAHs in water decreases linearly with increasing the length of

molecule (Klevens, 1950)

2.2.3.5 Effect of presence of some PAHs together and organic compounds

The solubility of P+ s could be affected by the presence of certain PAHs, for example,
naphthalene has no effect when it is present with other PAHs but could increase the
solubility of acenaphthalene. The presence of biphenyl and phenanthrene together
decreases their solubility (Eganhouse and Calder, 1976). Butyric acids and lactic acids

have a great effect on solubility of PA°  which increase their solubility (Ekwall and
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Sjoblom, 1952). Natural waters contain organics, such as humic acid and fulvic acid
which act as PAHs’solubilizers (Neff, 19" ). Dissolved organic carbon (DOC) increases
solubility of PAHs, but when DOC conc tration increases up to 14.9 mgC/l it has no
effect on some PAHs, such as phenanthre :and enhance solubility of other PAHs as 2-

ethylanthracen by 45% and benzo[¢ jyrene by 252% (Naes et al., 1998).

2.2.3.6 Effect of alkylation of PAHs

Alkylated PAHs have a lower solubility tt 1 the unalkylated parent (Neff, 1979). Despite
that the alkylated PAHs have lower solub ty than the unalkylated ones, there are some
exceptions. For example, benza |anthracene has less solubility than methyl or
ethylbenz[a]anthracene, and also chrysene has a lower solubility than dimethylchrysene

(Davis et al., 1942).

2.2.3.7 Effect of Pressure

Effect of pressure on solubility AHs in water, Suzuki et al. (1975) reported that the
solubility of naphthalene decre: s nearly by increasing the pressure in pure water, but
the dissolution process of naphtl ene in salt water is not clear. Miller et al.(1998)
mentioned although large increases in pressure have a depressing effect on solubilities
over the range of _ essures (30 to 60 i), very little change in the solubility of

anthracene, pyrene, chrysene.
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2.2.3.8 Effect of surfactants

Effect of surfactants that are used in exploration and production of oil and gas have a
great effect on increasing or decr sing solubility of PAHs as mentioned by Dar (2007)
who used miceller solutions to study their effects on solubility of PAHs in water. The
cationic surfactants have more an inhibiting effect on solubility of PAHs than nonionic
solutions. Also, the cationic - nonionic binary combinations have greater effect to

enhance solubility of PAHs in water than the pure cationic or nonionic surfactants.

2.2.4 Determination of solubility

There are two main methods that are used to determine solubility for hydrocarbons
(Whitehouse, 1983):

o Mechanical mixing method (Shake- Flask technique)

e A liquid chromatographic method (Micro-column or Dynamic Coupled Column
Liquid Chromatography DCCLC). Table 2.16 shows the differences between DCCLTC

technique and shake lask technique.
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From the above Table every marine organism has it’s a different reaction than others for

the same PAH, such as Fathead and Coho Salmon with naphthalene.

2.2.8 Degradation of PAHs

PAHs in water and sediments are not persistent. Various natural processes responsible of
degradation of PAHs to various polar organic chemicals, and ultimately to carbon dioxide
and water. The most impor nt degradative processes for PAHs in the marine
environment are photooxidation and biodegradation (Bongiovanni et al., 1989; Ehrhardt

etal., 1992).

2.2.8.1 Photooxida in of PAHs

2.2.8.1.1 Overview of general photolysis

Photooxidation rea ons upon electronic excitation of the organic substrate imply in
most cases an electron transfer from the excited-state (C*) to ground-state molecular
ox: . with subsequent ¢ i ‘on the radical ions or hydrolysis of the radical
cation or homolysis to form radicals which then react with oxygen.

c b (

C*+ 0, — Co+ n 02.-

R-X ™ R+ X*

Rate of such a photooxidation upon electronic excitation of the organic substrate depends

on the absorption cross section of the medium, the quantum yield of the process, the
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dominate active biological surfaces in seawater (Melbyed and Brakstad, 2001).
Biodegradation is very important cause it is responsible of the overall removal of
organic compounds 1 produced water p mes, and also, it depends primarily on the
presence of the majority of the o nic compounds and e selection of bacteria in the
local microbial cor unity that are able to degrade specific organic compounds in

produced water.
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to some components of produced water or maybe because of transformation of some

components to some complex compounds.

3.5 Results and Discussion

3.5.1. Introduction

This chapter discusses the results from the partitioning of two different batches of
produced water which were collec by department of Fisheries and Oceans of Canada
(DFO) in Newfoundland from the Hibernia offshore platform in 2007 and the Terra Nova

offshore platform, 2008.

3.6 Results of partitioning of ] )duced ater
The first batch of produced water w co :cted by DFO from the Hibernia offshore
platform in July, 2007. The con tratic of PAHs before and after partitioning is

presented in Table 3.2.
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According to the diagram, we tind that the concentration of phenols increased in the
water phase from 6.6 to 8 pg/L after 48 hours. This means that some phenols in the oil
phase started to dissolve into the water phase. According to Neff (2002), phenols reach
equilibrium in fish lipid tissue a. r 2 or 3 hours, which means that partitioning here
depends on the type of exposed >e (for example water, air, lipid, sediments, etc.).

Table 3.3 shows the difference  concentrations of the same prc . iced water in 2007 and

after one year.
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