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2. Integrity Assessment 10

ho,
o, = ’ (k=1,2,3) (2.2)
PL
It follows that
P P. P3
.= = (2.3)
T o) vy e O3

where o, 0,,, and o, are reference stresses (primary stresses) corresponding to

P,, P, and P;3, respectively, and P,, is the limit load.

In the foregoing expression, the ratio o, /P, is thc gecometry factor that can be

calculated by analytical, numerical or exp«  nental methods.

Ponter and Leckie (1970) have shown that this approximation constitutcs an upper
bound on the value of stress d is therefore on the safe side for design purposcs.
Reference stress method is not only used for creep analysis, but also it is useful for

elastic-plastic fracture as shown by Ainsworth (1984).

For statically determinate components, the formation of a single plastic hinge will
result in plastic collapse. ...c occurrence of a si "> reference stress location at plastic

» cross-section is indic /e of a load-controlled membrane mode of collapse. This
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fracturc mechanics problems are restricted to some simple crack configurations.

Thercfore, numerical methods (FEA) are widely used for this purpose.

Consider a two-dimensional crack with 1 arbitrary orientation as illustrated in

Fig. 2.4. The expressions for SIFs in modes I and II (K, and K, ) can be obtained in

terms of the nodal stresses ahead of the crack tip (o, and 7,.), i.c. (Anderson, 2005)

K, =lim (o-y.,,«/ﬁ ) (2.4)

r—0

K, =lim(z,v27) 2.5)
Similarly, express : for K, and K, in terms of the relative displacement of

points on opposite faces of the crack, along the line of the crack, Au, and perpendicular

to it, Av, are

F
K, = lim[ /2—”&;] (2.6)
=01 ¥ r

K=t £ 2 @)

r—0 r
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Failurc occurs when SIF reaches the material toughness ( X, ), which is obtained

from the toughness test.

The LEFM-based SIF is valid only when the effect of plasticity is ncgligible;
th  ore, the J-integral has be introduced to characterize inclastic fracturc mechanics.
Rice (1968) showed that the J-integral, defincd by Eq. (2.10), is independent of the path

of integration around the crack tip”.

- Ou ,
J= W'dy-T,—Lds) (=12 (2.10)
r Ox
W' = [o,de, Q.11)
T, =o,n (2.12)

where T is an arbitrary path encircling the crack tip (Fig. 2.5), W' is strain energy

density, x and y are lo.  coordinate system along the line of the crack and
perpendicular to it, respectively, 7, is traction vector, u; is displaccment vector, n, is
unit outer normal to path I, s is the length along the path T, and o, and ¢, are stress

and strain tensor, respectively.

" For any closed contour, the value of J-integral is zero, from which it is concluded that the J-integral is path independent (Rice, 1968).
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It should be noted that J-int  al is equal to strain encrgy release rate for an clastic

body that contains a crack.

J, =G=—- (2.13)

Alternatively, J-integral can be rewritten in -~ matrix form,

%
J=dqwds-{ , <) a(ix ds (2.14)
I" I n
[ oy
where
W'=—l—( +o +0)Z+1+2V(2—0' -o.0 —O'O’)
VEN 3 zz E v XLy w2 =Y

— 2 2 .
,=0,C08"Q@+0, na+t, SINxcosa
. 2 2

7, :(O‘yy —O'_“)SmaCOSCZ+T_w(COS o —Sin a)

u, =ucosa+vsina

V.  —usina +vcosa

I
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The limit load paramecter is defined by the ratio of the applied load (or

corresponding reference stress ¢ ), to the limit load (or yicld strength o, of a given

componcnt), 1.c.,

(2.16)

In Fig. 2.7, L =1 corresponds to thc plastic collapsc load of the cracked
component, and L, =(L,) is ecrred to the limit load state (Zerbst et al., 2000), which is

defined as:

(L) pax =— Q.17

where o, is the flow stress and is approximately defined as the average of yicld strength

and ultimate stre1 h, i.e.,

o, = (2.18)

The function f(L ), F 2.7, is thc boundary of the safe and unsafc regions in
FAD. Various expressions have been proposed for f(L,) based on different type of the

problems and different level of required input data.
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Using the FAD approach thc component or structure with defect is considered to

be safe if the following condition is satisficd
K, < /(L) (2.19)
Crack Driving Force (CDF)

The crack driving force or CDF approach is bascd on the vanation of inclastic
energy relcase rate (J) paramcter with  : limit load paramcter. The commonly used curve
bascd on this approach is schematically illustrated in Fig. 2.8. In this figure, the horizontal
axis, L,, is the ratio of applied load to the limit load, as defined in Eq. (2.16), the vertical

axis (J) is the value of encrgy rcleasc ratc, and J,. on the vertical axis is the critical J

value (which is considered a material property). The appropriate valuc of J for design

should ensure that J, < J, (Webster and Ainsworth, 1994).

The FAD and CDF appr¢ hes are interct  :able. For instance, the estimated J

can be calculated using the parame FAD approach, i.c,,

J

Jop = m (2.20)

Therefore, the FAD can be obtained as plotted schematically in Fig. 2.9.
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This method was originally developed by Shih and Hutchinson (1976), and later

summarized in EPRI handbook in 1981. For a material following the Ramberg-Osgood

stress-strain curve, the J,,, can be esti  led

Kzfﬂ ,.,) n+l
== -+aoc,ehl| — (2.22)

elp
In Eq. (2.22), P is applied load, F, is reference load, which is often identified with

the limit load. The quantities n,a ,0, andg, are material properties defined from the

Ramberg-Osgood st is-strain curve. The parameter L is a characteristic dimension and
can be freely chosen. The function 4 is dependent on geometry and material properties
and has been tabulated usii inelastic finite element results for various cracked

configurations (EPRI handbook, 1981). The effective crack length, a,, , can be defined as

(&Y
a,=a+ 1 ZLH SIS (2.23)
‘ a+(P/B)” prn+l\ o,

where parameter £ is taken as 6 for plane strain and 2 for plane stress.

Although the ..'RI method is bast * on the results from inelastic FEA, in EPRI
handbook the function / ~ tabulated only for a few crack configurations, e.g., for a range

of plate and cylindrical cor ns.



I
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The EPRI method is based on the CDF approach; however, the method has been

also proposed in form of FAD approach by Bloom in 1980.

Figure 2.10: The EPRI method

’ R6 method:

One of the most commonly used approximations is given in R6 routine (2001).
The early equation of the R6 routine (Rev.l) is based on the equation proposed by

Dowling and Townley (1975), using tl Dugdale model:
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Je/p = Re/l)arqunf (230)
Jr/p = Rr/po-'rgn’/' (23 l)
where R,,, and R, are the defect size paramet  for elastic-plastic and fully plastic

state, respectively.

Comparing J, and J,, , it can be seen that J, is proportional to square of ¢,

rip?s
which represents parabola, | J,, varies linearly with respect to ¢,,, as illustrated in

Fig. 2.11. The relationship between R, and R , can be obtained by intersection of the

rip

two curves J, and J , . If the two curves coincide at ¢, = &, then

J e )=J,, (&) (2.32)

When the reference strain ¢, , (corresponding to referen  stress o, ) equals to

the strain £, the collapse load is reached, and corresponding load will be P".

ref

Seshadri and Wu (2001) applied t  concept in Fig. 2.11 and derived J-integral
estimation based on multiaxial constraint parameter that was introduced in GLOSS R-

Node method (Seshadri and F 1do, 1992) as



I
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& 0<L <05
T\ 2.33
T = Y (2.33)
2| = 0.5<L, <l
&,

where J (£,) is the elastic J-integral at collapse load, &, is the R-Node strain; in which
| when &, reaches to £, (R-Node strain at collapse), the corresponding applied load is the

l limit load of the component, P, .

Since, the Eq. (2.33) is derived based on elastic analysis and R-Node locations are
primary stress locations, the applied load is proportional to t|  stresses and strains in a

given component, i.e.,

=—t=—" (2.34)
Therefore, the expression in Eq. (2.33) can be rewritten in terms of load parameter as:

J, L’ 0<L <05
(2.35)

JAE) |21 0.5<L, <1



2. Integrity Assessment 32

The design curve bounds for a component/structure with defect are presented in

Fig. 2.12.

J
J o (2,.,)
. . 7~
JAg 1=, € ) yd ‘[’ ;'(’;'~" )
= - - - - - ) I
</
7~ |
M ,
s |
oo |
R x
- :
Vv
~
0 1 —
g £

ref

Figure 2.11: J.and. curves as a function of &,

ral, J

J-i1

Normaliz¢

[\

v

Normalized External Load, P

Figure 2.12: Design curves (Seshadri and Wu, 2001)
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2.4.2 Cyclic Loading

Traditionally, fatigue analysis is separated into two parts, initiation and crack
propagation. The initiation portion of fat e life consists of crack nucleation caused by
repeated plastic shear straining and a period of crystallographically oriented crack growth.
Propagation consists of slow stable crack growth followed by rapid unstable crack growth
to final fracture. Initiation may be analyzed using strain cycle fatigue concepts, and

propagation by linear elastic fracture mechanics concepts.

Good estimates of the total fe of notch components, subjected to variable
amplitude load histories, can obtained if both crack initiation, »N;, and crack

prop ion, N, :cor d

N, N +N, (2.36)

Crack initiation

As the quest for cost ef  ive finite life designs contim  there is an increasing
requirement to quantify the failure perfi ance of components. However, the
conventional methods of achieving this objective (e.g. prototype testing) are very

expensive and time consuming.
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A number of investi ors (e.g. Topper and Gowda, 1970) have suggested
alternative approaches based on local strain and obtained fatigue data from simple
uniaxial unnotched specimen tests, where it is assumed that smooth and notched
specimens with the same local strain range, Ag, experience the same number of cycles to
fatigue crack initiation, N;. Smooth specimen fat e life data, propose by Manson-

Coffin (Manson, 1965 and Coffin, 1969), may be expressed in the following form:

Ae E'-(zN,.)” +&,Q2N,)" (2.37)

However, the problem of fatigue ¢ k initiation life prediction based on a local
strain approach becomes one of estimatii  the local strain amplitude at the notch. Local
strain amplitude can be determined by prototype component testing, or can be predicted
using FEA or other numerical or analytical prediction methods. Prototype testing is very
expensive and time consuming and, although finite element analysis 1s powerful, there are
some difficulties when using the method for compor 1t design assessments. Therefore,
various authors have proposed analytical relationships for predicting the local strain
amplitude at the root of a tch. These relationships, known as notch stress-strain
conversion (NSSC) rules, are used to determine the non-linear and history-dependent
stress-strain behavior at the notch root in terr of the load history and the cyclic
deformation properties of the metal. The commonly used conservative NSSC rule is the

Neuber (1961) rule, which can | (pressed as:



s
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Ao xAs =K} x Ao, x Ag, (2.38)

where Aap and Agy are the nomin:  stress and strain range respectively, Ao and Ae
are the local maximum stress and strain range at the notch, and K| is a stress concentration
factor. Also, researches have suggested a modification of Neuber's hyperbola by
considering the limit load in the stress-strain curve (see Dittmann, 1991 and Jankovic,
2001). The local strain approach associated with the NSSC rules is a useful and powerful
method for estimating the fatigue crack initiation life of a notched component. The local
strain range is found from the intersection of NSCC rules, i. e. Eq. (2.38), with the

material cyclic stress-strain curve obtained from smooth specimen testing:

(2.39)

A _Ag Aaj”
2K’

By replacing the relevant local strain range in Eq. (2.37), the crack initiation life,

N;, can be obtained, as shown F 13.
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The value of AJ below which no (measu le) amount of fatigue crack growth
occurs is termed the threshold J-inte al, J,. The aplication for design is important
since, if in a cracked structure * " <.Jy, then k propagation will not occur, which is a
crucial requirement for components tt  exj  ence a very large number of loading cycles

in service. However, rapid crack 1vance leadii to catastrophic failure occurs where

A=J, (2.45)

where J,, and J). are material constants for ¢ “ven thickness under specific environmental

conditions.
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Bascd on the deformatic  thcory of plasticity, the following expressions arc valid

for the stress, strain and displacement in the body,

1- Equilibrium Equation
o,,;=0 3.1
2- Yield condition
S8y — 2k* <0 3.2)
3- Stress-strain rate relation
E; =M, (3.3)
4- Rate of strain-velocity relation
£; = %(ai._i + l.li.i) (3.4)
5- Incompressibility condition’
£;,=0 (3.5)

.
Incompressibility condition imposes that the volume is cor luring plastic deformation
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Figure 3.2: A body with elastic-perfectly plastic material-fixed boundary conditions

3.2.3 Classical Lower and Upper Bound Limit Load Multipliers

The main objective of the limit load analysis is to estimate the limit load
multiplier at the impending plastic limit state of a body. However, for complicated
problems it may very difficult to find the exact limit load. Therefore, based on the
extremum principles of limit load analysis, the lower bound theorem or the upper bound
theorem is employed to estimate the limit load directly without considering the entire

loading history.
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Classical lower bound theorem

The lower bound limit load can be calculated by invoking the lower bound limit
load theorem that states that if a statically admissible stress distribution throughout a
given body can be found in which the stress nowhere exceeds yield under given loading
and everywhere in equilibrium internally and balances certain external loads the applied

load is a lower bound on the limit (Calladine, 2000).

A stress field 0';. is called statically admissible if it satisfies the following:

o,, =0 (3.9)
5,8, ~2k* <0 (3.10)
agnj =m,T on St (3.11)

In the above expressions m, is the classic ° statically admissib limit load multiplier,
and n i is a normal vector on the surface. Bas on the lower bound limit theorem of limit

analysis, any statically admissible limit load wultiplier is less than or equal to the exact

limit load multiplier (the proof is given next),

m, <m (3.12)
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Bascd on the upper bound thcorem of It load analysis, any kincmatically

admissible limit load multiplier is greater or cqual to the exact limit load multiplier

m, zm (3.21)

The proof of the above statement is given next.
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Lower bound theorem

Mura et al. (1965) proposed the lov  bound limit load multiplier m"as

0
' m

m = <m

1+ 21‘(2 max{f(s")+ )}

m?

(3.36)

in which the sct 5, o,, m", u°, and @’sati ' the requircment of statically admissible

stress field, i. c.,

L0 0 _ :

(s; +0,0,),=0 inV
0 0 0

(s; +0,0,)n, =m’T, on Sy

[t {12+ Jav =0

1’ >0

3.37)

(3.38)

(3.39)

(3.40)

The quantity max{f(s,;’.) + ((/)0)2} is the maximum valuc of {f(s,f;)+ ((p(’)z} inside

the domain V.



o
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Proof: The theorem is proven as follows: Eq. (3.35) can be reduced to

F=m~ [ulyds, s, +(5p) fav - jay {F(s9) +(0*) Jav M

v

By integrating the second and third terms by parts in view of Egs. (3.26) to (3.28),
(3.37) and (3.38) and

0 0
(sy +0,0,)n, =R, )

m-iy

Also integrating Eq. (3.22) wi the arbitrary set of arguments #;, s, , o,, m",
1#°, and ¢° and making usc of Egs. (3.37), (3.38) and (II) leads to

Fooo- ;j/t"{f(s,-?) +(p")? Jav am
In view of Eq. (3.39), Egs. (II) and (III) yicld

m’ < - Vfau s +(9°) Jav (1IV)

Since 2° = u+du Eq. (3.39) gives

—[aulrsDy+e N av = () +(0°) Jav W)
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(Cont’d...)
Substituting Eq. (V) into Eq. (IV) and taking the maximum valuc of the intcgrand,

which is always positive because of Egs. (3.39) and (3.40), lcads to

m° sm+max{f(s§)+((00)2}jﬂdV (VI

On the account of Egs. (3.25) to (3.33),tl  following holds

m=m J.T,,z'l,dS = J.(su +0,0 )njz'cidS = J.s,jnjzi,a'S+ J.é'..cr n.v,dS
Sy S

i~ m g m T
S

N, Ve

/AN mif

M
sﬂudV+K%+owiLde=I%%@U+aﬂﬁV
v ¥

s;usdV = 2k? I,u av
14

Therefore,

m
fuar == (Vi)
V [

The proof is completed by combining Egs. (VI) and (VII).
Equation (3.38) 1 ~ ° the ical * finition of the lower bound, by taking the
special case of Eq. (3..

S(s)+ (") =0 (VIID)

In this case max[f(s;)+(¢°)’] vanishes 1d Eq. (3.36) reduces to m;, <m.

Thus, the new lower bound expressed by Eq. (3.36) holds for a broader stress ficld
than the classical statically admissible stress field by taking the integral mean of the

yield criterion.
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Upper bound theorem

The upper bound limit load multiplier m" has been introduced by Mura et al.

(1965) as
m = [ Izky'dVJmax{%s;s;}Z m (3.41)
;

if the quantities i, , s,.;. and 4 satisfy

u, =0 onSy (3.42)
Oyt =0 on ¥ (3.43)
Si-r": ds =1 (3.44)
Wk =y i) =] (3.45)
Ju' s =0 (3.46)

u >0 (3.47)
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3.2.5 Slip Line Method

Slip line method is widely u 1 in metal forming and soil mechanics to estimate
limit load in a component or ¢ cture in planc strain condition. The inception of slip line
method in metal plasticity « es back to the works of Hencky (1923), Prandtl (1923), and
Carthcodory and Schmidt (1923). However, tailed studies have been later done by Hill

(1950), and Prager and Hoc  (1951).

The aim of slip line method is to define a coordinate system that lics on a potential
failure surfaces in a given component (D s and Selvadurai, 2002). Indeed, using this
coordinate system, the system of cquations beccome very simple. In a two-dimensional
systems the potential failure surfaces become lines (slip lines), and combinations of these
lincs form a nctwork that covers the failing re ons. The axis of the new coordinate
system, say a and f, need to be defined in such a way that at cach point they align on
the potential failurc surfaces. In other words, the direction of the new axis is on the

direction of maximum ° ar stress when plastic flow occurs.

As illustrated in Fig. 3.5, the definition of the @ and fcan be understood by
using Mohr diagram. In this figure, a -linc 1d B -line arc located at two maximum shcar

stress failure lines (potential failure surfar . Therefore, these two lines are orthogonal.
Also, when plastic flow occur the mi i le of shear stresses on these lines are cqual

(assuming non ~ -denii n - del).









o
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The non-lincar programming approach, which is morc accurate but more difficult
(Zyczkowski, 1981), was first published by odge (1964) for limit analysis of beams and
arches. This approach applies a non-lincar yicld function and higher order approximations

to the stress and velocity ficlds.

The finite clement method is widely used in limit analysis using programming
‘ methods. Discretization of the continuum using finitc clement lcads to a standard
optimization problem wherc the objcctive function is maximizing/minimizing of
lower/upper bound limit load multiplier subjected to sct of cquality and incquality
constraints. The application of finitc clem ! method in programming mecthod is bricfly

discusscd in the following section.
Lower bound solt n

The lower bound theorem of limit load analysis states that the lower bound limit

load multiplier is less than or equal to the cxact limit load, 1. ¢.,

<m (3.48)

This inequality can be written as (see Fig. 3.6)

m max[

(3.49)

ower ]
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Therefore, the programming method is an optimization problem of the form:

Maximized: m,,

(3.50)

=0
Subjected to: gx)

S(x)<0

Upper bound solution

Referring to the definition of the upper theorem of limit analysis, the upper boun

limit load multiplier ., is greater than or equal to the exact limit load solution m, i. €.

ms<my,, 3.51)

Therefore, the limit analysis problem can be considered as minimizing problem as

(sce Fig. 3.7)

m=min| ] (3.52)
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-
0
C..
y
Figure 3.6: Concept of lower bound solution
anper ‘
mhi---=-=----
—
x”
i

__gure 3.7: Concep'  “upper bound solution
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3.3.2 Elastic Modulus Adjustment . ocedure (EMAP)

Jones and Dhalla (1981) were onc of the carliest users of clastic modulus
ljustment procedures (EMAP) in their  carch work. Highly stressed regions of the
component or structurc were systematic  ly softened by a reduction of their modulus of

clasticity in an attempt to simulate local inelastic action.

Marriott (1988) developed an itcrat = procedure for estimating lower-bound limit
loads on the basis of lincar clastic FEA by generating statically admissible stress ficlds
and using them in conjunction with cstablished thcorems of limit analysis. In this method,
an arbitrary load that guarantecs 2 yicld g in the component is applicd and an initial
clastic analysis is performed. All the clements in which corresponding stress intensitics
cxcecd the code allowable stresscs arc selected and clastic modulus of these clements arc

modificd using the followii  expression
E, E,—=X (3.54)

where, E, is initial clastic modulus, S, is the allowablc stress given by the codes and

m

ST is clement stress intensity. The procedure continucs in an itcrative manner until the
maximum stress in the component docs not char : with the further iteration or all the

clements have the cquivalent stress below @ S . Finally, using the following expression

the limit load can be estimated:
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P =P (3.55)

where o, is yicld strength and o, is the maximum cquivalent stress in the component.

X

Scshadri and Fernando (1992) made ' of the elastic modulus adjustment
procedure to determine lower bound limit loads by adopting reference stress concepts in
creep design (Kraus, 1980). Their technic , called the Redistribution Node (R-Node)
Method, is based on two lincar ¢ tic FEA in which the load control location (R-Nodcs)
are determined and using stresses in these  :ation, the limit load of the component will

be achieved. The procedure can be perform  in following manner:

e The first analysis is carricd out with homogencous material propertics, i. ¢. £,,v.

e The sccond lincar elastic FEA is perfi  ed by systematically, but artificially,

reducing the ¢ tic moduli of the el ients that exceed the yicld strength.

(E)), = 7 e 3.56)
e, | ¢

where the subscript */” is the element number.
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Using the results of these two line  clastic analysis, as presented in Fig. 3.8, the
follow up angle (@) can be determined on the Generalized Localized Stress Strain

curve (GLOSS) as

0 =tag_'[MJ (3.57)

&g — &,

The location where =90 ¢ tt R-Node locations, where stresses in thesc
locations are proportional to external load for clastic-perfectly plastic material
model. This means that, when R-Node locations reach to yield strength of the

component, the co  iponding external load is limit load, and estimated as
a
P, = P (3.58)

v’ rc o, istheave jc R-Node stress lor  ion, and can be obtaincd as

L% (3.59)

where N is the number of R-Node 1 itions in the component.












3. A Review of Limit Load Analysis 78

e The best estimation of upper bound limit load given by this mcthod is the lowest

value of the estimated upper bound limit load among all the itcrations, i.c.,

P’ = in(P)) (3.65)

The ECM procedurc has been used to estimate the lower and upper bound limit
loads for different pressurized components, which are available in Mackenzic er al.
(1994) and Boyle er al. (1997). The n hod has been also applicd for shakedown

1alysis by Hamilton et al. (1996), and Nadarajah et al. (1996).

A detailed development of the formal basis for the clastic modulus adjustment and
rclated procedures has been provided by Ponter and Carter (1997), Ponter et al. (2000),
and Ponter and Chen (2000). The generaliz  approach has similaritics to the EMAP and
can be better described as “lin. - matching cthods” where a sequence of lincar solutions

is matched to the nonlinear problem.

A comprehensive review of the elastic iterative mcthods for limit load and
shakedown analysis determination has been done by Mackenzie et al. (2000). The clastic
rative methods have been verified and studied independently by Plancq and Berton
(1998) for I' " analysis of branch pipe tee connection under differcnt loading conditions,
Mohammad et al. (1999) for limit and shakedown analysis of some typical pressurized
configuration under combined pressure and tI  'mal gradient loading condition, Hardy er
al. (2001) for estimati:  limit and shakedo 1 loads in internal and external flanges, and

Yai et al (2005) for limit load determination of nozzle-to-cylinder junctions.
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General Formulation of EMAP

The aim of EMAP is to gencrate statically admissible stress distributions and
kinecmatically admissible strain distributions by modifying thc local clastic moduli in
order to obtain thc inclastic-likc st s distributions. Numcrous sets of statically
admissible and kinematically admissiblc distributions make it possible to calculate both
lower and upper bounds limit loads. An  Hitrary load set (P) with the original clastic

modulus ( E;) is applicd in the first itcration of clastic FEA. Subsequently, the clastic

modulus of cach clement is modified in cach successive iteration by following cquation:
i q
il g - i
E :[ J E (3.66)
yq

where g is the clastic modulus adjustment paran  cr,o,,, is a reference stress, o, is the
cquivalent stress and the superscript “i” is the iteration number (i =1 for the initial
clastic analysis). This formula describes how the clastic modulus at a cation with the

cquivalent stress o, (c.g., the v Miscs cquivalent stress) is updated from the i” to the

(i +1)" clastic itcration. This proced is continuous until suitable convergence of a
subscquent iteration is achieved. (A flow « 1t of this procedure is presented in Fig. 3.9).
ascd on the thcorem of nesting surfaces (Calladine and Drucker, 1962), Scshadri and

Mangalaramanan (1997) suggested followi  expression for reference stress.
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ol =" (3.67)

The  >ncral EMAP has been applied in varicty of problems for instance: tubesheet
design by Recinhardt, 1d Mangalaramar  (2001), limit load ecstimation in layerc
structurcs by Pan and Seshadri (2002), limit analysis in anisotropic matcrial by Pan an
Seshadri (2002), and |t load analysis  mctal forming by Adibi-Asl and Seshadri

(2006).
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Fig. 3.11. When the load of m7,is applied the structure will be in a state of impending

=mT ).

collapse !

plastic collapse, where m is the exact limit load multiplier (i. e., 7,

i

Figure 3.11: A body withe  c-perfectly plastic material-discretc model

In this section different multipliers in relation to upper and lower bound solutions
arc discusscd. By using the iterative ¢ stic | cedure, relevant quantities of cach element

are used to calculate the limit load  ultiplic
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where &, (i=1, 2, 3) arc the three principal strains.

In casc of the Tresca perfectly plasi  material, the plastic dissipation cnergy (D)

can be cxpressed as:

b=o, I s 4V (3.70)

where ¢, is thc maximum principal strain.

max

Using the divergence thcorem, we have:
Sy v

Substituting Egs. (3.69) and (3.71) i 0 Eq. (3.68), and making use of the cquality

sign, the upper-bound multiplier m,, for the von Mises yicld criterion can be obtained as

J‘O',w dv o, 2, (&,AV),

,, —

m, —— - 3.72)
J-O',.j &, dv i g AV,
VT

Heg “eq

where ¢, is the cquivalent st 1 that directly evaluated for any lincar clastic FEA

sults.
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Assuming an unspecificd, but const t flow parameter #° in Eq. (3.73), the upper

bound limit load multiplier proposed by Mura e al. (1965) becomes (¢° =0)

. o 7
: 3.76
JJewyar \/Z @ AP, (3.76)

The m) limit load multiplier shown to be greater than the classical lower bound
(m,) and classical upper bound (m, ) limit load multiplier (Reinhardt and Seshadri,

2003).
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Proof: The proof of m > m,, can be show by applying Schwarz’s inequality as

| (D)

@<= s,

Therefore,

VjacqxldeS\/VIofqu ﬂﬁdV (1)

The second term in the right hand side of Eq. (II) is equal to the square root of total

volume (V7); thus,

jaequ

Jja;dv

v

A

N/

(111

Substituting cxpression (IIT) into Eq. (3.76) the following expression can be

obtained
o, IachV
0 Vr
m 22— (v
] Iafqd V )
VT
Using o,, E¢, , Eq. (IV) can be rewritten as
T P O P
m, ’ a (V)

>__ M
- IE(; o, dV Ia,a dv
Vr vy

eq - eq cq eq

The right hand sidc of Eq. (V) is the definition of classical upper bound limit load
that introduced in Eq. (3.72). So, the proof is completed in here.
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Multiplier m)

Equation (3.76) implies that the ca ilation of m is | ed on e total volume

V,. If plastic collapse occurs over a localized rcgion of the structure, m)will be
significantly overestimated. .o overcome this problem, Pan and Scshadri (2001) have
proposed a new formulation for cvaluating °, namely . On the basis of deformation

theory of plasticity, the flow rule can be ex:  ised
e, = Us, 3.7

where e, and s, are the deviatoric strain d stress, respectively. Thercfore, 4 can be

defined as

= (3.78)

where & /3/2s,.js,j. is the effective stress and £ = 1/2 /3e!.,e!., is the effective strain.

Substituting Eq. (3.78) into the int  al mean of yield criterion, the m limit load

multiplier can be obtained as









|
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3.5.2 Lower Bound Multipliers

Classical Lower Bound Multiplier,

The classical lower bound can be calculated by invoking the lower bound limit

‘ load thcorem, which states, if a statically Imissible stress ficld in which the stress no
where cxceeds yicld for a  “'ven componcnt under given loading, the loading is a lower

bound on the limit (Calladine, 2000). The EMAP satisfics the first requircment of the

lower bound theorem in that it is statically  missible. As the itcration solutions arc lincar

clastic, there is  lincar relation between the stress magnitude and applied load. A lower

bound load can therefore be cstablished by cstimating the load required to give a

maximum cquivalent stress equal to 1 1al yicld strength, o .

nerefore, the classical lower bound multiplier (m, ) is given by

m, = 3.8
o), (
Lower Bound Limit Load Multiplier Based on R-Node
The concept of redistribution n (R-Node) has becen cextensively used to

understand better the definition of reference stress, primary stress and limit loads. The R-

Nodc locations are statically detcrmina in that they arc induced in order to prescrve
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cquilibrium with externally applied loads (load control). Generally, R-Node location can
be defined by intersecting the elastic redistribution with plastic onc at limit load state (scc

Fig. 3.13).

R-Node T~ istic —  Plastic

Location v .
) < Elastic

4 R-Node
4_/ Location

= _ _ J

(a) (b)

R-Node
Location

Plastic
Elastic

(c)

Figure 3.13: R-Nodc concept: (a) direct shear, (b) bending, (c) shear due to torsion

For an clastic-perfectly plastic mate | model, when stress at R-Node location
approaches yicld strength of I mater , the corresponding applicd load is considered as
limit load, this situation can be _  scnted by a one-bar model as presented in Fig. 3.14.

T  :fore, the limit load multiplicr can be written as:
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g,
m,——— (3.81)

(O.e ) R- Node

For a component in which collapse  zchanism forms with multiple hinges, morc
than one R-Node location will be available in the component. For example, if a plastic
collapse mechanism corresponding to two inges devclops for an indeterminate beam,
then therc would be a pair of R-Nodes at the hit : locations since bending is dominant.
The combined R-Node cffective stress can be expressed as the arithmetic average of the

pscudo-clastic R-Node stresses; i.c.,

il (3.82)
2

Generalizing the foregoir  cxpressions for N plastic hinges

M=

(3.83)

E
L

Ql

1cre g,;’s arc the R-Node st ies 2 N is the number of R-Node locations in the

component. ...en, the limit load mul ] given by

m . (3.84)
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Figure 3.14: R-node bar model
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Multiplier m'’

Mura et al. (1965) developed an extended lower bound theorem, in an attempt to
develop an alternative approach to classical limit analysis. Based on “integral mean of
yield criterion”, Eq. (3.73), the Mura’s lower bound multiplier is stated as an inequality,

which can be expressed as

m°® <m+ jy[f(§§)+(¢°)2]dV (3.87)

Equation (3.87) can be rewritten

0 0
m Sm+j rodv (3.88)

A multiplier m” can be obtained from Eq. (3.88) as (Seshadri and Indermohan,

2004)

m" = (3.89)

The parameter G evaluated acts as a con' ‘gence parameter, and is indicative of
any deviation of statically admissible stress distributions frc  the limit state. That is,

G -0 as { - o would cor sond to the converged exact solution. G is  Iculated

from following express
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(Iam —£x0

(111)

awy m’ =my=m

for =20

for £ =0

(3.92)

for =0

atgd > ¢,

The last condition, (IV), represents the converged limit state, for which all the

multiplicrs reach the exact solution. However, estimation of £, is relcvant, cspecially for

compc nts or structures that expericnce local plastic collapse, i. ¢., component with

cracks or notches.

’”ﬂ(é’)‘
<

Figure 3.16: Variation of m, with1i

- - — - - - - =

(exuct )

(="

IN

on variable for * ferent value of
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P=P+P (3.93)

Also, using compatibility conditions, the rclationship between the displacements

of the bars is as

5=6=0, (3.94)

wherc &, and J, are displacements in bars | and 2, respectively.

Solving Egs. (3.93) and (3.94), thc relation between internal load and the

displacement is

F
5| — . .
4 (3.95)
P’7 2 '
0, = il
i AZ EZ
Equation (3.95) can bc written as
AF
p="""7
' (3.96)
P, - A2E2 a
T

Therefore, the co _ ndit  stresses in the bars arc as follow:
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EI
o, =—
Ll

o, = £, o
2L

Applying Egs. (3.94) and (3.95) into Eq.(3.93), we have

A4 L
P:—A‘E‘5+ 25
L L,

Also, Eq. (3.98) can be rewritten in followi  form

B P

T 4E, AE,
__+-‘"_
L L

o

11t

(3.97)

(3.98)

(3.99)

Combining Egs. (3.96), (3.98) and (3.99), the stress in each bar can be cxpressed

as follows:

(3.100)
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If the material and geometric parameters are so chosen, such

thano, , then bar 1 is considered as the local bar.

3.6.2 Exact Limit Load Solution

at o, 1s greater

Initial yielding occurs when the bar with maximum stress, say bar 1, rcaches the

yield strength of material. By increasing t  load, the bar 2 reaches to the yicld, the two-

ar system reaches to its limit state. Th  fore, the required load corresponding to limit

statc will be

B o,(4+4,)

The corresponding limit load multiplier can be expressed as

P, o,(4 +4.)
m=—= -

P P

3.6.3 Programming Methc

Lower bound solution

The yield criterion in the bars can be written as

(3.101)

(3.102)
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flo)=0-0, (3.103)

Therefore, the lower bound limit ¢ | multiplier using programming method, can

be obtained by maximizing limit load subjected to following conditions:

A
-0, <—<+0,
- Y < 1 )-1 ' A1 3 10
= .10¢
-o0,L0,<+0, P, (
: ! -0, <—<+0,
Substituting Eq. (3.93) into Eq. (3.104) results in following expression:
i
-0, <—<+0,
s ) 3.105
p_p (3.105)
-0, < <+0,
A AQ_
Also, Eq. (3.105) can be rewritten as
-1< A <+l
Ao,
' (3.106)
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The limit load can = estimated / minimizing ex

subjected to compatibility equation as

5=06=08,=¢L,=6lL,

Therefore,

PLE =PLJé |+ PL,

£,

Atlin state, the two bars concurrently rcach the yield strength

PLé o AL|é|+o, 4,1,

&
Makii use of Eq. (3.111), Eq. (3.113) can be cxpressed as:
|é

P=0c (4, +4,)

6']
Equation (3.114) is plotted in Fig. (3.19), ¢ | can be rewritten

p [+1  ifé>0
(A, + 4y) |-1 if <0

The graphical upper bound approach is illt ed in Fig. 3.18.

1al load in Eq. (3.110)

3.111)

(3.112)

(3.113)

(3.114)

(3.115)
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])
w

IFAI
1

4
o
_‘i.‘ +1 Pl

Figure 3.17: Prograr  ing method, lower bour  solution

P

S

+1 T

o SO |

Figure 3.18: Programming method, upper bound solution
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Assuming the limit load is non-ncgative, the limit load multiplicr will be the same
as the cxact solution in Eq. (3.102). The I cr bound and upper bound results and the
programming method yield to the same valuc of limit load. Therefore, they arc considered
as dual problems (Martin, 1975). It is worth noting that applying the programming

methods to the complex problems are very difficult.

3.6.41 rper Bound and Lower Bour Limit Load Multipliers

1¢ classical upper bound limit load is obtained by cquating the ratc of work by
external loads to the corresponding plastic d sipation cnergy. Applying Eq. (3.72) for the

two bar model, the classical upper bound lir  load multiplier can be obtained as 1. c.,

o (0 ALE, +0,A4,LE)
O-IZAILIEI! + O'zlAszEl

my

(3.116)

Applying Eq. (3.76) to the two-bar structure, the upper bound multiplier m,’ can be

written as

o, \/AILI +A,L,
\/O'IZ(AlLl ) +022(A2L2)

0
m

3.117)

Applying Eq. (3.79), the limit load multiplicr m; for the two-bar structure can be

cxpressed as
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. o JALE.+ A.L.E.
my = (3.118)
VO (ALE,) +0:(A,LE)

As discussed carlier, in the classical mcthod of determining lower bound limit
load, thc maximum cquivalent stress value is all that is nceded from a statically

admiss e stress field, i. ¢.,
o,
P = [—]P (3.119)

Assumii o, > _then o, =0, and the classical lower bound multiplicr can be

determined as
m, =—= (3.120)

The limit load multiplier m" can be  imated using Eq. (3.89). The paramcter G

in Eq. (3.90) can be expressed for two modecl as

v BT ~1P 4,L,
Gsz"'/”-v) ! L (.121)
HAL +A4L,)
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The limit load is proportional to the cxterr  load, i.c.,
o,
P, :( : JP (3.12%5)
0-71
Making usc of Eqgs. (3.124) and (3.125), the limit load can be obtaincd as
[ AE, AFE,
L L
1 2
P, ., 5+ E; o, (3.126)
t ! L ) L

Plastic collapse is not dependent on statically indeterminate parameters, 1. ¢., E|,

E,, L and L,. Thercfore, two cascs arc con  lered next.

Case I: E,/L =E,/L,

St stituting into Eq. (3.126), we  Ht
[ 444
p=""% (3.127)
Lty + iy

Here, P, = (A, + 4,)o, provided that x4, + s, =1. From Egs. (3.124) and (3.125)
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—L= =1 (3.128)

¢., 0, =0,. This casc would have to be  garded as trivial sincc the two-bar

modcl would fail to gencrate uncqual pscudo-clastic stresscs.

Case 2: A = A, = 4,

This casc leads to g, = ¢, =1/2. Su tituting into Eq. (3.126)

P =240, (3.129)

and

P R+R ~ 4T
o,= -=-"i= (3.130)

This mcans that thc combined cffective stress can be expressed as the arithmetic

average of the pseudo-clastic stresses.

Finally, the limit load multiplier using R-Node concept can be obtained as
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herefore,

‘ _ Teq Tey T e 80

+&, 4.3)
ref

- o, o . '
Substituting ¢, =E‘Land & = B nto Eq. (4.3), ¢,,, can be obtained as:

i i

ol
£ - : 4.4
‘ 2 O—rL’f i
From Fig. 4.2, ¢, 1be written as
Tey 4.5
E = — .
ref E ( )

i+l

From Egs. (4.4) and (4.5), the relation between E,, and E, can be obtained as:

= —FE, (4.6)

i+l - - i
o-eq + o-nf

Comp: 1g Egs. (4.1) and (4.6), the following expression can be obtained
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3.3 hick Walled Cylinder (Plane Strain)

The thick walled cylinder (Fig. 4.14) with insidc radius of R—60 mm and

ickness =120 mm is modeled. An internal pressure of 50 MPa is applicd. The material
is assu  2d to be clastic-perfectly plastic. Due to symmetry only a quarter of the cylinder
is modcled and symmetry boundary conditions arc applicd on the ¢’ s. The modulus of
clasticity is specified as 200 GPa and the @ ld strength is assumed to be 300 MPa. The

variation of limit load multipliers with itcrations using thc improved convergence scheme

is shown in Fig. 4.15. Likewise, the variatic in the value of G) is presented in Fig. 4.16.

[t can be scen that the solution converge within four iteration, i.c., G;’ 1S zero.

S
=i

1
Lo
s

Ian]
+ 4

72
S& s
7, ;

(a) (b)

Figure 4.14: Thick walled cylinder: (a) Geometry and dimensions, (b) Finite element

mesh (a quarter model)
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4.3.5 late with Multiple Cracks

A plate with multiple cracks (Fig. 4.20) has onc horizontal crack (length 2a=20

mm) the center and four .« ks inclined at 45° (length 26=21.2 mm) symmetrically
located on both sides of the horizontal and vertical lines of symmetry. The crack tips are
sprcad vertically with ¢=20 mm and with horizontally 4=40 mm. The plate has a width
=100 mm and height /=200 mm, 1d is loaded by a tensile stress of o =100 MPa. The
mater  propertics arc the san as that for thc compact tension specimen. Duc to

symmetry only onc-quarter of the plate isr  deled.

The multipliers predicted by various methods (Direct EMAP) versus iterations arc
plotted in Fig. 4.21. Similarly, the variatic in the valuc of G is presented in Fig. 4.22.
Figurc 4.21 suggests that mo of the multipliers converge to the inclastic FEA value at
the last itcration. Althor "1 the paramcter ' is not zero at the last itcration, referring to

Fig. 4.22, it tends to stabilize in the last itcrations. This implics that for asscssing the

convergence of a solution the results need to stabilize during last iterations.


















"HAPTER 5

REFERENCE VOLUME A PROACH

5.1 INTRODUCTION

It is well known that at limit load itc of a component/structure, there are some
regions that do not participate in inclastic  ion (dcad volume) and may rcmain rigid or
elastic. On the other hand, the remaining volumes arc dircctly active in plastic action
(referencc volume) are the only regions that carry the external loads at the limit state. As
schen cally presented in Fig. S.1, plasticity spread at the collapse mect  ism of an
indete inate beam that is 1lt-in on onc end, and simply supported at the other ar
subjec 1 to a uniformly distributed load is good example. The shadcd regions in Fig.
5.1 re :scent the reference volume where the two hinges at collapse located at these
regions. The main objective of this Chapter is to cstimate thc limit load and the

corres nding volume that participates in inelastic action (refcrence volume) using
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For the maximum stress clement of volume AV | m{ increase with *i”. On the

other hand, m; cvaluated on the basis of the total volume would decrcase with increasing

TRl
)

in 1teration variable .Therefore, f  somec volumeV, (where AV, <V, <V,

corres  nding to 77 =n"), the multiplier m; would be invariant, i. c., (m;), = (m;), . The

scherr ic of variation of mg(Vq)with the itcration variable (/) is shown in Fig. 5.3,

where V, =V, /V,.

7

Procedure 2: Similar to = procedurc 1, the stress sequence of the clements

obtained from FEA is sorted in descendit  order. Next, the variation of multiplicr m;

with « h subscquent iteratior  m;, (i), will plotted against the volume ratio, ¥, , as

ustratcd schematically in Fig. 5 The subscquent itcrations will eventually intersect at

a spec location, 17,, = 17”. , showing that the multiplicr m? would be invariant, 1. ¢.,

(my),  (m3),.
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quure 2 ircle (5 . 5 )

To demonstrate the concept, consi r the square prism shown in Fig. 5.5 with
a=60 m, b=180 mm that is subjected  an internal pressurc of P=100 MPa. The
material propertics arc: clastic modulus £= 200 GPa, yicld strength ¢,=250 MPa and
Poissc s ratio of v=0.3. Duc to symmetry of geometry and loading only a quarter of the
squarc is modeled using 8-noded isoparam  ic quadrilateral elements. © 2 contour of the
plastic region using inelastic FEA is shown in Fig. 5.6. It can bc scen from Fig. 5.6, that
the reference volume is almost cqual to the volume of the cylinder, for the same intcrnal
radius and external radius of 80 mm. Thercfore, the reference volume for this

partict .r problem is

_ 2 _ Z‘
v, = ”([; 720764 (5.6)
V —ma”
The limit load multiplier is given by:
2 O,
m=- —ZIn(b/a)=3.171 (5.7)
vy P

Using the Reference Volume Approach, it is possible to find the active volume,

and the related multipli , as described before in procedurc | and procedure 2. Fig. 5.7
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5.3.2 1determinate Beam

Using the Reference Volume Approach, it is possible to find the active volume,
and the related multipliers, as described be re in procedures | and 2. An indcterminate

beam subjected to distributed uniform load is modeled. Using Reference Volume

Apprc  h procedure 1, the variation of mj(57) with elastic itcrations is presented in Fig.
5.9. A can be seen from the | ure, at ¥, =0.281 the value of my is almost constant
during the successive iterations iding » a good cstimate of the cxact solution. Using
Reference Volume Approach procedure 2, the variation of m; with respect to 17,, for
different iterations is plotted in Fig. 5.10. 1c volume ratio of », =0.281 rcpresents the

active volume of the component, and the corresponding limit load multiplier, m; , which

is ag dapproximation of tl limit load r ltiplier can be obtained.

























































CHAPTER 6

LOCAL LIMIT LOAD ANALYSIS

6.1 IN RODUCTION

1¢ statically admissible stress distributions obtained from EMAP may not
sometimes converge to a limit __ ¢ of dis ution even after several iterations. In this
Chapter, a method is proposed  ied on the determination of the m; multiplier (Seshadri,
and Indermohan, 2004) in conjunction with the choice of an appropriate reference

volume, which would cnable convergence to the exact limit solution of a given

component or structure.

6.2 THEORY

In Chapter 5, reference volume concept was introduced to identify kinematically
active and dead zones in the component or structure. Using the kincmatically active

volur , limit load analysis would be more :curate.











































































































































































































































































































































































































































































