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Abstract 

Standing dead trees (hereafter snags) are a valuable component of forest 

systems, comprising habitat for wildlife, nursery sites for forest regeneration, and 

as stores of biomass, nutrients, and carbon. I examined populations of snags 

present following harvest in a chronosequence of balsam fir (Abies balsamea) 

dominated boreal forests in western Newfoundland to assess: (1) snag density, 

longevity and biomass in a post-harvest landscape, and (2) the availability and 

quality of snags for cavity-nesting birds and other wildlife. Average snag longevity 

was indicated by a sharp decline in snag numbers 10 to 15 years after harvest, 

followed by low snag densities until the regenerating forest reached senescence. 

A smaller but more immediate snag density decline was observed 1 to 4 years 

after harvest when residual snags and live trees were prone to windfall and 

domestic harvesting. Snag longevity was positively correlated with stem diameter 

at breast height (dbh). A large portion (55%) of 1260 snags encountered were 

balsam fir which have a small average dbh. These small-diameter snags were 

short-lived, contributing low biomass and a long period of low snag abundance. 

White birch (Betula papyrifera) produced the largest diameter and longest 

standing snags. 

Cavity nesters used snag species based on availability with 41 % of the 81 

cavities identified being in balsam fir. Cavity presence was most strongly 

positively correlated to snag diameter at breast height (dbh) , followed by decay 

class, time since harvest and height. Less than 40% of snags available 
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throughout the chronosequence had large enough dbh for cavity nesters. Downy 

Woodpeckers (Picoides pubescens) were responsible for 47% of all cavities 

identified, excavating balsam fir - 50% of the time. Two larger cavity nesters 

present, Northern Flickers ( Colaptes auratus) and Three-toed Woodpeckers (P. 

tridactylus), were preferentially using large-diameter white birch snags. Northern 

Flickers excavated the largest cavities, potentially providing habitat for the 

greatest variety of secondary cavity-nesters. Managing for snags with >30 em 

dbh, which flickers target for excavation, has the greatest potential to enhance 

the broader snag cavity-based community in western Newfoundland. 
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1.0 Introduction 

Standing dead trees (hereafter snags) are a valuable component of forest 

systems, comprising habitat for wildlife, nursery sites for the regenerating forest, 

and as stores of biomass, nutrients, and carbon (C) (McClelland and Frissel 

1975, Raphael and White 1984, Machmer and Seeger 1995, Yatskov et al. 2003, 

Storaunet 2004). When these snags eventually fall , they fulfill other roles, 

becoming a substantial source of woody debris in some forest systems, with 

associated habitat and nutrient cycling benefits (Storaunet 2004; Everett et al. 

1999). Snags are particularly important as habitat for cavity-nesting species such 

as woodpeckers, providing opportunities for nesting, foraging, perching, and 

drumming (Cline et al. 1980, Cimon 1983, Morrison and Raphael 1993, Martin et 

al. 2004). Additionally, the cavities excavated in snags by these primary cavity­

nesters subsequently support a wide variety of secondary cavity-nesters (Bull et 

al. 1980, Zack et al. 2002, Martinet al. 2004, Remm et al. 2006). With 

approximately 85 species of both primary and secondary cavity-nesting birds in 

North America (Spiering and Knight 2005) the availability of suitable habitat for 

these species is ecologically important. 

Snags result from tree mortality and become a dominant feature following 

anthropogenic (harvesting) and natural (insect and fire) disturbances. Forest 

managers once considered snags to be of little value, representing both a safety 

and a fire hazard (Thomas 2002). Emerging knowledge of the role played by 

snags in forest communities has led managers to be more conscious of snag 

retention and longevity (McComb and Lindenmayer 1999). Increasing interest in 
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C cycling has emphasized the understanding of how much C can be found in the 

snag pool and its residency time. In order to judiciously manage snags for 

longevity and habitat availability, forest managers require estimates of snag 

longevity on post-harvest landscapes specific to their region. Managers also 

need to quantify the availability of snags with characteristics most useful to 

wildlife for habitat requirements such as nesting and foraging (Lehmkuhl et al. 

2003, Spiering and Knight 2005). Cavity-nesters tend to use snags with a larger 

diameter at breast height (dbh) and bias snag use based on snag species, state 

of decay, percent bark coverage, and the presence of broken tops (Mannan et al. 

1980, Raphael and White 1984). 

Timber harvesting has been a century-long industry on the west coast of 

Newfoundland, Canada (Graphic 1 ). Harvesting has become a widespread 

disturbance type in this region. The dominant tree species is balsam fir (Abies 

balsamea) and forests are managed under 80-120 year rotation periods 

(Thompson et al. 2003). The area is characterized by wet boreal forests with a 

low level of fire activity and the dominant natural disturbance being insect 

defoliation. Two major defoliators drive western Newfoundland balsam fir forests 

dynamics, hemlock looper (Lambdina fiscelleria fiscelleria [Guen.]) and spruce 

budworm (Choristoreura fumiferana [Clem]). These insects have acted 

simultaneously (Hudak and Raske 1981 , Hudak 1996) in western Newfoundland 

since the beginning of the 201
h century (Hudak 1996). Recent insect outbreaks 

have defoliated an average of 28 000 ha of Newfoundland forests annually 

(Average values from 'The State of Canada's Forests' publications 1995-2002), 
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that typically result in reductions in growth and high levels of mortality (Karsch 

1994, Bergeron 1995). For example, spruce budworm outbreaks between 1971 

and 1979 killed 23% of the islands merchantable tree volume (Hudak and Raske 

1981 ), and hemlock looper defoliated 73.6 million ha, killing 330 000 ha between 

1983 and 1995 (Hudak 1996). Balsam fir forests in eastern Canada readily re­

establish after insect mortality due to advanced regeneration (Morin 1994, 

Kneeshaw 1999). 

Land managers are now trying to preserve appropriate representation of 

habitat types and biodiversity following harvest, incorporating the preservation of 

snags as one component in this approach. A number of studies have examined 

snag dynamics (decomposition rates and longevity [the length of time a tree 

remains standing after it has died]) in post-fire landscapes (e.g. , Everett et al. 

1999 and Russell et al. 2006) but fewer studies have examined snag dynamics in 

post-harvest landscapes (e.g. , Garber et al. 2005, Moroni 2006). Snag densities 

post-harvest differ from snag densities after natural disturbance where higher 

densities of snags are left immediately following the disturbance (e.g. following 

fire Schieck and Song 2006). Hence mimicking natural disturbance regimes 

requires alternative forest management strategies than previously practiced to 

maximize snag availability over time. Cline et al. (1980) suggested leaving 10 

snags/ha following harvest, a recommendation that has been incorporated into 

forest management policies for Newfoundland (Corner Brook Pulp and Paper Ltd. 

2004). However, it is not clear that 10 snags/ha present initially after harvest 

provides sufficient snag densities to ensure the continued presence of snags in 
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the initial post-harvest period and for extended periods into the forest rotation. 

Nor does the current requirement consider snag recruitment after the initial post­

harvest period. The requirements also make no stipulations as to the 

characteristics of the snags retained following harvest, and thus the suitability of 

those snags in terms of their potential longevity or usefulness in accommodating 

wildlife. 

Working in balsam fir-dominated boreal forests of western Newfoundland, 

Canada, the aims of this project were to assess snag density, longevity and 

biomass in a post-harvest landscape (Chapter 2) and also to determine the 

availability and quality of snags for cavity-nesting birds and other wildlife (Chapter 

3) . I conducted these studies using a chronosequence of balsam fir (Abies 

balsamea)-dominated boreal forests that encompassed one full rotation of the 

forest following harvest. 

Both chapters were written in the format of the peer-reviewed journal 

Forest Ecology & Management. The first chapter is currently under review and 

the second is now published. 
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2.0 Snag dynamics in post-harvest landscapes of western Newfoundland 
balsam fir-dominated boreal forests 

2.1 Abstract 

We examined the longevity of standing dead trees (snags) and changes in snag 

volume and biomass with time following harvesting in a chronosequence of 

balsam fir (Abies balsamea) dominated boreal forests in western Newfoundland. 

The aim of our study was to determine whether the current snag management 

practices in western Newfoundland would be able to maintain the recommended 

minimum of 10 snags/ha on the post-harvest landscape. Snags displayed two 

distinct periods of decline following harvest: the first, 1-4 years after harvest, 

when residual snags and live trees are prone to windfall and domestic harvesting; 

the second, 1 0-15 years following harvest, was followed by low snag densities, 

indicating the average lifespan of snags. Snag densities then increased with 

forest age, reaching the highest level in 81- to 1 00-year-old forests that had 

become senescent. Snag longevity was positively correlated with stem diameter. 

White birch (Betula papyrifera) produced the largest diameter and longest 

standing snags. Small-diameter snags of western Newfoundland boreal forests 

are short lived, contribute low biomass and exhibit a long period of low snag 

abundance. 
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2.2 Introduction 

Standing dead trees (hereafter snags) are increasingly recognized as a 

crucial ecological component of post-harvest, managed and unmanaged forest 

landscapes. Snags are important for biodiversity and the natural cycling of 

nutrients in forest ecosystems (Garber et al., 2005; Marage and Lemperiere, 

2005). The benefits of snag retention in managed forests for nutrient cycling, 

wildlife habitat and carbon (C) storage have been well documented (e.g., Cline et 

al., 1980; Peng et al. , 2002; Yatskov et al. , 2003; Howard et al. , 2004; Yamasaki 

and Leak 2006) and guidelines have been formulated by resource managers 

aimed at maintaining snags on post-harvest landscapes. Cline et al. (1980) 

suggested leaving 1 0 snags/ha, a recommendation adopted as the legal 

requirement for harvesters in the Canadian province of Newfoundland and 

Labrador (NL) (Corner Brook Pulp and Paper Ltd. , 2004). To manage snags in 

post-harvest landscapes, snag dynamics (e.g. , decomposition rates and 

longevity- the length of time a tree remains standing after it has died) must be 

understood (Garber et al. , 2005). To date, studies of dead wood in Newfoundland 

boreal forests have focused either on woody debris (e.g. , Sturtevant et al. , 1997) 

or on snags present at only three age classes following natural and 

anthropogenic disturbance (e.g., Moroni 2006). Snag dynamics over an entire 

forest rotation have not been documented in Newfoundland and are poorly 

documented elsewhere. 

Snag dynamics and snag biomass are highly influenced by anthropogenic 

disturbances (harvesting) and land management regimes (Krankina and Harman, 
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1994). Snags represent 5-10% of trees in most mature forest stands (Hunter, 

1990), but as many as 90% of the trees found on recently harvested landscapes. 

Overall, the effects of clearcut harvesting are few snags left on the landscape and 

few live trees left for snag recruitment. Snags have always been inconvenient for 

harvesters, obstructing access to merchantable trees and constituting health 

hazards (Thomas, 2002). However, regardless of the method of harvesting, 

harvesters are unlikely to allocate time or resources to cut snags or 

unmerchantable trees unnecessarily. Thus, in the absence of legal requirement, 

unless a snag prevents access to merchantable trees or forms a hazard to 

harvesters, we would expect snags to typically be left standing. Here, we 

assumed that the practice of leaving snags in place has been followed since 

harvesting commenced in Newfoundland, and based on existing literature, typical 

snag fall rates would suggest the effects of past harvesting methods would no 

longer be measurable since current use of short wood mechanical harvesters 

have been adopted for - 20 years, longer than most snags in Newfoundland are 

expected to stand. Therefore, even without the recent emphasis on snag 

retention , snag removal from past harvesting methods is likely to have been 

minor and not a limiting factor, allowing us to conduct our study using a 

chronosequence sampling technique. 

The forest of western Newfoundland is described as "wet boreal" and is 

dominated by balsam fir (Abies balsamea) , which is a short-lived tree species 

with a relatively small diameter at breast height (dbh; 1.3 m) (Thompson et al. , 

2003). Snag decomposition and longevity are influenced by climate and species-
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specific patterns of decay rates and morphology (Conner and Saenz, 2005; 

Garber et al., 2005). However, snag longevity is also influenced by a host of other 

factors, including dbh, top presence and exposure to wind (Bull, 1983; Morrison 

and Raphael, 1993; Garber et al. , 2005). Among these, dbh is typically a strong 

positive correlate of snag longevity (Cline et al. , 1980). Bull's (1983) assessment 

of snag longevity in an experimental mixed conifer forest indicated that snag fall 

rates were low until approximately 6-8 years following tree death, after which 

rates increased. Everett et al. (1999) found that most snag fall occurred in the 

first 15 years following disturbance on a post-fire lodgepole pine (Pinus contorta) 

and Douglas-fir (Pseudotsuga menziesi1) landscape. Longevity of snags in post­

harvest landscapes should be very different from that of snags in mature forests 

because the surrounding live trees that protect snags from wind and sun 

exposure are removed. Garber et al. (2005) suggested that snag fall rates should 

be relatively low immediately following harvest, but then increase until about 15 

years after disturbance. 

For this study, we assessed snag density, longevity, and biomass in a 

post-harvest chronosequence of balsam fir-dominated boreal forests in western 

Newfoundland that encompassed one full rotation of the forest. We predicted that 

current snag management strategies for harvesting the small-dbh forests of 

western Newfoundland would not be able to maintain the recommended 

minimum of 10 snags/ha on the post-harvest landscape. In particular, we 

predicted that snag density would be > 10 snags/ha following harvest, but would 

decrease rapidly and fall below the required density within 20 years, and would 
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remain low until snag creation through senescence occurred late in the natural 

forest succession. We also predicted that large snags would be most persistent 

and important to snag density 20 years after harvest. 

2.3 Methods 

2.3. 1 Study area 

Our study was conducted in the Western Newfoundland Ecoregion (Forest 

Section B28b) of the Canadian Boreal Forest (Rowe, 1972) on the west coast of 

Newfoundland. Mean July and January daily temperatures are 17 oc and -6 oc, 

respectively, with a mean precipitation of - 1200 mm/year, of which a large 

proportion occurs as snow (Damman, 1983; Snyder, 1984). The region supports 

wet boreal forest with high precipitation due to the humid maritime climate; thus, 

there is limited forest fire activity and insect activity is the dominant natural 

disturbance (Thompson et al. , 2003). Study sites were located within Forest 

Management District 15 (Fig. 2.1 ), which covers a 562 533-ha area (Government 

of Newfoundland and Labrador, 2003; S. Balsom, Corner Brook Pulp and Paper, 

Ltd. (CBPP Ltd.), personal communications 2006). Forests in the study area are 

dominated by conifers, mainly balsam fir, with areas of low-moderate (up to 

49.9%) densities of black spruce (Picea mariana) , depending on site 

characteristics (Damman, 1983). Other species-including white spruce (Picea 

glauca) , white birch (Betula papyrifera) , white pine (Pinus strobus) , red maple 

(Acer rubrum) and eastern larch (Larix laricina)- occur at low densities, except 

where succession or site characteristics are particularly favourable. The forest 
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floor/understory ranges from moss-dominated, poor quality sites to rich sites 

dominated by ferns and other herbaceous plants. The dbh in balsam fi r­

dominated forests is generally <30 em and senescence usually begins before 

stands reach 100 years old (Moroni , 2006). The forest rotation in Newfoundland 

is 80- 120 years (S. Balsom, CBPP Ltd. , personal communications 2006). 

Approximately 1 million ha of Canadian forest are harvested each year, 

mostly from the boreal forest (Howard et al. , 2004). In Newfoundland, 17 500 

ha/year of boreal forest are harvested (Newfoundland Department of Forest 

Resources and Agrifoods, 1998), and about 2500 ha/year in Forest Management 

District 15 (CBPP Ltd. , 2002). Corner Brook Pulp and Paper Ltd. manages 72% 

(372 054 ha) of the inventoried land base in this district (CBPP Ltd ., 2002; 

Government of Newfoundland and Labrador, 2003), and clearcutting is the 

primary method of harvesting in the region (Whitaker and Montevecchi, 1999). 

2. 3.2 Site selection 

Selected sites formed a chronosequence ranging in age from 1 year since 

harvest (YSH) to 81 to 100 YSH. We randomly selected 15 sites in each of 15 

age classes for a total of 225 sites; all sites were >2 ha in size. Age classes were 

divided into three stages of the forest rotation (and reflect the nature of stand­

aging data available from provincial agencies) : recently harvested from 1-7 YSH 

in 1-year increments; early regeneration from 9-20 YSH, with four age classes in 

2-year increments; and mid- to late-rotation from 21-100 YSH, with four age 

classes in 20-year increments. An emphasis was put on the years immediately 
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following harvest to focus on the dynamics in the first 20 years. Forest harvesting 

in District 15 targets stands aged 80 to 120 years at time of harvest, but some 

cutting occurs before that age in productive second-rotation forests (S. Balsam, 

CBPP Ltd. , personal communications 2006). We selected harvested sites 

formerly occupied by forest composed of >75% balsam fir, rated as medium or 

good yielding (for merchantable volume), and with 50-100% crown closure from 

across the district. All sites chosen were adjacent to forest access roads. Two 

age classes, 4 YSH and 81 to 100 YSH, were clustered geographically because 

of limited site distribution; sites for all other age classes sampled were scattered 

throughout the district. 

2.3.3 Field measurements 

Fieldwork was conducted from 1 June to 31 August 2006. At each site, a 

plot was created measuring 100m long and 20m wide. This plot was situated 

50 m from the access road at a harvest boundary and ran toward the interior of 

the site. Data were recorded for all snags with a dbh >9 em and a height > 1.5 m 

within 1 0 m on either side of the 100-m transect. Snags were tallied within the 

plot to determine snag density per hectare for each site. Data recorded for each 

snag included: GPS waypoint (UTM), species, dbh, height (measured with 

clinometer), decay class (Table 2.1 ; Natural Resources Canada, 2008), bark 

cover and top presence. Percentage bark cover was estimated visually to the 

nearest 1 0%, and the top was recorded as broken or intact. Original height of 
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snags with broken tops was estimated based on a regression of height vs. dbh 

for intact live trees (Moroni, unpublished data). 

Snag volume was estimated using published regression equations based 

on height and dbh (Page et al. , 1971 ; Warren and Meades 1986). Overall snag 

bole volume was converted to biomass by multiplying snag volume by density 

based on species and decay classes assigned to individual trees (Table 2.2; 

Natural Resources Canada, 2008). We assumed that the biomass was 50% C 

(Moroni, 2006). Bark and branch volumes were estimated based on relationships 

between bark, branch and stem biomass determined for live trees of each 

species (Moroni, unpublished data). We assumed that decay classes 1, 2 and 3 

snags retained 100%, 50% and 25% of original branches, respectively. 

2.3.4 Statistics 

We ran a correlation matrix (Minitab Inc. , 2006) to determine the single 

variable that was most correlated to the variation in total snag biomass, using the 

snag species identified as the predictor variable. After finding which variable was 

most correlated to total biomass we ran a linear regression to determine the R2 

value. 

2.4 Results 

2.4. 1 Snag density 

Snag density (snags/ha) decreased by 50% in the first 4 years following 

harvest (Fig. 2.2), and then rose to an intermediate plateau averaging 25 
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snags/ha between 6 and 9 to 10 YSH. Snag densities further declined to eight 

snags/ha at 20 YSH and remained low until 61 to 80 YSH, when snag density 

increased again, reaching a high of 44 snags/ha in the 81 to 100 YSH age class. 

Balsam fir and white birch were the most abundant snag species. 

However, only balsam fir snag density changed with time in a pattern similar to 

that of total snag density (Fig. 2.3) . Balsam fir contributed 55% of all snags 

sampled and comprised 25-65% of snags in any given age class. Birch, the only 

hardwood sampled, and the only study species not taken during harvesting, 

showed a very different pattern. Birch snag density was low immediately following 

harvest, but increased slightly over the next 3 years. Thereafter, birch density 

remained relatively constant from 5 YSH until 41 to 60 YSH, when it decreased to 

near 0 snags/ha by 81 to 100 YSH (Fig. 2.3). The other three species sampled 

(black spruce, white pine and white spruce) followed an intermediate pattern, 

initially declining over the first 4 YSH, remaining a small but constant presence 

until 81 to 100 YSH, when their densities reached a level comparable to that of 

balsam fir (Fig. 2.3). The rise in the density of other study species in the final age 

class was largely attributable to white pine. 

2.4.2 Stem Diameter 

Average snag dbh remained relatively constant at - 17 em from 1 YSH to 

20 to 21 YSH, after which it increased to >25 em by 41 to 60 YSH, then 

decreased again to - 17 em by 81 to 100 YSH (Fig. 2.4a). Average balsam fir dbh 

was 15 to 20 em, except at 41 to 60 YSH when it reached 22 em, after which it 
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returned to <20 em (Fig. 2.4b). In contrast, birch dbh was 18-25 em up to 20 to 

21 YSH, after which it increased to 35 em by 61 to 80 YSH, followed by a sharp 

decline (Fig. 2.4b). 

2.4.3 Snag volume and biomass 

Patterns in total snag volume and biomass (reflected by total height of 

histogram columns; Fig. 2.5a, b) had a similar temporal pattern as snag density 

(Fig. 2.2) . Balsam fir was the best species predictor for variability of overall snag 

biomass through a correlation matrix (p < 0.001 , Minitab Inc. , 2006). Balsam fir 

accounted for 41 .5% of the variability (p < 0.001 ). By 15 to 16 YSH, balsam fir 

had reached a low of 4% of snag biomass (24 kg/ha), whereas white birch made 

its maximum contribution of 87% of snag biomass (446 kg/ha) (Fig. 2.5b) . 

Conversely at 81 to 100 YSH, balsam fir contributed 46% of snag biomass (940 

kg/ha) and white birch only contributed 2% (30 kg/ha) (Fig. 2.5b). Although 

balsam fir had higher densities than birch for most age classes, white birch 

constituted a large percentage of snag volume and snag biomass until the final 

age class. White pine made a substantial contribution to overall volume and snag 

biomass at 81 to 100 YSH. 

2.5 Discussion and conclusions 

There were two periods of snag density decline observed in this study but 

only the second decline, which occurred from 9 to 10 YSH to 15 to 16 YSH, 
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seemed to reflect snag longevity. The snag longevity we observed was 

comparable to results in a variety of other studies. Garber et al. (2005) predicted 

that balsam fir snags with a 15-cm dbh would have a <15% probability of 

standing 15 years following harvest. This is because of the short lifespan and 

small dbh of balsam fir (Hunt et al., 1999; Thompson et al. , 2003). A similar time 

frame for longevity was estimated for small-diameter (1 0-30 em) Douglas-fir and 

ponderosa pine (Pinus ponderosa) snags (Cline et al. , 1980; Russell et al. , 2006). 

Hardwood snags of similar dbh tend to persist longer than softwood snags (Cline, 

1977) due to higher wood density (Garber et al., 2005). This short overall 

longevity we observed leaves a large period of low snag abundance ( <1 0 

snags/ha) between 15 and 60 YSH (Fig. 2.2) . It also diminishes any possible 

effects of changing harvesting practices because any differences in snag 

abundance would not be detectable 20 years following harvest, and all sites that 

had been cut using rudimentary harvesting methods were aged >20 years. Snag 

density is expected to be higher over time in unmanaged sites (Marage and 

Lemperiere, 2005), but the natural variation in snag densities in pre-harvest 

landscapes has not been examined in Newfoundland. 

The initial period during which snag density declined encompassed the 

period up to 4 years following harvest and is likely the result of two factors: 

domestic harvesting for firewood and wind-throw. Snags and live trees 

considered valuable for firewood (largely hardwoods) are more visible and easier 

to access after harvest, making them a target for domestic harvesters (Manning 

et al. , 2006). Domestic harvesting is comparable to the salvage logging seen in 
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studies of post-fire disturbance sites; it decreases the average diameter and 

density of remnant snags, which in turn decreases their overall longevity. Russell 

et al. (2006) found that salvage logging after fire increased the average rate of fall 

in remaining snags. The second factor, which may have a greater effect on snag 

loss than domestic harvesting, is the increased incidence of wind-throw 

(lohmand and Helles, 1987; Morrison and Raphael, 1993). Snags surviving or 

created by harvest become more vulnerable to wind-throw and stem breakage, 

which facilitates increased decay rates (Stevenson et al. , 2006). Russell et al. 

(2006) found that more exposed snags fell sooner than snags that occurred in 

clusters. 

There were also two periods of snag density increase observed. The initial 

period of snag density increase occurred from 4 to 6 YSH, following the initial 

snag density decrease; the second increase occurred at 81 to 100 YSH (Fig. 

2.2). The second increase in snag density (;::61 to 80 YSH; Fig. 2.2) was 

expected due to senescence of regenerating stands (Thompson et al. , 2003), but 

the first increase in snag density between 5 and 9 to 10 YSH occurred during a 

period of anticipated reductions in snag density. There is little information in the 

literature about snag recruitment in post-harvest landscapes. Trees left alive on 

cutblocks following harvesting in western Newfoundland are typically hardwoods, 

dominated by unmerchantable white birch (Moroni, 2006). These trees do not 

survive long without the protection of adjacent trees. Solitary trees are especially 

susceptible to wind-throw when in full leaf because of the "sail" effect (Bebber et 

al. , 2005), thus many residual hardwoods are broken or uprooted when in leaf, 
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with many being blown down in the spring following winter haNesting. Large 

uprooted hardwoods with fresh leaves were encountered most often during this 

study on recently haNested sites (C. Smith, personal obseNations) . Residual live 

trees on cutblocks are likely killed by exposure, potentially resulting in an 

increase in snag density between 5 and 10 YSH (Fig. 2.2). However, live trees 

that are left exposed after haNesting and subsequently blown down do not 

contribute to snag density during any part of the forest rotation. Softwoods are 

less susceptible to wind-throw than hardwoods (Bebber et al. 2005) , but few 

living softwoods >9 em dbh are left unhaNested in western Newfoundland. Bull 

and Partridge (1986) recommended that, if live trees were left in clumps or 

topped and branched to lessen the effects of wind-throw, they could form a post­

haNest snag source. 

Many studies have concluded that larger diameter snags are the most 

valuable for wildlife habitat because of their longevity (Morrison and Raphael, 

1993; Ganey and Vojta, 2005; Russell et al. , 2006). Likewise, longer-standing 

snags contribute more significantly to biomass pools than smaller snags. 

Evidence of this can be seen in our data for the period after 15 to 16 YSH, when 

snag density reached its lowest and average snag dbh increased. The remaining 

snag biomass is mostly attributable to large-dbh white birch snags (Fig. 2.4b). 

Decomposition is slower in snags than in fallen coarse woody debris (Zielonka, 

2006), and larger-diameter snags are less prone to wind-throw (Ganey and Vojta, 

2005) and decompose more slowly because of their larger surface area:volume 
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ratios and increased proportion of decay-resistant heartwood (Bull , 1983; Garber 

et al., 2005). 

Snag biomass followed the same temporal pattern as snag density, 

although snag biomass did not have the pronounced minima of snag densities at 

15 to 20 YSH (Figs. 2.2 and 2.5). White birch dominated snag biomass in many 

age classes, even though it was consistently present at relatively low densities 

(snags/ha). A small number of large-dbh white birch snags, individually 

containing a large biomass due to their size (Fig. 2.4b) and high wood density 

(Table 2.2), maintained snag biomass when snag densities were low. As a stand 

ages, the mean snag dbh and range of dbh increases, with large hardwoods 

persisting for longer periods (Cline et al., 1980; Greif and Archibald , 2000) and 

new small-dbh snags join the population in the shelter of the growing forest, a 

pattern typical of boreal forests (Lee et al. , 1997). Snag biomass at 81 to 1 00 

YSH in our study was significantly lower than that found in older Newfoundland 

forests (Sturtevant et al., 1997; Thompson et al., 2003; Moroni, 2006). This was 

likely because our 81 to 100 YSH sites were at the younger end of this age range 

with less advanced senescence. The dominance of the last age class by white 

pine snags likely results from the limited geographic distribution of 81 to 100 YSH 

sample sites to a location with relatively large numbers of white pine. 

Based on current clearcut harvest practices and average tree size 

distribution, it is unlikely that > 10 snags/ha could be maintained through a full 

forest rotation. This is especially the case where second-rotation forests are 

harvested before they senesce and thus contain few pre-harvest snags for the 
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post-harvest landscape to inherit. Most snags in post-harvest landscapes of 

balsam fir-dominated forests in western Newfoundland are short lived and make 

only a minor contribution to biomass. However, low snag density and biomass 

could be raised through appropriate management of non-merchantable white 

birch. The large volume, high average dbh, and high wood density of white birch 

snags mean they persist longer and contribute a large amount of biomass. By 

enhancing the presence of white birch snags and subsequent woody debris, snag 

density over the mid to late rotation could be increased and other forest values 

(e.g., wildlife habitat) would be addressed. We found that these large, long-lived 

snags may be of particular importance to enhancing populations of Northern 

Flickers ( Co/aptes auratus) , a key-stone primary cavity excavator in this setting 

(Smith et al. 2008; see chapter 3). 
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Table 2.1. Descriptions of decay classes used to classify snags within the studied 
sites (N RCan 2006) 

Decay Class 

Attribute 2 3 

Wood texture Intact, hard Intact, hard to partly Hard, large pieces, 
decaying partly decaying 

Portion on ground Elevated on support Elevated but sagging Sagging near ground, 
points slightly or broken 

Twigs <3 em (if originally Twigs present No twigs No twigs 
present) 

Bark Bark intact Intact or partly missing Trace bark 

Shape Round Round Round 
Invading roots None None In sapwood 
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Table 2.2. Snag density (kg/m3
) by species and decay class (Moroni 2006) 

Species Decay Class 
2 3 

Abies balsamea 340 271 202 
Picea mariana 410 341 272 
Picea glauca 350 281 212 
Betula papyrifera 506 424 342 
Pinus strobus 360 291 222 
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Figure 2.1. Newfoundland, with Forest Management District 15 shaded. 
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Figure 2.2. Snag density (snags/ha) within study sites by age class (mean ± SE; 
n = 15; dotted line indicates management goal ; note changing x-axis scale) 
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3.0 Snag availability for cavity nesters across a chronosequence of post­
harvest landscapes in western Newfoundland 

3.1 Abstract 

We examined the availability and quality of standing dead trees (snags) for 

nesting habitat in a harvest chronosequence of boreal forests dominated by 

balsam fir (Abies balsamea) in western Newfoundland. Snag density declined 

substantially 1 0-15 years after harvest, then increased to reach its highest level 

in 81- to 1 00-year-old forests that had become senescent. Most (55%) of 1260 

snags encountered were balsam fir, which contained 41 % of the 81 cavities 

identified. Cavity presence was most strongly positively correlated to Snag 

diameter at breast height (dbh), followed by decay class, time since harvest and 

height. Less than 40% of snags available throughout the chronosequence had 

large enough dbh for cavity nesters. Downy Woodpeckers (Picoides pubescens) 

were responsible for 47% of all cavities identified, excavating balsam fir - 50% of 

the time. Two larger cavity nesters present, Northern Flickers ( Colaptes auratus) 

and Three-toed Woodpeckers (Picoides tridactylus) . were more likely to use 

large-diameter white birch (Betula papyrifera) snags. Northern Flickers excavated 

the largest cavities, potentially providing habitat for the greatest variety of 

secondary cavity-nesters. Managing for snags with >30 em dbh, which flickers 

target for excavation, has the greatest potential to enhance the broader snag 

cavity-based community in western Newfoundland. 
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3.2 Introduction 

Standing dead trees (hereafter snags) are an important but variably 

available resource for a range of forest birds and mammals (Bull , 1983; Morrison 

and Raphael, 1993; Martinet al., 2004). Snags support a diverse food base for a 

host of insectivorous vertebrates, and provide roosting and nesting opportunities 

for many wildlife species (Bunnell et al., 1999; Spiering and Knight, 2005). Snag 

availability for wildlife has become a component of forest management decisions 

(Bullet al., 1997; Garber et al., 2005), yet few studies have reported data on 

snag availability across periods of time reflecting entire forest rotations. Such 

decisions require an understanding of snag dynamics and usage by wildl ife over 

time (Garber et al., 2005), especially following disturbances that lead to a major 

shift in forest composition and structure. 

Prominent among vertebrates using snags are cavity-nesting birds, 

particularly the woodpeckers (Picidae), which forage for insects often found in 

snags but also excavate cavities in both live and dead trees (Raphael and White, 

1984; Farris et al., 2004; Remm et al., 2006). As primary cavity nesters, 

woodpeckers create habitat for other species and play roles in seed dispersal, 

soil aeration, organic decomposition, and pest control (Everett and Otter, 2004; 

Farris et al. , 2004). Because they excavate new nest cavities each breeding 

season, there may be a rapid increase in habitat for non-excavating secondary 

cavity nesters in communities where woodpeckers are present (Martin et al. , 

2004; Walter and Maguire, 2005; Remm et al. , 2006), especially where there is a 

high density of suitable snags available. 
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Managing forests with the intent to encourage woodpeckers and 

secondary cavity nesters involves providing snags appropriate for cavity 

excavation (Bullet al. , 1980; Cimon, 1983). Targeting mature, but pre-senescent, 

stands for harvest reduces the number and size of snags left on the post-harvest 

landscape (Cline et al. , 1980; Bullet al. , 1997; Thompson et al. , 1999); this 

reduces eventual snag availability and, therefore, wildlife abundance and 

diversity (Haney and Schaadt, 1996; Zack et al. , 2002). Woodpeckers select 

snags with a large diameter at breast height (dbh) to support their nests (Swallow 

et al. , 1986). Although cavity nesters display species-specific differences in their 

snag size preferences, larger snags are used by more species and tend to stand 

longer than smaller snags (Bullet al. , 1980; Schieck and Song, 2006). Cavity­

nesting birds also select snags for excavation based on decay class, species, 

bark cover, and whether the top of the snag is still intact or broken off (Mannan et 

al. , 1980; Raphael and White, 1984; Moorman et al., 1999; Farris et al. , 2004). 

Studies of snags as wildlife habitat have suggested that snag abundance may not 

be as important as the quality (possessing characteristics necessary for cavity 

excavation) of snags available (Bullet al. , 1997; lmbeau and Desrochers, 2002). 

Thus, cavity-nesting bird densities are dependent on the availability of high­

quality snags and trees (Runde and Capen, 1987). 

Disturbance can greatly alter the landscape and, consequently, the 

availability of snags for cavity-nesting birds, however depending on the source of 

the disturbance (natural vs. human caused) , the outcome may be very different in 

terms of stand structure. Fire is the main natural disturbance in many forest 
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systems, but in much of the boreal region of North America, harvesting is 

becoming increasingly prevalent (Simonet al., 2002). Concomitant with the rising 

demand for wood products, harvesting levels in Canadian forests (largely boreal) 

have increased to approximately 1 million ha per year (Howard et al. , 2004). Until 

recently, the prominent use of clearcutting in these harvest operations left 

landscapes with very few snags or living trees (Simonet al. , 2002), creating post­

harvest landscapes very different from post-fire systems in terms of the amount 

of snags and deadwood remaining (Schieck and Song, 2006). In their review of 

studies comparing post-harvest and post-fire landscapes in western Canada, 

Schieck and Song (2006) identified significant differences between these 

landscapes in bird community composition during the years immediately following 

disturbance. Cavity-nesting birds were abundant in post-fire disturbance sites 

while the bird communities of post-harvest landscapes were dominated by open­

meadow or shrubby habitat bird species. However, they also found that with time 

the physical and community differences between disturbance types lessened, 

leading to old-forest stands with similar structural and avifauna! community 

characteristics (Schieck and Song, 2006). These findings indicate that 

management for cavity nesters and other wildlife in post-harvest landscapes may 

be most critical in the years immediately following harvesting, rather than later 

successional stages, at least in boreal North America. It remains unclear whether 

attempts to mimic natural disturbance with modified forest harvest techniques will 

help retain the expected early seral-stage avifauna! community in general 

(Schieck and Song, 2006). Nor is it known what the general nature of the post-
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harvest cavity-nesting community is in the forests of eastern boreal North 

America (e.g. , Newfoundland), where fire is less prevalent and the scale of 

natural disturbance is smaller. The aim of this study was to determine the 

availability and quality of snags for cavity-nesting birds and other wildlife in post­

harvest balsam fir-dominated boreal forests of western Newfoundland, Canada. 

We predicted that snag availability would decrease below 10 snags/ha around 

the mid-rotation stage following harvesting. We also predicted that very few large­

diameter snags would be available for cavity nesting species. 

3.3 Methods 

3.3. 1 Study area and site selection 

Our study was conducted in the Western Newfoundland Ecoregion (Forest 

Section B28b) of the Canadian Boreal Forest (Rowe, 1972) on the west coast of 

Newfoundland, Canada. The mean July and January daily temperatures are 1 r c 

and -6°C, respectively, with a mean precipitation of - 1200 mm/year, of which a 

large proportion occurs as snow (Damman, 1983; Snyder, 1984). Fire in this 

region is limited, and insect outbreaks are the dominant natural disturbance 

(Thompson et al. , 2003). Study sites were located within forest management 

district 15 (Fig. 2.1 ), which covers an area of 562 533 ha (Govt. of Newfoundland 

and Labrador, 2003). Selected stands were dominated by balsam fir, with low­

moderate densities and scattered stands dominated by black spruce (Picea 

mariana) , depending on site characteristics (Damman, 1983). Other species, 
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including white spruce (Picea glauca), white birch (Betula papyrifera), white pine 

(Pinus strobus), red maple (Acer rubrum) , and eastern larch (Larix laricina), occur 

at low densities except at scattered locations where site characteristics favor 

greater abundance. The dbh (at 1.3 m) in balsam fir-dominated forests is 

generally <30 em, and stands rarely reach 100 years old before senescence 

begins (Moroni, 2006). The forest rotation in Newfoundland has been 80-120 

years (Setterington et al., 2000), but the harvest rotation is currently as short as 

60 years where productivity is high (S. Balsam, Corner Brook Pulp and Paper, 

Ltd. pers. comm. 2006) and clearcutting is the primary method of harvesting in 

the region (Whitaker and Montevecchi, 1999). 

We selected 15 sites for each of 15 age classes in a chronosequence 

ranging from one year since harvest (YSH) to 81-100 YSH, for a total of 225 

sites. Age classes were divided into three stages of the forest rotation (and reflect 

the nature of stand-aging data available from provincial agencies): recently 

harvested from 1-7 YSH in 1-year increments; early regeneration from 9- 20 

YSH, with four age classes in 2-year increments; and mid- to late-rotation from 

21-100 YSH, with four age classes in 20-year increments (Fig. 3.1 ). All sites 

selected were on harvest blocks >2 ha in size, composed of >75% balsam fir, 

with 50- 1 00% crown closure, and having medium or good site quality (based on 

merchantable volume). For two age classes, 4 YSH and 81 - 100 YSH, the sites 

chosen were clustered geographically because of limited availability in the forest 

management district. 
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3.3.2 Field measurements and data collection 

Fieldwork was conducted from 1 June to 31 August 2006. At each site, 

beginning 50 m from the access road and at the cut block boundary, a 100 m 

long transect was established running toward the interior of the cut block to 

create a plot 20m wide. Data were recorded for all snags inside the plot having a 

dbh ~9 em and a height > 1 .5 m. Snags were tallied within the plot to determine 

snag density per hectare for each site. Data recorded for each snag included 

GPS waypoint (UTM), species, dbh, height (measured with clinometer) , decay 

class, bark cover, and top presence (See chapter 2; Smith et al. submitted). Bird 

and other wildlife data recorded for each snag included number of cavities 

present, species of woodpecker that created each cavity, presence of foraging 

and excavation, and any animals occupying the cavity. 

Nest cavities were attributed to primary excavators based on cavity 

dimensions characteristic to each species. The species of woodpeckers found in 

western Newfoundland include Downy Woodpeckers (Picoides pubescens) , Hairy 

Woodpeckers (Picoides villosus), Black-backed Woodpeckers (Picoides arcticus) , 

Three-toed Woodpeckers (Picoides tridactylus) , and Northern Flickers ( Colaptes 

auratus). Downy Woodpeckers are commonly found in deciduous, riparian , and 

mixed forest, and nest in either snags or live trees with advanced heart rot and an 

average dbh >25 em (Setterington et al. , 2000; Jackson and Ouellet, 2002). 

Downy Woodpecker cavities were easily distinguished from other potential 

excavators by the circular shape of the entrance compared with the distinctly oval 

cavity openings of other species; the entrance has an average diameter of 3 em 
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(Jackson and Ouellet, 2002). Hairy Woodpeckers are known to use both 

deciduous and coniferous trees for nesting (Saab et al. 2004); they will nest in 

snags but prefer live trees with advanced heart rot and a dbh >25 em (Jackson et 

al., 2002). The dimensions of a Hairy Woodpecker cavity entrance average 4.8 

em high and 3.8 em wide (Jackson et al., 2002). Three-toed Woodpeckers are 

associated with mature forest and nest in either coniferous or deciduous snags, 

but prefer a dbh >27 em; the average diameter of their cavity entrance, which 

may be irregularly shaped, is between 3.8 and 4.5 em (Leonard, 2001 ). Black­

backed Woodpeckers are strongly associated with fire-disturbed forest in most 

parts of the boreal as well as in the forests of the western United States (Hutto 

1995; Hoyt and Hannon 2002) but are also known to use old-growth forest in 

places such as western Newfoundland (Thompson et al. 1999). They nest in live 

trees and snags of various species having an average dbh of approximately 27 

em (Dixon and Saab, 2000; Setterington et al. , 2000). Black-backed 

Woodpeckers have a cavity entrance that is 4.4 em in diameter, with a flattened 

sill-like spot on the bottom (Dixon and Saab, 2000). Northern Flickers prefer open 

forest landscapes, and excavate their cavities in dead trees with sufficient decay 

to provide soft wood and an average dbh >30 em. Flickers have the largest cavity 

entrance among these species, approximately 8 em high and 7.4 em wide 

(Moore, 1995). 

3.3.3 Statistics 
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We used backward stepwise selection to determine the best model with an 

a value of 0.15 being required to enter or leave the model; no interactions 

qualified to be in the model, nor did snag species. We then ran a binary logistic 

multiple regression to assess which parameter(s) (from among snag dbh, decay 

class, age class, and height) were the best predictor of cavity presence in a snag 

(Minitab Inc., 2006). Logistic regression applies maximum-likelihood estimation 

after transforming the dependent into a legit value; it does not require normally 

distributed variables. An a level of 0.05 was used to determine significance for all 

statistical tests. 

3.4 Results 

Data for 1260 snags from 225 sites covering 15 age classes were 

collected; there were a total of 81 cavities contained in 45 snags. Cavity presence 

was positively correlated with snag dbh (binary logistic regression: z = 8.47, p < 

0.0001 ), increasing in occurrence as dbh increased. Cavity presence was also 

positively correlated with , decay (z = 2.98, p = 0.003), and age class (z = 2.13, p 

= 0.033) , reaching its highest level in the oldest age class (Fig. 3.2) . There was a 

negative correlation between cavity presence and height (z = -2.13, p = 0.033) , 

with cavities occurring less often in taller snags. There were no significant 

interaction effects. 

Average snag dbh remained relatively constant at - 17 em throughout the 

rotation, with an increase of about 10 em by 41 - 60 YSH (Fig. 3 .3). However, 62% 

of all snags had a dbh between 10 and 20 em, and average dbh was 19.4 ± 0.72 

3-9 



em (mean± SO; Fig. 3.4) . In contrast, snags with cavities had an average dbh of 

30.7 ± 1.37 em, and cavity nesters seem to prefer snags with a larger dbh (Fig. 

3.4). Approximately 70% of cavities recorded were in decay class 3 snags; but 

only 463 of the 1260 snags encountered had decayed enough for potential 

excavation (decay class 2 or 3), and in addition, had a dbh >20 em. Thus, there 

were fewer than two snags/ha on average per study site with a dbh >20 em 

available for cavity excavation. The average height of snags containing cavities 

was 5.68 ± 0.28 m, compared with 5.34 ± 0.07 m for all other snags. 

Snag species was not a useful predictor of cavity presence in a snag and 

woodpeckers appeared to create cavities in snags based largely on availability. 

Balsam fir was the most abundant snag-forming species (669, 53%) followed by 

white birch (266, 21 %), white pine (175, 14%), black spruce (134, 11 %), and 

white spruce (16, 1 %). Overall, 41 % of cavities were in balsam fir, 29% in white 

pine, 21% in birch, and 9% in black spruce. The largest proportion of cavities was 

excavated by Downy Woodpeckers (47%), and although most prominent on 

recently harvested ( 1-7 YSH) sites, Downy Woodpeckers were responsible for 

about one third of cavities in early regeneration , as well as mid-to-late 

successional stands (Fig. 3.2) . Hairy Woodpecker cavities were the second-most 

abundant and showed little change in abundance over time, a pattern similar to 

Black-backed woodpecker cavities, which were the least abundant overall. 

Northern Flicker cavities reached a maximum in early regenerating forest, and 

were least abundant in the older sites where canopy closure inhibited their 

activities and snags containing flicker cavities excavated early in the rotation fell 
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to the forest floor. Three-toed Woodpecker cavities were rare early in the forest 

rotation, but became the second-most abundant during the middle to late phase 

of the forest rotation. 

Downy Woodpecker and Hairy Woodpecker cavities were most common in 

balsam fir snags, which contained 50% of these cavities (Fig. 3.5) . Northern 

Flickers and Three-toed Woodpeckers constructed their cavities in birch snags 

- 50% of the time. Most cavities that were formed naturally or of unknown creation 

were found in birch snags. Black-backed Woodpeckers excavated four of the 

cavities recorded, two of which were found in white pine snags. 

Of the 1260 snags recorded in the study, only 12% showed no evidence of 

foraging, with high levels of foraging occurring throughout all age classes. 

3.5 Discussion and conclusions 

The loss of snags soon after harvest typically leads to a dramatic change 

on the landscape for cavity-nesting species (Haney and Schaadt, 1996; Zack et 

al. , 2002; Schieck and Song, 2006). Previously (Smith et al. , submitted; see 

chapter 2) , we found that snags in post-harvest landscapes of western 

Newfoundland were generally short lived. Many snags (either existing before, or 

created during, harvest) appear to be quickly lost to windthrow and domestic 

harvest for firewood, with the few remaining individuals falling within 1 0- 15 years 

after harvest (Smith et al. , submitted; see chapter 2). The small stature of the 

predominant but short-lived balsam fir contributed to the overall short lifespan of 

snags on this landscape. The most common hardwood in the study area, white 
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birch (Smith et al., submitted; see chapter 2), would be expected to have 

enhanced longevity because of its dense tissue (Cline, 1977; Garber et al. , 

2005). However, in western Newfoundland, the targeting of birch for domestic 

harvest and its apparent heightened susceptibility to windthrow immediately after 

harvest (Smith et al., submitted; see chapter 2) have meant a relatively limited 

presence among snags during the early post-harvest period. Similar to other 

studies (see Schieck and Song, 2006), we found that snag density increased in 

the latter stages of the forest rotation when senescence occurred. Understanding 

the time frame of these processes is important for managing habitat availability 

for cavity-nesting species (Walter and Maguire, 2005). Snags left at the time of 

harvest may only be available for a short period in the entire forest rotation (Bull 

et al. , 1980) unless care is taken to protect snags with characteristics that 

enhance their potential longevity. 

Larger-diameter snags are the most valuable for wildlife habitat because of 

their longevity and ability to support a wider range of animal species (Morrison 

and Raphael, 1993; Ganey and Vojta, 2005; Russell et al. , 2006). When snag 

density was at its lowest during our study (15-60 YSH), the average dbh was at 

its highest point, indicating that larger snags survived longest after harvest and 

consequently provided habitat for the greatest period of time (Fig. 3.3). 

Consistent with this finding, over half (62%) the snags encountered in our study 

were <20 em in diameter, whereas 90% of the snags containing cavities were 

>20 em in diameter (four Downy Woodpecker cavities were in trees with dbh 

between 15 and 20 em). Thus, similar to other studies (e.g., Swallow et al. 1986), 
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not only do large dbh snags last longer, but they have a greater likelihood of 

being chosen for cavity excavation. Similar results have been found for 

woodpeckers excavating in lodgepole pine (Pinus contorta) and ponderosa pine 

(Pinus ponderosa) forests, with no cavities found in snags <25 em dbh (Bull, 

1983). Hairy Woodpeckers have been reported to require a minimum dbh of 25 

em whereas Black-backed woodpeckers and Three-toed woodpeckers have been 

reported to require a minimum dbh >30 em (Bull et al., 1980; Leonard, 2001; 

Jackson et al., 2002). We would caution however that while small-diameter snags 

(<20 em) would appear to have little value for nesting, they were still heavily used 

by woodpeckers for foraging (for which evidence was found on - 90% of snags in 

this study). 

The largest dbh trees observed during this study were white pine and 

white birch. The white pine is a slow-growing species that is no longer common in 

Newfoundland because of intensive harvesting in the past and expansion of the 

white pine blister rust disease ( Cronartium ribicola) (Raj ora et al., 2002) , making 

it difficult to manage. In contrast, white birch is common on the landscape and is 

frequently left standing after harvest. The potential contribution of these trees to 

the snag population would be enhanced if birch were managed to: (1) survive 

their increased susceptibility to windthrow (Bebber et al. , 2005) , and (2) exclude 

them from domestic harvest (Smith et al. , submitted; see chapter 2). Managing 

white birch to maximize snag recruitment would require selective retention of 

large dbh individuals that were already snags at the time of harvest, but also the 

creation of snags through the topping and trimming of live trees (e.g. , Bull and 
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Partridge, 1986). Thus, wildlife habitat availability could be improved both 

immediately after harvest through retention/protection of the extant white birch 

snag population, and (based on the prominence of birch snags in the low-density 

21-40 YSH age class; Smith et al. submitted; see chapter 2) perhaps beyond 20 

years into the post-harvest rotation based on the creation of new snags at the 

time of harvest. 

Maintaining white birch on the landscape would directly support species 

associated with deciduous trees such as Downy and Hairy Woodpeckers, as well 

as Northern Flickers (Setterington et al. , 2000). The increase of large diameter 

trees left behind on the landscape would also increase overall cavity excavation. 

Given that - 50% of Northern Flicker cavities were in white birch, and flickers 

used birch for cavities roughly in proportion to availability, we would predict that 

cavity creation (particularly in the more open landscapes favored by this species) 

would increase along with Northern Flicker numbers. As a keystone excavator 

(Martinet al., 2004), greater Northern Flicker populations would have the 

potential to provide more breeding habitat for a variety of secondary cavity­

nesting species, including large-bodied species such as Northern Hawk Owls 

(Surnia ulula) , American Kestrels (Falco sparvenius) , and Boreal Owls (Aefolius 

funereus) , all of which make use of cavities in snags left behind on clearcuts in 

Newfoundland (Gosse and Montevecchi, 2001 ). 

3.5.1 Management implications 

3- 14 



The quality (both diameter and state of decay) of snags on the landscape 

may be more important than the overall abundance in terms of supporting cavity­

nesting birds (Farris et al., 2004). In western Newfoundland, however, forest 

management practices have provided an average of <2 snags per cutover with 

adequate dbh (>20 em) and sufficient decay for cavity excavation. Two factors 

acting against the creation of such quality snags are clearcut harvesting, which 

tends to decrease the number of large trees and snags retained on the landscape 

(Simonet al., 2002), and short harvest rotations (<100 years), which prevent 

forests from senescing and producing larger snags (lmbeau and Desrochers, 

2002). Together, these factors may be the reason why post-harvest landscapes 

in Newfoundland have limited cavity-nesting populations immediately following 

harvest. It may also explain the absence of Black-backed Woodpeckers during 

late-successional stages on these post-harvest landscapes due to their 

preference in western Newfoundland for old-growth forest (80+ years) 

(Thompson et al. 1999; Setterington et al. , 2000). Implementing management to 

retain greater numbers of quality snags on post-harvest landscapes would narrow 

the gap in differences between natural disturbances and harvesting (Schieck and 

Song, 2006) . Although, as evident in the widespread occurrence of foraging 

activity on snags of all sizes, caution must be exercised to leave not only 

potential nesting habitat but also foraging trees. 

By focusing on the protection or creation of high-quality snags at the time 

of harvest, it may be possible to greatly extend the availability of nesting habitat 

for primary and secondary cavity nesters. Live white birch could be killed to 
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create snags that would remain on the landscape longer into the forest rotation 

(Moorman et al., 1999) and live trees could also be left in clusters to promote 

snag recruitment. Bull and Partridge (1986) found that topping was the most 

effective method for creating snags as it reduces susceptibility to wind and allows 

faster fungal and decomposing bacteria invasion. Snags created by this method 

were also most frequently used for nesting and foraging (Bull and Partridge, 

1986; Hallet et al. , 2001 ). 

Managing for large-cavity excavators, such as Northern Flickers, and the 

associated range of secondary nesters would be greatly facil itated through the 

retention and/or creation of larger-diameter white birch snags in Newfoundland. 

Current forestry guidelines in this jurisdiction suggest that ten snags/ha are to be 

left following harvest (following Cline et al. , 1980). It would be more appropriate to 

leave ten high-quality snags/ha, i.e., snags with a large enough dbh to be 

potential cavity-nesting trees for the largest species in the region. 
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Figure 3.1. Breakdown of abundance of each species recorded in recently 
harvested (1-7 YSH), early regeneration (9-20 YSH) and mid- to late-rotation 
(21-100 YSH). 
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Figure 3.2. Total of snags with cavities found in each age class; total snags = 45 
(note changing scale of x-axis). 
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Figure 3.3. Average snag dbh by age class (mean± SE; n = 15; note changing 
scale of x-axis). 
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4.0 Summary 

Snags in post-harvest landscapes of balsam-fir (Abies balsamea) 

dominated boreal forests in western Newfoundland are generally small in 

diameter and remain standing for only brief periods following their creation. 

Consequently, there are low snag densities for long periods of the forest rotation 

beginning shortly after harvest, with limited recruitment of new snags into the 

population. Consistent with other studies in similar systems (e.g., Cline et al. 

1980, Everett et al. 1999, Garber et al. 2005, and Russell et al. 2006) , I found 

that snags on the landscape remained standing for a maximum of - 1 0-15 years 

following harvest. Limited longevity of snags in western Newfoundland then leads 

to a long period of low snag density ( <1 0 snags/ha) commencing mid-rotation , 

lasting until senescence increased snag numbers during late-rotation. Domestic 

harvesting and wind-throw further decreased snag density and availability 

immediately following harvest, to the detriment of wildlife populations dependent 

upon cavity-nesting habitat. In addition, many residual live trees are blown down 

after harvest, eliminating their potential to contribute to the snag population. Thus 

the small amount of snag recruitment from live trees left behind in cutovers does 

not maintain sufficient snag densities beyond 20 years since harvest (YSH) to 

meet the requirements of 10 snags/ha throughout the rotation (Cline et al. 1980). 

I found that larger snags (graphic 2) were present on the landscape longer 

into the forest rotation . This was evident as the average snag diameter at breast 

height (dbh) increased when the average snag density decreased beyond 20 

YSH. The average dbh of balsam fir is generally <30 em (Thompson et al. 2003) 
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so there are generally few large snags available to remain on the landscape. 

Over half (62%) of the snags observed in this study were <20 em diameter 

whereas 90% of snags found to contain cavities were >20 em diameter. While 

small snags are useful to cavity-nesters for foraging, the absence of large snags 

limits the presence of cavity-nesters on the landscape by reducing the availability 

of suitable nesting sites. With the harvesting of second-rotation forests occurring 

before senescence, there will be even fewer large snags available following 

harvest when compared to forests that are left to follow succession into 

senescence. 

White birch (Betula papyrifera) trees are common to western 

Newfoundland and were frequently left standing following harvest. Larger 

diameter white birch snags contained a high proportion of snag biomass during 

periods of low snag density resulting in the large average dbh during these 

periods. Snag density and biomass in post-harvest landscapes would be 

increased by retaining more non-merchantable white birch post-harvest. White 

birch trees have high wood density and attain large individual volumes and 

diameters, resisting decay longer than smaller trees with softer wood. Thus birch 

snags were found to persist longer on the landscape than most of the balsam fir 

and other softwood snags. White birch snags supported cavity nesting species 

that utilize deciduous trees such as Downy (Picoides pubescens) and Hairy 

(Picoides villosus) Woodpeckers and Northern Flickers ( Colaptes auratus) 

(Setterington et al. 2000). Northern Flickers were shown to use white birch for 

cavity excavation roughly in proportion to availability, thus increased white birch 
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snag numbers would likely increase Northern Flicker habitat and numbers. 

Northern Flickers are considered keystone excavators (Martin et al. 2004) 

creating large cavities that provide habitat for a large variety of secondary cavity­

nesting species. 

I found that in western Newfoundland forest management practices 

produced post-harvest landscapes with low snag densities containing <2 snags 

per site, on average, with adequate dbh (>20 em) and sufficient decay for cavity 

excavation. With current clearcut harvest practices and average tree size it is 

unlikely that > 1 0 snags/ha could be maintained through the forest rotation until 

natural stand development generated increased numbers of snags. Retaining 

greater numbers of quality snags on post-harvest landscapes would narrow the 

gap in differences between natural disturbances and harvesting (Schieck and 

Song, 2006). By managing white birch to maximize snag recruitment and retain 

extant white birch snags, cavity-nester habitat availability and snag longevity 

could be improved both immediately after harvest and potentially beyond 20 

years post-harvest. Bull and Partridge (1986) suggest that leaving live trees in 

clumps following harvest lessens the threat of wind-throw. They also found 

removing branches and tops of trees was the most effective method of snag 

creation, reducing windthrow and increasing initial rates of snag decay. Snags 

created as above were frequently used by cavity-nesters for foraging and nesting 

(Bull and Partridge 1986, Hallet et al. 2001 ). Improvement in the availability of 

large snags would enhance the potential for populations of large-cavity 

excavators such as Northern Flicker to increase, which would in turn expand 
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habitat availability for secondary cavity-nesting species. 
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Graphic 1. Four year post-harvest study site near Pynn's Brook, Newfoundland. 
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Graphic 2. Twenty-one meter tall white pine (Pinus strobus) snag near Pynn's 
Brook, Newfoundland. 
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