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ABSTRACT 

The codes and standards in the pressure vessels and p1pmg areas of the energy, 

petrochemical and related industries are based on the identification of potential modes of 

failures and a strategy for their avoidance. Instantaneous failures, specifically limit state 

and fast fracture, in the components and structures, can lead to catastrophic events. 

Therefore, integrity assessment of components and structures is required. 

Inelastic finite element method is widely used to conduct failure analysis. However, it can 

often be complicated, time consuming and expensive. As well, accurate results are 

dependent on the specification of adequate mesh density and an assurance of numerically 

stable solutions. Independent verification methods that are alternatives to inelastic finite 

element methods are often required for engineering designs. The methods discussed in 

this thesis, based on elastic modulus adjustment procedures (EMAP), provide rapid and 

stable solutions at a relatively lower cost. 

The elastic modulus adjustment methods rely on the convergence of the specific moduli 

adjustment procedure. A criterion for assessing the degree of convergence of EMAP is 

developed, and a procedure for achieving improved convergence is studied in this thesis. 

Also, simplified methods are developed in order to estimate the limit load in components 

and structures using iterative linear elastic methods. One of these procedures is the 

concept of reference volume that can be used to identify the kinematically active volume 

and dead zones in the components or structures. The reference volume method is shown 
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to gtve a more accurate prediction of limit loads companng to available traditional 

methods based on total volume. Furthermore, by invoking the concept of reference 

volume the systematic procedures are proposed to estimate the lower bound limit load 

solutions with high accuracy. This is very helpful for limit load analysis of the 

components/structures with stress razors such as notches and cracks. 

The concept of equivalence of "static indeterminacy" that relates a multidimensional 

component configuration to a "reference two-bar structure" is introduced for rapid 

estimation of the limit loads in components or structures. The procedures and methods 

discussed in this thesis are applied to some practical components (including cracks and 

notches) in order to verify their effectiveness in analyzing different geometries. Based on 

the proposed methods, integrity assessment analysis of different crack configurations, 

including multiple cracks and three dimensional effects, are studied in this thesis. 
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CHAPTER! 

INTRODUCTION 

1.1 INTRODUCTION 

Structural and mechanical integrity assessment plays an important role in many 

industry efforts relating to fitness-for-service evaluation of components or structures 

containing defects. Stress, defect size and toughness are the three major parameters in 

designing a component/structure against fracture. The fitness of a component or structure 

for service can be evaluated, and the safety margins determined at operation conditions by 

having an understanding of these parameters. Many investigations have been carried out 

for such integrity assessment in the past twenty years. Some of the recent documents 

available are the R6-procedure (2001), API 579 (2000), SINTAP (1999), CEA-A16 guide 

(1999) and BS 7910 (1999). Inelastic finite element analysis (FEA) is widely used for 

estimating the limit load of a component/structure; however, it can often be complicated, 

time consuming and expensive. As a result, developing reasonably accurate robust 
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methods based on linear elastic solutions would be useful from a design point of view. 

There are some methods based on iterative elastic finite element analysis, i.e., elastic 

modulus adjustment procedures (EMAP). These are performed by specifying spatial 

variations in the elastic modulus, thereby generating numerous sets of statically 

admissible and kinematically admissible distributions leading to both lower and upper 

bounds on limit loads. However, these methods sometimes provide limit loads on the 

basis of partly converged distributions. Procedures that address accuracy of these methods 

are discussed in this thesis. Also, for limit load analysis several simplified methods 

including "reference volume" approach and "two-bar structure" method are developed in 

this thesis. These simplified methods can be used for fitness for service assessment of a 

component/structure. 

1.2 THESIS ORGANIZATION 

The overall organization of the Chapters in this thesis is shown in Fig. 1.1. The 

rationale for organizing the thesis in this manner is to bring out through Chapters 4-7 

methods of limit load determination that are essential for structural integrity evaluation. 

Chapter 2 and 8 expand the applications pertaining to fitness for service evaluation of 

component/structure by emphasizing on fatigue and fracture (the required limit loads can 

be estimated using the methods given in Chapter 4-7). 

In Chapter 2, a brief coverage of the integrity assessment issues of the 

components/structures under mechanical loading is presented. Different modes of failure 
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including failures that are caused by monotonic loading and cyclic loading are discussed, 

followed by integrity assessment methods proposed by different researchers, and codes 

and standards organizations. 

The fundamentals and theoretical background of limit load analysis are discussed 

m Chapter 3. Various concepts of variational principles in limit load analysis and 

numerical methods for the estimation of limit load are discussed in detail. A unified 

approach is employed to drive agin some of the existing solutions. 

EMAP based on iterative procedures depend on the elastic modulus adjustment 

algorithms employed. Procedures such as the elastic compensation method, used in the 

UK, have been shown to exhibit numerical instability and convergence problems. In 

Chapter 4, procedures that address these problems are incorporated into two themes: (1) 

EMAP algorithm based on the equivalent strain energy density (ESED) concept, and (2) 

the convergence parameter "G'' that evaluates the degree of convergence using upper 

bound limit load parameters. 

The next topic covered in Chapter 5 is the concept of kinematically active volume, 

Reference Volume, used to narrow the spread between upper and lower bound limit 

loads. Using the kinematically active volume, the limit load analysis leads to more 

accurate results. The limit load values are then compared with results obtained from 

inelastic finite element analysis for typical component configurations. 
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In Chapter 6, the lower bound limit load multiplier mp, which is calculated from 

the stress fields acting over the entire volume in a component, is determined by 

evaluating a reference parameter fiR· However, the estimation of /3R may be difficult, 

especially for components or structures that experience local plastic collapse, i. e., cracks 

or notches. Here, a systematic procedure for estimating reference volume as well as 

identifying parameter /3R in defected components or structures is offered. The results 

obtained by proposed method are compared with results obtained from inelastic FEA. 

The contribution introduced next in Chapter 7 is the concept of equivalence of 

"static indeterminacy", which is invoked to estimate the limit loads for mechanical 

components and structures. This method relates a multidimensional component 

configuration to a "reference two-bar structure." Simple scaling relationships are 

developed that enable the rapid determination of limit load multipliers. The reference 

two-bar structure method is applied to a number of configurations with or without cracks. 

In Chapter 8, based on limit load estimation methods discussed in this thesis, a 

simple method for estimating the inelastic fracture energy release rate, J, for components 

or structures undergoing hardening material models, e.g. bilinear hardening and 

Ramberg-Osgood, is proposed. The integrity assessment of some typical crack 

configurations (including two-dimensional and three-dimensional crack configuration) 

are studied. 

Finally, Chapter 9 consists of the conclusions based on the results and methods 

presented in this thesis, followed by some recommendations for future work. 
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CHAPTER2 

INTEGRITY ASSESSMENT 

2.1 INTRODUCTION 

Structural and mechanical integrity assessment plays an important role in many 

industry efforts relating to fitness-for-service evaluation of the components/structures 

containing defects. This means that a given defect can be left as it is, therefore avoiding 

unnecessary repairs. Also, integrity assessment provides helpful economic and safety 

benefits, which can be summarized as follows: 

• Increasing human safety by assuring that a given component can safely continue 

to operate. 

• Optimizing the maintenance strategy for an operating component and 

recommending possible ways to extend and improve the component life. 
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Structural integrity assessment in the energy sector is practiced at different levels 

of assessment. The lower level assessment provides conservative criteria that can be used 

with a minimum quantity of inspection data or information about the component. The 

middle level is proposed for use by facilities or field engineers, although some owner­

operator organizations consider it suitable for a central engineering evaluation. The higher 

level assessments require complicated analysis by experts, where advanced computational 

procedures such as FEA are often carried out. 

Many integrity assessment investigations have been carried out in the past twenty 

years. Some of the recent documents available are the R6-procedure (2001), API 579 

(2000), SINTAP (1999), CEA-A16 guide (1999) and BS 7910 (1999). These codes and 

standards are mostly based on semi-empirical methods obtained from experimental data. 

However, to get more accurate results numerical simulation is required to enable an 

understanding of the influence of various parameters. In this Chapter, modes of failure 

that deal with static and fatigue failures are addressed for a component or a structure with 

defect(s). 

2.2 REFERENCE STRESS 

Earlier research on the reference stress method was based on estimating creep 

parameters in a complex component or structure under mechanical loading, by 

performing a single uniaxial experiment. The basic premise of reference stress method i 

the insensitivity of reference stress to the variation of creep parameters. This observation 
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has been the basis for several analytical methods of reference stress determination. For 

sake of the discussion, assume a beam with rectangular cross section in a second stage 

creep condition, for which the creep relationship can be expressed by the Norton equation 

as 

(2.1) 

where i c is the strain rate, B and n are material constants, and a is the stress. 

Plotting the variation of stress with respect to the vertical distance from the origin 

for different values of n , one gets curves similar to those shown in Fig. 2. 1. All the 

curves intersect at a common point that is the location of reference stress, and the 

corresponding stress is the reference stress. Since the stress at this location is almost 

invariant, it can be considered a load controlled location, where equilibrium exists with 

externally applied loads and moments. Therefore, the reference stress point is located on a 

"limit type" of stress distribution. 

Generally, the reference stress is directly proportional to the external tractions 

irrespective of the material constitutive relations. Consider a compact tension specimen 

subjected to a mechanical load. By increasing the load, the amount of primary stress in 

the component increases and plastic zone becomes larger until net section yielding occurs 

(plastic collapse condition). Figure 2.2 is a plot of equivalent stress versus equivalent 

strain for an element in a given finite element discretization scheme corresponding to the 
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maxtmum stress location. The relaxation loci RL, , RL2 and RL3 correspond to the 

distribution of stress corresponding to points 1, 2 and 3, respectively. The trajectory of the 

relaxation locus, RL2 , is along 2-4-5-6. The initial portion of the locus (2-4) pertains to 

the redistribution of peak and secondary stresses. 
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Figure 2.1: Creep reference stress definition 

Referring to Fig. 2.2, the relaxation locus RL1 corresponds to the plastic collapse 

process. If P1, P2 and P3 are the external loads at points 1, 2 and 3 on linear elastic-line, 

the respective reference stress is related to the limit load by the relationship: 
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(k = 1, 2,3) (2.2) 

It follows that 

~ p2 ~ 
--=--=-- (2.3) 

where O"refl, CJ,e1 2, and CJrefJ are reference stresses (primary stresses) corresponding to 

P1, P2 and P3, respectively, and PL is the limit load. 

In the foregoing expression, the ratio CJY I PL is the geometry factor that can be 

calculated by analytical, numerical or experimental methods. 

Ponter and Leckie (1970) have shown that this approximation constitutes an upper 

bound on the value of stress and is therefore on the safe side for design purposes. 

Reference stress method is not only used for creep analysis, but also it is useful for 

elastic-plastic fracture as shown by Ainsworth (1984). 

For statically determinate components, the formation of a single plastic hinge will 

result in plastic collapse. The occurrence of a single reference stress location at plastic 

hinge cross-section is indicative of a load-controlled membrane mode of collapse. This 
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situation can be represented by a one bar model, Fig. 2.3, so that collapse occurs when 

CJref = CJY • As presented in Fig. 2.3, the elastic and fully plastic stress distributions in the 

crack cross-section of compact tension specimen intersect at reference stress location. 

LOAD G) 

Total Equinllent St.-ain 

Figure 2.2: Relaxation locus for pressure components with a crack 

Stresses in components consist of the combination of primary stress, secondary 

stress and peak stress. However, ideally, after stress redistribution, secondary stress along 

with peak stress disappears and only primary stress remains. This means that the 

relaxation locus will eventually reach the primary stress (reference stress) level. In highly 

localized stress in notched components, the primary stress is very small in comparison to 
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peak stress; therefore, by neglecting the primary stress the relaxation locus asymptotically 

reaches the zero stress level. 
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£: L 

Figure 2.3: Compact tension (CT) specimen: reference stress and uniaxial stress-strain 

model 

2.3 FRACTURE MECHANICS PARAMETERS 

In order to assess a cracked component subjected to monotonic or cyclic loading, 

fracture mechanics parameters such as the stress intensity factor (SIF) and inelastic 

energy release rate (J-integral) need to be estimated. The closed form solutions of the 
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fracture mechanics problems are restricted to some simple crack configurations. 

Therefore, numerical methods (FEA) are widely used for this purpose. 

Consider a two-dimensional crack with an arbitrary orientation as illustrated in 

Fig. 2.4. The expressions for SIFs in modes I and II (K, and K 11 ) can be obtained in 

terms of the nodal stresses ahead of the crack tip ( O"YY and rxy ), i.e. (Anderson, 2005) 

(2.4) 

(2.5) 

Similarly, expressions for K, and K 11 in terms of the relative displacement of 

points on opposite faces of the crack, along the line of the crack, !!.u , and perpendicular 

to it, !!.v, are 

K, = lim[£ {2; !!.u] 
HO 8 ~ --;:-· 

K 11 = lim[£ {2; !!.v] 
HO 8 ~ --;:-

(2.6) 

(2.7) 
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These stress components and relative displacements are defined with respect to 

the coordinate system attached to the crack tip, as shown in Fig. 2.4. 

The effective stress intensity factor for two-dimensional mixed mode condition 

can be defmed by following equation 

(2.8) 

Equation (2.8) can be extended for three dimensional mixed mode condition as 

(2.9) 

y·,v· 

a 

""'-- crack face 

Figure 2.4: Stresses and coordinate systems in the vicinity of a crack 
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Failure occurs when SIF reaches the material toughness ( K,c ), which is obtained 

from the toughness test. 

The LEFM-based SIF is valid only when the effect of plasticity is negligible; 

therefore, the J-integral has been introduced to characterize inelastic fracture mechanics. 

Rice (1968) showed that the J-integral, defined by Eq. (2.10), is independent of the path 

of integration around the crack tip •. 

,.f • au. 
J = 'j(W dy -Tj - 1 ds) 

r ax 
(j = 1, 2) (2.10) 

(2.11) 

(2. 12) 

where r is an arbitrary path encircling the crack tip (Fig. 2.5), w• is strain energy 

density, x and y are local coordinate system along the line of the crack and 

perpendicular to it, respectively, Tj is traction vector, uj is displacement vector, n; is 

unit outer normal to path r , s is the length along the path r , and a ij and &ij are stress 

and strain tensor, respectively. 

For any closed contour, the value of J-integral is zero, from which it is concluded that the J-integral is path independent (Rice, 1968). 
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It should be noted that J-integral is equal to strain energy release rate for an elastic 

body that contains a crack. 

K 2 
J = G= -

• E 

Alternatively, J-integral can be rewritten in a matrix form, 

where 

(Jn = (J xx cos2 a + (JYY sin 2 a+ r xy sin a cos a 

un = ucosa+vsina 

vn = - u sin a + vcosa 

(2.13) 

(2.14) 
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a-zz = v(a-xx +a-YY ) for plane strain and a-,, = 0 for plane stress. 

Equation (2.1 0) is the J-integral in two-dimensions; however, the concept has 

been extended to generalized three-dimensional configuration (Amestoy et a/. , 1981 ; 

Kikuchi and Miyamoto, 1982; Barbero and Reddy, 1992). Also, Narasimhan and Rosakis 

( 1988) studied the three-dimensional crack configuration, and found that the estimated J 

for three-dimensional problems are bounded between the J obtained from plane stress and 

plane strain conditions. Wu and Seshadri ( 1996) proposed a simplified method for 

estimating three-dimensional crack configurations, namely the 2~-D model. The 

equivalent stress intensity factor for 2~-D model was derived, and a correction factor was 

introduced that could be used in conjunction with existing experimental data. 

y 
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Figure 2.5: Arbitrary contour around the crack tip 
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2.4 INTEGRITY ASSESSMENT METHODOLOGY 

2.4.1 Monotonic Loading 

With reference to Harrison and Milne (1981), the possible failure mechanism 

paths can be illustrated schematically as shown in Fig. 2.6 when the load is applied 

monotonically on the components or structures containing defects. Generally, failure is 

usually due to net section collapse (ductile failure) or toughness dependent fracture 

(brittle fai lure), which it is dependent on the material properties, loading, boundary 

condition, and size and shape of the defect. The net section collapse becomes important in 

a high toughness material, in which the fracture mode of failure fades away as stress is 

insensitive to toughness; therefore, limit load would be a more appropriate quantity for 

predicting failure. Toughness dependent fracture may occur either in the elastic stage, 

Linear Elastic Fracture Mechanics (LEFM), or the plastic stage, Elastic-Plastic Fracture 

Mechanics (EPFM). LEFM is valid for brittle material that has low toughness. At higher 

toughness, as in ductile materials, the LEFM is no longer valid and nonlinear analysis 

(EPFM) is required for such a problem. In the LEFM range the plastic zone is small, and 

linear elastic energy release rate (G) and stress intensity factor (K) are considered as 

relevant crack tip parameters. In the EPFM range, due to the considerable plastic zone, 

the LEFM parameters are no longer valid; instead new parameters such as inelastic 

energy release rate (.f) and crack opening displacement (COD) are used. Finally, if the 

material behavior, i. e., stress-strain curve is dependent on time, time dependent fracture 

parameter such as creep fracture parameter ( c· ), should be estimated. 
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Figure 2.6: Different loading path to failure due to monotonic loading (adapted from 

Harrison and Milne, 198 1) 
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For a failure assessment methodology, both failure mechanisms must be 

considered in order to estimate the safe operating parameters and remaining life of 

components or structures with defects. 

Two main approaches for integrity assessment of a component or structure with 

defect are widely used as: 

• Failure Assessment Diagram (FAD) 

• Crack Driving Force (CDF) 

The former approach, FAD, is based on a failure line, and is constructed by 

normalizing the crack tip loading by the material's fracture resistance. In contrast, in the 

CDF approach, determination of crack tip loading in the defected component or structure 

and its comparison with fracture resistance of the material are made in two different steps. 

The comprehensive study on structural integrity assessment is given in the 1 0-volume set 

book by Milne, Ritchie, and Karihaloo (2003). 

The original concept of these approaches was first introduced by Dowling and Townley 

(1975), and Harrison eta/. (1976) to describe the interaction between brittle fracture and 

net section collapse. In 1976, Central Electricity Generating Board (CEGB) developed 

fracture assessment methodology namely as R6 routine. The R6 routine initially was 

based on the original concept proposed by Dowling and Townley (1975), and Harrison et 

a/. (1976). However, it has been revised several times in the past 30 years. In this section, 
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the formulation of modern assessment methodology, based on J-integral solution, is 

discussed; the procedure is also incorporated in the newest revision of R6 procedure 

(2001). 

Failure Assessment Diagram (FAD) 

A typical FAD is shown in Fig. 2.7. In this diagram, the fracture mechanics 

parameter, which is the ratio of calculated SIF to the fracture toughness (K1c), is given on 

the vertical axis as: 

Brittle Fracture 

1.0 

K = K, 
' K,c 

' ' ' ' I 
I 

I 

Failure 

I 
,· 

,'' , , , , 

Loading Path : 
I 

Safe 

Unsafe 

Plastic Collapse 

1.0 

Figure 2.7: Failure assessment diagram (FAD) approach 

(2.15) 
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The limit load parameter is defined by the ratio of the applied load (or 

corresponding reference stress CY,ef ), to the limit load (or yield strength CYY of a given 

component), i.e., 

(2.l6) 

In Fig. 2.7, L, = 1 corresponds to the plastic collapse load of the cracked 

component, and L, = (L,) is referred to the limit load state (Zerbst et al., 2000), which is 

defined as: 

(2.17) 

where CY 
1 

is the flow stress and is approximately defined as the average of yield strength 

and ultimate strength, i.e., 

(2.18) 

The function f(L,), Fig. 2.7, is the boundary of the safe and unsafe regions in 

FAD. Various expressions have been proposed for f(L, ) based on different type of the 

problems and different level of required input data. 
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Using the FAD approach the component or structure with defect is considered to 

be safe if the following condition is satisfied 

(2.19) 

Crack Driving Force (CDF) 

The crack driving force or CDF approach is based on the variation of inelastic 

energy release rate (.!) parameter with the limit load parameter. The commonly used curve 

based on this approach is schematically illustrated in Fig. 2.8. In this figure, the horizontal 

axis, Lr, is the ratio of applied load to the limit load, as defined in Eq. (2.16), the vertical 

axis (.!) is the value of energy release rate, and J ,c on the vertical axis is the critical J 

value (which is considered a material property). The appropriate value of J for design 

should ensure that ]design ~ J,c (Webster and Ainsworth, 1994). 

The FAD and CDF approaches are interchangeable. For instance, the estimated J 

can be calculated using the parameters in FAD approach, i.e., 

(2.20) 

Therefore, the FAD can be obtained as plotted schematically in Fig. 2.9. 
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This procedure is being used by some codes such as the Structural Integrity 

Assessment Procedure for the European industry or SINTAP 1 (1999). The SINTAP 

(1999) procedure consists of seven different analysis levels (level 0 to level 6) such that 

each level of solution can be used based on the quality and completeness of the required 

input data (Zerbst eta/., 2000). The higher the level of solution is taken the more complex 

the procedure will be. The SINTAP (1999) procedure is studied in more detail by 

Ainsworth et al. (2001). 

Having the knowledge of the elastic-plastic J-integral, the FAD and CDF curves 

can be created. Therefore, several methods have been proposed based on simplified 

approximations of failure avoidance curve f(L, ) using the reference stress approach. 

The e method have been described in many publications; therefore, only a limited 

number can be discussed in this section. 

Electric Power Research Institute (EPRI) method: 

In this method, the elastic-plastic J-integral is estimated by adding the elastic part 

and plastic part of J (see Fig. 2.1 0), i.e., 

(2.21) 

1 The SINTAP procedure is the outcome of a research work from different countries in Europe (Belgium, France, Germany, Ireland, 
Netherlands, Spain, Sweden, U.K) sponsored by European Commission (in the period of 1996 to I 999). The main objective of this 
project was to uni fy the fracture mechanics based integri ty assessment approaches avai lable in Europe. 
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This method was originally developed by Shih and Hutchinson (1976), and later 

summarized in EPRI handbook in 1981. For a material following the Ramberg-Osgood 

stress-strain curve, the Jet P can be estimated as: 

(2.22) 

In Eq. (2.22), Pis applied load, Po is reference load, which is often identified with 

the limit load. The quantities n, a , a-0 and c0 are material properties defined from the 

Ramberg-Osgood stress-strain curve. The parameter L is a characteristic dimension and 

can be freely chosen. The function h is dependent on geometry and material properties 

and has been tabulated using inelastic finite element results for various cracked 

configurations (EPRI handbook, 1981 ). The effective crack length, aefl , can be defined as 

( J

2 
l l n - 1 K 

aefl= a+ a+(P! Po)2 flrcn+l CTo 
(2.23) 

where parameter f3 is taken as 6 for plane strain and 2 for plane stress. 

Although the EPRI method is based on the results from inelastic FEA, in EPRI 

handbook the function h is tabulated only for a few crack configurations, e.g., for a range 

of plate and cylindrical configurations. 
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The EPRI method is based on the CDF approach; however, the method has been 

also proposed in form ofF AD approach by Bloom in 1980. 

J 

R6 method: 

I 
I 
I 

J e/ p = J e+Jp !/ 
I 

I 
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I 
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I 
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I •• 
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,' ... ···· 

#····· 

············:·;·;/ J e 

········:::·::.·:·::::::··:·:·=··~·:·:··,."'"" 

Figure 2.10: The EPRI method 

One of the most commonly used approximations is given in R6 routine (2001). 

The early equation of the R6 routine (Rev .1) is based on the equation proposed by 

Dowling and Townley (1975), using the Dugdale model: 
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(2.24) 

where S, =PI Pc (P is the applied load and P c the nominal collapse load). 

Equation (2.24) is based on elastic-perfectly material model; therefore, further 

revisions have been made in R6 routine to address a material with strain hardening. 

In the option 2 of latest R6 routine (Rev.4, 2001), f(L, ) estimated from stress 

strain data for the material of interest, and the plastic limit load by 

(2.25) 

where &,.1 is the reference strain corresponding to the reference stress ( a-,.1 ) on the stress-

strain curve. 

Expression (2.25) reqmres that the stress-strain data be available. Therefore, 

option 1 in R6 routine, Rev. 4 (2001) has been proposed as a generic expression that can 

be used in the absence of stress-strain data as: 

(2.26) 
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Seshadri and Wu's method: 

Alternatively, the estimation of ]-integral based on reference stress, 1s also 

available. The eta tic energy release rate can be expressed based on LEFM as 

J = G = Ki 
e £' 

(2.27) 

where K1 = Y a ref ..r;;;; is stress intensity factor, Y is the crack configuration factor and 

a is the crack length. a ,ef is reference stress, E' = E0 for plane stress, and 

E' = E0 /(1 - v 2
) for plane strain. Equation (2.27) can be rewritten in terms of reference 

stress and strain as 

(2.28) 

where & ref is reference strain, &ref = a ref I E0 , and R e is a defect-size parameter for the 

elastic range can be calculated from 

R = EoK i 
e E' 2 

a ref 
(2.29) 

Extending the concept to the elastic-plastic and fully-plastic regimes, the related J 

can be written as 
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(2.30) 

(2.31) 

where R.1 P and Rr1 Pare the defect size parameters for elastic-plastic and fully plastic 

state, respectively. 

Comparing J . and J r 1 P, it can be seen that J . is proportional to square of &ref , 

which represents parabola, and J r 1 P varies linearly with respect to &ref , as illustrated in 

Fig. 2.11. The relationship between R. and Rr1 P can be obtained by intersection of the 

two curves J . and J r1 P . If the two curves coincide at &ref = c:.f then 

(2.32) 

When the reference strain &ref (corresponding to reference stress CYref ) equals to 

the strain c:ef the collapse load is reached, and corresponding load will be p •. 

Seshadri and Wu (200 1) applied the concept in Fig. 2.1 1 and derived J-integral 

estimation based on multiaxial constraint parameter that was introduced in GLOSS R­

Node method (Seshadri and Fernando, 1992) as 
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(;J 0 s, L, 5, 0.5 
Jelp 

(2.33) = 
J e(ey) 

z( ;;)' 0.5 < L, < 1 

where Je(ey) is the elastic J-integral at collapse load, en is the R-Node strain; in which 

when en reaches to eY (R-Node strain at collapse), the corresponding applied load is the 

limit load of the component, PL. 

Since, the Eq. (2.33) is derived based on elastic analysis and R-Node locations are 

primary stress locations, the applied load is proportional to the stresses and strains in a 

given component, i.e., 

p (]'n en 
-=-=-
PL aY eY 

(2.34) 

Therefore, the expression in Eq. (2.33) can be rewritten in terms of load parameter as: 

0 s, L, s, 0.5 

0.5 < Lr < 1 
(2.35) 
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The design curve bounds for a component/structure with defect are presented in 

Fig. 2.12. 

J 

J ,. (e,:., ) = J ,. P(e,:,.,) 

Figure 2.11: J e and J elp curves as a function of E>ref 

1.0 

Nomtalized Extemal Load, P 

Figure 2.12: Design curves (Seshadri and Wu, 2001) 
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2.4.2 Cyclic Loading 

Traditionally, fatigue analysis is separated into two parts, initiation and crack 

propagation. The initiation portion of fatigue life consists of crack nucleation caused by 

repeated plastic shear straining and a period of crystallographically oriented crack growth. 

Propagation consists of slow stable crack growth followed by rapid unstable crack growth 

to final fracture. Initiation may be analyzed using strain cycle fatigue concepts, and 

propagation by linear elastic fracture mechanics concepts. 

Good estimates of the total life of notch components, subjected to variable 

amplitude load histories, can be obtained if both crack initiation, N;, and crack 

propagation, Np, are considered, i.e. 

(2.36) 

Crack initiation 

As the quest for cost effective finite life designs continues, there is an increasing 

requirement to quantify the failure performance of components. However, the 

conventional methods of achieving this objective (e.g. prototype testing) are very 

expensive and time consuming. 
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A number of investigators (e.g. Topper and Gowda, 1970) have suggested 

alternative approaches based on local strain and obtained fatigue data from simple 

uniaxial unnotched specimen tests, where it is assumed that smooth and notched 

specimens with the same local strain range, ~E, experience the same number of cycles to 

fatigue crack initiation, Nj. Smooth specimen fatigue life data, proposed by Manson-

Coffin (Manson, 1965 and Coffin, 1969), may be expressed in the following form: 

~ a' 
_!_ = _!_(2N.)b + &' (2N.)c 
2 E I I I 

(2.37) 

However, the problem of fatigue crack initiation life prediction based on a local 

strain approach becomes one of estimating the local strain amplitude at the notch. Local 

strain amplitude can be determined by prototype component testing, or can be predicted 

using FEA or other numerical or analytical prediction methods. Prototype testing is very 

expensive and time consuming and, although finite element analysis is powerful, there are 

some difficulties when using the method for component design assessments. Therefore, 

various authors have proposed analytical relationships for predicting the local strain 

amplitude at the root of a notch. These relationships, known as notch stress-strain 

conversion (NSSC) rules, are used to determine the non-linear and history-dependent 

stress-strain behavior at the notch root in terms of the load history and the cyclic 

deformation properties of the metal. The commonly used conservative NSSC rule is the 

Neuber (1961) rule, which can be expressed as: 
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(2.38) 

where L1cr0 and M:0 are the nominal stress and strain range respectively, L1cr and L1E 

are the local maximum stress and strain range at the notch, and K, is a stress concentration 

factor. Also, researches have suggested a modification of Neuber's hyperbola by 

considering the limit load in the stress-strain curve (see Dittmann, 1991 and Jankovic, 

2001 ). The local strain approach associated with the NSSC rules is a useful and powerful 

method for estimating the fatigue crack initiation life of a notched component. The local 

strain range is found from the intersection of NSCC rules, i. e. Eq. (2.38), with the 

material cyclic stress-strain curve obtained from smooth specimen testing: 

L1£ = L1a + ( L1a )lin' 
2 2£ 2K' 

(2.39) 

By replacing the relevant local strain range in Eq. (2.37), the crack initiation life, 

N;, can be obtained, as shown in Fig. 2.13. 
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Figure 2.13: Fatigue crack initiation life prediction procedure 
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Crack propagation 

The most widely accepted correlation between constant amplitude fatigue crack 

growth and the applied load is that suggested by Paris (1963). The rate of crack 

propagation per cycle, da I dN, is directly related to the mode I cyclic stress intensity, 

M 1, for uniaxial specimen testing, in the following way 

da = C(M )m 
dN I 

(2.40) 

where M = Kmax - K min ; and C and m is material constant. 

Fatigue crack growth under mixed-mode loading has been studied since the 1960s 

(e.g. I ida and Kabayashi, 1969). Many parameters have been proposed to correlate crack 

growth rates under mixed-mode loading conditions. These include effective stress 

intensity factors, effective strain intensity factors, strain energy density factor and the J-

integral (e.g. references Gdoutos, 2005 and Theocaris et a/. , 1982). The parameters 

proposed for correlating the fatigue crack growth rate under mixed-mode loading include 

effective stress intensity factor, equivalent strain intensity factor and the J integral (e.g. 

references Tanaka, 1974, and Socie eta/. , 1987). A detailed review of these theories, 

including advantages and limitations, has been presented by Bold eta/. (1992). 
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It is worth noting that, although the effective SIF criterion is commonly used, the 

definition of a suitable model for determining effective stress intensities that accounts for 

load ratio, sequence and crack closure effects needs further work. However, a relationship 

of the form 

(2.41) 

which is analogous to the Paris law (e.g. Eq. (2.40)), has been suggested for crack 

propagation life predictions under mixed-mode loading conditions (Begley and Landes, 

1972). Making analogy between cyclic loading and monotonic loading, the J-integral was 

introduced in Eq. (2.10) has been modified by Lamba (1975) as: 

..f • 8fl.u . 
LV = 'j(fl.W dy - fl.T1 --

1 ds) 
r ax (2.42) 

(2.43) 

(2.44) 

The fl.aiJ , fl.eiJ , fl.T
1 

and fl.u1 in Eqs. (2.42) to (2.44) are defined as: 
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For linear elastic materials, M reduces to its elastic value, i.e., 

The value of M below which no (measurable) amount of fatigue crack growth 

occurs is termed the threshold ]-integral, 1,11 • The implication for design is important 

since, if in a cracked structure M < lr~,, then crack propagation will not occur, which is a 

crucial requirement for components that experience a very large number of loading cycles 

in service. However, rapid crack advance leading to catastrophic fai lure occurs where 

(2.45) 

where 11, and 11c are material constants for a given thickness under specific environmental 

conditions. 
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The critical values of J,, and 11c are related to the threshold stress intensity factor, 

K 11,, and the critical strain intensity factor (fracture toughness), K1c, as follows (Gdoutos, 

2005): 

(2.46) 

(2.47) 

If M > J,,, the fatigue crack propagation life, Np, can be calculated by integrating 

the equation 

N _ [ ' da 
p- 'o A(LV) 8 

where A and B are material constants. 

(2.48) 
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Figure 2.14: Fatigue crack propagation life prediction procedure based 



CHAPTER3 

A REVIEW OF LIMIT LOAD ANALYSIS 

3.1 INTRODUCTION 

In this Chapter a comprehensive study of the avai lable methods for limit load 

analysis is undertaken. Generally, the limit load can be estimated by one of the following 

methods: 

• Analytical Techniques 

• Numerical Procedures 

• Experimental Analysis 

Analytical techniques are limited to simple geometries and loading conditions. 

The alternative methods (numerical and experimental) are required for the more 

complicated problems. Experimental methods can be expensive and time consuming. 
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Therefore, the numerical approach is widely used for limit load analysis. Also, it is 

sometimes used in conjunction with other approaches like analytical methods. 

3.2 ANALYTICAL TECHNIQUES 

The analytical techniques for limit load analysis are used to determine the load 

carrying capacity of a component using mathematical formulations in the theory of 

plasticity. However, these methods are only feasible for some simple geometries and 

boundary conditions. These methods arc ometimes combined with numerical method ; 

thus, a sharp division between the analytical techniques and the numerical procedures is 

not evident (Zyczkowski, 1981 ). 

The following methods are generally considered as analytical approaches: 

• Variational Methods 

• Slip Lines Methods 

3.2.1 Variational Principles in Theory of Plasticity 

Consider a body under the following assumptions: the material is elastic-perfectly 

plastic, isotropic, incompressible and subjected to small deformations. The body is under 

traction 1'; acting on the surface Sr . On the surface Su, the velocity ti1 = ~ i applied as 

shown in Fig. 3.1. 
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Based on the deformation theory of plasticity, the following expressions are valid 

for the stress, strain and displacement in the body, 

1- Equilibrium Equation 

2- Yield condition 

(Y ... = 0 y.; 

3- Stress-strain rate relation 

4- Rate of strain-velocity relation 

. I (. . ) c .. = -2 u . . + u . . y 1,) ) ,1 

5- Incompressibi lity condition· 

Incompressibility condition imposes that the volume is constant during plastic deformation 

(3.1) 

(3 .2) 

(3 .3) 

(3.4) 

(3 .5) 
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6- Boundary conditions 

onSr (3.6) 

(3.7) 

T. 
I 

Figure 3.1: A body with elastic-perfectly plastic material 

3.2.2 Variational Principles in Limit Load Analysis 

One of the most important applications of variational method in the theory of 

plasticity is the limit load analysis. Consider a body made of elastic- perfectly plastic 

material that is in equilibrium with the surface traction I; acting on the surface Sr . On the 
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surface Su, the constraint it, = 0 is applied as shown in Fig. 3.2. It is assumed that the 

surface traction is applied as a proportional loading; that is, external tractions are assumed 

to be yT;, where y is a monotonically increasing parameter. For sufficiently small values 

of y, the entire body will be in an elastic state. As y is gradually increased, at a certain 

load multiplier y = m. plastic flow initiates at a point or simultaneously more parts in the 

body reach the plastic state. The corresponding load ( Tl , . = m. T;) is called the elastic 
1 e a.src 

limit load and indicates the limit of applicability of the theory of elasticity. Then, by 

increasing the load parameter, plastic state spreads to several parts of the body. When the 

load m T; is applied, where y = m, the body will be in a state of impending plastic limit 

state. Here, m is the limit load multiplier and, in other words, the safety factor against 

collapse. The collapse load of a structure is then evaluated as: 

Tl =mT 1 collapse I 
(3.8) 

In the plastic limit state the body fully or partially undergoes unrestricted plastic 

deformation under constant external load. 

In the following section, the basis for different limit load multipliers based on the 

variational formulation in the limit load analysis are discussed. 
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Figure 3.2: A body with elastic-perfectly plastic material-fixed boundary conditions 

3.2.3 Classical Lower and Upper Bound Limit Load Multipliers 

The mam objective of the limit load analysis is to estimate the limit load 

multiplier at the impending plastic limit state of a body. However, for complicated 

problems it may very difficult to find the exact limit load. Therefore, based on the 

extremum principles of limit load analysis, the lower bound theorem or the upper bound 

theorem is employed to estimate the limit load directly without considering the entire 

loading history. 
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Classical lower bound theorem 

The lower bound limit load can be calculated by invoking the lower bound limit 

load theorem that states that if a statically admissible stress distribution throughout a 

given body can be found in which the stress nowhere exceeds yield under given loading 

and everywhere in equilibrium internally and balances certain external loads the applied 

load is a lower bound on the limit (Calladine, 2000). 

A stress field CY~ is called statically admissible if it satisfies the following: 

(3.9) 

(3. 10) 

onSr (3 .11) 

In the above expressions mL is the classical statically admissible limit load multiplier, 

and n
1 

is a normal vector on the surface. Based on the lower bound limit theorem of limit 

analysis, any statically admissible limit load multiplier is less than or equal to the exact 

limit load multiplier (the proof is given next), 

(3. 12) 
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Proof: Since small deformation is assumed, the virtual work principal can be used. 

For a body shown in Fig. 3.2, the principle of virtual work can be written for actual 

limit state stress fie ld ( a !i ) caused by the external load of mT; and an arbitrary 

statically admissible stress field (a~) with external load of m L T; as 

m fr;u; dS = fayi !i dV 
Sr V 

(I) 

mL fT;ti; dS = fa~i!i dV 
S7 V 

(II) 

The left hand sides of the Eqs. (I) and (II) represent the work done by the surface or 

external forces, and the right hand sides are the plastic work dissipated to create an 

increment of plastic strain. 

Subtracting equation (II) from (I) results in following expression 

(m - mL) fr;u ; dS = fca!i -a~)i!i dV (III) 
S7 V 

According to the maximum work principle and the normality rule, the expression in 

the right hand side ofEq. (III) must be greater or equal to zero (see Fig. 3.3). Thus 

(m-mJ fr;u; dS ~ 0 (IV) 
Sr 

The integral in expression (IV) represents the work done by external forces that 

cannot be negative. Therefore, mL ~ m and the stated principle has been proved. 

49 
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Classical upper bound theorem 

The classical upper bound limit load theorem states that if for a given load set the 

rate at which the external forces do work is equal to or exceeds the rate of internal 

dissipation, then the applied load set will be equal to or more than the plastic collapse 

load (Calladine, 2000). A set of velocity components ti; will be called kinemattically 

admissible if it satisfies the following conditions 

· • - I (· • . • ) s .. - -2 u .. +u .. y 1,) ) ,1 (3.13) 

.• 0 
B;; = (3 .14) 

u· - o ;- on Su (3 .15) 

(3.16) 

Here a; denotes the stress field associated with the kinematically admissible 

strain rate field&; and satisfies the yield condition f(a; ,k) = 0 at each point in the body. 
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The classical upper bound multiplier, mu , can be obtained m the following 

manner, using the Schwarz's*inequality: 

(3.17) 

At plastic state siJsiJ = 2e; therefore, Eq. (3.17) can be rewritten as 

(3.18) 

Integrating the above inequality 

mu fT;u;·ds ~ ..fik f~t;t; dv (3.19) 
Sr V 

Therefore, the classical upper bound limit load multiplier is found as 

(3.20) 

Schwarz inequality, also known as the Cauchy- Schwarz inequality is given as 

The (x.Y) is the inner product of x and y, i.e., 

(x,y) = Jxydz 

And 1~11 and llYII are the norms of x andy, respectively. 

Jxl = Jx'dz; IYI = ~ Jy'dz 
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Based on the upper bound theorem of limit load analysis, any kinematically 

admissible limit load multiplier is greater or equal to the exact limit load multiplier 

(3 .21) 

The proof of the above statement is given next. 
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Proof: The classical upper bound limit load theorem can be written in form of 

following inequality 

mu fT;u;ds 2 JCJ;i·;dv 
Sr V 

(I) 

Now, consider the actual stress filed CJij in a body that is under the plastic limit load 

T;l 
11 

= mT;. Then, using any arbitrary lcinematically admissible strain rate and 
co apse 

velocity field and applying the principle of virtual velocities results in 

m fT;u;·ds = fCJijt;dv (II) 
Sr V 

Subtracting Eq. (II) from Eq.(I) yields 

(mu- m) fT;u;ds 2 Jc(j; - (jij )t;dv (III) 
Sr V 

Considering the convexity of yield surface and normality rule (Fig. 3.4), we can 

write 

(IV) 

Therefore, Eq. (III) results in following expression 

( mu - m) J T;u; dS 2 0 (V) 
Sr 

The integral in expression (V) represents the work done by external forces that 

cannot be negative; therefore, mu 2 m . 
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Figure 3.3: Yield surface and normality rule, statically admissible stress field 

Figure 3.4: Yield surface and nonnality rule, kinematically admissible strain field 
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3.2.4 New Lower and Upper Bound Limit Load Multipliers 

In the theory of elasticity, the method of Treffz is a powerful tool to estimate the 

lower bound and upper bound value of a functional which is the potential energy of a 

given system in equilibrium. Mura and Lee ( 1963) extended this idea to the theory of 

plasticity, and introduced a functional so that the extremum values of the functional are 

lower bound and upper bound values of the actual limit load. Also, Mura et a/. (1964) 

extended this method to orthotropic solids. Lee et a/. ( 1967) generalized the method for 

anisotropic and non-homogeneous materials, and Sacchi and Save ( 1968) proposed some 

approximate procedures for three-dimensional rigid-perfectly plastic continuum which 

follow from Mura and Lee (1963) variational method. 

Mura and Lee (1963) showed that the state of impending plastic flow is provided 

by the stationary condition of the following functional 

F[ui' sij,crm,Ri',u,m,<p]= fsii ~(u;,j +uj,;)dV + fam8iizi;JdV - fR;u;dS 
v v s, 

(3.22) 

subjected to the constraint condition 

(3.23) 
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They also showed that the safety factor (limit load multiplier) is the stationary 

value of the same functional. In Eq. (3.22) the function f(s iJ ) is the yield criterion, and 

the arguments ofF are the independent variables: velocity it;, deviatoric stress siJ, the 

hydrostatic am, the reaction R; on S,;, r; is surface traction, m is the limit load 

multiplier, 1-l is the positive scalar factor in the linear relation between the strain rate and 

deviatoric stress and cp is the point function . For an elastic-perfectly plastic material, the 

following expression is valid 

{
if cp * 0 ~ J.l = 0 and t s ijs ij - e < 0 (elastic) 

if cp = 0 ~ J1 :t:- 0 and ! s iJsiJ- k 2 = 0 (plastic ) 
(3.24) 

Taking the first variation ofEq. (3 .22), the following natural conditions can be obtained: 

in V (3.25) 

where 11 ~ 0 

in V (3 .26) 

(3.27) 
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onSu (3.28) 

in V (3.29) 

in V (3.30) 

in V (3.31) 

onSu (3.32) 

(3.33) 

It should be noted that the variables a-"', R;, m and f.1. are considered as the 

Lagrangian multipliers associated with the required conditions for plastic flow, all of 

which are of physical significance. 
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Consider now the arbitrary arguments: 

. 0 . .c.·. 
U ; =u;+uu; 

s~ = siJ +&!i 

(J~ = (Jm + bO"m 

R;0 = R; +5R; 

m0 = m+&n 

JLO =JL+bJL 

(3.34) 

rpo = rp+5rp 

where it;, s!i' etc., denote the stationary set of arguments of the Eq. (3 .22) and&;, &!i 

etc., are the corresponding variations. Substituting the arguments of Eq. (3 .22) with Eq. 

(3.34), giving regard to the stationary conditions Eqs. (3.25) to (3.33), and noting that the 

right-hand side ofEq. (3 .22) in this case is equal tom, the functional F takes the form 

F[u? ,s~,a-~,,R;0 ,JL0 ,m0 ,rp0 ]= m + J&!i t(&i;,J + &i1,;)dV + J5a-~.5!i .&i;,1dV 
v v 

- fbR;.&i;dS -~ fi;&i; dS - fJL{t &!i&!i +(5rp)
2 
}dv (3.35) 

s. s, v 

- f5JL{f(s~ )+(rp0 )2 }dv 
v 
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Lower bound theorem 

Mura eta/. ( 1965) proposed the lower bound limit load multiplier m' as 

(3.36) 

in which the set s~, O"~, m0
, JL 0

, and rp0 satisfy the requirement of statically admissible 

stress field, i. e., 

in V (3 .37) 

onSr (3.38) 

J JLo {f(s~) + (rpo)2 }dv = o (3 .39) 
v 

(3.40) 

The quantity max{f(s~ ) + (rp0)2} is the maximum value of {/(s~ ) + (rp0)2} inside 

the domain V. 

- J 
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Proof: The theorem is proven as follows: Eq. (3.35) can be reduced to 

F = m- f,u {t&;/~~!i + (8rp) 2 }dV- fo,u {f(s~ ) + (<p0)
2 }dV (I) 

v v 

By integrating the second and third terms by parts in view of Eqs. (3.26) to (3.28), 

(3.37) and (3.38) and 

(II) 

Also integrating Eq. (3.22) with the arbitrary set of arguments ti? , s~ , a-~, , m0
, 

,u0
, and <p0 and making use ofEqs. (3 .37), (3 .38) and (II) leads to 

F = mo- f.u o {J(s~ ) + (<po)2 }dV (III) 
v 

In view ofEq. (3.39), Eqs. (II) and (III) yield 

m0 ~ m- Jo,u {fcs~ ) + (<p0)
2 }dv (IV) 

v 

Since ,u0 = ,u + o,u Eq. (3.39) gives 

- Jo,u{J(s~ ) + (<p0)
2 }dv = J,u{J(s~ ) + (<p

0
)
2 }dv (V) 

v v 
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(Cont'd ... ) 

Substituting Eq. (V) into Eq. (IV) and taking the maximum value of the integrand, 

which is always positive because ofEqs. (3.39) and (3.40), leads to 

m0 ~ m + max{!(s~ ) + (ll)2 }JJLdV (VI) 
v 

On the account ofEqs. (3.25) to (3.33), the following holds 

m = m fT;u;dS = J(sii + c5iiCY,)nju;dS = Jsijnju;dS + Jc5ijCYm njv;dS 
Sr S S S 

= Js .. u .. dV + J(s .. + CY 8 .. ) u.dV = Js .. .!_(u . . + u . \Jv 
I) I ,J IJ m I) ,j 1 IJ 2 I,J J,l fl 

v v v 

= fs iiJLsiidV = 2k
2 fJLdV 

v v 

Therefore, 

JJLdV = m2 
v 2k 

(VII) 

The proof is completed by combining Eqs. (VI) and (VII). 

Equation (3.38) includes the classical definition of the lower bound, by taking the 

special case ofEq. (3.39) as 

(VIII) 

In this case max[f(sZ) + (tp0
)

2
] vanishes, and Eq. (3 .36) reduces to mL ~ m. 

Thus, the new lower bound expressed by Eq. (3 .36) holds for a broader stress field 

than the classical statically admissible stress field by taking the integral mean of the 

yield criterion. 
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Upper bound theorem 

The upper bound limit load multiplier m • has been introduced by Mura et a/. 

(1965) as 

(3.41) 

if the quanti ties it; , s ~ and Jl• satisfy 

on S v (3.42) 

on V (3.43) 

fT;u;ds = 1 (3.44) 
Sr 

(3.45) 

fll*f(s~)dV = 0 (3.46) 
v 

(3.47) 
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The notation max{t s;s;} means the maximum value of {t s; s;} and t; denotes 

the strain rate associated with u; . 

Proof: The theorem can be proven as follow. Multiplying both sides of Eq. (3.45) 

by Sij and applying Schwarz's inequality 

(I) 

Also from Eqs. (3.24) and (3.29), 

(II) 

Substituting (II) into Eq. (I), integrating both of Eq. (I) m V and taking the 

maximum values of [s; s; ]11 2 lead to 

(III) 

On the other hand 

f sift(u:.J +u;,;)dV = f (sif +OifO""')v;1dV = f (sif +OifO"m)n1u:ds = m (IV) 
v v s 

Because of Eqs. (3 .26), (3 .27) and (3.42) to (3.44). Adding Eqs. (Ill) and (N) 

completes the proof. Equation (3.41) includes the classical upper bound limit load 

definition, by applying special form of Eq. (3.46) as 

(V) 
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(Cont'd ... ) 

* • I In this case max(t sii sii ) ' = k, and Eq. (3.41) reduces to 

m • = f 2e .U • dV 2': m (VI) 
v 

Multiplying both sides of the Eq. (3.45) by s~ conjunction with Schwarz inequality 

results in 

• • • _ I • ( · • · • ) ;:;;;;~ I ( · • · • ) I ( . • . • ) .u s .s . --2 s .. u .. +u .. ~ s .. s1. -2 u .. +u .. -2 u .. + u .. 
I) I) I) 1,) ),1 I) I) 1,) ) ,1 1,) ),1 

(VII) 

Therefore, using the equality sign 

.l (' * ·* ) .l (' * .• ) I(' * ·* ) .l ( '* .• ) • 
2

u .. +u . 2 u .. +u . -2 u .. +u .. 2 u .. +u .. 
1, ) j ,l 1,) ) ,1 t ,j J,l l ,j ),1 .u = 11 • • = 11 2 

~ siisii v 2k 
(VIII) 

Substituting Eq. (VIII) into Eq. (VI), and making use of Eq. (3.45), the classical 

upper bound limit load can be obtained as 

.l ('. .• ) .l ( ' * .• ) u .. + u . u . + u .. f 2k2 11 2 I ,J j,l 22 I ,J J ,l dV 2': m 
v y 2k 

(IX) 

mu =-fik f~t;t; dv 2': m (X) 
v 

The new upper bound is introduced in Eq. (3.41) holds the broader stress field than 

classical upper bound limit load formulation (Mura eta/. , 1965). 
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3.2.5 Slip Line Method 

Slip line method is widely used in metal forming and soil mechanics to estimate 

limit load in a component or structure in plane strain condition. The inception of slip line 

method in metal plasticity dates back to the works of Hencky ( 1923), Prandtl (1923), and 

Cartheodory and Schmidt (1923). However, detailed studies have been later done by Hill 

(1950), and Prager and Hodge (1951 ). 

The aim of slip line method is to define a coordinate system that lies on a potential 

failure surfaces in a given component (Davis and Selvadurai, 2002). Indeed, using this 

coordinate system, the system of equations become very simple. In a two-dimensional 

systems the potential failure surfaces become lines (slip lines), and combinations of these 

lines form a network that covers the failing regions. The axis of the new coordinate 

system, say a and fJ , need to be defined in such a way that at each point they align on 

the potential failure surfaces. In other words, the direction of the new axis is on the 

direction of maximum shear stress when plastic flow occurs. 

As illustrated in Fig. 3.5, the definition of the a and fJ can be understood by 

using Mohr diagram. In this figure, a -line and fJ -line are located at two maximum shear 

stress failure lines (potential failure surface). Therefore, these two lines are orthogonal. 

Also, when plastic flow occur the magnitude of shear stresses on these lines are equal 

(assuming non-hardening material model). 
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Figure 3.5: Definition of slip line on Mohr diagram 

3.3 NUMERICAL PROCEDURES 

Limit load analysis using analytical techniques is restricted to simple problems. 

However, it can lead to good estimation of limit load or even the exact solution. 

Therefore, numerical approach has been developed to solve more complicated problem. 

In numerical methods the following points should be considered: 

• The problem should be analyzed in a discrete form. 

• Suitable discretization 1 depends on the problem under consideration (i.e., fine 

discretization around the stress raisers). 

1 Discretization means to convert a given continues model into smaller parts (discrete counterparts). This process is usually carried out 
to make the problem suitable for numerical simulation , i.e. finite element method. 
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In what follows, some of the most important and commonly used numerical 

methods are discussed. 

3.3.1 Programming Methods 

Programming methods have been used smce 1940 in many different fields 

including economics, strategic planning, structural engineering and cryptography (Gill et 

a!. , 1991 ). However, the application of programming methods in limit analysis dates back 

to the work by Charnes and Greenberg in 1951 . The programming methods were initially 

developed to compute limit load for trusses, beams, and frames (Dorn and Gavarini, 

1957, and Charnes et a!., 1959), and later developed for plate structures (Koopman and 

Lance, 1965, and Hodge and Belytschko, 1968) and shell structures (Biron and Hodge, 

1967, and Dinno and Gill, 1974). The limit load analysis using programming method is 

based on minimizing or maximizing a function subjected to certain constraints, which can 

be expressed in terms of equality or inequality. 

Generally, programming methods can be divided into two main approaches: 

• Linear programming 

• Non-linear programming 

The linear programming approach is based on replacing the non-linear yield 

condition by a piecewise linear function (linearization of yield surface). 
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The non-linear programming approach, which is more accurate but more difficult 

(Zyczkowski, 1981 ), was first published by Hodge ( 1964) for limit analysis of beams and 

arches. This approach applies a non-linear yield function and higher order approximations 

to the stress and velocity fields. 

The finite element method is widely used in limit analysis using programming 

methods. Discretization of the continuum using finite element leads to a standard 

optimization problem where the objective function is maximizing/minimizing of 

lower/upper bound limit load multiplier subjected to set of equality and inequality 

constraints. The application of finite element method in programming method is briefly 

discussed in the following section. 

Lower bound solution 

The lower bound theorem of limit load analysis states that the lower bound limit 

load multiplier is less than or equal to the exact limit load, i. e., 

mLower ~ m (3.48) 

This inequality can be written as (see Fig. 3.6) 

m = max[ m Lower ] (3.49) 
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Therefore, the programming method is an optimization problem of the form: 

Upper bound solution 

Maximized: m Lower 

g(x) = 0 
Subjected to: 

f(x) ~ 0 

69 

(3.50) 

Referring to the definition of the upper theorem of limit analysis, the upper bound 

limit load multiplier mupper is greater than or equal to the exact limit load solution m, i. e. 

(3.51) 

Therefore, the limit analysis problem can be considered as minimizing problem as 

(see Fig. 3.7) 

m = min[ m Upper] (3 .52) 
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Therefore, the optimization problem can be written in following format 

Minimized: m upper 

g(x) = 0 
Subjected to: 

f(x) ;S; 0 

70 

(3.53) 

The programming problem then requires that the upper bound limit load multiplier 

m upper becomes minimized with respect to the rate of nodal displacement (using the 

definition of classical upper bound theory). Due to the complexity of programming 

methods in nature, these methods have only been used for two-dimensional components 

and some simple three dimensional configurations. More recently, Lyamin and Sloan 

(2002 a, b) developed the work of Zouain et a/. (1993) to perform upper bound and lower 

bound limit load analysis in three dimensional structures. However, they applied a simple 

element type (hexagonal element) in the finite element discretization. Still these methods 

seem to be not easily implemented into available commercial finite element packages. 

Also, because of the huge number of constraint equations and the degrees of freedom, 

these methods require large computer memory and a considerable computational time. 

More work is required to overcome some of the difficulties and complexity when using 

programming methods. 
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Figure 3.6: Concept of lower bound solution 
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Figure 3.7: Concept of upper bound solution 
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3.3.2 Elastic Modulus Adjustment Procedure (EMAP) 

Jones and Dhalla ( 1981) were one of the earliest users of elastic modulus 

adjustment procedures (EMAP) in their research work. Highly stressed regions of the 

component or structure were systematically softened by a reduction of their modulus of 

elasticity in an attempt to simulate local inelastic action. 

Marriott (1988) developed an iterative procedure for estimating lower-bound limit 

loads on the basis of linear elastic FEA by generating statically admissible stress fields 

and using them in conjunction with established theorems of limit analysis. In this method, 

an arbitrary load that guarantees the yielding in the component is applied and an initial 

elastic analysis is performed. All the elements in which corresponding stress intensities 

exceed the code allowable stresses are selected and elastic modulus of these elements are 

modified using the following expression 

E - E S"' 
R - 0 Sf (3.54) 

where, E0 is initial elastic modulus, S"' is the allowable stress given by the codes and 

Sf is element stress intensity. The procedure continues in an iterative manner until the 

maximum stress in the component does not change with the further iteration or all the 

elements have the equivalent stress below the S"' . Finally, using the following expression 

the limit load can be estimated: 
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()"y 

PL = P-­
O" max 
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(3 .55) 

where a-Y is yield strength and a-max is the maximum equivalent stress in the component. 

Seshadri and Fernando (1992) made use of the elastic modulus adjustment 

procedure to determine lower bound limit loads by adopting reference stress concepts in 

creep design (Kraus, 1980). Their technique, called the Redistribution Node (R-Node) 

Method, is based on two linear elastic FEA in which the load control location (R-Nodes) 

are determined and using stresses in these location, the limit load of the component will 

be achieved. The procedure can be performed in following manner: 

• The first analysis is carried out with homogeneous material properties, i. e. E0 ,v . 

• The second linear elastic FEA is performed by systematically, but artificially, 

reducing the elastic moduli of the elements that exceed the yield strength. 

(3.56) 

where the subscript ''}" is the element number. 
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• Using the results of these two linear elastic analysis, as presented in Fig. 3.8, the 

follow up angle (B) can be determined on the Generalized Localized Stress Strain 

curve (GLOSS) as 

(3.57) 

• The location where (} =90 are the R-Node locations, where stresses in these 

locations are proportional to external load for elastic-perfectly plastic material 

model. This means that, when R-Node locations reach to yield strength of the 

component, the corresponding external load is limit load, and estimated as 

(3.58) 

where Cfn is the average R-Node stress location, and can be obtained as 

(3.59) 

where N is the number of R-Node locations in the component. 
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Figure 3.8: GLOSS diagram (Seshadri and Fernando, 1992) 

The application of the R-Node method has also been extended to stress 

classification by Seshadri and Marriott (1993), fatigue design by Seshadri and Kizhatil 

( 1993), residual stress estimation and shakedown evaluation by Seshadri ( 1994), fracture 

mechanics by Seshadri and Kizhatil (1995), minimum weight design by Mangalaramanan 

and Seshadri (1997), fracture mechanics by Seshadri and Wu (2001), inelastic local 

strains determination by Seshadri and Babu (2000), limit load estimation in multiple 

loading by Fanous et a!. (2005) and some other applications which have been addressed 

in a monograph by Seshadri ( 1998). 

Mackenzie and Boyle (1993) utilized the elastic modulus adjustment procedure 

suggested by Marriott ( 1988) and Seshadri (1991 ), named as the elastic compensation 

method (ECM), and obtained for every iterations lower- and upper-bound limit loads by 
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invoking the classical theorems of limit analysis. The procedure of ECM for estimating 

lower bound limit load can be summarized as follow: 

• An elastic finite element is carried out using homogenous material property, i.e. 

E0 , with arbitrary load set, e.g. the design load ( Pd ). 

• The previous solution is considered as iteration zero in series of subsequent linear 

elastic solution. Now, all the elements modified by following expression 

E =[ an ]E 
i+ l (a. );-J ; 

(3.60) 

where the subscript "i" is iteration variable, a n is nominal stress and a H is 

maximum (unaverage) nodal equivalent stress of the element from previous 

iteration. 

• This procedure is continued until suitable convergence is achieved, and maximum 

equivalent stress in the component at each subsequent iteration with respect to the 

iteration number is plotted. 

• At each iteration the lower bound limit load can be determined as 

(3.61) 
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• The best estimation of lower bound limit load is the iteration with minimum value 

of maximum stress, i.e. R'11 iteration, in which the corresponding maximum stress 

is a R • Therefore, the lower bound limit load ( PL) can be estimated a 

(3.62) 

or 

(3 .63) 

Also, the procedure for estimating upper bound limit load based on ECM is as 

follows: 

• Similar to the previous process, the elastic modulus of each element is modified 

using Eq. (3.60). 

• Applying the classical theory, the upper bound limit load at each iteration can be 

estimated as 

(3.64) 

where Pd is the design load, D is the energy dissipation, and U is the strain 

energy. 
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• The best estimation of upper bound limit load given by this method is the lowest 

value of the estimated upper bound limit load among all the iterations, i.e., 

(3.65) 

The ECM procedure has been used to estimate the lower and upper bound limit 

loads for different pressurized components, which are available in Mackenzie et a!. 

(1994) and Boyle et a!. (1997). The method has been also applied for shakedown 

analysis by Hamilton eta!. ( 1996), and Nadarajah eta!. (1996). 

A detailed development of the formal basis for the elastic modulus adjustment and 

related procedures has been provided by Ponter and Carter ( 1997), Ponter et a!. (2000), 

and Ponter and Chen (2000). The generalized approach has similarities to the EMAP and 

can be better described as "linear matching methods" where a sequence of linear solutions 

is matched to the nonlinear problem. 

A comprehensive review of the elastic iterative methods for limit load and 

shakedown analysis determination has been done by Mackenzie et a!. (2000). The elastic 

iterative methods have been verified and studied independently by Plancq and Berton 

( 1998) for limit analysis of branch pipe tee connection under different loading conditions, 

Mohammad et a!. ( 1999) for limit and shakedown analysis of some typical pressurized 

configuration under combined pressure and thermal gradient loading condition, Hardy et 

a!. (2001) for estimating limit and shakedown loads in internal and external flanges, and 

Yang eta!. (2005) for limit load determination of nozzle-to-cylinder junctions. 
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General Formulation of EMAP 

The aim of EMAP is to generate statically admissible stress distributions and 

kinematically admissible strain distributions by modifying the local elastic moduli in 

order to obtain the inelastic-like stress redistributions. Numerous sets of statically 

admissible and kinematically admissible distributions make it possible to calculate both 

lower and upper bounds limit loads. An arbitrary load set (P) with the original elastic 

modulus (E0 ) is applied in the first iteration of elastic FEA. Subsequently, the elastic 

modulus of each element is modified in each successive iteration by following equation: 

(3.66) 

where q is the elastic modulus adjustment parameter, CY ref is a reference stress, CYeq is the 

equivalent stress and the superscript "i" is the iteration number ( i = l for the initial 

elastic analysis). This formula describes how the elastic modulus at a location with the 

equivalent stress CY eq (e.g., the von Mises equivalent stress) is updated from the i1
h to the 

(i + lYh elastic iteration. This procedure is continuous until suitable convergence of a 

subsequent iteration is achieved. (A flow chart of this procedure is presented in Fig. 3 .9). 

Based on the theorem of nesting surfaces (Calladine and Drucker, 1962), Seshadri and 

Mangalaramanan (1997) suggested following expression for reference stress. 



,----------------------
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. [fa-! dV]
112 

' Vr 
O"ref = -'----

VT 
; 

(3.67) 

The general EMAP has been applied in variety of problems for instance: tubesheet 

design by Reinhardt, and Mangalaramanan (2001), limit load estimation in layered 

structures by Pan and Seshadri (2002), limit analysis in anisotropic material by Pan and 

Seshadri (2002), and limit load analysis in metal forming by Adibi-Asl and Seshadri 

(2006). 
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Figure 3.9: Flowchart of Elastic Modulus Adjustment Procedure (EMAP) 
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3.4 EXPERIMENTAL METHODS 

Experimental techniques that determinate limit load are based on actual behavior 

of a component (i.e., real material like strain hardening, and large deformation). This 

means that the assumptions of ideal conditions (which are involved in analytical method) 

are not valid anymore. This condition also exists when inelastic FEA with strain 

hardening or large deformations are being considered. Several researchers have proposed 

different criteria of limit load estimation for these classes of problems. Most of the 

proposed methods are based on graphical criteria implemented on load-deflection or load­

strain curve, which are generally considered as load-deformation curve. 

3.4.1 Twice Elastic Slope (TES) 

With regard to Fig. 3.10, limit load is defined by drawing a straight line from the 

ongm with twice the slope of the initial elastic slope in load-deformation curve 

(tan If/ = 2 tan cp ). The intersection of this drawn line with the load-deformation curve is 

considered as limit load location. The TES method is recommended by ASME Boiler and 

Pressure Vessels Code Section III Div I (1998) and Section VIII Div 2 (1998). However, 

Kirkwood and Moffat (1994) and Moffat eta/. (2001) showed that the TES method could 

not predict the unique value of limit load for some pressurized components. Also, 

Robertson et a/. (2005) pointed out this method could not be applied to a component that 

the failure due to instability was reached before the limit state. 
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3.4.2 Tangent Intersection (TI) 

As illustrated in Fig. 3.1 0, TI method is based on intersection of initial elastic line 

and plastic tangent line. In the CEN TC54 draft standard ( 1999), this method is 

recommended for limit load analysis using load-displacement curve. 

Moffat eta/. (2001) found that although the TI method predicts a unique value of 

limit load, it is sensitive to where the tangent is drawn to the plastic portion of the curve, 

and it is the designer's ability to select the correct plastic slope. 

3.4.3 Twice Elastic Deformation (TED) 

In TED method the location of elastic and inelastic behavior of a component is 

determined on load-deformation curve (say u0 on deformation axis). Then a vertical line 

of 2u0 is drawn (Fig. 3.10), and intersection of this line and load-deformation curve is 

considered as limit load (Gerdeen, 1979). 

In addition to the above-mentioned methods, there are similar methods for limit 

load solution that are not discussed in details in this thesis. The one percent strain (l %) 

method (Townley et a/. , 1971 ), two percent (2%) strain offset method (American Society 

for Mechanical Engineers, 1971 ), the proportional limit method (American Society for 

Mechanical Engineers, 1971 ), plastic work or PW method (Gerdeen, 1979), and plastic 
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work curvature or PWC method (Li and Mackenzie, 2005) are all as methods that apply 

the load-deformation curve for estimating limit load in a given component. 

I 

T! .Hethod 1 

\ / 

(0, 0) 

/ 

/ 

/ 
/ 

/ 

/ 

TES _\fethod 
/ 

TED Jfethod 

Deformation 

Figure 3.10: Various definition of limit load 

lnstabilitv 

3.5 LIMIT LOAD THEOREMS IN DISCRETE FORMULATION 

Consider a component or structure made of elastic- perfectly plastic material that 

is in equilibrium with the surface traction T; applied on the surface Sr .The component is 

discretized into smaller elements with regular shape. The shape of the elements can be 

triangles or rectangles for two dimensional problems, and tetrahedral or hexahedral in 

three dimensions. On the surface Su , the constraint u; = 0 is applied as shown in 
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Fig. 3.11. When the load of m 'F; is applied the structure will be in a state of impending 

plastic collapse, where m is the exact limit load multiplier (i. e., T j = m T ). 
1 collapse 1 

Figure 3.11: A body with elastic-perfectly plastic material-discrete model 

In this section different multipliers in relation to upper and lower bound solutions 

are discussed. By using the iterative elastic procedure, relevant quantities of each element 

are used to calculate the limit load multipliers. 
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3.5.1 Upper Bound Multipliers 

Classical Upper Bound Multiplier, mu 

According to the classical upper bound limit load theorem, if for a given load set 

the rate of internal dissipation of energy in a body is equal to the rate at which the 

external forces do work in any postulated mechanism of deformation, then the applied 

load set will be equal to or greater than the plastic collapse load (Calladine, 2000). The 

classical upper-bound multiplier, mu , can be obtained from the following equation 

fJ;u1 dS~ JD dV 
Sr Vr 

(3.68) 

where I; is the traction acting on the surface Sr , u1 is the compatible displacement, D is 

the increment of plastic dissipation energy per unit volume and Vr is the total volume. 

Since as linear elastic analysis is used, it is possible to substitute strains and 

displacements with their corresponding rates. 

For the von Mises yield criterion, the plastic dissipation energy is given as 

D = CYY J %k,2 + &i + &;) dV 
Vr 

(3.69) 
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where B; (i= 1, 2, 3) are the three principal strains. 

In case of the Tresca perfectly plastic material, the plastic dissipation energy (D) 

can be expressed as: 

(3.70) 

where &max is the maximum principal strain. 

Using the divergence theorem, we have: 

f'z; U; dS = fa-ij Bij dV 
s, v, 

(3 .71) 

Substituting Eqs. (3 .69) and (3. 71) into Eq. (3.68), and making use of the equality 

sign, the upper-bound multiplier mu for the von Mises yield criterion can be obtained as 

(3 .72) 

where ceq is the equivalent strain that can be directly evaluated for any linear elastic FEA 

results. 
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The classical upper bound limit load estimation can be also described by plotting 

total strain energy and total energy dissipation against load increment. As presented in 

Fig. 3 .12, the strain energy is proportional to square of external load while the energy 

dissipation varies linearly respect to applied load; however, in a specific location they 

intersect each other. The corresponding load that the two energies have an equal value is 

considered as upper bound limit load. 

D, U 

p 

Figure 3.12: Variation of strain energy and dissipated energy against 

applied external load 

Multiplier m~ 

In classical limit analysis, the statically admissible stress field (equilibrium set) 

cannot lie outside the yield surface, and the stress associated with a kinematically 
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admissible strain rate field in calculating the plastic dissipation should lie on the yield 

surface. Mura et a!. (1965) proposed an approach to eliminate such a requirement, and 

replaced it by the concept of "integral mean of yield" in the context of a variational 

formulation. The integral mean of yield criterion can be expressed as 

f,Li[JCs~ ) + (q}) 2 ]dv = o 
Vr 

(3.73) 

The superscript "0" corresponds to statically admissible state, and s~ is the 

deviatoric stress corresponding to impending limit state: whereby, s~ = m0s~ . The 

deviatoric stresses s~ equilibrates the applied set of load (s~ = CT~ - _!_CT~k S!i , where Sii is 
3 

the Kronecker delta). rp0 is a point function that takes on a value zero if s~ is at yield and 

remains positive below yield. The von-Mises yield criterion can be expressed as 

(3 .74) 

The associated flow rule can be expressed as 

(3 .75) 
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Assuming an unspecified, but constant flow parameter f.1° in Eq. (3.73), the upper 

bound limit load multiplier proposed by Mura et a/. (1965) becomes ( cp0 = 0) 

(3.76) 

The m~ limit load multiplier shown to be greater than the classical lower bound 

( mL) and classical upper bound ( mu ) limit load multiplier (Reinhardt and Seshadri, 

2003). 
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Proof: In here proofofEq. (3 .76) can be obtained as follows: 

The general formulation of von Mises yield criteria can be written as 

(I) 

At limit load state ( s~ = m0 s~ ) Eq. (I) can be rewritten as 

(II) 

Substituting Eq. (II) into Eq. (3.73) yields into following equation 

(III) 

Also, 

0 0 [ 0 1 0 ][ 0 1 0 ] sY' s Y' = CY Y' - 3 CYkk OY' CYY' - 3CYmmo Y' 

o o 1 oo 1 o o 1 oo 
= CYY' CYY' - 3CYkk CYY' OY' - 3 CYmm CYY' OY' + 9 CYkk CYmmOY' OY' 

oo 2 oo 1 o o = (J ij' (J ij' - 3 (J kk (J jj + 3 (J kk (J mm 

(IV) 

oo 1 oo 2 1 2 2 2 
= (Jij' (Jij' - 3(Jkk (Jmm = CYeq - 3 (Jeq = 3 CYeq 

(V) 

Making use of the conditions in Eq. (3.24) along with Eq. (V), the expression for 

m~ limit load multiplier in Eq. (3 .76) is proved. 
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Proof: The proof of m~ ~ mL can be shown by dividing numerator and denominator 

ofEq. (3.76) by the maximum stress, a max, in a body as 

(I) 

Referring to definition of classical lower bound ( m L =a Y I a max ) , Eq. (I) can be 

written as 

fi 2dV 

(II) 

Keeping in mind that a max ~ a .q (or in other definition a max = max ( a .q ) ); thus 

Jc a .q )2 dV ~ Jedv 
Vr (jmax Vr 

(III) 

In other words the expression under the root in Eq. (II) is equal or greater than 

unity; therefore it can be concluded that m~ ~ mL. 
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Proof: The proof of m~ ~ mu can be shown by applying Schwarz's inequality as 

(I) 

Therefore, 

(II) 

The second term in the right hand side of Eq. (II) is equal to the square root of total 

volume (Vr); thus, 

(III) 

Substituting expression (III) into Eq. (3.76) the following expressiOn can be 

obtained 

(IV) 

Using CYeq = Eseq, Eq. (IV) can be rewritten as 

CYY JEs.qdV CYY Js .qdV 

(V) 

The right hand side of Eq. (V) is the definition of classical upper bound limit load 

that introduced in Eq. (3.72). So, the proof is completed in here. 
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Multiplier m~ 

Equation (3.76) implies that the calculation of m~ is based on the total volume 

Vr . If plastic collapse occurs over a localized region of the structure, m~ will be 

significantly overestimated. To overcome this problem, Pan and Seshadri (2001) have 

proposed a new formulation for evaluating m0
, namely m~ . On the basis of deformation 

theory of plasticity, the flow rule can be expressed as 

(3.77) 

where eiJ and siJ are the deviatoric strain and stress, respectively. Therefore, f.1 can be 

defined as 

(3.78) 

where CY = J 3 I 2 siJ siJ is the effective stress and & = J2 I 3 eiJeiJ is the effective strain. 

Substituting Eq. (3. 78) into the integral mean of yield criterion, the m~ limit load 

multiplier can be obtained as 
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f( 5
eq ~vJ 

k =l (]" eq k 
(3.79) 

Proof: The proof of m~ ~ mL can be achieved by applying a eq = Eceq into Eq. 

(3. 79), therefore; 

(I) 

Dividing numerator and denominator of Eq. (I) by the maximum stress, a max , in a 

component or structure, and usmg the definition of classical lower bound 

( mL = a Y I a max ), the Eq. (I) can be written as 

(II) 

Therefore, m~ ~ m L . 
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Proof: The proof of m~ ~ mu can be shown by applying Schwarz's inequality as 

(I) 

Therefore, 

(II) 

Equation (II) can be rewritten as 

Jc.qdV 

J ~V ~ --.=:!:vr=== 

~ Vr (Jeq f(Jeq£eqdV 
(III) 

Vr 

Substituting expression (III) into Eq. (3. 79) the following expressiOn can be 

obtained 

(JY Jc.qdV f(Jy£eqdV 

m~ ~ Vr = Vr (V) 
f(jeq£eqdV f(jeq£eqdV 

Vr Vr 

The left hand side of Eq. (V) is upper bound classical limit load that, Eq. (3.72). 

Therefore, 

(VI) 
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3.5.2 Lower Bound Multipliers 

Classical Lower Bound Multiplier, m~.. 

The classical lower bound can be calculated by invoking the lower bound limit 

load theorem, which states, if a statically admissible stress field in which the stress no 

where exceeds yield for a given component under given loading, the loading is a lower 

bound on the limit (Calladine, 2000). The EMAP satisfies the first requirement of the 

lower bound theorem in that it is statically admissible. As the iteration solutions are linear 

elastic, there is a linear relation between the stress magnitude and applied load. A lower 

bound load can therefore be established by estimating the load required to give a 

maximum equivalent stress equal to the nominal yield strength, a Y • 

Therefore, the classical lower bound multiplier ( m~.. ) is given by 

(3 .80) 

Lower Bound Limit Load Multiplier Based on R-Node 

The concept of redistribution node (R-Node) has been extensively used to 

understand better the definition of reference stress, primary stress and limit loads. The R-

Node locations are statically determinate in that they are induced in order to preserve 
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equilibrium with externally applied loads (load control). Generally, R-Node location can 

be defined by intersecting the elastic redistribution with plastic one at limit load state (see 

Fig. 3.13). 

R-Node 
Location 

Elastic 

) 

(a) 

T ~ 

0-Node 
Location 

Plastic 

(c) 

R-Node 
Location 

Plastic 

( Elastic 

(b) 

Elastic 

Figure 3.13: R-Node concept: (a) direct shear, (b) bending, (c) shear due to torsion 

For an elastic-perfectly plastic material model, when stress at R-Node location 

approaches yield strength of the material, the corresponding applied load is considered as 

limit load, this situation can be represented by a one-bar model as presented in Fig. 3.14. 

Therefore, the limit load multiplier can be written as: 



3. A Review of Limit Load Analysis 99 

(3.81) 

For a component in which collapse mechanism forms with multiple hinges, more 

than one R-Node location will be available in the component. For example, if a plastic 

collapse mechanism corresponding to two hinges develops for an indeterminate beam, 

then there would be a pair of R-Nodes at the hinge locations since bending is dominant. 

The combined R-Node effective stress can be expressed as the arithmetic average of the 

pseudo-elastic R-Node stresses; i.e., 

Generalizing the foregoing expressions for N plastic hinges 

N 

L(Jnj 

(J = .!.=!....___ 
n N 

(3 .82) 

(3 .83) 

where CYnJ 's are the R-Node stresses and N is the number of R-Node locations in the 

component. Then, the limit load multipliers is given by 

(3 .84) 
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One Bar.:\forlel 

Tllickwa lled Pipe Subjecred 
ro l ntemal Pressure 

L11111 t-J'.l pe 
Disrnburion 

Figure 3.14: R-node bar model 
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Multiplier rna 

This multiplier depends on mL and m0 multipliers, and can be obtained as 

(Reinhardt and Seshadri, 2003): 

(3.85) 

The condition for the lower-boundedness of rna is discussed by Reinhardt and 

Seshadri (2003). Dividing both sides of Eq. (3.85) by the exact multiplier, we get 

(3 .86) 

Ra = l is the boundary between the upper bound ( Ra > 1 ) and lower bound 

(Ra < 1 ), as shown in Fig. 3.15. The expression under the root in Eq. (3 .86) encompasses 

four factors, which define the sign ofthe whole expression under the root (see Table 3.1) 
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Table 3.1: Sign analysis of the expression under the root in Eq. (3.86) 

0 J2-I J2+1 
RL ( -) (+) (+) (+) (+) 

(RL - 1)2 (+) (+) (+) (+) (+) 

(1 +J2 - RJ (+) (+) (+) (+) I (-) 

(RL - 1+J2) ( -) (-) (+) (+) (+) 

Total (+) (-) (+) (+) I (-) 

As it can be seen from Table 3.1, the ma limit load multiplier becomes imaginary 

for the following conditions: 

Since RL = m0 I mL ~ 0, the first expression above never occurs; therefore, the 

only case that causes ma to be imaginary is RL > J2 + 1 ;:::: 2.4 14 , as is the case for 

components with notches and cracks due to presence of peak stresses. 

concentration factor at the notch. Therefore, m0 I mL ~ 1 + J2 represents the threshold for 

pronounced notch effects. The region bounded by m0 (max) , l ~ m0 I mL ~ l + J2 and 

1 ~ m0 I m ~ 1 + J2 is designated as the" ma triangle" . 



3. A Review of Limit Load Analysis 103 

2.5.----------,-----------,------------, 

2.5 

Figure 3.15: Regions of lower and upper bounds of ma 
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Proof: The proof ofEq. (3.85) is given here. 

Mura' s lower bound limit load multiplier, m' = f(m 0
, mL), defined by Eq. (3.36) 

can be rewritten making use ofEq. (3 .80) as 

(I) 

Differentiating m' = f(m 0 , mL) respect to iteration variable, 1;;, fo llows the 

expressiOn 

dm' ( 8m' ) dm
0 

8m' 

dt; = 8m
0 

( =(, dt; + 8 - 1- d t; 

mL ( =(, 

In terms of finite difference, Eq. (II) can be expressed as: 

where 

{

!:im' = m' - ma 

!:imo = m o - ma 

/:im l- = mL - ma 

u m =-- u m +--A , 8m' I A 0 8m' 

8m0 ( =( , 8- 1-

(II) 

(ill) 

The limit load multiplier ma is assumed to be the estimated actual limit load 

(Seshadri and Mangalaramanan, 1997). 
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(Cont'd ... ) 

Therefore, 

Equation (IV) is a polynomial of second degree in rna , which can be shown in 

general formulation as 

where 

B ~ -Sm'( ::J' 
C ~ 4(m

0
) ' ( : : J 

Am~ + Bma + C = 0 (V) 

The parameters A, Band C can be calculated from the results of linear elastic FEA. 

m = a 2A 
(VI) 

Keeping in mind that the limit lower multiplies are positive, Eq. (VI) results in Eq. 

(3.85). When the expression under the root in Eq. (VI) becomes negative (i . e. , 

B 2 
- 4AC < 0) the solution of rna vanishes. 
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Multiplier m" 

Mura eta/. (1965) developed an extended lower bound theorem, in an attempt to 

develop an alternative approach to classical limit analysis. Based on "integral mean of 

yield criterion", Eq. (3.73), the Mura's lower bound multiplier is stated as an inequality, 

which can be expressed as 

m0 ~m+ f.u[JcsJ)+(¢0
)

2 ]dv (3.87) 
Vr 

Equation (3.87) can be rewritten as 

(3.88) 

A multiplier m" can be obtained from Eq. (3.88) as (Seshadri and lndermohan, 

2004) 

l+G 
(3.89) 

The parameter G evaluated acts as a convergence parameter, and is indicative of 

any deviation of statically admissible stress distributions from the limit state. That is, 

G ~ 0 as s ~ oo would correspond to the converged exact solution. G is calculated 

from following expression: 
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(3.90) 

Multiplier mp 

Seshadri and Indermohan (2004) showed that m" based on m~ need not be a lower 

bound. Therefore, they modified m" by introducing a parameter j3 and obtained the mp 

multiplier as 

mo 
m - I 

p - 1+f3G (3.91) 

Plotting multiplier mp for different values of j3 with respect to the iteration 

variable s, similar behavior will be achieved as presented in Fig. 3.16. As can be 

obtained from Fig. 3.16, mp is sensitive to the value of j3. The best estimation of the 

exact solution is achieved when j3 = j3R (where j3R is reference parameter and is as yet 

undefined), which also guarantee that mp $; m . 

The reference parameter j3R would be the lowest possible value of j3 that would 

generate mp(S) which satisfies following requirements: 
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(I) 0 > > m _ m _ mfJ fort;~ 0 

(II) 
dmfJ 

fort;~ 0 --~ 0 
dt; 

(3.92) 

(III) dmo ~ 0 
fort;~ 0 

dt; 

(IV) 0 m = mp =m at t; ~ t;L 

The last condition, (IV), represents the converged limit state, for which all the 

multipliers reach the exact solution. However, estimation of fJR is relevant, especially for 

components or structures that experience local plastic collapse, i. e., component with 

cracks or notches. 

m (exact) 

\ 
G~ O 

Iteration variable, c; 

Figure 3.16: Variation of mp with iteration variable for different value of f3 
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3.6 TWO BAR STRUCTURE 

3.6.1 Basic Expressions 

A simple configuration, a two-bar system, is used to explain the various limit load 

multipl iers and illustrate the elastic modulus adjustment procedure (EMAP). As shown in 

Fig. 3.17, the two-bar system is under the tensile load P ; therefore, the bars are subjected 

to uniaxial loading. The bar stresses and strains are determined by invoking equilibrium, 

strain-displacement and the stress-strain relationship. 

A, 8 
E, 
L, 

p 

Figure 3.17: Two-bar model 

From the equilibrium equation, the relationship between internal load in the bars 

(P1 and P2 in bars l and 2, respectively) and the external load (P) can be written as 
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(3.93) 

Also, using compatibility conditions, the relationship between the displacements 

ofthe bars is as 

(3.94) 

where 8 1 and 8 2 are displacements in bars 1 and 2, respectively. 

Solving Eqs. (3.93) and (3.94), the relation between internal load and the 

displacement is 

(3 .95) 

Equation (3.95) can be written as 

(3.96) 

Therefore, the corresponding stresses in the bars are as follow: 
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(J =~5 
I L 

I 

Applying Eqs. (3.94) and (3.95) into Eq.(3.93), we have 

Also, Eq. (3.98) can be rewritten in following form 

111 

(3.97) 

(3 .98) 

(3.99) 

Combining Eqs. (3.96), (3.98) and (3.99), the stress in each bar can be expressed 

as follows: 

£, 

a- - L, p 
I - A,£, A2E2 
--+ - -

L, L2 

£2 
L2 

0"2= p 
A,£, A2E2 --+ - -

L, L2 

(3.100) 
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If the material and geometric parameters are so chosen, such that cr1 is greater 

than cr 2 , then bar 1 is considered as the local bar. 

3.6.2 Exact Limit Load Solution 

Initial yielding occurs when the bar with maximum stress, say bar 1, reaches the 

yield strength of material. By increasing the load, the bar 2 reaches to the yield, the two-

bar system reaches to its limit state. Therefore, the required load corresponding to limit 

state will be 

(3.1 0 1) 

The corresponding limit load multiplier can be expressed as 

PL cry(A1 + A2 ) 
m = - = 

p p 
(3.102) 

3.6.3 Programming Method 

Lower bound solution 

The yield criterion in the bars can be written as 
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(3.1 03) 

Therefore, the lower bound limit load multiplier using programming method, can 

be obtained by maximizing limit load subjected to following conditions: 

Substituting Eq. (3.93) into Eq. (3.104) results in following expression: 

~ _,... <-<+a-
'-' y- - y 

AI 

P- P. 
- (J < __ I < +0' 

Y - A - Y 
2 

Also, Eq. (3.105) can be rewritten as 

~ - 1 ~ -- ~+l 
Ala-y 

Al p Al ~ 
- 1 ~-------~ +1 

A2 Ala-y A2 Ala-y 

(3.1 04) 

(3 .1 05) 

(3.1 06) 
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As illustrated in Fig. (3.17), a graphical solution can be obtained for this problem. 

Equation (3.106) represents a domain where equality signs are the boundaries of this 

domain. The maximum value of limit load in this domain is 

(3 .107) 

Therefore, the limit load multiplier can be obtained as 

(3.1 08) 

Equation (3.108) is the same as Eq. (3.102). 

Upper bound solution 

Applying the upper bound theorem, the energy dissipation balance can be 

expressed as 

(3.1 09) 

Equation (3 .1 09) can be rewritten in terms of strains as 

(3.1 10) 
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The limit load can be estimated by minimizing external load in Eq. (3.11 0) 

subjected to compatibility equation as 

Therefore, 

At limit state, the two bars concurrently reach the yield strength 

Making use ofEq. (3 .111), Eq. (3.113) can be expressed as: 

Equation (3.114) is plotted in Fig. (3.19), and can be rewritten as: 

if il > 0 

if il < 0 

The graphical upper bound approach is illustrated in Fig. 3.18. 

(3 .111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 
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p 

Figure 3.17: Programming method, lower bound solution 

p 

+ 1 

- 1 

Figure 3.18: Programming method, upper bound solution 



3. A Review of Limit Load Analysis 117 

Assuming the limit load is non-negative, the limit load multiplier will be the same 

as the exact solution in Eq. (3.1 02). The lower bound and upper bound results and the 

programming method yield to the same value of limit load. Therefore, they are considered 

as dual problems (Martin, 1975). It is worth noting that applying the programming 

methods to the complex problems are very difficult. 

3.6.4 Upper Bound and Lower Bound Limit Load Multipliers 

The classical upper bound limit load is obtained by equating the rate of work by 

external loads to the corresponding plastic dissipation energy. Applying Eq. (3. 72) for the 

two bar model, the classical upper bound limit load multiplier can be obtained as i. e., 

(3 .116) 

Applying Eq. (3.76) to the two-bar structure, the upper bound multiplier m~ can be 

written as 

(3.11 7) 

Applying Eq. (3.79), the limit load multiplier m~ for the two-bar structure can be 

expressed as 
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0 (Jy~ AILIE2 + ~L2El 
m2 = ~CYt2 (At~E2 ) + CYi (A2L2E t) 

(3.118) 

As discussed earlier, in the classical method of determining lower bound limit 

load, the maximum equivalent tress value is all that is needed from a statically 

admissible stress field , i. e., 

(3.119) 

Assuming CY1 > CY2 then CYmax = CY1 , and the classical lower bound multiplier can be 

determined as 

(3.120) 

The limit load multiplier m" can be estimated using Eq. (3 .89). The parameter G 

in Eq. (3.90) can be expressed for two-bar model as 

(3.121) 
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As discussed earlier, limit load multiplier rna depends on m L and m 0 I mL; 

therefore, for the two-bar structure, making usc of Eqs. (3.117) and (3 .120), the limit load 

multiplier rna can be obtained. Also, making u e Eqs. (3.36) and (3.120), the lower 

bound limit load multiplier m' for two-bar model can be obtained. 

Rewriting Eq. (3.93) in terms of stresses, following expression can be obtained: 

(3. 122) 

where A is the summation of the bars cro s sections, i.e., A = A1 + ~. 

(3.123) 

Substituting Eq. (3.1 00) into Eq. (3.123), 

(3.124) 
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The limit load is proportional to the external load, i.e., 

(3.125) 

Making use ofEqs. (3.124) and (3.125), the limit load can be obtained as 

(3.126) 

Plastic collapse is not dependent on statically indeterminate parameters, i. e., E1 , 

£ 2 , L1 and L2 . Therefore, two cases are considered next. 

Substituting into Eq. (3.126), we got 

(3.127) 

Here, PL = (A1 + A2 ) a-Y provided that JL1 + JL2 = l. From Eqs. (3. 1 24) and (3.125) 



3. A Review of Limit Load Analysis 121 

(3.128) 

t.e., CT1 = CT2 • This case would have to be regarded as trivial since the two-bar 

model would fail to generate unequal pseudo-elastic stresses. 

Case 2: A1 = ~ = Ao 

This case leads to JL1 = JL 2 = I I 2 . Substituting into Eq. (3 .126) 

(3.129) 

and 

(3.130) 

This means that the combined effective stress can be expres ed as the arithmetic 

average of the pseudo-elastic stresses. 

Finally, the limit load multiplier using R-Node concept can be obtained as 
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(3. 131) 

3.6.5 EMAP for the Two Bar Structure 

By assuming the material properties are the same for the bars, the stresses in the 

two bars introduced in Eq. (3.100) can be rewritten in as iterative form as 

(3.132) 

ln the first iteration ( i = l ), which is the first elastic solution without any elastic 

modulus modification, the following expres ion is valid : 

(3.133) 

Therefore, submitting Eq. (3.133) into Eq. (3. 132), the values of stresses a-:=' and 

a-~= ' can be calculated. 

In the second iteration ( i = 2 ), the elastic modulus of the bars are modified using 

following expression 



3. A Review of Limit Load Analysis 123 

Ei=2 =( (}"ref )q £ i=l 
I 1=1 I a-, 

(3.134) 

£1=2 =( (}"ref )q £ 1=1 
2 1=1 2 

(}"2 

The reference stress for the two-bar system can be evaluated using Eq. (3.67) as 

(3.135) 

Similar to the first iteration, a-: =
2 and a-~=2 can be calculated by applying Eq. 

(3.134) into Eq. (3.132). 

At the m111 iteration ( i = m ), the following expression is valid between elastic 

modulus of two subsequent iterations 

( 

l =m- 1 Jq 
Ei=m = (}"ref £ i =m- l 

I l =m- 1 I a-, 
(3.136) 

( 

l =m- 1 Jq 
Ei=m = (}"ref £ i=m- l 

2 i=m- l 2 
(}"2 

Consequently, a-: =m and a-~=m can be calculated using Eq. (3.136). The procedure 

is repeated until suitable convergence i achieved. 
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3.6.6 Numerical Example 

Consider a two-bar system subjected to external load of P= 15 kN with material 

properties and geometry configurations given in Table 1. 

Table 3.2: Geometry and material properties for two-bar system 

Parameters Bar 1 Bar2 

A (Area) 40mm 60mm 

L (Length) 80mm 150 mm 

E (Elastic modulus) 200 GPa 200 GPa 

aY (Yield strength) 250 MPa 250 MPa 

Applying Eq. (3.1 00), the stresses in the bars can be calculated as 

a 1 =208.33 MPa 

The limit load solution is acquired using the exact solution in Eq. (3 .1 0 I) as 

Therefore, the corresponding exact limit load multiplier can be obtained as 

124 
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P. 
m exact = ; = 1.6667 

Different upper bounds and lower bounds form linear elastic analysis are compared in 

Table. 3.3. 

Table 3.3: Upper bound and Lower bound limit load multipliers (initial clastic analysis) 

m £xact m" m' 

1.7464 1.7464 1.6667 1.4521 1.3098 1.2000 1.1202 

The variation of upper bound and lower bound limit load multipliers with 

successive iterations for the two-bar system is plotted in Figs. (3.20) and (3.21) for 

different values of elastic modulus adjustment index, q. From Figs. (3.20) and (3.21), it 

can be seen that the limit load multiplier converge to the exact limit load. This indicates 

that by applying a proper value for parameter q, the convergence to the exact solution will 

be faster. 

Also, variation of parameter G with linear elastic iteration i shown in Fig. 3.22. 

As it can be seen in Fig. 3.22, at the converged state G=O; therefore, thi parameter can be 

used as the criterion to assess the convergence of solution obtained from EMAP. 
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Figure 3.22: Variation of parameter G with linear elastic iterations, q=O.S 



CHAPTER4 

CONVERGENCEOFEMAP 

4.1 INTRODUCTION 

Elastic modulus adjustment procedures (EMAP) have been employed to 

determine limit loads of pressure components. On the basis of linear elastic Finite 

Element Analysis (FEA) with non-hardening elastic properties, i.e., by specifying spatial 

variations in the elastic modulus, numerous sets of statically admissible and kinematically 

admissible distributions can be generated, and both lower and upper bounds on limit loads 

can be obtained. Some methods such as the classical, R-Node and the ma methods provide 

limit loads on the basis of partly-converged distributions, whereas the accuracy of linear 

matching procedures rely on fully converged distributions. 

By plotting upper and lower bound limit load multipliers obtained from EMAP 

versus linear elastic iteration for a given component, Seshadri and Mangalaramanan 
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(1997) reported different trends when using constant q in Eq. (3.76). Therefore, they 

classified components and structures into three different categories: Class I, II and III. 

Class I category are the components or structures that are characterized by monotonic 

convergent behavior in lower and upper bound limit load multipliers when using EMAP. 

Thick walled cylinder and indeterminate beam are example of this class of problem. In 

Class II problems, the magnitude of maximum stress in a body is not consistently 

decreasing during successive elastic iterations; therefore, the limit load multiplier that is 

dependent on the maximum stress (i.e. , classical lower bound limit load multiplier, mL) 

has the problem of converging to the exact limit load solution. This behavior has been 

observed in thin structures without a re-entrant corner such as spherical pressure vessel 

with a cylindrical nozzle and a compact tension specimen. In the Class III problems, the 

non-convergence can be seen in both upper and lower bound limit load multipliers. A 

rectangular plate with nonsymmetric boundary conditions is an example of this class of 

problems. Accordingly, for Classes II and III behavior, Seshadri and Mangalaramanan 

(1997) suggested to use 0 < q < 1 (for instance 0.5 or 0.25) to obtain the behavior similar 

to Class I, resulting in a more stable prediction of the limit load multipliers. Although 

using the small value of q results in a stable solution, it considerably increases the number 

of linear elastic iterations required to reach the convergence state. In this Chapter, a 

criterion for establishing the degree of convergence of EMAP is developed, and a simple 

procedure for achieving improved convergence is described. The procedure is applied to 

some practical pressure component configurations. 
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4.2 THEORY 

For the sake of discussion, consider a pressure component that is subjected to a 

mechanical load. In EMAP for limit analysis, the objective is to make all elements in the 

FEA involved in plastic collapse at the same level ofstress, O"ref· As illustrated in Fig. 4.1 , 

in order to bring point A (which represents the equivalent stress and strain in first 

iteration) to the reference stress level, q would be dependent on the local constraint. 

Several constraints can be categorized by using the elastic modulus adjustment parameter, 

q, using general EMAP expression as 

(4.1) 

Depending on the geometry and loading conditions, the value of q could be 

specified as an initial guess. For example, q equal to 1 and 2 are suitable for plane strain 

and plane stress, respectively. To avoid this guess work, we assess the value of q by 

equating the two shaded region in Fig. 4.2. The idea comes from Molski and Glinka 

(1981) (known as the ESED concept), the procedure for obtaining q express10n 1s 

discussed here. By equating the two shaded areas in Fig. 4.2, we have: 

(4.2) 
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Therefore, 

(4.3) 

()" ()" 

Substituting &eq =___!!!!_ and &0 =____:::[__ into Eq. ( 4.3), &ref can be obtained as: 
E; E; 

(4.4) 

From Fig. 4.2, &ref can be written as 

(4.5) 

From Eqs. ( 4.4) and ( 4.5), the relation between E i+I and E; can be obtained as: 

(4.6) 

Comparing Eqs. ( 4.1) and ( 4.6), the following expression can be obtained 
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[ 

(J"ref ]q 
(J"eq 

(4.7) 

The final equation can be expressed as: 

(4.8) 
q = In( O"ref l 

(J"eq 

By using the last expression there is no need to predefine q, which for each 

element in different iterations will be calculated from the respective elastic FEA solution. 

a 

I 
I 

O<q<l 

II\ 
I \ 

:~ 
It'D .., 
I"! 

q=l 
l<q<2 

q=2 

Figure 4.1: Stress redistribution regions 

q>2 
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a 
A acq - - - - -

~ U linear· clastic 

', ~ U clastic plastic 
' 

' ' ' 

Figure 4.2: Graphical representation of ESED concept 

4.3. NUMERICAL EXAMPLES 

4.3.1 Indeterminate Beam (Plane Stress) 

An indeterminate beam with one end simply supported and the other clamped is 

modeled (Fig. 4.3). The beam length is L=508 rnrn (20 in), the width is W=25.4 mm (1 

in). A uniform distributed load 0.1724 MPa (25 psi) is applied with plane stress condition. 

The material is assumed to be elastic-perfectly plastic. The modulus of elasticity is 

206,850 MPa (30E6 psi), and the yield strength is 206.85 MPa (30E3 psi). The variation 

of the limit load multipliers, predicted by different values of q, with iterations are 

presented in Figs. 4.4-4.7. Likewise, the variation in the value of G parameters G~ is 

presented in Fig. 4.8 (where Gu , G? and G~ are based on mu , m~ and 
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respectively). It can be seen that a non-zero of parameter G indicates partially converged 

state. Comparing to the results obtained using constant q, variable q demonstrates 

improved convergence and prediction of limit load. Relatively low value of q (Fig. 4-6) 

causes stable results; however, the convergence is very slow. On the other hand, choosing 

q between 1 and 2 (Fig. 4.4 and Fig. 4-5,) helps fast convergence but increase the amount 

of numerical difficulties before convergence. Therefore, variable q approach not only 

avoids the numerical difficulties when using EMAP but also helps achieving fast 

convergence. 

t t t t t t t t t t ~w ~~ 
L 

(a) 

(b) 

Figure 4.3: Indeterminate beam: (a) Geometry and dimensions, (b) Finite element mesh 
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Figure 4.5: Variation of limit load multipliers for indeterminate beam, q= l for all 

elements 
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Figure 4.8: Variation of different values of parameter G for indeterminate beam 

(variable q) 

4.3.2 Compact Tension (CT) Specimen 

A compact tension specimen shown in Fig. 4.9 (a) with a width W= lOO mm, 

height H= l 25 mm, thickness t=3 mm and crack length a=46 mm is subjected to a tensile 

load P = 10 KN. The material properties are: elastic modulus £ =211 GPa and yield 

strength a-Y =250 MPa, with a Poisson' s ratio of v =0.3. Due to symmetry in geometry 

and loading, only a half of the plate is modeled with plane stress condition. The plate is 

modeled using eight noded isoparametric quadrilateral elements, with singular elements 

around the crack-tip. A typical finite element mesh is presented in Fig. 4.9 (b). Symmetry 
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boundary condition is used ahead if the crack tip and in order to avoid rigid body motion 

the node at the crack tip is fixed. 

p 

a 

w 

p 

(a) (b) 

Figure 4.9: Compact tension (CT) specimen: (a) Geometry and dimensions, (b) Finite 

element mesh 

The variation of limit load multipliers during successive iterations predicated by 

different values of q are plotted in Figs. 4.10-4.12. The difference between m~ and m~ is 

due to local plastic regions in the body. The variation in the value of G~ (estimated G 

based on the upper limit load multiplier m~ ) is shown in Fig. 4.13. As can be inferred 

from Fig. 4.13, the value of G~ decreases during the successive iterations, reaching a 

converged state. 
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4.3.3 Thick Walled Cylinder (Plane Strain) 

The thick walled cylinder (Fig. 4.14) with inside radius of R =60 mm and 

thickness t=120 mm is modeled. An internal pressure of 50 MPa is applied. The material 

is assumed to be elastic-perfectly plastic. Due to symmetry only a quarter of the cylinder 

is modeled and symmetry boundary conditions are applied on the edges. The modulus of 

elasticity is specified as 200 GPa and the yield strength is assumed to be 300 MPa. The 

variation of limit load multipliers with iterations using the improved convergence scheme 

is shown in Fig. 4.15. Likewise, the variation in the value of G~ is presented in Fig. 4.16. 

It can be seen that the solution converge within four iteration, i.e., G~ is zero. 

(a) (b) 

Figure 4.14: Thick walled cylinder: (a) Geometry and dimensions, (b) Finite element 

mesh (a quarter model) 
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10 

Figure 4.15: Variation of limit load multipliers for thick walled cylinder (variable q) 
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4.3.4 Welded-In Flat Head (Axisymmetric) 

A welded-in flat head configuration (Fig. 4.17) with the cylinder radius R=200 

mm, thickness tc =21.5 mm, flat head thickness th =43 mm, overall length L =243 mm, 

and with weld groove of r1 = 10 mm is considered. The material is same as for the thick 

walled cylinder. An internal pressure of 10 MPa is applied. The variation of limit load 

multipliers with iterations predicted by this method is the presented in Fig. 4.18, and 

variations ofG~ by linear elastic iteration is presented in Fig. 4.19. 

(a) (b) 

Figure 4.17: Welded-In flat head: (a) Geometry and dimensions, (b) Finite element mesh 
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Figure 4.18: Variation of limit load multipliers for welded-in flat head (variable q) 
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Figure 4.19: Variation of G~ for welded-in flat head (variable q) 
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4.3.5 Plate with Multiple Cracks 

A plate with multiple cracks (Fig. 4.20) has one horizontal crack (length 2a=20 

mm) at the center and four cracks inclined at 45° (length 2b=21.2 mm) symmetrically 

located on both sides of the horizontal and vertical lines of symmetry. The crack tips are 

spread vertically with c=20 mm and with horizontally d=40 mm. The plate has a width 

W= 100 mm and height H=200 mm, and is loaded by a tensile stress of CT = l 00 MPa. The 

material properties are the same as that for the compact tension specimen. Due to 

symmetry only one-quarter of the plate is modeled. 

The multipliers predicted by various methods (Direct EMAP) versus iterations are 

plotted in Fig. 4.21. Similarly, the variation in the value of G~ is presented in Fig. 4.22. 

Figure 4.21 suggests that most of the multipliers converge to the inelastic FEA value at 

the last iteration. Although the parameter G~ is not zero at the last iteration, referring to 

Fig. 4.22, it tends to stabilize in the last iterations. This implies that for assessing the 

convergence of a solution the results need to stabilize during last iterations. 
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(a) (b) 

Figure 4.20: Plate with multiple cracks: (a) Geometry and dimensions (b) Finite 

element mesh (a quarter model, top right) 

2.5.---------,---------,-------,-------.-------, 

<f) 1.5 
.~ ~~~~~~~~~~~~~~~~~~~~ f 1 1~.~- -- -~ ... -~~-·~:.c.::~.Y-~ ~~ 

0.5 : --o-- ma 
--~ --o -- mL 

-+- Inelastic 

OL---~5---~1~0----1~5~--~20~--~25 

Iterations 

Figure 4.21: Variation of limit load multipliers for plate with multiple cracks (variable q) 
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Figure 4.22: Variation of G~ for plate with multiple cracks (variable q) 

4.3.5 Axial Semi-Elliptical (Inner) Surface Cracked Pipe 

A cylinder with two inner axial semi-elliptical surface cracks located in the same 

plane (Fig. 4.23) subjected to internal pressure of 150 MPa is considered in here. The 

inner radius of the cylinder is Rlt=2, the crack depth is a/t=0.4 and the half crack length is 

c/t=0.5. The material is same as for the thick walled cylinder. The three dimensional FEA 

using 20-node iso-parametric brick element is used to model a 118 of the cylinder (due to 

the axisymmetric condition). Also, to simulate the crack tip the singular element is 

applied. The variation of limit load multipliers respect to all iterations predicted by this 

method is the presented in Fig. 4.24. The variations of G~ by EMAP is presented in Fig. 

4.25. With regards to Fig. 4.25, the parameter G~ tends to reach to zero during the 

successive iterations (convergence). 
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p R t 

a 
I 

i f 
(a) 

(b) 

Figure 4.23: Axial semi-elliptical (inner) surface cracked pipe: (a) Geometry and 

dimensions, (b) Finite element mesh (one eighth of the component is modeled) 



4. Convergence of EMAP 

0.8.-------,.------------,r-------,.------------, 

......._ m~ 
-e- mg 
.......... mu 
--0-· moe 
·-o ·· mL 
-+- Inelastic 

~~L-------~5----------~10~---------1~5--------~20 

Iterations 

149 

Figure 4.24: Variation of limit load multipliers for axial semi-elliptical surface cracked 

pipe (variable q) 
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Figure 4.25: Variation of G~ for axial semi-elliptical surface cracked pipe (variable q) 
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4.4 CLOSURE 

The elastic modulus adjustment procedure has been applied to several well-known 

component configurations under different loading conditions and the results are compared 

with exact (if applicable) or nonlinear FEA. An enhancement to the conventional EMAP 

procedure is carried out by the introduction of a simple expression that varies the elastic 

modulus adjustment parameter, q. Comparison of the results from present work (variable 

q approach) with constant q demonstrates improved convergence and prediction of limit 

load. Incorporation of the proposed method is straightforward and offers an attractive 

alternate to the elastic-plastic analysis due to the achievement of better convergence. 

Varying the q has also permitted simulation of the "near incompressible" state by 

increased iterations without encountering numerical difficulty. This method also 

represents a theoretical approach that prevents arbitrary assumptions about the value for q 

as is conventionally done in EMAP. The parameter G evaluated acts as a convergence 

criterion, and is indicative of the deviation of any statically admissible stress distributions 

from the limit state. Lower the value of G the better is the estimate of the limit load, i.e., 

G = 0 would correspond to the converged solution. This method should enhance and 

provide some closure to the implementation of EMAP based on linear codes of the 

commercially available fmite element software relating to the analysis of plasticity 

models. 



CHAPTERS 

REFERENCE VOLUME APPROACH 

5.1 INTRODUCTION 

It is well known that at limit load state of a component/stmcture, there are some 

regions that do not participate in inelastic action (dead volume) and may remain rigid or 

elastic. On the other hand, the remaining volumes are directly active in plastic action 

(reference volume) are the only regions that carry the external loads at the limit state. As 

schematically presented in Fig. 5.1, plasticity spread at the collapse mechanism of an 

indeterminate beam that is built-in on one end, and simply supported at the other and 

subjected to a uniformly distributed load is a good example. The shaded regions in Fig. 

5.1 represent the reference volume where the two hinges at collap e located at the e 

regions. The main objective of this Chapter is to estimate the limit load and the 

corresponding volume that participates in inelastic action (reference volume) using 
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EMAP. In this Chapter, variable q approach discussed in Chapter 4 is used in all the 

numerical examples. 

p 

Figure 5.1: Schematically plasticity spread at collapse for an indeterminate beam 

5.2 THEORY 

In the "Reference Volume Approach", it is assumed that the plastic collapse 

occurs over a localized region of the mechanical component or structure. Clearly, m~ will 

be significantly overestimated if it is based on total volume, Vr . The concept of reference 

volume has been introduced to identify the "kinematically active" region of the 

component or structure that participates in plastic action. 

Consider a component subjected to arbitrary loading condition, Fig. 5.2. The 

component is divided into two regions: ( 1) reference volume ( VR ), which is kinematically 

active volume; and (2) the dead zone ( V0 ). It means that some parts of the component 

take part in plastic action, and the plastic flow does not occur in the remaining part. If 

Vr is the total volume thus, 
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(5.1) 

where VR is the reference volume, and V0 IS the volume of the dead zone m the 

component. 

Total Volume 

VT 

Dead Volume 

Vo 

Figure 5.2: Total, reference and dead volumes 

Therefore, the multiplier m~, Eq. (3.79), can be written in terms of the reference 

volume and the dead zone volume as 

(5.2) 
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If we assume that the dead zone has no plastic flow occurring, then Eq. (5.2) can 

be simplified as 

(5.3) 

The magnitude of the upper bound multiplier, mg, would therefore depend on the 

sub-volume, V,, , where 

(5.4) 

In order to identify the reference volume VR and multiplier mg(VR), two 

procedures are suggested as follows: 

Procedure 1: The stress distribution within the elements obtained from finite 

element analysis is sorted in descending order, 1. e., a-~~l > a-~l > a-~:l > ... . > a-!;l . 

Corresponding to the stresses a-~~l , a-!:l , a-~~l , . ... , a-~;l are the volumes !lV(l ), !1V (2) , 

/1V<3l , .... , !lV<Nl, respectively. Here, v;, is the sub-volume that is the volume 

summations started from the element with the highest equivalent stress to 1J 1
h element. 
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For the maximum stress element of volume ~v{l> , m~ increase with " i ". On the 

other hand, m~ evaluated on the basis of the total volume would decrease with increasing 

in iteration variable "i ".Therefore, for some volume VR (where ~~ < VR < Vr 

corresponding to r; = r; • ), the multiplier m~ would be invariant, i. c., (m~ ) 1 = (m~) 11 • The 

schematic of variation of m~ (V,;) with the iteration variable (i) is shown in Fig. 5.3, 

where V,; = V, I Vr . 

Procedure 2: Similar to the procedure 1, the stress sequence of the elements 

obtained from FEA is sorted in descending order. Next, the variation of multiplier m~ 

with each subsequent iterations, m~ (i), will plotted against the volume ratio, V,;, as 

illustrated schematically in Fig. 5.4. The subsequent iterations will eventually intersect at 

a specific location, V:, = ~· , showing that the multiplier m~ would be invariant, i. e., 

(m~ )1 = (m~ ) 11 • 
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Figure 5.3: Variation of m~ with elastic iterations 
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5.3 NUMERICAL EXAMPLES 

5.3.1 Thick-waDed cylinder 

One of the corollaries discussed by Kachanov (1971) in limit load analysis is that 

adding material to a component or structure cannot reduce the limit load. This statement 

is clarified by Kachanov (1971) using a simple example involving a thick walled cylinder 

and a square prism with a circular hole that are subjected to a uniform internal pressure at 

the inner bore (see Fig. 5.5). 

2b 

Figure 5.5: Cylinder and square prism with a circular hole 

The stresses in the shaded area are assumed to be zero; therefore, these regions do 

not participate in inelastic action (dead volume). The relationship between the limit load 

multipliers of the cylinder and square can be written as (Kachanov, 1971 ): 
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(5.5) 

To demonstrate the concept, consider the square prism shown in Fig. 5.5 with 

a=60 mm, b= 180 mm that is subjected to an internal pressure of P= 100 MPa. The 

material properties are: elastic modulus E= 200 GPa, yield strength ay=250 MPa and 

Poisson's ratio of v =0.3. Due to symmetry of geometry and loading only a quarter of the 

square is modeled using 8-noded isoparametric quadrilateral elements. The contour of the 

plastic region using inelastic FEA is shown in Fig. 5.6. It can be seen from Fig. 5.6, that 

the reference volume is almost equal to the volume of the cylinder, for the same internal 

radius and external radius of b= 180 mm. Therefore, the reference volume for this 

particular problem is 

The limit load multiplier is given by: 

2 (]" 
m = r;; _ Y ln(b / a) = 3.171 

v3 P 

(5.6) 

(5.7) 

Using the Reference Volume Approach, it is possible to find the active volume, 

and the related multipliers, as described before in procedure 1 and procedure 2. Fig. 5.7 
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represents procedure I, in which variation of m~ respect to V, for different iterations is 

plotted. It can be seen from the figure that almost all the curves (except the first linear 

elastic solution) intersect at a point ( V, =0.725), which repre ents the reference volume. 

The variation of m~(V,) with elastic iterations is presented in Fig. 5.8. It can be seen 

from the figure, that at V, =0.725, the value of m~ is almost constant during successive 

iterations and is a good estimate of the limit load. 

Comparing the results, all three methods (analytical, inelastic FEA and Reference 

Volume Approach) give almost the same values for the limit load and reference volume. 

Also, in the same manner the other corollaries were discussed by Kachanov (1971), e. g., 

"removal of material cannot increase the limit load", can be verified by the proposed 

method. 

Figure 5.6: Plasticity distribution at limit load sate for square prism with 

a hole (a quarter model) 
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Figure 5.7: Variation of m~ versus ~ for thick-walled cylinder, Reference Volume 

Approach (Procedure 1) 
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Figure 5.8: Variation of m~ with elastic iterations for thick-walled cylinder, 

Reference Volume Approach (Procedure 2) 
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5.3.2 Indeterminate Beam 

Using the Reference Volume Approach, it is possible to find the active volume, 

and the related multipliers, as described before in procedures 1 and 2. An indeterminate 

beam subjected to distributed uniform load is modeled. Using Reference Volume 

Approach procedure 1, the variation of m~(17) with elastic iterations is presented in Fig. 

5.9. As can be seen from the figure, at V, =0.281 the value of m~ is almost constant 

during the successive iterations leading to a good estimate of the exact solution. Using 

Reference Volume Approach procedure 2, the variation of m~ with respect to V, for 

different iterations is plotted in Fig. 5.1 0. The volume ratio of V, =0.281 represents the 

active volume of the component, and the corresponding limit load multiplier, m~, which 

is a good approximation of the limit load multiplier can be obtained. 
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Figure 5.9: Variation of m~ with elastic iterations for indeterminate beam, Reference 

Volume Approach (Procedure I) 
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Figure 5.10: Variation of m~ versus V, for indeterminate beam, Reference Volume 

Approach (Procedure2) 



5. Reference Volume Approach 163 

5.3.3 Compact Tension (CT) Specimen 

The variation of m~(ry) with elastic iterations is presented in Fig. 5.11. It can be 

seen from the figure, that at V, =0.12, the value of m~ is almo t con tant during 

successive iterations and is a good estimate of the limit load. Figure 5.12 represent 

procedure 2, in which variation of m~ respect to V, for different iterations is plotted. It 

can be seen from the figure that all the curves intersect at a point ( V, =0.12) which 

represents the reference volume. 

~~--------~2--------~3--------~--------~ 

Iterations. i 

Figure 5.11: Variation of m~ with elastic iterations for compact tension ( T) specimen, 

Reference Volume Approach (Procedure 1) 
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Figure 5.12: Variation of mg versus V, for compact tension (CT) specimen, Reference 

Volume Approach (Procedure 2) 

5.3.4 Plate with Multiple Cracks 

A plate with multiple cracks is modeled next. The variation of mg(1]) with elastic 

iterations is pre ented in Fig. 5.13 procedure 1). As can be seen from the figure, at 

V, =0.06 the value of mg is almost constant during the succe sive iteration leading to a 

good estimate of the limit load. Using procedure 2, the variation of mg with respect to V, 

for different iterations is plotted in Fig. 5. 14. All curves intersect at V, =0.06 which 

represents the active volume of the component. Again, by calculating the upper bound 

multiplier, m~, a good approximation of the limit load multiplier can be obtained. 
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Figure 5.13: Variation of m~ with elastic iterations for plate with multiple cracks, 
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Figure 5.14: Variation of m~ versus V,, for plate with multiple cracks, Reference 

Volume Approach (Procedure 2) 
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5.3.5 Axial Semi-elliptical (Inner) Surface Cracks (3D) 

A cylinder with two inner axial emi-elliptical surface cracks located in the same 

plane subjected to an internal pressure of 150 MPa is considered here. The variation of 

m~(ry) with ela tic iterations is presented in Fig. 5. 15 by applying the procedure l. As 

can be seen from the figure, at ~ =0.93 the value of m~ is almost constant during the 

successive iterations leading to a good estimate of the limit load. Using the procedure 2, 

the variation of m~ with respect to ~ for different iteration number is plotted in Fig. 

5.16. All curves (except the first linear elastic solution) intersect at a specific point 

( ~ =0.93), representative of the active volume of the component. Again, by calculating 

the upper bound multiplier, m~ , a good approximation of the limit load multiplier is 

obtained. The intersection point for different numbers of iterations is crisp for iteration 

beyond the first. 

Table 5.1 is a comparison of relative computational times for various component 

analyses (all the times are in seconds). It can be seen that the direct EMAP and Reference 

Volume Methods represent savings in time. The main advantage of the direct EMAP and 

the Reference Volume Method is that they are independent verification methods. 
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Table 5.1: Comparison of Computational Time (Seconds) 

Reference 
Inelastic FEA* DirectEMAP 

Component Volume 
(s) 

Method (s) 
(s) 

Compact Tension 
10 iteration : 45 24 44 

Specimen (2D) 

Multiple Cracks (2D) 10 iterations: 47 23 65 

Axial Semi-Elliptical 
10 iterations: 8375 4 186 51453 

Surface rack (3D) 

* Using automatic time stepping 

0.8 

0.31L_ _____ ___.J_2 - -----...1..3 _____ ___J4 

Iterations. i 

Figure 5.15: Variation of mg with elastic iterations for two axial semi elliptical surface 

cracks, Reference Volume Approach (Procedure I) 
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Figure 5.16: Variation of m~ versus V, for two axial semi elliptical surface cracks, 

Reference Volume Approach (Procedure 2) 

5.4 OPTIMUM LIMIT LOAD DESIGN 

168 

The ideal condition in the limit state is when the full plastification occurs in a 

given component (Zyczkowski, 1981), which may be unachievable in reality. Therefore, 

the first step in optimal design is to distinguish the reference volume and dead volumes 

in the component or structure. By removing the dead volumes or specifying the material 

of the higher strength in reference volume regions, an optimal solution may be achieved. 

Many investigations have been carried out in optimal design in plasticity that 

utilize the cost of material, cost of machining and plastic forming (Szczepinski and 
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Szlagowski, 1990). Drucker and Shield ( 1957) proposed a criterion ba ed on the classical 

upper bound limit load theory to identify a minimum volume of a body made of 

homogeneous material that is able to carry the prescribed load. The optimal criterion 

suggested by Drucker and Shield ( 1957) has been applied by different researchers on 

different components or structures such as beams, frames, plates, shell and disks (more 

details are given in Save and Prager, 1985). However, Szczepinski and Szlagowski 

(1990) concluded that for a complex geometries finding the optimal solution that meets 

exactly the criteria uggested by Drucker and Shield (1957) is very difficult or ometimcs 

impossible. Therefore, attempts have been made to find the optimal design ba ed on other 

methods for instance mathematical programming (Foulkes, 1955; yras, 1983; Zavelani, 

1973), boundary perturbation method (Bochenek et a/. , 1983 and 1994; Egner, 2000) and 

inelastic finite element analysis (Dems and Mr6z, 1978; Capsoni and Corradi, 1997). 

Applying the mathematical programming or boundary perturbation method for complex 

geometry and boundary conditions is very difficult from a mathematical standpoint view. 

Inelastic finite element analysis is broadly used for limit design; however, it can often be 

complicated, time consuming and expensive. As a result, the development of reasonably 

accurate and independent robust methods based on linear elastic solutions can be useful 

from a design point of view. 

In this section, a study of optimum design of several practical configurations using 

the Reference Volume Approach and inelastic FEA is carried out. The limit loads and 

reference volumes are predicted by various methods for elastic-perfectly plastic materials 

obeying von-Mises criterion. 
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Projections on plates, bars and tubes are often used as a means of transmitting 

axial load between two components, e.g. T -shapes at bars, bolted joints, shouldered 

plates/shafts/ tubes , connecting collars , lifting lugs, turbine blade roots and many other 

geometric shapes with similar features. For remote loading conditions, the collapse 

mechanism is usually due to net section collapse at the weaker bar/plate/tube. However, 

when the load or the reaction of the loading is applied at the shoulders or such "loaded 

projections", the mechanism of failure may vary from shear failure in the head to net 

section collapse at the shank for different combinations of geometries configurations. 

Therefore, optimum design of such components at limit load state has been an attractive 

method for many researchers. 

Consider an axisymmetric element subjected to a tensile force acting downwards 

(Fig. 5 .17), where the maximum value of the tensile load causes stresses equal to the yield 

strength of the component in the bar. The geometry of the component is described by the 

shank length, L, the shank diameter, 2a, the bead radius, b, and angle of inclination of the 

shoulder surface, e. 
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Figure 5.17: Axisymmetric shank and head component 

The purpose of this example is to study the behavior of the component for 

different values of the external head radius, b, at the limit load state. The component is 

modeled with the hank bar radius of 2a= 160 mm, length of L=400 mm and B=n/2 with 

the material properties of £=70.3 GPa, ay=89.6 MPa and v =0.3. Due to the symmetry in 

geometry and loading, only half of the component is modeled. The limit load multipliers 

based on cia ical lower bound and upper bound are given by Szczepin ki ( 1972), i. e., 

2cr 
Lower bound multiplier : m L = __ Y ln(b I a) 

p 

Upper bound multiplier: mu = ;;Y .J b2 
- a 2 

...;3aP 

(5.8) 

(5.9) 
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Applying the Reference Volume Approach and inelastic FEA, the variation of the 

limit load multiplier with normalized reference volume for different bla ratios are 

presented in Figs. 5.18 and 5.19, respectively. Referring to these two figures, when 

bla<l.423 the limit load and reference volume increases due to increase in the magnitude 

of bla. In contrast, for bla> 1.423 the limit load becomes constant (net section collapse in 

the bar) and the reference volume decreases for an increasing of bla. At point bla=1.423, 

the collapse mechanism changes from collapse due to the head shear to net section 

collapse in the bar. This point can be considered as the optimum design condition where 

the reference volume reaches to its maximum value, and the safety factor has its highest 

magnitude. To better understand these two collapse mechanisms, the plastic distributions 

at limit load state for different range of bla using inelastic FEA are presented in Fig. 5.20. 

The value of the optimum values of b/a and corresponding limit load multipliers 

estimated from inelastic FEA and analytical procedurea are reported by Szczepinski and 

Szlagowski (1990) (in which the limit load solution based on upper bound method is 

derived based on Tresca; however, to enable consistency in all results, the upper bound 

limit load is obtained based on the von-Mises criterion and by using the procedure 

proposed by Szczepinski and Szlagowski (1990): see Table 5.2. 
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Figure 5.18: Variation of limit load multipliers versus b/a ratio, fJ=n/2 
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b/a=1.2 b/a=1.3 b/a=1.423 b/a=1.6 b/a=2 

Figure 5.20: Plastic distributions at limit load state for different values of b/a, B=n/2 

Table 5.2: Comparison of optimum (bla), B=n/2 

Inelastic FEA Szczepinski and Szlagowski , ( 1990) Present study 

lower bound method : e0
·
5 ::::: 1.648 

(b/a)opt 1.423 1.423 

upper bound method : J7 / 2 ::::: 1.322 

As a typical example for bla= l.6 the variation of limit load multipliers during 

successive iterations for direct EMAP is plotted in Fig. 5.2 1. Using the Reference Volume 

Approach, it i pos ible to find the active volume, and the related multipliers, as described 
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before in procedure 1 and procedure 2. The variation of m~ (ry) with elastic iterations is 

presented in Fig. 5.22. As it can be seen from the figure, at V, =0.615 the value of m~ is 

almost constant during successive iterations, and is a good estimate of the exact solution. 

Fig. 5.23 represents procedure 2, in which variation of m~ with respect to V, for different 

iterations is plotted. It can be seen from the figure that all the curves intersect at a point 

V, =0.615, which represents the reference volume. 
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Figure 5.21: Variation of limit load multipliers for bla=I.6, 8=rr/2 
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Figure 5.22: Variation of m~ with elastic iterations for b/a=l .6, Reference Volume 

Approach (Procedure 1) 
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Figure 5.23: Variation of mg versus V, for bla=1.6, Reference Volume Approach 

(Procedure 2) 
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The proposed procedures may also be used for plastic optimum design of conical 

heads. Figures 5.24 and 5.25 show the variation of the limit load multiplier and reference 

volume ratio versus bla using Reference Volume Method, and inelastic FEA, for a skew 

angle of B=n/3.The same material properties have been used as for the semispherical 

head, Fig. 5.20. The plastic distributions at the limit load state for different values of bla 

using inelastic FEA are presented in Fig. 5.26. 
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Figure 5.24: Variation of limit load multipliers versus bla ratio, B=rr/3 
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Figure 5.26: Plastic distributions at limit load state for different values of bla , (}=n/3 



5. Reference Volume Approach 179 

5.5 CLOSURE 

The Reference Volume Method, which enables the identification of 

"kinematically active" regions in a component, is a useful method for estimating the 

improved limit loads. In comparison with the conventional inelastic FEA, good 

agreement is observed from the results. Moreover, the Reference Volume Approach can 

be applied to study the optimum design at limit load state. 



CHAPTER6 

LOCAL LIMIT LOAD ANALYSIS 

6.1 INTRODUCTION 

The statically admissible stress distributions obtained from EMAP may not 

sometimes converge to a limit type of distribution even after several iterations. In this 

Chapter, a method is proposed based on the determination of the m P multiplier (Seshadri, 

and Indermohan, 2004) in conjunction with the choice of an appropriate reference 

volume, which would enable convergence to the exact limit solution of a given 

component or structure. 

6.2 THEORY 

In Chapter 5, reference volume concept was introduced to identify kinematically 

active and dead zones in the component or structure. Using the kinematically active 

volume, limit load analysis would be more accurate. 
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The multiplier mfl, which is calculated from entire stress distribution in a 

component, is determined by evaluating a reference parameter f3R. However, estimation 

of f3R sometimes may be difficult, especially, for components or structures experience 

local plastic collapse, i. e., where cracks or notches exist. 

In the Reference Volume Approach, we assume that the plastic collapse occurs 

over a localized region of the mechanical component or structure. Clearly, m~ and 

corresponding m" ( m~) will be significantly overestimated (Fig. 6.1) if it is based on total 

volume, Vr . However, m; , calculated based on m~, underestimates the exact solution 

due to inactive region in the component (dead zone). 

en 
1-t 
<1) ....... -0.. ....... 

~ 
;E 

- - - - - - ...., 
Exact solution 

Iteration Variable, t; 

Figure 6.1: Variation of m0 and m" multipliers respect to elastic iterations 



6. Local Limit Load Analysis 182 

Therefore, the multiplier m~, Eq. (3.79), can be written in terms of the reference 

volume and the dead zone volume as follows: 

(6.1) 

If we assume that the dead zone is kinematically inactive then Eq. (6.1) can be 

simplified as 

(6.2) 

It is implied here that m~ CVr) = m~ (VR) 

The magnitude of the upper bound multiplier, m~, would therefore depend on the 

sub-volume, V,
1 

, where 

(6.3) 

In order to identify the reference volume VR and multiplier m"(VR ) the following 

procedure is used: 
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(1) The stress distribution within a discretized component obtained from a finite 

element analysis is sorted in descending order, i. e., CJ~!l > CJ~l > .... > CJ!;> > . . .. > CJ!;> . 

C d. h (I) (2) (q) (N) h 1 Av( l ) A ·v(2) orrespon mg tot e stresses CJeq , CJeq , .. . , CJeq , .• •• , CJeq are t e vo umes u , u , 

AV(q) AV(N) . I H v . h b I h . h I ... , u , .... , u , respective y. ere, , IS t e su -vo ume t at IS t e vo ume 

summations started from the element with the highest equivalent stress to the ry'" 

element. 

(2) The variation of m; and G~ is plotted against the volume ratio, ~ (a typical 

trend is illustrated in Fig. 6.2 and Fig. 6.3, respectively). ~ is the ratio of normalized 

sub-volume to the total volume ( Vr ), and is the volume summation starting from the 

element with the highest equivalent stress to ry 'h element. Equation (3. 79) is expressed in 

terms of sub-volumes that are suitable for FEA results, i. e., 

t.(~}v. 
I} 

L (Jeq ,k &eq ,k ~ ~ 
k =l 

1/ 2 

(6.4) 

Subsequently, the multiplier m; introduced in Eq. (3 .89), can be expressed in 

terms of sub-volume and based on m~ as 

(6.5) 
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and 

G~(~) = _!_ t[[m~(V,) a eq,k ]2 -1]2 t.~ 
2 k=I aY 

(6.6) 

(3) As presented in Fig. 6.2, the curves can be divided into two regions. Region I 

represents the part of the component which is kinematically active, whereas region II 

represents part of a component or structure that is kinematically inactive (the dead zone). 

In region I, the multiplier m; increases until it reaches a maximum value; however, m~ is 

variable. In region II, m; decreases while m~ is almost constant. 

(4) The transition between regions I and II where m; is maximum, (such that 

m~ (VR) I m~ CVr) ::::: t ), is identified as the reference volume ~ . 

(5) The exact limit load lies between m~ (VR) and m; (VR); therefore, the 

estimated m; at the reference volume, m; (VR), would be the highest lower bound value 

of limit load that guarantees a margin of safety in a component or a structure against 

plastic collapse. 

The parameter fJR can be evaluated by solving the equation 

(6.7) 
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Region I Region II mo 
/ 2 

Figure 6.2: Variation of m; and m~ respect to V, 

Region I Region II 

I'-... ...__ __ v!.LR -------.. -~-l .. ,.__ _ __ v .!d.._[) --~ .. II. o v'7 
Figure 6.3: Variation of G~ respect to V, 
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6.3 NUMERICAL EXAMPLES 

In this section, the method for determining m; described in the previous section is 

applied to several practical geometric configurations. The material is assumed to be 

elastic-perfectly plastic in all cases. The various problems are modeled using the 

commercial finite element program ANSYS (university research version). While 

modeling the cracked components using FEA, it was necessary to use singular element 

around the crack-tip to simulate the singularity of the strain field at the crack-tip. The 

variable q approach discussed in Chapter 4 is used in all the numerical examples in this 

Chapter. 

6.3.1 Thick Walled Cylinder (Plane Strain) 

A long thick walled cylinder with an inside radius of R=60 mm, thickness t= l20 

mm and an internal pressure of 50 MPa is modeled. The modulus of cia ticity is specified 

as 200 GPa, with a Poisson's ratio of - 0.3. The yield strength is as umed to be 300 MPa. 

The different multipliers converge to the exact solution within five iterations. The 

variation of limit load multipliers and G~ with V, are shown in Figs. 6.4 and 6.5, 

respectively. It can be seen that the solution converges at the last iteration (5th iteration), 

i.e., G~ is zero. Therefore, there is no dead zone volume in the component and all the 

regions participate in plastic action, VR = 1. 
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Figure 6.4: Variation ofmultipliers versus V,(Iteration No.5), Thick walled cylinder 
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6.3.2 Flat Thin Head 

A flat thin head (Fig. 6.6) is modeled usmg an axisymmetric element and is 

subjected to an internal pressure of P=0.69 MPa with the same material properties as that 

for the thick cylinder. The overall length L=254 mm, the flat head thickness t,=25.4 mrn, 

cylinder thickness fc= l0l.6 mm, inner radius of R=254 mm and the fillet radius of rr= 
25.4 mrn are used. Figure 6.7 shows the variation of limit load multipliers along with 

inelastic FEA solution. The reference volume is estimated as v,; =0.169 (Figs. 6.7 and 

6.8). Therefore, the required value of the lower bound multiplier is estimated as 

m;(VR) =17.450. 

L 

(a) 

(b) 

Figure 6.6: Flat thin head: (a) Geometry and dimensions, 

(b) Finite element mesh 
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6.3.3 Torispherical Head 
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With reference to Fig. 6.1 0, a tori spherical head of thickness t=25.4 mm, average 

diameter D=7620 mm, normalized spherical cap radius Rs ID=0.8, normalized knuckle 

radius of Rk ID=O.l2 and an internal pressure P= 1 MPa is examined here. To avoid 

discontinuity effects at the boundaries, the length of the cylindrical part (H) is specified as 

H = 6J D t I 2 (this is sufficiently grater, 2.35 times more, than the decay length given in 

ASME Codes, 1998 ). The material properties are assumed as £ =206.85 GPa; ay=206.85 

MPa and v =0.3. The component is modeled axisymmetrically with six elements across 

the thickness. The limit load multipliers versus iterations are presented in Fig. 6.11 . The 

reference volume is ~ =0.28, where m; reaches a maximum value, i. e., m; (VR) =0.865 

and m~ (VR) I m~ CVr) ~ 1 (Fig. 6.12). The variation of G~ respect to ~ is shown in Fig. 

6.13. 
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Figure 6.10: Torispherical head: (a) Geometry and dimensions, (b) Finite element mesh 

at Knuckle region 
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6.3.4 Plate with a Hole 
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A plate with a hole (Fig. 6.14) is modeled in plane stress condition with a uniform 

tensile stress of 100 MPa. The plate width is 2 W = 150 mm and the notch diameter is 2r 

=46 mm. The modulus of elasticity is 152.95 GPa, and the yield strength is 131.90 MPa. 

The variation of limit load multipliers respect to iterations is shown in Fig. 6.15. 

Similarly, the variation of the multipliers and G~ with V, at the converged 201
h iteration 

are presented in Fig. 6.16 and Fig. 6.17, respectively. The reference volume is ~ =0.170, 

where m; reaches a maximum value. The corresponding lower bound limit load, which is 

suggested for design, is m; (VR) =0.917. 



~----------------------------------- -- ---

6. Local Limit Load Analysis 194 

p 

2W 

Figure 6.14: Plate with a hole: (a) Geometry and dimensions, (b) Finite element mesh 
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6.3.5 Compact Tension (CT) Specimen 

The compact tension specimen that was studied in Chapter 4 is discussed next, 

with the similar geometry and material properties. The variation of limit load multipliers 

and G~ with respect to V,; at the converged 20th iteration are shown in Fig. 6.18 and 

Fig. 6.19, respectively. The maximum value for m; (where m; (VR) =0.818) is the value 

corresponding to the reference volume location ( V,; =0.079). 
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Figure 6.18: Variation of multipliers versus V, (Iteration No. 20), Compact tension 

spectmen 
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Figure 6.19: Variation of G~ versus V:, (Iteration No. 20), Compact tension specimen 

6.3.6 Plate with multiple cracks 

A thin plate with multiple cracks is modeled next using the same geometry and 

material properties discussed in Chapter 4. The variation of the multipliers and parameter 

G~ with V:, at converged 251
h iteration are shown in Figs. 6.20 and 6.21, respectively. 

The maximum value of m; occurs at ~ =0.058, which is also the transition point 

between zones I and II (where m;(VR) =l.34l). 



6. Local Limit Load Analysis 

1.4.------,--------.-------,- - --.,----- -, 

1.35 

1.3 

(/) 1.25 ..... 
Q) 

-~ 1.2 
±! 
:::J 

~ 1.15 

1.1 

1.05 

0.2 0.4 

~ 
~ 

v,, 0.6 0.8 

198 

Figure 6.20: Variation of multipliers versus V:, (Iteration No. 25), Plate with multiple 

cracks 

0.35 

0.3 

0.25 

0.2 
Go 

2 

0.15 

0.1 

0.05 

00 

v,, 
Figure 6.21: Variation of G~ versus V:, (Iteration No. 25), Plate with multiple cracks 



6. Local Limit Load Analysis 199 

For better understanding of the reference volume concept, the extents of plasticity 

at limit state for some of the mechanical components are presented in Fig. 6.22. The 

shaded areas are reference volume regions that directly participate in plastic action. 

(a) 

[>~------------~ 

[> 

Crack Tips 

(b) (c) 

Figure 6.22: Plasticity spread at limit load: (a) Flat thin head, (b) Plate with a hole, 

(c) Plate with multiple cracks 
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The multiplier mp, which is calculated from the entire stress distribution in a 

component, is determined by evaluating the reference parameter f3 R • This can be done by 

rewriting Eq. (6.8) as 

(6.8) 

The reference parameter fJR for all components considered m this study are 

presented in Table 6.1. 

Table 6.1: Estimated value of /lR 

m;(VR) m~ (Vr ) G~ CVr ) fJR 

Thick cylinder(Iteration No. 5) 7.611 7.611 0.0 N/A 

Flat thin head(Iteration No. 15) 17.450 17.653 0.423 0.027 

Torispherical head(Iteration No. 20) 0.865 0.868 0.237 0.014 

Plate with a hole(Iteration No. 20) 0.917 0.933 0.223 0.078 

Compact tension specimen(Iteration No. 20) 0.818 0.826 0.278 0.035 

Plate with multiple cracks(Iteration No. 25) 1.341 1.349 0.323 0.018 

Table 6.2 is a companson of different limit load multipliers for the various 

components analyzed. The estimated limit load multipliers using EMAP are at the last 

iteration (see Table 6.2) with the exception of the classical lower bound multiplier (mL) 

that is estimated using the maximum value among all the iterations. For the flat thin head 

and plate with a hole, the classical lower bound multiplier (mL) is estimated at the lO'h and 

41
h iterations, respectively. 
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Table 6.2: Comparison of different limit load multipliers 

mNFEM m;(vR) m~ (VR ) mL 

Thick cylinder 7.611 7.611 7.611 7.611 

Flat thin head 17.501 17.450 17.589 16.735. 

Torispherical head 0.867 0.865 0.867 0.848 

Plate with a hole 0.928 0.917 0.930 0.86t• 

Compact tension specimen 0.821 0.818 0.822 0.781 

Plate with multiple cracks 1.343 1.341 1.345 1.328 

* The maximum value of m L is at the I 0' iteration. 

**The maximum value of mL is at the 4th iteration. 

Table 6.3 is a comparison of relative computational times for various component 

analyses (all times are in seconds). In this Table the computational times using EMAP are 

given at the converged iteration, iteration at which the limit load multipliers become 

invariant for succeeding iterations. It can be seen that the present method represents 

savings in time for most cases. The main advantage of the present study is that it 

represents an independent verification method. 

Table 6.3: Comparison of Computational Time (Seconds) 

Converged iteration Inelastic FEA 

(s) (s) 

Thick cylinder 5 iterations: 46 92 

Flat thin head 10 iterations: 83 78 

Torispherical head 11 iterations: 30 86 

Plate with a hole 18 iterations: 310 291 

Compact tension specimen 17 iterations: 80 97 

Plate with multiple cracks 16 iterations: 62 68 

* Using automatic time stepping 
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6.4 CLOSURE 

Local lower bound limit loads are determined for some practical components 

(including cracks and notches) by making use of the reference volume concept. For 

applications involving dead zones, the multiplier m~ provides an acceptable estimation 

of limit load (lowest upper bound); however, for design purposes, in order to guarantee a 

safe margin of the limit load of the components and structures, use is made of the 

reference volume concept, leading to m; , which is the highest lower bound. 



CHAPTER 7 

REFERENCE TWO BAR METHOD 

7.1 INTRODUCTION 

Limit loads for mechanical components and structures are determined in thi 

Chapter by invoking the concept of equivalence of "static indeterminacy" that relates a 

multidimensional component configuration to a "reference two-bar structure." Simple 

scaling relationships are developed that enable the rapid determination of limit load . The 

reference two-bar structure method is applied to a number of component configuration 

with or without cracks. 

7.2 THEORY 

The concept of R-Node plays a key role in the understanding of the relationship 

between the concepts of reference stress, limit load and primary tress. There is explicit 
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recognition of load and deformation-controlled effects in the vanous pressure vessel 

codes. Load-controlled stresses are statically determinate in that they are induced in order 

to preserve equilibrium with externally applied forces and moments. Deformation­

controlled stresses on the other hand are induced as a result of statically indeterminate 

actions. When widespread inelastic action (plasticity or creep) occurs leading to a limit 

state, the statically indeterminate stresses and strains undergo redistribution throughout 

the component except at the R-Nodes that are almost statically determinate. 

7.2.1 Plastic Collapse of Components and Structures 

The concept of R-Node underpins the theory behind the "reference two-bar 

structure". For a statically determinate component, the formation of a plastic hinge would 

result in a collapse. A typical statically indeterminate mechanical component or structure 

releases static indeterminacies through the sequential formation of plastic hinges (or 

plastic hinge contours) eventually resulting in a collapse mechanism. The number of 

plastic hinge locations that would form depends on the degree of static indeterminacies. 

For example, if a plastic collapse mechanism corresponding to two hinges develops for 

the beam structure (Fig. 7.1), then there would be a pair of R-Nodes peaks at the hinge 

locations since bending is dominant. If a nl and a n 2 are the elastic equivalent stresses at 

the R-Nodes peaks corresponding to the plastic hinge locations, then these can be 

represented by the two-bar model. 
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General components (plates and shells) often generate more than two R-Nodes 

peaks. However, the various R-Node peaks can be expressed in terms of the basic 

reference two-bar structure as follows : 
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(7.1) 

o-1 and o-2 are the stresses in bar 1 and bar 2, respectively; and cj and d j are 

coefficients. Now a-ref for a R-Node multibar structure is given by 

N 

LD"nj 
j = l 

O"ref = ---;:;-
(7.2) 

where a nj are the R-Node peaks, and N is the total number of R-Node peaks. Therefore, 

(7.3) 

Essentially, a-ref can be expressed in terms of the reference two-bar structure. 

Finally, the limit load is given by 

pL = (.!!i_Jp 
0" ref 

(7.4) 
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7.2.2 Relating the General Component to the Reference Two-Bar 

Structure 

As discussed in Chapter 3, the m 0 and m L limit load multipliers can be obtained 

using Eqs. (3 .117) and (3.120), respectively. By assuming that L1 < L2 and A1 = A2 , the 

m 0 limit load multiplier defined in Eq. (3. 117) fro the two-bar model can be re-written as 

(7.5) 

Similarly, 

(7.6) 

Making use ofEqs. (3 .1 20) and (7 .5) the ratio of m 0 I m L is given a 

(7.7) 
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Making use ofEq. (7.6), the Eq. (7.7) can be rewritten as 

(~H~J 
(7.8) 

By assuming A = L. I L2 , Eq. (7.8) is further simplified as 

(7.9) 

Clearly, A ~ 1 for the range of components. Since from equilibrium consideration 

m o (Lt +L2) ~Lt + L 2 

m 2L2 ~L1 + (o-2 I aJ2 
L2 

(7.10) 

Making use ofEq. (7.6), the Eq. (7.10) can be rewritten as 

(7.24) 
m 
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By assuming A, = ~ I L2 , Eq. (7.11) is further simplified as 

(7.12) 

In the above equation, m 0 I m and m 0 I m L are useful parameters for characterizing 

the state of static indeterminacy of a given component undergoing plastic flow. General 

components can be related to the reference two-bar structure 

7.2.3 Constraint Trajectory 

Limit loads of mechanical components and structures are determined herein by 

relating the inelastic parameter ( m 0 I m , m 0 I mL ) of the general component to those of the 

"reference two-bar structure" . The underlying concept that enables the relationship is the 

notion of statical indeterminacy equivalence. Figure 7.2 is a constraint map, which is a 

variation of m 0 I m verses m 0 I mL. For a given component, m 0 and m L can be calculated 

using Eqs. (3 .76) and (3 .80). The exact multiplier, m, for the component is not known a 

priori. However, for the reference two-bar structure, m can be defined. Both m
0 I m and 

m 0 I mL are greater than one, except at the incipient limit load state for which 

m
0 I m = m

0 I mL = 1. The EMAP trajectory is essentially a locus of m
0 I m versus m

0 I m L 

from an initially elastic state through to the plastic collapse state. 
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It is important to note that m0 is a multiplier that is based on the overall "statically 

admissible" tress distribution; whereas mL is dependent on the maximum tre s in the 

component. Therefore, mL is sensitive to the magnitude of peak stre s whereas m0 i 

almost invariant during the blunting of peak stresses. 

7.2.4 Scaling Equations 

Points such as A and B in Fig. 7.2 represent states of static indeterminacy. The 

component EMAP trajectory AO or BB'O (for components with peak tre s) can be 
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readily generated if required. Equivalence of static indeterminacy of the multidimensional 

components and the "reference two bar structure" (Fig. 7.3) can be expressed as : 

m~ar 1 
= r;: 

mL, Bar 'VA 

m~ar A.+l 
mBar = 2Ji 

(7.13) 

(7.14) 

where A. is the parameter that represents the ate of static indeterminacy. Also, 

Multidimensional 
Pre sure Componenr 

E1 = E: 

.-ll = .-l: 

PI 

Reference Two-Bar 
· Structure 

Figure 7.3: Reference two-bar structure 

The EMAP trajectory for the reference two-bar structure depicts the redistribution 

of secondary stress, whereas an EMAP trajectory for a component depicts the 
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redistribution of secondary as well as peak stresses. For many components with notches 

and cracks, BB' is nearly horizontal. Therefore, is almost invariant while m ~.. 

increases as m 0 I m ~.. decreases. 

7.2.5 Calculation Procedure 

1. Single Linear Elastic Analysis 

In order to evaluate the limit loads, the value of A. i determined using Eq. (7 .13) 

on the basis of a linear elastic analysis of a given component as 

(7. 15) 

Usi ng Eq. (7.14), the limit load multiplier for a component can bee timated as 

2.fi 0 

mcomp = l +A. (mcomp ) (7.16) 

With reference to Fig. 7.2, m~omp is specified as follows : 
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(1) For 1.0 ~ m~omp I m L,Comp ~ 1 + .J2 , m~omp is the initial linear elastic value 

designated by point A . These values are within the mll'" triangle. Therefore, A. can be 

estimated using Eq. (7.15). Applying estimated A. into Eq. (7.16), limit load of the 

component can be estimated. 

(2) For m~omp I m L,Comp > 1 + .J2, m~omp is evaluated at the linear eta tic value 

designated by point B' . The distance BB' is assumed to be the region of blunting of the 

peak stresses in a component. The procedure to locate point B' will be discussed later in 

this Chapter. 

Therefore, A. corresponding to point B' can be calculated as follow 

[ 
0 J m comp 

m L,Comp PointB' 
[ ]

2 

= _ 1_ ---+A = m L ,Comp 

.JI m~omp PointB' 

By substituting A. into Eq. (7 .16) the limit load multiplier can be estimated. Now the 

question is that how the point B' can be deftned for a given component. 

2. Two Iterations Method 

The main idea behind the two-bar structure method is to equate the static 

indeterminacy of a given component to that of the reference two-bar structure. The tatic 
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indeterminacy in a component is due to the secondary stresses and peak stresses. As 

discussed in Chapter 3, the rna limit load multiplier becomes imaginary when the ratio of 

m0 I m L ;?: I+ .J2 due to the magnitude of peak stresses. Therefore, the procedure i 

discussed here to locate point B' that represents the location where the effect of peak 

stress is removed in a given component. The procedure is given below: 

• The first analysis is carried out with homogeneous material properties, i.e. £ 0 ,v. 

• The second linear elastic FEA is performed by systematically, but artificially, 

reducing the elastic moduli of the elements that exceed the reference stress, a-ref. 

(7.17) 

where, the subscript 'T is the element number, and q is as umed equal to I. And 

reference stress is calculated as 

r 
f 2 j 1/ 2 

- Vr O"eq dV 
O"ref -

VT 
i 

(7.18) 
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• The parameter m~omp (m~) and mL,Comp are calculated using Eqs. (3.76) and (3.80) 

respectively. Therefore, the ratio of m~omp I m L,Comp at the second iteration 

represents points B' in constraint map. 

3. Alternative Method for Components with Cracks 

Figure 7.4 shows the stress distribution in the ligament ahead of crack, where the 

x-axis is the distance ahead of crack tip, and y-axis is the normalized stress distribution 

based on yield strength. As can be seen from this figure , the magnitude of peak stress 

(?iF) at the crack tip is considerably high; therefore, it is assumed that the peak stresses 

are very localized and that the following expression is valid: 

(7.19) 

where A is the area on which ?iF acts. 

The shaded area in Fig. 7.4 represents the elastically based secondary stresses (Q) 

that are essentially self-equilibrating, and tend to redistribute around the redistribution 

node (R-Node). Therefore, theoretically it does not have any effect on the limit load of a 

component. As well, the primary stresses, which are "load-controlled" stresses do not 

redistribute under plastic deformation or inelastic action, as shown in Fig. 7.4. 
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The aim of this section is to introduce a simple procedure that considers the effect 

of peak stress in a given crack configuration. 

For sake of the discussion, consider the stress distribution ahead of a crack shown 

m Fig. 7.5. By modifying the elastic modulus of regions around the crack tip (i.e., 

singular elements that surrounded the crack tip in a finite element discretization scheme), 

stress distributions can be plotted as shown in Fig. 7.5. In this figure, Es is the modified 

value of elastic modulus around the crack tip. At a specific value of Es = E;, the stress 

distribution ahead of crack become almost horizontal; this means that the magnitude of 

stress gradient reaches a minimum, and the effect of peak stresses becomes small. 

Numerical simulation of different crack configurations (see the numerical example 

section) shows that Es :::::: £ 0 / 3 is a good choice for modifying the crack tip element . 

This also can be explained as follows : 

Consider a crack configuration (Fig. 7.6) for which the stresses at the crack tip can 

be expressed as 

(Y xx = (Y yy = (Y max 

(Yu = { ~V(Yrnax Plane Stress 

Plane Strain 

(7.20) 



7. Reference Two Bar Method 217 

O"n is remote field stress and Y is crack configuration factor. 

The above stresses are the principal stresses at the crack tip. The von-Mise 

criterion can be written as 

Sub tituting the stresses from Eq. (7.20) into (7.21), the following expre ton can 

be obtained 

(7 .22) 

where A= l for plane stress and A=( l-2v) for plane strain conditions. 

The average stress along the crack orientation in the singularity domain can be 

calculated as 

- f (J"eq 
(J"eq =-­

rs 
(7.23) 

Referring to Fig. 7.6, at r = rs the equivalent stress is equal to the reference stre 

thus, 
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(Jref (7.24) 

Making use of Eq. (7.17), the relationship between the modified elastic modulus 

(Es) and initial modulus of elasticity (Eo) can be written as 

(7.25) 

As discussed in Chapter 4, the parameter q can be within the range 1 ~ q ~ 2 . 

Applying the values q= 1 and q=2, the E 5 I E0 will vary between 0.5 and 0.25, 

respectively. Based on numerous FEA on different crack configurations Es = E0 I 3 work 

out to be a good choice for modifying singular elements around a crack tip. 

The modified elastic modulus of the singular elements around the crack tip can be 

obtained as Es = E0 I 3 . A linear elastic FEA with Es I E0 = I I 3 for all adjacent elements 

around the crack tip and with Es = E0 for all other elements is carried out. The re ulting 

parameters (m 0 l m, m 0 l m L) are used to locateS'. 
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Figure 7.5: Stress di tribution ahead of crack tip for different value of Es 
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7.3 VERIFICATION 

220 

r 

A simple beam subjected to both axial tensile force and bending moment is 

considered with original length of L=508 mm, height is D=25.4 mm, and width is B=25.4 

mm. Two different models are developed to demonstrate the procedure. The first model is 

the basic beam (without notch) as shown in Fig.7.7 (a) and the second model is the beam 

with two sharp notches placed at the mid-section of the beam as shown in Fig. 7.7(b). The 

radius of each notch is r= I /80 of the original beam height. 

The beams are modeled with the same material having modulus of elasticity 

£ =206.85 GPa and yield strength O"y=206.85 MPa. Both beams are subjected to axial 
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tensile force of P= 0.3 Py and bending moment of M=O.l My, where Py ( = u Y DB) is axial 

force of the beam at yield and My ( = u YD 2 B I 6) is the bending moment of the beam at 

yield. 

The basic beam (without notch) is analyzed using the reference two-bar structure 

method. An initial linear elastic FEA is performed. From the results of the initial elastic 

FEA, m~omp =3.273 and m L.Comp =2.508, using Eq. (3.76) and Eq. (3.80). Since 

m~omp I m L ,Comp =1.3047 is less than l + ..J2 , there is negligible peak stress in the 

component. Now the statically indeterminacy parameter A-=0.342, using Eq. (7.15), and 

the corresponding limit load multiplier m comp =3.1605, using Eq. (7.16), is evaluated. 

The general solution for combined tension and bending is not known. The lower 

bound solution for plane stress is given by Miller (1988) as: 

m Analytical (7.26) 

where r is the notch radius (for simple beam without notch r=O). 

Therefore, by applying Eq. (7.26) the limit load is calculated as m Analytical =2.983 . 
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The beam with two through thickness sharp notches is considered next as shown 

in Figure 7.7(b). The notches are located at the opposite sides of the beam. Similar 

material properties and loading are applied for this example. From the results of the initial 

linear elastic FEA, m~omp =3.273 and mL,Comp = 1.180. Since m~omp I mL,Comp =2.773 i 

greater than 1 + .J2 peak stress is present in the component. Then, another linear eta tic 

FEA is performed by modifying the elastic modulus of the elements, using Eq. (7 .17), 

stressed above Cfref, using the elastic modulus adjustment parameter q= l.O. From the 

results of the second analysis, m~omp =3.2690, mL,Comp =I.7516 and corresponding A.= 

0.287 is obtained. Now, the limit load multiplier is estimated as mcomp =2.721 . The 

constraint map for both components is presented in Fig. 7.8. The comparison of limit load 

for the two components shows that the primary stress is slightly overestimated 

(conservative for limit load design) for the notched beam. Therefore, the discussion is 

given in this section to explain this difference. 

M 
• (L..,__I ____ ____JI ) • P 

(a) 

M 

• (.___I ---"--: __ ____JI ) • P 

(b) 

Figure 7.7: Beam under axial tensile force and bending moment: (a) simple beam without 

notch, (b) beam with two sharp notches 
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Figure 7.8: Constraint map for a beam with and without notch 

Figure 7.9 represents the schematic elastic stress distribution resulting from two 

subsequent finite element iterations (first and second iteration) at the critical section of a 

given component or structure. The different categories of stresses are labeled in the figure 

in order to relate them with the finite element stress distributions (primary (P), secondary 

(Q) and peak (F) stresses). 

The stress distribution at the critical section of a component after the initial linear 

elastic FEA is shown by the "solid-line" in Fig. 7.9, where amax represents the maximum 

stress in the component. The "dashed-line" represent the stress distribution resulting 

from the second linear elastic EMAP iteration. 
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The upper bound limit load multiplier (m~ will remain alma t unchanged when 

blunting of the peak (F) stresses. After the second linear elastic FEA, Q' is the amount of 

secondary stress estimated by the proposed method, which is problem-dependent. 

Therefore, the estimation of secondary stresses might be slightly underestimated or 

overestimated depending on the EMAP iteration as well a geometry, loading and 

boundary conditions of the given component or structure. 

Figure 7.10 represents the actual stre s distribution at the mid- ection (notch) of 

the notched beam as shown in Fig. 7.7(b). The figure represents the stre distribution of 

two consecutive linear elastic FEA (the initial analy is and the subsequent EMAP 

iteration) results. The stre s distribution at converged limit state is also plotted in the 

figure. 

It can be observed from Fig. 7.10 that the actual stress distribution obtained from 

the linear elastic FEA is almost similar to the conceptual model as shown in Fig. 7.9. 

Once again it should be noted that the actual stress distribution resulting from the second 

EMAP iteration might be different depending on the geometry, loading, and boundary 

condition of the problem. 
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Figure 7.9: Stres distribution of linear elastic FEA 
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Figure 7.10: Actual stress distribution of notched beam 
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7.4 NUMERICAL EXAMPLES FOR COMPONENTS WITHOUT 

CRACK 

7.4.1 Thick-Walled Cylinder 

The thick walled cylinder with inside radius of R= 130 mm and thickne s t=50 mm 

is modeled. An internal pressure of 50 MPa is applied. The material i assumed to be 

elastic-perfectly plastic. The modulus of elasticity is pecified as £ =200 GPa and the 

yield strength is assumed to be ay =300 MPa. Linear elastic FEA of the cylinder yield a 

statically admissible stress distribution on the basis ofwhich we have: 

m~omp =2.294 

m L,Comp = 1.649 

Therefore, m~omp I mL ,Comp = 1.391, pointing to an insignificant notch effect. 

From Eq. (7 .15), the statically indeterminate parameter estimated as A. =0.516; 

therefore, using Eq. (7 .16), the limit load multiplier of the component is estimated as 
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The value of m comp using the exact solutio~ is equal to 2.254. As shown in Fig. 

7.11, the initial point (point A) for this component is located inside the triangle, which 

means that peak stress in the component is very small. 

2.5.---------.-------.------------, 

2.5 

Figure 7.11: Constraint map for thick-walled cylinder 

7.4.2 Torispherical Head 

Linear elastic FEA of the torispherical head, the same dimension and material 

property has been used as in Chapter 6, leads to a statically admissible stress distribution, 

on the basis of which m~omp = 1.231 and m~omp I m L, omp =2.413. Since 

m~omp I m L, omp ~ I + .J2 , the magnitude of peak stresses are negligible. 
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Using Eq. (7.15) /,.=0.171. Therefore, from Eq. (7.16) the limit load multiplier is 

estimated as 

2Ji 0 
mcomp = --(mcomp) =0.870 

A.+ 1 

The value of mNFEM (inelastic FEA) =0.873. The constraint map for torispherical 

head is presented in Fig. 7.12. 
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Figure 7.12: Component constraint map for torispherical head 
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7.4.3 Indeterminate Beam 

An indeterminate beam is modeled in plane stress condition with a uniform ten ile 

distributed load on top of the beam. The geometry and material propertie are the same a 

the example in Chapter 4. 

Linear elastic FEA of the plate with a hole leads to a statically admi ible 

distributions for which m~omp = l5.686 ; m L,Comp =2.864. Using Eq. (7.15) A.=0.033. Since 

m~omp I mL,Comp > I+ .J2 , peak stresse are present. With reference to Fig. 7.1 3, m~omp at B 

and B' are equal in magnitude. The point B is obtained from a linear elastic FEA whereas 

point B' is obtained by modifying the elastic modulus, using Eq. (7.17), of the element 

that their stresses are exceeded the value of a-ref . From the results of the second analysi , 

m~omp = 1 5.137 and m L,Comp=4.837 and corresponding constraint parameter ..1. =0.102 is 

obtained. Then, by applying value of A. at point B' into Eq. (7.16) the limit load multiplier 

can be estimated as 

mcomp =8.778 

The value of analytical limit load multiplier from Mendelson (1968) is given as 
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11 .6587 (Yy ( w ) 2 

m Analytical = p 2L 

The results are summarized in Table 7.1 . 

Table 7.1 : Constraint map parameters, Indeterminate beam 

Point B 

PointE ' 

15 .686 

15.137 

m L,Comp 

2.864 

4.837 

5.476 

3.129 

5.543 

8.778 

m Analytical 

8.735 
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Figure 7.13: Component constraint map for indeterminate beam 
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(7.27) 
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7.3.4 Non Symmetric Rectangular Plate 

The proposed method is applied to non-symmetric plate structure (Fig. 7.14) with 

complex boundary conditions under a lateral pressure. The dimensions of the plate are: 

Length (L): 381 mm, Width (W): 254 mm, Thickness (t): 12.7 mm, £ =206.85 GPa 

a-y =206.85 MPa, v =0.3, P=6.895 MPa. 

For the plate structure, statically admissible stress distributions based on linear 

elastic FEA leads to the following: 

m~omp =0.630, m L ,Comp =0.072 

Therefore, m~omp I mL .Comp =8.75 for which 2 =0.142. 

Since m~omp I m L.comp > I + .J2 peak stresses are present. The second ela tic linear 

iteration is performed and the elastic modulus of the elements for which stresse exceed 

Clref, estimated from Eq. (7.18), are modified using Eq. (7.17). Then, the point B' 

represents the results obtained from second iteration. Therefore, the calculations are based 

on point B' where BB' is horizontal (Fig. 7 .1 5). 
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Figure 7.14: Non symmetric rectangular Plate: Geometry and dimensions, 

(b) Finite element mesh 
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Figure 7.15: Constraint map for non symmetric plate 

Using Eq. (7.16), m comp =0.449. The corresponding inelastic FEA result IS 

m NFEM =0.451 (see Table 7.2). 

Table 7.2: Constraint map parameters, Non symmetric rectangular plate 

Point B 

Point B ' 

0.630 

0.603 

mL.Comp 

0.072 

0.185 

8.750 

3.248 

0.142 

0.339 

m NFEM 

0.451 
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Table 7.3 is a comparison of relative computational times for various component 

analyses (all the times are in seconds). It can be seen that the present method represents 

savings in time. 

Table 7.3: Comparison of computational times 

Components 

Thick-Walled Cylinder (Plane strain) 

Torispherical Head (Axisymmetric) 

Indeterminate Beam 

Non Symmetric Rectangular Plate (3D) 

* Using automatic time stepping 

Present study 

(s) 

48 

27 

389 

937 

Inelastic FEA * 

(s) 

176 

86 

776 

7820 

7.5 NUMERICAL EXAMPLES FOR COMPONENTS WITH 

CRACK(S) 

7.5.1 Compact Tension (CT) Specimen 

The compact tension specimen (which contains axial force and moment on the 

ligament ahead of the crack) is widely used in fracture toughness testing. A compact 

tension specimen with the simi lar geometry and material property as in Chapter 4 are 

studied in this section. Due to the symmetry in geometry and loading, a half of the plate is 

modeled in plane stress condition using ANSYS. The variation of lower bound and upper 
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bound limit load multipliers obtained from linear FEA for different values of elastic 

modulus reduction in the singular elements surrounding the crack tip is shown in Fig . 

7.16 and 7. 17, respectively. As it can be seen from Fig. 7.16, for E. I E0 = 113 the lower 

bound limit load m L reaches its maximum value; however, referring to Fig. 7.17, m
0 

limit load multiplier does not change much for E. I E0 > 1 I 3 . At Es I E0 = I I 3 the stress 

gradient in the crack tip vicinity reaches to its lowest value, which results in a smaller 

value of maximum stress in the component. As shown in Fig. 7. 18, this can be visualized 

by plotting stress distribution ahead of crack for different values of Es I E0 • 

Linear elastic FEA of the component gives m~omp = 1.4975 ; and m L,Comp =0.2631 , 

which represents initial point B on the constraint map (Fig. 7.19) . In order to blunt the 

peak stresses, the elastic modulus of the singular elements around the crack tip are 

modified byE, = E 0 I 3 ; consequently, the limit load multiplier become m~omp = 1.4 95 

and m L,Comp =0.4328 (point B'). Therefore, the static indeterminacy parameter (A.) can be 

obtained at point B' using Eq. (7 .15) as 

A = [ mL~Comp ]2 = 0.0844 
m comp 

Using Eq. (7.16) and based on the values at point B ', the limit load can be 

estimated as 
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2.Ji 0 
m comp = --(mcomp ) = 0.7982 

1 +A. 

236 

Inelastic FEA result is obtained as m NFEM =0.821 0. The various parameters at 

points B and B' are summarized in Table 7.4. In this table, the parameters at point B ' arc 

based on both using alternative method for crack and two iterations methods. However, in 

constraint map shown in Fig. 7.19, pointE ' is located based on the alternative method for 

cracks. 

Table 7.4: Constraint map parameters, Compact tension specimen (Plane stress) 

0 
m comp m L.Comp (mo I m L ) Comp m comp m NFEM 

Point B 
1.4975 0.2631 5.6914 0.5105 

(Initial point) 

Point B' 
1.4895 0.4328 3.4418 0.7982 0.8210 

(Alternative method) 

Point B ' 
1.4627 0.4615 3.1697 0.8394 

(Two iterations method) 

In order to show the general applicability of the method, the compact tension 

specimen is modeled using a three-dimensional elements and in plane strain condition . 

As presented in Figs. 7.20 and 7.21 , modifying the singular elements around the crack tip 

leads to similar behavior (as in plane stress) for the three-dimensional model and plane 

strain. 
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Figure 7.16: Variation of lower bound limit load multiplier withE/ Eo: Plane stress 
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Figure 7.17: Variation of upper bound limit load multiplier with E/ £ 0 : Plane stress 
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0.06 

Figure 7.18: Stress distribution ahead of crack tip for different value of E/ Eo: Plane 

stres 
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Figure 7.19: Constraint map for compact tension specimen: Plane stress 
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Figure 7.20: Stress distribution ahead of crack tip for different value of E./E0:Three-

dimen ional model 
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Figure 7.21: Stress distribution ahead of crack tip for different value of E./E0 : Plane 

strain 
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7 .4.2 Middle Tension Panel 

Consider a thin middle tension panel (Fig. 7.22) with width 2W = 250 mm, 

thickness t= 3 mm, length 2L = 600 mm and crack length 2a=50 mm, ubjected to a 

remote tensile stress, CJ = l 00 MPa. The material properties are the same as compact 

tension specimen. Only a quarter of the plate is modeled due to the ymmctry. 

a 

2W 

-
(a) (b) 

Figure 7.22: Middle tension panel: (a) Geometry and dimensions, (b) Finite element 

mesh 
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Modifying the elastic modulus of the singular elements around the crack tip by 

one third of initial elastic modulus value, the limit load multipliers are obtained as 

m~omp =2.4630 and m L,comp = 1.1878, which represent point B ' in constraint map shown in 

Fig. 7.23. Therefore, the static indeterminacy parameter at this point is calculated using 

Eq. (7.15) as 1..=0.2326, and finally using Eq. (7.16) the limit load multiplier for middle 

tension panel is obtained as m comp = 1.9274. The estimated parameters at initial point 

(point B) and point B' (using both the alternative method and two iterations method) in 

constraint map are given in Table 7.5. 
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Figure 7.23 : Constraint map for middle tension panel 
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Table 7.5: Constraint map parameters, Middle tension panel 

0 
m c omp m L ,Comp (m o I mJcomp m comp m NFEM 

PointS 
2.4636 0.6638 3.7111 1.2378 

(Initial point) 

PointS ' 
2.4630 1.1878 2.0735 1.9274 2.031 

(Alternative method) 

PointS ' 
2.2462 1.1826 1.8994 1.8519 

(Two iterations method) 

7.5.3 Plate with Multiple Cracks 

The material properties and geometry are the same as the example in Chapter 4. 

Linear elastic FEA of leads to m~omp =2.33 78 and m L,Comp =0.5170. Since 

m~omp I m L,Comp > 1 + .J2 , peak stresses are present. With reference to Fig. 7.24, m~omp at B 

and B ' are equal in magnitude. The point B is obtained from a linear elastic FEA 

considering homogenous material property in the component whereas point B ' is obtained 

by modifying the elastic modulus of singular elements around the crack tips using 

Es = £ 0 13 . Therefore, by estimating A. at point B ' the limit load multiplier is estimated 

as m comp = 1.2878, which is reasonably accurate when compared with the inela tic FEA 

(see Table 7.6). 
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Table 7.6: Constraint map parameters, Plate with multiple cracks 

0 
m comp mL,Comp (m o I m L)Comp m comp 

PointE 
2.3378 0.5 170 4.5218 0.9858 

(Initial point) 

PointE ' 
2.3354 0.7021 3.3264 1.2878 

(Alternative method) 

Point B' 
2.3410 0.6314 3.7077 1.1772 

(Two iterations method) 
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Figure 7.24: Constraint map for plate with multiple cracks 
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mNFEM 

1.3480 
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7 .5.4 Pipe with an Extended Inner Axial Crack 

With reference to Fig. 7.25, a pipe with an extended inner axial crack in of 

thickness t= I 0 mm, crack length a=2 mm, average radius Rm=25 mm and an internal 

pressure P =50 MPa is examjned here. The material properties are: elastic modulus E= 

206.85 GPa and yield strength a-Y = 250 MPa, with a Poisson's ratio of v =0.3. Due to 

symmetry only half of the pipe is modeled in plane strain condition. After modifying the 

elastic modulus of singular elements around the crack tip by Es = E0 I 3, the upper bound 

and lower bound multipliers are estimated as m~omp =2.3624 and m L,Comp =1.0600 (point B ' 

in Fig. 7.26). Using Eqs. (7.15) and (7 .16) the limit load for a given component is 

obtained as m c omp =1.7647. The estimated parameters using the reference two-bar 

structure are given in Table 7.7. 

Table 7.7: Constraint map parameters, Pipe with an extended inner axial crack 

0 
m Comp m L ,Comp (m o I m L ) Comp m comp m NF£M 

Point B 
2.3629 0.6037 3.9137 1.1335 

(Initial point) 

PointE ' 
2.3624 1.0600 2.2287 1.7647 2.1 150 

(Alternative method) 

PointE ' 
2.2155 1.0170 2.1784 1.6800 

(Two iterations method) 
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(a) 

(b) 

Figure 7.25: Pipe with an extended inner axial crack: (a) Geometry and dimensions, 

(b) Typical finite element mesh 
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Figure 7.26: Constraint map for pipe with an extended inner axial crack 

7.5.5 Single Edge Notched Bend 

246 

A single edge notched bend (Fig. 7 .27) with a span of S=400 mm, a width W= l 00 

mm, thickness t=3 mm and a crack length a=SO mm under load P= 12 kN i modeled. 

The modulus of elasticity is specified as 211.85 GPa, with a Poisson 's ratio of v=0.3. The 

yield strength is assumed to be 488.43 MPa. Half of the specimen is analyzed due to 

symmetry. The estimated parameters at point Band B ' in Fig. 7.28 are given in Table 7 .. 

The estimated limit load using reference two-bar method is m comp =0.8014, whereas the 

inelastic FEM is mNFEM=0.8214. 
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Figure 7.27: Single edge notched bend: (a) Geometry and dimensions, (b) Typical finite 

element mesh 
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Table 7.8: Constraint map parameters, Single edge notched bend 

0 
m comp m L,Comp (mo I m L ) Comp m comp m NFEM 

PointE 
3.1052 0.2473 12.5572 0.4914 

(Initial point) 

Point B ' 
3.0837 0.4077 7.5639 0.8014 0.82 14 

(Alternative method) 

PointE ' 
2.9885 0.5092 5.8691 0.9896 

(Two iterations method) 
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B' B 

·················• ········· ···········································- ·• 
Region of Peak Strosses 

················ 3.5 

3 

m 

4 6 8 10 12 14 

Figure 7.28: Constraint map for single edge notched bend specimen 
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7.6 FURTHER SIMPLIFICATIONS 

As mentioned in this Chapter, when m~omp I m L.comp > 1 + .J2 in the initial elastic solution 

the magnitude of the peak stresses are considerable. Limit load estimation based on the 

two-bar method requires that the magnitude of the peak stresses estimated to locate point 

B' in the constraint map; therefore, the two iterations method was proposed earlier in this 

Chapter. As mentioned before, 1 + .J2 is the transition point that due to the magnitude of 

the peak stresses the ma limit load multiplier becomes imaginary. As an approximate 

method, point B' can be assumed to be located at 1 + .J2 along the x-axis in constraint 

map (see Fig. 7.29). The point B is obtained from a linear elastic FEA whereas point B' 

is intersection of the assumed horizontal EMAP trajectory with the m 0 I m L = I+ .J2 line 

on the constraint map. Thus, the parameter, A., can be estimated as 

l -tA. = (mL~Comp ]2 = (-1-)2 = 0.171 
.JX mcomp 1 + .J2 

Therefore, by applying value of A. at point B' (A. =0.171) into Eq. (7.16) the limit load 

multiplier can be estimated as 

0 
m comp 

m =-­
comp 1.415 

(7 .28) 

This method provides rapid estimation of limit load based on only one elastic 

solution. This simple method is useful for preliminary scoping and feasibility studies of a 
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given components against failure. Table 7.9 compares the estimated limit load multiplier 

using one linear elastic solution with inelastic FEA. 

Table 7.9: Comparison of estimated limit load multiplier 

One elastic Inelastic 
Example 

method FEA 

Indeterminate beam (Fig. 4.3) 10.697 8.735 

Non-symmetric rectangular plate (Fig. 7.14) 0.445 0.451 

Compact tension specimen (Fig. 4.9) 1.058 0.8210 

Middle tension panel (Fig. 7.22) 1.741 2.031 

Plate with multiple cracks (Fig. 4.20) 1.652 1.3480 

T · ·ton ' 
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AP (Cons tra int) rcue( . 
~ _.. ~---- - __,.._ - - - .. B 

I B' 
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-~-_. A 
Region of'Peak lresses 
( ol cll es ancl Cmcks) 

1 + .J2 

Figure 7.29: Constraint map by considering location of point B' at 1 + .J2 
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7.7 CLOSURE 

The concept of equivalence of "static indeterminacy" i invoked to relate 

multidimensional component configuration to a reference two bar structure in the context 

of limit load determination. On the basis of Mura's variational theorems, upper and lower 

bound multipliers are defined, and simple "scaling" relationships are developed. For the 

crack configuration, in order to eliminate the peak stress at the crack tip, the elastic 

modulus of the singular elements around the crack tip are modified as one third of 

original elastic modulus of the component. Several examples arc worked out involving 

component or structure with/without crack(s), and the lower bound limit load estimate 

are shown to compare well with elastic-plastic FEA or available exact solutions. 



CHAPTERS 

INTEGRITY ASSESSMENT PERSPECTIVES 

8.1 INTRODUCTION 

racks and flaws occur in many mechanical components and tructures, and 

sometimes can lead to disastrous failures. The integrity assessment of components with 

defects is performed to ensure safety and prevent cata trophic failure. In integrity 

assessment of such components both limit analysis and estimation of fracture mechanics 

parameters arc to be considered. 

Based on the limit load estimation method proposed in this thesis, a robust method 

for estimating the inelastic fracture energy release rate in terms of reference stres and 

linear elastic fracture parameters for components or structures undergoing hardening 

material model, e.g., bilinear hardening and Ramberg-Osgood, is proposed. Integrity 

assessment of two dimensional crack such as in a compact tension specimen, and three-
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dimensional configurations such as the axial semi-elliptical (inner) surface, are studied by 

this method and compared with inelastic finite element analysis. Also, a case study on 

integrity assessment of a pipe with an axial semi-elliptical crack under cyclic loading i 

studied. 

8.2 EFFECT OF STRAIN HARDENING 

In the development of the robust J design procedure, the material behavior i 

assumed to be elastic perfectly plastic (EPP). However, if the material behavior i elastic­

plastic hardening then the approach needs to be modified. 

Assuming a hardening material model: 

(8.1) 

where 0"0 is a reference value of stress that is usually taken as the yield strength, and O" 

the applied stress. 

By equating the strain energy densities shown in Fig. 8.1 , the strain hardening 

curve can be represented by an equivalent elastic-perfectly plastic curve in which O"; i 

the assumed yield strength, i.e. , area A, should be equal to area ~ .Therefore, O"; can be 

determined by following equation: 
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(8.2) 

where (a; , 8; ) is equivalent yield strength point and (a, 8) is an arbitrary point on a 

hardening curve, and a 1 related stress to fracture strain, 81 . 

Different material models such as the bilinear hardening (BH) material and 

Ramberg-Osgood (RO) relationship, have been studied herein. Using the relationship 

between stress and strain (a = /(8) or its inverse 8 =/-' (a)), and Eq. (8.2), it is possible 

to obtain the equivalent yield strength to elastic-perfectly pla tic material model. 

. 
Figure 8.1: Illustrative determination of a Y 
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8.2.1 Bilinear Hardening Material Model 

In Fig. 8.2 the bilinear hardening material model is presented; for which the 

relationship between stress and strain can be written as: 

(8 .3) 

where EP 

Making use of Eq. (8.2), the equivalent yield strength for bilinear hardening 

material can be obtained as 

(8.4) 

cr 

Figure 8.2: Bilinear hardening material model 
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8.2.2 Ramberg-Osgood Material Model 

The Ramberg-Osgood material model can be written as 

(8.5) 

where a i dimensionless material constant, usually chosen to be equal to 3/7, and n is 

the strain hardening exponent. 

Simplifying Eq. (8.2), we get an expression that leads to the equivalent yield 

strength, C5; 

where a1 , a 2 , a3 , a4 and a5 are expressed in terms of material propertie 

a (n - 1) 

(n + 1)0';+1 

aO'f a---2- n - 1 
O'o 

(8.6) 
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2 

( a 0 5) 2 0"1 a ...,..n+ l 
0 s = - -- · O"o + - + 1 '-' 1 

n + 1 2 ( n + 1) O";-

Usually, the value of fracture strain, & 1 , is available as a material parameter; 

therefore, in order to calculate 0"1 the following equation needs to be solved 

Eo 0"; - '&1 
____::.____::._~ =0 (8.7) 

a 

8.3 NUMERICAL EXAMPLES 

Fracture integrity assessment of several cracks configurations are studied in this 

section. In order to simulate infinite stress field in the crack vicinity, singular elements 

have been used in the FEA simulation. 

The J-integral estimation technique that is discussed by Seshadri and Wu (200 1) is 

compared with the estimated J-integral based on the R6 method (2004) and inelastic FEA 

by applying the virtual crack extension method (VCEM) for different material model . 

The VCEM procedure, incorporated in the ANSYS finite element program (200 1 ), has 
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been used to evaluate J-integrals. This evaluation is supported by a macro program, using 

the ANSYS Parametric Design Language (APDL). This program can be conveniently 

used as part of a post-processing program and uses stress and displacement data from a 

linear elastic fracture mechanics analysis to calculate the J-integral values. This procedure 

was carried out for three separate contours around the crack tip, which are shown in Fig. 

8.3. Contours 1 and 3 encircle the crack with regular shape, whereas contour 2 ha 

irregular shape. All contour integrals generally showed good path independence, as 

illustrated in Table 8.1 where the J-values are normalized with respect to the value for 

elastic energy release rate obtained from stress intensity factor, using Eq. (2.27). 

Consequently, the values for contour 1 were used throughout this study. It can be seen 

that the agreement between the two approaches is good. 

Contoua·l 

0 

0 L J 

Figure 8.3: J-integral contour paths 
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Table 8.1: Normalized J-integrals for typical contour paths 

Contour 2 3 

Normalized J 0.998 0.988 0.993 

Using the method proposed in this Chapter, the ine lastic release rate (.!) is estimated using 

the expressions given in R6 routine (Rev. 4, 2001) and by Seshadri and Wu (2001). 

Making use ofEq. (2.20), the Eq. (2.26) given in R6 (2001) can be expressed as: 

[0.3 + O.?e-o.6 L! f (8 .8) 

The following relationship is valid for linear elastic analysis 

p (Y ref 8 ref 
-=-=-= 
PL (Yy liy 

(8.9) 

Therefore, applying Eq. (8.9) into Eq. (2.35), the proposed method by Seshadri 

and Wu (200 1) for evaluating the elastic-plastic J-integral can be rewritten in terms of Je 

at a given load, 

0 ~ Lr ~ 0.5 

0.5 < Lr < 1 
(8.10) 
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8.3.1 Compact Tension Specimen 

The J-integral estimates using different methods for EPP materials is presented in 

Fig. 8.4. If the material model is considered as BH with E, =0.1 E0 and the limiting strain 

of 0.01, then the equivalent yield strength using Eq. (8.4) is a-; =353 MPa. The variation 

of J , using Eqs. (8.8), (8.1 0) and inelastic FEA with respect to L, making use of the 

new value of yield strength is plotted in Fig. 8.5. 

Consider next a compact ten ion specimen with RO material model ( a-0 =250 

MPa, n =5, £ 0 =211 GPa, and c 1 =0.0 I), for which the stress-strain curve is presented in 

Fig. 8.6. Using Eq. (8.7), the equivalent yield strength is a-; =369 MPa. The design curve 

with the new yield strength is presented in Fig. 8.7, where in the nonlinear FEA, the RO 

material model is implemented in the FEA program. 

As it can be seen from Fig. 8.5 and Fig. 8.7, the equivalent yield strength method 

gives good estimates of J when compared to inelastic FEA using the strain hardening 

stress-strain curve. 



8. Integrity Assessment Perspectives 261 

10x 10 
4 

9 R6 Method 

'E 6 
Seshadri and Wu (2001) 

--·- Linear Elastic 
z 7 

0 Inelastic FEA 
:::;-
<II 
iii 6 
0:::: 
<II 5 (/) 

ro 
<II 
Qj 4 
0:::: 
:>. 
e> 3 
<II 
c: 
w 2 

Design Limit 

I 
i 

I 
i / 0 

./ 
-~ ........ ~---~··· 

0.2 0.6 213 0.6 
L, 
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Figure 8.5: Compact tension specimen (J versus Lr) , Bilinear hardening material model 
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Figure 8.7: Compact tension specimen (J versus Lr), Ramberg-Osgood material model 
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8.3.2 Axial Semi-EUiptical (Inner) Surface Cracks (3D) 

An axial semi-elliptical (inner) surface crack under internal pressure is modeled 

with the same dimension and material property as in Chapter 4. In some cases where the 

FEA J-integral estimation is not available the CDF curve can be plotted in terms of 

normalized nonlinear J-integra l on the basis of elastic J-integral at limit load (see Fig. 

2.12). The J-integral estimation by different methods for the axial semi-elliptical (inner) 

surface crack under internal pressure is presented in Fig. 8.8. 

3.5 

3 ------ R6 Method 
- Seshadri and Wu (2001) 

h 2.5 
············ Linear Elastic 

";: 
'-
~ 
~ 

.9 2 
' ....., 
~ 

-~ 1.5 
";: 

' !~ _____________ j~ 
~ Design Limit 

0 z ...... 

0.5 

0.2 0.6 213 0.8 
Normalized External Load, L, 

Figure 8.8: Axial semi-elliptical (inner) surface cracked (J versus L,), Elastic-perfectly 

plastic material model 
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8.4 APPLICATION 

In this section, the applicability of the methods proposed in thi thesis for integrity 

assessment of typical situation in related industries is examined. The example is 

hypothetical, but it has some similarities to the condition experienced by the actual 

component. 

Problem statement: The management of a power station wants to assess the integrity of 

the pipes to ensure that they are capable of carrying a higher load and thereby avoiding 

unnecessary replacement of the piping system. Several axial part-through wall cracks 

have been detected during ultrasound test (In this section, only the assessment of a typical 

pipe geometry is studied). 

Material Properties: The pipe is made from BS 4360 Grade SOD steel , the 

chemical composition and mechanical material properties are summarized in Table 8.2. It 

is assumed that the stress strain curve follows the Ramberg-Osgood material model, Eq. 

(8 .5), with £ =200 GPa, CT0 = CTY , n=4.5 and a =5.0 16. The crack propagation rate is given 

as: 

da = 0.39 MI.64 

dN 

where da/dN is in mrn/cycle and M is in MN/m. 
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Table 8.2: Chemical composition and mechanical properties 

(Aboutorabi and Cowling, 1986) 

Chemical composition CWt%) 

c Si Mn p S Cr Mo 

0.17 0.29 1.30 0.010 0.008 0.09 0.01 

Mechanical properties 

Yield Ultimate Elastic Fracture 

strength strength Modulus toughness 

(O"y ) (O"u ) (E) (K,c ) 

MPa MPa GPa MP'Jm 

360 558 200 40 

265 

Cu Nb 

0.11 0.045 

Poisson 's 

ratio 

(v) 

0.3 

Geometry Description: The most critical crack among the detected cracks is 

considered for integrity assessment. Because of the large pipe diameter, it is assumed that 

the crack acts as a surface crack in a thick plate subjected to a tensile stress that is equal 

to circumferential stress induced in the pipe due to the internal pressure. With refererence 

to Fig. 8.9, the dimensions for the plate and the crack (the crack is semi-elliptical shape) 

are summarized in Table 8.3 . 

Table 8.3: Crack geometry and dimensions 

Wall thickness Crack initial length in Crack initial length in Inner radius 

radial direction longitudinal direction 

t=71.5 mm ao=0.25 t co=3 ao R,= 10 t 
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w 
Crack 

2c t a 

Figure 8.9: Semi-elliptical surface cracked specimen 

Loading Condition: For the new loading condition (i .e., fifteen percent more 

power required), the pipe is subjected to the internal pressure that indicate a 

circumferential stress of o-0 = 140 MPa that fluctuates between the maximum va lue and 

zero at a frequency of 5 times a day. 

Methodology: The first step for integrity assessment of the pipe is to determinate 

the equivalent yield strength (flow stress) using the procedure proposed in this Chapter. It 

is assumed that the fracture stress is equal to the ultimate strength ( o-1 = o-u ). Thus, using 

Eq. (8.6), the equivalent yield strength is given as: 

a-; = 460.57 MPa 
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Reference stress solution 

The reference stress solution is given in API (2000) as 

(Y 
(Y ---ref- 1- F (8.10) 

where 

F =_!!}_!_ 
1 +t Ic 

for W ~ (c+t) 

F = (a l t)(c i W) forW<(c+t) 

Stress Intensity Factor 

From API (2000), the stress intensity factor can be calculated as: 

where 

l )1.65 
Q = 1.0 + 1.461_ ;c for a I c ~ 1.0 
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( )

1.65 

Q = 1.0 + 1.464 : for a I c > 1.0 

M s = 1.0 

For ale:::; 1.0 

M 1 = l.l3 - 0.09(a /c) 

M2 = 0.89 0.54 
0.2 +a/ c 

1 ( )24 M 3 = 0.5 - + 14 l -aIc 
0.65 +a le 

g = l + lo.l + 0.35(a I t Y j(t - sin cp Y 
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For a le > 1.0 

M 3 =-O.ll(c / a) 4 

g = l+l0.1+0.35(cl a)(a l tY j(l - sintpY 

Inelastic Energy Release Rate (j) 

For cyclic loading, the J-integral estimation proposed by Seshadri and Wu (200 1) 

in Eq. (8.10) can be modified in terms of Mas: 

Y2.m:~ 2 /).a 

E/).aref 0 ~____!!f.._~ 0.5 
a Y 

/)Je l p= 
2Y2 Jra 6. J /).a 

(8.1 1) 

-- a 0.5 < ____!!f.._< l 
£' ref 

a Y a Y 

h A max min 
w ere uaref = a ref - a ref . 
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The parameter crack configuration factor, Y, can be obtained using following 

equation 

Y = K, 
0" ref .;;-;; 

(8.12) 

Critical Crack length 

The critical crack length at which the pipe will break is to be estimated in the next 

step. This can be done in an iterative manner as shown in Fig. 8.10. Using Eq. (2.45), the 

calculation ceases when M e, P = J 1c . The corresponding crack length is considered as the 

critical crack length. The critical energy release rate, J1c, can be estimated using Eq. 

(2.47) (assuming Poisson ' s ratio equal to v=0.3): 

K Jc 3 J,c = 
2 

= 7.280x 10 [Pa.m] 
E 1(1- v ) 

Since the crack propagates in the radial direction as well as the longitudinal 

direction the critical crack length in both directions is determined. The variation of 

normalized elastic-plastic J-integral (Jet PI J ,c ) with alt and cit at locations q_1=0 and 

q_1=nl2 is presented in Fig. 8.11. The critical crack lengths (acr and Ccr) are labeled in this 

figure as a cr I t =0.506 and cc, I t =1.006 in the depth and length direction, respectively. 
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(a) (b) 

Figure 8.10: Flow chart of estimating the critical crack length: (a) Depth direction (acr), 

(b) Length direction (ccr) 
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Figure 8.11: Variation of J e1 PI J 1c with a/t for ~=0 and ~=rc/2 

Fatigue Propagation Life 

272 

The fatigue propagation life (Np) of the pipe can be estimated by u ing the 

procedure presented in Fig. 8.12. Referring to the flow chart in Fig. 8. 12, the procedure is 

terminated when the crack length reaches the critical crack length . Figure 8.13 shows the 

crack growth rate at the deepest point (~=1r/2) and at the inner surface (~=1r/2) . 
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Figure 8.12: Flow chart of estimating the fatigue crack propagation life (Np) 
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It can be seen from Fig. 8.13, when a=acr the fatigue crack propagation life is 

obtained as Np=21555 cycles; whereas, for c=ccr the pipe fatigue life is Np=21460 cycles. 

Therefore, the final fatigue life is estimated when a=acr (Np=21555 cycles as 5 cycles per 

day or L 1.81 years) . The predicted fatigue propagation life is compared with the 

experimental work reported by Aboutorabi and Cowling (1986). 
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Figure 8.13: Crack growth through the thickness and on the surface 
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8.5 CLOSURE 

The robust method discus ed in this Chapter demonstrates a simple and ystematic 

approach for performing the integrity assessments of structure and component with train 

hardening material. The proposed method comes in handy for practicing engineers 

involved in routine design and analysis since the method does not require high cost, time 

and computer memory, it also is a way for quick and conservative design a ses ments. 



CHAPTER9 

CONCLUSION AND RECOMMENDATION 

9.1 CONCLUSION 

Inelastic finite e lement methods are widely used for level 3 integrity as essment of 

component or structure. However, accurate results are dependent on the specification of 

adequate mesh density and an assurance of numerically stable solutions. Independent 

verification methods that are alternatives to inelastic finite element methods are often 

required for engineering designs. In this thesis, the proposed procedures and methods, 

based on elastic solution provide rapid and stable solutions for a relatively lower co t. 

As a result, developing reasonably accurate methods based on linear ela tic 

analysis would be useful for: 

• Preliminary seeping and feasibility studies 
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• Identification of critical locations in complex components or structures 

• New independent methods for verification of inelastic analysis 

• Fitness-for-service evaluations 

The main contributions in this thesis can be described as follows: 

l. A criterion for establishing the degree of convergence of EMAP, and a simple 

procedure for achieving improved convergence, is developed based on the use of 

the variable constraint method. Using the variable q concept there is no need to 

classify the components and structures as previously reported by Se hadri and 

Mangalaramanan (1997). The parameter q in the general EMAP equation, q. 

( 4.1 ), plays an important role in the convergence and numerical stability of the 

results during successive linear elastic iterations. Lower value of q provide more 

stable conditions but result in slow convergence (i.e., requires a larger number of 

iterations). In contrast, the higher values of q result in a relatively fast 

convergence but unstable results during the successive iteration . 

2. Due to the expected local plastic collapse in components or structure containing 

defects, the reference volume concept is applied to identify the kinematically 

active and dead zones in a component. Using the reference volume method, the 

components or structures can be divided into two main regions at the limit load 
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state; i.e, reference volume and dead zone. Having the knowledge of the reference 

volume and dead, the optimum condition (minimum weight design) can be 

achieved for a given component and structure at limit load state. The reference 

volume method is shown to give a more accurate prediction of the local limit load. 

3. The multiplier mp, which relies on the entire statically admissible stress 

distribution rather than the maximum stress, depends on the estimation of the 

reference parameter, f3R· Based on the reference volume concept, a systematic 

procedure is developed for estimating fJR, and consequently the corresponding 

lower bound limit load multiplier, mp, is obtained. This method estimates a lower 

bound limit load which is very close to the inelastic limit load. 

4. The concept of equivalence of "static indeterminacy" is used to estimate the limit 

loads for mechanical components and structures. This method relates a 

multidimensional component configuration to a "reference two-bar structure." 

Simple scaling relationships are developed that enable the rapid determination of 

limit load multipliers. The two-bar method provides very rapid estimation of limit 

load using linear elastic finite element results. The method is shown to be 

applicable to variety of pressurized component including components with cracks 

and notched and component with complicated geometry. 

5. Limit load multipliers are mostly based on elastic-perfectly plastic models; 

however, hardening material models are being used to simulate the real behavior 
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of components. Based on same limit load estimation method proposed in this 

thesis, a simple procedure for estimating the fracture energy relea e rate in term 

of the reference stress and elastic fracture parameters for components or structures 

for bilinear hardening and Ramberg-Osgood models, is propo ed. The procedure 

converts a hardening material model to an equivalent ela tic- perfectly plastic 

model. 

9.2 RECOMMENDATIONS 

Some suggestions for future work can be ummarized as follows: 

1. The variable q scheme has been developed to improved convergence of EMAP. 

This method is based on the specification of elastic modulus for two succes ive 

iterations; however, the effects of Poisson ' s ratio need to be studied when using 

EMAP. 

2. Inelastic finite element analysis (FEA) is widely used to estimate the limit loads in 

a component or structure. However, it can be sometimes diverge from the exact 

limit load. This can occur when appropriate finite element discretization is not 

used or other numerical difficulties occur during the iterative solution procedure. 

The "parameter G" introduced in this thesis, which is indicative of the deviation of 

any statically admissible stress di tributions from the limit state, can be used as a 

convergence parameter for inelastic FEA. The lower the converged value of G, the 
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better is the estimate of the limit load, i.e., G=O would correspond to the 

converged solution 

3. The stress classification concept is widely used in the de ign of pressure vessel 

and piping. This means that different types of stress. i.e. primary, secondary and 

peak stresses require different stress limits as provided by the ASME boiler and 

pressure vessel codes and standards. The concept of constraint map is introduced 

in this thesis to provide a robust and effective insight into the study of the stres 

classification in the components and structures. 

4. Integrity assessment of the components and structures made of bilinear hardening 

and Ramberg-Osgood material models has been studied in this thesis. AI o, 

explicit expressions for converting these two material models to an equivalent 

elastic-perfectly plastic have been derived. The procedure can be applied to other 

material models, i.e., power hardening model. 
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APPENDIX A 

ANSYS INPUT FILE 

An ANSYS macro is written to implement the elastic modulus adjustment 

procedure (EMAP) . The results of stresses and volumes for all the elements at each 

subsequent iteration are stored in a file named as "main.dat". The parameters are stored in 

this fil e will be used as an input file for the MA TLAB script in Appendix B to calculate 

the limit load multipliers, reference volumes and other parameters discussed in th is thesi . 

!*********** PARAMETERS ************* 
ALLSEL,ALL 

Ex=200e9 ! Modulus of Elasticity 
Nu=0.3 ! Poisson's Ratio 

multipro,'start' ,2 
*cset,1,3,itter,'No. OF ITTERATION',10 
*cset,4,6,'criter','ELEMENT MODIFICATION CRITERION',0.000001 
*cset,61 ,62,'1nput the parameters' 
*cset,63,64,'or use default' 
multi pro, 'end' 

multipro, 'start' ,2 
*cset, 1 ,3,Fuii ,'Full Region', 1 
*cset,4,6,Partial , 'Partial Region' ,0 
*cset,61 ,62,'1nput the parameters' 
*cset,63,64,'or use default' 
multipro,'end' 

*IF,Fuii ,EQ,O,THEN 
multi pro, 'start' ,8 
*cset, 1 ,3,AREA 1 .. 1 
*cset,4 ,6,AREA2.,2 
*cset,7,9,AREA3.,3 
*cset, 1 0, 12,AREA4.,4 
*cset, 13, 15,AREA5.,5 
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*cset, 16, 18,AREA6, 6 
*cset, 19,21 ,AREA?,? 
*cset,22,24,AREA8, 8 
*cset,61 ,62,'CHOOSE THE AREAS FOR MODIFICATION' 
*cset,63,64,'PUT AREA NUMBER' 
multi pro, 'end' 
*ENDIF 

!************************************ 
!******** PRE PROCESSING ************ 
!************************************ 
/prep? 

*IF,Fuii ,EQ,O,THEN 
ASEL,S, , , AREA 1 ! Choosing the proper area 
ASEL,A, , , AREA2 
ASEL,A, , , AREA3 
ASEL,A, , , AREA4 
ASEL,A, , , AREAS 
ASEL,A, , , AREA6 
ASEL,A, , , AREA? 
ASEL,A, , , AREA8 
ESLA,S,1 
*ENDIF 

*get,nelem,elem, COUNT, ! Count No. of ELEMENT 
*GET, EMIN, ELEM, 0, NUM, MIN 
*GET, EMAX, ELEM, 0, NUM, MAX 

EPRE=EMIN-1 
*do,k, 1 ,nelem ! Assign each element MP 
*GET, EPRO, ELEM,EPRE, NXTH 

mp,EX,EPRO,Ex 
mp,NUXY,EPRO,nu 
*if,miu ,GT,O,THEN 
mp,MU,EPRO,miu 
*end if 
*if,density,GT,O,THEN 
MP,dens,EPRO,density 
*end if 

mpchg,EPRO,EPRO !CHANGE MP COMMAND 
EPRE=EPRO 

*enddo 
ALLSEL,ALL 

finish 

*get,nnode,node, COUNT, ! No. of nodes 

!************ ARRAYS **************** 

*dim,seqmxt,itter 
*dim,itt,itter 
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*dim,Emt,nelem 
*dim,Nut,nelem 

! Em (Modification Modules) at each element 
! Nu at each element 

*DIM,StsTable,ARRA Y,nelem,itter,1, , , 
*DIM,StnTable,ARRA Y,nelem,itter,1, , , 
*DIM,VoiTable,ARRA Y,nelem,itter,1, , , 
*DIM,S1Table,ARRAY,nelem,itter,1, , , 
*DIM,S2Table,ARRA Y,nelem,itter,1, , , 
*DIM,S3Table,ARRA Y,nelem,itter,1, , , 

!******************************************** 
*IF,Fuii,EQ,O,THEN 
ASEL,S, , , AREA 1 
ASEL,A, , , AREA2 
ASEL,A, , , AREA3 
ASEL,A, , , AREA4 
ASEL,A, , , AREA5 
ASEL,A, , , AREA6 
ASEL,A, , , AREA? 
ASEL,A, , , AREAS 
ESLA,S,1 
*ENDIF 

*do,i,1 ,nelem 
Emt(i)=Ex 
Nut(i)=Nu 

*enddo 
ALLSEL,ALL 
finish 

! Choosing the proper area 

*VFILL, StsTable, Ramp, 1,0 
!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
*Do,j ,1,itter 
!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

!************************************ 
!******** PRE PROCESSING ************ 
!*******'***************************** 

/prep? 
*IF,Fuii,EQ,O,THEN 
ASEL,S, , , AREA 1 
ASEL,A, , , AREA2 
ASEL,A, , , AREA3 
ASEL,A, , , AREA4 
ASEL,A, , , AREA5 
ASEL,A, , , AREA6 
ASEL,A, , , AREA? 
ASEL,A, , , AREAS 
ESLA,S,1 
*ENDIF 

! Choosing the proper area 
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*MSG, Ul ,j 
Iteration = %G 

EPRE=EMIN-1 
*do,i, 1 ,nelem ! Assign each elemnt MP 
*GET, EPRO, ELEM,EPRE, NXTH 

mp,EX,EPRO,Emt(i) !CHANGING MP(EX) 
mp,NUXY,EPRO,Nut(i) 

EPRE=EPRO 
*enddo 

ALLSEL,ALL 
finish 
!************************************ 
!******** SOLUTION ***************** , ..................................... . 
/solu 
solve 
finish 
!************************************ 
!******** POST PROCESSING ********* 
!************************************ 
/post1 
*IF, Fuii ,EQ,O, THEN 
ASEL,S, , , AREA 1 
ASEL,A, , , AREA2 
ASEL,A, , , AREA3 
ASEL,A, , , AREA4 
ASEL,A, , , AREA5 
ASEL,A, , , AREA6 
ASEL,A, , , AREA? 
ASEL,A, , , AREAS 
ESLA,S,1 
*ENDIF 

*MSG, Ul ,j 
Iteration = %G 

ETABLE,seqvt,S, EQV 
ETABLE,eeqvt,EPTO,EQV 
ETABLE,volt ,VOLU , 
ETABLE,s1t,S, 1 
ETABLE,s2t,S,2 
ET ABLE,s3t,S,3 

PLET AB,SEQVt,A VG 

*get,seqmx,plnsol ,,max 
seqmxtU)=seqmx 

! Choosing the proper area 

! Based on Max. Elemental 

! seqmx=Maximum Eq. Stress 
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EPRE=EMIN-1 
*do,i,1,nelem 

*GET, EPRO, ELEM,EPRE, NXTH 
esel,s,elem,,EPRO,EPRO 

*get,seqel ,elem,EPRO,etab,seqvt 
*get,eeqel ,elem,EPRO,etab,eeqvt 
*get,volel ,elem,EPRO,etab,volt 
*get,s1 ,elem,EPRO,etab,s1t 
*get,s2,elem,EPRO,etab,s2t 
*get,s3,elem,EPRO,etab,s3t 

Sts Table{i ,j)=seqel 
Stn Table(i ,j)=eeqel 
VoiTable(i ,j)=volel 
S1Table(i ,j)=s1 
S2Table(i ,j)=s2 
S3Table{i ,j)=s3 

EPRE=EPRO 
allsel ,all 

*enddo 

!***** Arbitrary Stress ************** 

z1=0 
z2=0 

*do,m,1 ,nelem 
ztemp 1 =(Sts Table( m ,j)*Sts Table{ m,j)*VoiTable( m,j)) 
ztemp2=Vo1Table(m,j) 

z1=z1+ztemp1 
z2=z2+ztemp2 

*enddo 

sarbit=SQRT(z1/z2) 

!**************************************** 
i=O 
!***'************************************* 
nu=0.49 

*do,i,1,nelem 
ratio=(Sts Table(i ,j )/sarbit) 

*IF,ratio ,L T,criter,THEN 
Emt(i)=1*Ex 

q={log((1 +ratio**2)/2))/(log(ratio )) 
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*else 
*if,ratio,GE,1,THEN 

q=(log((1 +ratio**2)/2))/(log(ratio )) 

Emt(i)=(sarbit!StsTable(i ,j))**q*Emt(i) ! Modification Modulus 

Nut(i)=nu 
*endif 

*if,ratio,L T,1,THEN 
q=(log((1 +ratio**2)/2))/(log(ratio )) 

Emt(i)=(sarbit!StsTable(i ,j))**q*Emt(i) ! Modification Modulus 

Nut(i)=nu 
*end if 

*end if 
*end do 

!******************************************** 
finish 

ALLSEL,ALL 

ittU)=j 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
*ENDDO 
!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

*CFOPEN,main,dat, 
*do,j,1,itter 
*do,i,1,nelem 
cont=i 

seq=Sts Table(i ,j) 
eeq=Stn Table(i ,j) 
voi=VoiTable(i ,j) 
s 1 =S 1T able(i ,j) 
s2=S2Table(i,j) 
s3=S3Table(i,j) 

*VWRITE,cont,seq ,eeq,vol ,s1 ,s2,s3 
((F1 0.1 ,x),(F24.3,x),(F24.18,x),(F24.18,x),3(F20.3,x)) 
*enddo 
*enddo 

*cfclos 
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APPENDIXB 

MATLABCODE 

The MATLAB code is written to calculate the different parameter such a limit 

load multipliers, reference volume and etc. Different plots generated in this thesis are 

generated using the following code. This code requires an input file named as "main.dat" 

that is the output of the linear elastic FEA from Appendix A. 

Ofo *'********************************************************* 

clear 

set(O, 'DefaultAxesFontSize' ,30) 
set(O,'DefaultlinelineWidth',2.3) 
set(O, 'DefaultlineMarkerSize' ,11) 
set(O, 'DefaultAxesGridlineStyle', '--') 
set(O, 'DefaultAxeslineWidth',2) 

tiltles=32; 
labels=42; 
lines=3; 
divition=30; 
legen=32; 

itter=1 0; % No. of iterations 
sy=250e6 , % Yield Stress 
NFEM=0.7415; %Inelastic FEA limit load multiplier (for comparison) 
Ofo ********************************************************** 

path(path,'D:/workplane/') % Destination of the main file 

tid = fopen('main.dat','r'); 
a = fscanf(fid,'%g %g',[7 inf]); 
a= a'; 
fclose(fid); 

cont=a(:,1 ); 
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seq=a(:,2); 
eeq=a(:,3); 
vol=a(:,4); 
s1 =a(:,5); 
s2=a(:,6); 
s3=a(:,7); 

rn 1 =length{cont); 

n=rn 1 litter; 
% ********************************************************** 

%@CONVERTING TO ITTERATIONS @% 
k=O; 
for j = 1 :itter; 

fori = 1:n; 
k=k+1 ; 
seqtot(i ,j)=seq(k); 
eeqtot(i,j)=eeq(k); 
voltot(i ,j)=vol (k); 

end ; 
end ; 

%@ SORTING BASED ON MAX. STRESSES @% 
k=O; 
fork = 1 :itter; 

fori = 1:n; 
for j=i+1 :n; 
if seqtot(i ,k)<seqtotU ,k) ; % ##h'NN.\'#!1# 

ternp=seqtot(i ,k) ; 
seqtot(i ,k)=seqtotU.k); 
seqtot(j , k )=tern p; 

ternp=eeqtot(i ,k); 
eeqtot( i, k )=eeqtotU, k); 
eeqtot(j ,k)=ternp; 

ternp=voltot(i ,k); 
voltot(i ,k)=voltot(j ,k); 
voltot(j , k )=tern p; 

end ; 
end ; 

end; 
end; 
0/o ********************************************************** 

for j = 1 :itter 
rnnfern(j)=NFEM; 
itteration(j)=j ; 

end 

% ####UPPER BOUND #### 
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% CLASSICAL UPPER BOUND 

for j = 1 :itter; 
tempA1 =0; 
tempA2=0; 

fori = 1:n; 

tempS 1 =(eeqtot(i ,j)*voltot(i,j)); 
tempB2=(seqtot(i ,j )*eeqtot(i ,j)*voltot(i ,j) ); 

tempA 1 =tempA 1 +tempS 1 ; 
tempA2=tempA2+tempB2; 

end; 
muU)=sy*(tempA 1/tempA2); 

end ; 

% M01 UPPER BOUND 

for j = 1 :itter 
tempA1=0; 
tempA2=0; 

fori = 1:n; 

tempS 1 =(voltot(i ,j)); 
tem pB2=( seqtot(i ,j )*seqtot(i ,j )*voltot(i ,j )); 

tempA 1 =tempA 1 +tempS 1; 
tempA2=tempA2+tempB2; 
end; 
m01 U)=sy*sqrt(tempA 1/tempA2); 
Vtot=tempA 1 ; 

end; 

% M02 UPPER BOUND 

for j = 1 :itter 
tempA1 =0; 
tempA2=0; 

fori = 1:n; 

tempS 1 =(voltot(i ,j)*eeqtot(i ,j)/seqtot(i ,j) ); 
tempB2=( seqtot(i ,j )* eeqtot(i ,j )*voltot( i ,j) ); 

tempA 1 =tempA 1 +tempS 1; 
tempA2=tempA2+tempB2; 
end; 
m02U)=sy*sqrt(tempA 1/tempA2); 

end; 
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%####LOWER BOUND#### 
%CLASSICAL LOWER BOUND 

for j = 1: itter; 
smax=max( seqtot(: ,j) ); 
mLU)=sy/smax; 

end; 

% M-ALFA LOWER BOUND 
k=O; 
for j = 1 :itter; 

Rx=m020)/mLO); 

if Rx < (1 +sqrt(2)}; 
k=k+1 

tempB 1 =2*Rx112+sqrt(Rx*(Rx-1 }112*(1 +sqrt(2)-Rx)*(Rx-1 +sqrt(2))); 
tempB2=(Rx112+2-sqrt(5))*(Rx112+2+sqrt(5)); 
ma(k)=2*m02(k)*(tempB 1/tempB2); 
itterationp(k)=j ; 

end; 

end; 

% MBETA LOWER BOUND 
beta=0.1 
for j = 1 :itter 

tempA1=0; 
tempA2=0; 

fori = 1 :n; 

tempB 1 =((m02U)*seqtot(i,j)/sy)ll2-1 }112*voltot(i,j); 
tempB2=voltot(i ,j); 

tempA 1 =tempA 1 +tempB 1; 
tempA2=tempA2+tempB2; 
end; 
mbO)=m020)/(1 +(beta)*sqrt(tempA 1/tempA2)) ; 
G020)=0.5*sqrt(tempA 1/tempA2); 

end; 

% MPP LOWER BOUND 

for j = 1 :itter 
tempA1 =0; 
tempA2=0; 

fori = 1 :n; 

tempB 1 =((m02U)*seqtot(i ,j)/sy}112-1 )112*voltot(i,j); 
tempB2=voltot(i ,j); 
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tempA 1 =tempA 1 +tempB 1 ; 
tempA2=tempA2+tempB2; 
end; 
mppU)=m02U)/(1 +sqrt(tempA 1/tempA2)); 

end; 
0/o ********************************************************** 

%%%%%%%%%%%% PLOTTING %%%%%%%%%%%% 
%@ MULTIPLIERS-ITTERATIONS @% 

lines1 =2.8; 
figure ; 

plot(itteration,m01 ,'-l\k' ,'linewidth',lines1) 
hold on 

plot(itteration,m02,'-ok','linewidth',lines1) 
hold on 

plot(itteration,mu,'-sk','linewidth',lines1) 
hold on 

plot(itteration ,mnfem,'+-K','Iinewidth' ,lines1) 
hold on 

plot(itteration ,mpp,'--sr' ,'linewidth',lines1) 
hold on 
plot(itterationp,ma, '--ok' ,'linewidth' ,lines 1) 

hold on 
plot(itteration ,mb, '- ok' , 'linewidth' ,lines 1 ) 

hold on 
plot(itteration,ml,'--sk', 'linewidth' ,lines 1) 

xla bel(' Iterations', 'F antS ize' ,Ia be Is) 
ylabei('Multipliers' , 'FontSize' ,labels) 

hold off 

0/o ********************************************************** 

for j = 1 :itter 
tempA1 =0; 
tempA2=0; 

fori = 1 :n; 

%@ G-ITTERA TIONS @% 

tempB1 =((muU)*seqtot(i ,j)/sy)l\2-1 )A2*voltot(i ,j); 
tempB2=voltot(i ,j); 

tempA 1 =tempA 1 +tempB 1; 
tempA2=tempA2+tempB2; 
end; 

Gu0)=0.5*sqrt(tempA 1/tempA2); 
end; 

for j = 1 :itter 
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tempA1p=O; 
tempA2p=O; 

fori = 1 :n; 

tempB1 p=((m02U)*seqtot(i ,j)/sy)l\2-1 )l\2*voltot(i ,j); 
tempB2p=voltot(i ,j); 

tempA 1 p=tempA 1 p+tempB 1 p; 
tempA2p=tempA2p+tempB2p; 
end ; 

G02U)=0.5*sqrt(tempA 1 p/tempA2p ); 
end ; 

figure ; 
plot(itteration , Gu, '-ok' ,'linewidth' ,lines) 

hold on 
plot(itteration,G02,'-sk','linewidth', lines) 

xlabel('lterations' , 'FontSize' ,labels) 
ylabei('G _{u}' , 'G _{2}' , 'FontSize' ,labels) 

hold off 

0/o ********************************************************** 

b1 =0.5; 
b2=1; 
b3=1.55; 
b4=2; 
b5=2.5; 

0/o ****** m-Beta ***** 

for j=1 :itter 

mbeta1 U)=m02U)/(1 +b1 *G02U)); 
mbeta2U)=m02U)/(1 +b2*G02U)); 

mbeta3U)=m02U)/(1 +b3*G02U)); 

mbeta4U)=m02U)/(1 +b4 *G02U)); 
mbeta5U)=m02U)/(1 +b5*G02U)); 

end 

figure ; 
plot(itteration ,mbeta1 ,'-k' ,'linewidth' ,lines) 
hold on 
plot(itteration , mbeta2, '-k', 'I i newidth' ,I in es) 
hold on 
plot(itteration , mbeta3, • -k', 'I i newidth' ,I i nes) 
hold on 
plot(itteration ,mbeta4, '-k', 'linewidth' ,lines) 
hold on 
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plot(itteration , mbeta5, '-k', 'linewidth' ,lines) 
hold on 
plot(itteration ,mnfem,'-.k','linewidth',lines) 

h=legend('\beta=??', '\beta=1 ', '\beta"{\fontsize{22} R}= 1 . 73' , '\beta=??', '\beta=??' ,0) 
set(h ,'FontAngle','it','FontSize',legen); 
xlabel('lterations' , 'FontSize', labels) 
ylabel('m_{\beta}', 'FontSize' ,labels) 
grid on 

hold oft 

0/o ********************************************************** 

%@ REFERENCE VOLUME @% 

% METHOD II% 
tempAOp1 =0 ; 
tempA1p1 =0 ; 
tempA2p1 =0 ; 
tempA3p1 =0 ; 
tempAOp2=0 ; 
tempA 1 p2=0 ; 
tempA2p2=0 ; 
tempA3p2=0 ; 
tempAOp3=0 ; 
tempA 1 p3=0 ; 
tempA2p3=0 ; 
tempA3p3=0 ; 
tempAOp4=0 ; 
tempA 1 p4=0 ; 
tempA2p4=0 ; 
tempA3p4=0 ; 
tempAOp5=0 ; 
tempA 1 p5=0 ; 
tempA2p5=0 ; 
tempA3p5=0 ; 

for i=1 :n; 
% 1-iteration 

tempAOp1 = tempAOp1 +voltot(i, 1 ); 
tempS 1 p1 =(voltot(i , 1 )*eeqtot(i , 1 )/seqtot(i , 1 )); 
tempS2p1 =(seqtot(i , 1 )*eeqtot(i , 1 )*voltot(i , 1 )); 

tempA 1 p 1 =tempA 1 p 1 +tempS 1 p 1 ; 
tempA2p1 =tempA2p1 +tempS2p1 ; 

V1 (i)=tempAOp1Ntot; 
m02r1 (i)=sy*sqrt(tempA 1 p1 /tempA2p1 ); 
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tempB3p1 =((m02r1 (i)*seqtot(i ,1 )/sy)l'2-1 )1'2*voltot(i ,1 ); 
tempA3p1 =tempA3p1 +tempB3p1 ; 
G02r1 (i)=0.5/sqrt(tempA3p 1 Ntot); 

% 2-iteration 
tempAOp2= tempAOp2+voltot(i,2); 
tempB 1 p2=(voltot(i ,2)*eeqtot(i ,2 )/seqtot(i ,2) ); 
tempB2p2=(seqtot(i ,2)*eeqtot(i ,2)*voltot(i ,2)); 

tempA 1 p2=tempA 1 p2+tempB 1 p2 ; 
tempA2p2=tempA2p2+tempB2p2; 

V2(i)=tempAOp2Ntot; 
m02r2(i)=sy*sqrt(tempA 1 p2/tempA2p2); 

tempB3p2=( (m02r2(i)*seqtot(i ,2)/sy)"2 -1 )"2*voltot(i ,2 ); 
tempA3p2=tempA3p2+tempB3p2; 
G02r2(i)=0.5*sqrt(tempA3p2Ntot); 

% 3-iteration 
tempAOp3= tempAOp3+voltot(i ,3); 
tempB 1 p3=(voltot(i ,3)*eeqtot(i ,3)/seqtot(i ,3)); 
tempB2p3=(seqtot(i ,3 )*eeqtot(i ,3)*voltot(i ,3) ); 

tempA 1 p3=tempA 1 p3+tempB 1 p3; 
tempA2p3=tempA2p3+tempB2p3; 

V3(i)=tempAOp3Ntot; 
m02r3(i)=sy*sqrt(tempA 1 p3/tempA2p3); 

tempB3p3=( (m02r3(i)*seqtot(i ,3)/sy)"2 -1 )"2*voltot(i ,3 ); 
tempA3p3=tempA3p3+tempB3p3; 
G02r3(i)=0.5*sqrt(tempA3p3Ntot); 

% 4-iteration 
itter4=4; 

tempAOp4= tempAOp4+voltot(i ,itter4 ); 
tempB 1 p4=(voltot(i, itter4 )*eeqtot(i ,itter4 )/seqtot(i , itter4) ); 
tempB2p4=(seqtot(i , itter4 )*eeqtot(i, itter4 )*voltot(i ,itter4) ); 

tempA 1 p4=tempA 1 p4+tempB 1 p4; 
tempA2p4=tempA2p4+tempB2p4; 

V4(i)=tempAOp4Ntot; 
m02r4(i)=sy*sqrt(tempA 1 p4/tempA2p4 ); 

tempB3p4=( (m02r4(i )*seqtot(i ,itter4 )/sy)"2-1 )1'2*voltot(i ,itter4 ); 
tempA3p4=tempA3p4+tempB3p4; 
G02r4(i)=0.5*sqrt(tempA3p4Ntot); 

% last-iteration 
itter5=itter; 
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tempAOp5= tempAOp5+voltot(i ,itter5); 
tempB 1 p5=(voltot(i , itter5)*eeqtot(i , itter5)/seqtot(i, itter5) ); 
tempB2p5=(seqtot(i ,itter5)*eeqtot(i ,itter5)*voltot(i ,itter5)); 

tempA 1 p5=tempA 1 p5+tempB 1 p5; 
tempA2p5=tempA2p5+tempB2p5; 

V5(i)=tempAOp5Ntot; 
m02r5(i)=sy*sqrt(tempA 1 p5/tempA2p5); 

tempB3p5=( (m02r5(i )*seqtot(i ,itter5 )/sy)"2-1 )"2*voltot(i ,itter5); 
tempA3p5=tempA3p5+tempB3p5; 
G02r5(i)=0.5*sqrt(tempA3p5Ntot); 

end ; 

V1 =V1 '; 
m02r1 =m02r1'; 
G02r1 =G02r1'; 
V2=V2' ; 
m02r2=m02r2'; 
G02r2=G02r2'; 
V3=V3' ; 
m02r3=m02r3'; 
G02r3=G02r3'; 
V4=V4' ; 
m02r4=m02r4'; 
G02r4=G02r4'; 
V5=V5' ; 
m02r5=m02r5'; 
G02r5=G02r5'; 

figure ; 

lines=1.5; 
plot(V1 ,m02r1 ,'-k','linewidth' ,lines) 

hold on 

lines=3; 
plot(V2 ,m02r2, '--k' , 'linewidth' ,lines) 

hold on 
plot(V3,m02r3,':k' ,'linewidth',lines) 

hold on 
plot(V 4, m02r4, '-k', 'linewidth' ,lines) 

hold on 
plot(V5,m02r5, '-. k' , 'linewidth' ,lines) 

hold on 

h=legend('i=1', 'i=2', 'i=3', 'i=4' ,'i=5',0) 
set(h , 'FontAngle', 'it' , 'FontSize' ,legen ); 
xlabei('V _{\eta}' ,'FontSize' ,labels); 
ylabel('m"{0}_{2}' , 'FontSize' ,labels); 
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grid on 

o/o ********************************************************** 

%%% METHOD II %%% 

Vratio=[0.99 0.95 0.9 0.8 0.7 0.6 0.3 0.1 0.05 0.01]; 
Vratio=Vratio'; 

nelem=n 
for i = 1 :nelem 

if V1 (i)>=Vratio(1 ); 
p1 =i; 
break 

end 
end 

fori = 1 :nelem 
if V2(i)>=Vratio(1 ); 
p2=i; 
break 

end 
end 

fori = 1 :nelem 
if V3(i)>=Vratio(1 ); 
p3=i; 
break 

end 
end 
fori = 1 :nelem 

if V4(i)>=Vratio(1 ); 
p4=i; 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(1 ); 
p5=i; 

end 
end 

%q 

fori = 1 :nelem 
if V1 (i}>=Vratio(2); 

q1 =i; 
break 

end 
end 
for i = 1 :nelem 

if V2(i)>=Vratio(2); 
q2=i; 
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break 
end 

end 
fori= 1 :nelem 

if V3(i)>=Vratio(2); 
q3=i; 
break 

end 
end 
fori= 1 :nelem 

if V4(i)>=Vratio(2); 
q4=i; 
break 

end 
end 
fori= 1 :nelem 

if V5(i)>=Vratio(2); 
q5=i; 
break 

end 
end 

o/or 
fori = 1 :nelem 

if V1 (i)>=Vratio(3); 
r1 =i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(3); 
r2=i ; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(3); 
r3=i ; 
break 

end 
end 
fori = 1 :nelem 

if V4(i)>=Vratio(3); 
r4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(3); 
r5=i ; 
break 

end 
end 

for i = 1 :nelem 

317 



Appendix 

if V1 (i)>=Vratio(4 ); 
s1=i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(4 ); 
s2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(4 ); 
s3=i ; 
break 

end 
end 
fori = 1 :nelem 

if V4(i)>=Vratio(4 ); 
s4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(4 ); 
s5=i; 
break 

end 
end 

%t 
fori = 1 :nelem 

if V1 (i)>=Vratio(5); 
t1 =i ; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(5); 
t2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(5); 
t3=i ; 
break 

end 
end 
fori = 1 :nelem 

if V4(i)>=Vratio(5); 
t4=i; 
break 

end 
end 
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fori = 1 :nelem 
if V5(i)>=Vratio(5); 

t5=i; 
break 

end 
end 

%u 
for i = 1 :nelem 

if V1 (i)>=Vratio(6); 
u1 =i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(6); 
u2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(6); 
u3=i; 
break 

end 
end 
for i = 1 :nelem 

if V4(i)>=Vratio(6); 
u4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(6); 
u5=i; 
break 

end 
end 

%v 
fori = 1 :nelem 

if V1 (i)>=Vratio(7); 
v1 =i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(7); 
v2=i; 
break 

end 
end 
for i = 1 :nelem 

if V3(i)>=Vratio(7); 
v3=i; 
break 
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end 
end 
fori = 1 :nelem 

if V4(i}>=Vratio(7); 
v4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(7); 
v5=i; 
break 

end 
end 

%w 
for i = 1 :nelem 

if V1 (i)>=Vratio(8); 
w1 =i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(8); 
w2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(8); 
w3=i; 
break 

end 
end 
for i = 1 :nelem 

if V4(i)>=Vratio(8); 
w4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(8); 
w5=i; 
break 

end 
end 

%x 
for i = 1 :nelem 

if V1 (i)>=Vratio(9); 
x1 =i; 
break 

end 
end 
for i = 1 :nelem 

if V2(i)>=Vratio(9); 
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x2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(9); 
x3=i; 
break 

end 
end 
fori = 1 :nelem 

if V4(i)>=Vratio(9); 
x4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(9); 
x5=i; 
break 

end 
end 

%y 
for i = 1 :nelem 

if V1 (i)>=Vratio( 1 0); 
y1 =i; 
break 

end 
end 
fori = 1 :nelem 

if V2(i)>=Vratio(1 0); 
y2=i; 
break 

end 
end 
fori = 1 :nelem 

if V3(i)>=Vratio(1 0); 
y3=i; 
break 

end 
end 
for i = 1 :nelem 

if V4(i)>=Vratio(1 0); 
y4=i; 
break 

end 
end 
fori = 1 :nelem 

if V5(i)>=Vratio(1 0); 
y5=i; 
break 

end 
end 
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o/o ********************************************************** 
% M02(ET A)-ITERATION 

eta1 =(m02r1 (p1) m02r2(p2) m02r3(p3) m02r4(p4) m02r5(p5)]; 
eta2=[m02r1 ( q 1) m02r2(q2) m02r3( q3) m02r4( q4) m02r5(q5)]; 
eta3=[m02r1 (r1) m02r2(r2) m02r3(r3) m02r4(r4) m02r5(r5)]; 
eta4=[m02r1 (s1) m02r2(s2) m02r3(s3) m02r4(s4) m02r5(s5)] ; 
eta5=[m02r1 (t1) m02r2(t2) m02r3(t3) m02r4(t4) m02r5(t5)]; 
eta6=[m02r1 (u1) m02r2(u2) m02r3(u3) m02r4(u4) m02r5(u5)); 
eta7=[m02r1 (v1) m02r2(v2) m02r3(v3) m02r4(v4) m02r5(v5)); 
eta8=[m02r1(w1) m02r2(w2) m02r3(w3) m02r4(w4) m02r5(w5)] ; 
eta9=[m02r1 (x1) m02r2(x2) m02r3(x3) m02r4(x4) m02r5(x5)]; 
eta 1 O=[m02r1 (y1) m02r2(y2) m02r3(y3) m02r4(y4) m02r5(y5)] ; 
itterp=[1 2 3 4 5); 

figure ; 
plot(itterp,eta 1, '-k' , 'linewidth' ,lines) 

hold on 
plot(itterp,eta2 , '-k' , 'linewidth' ,lines) 

hold on 
plot(itterp,eta3,'-k' ,'linewidth', lines) 

hold on 
plot(itterp,eta4,'-k' , 'linewidth',lines) 

hold on 
plot(itterp,eta5, '-k' , 'linewidth' ,lines) 

hold on 
plot(itterp,eta6, '-k', 'linewidth' ,lines) 

hold on 
plot(itterp,eta 7, '-k', 'linewidth', lines) 

hold on 
plot(itterp,eta8, '-k', 'linewidth', lines) 

hold on 
plot(itterp,eta9, '-k', 'linewidth' ,lines) 

hold on 
plot(itterp,eta 1 0,'-k', 'linewidth' ,lines) 

hold off 

set(gca,'Xlim' ,[1 5]) 
set(gca ,'XTick',[1 2 3 4 5]) 

xlabel('lterations', 'FontSize' ,labels) 
ylabel('mA{Q}_{2}' , 'FontSize', labels) 
grid on 

% G-value 
etap1 =[G02r1 (p1) G02r2(p2) G02r3(p3) G02r4(p4) G02r5(p5)]; 
etap2=[G02r1 (q1) G02r2(q2) G02r3(q3) G02r4(q4) G02r5(q5)]; 
etap3=[G02r1 (r1) G02r2(r2) G02r3(r3) G02r4(r4) G02r5(r5)]; 
etap4=[G02r1 (s1) G02r2(s2) G02r3(s3) G02r4(s4) G02r5(s5)]; 
etap5=[G02r1 (t1) G02r2(t2) G02r3(t3) G02r4(t4) G02r5(t5)]; 
etap6=[G02r1 (u1) G02r2(u2) G02r3(u3) G02r4(u4) G02r5(u5)]; 
etap7=[G02r1 (v1) G02r2(v2) G02r3(v3) G02r4(v4) G02r5(v5)] ; 
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etap8=[G02r1 (w1) G02r2(w2) G02r3(w3) G02r4(w4) G02r5(w5)]; 
etap9=[G02r1 (x1) G02r2(x2) G02r3(x3) G02r4(x4) G02r5(x5)]; 
etap1 O=[G02r1 (y1) G02r2(y2) G02r3(y3) G02r4(y4) G02r5(y5)] ; 

% G02(ETA)-ITERATION 
figure ; 

plot(itterp,etap1 , '-k' ,'linewidth' ,lines) 
hold on 
plot( itterp, etap2, '-k' , 'I i newidth' ,I i nes) 

hold on 
plot(itterp, etap3, '-k' , 'I i newidth' ,I ines) 

hold on 
plot(itterp, etap4, '-k', 'I i newidth' ,I i nes) 

hold on 
plot( itterp, etap5, '-k', 'I i newidth' ,I i nes) 

hold on 
plot(itterp, etap6, '-k', 'I i newidth' ,I ines) 

hold on 
plot(itterp,etap 7, '-k' , 'linewidth' ,lines) 

hold on 
plot(itterp,etap8,'-k' ,'linewidth' ,lines) 

hold on 
plot(itterp,etap9,'-k' ,'linewidth' ,lines) 

hold on 
plot(itterp,etap 1 0, '-k' , 'linewidth' ,lines) 

hold off 

set(gca,'XTick',(1 2 3 4 5]) 
xlabel('lterations', 'FontSize' ,labels) 
ylabei('G _{2}', 'FontSize',labels) 

o/o ********************************************************** 

%@ M-BETA & REFERENCE METHOD 

tempAO=O ; 
tempA1 =0 ; 
tempA2=0 ; 
tempAp1 =0 ; 
tempAp2=0 ; 

for i=1 :n; 
% Last iteratiion 

tempAO= tempAO+voltot(i ,itter); 

tempB 1 =(voltot(i ,itter)*eeqtot(i , itter)/seqtot(i, itter) ); 
tempB2=(seqtot(i ,itter)*eeqtot(i ,itter)*voltot(i,itter)); 

tempe 1 =(voltot(i ,itter)); 
tempC2=(seqtot(i ,itter)*seqtot(i ,itter)*voltot( i, itter)); 
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tempA 1 =tempA 1 +tempB 1; 
tempA2=tempA2+tempB2; 

tempAp 1 =tempAp 1 +tempe 1 ; 
tempAp2=tempAp2+tempC2; 

Veta(i)=tempAONtot; 
m02eta(i)=sy*sqrt(tempA 1/tempA2); 
m01 eta(i)=sy*sqrt(tempAp1/tempAp2); 

tempA3=0 ; 
for m=1:i; 

tempB3=((m02eta(i)*seqtot(m,itter)/sy)"2-1 )"2*voltot(m,itter); 
tempA3=tempA3+tempB3; 
G02etatem p=O .5* sq rt(tempA3Ntot); 

end ; 

G02eta(i)=G02etatemp; 
mppeta(i)=m02eta(i)/(1 +G02eta(i)); 

% mL (classical lower bound)% 

mLeta(i)=sy/seqtot(1 ,itter); 
end ; 

Veta=Veta' ; 
m02eta=m02eta'; 
G02eta=G02eta'; 
mppeta=mppeta'; 
%m01 eta=m01 eta' ; 

%MULTIPLIERS-ETA (LAST ITERATION) 
figure; 
plot(Veta,m02eta, '-k' , 'linewidth' ,lines) 

hold on 
plot(Veta,mppeta,'- .k', 'linewidth',lines) 
hold on 
plot(Veta,m01 eta,': r' , 'linewidth' ,lines) 
hold on 
plot(Veta,mLeta,': r', 'linewidth', lines) 

xlabei('V _{\fontsize{35}\eta}' , 'FontSize' ,labels) 
ylabei('Multipliers' , 'FontSize' ,labels) 

%MULTIPLIERS-ETA (LAST ITERATION) 

figure; 
plot(Veta, G02eta, '-k' , 'linewidth' ,lines) 

set(gca,'Xlim',[O 1]) 
xlabei('V _{\fontsize{35}\eta }', 'FontSize' ,labels) 
ylabei('G', 'FontSize' ,labels) 
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grid on 

hold off 
o/o ****,...***************************************************** 

%@ M-ALFA CURVE @% 

for j=1 :itter; 
r01 xU)=m01 U)/mLU); 
r01 yU)=m01 U)/mnfemU); 

end ; 

% R-alfa components 

P=13333; 
E0=30e6; 
zmin=0.0001; 
zmax=1 ; 
zdelta=(zmax-zmin )/1 000; 
z = zmin:zdelta:zmax; 
m=length(z); 

x=zmin-zdelta; 

k=O; 

for i=1 :m; 

x=x+zdelta ; 

sig1 p(i)=(EO./(EO+EO*x))*P; 
sig2p(i)=(EO*x./(EO+EO*x))*P; 

mexact=2*sy/P; 
mexactt(i)=mexact; 
if (sig1 p(i)>=sig2p(i)); 

sigmax=sig 1 p(i); 
else 

sigmax=sig2p(i); 
end; 

mlp(i)=sy./sigmax; 
m0p(i)=(sy*sqrt(x+1 ))./sqrt(x. *(sig1 p(i)."2)+sig2p(i)."2); 

Rxp(i )=mOp(i )./mlp(i ); 
Ryp(i)=mOp(i)/mexact; 

A 1 =sqrt((Rxp(i).*(Rxp(i)-1 )."2).*(1 +sqrt(2)-Rxp(i)).*(Rxp(i)-1 +sqrt(2))); 
A2=(Rxp(i)."2+2-sqrt(5)). *(Rxp(i)."2+2+sqrt(5)) ; 
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if ((Rxp(i)) <= (1 +sqrt(2))); 
k=k+1 ; 

Rxpp(k)=Rxp(i) ; 
yO(k)=1.15 *(0.5*(A2./(2*Rxpp(k)."2+A 1 ))); 
y1 (k)=1 *(0.5*(A2./(2*Rxpp(k)."2+A 1 ))); 
y2(k)=0.9*(0.5*(A2./(2*Rxpp(k)."2+A 1 ))); 
y3(k)=0.8*(0.5*(A2./(2*Rxpp(k)."2+A 1 ))) ; 

y4(k)=O. 7 *(0.5*(A2./(2*Rxpp(k)."2+A 1 )) ); 
y5(k)=0.6 *(0.5*(A2./(2*Rxpp(k)."2+A 1 ))); 
y6(k)=0.5 *(0.5*(A2./(2*Rxpp(k)."2+A 1 ))); 

end 

end 

figure ; 
plot(r01 x,r01 y, '-ok' ,'linewidth' ,lines) 

xmax=1 +sqrt(2); 

set(gca,'Ylim',[1 2.5]) 
xlabel('mO/mL', 'FontSize' ,labels) 
ylabel('mO/m', 'FontSize' ,labels) 

hold on; 
% General m-alfa curves 
%plot(Rxpp, yO, ':k', 'linewidth' ,lines) 
hold on 
plot(Rxpp,y1 , '--k', 'linewidth',lines) 
hold on 
%plot(Rxpp, y2, ':k', 'linewidth' ,lines) 
hold on 
%plot(Rxpp,y3, ':k' , 'linewidth' ,lines) 
hold on 
%plot(Rxpp,y4,':k','linewidth',lines) 
hold on 
%plot(Rxpp,y5, ': k' , 'linewidth' ,lines) 
hold on 
%plot(Rxpp,y6, ': k' , 'linewidth' ,lines) 
hold on 

hold on 
X1 =[1 1+sqrt(2)]; 
Y1 =[1 1 +sqrt(2)]; 
line(X1 ,Y1 ); 

hold on 

X2=[1 +sqrt(2) 1 +sqrt(2)] ; 
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Y2=[1 1 +sqrt(2)]; 
line(X2,Y2); 

o/o ********************************************************** 
%@ Reverse sorting method 

iteration= 1 

% m02 (m02 new) % 

tempAO=O; 
tempA1 =0 ; 
tempA2=0 ; 
tempAp1 =0 ; 
tempAp2=0 ; 

for i=1 :n; 
% Last iteratiion 

tempAO= tempAO+voltot(i ,iteration); 

tempS 1 =(voltot(i ,iteration )*eeqtot(i ,iteration )/seqtot(i , iteration)); 
tem pS2 =( seqtot(i , iteration)* eeqtot(i , iteration )*voltot( i, iteration)); 

tempe 1 =(voltot(i ,iteration)); 
tempC2= ( seqtot(i , iteration)* seqtot(i , iteration )*voltot(i , iteration)); 

tempA 1 =tempA 1 +tempS 1; 
tempA2=tempA2+tempS2; 

tempAp1 =tempAp1 +tempC1 ; 
tempAp2=tempAp2+tempC2; 

Veta 1 (i)=tempAONtot; 
m02eta1 (i)=sy*sqrt(tempA 1/tempA2); 

%% G(VR) and m" 
tempA3=0 ; 

for m=1 :i; 
tempS3=((m02eta1 (i)*seqtot(m,iteration)/sy)"2-1 )1'2*voltot(m,iteration); 
tempA3=tempA3+tempS3; 
G02etatemp=0.5*sqrt(tempA3Ntot); 

end; 

G02eta 1 (i )=G02etatemp; 
mppeta1 (i)=m02eta1 (i)/(1 +G02eta(i)); 

end ; 

Veta1 =Veta1 '; 
m02eta1 =m02eta1 '; 
G02eta 1 =G02eta 1 '; 
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mppeta 1 =mppeta 1 '; 

% ml {classical lower bound)% 
tempAO=O; 
q=n+1 

for i=1 :n; 
tempAO= tempAO+voltot( q-i ,iteration); 
Veta2(i )=tempAONtot; 
mleta2(i )=sy/seqtot( q-i ,iteration); 
mNFEM(i)=NFEM; 

end; 

Veta2=Veta2' ; 

%MULTIPLIERS-ETA 
figure ; 

plot(Veta1 ,m02eta1 ,'-k','linewidth' ,lines) 
hold on 

plot(Veta2,mleta2,'-r' ,'linewidth',lines) 
hold on 

plot(Veta2,mNFEM,'-.b' ,'linewidth',lines) 

set(gca ,'Xlim', [O 1]) 
xlabei('V _{\fontsize{35}\eta}', 'FontSize', labels) 
ylabei('Multipliers' , 'FontSize' ,labels) 
grid on 

% G-ETA 
figure ; 

plot(Veta1 ,G02eta1 ,'-k',' linewidth',lines) 

set(gca, 'Xlim' ,[0 1]) 
xlabei('V _{\fontsize{35}\eta}', 'FontSize' ,labels) 
ylabei{'G','FontSize',labels) 
grid on 

figure ; 
mstar- [8.3106 7.1948 7.5624 7.6092 7.6109); 
mexact=[NFEM NFEM NFEM NFEM NFEM]; 
zeta=[1 2 3 4 5] ; 

plot(zeta,mstar,'-ok' ,'linewidth',lines) 
hold on 
plot( zeta, mexact, '-. b' , 'linewidth' ,lines) 

% ********************************************************** 
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