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Abstract 

There exists many studies on the robust estimation of the regression effects in a 

linear model set up for continuous such as Gaussian data possibly containing one 

or more outliers. The robust estimation of the regression effects in a generaliz d 

linear model (GLM) set up for the count and binary data in the presence of outliers 

is, however , relatively difficult. In this thesis, we deal with this difficult estimation 

issue and develop the robust estimation procedures under three scenarios. First, 

a fully standardized Mallows-type quasi-likelihood (FSMQL) estimation technique 

is developed to obtain consistent regression estimates in the GLM s t up for both 

independent count and binary data. Secondly, we develop a robust g neralized quasi­

likelihood (RGQL) estimation procedure to deal with the outliers in the generalized 

linear mixed model (GLMM) set up for both count and binary data. Finally, we also 

develop the RGQL estimation procedure to deal with possible outliers in the GLM 

set up for the longitudinal count and binary data. The performances of the proposed 

robust estimators are examined through extensive simulation studies under all three 

set up: the GLM for the independent count and binary data; th GLMM for the 

familial count and binary data; and the GLM for the longitudinal count and binary 

data. 
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Chapter 1 

Introduction 

1.1 Motivation of the Problem 

There exists a vast literature on the discrete such as count and binary data analysis 

in the clustered regression set up. In this set up, the responses in a cluster become 

correlated, but the correlation structure depends on the nature of the clusters. For 

example, when the data are collected from the members of a large number of in­

dependent families/clusters, they form a familial correlation structure. But, when 

t he data are collected repeatedly over a small period of time from a large number of 

independent individuals, they form a longitudinal correlation structure. This type of 

clustered data whether familial or longitudinal has been widely discussed in the liter­

ature over the last two decades. The main thirst of t hese studies is to understand the 

effects of the associated covariat es on the response data. In some situations, it may 

also be important to understand the correlation structure of the responses. In the 

familial set up , the correlations are usually understood through the variance compo­

nents of the random family effects, whereas in the longit udinal set up, the correlation 
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structure is formed due to the stochastic time factors. Note however that most of 

these familial or longitudinal studies are done based on the assumption t hat the data 

do not contain any outliers or they are not subject to any non-responses or any other 

less likely disturbances. For convenience, we now review some of the existing leading 

works in the familial and longitudinal set up. First , we consider the familial case in 

the following subsection and then we discuss the longitudinal case in the section 1.1.2. 

1.1.1 A brief review of the familial data analysis 

In the generalized linear model (GLM) set up, the existing studies with familial data 

have mainly been done for the binary and count data. This type of data b longs 

to the well-known exponential family in the independence set up. Thus, a GLM 

with appropriate link function is used to deal with such data in the independence 

set up. See, for example, McCullagh and Nelder (1989) among others. Note that for 

count data, one traditionally uses the so-called 'log' link to obtain the linear model, 

whereas the so-called 'logit ' link is used for the binary data to obtain such linear 

model. As opposed to the independence set up, the count or binary responses under 

a family/cluster become correlated. The correlations arise due to the fact that all 

members of the family share a common random family effect. To accommodate this 

common random effect, the GLM considered in the independence set up has been 

extended to the generalized linear mixed model (GLMM) set up by adding a random 

effect with the linear predictor of the GLM. Note that under the normality assumption 

for the random family effects present in the linear function under the GLMM, many 

authors have dealt with estimation of the regression effects as well as the variance 

component of the random family ffects. We refer to two pioneer works with r gard 

to such inferences, namely, the penalized quasi-likelihood (PQL) approach of Breslow 
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and Clayton (1993) and the hierarchical likelihood (HL) approach due to Lee and 

Neider (1996), both for the count and binary data. These approaches are developed 

following the so-called best linear unbiased prediction (BLUP) technique used in 

linear mixed model to estimate the regression effects and the variance component of 

random effects through the estimation of the random effects. To be specific, even 

though the random effects are unobservable, in the PQL and HL approaches, the 

random effects are pretended to be fixed effects and they are estimated along with 

the regression effects. These estimates of regression effects and random effects are then 

used to estimate the variance component. It is however known that they may produce 

biased and hence inconsistent estimates, specially for the variance component. See 

for example, Kuk (1995), Breslow and Lin (1995), Sutradhar and Qu (1998), Jiang 

(1998), among others. 

As opposed to the BL UP analogue approaches, there also exists Monte Carlo 

(MC) based approaches to analyze the data in the GLMM. For example, see Markov 

chain Monte Carlo (MCMC) technique of Zeger and Karim (1991), Monte Carlo 

EM (MCEM) and Monte Carlo Newton-Raphson (MCNR) algorithms of McCulloch 

(1994, 1997) . These approaches may however computationally burdensome [Jiang 

(1998)], specially when one deals with multi-dimensional random effects. 

Recently, Jiang and Zhang (2001) have introduced an improvement over Jiang's 

(1998) simulated method of moments. But, as shown by Sutradhar (2004), this 

improved method of moments may also be inefficient, specially when in estimating 

the variance component of the model. Furthermore, Sutradhar (2004) has used a 

generalized quasi-likelihood (GQL) approach which produces both consistent and 

highly efficient estimates (as compared to other competitive moment estimates). For 

similar GQL inferences in the GLMM set up for both binary and count data, we refer 
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to Sutradhar and Rao (2003). 

ote however that all these approaches including those in Sutradhar and Rao 

(2003) and Sutradhar (2004) deal with the familial binary or count data, but in the 

absence of any possible outliers. 

1.1.2 A brief review of the longitudinal data analysis 

In the longitudinal set up, when the repeated data do not contain any outliers, there 

exists a vast literature mainly beginning from the pioneer work of Liang and Zeger 

(1986). As opposed to the familial set up, here repeated data are coll cted from a 

large number of independent individuals. The responses become correlated because of 

the time effects on the repeated responses of t he same individual. In this set up, one 

is interested to estimate the associated regression effects consistently and efficiently, 

as well as the longitudinal correlations at least consistently. 

Under the assumption that the longitudinal discrete responses have specifi d 

known forms for the marginal means and variances, Liang and Zeger (19 6) propos d 

a generalized estimating equation (GEE) approach forth consistent and effici nt es­

timation of t he regression effects, which wa developed by using a suitable 'working 

stationary matrix for the underlying true unknown correlation structure. As discussed 

by Crowder (1995) and Sutradhar and Das (1999) [see also, Sutradhar (2003)], this 

GEE approach however has many pitfalls with regard to both consistency and effi­

ciency. Sutradhar (2003) has relaxed the assumption about the corr lation structure. 

To be specific, it has been assumed in Sutradhar (2003) that the rep ated responses 

follow a stationary correlation tructure whi h belongs to a class of autocorrelation 

models that accommodates any of the basic correlation structures such as autoregr s­

sive of order one [AR(1)], moving average of order one [MA(1)], and equi-correlation 
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(EQ). Thus, as opposed to Liang and Zeger (1986), the correlation structure is as­

sumed to be known subject to the restriction that it belongs to the suggested class of 

autocorrelations. As far as t he estimating equation is concerned, Sutradhar (2003) has 

suggested a generalization of the traditional mean and variance based quasi-likelihood 

(QL) approach [see Wedderburn (1974) and McCullagh (1983), for example] for the 

estimation of the associated regression effects. This approach by Sutradhar (2003) 

may, therefore, be referred to as the generalized QL (GQL) approach. If the responses 

really follow this class of correlations, it is then clear that this GQL approach would 

produce both consistent and highly efficient regression estimates as compared to the 

other competitive such as 'working' independence based regression estimates. Note 

however that none of these approaches: Liang and Zeger (1986), Sutradhar and Das 

(1999), and Sutradhar (2003) dealt with any possible outlying observations in the 

longitudinal data set. 

Some authors such as Thall and Vail (1990) and Davis et al. (2000) have analyzed 

the longitudinal data based on a correlation structure generated through a common 

individual random effect among the repeated responses. As it is discussed in th last 

section, this approach takes care of the familial correlations instead of th longitudinal 

correlations. See also Jowaheer and Sutradhar (2002). Thus, the random effect based 

longitudinal correlation modelling approach will not be followed any further in the 

thesis. Note that the above random effect based longitudinal data analyses were 

developed for the cases where the longitudinal data do not contain any outliers. 

1.1.3 Existing robust estimation in the independent set up 

Note that the robust inference for the regression effects in a linear model set up, 

specially for the symmetric continuous data with possible outliers, has a long history. 
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The main objective of such inferences is to downweight the suspected outliers so 

that the parameters of the model may be estimated consistently. For the upto date 

discussion on this and other related topics, we, for example, refer to Huber (2004), 

Rousseeuw and Leroy (1987), Hampel et al. (1986), and the references therein. 

As opposed to t he robust inference for the linear and non-linear set up for the 

continuous data with possible outliers, there does not, however, appear adequate 

discussions on the robust inference for the discrete such as binary and count data. 

For some recent discussions on the robust inference topic for the discrete data, we 

refer to Cantoni and Ronchetti (2001) and the references therein. To be specific, 

Cantoni and Ronchetti (2001) [see also, Mallows (1975)] have proposed a Mallows­

type QL (MQL) estimating equation to estimate the associated regression parameters 

involved in the Poisson and binomial regression models, which can be considered 

as an improvement over the traditional QL estimating equation in the presence of 

possible outliers. It is, however, demonstrated in Chapter 2 that this approach of 

Cantoni and Ronchetti (2001) may further be improved to obtain the estimates with 

smaller biases. This is done by using the proper variance and gradient functions in 

the estimating equations, whereas the MQL approach uses certain 'working' variance 

and gradient functions to construct the estimating equations. This additional bias 

correction, therefore, improves the consistency of the estimates of parameters involv d 

in the model. 

With regard to the robust inference for the binary data in th presence of pos­

sible outlying observations, Copas (1988) proposed a misclassification based outlier 

resistant estimation approach that yields approximate consistent stimates for the r -

gression effects. Next , to obtain more consistent estimates of the parameters, Carroll 

and Pederson (1993) introduced an improvement over the Copas's (1988) approach 
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based on the Mallows-type estimation technique. In the thesis, in defining the outliers 

for the binary data, we use a similar but different way than that of Copas (1988) and 

Carroll and Pederson (1993), which is discussed in Chapter 2. 

1.1.4 Existing robust estimation in the familial set up 

The brief discussion on the inferences for the familial mixed model given in t he sec­

tion 1.1.1 indicates that obtaining the consistent estimates for the parameters under 

such models is difficult. This estimation problem naturally gets more complex if the 

familial data contain any outliers. evertheless, t here have been a few attempts in 

the literature to use the familial mixed model to analyze the so-called longitudinal 

data in the presence of possible outliers. For example, we refer to Mills et a l. (2002) 

and Sinha (2006). ote that these studies appear to encounter both modelling and 

estimation problems. To be specific, as pointed out by Jowaheer and Sutradhar 

(2002), the familial models (i.e., GLMM) are not able to accommodate the longitu­

dinal correlation structure of the repeated data. With regard to the estimation of 

the parameters, even if one applies their familial model based estimation approach to 

analyze the familial data with possible outlying observations, the weighted likelihood 

approach of Mills et al. (2002) appear to produce the bias d estimates irrespective 

of the situations whether the data contain outliers or not . See, for xample, Table 1, 

2, and 3 in Mills et al. (2002). These biases are generally produced because of the 

use of certain numerical techniques to drive out the random effects. Sinha's (2006) 

approach appears to be similar to that of Cantoni and Ronchetti (2001 ) where the 

estimating equations are developed by using certain 'working' gradient functions and 

covariance matrix constructed ignoring the outliers in the data. 
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In an earlier study, Sinha (2004) has correctly used a familial mixed model to ana­

lyze the familial data with possible outliers. As far as the estimation of the parameters 

is concerned, Sinha (2004) used the following steps: (1) a likelihood equation is writ­

ten for the outlier free case conditional on the random effects; (2) a robust version of 

this equation is written to downweight the possible outliers that may be present in 

the data; and (3) the random effects are driven out by taking average over the Monte­

Carlo based conditional distributions. Note, however, that this estimation approach 

of Sinha (2004) is quite cumbersome even if the data do not contain any outliers, 

that is, when only steps (1) and (3) ar used. See, for example, Jiang (1998) and 

Jiang and Zhang (2001), where outlier free cases are dealt with by using the method 

of moments as opposed to the likelihood method. The alternative moment approach 

certainly produces the consistent estimates for the parameters of the model. In view 

of these studies for non-outlier cases it seems that appropriate modification to the 

moment approach for the outliers would have been useful to the practitioners for 

simplicity. Moreover, the moment approaches are easily extendable to the situations 

where one cannot write the score equations because of the difficulty in constructing 

the likelihood function. 

Further note that as one may obtain the consistent as well as more efficient esti­

mates (as compared to the moment approach) by using the GQL approach [Sutradhar 

(2004)] in the absence of outliers, it appears to be much more appealing to modify 

the outlier free GQL approach to accommodate the possible outliers. This will be 

done in Chapter 3. We emphasize here that similar to the moment approach, the 

GQL approach may also be extendable to the situations where the construction of 

t he likelihood function is not possible. 
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1.1.5 Existing robust estimation in the longitudinal set up 

In the longitudinal set up, if the repeated data contain one or more outlying observa­

tions, the traditional GEE or GQL approach produces inconsist nt estimates for th 

regression ffects as well as for the associated correlation parameters. Some author 

such as Pr isser and Qaqish (1999) , Mills et al. (2002) , Cantoni (2004), and Sinha 

(2006) have att mpted to develop the estimation approach to obtain estimates with 

small or no biases. But, these procedures use either improp r gradient functions or 

'working' covariance matrix or both in constructing the estimating equations for pa­

rameters. ote that it is well known by now that the us of the 'working' covarianc 

matrix may produce the inconsistent and/ or inefficient estimates [Su tradhar and Das 

(1999)] even if the data do not contain any outliers. In view of this result , there is 

no reason to extend the 'working' covariance matrix based approaches to analyze the 

longitudinal data in the presence of possible outliers. Further note that the use of an 

improper or 'working' gradient function may also result to biased estimates. 

To be specific, Preisser and Qaqish (1999, eq. 1, p. 575) have used an estimating 

equation where a gradient function for non-outlying situations is used. In constructing 

the estimating equations, these authors also have used a 'working' covariance matrix 

which bypasses both the true correlation structure as well as the pres nee of possible 

outliers. Cantoni (2004) has improved this approach by using a proper gradient 

function constructed for t he data containing possible outliers. Sh has, however, u d 

the sam 'working' covariance matrix as in Preisser and Qaqish (1999) in constructing 

the estimating quation. 

Mills et al. (2002) and Sinha (2006) also have analyzed the longitudinal data with 

possible outliers. These authors unlike Preisser and Qaqish (1999) and Cantoni (2004) 

have modelled the longitudinal correlation by using the random effects approach. 
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Note that as argued by Jowaheer and Sutradhar (2002), their random effects based 

approaches appear to be quite inappropriate to model the longitudinal correlations. 

Further note that even if their approaches are used for the analysis of the familial data 

in the presence of outliers, their estimating equations would still contain 'working' 

gradients functions [Sinha (2006)]. 

In the thesis, unlike the above existing studies, we assume that the longitudi­

nal data in the absence of outliers follow a true non-stationary correlation structure 

which may accommodate the AR(l), MA(l), and EQ correlation structures. We then 

construct the estimating equations not only by modifying the gradient functions due 

to the outliers, but also by modifying the covariance matrix to reflect the outliers 

in the data. Thus, the new modified estimation approach would be a proper gener­

alization of the Mallows-type GQL approach [see also Sutradhar (2003)]. This new 

development is discussed in Chapter 4 including some simulation studies. 

1.2 Object ives of the Thesis 

The discrete clustered data analysis in the presence of pos ible outliers encounters two 

types of problems. First, it is in general difficult to model the correlation structure 

of the data even if the data is outlier free. Secondly, it is quite difficult to model 

outliers for such correlated data. The main objective of the thesis is to develop a 

valid estimation procedure through proper modelling for both correlation structure 

and possible outliers. To achieve this goal, we und rtak the following issues in 

sequence. 

1. Since the robust inference for the discrete such as count and binary independ nt 

data is not adequately discussed in the literature, we first make an improvement 
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over a recent Mallows-type quasi-likelihood (MQL) approach discussed by Can­

toni and Ronchetti (2001). ote that the proposed improvement occurs because 

of the use of a proper gradient function and a proper variance structure in the 

construction of the estimating equations. This improvement is discussed in 

details in Chapter 2. 

2. In Chapter 3, we generalize the robust estimating equations developed for the 

independent case to the familial set up for both count and binary data. Note 

that in a familial set up, one deals with a large number of independent fami­

lies/clusters each with one or more members. As the members of a family share 

a common random family effect, the count or binary responses for the memb rs 

of a given family become correlated. This correlation structure along with cer­

tain modelling for one or more outliers is exploited to analyze the familial data 

in the presence of possible outliers. 

3. In Chapter 4, we provide a similar robust estimation approach as in Chapter 

3. But, we do this for the longitudinal discrete (count and binary) data that 

may contain one or more outliers. Note that in the longitudinal set up, the 

correlation structures of the clustered data are quite different than those und r 

the familial set up discussed in Chapter 3. In the longitudinal studies, a small 

number of repeated responses are collected from a large number of indep n­

dent individuals over a period of time. As the repeated responses are made 

on the same individual, it is likely that these responses ar correlated. The 

specifications of the proper correlation structure and gradient function for the 

repeated data in the presence of possible outliers are considered in constructing 

the estimating equations to obtain the consistent and efficient estimates of the 
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parameters involved in the longitudinal model. 

4. The thesis is concluded in Chapter 5. We provide some remarks on the pos i­

bilities of extending the robu t approaches discu d in Chapter 3 and 4 to the 

combined familial-longitudinal et up in the presence of pos ibl outliers. 



Chapter 2 

Improved Robust Estimation for 

Independent Count and Binary 

Data 

In generalized linear model (GLM) set up [McCullagh and Neld r (1989)], wh n 

the data do not contain any outliers, it is customary to analyze discrete such as 

count and binary data collected from a sample of independent individuals. Let K 

be the size of the sample under study. Suppose that Yi is a discrete response col­

lected from the ith (i = 1, ... , K) individual of the sample. Also suppose that 

Xi = (xi1 , ... , Xiu, . . . , Xip) ' be the p-dimensional covariate vector corresponding to Yi· 

Let /3 = (/31 , ... , /310 ••. , /3p )' denote the effects of covariates Xi on the response Yi for 

all i = 1, .. . , K. This type of data may be analyzed by using the maximum likelihood 

(ML) approach wher the marginal density is assumed to belong to t he well-known 

exponential family. That is, 

f(yi) = koexp [{yiBi- a(Bi)} ¢ + b(yi, ¢)], 

13 

(2.1) 
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where ()i = h(rtJ with Tli = x~(3, a(-), b(-) , h(-) are of known functional forms, ¢ is 

possibly a known scale parameter such as ¢ = 1 for both count and binary data, 

and k0 is a normalizing constant. Here it is of primary interest to estimate the 

regression effect (3. It is well known that the ML approach produces consistent and 

highly efficient estimates for this regression effect (3. Alternatively, one may use the 

simpler moment or quasi-likelihood (QL) approaches to obtain consistent estimators 

of (3, but these estimators may be slightly less or equally efficient as compared to the 

ML estimators. For various studi s using the ML approach we, for example, refer to 

Pregibon (1982); Stefanski et al.(1986); Ki.insch et al. (1989); Morgenthaler (1992); 

and Ruckstuhl and Welsh (1999). Similarly, one may refer to Wedderburn (1974); 

McCullagh and Neider (1989); and Heyde (1997) for studies applying moment or QL 

approaches. 

Note that in practice, it may however happen that the data may contain one 

or more outlying obs rvations. For example, in count data analysis, it may happen 

that the bulk of t he observations follow the Poisson distribution with means close to 

each other, whereas a few outlying count observations may arise from the Poisson 

distribution but with inflated or deflated means due to the contaminated covariates. 

This type of outliers is referred to as the contaminated covariates based outliers 

and the outlying responses may be generally understood based on the magnitudes of 

their differences from their corresponding means. There exists some studies, see for 

example, the recent studies by Cantoni and Ronchetti (2001) and Sinha (2004) with 

regard to the robust estimation of the regression effects (3 in the presence of such 

contaminated covariates based out liers. 

In the binary case, similar robust inferences have been studied by some authors 

over the last two decades. For example, we refer to a pioneer work by Copas (1988) 
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mainly for a misclassification based robust estimation procedure that produces ap­

proximate consistent estimates for the regression effects. To be specific, it has been 

assumed by Copas (1988) that the bulk of the binary observations follow a logistic 

distribution with a specified success probability, but the outlying binary observations 

are generated following a different logistic distribution characterized by a misclas-

sified success probability different than that of the logistic distribution defined for 

the bulk of the observations. Later on, Carroll and Pederson (1993) have sugge t d 

an improvement over the estimation approach considered by Copas (19 8) , that pro­

duces better consistent estimates for the r gression effects. Th estimation procedure 

suggested by Carroll and Pederson (1993) belongs to the so-called Mallows class. 

To r fleet possible contamination in the covariate which may cause Yi (count or 

binary) to be an outlier, we now denote the observed covariate v ctor as 

Xi wh n ith respnse is not an outlier 

Xi + 6 wh n ith response is an outlier 

where 6 is a vector indicating possible amount of contamination in the covariat 

ote that in the count data set up, the study by Cantoni and Ronchetti (2001) 

also deals with Mallows-type robust estimation. More sp cifically, for the robust s-

timation of the regression parameters involved in Poisson and binomial regression 

models, Cantoni and Ronchetti (2001) have u ed a Mallows-type QL (MQL) estimat­

ing equation (MQLEE) given by 

(2.2) 

where a(/3) = k ~{~1 w(xi)~ v- ~ (P,i)E['l/Jc (ri)], with p,i = E(Yil xi ), V(P,i ) = var(Yilxi ), 

w(xi) = j(l - hi), where hi is the ith diagonal element of the hat matrix H = 
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X(X'X)- 1X' with X= (x1 , ... ,xi, ... ,xK)' being an K x p covariate matrix, and 

'1/Jc(ri) is the so-called Huber function defined by 

(2.3) 

where ri = ~ and cis referred to as the tuning constant. Note that the MQL 

estimation by (2.2) provides an improvement over the traditional ML or QL estimation 

of the parameters in the presence of outliers. This MQL estimating equation i still 

not unbiased. See, for example, section 2. 2.1 for the amount of biases under sp cific 

models. 

In this chapter, we however demonstrate that the MQL estimating equation (2.2) 

of Cantoni and Ronchetti (2001) produces estimates with large bias s, thus, their 

estimates may not be consistent. We further provide an improvem nt over this MQL 

procedure. As far as the definition of outliers for the count data is concerned, w 

use the same definition as those of Cantoni and Ronchetti (2001) and Sinha (2004). 

For the outliers in the binary data, our definition of outliers is similar but different 

than that of Copas (1988) and Carroll and Pederson (1993). To be pecific, similar to 

Copas (19 8), we also assume that the outlying binary observation follow a different 

logistic distribution than that for the bulk of the observations. As far as the succ ss 

probabilities for these two different logistic distribution are concerned, Copas (198 ) 

has modelled the success probability for the binary outliers as a function of an addi-

tiona! contaminated parameter, whereas in our definition, the success probability of 

the outliers gets inflated or deflated due to the contaminated covariate [Copas (1988 

p. 226)] . 

ote that the MQLEE (2.2) is constructed to avoid the outli r effect when outliers 
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are assumed to arise due to the contamination of the covariates. If the data do 

not contain any outliers, then one would use w(xi) = 1 and '1/Jc(ri) = ri, and the 

estimating equation (2.2) will appear the same as the well-known QL estimating 

equation ( QLEE) 

~ [ [) 1-li - 1 ( ) ( l iS [){3 V 1-li Yi - J-li) = 0, (2.4) 

[Wedderburn (1974) and McCullagh and Neider (1989)] which produces consistent 

estimator of {3. In (2.4), J-li = E(Yijxi) = a' (x~f3) and V(J-Li) = var(Yijxi) = a"(x~f3), 

where a(x~{3) is a known function based on the identity link function h, defined as in 

(2.1). Here, a'(-) and a"(-) are the first and second derivatives. This QLEE based 

estimators however become inconsistent in the presence of outliers. To have a feel 

for this inconsistency of the regression estimators, we report a simulation study in 

section 2.3. 

In spite of the deductibility property of the MQLEE (2.2) of reducing to the QLEE 

(2.4), the MQLEE (2.2) may, however , still produce biased e timate for {3, making 

the MQL estimator inconsistent . This is because, in minimizing the robust distance 

function '1/Jc(ri ), the MQLEE uses variance V(jj,i) = var(Yi lxi) as a weight function 

and ~ as a gradient function, whereas a proper estimating equation should use 

var( '1/Jc(ri)) and 81/iah;) as the weight and gradient functions, respectively. Note that 

as the MQLEE (2.2) does not use the true variance and gradient functions, we refer 

to this MQLEE based estimation approach as a 'working' MQL (WMQL) approach, 

which may yield biased estimate for {3 b cause of using the {3 depend nt 'working' 

functions var(Yi lxi ) and ~, instead of the true functions. 

In a longitudinal set up, recently Cantoni (2004) has constructed an estimating 

equation by incorporating the proper gradient functions, namely, 81/Jah;), but as far as 

the weights are concerned , she used a 'working' covariance matrix of the responses. 
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We refer to this estimation approach as the semi-standardiz d 'working' MQL (SS­

WMQL) approach, as it accommodates the proper gradient functions but still uses 

the 'working' variance as the weight function. Furthermore, Sinha (2004) [see also 

He et al. (2005) for extended semiparametric set up] has considered similar robust 

estimation problems in the clustered regression set up, but these approaches of Sinha 

(2004) , Cantoni (2004), and He et al. (2005) do not yield the true variance and gra­

dient functions based proper estimating equations (as in the present Chapter) in th 

independence set up. 

To be specific, we consider a fully standardized MQL (FSMQL) estimation ap­

proach where the estimating equation is constructed by using the proper robust weight 

and gradient functions. This construction is given in section 2.1 both for the count 

and binary data subject to one or more outliers. In section 2.2, we demonstrate 

that the estimating functions used by Cantoni and Ronchetti (2001) to construct the 

WMQL estimating equations are not unbiased for zero. The biasness of the estimating 

functions for the FSMQL approach is also studied in the same section. Furthermore, 

this section contains t he asymptotic properties of the WMQL and FSMQL estima­

tors. In section 2.3, we conduct an extensive simulation study to examine the relative 

consistency performance of the proposed FSMQL estimators as compared to those of 

the WMQL and SSMQL approaches. We conclude this chapter in section 2.4 with 

some remarks. 
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2.1 An Improved Robust Quasi-Likelihood Esti-

mation 

Note that the WMQL (2.2) estimating equation may still produce highly biased es-

timate for the regression parameter {3, leading this estimate to be inconsistent. As 

a remedy, we now propose to solve a fully standardized MQL (FSMQL) estimating 

equation to obtain the consistent estimate for the f3 parameter. This we do by re­

placing the 'working' variance and gradient functions V(.Ui ) and ~ in the estimating 

equation (2.2), with the true variance and gradient functions var('l/Jc (ri )) and 81/Jab') , 

respectively. For example, by using this replacement operation in the WMQLEE 

(2.2) , one obtains a proper standardized estimating equation given by 

(2.5) 

which we refer to as the FSMQL1 estimating equation (FSMQL1EE) for {3 . Note that 

the formulas for the true weight function var('l/Jc (ri) ) and the gradient function 81/Jabi) 

may be obtained based on the underlying model for the responses subject to one or 

more outliers. 

We also propose to use a slightly different version of the estimating quation (2.5) 

by using the deviance function 

instead of 



20 

We then write a FSMQL2EE given by 

~ [w(xi) :{3 {'1/Jc (ri)- E ('1/Jc (ri))} {var ('1/Jc(ri ))} - l {'1/Jc(ri)- E ('1/Jc(ri))}] = 0, 

(2.6) 

and its solutions will be referred to as the FSMQL2 estimates. Next, we also consider a 

semi-standardized estimating equation derived from (2.6) by using the proper gradient 

function only. Note however that in this version we use an expected gradient function 

instead of data based gradient function for the stability reason. The estimating 

equation has the form given by 

~ [ w2 
( :i',) E { ~ ( 1/J,( r;} - E ( 1/J,(r;)))} { 1/J,( r;} - E ( 1/J,(r;)))] = 0, (2. 7} 

which we refer to as the semi-standardized MQL (SSMQL) estimating quation. Note 

that this SSMQL estimating equation has been developed under the independence 

set up , whereas the SSWMQL approach of Cantoni (2004) was suggested for th 

longitudinal data with possible out liers. 

Since the exponential family model (2.1) contains the count and binary data as 

practically important cases, in the next subsections, we introduce the outli r mod ls 

suitable for these count and binary data subject to one or more outliers. We also show 

how to construct the robust functions '1/Jc(ri) and their corresponding expectations 

E('l/Jc(ri)), variances var('l/Jc(ri)), and t he gradient functions 81/Jat) under these two 

models. 

2 .1.1 Robust weight and gradient function for count data 

In the count data set up, an outlying count may arise either due to a shift in the 

mean or due to an inflated variance for an individual. For exampl , suppose that in 

the absence of outliers, all K 'good ' responses are assumed to be generated from a 
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Poisson distribution with mean J.ti = xp(xJJ), i = 1, .. . , K. Also suppose that the 

Kth respons became an outlier due to the contaminated covariate XK = XK + o, 

o being a uitable real valued vector. The response means in such a case may b 

expressed as 

exp(x~{3) for i = 1, . .. , K - 1 

J.ti= 
exp((xi + o)'{3) for i= K 

where Xi's are uncontaminated covariates. Under this model, YK is ref rred to as a 

mean shift d outlier. 

Alternatively, suppose that K - 1 counts follow a Poisson distribution with mean 

/-ti = exp(x~{3) for i = 1, ... , K - 1 and the Kth response aris s from a negative 

binomial distribution with the mean I-LK = exp(x~{3) but with a different variance 

such as var(YK IXK) = J.LK+ap,~ for a suitable scalar a> 0. We ref r this observation 

YK to as a variance inflated outlier. In this case, it would be appropriate to define the 

robust function '1/Jc( ri) with ri = ~ where a > 0 indicates an overdispersion 
V(J.t;,a) 

for the outlying observation and for given a, variance is now a function of J..Li as w 11 

as a. 

In the thesis, we however con ider the mean shifted outlier models only, which re­

ceived considerabl attention in the li terature [see for example, Cantoni and Ronchetti 

(2001) , Sinha (2004)] . For this case, the robust function '1/Jc(ri) may be expressed as 

in (2.3), wh r ri = ~· In order to construct the proposed FSMQL1EE (2.5) and 
V(J.Li) 

FSMQL2 EE (2.6) , we now provide th formulas for the exp ctation, variance, and 

gradient function of '1/Jc(ri) as in the following theorems. 

Theorem 1: Let '1/Jc(ri), with ri = ~, denote the robust function defined as in 
V(Ji;) 

(2.3) . Al o l t i 1 = I nt (ili- cV~(ili)) and i2 = Int (ili + cV~(jj,i)) be the neare t 
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integer values of Mi- cV~ (P,i) and Mi + cV~ (P,i), respectively, with Mi = exp(x~{3) and 

V(P,i) = Mio For the Poisson data, the expectation of the robust function 'lj;c(ri) is 

given by 

E('lj;c(ri)) = c[1- Fyi(i2)- Fy:,(ii)] + V~~i) [P(Yi = i 1)- P(Yi = i2)], (208) 

where P(Yi = i1) and Fy; (i1 ), for example, are the probability and cumulative prob­

ability density functions of Yi with 

P(,/'
0 

_ 0 ) _ exp( -p,i)M~1 

0 

I i - 1, 1 - ___;;.__.:__0 .:_I _:__:__ ' 
Zlo 

and the variance of the same robust function 'lj;c(ri) is given by 

where 

(209) 

c2[1- Fy;(i2) + Fy;(iJ)] + V(~i) [il~(FY;(i2- 2)- Fyi(i1- 2)) 

+ (P,i- 2P,~)(FY;(i2- 1) - Fy;(il- 1)) + P,~(FY;(i2) - Fy;(ii))] 0 

Proof: The proof is available in Cantoni and Ronchetti (2001), Appendix A, po 10280 

Theorem 2: For the Poisson data, the gradient of the robust function and its ex-

pectation are given by 

(2010) 

and 

- -c [ :{3FY; (i2) + :{3FY, (iJ) l + V~~i) [ { xiP(Yi = ii) + :{3P(Yi = i1) } 

- { xiP(Yi = i2) + :{3P(Yi = i2) } l , (2011) 
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where 

Proof: The proof is obvious from (2.3) and (2.8). 

2.1.2 Robust weight and gradient function for binary data 

Note that unlike the count data case, the construction of Mallows-type robust function 

for the binary data is complicated. In fact , Cantoni and Ronchetti (2001) considered 

the binomial model that can be analyzed in the manner similar to that of Poisson 

case. For the binary case, Sinha (2004) used the same robust function as that of 

Poisson data, where yj = 1 is referred to as an outlier if the corresponding covariate 

values lead to a small probability such as P(~ = 1lij) < 0.4. Similarly, Y] = 0 

is referred to as an outlier if the corresponding probability P(~ = 1lij) is large, 

say P(~ = 1lij) > 0.6. This definit ion of an outlier for the binary data does not 

however appear to interpret the real nature of an outlier. This is because generally 

an observation is treated to be an outlier when it is quite different from the bulk 

of the observations in the sample. To be specific, suppose that in a sample of size 

of K, the covariate values of K - 1 individuals lead to small probabilities such as 

P(Yi = 1lxi) ::; 0.3 for all i =I= j, i = 1, ... , K. In this case, yj = 0 or 1 will be an 

outlier if P(~ = 1lxj) is large. But an observation Yi = 1 for i =I= j, i = 1, ... , K 

with small probability should not be referred to as an outlier. This fact leads us to 

define the robust functions for the binary data under two following categories. 
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One sided outlier 

Suppose that the bulk of the binary observations (i.e. 'good ' observations) occur with 

small probabilities. In this case, the robust function '1/Jc(ri) (i = 1, ... , K) may be 

defined as 

J4=l!:i... 
id(ji;)) 

P(~ = 1lxi) :::; Psb, i =/ j, i = 1, . . . , K, 

(2. 12) 

h - exp(x'.f3) v- (- ) - ( 1 - ) f 11 . 1 }( d { - } w ere /-Li = l+exp(x;/3), /-Li = /-Li - /-Li or a 2 = , ... , , an Psb = max /-Li , 

i =I j , is a bound for all K - 1 small probabilities. Note that in (2.12), YJ, whether 

1 or 0, is treated as an outlier, whereas K - 1 responses denoted by Yi for i =I j 

constitute a group of 'good ' observations. Further note that as Psb depends on {3, 

one may choose Psb = 0.4 initially provided that the data contain more zero's than 

one's. To reflect this initial situation of Psb = 0.4, we start with a suitable initial 

value of (3 so that P,i 's are small. One a first step estimate of (3 is obtained, we 

then compute Psb by using the given formula P sb = max{P,i}, i =I j. Next, for the 

suspected outlying observation, we replace its probability, i.e., P(Yj = 1lxJ) = P,j, 

with an appropriate tuning constant related probability, say !-L)c1
) and by the same 

token var("YJixJ) = P,j(1- P,J) should be replaced by v<cd(!-LJc1
)) = !-LJcJ)(1 - 1-LJCJ)) . 

Here, by using the similar argument as in the count data case, one may choose !-L)CJ) 

so that it is nearer to Psb such as 0.5, 0.6, but less than ftJ (the outlying probability). 

Note that as opposed to the case given in (2.12), if the bulk of the binary ob­

servations (i.e. 'good' observations) occur with large probabilities, then the robust 
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function '1/Jc (ri) (i = 1, .. . , K) is defined as 

P(~ = 1lxi) "2. Ptb, i # j, i = 1, ... , K, 

(2. 13) 

where Ptb = min{P,i}, i # j , is a bound for all K - 1 large probabilit ies. To reveal 

the scenario that the data contain more one's than zero's, one may choose Ptb = 0.6 

and start with a suitable value of /3 so that P,i 's are large. After getting the first step 

estimate for /3, we then turn back to the formula Ptb = min{P,i}, i # j to compute Ptb· 

In this case, to compute 'l/Jc (r1), the mean and the variance of the suspected out lying 

observation y1 are computed as J..LJc2
) and V(c2 ) (J..LJc2

) ) = J..LJc2
) ( 1 - J..LJc2

) ), respectively, 

where J..LJc2
) is an appropriate tuning constant related probability. Note that to select 

a value for J..LJc2
), one may consider a value nearer to Plb such that 0.4, 0.5, but greater 

than p,1 (the outlying probability). 

Two sided outlier 

It may happen in practice that probabilities for the bulk of the observations lie in the 

range Ptb :::; P(~ = 1lxi) :::; Psb, leading to a situation where one may encounter a two 

sided outlier. To be specific, y1 = 0 or 1 will be an outlier if either P(~ = 1lxj) > Psb 

or P(~ = 1ix1) < Ptb· In this case, the robust function '1/Jc(ri) (i = 1, ... , K) may be 

defined as 

(2. 14) 
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where I-LJc1) and V (CJ)(J.LJc1)) are defined as in (2.12), whereas I-LJc2) and V(c2)(!-LJc2)) 

are defined as in (2.13) . In general, Ptb and Psb are considered to be 0.4 and 0.6, 

respectively [see Sinha (2004), for example]. The formulas of th expectation and 

variance of 'l/Jc(ri) for the binary data with a two sided outlier are given in Theorem 

3, whereas the formulas for the gradient of 'l/Jc( ri) and its expectation in the two sided 

outlier case are given in Theorem 4. Note that the formulas for the expectation, 

variance and gradient of the robust function 'l/Jc (ri) in the one sided outlier case may 

be obtained as special cases following Theorems 3 and 4. Thus, they are not given in 

the form of any theorems. 

Theorem 3: Let 'l/Jc(ri) denote the robust function defined as in (2.14). The expec­

tation and variance of 'l/Jc(ri ) are given by 

(2.15) 

and 

(1 2 (c1) ) - (c1) 2 ( 1 2 (c2) ) - (c2)2 
var(·'· (r·)) = - 1-Lt I-Li + 1-Li p + p. + - 1-Li I-Li + 1-Li p _ [E(·'· (r ·))]2 

'f/c t ( l( (ci ) ) 1 2 V(c2)( u~c2) ) 3 '1-'c t ' v C! J.li fA' 

(2.16) 

where P 1 , P2 , and P3 are the probabilities for a binary observation to satisfy th 

respectively. 

Proof: The proof follows by taking expectation of the 'l/Jc (ri) function given in (2.14). 

Remark that in practice, the probabilities P 1, P2 , and P3 may be computed from the 

data by using t he sample proportions given by, for example, 

p
1 

= Number of observations satisfying P(Yi = 1lxi) > Psb. 

Total observation (K) 
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Theorem 4 : The gradient of the robust function '1/Jc (ri) [defined in (2.14)] and its 

expectation are given by 

0, 

-il;(I-il;)x; < P("~"' I I- ) < . _;_ . . 1 }( 
.1 , Plb_ I i= Xi _ Psb ,'~-r J ,'L= , ... , , v 2 (!1;) 

(2.17) 

0, P(Yi = llxi) < Plb, i = j , 

and 

(2.18) 

Proof: The proof is immediate by taking the derivativ s of the functions given in 

(2.14) and (2.15) . 

As mentioned earlier, the expectation, variance, gradient of the robust function 

'1/Jc(ri) and its expectation for the one sided outlier case can easily be obtained from 

Theorems 3 and 4. For example, for 7/Jc(ri) given in (2.12), one may compute its 

expectation from (2.15) by changing the limits obtained by replacing Plb with 0. To 

be specific, 
- (c1) 
1-ti - 1-ti 

E('l/Jc (ri)) = 1 ( ) P1 . 
V (c1) 2 (t-t/1 ) 

Similarly, var('l/Jc(ri)), 81/Jah;), and 8E(~~(r;)) can be obtained from (2.16), (2 .17) , and 

(2.18), respectively, by modifying the limits obtained by replacing Plb with 0. In 

the same fashion, for the binary outlying observations arising from the case given in 

(2.13) , the formulas for E('l/Jc (ri)), var('l/Jc(ri)), 81/Jah;), and 8E(~~(r; )) can be deriv d 

from (2.15), (2.16) , (2.17), and (2.18) , respectively, by replacing Psb with 1 in the 

limits. 
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2.2 Asymptotics 

2.2.1 R emarks on consistency 

As pointed out earlier, when the data contain outliers, the traditional QL (unadjusted 

for outlier) approach may produce highly biased estimates for the regression effects. 

The Mallows-type QL approach constructed by downweighting th outlying observa­

tions reduces the biases of the regression estimates as compared to th traditional 

QL approach. As a further improvement , Cantoni and Ronchetti (2001) suggested 

a Fisher consistency type adjustment that leads to the WMQL estimating equation 

given in (2.2). Note however that this WMQLEE (2.2) still may produce significantly 

biased estimates. Thus, these WMQL est imators may not be consistent. 

To examine the consistency of the WMQL estimators, we conduct a simulation 

study in section 2.3. The simulation results in section 2.3.1 for the Poisson case and 

in section 2.3.2 for the binary case appear to exhibit the inconsistency quite clearly. 

We also examine this inconsistency issue in the present section by carrying out some 

exact asymptotic computations for certain special cases. To be specific, we consider 

a special Poisson regression model with one outlier and comput the expectation of 

the WMQL estimating function [E(W MQLEF)] from (2.2). Th consistent WMQL 

estimators would be guaranteed only when E(W MQLEF) = 0. The consistency 

performance of the proposed FSMQL estimators may be examined in the manner 

similar to that of the WMQL estimators. The FSMQL approach appears to produce 

almost unbiased estimators. To avoid any duplications, in this section, we consider 

the FSMQL1 estimators only which is obtained from (2.5) and xamine its consistency 

performance. The consistency of the FSMQL2 estimators obtained from (2.6) may 

be examined similarly, which is however not shown here for convenience. 
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Computation of E(W MQLEF) for a special outlying Poisson model 

Recall that the WMQL estimating equation used by Cantoni and Ronchetti (2001) 

has the form 
1 /( 
K L [q(yi) - a(,6)] = 0, 

i= l 

(2.19) 

where q(yi) = g(xi)'l/Jc(ri) and a((3) = ~ ~~1 g(xi)E('l/Jc(ri)) with g(xi) = w(xi)*rJ-v-~ (ili), 

and E('l/Jc(ri)) as given in (2.8) forth count data. The left-hand sid of the WMQL es­

timating equation (2 .19) is referred to as the WMQL estimating function (WMQLEF). 

That is, 
1 /( 

W MQLEF = K L [q(yi) - a(f3)]. 
t=1 

To compute its expectation, suppose that the data contain one outlier. For the 

purpose, we first generate Yi from the Poisson distribution with parameter J-li = 

exp(xif3) with Xi = 1.0 for all i = 1, ... , K . Now, suppose that Xi =Xi was observ d 

fori= 1, ... , K -1, but the Kth observed covariate was contaminated as XK = xg+6 

with a positive 6. In this case, the 'good' response YI< becam an outlier. 

Note that since YK is now an outlier, in practice, YI< is downweighted for the 

consistent estimation of the parameters of the model. Consequ ntly, the -k ~{~1 q(yi) 

function in (2.19) is written as 

1 I< 1 [ /( - l - l 
K L q(yi) = K I: g(xi) Ji-(!!s - g(xi< )c , 

i = l i=I V(J-ti) 

and a(f3) in (2.19) is a constant which is calculated by using the formula for E('l/Jc (ri)) 

from (2.8) for the Poisson data. As Yi"' Poisson(P,i), it is clear that 

[ 
1 ~ ] g(xi<)c 

E K ~ q(yi) =- K = b((3), say, 

yielding 

[
1 I< l 1 [ I< l E(W MQLEF) _ E K ~ { q(yi) - a((3)} = K - g(xK )c - ~ a({3) . (2.20) 
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Now to have a feel for the magnitude of this expectation, let us consider f3 = 1.0, 

o = 0.0, 1.0, 2.0, 3.0, 4.0, and K = 20 and 100. For selected values of c, namely, 

for c = 1.6, 1.4, and 1.2, we compute E(W MQLEF) by (2.20) and report these 

expected values in Table 2.1. 

Computation of E (FSMQLEF) for a sp ecial outlying Poisson model 

To examine the consistency performance of the proposed FSMQL1 estimators, we 

now compute the expectation of the FSMQL1 estimating function from (2.5) for the 

same outlying Poisson model as considered in the last subsection. ote that the 

FSMQL1EE (2.5) can be re-expressed as 

(2.21) 

where ui = '1/Jc (ri), z(xi) = w(xi)t.a (ui - ~i) {var(ui)}-1
, and ~i = 1~ 2:{~1 E('I/Jc (ri)). 

One may then write the FSMQL1 estimating function from (2.21) as 

1 ]( 
FSMQL1EF - K .Z::: z(xi) [ui - ~il· 

i= l 

The expectation of this function can be obtained as 

The values of E(FSMQL1 EF), for the same parameter values u ed in the WMQL 

approach, are also reported in Table 2.1 for the comparison with the values of 

E(WMQLEF). 

It is clear from Table 2.1 that none of the two approaches yields unbiased esti­

mates, the proposed FSMQL1 approach being much better than the existing WMQL 

approach. This is because of the following two reasons: (i) the amount of biases 
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produced by the FSMQL1 approach, i.e. IE(FSMQL1EF)- 01 is in general close to 

zero, whereas the WMQL approach produced large values for IE(W MQLEF) - Ol; 

(ii) the amount of biases produced by the FSMQL1 approach appears to be almost 

the same and insignificant irrespective of the values of 6 and c. This finding indicates 

that it may be possible to improve the FSMQL1 estimators by constructing a bias 

adjustment under this approach for a given c, which is however not a serious issue (as 

biases are quite small) and it is beyond the scope of the present chapter. As far as the 

ranges of the biases produced by the WMQL approach are concerned, the variation 

in the amount of biases appears to be quite large. Thus, in many cases, this approach 

may be useless. 

To be more specific, E(W MQLEF) appears to be larger than E(F SMQL1EF) 

for 6 2:: 1.0. Th amount of bias is quite large under the WMQL approach as compared 

to the FSMQL1 approach, specially for large c such as c = 1.6. For example, when 

c = 1.6 and 6 = 2.0, the expected values of theW MQLEF are - 0.820 and - 0.142 

for K = 20 and 100, respectively, whereas the corresponding expected values of the 

FSMQL1EF are -0.071 and -0.075, respectively. For 6 = 4.0, for example, WMQL 

appears to perform quite poorly. Note that when 6 = 0.0, that is, the data do not 

contain any outlier, the WMQL approach appears to produce estimates with lower 

biases. ote that the FSMQL1 approach pays some price when the data do not 

contain any outliers. This is because this approach is constructed to downweigh the 

outliers properly which not necessarily produces zero bias when 6 = 0.0. 

We have considered another scenario of outlier, where we assume that for all 

~ = 1, ... , K, observation Yi arises from the Poisson distribution with large m an 
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I-Li = exp(xd3) with Xi = 4, but the covariates are observed as 

Xi, i = 1, 0 0 0 ) K - 1 

Xi- o, i = K 

with a positive c5 . 

For this set up, the expected values of the estimating functions involving Xi under 

the WMQL and FSMQL1 approaches are computed by (2.20) and (2.22), respectively, 

and reported in Table 2.2. In this case, the WMQL approach performs worse than the 

FSMQL1 approach for small values of c5 and large values of c, whereas for the large 

values of c5 such as for 2 ::; c5 ::; 4 and small value of c, the WMQL approach appears 

to perform better . Note however that when there is no outlier, that is, c5 = 0.0, the 

FSMQL1 approach appears to perform better (but still produces some bias) t han 

the WMQL approach, whereas in Table 2.1 the reverse was true. We further note 

that even though the WMQL approach appears to perform relatively well under the 

second scenario, the question arises how important this scenario is. This is because 

when Poisson data are generated with large means (i.e. large variance), the suspected 

outlying observation may very well belong to the group of 'good' observations. Hence, 

generating an outlier in this way does not appear to be of practical interest. 

2.2.2 A symptotic distribution 

It has been demonstrated empirically in the last subsection that the WMQL esti­

mator of {3 due to Cantoni and Ronchetti (2001) can be highly bias d , whereas the 

proposed FSMQL1 estimator appears to b slightly biased. Note that the biasness 

arises because of the fact that E(W !VIQLEF) and E(FSMQL1EF) are not quite 

zero under t he present model. We take this biasness into account and derive the 
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asymptotic distribution of the FSMQL1 estimator of {3, followed by the distribution 

for the WMQL estimator. Recall that the FSMQL1 estimator for {3 is obtained by 

solving the FSMQL1 estimating equation (2.5) given by 

(2.23) 

0, for convenience, we first derive the asymptotic distribution of a fully consistent 

estimator obtained by solving 

(2.24) 

where 6.c = E[Mg({3)]. Let /J~ be the solution of the unbiased stimating equation 

Mj< ({3) = 0, whereas the solution of the biased estimating quation MI<( f3 ) = 0 will 

be denoted by /J;. The asymptotic distribution of /3~ is given in Theorem 5, whereas 

the asymptotic distribution of /3; is provided in Theorem 6. 

T heorem 5: Let {30 be the true value of {3 . Also, let the following conditions c1 

to c6 be satisfied [see, Amemiya (1985), section 4.1 , p. 105-114]: cl. Let B be an 

open subset of the Euclidean p-space. Thus, the true value f30 is an interior point 

of B; c2. M"K ({3) exists and is continuous in an open neighbor hood N1 ({30) of f30. 

Also, J M7<({3)&{3 is a measurable function of the response for all {3 E B . This implies 

that J Mj<({3)8{3 is continuous for {3 E N1 ; c3 . There exists an open neighborhood 

N2(f30) of {30 such that k f MK({3)8{3 converges to a non-stochastic function M*({3) 

in probability uniformly in {3 in N2 ; c4. 8~, Mj<({3) exists and is continuous in an 

open, convex neighborhood of f30; c5 . 1~ 8~,M"K(f3)iw· converges to a finite non­

singular matrix A ({30) = limE J< 8~, Mj< ({3) if3o in probability for any sequence {3** 

such that plim{3** = {30; c6 . Asymptotically }RM1<(f3)if3o rv N[O, C(f30)], where 
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C({30) = limE]< Mj< ({3) 1130 x Mj/ ({3) 1130 . It then follows that as K ---+ oo 

Proof: Assume that conditions cl-c6 are satisfied. Let B be the set of solutions of 

the estimating equation MK({3) = 0 for {3. Also, let {,8~} be a sequence obtained 

by choosing one element from B such that plim,B~ = {30. Then, following Taylor 

expansion, one may write 

Mf'< (!3) I J~ = Mf'< (!3) 1!3a + 8~, NIJ'< (!3) 1!3 .. (,8~ - !3~) , 
where {3** lies between ,8~ and {30. Since the left-hand side is equal to zero, 

Now, by (c5), (c6) , and Slutsky theorem, one may asymptotically write 

We now provide the asymptotic distribution of ,8; (solution of MK(f3 ) = 0) in 

Theorem 6. 

Theorem 6: Let !3; = {3~ + OK, where VRo;< is assumed to converge in probability 

to P.c = -E[ 8~,MK(f3)] - 1K~ ~c · It then follows that asymptotically (asK ---+ oo) 

where Vc = At({30)-
1Ct({30)At({30)- 1 with At({30) = limE 1~ 8~, [MI<(f3 ) - ~c]l /30 and 

Ct({30) = limE 1~[MK(f3)- ~c] l/30 X [MK(f3)- ~cJ'I /30 · 

Proof: Th theorem follows by using the transformation NIK ({3 ) = Mg({3 ) - ~c in 

Theorem 5. 
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Note that the asymptotic distribution of the WMQL estimator (/3;.) may be de­

rived in the manner similar to that of /3;, where /3;. is the solution of the estimating 

equation (2.2) given by 

(2.25) 

where Qi((3) = Pi((3)-a((3) with Pi((3) = w(xi)¥Jv-~(jj,i)ui and a((3) = l 'L{~ 1 E[Pi((3)]. 

Now, for L}.~ = E[QK(f3)], jj,~ = -E[ 8~,Qg((3)]- 1 K~L}.~, and Vc* = At*(f30f
1
Ct*(f30)At*(f30f

1 

with At*(f30) = limEf<a~,[QK(f3)- L}.~]IPo and ct*((30) =limE l[QK(f3)- L}.~]I.Bo X 

[QK(f3)- L}.~l'i.Bo' it follows by the calculations similar to that of Theorem 6 that 

-/K(/3;. - !30) has a multivariate normal distribution with m an jj,~ and variance Vc*, 

i.e. 

Note that even though !30 has been used as the true value of (3, in rest of the 

chapter, for convenience, we simply use (3 for !30. By the same token, /3; under the 
A A 

FSMQL1 approach will be expressed as f3FSMQL 1 and similarly (3;. under the WMQL 

approach will be expressed as /3wMQL · 

2.3 A Simulation Study 

Recall from section 2.2 that both the FSMQL1 and WMQL stimating functions 

were found to be biased, the FSMQL1 estimating function being the better. More 

specifically, the expectation of the FSMQL1 estimating function was found to be 

closer to zero as compared to the xpected value of the WMQL estimating function 

for selected values of parameters under the Poisson model. This indicates that the 

estimators to be obtained from their estimating equations will be biased. ote that 

when an estimator is expected to be highly biased, a small variance for this estimator 
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indicates that the estimator may not converge to the true parameter value in general. 

Consequently, it is reasonable to examine the relative performance of the competitive 

estimators by comparing their relative biases, where, for example, the relative bias 

(RB) of the WMQL estimator for a component of /3, say !3k (k = 1, ... , p) is defined 

by 

RB (/3A ) - I.Bk,WMQL- !3k l 100 
k WMQL - A X . 
' S.e. (f3k ,W MQL) 

(2.26) 

In this section, the relative biases of th components of .Bw MQL ( Cantoni and Ronchetti 

(2001)) and those of the proposed estimators ,BFSMQL1 and ,BFSMQL2 will be compared 

through a simulation study. For the sake of completeness, we also examine the relative 

biases of the components of the SSMQL estimator of /3, where /3ssMQL is obtained 

by solving the estimating equation (2.7). Recall that this estimating equation (2.7) 

was a special case of the estimating equation for /3 under the longitudinal set up 

considered by Cantoni (2004). As far as the data are concerned, we consider both 

Poisson and binary cases in the simulation study. Under each of these models we 

consider two scenarios. First, the data contain a single outlier and secondly, the data 

contain two outliers. Note that no simulation studies were under taken by Cantoni 

and Ronchetti (2001) to examine the performance of their WMQL estimators. The 

present simulation study, however, reveals that these WMQL estimators are in fact 

highly biased which contradicts the claims with regard to the consistency made by 

these authors, namely Cantoni and Ronchetti (2001). 

We now turn back to the proposed simulation study and provide the simulation 

design and selected parameter values for each of the two scenarios under each of 

the two models. The performances of the WMQL, SSMQL, FSMQL1 , and FSMQL2 

estimators under both Poisson and binary outlier models are examined for small as 

well as large samples such as K = 20, 30, 60, and 100. As far as the regression 
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parameters are concerned, we consider p = 2 with (3 = ((31 , (32)' - (1.0, 0.5)'. Recall 

that fork = 1, 2, /Jk ,WMQL, /Jk,SSMQL, /Jk,FSMQLI) and /Jk,FSMQ£2 denot the WMQL, 

SSMQL, FSMQL1, and FSMQL2 estimators of f3k (k = 1, 2) , respectively. The main 

purpose of the simulation study is to compare the simulation means (SM), standard 

errors (SSE), and relative biases (RB) of these four estimators under both Poisson 

and binary models in the presence of one or two outliers. We make this comparison 

based on 1000 simulations. The simulation design and the corresponding simulation 

results are de cribed below, under both Poisson and binary models. 

Note that in section 2.1.2, we have provided the robust funct ions and their basic 

properties for both one sided and two sided binary outliers. In the simulation study, 

we however consider these cases with one and two sided outliers under both Poisson 

and binary models. Further note that the one sided outlier cases will be dealt with by 

generating a single outlier (different from the bulk of the observations), whereas with­

out any loss of generality, the two sided outlier cases will be dealt with by generating 

two outliers in two opposite directions from the bulk of the observations. 

2.3.1 Poisson model with one or two outliers 

(a) P oisson model wit h a single out lier 

To generate K count observations with one outlier, we first assume that in the abs nee 

of outliers, y 1 , .. . , Yi, ... , YK follow a Poisson model with two covariates xi1 and Xiz, 

namely 
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where f.Li = exp(x~/3) with xi ( xil , Xi2)' · Suppose that the values of these two 

covariates are chosen from 

iid iid 
Xil rv N(0.5, 0.25) and xi2 rv N(0.5, 0.5) , 

respectively, for all i = 1, . .. , K. Suppose that i' takes a value between 1 and K. 

Now, to consider Yi' as an outlying value, that is, to have a data set of size K with 

one outlier, we then shift the values of Xi'l and xi' 2 as 

Xi' l = Xi'l + o and Xi'2 = Xi'2 + o, o > 0, 

respectively, but retain 

for all i =J. i' . As far as the shifting is concerned, we, for convenience, use o = 2.0. 

Thus, y1 , ... , YI< refer to a sample of K count observations with Yi' as the single 

outlier. 

Estimation performance in a single outlier case 

Note that if there were no outliers in the count data, one would have used the esti-

mating equation (2.4) to obtain the QL estimates of (31 and (32 . These estimates are 

consistent. To have a feel how an out lier can affect the estimation of the parameters, 

we conduct a simulation study by generating the count data with an outlier as dis­

cussed above and stimate the paramet rs by using the QL estimating equation (2.4). 

The results obtained from 1000 simulations are reported in Tabl 2.3. It is clear from 

this table that the estimates are highly biased and hence inconsistent. This shows 

the necessity for a robust estimation technique such that the outlier can have no or 

little effect on the estimates. 
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For the robust estimation of the regression parameter {3 in the presence of out-

lier(s), one requires to take the tuning constant parameter c into account. Here, we 

consider three different values for the tuning constant c = 1.6, 1.4, and 1.2. We now 

proceed to examine the performance of the robust estimation techniques discussed 

earlier in the presence of an outlier. For the purpose, by using the responses gener­

ated above with an outlier along with their corresponding covariates, we first compute 

the expectation and the variance of the robust function '1/Jc(ri) as well as the gradi nt 

of the robust funct ions following section 2.1.1 for the Poisson model. We then use 

these results in the estimating equations (2.2), (2. 7), (2.5), and (2.6) and obtain the 

estimates of {31 and {32. For k = 1, 2, these estimates are referred to as ffik ,WMQL, 

~ ~ ~ 

f3k,SSMQL, f3k ,FSMQL 1 , and f3k,FSMQL2 , respectively. Now, by using the 1000 simulat d 

values of ffik, we obtain the simulated means (SM), simulated standard errors (SSE), 

and percentages of relative biases (RB) under a selected a estimation approach. The 

simulation results obtained under the Poisson model with a single outlier are reported 

in Table 2.4. 

Note that when the sample size is small such asK= 20, the WMQL approach did 

not yield any convergent estimates, whereas the SSMQL approach yi lded estimates 

only in 118 simulations out of 1000, which are not report d. It is clear from Table 

2.4 that all four approaches produce biased estimates for the regression parameter {3, 

but the proposed FSMQL estimation approach always appears to produce estimates 

with negligible biases. For example, when K = 60 and c = 1.4, the estimat s of 

{31 are 0.507 and 0.567 with corr sponding standard errors 0.206 and 0.211 under 

the WMQL and SSMQL approaches, respectively; whereas the proposed FSMQL1 

and FSMQL2 approaches yield 0.899 and 0.893 with standard errors 0.307 and 0.279, 

respectively. Equivalently, the percentage of relative biases (RBs) of ffi1 are 240 and 
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206 under the WMQL and SSMQL approaches, respectively; whereas the percentage 

of RBs for the FSMQL1 and FSMQL2 approaches are only 33 and 38, respectively. 

Similarly, the WMQL and SSMQL estimates of (32 are 0.600 and 0.589 with standard 

errors 0.188 and 0.186, respectively; whereas these estimates are 0.517 and 0.488 

with standard errors 0.239 and 0.210 under the proposed FSMQL1 and FSMQL2 

approaches, respectively. These results yielded RBs 53 and 48 for the estimates of (32 

under the WMQL and SSMQL approaches, respectively; whereas the FSMQL1 and 

FSMQL2 approaches yielded RBs only 7 and 6, respectively. 

(b) Poisson model with two outliers 

For the Poisson model with two outlying observations, first, count responses are gen­

erated in the manner similar to that of the case of a single outlier, but two covariates 

xi1 and xi2 were chosen as 

iid iid 
xi1 "' N(1.25, 0.25) and Xi2 "' N(2.25, 0.5), 

respectively. Note that in the single outlier case, xi1 and xi2 were generated from 

normal distributions with a small common mean 0.5, whereas for the two outliers 

case, we have assigned large mean values for xi1 and xi2 . This we have done so 

that the two sided shifting of the covariates may help to identify two outliers. After 

generating K count observations from a Poisson model with these covariate values, 

we then create two outliers, namely Yi' and Yi", where i' and i" both can take valu s 

between 1 and K , but i =/:- i', i", by shifting the covariate values Xi' I and xi' 2 as 

xi'l = Xi'l + o and xi'2 = xi'2 + o, o > 0, 

respectively; and Xi"l and Xi"2 as 

Xi"I = Xi"I - o and Xi"2 = Xi"2 - o, o > 0, 
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respectively. Once again we consider for convenience 5 = 2.0. The remaining covari­

ates remain the same as those of xi1 and xi2. That is, 

f 11 . __j_ ., ., • 1 K or a ~ 1 ~ , ~ , ~ = , ... , . 

Estimation performance in two outliers case 

As far as the tuning constant is concerned, we choose the same tuning constant 

c = 1.6, 1.4, and 1.2 as in the single outlier case. ow, we obtain the estimates 

of the regression parameter {3 under the WMQL, SSMQL, FSMQL1 , and FSMQL2 

approaches by using the formulas from section 2.1.1 in the robust estimating equations 

(2 .2) , (2 .7) , (2.5), and (2.6), respectively. Table 2.5 displays the SM, SSE, and RB for 

/31 and /32 obtain d from these four estimation approaches under a Poisson model in 

the presence of two outliers based on 1000 simulations. It is clear from Table 2.5 that 

the WMQL and SSMQL approaches produce much more high r r lative biases than 

the FSMQL1 and FSMQL2 approaches, irrespective of sample sizes and the tuning 

constant values. 

We now interpret some of the results reported in Table 2.5. For small sample size 

such as K = 30 and c = 1.4, the percentages ofrelative biases (RBs) of /31 are 466 and 

360 under the WMQL and SSMQL approaches, respectively; whereas the proposed 

FSMQL1 and FSMQL2 approaches yield RBs only 8 and 20, respectively. For the 

estimate of {32, the WMQL and SSMQL produce RBs 392 and 273, respectively; 

t hese are only 7 and 1 under the proposed FSMQL1 and FSMQL2 approaches. As 

the sample size increases, the estimates of the regression parameter {3 improve under 

the WMQL and SSMQL approaches, but still produce higher biases. For example, for 
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K = 100 and c = 1.4, the RBs of /31 under the WMQL and SSMQL approaches are 

308 and 290, respectively; the proposed FSMQL1 and FSMQL2 approaches, however, 

produce RBs only 8 and 9, respectively. For the estimate of /32 , the WMQL and 

SSMQL approaches yield RBs 267 and 252, respectively, whereas these are found to 

be only 17 and 10 under the propos d FSMQL1 and FSMQL2 approaches, respectively. 

Note that the above discussion clearly indicates that for the estimation of the 

regression effects, the FSMQL1 and FSMQL2 approaches appear to perform much 

better than t he WMQL and SSMQL approaches. Between the FSMQL1 and FSMQL2 

estimators, t he FSMQL1 estimators appear to perform better than the FSMQL2 

estimators. 

2.3.2 Binary model with one or two outliers 

In this subsection, we conduct a simulation study to evaluate the estimation perfor-

mances of the robust WMQL, SSMQL, FSMQL1 , and FSMQL2 estimation approaches 

for the binary data in the presence of one or two outliers. The estimating equations are 

constructed based on t he basic properties of the robust function provided in section 

2. 1. 2, whereas similar properties for the Poisson case were given in section 2.1.1. 

(a) Binary model with a single outlier 

For the contaminated binary model with a single outlier, first, we generate K binary 

responses y1 , ... , yi, ... , YK assuming that the data do not contain any outliers. We 

generate these responses from a binary logistic model 

exp(xJ3) 
P(Yi = 1jxi) = ( , !3), 

1 + exp xi 
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with xi = (xi1 , Xi2)' and (3 = ((31 , (32)' . As far as the covariate values are concerned, 

we con ider two covariates xi1 and xi2 as 

iid iid 
xi1 rv N( - 1.0, 0.25) and xi2 rv N( - 1.0, 0.5), 

respectively, for i = 1, . .. , K . Then, in creating an outlier Yi' where i' can take any 

value between 1 and K, we change the corresponding covariate values Xi' J and Xi'2 as 

respectively. Note that for large positive 81 and 82 , these modified covariates will be 

increased in magnitude yielding larger probability for Yi' = 1. Thus, we treat Yi' as 

an outlier. For convenience, we use 01 = 2.0 and 82 = 3.0. As far as the remaining 

covariates are concerned, they are kept unchanged. That is, for i -=/- i' ( i = 1, . .. , K), 

we consider 

Estimation performance in a single outlier case 

Note that as expected, when an outlier is present in the data, the traditional QL 

approach was found to perform poorly in estimating the regression effects under 

a Poisson fixed model. To examine the performance of the QL approach for the 

estimation of the parameters of a binary model in the presence of an outlier, we now 

conduct a simulation study by generating the data as discussed above. ext, we use 

the QL estimating equation (2.4) to estimate the regression effects (31 and (32 . The 

results based on the 1000 simulations are reported in Table 2.6. Similar to the result 

in Table 2.3, the results in Table 2.6 also reveal that the QL approach without any 

modifi ation for outlier performs poorly in estimating the parameters of a binary fix d 

model. 
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In order to remove the biases (see Table 2.3 and 2.6) those arise due to the presence 

of possible outliers, various modifications to the QL approach, such as the robust 

WMQL, SSMQL, FSMQL1 , and FSMQL2 approaches have been discussed earlier 

in this chapter. We now examine the performances of these robust approaches for 

the binary data generated with an outlier. With regard to the values of the tuning 

constant related probability J-Lc1 , we choose J-Lc1 = 0.5, 0.6, and 0.9 in the simulation 

study. Next, we compute the expectation and the variance of the robust function 

'1/Jc(ri) along with the gradients of the robust functions following section 2.1.2. These 

results are then used in the estimating equations (2.2) , (2.7), (2.5), and (2.6) to obtain 

the estimates of !3k (k = 1, 2) under the WMQL, SSMQL, FSMQL1 , and FSMQL2 

approaches, respectively. For a given estimation approach, we now compute the SM, 

SSE, and RB of fh from 1000 simulated estimates of f3k · These results are given in 

Table 2.7. 

It is clear from Table 2. 7 that in gen ral , the WMQL estimation approach due to 

Cantoni and Ronchetti (2001) produces highly biased estimates for both regression 

parameters /31 and /32 . When the proposed FSMQL1 and FSMQL2 approaches are 

compared with the SSMQL approach, it is found that all these three approaches 

produce est imates for both parameters with small biases in most of the cases. To 

have a feel for the performance of th proposed FSMQL approach in estimating both 

/31 and /32 , we, for example, refer to the case with K = 30 and J-Lc1 = 0.6. In this case, 

the percentage of relative biases (RBs) yielded by the WMQL approach in estimating 

/31 and /32 are 24 and 24; whereas RBs due to t he SSMQL and the proposed FSMQL1 

and FSMQL2 approaches are only 1 and 4; 1 and 5; and 1 and 4, respectively. 
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(b) Binary model with two outliers 

For the contaminated binary model with two outliers, we, first, generate K binary 

responses in the same fashion as in the case of a single out lier with two covariates xi1 

and xi2 chosen from the normal distribution as 

""d ""d 
Xi ! ~ N(O, 0.25) and Xi2 ~ N(O, 0.5), 

respectively, for all i = 1, ... , K . Suppose that two outlying observations Yi' and Yi" 

(where i' and i" can take any value between 1 and K) arise due to a shift in the 

covariate values Xi'l and Xi'2 as 

and in the covariate values Xi"l and xi"2 as 

respectively. Consequently, for the cases with large values of (h and 02 , Yi' and Yi" 

become outliers. Here, we consider 61 = 2.0 and 52 = 3.0. The r maining covariates 

remain the same as before. 

Estimation performance in two outliers case 

For the values of the tuning constant related probabilities, we choose J.Lc1 = 0.6 and 

J.Lc2 = 0.4. Next, following section 2. 1.2, we obtain the estimates of the regression 

effect (3 = ({31 ,(32 )' from the estimating equations (2.2) , (2.7), (2.5) , and (2.6) for the 

WMQL, SSMQL, FSMQL1 , and FSMQL2 , approaches, respectively. The SM, SSE, 

and RB of /3 obtained from 1000 simulations are reported in Table 2.8 under a binary 

model with two outlying observations. 
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It is clear from the results of Table 2.8 that the proposed FSMQL and SSMQL 

approaches definitely produce the estimates of {31 and {32 with smaller biases as com­

pared to th other competitive approaches. For example, when K = 60, the WMQL 

approach produces the percentage of relative biases (RBs) of /31 and /32 as 21 and 13; 

whereas these are found to be only 4 and 5; 7 and 8; and 4 and 4 under t he SSMQL, 

FSMQL1 , and FSMQL2 approaches, respectively. 

2.4 Some Remarks 

There exists a vast literature for the robust inferences in the lin ar mod ls in the 

presence of one or more outliers. See, for example, the references in Huber (2004) 

and Roussccuw and Leroy (1987). When compared with the linear models, there how­

ever does not exist adequate discussions for t he robust inferences in the non-linear 

regression models for discrete such as count and binary data. As the exact likelihood 

inferences in th presence of outliers are complicated, recently Cantoni and Ronchetti 

(2001 ) introduced a corrected (based on the Fisher consistency concept) Mallows-type 

quasi-likelihood (MQL) estimating equations approach to obtain consistent estimates 

for the parameter of non-linear regression models in the ind p ndence set up. More 

recently, among others, Cantoni (2004) and Sinha (2004) have dealt with similar 

timating equations approach in the correlated set up for the longitudinal and familial 

data, respectively. 

In the thesis, we have suggested a new quasi-likelihood estimating equations ap­

proach that unlike Cantoni and Ronchetti (2001) takes the correlations and gradients 

of the robust functions into account. It is demonstrated both asymptotically and by 

simulations that the proposed fully standardized MQL (FSMQL) approach definitely 
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yields less biased estimates for the regression parameters as compared to the WMQL 

approach of Cantoni and Ronchetti (2001 ) in the independence set up. To be spe­

cific, in the Poisson case, the FSMQL approach appears to perform much better than 

the SSMQL approach. When the performances of the FSMQL1 and FSMQL2 are 

compared, it is found that in general, the FSMQL1 approach performs better than 

the FSMQL2 approach. In the binary case, the SSMQL, FSMQL1 , and FSMQL2 

approaches appear to produce small biases for the regression parameters. The SS­

MQL and FSMQL2 approaches performs a lmost equally and slightly better than the 

FSMQL1 approach. 

Note that as the FSMQL1 approach is almost always better than the other com­

petitive approaches under the Poisson model, and also because this approach is only 

slightly worse than the SSMQL and FSMQL2 approaches under the binary model, 

the FSMQL1 approach is generally recommended for the estimation of the regression 

effects in the presence of possible outliers both for count and binary data. 

Note that as far as the tuning constant (c) is concerned, this is typically chosen 

to achieve a certain level of asymptotic efficiency at the underlying distribution. For 

example, Cantoni and Ronchetti (2001 ) used c = 1.6 and c = 1.2 in their numerical 

illustrations for the analysis of count and binomial data, respectiv ly in the presence 

of outliers. In the simulation studies for the count data, we have used three values 

of c, nam ly, c = 1.2, 1.4, and 1.6, to see how these c values affect the performances 

of the estimates under three different estimation approaches. For the binary case, 

we have conducted an extensive simulation study by considering the tuning constant 

related probability J.Lc1 = 0.5, 0.6, and 0.9, whereas the traditional tuning constant 

has been used in the existing literature. For almost all values of the tuning constant 

or the tuning constant related probability, in general, the proposed FSMQL approach 
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was found to produce smaller/equal biases as compared to the other two competitive 

approaches. 
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Table 2.1: [Checking the difference of the expectation of the estimating 
function from zero] Expectation of the estimating functions under the WMQL and 
FSMQL1 approaches for different sample sizes (K) , tuning constant values (c), and 
amounts of contamination in the selected covariate ( 5); K th observation being an 
outlier arising through XI< = 1.0 + 6. 

E(WMQLEF) E(FSMQL1EF) 
c c 

K 6 1.6 1.4 1.2 1.6 1.4 1.2 

20 0.0 -0.067 -0.054 0.005 -0.073 -0.077 -0.133 
1.0 -0.332 -0.281 -0.194 -0.071 -0.077 -0.128 
2.0 -0.820 -0.709 -0.555 -0.071 -0.075 -0.129 
3.0 -1.674 -1.458 -1.196 -0.071 -0.074 -0.130 
4.0 -3.133 -2.733 -2.291 -0.070 -0.074 -0.131 

100 0.0 0.036 0.037 0.084 -0.076 -0.080 -0.152 
1.0 -0.022 -0.013 0.040 -0.075 -0.080 -0.150 
2.0 -0.142 -0.118 -0.049 -0.075 -0.080 -0.150 
3.0 -0.374 -0.322 -0.223 -0.075 -0.079 -0.150 
4.0 -0.806 -0.699 -0.547 -0.075 -0.079 -0.150 
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Table 2.2: [Checking the difference of the expectation of the estimating 
function from zero) Expectation of the estimating functions under the WMQL and 
FSMQL1 approaches for different sample sizes (K) , tuning constant values (c), and 
amounts of contamination in the selected covariate ( o) ; K th observation being an 
outlier arising through XK = 4.0- o. 

E(WMQLEF) E(FSMQL1EF) 
c c 

K 0 1.6 1.4 1.2 1.6 1.4 1.2 

20 0.0 2.550 2.280 2.064 -0.285 -0.342 -0.505 
1.0 1.302 1.190 1.127 -0.294 -0.357 -0.525 
2.0 0.670 0.638 0.648 -0.304 -0.393 -0.529 
3.0 0.368 0.369 0.422 -0.335 -0.392 -0.616 
4.0 0.233 0.250 0.318 -0.322 -0.730 -0.824 

100 0.0 0.721 0.681 0.695 -0.304 -0.362 -0.533 
1.0 0.464 0.457 0.502 -0.306 -0.366 -0.538 
2.0 0.336 0.345 0.405 -0.308 -0.373 -0.539 
3.0 0.275 0.290 0.360 -0.314 -0.373 -0.557 
4.0 0.248 0.267 0.339 -0.312 -0.445 -0.602 
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Table 2.3: [For count data with a single outlier] Simulated means (SM) , simu­
lated standard errors (SSE), and relative biases (RB) of the QL estimates of the r -
gression parameters for different sample sizes under the Poisson model with /31 = 1.0 
and /32 = 0.5 in the presence of a single outlier. 

Estimate 
K Statistic /31 /32 

20 SM 0.361 0.242 
SSE 0.416 0.349 
RB 154 74 

30 SM 0.233 0.522 
SSE 0.241 0.277 
RB 319 8 

60 SM 0.230 0.667 
SSE 0.186 0.194 
RB 382 86 

100 SM 0.486 0.597 
SSE 0.118 0.134 
RB 434 72 
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Table 2.4: [For count data with a single outlier) Simulated means (SM) , sim-
ulated standard errors (SSE), and relative biases (RB) of the WMQL, SSMQL, 
FSMQL1 , and FSMQL2 estimates of the regression parameters for different sam-
ple sizes and selected values of the tuning constant c under the Poisson model with 
{31 = 1.0 and /32 = 0.5 in the presence of a single outlier. 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K c Statistic !31 !32 /31 !32 !31 !32 !31 !32 

20 1.6 SM 0.808 0.430 0.802 0.431 
SSE 0.517 0.366 0.530 0.368 
RB 37 19 37 19 

1.4 SM 0.880 0.486 0.862 0.468 
SSE 0.481 0.362 0.426 0.313 
RB 25 4 32 10 

1.2 SM 0.896 0.489 0.887 0.477 
SSE 0.485 0.368 0.438 0.328 
RB 21 3 26 7 

30 1.6 SM 0.180 0.586 0.300 0.559 0.896 0.404 0.892 0.404 
SSE 0.246 0.277 0.244 0.263 0.390 0.346 0.385 0.354 
RB 334 31 287 23 27 28 28 27 

1.4 SM 0.235 0.525 0.382 0.522 0.928 0.424 0.889 0.436 
SSE 0.210 0.246 0.250 0.252 0.404 0.320 0.361 0.275 
RB 364 10 247 9 18 24 31 23 

1.2 SM 0.251 0.526 0.428 0.522 0.957 0.435 0.937 0.447 
SSE 0.238 0.285 0.277 0.270 0.404 0.331 0.373 0.294 
RB 315 9 207 8 11 20 17 18 
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Contd ..... ... Table 2.4 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K c Statistic (31 (32 (31 (32 (31 (32 (31 (32 

60 1.6 SM 0.440 0.644 0.500 0.630 0.850 0.506 0.849 0.496 
SSE 0.228 0.198 0.230 0.196 0.328 0.229 0.322 0.225 
RB 246 73 217 66 46 3 47 2 

1.4 SM 0.507 0.600 0.567 0.589 0.899 0.517 0.893 0.488 
SSE 0.206 0.188 0.211 0.186 0.307 0.239 0.279 0.210 
RB 240 53 206 48 33 7 38 6 

1.2 SM 0.505 0.612 0.570 0.595 0.924 0.508 0.923 0.491 
SSE 0.221 0.197 0.226 0.195 0.363 0.271 0.335 0.246 
RB 224 57 190 49 21 3 23 4 

100 1.6 SM 0.655 0.574 0.680 0.570 0.903 0.470 0.895 0.465 
SSE 0.152 0.134 0.153 0.134 0.228 0.167 0.222 0.163 
RB 227 55 208 53 43 18 48 21 

1.4 SM 0.695 0.548 0.721 0.544 0.936 0.474 0.929 0.457 
SSE 0.142 0.129 0.144 0.129 0.224 0.172 0.206 0.151 
RB 214 37 194 34 29 15 34 29 

1.2 SM 0.698 0.557 0.727 0.550 0.945 0.492 0.944 0.482 
SSE 0.152 0.135 0.153 0.135 0.275 0.204 0.253 0.1 0 
RB 199 42 178 37 20 4 22 10 
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Table 2.5: [For count data with two outliers] Simulated means (SM) , simulated 
standard errors (SSE) , and relative biases (RB) of the WMQL, SSMQL, FSMQL1, 

and FSMQL2 estimates of the regression parameters for different sample sizes and 
selected values of the tuning constant c under the Poisson model with {31 = 1.0 and 
{32 = 0.5 in the presence of two outliers. 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K c Statistic {31 {32 {31 !32 {31 {32 {31 {32 

20 1.6 SM 0.090 0.827 0.209 0.785 0.993 0.484 1.002 0.479 
SSE 0.307 0.132 0.227 0.110 0.218 0.115 0.211 0.113 
RB 297 246 349 259 3 14 1 19 

1.4 SM 0.140 0.795 0.218 0.782 0.993 0.485 0.967 0.490 
SSE 0.213 0.099 0.212 0.106 0.232 0.122 0.232 0.121 
RB 404 299 368 265 3 12 14 8 

1.2 SM 0.157 0.788 0.268 0.761 0.981 0.486 0.950 0.495 
SSE 0.200 0.096 0.217 0.109 0.239 0.126 0.233 0.123 
RB 421 300 337 238 8 11 21 4 

30 1.6 SM 0.348 0.781 0.437 0.744 0.993 0.486 1.003 0.481 
SSE 0.140 0.072 0.136 0.070 0.197 0.105 0.197 0.105 
RB 465 392 413 347 4 13 2 18 

1.4 SM 0.374 0.770 0.464 0.731 0.983 0.493 0.959 0.501 
SSE 0.134 0.069 0.149 0.085 0.206 0.109 0.203 0.108 
RB 466 392 360 273 8 7 20 1 

1.2 SM 0.412 0.752 0.495 0.718 0.980 0.488 0.955 0.497 
SSE 0.142 0.073 0.141 0.073 0.208 0.110 0.207 0.111 
RB 414 343 358 297 10 11 22 3 
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Contd ........ Tabl 2.5 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

f{ c Statistic (31 (32 (31 (32 (31 (32 fJI (32 

60 1.6 SM 0.594 0.687 0.633 0.670 0.989 0.494 0.994 0.491 
SSE 0.107 0.057 0.109 0.058 0.168 0.089 0.164 0.087 
RB 381 310 337 293 6 7 4 10 

1.4 SM 0.610 0.678 0.650 0.662 0.985 0.497 0.970 0.502 
SSE 0.108 0.057 0. 109 0.058 0.178 0.096 0.175 0.094 
RB 360 313 321 280 8 4 17 2 

1.2 SM 0.633 0.670 0.670 0.653 0.979 0.496 0.965 0.500 
SSE 0.110 0.058 0.111 0.059 0.192 0.103 0.188 0.101 
RB 333 290 298 260 11 4 19 0 

100 1.6 SM 0.745 0.620 0.760 0.613 1.000 0.490 1.003 0.487 
SSE 0.078 0.042 0.078 0.043 0.121 0.066 0.122 0.067 
RB 328 284 308 266 0 16 3 19 

1.4 SM 0.757 0.615 0.772 0.608 1.001 0.488 0.989 0.493 
SSE 0.079 0.043 0.079 0.043 0.131 0.071 0.129 0.070 
RB 308 267 290 252 8 17 9 10 

1.2 SM 0.773 0.607 0.786 0.601 1.004 0.485 0.989 0.491 
SSE 0.080 0.044 0.081 0.044 0.143 0.077 0.139 0.076 
RB 284 246 263 229 3 19 8 12 
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Table 2.6: [For binary data with a single outlier] Simulated means (SM), sim­
ulated standard errors (SSE) , and relative biases (RB) of the QL estimates of the 
regression parameters for different sample sizes under the binary model with {31 = 1.0 
and {32 = 0.5 in the presence of a single outlier. 

Estimate 
K Statistic {31 !32 

20 SM 1.609 -0.171 
SSE 1.399 0.991 
RB 44 68 

30 SM 1.819 -0.414 
SSE 1.209 1.099 
RB 68 83 

60 SM 1.225 0.253 
SSE 0.803 0.734 
RB 28 34 

100 SM 1.215 0.276 
SSE 0.548 0.462 
RB 39 49 
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Table 2.7: [For binary data with a single out lier] Simulated means (SM), sim-
ulated standard errors (SSE), and relative biases (RB) of the WMQL, SSMQL, 
FSMQL1, and FSMQL2 estimates of the regression parameters for different sam-
ple sizes and selected values of the tuning constant related probability J-Lc1 under the 
binary model with /31 = 1.0 and /32 = 0.5 in the presence of a single outlier. 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K 1-LC! Statistic /31 /32 /31 /32 /31 /32 /31 /32 

20 0.5 SM 1.238 0.382 1.088 0.617 1.091 0.639 1.101 0.603 
SSE 1.141 1.273 1.027 1.252 1.034 1.265 1.029 1.225 
RB 21 9 9 9 9 11 10 8 

0.6 SM 1.237 0.298 1.181 0.592 1.188 0.620 1.192 0.581 
SSE 1.110 1.211 1.208 1.207 1.231 1.228 1.204 1.183 
RB 21 17 15 8 15 10 16 7 

0.9 SM 1.210 -0.086 1.021 0.460 1.048 0.495 1.028 0.446 
SSE 1.065 0.925 1.048 1.067 1.092 1.087 1.028 1.047 
RB 20 63 2 4 4 0 3 5 

30 0.5 SM 1.286 0.221 1.025 0.560 1.018 0.580 1.022 0.565 
SSE 1.409 1.527 1.343 1.436 1.374 1.468 1.335 1.422 
RB 20 18 2 4 1 5 2 5 

0.6 SM 1.329 0.138 1.011 0.550 1.006 0.571 1.012 0.553 
SSE 1.385 1.497 1.340 1.434 1.366 1.462 1.324 1.411 
RB 24 24 1 4 1 5 1 4 

0.9 SM 1.341 -0.096 0.962 0.471 0.938 0.524 0.971 0.463 
SSE 1.139 1.147 1.319 1.404 1.340 1.427 1.312 1.395 
RB 30 52 3 2 5 2 2 3 
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Contd ... .... . Table 2. 7 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K J.LCJ Statistic (31 (32 (31 (32 (31 (32 (31 (32 

60 0.5 SM 1.099 0.434 1.055 0.515 1.055 0.519 1.055 0.515 
SSE 0.797 0.792 0.795 0.789 0.804 0.798 0.795 0.788 
RB 13 8 7 2 7 2 7 2 

0.6 SM 1.105 0.407 1.047 0.513 1.046 0.519 1.049 0.512 
SSE 0.794 0.788 0.792 0.786 0.802 0.796 0.792 0.785 
RB 13 12 6 2 6 2 6 2 

0.9 SM 1.161 0.194 1.002 0.487 0.994 0.503 1.003 0.486 
SSE 0.777 0.760 0.779 0.765 0.782 0.777 0.779 0.764 
RB 21 40 0 2 1 0 0 2 

100 0.5 SM 1.052 0.471 1.013 0.522 1.011 0.524 1.013 0.522 
SSE 0.541 0.490 0.522 0.466 0.526 0.469 0.522 0.466 
RB 10 6 2 5 2 5 3 5 

0.6 SM 1.064 0.447 1.008 0.520 1.007 0.523 1.009 0.520 
SSE 0.545 0.494 0.521 0.465 0.525 0.469 0.521 0.465 
RB 12 11 2 4 1 5 2 4 

0.9 SM 1.179 0.252 0.980 0.507 0.976 0.513 0.980 0.507 
SSE 0.582 0.538 0.513 0.458 0.518 0.462 0.513 0.457 
RB 31 46 4 2 5 3 4 2 
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Table 2.8: [For binary data with two outliers] Simulated means (SM), simulated 
standard errors (SSE), and relative biases (RB) of the WMQL, SSMQL, FSMQL1 , and 
FSMQL2 estimates of the regression parameters for different sample sizes, J.lc1 = 0.6, 
and J.lc2 = 0.4 under the binary model with /31 = 1.0 and /32 = 0.5 in the presence of 
two outliers. 

Estimation Method 
WMQL SSMQL FSMQL1 FSMQL2 

K Statistic !31 !32 !31 /32 !31 /32 /31 /32 

20 SM 0.780 0.377 1.056 0.558 1.132 0.613 1.044 0.613 
SSE 1.617 1.065 1.534 1.057 1.641 1.111 1.539 1.111 
RB 14 12 4 6 8 10 3 6 

30 SM 0.941 0.368 1.102 0.559 1.164 0. 589 1.105 0.558 
SSE 1.379 1.172 1.330 1.130 1.402 1.213 1.328 1.132 
RB 4 11 8 5 12 7 8 5 

60 SM 0.758 0.424 1.039 0.526 1.079 0.545 1.038 0.525 
SSE 1.145 0.605 1.061 0.571 1.098 0.592 1.062 0.572 
RB 21 13 4 5 7 8 4 4 

100 SM 0.905 0.436 1.037 0.510 1.060 0.522 1.038 0.510 
SSE 0.885 0.509 0.819 0.463 0.838 0.471 0.820 0.463 
RB 11 13 5 2 7 5 5 2 



Chapter 3 

Robust Estimation for Familial 

Count and Binary Data 

Generalized linear mixed models (GLMMs) are useful for accommodating the overdis­

persion and correlations observed among the outcomes in a given cluster /family. 

These models are generated from the well-known generalized linear model (GLM) 

by adding random effects to the linear predictor. Let Yii be the response obtained 

from the jth individual (j = 1, .. . , ni) of the ith cluster/family (i = 1, . .. , I<) and 

I {3 * 'Tlii = xij + 'Yi , (3.1) 

be the corresponding linear mixed predictor such that conditional on the random 

effect 1i, the response variable Yii follows an exponential distribution given by 

(3.2) 

where k is the normalizing constant, a(-) and b(-) are the known functional forms , 

and ¢ is possibly an unknown scale parameter. In (3.1), Xij = (xij, . . . , Xijr, ... , Xijp)' 

is the p- dimensional vector of fixed covariates for the jth member of the ith family 

60 
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and (3 is the corresponding vector of the regression effects. furthermore, "f:'S are 

assumed to be identically and independently distributed as N(O, 0'2). It is then clear 

that YiJ unconditionally follows an exponential-family based mixed model. Note that 

the exponential family (3.2) contains two important cases such Poisson and binary 

distributions, where ¢ = 1. In t his chapter , we deal with both of these special cases 

intensively and hence assume that either ¢ is known or ¢ = 1. 

Note that even when the clustered data do not contain any outliers, the exact 

likelihood estimation for the regression parameter (3 and the variance component of 

the random effects 0'
2 is complicated. This is because the derivation of the uncon­

ditional likelihood function by taking the integration of the conditional probability 

function in (3.2) over the normal distribution of the random effects is quite complex. 

There exists various numerical techniques [e.g. McCulloch (1997) )] those maximize 

the likelihood function numerically without deriving the exact form of the likelihood 

function . Note that these numerical techniques, however, can be computationally 

cumbersome in certain situations [Jiang (1998)] . Moreover , it is not clear how one 

can numerically approximate a likelihood function when the discrete clustered data 

are assumed to follow certain auto-correlation models. See, for example, the negative 

binomial auto-correlation model in Jowaheer and Sutradhar (2002, appendix, p . 398) 

[see also Bockenholt (1999)]. 

As opposed to the numerical techniques, there also exists alternative approxima­

tions such as the penalized quasi-likelihood (PQL) approach of Breslow and Clayton 

(1993) [see also, Schall (1991), Breslow and Lin (1995), Kuk (1995) , Lin and Breslow 

(1996)] and the hierarchical likelihood (HL) approach of Le and Neider (1996) . In 

the context of Poisson mixed model, Sutradhar and Qu (1998) [see also, Jiang (1998)] 

have shown that the PQL approach may not yield the consistent estimates for the 
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parameters of the mixed model, particularly for the variance component of the ran­

dom effects, when the cluster sizes are small, which is typically the case in practice. 

Jiang (1998) [see also, Jiang and Zhang (2001)] has suggested a simulated method of 

moments (SMM) that always produces the consistent estimates for both (3 and CJ2
. 

These SMM based estimators, however, can be inefficient. Sutradhar (2004) [see also, 

Sutradhar and Rao (2001, 2003)] has proposed a generalized quasi-likelihood (GQL) 

approach which produces consistent as well as highly efficient estimates as compared 

to those obtained from the SMM approach. 

Note that in practice, it may however happen that among a set of large number 

of independent clusters, a small number of clusters contain one or more outlying 

observations. For example, in count data analysis, it may happen that the bulk of 

the observations in the whole cluster set up follow the Poisson distribution with means 

close to each other, whereas a few outlying count observations in a small number of 

clusters may arise from the Poisson distribution but with inflated or deflated means 

due to the contaminated covariates. Similar situations may arise in the binary case 

where covariates can be contaminated leading to the unusual higher or lower success 

probabilities. In section 3.1 , we provide the definit ions of outliers for both Poisson 

and binary cases. Note that with regard to an outlier in the binary case, we have 

defined the outliers in a new way, which reflects the true nature of the outliers as in 

t he Poisson and continuous such as Gaussian cases. In section 3.2, we examine the 

effects of outliers defined in section 3.1 on the GQL and moment estimations for the 

parameters of the Poisson and binary mixed models. This we have done as this recent 

GQL approach was found to produce consistent and highly efficient estimates in the 

GLMM set up in the absence of outliers. 

With regard to the estimation of the parameters in the pr sence of outliers, Sinha 
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(2004) [see also, Mills et al. (2002)] has discussed a robust numerical technique in the 

cluster set up, which may be treated as a generalization of the numerical techniqu 

proposed by McCulloch (1997) in the absence of outliers. ote however that for the 

reasons indicated above with regard to the difficulties that one may ncounter with 

the numerical techniques, we do not follow such numerical technique any further in 

the present chapter. Instead , we follow a robust Mallows-type quasi-likelihood (MQL) 

approach discussed by Cantoni and Ronchetti (2001) in the independence set up and 

develop a robust GQL (RGQL) approach as an improvement over th MQL approach 

in estimating the regression effects for the clustered data in the pr s nee of outliers. 

The proposed robust approach may also be treated as a generalization of th GQL 

approach due to Sutradhar (2004) which was, however, developed for the cluster d 

data in the absence of outliers. We further provide a robust moment (RM) approach 

for the estimation of the variance component of the random effects in the presence 

of outliers. The development of the RGQL and RM approaches is given in section 

3.3. A simulation study is conducted in section 3.4 to examine the performances of 

the RGQL and RM approaches under both count and binary mixed models. This 

chapter concludes in section 3.5. 

3.1 Outliers in the Discrete Clust ered D ata 

It may happen in practice that the data may contain one or more outliers. For 

i = 1, . .. , K , let Yi = (yi1 , .. . , YiJ, . .. , YinJ' denote the ni x 1 v ctor of count or 

binary r sponses. Suppose that m of these ~~1 ni responses are r ferr d to as th 

mean shifted outliers when their corresponding covariates are shift d by an amount 
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6, where 6 is a vector. For convenience, we denote these new set of covariates as 

Xij for(i,j):f=(i',j') 

Xij + 6 for (i,j)- (i',j') 

Note that the definition of outliers depends on the discrete nature of the data. In 

the following subsections, we discuss how the outliers arise in both count and binary 

data. 

3.1.1 Outliers in the count data 

In the count data set up, an outlying count may arise either due to a shift in the 

mean or due to an inflated variance for an individual. For example, suppose that 

conditional on the random effect li = :f i.~d. N(O, 1), in a situation when data do 

not contain any outliers, the response Yij follows a Poisson distribution with mean 

J.Ltj = E(Yijl/i, Xij) = exp(x~j/3- u; + 0'/i) for i = 1, . .. , K, j = 1, . . . , ni, where 

Xij is the covariate for the jth individual of the ith family. ow, suppose that the 

covariate of one of the observations, say (K, ni< )th observation is contaminated by an 

invisible amount 6, 6 being a suitable vector. For convenience, we denote the observ d 

covariates as 

Xij fori = 1, . .. , K, j = 1, ... , ni, j =J. nK 

Xij + 6 fori = K , j = nK 

and write the conditional mean as 

exp(x~j/3- u2

2 
+ 0'/i) fori = 1, .. . , K,j = 1, . . . , ni,j =J. ni< 

exp[(xij + 6)'/3- ~
2 + 0'/i] fori= K,j = nK 
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Under this model, YI<nK is referred to as a mean shifted outlier. 

Alternatively, suppose that fori = 1, ... , K , j = 1, . .. , ni, j =InK, conditional on 

"fi, Yij follows a Poisson distribution with mean 

2 

J-L7j = exp ( x ;j {3 - ~ + O'"fi), 

but the (K, nK )th response arises from a negative binomial (NB) distribution with 

mean 
2 

p,*gnK = exp(x'gnK{3- ~ + O'"fi ), 

and variance 

for a suitable scalar a > 0. Since the variance of this observation, as compared to 

the other ~{~1 ni - 1 good observations, gets larger when a incr ases, we refer to this 

observation YI<nK as a variance inflated outlier. 

In the thesis, we, however, consider the mean shifted outliers only, which received 

considerable attention in the literature [ see for example, Cantoni and Ronchetti 

(2001), Sinha (2004)] . 

3.1.2 Outliers in the binary data 

ote that unlike the count data case, the definition of outliers for the binary data 

is more complicated. Cantoni and Ronchetti (2001) considered the outliers in the 

binomial data that can be defined in the manner similar to that of the Poisson cas . 

Similarly, for t he binary case, Sinha (2004) used the same definition as that of the 

Poisson case. More specifically, for (i', j') ¢ (i , j), i = 1, ... , K, j = 1, . .. , ni , suppos 

that Yi'j' = 1, but its corresponding probability (based on its covariate value) is 
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small such that P(~'j' = 11/i, ii'j') < 0.4. Some authors such as Sinha (2004) have 

considered such a binary response to be an outlier. Similarly, Yi'j' = 0 has been 

referred to as an outlier if t he corresponding probability P(~'j' = 11fi, ii'j') is large, 

say P(~'j' = 11fi,ii'j') > 0.6. 

Note however that t he above definition of an outlier for the binary data considered 

by Sinha (2004), among others, does not appear to interpret the real nature of an 

outlier. This is because an observation should be t reated as an outlier when it is 

quite different from the bulk of the observations in the sample, either in magnitude 

or in t he sense of probability. To be specific, suppose that in a sample of size 'L!1 ni, 

the covariate values of 'L!1 ni - 1 individuals lead to small probabilit ies such as 

P(~j = 11fi, Xij) ::::; 0.3 for all (i, j) ¢ (i', j ' ), i = 1, ... , K , j = 1, ... , ni· In this case, 

if P(~'j' = 11Ji,ii'J') is large, Yi'j' will be an outlier irrespective of its value 0 or 1. 

This fact leads us to consider one sided or two sided outliers in the binary set up. 

These cases are explained below. 

One sided outlier in binary mixed model set up 

Suppose that the bulk of the binary observations (i .e. 'good ' observations) occur with 

small probabilit ies. Let Yij denote these observations for (i , j) ¢ (i',j' ), i = 1, . .. , K , 

j = 1, ... , ni. In this case, the observation Yi'j' will be defined as an outlier if the 

exp(x; .B+a')';) 
l+exp(x;j .B+a')';) 

(i,j) ¢ (i' ,j') 

exp[(x;'j'H)' .B+a"Y;] for ( i , j) = ( i'' j' ) 
l+exp[(x;' i' +o)'.B+a"Y;] 

Note that p,;'j' differs from all other p,;j because of a contamination of the covariate 

by a real valued vector 6. Note that when Yi'j' is generated with a large probability 
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1-ltj', Yi'j' can still be 0 or 1. Thus, Yi'j', whether 1 or 0, must be treated as an outlier. 

As opposed to t he upper sided outlier case given above, one may also encounter 

the lower sided outlier case. This happens if the bulk of the binary observations 

(i.e. cgood' observations) occur with large probabilities, but the outlying observation 

Yi'j' (whether 1 or 0) satisfies the observed P(~'j' = 1/!i,Xi'j') = J.t'i' j ' < Plb> where 

* . {-*} Ptb = mm 1-lij · 

Two sided outlier in binary mixed model set up 

It may also happen in pract ice that the probabilities for the bulk of the observations 

lie in the range Pib :::; P(~j = 1 h'i, Xij) :::; p;b, where Pib and p;b are defined as 

above. This leads to a situation where one may encounter a two sided outlier. To be 

specific, Yi'j' = 0 or 1 will be referred to as a two sided outlier if either the observed 

P(~'j' = 1 /!i, Xi'j' ) > p;b or the observed P(~'j' = 1 h'i, Xi'j ' ) < Pib· 

3 .2 Effects of Outliers on the Unmodified GQL Es-

timation 

It is well known that in the GLMM set up, the joint GQL estimation approach [Su­

tradhar (2004)] produces consistent and highly efficient estimates for the regression 

effects (/3) and the variance component of t he random effects (u2
). Alternatively, 

for computational simplicity, one may use the GQL approach for the consistent and 

efficient est imation of /3 parameter, whereas u 2 may be computed consistently by 

the method of moments (MM). Note that when data contain a single or more out­

liers, whether one uses the joint GQL or the combined GQL and MM approach, 

these approaches without any modifications may not be suitable for t he estimation 
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of parameters in the GLMM set up. In order to verify the effect of the presence of 

outliers on the combined GQL and MM approach, in this section , we mainly conduct 

a simulation study by generating the count or binary data with po sible outliers (as 

defined in the last section), but estimating the main parameters f3 and ~2 by using 

the unmodified combined GQL and MM approach. 

For the purpose, we first demonstrate below how one can generate count and 

binary data with possible outliers. We do this following the definition of outliers 

provided in the last section. 

3.2.1 Generating clustered data with outliers 

Generating clustered count data with outliers 

To generate a set of clustered count data with a few outliers, we consider K = 100, 

p = 2, and ni = 4 (i = 1, .. . , K) , for example. Thus, all together ~{~1 ni = 400 

responses will be generated. Out of these 400 responses, we choose to contaminate 

only m = 4 responses, where m denotes the number of outliers in the data. To 

do this, we first generate ~{~1 ni = 400 'good' count responses in the absence of 

any outliers by following the Poisson mixed model as explained in section 3.1.1 with 

the conditional mean parameter as t-ttj = exp(xij1/31 + Xij2/32 - ~
2 + ~'Yi ) , where i 

denotes the ith cluster (i = 1, .. . , K) with size ni and j = 1, ... , ni· Here, /i's are 

generated from the normal distribution with mean 0 and variance 1. As the eff cts 

of these covariates, we consider two v rsions of the regression parameters, namely 

/3 = (1.0, 1.0)' and /3 = (1.5, 0.75)'. Next , we convert m = 4 of these ~{~1 ni = 400 

count responses as outlying responses following the definition given in section 3.1.1. 

To do this, we do not change the values of these 4 responses (generat d as 'good' 
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observations), rather we change their corresponding covariates. To be specific, we 

simply shift the first covariate with a real value 61 and the second covariate with 

another real value 62 . That is, to treat the jth 'good' response in th ith cluster, 

for example, as an outlier, we consider Xij 1 + 61 and Xij 2 + 62 as the covariate values 

instead of Xij 1 and xij2 , respectively. Note that this shifting changes the mean level 

of this response as compared to the bulk of the responses, but the original responses 

were not changed. As far as the magnitude of shift for each covariate is concerned, 

we consider 6 = (61 ,62)' = (4.0,4.0)' . Next, with regard to the variance compon nt 

of the random effects, we choose a 2 = 0.25, 0.5, and 0.75. 

As far as the covariates are concerned, we consider a design D1 with two covariates 

as given by 

1. 0 for i = 1, ... , K /2; j :::; ni/2 

Xij1 = 0.0 for i= 1, .. . , K /2; j > ni/2 , 

1.0 fori = K/2+1, ... ,K 

and 

1.0 for i= 1, . . . , K/2; j :::; ni/2 

1.5 for i = 1, . .. ,K/2;j>ni/2 

Xij2 = 
-1.0 for i= K /2+ 1, ... , K; j ~ni/2 

0.0 for i= K / 2 + 1, ... , K; j > ni/2 

respectively. 
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Generating clustered binary data with outliers 

For simplicity, here, we consider the generation of one sided outliers. The two sided 

outliers may be generated similarly. 

To generate m = 4 binary responses as one sided outliers out of L.::r~ 1 = 400 

responses, we first generate 400 'good' responses from the binary mixed model with 

conditional mean u ": . = exp(Xij!fh+Xij2{32+cry;) . 1 K . 1 l ) ~-"'tJ l+exp(x;i itJJ+x;i2!32+u"'t;)' 2 = , ... ' ' J = ' . .. 'ni, w 1ere lis 

are independently and identically normally distributed with mean 0 and variance 

1. Under this simulation study, we consider two different designs D 2 and D3 , each 

containing two covariates. 

Under the design D2 , two covariates are selected as 

-2.0 fori= 1, .. . , K/2 

Xijl = -1.0 fori= K/2 + 1, ... ,3K/4 , 

-1.5 fori=3K/4+1, . . . ,K 

and 

Xij2 "'N( -0.75, 0.25). 

For the selection of the regression parameter values, we consider two sets of values, 

namely {3 = (1.0, 1.0)' and {3 = (1.5, 0.5)'. As far as the values of K, m, ni , and u 2 are 

concerned, we use the same values as those of the count case in the last subsection. 

Under the second design D 3 , the two covariates are chosen as 

1.0 fori= 1, ... , K/2; j ::; nd2 

Xijl = 0.5 for i= 1, .. . , K/2; j > nd2 , 

1.0 fori= K /2 + 1, ... , K 
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and 

1.0 fori= 1, . .. ,K/ 2; j :S n d 2 

1.25 fori= 1, .. . ,K/ 2; j > nd 2 

X i j2 = 
0.75 fori= K/2 + 1, ... , K; j :S nd 2 

2.0 fori= K/2 + 1, ... , K ; j > nd2 

respectively. As far as the regression effects are concerned, unlike under design D 2 , 

in this case, we consider two sets of regression effects as /3 = ( -1.0, - 1.0)' and /3 = 

( - 0.5, -1.5)'. Note that in both cases, under designs D 2 and D3 , the t rue values 

of the regression parameters are chosen such that J.11j for i and j , are small. To be 

specific, by generating K = 100 ri from N(O, 1), when J.11j were computed by using 

the selected covariates and the true regression parameter values, the probabilities J.11j 

for all 'good' binary responses were found to lie, in general, between 0.007 and 0.395 

with specific ranges as follows: 

0.25 

0.50 

0.75 

Range of J.11j 

0.021-0.372 

0.013-0.390 

0.010-0.395 

flt'j ' values based on contaminated 

covariates 

0.938, 0.872, 0.966, 0.932 

0.949, 0.866, 0.970, 0.932 

0.956, 0.860, 0.973, 0.932 



D2 : {31 = 1.5, {32 = 0.5 

0.25 

0.50 

0.75 

D3 : {31 = {32 = -1.0 

0.25 

0.50 

0.75 

D3 : {31 = -0.5, {32 = -1.5 

0.25 

0.50 

0.75 

0.016-0.373 

0.012-0.380 

0.008-0.395 

0.021-0.346 

0.015-0.381 

0.011-0.393 

0.013-0.356 

0.009-0.367 

0.007-0.381 

<h = 2.0, <52 = 3.0 

0.833, 0.709, 0.944, 0.859 

0.859, 0.696, 0.950, 0.858 

0.877, 0.686, 0.955, 0.858 

<51 = - 1.0, <52= -3.0 

0.750, 0.950, 0.832, 0.879 

0.674, 0.962, 0.791, 0.867 

0.608, 0.969, 0.754, 0.857 

<51 = - 1.0, <52= -3.0 

0.891, 0.973, 0.938, 0.957 

0.849, 0.979, 0.921, 0.953 

0.809, 0.983, 0.905, 0.949 
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To treat m = 4 of the L-{~ 1 ni = 400 'good' binary observations as one sided 

outliers, the response values, whether 0 or 1, are not changed, but we use Xij 1 +<51 

and Xij 2 + <52 as the covariate values instead of Xij 1 and Xij 2 , respectively. For the 

values of <51 and <52, we choose 6 = (<51, <52)' = (2.0, 3.0)' and 6 = (-1.0, -3.0)' under 

designs D 2 and D3 , respectively. Now, by using the contaminated covariates, the 

probabilities, namely Jti'j' were made large as shown above in the tabular form. It 

is clear that these values are quite large beyond the upper limit of J..tij for the 'good' 

observations. 
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3.2.2 Unmodified GQL estimation for clustered data 1n the 

presence of outliers 

Since Yi;'s are generated with 'good' covariates Xij, it is clear that if the outliers are 

not accounted for, one may then estimate the parameters of model by exploiting Yij 

and Xijo Thus, when the outliers are neglected, one may follow Sutradhar (2004), 

for example, and estimate the regression effects {3 by solving the GQL estimating 

equation given by 

~ [:ti1
(yi- iii)]= 0, (3 03) 

where iii = (iiii, 0 0 0, iiij, 0 0 0, iiinJ' = E(YiiXi), ti = (aijk) 

is the p X ni derivative matrix of mean vector iii with respect to {3 with Xi = 

[xil, 0 0 0, Xij, 0 0 °, Xin.J 'o Note that for ri = ¥ ioj:Jo N(O, 1) , the jth element of iii 

and the (j, k )th element of ti for t he count data have the formulas given by 

2 

E1,Jexp(x~j{3- ~ + 0'/i)] = exp(x~j{J), (3.4) 

and 

_ _ { iiij + ciifj for j = k, 
O'ijk -

ciiij iiik for j =f. k, 

(305) 

respectively, where c is the overdispersion parameter defined as c = exp( 0'2 ) - 1. The 

formula for aijj in (305) is derived from aijj = var(Yijlxij) = var,.;[E(Yijlfi,Xij)] + 

E,.i [var (Yij lri' Xij) l and similarly, the formula for aijk is derived from aijk = cov(Yij' Yik I 
Xij,Xik) = cov,.;[E(Yijlfi,xij),E(Yikl/i,xik)]+E,.i [cov(Yij, Yiklfi,Xij,Xik)], j =f. ko Fur­

thermore, for a large integer M such as M = 5000, iiij and aijk for the binary case 
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and 

for j = k, 

1 ""M - * - * - - f . ....L k M ue=l P,ij,eP,ik ,e - P,ijP,ik or J 1 , 
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(3.6) 

(3.7) 

t o l l -* exp(x~j.B+"'f;eO') 0 b 0 d f -* E('V' I ) respec 1ve y, w 1ere p,i1. e = 1+ (-' .B+ . ) 1s o tame rom p,i1. = .1 ij "fi , Xij = , exp xij "'f,eu 

exp(x;j.B+"YW) b · - b · h IJth ( IJ - 1 M) · l d l f l+exp(x~j.B+"Yw) y usmg 'Yi - "fie, "fie emg t e <. <. - , .. . , s1mu ate va ue o 

"!ir"o.JN(O, 1). To be specific, t he formula for P,ij is obtained by solving the integral 

P,ij = f~oo p,;jcP("!i)o"!i [Sutradhar (2004) and Fahrmeir and Tutz (1994)], where c/Y( ·) 

denotes the standard normal distribut ion. Similarly, E(Yi}Yiklxij, xik) is obtained as 

(3.8) 

leading to the covariance O'ijk as in (3.7). 

Note that when outliers are avoided, one may estimate the variance of random 

effects CJ2 by solving the moment estimating equation 

S- E (S ) = 0, (3.9) 

where 
K ni I< ni- l ni 

s = LLYlj + L L L YijYik, (3.10) 
i=l j=l i= l j=l k=j+l 

is a statistic written by combining all possible squares and distinct pairwise products 

of the responses [see, Sutradhar (2004) and Jiang (1998)] in the GLMM set up. As far 
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as the formula for E(S) is concerned, one may derive it easily by using the variances 

and covariances given in (3.5) or (3.7). To be specific, for the count data 

K n; K n;-1 n; 

E(S) = L L:[o-ijj + tt7jl + L L L [O"ijk + JlijJlik], (3.11) 
i=l j=l i=l j=l k=j+l 

where Jlij and (jijj, (jijk are given as in (3.4) and (3.5), respectively. Now, by using 

S from (3.10) and E(S) from (3.11), one may solve (3.9) and obtain a closed form 

moment estimator of CJ2 as given by 

where D 1 = 'L~1 ni and D 2 = "L{~ 1 ni(ni- 1)/2. Similarly, under the binary set up, 

one may compute E(S) as 

K n; K n;-1 n; 

E(S) = LLJlij + L L L ~ijk, (3.13) 
i=l j=l i=l j=l k=j+l 

with Jlij and Jlijk as given in (3.6) and (3.8), respectively. Note that unlike (3.12) for 

the Poisson case, there is no explicit formula for the estimator of CJ
2 in the binary 

case. More specifically, one may obtain the estimate of a 2 by solving S- E(S) = 0 

iteratively, where S and E(S) are given as in (3.10) and (3.13), respectively. For 

example, given the value cr{r) as an estimate of CJ
2 at the rth iteration, the estimate 

at the (r + 1)st iteration will be obtained as 

(3.14) 

where [·]r denotes the fact that the expression in the brackets is evaluated at CJ
2 = cr{r)' 

Let /3 and c72 denot the GQL and moment estimators for (3 and CJ
2 , respectively, 

irrespective of the nature of the data whether count or binary, obtained from the GQL 



76 

estimating equation (3.3) and the moment estimating equation (3.9). Note that in 

absence of outliers, the GQL estimating equation (3.3) becomes unbiased and hence 

produces consistent as well as highly efficient estimate for {3 . Similarly, when data do 

not contain any outliers, one may obtain consistent estimate for CJ2 by solving (3.9) . 

3.2.3 P erformance of the unmodified GQL estimators: A 

simulation study 

Count data case 

To examine the effects of outliers on the unmodified GQL estimating equation (3.3) 

and moment estimating equation (3.9) , we simulate the count responses with m = 4 

outliers under design D1 , 500 times, following the procedure described in section 

3.2.1. Und reach simulation, we then record the estimates of {31 and {32 as a solut ion 

of (3.3) , and the estimate of CJ2 computed by (3.12). The simulated mean (SM), 

simulated standard error (SSE), and mean squared error (MSE) computed from 500 

values for each of these three estimates are reported in Table 3 .1. 

It is clear from this table that the GQL estimate of {3 and th MM estimate of CJ
2 

are not at all satisfactory. For example, for the true value {31 = {32 = 1.0 and CJ
2 = 0.5, 

the results in Table 3.1 show that the GQL estimates for {31 and {32 are: 0.656 and 

0.051, respectively with corresponding standard errors 1.062 and 0.721. Thus, the 

regression estimates are highly biased and hence, they are inconsistent. Similarly, the 

MM estimate for CJ2 = 0.5 is found to be 1.371 with standard rror 0.594, which is 

again highly biased. Similar results hold for other selection of th parameter values. 

Thus, the unmodified GQL and MM estimators are inconsistent for the regression 

and the variance component parameters, respectively, when the data really contain 
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outliers. 

Binary data case 

In this case, we simulate 'L~1 ni = 400 binary responses with m = 4 outliers as 

described in section 3.2.1 and apply the unmodified GQL estimating equation (3.3) 

and moment estimating equation ( 3. 9) to compute the estimates for /31 , /32 , and 

0'2 , respectively. Since the convergence is quicker in the binary case, especially when 

robust estimation in section 3.3 is concerned, we use 1000 simulations under the binary 

mixed model, whereas 500 simulations are used under the Poisson mixed model. The 

simulation results with SM, SSE, and MSE under the designs D 2 and D 3 are given 

in Tables 3.2 and 3.3, respectively. 

Once again, similar to those of Table 3.1, it is found from Tables 3. 2 and 3. 3 that 

the GQL and MM approaches produce inconsistent estimates for the parameters when 

the data contain outliers. For example, Table 3.2 reveals t hat under the binary mixed 

model, for /31 = 1.5, /32 = 0.5, and 0'
2 = 0.25, the GQL approach produces estimates 

for /31 and /32 as 2.000 and -0.535, respectively with corresponding standard errors 

0.259 and 0.336. These estimators are definitely highly biased. Similarly, the MM 

approach produces estimate for 0'2 as 0.076 with standard error 0.108, whereas the true 

value of 0'2 is 0.25. Thus, the unmodified moment approach grossly underestimates 

0'2 and hence this estimator is also inconsistent . When D 3 is u ed, the simulation 

results in Table 3.3 show that for the true value /31 = /32 = - 1.0 and 0'
2 = 0.75, the 

simulated unmodified GQL estimates for /31 and /32 are given by -1.407 and -0.501 

with corresponding standard errors 0.361 and 0.217. Similarly, the unmodified MM 

estimate for 0'2 = 0.75 is found to be 0.321 with standard error 0.322. These and other 

results in Table 3.2 and 3.3 clearly demonstrate that the unmodified GQL and MM 
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approaches produce highly biased and hence inconsistent estimates for the parameters 

of the binary mixed model containing one or more outliers. Similar results were also 

found for the Poisson mixed model with outliers. 

3.3 Robust GQL Estimation 

It has been demonstrated in the last section through a simulation study that the un­

modified GQL estimating equation (3.3) for the regression effect {3 and the moment 

estimating equation (3.9) for the variance component a 2 do not provide consistent 

estimates, when the clustered data contain one or more outliers. In fact, in a non­

clustered regression set up, that is when a 2 = 0, the unmodified QL estimates of 

the regression parameters in the presence of outliers are also known to be inconsis­

tent. See, for xample, Cantoni and Ronchetti (2001), where as a remedy to the 

inconsistency problem, the traditional QL approach has been modified through the 

introduction of a robust Mallows-type quasi-likelihood (MQL) estimation. By the 

same token, as a modification of the GQL approach, we now introduce a robust GQL 

(RGQL) approach to obtain consistent estimates for both {3 and a 2 under the clustered 

regression set up in the presence of outliers. Note that the proposed RGQL approach 

may be treated as a generalization of the M QL approach of Cantoni and Ronchetti 

(2001) to the clustered regression set up. We also remark here that the MQL estimat­

ing equations are not in so-called standardized forms, whereas in the present RGQL 

approach, we propose to use estimating equations in standardized forms that lead to 

higher consistency and efficiency. Furthermore, Cantoni and Ronchetti (2001) have 

dealt with independent count and binomial data with outliers, whereas we deal with 

clustered count and binary data with outliers. 
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As an aid to the construction of the proposed fully standardized RGQL estimating 

equations in the clustered set up, we first provide the formulas for the downweighting 

functions for the count and binary cases. These downweighting functions are then 

used to take the outliers into account as opposed to ignoring them completely, in 

estimating the main parameters of the model consistently. 

3.3.1 Downweighting functions 

Count data case 

For i = 1, ... , K and j = 1, . . . , ni, let rij = Yii?, where Yii is the count response 
v U1.JJ 

of the jth member in the i th family; and Mii and a-ijj are the mean and variance of 

Yii defined as in (3.4) and (3.5). Also, let 1/Jc(rij) denote the downweighting function 

that helps to minimize the influence of the suspected outlying observations in the 

estimation without removing them completely. We now follow Huber (2004) [see, 

also Cantoni and Ronchetti (2001) and Sinha (2004)] and define the downweighting 

function for the Poisson case as 

(3.15) 

where c is the well-known t uning constant. 

B inary data case 

When the binary data contain outliers, as explained in section 3.1.2, it appears to b 

appropriate to define two types of outliers, namely one sided and two sided outliers. 

The downweighting functions for these outliers are defined as follows. 
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(a) One sided outlier 

Recall that for the binary response Yij, which may or may not be an outlier, the mean 

fiij and variance a-ijj are defined as in (3.6) and (3.7), respectively. For convenience, 

we denote the outlying observation by Yi'j' · When the bulk of the binary obs r­

vations occur with small success probabilities, the down weighting function '1/Jc( rij) 

(i = 1, . .. , K , j = 1, . .. ,ni) may be defined as 

for P(~j = 11Xij) 5: Psb , ( i, j ) :/= ( i', j'), 

(3.16) 
for P(~j = 1lxij) > P sb, (i,j)- (i',j'), 

where following section 3.1.2, Psb is defined as a critical probability which is the largest 

probability among the probabilities corresponding to the so-called 'good' observations. 

That is, P sb = max{fiij}, (i, j) ¢ (i',j'). Furthermore, in (3.16) , J.L~~},) denotes an 

appropriate tuning constant related probability that replaces the probability f.Li'j ' 

for the outlying observation in order to reduce its influence. For simplicity, this 

probability is referred to as the tuning probability and will b e denoted by J.LCJ without 

any loss of generality. By the same token, the variance of the outlying observation 

- h ld b 1 b (ci) h (cJ) - (c1)(1 (ct)) O'i'j'j' s ou e rep ace y CJi'j'j'' w ere CJi'j'j' - J.Li'j' - J.Li'j' . 

Now, by using the similar argument as in the count data case, one may choose 

the tuning probability J.L~~j) so that it is nearer to Psb such as 0.6, but less than fii'j ' 

(the outlying probability). Note that as Psb depends on /3, one may choose Psb = 0.4 

initially provided the data contain more zero 's than one's. To reflect this initial 

situation of Psb = 0.4, we start with a suitable initial value of j3 so that fii/s are 

small. One a first step estimate of j3 is obtained, we then compute Psb by using the 

given formula Psb = max{fiij}, (i,j) :/= (i',j') . 

Further note t hat if the bulk of the binary observations however occur with large 
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success probabilities, the downweighting function 'l/Jc(ri1) (i = 1, ... , K, j = 1, ... , ni) 

for this case may be written by making slight modification to the definition given in 

(3.16). Thus, in this case, 'l/Jc(ri1) is defined as 

Yij- ilii ( I ) ( ) ( I I) y'aij;, P Yi1 = 1 Xij ;:::: Ptb, i,j "¢ i ,j , 

(3.17) 

where unlike in (3.16), Plb = min{,Ui1}, (i,j) ¢ (i1,j1
). Also, p,~~;,) is an appropriate 

tuning constant related probability similar to that of p,~~;,) in (3.16), and 0'~,~~~, = 

(c2) ( 1 (c2)) 
1-ti'j' - 1-ti'j' . 

Note that to select a tuning constant value for p,~~}), one may consider a value 

nearer to Ptb, but greater than ,Ui'j' (the outlying probability). For example, the tuning 

probability ~-ti~}), i.e., p,c2 in brief, may be closer to be 0.4. To reveal the scenario that 

the data contain more one's than zero's, one may choose Ptb = 0.6 initially and start 

with a suitable value of j3 so that .Ui/s are large. After getting the first step estimate 

for /3, we then turn back to the formula Ptb = min{,Ui1}, (i,j) ¢ (i1,j1
) to compute 

Ptb· 

(b) Two sided outlier 

Note that in practice it may happen that the success probabilities for the bulk of the 

observations lie within a range of probabilities. Suppose that this range is given by 

Plb ::; P(Yij = 1lxij) ::; Psb· Now, one can combine two one-sided, that is, lower and 

upper sided outlier cases to define the downweighting function 'l/Jc(ri1) (i = 1, ... , K, 
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j = 1, . .. , ni) for the present two sided outlier case. To be specific, 

(cJ) 
Yii-J.L;j p ("'/' I ) ( ) ( I I) ;;fJ, I ij = 1 Xij > Psb, i,j - i ,j , 

Ptb ~ P(~j = 1 jxij ) ~ Psb, (i,j) ¢ (i1
,]

1
), (3.18) 

h (cJ) d (cJ) d fi d · ( ) h (c2 ) d (c2 ) d fi d w ere f-Li'j' an ai'j'j' are e ne as m 3.16 , w ereas /-Li'j' an ai'j'j' are e ne 

as in (3.17). In general, Ptb and Psb are considered to be 0.4 and 0.6, respectively. 

Further note that t he definition of outliers for the binary data that appears in the 

existjng literature [see, for example, Sinha (2004)] is very similar to the definition of 

our two sided outlier case only. Thus, one sided outlier concept is relatively new, and 

only two sided outlier case is not sufficient to interpret the outliers in the binary cas . 

Moreover, if our two sided case is considered to be sufficient to define the outliers in 

the binary data, there is a difference between this two sided based outher definit ion 

and the definition used in the literature. This is because existing definition for the 

outliers uses the tuning constant c directly, whereas we have used tuning constant 

based related probabilities to define t he downweighting functions. 

3.3.2 Robust GQL estimating equation for f3 

Recall from section 3.2 that the unmodified GQL approach yields highly biased and 

hence inconsistent estimates for the regression effects. As a remedy, by using th 

downweighting, i. e., so-called robust functions defined in the last subsection, we now 

provide a modificat ion to the traditional GQL approach and refer to this as the robust 

GQL (RGQL) approach. 
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Let 

be the ni x 1 vector of downweighting or robust functions for the ith family. Also, let 

be the expectation vector and covariance matrix for ~i, respectively. Now, by replacing 

the observation vector , its mean, and covariance matrix in (3.3) with the correspond­

ing vector of robust functions, their mean and covariance matrix, we propose to use 

the RGQL estimating equation given by 

= 0, (3.19) 

as a modification to the GQL estimating equation (3.3). In (3.19) , Wi = diag[wil , ... , 

Wij, ... , WinJ is the ni x ni covariate dependent diagonal weight matrix so that covari­

ates corresponding to the outlying response yield less weight for the corresponding 

robust function. To be specific, the jth diagonal element of the Wi matrix is com­

puted as Wij = j1- hijj, hijj being the jth diagonal element of th hat matrix 

Hi = Xi(X{Xi) - 1X{ with xi = [xil> . . . , Xij, ... , XinJ '. The derivations for Ai, :{3~:, 

;{3 >..~, and ni both for count and binary cases are given in the appendix. 

Let /JRGQL be the solut ion of (3.19). Note that as opposed to the RGQL esti­

mating equation (3.19), for ni = 1 and CJ
2 = 0, Cantoni and Ronchetti (2001) have 

considered a MQL estimating equation. In this MQL approach, the authors have 

used f:i = cov(YiiXi) as the weight matrix instead of the correct weight mat rix ni· 

Furthermore, the MQL approach used tf3 p,~ as the gradient function instead of the 

true gradient function tf3 { ~i - K - 1 ~~1 Ai }'. Thus, it is clear that the present fully 

standardized GQL estimating equation (3. 19) provides an improvement in the sense 
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of consistency and efficiency. Further note that under certain regularity conditions, 

it may be shown that the equation (3.19) is asymptotically (as](~ oo) an unbiased 

estimating equation. Consequently, in the fashion similar to that of chapter 2, one 

may study the asymptotic properties of the RGQL estimators of the regression effects 

obtained from (3.19), which is however not discussed in this chapter. As the small 

sample properties of the estimators are rather important for practical purpose, we 

conduct a simulation study in section 3.4 to examine the performance of the RGQL 

approach based r gression estimators for both count and binary data. It should be 

mentioned that Cantoni and Ronchetti (2001) neither provided any such simulation 

results, nor they considered the binary case. Before we consider the simulation study 

in section 3.4, we now need to develop an estimation formula for the 0'2 parameter. 

This we do in the following subsection. 

3.3.3 Robust moment estimation for CJ2 

Recall that when the data contain one or more outliers, the unmodified moment 

estimating equation (3.9) does not produce consistent estimator for 0'
2

, the variance 

component of the random effects. In the manner similar to that of the estimating 

equation (3.19) for /3, we now provide a robust moment (RM) estimating equation 

approach to obtain a consistent estimator for 0'2 . For the purpose, similar to (3.19), 

we replace Yii in (3.10) by '1/Jc(rij) and write a preliminary statistic 

I< n; I< n; - 1 n; 

S,p = L L '1/J~(rij) + L L L '1/Jc(rij)'l/Jc(rik), (3.20) 
i=l j=l i=l j=l k=j+l 

as a replacement for Sin (3.10). Note that in the construction of the S statistic in 

(3.10), it was not n eded to consider 'L~1 'Lj~ 1 Yii for the following reasons. First, 

in the binary case, Yii - y~. Secondly, in the Poisson case, E(YijlXij) (3.4) does 
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not contain 0'
2

. In the contrary, '1/Jc (rij) =/=- 'I/Jc(rij )2 in the binary case. Furthermor , 

E['I/Jc(rij)] in the Poisson case contains 0'
2. Consequently, we improve the S..p statistic 

in (3.20) by adding the information "L~1 "Lj:: 1 '1/Jc(rij) and write this improved statistic 

as 
I< n; 

r.p = L L '1/Jc (rij ) + S..p . (3.21) 
i=l j=l 

Now, for known {3, the RM estimating equation for 0'
2 can be written as 

(3.22) 

where 

where the formulas for a:j,e and b:j,e are given in the equat ions (A.3) and (A. lO) in 

the Appendix A for the count data; and in the equations (A.16) and (A.21) in the 

Appendix A for the binary data, respectively. The estimating equation (3.22) can 

be solved for 0'
2 by using the Newton-Raphson iterative procedure. Let O"fr+l) be the 

solution for 0'
2 at the (r + l)st iteration, which can be obtained as 

(3.24) 

where [·] (r) denotes the fact that the expression in the bracket is evaluated at 0'
2 = 8-[r)· 

In the Appendix B, we also show how to compute g(0'2
) and 8~2 9(0'2 ) under count 

and binary cases. 

Let O"kM be the solution of (3.22) , which is obtained by using the iterative equation 

(3.24). Once again under some regularity conditions, the asymptotic properties of 

O"kM can be studied in the manner similar to that of the asymptotic properties of 
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(3RGQL· There are however not discussed in this chapter. As far as the small sample 

properties of the estimator &~M is concerned, they are also discussed in section 3.4 

along with the small sample properties of fJRGQL, the RGQL estimator of {3. 

3.4 Performance of the RGQL Estimators: A Sim­

ulation Study 

In section 3.2.3, a simulation study was conducted to examine the effects of the pos­

sible outliers on the so-called GQL estimation approach. It was found that both the 

unmodified GQL estimates for the regression effects, {3, and the unmodified moment 

estimate for the variance of the random effects, CJ
2

, were highly biased and hence 

inconsistent. As a remedy, in the last section, we have developed a robust GQL ap­

proach that accommodates the presence of outliers in estimating {3 by solving the 

RGQL estimating equation (3.19), and CJ2 by solving the RM estimating equation 

(3.22). The purpose of this section is to examine the performances of (3RGQL and 

&~M• where !JRGQL and &~M are the RGQL estimator of {3 and RM estimator of CJ
2

, 

respectively. 

As far as the true value of {3 = ({31 , {32)' and CJ
2 are concerned, we keep the 

same values for these parameters as in the last simulation conducted in section 3.2.3. 

Thus, we consider two sets of true values for {3 as {3 = ({31 , {32 )' = (1.0, 1.0)' and {3 = 

({31 , {32 ) ' = (1.5 , 0. 75)' corresponding to the design D 1, for the Poisson mixed model; 

and also two sets of values for {3 as {3 = (1.0, 1.0)' and {3 = (1.5, 0.5)' corresponding 

to the design D 2 , and {3 = ( - 1.0, - 1.0)' and {3 = ( - 0.5, -1.5)' corresponding to 

the design D3 , for the binary mixed model. Note that these three designs D 1, D2 , 

and D 3 for the selection of the covariates were already explained in section 3.2.1. 
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Furthermore, as the true values of CJ
2 , we have chosen CJ

2 = 0.25, 0.5, and 0. 75 as 

before. 

ext, all together 'L~1 ni = 400 count responses with m = 4 out liers were gener­

ated as in the last simulation following section 3.2.1. Similarly, for the binary case, 

400 responses with m = 4 outliers were generated following section 3.2.1. Note that 

these count and binary responses were generated in the cluster set up with K = 100 

clusters, each with size ni = 4. The simulated robust estimat s for the clustered 

count and binary data are now discussed in the sections 3.4.1 and 3.4.2, respectively. 

3.4.1 Poisson case 

Similar to the binomial case discussed by Cantoni and Ronchet t i [2001 , Tables 1 

and 2], we have chosen the tuning constant c = 1.2 for the robust estimation of 

the parameters under the Poisson mixed model. Next, by using the covariates and 

responses as generated in section 3.2.1 , under each simulation, we have obtained 

/3RcQL, the RGQL estimate of (3 as a solution of (3.19), and a'k_M, the RM estimate 

of CJ2 as a solution of (3.22). Note that the details for the construction of (3.19) 

and (3.22) under the Poisson mixed model are given in the appendix. All together, 

we have conducted the experiment for 500 simulations. The simulated mean (SM), 

simulated standard error (SSE) , and mean squared error (MSE) of the estimates of 

(3 and CJ2 obtained from these 500 simulations under the design D1 are reported in 

Table 3.4. 

The results in Table 3.4 show that, in general, the RGQL estimates for both /31 

and (32 are very close to their corresponding true values. Th performance, howev r, 

appears to be better under the Poisson mixed model with (3 = (1.0, 1.0)' as compared 

to that of the model with (3 = (1.5, 0.75)' . For example, when /31 = (32 = 1.0 and 
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CJ2 = 0.5, the RGQL estimates of (31 and (32 are 0.961 and 0.983, respectively, which 

are very close to the true values. When (31 = 1.5 and /32 = 0.75, and CJ
2 = 0.5, the 

RGQL estimates of /31 and /32 are 1.465 and 0.692, respectively, which are reasonably 

good estimates, even though they are not so close as compared to those under the 

model with (31 = /32 = 1.0. 

As far as the performance of the RM estimator of CJ
2 is concerned, the robust 

moment estimator ir'fuvJ does not perform as good as {3RGQL· For example, when 

CJ
2 = 0. 75 along with /31 = 1.5 and /32 = 0. 75, the estimate of CJ

2 was found to be 

0.687 for its true value 0.75 with MSE 0.027, whereas MSEs of /31,RGQL and /J2,RGQL 

estimates were found to be 0.005 and 0.013, respectively. evertheless, the RM 

estimates of CJ2 appear to be acceptable for the practical purpose, especially wh n 

it is known that the existing traditional approaches such as the moment and PQL 

[Breslow and Clayton (1993)] approaches may produce estimate with relatively large 

bias, even if there is no outliers in the data. See, for example, Sutradhar and Qu 

(1998) on the performance of the PQL approach. Thus, the biases in Table 3.4 

produced by the RM estimator of CJ
2 seem to be acceptable for the practical purpos , 

even though there is scope to reduce the amount of biases. To be specific, one perhaps 

could also use the RGQL estimation approach to estimate CJ
2 in order to reduce the 

biasness, which is, however, beyond the scope of the present chapter. 

Note that when the simulated standard errors are considered, both RGQL and 

RM approaches always produce estimates with small standard errors. For example, 

when /31 = /32 = 1.0, and CJ
2 = 0.75, the SSEs of /31,RGQL, /32,RGQL, and er'k_M are found 

to be 0.070, 0.057, and 0.143, which are reasonably small. This leads to small MSEs 

for all of these estimates. 
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3.4 . 2 Binary case 

Under the binary mixed model, we have chosen, for example, the upp r sided outliers 

case to examine the performances of the proposed robust approaches. The other two, 

i.e., the lower and two sided outliers cases may be studied similarly. To deal with 

the upper sided outliers case, we need to consider a tuning probability, which ranges 

between the large outlying probability and the maximum of the probabilities for the 

so-called 'good' observations. The tuning probability p,c1 = 0.5 or 0.6 satisfies the 

above criterion in the context of our simulation design considered for the upper sided 

outliers. We have also considered a large value for p,c1 such as Jlc 1 = 0.9 to see its 

effects on the estimation, even though it does not satisfy the above range criterion. 

Now, to obtain the robust estimates for (3 and 0"
2 under the binary mixed model, 

we have solved the RGQL estimating equation (3.19) and RM estimating equation 

(3.22), resp ctively, by using the formulas from the appendix, appropriate for the 

binary mixed model. Since the iteration procedure in the binary case was found to 

converge more quickly than the Poisson case, we have chosen 1000 simulations to 

obtain ~RGQL and ahM under the binary mixed model. The SM, SSE, and MSE 

of the estimates of (3 and 0"
2 computed from these 1000 simulations are reported in 

Tables 3.5 and 3.6 under the design D2 and D3 , respectively. 

It is clear from Table 3.5, for example, that irrespective of the true value of 

(31 and (32 , the RGQL estimates of {31 and (32 are almost unbiased, especially when 

p,c1 = 0.5 or 0.6. The standard errors of the RGQL estimates of (31 and (32 are, 

however, generally large, yielding large MSEs. They app ar to decrease slightly, 

when the true value of 0"2 increases. The difference in the tuning probabilities does 

not create any significant change in the MSEs of the regression estimates. Thus, the 

RGQL approach appears to produce unbiased and hence consistent estimates for the 



90 

regression effects under the binary mixed model, even though the estimates may not 

be highly efficient. 

As far as the estimation of o-2 parameter is concerned, the RM estimates appear 

to be slightly biased when appropriate tuning probability, nam ly p,c1 = 0.5 or 0.6 

is used in the robust estimation. When p,c1 = 0.9 is considered, the bias becom s 

quite large, which is expected as this tuning probability is almost the same as the 

outlying probability causing problem in downweighting. Note that when the true 

value of o-2 increases, the bias of the RM estimate of o-2 al o increases. For example, 

when /31 = /32 = 1.0 and the t uning probability p,c1 = 0.5, the RM estimate of o-2 

appears to be ak,M = 0.398 with small standard error 0.092 for the true o-2 = 0.5, 

whereas a'k,M = 0.635 with standard error 0.108 for the true o-2 = 0. 75. This results 

with respect to biases are not unexpected as it is usually difficult to estimate this 

parameter even if there is no outliers in the data. For example, in the absence of 

outliers, Br slow and Lin (1995, p. 90) were able to obtain unbiased PQL estimate 

only when true o-2 ~ 0.25. See also Sutradhar and Mukerjee (2005) for the improved 

results produced by the simulated maximum likelihood approach. 

The results of Table 3.6 based on the design D3 are quite similar to those of 

Table 3.5 based on the design D2 . To save space, they are not discussed here any 

further. 

3.5 Concluding Remarks 

The GQL approach [Sutradhar (2004)] is known to be consistent and mor efficient 

than the simulated MM approaches [Jiang (1998) and Jiang and Zhang (2001)] in 

estimating the parameters of the mixed models for the clustered count and binary 
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data. This result is, however, valid only when the clustered data do not contain any 

outliers. In the independent set up, Cantoni and Ronchetti (2001) proposed the MQL 

approach in estimating the parameters of the generalized linear mod ls for the count 

and binomial data in the presence of outliers. In this chapter, we have provided a 

RGQL approach for the estimation of t he regression effects and the RM approach for 

the estimation of the variance component of the random effects for the clustered count 

and binary data in the presence of outliers. While the RM approach is completely 

new, the RGQL approach may be treated as a generalization of the MQL approach of 

Cantoni and Ronchetti (2001) for the estimation of the regression parameters. The 

proposed fully standardized RGQL and RM approaches appear to produce consistent 

estimates for the regression effects and variance component, respectively. 

We remark here that while we have used the existing definition of outliers for 

the count data, we have, however, provided a much more clear definition of outliers 

than the existing definitions for the binary data. ote that the new definition is 

proposed along th lines of the definition of outliers for the count and continuous 

such as Gaussian data. This new definition should clarify the concept of outliers to a 

major extent under the binary mixed models. 

We further remark that following the GQL approach for the e timation of the 

variance component in the absence of outliers [Sutradhar (2004)], one could also 

develop the RGQL approach to estimate this variance component parameter with 

smaller bias than that of the RM approach. This new approach could, however, be 

naturally more complicated as it will involve higher order moments calculations in 

the presence of outliers. 
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Table 3.1: Simulated mean (SM) , standard errors (SSE) , and mean squared errors 
(MSE) of the GQL estimates for the regression parameters and the MM estimates of 
the variance component of the random effects of the Poisson mixed model under 
design D 1 when data contain m = 4 outliers, for the selected values of 0"

2
; K = 100; 

ni = 4 (i = 1, ... , K); 500 simulations. 

Regression Variance Estimates 
effects ((31, (32) component( 0"

2) Statistic (31 (32 (J2 

(1.0 , 1.0) 0.25 SM 0.794 -0.043 1.195 
SSE 1.050 0.711 0.523 
MSE 1.144 1.594 1.167 

0.50 SM 0.656 0.051 1.371 
SSE 1.062 0.721 0.594 
MSE 1.247 1.421 1.111 

0.75 SM 0.714 -0.030 1.456 
SSE 1.029 0.698 0.691 
MSE 1.140 1.493 0.976 

(1.5 , 0.75) 0.25 SM 0.998 -0.205 1.282 
SSE 0.869 0.632 0.697 
MSE 1.007 1.311 1.552 

0.50 SM 1.022 -0.231 1.395 
SSE 0.860 0.613 0.761 
MSE 0.969 1.338 1.381 

0.75 SM 1.007 -0.236 1.488 
SSE 0.787 0.572 0.804 
MSE 0.861 1.299 1.191 
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Table 3.2: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the GQL estimates for the regression parameters and the MM estimates 
of the variance component of the random effects of the binary mixed model under 
design D2 when data contain m = 4 outliers, for the selected values of CJ2

; K = 100; 
ni = 4 ( i = 1, . . . , K); 1000 simulations. 

Regression Variance Estimates 

effects ((31, fJ2) component(CJ2) Statistic (31 f32 ()2 

(1.0, 1.0) 0.25 SM 1.486 -0.097 0.060 
SSE 0.216 0.310 0.074 
MSE 0.283 1.299 0.041 

0.50 SM 1.448 -0.099 0.097 
SSE 0.212 0.307 0.124 
MSE 0.245 1.301 0.178 

0.75 SM 1.432 -0.098 0.194 
SSE 0.209 0.301 0.235 
MSE 0.230 1.296 0.365 

(1.5, 0.5) 0.25 SM 2.000 -0.535 0.076 
SSE 0.259 0.336 0.108 
MSE 0.316 1.183 0.042 

0.50 SM 1.952 -0.528 0.136 
SSE 0.257 0.334 0.203 
MSE 0.270 1.168 0.174 

0.75 SM 1.930 -0.529 0.232 
SSE 0.264 0.335 0.299 
MSE 0.254 1.172 0.358 
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Table 3.3: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the GQL estimates for the regression parameters and the MM estimates 
of t he variance component of the random effects of the binary mixed model under 
design D 3 when data contain m = 4 outliers, for the selected values of o-2 ; K = 100; 
ni = 4 (i = 1, . .. , K); 1000 simulations. 

Regression Variance Estimates 

effects ({31, fJ2) component(o-2) Statistic {31 !32 a-2 
(-1.0, -1.0) 0.25 SM -1.526 -0.529 0.072 

SSE 0.378 0.230 0.090 
MSE 0.419 0.275 0.040 

0.50 SM -1.451 -0.509 0.184 
SSE 0.376 0.227 0.241 
MSE 0.344 0.292 0.158 

0.75 SM -1.407 -0.501 0.321 
SSE 0.361 0.217 0.322 
MSE 0.296 0.297 0.288 

(-0.5, -1.5) 0.25 SM -1.158 -0.852 0.062 
SSE 0.400 0.257 0.064 
MSE 0.593 0.485 0.039 

0.50 SM -1.119 -0.818 0.105 
SSE 0.375 0.239 0.147 
MSE 0.524 0.522 0.178 

0.75 SM -1.084 -0.798 0.182 
SSE 0.365 0.229 0.230 
MSE 0.474 0.546 0.375 
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Table 3.4: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the RGQL estimates for the regression parameters and the RM estimates 
of the variance component of the random effects of the Poisson mixed model under 
design D 1 when data contain m = 4 outliers, for the selected values of 0"2

; tuning 
constant c = 1.2; K = 100; ni = 4 (i = 1, ... , K); 500 simulations. 

Regression Variance Estimates 

effects (/31, /32) component(0"2) Statistic /31 /32 ()2 

(1.0, 1.0) 0.25 SM 1.023 1.025 0.180 
SSE 0.085 0.097 0.051 
MSE 0.008 0.010 0.008 

0.50 SM 0.961 0.983 0.379 
SSE 0.040 0.043 0.119 
MSE 0.003 0.002 0.029 

0.75 SM 0.973 1.014 0.676 
SSE 0.070 0.057 0.143 
MSE 0.006 0.004 0.026 

(1.5, 0.75) 0.25 SM 1.490 0.695 0.234 
SSE 0.082 0.068 0.056 
MSE 0.007 0.008 0.003 

0.50 SM 1.465 0.692 0.408 
SSE 0.065 0.058 0.074 
MSE 0.006 0.007 0.014 

0.75 SM 1.530 0.665 0.687 
SSE 0.067 0.074 0.153 
MSE 0.005 0.013 0.027 
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Table 3.5: Simulated mean (SM), standard errors (SSE) , and mean squared errors 
(MSE) of the RGQL estimates for the regression parameters and the RM estimates 
of the variance component of t he random effects of the binary mixed model under 
design D2 when data contain m = 4 outliers, for the selected values of 0'

2 and tuning 
probability (~-tc1 ); J{ = 100; ni = 4 (i = 1, . .. , K); 1000 simulations. 

Regression Variance Tuning Estimates 

effects ({31 , !32) component ( 0'
2) probability (~-tc1 ) Statistic {31 !32 (]'2 

(1.0, 1.0) 0.25 0.5 SM 1.035 0.959 0.190 
SSE 0.269 0.549 0.072 
MSE 0.074 0.303 0.009 

0.6 SM 1.031 0.962 0.187 
SSE 0.264 0.543 0.071 
MSE 0.070 0.296 0.009 

0.9 SM 1.040 0.900 0.069 
SSE 0.282 0.562 0.040 
MSE 0.081 0.326 0.035 

0.50 0.5 SM 1.061 0.976 0.398 
SSE 0.251 0.499 0.092 
MSE 0.066 0.250 0.019 

0.6 SM 1.054 0.977 0.384 
SSE 0.250 0.500 0.089 
MSE 0.065 0.251 0.021 

0.9 SM 1.006 0.952 0.202 
SSE 0.239 0.488 0.072 
MSE 0.057 0.240 0.094 

0.75 0.5 SM 1.092 0.953 0.635 
SSE 0.246 0.491 0.108 
MSE 0.069 0.243 0.025 

0.6 SM 1.088 0.948 0.621 
SSE 0.245 0.489 0.104 
MSE 0.068 0.242 0.028 

0.9 SM 1.052 0.935 0.443 
SSE 0.240 0.482 0.096 
MSE 0.060 0.237 0.104 
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Cont ...... ..... Table 3.5 

Regression Variance Tuning Estimates 

effects ((31, (32) component(0"2) probability (J.Lc1
) Statistic (31 (32 (}2 

(1.5, 0.5) 0.25 0.5 SM 1.529 0.458 0.183 
SSE 0.321 0.611 0.086 
MSE 0.104 0.376 0.012 

0.6 SM 1.517 0.460 0.175 
SSE 0.310 0.589 0.082 
MSE 0.096 0.349 0.012 

0.9 SM 1.524 0.414 0.062 
SSE 0.330 0.627 0.035 
MSE 0.109 0.400 0.037 

0.50 0.5 SM 1.542 0.487 0.395 
SSE 0.289 0.555 0.101 
MSE 0.085 0.308 0.021 

0.6 SM 1.535 0.480 0.384 
SSE 0.288 0.555 0.097 
MSE 0.084 0.309 0.023 

0.9 SM 1.489 0.467 0.195 
SSE 0.277 0.542 0.089 
MSE 0.077 0.295 0.101 

0.75 0.5 SM 1.536 0.528 0.623 
SSE 0.255 0.508 0.107 
MSE 0.066 0.259 0.027 

0.6 SM 1.528 0.528 0.610 
SSE 0.255 0.512 0.103 
MSE 0.066 0.263 0.030 

0.9 SM 1.481 0.512 0.424 
SSE 0.259 0.514 0.090 
MSE 0.067 0.264 0.115 
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Table 3.6: Simulated mean (SM), standard errors (SSE) , and mean squared errors 
(MSE) of the RGQL estimates for the regression parameters and the RM estimates 
of the variance component of the random effects of the binary mixed model under 
design D3 when data contain m = 4 outliers, for the selected values of CJ2 and tuning 
probability (p,c1 ); K = 100; n i = 4 (i = 1, . . . , K ); 1000 simulations. 

Regression Variance Tuning Estimates 

effects ((31, (32) component(CJ2) probability (p,c1
) Statistic (31 (32 (J2 

(-1.0,-1.0) 0.25 0.5 SM -0.961 -0.964 0.197 
SSE 0.359 0.263 0.200 
MSE 0.131 0.070 0.043 

0.6 SM -0.955 -0.959 0.175 
SSE 0.354 0.259 0.184 
MSE 0.127 0.069 0.039 

0.9 SM -0.910 -0.931 0.063 
SSE 0.334 0.246 0.051 
MSE 0.120 0.065 0.038 

0.50 0.5 SM -0.962 -0.931 0.435 
SSE 0.352 0.249 0.216 
MSE 0.125 0.067 0.051 

0.6 SM -0.955 -0.926 0.416 
SSE 0.353 0.248 0.207 
MSE 0.126 0.067 0.050 

0.9 SM -0.900 -0.877 0.284 
SSE 0.337 0.236 0.148 
MSE 0.124 0.071 0.069 

0.75 0.5 SM -0.960 -0.922 0.650 
SSE 0.300 0.211 0.250 
MSE 0.092 0.050 0.073 

0.6 SM -0.954 -0.915 0.618 
SSE 0.299 0.209 0.242 
MSE 0.092 0.051 0.076 

0.9 SM -0.894 -0.866 0.416 
SSE 0.271 0.182 0.173 
MSE 0.084 0.051 0.142 
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Cont ........... Table 3.6 

Regression Variance 1\ming Estimates 

effects ({31, fJ2) component( 0"
2) probability (J.lCJ) Statistic {31 {32 ()2 

(-0.5, -1.5) 0.25 0.5 SM -0.472 -1.439 0.173 
SSE 0.365 0.290 0.173 
MSE 0.134 0.088 0.036 

0.6 SM -0.466 -1.438 0.153 
SSE 0.362 0.287 0.158 
MSE 0.132 0.086 0.034 

0.9 SM -0.440 -1.396 0.061 
SSE 0.342 0.274 0.046 
MSE 0.121 0.086 0.038 

0.50 0.5 SM -0.490 -1.397 0.418 
SSE 0.351 0.268 0.230 
MSE 0.123 0.082 0.060 

0.6 SM -0.482 -1.392 0.403 
SSE 0.346 0.264 0.219 
MSE 0.120 0.081 0.057 

0.9 SM -0.440 -1.332 0.251 
SSE 0.317 0.229 0.146 
MSE 0.104 0.081 0.083 

0.75 0.5 SM -0.482 -1.393 0.661 
SSE 0.340 0.259 0.226 
MSE 0.116 0.078 0.059 

0.6 SM -0.480 -1.383 0.634 
SSE 0.330 0.251 0.218 
MSE 0.109 0.077 0.061 

0.9 SM -0.468 -1.296 0.475 
SSE 0.302 0.219 0.146 
MSE 0.093 0.089 0.097 



Chapter 4 

Robust Estimation for 

Longitudinal Count and Binary 

Data 

In the last chapter, we have dealt with the consistent estimation of the parameters 

of the mixed models for the count and binary data, in the presence of outliers. In 

practice, as opposed to the familial set up, one may encounter repeated count and/ or 

binary data collected from a large number of independent individuals. The data 

of this type are referred to as the longitudinal data. It is also possible t hat a few 

observations in such a longitudinal set up may be outliers, which may negatively 

influence the inferences about the true parameters of the model. 

Note that in the longitudinal set up , the repeated observations of an individual are 

likely to be correlated. This correlation mainly occurs because of the stochastic effects 

of times on the repeated responses. This type of longitudinal correlation structure is 

different than the familial correlation structure. Recall from (3.1) that in the familial 

100 
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set up, the jth and kth, (j =1- k ; j, k = 1, .. . , ni) members of the ith (i = 1, . .. , K) 

family are correlated because they share a common random effect ,; i.f.vd. N(O, a 2). 

This causes familial correlation among the responses of the members of the ith family. 

For example, in the absence of outliers, when 

2 

Yijj-y; rv Poisson(p,71) with p,71 = exp(<1f3- ~ +ali), 

one may show that the unconditional correlation between Yi1 and Yik is given by 

CP,ij /-Lik 
corr(Yij, Yiklxij, Xik) = I , 

y (P,ij + CJ.Ltj) (J.Lik + CJ.Lfk) 
(4.1) 

where [see (3.5) when data contain outliers] c = exp(a2
) - 1 and /-Lij -

for all i = 1, ... , K , j = 1, ... , ni, ni being the family size. In the longitudinal 

set up, the correlations among the repeated responses usually aris from a dynamic 

relationship of the repeated responses. For example, in the ab ence of outliers, let 

Yi1 rv Poisson(p,il) with J.Li1 = E(Yi1lxi1) = exp(x~1 {3), and fort= 2, .. . , T, Yit be the 

tth count response collected at time t from the ith individual and Yi,t- 1 be related to 

Yit through the dynamic model 

Yit = p * Yi,t- 1 + dit. t = 2, . . . , T, (4.2) 

[see, McKenzie (1988) and Sutradhar (2003)], where Yi, t- 1 rv Poisson(J.Li,t- 1) and 

dit rv Poisson(J.Lit- P/-Li,t- 1), with /-Lit = E(Yitlxit, . .. , Xi1) = exp(x~tf3), where Xit is a 

p- dimensional v ctor of covariates recorded at time t for the ith individual. Here, 

dit and Yi,t- 1 are assumed to be independent. In (4.2), for given count Yi,t- 1 , 

Yi,t-1 

p * Yi,t-1 = L bj(p) , 
j = l 

where b1(p) stands for a binary variable with P [b1(p) = 1] = p and P [b1(p) = OJ = 

1- p. This operation in ( 4.2), i. e., P*Yi,t- 1 is known as the so-called binomial thinning 
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operation. It can be shown that this dynamic relation (4.2) causes Yiu and Yit (u < t) 

to be correlated as 

("\/ "\/ I ) t-u ff;iu carr Iiu, I it xit , ... , Xil = p - , 
/.Lit 

where p satisfies the range restriction 

0 < p < min [1, ~] , t = 2, ... , T. 
/Ji,t- 1 

(4.3) 

Some authors such as Sinha (2006) and Mills et al. (2002) studied the inferences 

for the regression effects in the longitudinal set up in the presence of outliers. These 

authors have, however, used a familial model similar to ( 4.1) to generate the corre­

lation structure for the repeated responses, which does not appear to accommodate 

the stochastic time effects. As opposed to Sinha (2006) and Mills et al. (2002), 

Preisser and Qaqish (1999) and Cantoni (2004) have considered the robust inferences 

where it is assumed that there exists a stochastic time based correlation structure, 

but this correlation structure is unspecified. To accommodate the correlation effects, 

these authors have used a 'working' correlation approach, which in view of Sutradhar 

and Das (1999) [s e also, Crowder (1995)] may produce inconsistent and inefficient 

estimates. 

In this chapter, we consider AR(1) type correlation model (4.2) to generate the 

count data with a few outliers, and estimate the parameters {3 and p by solving 

appropriate robust estimating equations. Note that in the present longitudinal set 

up, we use similar definitions for the outliers as in the familial set up. See, section 

3.1.1 for the definition of outliers for the count data, and section 3.1.2 for the outliers 

in the binary case. We then use the RGQL estimating equation similar to that under 

the familial models to obtain consistent estimate of the regression effects. The only 

difference between the RGQL estimating equations in the familial and longitudinal 
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set up is the use of correlation matrices corresponding to these models. To estimate 

the correlation parameter, we use a robust moment (RM) approach. The RGQL and 

RM estimating equations are provided in section 4.3. 

The performance of the RGQL and RM approaches under the count and binary 

longitudinal data in the presence of outliers is examined in section 4.4 through a 

simulation study. In the following sections, we, however, conduct a basic simulation 

study to examine the effects of outliers on the so-called unmodified GQL inferences 

for the regression and correlation parameters, for both count and binary data. 

4.1 Effects of Outliers on Unmodified GQL Esti­

mation for Longitudinal Count Data 

It is well known that in the absence of outliers in the longitudinal clustered data, the 

GQL approach [Sutradhar (2003)] produces consistent and highly efficient estimates 

for the regression effects and correlation parameters under a longitudinal model. The 

main purpose of this section is to examine the effects of the presence of one or more 

outliers on the unmodified GQL inferences for the count data through a simulation 

study. We, however, first review the GQL estimation approach as follows in the 

absence of outliers. 

4 .1.1 GQL approach in the absence of outlier 

It follows from the model ( 4.2) that 
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P/-Li,t-1 + /-Lit - P/-Li ,t-1 

P,it , fort= 2, . . . , T. ( 4.4) 

Similarly, it can be shown that 

var(Yit lxit, ... , xil) 

- /-Lit = uitt , fort = 2, ... , T , (4.5) 

which is the same as the expectation in (4.4). Next, by computing E(Yi,t- 1Yitlxit, ... , xil) 

as 

P/-Li,t- 1 + /-Li ,t- 1/-Lit , ( 4.6) 
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one may obtain covariance between Yi,t- 1 and Yit given by 

cov(Yi,t- 1, Yidxit, . . . , Xi1) = ait,t- 1 = PJ.-ti,t-1 · (4.7) 

By similar calculations, it can be shown that the lag e correlation between Yi ,t-e and 

Yit is 

(' .r , .r I ) e J f.-ti,t -e carr I i,t-e, I it Xit, . .. , Xi1 = p --, 
f.-tit 

(4.8) 

leading to the correlation structure ( 4. 3). 

Let Yi = (Yi1, ... , Yit, ... , YiT )', where Yit is a outlier free count response generated 

by the model (4.2). Further let f.-ti = (f.-til, ... , f.-tit , . . . , f.-tir)' and Ei = (aut), where 

f.-tit= E(Yit/Xit, ... , Xi1) = exp(x~tf3) by (4.4), CJitt = f.-tit by (4.5), and CJiut = pt-uf.-tiu 

for u < t by (4.7). Now, by following Sutradhar (2003), one may write the GQL 

estimating equation for /3 as 

(4.9) 

where Ei(P) = (aiut), u, t = 1, ... , T, and ~ is the p x T derivative matrix of f.-ti 

with respect to {3 . It is known that bcQL obtained from ( 4.9) is consistent and highly 

efficient for {3. 

Note that in estimating {3 by ( 4. 9), it was assumed that p is known. To estimate 

this parameter, one may use the moment method (MM) and compute PM by 

( 4.10) 

where rit is t he standardized residuals defined as rit = Y'fo$' , with f.-t i t and CJitt as 

given in (4.4) and (4.5), respectively. 
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4.1.2 Generating longitudinal count dat a with outliers 

Suppose that there exists m outliers out of KT count responses. For t he purpose, we 

first generate T 'good ' correlated observations for each of the }( individuals following 

(4.2) with J.lit = exp(x~J3). 

We consider }( = 100 and T = 4 in the simulation study. As far as the correlation 

p is concerned, we choose p = 0.25, 0.5, and 0.8. For the selection of the covariates 

Xit, we use p (= 2) - dimensional covariates as 

- 1.0 for i= 1, . . . , K l4; t = 1, ... , T 

Xit! = 0.0 for i = }(I 4 + 1, . . . , 3}( I 4; t = 1, ... , T , 

1.0 for i= 3KI4 + 1, . .. , }( t = 1, . . . , T , 

and 

Xit2 "'N(0.5 , 1.0) , 

for all i = 1, . . . , K , t = 1, ... , T. As the effects of these covariates, we consider two 

versions of the regression parameters, namely f3 = (0.5, 0.5)' and f3 = (1.0, 1.0)'. By 

using the above covariates and the selected parameter values, we now generate KT 

'good ' responses following the longitudinal AR(1) count model (4.2). 

We then create m outliers by choosing m responses and shift ing their correspond­

ing covariates by an amount 8, where 8 is a vector. To be specific, in creating m 

outliers, we do not change the values of m responses [i.e., we keep t hem as they were 

generated (as 'good' observations)], but their corresponding covariates, say Xi' t' are 

replaced with Xi't' = Xi't' + 8. In this way, the t'th 'good ' observation of the i'th 

individual, that is, Yi't' is now converted to an outlier. In general, we now (as before) 
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denote the observed covariates as 

for (i, t) ¢ (i', t') 

(4.11) 
Xit + 8 for ( i , t) - ( i', t') 

As far as the values of 8 is concerned, we consider 8 = (81 , 82)' = (3.0, 3.0)' . Now, 

only for m = 4 responses, we use the observed covariates as x i't' = Xi't' + 8, i. e., 

Xi't'l = Xi't'1 + 61 and Xi't'2 = xi't'2 + 82. It then follows that these 4 responses are now 

outliers among the 400 responses, and they may be denoted, for convenience, by Yi't' · 

4.1.3 Unmodified GQL estimation 

For the estimation of the regression effects {3, we apply the GQL estimating equation 

( 4.9) to the longitudinal count data with m = 4 outliers that we have generated in 

the last subsection. Note that following ( 4.11), the component f.-Lit in the mean vector 

f.-Li and covariance matrix L;i(P) in (4.9) is now written as 

ilit = exp( x~tf3). ( 4.12) 

Thus, when outliers are generated, but the unmodified GQL estimating equation is 

used, this new equation would simply be derived by replacing Xit with Xit· Note 

that Yi however remains the same as in ( 4.9) in such an unmodified GQL estimating 

equation. For convenience, this unmodified GQL estimating equation is written as 

( 4.13) 

( 4.9). 
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Next , to estimate the correlation parameter p we use the formula given in (4. 10), 

but for the computation of this formula, we simply replace xit with Xit· For conve­

nience, we denote this estimate as 

PM= PMixit=Xit> ( 4.14) 

where PM is given in (4.10). 

4.1.4 Simulation results 

For a selected value of panda true regression vector {3, under each simulation, we now 

estimate {3 by solving the unmodified GQL estimat ing equation ( 4.13) and estimate 

p by using the moment estimator from (4.14). We consider 1000 simulations. The 

simulated mean (SM), simulated standard error (SSE), and mean squared error (MSE) 

computed from these 1000 values for /31, /32 , and p are reported in Table 4.1. 

It is clear from this table that the GQL estimate of {3 is adversely affected by 

the presence of outliers. The performance of the GQL approach, however, appears 

to be worse under the model with regression effects {3 = (1.0, 1.0)' as compared to 

that of the model with {3 = (0.5, 0.5)'. For example, when {31 = {32 = 1.0 and 

p = 0.5, the estimates for {31 = 1.0 and {32 = 1.0 are found to be - 0.554 and 

0. 725, respectively, with corresponding standard errors 0.094 and 0.034; whereas when 

{31 = {32 = 0.5 and p = 0.5, these estimates are found to be - 0.023 and 0.343, 

respectively, with corresponding standard error 0.069 and 0.043. Note that these 

estimates are completely unacceptable in both cases, the case with {3 = (0.5, 0.5)' 

being slightly better. When the regression estimates are compared du to the change 

in p, it is apparent that, in general, the unmodified GQL approach performs worse 

when the value of the true correlation parameter gets larger. 
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With regard to the performance of the unmodified MM approach for the estimation 

of pin the presence of outliers, it is found that the MM estimate of p also gets biased 

because of the outliers. The biasness, however, appears to decrease when the true p 

gets larger. For example, when {31 = {32 = 1.0, the MM estimate of p is 0.847 with 

standard error 0.060 for true p = 0.25; whereas for true p = 0.8, this estimate is found 

to be 0.964 with standard error 0.016. Similar results hold when {31 = {32 = 0.5. Note 

however that when MM estimates of p are compared due to change in {31 and {32 , it 

is observed that the estimate of p is worse when {31 = {32 = 1.0 as compared to that 

for {31 = {32 = 0.5. For example, when {31 = {32 = 1.0 and p = 0.25, the estimate of 

pis 0.847 with standard error 0.060; whereas when {31 = {32 = 0.5 and p = 0.25, this 

estimate is 0.352 with standard error 0.071. 

4.2 Effects of Outliers on Unmodified GQL Esti-

mation for Longitudinal Binary Data 

Recall that in the absence of outliers, longitudinal count data were generated following 

the model (4.2). In the binary cas , we use a similar but different model given as 

follows: 

Yi1 ,....., bin(J..Lil) and YitiYi,L- l ""bin[J..Lit + P(Yi,L- 1 - J..li,L-1)], (4.15) 

[ Zeger et al. (1985) and Qaqish (2003)] with J..lit = 1:xp(~i~f~) . Marginally, Yu follows 
exp xit 

the binary distribution with probability of success J..lit· 

In the following section 4.2.1, we provide a GQL estimating equation approach 

for the estimation of {3 and p parameters in the absence of outliers. In section 4.2.2, 

we demonstrate how to generate a few outliers in the binary longitudinal set up. 
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In section 4.2.3, we indicate how the GQL approach of section 4.2.1 can be used 

for the longitudinal binary data with outliers. Some simulation results are given in 

section 4.2.4 to examine the effects of outliers on the unmodified GQL approach to 

be discussed in section 4.2.3. 

4 .2.1 GQL approach in the absence of outlier 

Note that we have used the GQL estimating equation (4.9) for the estimation of the 

regression effects (3 and the MM estimating equation ( 4.10) for the estimation of p 

parameter, for the longitudinal count data in the absence of outliers. We may still 

use these equations with slight change in the present binary case. For convenience, 

we re-write the Poisson model based GQL estimating equation ( 4.9) as 

( 4.16) 

but Jli and ~i(P) in (4.16) would be different than those in (4.9) , under the present 

binary case. More specifically, for Jli = (Jlil , . . . , Jlit, . . . , JliT )' , the component Jlit has 

the formula given by 
exp(x~tf3) 

/lit= 
1 + exp(x~tf3)' 

( 4.17) 

for all t = 1, ... , T; where Xit = (xitl , ... , Xitt" . . . , Xitp)' and {3 is the p- dimensional 

vector for the regression parameters. This is because 
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= /-Lit, t = 2, ... ,T. ( 4.18) 

With regard to the computation of the elements of ~i (p) matrix, we first note 

that the variance of the binary variable Yit is given by 

( 4.19) 

Next, for the computation of the non-diagonal elements, we compute the covariance 

between Yiu and Yit, u < t, as 

(4.20) 

This implies that lag t - u correlation between Yiu and Yit can be written as 

( 'J 1 / I ) t-u ~iuu corr I iu, I it Xit, ... , xil = p --. 
CTitt 

(4.21) 

Note that to compute the derivative matrix ~, it sufficient to calculate 8%Jt . This 

derivative for the present binary case is given by 

8 /-Lit 

8
{3 = J-Lit(1- J-Lit)Xit, ( 4.22) 
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where 1-tit is given in ( 4.17) . 

With regard to the estimation of the correlation parameter p, we first observe 

by (4.8) that corr(Yiu, Yitlxit, . . . , xil) = pt-u !fE, for u < t, under the Poisson 

longitudinal model, whereas under the present binary model, the formula for this 

correlation is given by (4.21). Consequently, by making a slight change in (4.10), i.e., 

by replacing l:!:m with £iuJ.., one may write the MM estimate of pas 
J.Lit Uitt 

( 4.23) 

where r;t = 11fo!W, with 1-tit and aitt as given in ( 4.17) and ( 4.19), respectively. 

4 .2.2 Generat ing longitudinal binary data wit h out liers 

In practice, similar to that of the familial model for the binary data, one may deal with 

two types of binary outliers, namely one and two sided outliers under a longitudinal 

set up. These one and two sided longitudinal binary outliers can t herefore be defined 

in the manner similar to that of the familial model described in section 3.1.2. For 

convenience, we now consider only one sided binary outli rs where bulk of t he 'good' 

observations are generated with small success probabilities. 

To generate KT longitudinal binary observation with m outliers, we first generate 

KT 'good ' responses following the model (4.12) with 1-tit = 1:xp((; ,f~) as given in exp xit 
(4.17). 

In the simulation study, we consider K = 100 and T = 4. As the true values 

of correlation index parameter p, we choose the same values as in the longitudinal 

count case, namely p = 0.25, 0.5, and 0.8. As far as the covariates are concerned to 



generate KT = 400 'good ' observations, we consider p = 2 with 

-1.0 fori= 1, ... , K/2; t = 1, .. . , T 

Xit!= - 0.25 fori = K /2+ 1, ... , 3K/4; t=1, . .. ,T, 

- 0.5 fori = 3K/4 + 1, ... , K t = 1, .. . , T, 

and 

Xit2 "-' N( - 0.5, 0.25), 
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for all i = 1, ... , K, t = 1, ... , T . We consider two sets of values for the regr ssion 

parameters, namely {3 = (1.0, 1.0)' and {3 = (1.5, 0.5)' , leading to produce small suc­

cess probabilities for the 400 longitudinal binary responses. Following model (4.15), 

we now generate KT 'good' binary responses by using the above covariates and the 

selected parameter values of {3 and p. 

To create m = 4 outliers out of KT = 400 longitudinal binary responses, we choose 

m responses and change their corresponding covariates by an amount c5, c5 being a 

real valued vector. Note that in creating m outliers, we do not change the values of 

these m responses (i.e., keep them as they were generated as 'good' observation ); 

but we change their corresponding covariates, say Xi't' by adding c5 with it, that 

is, ii't' = Xi't' + c5. Similar to the longitudinal count cas , we denote the observed 

covariates by Xit, where 

for ( i, t) "¢ ( i' , t') 

( 4.24) 
Xij + c5 for (i, t) = (i', t') 

As the value of c5 , we choose c5 = (c51, c52)' = (3.0, 1.0)'. Therefore, the covariates 

corresponding to the outlying responses will be ii't'l = xi't'l +61 and ii't'2 = xi't'2 +62, 
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which yields larger success probabilities for the outlying respon es. Thus, these m = 4 

responses are now outliers, which are d noted, for convenience, by Yi't'· 

4 .2.3 Unmodified GQL estimation 

To estimate the GQL estimate of the regr ssion parameter /3 in the presence of binary 

outliers, we simply solve the unmodified GQL estimating quation given by 

K [0~~- -1 - l t; o/3Ei (p)(yi-J.Li) = 0, ( 4.25) 

where P,i = J.Lilx;t=xit and f:i(P) = Ei(P)Ixit=X;t• with f.Li and Ei(P) as given in (4. 16) 

for the binary ca e in the absence of outliers, and Xit as in (4.24). To be specific, the 

P,it compon nt of P,i, for example, is given by 

- exp( x~tf3) 
f.Lit = 

1 + exp(x~tf3)' 
( 4.26) 

Note that Yi = (Yil, 00 . , Yit, 00. , YiT)' in ( 4.25) is generated following ( 4.15) in th 

absence of outliers. 

Next, one may compute the unmodified MM estimate of p by replacing the co­

variate Xit with Xit in the MM estimate of p obtained in the absence of outliers. That 

is, this estimate is obtained as 

( 4.27) 

where PM is given in ( 4.23). 

4 .2.4 Simulation results 

To examine the ffects of outliers on the unmodified GQL and MM estimating equa­

tions (4.25) and (4.27), respectively we xploit thes equations by using the longi­

tudinal binary data with outliers generat d in section 4.2.2. The unmodified GQL 
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estimate of {3 and MM estimate p are repeatedly obtained based on 1000 simulations. 

We then compute the SM, SSE, and MSE for each of t hese three estimates, which are 

reported in Table 4.2. 

It is clear from this table that similar to the Poisson case, the unmodified GQL 

estimates of {31 and {32 are highly biased. The unmodified GQL approach performs 

worst for the model with {31 = 1.5 and {32 = 0.5 as compared to that for the model 

with {31 = {32 = 1.0. As in the Poisson case, t he biasness in the estimates of {31 and 

{32 , however, increases with the increase in the true correlation parameter p. 

As far as the estimation of the correlation parameter pis concerned, it is apparent 

from Table 4.2 that t he unmodifi d MM approach performs well in estimating p. 

These estimates appear to be almost unbiased under the longitudinal binary models 

whether {31 = {32 = 1.0 or {31 = 1.5 and {32 = 0. 5 is used. The standard errors of these 

estimates are also found to be small. 

In summary, t he presence of outliers adversely affects the estimate of both {3 and 

p parameters under t he longitudinal model for the count data. In the binary case, 

the outli rs do not appear to affect the estimation of p parameter, but they adversely 

affect the estimation of t he main parameter {3. 

4 .3 Robust GQL Estimation 

In the last section it was demonstrated that the GQL estimation for the regression 

effect {3 both under t he count and binary longitudinal models were adversely affected 

by the presence of outliers. Al o, outliers were found to negatively influence the 

estimation of the correlation parameter p under the longitudinal count model, whereas 

p estimation was interestingly not found to be affected under the longitudinal binary 
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model. This raises a concern to estimate the regression effect {3 in a robust way 

by downweighting the outlying responses so that the estimates can be consistent. 

This is needed to be done for both count and binary cases. As far as the consistent 

estimation of the p parameter is concerned, we use a Pearsonian type correlation 

formula by exploiting the downweighting responses. Note that in the {3 estimation, 

one can, however, avoid the direct estimate of p. 

4.3.1 Robust GQL estimating equation for {3 

For both count and binary data, we may use the common RGQL estimating equation 

(3.19) that we have used under the familial model. Recall that ni weight matrix in 

(3.19) has the form 

(4.28) 

where Ai~ = diag [var(1/Jc(ri1)) , ... , var(1/Jc(rit)), .. . , var(1/Jc(rir))] and Ci~ = (ci,ut,~), 

with ci,ut,~ = corr[1/Jc(riu), 1/Jc(rit)] for u, t = 1, ... , T and 1/Jc(rit) being the downweight­

ing function. Note that the elements of Di matrix were, however, computed directly 

in the appendix under the familial count and binary models. The direct computation 

for the elements of c~ matrix does not appear to be easy under the longitudinal mod­

els, especially under the longitudinal count data model. For convenience, we make 

an assumption that Ci~ is a constant matrix for all i = 1, . . . , K , i.e., Ci~ c;, and 

estimate this matrix as 

( 4.29) 

where 

(4.30) 
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where 

ow, by computing the estimate of the correlation matrix c; as given in (4.29), 

we write the RGQL estimating equation (3.19) for {3 under the longitudinal models 

as 

( 4.31) 

Note that in (4.31), the formula for ~i = ['Wc(riJ), ... , '1/Jc(ra), ... , '1/Jc (rir)]', i.e., '1/Jc (rit) 

remains the same as in the familial models. More specifically, under the longitudinal 

count model, the formula for the downweighting function '1/Jc(rit) will be the same as 

in (3.15) given for the familial count model. Similarly, und r th longitudinal binary 

model, the formulas of '1/Jc(rit) for the one sided upper and lower, and two sided outliers 

are given in (3.16), (3.17), and (3.18), respectively. Note however that Pit (jjij in the 

familial model) and 5-itt (5-ijj in the familial model) have the formulas 

- - (-I {3) fJ-it = CTitt = exp xit , ( 4.32) 

under the longitudinal count model, and 

exp( x~tf3) d ) !J,it = an 5-itt = {tit ( 1 - Pit , 
1 + exp( xitf3) 

( 4.33) 

respectively, under the longitudinal binary model. 

Note that in (4.31), Ai = E(~i) = (Ai1 , ... , Ait, . .. , Air)', which may be computed 

from following (2.8) for the longitudinal count data. Also, for the two sided binary 

outliers case, Ait for all t = 1, ... , T, can be computed by (2.15). Similarly, one can 

compute Ai for the upper or lower sided outliers. 

Next, for t = 1, ... , T, var['l/Jc(rit)] under the count model may be computed by 

(2.9) and under the two sided binary outliers case, this may be computed by (2.16). 
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furthermore, the derivatives of '1/Jc(rit) and Ait with respect to (3 may be computed 

following section 2.1.1 for the count data case and section 2.1.2 for the two sided 

binary outliers case. 

4.3.2 RM estimation of p parameter 

The direct estimation of p parameter under the longitudinal model with outlier is 

different. Since it was found that outliers did not affect the estimate of p parameter 

in the longitudinal binary case, we have chosen to estimate this AR(1) type correla­

tion parameter by using lag 1 correlations constructed based on the downweighting 

responses. Thus, we estimate p by 

( 4.34) 

where 
- 1 K 
~t,w = K L '1/Jc(rit )wit. 

i=l 

We refer to (4.34) as the RM estimator of the p parameter. ote that we attempt to 

use the same formula for the count data case. 

In the following subsection, we conduct a simulation study to examine the perfor-

mance of the estimates of (3 and p obtained from ( 4.31) and ( 4.34), respectively. 

4.4 Simulation Study 

Recall from sections 4.1.4 and 4.2.4 that in general, the unmodified GQL and MM 

approaches for the count and binary data produce inconsistent estimates for the 

regression parameter (3 and the correlation parameter p in the presenc of one or 



119 

more outliers. We now conduct a simulation study to examine the performance of 

the RGQL estimating equation (4.31) to estimate (3 and the RM estimator (4.34) for 

p. We conduct this simulation study both for the longitudinal count and binary data 

in the presence of outliers. 

4.4.1 Count case 

In this case, we first generate the longitudinal count data with outliers following 

section 4.1. 2. As far as the value of the tuning constant is concerned, we choose c = 

1.55. ext, we exploit the RGQL estimating equation ( 4.31) to estimate (3 = ((31 , (32)' 

and the RM estimat or ( 4.34) to estimate p, under each of the 1000 simulations. The 

SM, SSE, and MSE for these three estimates are computed from 1000 values of /31 , 

{32 , and p, which are reported in Table 4.3. 

It is clear that t he RGQL estimation approach produce almost unbiased estimates 

for the regression parameter (3 . It is also found that this approach appears to perform 

well under the model with {31 = {32 = 1.0 as compared to that of the model with 

(31 = (32 = 0.5. For example, for p = 0.5, the estimates of (31 and (32 are found to 

be 1.021 and 0.988, respectively, with corresponding standard errors 0.127 and 0.051 

when the true {31 = (32 = 1.0; whereas these estimates are found to be 0.535 and 

0.444, respectively, with standard errors 0.153 and 0.121 for true {31 = (32 = 0.5. 

As far as the estimation of the correlation parameter p is concerned, for th both 

longitudinal count models, i.e., models with (31 = (32 = 0.5 and (31 = fJ2 = 1.0, t he RM 

approach appears to produce unbiased estimate for p with small standard error. For 

example, when (31 = (32 = 0.5 and p = 0.8, the estimate of p is 0. 7 6 with standard 

error 0.041; and this estimate is 0.788 with standard error 0.041 for the model with 

fJ1 = fJ2 = 1.0 and p = 0.8. 
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4.4.2 Binary case 

To generate the longitudinal binary data with outliers, we follow the same procedure 

that was consid red in section 4.2.2. We also consider the same covariates and pa­

rameter values as in section 4.2.2. As far as the value of th tuning constant r lated 

probability is concerned, we choose p,c1 = 0.5, 0.6, and 0.9. We then us the RGQL 

estimating equation ( 4.31) to estimate the regression paramet rs {31 and {32 , and the 

RM estimator (4.34) to estimate p parameter. This we do for 1000 simulations. Th 

SM SSE, and MSE computed from 1000 valu s of these three estimates are report d 

in Table 4.4. 

It appears from this table that the RGQL approach produces almost unbias d 

estimates for the regression effects {3, when the tuning constant r lated probability 

is small such as p,c1 = 0.5. ote that as xp cted, the biasne in the estimates of {3 

increases as the value of p,C! increases. In practice, it i how ver not recommend d 

to use p,C] far away from 0.5. The standard errors of thes estimates are found to b 

relatively larger as compared to thos under the longitudinal count model. 

With regard to the estimation of the p parameter, the RM approach is found to 

yield almost unbiased estimate of p irr spective of the valu of p,c1
• Similar to th 

count data case, the standard error of th stimate of p is al o small. 
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Table 4.1: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the GQL estimates for the regression parameters and the MM estimates 
of the correlation parameter of the Poisson longitudinal model when data contain 
m = 4 outli rs, for the selected values of p; K = 100; T = 4; 1000 simulations. 

Regression Correlation Estimat s 

effects ({31, fJ2) parameter (p) Statistic {31 !32 p 
(0.5, 0.5) 0.25 SM 0.0 4 0.369 0.352 

SSE 0.055 0.034 0.071 
MSE 0.176 0.01 0.016 

0.50 SM -0.023 0.343 0.598 
SSE 0.069 0.043 0.064 
MSE 0.278 0.027 0.014 

0. 0 SM -0.1 4 0.312 0. 57 
SSE 0.075 0.053 0.035 
MSE 0.474 0.03 0.004 

(1.0, 1.0) 0.25 SM -0.509 0.723 0. 47 
SSE 0.857 0.274 0.060 
MSE 3.011 0.152 0.360 

0.50 SM -0.554 0.725 0.903 
SSE 0.094 0.034 0.034 
MSE 2.424 0.163 0.163 

0.80 SM -0.640 0.700 0.964 
SSE 0.512 0.573 0.016 
MSE 2.951 0.418 0.027 
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Table 4.2: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the GQL estimates for the regression parameters and the MM estimates 
of the correlation parameter of the binary longitudinal model when data contain 
m = 4 outliers, for the selected values of p; K = 100; T = 4; 1000 simulations. 

Regression Correlation Estimates 
effects ((31, (32) parameter(p) Statistic (31 (32 p 

(1.0, 1.0) 0.25 SM 0.583 1.264 0.244 
SSE 0.294 0.405 0.070 
MSE 0.260 0.234 0.005 

0.50 SM 0.258 1.462 0.500 
SSE 0.297 0.453 0.070 
MSE 0.638 0.419 0.005 

0.80 SM -0.346 1.869 0.816 
SSE 0.239 0.503 0.042 
MSE 1.868 1.008 0.002 

(1.5, 0.5) 0.25 SM 0.966 0.828 0.238 
SSE 0.317 0.404 0.075 
MSE 0.386 0.271 0.006 

0.50 SM 0.555 1.076 0.499 
SSE 0.352 0.465 0.081 
MSE 1.017 0.548 0.007 

0.80 SM -0.215 1.592 0.824 
SSE 0.249 0.496 0.043 
MSE 3.003 1.439 0.002 
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Table 4.3: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the RGQL estimates for the regression parameters and the RM estimates 
of the correlation parameter of the Poisson longitudinal model when data contain 
m = 4 outliers, for the selected values of p; tuning constant c = 1.55; K = 100; 
T = 4; 1000 simulations. 

Regression Correlation Estimates 

effects (/31, /32) parameter(p) Statistic !31 /32 p 
(0.5, 0.5) 0.25 SM 0.528 0.462 0.238 

SSE 0.101 0.064 0.062 
MSE 0.011 0.006 0.004 

0.50 SM 0.535 0.444 0.486 
SSE 0.153 0.121 0.059 
MSE 0.025 0.018 0.004 

0.80 SM 0.533 0.483 0.786 
SSE 0.268 0.168 0.041 
MSE 0.073 0.029 0.002 

(1.0, 1.0) 0.25 SM 1.024 0.999 0.240 
SSE 0.080 0.034 0.061 
MSE 0.007 0.001 0.004 

0.50 SM 1.021 0.988 0.484 
SSE 0.127 0.051 0.060 
MSE 0.017 0.003 0.004 

0.80 SM 1.006 0.988 0.788 
SSE 0.202 0.075 0.041 
MSE 0.041 0.006 0.002 
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Table 4.4: Simulated mean (SM), standard errors (SSE), and mean squared errors 
(MSE) of the RGQL estimates for the regression parameters and the RM estimates 
of the correlation parameter of the binary longitudinal model when data contain 
m = 4 outliers, for the selected values of p and tuning probability (p,ct) ; K = 100; 
T = 4; 1000 simulations. 

Regression Correlation Thning Estimates 

effects ({31 , {32) parameter (p) probability (Jf 1
) Statistic {31 {32 f; 

(1.0, 1.0) 0.25 0.5 SM 0.996 0.987 0.241 
SSE 0.307 0.407 0.068 
MSE 0.094 0.166 0.005 

0.6 SM 0.988 0.982 0.241 
SSE 0.305 0.404 0.068 
MSE 0.093 0.164 0.005 

0.9 SM 0.933 0.953 0.241 
SSE 0.302 0.399 0.068 
MSE 0.096 0.161 0.005 

0.5 0.5 SM 0.963 0.999 0.486 
SSE 0.332 0.455 0.066 
MSE 0.111 0.207 0.005 

0.6 SM 0.943 0.995 0.486 
SSE 0.330 0.453 0.065 
MSE 0.112 0.205 0.005 

0.9 SM 0.827 0.974 0.486 
SSE 0.320 0.439 0.065 
MSE 0.132 0.194 0.005 

0.8 0.5 SM 0.940 1.009 0.784 
SSE 0.358 0.492 0.046 
MSE 0.132 0.242 0.002 

0.6 SM 0.933 0.993 0.783 
SSE 0.349 0.480 0.045 
MSE 0.126 0.230 0.002 

0.9 SM 0.755 0.902 0.780 
SSE 0.311 0.436 0.046 
MSE 0.157 0.199 0.003 
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Cont.. .. ....... Table 4.4 

Regression Correlation Thning Estimates 

effects ({31, {32) parameter (p) probability (J-{ 1
) Statistic {31 !32 p 

(1.5, 0.5) 0.25 0.5 SM 1.500 0.486 0.240 
SSE 0.329 0.403 0.071 
MSE 0.108 0.162 0.005 

0.6 SM 1.490 0.482 0.240 
SSE 0.328 0.401 0.071 
MSE 0.108 0.161 0.005 

0.9 SM 1.427 0.459 0.241 
SSE 0.320 0.394 0.071 
MSE 0.107 0.157 0.005 

0.5 0.5 SM 1.477 0.491 0.484 
SSE 0.370 0.467 0.071 
MSE 0.138 0.219 0.005 

0.6 SM 1.454 0.489 0.484 
SSE 0.368 0.465 0.071 
MSE 0.138 0.217 0.005 

0.9 SM 1.336 0.466 0.483 
SSE 0.350 0.445 0.069 
MSE 0.149 0.199 0.005 

0.8 0.5 SM 1.452 0.522 0.781 
SSE 0.395 0.498 0.049 
MSE 0.158 0.249 0.003 

0.6 SM 1.428 0.501 0.779 
SSE 0.381 0.483 0.048 
MSE 0.150 0.234 0.003 

0.9 SM 1.267 0.399 0.773 
SSE 0.326 0.435 0.048 
MSE 0.161 0.199 0.003 
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Conclusion 

To reduce the influence of possibl outliers, in this thesis, we have considered robust 

inferences in the G LMs for the independent; G LMMs for the familially correlat d; 

and GLMs for the longitudinally correlated, count and binary data. 

In the independence set up, we have proposed a FSMQL approach, which produces 

regression effects with smaller biases as compared to the existing MQL approach 

consider d by Cantoni and Ronchetti (2001). It has been demonstrated that the 

FSMQL approach produces uniformly better stimates than th MQL approach, both 

for the count and binary data with outlier , in the independence set up. Note that 

for the binary case in particular, we have given a new d finition for outliers, which 

accommodates one sided (upper or lower) as well as two sided outli rs, whereas in 

the literature, only two sided outlier are defined. 

For the case, when the count or binary data including one or mor outliers occur 

in a clustered form, correlations of the responses in a cluster may arise either because 

(1) the cluster contains response from the members of a family causing familial 

correlations or (2) the cluster contains repeated responses from the same individual 
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causing longitudinal correlations. Some of the existing studies such as Mills et al. 

(2002) and Sinha (2006) have used the familial, that is, random effects approach 

to model the longitudinal correlations and developed the robust inferences based on 

such familial correlation structures for the longitudinal data. In the pres nt thesis, 

as opposed to the these studies, we have clearly demonstrated how one can d velop 

a proper correlation structure under both familial and longitudinal set up. These 

structures are then exploited to develop the RGQL approach both in the familial and 

longitudinal set up, for t he consistent estimation of the parameters of the underlying 

model. 

The simulation studies show that the proposed RGQL approach works well in 

estimating the parameters of both familial and longitudinal mod ls for both count 

and binary data. These estimation procedures should be useful to the practitioners 

dealing with inferences for the count or binary data in the presence of outliers. 

Remark that in some situations, one may encounter the repeated count or binary 

data collected from the members of a large number of independent families. It may 

also happen that this type of familial-longit udinal data contains one or more outliers. 

One may attempt to combine our RGQL approaches proposed for the familial and 

longitudinal models to analyze the familial-longitudinal data in the presence of out­

liers. This type of robust analysis for the combined data is however beyond the scope 

of the present thesis. 



Appendix A 

Formulas for ,\, Jf3~~ ' Jf3 >..~, and ni to construct (3.19) for the count data 

Derivation for >..i = E(~i) 

Note that in (3.19) ~i = ['1/Jc(ril), ... , '1/Jc(rij), ... , '1/Jc(rinJ]', wher '1/Jc(rij) is defined as 

in (3.15) with rij = Yii;t?z. To derive its expectation, i.e., >..i = E(~i) = E[>..il> ... , >..iJ> ... , AinJ', 
V v,J] 

one simply needs to compute >..ij as 

00 

L '1/Jc(rij) f(Yi j), (A.1) 
Yij=O 

where 

with P(YiJ lri) being the Poisson probability mass function with parameter p:;j -

exp( x~i3 - u
2

2 + a"Yi) and ¢( ·) being the standard normal density function. Now, by 

using the simulated integration approach [Fahrmeir and Tutz (1994)], (A.1) may be 

re-expressed as 

(A.2) 
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where 

00 

a;j,e 2:: '1/Jc(rij)P(yijlrie) 
Yii=O 

c [ 1 - Fyi jhit (Ig) - Fyijhit (IB)] 

+ ~ [ Fyiii'Ya (Ig- 1) - Fyii i'Y;e (Ii~- 1)] 
v V i]] 

(A.3) 

[Cantoni and Ronchetti (2001)]. In (A.3), /.Ltj ,e = exp(x~i3- 11

2

2 + CJiie) is obtained 

from /.Ltj by replacing li with lie, /! = 1, . .. , M and Fy;iha (zij) is th cumulativ 

probability function Yi1 conditional on lie given by 

Ztj 

Fyiihit(zij) = 2:: P(yijlfu) 
Y;i=O 

Also, in (A.3), 1g and Ib are the near st integer values of /.Lij+cjf% and /.Lij-cjf%, 

respectively with /.Lij and o-ijj being defined as in (3.4) and (3.5), resp ctively. 

Derivation for -i;Jr,: 

To compute the p x ni derivative matrix ;(Jr,:, it is suffici nt to calculate :(J'l/Jc(rij)· 

For the Poison data case, the gradient function of the downweighting function '1/Jc(rij) 

with respect to (3 may be obtained from (3.15) as 

(A.4) 

Derivation for /rJ >..~ 
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For the computation of the derivative matrix %{3 ><, one may n ed to calculate %{3 Aij 0 

The gradient function of Aij may be obtained from (Ao2), which is given by 

8 1 M 8 
8{3 Aij = M L 8{3 a:j,e> 

e=l 
(Ao5) 

where 

ilijXij [F (Ju) F (JL )] 
~ Y;i ba ij - Y;i ba ij 

V v ~)) 

(Ao6) 

with, for example, 

and 

Derivation for Di 

To comput the ni x ni covariance matrix Di = cov(~i), it is sufficient to show how 

to compute var['I/Jc (rij )], i = 1, 0 0 0 , K , j = 1, 0 0 0, n i, and cov['I/Jc (rij ), '1/Jc (rik)], j =/:. k , 

which can be computed by using the formulas 

(Ao7) 
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and 

respectively. Now, following equation (A.2), the expectation of '1/J~(rij) can be written 

as 

E['l/J~(rij)] = ~ f b:J,e' 
e=l 

(A.9) 

where b:j,e> after some algebras, reduces to the form 

00 

b:j,e = L '1/J~(rij) P(yijbu) 
Yii=O 

-2 

+ : .ij. [Fyiiha(Ii~)- Fyiihit( Ii~)] 
t)) 

(A.10) 

[Cantoni and Ronchetti (2001)]. Next, for any pair, the uncondition expectation of 

product of '!j;c(rij) and '1/Jc(rij) may be derived as 

00 00 

E['!j;c(rij)'l/Jc(rik)] = L L '1/Jc(rij)'l/Jc(rik)f(yij, Yik), (A.ll) 
Yij = O Yik = O 

where f(Yij, Yik) is the joint probability function of Yij and Yik · Since for given /i, 

count responses Yij and Yik> (j # k), are independent, this joint probability function 

can be comput d as 

(A.12) 



Consequently, equation ( A.ll) can be re-expressed as 

E['I/Jc(rij)'I/Jc(rik) ] = ~ f a;j,ea;k,e' 
f= l 

where a;j,e i given as in (A.3). 
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(A.13) 

Formulas for >.i , :!3 ~~, tf3>.~, and n i to construct (3.19) for the binary data 

Here, the formulas for E(~i), :!3 ~: , tf3 E(~:) , and n i are giv n only for the binary 

data with a two sided outlier. These formulas in the one sided outlier cases may 

be obtained as the special cases of the two sided outli r ca e. Now, for the two 

sided outlier case, we consider the downweighting function '1/Jc(rij), i = 1, . . . , I< , 

j = 1, . .. , ni, given as in (3.18) . It is assumed that conditional on the random effect 

/i, the response Yij follows a binary distribution with the observed success probability 
_ * _ exp(x;if3+f';a) 

1-Lij - l+exp(x;;f3+1'.a) · 

Derivation for Ai = E(~i) 

Similar to the count data case, Aij = E ['I/Jc(rij)] by (3.18) can be obtain d as 

1 [ (c1) - (c2) l ). . . = "'"""' p Yij - 1-Lij + p. Yij - /-Lij + p Yij - I-Lij f ( .. ) 
tJ 0 1 pjfl 2 ~ 3 pjfl YtJ , C! - C2 

Yi j=O O"ijj O"ijj O"ijj 

(A.14) 

where P,ij and (Jijj are defined as in (3.6) and (3.7), respectively. Note that in (A.14), 

P1 , P2 , and P3 are the probabilities for a binary observation to satisfy th conditions 

P(~j = 1) > Psb, Plb :::; P(~j = 1) :::; Psb, and P(~j = 1) < Ptb, respectively, where, 

for exampl , one may compute P1 as 

umber of observations atisfyingP(~j = 1lxij) > Psb 

Total observation(I:I:1 ni) 
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Since f (Yij) = f~oo P(yij l!i)cP('Yi )ali with P(Yij Iii) being the binary probability mass 

function with parameter Jtij conditional on /i, equation (A.14) can be re-expressed 

as 

(A.15) 

where a;j,e can be written as 

1 [ (CJ) - (c2) ] 
"" p Yij - 1-Lij + p. Yij - I-Lij + p Yij - I-Lij P( . ·I . ) 
L-- 1 {cJJf) 2 ~ 3 {cJff) Y11 !te Cj - C2 

Yij = O O'ijj O'ijj O'ijj 

(A.16) 

Derivation for -hE,~ 

For the binary case, by (3. 18), one may obtain the gradient function of the down­

weighting function 1/Jc ( r ij) with respect to (3 as 

0, P(~j = 1lxij) > Ps&, (i,j)- (i',j'), 

(A.17) 

0, 

where 

(A.18) 

with 
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Derivation for ~ ,\~ 

ext, to compute the gradient function of the expectation of '1/Jc(rij) with respect to 

/3, we exploit (A.l5) and write 

(A.19) 

where tfJMij is given as in (A.18). 

Derivation for Di 

Similar to the count data case, we compute the variance-covariance matrix ni = 

cov(~i) for the binary data by comput ing E['l/;~(rij)] and E ['l/Jc(rij)'l/Jc(rik)], (j =J k). 

The expectation of '1/J~ ( rij) can be written as 

1 [ ( (c1))2 ( - )2 ( (c2))2 ] """' p Yij - J.kij + p. Yij - J.kij + p. Yij - J.kij f( . ·) 
~ 1 (ct) 2 - . 3 (c2 ) YtJ 
~~ aw ~J aw 

(A.20) 

where 

b~ . e 
t], 

(A.21) 
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Again , since conditional on /i, responses Yij and Yik are independent, the uncon­

ditional exp ctation of the product of '1/Jc(rij) and '1/Jc(rik) can be obtained as 

(A.22) 

where a;j,e is given as in (A.16) and P,ijk = ~ 'L~1 p,;j,eP.:k,e is given as in (3.8). Now, 

one can easily compute var['I/Jc(rij)] and cov['I/Jc(rij), '1/Jc(rik) ] by using the formulas 

given in (A.7) and (A.8), respectively. 

We remak her that for the binary data with two sided outliers, t he formulas 

for Aij, Jfl'I/Jc(rij), J(J >.ij, E['!j;~(rij)], and E['I/Jc(rij)'I/Jc(rik)], (j =/= k) are provid d in 

(A. 15) , (A.17), (A.19), (A.20) , and (A.22), respectively. Th computations for thes 

quantities under the upper or lower sided outliers case are now immediate from th 

formulas for the two sided outliers case. For example, to compute the expectation 

of '1/J~(rij) under the upper sided outliers case, we first modify th limits in (3.1 ) by 

replacing Ptb with 0 (which provides (3.16)). We then , by similar calculations as in 
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(A.20), obtain 
- (1 2 (ci)) (CJ)2 

E[·'·2( . ·)] = p f.Lij - J.lij + J.lij + p. 
'f'c rt] 1 (ci) 2, 

(]" ij j 

under the upper sided outliers case. In the arne fashion, the formulas of Aij, g13 ?/Jc(rij) , 

g13 >.ij, E[V;~(rij)], and E[?/Jc(rij)?/Jc(rik)] for the binary lower sided outlying observa­

tions can be computed. To do this, we first change the limits in (3.18) with Psb = 1 

(which provides (3.17)). Next, based on the changed limits, th formulas follow from 

(A.15), (A.17), (A.19), (A.20), and (A.22), respectively. 



Appendix B 

Recall from (3.22) that g(0'2) = cp - E(cp), where cp as a function of '1/Jc(rij) is defin d 

in (3.21). ote that the downweighting function '1/Jc(rij) for th ount data is given 

in (3.15). ow, to compute E(cp), we follow (3.23) and simply use the appropriate 

formulas for a;j,e and b7j,e· These formulas for a;j,e and b7j,e for the count data are 

given in (A.3) and (A. 10), respectively. 

The derivative of g(0'2 ) with respect to 0'2 can be obtain d as 

(B.1) 
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where 

and 

a b* 
aa2 ij,e - - ~~ p,;j,e ( ~e - 1) [ Fii ha (Ig - 1) - Fiiha (Ii~ - 1)] 

+ 2: ijj p,;j,e (~e- 1) [Fiihit(Ig- 1) - Fiiha (Ii~ -1)] 

+ -)_p,;j,eP7j,e ( lie - 1) [Fiihie(Ig- 2)- Fiil-ra Ui~- 2)] ' 
(Jijj (J 
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(B.3) 

with p,;j,e = exp(x~i{J- u; +ali, e) and Fiil-ra (-) as the cumulative distribution function 

conditional on 1u, where for e = 1, ... , M, lie is the eth realized quantity for li, 

generated following li i·!J· N(O , 1). 

Formulas for g(a2
) and 8~2 g(a2 ) for the binary data 

Derivation for g( a 2
) 

For convenience, we first explain how to compute g(a2 ) = <p- E(<p) for the binary 

data with two sided out liers. For the purpose, we follow (3.21) and simply use the 

formula for 'l/Jc(rij), i = 1, ... , I<, j = 1, . . . , ni, given in (3.18). Similar to the count 

data case, E(<p) now may be computed by using (A.16), and (A.21) in (3.23). 

Next, for the upper and lower sided outliers cases, we first define <p by modifying 

the limits in (3.18) appropriately. For example, for the upper sided outliers case, we 

replace Plb with 0 in (3.18). Now, to compute E(<p), the formulas for a;j,e and b;j,e for 

the upper sided outliers case may be computed from (A.16), and (A.21) , respectively, 

by reflecting the new limits imposed in (3. 18) . 
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The formulas for <p and E( <p) for the lower sided outliers case can be derived by 

following the upper sided outliers case, but by considering P sb = 1 in the limits in 

(3.18) . 

D erivation for ~g(CJ2 ) 

Since the formulas for 8~2 g(CJ2 ) in the one sided outliers case can be derived from 

those obtained for t he two sided outliers case as a special case, here we only show 

how to compute ~g(CJ2 ) in the two sided outlier case. For the purpose, we consider 

the downweighting funct ion '1/Jc(Tij) as given in (3.18). ow, the derivative of g(CJ2) 

with respect to CJ2 can be obtained as 

In (B.4), 

where 

with 

0, 

_ _ 1_...2._-. 
~ 8(]'21-LlJl v VlJJ 

0, 

a -
fJCJ2 /-Lij 

(B.4) 

(B.5) 

P(~j = 1jxij) > Psb, (i,j) = (i',j'), 

P(~j = 1jxij) < Plb, (i,j) = (i',j'), 
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(B.6) 

Also in (B.4), 

a 
a(J2 E(cp) 

K n; a K n, a 
~]; aCJ2 E['ljJc(rij)] + ~]; aCJ2 E['ljJ~(riJ)] 

}( n;-1 n; a 
+ ~]; kE-l aCJ2 E['IjJc (rij)'ljJc(rik)], (B.7) 

where E['ljJc(rij)], E ['ljJ;(riJ)], and E['ljJc(rij)'ljJc(rik)] are giv n as in (A.15), (A.20), and 

(A.22), respectively, so that 

and 

with 
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