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ABSTRACT 

In the current practice of liquefaction prediction analysis, horizontally layered soil 

(with uniform properties within distinct soil layers) is usually assumed to estimate the 

liquefaction susceptibility of a soil deposit. However most of the soil properties of a 

natural deposit not only vary in the vertical direction but they could also vary in the 

horizontal direction, even within the so-called 'uniform' soil layers. This soil variability 

can be broadly classified into two main groups. They are the lithological heterogeneity 

(variability due to geological layers) and the small scale spatial variability. The first 

source of variability (variability due to layers) is considered properly in the current 

practice. But the second source of soil variability (small scale spatial variability), which 

is the subject of this research, is not properly addressed in general. 

From recent numerical research it was observed in the case of seismically induced 

excess pore water pressure (EPWP) generation that more EPWP is generated during an 

earthquake in a heterogeneous soil deposit than in a homogeneous soil with equivalent 

average soil relative density. EPWP is generated in the loose sand pockets first and then 

the water migrates into the neighbouring dense soil, and softens the dense soil by 

reducing the effective stress. However, to date, a limited amount of experimental 

verifications are available to the practicing engineering community to help in 

recognizing, quantifying and accepting the above-mentioned behaviour of heterogeneous 

soils. Therefore the first major objective of the present study is to investigate, quantify, 

and explain the effects of small scale soil heterogeneity on seismically induced 

liquefaction using both numerical modelling and centrifuge experiments. The second 
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major objective of this research is to provide recommendations for seismic design of 

structures on heterogeneous soil. 

A series of three centrifuge tests were performed in this study: one on 

homogeneous soil and two on heterogeneous soil. The test on uniform soil was performed 

on a soil deposit with the soil relative density lower than the average soil relative density 

of heterogeneous soil. The results, such as EPWP, accelerations, and settlements were 

monitored and measured throughout the test duration. However, it is very difficult and 

expensive to monitor all this responses everywhere in the model. Therefore, a numerical 

model was calibrated and validated from the centrifuge test results on uniform soil first. 

Then, the liquefaction mechanism in heterogeneous soil was studied in more details using 

the numerical simulations. Experimental results support the conclusion of previous 

research that more EPWP is generated in a heterogeneous soil than in the corresponding 

homogeneous soil. From this study it is concluded that although the average soil relative 

density of heterogeneous soil deposit (test2 and test3) was larger than that of the uniform 

soil (test!), the liquefaction resistance of the heterogeneous soil was lower than that of 

the uniform soil due to water migration from loose to dense soil pockets in heterogeneous 

soil deposit. 

In the last part of this research, a parametric study was performed for finding the 

effects of soil heterogeneity on the structural response. The numerical model validated 

based on the results from the centrifuge experiments with heterogeneous soil was used in 

this study. Dynamic analyses were performed for various types of structures situated on 

heterogeneous soil. Based on the type of structure, this segment of the research is divided 

into two parts. The performance of a tower structure (where total settlements and base 
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rotations were of primary interest) was studied in the first part. In the second part, the 

performance of a frame structure (where total and differential settlements were of 

primary interest) was studied. Quantitative and qualitative recommendations for 

geotechnical design practice are provided for structures on liquefiable heterogeneous soil 

deposits for a wide range of soil relative densities. The results of reliability analysis for 

the structure situated on heterogeneous soil are presented in the form of fragility curves 

and combined damage curves. 

Current design guidelines for spectral amplification of seismic motion were also 

verified for a range of soil properties, and updated guidelines were also provided after 

considering the effect of soil heterogeneity. The effect of soil variability was found to be 

not very significant in the studied ranges for calculating the values of spectral 

amplification factors. There is a less than 10% change in the values of Fa and Fv for 

heterogeneous soil compared to that in equivalent homogeneous soil. 
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CHAPTER! 

1.1. Introduction 

Liquefaction induced settlement of foundations during an earthquake is a major 

cause of damage to all types of structures, including buildings. Extensive damage to 

buildings due to soil liquefaction related settlements was observed during most of the 

major earthquakes; e.g. Niigata earthquake (1964), Kobe earthquake (1995), and Turkey 

earthquake (1999). In the current practice of liquefaction prediction analysis, the concept 

of equivalent uniform soil is usually considered for assessing the liquefaction 

susceptibility of the soil. Most soil properties of a natural deposit not only vary in the 

vertical direction but they can also vary in the horizontal direction, even within the so­

called 'uniform' soil layer. This soil variability can be broadly classified into two main 

groups. They are the lithological heterogeneity (e.g. variability due to geological layers) 

and the small scale spatial variability (e.g. variability due to presence of loose pockets). 

The first source of variability (variability due to layers) has been properly considered in 

current practice. But the second source of soil variability (small scale spatial variability), 

which is the subject of this research, is not properly addressed in general. From past 

numerical research it was observed that in the case of seismically induced excess pore 

water pressure (EPWP) generation, more EPWP is generated in a heterogeneous soil 

deposit than in a homogeneous soil with equivalent average geo-mechanical properties. 

This will also result in larger liquefaction induced structural settlements in heterogeneous 
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soil. Therefore, small scale soil heterogeneity must be taken into consideration in design 

to accurately determine liquefaction induced structural damage. 

In addition to inducing uncertainty in the computed response, small scale spatial 

variability of soil properties within geologically distinct layers affects the mechanical 

behaviour of geotechnical systems. For example, in phenomena involving the presence of 

a failure surface (such as in case of slope failure or bearing capacity failure) the actual 

failure surface can deviate from its theoretical position to pass selectively through weaker 

soil zones. The average mobilized strength is also reduced when compared to that of a 

corresponding uniform soil. It is therefore desirable that the effects of spatial variability 

of liquefiable soil on structural response be accounted for in geotechnical earthquake 

engineering design. 

Recent numerical studies identified that heterogeneous soils subjected to seismic 

loads that is likely to have significant influence on design practices in geotechnical 

earthquake engineering. It was observed in heterogeneous cohesionless soil that EPWP 

was generated in the loose sand pockets first. Then, the water migrated into the 

neighbouring dense soil and softened it by reducing the effective stress. However, to date, 

a limited amount of experimental verifications are available to the practicing engineering 

community to help in recognizing, quantifying and accepting the above-mentioned 

behaviour of heterogeneous soils. Therefore, further studies are required for explaining 

the liquefaction phenomena in heterogeneous soil. 
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1.2. Research Objectives 

The liquefaction mechanism in heterogeneous soil will be studied in this research. 

There is very limited amount of experimental verification available to the practicing 

engineering community to help in properly understanding this mechanism in 

heterogeneous soil. Therefore, the present research has two major objectives. The first 

objective is to investigate, understand, and quantify the effects of small scale soil 

heterogeneity on seismically induced liquefaction. This will be done by means of a 

physical (geotechnical centrifuge test) as well as a numerical (using finite element 

methods) modelling. In the early stages of this research, numerical modelling will be 

used to simulate small scale laboratory tests (undrained cyclic triaxial test performed by 

Konrad and Dubeau, 2002) and centrifuge tests (Ghosh and Madabhushi, 2003) on non­

homogeneous soil, performed by the other researchers. An important part of this study 

consisted of a series of dynamic centrifuge tests on heterogeneous soil and, later on, 

numerical modelling will be used to back analyse the centrifuge tests performed by the 

author. The numerical model used in the study is the multi-yield surface plasticity 

constitutive model implemented in the finite element computer code Dynaflow (Prevost, 

2002) 

The second main objective of this research is to provide recommendations for 

seismic design of structures on heterogeneous soil. This will be done by means of 

parametric studies using the numerical model validated based on centrifuge experiments 

with heterogeneous soil. Two different types of structures (tower and frame buildings) 

will be considered in this research. Design recommendations for the spectral 

amplification of seismic ground motion will also be provided. 
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To achieve these two main objectives, the present research will : 

1. Study the mechanism by which soil heterogeneity affects liquefaction potential, 

by reproducing and analysing in detail the results of undrained cyclic laboratory 

soil tests on non-homogeneous soil samples, by means of finite element 

simulations. 

2. Include a series of centrifuge tests (on homogeneous and heterogeneous soil 

models) as an important part of the research in geotechnical earthquake 

engineering. 

3. Calibrate and validate a state of the art numerical model based on the results of a 

series of centrifuge tests. 

4. Study the liquefaction mechanism in heterogeneous soil using both centrifuge 

experiments and numerical modelling. 

5. Provide geotechnical design recommendations for structures on liquefiable 

heterogeneous soil deposits, based on the results of a reliability analysis. 

6. Update design guidelines for spectral amplification of seismic ground motion. 

1.3. Original Contributions 

This research has the following original contributions: 

1. Designing and performing a series of original geotechnical centrifuge experiments 

for heterogeneous soil deposits subjected to earthquake loading. 

2. Investigating and explaining the mechanism by which soil heterogeneity affects 

liquefaction potential, by reproducing and analysing in detail the results of 
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undrained cyclic triaxial tests on non-homogeneous (layered) soil samples, by 

means of finite element simulations. 

3. Calibrating and validating the multi-yield surface plasticity model parameters 

based on the results of centrifuge tests performed by the author on heterogeneous 

Fraser River sand deposits. This calibrated numerical model can then be used for 

further analysis. 

4. Explaining the liquefaction mechanism in heterogeneous soil by a detailed 

analysis of centrifuge test results (performed by the Author) using both a) actual 

experimental records and b) numerical results. The calibrated numerical model 

allowed a considerably more detailed analysis of liquefaction process than 

possible with current centrifuge instrumentation. This idea of a detailed analysis 

of experimental results by means of numerical modelling was also applied in this 

research for studying relevant experiments performed by other researchers. 

5. Geotechnical design recommendations for structures on liquefiable soil deposits, 

by directly including the effects of soil-structure interaction while assessmg 

structural damage produced by earthquakes. The model used here not only 

accounts for the effects of soil nonlinearity and heterogeneity, but also allows 

effects of differential settlements of structure footings to be accounted for as an 

element of structural distress. On the other hand, the state-of-the-art so far is to 

apply the ground motion at the base of the structure without including the effect 

of differential settlements in loss estimations. 

6. Update the current design guidelines for spectral amplification of seismic ground 

motion travelling through uniform and heterogeneous soil. Guidelines are 
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provided for calculating the short (0.2s) and long period (l.Os) amplification 

factors, Fa and Fv for different site conditions. 

1.4. Thesis Outline 

This research addresses two major aspects. Therefore, the thesis can be divided 

into two parts besides the literature review. The first part (Chapters 3, 4 and 5) contains 

geotechnical centrifuge experiments, numerical model calibration and validation, and an 

explanation of liquefaction mechanism in heterogeneous soil. The second part (Chapter 

6) focuses on reliability of structures on heterogeneous soil. It is based on the conclusions 

and the analysis methods developed and validated in the first part. The second part 

includes parametric studies, which result in design recommendations. 

This thesis is divided into seven chapters. 

Chapter 1 is an introduction about the research. It also contains the objectives of 

this research, original contributions from this research and the outline of this thesis. 

Chapter 2 is a literature review, which is divided into three major parts. In part 

one, soil liquefaction and conventional procedures used for determining the effect of soil 

liquefaction are explained briefly (in subsection 2.1, 2.2, 2.3 and 2.4). In the second part 

(subsection 2.5), the available studies related to the influence of soil heterogeneity on 

different geotechnical phenomenon (focusing mainly on soil liquefaction) are discussed. 

In the last part, literature related to reliability analysis in geotechnical engineering is 

discussed (subsection 2.6). 
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Chapter 3 contains a brief description of the finite element computer code 

Dynaflow, the numerical model used in this research, and the procedure for estimating 

different constitutive parameters of the model. 

In this research, three earthquake simulation geotechnical centrifuge tests were 

performed using the centrifuge facilities at C-CORE and Memorial University of 

Newfoundland in St. John's. The different aspects of centrifuge tests and test results are 

discussed in detail in Chapter 4. 

The numerical model calibration and validation using the results of the centrifuge 

tests performed by the author are presented in Chapter 5. The liquefaction mechanism in 

heterogeneous soil is also described in this chapter, from the detailed analysis of i) actual 

experimental results and ii) numerical simulation results. 

Chapter 6 deals with the parametric studies using a numerical model, validated 

by centrifuge experiments with heterogeneous soil. In the first part of this parametric 

study (subsection 6.3), tower structures are considered where total settlements and base 

rotations are of primary interest. In the second part (subsection 6.4) of the parametric 

study, a frame structure on heterogeneous soil is considered where total and differential 

settlements are of primary interest. Summary and conclusions are presented in subsection 

6.5. 

Concluding remarks and recommendations for further study are presented m 

Chapter 7. 
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CHAPTER2 

Literature review 

2.1. Introduction 

The major objective of the present study is to explain the mechanism of soil 

liquefaction on heterogeneous soil and to investigate the seismic performance of a 

structure that is situated on heterogeneous liquefiable soil. Hence, available literature 

related to these topics are addressed in a systematic way in this chapter. 

Natural soil properties randomly vary from one point to another, even within so 

called 'uniform' soil layers. In addition to inducing uncertainty in the computed response, 

natural spatial variability of soil properties within geologically distinct layers affects the 

mechanical behaviour of geotechnical systems. For example, in the event of landslides or 

bearing capacity failures, the actual failure surface can deviate from its theoretical 

position to pass selectively through weaker soil zones and thus the average mobilized 

strength is reduced when compared to that of a corresponding uniform soil (Focht and 

Focht 2001, Popescu et al. 2005a). In seismically induced soil liquefaction, it has been 

seen (Popescu et al. 1997, 2005b, 2005c, 2006) that a larger amount of excess pore water 

pressure (EPWP) is generated in a heterogeneous soil than in the corresponding uniform 

soil having geotechnical properties equal to the average properties of the variable soil. 

The seismically induced soil liquefaction is a major problem in geotechnical 

earthquake engineering. After the devastating earthquake at Alaska and Niigata in 1964, 

this phenomenon has received a lot of attention in the last four decades. Different 
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methodologies have been proposed to estimate and understand the consequences of 

seismically-induced liquefaction on the performance of geotechnical systems. This soil 

liquefaction phenomenon and its different estimation procedures are discussed in 

following sections. 

2.2 Soil Liquefaction 

The appropriate definition for soil liquefaction has been the subject of a 

continuing debate within the geotechnical profession. Soil liquefaction (as defined by 

Castro and Poulos, 1977) is a phenomenon wherein a mass of saturated soil, when 

subjected to monotonic or cyclic loading, loses its partial or full shear resistance due to 

the generation of EPWP. Marcuson (1978) defined soil liquefaction as the transformation 

of a granular material from a solid to a liquefied state as a consequence of increased pore 

water pressure. 

The large ground deformation, induced by liquefaction, is a leading cause of 

disaster during earthquakes. This phenomenon occurs most commonly in loose to 

medium dense granular soils, which have a tendency to compact when sheared. In 

saturated soils, the dissipation of EPWP may be prevented by the presence of silty or 

clayey seam inclusions, or may not have enough time to dissipate due to rapid loading; as 

in the case of seismic loads. In this situation, the tendency for compaction results in an 

increase in pore water pressure. This leads to a reduction in effective stress, and a 

corresponding decrease in the frictional shear strength. If the EPWP generated at certain 

location in a purely frictional soil (e.g., sand) reaches the initial value of the effective 

vertical stress, then, theoretically, all shear strength is lost at that location and the soil 
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liquefies and behaves like a viscous fluid. EPWP's are also induced in moderate to dense 

granular materials subjected to cyclic loads, but due to their tendency to dilate during 

shear, the softening is only temporary, leading to increased cyclic shear strains, but not to 

major strength loss and large ground deformations. This phenomenon is known as cyclic 

mobility (Youd et al., 2001; Popescu et al., 2006). 

Liquefaction is associated with the tendency for soil grains to rearrange when 

sheared. Therefore, anything (such as particle cementation, soil fabric etc.) that prevents 

the rearrangement of soil grains will increase the liquefaction resistance. Natural soil 

deposits prior to the Holocene age (more than 10,000 years old) are usually not prone to 

liquefaction (Y oud and Perkins, 1978). Various methods have been developed in the last 

four decades for assessing and predicting the soil liquefaction. Different methods for 

assessing soil liquefaction are discussed in the next section. 

2.2.1 Assessment of Soil Liquefaction Potential 

The currently available methods of liquefaction potential assessment can be 

divided into two groups: 

a) Empirical methods based on field test data 

b) Methods based on laboratory tests 

2.2.1.1 Empirical Methods Based on Field Test Data 

After the earthquakes in Alaska (1964) and Niigata (1964), Seed and Idriss (1970) 

developed a methodology known as the 'simplified procedure' for evaluating liquefaction 

resistance of soil deposits. Since then, the procedure has been modified and updated by 

the authors as well as by the other researchers. Seed et al. (1983) included the magnitude­

scaling factor in the calculation for cyclic stress ratio (CSR) induced by an earthquake at 
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Figure 2.1: Empirical methods based on field test data. 

a given depth in horizontal soil deposit. Later several researchers proposed various 

empirical methods based on different types of field test (SPT, CPT, BPT, shear wave 

velocity) results. Some of such commonly used methods have been shown in Figure 2. 1. 

In all these methods, CSR has been calculated for a given earthquake amplitude at a 

certain depth in the soil deposit using the following relation: 

CSR= 0.65 arnax ao rd /(MSF) 
g a o' 

(2.1) 

where MSF is a magnitude-scaling factor, a o IS the effective overburden 

pressure, a 0 is the total overburden pressure, and amax is the peak ground acceleration. 
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The rd is a factor that depends upon depth and stiffness of soil column, which can be 

calculated from rct vs. effective overburden pressure graph or from the following relations 

(Youd et al., 2001): 

r d = 1.0- 0.00765z for z:::; 9.15 m (2.2) 

rd = 1.174- 0.0267z for 9.15m < z:::; 23 m (2.3) 
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Figure 2.2: Graph used to determine the CRR for clean and silty sands for 
magnitude 7.5 earthquakes (after Youd et al., 2001). 

In the ' simplified procedure' (after calculating CSR) the corrected SPT (N-value) 

value can be calculated using the following equation: 
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(2.4) 

where N1 is the measured standard penetration resistance at certain depth, CN is a 

factor to correct measured penetration resistance for overburden pressure, C£ is the 

correction factor for hammer energy ratio, C8 is the correction factor for borehole 

diameter, CR is the correction factor for rod length, and Cs is the correction for sampler 

with or without liners. A more detailed discussion about these factors can be found in 

Youd et al. (200 1 ). After determination of (N 1)6o, the cyclic resistance ratio (CRR) can be 

calculated from Figure 2.2 (first presented by Seed et al. (1983) and later modified by 

various researchers [see NCEER-96 (National Centre for Earthquake Engineering 

Research) workshop (Youd et al., 2001)]. By comparing this value with CSR (From Eq. 

2.1 ), a factor of safety for liquefaction potential can be inferred. If the safety factor at a 

particular depth is less than 1, liquefaction is expected at that location. 

Another commonly used empirical method is based on cone penetration resistance 

value. Robertson and Campanella (1985) and Seed and De-Alba (1986) proposed this 

method, which is essentially similar to the previous one, but uses in-situ recorded cone tip 

resistance and friction ratio. The method was extensively documented by Robertson and 

Wride ( 1998). In recent years this method has become more popular because CPT gives 

more reliable results than SPT. The use of this method is increasing, as more and more 

CPT data are available from sites affected by earthquakes. The curve recommended by 

Robertson and Wride (1998) for calculating CRR from normalised cone tip resistance is 

shown in Figure 2.3 . The corrected cone tip resistance (qc1N) can be calculated from the 

following equation: 

(2.5) 
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where qc is the measured cone tip resistance and P a is 1 OOkPa or approximately 

one atmosphere of pressure in the same units used for a :o, a :o is the vertical effective 

stress, Co is the normalizing factor for cone penetration resistance; CQ = ( p~ t, and n is 
a vo 

an exponent that varies with soil type (0.5 to 1.0). 
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Figure 2.3: Recommended CRR and CPT data along with empirical 
liquefaction data (after Robertson and Wride, 1998). 

However, soils with significant gravel contents cannot be reliably evaluated using 

CPT or SPT because the gravel particles are larger in relation to the effective size of the 

penetrometers. So for these types of soils, Becker penetration test (BPT) results are used 

for finding equivalent SPT values. Those equivalent SPT values are used for finding the 

liquefaction resistance of the soil (Harder and Seed, 1986). 
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Another empirical method commonly used is the soil liquefaction evaluation 

method based on shear wave velocity. Andrus and Stokoe (1997, 2000) proposed this 

method for calculating liquefaction potential in granular soil based on shear wave 

velocity (V s). The use of V s for evaluation of liquefaction resistance is effective because 

both V s and the liquefaction resistance are similarly influenced by the same factors (e.g., 

void ratio, soil type etc.). Youd eta!. (2001) have mentioned numerous advantages (e.g. , 

measurements are possible in soils that are difficult to penetrate with CPT or SPT) and 

disadvantages (e.g., V s directly related to small-strain shear modulus whereas 

liquefaction is a large strain phenomenon) of this method. Andrus and Stokoe (1997, 

2000) and NCEER recommended criteria for measuring the liquefaction resistance using 

V s1 is shown in Figure 2.4. In Figure 2.4, overburden stress-corrected shear wave 

velocity (V s1) can be calculated using the following equation: 

( J
0.25 

vsl = vs ~a 
0' vO 

(2.6) 

where P a = 1 OOkPa or approximately one atmosphere of pressure and a vo is the 

initial effective vertical stress in the same unit as P a· 

Popescu et a!. (1997) compared the liquefaction susceptibility of a soil deposit 

estimated by the simplified methods that uses empirical correlations between normalized 

penetration resistance and cyclic resistance ratio for level ground conditions, with the 

numerical analysis results for a stochastically variable soil. The analyses were performed 

for four different types of input motion (generated based on four different response 

spectra). It was found that stochastic model predictions were in good agreement with the 

results of the liquefaction assessment based on those empirical correlations. It was 
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concluded by Popescu et al. (1997) that the simplified method, which is based on field 

measurement results, implicitly accounts for natural soil variability. The simplified 

method is designed for horizontal soil deposits and gives a good estimation of the 

liquefaction susceptibility at the site, but cannot account for a series of factors, such as: 

seismic effects on structures (e.g. total and differential settlements), effects of seismic 

loading rate, etc. 
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Figure 2.4: Recommended CRR and Vs1 data along with empirical 
liquefaction data (after Andrus and Stokoe, 2000). 

2.2.1.2 Methods Based on Laboratory Tests 

Laboratory tests are one of the effective means of evaluating soil liquefaction. 

Most commonly used laboratory tests for the evaluation of soil liquefaction are the 

undrained cyclic triaxial test and the undrained cyclic simple shear test. 

a) Evaluation Based on Undrained Cyclic Triaxial Test 
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During an earthquake, the soil is subjected to a series of cyclic shear strains that 

reverse directions many times. Such deformation conditions can best be reproduced in the 

laboratory by a simple shear test conducted under cyclic conditions (Prakash, 1981 ). 

However, they may also be approximately reproduced by the cyclic triaxial compression 

tests. In the 1960s, comprehensive laboratory investigation programs on liquefaction of 

sands were initiated at the University of California, Berkeley. Seed and Lee (1966) 

reported the first set of comprehensive triaxial test data on sand. After that, undrained 

cyclic triaxial tests have been widely used for evaluating the liquefaction phenomena in 

sandy soil. In cyclic triaxial tests, the 45° -inclined plane in the specimen represents the 

shear plane (typically the horizontal plane) in the ground and the cyclic shear stress (i.e. , 

the half of the deviator stress) on that plane simulates the cyclic loading during an 

earthquake. 

At a given initial void ratio and stress state, the sample preparation method has a 

significant effect on the strength of the sample (Vaid and Sivathayalan, 2000). Vaid and 

Sivathayalan (2000) documented a comprehensive study on Fraser River sand using 

different sample preparation methods. It was concluded that moist-tamping samples 

resulted in a very strain softening response; the strength ultimately reached the steady 

state. The air-pluviated specimen was also strain softened but to a lesser extent, 

demonstrating a quasi steady state type response. However, water-pluviated sample did 

not strain soften but behaved in a strain-hardening (dilative) manner for the range of 

relative densities and soil types investigated. The sample preparation method has quite 

significant influence on the cyclic resistance of soils. Wijewickreme et a!. (2005) 

documented for Fraser River sand that, specimens reconstituted by the water-pluviation 
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exhibit higher cyclic strengths compared to those prepared by air-pluviation. For more 

details about the effect of sample preparation method on liquefaction strength, the reader 

is referred to Jafari-Mehrabadi (2006). 

b) Evaluation Based on Cyclic Simple Shear Test 

Peacock and Seed (1968) documented the first comprehensive study using cyclic 

shear apparatus on liquefaction (Prakash, 1981 ). The authors performed liquefaction 

analyses of clean uniform Monterey, California, sand using cyclic simple shear apparatus. 

It was observed that the cyclic stress required to cause initial liquefaction under simple 

shear conditions was considerably less than the cyclic stress required to cause initial 

liquefaction under triaxial conditions. Vaid and Sivathayalan (1996) and Riemer and 

Seed (1997) documented some relationship between the liquefaction resistance of sands 

evaluated from triaxial tests and simple shear tests. Vaid and Sivathayalan (1996) 

reported that the ratio (Cr) between cyclic resistance in simple shear and that in triaxial 

test depends on the soil relative density and the level of confining stress. At a given 

confining stress and relative density, the cyclic stress ratio required to induce liquefaction 

was reported smaller under simple shear than that under triaxial condition. It was found 

that at a relative density of 40%, Cr was about 0. 78 irrespective of the confining stress 

level. However, at the dense soil (Dr=72%) it varies between 0.62 and 0.7 when the 

confining stress increases from 50 to 400 kPa. 

Yoshimine et a!., (1999) studied the undrained shear strengths measured in the 

laboratory for clean Toyoura (Japan) sand (Yoshimine et a!., 1998). Later, those 

laboratory test results were compared with field performance data. The correlation given 

by Tatsouka et a!. (1990) was used for converting the soil relative density to equivalent 
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cone resistance (qctN). It was reported that the behaviour of clean Toyoura sand in simple 

shear was consistent with the field performance observations. Triaxial compression tests 

overestimate the undrained shear strength and triaxial extension tests underestimate the 

undrained strength. 

Other commonly used laboratory tests for studying the undrained behaviour of 

sand is the hollow cylinder torsional shear test. However, it is now well known that 

laboratory soil test results exhibit a large scatter due to errors related to sample 

disturbance (during sample collection, transportation and preparation), spatial variability 

of soil properties in natural deposits, testing errors, which affect their reliability (Prevost 

and Popescu, 1996). In spite of all this, laboratory tests are still very useful tools for 

assessing soil liquefaction potential. 

2.2.2 Prediction of Soil Liquefaction 

All the previous methods described in this chapter, such as 'simplified procedure' 

are useful for assessing the soil liquefaction. However, neither these methods (based on 

field test data) are able to consider the effect of EPWP redistribution due to dissipation, 

nor are they able to calculate the amount of deformation for a soil deposit. Calculating 

deformation usually requires performing some type of dynamic analysis. There are 

several methods available for predicting soil liquefaction and deformation, considering 

EPWP redistribution. The available methods for predicting liquefaction can be broadly 

divided into two groups: 

a) Methods based on physical modelling 

b) Methods based on numerical techniques (finite element methods) 

Methods Based on Physical Modelling 
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The most basic and simple physical modelling method for predicting soil 

liquefaction is the shake table test. Another commonly used physical modelling technique 

for predicting soil liquefaction is centrifuge test. This method will be discussed in more 

details in section 2.3. 

Shake Table Test 

This method also known as 1-g shake table test. Soil is placed in a tank resting 

upon a shake table. Seismic motion is applied to the base of the table. Liquefaction 

susceptibility of the soil is observed for certain level of acceleration using this method. 

For more details about the method, refer to Finn et al. (1971 ), and Arya et al. (1978). 

2.3 Centrifuge Testing in Geotechnical Earthquake Engineering 

The more advanced and effective physical modelling method for predicting soil 

liquefaction is the centrifuge test. Centrifuge model testing represents one of the major 

physical modelling tools available to geotechnical researchers. This method is quite 

popular in recent times. The in-situ soil condition can be simulated in the laboratory by 

artificially increasing the gravitational force. For example, if a 1 Ocm deep model 

container is filled with soil, placed at the end of the centrifuge arm and subjected to a 

centrifugal acceleration of 1 OOg, the pressure and stress are increased by a factor of 100. 

So, the vertical stress at the base of the model container is equivalent to the vertical stress 

at a depth of 0.1 m X 1 00= 1Om real in-situ conditions. For interpreting the centrifuge 

results scaling relations are very important (see Taylor, 1995 for scaling law in 

centrifuge). Scaling relations for some of the important parameters are tabulated in Table 

2.1. There is a difference in the scaling factor for dynamic and diffusion time. Usually 
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this difference is resolved by using a pore fluid with viscosity N-times (N= centrifuge 

scaling factor) larger than the viscosity of water. 

2.3.1 Background of Geotechnical Centrifuge Modelling 

In 1869, E. Phillips in France initiated the idea of the small scale modelling in the 

centrifuge to study self weight stresses in beams. Geotechnical engineers started using 

centrifuge as a research tool in Russia (former USSR) as early as 1936. Various 

techniques have been used by different researchers in earlier days for simulating 

earthquake motions. Zelikson et a!. ( 1981) used the detonation of explosives to generate 

ground motion. Schofield (1981) described the bumpy road concept which was 

implemented and used in the Cambridge University centrifuge by Kutter (1983). 

Arulanandan et a!. (1982) used a system which uses the piezoelectric effects to produce 

ground motion. Prevost and Scanlon (1983) implemented a method using a hydraulic 

hammer to strike a plate buried at the bottom of the soil model. Aboim (1986) used the 

more advanced electro-hydraulic method which can theoretically deliver various types of 

desired motion to the model (Yang, 1996). The world ' s most powerful centrifuge to date 

has been installed by the US Army Corps of Engineers and is capable of spinning a 

payload of up to 8000kg and providing inertial accelerations of up to 350g (Dief, 2000). 

With the implementation of various advanced earthquake shakers, centrifuge tests have 

become a useful tool for the research in geotechnical earthquake engineering. It has been 

widely used in different dynamic problems, such as the performance of deep and shallow 

foundations during earthquake, embankments, retaining walls, slope stability, and soil 

liquefaction. 

2.3.2 Advantages of Centrifuge Tests 
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There are numerous advantages of using centrifuge as a tool in geotechnical 

earthquake engineering. Some of which, as documented by Hausler (2002), are as 

follows: 

~ Easy to monitor a small scale model which actually represents a large soil deposit 

in a prototype scale. It might be difficult to monitor such a large soil deposit 

during an earthquake. Using a centrifuge test will make it much easier. 

~ Efficient, cost effective and less laborious as compared to full scale testing. 

~ Repeated testing on similar models for experimental validation is much easier. 

~ Direct observation is possible for modes of failure and deformation. It is also 

much easier to identify new failure modes and mechanisms using centrifuge tests. 

~ It is a very useful tool for validating various numerical modelling techniques. 

2.3.3 Disadvantages of Centrifuge Tests 

There are a few disadvantages of using centrifuge as a tool in geotechnical 

earthquake engineering. Some of which, as documented by Hausler (2002), are as 

follows: 

~ Boundary effects: The side walls of a rigid model container limit the lateral 

deformation of the soil and provide a high coefficient of lateral earth pressure at 

rest. For a flexible container, the side walls may expand outward during flight, 

reducing the lateral resistance and allowing more space for expansion. The side 

walls are not frictionless and might affect the vertical deformation of the soil. 

Mechanical and inertial interaction of the container wall and soil are also present 

in a rigid wall container. This effect might be eliminated by using flexible 

equivalent shear beam (ESB) containers, ideally matching the stiffness of a soil 
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column. Use of a rigid box in earthquake simulation centrifuge experiments 

induces a series of unwanted seismic waves that are generated by the reflection of 

seismic waves at each end wall of the box and are subsequently reflected back by 

the opposite wall. This phenomenon, which may induce a behaviour in the model 

different from the real field, is partly attenuated by placing Duxseal (a relatively 

soft material) at each end wall of the box to create absorbing boundaries. Dux seal 

has been used in the centrifuge experiments to prevent this seismic wave 

reflection from the lateral boundaries of the rigid centrifuge box, thus helping the 

soil deposit to behave like a semi-infinite medium. 

The container bottom, where input motion is applied, represents a rather unnatural 

geological transition. The bottom of the model container provides a no fluid flow 

boundary condition. Dissipation of EPWP in deep soil might be prolonged 

because ofthis impermeable bottom boundary. 

~ Nonlinear stress distribution: the stress distribution within the model is slightly 

nonlinear due to an increasing radius of rotation with the depth of the model, 

which results in a variation in the g-level inside the model. 

~ Scaling and measurement error: Measurement and other instrumental errors might 

be amplified through adherence to the scaling relationship. 

2.3.4 Geotechnical Centrifuge Modelling of Soil Liquefaction 

In the last twenty five years, centrifuge modelling has been widely used in soil 

liquefaction studies. The Verification of Liquefaction Analysis by Centrifuge Studies 

(VELACS) project, sponsored by the National Science Foundation (NSF), was one of the 

largest research projects in this area. Researchers from various universities and industries 
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were actively involved on that project. The VELACS project showed the effectiveness of 

centrifuge tests for studying the effects of earthquake loading in cohesionless soil 

(Arulanandan and Scott, 1993, 1994). A study on mitigation of seismic liquefaction 

effects, based on centrifuge and numerical modelling, was documented by Jafari­

Meharabadi (2006). Eight centrifuge tests were performed at C-CORE and the numerical 

study was performed at Memorial University (http://geosim.engr.mun.ca/) and University 

of British Columbia (http://www.civil.ubc.ca/liquefactionL). 

Several centrifugal studies of seismic behaviour of tower structures on soil 

foundation were reported: Morris (1979) and Weissman and Prevost (1989) on tower 

structures on dry soil, and Madabhushi and Schofield (1993) on tower structures on 

saturated soil. Several tests with different input seismic accelerations have been 

performed to study the effect of characteristic frequency. Madabhushi and Schofield 

(1993) concluded that when the predominant frequency of input seismic motion was 

lower than the characteristic frequency of the system, the initial characteristic frequency 

of the system decreased during shaking to a value close to the predominant input seismic 

frequency due to build up of excess pore pressure and subsequent degradation of soil 

stiffness. Ghosh and Madabhushi (2003) performed a series of centrifuge experiments to 

analyze the effects of a localized loose patch in a dense sand deposit subjected to seismic 

loads. Most of the available literature on the simulation of soil liquefaction using 

centrifuge tests were either with uniform soil or layered soil deposits. However, until 

now, there is no other centrifuge study available with spatially variable (variability in 

both the horizontal as well as vertical direction) soil. 
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2.3.5 Assessment of Soil Relative Density during Centrifuge Tests 

2.3.5.1 General 

The micro-scale spatial variability of soil properties affects the soil responses in 

small scale laboratory tests as well as model scale centrifuge tests. Therefore it is very 

important to accurately determine the small scale variability of soil properties. For a 

cohesionless soil, most of the soil properties depend on soil relative density. Various 

direct and indirect methods have been developed to measure the soil relative density in 

the centrifuge tests. One of the most commonly used method is the in-flight cone 

penetration test. Cho et al. (2004), Lee (2003) presented a new method for determining 

soil profile during centrifuge tests using a needle probe. The method involved a needle 

probe pushed into the soil which measured the porosity of the soil medium along its path. 

Sodium chloride salt is added with the pore fluid to make the pore fluid electrically 

conductive. 

2.3.5.2 Needle Probe: Simplified Measurement Procedure 

Soil porosity is calculated from the measured resistivity of the soil-fluid mediwn. 

The electrical needle probe is a two lead coaxial conductor. It is manufactured by 

inserting an insulated wire inside a thin hypodermic needle, and filling the space between 

the wire and the inside wall of the needle with epoxy resin. The outside diameter of the 

needle is about 2.1 mm. Since the needle probe needs to be mechanically strong to be 

pushed into the soil, a stainless steel tube is preferred for the outer conductor. Lee (2003) 

showed that soil impedance at low frequencies is resistive in nature. Therefore a 

simplified measurement procedure has been docwnented based on resistance only, 

V=i*R. This method requires the determination of current (i), and drop in voltage (V) to 
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measure the resistance (R) of the soil-fluid medium. The simplified measurement circuit 

is shown in Figure 2.5. It consists of a signal generator, a known resistor (lOkD), and a 

two-channel oscilloscope or an analog/digital (A/D) board. The current through the 

system, i= (Vs- 1'!. VN)IR.fix is determined by measuring the voltage at the source Vs and the 

Figure 2.5: Simplified measurement circuit (SG: signal generator, V5: voltage at 
signal generator, !'!. V N: voltage drop at needle probe; after Cho et al., 2004). 

drop in voltage across the needle !'!. VN; therefore, the voltage drops across the known 

resistor (Rfix) is Vs- 1'!. VN. Then, soil-pore fluid medium resistance Rsoil at the tip of the 

needle probe is: 

(2.7) 

If there is free pore water above the soil surface during a centrifuge test, and if it 

is assumed that pore fluid conductivity is uniform, then the formation factor can be 

directly calculated from the measured resistance (Rsoil). 

Formation factor (F)=RsaiiRw (2.8) 

where Rw is the resistance of the free pore fluid measured by the needle probe and 

Rsait is the resistance of the soil-fluid medium measured at different depths using the same 

needle probe. Soil porosity (n) can be directly calculated from this formation factor using 

following relation: 
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(2.9) 

The average form factor (/), is a function of the particle shape and grain size 

distribution, and has been shown empirically and theoretically (Li et al., 2005) to be 

independent on the porosity. Therefore,/ can be measured from disturbed or reconstituted 

samples ofthe soil-fluid medium during calibration. 

2.3.5.3 In-flight cone penetration test 

Another commonly used method for estimating soil relative density during 

centrifuge test is cone penetration test. The use of CPTs in geotechnical centrifuges is 

described for instance by Bolton et al. (1999) and is related more to the behaviour of a 

driven pile. Soil relative density is determined from the penetration resistance offer by the 

cohesionless soil. A pore pressure transducer, located directly behind the cone tip, is 

sometimes used (same as in-situ CPT) for measuring the pore pressures developing 

during penetration process. A centrifuge test with the 9.5mm diameter cone at a g-level of 

70 represents a prototype cone of 66.5cm. The results of these CPT during centrifuge 

tests can be used for evaluating the soil in terms of relative density or strength or location 

of boundaries between different materials (Laue, 2002). The efficiency of CPT in 

centrifuge tests has been studied in a European research program between 5 different 

geotechnical centrifuge facilities (Renzi et al. , 1994; Bolton et al. , 1998). 

2.3.5.4 Stress-densification 

Stress densification occurs during a physical model test (e.g. centrifuge test), due 

to consolidation settlements in cohesionless soil. Park and Byrne (2004) developed a 

relation for calculating the amount of stress densification during a centrifuge test. In 

geotechnical centrifuge model testing, the model is usually prepared by air pluviation of 

27 



dry cohesionless soil into the model container at very low stress (in 1 g). It is then 

subjected to a higher acceleration field (e.g. 70g). The stress increased accordingly 

causing high stresses at the base and low stress at the bottom of the model (non-uniform 

stress densification). This ultimately increases the density of the soil deposit (larger 

increase in higher depth and vice-versa) during a centrifuge test. 

The amount of stress densification depends on the level of vertical effective stress 

at that location, soil type, and initial relative density of the soil. The steps for calculating 

stress densification are as follows: 

1. Calculate the vertical effective stress ( O''v) at a location where stress densification 

has to be calculated. 

2. Calculate a using following relation: 

a= ( 1 +:max _ DroJ 2(1.5- Dro ) 
emax emin c 

(2.1 0) 

where emax and emin are the maximum and minimum void ratio, D,o is the initial 

relative density at 0 kPa, C is a sand stiffness number that is independent of void 

ratio and the value for eight different type of sands are presented by Park and 

Byrne (2004). 

3. Calculate new relative density (D,) after stress densification based on the 

following relation: 

(2.11) 

where Pais the atmospheric pressure (100 kPa). 
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2.4 Numerical Modelling of Soil Liquefaction 

Both methods described in the preceding sections for liquefaction predictions are 

time-consuming and expansive. Therefore, different numerical codes have been 

developed to simulate and predict soil liquefaction utilising the advanced computation 

facility available nowadays. For a highly nonlinear behaviour, like in the case of 

saturated soil under earthquake loading, these numerical simulations are very useful and 

cost-effective. Based on the type of mathematical formulation and the techniques of 

solving, they are broadly classified as coupled, partially-coupled and uncoupled analyses. 

To calculate the responses more accurately, these numerical models should be calibrated 

and validated first, based on centrifuge tests. One of the largest studies for finding the 

effectiveness of these numerical models was the VELACS, sponsored by the NSF 

between 1991 and 1993. Some of the numerical models used in the VELACS project 

were: Dynaflow [multi yield plasticity model] , DIANA-SWAN, SWANDYNE 

[generalised plasticity model], DYSAC2, LINOS, SUMDES [bounding surface model] , 

LIQCA [classical plasticity], and QUAD4 [total stress] (Arulanandan and Scott, 1993). 

Results from the VELACS project indicated that the partially-coupled or uncoupled 

solution schemes used in that study did not perform particularly well. Different types of 

available finite element analysis techniques are briefly discussed here. 

2.4.1 Uncoupled Analysis 

Numerical simulation using uncoupled analysis involves evaluating different key 

aspects of behaviour separately, and shearing the results between different groups of 

separate analysis results. The effectiveness of this type of analysis depends on whether 
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there is any strong interdependence between phenomena, such that they significantly 

affect each other during dynamic loading. If there is not a strong interdependence 

between them, an uncoupled analysis may provide reasonable predictions of behaviour 

and performance. 

One of the common uncoupled analysis techniques is the use of Newmark's 

method. In this approach, a dynamic ground response analysis is performed using the 

equivalent linear method with programs such as SHAKE (for one-dimensional case) or 

QUAD4 (for two-dimensional case). Limit equilibrium analyses are then performed, 

using degraded soil properties in the soil profile, to calculate the yield acceleration 

producing a factor of safety of one for each potential sliding surface. The lateral 

displacement is then typically estimated for the surface with the lowest yield acceleration 

by double-integrating the portion of the average acceleration record that exceeds the yield 

value (Cooke, 2000). 

2.4.2 Partially-Coupled Analysis 

In a partially-coupled or loosely-coupled analysis, the solution generally does not 

directly account for all of the interactions between the solid and fluid media, but uses 

some simplifications. For instance, in some partially-coupled analytical solutions the 

mechanical equilibrium equations may be solved first, and then the plastic volumetric 

strain estimated on the basis of the shear strain that occurs. The plastic volumetric strain 

is then applied to the system to get the increments in pore water pressure that occurs at 

that time. This cycle of calculations is then repeated for subsequent times. The partially­

coupled analyses tend to use more readily obtainable soil properties and less complex soil 
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models. However, these simplifications can result in inaccuracies in predicted behaviour 

(Cooke, 2000). 

2.4.3 Coupled Analysis 

In coupled numerical analysis the analysis domain, such as a liquefiable soil 

deposit, is expressed by coupled field equations. These equations are solved by 

considering coupling between solid and fluid phase under dynamic loading (inertial 

coupling is an added advantage). A fully-coupled effective stress analysis is the one 

where solution scheme directly accounts for the dynamic interaction between the solid 

and fluid media, and the mechanical equilibrium and flow equations are solved 

simultaneously. The advantage of fully-coupled analyses is that the solution directly 

accounts for the solid-fluid interaction and, from that standpoint, is more complete. 

However, some parameters required in fully-coupled analyses to describe the interaction 

between the fluid and solid, as well as the overall soil mass behaviour, might be difficult 

to determine (Cooke, 2000). 

Various researchers have studied the effectiveness of different fully coupled finite 

element codes for predicting the behaviour of saturated soil under dynamic loading. 

Jafari-Meharabadi (2006) reported the successful prediction of eight centrifuge tests for 

finding the seismic liquefaction countermeasures for waterfront slopes using Dynaflow. 

Li et a!. (1998) reported the successful prediction of a site response for the 1986 Lotung 

earthquake in Taiwan using the finite element code SUMDES (Li et a!., 1992). 

Arulanandan et a!. (1997) reported successful use of DYSAC2 for predicting the 

behaviour of liquefiable soil deposits in the Marina District of San Francisco during the 
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1989 Lorna Prieta earthquake. Madabhushi and Zeng (1998) successfully predicted the 

seismic response of a gravity quay wall on liquefiable sand modeled in the centrifuge 

using the code SW ANDYNE. 

Success is also reported in the literature with using solutions that are partially 

coupled in varying degrees for predicting the behaviour of liquefiable soil. Puebla et al. 

(1997) reported on the successful use of an elasto-plastic soil constitutive model , 

UBCSAND, implemented in the computer program FLAC (Cundall, 1995) to predict the 

pore pressure development and deformations in liquefiable sand beneath an embankment 

built in the field. Finn (1988, 1991) reported the successful validation ofT ARA-3 using 

centrifuge studies. 

Based on the available literature it has been observed that partially or fully­

coupled finite element computer codes have been able to predict the measured behaviour 

of liquefiable soils successfully. The degree of success appears dependent on the type of 

problem analyzed in some cases. Therefore, a critical part of selecting and using a 

numerical code is verifying its ability to predict the behaviour for the range of conditions 

of interest. 

2.5 Influence of Soil Heterogeneity 

2.5.1 General 

In the case of seismically induced soil liquefaction, it was proven both 

experimentally (Budiman et al. 1995, Konrad and Dubeau 2002), and by numerical 

analyses (Popescu et al. 1997, Chakrabortty et al. 2004a) that a larger amount of EPWP is 

generated in a heterogeneous soil than in the corresponding uniform soil, having geo-
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mechanical properties equal to the average properties of the variable soil. Most of the soil 

properties of a natural deposit are variable in nature. Therefore, soil heterogeneity must 

be taken into consideration in soil liquefaction analysis. 

In-situ soil properties may vary for a variety of reasons, such as depositional 

environment, degree of weathering, and physical environment (Jones et al., 2002). Phoon 

and Kulhawy (1999a) represented the spatial variation of soil properties using a simple 

model: 

~(z )= t(z )+ w(z )+ e(z) (2.12) 

where ~ = in-situ soil property, t=deterministic trend component, w=random 

component, e=measurement error and z= depth. The trend and random components are 

explained graphically in Figure 2.6. The scale of fluctuation provides a measure of the 

estimated distance over which a soil property of interest shows strong correlation. A soil 

parameter with a small scale of fluctuation changes rapidly with position, and one with a 

long scale of fluctuation changes over greater distance. Another important term in 

quantifying soil variability is the coefficient of variation (COV = standard 

deviation/mean) of a soil parameter. It represents a relative measure of dispersion of the 

parameter. The COV has been commonly used to describe the variation of most of the 

geotechnical soil properties and in-situ test parameters. 

The source of soil heterogeneity can be broadly classified into two (shown in 

Figure 2. 7) main categories (Elkateb et al., 2003a). The first source of variability is 

lithological heterogeneity which is due to the presence of different geological layers. The 

second source of heterogeneity is small scale spatial soil variability, which is due to the 

thin layers embedded in a soil medium or the presence of loose soil pockets within a 
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Figure 2.6: Inherent soil variability (after Phoon and Kulhawy, 1999a). 

more uniform soil mass. These two types of soil heterogeneity combine with 

uncertainties in the soil properties (shown in Figure 2. 7). The uncertainties in soil 

properties can occur due to different types of errors: measurement, transformation 

(modelling), and statistical (due to small sample size). Phoon and Kulhawy (1999a & b) 

quantified the small scale variability, the measurement errors, and the transformation 

errors as the primary source of geotechnical uncertainty. To evaluate geotechnical 

variability on a general basis for reliability based design procedure, it is necessary to 

assess different uncertainties (e.g., measurement error, transformation uncertainty, and 
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statistical uncertainty) separately (Phoon and Kulhawy, 1999a & b). Some useful 

guidelines on the values of coefficient of variation (COV) of measurement error, 

transformation error and overall properties were also presented in the paper. 

Soil Spatial Variability Uncertainty in soil 
Properties 

l • ~ l 
~ l 

I Measurement I Modelling I Small scale Spatial Lithological 
Variability Heterogeneity !1 Statistical 

I n n Due to Error 
in soil testing v Due to presence of Due to Geological 

thin layers embedded layers Due to transformation of lab 
in the soil and/or due or field measurement into 
to presence of loose design soil parameters using v soil pockets 

~ 
empirical relations 

n Addressed by the Due to small sample sizes 
Addressed by field test, e.g., (insufficient soil investigations) 

Probabilistic methods CPT,SPT 

"' .....Q,E:ffects '~Effects -:rr.-
r Addressed by statistical methods v.. ..D. Effects Change failure v 

mechanism 
I Include error in the Response 

Figure 2.7: Classification of soil Variability, uncertainty in soil properties and 
their effects. 

2.5.2 Effect of Soil Heterogeneity on Various Geotechnical Problems 

The influence of soil heterogeneity on different geotechnical problems are 

discussed in this section. Paice et al. (1996) documented a study on elastic settlement of a 

uniformly loaded flexible strip footing resting on spatially variable soil. A parametric 
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study was performed for a range of coefficients of variation (COV) and scale of 

fluctuation of Young's modulus to find out the effects on elastic settlement. It was found 

that with a COV of Young's modulus= 42% (recommended value) the settlement was 

measured to be 12% higher than deterministic (based on average Young's modulus) 

value. It was concluded that in the event of higher variances the expected settlements can 

considerably exceed the deterministic value. 

Popescu et al. (2005a), Nobahar (2003) studied the effects of spatial variability of 

soil properties on the static bearing capacity failure. It was found that spatial variability 

not only affects the response of the system but also changes the mechanism of bearing 

capacity failure. The failure surface tends to deviate from its theoretical (deterministic) 

position and passes through weaker zones in soil. It was concluded that there are two 

types of effects of inherent spatial variability of soil properties on the response of soil 

system. One is mechanical (reduction in average strength due to deviations of the failure 

surface from its theoretical deterministic position to pass through weaker soil zones) and 

the other is statistical (variability in the response). It was also concluded that these 

mechanical effects are generally enhanced by nonlinear behaviour. 

2.5.3 Effect of Soil Heterogeneity on Soil Liquefaction 

Like other geotechnical problems, soil heterogeneity also adversely affects soil 

liquefaction. Effects of heterogeneity of soil on its liquefaction resistance were analysed 

and presented for the first time by Ohtomo and Shinozuka (1990). Later on, Popescu 

(1995) and Popescu et al. (1997, 1998a, 2005c) presented a systematic study on the 

pattern and amount of EPWP build up in heterogeneous soil. Budiman et a!. (1995) 
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performed a series of undrained cyclic triaxial tests on sand samples with up to 25% 

gravel inclusions. It was found that the liquefaction resistance of sand with gravel 

inclusions was lower than that of uniform sand. Moreover, the reduction in liquefaction 

resistance was more pronounced for samples with a higher content of gravel. Fenton and 

V anmarcke (1998), Konrad and Dubeau (2002) and Chakrabortty et al. (2004a) have 

presented some studies on liquefaction resistance of heterogeneous soil. Koutsourelakis 

et al. (200 I, 2002) presented a stochastic approach for the design of a simple structure 

founded on liquefiable soil. 

2.5.3.1 Effect of Less Permeable Soil Layers on Soil Liquefaction 

Soil deposits are often composed of many sub-layers because of sedimentation 

processes. Sometimes it may happen that a less permeable soil layer is sandwiched 

between two sand layers. If these layers are subjected to cyclic loading, a water film 

might form beneath the less permeable soil layer due to the migration of pore water. 

Fiegel and Kutter (1994) reported this phenomenon during a centrifuge experiment with 

layered soil. Kokusho (1999, 2000a, 2000b) observed the formation of water film during 

a shake table test. Kokusho and Kojima (2002) concluded from their experiment that 

liquefaction of layered sand is associated with the presence of a water film beneath a less 

pervious layer due to the local migration of pore water. 

2.5.3.2 Effect of Small Scale Variability of Soil Properties on Liquefaction 

Konrad and Dubeau (2002) performed a series of undrained cyclic triaxial tests on 

uniform sand, uniform silt and layered soil (sand and silt layers). From the results, they 

concluded that the cyclic strength of the stratified sand-silt samples was decreased 

considerably when compared to that of I 00% sand or 1 00% silt sample at the san1e void 
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ratio and subjected to identical undrained cyclic loads. Chakrabortty et al. (2004a) 

numerically simulated the undrained triaxial tests performed by Konrad and Dubeau 

(2002). It was concluded that the EPWP in the sand with highly compressible material 

inclusions increases more rapidly than in clean sand, due to water migration from the soft 

layer, which causes an early reduction of strength in the sand and resulting failure due to 

liquefaction. This aspect will be discussed in more details in chapter 5. Popescu (1995), 

and Popescu et al. ( 1996, 1997, 1998a, 2005b) conducted a systematic study of the effect 

of soil heterogeneity on liquefaction by performing stochastic analyses using Monte 

Carlo simulations. It was concluded that spatial variability of soil properties affects both 

the pattern and the amount of dynamically induced EPWP. It was also concluded that, for 

the same average values of soil parameters, more pore water pressure build up was 

predicted by the stochastic model than by a deterministic analysis using the same soil 

strength as the average soil strength used in the Monte Carlo simulations. More EPWP 

was predicted for the same CV of spatial variation when the soil strength fluctuations 

followed a symmetrical probability distribution function (PDF) - e.g. truncated Gaussian 

- than for a positively skewed PDF - e.g. Lognormal (Popescu et al. , 1996). A parametric 

study to estimate the characteristic percentile of soil strength to be used in deterministic 

analysis was also performed by Popescu et al. (1997). The characteristic percentile is the 

percentile of soil strength of uniform soil, which will predict an amount of EPWP build­

up equivalent to that predicted by the Monte Carlo simulation of heterogeneous soi l. 

From the result of the parametric study it was concluded that, for the type of soil deposit 

analysed (loose to medium dense hydraulically placed sand) and the range of input 

motions considered, SO-percentile of soil strength is found to be a good characteristic 
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value to be used in deterministic dynamic analysis. In that study, 80-percentile was 

defined by the selected value of cone resistance (qc) which was selected in such a way 

that 80% of the measured cone resistance values are larger than that value. 

Koutsourelakis et al. (200 1, 2002) analysed the effects of spatial variability of soil 

properties on liquefaction for a wide range of earthquake intensities, and presented 

fragility curves for a simple structure on liquefiable soil. 

All these numerical studies were two-dimensional analyses of liquefaction, 

considering plane strain behaviour. Fenton and Vanrnarcke (1998) made an attempt to 

address the three-dimensional (3D) aspect of soil liquefaction based on records at the 

Wildlife Site, Imperial Valley, California. The soil properties were modelled as a 3D 

random field, but due to limited computational resources the liquefaction analysis was 

carried out in one dimension without considering any coupling in horizontal direction. 

This study can only deal with the initiation of liquefaction for that particular point, but it 

did not include the effects of pore water pressure redistribution before and after the initial 

liquefaction. 

Elkateb et al. (2003b) presented another stochastic analysis ofthe same site. A 3D 

stochastic analysis was performed using limited number of available CPT data. The 

empirical method suggested by Robertson and Wride ( 1998) was used for the liquefaction 

analysis using CPT values. Although this approach did not capture any interaction 

between zones of soil with different liquefaction strength, this study provided some 

interesting conclusions on the effects of loose zones on probability of liquefaction failure . 

The study concluded that depending solely on safety factors might not be accurate 

measure of liquefaction susceptibility. In addition, an empirical technique also has been 
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developed to compare ground variability of potentially liquefiable sites on a qualitative 

basis. 

Popescu et al. (2005c) studied the 3D effects in seismic liquefaction of 

stochastically variable soil. A Monte Carlo simulation technique using a non-Gaussian 

stochastic field for soil properties and a fully coupled nonlinear dynamic finite element 

analysis has been used for 20 and 3D analysis. The result confirmed earlier findings, 

such as more EPWP build up predicted by stochastic analyses accounting for soil 

variability than by corresponding deterministic analyses considering uniform soil with the 

same properties as the average properties of the variable soil. The results also concluded 

that when differential settlements are not important, a 2D plane strain stochastic analysis 

or even deterministic analyses (using a proper characteristic percentile of soil strength) 

could provide sufficiently accurate information. When liquefaction of limited soi l 

volumes and corresponding differential settlements are important, only 3D analyses can 

correctly capture the structural behaviour. 

o Simulation of Stochastic Fields 

a) General 

Several methods are available to solve a large number of engineering problems 

involving uncertain quantities described by stochastic process or fields. However, Monte 

Carlo simulation appears to be the only universal method that can provide accurate 

solutions for certain problems in stochastic geotechnical engineering involving non­

linearity, large variations of uncertain parameters and non-Gaussian probability 

distribution. One of the most important parts of Monte Carlo simulation is the generation 

of sample functions of the stochastic field. In the last three or four decades, several 
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methods have been developed for digitally simulating sample functions of a random field. 

These random fields (V anmarcke, 1983) may be homogeneous or non-homogeneous, 

one-dimensional or multi-dimensional, uni-variate or multi-variate, Gaussian or non­

Gaussian. However, because of mathematical difficulties and the lack of observed data, 

most of the earlier generation techniques, as well as analytical approaches, are limited to 

dealing with Gaussian fields. There are several methods to generate a sample function of 

a Gaussian field (e.g., Spectral representation method, covariance decomposition, 

autoregressive moving average (ARMA) model etc.). Rice (1954) first described the 

concept of spectral representation method. Shinozuka (Shinozuka and Jan, 1972; 

Shinozuka, 1972) applied it for simulation purposes including multidimensional, 

multivariate and non-stationary cases. Yang (1972, 1973) showed that the Fast Fourier 

Transform (FFT) technique can be used to improve the computational efficiency of the 

spectral representation algorithm. Shinozuka (1974) extended the application of the FFT 

technique to multi-dimensional cases. Yamazaki and Shinozuka ( 1988) developed an 

iterative procedure to simulate uni-variate, non-Gaussian stochastic fields using spectral 

representation method. Popescu et al. ( 1998b) combined the work done on the spectral 

representation method by Yamazaki and Shinozuka (1988), Shinozuka and Deodatis 

(1996) and Deodatis (1996b), and extended it to multi-variate, multi-dimensional and 

non-Gaussian stochastic fields. First, a multivariate, multidimensional (m V -nD) Gaussian 

stochastic field is generated using the advantage of FFT. Then, this Gaussian field is 

transformed into a non-Gaussian vector field, compatible with a prescribed cross-spectral 

density matrix and with prescribed marginal probability distribution function, through a 

memoryless non-linear transformation. Grigoriu (1998) also developed a simulation 
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algorithm for generating realizations of non-Gaussian stationary, memoryless, and non­

linear translation processes with a specified marginal distribution and covariance 

function. 

b) Generation of Sample Functions of a Random Field 

The soil material properties do not follow Gaussian PDF's since they do not take 

negative values. Therefore, there is a need to simulate sample functions of non-Gaussian 

fields representing the spatial distribution of various material properties over the analysis 

domain. According to the methodology described by Popescu ( 1995), an m V -nD 

Gaussian random field is first generated taking advantage of the FFT techniques. Then, 

the Gaussian vector field is transformed into a non-Gaussian random field, compatible 

with a prescribed cross-spectral density matrix and with prescribed non-Gaussian 

marginal probability distribution functions, through a non-linear transformation in 

conjunction with an iterative scheme. The flowchart for simulation of m V -nD non­

Gaussian stochastic vector field is shown in Figure 2.8 (Popescu et a!., 1998b ). The 

sample functions are generated next from that non-Gaussian stochastic field for use in 

finite element analyses. 

c) Finite Element Analysis with Stochastic Input 

The last step of Monte Carlo simulation (all steps are discussed in detail in 

Chapter 6) consists of deterministic nonlinear dynamic finite element analysis with 

stochastic input for each of the stochastic samples. The analyses are performed using a 

finite element code. When the spectral representation method is used for stochastic field 

generation, there is a chance of having two different meshes: one for the random field 

discretization, and another for the finite element analysis. A data transfer is therefore 
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Input Data: Target Cross Spectral Density Matrix: S0 (k) 
Prescribed Marginal Probability Distribution Function: 

FnGr, r =1, 2, 3, ..... , m 

Set Initial cross-spectral density matrix of Gaussian m V-

nD field: S~ (k) = S0 (k) and set iteration counter i = 1 

i =i+ 1 I 
I 

Generate sample function of Gaussian vector field using 

FFT: S~ (k)--) / Jil (x) 

l 
Transform generated Gaussian vector field / Jil (x) into 

non-Gaussian vector field f }J ( x) : 

.f.~r(x) = F,~r {Fr. r.r;.~l (x)fi; r = 1, 2, 3, . . .. , m 

Compute cross-spectral density matrix of resulting non-
Gaussian vector field using FFT: 

p {i) (x)--) s (i) (k) 
n~ nr. 

lcheck Convergence 

S~b (k) ~ S0(k) Yes.., Stop 

~No 

Update cross-spectral density matrix used to generate 
Gaussian m V -nD field: 

sU+'l (k) = sUl (k). So(k) 
G G S~) (k) 

Figure 2.8: Flowchart for simulation of m V -nD non Gaussian stochastic 
fields (after Popescu et al., 1998b ). 

required from one mesh to the other. Several methods, proposed by various authors, are 
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available. The following two methods are most widely used: 

a) The midpoint method (Shinozuka and Dasgupta, 1986): It is a point discretization 

type method. The random field is represented by its values at the centroids of the 

finite elements. 

b) The local averaging method (V anmarcke, 1977): Each finite element is assigned 

an average of stochastic field values over the element domain. 

For Gaussian fields, the spatial averaging method seems to be a more logical 

approach to random field discretization and will provide better accuracy than the 

midpoint method for coarse meshes (Der Kiureghian and Ke, 1988). However, for the 

case of non-Gaussian fields the midpoint method is most appropriate since it preserves 

the original probability distribution. This method is used in this research. For more details 

about this method the reader is referred to Popescu (1995). 

2.6 Reliability in Geotechnical Engineering 

Probabilistic analysis is now a useful tool in Geotechnical engineering and related 

fields. It has been widely used in different fields of Geotechnical earthquake engineering 

such as, soil liquefaction studies, studies of safety of darns, seismic hazard analysis, etc. 

2.6.1 Fundamentals of Reliability-Based Design 

Most observable phenomena in the world have some degree of uncertainty. 

Therefore, satisfactory performance of a system cannot be absolutely ensured. The only 

assurance that can be given is the probability of success in satisfying some performance 

criteria. In engineering terminology, this probabilistic assurance of performance is 
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referred to as reliability (Haldar and Mahadevan, 2000). In reliability-based design, the 

measure of safety is expressed by the reliability index and the probability of failure. The 

probability of failure is related to the shaded area representing the overlap between load 

(S) and resistance (R) of the probability density function (PDF) curve, as shown in Figure 

2.9. The performance function (Z) can be described as: 

Z=R- S (2.13) 

and the probability of failure is defined as: Pr = P (Z<O). 

If one assumes that both the loads and the resistance are normally distributed 

(which is in general not accurate), the probability of failure can be expressed as: 

p = 1 _ ¢[ Jl R - Jl S ] 
I ~ 2 2 CJR+CYs 

(2.14) 

where ¢is the cumulative density function (CD F) of the standard normal variate, 

Jls and crs are the mean and standard deviation of load, JlR and CJR are the mean and 

standard deviation of resistance. The probability of failure depends on the ratio of the 

mean and standard deviation of Z. This ratio is commonly known as the 'safety index' or 

'reliability index ( J3 )' and is expressed as: 

J3 = Jlz = Jl11- Jls 

cr z ~cr~ + cri 
(2.15) 

where Jlz and crz are the mean and standard deviation of Z. 

Reliability based design methods can be further explained using the following 

simple case where two variables are considered, one relating to the demand of the system 

or load (S) and the other is the capacity of the system or resistance (R). Assuming they 

are normally distributed, both the load and the resistance can be characterised by their 

45 



means (f.ls, f.lR) and standard deviations (CYs, CYR). The corresponding probability density 

functions (PDF) are shown in Figure 2.9. The deterministic (nominal) values (SN, RN) of 

load and resistance, used in conventional safety factor-based approach, are also shown in 

Figure 2.9. 
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Figure 2.9: Fundamentals of Reliability Analysis (after Haldar and 
Mahadevan, 2000). 

Nominal safety factor, SF = ~N 
N 

(2.16) 

The nominal resistance, RN is usually a conservative value (perhaps one, two or 

more standard deviations below the mean value). The nominal load, SN is also a 

conservative value (one or more standard deviations above the mean value; Haldar and 

Mahadevan, 2000). 
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The tools available to the engineer for reliability analysis are divided into three 

broad categories (Christian, 2004). First are the methods of direct reliability analysis. 

Here, the uncertainties in properties, loads, water level etc. are expressed by analytical 

models to obtained probabilistic descriptions of the behaviour of a system. The second 

category includes event trees, fault trees and influence diagrams, which describe the 

interaction among events and conditions in a system. The third category includes other 

statistical techniques. In general, some problems are so poorly defined that it is not 

feasible to formulate mechanical models, and the engineer must rely on sample statistics 

(e.g., determination oflandslides in broad areas). 

Duncan (2000) presented a research on the importance of factor of safety and 

probability of failure. In the research the author concluded that probability of failure 

should not be viewed as a replacement for factor of safety, but as a supplement. 

Computing both the factor of safety and the probability of failure is better than computing 

either one alone. With a relatively small additional effort to perform reliability analyses, 

the importance of analyses can be increased considerably. Reliability concepts can be 

applied to settlement analyses as well. This can provide a measure of the accuracy of 

settlement computations and can be used to estimate the magnitude of settlement that has 

a very small probability of being exceeded. 

2.6.2 Application of Reliability in Assessment of Soil Liquefaction Potential 

Various authors applied reliability analysis in assessing soil liquefaction potential. 

Among whom, Juang et al. (2002) presented a probability-based method for evaluating 

the liquefaction potential. Two different approaches (logistic regression and Bayesian 
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mapping) for calculating the probabilities of liquefaction were used in the study. The 

probability-based methods were also compared with empirical methods such as Seed and 

ldriss (1970) (based on SPT), Robertson and Wride (1998) (based on CPT), and Andrus 

and Stokoe (2000) (based on shear wave velocity). It was shown that the Bayesian 

mapping approach is preferred over the logistic regression approach for estimating the 

site-specific probability of liquefaction. From the comparison with three empirical 

methods it was concluded that probabilistic methods can be used for calculating 

liquefaction potential with a reasonable accuracy. 

2.6.3 Reliability Studies for Heterogeneous Soil 

In the last decade, a series of papers appeared in the literature where the effects of 

inherent soil heterogeneity on the mechanical behavior of various problems in 

geomechanics were assessed quantitatively. The methodology used in essentially all these 

studies were Monte Carlo Simulation (MCS). Paice et al. ( 1996) studied settlements of 

foundations on elastic soil, Griffiths and Fenton (2000) and Tan tall a et al. (200 1) studied 

slope stability, Popescu (1995), Popescu et al. (1997 and 1998a) and Koutsourelakis et al. 

(2002) studied seismically induced soil liquefaction, and Nobahar and Popescu (2000 and 

2001), Griffiths et al. (2002), Fenton and Griffiths (2003) and Nobahar (2003) studied the 

bearing capacity of shallow foundations. A common conclusion of most of these studies 

was that nonlinear phenomena are more strongly affected by inherent soil heterogeneity. 

For example, Paice et al. (1996) predicted up to 12% increase in average settlements for 

an elastic heterogeneous soil with coefficient of variation COV = 42%, compared to 

corresponding settlements of a uniform soil deposit with the same mean properties. 
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Nobahar and Popescu (2001) and Griffiths et al. (2002) found a 20 to 30% reduction in 

the mean bearing capacity for heterogeneous soils with COV = 50%, compared to the 

corresponding bearing capacity of a uniform soil with the same mean properties. Popescu 

et al. (1998a) predicted an increase of about 20% in the amount of pore water pressure 

build-up for a heterogeneous soil deposit with COV = 40%, compared to the 

corresponding results of uniform soil with the same mean properties (Popescu et al. 

2005a). It is worth to mention here that, as is the fact the soil heterogeneity modifies the 

assumed failure mechanisms and therefore, may invalidate the use of first-order 

reliability methods and perturbation techniques that postulate the existence of an average 

response. 

Though expensive computationally, it appears that MCS is the only approach that 

can accurately capture the effects of inherent soil spatial variability in the soil 

liquefaction problem where the mechanism can change from one realization (sample 

function) of the random soil properties to another (Popescu et al. 2005b ). Moreover, MCS 

is the only currently available, universal methodology for accurately solving problems in 

stochastic mechanics involving strong nonlinearities and large variations of non-Gaussian 

uncertain system parameters, as is the case of the soil liquefaction problem considered in 

the present study. 

2.6.4 Effect of Frequency Content on Structural Response 

Apart from soil liquefaction and soil heterogeneity, the frequency content of 

seismic ground motion also has a significant influence on the dynamic response of a soil­

structure system. The seismic ground motion characteristics mainly depend on three 
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factors; distance from the seismic source, local soil conditions and the intensity of the 

earthquake. The characteristics of seismic ground motion also change from one place to 

another, due to the wave propagation effects and filtering of seismic waves in the soil 

layers. 

Dynamic response of a soil-structure system depends on its characteristic 

frequency. Every soil-structure system has its own characteristic frequency depending 

upon its dynamic properties. This characteristic frequency may decrease during dynamic 

excitation as a result of degradation of effective shear modulus, due to pore water 

pressure build up in saturated soil. Madabhushi and Schofield (1993) showed this 

phenomenon by conducting a series of centrifuge tests on tower-soil systems. From the 

result it was concluded that the onset of partial liquefaction alters the dynan1ic 

characteristics of the tower-soil system. It was also concluded that when the natural 

frequency of the tower-soil system was higher than the driving frequency of the 

earthquake, the excess pore pressure led to degradation of soil stiffness causing a sudden 

lowering of the natural frequency to a discrete frequency at which the energy of the 

earthquake was concentrated. However, it was also reported, when the initial natural 

frequency was less than or equal to the driving frequency of the earthquake, the 

generation of excess pore pressure did not cause significant changes in the natural 

frequency of the tower-soil system. 

Popescu et al. (1997) presented a study on the effects of characteristic frequency 

on liquefaction of a stochastically variable soil. From the predicted result it was observed 

that larger pore pressures were developed in the soil layer when using input motions with 

lower frequency content. It was also observed that the peak values of predicted EPWP 
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ratio were situated at lower elevations as the loading rate decreased. In the study, larger 

pore pressure and horizontal displacement for input motions with lower frequency 

content were also predicted. 

Popescu (2002) presented a study on the effects of seismic loading rate on soi l 

liquefaction. The effect of frequency content of seismic ground motion was illustrated 

using two examples. First, a numerical analysis for a soil deposit was performed to find 

the effect of loading rate. After that, an analysis for an embankment dam was performed. 

In the first example, the author predicted significantly larger pore pressures and 

horizontal displacements at the ground level for an input motion with lower frequency 

content, compared to the case with higher frequency content. For the embankment dam, 

the author also found that the structural response was strongly affected by the frequency 

content of the seismic ground motion. The embankment dam was analysed for three 

seismic acceleration time histories; all with different frequency contents but the same 

intensity. In one case, moderate structural damage and deformation was found, which 

stabilized after the end of shaking. In the other two cases of seismic motion with lower 

frequency content, the numerical model predicted progressive slope fai lures after the end 

of the shaking and post earthquake failure of the dam. Build-up of EPWP leads to 

changes in the vibration characteristics (reduction in characteristic frequency) of 

saturated soil deposits during earthquakes. Ground motions having the maximum spectral 

amplitudes in the range of the new characteristic periods deliver more energy to the 

system and may produce more damage. Therefore, special attention should be placed 

upon low frequency seismic inputs. 
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Ghosh and Madabhushi (2003) presented a numerical analysis on the effect of 

input motion with different types of frequency content on the dynamic response of the 

system. From the result it was concluded that the interaction between the frequency 

content of the seismic motion and generation of EPWP could change the dynamic 

response of the soil-structure system. The results showed significantly large pore pressure 

for input motions with lower frequencies because more energy was delivered to the 

system for low frequency seismic inputs. 

Chakrabortty et al. (2004b) presented a 2D analysis of a simple tower structure 

resting upon a homogeneous liquefiable soil. Two types of earthquake input motions 

recommended by the Uniform Building Code (1994); type I , for rocks and stiff soils, and 

type 3, for soft soils were used. The maximum spectral amplitudes for type 3 

accelerations are in a lower frequency range than for type I . It was concluded that the 

characteristic frequency of the soil-structure system goes down to a value close to the 

dominant frequency of the type 3 input accelerations due to soil softening. Therefore, 

considerably more structural damage was predicted for structures excited by type 3 

accelerations than for those excited by type I input. The reduction in specific seismic 

energy was due to filtering of seismic ground motion in the soil. Liquefaction and 

consequent soil softening was also discussed in the paper. This is shown in Figure 2.10 in 

terms of Arias Intensity. Arias Intensity is a measure of seismic energy (intensity) and the 

formula for calculating it will be discussed in Chapter 6. From the figure it is observed 

that for input acceleration with lower Arias Intensity, reduction in specific seismic energy 

due to filtering of seismic ground motion is not significant. However, for seismic input 

with higher Arias Intensity, the reduction in specific seismic energy is very high 
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(approximately 75%). This reduction in seismic energy will also affect the spectral 

amplification factor (the short (0.2s) and long period (l.Os) amplification factors, Fa and 

Fv) provided in seismic design building codes. In the building code, Fa and Fv are 

determined based on equivalent linear or nonlinear analyses where the effect of EPWP 

build-up was not considered. As shown in the above mentioned studies, for saturated soil 

the effect of EPWP build-up is important for calculating Fa and Fv. Therefore, there is a 

scope of further research in this area. 

2.6.5 Fragility Curves in Geotechnical Earthquake Engineering 

For expressing the results, obtained from Monte Carlo simulation, fragility curves 

are sometime used. The likelihood of structural damage, due to different levels of 

Type 1 Tower I 
Type 3 Tower I 

+ Type 1 Tower II 
Arias Intensity (lA) - Input (m/s) • Type 3 Tower II 

O L---~--~--~----~----------~ 
0 0.5 1 1.5 2 

Figure 2.10: Base input accelerations and predicted accelerations at the base of 
the structure: comparison of Arias intensities (after Chakrabortty et al., 2004b). 

earthquake ground motion intensity, can be expressed by fragility curves. Fragility curves 

express the probability of exceeding various threshold values in the response as a 

function of load intensity. Fragility curves have been used extensively in earthquake 

engineering to describe the seismic vulnerability of structures as a function of the severity 
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of earthquake ground motion (Shinozuka et al. , 2000; Shinozuka, 1998, 2000; 

Yamaguchi and Yamazaki, 2000; Deodatis et al., 2000; Popescu et al., 2005b etc). 

The fragility curves can be expressed in the form of two-parameter lognormal 

distribution functions. The estimation of these two parameters is done by maximum 

likelihood method treating each event of exceeding or not exceeding a certain threshold, 

as a realization from a Bernoulli experiment. Shinozuka (1998) proposed this method for 

generating fragility curves. The likelihood function is expressed as (Shinozuka, 1998): 

N 

M = [J[F(aK )YK [1- F(aK )]1-YK (2.17) 
K;l 

where F() represents the fragility curve for a specific state of damage, a K is the 

peak ground acceleration (i.e., load intensity) value of the K1
h set of acceleration time 

histories, y K represent the realizations of the Bernoulli random variable YK with y K =0 

when damage is not exceeded or y K = 1 when damage is exceeded under peak ground 

acceleration (PGA) equal to aK, and N is the total number of sets of time histories for 

which the structure is analysed. Under the lognormal assumption, F() takes the following 

analytical form: 

F(a) = ¢ (2.18) 

where a represents the PGA, and ¢[.]is the standardized normal distribution 

function. The two parameters ll and cr (median and lognormal standard deviation) are 

estimated satisfying the following equations: 
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8lnM = 8lnM = 0 
8J.J 8u 

(2.19) 

The calculation is performed numerically by implementing a straightforward 

optimisation algorithm. Figure 2.11 shows a typical example of the lognormal fragility 

curve based on Bernoulli's experiment. 

Shinozuka et al. (2000), Shinozuka ( 1998, 2000), Yamaguchi and Yamazaki 

(2000) and Deodatis et al. (2000) applied this fragility analysis using the maximum 

likelihood method for bridges and presented the fragility curves for different damage 

states of the bridge for different PGA. Tantalla et al. (2001) used fragility analysis for 

slope stability analysis. Koutsourelakis et al. (200 1) used fragility analysis for a simple 

structure resting upon a liquefiable soil and presented fragility curves for different 

damage states of the structure against Arias Intensity. 
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Figure 2.11: Example of a typical Fragility curve (after Deodatis et al., 2000). 

Shinozuka and Kishimoto (1989) performed a fragility analysis based on 

liquefaction susceptibility of a site in New Madrid, USA. The authors used the method 

suggested by Seed and Idriss ( 1970) and Iwasaki et al. ( 1978), for calculating liquefaction 

potential and liquefaction resistance factor without considering spatial variation of soil 

55 



properties and pore pressure redistribution before and after initial liquefaction. The 

results were presented for the seismic reliability analysis of oil pipelines at the New 

Madrid site. The fragility curves were used for presenting the results of the liquefaction 

hazard on the basis of liquefaction resistance factor and liquefaction potential index. 

Most of the current research on fragility analysis use PGA, pseudo spectral 

acceleration, velocity or displacement to characterize seismic intensity. However, they 

cannot capture the essential properties of the ground motion. Because, the probability law 

of a stochastic process cannot be specified by its maximum value over a time interval. 

Kafali and Grigoriu (2004) presented a new method for expressing the earthquake load 

intensity as a fragility surface. In that method, system fragility was calculated as a 

function of moment magnitude and source to site distance. From the result it was 

concluded that, fragility is the probability of a system reaching a limit state as a function 

of some measures of seismic intensity and it needs to be plotted against parameters of the 

probability laws of ground acceleration rather than properties of its sample (e.g., PGA). 

Popescu et al. (2005c) performed a 3D seismic liquefaction analysis of 

stochastically variable soil (discussed earlier in the section 2.3 .3.2). The method proposed 

by Shinozuka for constructing fragility curves was used in the study. The comparison 

results of the stochastic analyses (2D and 3D) and the deterministic analyses were 

presented in terms of fragility curves. Arias Intensity was used for expressing load 

intensity in the fragility curves. Arias Intensity was found to provide a better measure of 

earthquake severity than PGA (Koutsourelakis et al., 2001) or root mean square 

acceleration. Arias Intensity is calculated after considering the total duration and 
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amplitudes of earthquake motion. Therefore, the Arias Intensity is used for constructing 

fragility curves in this thesis. 

2.6.6 Design of Experiments (DOE) 

2.6.6.1 Overview 

In the last part of this research (parametric study), a statistical methodology called 

Design of Experiments (DOE) is used for finding the significant factors, which control 

the seismic response of structures on liquefiable soil. Generally, an experiment is a test in 

which purposeful changes are made to the input variable of a system so that we may 

observe and identify the reasons for changes in the output responses (Montgomery, 

1997). A detailed review of the basic procedures of the DOE and its advantages are 

documented by Lye (2002, 2003). The advantages of using DOE in this study are: 

o Reduction in the number of required experiments (FE runs in this case) for 

finding the effects of different factors on the response. A two-level full factorial 

design method is used for this purpose. 

o Validation of the results from the one-factor at a time method using more 

advanced statistical methods. The effects of different factors on the response are 

obtained from full Monte Carlo simulation, combined with the one-factor at a 

time method. Therefore, to validate the results obtained from this method, DOE is 

used in the preliminary stage of this study. 

o This method easily and automatically captures any interaction effect between two 

or more factors on the responses. 
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Two of the most commonly used methods in DOE are the two-level factorial 

design and Central Composite Response Surface design. Design-Expert® software 

version 7.1.3 was used in this study. The methods used in this study (i.e., two-level full 

factorial design, and Central Composite Response Surface design) are described briefly in 

the following sections. 

2.6.6.2 Two-Level Factorial Design 

This is a very efficient method commonly used in DOE. Factorial designs are 

used primarily for screening significant factors, but can also be used sequentially to 

develop and refine a model. Various researchers used this method as an efficient tool for 

identifying the most significant parameters and for modelling (e.g., Zangeneh et a!. , 

2002). For example, Nobahar (2003) used factorial design method with centre points for 

modelling soil-structure interaction problem. There are various types of factorial design 

such as general factorial, two-level full factorial, three-level full factorial and factional 

factorial design methods (Montgomery, 1997). In a two-level full factorial design, the 

effects of k factors are studied at only two levels for each factor. In this method, 2k 

experiments are required and also called 2k factorial design. The design points for a two­

level factorial design for a three factor problem are shown in Figure 2.12. 

The first step ofthis method is the selection of possible important factors and their 

ranges. In the two-level factorial design, two different levels of all the factors are 

considered (maximum and minimum). Some special notations are usually used in two­

level factorial design methods. Upper case letters denote the effect of the factor, and 

lower case letters denote their treatments. For example, A is the effect of factor A, AB is 
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Figure 2.12: Illustration of experiment design layouts for a two level full 
factorial design with three factors. Circles are showing the design points. 

the interaction effect of factor A and B, and abc denotes an experiment in which high-

level (maximum) values of factor A, B and C and low-level (minimum) values of the 

other factors are used. In an analysis with k number of factors, the two-level factorial 

design requires 2k experiments. To reduce the number of experiments, factional factorial 

method can be used. The models are then formulated using the significant factors. 

Analysis of variance (ANOV A) method is usually used for determining whether the 

formulated model is significant or not. Normal probability plot or half normal plot may 

also used as a visual tool for this purpose. On these plots, all the significant effects (main 

or interaction) fall outside a straight line formed by all non-significant effects. A 

regression model is developed next using those significant effects. Apart from ANOV A, 

various methods are used to diagnose whether or not the model is appropriate such as 

normality of residuals and homogeneity of variance. If the residuals of the model do not 

have constant variance, the response should be transformed. For example, if the residual 

distribution is funnel shaped, a log transformation may give a more uniform distribution. 

If the predicted R2 value is greater than 0.9, it gives a satisfactory regression model. 
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Some extra runs may be performed next, using the factor values inside the range of the 

study to verify the validity of the developed regression model. 

2.6.6.3 Central Composite Response Surface Design 

A more advanced method in design of experiments is the Central Composite 

Response Surface design. A response surface with curvature can be modelled more 

efficiently using this method. In an analysis with three factors, a Central-Composite 

Response Surface design requires fifteen experiments. The design points for Central-

Composite Response Surface design for a three factor problem are shown in Figure 2.1 3. 

[J] 

,.··· 

........................ - ::·::· .................... [] .... ............ .. 

[3]
,•' : 

1 

Low High 

Figure 2.13: Illustration of experiment design layouts for a Central-Composite 
Response Surface design (face centred) with three factors. Circles are showing 
the design points; squares are showing the centre points. 

This method has three groups of design points: two-level factorial design points (23 =8 

for three factors), axial points (2x3=6 for three factors) and centre points (1 in the Figure 

2. 13). The location of the axial point depends upon alpha value. For a face centred 

Central Composite Response Surface design the alpha value is 1. The various steps for 

analysing results are same as that for the case of two-level factoria l design (already 

discussed in Section 2.6.6.2). 
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Table 2.1: Scaling relations in centrifuge modelling (N= Centrifuge scaling factor) 

Parameter Model Prototype 

Length 1 N 

Area 1 NL 

Volume 1 Nj 

Acceleration 1 1/N 

Mass 1 N-' 

Force 1 NL 

Energy 1 Nj 

Time (dynamic) 1 N 

Time (diffusion) 1 NL 

Stress 1 1 

Strain 1 1 

Density 1 1 

Frequency 1 1/N 
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CHAPTER3 

The Numerical Model and its Parameters 

3.1. Introduction 

The numerical analyses were performed in this research using the finite element 

computer code Dynaflow (Prevost, 2002). In seismic analysis of saturated soils involving 

EPWP build-up, two important aspects need to be addressed: (a) solid and fluid coupled 

field equations have to be used in a step by step dynamic analysis to correctly capture the 

inertial and dissipative terms and (b) accurate simulation of dynamically induced EPWP 

build-up and continuous softening of the material requires soil models able to reproduce 

the experimentally observed nonlinear hysteretic behaviour and shear stress induced 

anisotropic effects and to reflect the strong dependency of plastic dilatancy on effective 

stress ratio. The first aspect is addressed in the Dynaflow code by the extension of Biot's 

theory into the nonlinear regime, discussed in more detail by Popescu et al. , 2006. The 

second aspect can be addressed by using an advanced plasticity model, such as multi­

yield or bounding surface plasticity, in combination with kinematic hardening rules. 

These advanced plasticity soil constitutive models usually require a relatively large 

number of parameters and a well-defined methodology for calibrating those parameters 

based on results of standard in-situ and/or laboratory soil tests. The mathematical model 

used in Dynaflow for this study and the calibration of different parameters in that model 

are discussed in this chapter. 
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3.2. Mathematical Model 

The finite element calculations were conducted in terms of effective stresses, 

using fully coupled solid-fluid equations and a multi-yield plasticity soil constitutive 

model for the treatment of saturated porous media. The coupled field equations for 

multiphase media are solved based on an extension of the Biot formulation (Biot, 1955, 

1962) into the nonlinear regime (Prevost, 1989). During deformation, the solid particles 

in porous media which form the soil skeleton undergo irreversible motions such as slips 

at grain boundaries, creations of voids by particles coming out of a packed configuration, 

and combinations of such irreversible motions. When the particulate nature and the 

microscopic origin of the phenomena involved are not explicitly sought 

phenomenological equations then provide an adequate description of the behaviour of the 

various phases which form the soil medium. In multiphase theories, the conceptual model 

is thus one in which each phase (or constituent) enters through its averaged properties, 

obtained as if the particles were smeared out in space. In other words, the particulate 

nature of the constituents is described in terms of phenomenological laws as the 

particulates behave collectively as a continuum. Soil is thus viewed herein as consisting 

of a solid skeleton interacting with the pore fluids (Popescu et al., 2006). The dynamic 

response is obtained from the following coupled equations (Prevost, 2002): 

(3.1) 

w d V w w ( S w) n w wn w ;: ( S w ) w b p --= p v - v ·vv - n vp +':J·v - v +p 
dt 

(3.2) 

where the motion of the solid phase is used as the reference motion. In equations 

(3.1) and (3.2), CJ''s = solid (effective) stress, a5 = solid acceleration, vS' (vw) is the solid 
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(fluid) velocity, b = body force per unit mass, p w = pore fluid pressure, p s = ( 1- n .. )P., 

and p .. = nw p,. with Ps = solid mass density, Pw = fluid mass density and nw = 

porosity; ~ = n wz Yw k - 1
, with k = hydraulic conductivity, Yw = Pwg = fluid unit 

weight, and g = ~lbll) = acceleration of gravity. 

In the case of a compressible pore fluid, the pore fluid pressure is determined 

from the computed velocities through time integration of the following equation: 

(3.3) 

where A.w = fluid bulk modulus. In the case of an incompressible pore fluid, the 

pore fluid pressure is determined from the computed velocities through the following 

equation: 

(3.4) 

where A.w = a penalty parameter used to enforce the incompressibility constraint 

(Prevost, 1982, 1985). 

The multi-yield plasticity constitutive model has been validated in the past for 

analysis of liquefaction phenomenon (Popescu and Provost 1993, 1995). The model is a 

kinematic hardening model based on a relatively simple plasticity theory (Prevost 1985), 

and is applicable to both cohesive and cohesionless soils. The main features of the multi-

yield plasticity soil constitutive model are shown in Figure 3.1. Fundamental theory 

behind the model has originated from the concept of a 'field of work-hardening moduli' 

(Mroz 1967) by approximating the nonlinear elastic plastic stress-strain curve into a 

number of linear segments with constant shear moduli. This results in defining a series of 
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Figure 3.1: Main features of the multi-yield plasticity soil constitutive model 
(after Popescu 1995). 

nested yield surfaces in the stress space. Each yield surface corresponds to a region of a 

constant shear modulus. The outermost surface is related to zero shear modulus, and is 

called failure surface. Both Drucker-Prager and Mohr-Coulomb type surfaces can be used 

in the model for frictional materials (sands). However, rounded comer Mohr-Coulomb 

type yield surfaces were used in this study. The plastic potential is assumed to be 

associative for its deviatoric component and non-associative for its dilatational 
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(volumetric) component. The volumetric component is defined to account for dependence 

of soil dilatational behavior on the mobilized stress ratio. The soil hysteretic behavior and 

shear stress-induced anisotropic effects are simulated by a purely devaitoric kinematic 

hardening rule. Accurate simulation of shear induced plastic dilation and of hysteretic 

effects under cyclic loading together with full coupling between solid and fluid equations 

(discussed earlier) allows capturing the build up and dissipation of pore water pressures 

and gradual softening and hardening of soil materials (Prevost, 1989). 

3.3. Estimation of Constitutive Parameters 

As mentioned earlier, any efficient soil constitutive model usually reqmres a 

relatively large number of parameters and a well-defined methodology for calibrating 

those parameters. A well-defined methodology of parameter estimation for multi-yield 

surface plasticity model parameters from the results of conventional laboratory tests (e.g., 

triaxial, simple shear) is documented by Popescu and Prevost (1993) and from in-situ 

(e.g., standard penetration, cone penetration) soil tests by Popescu (1995). The multi­

yield plasticity soil constitutive model, its implementation algorithm, and the 

methodology for estimating the constitutive model parameters have been repeatedly 

validated in the past for soil liquefaction computations, based on both centrifuge 

experimental results (e.g. Popescu and Prevost, 1993, 1995; Jafari-Mehrabadi, 2006) and 

full-scale measurements (e.g. Keanne and Prevost, 1989). 

The multi-yield surface plasticity constitutive model parameters can be divided 

into state parameters (obtained from general laboratory soil tests), low-strain elastic 

parameters (describing elastic deformability), yield and failure parameters (used for 
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generating the nested yield surfaces), and dilation parameters (used to calculate the 

plastic volumetric strain). The commonly used constitutive parameters of the multi-yield 

plasticity model are listed in Table 3 .1. 

a) State Parameters: 

Porosity (nw): The porosity is usually calculated from the soil relative density and 

void ratios. The following relations are usually used for calculating porosity: 

e=e max-Dr( e max-e mtn) (3.5) 

n~~'=e/(1 +e) (3.6) 

Hydraulic conductivity (k): The standard procedures for determining hydraulic 

conductivity are constant-head or falling-head permeability tests. When actual test results 

are not available, various correlations are used based on the soil type. In cases where 

experimental results are unavailable, hydraulic conductivity can be approximated using 

the well known equations proposed by the Hazen or Kozen-Carman equation. To include 

the effect of soil relative density of the sand, the equation proposed by Shahabi et al. 

(1984) can be used. Some of the commonly used correlations are listed in Table 3.2. 

b) Low strain elastic parameters: 

Low strain elastic shear (Go) and bulk (Bo) moduli: The low strain shear 

modulus (strain level 0.05 to 0.1 %) corresponds to the assumed elastic range of soil 

behaviour within the first yield surface. Low strain shear and bulk moduli are related 

through Poisson' s ratio ( v) using the following equation: 

2G0 (l+v) 
Bo = - 3--.,..:(1::.....:--2-v )~ (3 .7) 

Based on the results from resonant column tests or in-situ shear wave velocity 

measurements, different correlations are derived by several researchers for calculating 
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shear modulus at very low strains (Gmax, strain level of 0.0001% to 0.01%). The low 

strain shear modulus is usually determined from Gmax and modulus degradation curves 

(Ishibashi and Zhang, 1993). Some of the commonly used equations for calculating Gmax 

are shown in Table 3.2. The commonly used value for power exponent (n) and Poisson' s 

ratio are also shown in Table 3.2. 

c) Yield and failure parameters: 

The yield and failure parameters are used to describe the initial position, size and 

plastic modulus corresponding to each yield surface. The ¢, Edevmax, and ko are included in 

a modified hyperbolic expression proposed by Prevost and Keane (1989) and a wide 

range of soil stress-strain relations described by Griffiths and Prevost (1990). 

Friction angle at failure ( (i): The friction angle at failure, in compression and 

extension, can be obtained from the results of monotonic triaxial compression and 

extension tests (Vaid et al. , 2001). It can also be estimated from the correlation obtained 

from in-situ tests such as CPT (Robertson and Campanella, 1983; Kulhawy and Mayne, 

1990) or SPT (Schmertman, 1975). Some of these correlations are tabulated in Table 3 .2. 

Maximum deviatoric strain (Edev"'ax): The maximum deviatoric strain, inferred 

based on results of drained triaxial or simple shear tests, is used in the multi-yield 

plasticity model to develop the backbone curve for building the nested yield surfaces. The 

best way for estimating maximum deviatoric strain is by performing a p-constant triaxial 

test (Azizian, 2004). In absence of that type of test, drained cyclic triaxial test results can 

be used for estimating maximum deviatoric strain, both in compression and extension. 

Coefficient of lateral stress (ko): The parameter coefficient of lateral stress in 

Dynaflow is used only for generating the deviatoric stress-strain backbone curves 
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(Griffiths and Prevost, 1990) and the initial locations of yield surfaces in the stress space 

(Prevost, 1989). Its value depends on the type of consolidation (e.g., anisotropic or 

isotropic) applied in the laboratory soil tests, which is used for calibrating the model 

parameters. 

Stress strain curve coefficient (a): Hayashi et al. (1992) proposed an expression 

using a hyperbola whose shape depends on the characteristic of the grain size distribution 

through the stress-strain curve coefficient a. The major advantage of the model proposed 

by Hayashi et al. (1992) is that it is based on real experimental results. The equation for 

calculating a is shown in Table 3.2. 

d) Dilation Parameters: 

Dilation angle ( v!J: The dilation parameters are used in the plastic flow rule for 

calculating the so-called plastic dilation (shear-induced plastic volumetric strain). The 

dilation angle ( vJ) in DYNAFLOW and in the thesis represents the phase 

transformation angle. This definition for dilation angle is not the one which normally 

used in the literature. The value of If/ is a unique property for a specific type of sand. It is 

not affected by the mode of loading or soil relative density (Vaid and Chern, 1985; Vaid 

and Thomas, 1995; Vaid et al., 2001). 

Dilation parameter: The dilation parameter, XPP• is a scale coefficient for plastic 

dilation, basically depending on relative density and soil type (Popescu, 1995). The 

dilation parameter accounts for the ratio between rates of plastic volumetric strain and 

shear strain. All the multi-yield plasticity model parameters except the dilation parameter 

(Xpp) can be estimated from results of conventional field (e.g. CPT) or laboratory soil 

tests. After that, the dilation parameter (Xpp) is estimated by performing a liquefaction 
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strength analysis (which will be discussed in next subsection). A methodology for 

estimating Xpp from in-situ test results is documented by Popescu (1995). The provided 

equation for calculating Xpp (for Erksak sand) is shown in Table 3.2. 

As discussed in the above sub-section, various correlations recommended by 

various authors are used (when actual test results are not available) for estimating multi­

yield plasticity constitutive model parameters (except Xpp)· However, uncertainty in 

estimated soil properties and spatial variability of the soil properties often cause 

engmeers to use the available correlation formulae along with their judgement to 

reasonably estimate the required model parameters. More correlation charts and 

equations may be found in other references, such as Popescu (1995), Prevost and Popescu 

(1996) and Kulhawy and Mayne (1990). 

3.4. Liquefaction Strength Analysis 

After estimating all the other multi-yield model parameters from conventional 

laboratory or in-situ test results, the dilation parameter (Xpp) should be estimated next, by 

performing the liquefaction strength analysis as described by Popescu and Prevost 

( 1993). Constitutive experiments (element tests) are used for this purpose. This analysis 

is based on fitting the experimental liquefaction strength curve using finite element 

simulations of either cyclic undrained triaxial (element tests) or cyclic simple shear tests. 

The liquefaction strength curve is a plot of the cyclic stress ratio as a function of the 

number of cycles necessary to induce initial liquefaction in an undrained cyclic soil test. 

The cyclic stress ratio is expressed either as crd/2cro' (for triaxial test), where crd is the 

single amplitude cyclic axial stress and cr0 ' is the initial effective confining stress; or as 
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rhlcYvo ' (for simple shear tests), where rh is the double amplitude cyclic shear stress and 

avo ' is the initial effective vertical stress. The constitutive experiment procedure consists 

of repeating a test on an element with changing the value of X pp and keeping constant the 

rest of the multi-yield model parameters to obtain the same result as obtained in 

laboratory tests. The number of cycles to liquefaction (NL) is evaluated from each 

element test by considering the occurrence of initial liquefaction. The occurrence of 

initial liquefaction is considered in this study as the occurrence of 5% double amplitude 

axial strain or EPWP ratio reaches unity - whichever comes first. Element tests are 

performed for different cyclic stress ratios and assumed dilation parameter values. The 

final dilation parameter value is determined by fitting the experimental liquefaction 

strength curve with the computed one. A sample of experimental (test points) and 

predicted (from Dynaflow) liquefaction strength curves are shown in Figure 3.2. For a 

detailed description of the procedure, refer to Popescu and Prevost (1993) and Popescu 

(1995). 
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Figure 3.2: Liquefaction strength analysis using laboratory tests (Prevost and 
Popescu, 1996). 
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Table 3.1: The parameters of the multi-yield plasticity model 

Constitutive parameter Symbol Type 

Mass density - solid ri 

Porosity n w State parameters 

Hydraulic conductivity k 

Low strain elastic shear and bulk moduli Go, Bo 

Poisson's ratio v Low strain elastic parameters 

Power exponent n 

Friction angle at failure ¢ 

Maximum deviatoric strain ( comp/ext) max 
lidev 

Yield and failure parameters 
Coefficient of lateral stress ko 

Stress-strain curve coefficient a 

Dilation angle If/ 
Dilation parameters 

Dilation parameter X pp 

72 



Table 3.2: Correlations for the multi-yield plasticity model parameters 

Parameter Correlations Comments Reference 

Typical values for all Terzaghi and 
Chart: k = f(soil type) 

soils Peck (1967) 

1 r e3 
k=-----

k,S 2 11 (1 +e) 

where y= unit weight, f.!= 

dynamic viscosity, e= void 
Kozen-Carman Lambe and 

ratio, k5= factor depending on 
equation Whitman (1969) 

pore shape and ratio of length 

of actual flow path to soil 

Hydraulic bed thickness, S= specific 

Conductivity surface area 

(k) 3 Shahabi eta!. 
k = 1 2Com D o.s9 _e_ Medium and fine sand 

• II 10 1 + e 
(1984) 

[ 3 ]'"" k = 2.4622 D1
2
0 (1: e) Chapuis (2004) 

where D 10 is in mm 
k = 10-2 D1~ where D10 in 

Sandy soil Hazen (1930) 
mm, and k in m/s 

Sand and gravel 
Chart: k = f( e, D 10) USACE (1994) 

mixtures 

Creager et al. 
Table: k = f(soil type, D2o) All soils 

(1945) 
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Table 3.2 (cont.): Correlations for the multi-yield plasticity model parameters 

Shear 

modulus 

(G) 

Poisson's 

ratio (v) 

G = 70 (2.17- e Y (Po ) o.s 
max (1 +e) Pa 

where Gmax is the shear 

modulus at very low strains, Pa 

is the atmospheric pressure 

( 1 00 kPa) and po is the 

effective mean confining stress 

in same unit as Pa 

G _ 2630(2.17-eY p
005 

max - (1+e) 

G _1230(2.97-eYP
005 

max - (1 +e) 

G = 400P e{IJ9D,} Po 
( )

0 43 

max a Pa 

v = 0.1 + 0.3¢,,, 

Dry sand (y:S1 04
) 

Rounded Ottawa sand 

Angular Ottawa sand 

Tricino sand 

(¢ - 25) . Sand 
where ¢,., = (

4 
) , ¢IS the 

5-25 

friction angle at failure 

v = 0.2 ... .. 0.4 Loose sand 

v = 0.25 .... 0.4 Medium sand 

v = 0.3 ..... 0.45 Dense sand 

v = 0.2 . .... 0.4 Silty sand 

v = 0.1. ... 0.3 Loose sand 

v = 0.3 . . .. 0.4 Dense Sand 
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Hardin and 

Richart (1963) 

Richart et al. 

(1970) 

Richart et al. 

(1970) 

Belloti et al. 

(1986) 

Kulhawy and 

Mayne (1990) 

Das (2005) 

Kulhawy and 

Mayne (1990) 



Table 3.2 (cont.): Correlations for the multi-yield plasticity model parameters 

Popescu and 

n = 0.7 Nevada sand (fine) Prevost 

Power (1993) 

exponent Conventional value for Popescu 
n = 0.4 .... . 0.6 

(n) cohessionless soils (1995) 

Belloti et al. 
n = 0.65 .... 0.75 Ticino sand 

(1986) 

¢ = 17.6 + 1l.Ologi£ 
Pa 

R2 =0.64 and SD =2.8° 
Kulhawy and 

where qc is the cone penetration Mayne (1990) 

resistance 

Robertson and 

¢=tan-'[ 0.1 +0.38Jog~] - Campanella 
O'vo 

Friction 
(1983) 

angle at 
NAVFAC 

Chart: ~ = f(Dr) Fine sand 

failure(~) 
(1982) 

0.34 

¢=tan-' N SPT 

12.2 + 20.3 O'vo 

Pa Cohessionless soil Schrnertmann 

where NsPT is the standard Depth > l .... . 2m (1975) 

penetration test resistance, O'vo' is 

the initial effective vertical stress 
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Table 3.2 (cont.): Correlations for the multi-yield plasticity model parameters 

Stress-
a =0.037Dmax-0.027Cu + 0.217 

strain 
where Dmax is the maximum Hayashi et al. 

curve Various types of sand 
particle size, Cu is the (1992) 

coefficient 
uniformity coefficient 

(a) 

Coefficient kor = 1- sin ~ NC sands Jaky (1948) 

of lateral Ochiai ( 1977) 

stress at . ( I )I 25 
0" hO _ q c P a . 

Calibration chamber Kulhawy et al. 

Pa - 35e(Dr/20 ) 
data (1989) 

Vaid et al. 
Fraser River sand 

Dilation (200 1) 

angle (\!I) Been et al. 
Chart: \jf = f(qc, p', soil type) Various sand 

(1987) 

Dilation logXPP =7.07-11.4 x 

parameter 

[ 

~ 
]

0.13 

P /( · )039 Erksak sand 15 + q c a ()" vO 

O.l 25- q c ~Po{ a-~o p.39 

Popescu 

(1995) 

76 



II 
CHAPTER4 

Experimental Program 

The research related to physical centrifuge modelling of soil liquefaction on 

heterogeneous soil is discussed in this chapter. The centrifuge facility and the 

characteristics of equipments are discussed next in section 4.1. The centrifuge test setup 

is discussed in section 4.2. The sample preparation and saturation process are discussed 

in sections 4.3 and 4.4 respectively. Instrumentation and measurement procedure are 

discussed in section 4.5. The centrifuge test procedures and test results are discussed in 

section 4.6. The difficulties faced during centrifuge tests are briefly discussed in section 

4.7. The summary and conclusion of the centrifuge tests are discussed in section 4.8. 

4.1. Characteristics of Equipment and Centrifuge Facility at C-CORE 

C-CORE's centrifuge facility is located in the Memorial University, St. John' s 

campus. This facility is a two-story building, containing a main bay, a control room, a 

cold room, the model preparation and radiography laboratories, electrical and mechanical 

workshops, offices and a circular chamber containing an Acutronic 680-2 centrifuge 

(made in France). The facility, which is funded by the industry and government and 

maintained by C-CORE, is located adjacent to S J Carew building. The facility is in 

working condition since June, 1993. 

The C-CORE centrifuge has the ability to test the model at 200g and has a radius 

of 5.5m to the surface of the swinging platform. The swinging platform is located at one 

end of the centrifuge arm and is used for carrying the test package. The test package is at 
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. -----------------------------------------------------------

a working radius of Sm. The maximum rotational speed is 189 rpm. The centrifuge has a 

maximum payload capacity of 2200kg to an inertial acceleration equivalent to 1 OOg at 5m 

radius. This capacity reduces to 650kg due to the increase in self weight of the platform 

at 200g. The maximum payload size is 1.4m long, 1.1 m wide and 1.2 to 2m high. The 

other end of the arm holds a counter weight of 22000 kg. The activities inside the 

package and the centrifuge operation are visually monitored with the cameras; one 

mounted on the test package and four on the chamber wall. The centrifuge is equipped 

with six rotary joints which permit fluids to flow through the central axis of the machine 

to the platform. Electrical signals from the transducers are acquired and recorded by a 

data acquisition system located above the centrifuge and relayed to the computer in 

centrifuge control room in the main building. Picture 1 shows the C-CORE's centrifuge. 

The efficient and safe use of the centrifuge is ensured by adopting the routine checking 

procedures. The procedures are similar to those adopted at the Geotechnical Centrifuge 

Centre of Cambridge University Engineering Department as presented by Schofield 

(1980). 

During testing, the input ground motion is applied at the base of the box using an 

electro-hydraulic (Phillips et al., 2004) earthquake shaker (shown in Picture 2). The 

earthquake simulator (developed by Actidyn Systems) is capable of generating 40g sine 

acceleration on a 400kg model at frequencies up to 200 Hz or more, and it may generate 

larger accelerations up to 60g on smaller payloads. The fully computerized multi-degree 

of freedom control system can generate several modes of excitation such as: sine, 

broadband noise, or arbitrary transient waveforms with both amplitude and frequency 

control (C-CORE, 2005). 
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• 
Picture 1: Centrifuge at C-CORE . 

• 

Picture 2: Earthquake simulator (after C-CORE, 2005). 
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The data acquisition system collects data simultaneously with the operation of the 

earthquake shaker. The Matrix system includes 8 analogue data inputs low pass filtered at 

1 kHz and sampled at 2.56 kHz per channel using VXI hardware. This hardware has a 

further 24 channels of analogue inputs controlled by Data Physics 620 data acquisition 

software. These 24 inputs are typically filtered at 2 kHz and sampled at 5.12 kHz per 

channel for a 16 second period before, during and after the earthquake event. These 24 

channels are usually used for collecting data from the instrumentation in the model (C­

CORE, 2005). Therefore, as per present data acquisition system, maximum twenty-four 

instruments (similar or of different types) can be monitored during an earthquake­

simulation centrifuge test. 

4.2. Soil Characteristics and Centrifuge Test Setup 

The soil for centrifuge experiments was selected from the Fraser River Delta in 

British Columbia. Fraser River sand receives huge research attention because of an 

expected large number of seismic events and higher liquefaction susceptibility in a 

relatively important area. The Fraser River sand is grey coloured medium grained sand, 

and is comprised of 40% quartz, quartzite and chert, 11% feldspar, and 45% unstable 

rock fragments. The soil grains are angular to sub-rounded (Vaid and Sivathayalan, 

1996). The batch of the sand used here had an average particle size Dso of 0.26mm with 

the fine content (passing #200-sieve) of 0.4%. The particle size distribution curve is 

shown in Figure 4.1 for the batch of Fraser River sand used in the centrifuge tests. The 

maximum and minimum dry densities are 1.67g/cm3 and 1.4g/cm3
. The maximum and 
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minimum void ratios are 0.94 and 0.62, respectively. The specific gravity of the batch of 

sand is 2. 71 (C-CORE, 2005). 
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Figure 4.1: Particle size distribution curve for Fraser river sand used in the 
centrifuge tests (after C-CORE, 2005). 

Three liquefaction tests were conducted on Fraser River sand at 70g's to 

determine the prototype behaviour of heterogeneous soil in a centrifuge model. The 

internal dimensions ofthe model container are 73.7cm (length) x 28.lcm (width) x 57cm 

(depth). The first test was performed on a medium dense homogeneous soil (Dr = 55%). 

A 16m deep medium dense sand deposit was overlying on 4m deep dense (Dr = 75%) 
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cohesionless soil layer. A frame structure (shown in Picture 3) placed on two strip 

footings was placed on that soil deposit. The structure was built of mild steel plates of 

different thickness. The dimensions of those plates are shown in Table 4.1. Performance 

of the frame structure under a synthetic earthquake was studied. The characteristic 

frequency of the structure is 2.1Hz (at prototype scale). The bearing pressure below 

footings is 110 kPa at 70g. A 5.4cm (at model scale) Duxseallayer has been placed at the 

two transversal walls of the rigid box to reduce boundary effects by partially preventing 

wave reflection. 

Picture 3: Frame structure on two strip footings. 

The second and the third tests were performed on heterogeneous soil. As there 

were several malfunctioning transducers in test 2, test 3 was a repeat of test 2 with more 

transducers duplicating key locations. Both test 2 and test 3 were performed using a new 

82 



model container. The internal dimensions of the new model container are 73.7cm (length) 

x 27.5cm (width) x 57cm (depth). One of the advantages of this box is that transverse 

side walls are made of with thick plexiglass. Therefore, it was possible to monitor the 

whole soil depth of the model during saturation and tests. In both models, 2-metre thick 

loose soil (Dr=35%) pockets were placed within a 16m deep dense soil (Dr=75%) deposit. 

This heterogeneous soil was overlying a 4m thick dense soil layer. The dimensions of 

loose pockets are shown in Figure 4.2d. The same structure was also placed on the 

heterogeneous soil to find the effect of soil heterogeneity on the responses. The model 

configurations with the transducer locations for uniform and variable soil are shown in 

Figure 4.2. Locations of all the transducers in x-y-z coordinates, at prototype scale, are 

shown in Table 4.2. 
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Figure 4.2: Schematic diagram of centrifuge tests a. plan: test 1; b. plan: test 3; 
c. elevation: test 1; d. elevation: test 3. 
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4.3. Sample Preparation 

Picture 4: Setup for sand raining 
during test 2. 

All centrifuge models were prepared 

by air-pluviation of dry Fraser River 

sand into the model container using a 

hopper (shown in Picture 4). First, a 22-

25mm thick drainage layer was placed 

before raining the sand. In the drainage 

layer, coarse sands with particle size 

larger than 1 mm and less than 2mm 

were used. This drainage layer was used 

to uniformly distribute the fluid 

throughout the sample during saturation. 

A geo-textile membrane was used on 

the top of this drainage layer to prevent the sands from going inside more porous 

drainage layer. After placing this membrane, about 54mm thick Duxseal layer was placed 

at the sidewalls perpendicular to the direction of seismic acceleration. The Duxseal layer 

was used for partially reducing the boundary effects. Sand layers were deposited next 

using a hopper. The sand was raining from the hopper through two rows of holes of about 

3mm in diameter and spaced 8mm apart. The width of the hopper equals the width of the 

box. The hopper was manually moved back and forth along the length of the box. The 

relative density of the soil was controlled by the falling height of sand. Numerous trials 

have been performed, before preparing the model, to obtain a relation for sand falling 

height and achieved relative density. During all these trials and model preparations, the 
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hopper speed was kept constant at about 1 Ocm/sec. The relation between sand falling 

height and the achieved relative density is shown in Figure 4.3. When the sand deposit 
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Figure 4.3: Sand falling height vs. relative density relation. 
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Figure 4.4: Schematic diagram for preparing loose pockets in heterogeneous 
soil using two lightweight movable blocks (blockl and block2). 

reached the selected height of the transducer, sand raining was stopped to place the 

accelerometers and the pore pressure transducers. Top views of the model at two different 

elevations are shown in Picture 5. There are 16 loose pockets at 8 different depths inside 

the heterogeneous soil. In each horizontal layer, the loose pockets were deposited fi rst. 
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(a) (b) 

Picture 5: Top view of the model with placed instruments in testl at two 
different depths; (a) at Sm depth; (b) at lm depth; PP* is a PPT used for pile 
testing (not related with this thesis). 

Then, the remaining spaces were filled with dense sand. The preparation of a loose 

pocket in heterogeneous soil is shown in Figure 4.4. Two light weight trapezoidal blocks 

(blockl and block2 as shown in Figure 4.4) were used for constructing loose pockets 

during Sand raining. 

4.4. Saturation of Models for Centrifuge Tests 

After the sand raining was finished, the model was placed under vacuum for de-

airing and saturation. The pore fluid characteristic, procedure and setup for sample 

saturation are explained in this section. 
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4.4.1 Pore Fluid 

The hydroxypropyl methylcellulose (HPMC) solution has been selected as pore fluid in 

the centrifuge tests. The HPMC fluid used in these centrifuge tests was prepared by 

mixing Methocel F50 powder manufactured by DOW Chemical Company with water. 

This fluid was also used in the previous centrifuge tests at C-CORE during LRI and 

COSTA-Canada projects (C-CORE, 2005). Pore fluids, having viscosity greater than 

water are usually used in geotechnical centrifuge tests, to accurately satisfy the scaling 

laws related to the movement of pore fluid through the soil during dynamic loading 

events. To fulfil the scaling laws regarding pore pressure dissipation, the permeability of 

the soil could be reduced by a scaling factor of 70 (in this case), by increasing the fluid 

viscosity by 70 times (Hausler, 2002). However, a pore fluid with a kinematic viscosity 

of 70 times that of water would significantly increase the amount of time required for 

saturation of the model and also might affect the degree of saturation of the model. 

Therefore, a target pore fluid viscosity of approximately 35 times that of the water was 

used in these tests. For a 35cSt HPMC mixture at 25°C, a mass of HPMC powder of 

1.92% of the entire solution volume is required. A mass of benzoic acid powder, equal to 

approximately 1% of the mass of the HPMC powder, was added to the cellulose powder 

to prevent any bacterial growth which might occur in the prepared fluid. The pore fluid is 

prepared by mixing required amount (as discussed earlier) of HPMC and benzoic acid 

powder mixture with the required amount of deionised water at room temperature. The 

mixture will foam a lot while agitating with an electric mixer. The powder must be added 

in increments of about 250gms. If too much powder is added at a time then the powder 

may clot and stick together in the solution. Therefore, the target viscosity will not be 
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achieved. After preparing the fluid it should be tested for viscosity and transferred into a 

reservoir where it is de-aired for at least 48 hours. The viscosity highly depends upon the 

temperature. Since the solution must be prepared a few days prior to the test, it is difficult 

to get the exact target viscosity during centrifuge tests. 

4.4.2 Saturation Procedure 

Vacuum saturation process was used here for the model saturation. The schematic 

diagram of the saturation process is shown in Figure 4.5. Different components of the 

saturation setup during test I are shown in Picture 6. Before starting the saturation 

process, the fluid must be de-aired for at least 48hrs by applying vacuum. The connection 

line from fluid container to the box was then filled with fluid by controlling the valve V6, 

and V4 (shown in Figure 4.5). The connection line between C02 container and the box 

(up to V5) was then filled with C02 . After replacing all the air inside both the connection 

line (for fluid and C02) , the model was placed under vacuum for at least 48 hours for de­

airing. The suction inside the box was kept at about 80 kPa during de-aeration process. 

All the valves except VI and VII were kept closed during de-airing. It is possible to de­

air the pore fluid container (by opening VI 0) in parallel with the model. However it was 

preferred to de-air the pore fluid container before starting preparation of the model. It has 

helped to finish de-airing the fluid container before closing the model container lid. After 

applying vacuum for about 48hours, most of the air inside the soil was removed. Rest of 

the air was replaced by more soluble C02. Carbon dioxide gas was introduced into the 

model at almost atmospheric pressure by controlling the valve V7, V5, V8, V12, V3a and 

V3b. A depressurization chamber (C02 container) was used for reducing the high 
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pressure of the gas which was coming from a compressed gas cylinder. While applying 

C02, valve Vl and VlO were closed. But Vll was not touched until the end of the 

saturation process. Gradually, over the period of approximately half an hour, the pressure 

inside sealed model container was brought back to the atmospheric pressure using C02. It 

took between 8-10 buckets of C02 to bring the box back to the atmospheric pressure. 

Following this process, the model container was again placed under vacuum (by opening 

the valve Vl) to bring the vacuum level back to the 75kPa. After approximately 20 

minutes, the C02 was applied again to remove the rest of the air. These processes have 

been repeated for 2-3 times. The major portions of the gas inside the soil voids were C02 

which is more soluble in water than air. This C02 flushing was helped to increase the 

degree of saturation. Next, the valve V2 was opened to control the vacuum difference (if 

any) between model container and fluid container. After few minutes, valve V6, V4, V3a 

and V3b were opened to allow pore fluid inside the model. The flow rate of the fluid was 

kept very low to reduce the chances of sample disturbance. The fluid was entering into 

the model container under the gravity force (due to head difference) only. The average 

flow rate was about 0.4litre per hour. It has taken about 2-4days to complete the 

saturation process. During saturation of heterogeneous soil, it was observed that the dense 

soil in the same layer saturated before loose pockets (shown in picture 7), probably 

because of higher suction induced by smaller voids in the dense sand. When the fluid 

level reached about 12-15mm above the soil surface, the valves were closed. 
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Picture 6: Model during saturation under vacuum. 

Once the saturation process was complete the vacuum was released step by step 

with a rate of decrement of about 15kPa in lOrnins. A surface profile (shown in Figure 4.6 

for test 3) was then constructed by measuring the soil surface at different locations. The 

measurements were manually taken before and after the saturation at predefined, equally 

spaced locations using rulers. The linear variable differential transformers (L VDT) were 

then placed at the desired locations (shown in Picture 8) using L VDT holders. Next, the 
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• 
Picture 7: Elevation of heterogeneous soil model during saturation in test2 . 

• 

Picture 8: Elevation of heterogeneous soil model after saturation in test3. 
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model was carefully moved to the centrifuge arm for testing. A pallet jack was used to 

move the box from the laboratory to centrifuge chamber. Then, a forklift truck was used 

to place the box onto the centrifuge arm (shown in Picture 9). All the instruments were 

then connected with the signal conditioning box. Next, the model was tested at 70g 

inertial acceleration level. 
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Figure 4.6: Average soil height (at model scale) during test 3 (heterogeneous 
soil). These values are average of 5 measurements at SOmm interval in z­
direction starting at 43mm from side wall. There are Duxseal layers between 0-
54mm and 683-737mm in x-direction. Plan is shown in the inset with dotted 
points for measurement location. 

4.5. Instrumentation and Measurements 

Experimental results, such as accelerations, pore water pressures and settlements 

were monitored throughout the tests. During first two tests, six PPTs, two L VDTs and 

seven accelerometers were used. In test 3 twelve PPTs, four LVDTs and eight 

accelerometers were used. The pore pressure transducers (PPT) were Druck miniature 
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model PDCR81. The PPT consists of a single crystal silicon diaphragm with a fully active 

strain gage bridge diffused into the surface. The transducers were supplied with a porous 

stone, which was used to protect the diaphragm against the pressure applied by the soil. 

The transducers are available for various pressure ranges. The maximum pressure ranges 

for the transducer used in the tests were: 15psi, 1 OOpsi and 200psi. The specifications for 

PPT are presented in Table 4.3. The accelerometers used in the experiments were ICP 

(Integrated circuit piezoelectric) miniature model 353B 18 manufactured by PCB 

Piezotronic Inc. The specifications for the accelerometers are listed in Table 4.3 . The 

settlements were measured using general purpose Linear Variable Differential 

Transformers (L VDT) of the Trans-Tek series model 240. The specifications for L VDT 

are also presented in Table 4.3 . 

Calibration factors were used to convert the recorded voltage output of the 

instrument into engineering unit. For example, PPT recordings are converted to 'kPa', 

accelerometer readings to 'g' and LVDT readings to 'mm'. The calibration factors for 

PPT and LVDT were determined by manual calibration, preformed before each test and 

also compared with old calibrated constants or the one provided by the manufacturer. 

Horizontal and vertical locations of the transducer were carefully measured using rulers. 

The position of each accelerometer was measured at the tip of the accelerometer along its 

centreline. Similarly, the position of each PPT was measured at the centre of the porous 

stone. Pore pressure transducers were placed within the soil deposit with the plane of their 

porous stones oriented vertically and the transducers parallel to the direction of shaking. 

The final locations of the transducers after each test were also measured to calculate the 

transducer movement during the testing. The partially excavated model with transducers 
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is shown m Picture 10. The locations of the instruments before and after the 

Picture 9: Placing the box on centrifuge arm using forklift truck during test3. 

Picture 10: Top view of partially excavated model after test3. 

test for tests 1, 2 and 3 are tabulated in Table 4.4, Table 4.5 and Table 4.6 respectively. 
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4.6. Centrifuge Test Procedure and Results 

Each of the three centrifuge tests have been performed in two flights. During the 

first two tests, the needle probe measurements were performed in the first flight and then 

the centrifuge was stopped to remove the needle probe driving (shown in Picture 11) 

actuator. The centrifuge was spun up again and the earthquake simulation test was 

performed in the second flight. During the third test, in-flight cone penetration test was 

performed in the first flight and the earthquake simulation test was performed in the 

second flight. The rotational speed of the centrifuge was increased gradually from 0 to 

about 113rpm. The actual inertial acceleration calculated was about 70±0.5g during all 

three tests. The centrifuge speed was kept constant for about 15-20mins for soil 

consolidation before doing the cone penetration I needle probe test. This soil 

consolidation ultimately affects the relative density of the sand in the model. 

Picture 11: Centrifuge model ready to fly for first flight during testl. 
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4.6.1. Measurement of Soil Relative Density 

In test 3, an in-flight cone penetration test was performed using a 9.5mm diameter 

sand cone to check the presence of loose pockets after the model was consolidated under 

its self weight at 70g in the centrifuge. The penetration velocity was 3mm/s and total soil 

penetration depth was 250mm. The cone penetration resistance measured in test 3 is 

shown in Figure 4.7. The target locations of loose pockets are also shown in the figure. 

Since the thickness of the loose pocket (i.e., 29mm) was less than 6 times the cone 

diameter; this test results cannot be used to determine the exact location of loose pockets. 

However it gives a qualitative idea about the location of loose pockets and overall 

penetration resistance. 

The soil surface was also measured carefully at 60 locations to calculate an average soil 

density. The measurements were done in a grid of 12x5 (shown in Figure 4.6) at four 

instants during each tests (i.e., before saturation, after saturation, before applying 

earthquake and after applying earthquake). All the average soil surface measurements in 

test 3 are shown in Figure 4.6. It was observed that the soil depth before and after 

saturation was the same. Therefore, it is conc,luded that there was no sample disturbance 

or change in soil relative density during saturation. The calculated overall average soil 

relative density was found to be 60.58% for dry and as well as saturated soils during test 

3. Similarly, the average relative density of the model after the first centrifuge flight was 

found to be 64.48%, which is very close to the theoretical relative density of 64.42% for 

the heterogeneous soil model considered in the study. 
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Figure 4. 7: Cone penetration test results during test3 (tested up to 250mm soil 
depth). Desired locations of loose pockets are also shown in the figure. Test 
location is shown in Figure 4.2. 

4.6.2. Earthquake Simulation Test 

The earthquake simulation test was performed in second flight during all the three 

tests. The rotational speed of the centrifuge was increased gradually from 0 to about 

113rpm for the second time. The centrifuge rotational speed was kept constant for about 

1 Omins for stabilizing all the pore pressure transducers. Then the input ground motion 

was applied in the horizontal direction at the base of the box using an electro-hydraulic 

earthquake shaker (EQS). A synthetic acceleration time history, a 2% probability of 

exceedance in 50 years for Vancouver area based on the firm ground target spectrum in 

Canadian building code (NBCC 2005), was used in all three centrifuge tests. The 

synthetic acceleration time history was then amplified by 1.46 to obtain a PGA of 0.25g 

during centrifuge tests. Before each of the geotechnical model test, the earthquake 

98 



simulator (EQS) was tuned using a dummy payload at the desired centrifuge acceleration 

level for about two hours period. A dummy payload, similar in mass and centre of mass to 

the geotechnical model is mounted on the EQS and is subjected to a pre-test comprising 

about 8 random bursts of uncorrelated accelerations in the range 40 to 300Hz. The 

actuator's gain and phase transfer functions are assessed from the average system 

response to these bursts. The target earthquake motion is assessed from the prescribed 

earthquake motion defined in prototype terms (Phillips et al., 2004). The prescribed 

motion is scaled in amplitude and time according to the centrifuge scaling laws. Due to 

constraints of C-CORE' s centrifuge shaker, the input motion had a frequency range 

between 40 to 200 Hz (0.57 to 2.86Hz at prototype scale). Next, the input motion is base 

line corrected by removing any residual displacement or velocity at the end of the record . 

Due to complexity in the EQS, the actual applied motion in each test may not always be 

the same as desired target motion. Therefore, to minimise this difference between target 

and applied motions, a very careful tuning is required before each test. 

4.6.3. Discussion of Centrifuge Test Results 

The recorded EPWP are presented in terms of their ratio (EPWP ratio 

EPWP/ a/) with respect to the initial vertical effective stress (a/ ) at SIX different 

locations in test 1 (2 locations below structure and 4 locations in the free field m 

homogeneous soil) are shown in Figure 4.8. The EPWP ratios below the structure m 

heterogeneous soil are shown in Figure 4.9. Recorded EPWP ratios in the free field in 

heterogeneous soil are shown in Figure 4.1 0. Some of the pore pressure transducers did 

not work properly due to various reasons (mentioned in the figure). Recorded EPWP 
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Figure 4.8: Recorded excess pore water pressure (EPWP) ratio with respect to 
the initial effective vertical stress at 6 locations in homogeneous soil (testl). 

ratios of those transducers which worked properly are compared here between the results 

on homogeneous and heterogeneous soil model. 
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Figure 4.9: Recorded excess pore water pressure (EPWP) ratio with respect to 
the initial effective vertical stress at 2 locations in test2 and 4 locations below 
structure in test3 (heterogeneous soil) a. Pl: dense soil; b. P2: loose soil; c. P3: 
dense soil; d. P4: loose soil. 

From the EPWP ratio results it has also been observed that EPWP generation in the 

heterogeneous soil (test 2 and 3) are larger than those generated in homogeneous soil (test 

1) at corresponding locations. This has been observed while comparing the EPWP ratio 

results, between medium dense uniform soil and loose soil pockets in the heterogeneous 

soil (shown in Figure 4.11 and 4. 13a), as well as in the EPWP ratio results between 

medium dense uniform soil and dense soil in heterogeneous soil (shown in Figure 4.13b ). 
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Figure 4.10: Recorded excess pore water pressure (EPWP) ratio with respect to 
the initial effective vertical stress at 4 locations in the free field in test2 and in 
test3 (heterogeneous soil) a. PS & P9: dense soil; b. P6 & PlO: loose soil; c. P7 & 
Pll: dense soil; d. PS & P12: loose soil. 

For example, at 5m depth (P6) in the free field in a loose pocket in heterogeneous soil 

EPWP ratio reached 1 between 20s and 40s, indicating full liquefaction of the soil 

whereas in homogeneous soil EPWP ratio was less than 0.8. Transducers P5 and P7 did 

not work properly during test 1. Therefore, a direct comparison between medium dense 

uniform soil in test 1 and dense soil in tests 2 and 3 at the same elevations in the free field 

could not be obtained from the Figures 4.8 and 4.10. However, from similar comparison 

(shown in Figure 4.13b) below structure (P3), it is evident that EPWP ratio in dense sand 
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in heterogeneous soil is also larger than that in medium dense sand in homogeneous soil 

at corresponding locations. The comparison of recorded EPWP ratio between dense sand 

in heterogeneous soil in the free field and medium dense uniform sand at higher depth is 

shown in Figure 4.12. It has been observed that EPWP ratio near the ground surface 

(P6/P10 and higher) in heterogeneous soil has residual values of one, indicating full 
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Figure 4.13: Comparison of EPWP ratio time histories below structure: a. 
between medium dense homogeneous soil (testl) and loose soil pockets in 
heterogeneous soil (test 2 and 3); b. between medium dense homogeneous soil 
(testl) and dense soil pockets in heterogeneous soil (test 3). 

liquefaction of the soil in these areas (both loose soil - e.g. P10 and dense soil - e.g. P5). 

However, the homogeneous soil did not fully liquefy. These results confirm earlier 

numerical findings discussed in sub-section 2.5.3 that more EPWP is generated in 

heterogeneous soil (both loose and dense soil zones) than in the corresponding 

homogeneous soil. 

From the comparison of the evolution of EPWP ratio below the structure (Figure 

4.13a) and in the free-field (Figure 4.11 a), it has been observed that the EPWP ratios 

below the structure (for both homogeneous and heterogeneous soil) are smaller than those 

recorded at similar depth in the free-field. This is believed to be due to higher initial 

effective stress below the structure. 

Settlement of the structure footings were also monitored during the tests. 

Recorded settlements of the building top in test 1 are shown in Figure 4.14. In the figure, 

Ll and L2 are representing the settlements of two strip footings during earthquake. 

Similar results for building settlements in test 2 and 3 (on heterogeneous soil) are shown 
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Fi2ure 4.14: Recorded settlement of buildin2 in test homo2eneous soil (PC1). 
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Figure 4.15: Recorded settlement of building in heterogeneous soil (test2 and 3). 
Downward settlement is positive and upward is negative. No LVDT were placed 
at L3 and L4 in test2. 
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in Figure 4.15. During test 3, 2LVDTs were placed in the free field area to measure the 

free field settlement/heave. Those recorded results are also shown in Figure 4.15c. 

However, after the test (during excavation of the model) it was observed that the glass 

plates attached at the end of those two L VDTs were sunk about l-2mm. Therefore, those 

recorded settlements at L3 and L4 were affected due to sinking of those glass plates. 

Vertical and horizontal components of the applied input motion were recorded 

using the accelerometers at the centrifuge shaker platform. One vertical accelerometer 

was installed on the centrifuge box platform to measure any acceleration in vertical 

direction generated during shaking. A second vertical accelerometer was placed at the 

foundation level in the free field to record the vertical acceleration at that level. The 

measured acceleration time histories in test 1 (on homogeneous soil) at different locations 

in the model are shown in Figure 4.16. Similar measurements in test 3 are shown in 

Figure 4.17. Unfortunately, no acceleration was recorded during test 2 because of a 

problem in the data acquisition card. The acceleration records at A 7 and A8 (where soil is 

liquefied) showed large high-frequency acceleration spikes during the strong ground 

motion. These spikes are coincident with the negative pore pressure spikes during the 

strong ground motion, and have been termed as de-liquefaction shock waves by Kutter 

and Wilson (1999). Earlier, in centrifuge model tests, various researchers have reported 

this type of acceleration spikes associated with the onset of dilation (Dobry et al., 1995; 

Fiegel and Kutter, 1992; Kutter and Wilson, 1999) for uniform and layered soil deposit. 

However at larger depth (A5) these dilation spikes are not very significant. The results of 

the centrifuge tests also showed the amplification of the earthquake energy when seismic 

waves travel through soil. Figure 4.18 shows the comparison of the Arias Intensity (Arias, 
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Figure 4.16: Recorded accelerations in homogeneous soil (testl). Transducer 
locations are shown in Figure 4.2. There was no accelerometer at A6 in testl. 
A2 does not record anything due to connection problem. 

1970) evolution with time between homogeneous (test 1) and heterogeneous soil (test 3) 

in the free field . From the results shown in Figure 4.18a (input vs. AS) and 4.18b (input 

vs. A 7) it is obvious that input motion is amplified more in homogeneous soil than in 

heterogeneous soil. The comparison of Arias Intensity evolution with depth during the 
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Figure 4.17: Recorded accelerations in heterogeneous soil (test3). No acceleration 
time histories were recorded during test2 due to a problem in data acquisition 
system. Transducer locations are shown in figure 4.2. 

tests on uniform and variable soil deposits is shown in Figure 4. 19. Although, the 
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heterogeneous soil deposit was on an average denser than the homogeneous soil, Arias 

Intensity amplification was lower than that of the uniform soil, due to higher EPWP build­

up in the heterogeneous soil. 

Picture 12: Top view of the model failed during saturation. 

4. 7. Difficulties and Sources of Error during the Centrifuge Tests 

This is a difficulty faced during the series of centrifuge tests: 

o Model failure during saturation: Two models failed during saturation due to air 

leak inside the model through an invisible opening on the side wall of the box. The top­

view of one of the failed model is shown in Picture 12. After closely observing the reason 

for failure, it was noticed that there was a small crack in the bottom corners of side wall. 

Although, pore fluid was not corning out, air was entering through that small opening 

while the model was under vacuum during saturation. The evidence of soil disturbance 
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(cracks in the top surface) was found in those failed models. It was assumed that this air 

leak in the sidewall of the container caused this disturbance in the saturated soil model. 

This problem was solved by changing the centrifuge box before doing test 2 and 3. 

Apart from this difficulty, there are various potential sources that might contribute 

errors in the measured responses. Some of them are discussed below: 

o Sample disturbance: Although the tests were performed with care, there are a 

few sources which might cause disturbance in the sample. One major source is during 

transportation of the model from laboratory to the centrifuge arm. A pallet jack and a 

forklift were used for this purpose. Another source of error is during the saturation of 

model under vacuum. However, during these series of tests, average soil depths were 

measured before and after saturation. It showed that there were no sample disturbances 

during saturation (soil depth before and after saturation was the same). In heterogeneous 

soil, loose pockets were built first; and then the dense soil layer was prepared by filling 

remaining area in a horizontal layer with dense soil. This might cause slight densification 

in the loose pockets. Localised soil disturbances are also possible while placing 

instruments. A cone penetration test was performed to identify the position of loose 

pockets. However, as it was mentioned earlier in sub-section 4.6.1 , this cone was not able 

to identify the exact location of loose pockets. Therefore, it was not possible from cone 

test to directly quantify the amount of densification in loose pockets. Some other 

instruments (e.g., needle probe, resistivity probe) should be use during centrifuge tests to 

quantify the amount of densification in loose pockets. 

o Use of two different centrifuge containers: After the first centrifuge test, two 

models failed during saturation because of leak on the container walls. Therefore, second 
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and third tests were performed using a new container. The use of two different containers 

might induce some variability in the results. However, the inside dimension of both the 

containers were the same. Therefore, it was assumed that this source of error is not 

significant for these series of tests. 

o Pore fluid viscosity: The viscosity of pore fluid is dependent on the fluid 

temperature, which is also dependent on the ambient air temperature. Pore fluid viscosity 

was measured before model saturation during each test. The target viscosity was 35cSt for 

these tests. However, the measured viscosity was 35±4cSt at a temperature of 20° C. But, 

the tests were done after another 6-7 days. Therefore, the variation in air temperature 

might have caused changes in the viscosity of pore fluid. However, no temperature 

reading was taken inside the model during testing; only the ambient air temperature was 

taken. Therefore, the exact fluid viscosity during the test can not be estimated. From the 

ambient air temperature (26, 20, 22°C during test 1, 2, and 3 respectively) inside the 

room, it is assumed that there was no significant influence of this factor on these tests 

results. 

o g-level variation: During the all three centrifuge tests, rotational speed was 

111.9rpm. But, due to slight variation (0.1 rpm) in rotational speed, the inertial 

acceleration can be slightly lower or higher (0.1 g) than 70g. Again for a constant angular 

velocity, the g-level increases with the increase in radius of rotation, which results in a 

variation in the g-level through the depth of the model. This variation was estimated for 

all the tests and it was not significant (less than ±O.Sg) in these tests. This might have 

induced very small error in the responses (e.g. settlements), because these test results are 

presented considering inertial acceleration level as 70g. For example, maximum total 
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settlement at left footing (during test 1) was recorded as 0.3m (considering g-level as 

70g). If it is assume that there was an error of ±0.5g in the centrifuge g level, then there is 

a ±0.002m error in the reported results. This error is less than 1% and therefore not 

significant. 

o Instrument position: The measured instrument positions (placed and excavated) 

for accelerometer, pore water pressure transducers and other length measurements in the 

model are assumed to be accurate within ± 1 mm. The movement of some of the transducer 

were measured during excavation of the model. Although the final location of each 

instruments were measured after the test, it is very difficult to determine the exact location 

of the transducer during earthquake shaking. It is depends upon the amount of 

consolidation settlements, the amount of EPWP build up in the model during earthquake, 

the amount of softening in the surrounding soil and the resulting slight movement of the 

transducer. This might induced some error in the test results. The maximum recorded 

movement ofPPTs (those worked properly) during all three tests at model scale are: 4mm 

in test 1, 6mrn in test 2 and 7mrn in test 3. The results are presented here considering the 

locations of transducers at just before applying earthquake. The transducer location was 

verified, based on the total pore water pressure measured just before applying the 

earthquake motion. It was found those transducer movements happened during 

consolidation settlements. Therefore, the presented test results are not affected due to this 

source of error. 

o Error in L VDT reading: The L VDTs were connected using cantilever steel plate 

holders. However at 70g that L VDT holder can bend slightly which might have induced 

some error in the settlement records. During test 3, 2 LVDTs were placed in the free field 
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area to measure soil settlement I heave. There were glass plates attached with the end of 

each L VDT rod. After the test, it was found that those plates were sunk about 1-2mm at 

model scale, which include some error in the measured free field settlements (L3 and L4). 

o Difference between target and applied motion: As mentioned earlier, the 

centrifuge shaker at C-CORE is tuned first using a dummy load. Next, the model is loaded 

in the centrifuge bay by replacing the dummy load. If the dummy load is not same as the 

weight of the model, the real applied motion in that test may not always be the same as 

the desired target motion. Sometimes, slight difference in the applied motion might be 

present which might cause slight difference in the results between two tests while 

comparing. However, during these three reported tests, the dummy load in each test was 

same as the corresponding weight of the model. The difference between target and applied 

input motion was minimised in all the three tests. Therefore, the presented test results are 

not affected due to this source of error. 

4.8. Summary and Conclusions 

A series of centrifuge liquefaction tests were conducted to find out the seismic 

behaviour and liquefaction mechanism for heterogeneous soil. Two tests were performed 

on heterogeneous soil deposit and one test was performed on homogeneous soil deposit. 

The test on uniform soil was performed on a soil deposit with the soil relative density 

which is lower than the average relative density of heterogeneous soil deposit. The results 

such as EPWPs, accelerations, settlements were monitored and measured throughout the 

test duration. 
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Based on the detailed analysis of centrifuge test results, this study provided an 

explanation of two important behaviours. (a) From the study it is concluded that, although 

the average relative density of heterogeneous soil deposit was higher than that in 

homogeneous soil, liquefaction resistance was lower in heterogeneous soil than that in 

homogeneous soil. (b) The higher EPWP ratio generated in the free field compared to that 

below the structure showed that the presence of structure is causing higher liquefaction 

resistance in the soil. 
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Table 4.1: Structural Properties of different components of frame structure in model scale 

Part No. of Length Width Thickness Volume Density Mass Figure 

component (mm) (mm) (mm) (mm~ kg/ m3 (kg) 

Strip footing 2 99.5 25.4 6.35 16048.355 7831 0.1257 Label as A in Picture 3 

Beam with 2 270.5 13 3.175 11164.888 7831 0.0874 Label as B in Picture 3 

two columns (1 OOX2+ 70.5) 

Slab 1 70.5 70.5 9.5 47217.375 7831 0.3698 Label as C in Picture 3 

Total mass ofthe structure (including welding and connector)= 0.8kg; Natural frequency of the structure=2.11Hz (Prototype), and 

147.9Hz (Model scale) 

Bearing pressure below each footing=1.56kPa @ 1g, and 109.25kPa @70g 
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Table 4.2: Location of the transducers at prototype scale 

Instrument Test 1 Test 2 Test 3 

Type 
Label X y z Location I Soil X y z Location I Soil y z Location I Soil 

(m) (m) (m) type (m) (m) (m) t)'pe 
X (m) 

(m) (m) type 

PI - - - - - - - - 36.5 17 12 Dense 

.... P2 36.8 15 9 Medium 36.5 15 12 Loose 36.5 15 8 Loose 
(]) 
C) P3 36.8 I I 6 Medium 36.5 I 1 8 Dense 36.5 11 12 Dense 
::3 

P4 36.5 "0 - - - - - - - - 9 8 Loose Cll 
c: P5 13.8 17 7 Medium 13 .6 17 7 Dense 13.6 17 7 Dense "' .b 

P6 13 .8 15 3 Medium 13.6 15 3 Loose 13.6 15 3 Loose (]) .... 
::3 P7 13.8 11 . 7 Medium 13.6 11 7 Dense 13.6 11 7 Dense Cll 
Cll 

P8 13 .8 9 3 Medium 13.6 9 3 Loose 13.6 9 3 Loose (]) .... 
0. P9 13.6 17 17 Dense (]) - - - - - - - -.... 

PlO 13.6 15 13 Loose 0 - - - - - - - -
~ 

Pl1 - - - - - - - - 13.6 11 17 Dense 
P12 - - - - - - - - 13.6 9 13 Loose 
Ll 36.3 26 9 Structure 36.1 26 12 Structure 36.1 26 12 Structure 

f-. L2 32.3 26 5 Structure 32.1 26 8 Structure 32.1 26 8 Structure a 
> L3 - - - - - - - - 21 20.2 15 Free field .....:l 

L4 - - - - - - - - 13 .6 20.2 15 Free field 
AI Base of the box (Input) Base of the box (Input) Base of the box (Input) 

.... A2 Base of the box (vertical) Base of the box (vertical) Base of the box (vertical) 
(]) .... 

A3 36.8 26 7 Str.(top) 36.5 26 10 Str.(top) 36.5 26 10 Str.(top) (]) 

E A4 36.8 19 12 Str. (Base) 36.5 19.3 10 Str. (Base) 36.5 19.3 10 Str. (Base) 0 .... 
~ AS 11.8 11 5 Medium 22.8 13.7 5 Dense 11.6 11 5 Dense 
(]) 
C) A6 - - - - - - - - 11.6 15 15 Loose C) 

--< A7 11.8 19 5 Medium 11.6 19.1 5 Dense 11.6 19 5 Dense 
A8 15.6 17.6 5 Medium 15.5 17.8 5 Dense 11.6 17.6 5 Dense 

Notes: Loose-+ Loose soil (Dr=35%), Med1um-+ Medmm dense soil (Dr=55%), Dense-+ Dense soil (Dr=75%); str.(top) -+ Top of the structure 
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Table 4.3: Specifications of the instruments used in centrifuge tests (after C-CORE, 2005) 

Linear Variable 
Pore pressure 

Specification Accelerometer Specification 
Differential 

Specification 
transducer Transformers 

(LVDT) 

Dimensions 6.5mm X 11 .7mm Dimensions 7.lmm X 18.8mm Working range ± 25.4mm 

Weight 29.8gms with 15ft cable Weight 1.8gms 
Maximum working 

± 38.1mm 
range 

Excitation 
5V 

Voltage 
10mV/g±5% Frequency response DC to 100Hz 

voltage sensitivity 

Output voltage 75mV 
Measurement 

±500g peak Input 6 to 30 VDC 
range 

Output 
1000 ohms 

Frequency 
1 to 10000 Hz ± 5% Nominal output 4.6 to 24.8 VDC 

impedance range 
Operating 

-5° to 250° F 
Operating 

-65° to 250° F 
Operating 

-54° to 121° C 
temperature temperature temperature 

Mechanical 
1 OOOg for 1 ms in each Mounted 

shock 
axes will not affect resonance >70kHz Output impedance 5600 ohms 
calibration frequency 

Resolution Infinite Sensing element Quartz shear Resolution Infinite 
Model: Druck PDCR 81 Model: PCB Model: Trans-Tek 

Piezotronic 353818 series 240 

tle:.:I Figure Figure ~J JW Figure Core with wire 

_.,_t 

Rod 
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Table 4.4: Location of the pore pressure transducers, L VDT, and accelerometers in 

test I 

Type Name Before test (model scale) After test (model scale) 
X(mm) Y(mm) Z(mm) X(mm) Y (mm) Z(mm) 

Q) P2 S26 214 129 S26 214 12S .... .... - -
::l Q) P3 S26 IS7 86 S26 IS7 78 Vl (.) 
Vl ::l PS 197 243 100 197 243 100 V-o 
.... Vl 

0... = P6 197 IS7 43 197 IS7 4S 
Q) "' .... .... P7 197 214 100 197 230 88 ot-

0... P8 197 129 43 197 12S 40 

LVDT L1 S19 371 129 S19 371 129 
L2 461 371 71 461 371 71 

.... A3 S26 371 
Q) .... 100 S26 371 100 
Q) A4 S26 271 170 S2S 271 170 E 
0 AS 169 1S7 71 169 1S7 88 .... 
Q) 

Q) 
A7 169 271 71 169 271 71 (.) 

(.) 

<C A8v 226 2S1 71 226 25 1 71 

Table 4.S: Location of the pore pressure transducers, LVDT, and accelerometers in 

test 2 

Type Name Before test (model scale) After test (model scale) 
X(mm) Y(mm) Z(mm) X(mm) Y (mm) Z (mm) 

Q) P2 S22 213 172 S27 207 172 
.... .... P3 S22 1S7 llS S22 1SS 11S ::l Q) 
Vl (.) 
Vl ::l P5 194 242 100 200 237 100 V-o 
.... Vl 

0... = P6 194 214 43 196 210 43 
Q) "' .... .... P7 194 1S7 100 190 163 9S ot-

0... P8 194 130 43 194 129 43 

LVDT L1 515 371 172 515 371 172 
L2 4S8 371 llS 458 371 115 

.... A3 S22 371 144 S22 367 144 
Q) ..... 
Q) A4 S22 27S 144 S22 271 144 E 
0 AS 32S 19S 71 325 196 81 .... 
~ 
~ A7 16S 273 71 166 266 71 
(.) 

<C A8v 222 2S1 71 222 247 71 
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Table 4.6: Location of the pore pressure transducers, L VDT, and accelerometers in 

test 3 

Type Name Before test (model scale) After test (model scale) 
X(mm) Y(mm) Z(mm) X (mm) Y (mm) Z(mm) 

PI 522 243 172 522 242 172 
- - -

.... P2 522 215 115 522 215 115 
0) 

P3 522 157 172 522 156 172 (.) 
;::l 

"0 P4 522 129 115 522 128 115 til 
s:: 

PS 194 243 100 194 242 100 ~ .... r- P6 194 215 43 194 219 43 0) .... P7 194 157 100 194 164 100 ;::l 
til 
til P8 194 129 43 194 136 43 0) .... 

0... P9 194 243 243 194 238 243 
0) .... P10 194 215 186 194 215 186 0 

0... P11 194 157 243 194 163 236 
P12 194 129 186 194 129 191 
Ll 515 371 172 515 371 172 

LVDT L2 458 371 115 458 371 115 
L3 300 287 214 300 287 214 
L4 194 287 214 194 287 214 

.... A3 522 371 144 522 371 144 
0) ..... A4 522 275 144 522 275 144 0) 

E AS 165 157 71 165 166 71 0 .... 
~ A6 165 215 214 165 218 214 
0) 
(.) A7 165 271 71 165 271 71 (.) 

-< A8v 222 251 71 222 248 71 
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CHAPTERS 

Liquefaction Mechanisms for Heterogeneous Soil 

5.1. Introduction 

In this part of the research, liquefaction mechanism in heterogeneous soi l was 

studied and explained. Some preliminary numerical studies were performed using 

finite element computer code Dynaflow to identify the liquefaction mechanism . In 

recent years some numerical and experimental research, closely related to this study, 

has been reported. Brief discussions about those studies are presented in Section 5.2. 

Next, a series of three geotechnical centrifuge tests were performed in this research: 

one on homogeneous soil and two on heterogeneous soil. The centrifuge test results 

were already discussed in detail in Chapter 4. The test on uniform soil is performed on 

a soi l deposit with the soil relative density which is lower than the average relative 

density of heterogeneous soil deposit. The results, such as EPWP, accelerations, and 

settlements are monitored and measured at some predetermined locations throughout 

the test duration. However, it is very difficult and expensive to monitor all these 

responses everywhere in the model. Therefore, the numerical model is calibrated and 

validated from the centrifuge test results on uniform and variable soil. The calibration 

and validation of the numerical model are discussed in Section 5.3. Next, the 

liquefaction mechanism in heterogeneous soil is studied in more detail using the 

numerical simulations. The explanation of liquefaction mechanism is presented in 

Section 5.4. Some qualitative and quantitative guidelines are provided in Section 5.5. 
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5.2. Liquefaction in Heterogeneous Soil: Preliminary Studies 

As mentioned in Chapter 2, Konrad and Dubeau (2002) conducted undrained 

cyclic triaxial tests on fine uniform Ottawa sand, uniform silica silt and layered soil 

(sand and s ilt layers). Experimental results in terms of the number of cycles to 

liquefaction, corresponding to a cyclic stress ratio CSR=0.166 are shown in Table 5.1. 

Chakrabortty et al. (2004a) performed a detailed numerical analysis of the behavior of 

non-homogeneous soil samples stud ied by Konrad and Dubeau (2002) using finite 

element code DYNAFLOW. The multi-yield plasticity soi l constitutive model 

(Prevost, 1985) implemented in DYNAFLOW was calibrated first, based on the 

experimental results obtained by Konrad and Dubeau (2002) for uniform dense sand 

and uniform silt samples. The cyclic undrained triaxial test on samples made of one 

sandwiched silt layer in dense sand was simulated next. The number of cycles to 

liquefaction resulting from the numerical analyses for CSR=O.I66 are presented in 

Table 5.1 for comparison. Although the number of cycle causing liquefaction was not 

exactly the same as the experimental values, the results of numerical simulations 

exhibit the same tendency observed in the experiments. Chakrabortty et al. (2004a) 

analyzed the mechan ism by which a sample made of two different soils liquefies 

faster than each of the soils tested separately in uniform samples. The explanation, 

resulting from a detailed analysis of the numerical results, was that water was 

squeezed out from the more deformable silt layer and injected into the neighbouring 

dense sand. F igure 5.1 illustrates the predicted relative movement at two interface 

nodes in the layered sample. Predicted relative movement (water-solid) at the sand-silt 

interface in layered triaxial sample indicates that water was squeezed out from the silt 

layer and injected into dense sand thus causing a reduction in liquefaction strength. 

This phenomenon is similar to injecting water into a sample during undrained triaxial 
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tests as reported by Atigh and Byrne (2004) and Vaid and Eliadorani (1998). It is 

important to note that, as concluded from the numerical simulations, the dense sand 

liquefied first in the sandwiched samples, while this material was found to be more 

resistant to liquefaction than the silt when tested in uniform samples. 

10 20 30 40 50 60 
Number of Cycles 

Figure 5.1: Predicted relative vertical displacement (water-solid) at the 
interface of silt and sand in the layered sample. Upward (vertical) relative 
displacements are positive. 

Regarding liquefaction mechanisms of soil deposits involving one type of soil 

material but with spatially variable strength, Ghosh and Madabhushi (2003) 

performed a series of centrifuge experiments to analyze the effects of a localized 

loose pocket/layer in a dense sand deposit subjected to seismic loads. It was observed 

that EPWP is generated first in the loose sand patches, and then the water migrates 

into the neighbouring dense sand, reduces the effective stress and softens the dense 

soil. Based on these centrifuge experimental results, Popescu et al. (2006) calibrated a 

numerical model implemented in DYNAFLOW and reproduced numerically two of 

the centrifuge experiments (tests BG4 and BG5). A loose layer (shown by 2 thick 

black lines in Figure 5.2c) was present in the dense soil deposit in test BG4 and a 

single loose pocket (shown by dark patch below foundation in Figure 5.2c) was 
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Figure 5.2: Effect of loose pocket/layer inside dense soil deposit: a. 
Comparison of computed excess pore water pressure (EPWP) ratios in the 
free field (dense sand) for tests BG4 and BGS; b. Computed relative 
movement of water with respect to the solid phase at the interface between 
loose and dense sand in test BGS. Positive displacements are upward 
(vertical) and left to right (horizontal); c. Finite element mesh with transducer 
locations (after Popescu et al., 2006). 

present in test BG5 . Computed EPWP ratios at the same location (transducer P6 in 

dense sand in the free field) for tests BG4 and BG5 are shown in Figure 5.2a. An 

increase in residual EPWP ratio from about 0.2 in test BG5 to about 0.4 in test BG4 is 

attributed to water migration from the loose sand layer, present in the free field close 

to location P6 in test BG4, but not present in the free field in test BG5. The effects of 

water migration with gradual increase in EPWP in test BG4 as compared to test BG5 

can be observed starting at time T=20sec. Simulation of water migration from loose to 

dense sand by the numerical model is illustrated in Figure 5.2b by computed time 

histories of relative water displacements (relative to the solid phase) at two locations 
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at the interface between loose and dense sand in test BG5. It has been concluded from 

the study that the finite element model was able to simulate the observed phenomena 

and the pore pressure gradient created from the initial liquefaction of loose sands 

leads to migration of water in the adjacent dense sands and makes the dense soil 

susceptible to liquefaction. 

To quantify the effects of alternate loose and dense soil patches, as 

encountered in natural soil deposits, a hypothetical chess board-type soil-structure 

system (Figure 5.3c) was also analyzed by Popescu et al. (2006). The soil was made 

of a chess board-like pattern of alternating loose (relative density, Dr=45%) and dense 

(Dr=85%) sands. The results were also compared to the uniform soil deposits . Figure 

5.3a shows the evolution of the EPWP ratio in two adjacent elements of the chess­

board like variable soil, one located in a loose soil patch (element 1) and the other in 

dense sand (element 2). From the results it was obvious that EPWP generation in 

loose sand pockets was faster than that in dense soil. The effects of water migration 

were also evident. The dense sand in the chess-board deposit reaches about 95% 

EPWP ratio, while at the same location in a uniform dense sand deposit the maximum 

EPWP ratio is about 25% (shown in Figures 5.3b). 

Popescu and Chakrabortty (2006) continued the above mentioned studies with 

the main focus on pore water migration between loose and dense soils. Two different 

heterogeneous patterns were considered to study the effects of the number of loose 

pockets, as shown in Figure 5.4: a chessboard-like pattern of loose and dense sands 

(Figure 5 .4a) and a dense sand deposit with isolated loose sand pockets (Figure 5 .4b ). 

The evolution of EPWP ratio at locations A and B in heterogeneous soi l is compared 
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Figure 5.3: a. EPWP ratio time histories for the chess-board type 
heterogeneous soil computed at two adjacent locations in the free field (one in 
the loose soil: element 1, and the other in the dense soil: element 2); b. EPWP 
ratio in the free field in element 2; c. Finite element mesh (after Popescu et 
al., 2006). 

in Figure 5.4c and d with computed EPWP ratios at the same locations in 

homogeneous soil deposits with various relative densities: (1) loose sand, with 

Dr=45% - same as the loose pockets in heterogeneous soil; (2) dense sand, with 

Dr=85%- same as the dense soils in heterogeneous soil; (3) medium dense sand, with 

Dr=65% - corresponding to the average relative density of the chessboard-like 

heterogeneous soil. The computed results are shown for the first 60 seconds of the 

analysis. The EPWP ratios calculated in the chessboard-like heterogeneous soil 

(dotted curves in Figure 5.4), are larger than those calculated in the medium dense 

uniform soil at all locations, including those in dense sands. At some locations (e.g., 

elements A) the EPWP ratios in the heterogeneous soil were closer to those computed 
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in loose sand than those computed in medium dense sand, which has an equivalent 

relative density with the heterogeneous soil. The general conclusion of these studies 

was that more EPWP is generated during cyclic loading in a heterogeneous soil 

deposit than in the corresponding uniform soil having geo-mechanical properties 

equivalent to the average properties of variable soil. 
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Figure 5.4: a. Finite element mesh: chess-board-like alternating loose and 
dense sands; b. Finite element mesh: isolated loose sand pockets in dense 
sand; Evolution of excess pore water pressure (EPWP) ratio with respect to 
the initial effective vertical stress at 2 locations in heterogeneous and 
uniform soil: c. Element A; d. Element B (after Popescu and Chakrabortty, 
2006). 

5.3. Numerical Modelling of Centrifuge Tests 

After the preliminary studies (those discussed in last section), a series of 

centrifuge tests were performed (results were discussed in Chapter 4) to investigate 

the liquefaction mechanisms for heterogeneous soil. Investigating liquefaction 

mechanisms for heterogeneous soil involves observing EPWP build up and water 

migration between neighbouring soil pockets with different relative densities. As it is 
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not practical to monitor experimental results at very close locations in the model 

during centrifuge tests, a numerical model was calibrated and validated based on 

centrifuge test results. The numerical model has been developed using the finite 

element computer code DYNAFLOW. The calibration of different parameters of the 

multi-yield plasticity soil constitutive model used in DYNAFLOW is discussed in the 

next section. 

5.3.1. Calibration of the Numerical Model 

The soil constitutive parameters of the multi-yield plasticity model can be 

divided into state parameters (obtained from general laboratory soil tests), low-strain 

elastic parameters (describing elastic deformability), yield and failure parameters 

(used for generating the nested yield surfaces), and dilation parameters (used to 

calculate the plastic volumetric strain). All the multi-yield plasticity model parameters 

except the dilation parameter (Xpp) can be estimated from results of conventional 

field (e.g. CPT, SPT) or laboratory soil tests. The dilation parameter, Xpp, is obtained 

by means of liquefaction strength analysis based on curve-fitting the experimental 

liquefaction strength curve using element tests (numerical simulations of undrained 

cyclic triaxial tests in this study). 

Uthayakumar and Vaid (1998) identified the Fraser River sand grains as sub­

angular to sub-rounded. Castro (1969) reported friction angle values for sub-rounded 

to sub-angular fine uniform sand with a relative density 30% in the range 31 ° to 34° 

and for a relative density of 80% between 37.25° and 41.25°. The friction angle at 

failure values reported in the literature for Fraser River sand is very scattered. As 

reported by Lunne et at. ( 1997), the in-situ friction angle of the Fraser River sand is in 

the range of 32 to 39 degrees. The results of monotonic laboratory tests performed at 
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University of British Columbia (UBC) show a very low friction angle of 27° for 40% 

relative density Fraser River sand (EIDMSL, 2003). The friction angle at failure, 

calculated from the results of the monotonic undrained triaxial tests performed on 

very loose (Dr=20%) Fraser River sand by Vaid et al. (2001), is about 35° in 

compression and 39° in extension. A friction angle value of 37° has been reported by 

Vaid and Eliadorani (1998) for very loose Fraser River sand (Dr=11 %). Based on all 

the above results, a range of friction angle at failure values of 37°-43° (shown in Table 

5.2) were selected in the analyses for 30-80% relative densities of the soil. Linear 

interpolation (as reported by Castro, 1969) was used for calculating friction angle for 

the intermediate values of relative densities. 

From earlier research on Fraser River sand (Vaid and Thomas, 1995) and 

other sands (Vaid and Chern, 1985) it has been observed that the value of the dilation 

angle (in DYNAFLOW and in the thesis), referred also as critical state angle and 

as phase transformation angle, does not depend upon the mode of loading, type of 

deformation or relative density. Based on laboratory tests performed under different 

conditions, a value of 34° has been obtained for Fraser River sand by Vaid et al. 

(2001). Based on a series of undrained triaxial compression test on loose (Dr=ll %) 

Fraser River sand specimen, Vaid and Eliadorani (1998) obtained a phase 

transformation angle of about 32°. Uthayakumar and Vaid (1998) reported a phase 

transformation angle value of 33°. The physical properties of the Fraser River sand 

used in this study are similar to the one reported by Vaid et al. (200 1 ). Therefore, a 

phase transformation angle of 34° has been selected in this study for all relative 

densities. 

In DYNAFLOW, the dependence of the low strain elastic shear (G) and bulk 

moduli (B) on the effective mean normal stress is taken as (DYNAFLOW, 2002): 

129 



and, (5. I) 

where p 0 is a reference effective confining stress, Go and B0 are the low strain 

shear and bulk moduli values corresponding to po, and n is a power exponent. A 

typical value of n=0.5 was recommended by Richart et al. (I 970) for cohesion less 

soils. 

In this numerical model, low strain shear modulus corresponds to the assumed 

range of soil deformation within the first yield surface. Two different symbols are 

used here for shear modulus: Gmax, shear modulus at very low strains (0.000 I% to 

0.01 %); and G0, shear modulus at low strain (0.05 - 0. I%). Based on the results from 

resonant column test or in-situ shear wave velocity measurements, different 

correlations are derived by different researchers for calculating Gma.x· The low strain 

shear modulus (Go) can be estimated for 0.05% strain level using modulus 

degradation curve and Gmax value. Ishibashi and Zhang ( 1993) suggested that Gmax 

values can be utilized in computations with a rather high degree of confidence when 

actual measurements are not available. However, for Fraser River sand at 30% 

relative density, a value of shear modulus of about 28 MPa at a shear strain of 0.05% 

was inferred from the results of isotropically consolidated triaxial tests performed by 

Vaid and Eliadorani (2000). This low strain shear modulus value was used for 

estimating Go at other relative densities by extrapolating the value for 30% relative 

density using following relation (based on Belloti et al., 1986): 

G el.39D, 
2 

G el.39D" 
I = (5.2) 

where 0 1 is the low strain shear modulus at other relative density, 0 2 is 28 

MPa, Dr1 is the other relative density (e.g. 40%, 70% etc) and Dr2 is 30% relative 

density. 
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The typical ranges of Poisson's ratio for different types of sands are given in 

Table 5.3. For convenience in computer code implementation, Trautmann and 

Kulhawy (1987) presented the following relation: 

v = 0.1 + 0.3¢,., (5.3) 

where ¢,., = (~- 25
\ =relative friction angle and its value is in between 0 and 

5-25 

1. The Poisson ' s ratio used in this study for different relative densities (Table 5.2), 

were calculated using this relation. Those values are inside the recommended ranges 

mentioned in Table 5.3. 

The parameter ko is used by DYNAFLOW only for generating the deviatoric 

stress-strain backbone curves (e.g., Griffiths and Prevost, 1990) and the initial 

locations ofyield surfaces in the stress space (Prevost, 1989). Its value depends on the 

type of consolidation (e.g., anisotropic or isotropic) employed in the laboratory soil 

tests used for calibrating the model parameters. In this study the dilation parameter 

(Xpp) is obtained based on the results from undrained triaxial tests done by Vaid et al. 

(2001) on anisotropically consolidated (k0=0.8) Fraser River sand samples. Therefore, 

the coefficient of lateral stress was taken as 0.8 in the study. 

The maximum deviatoric strain in compression, estimated from the drained 

triaxial test results reported by Eliadorani (200 1) is about 10.67% for a Fraser River 

sample with a relative density of 27%. Chillarige et al. (1997) also documented 

drained triaxial test results on Fraser River sand, from which a very high (about 18%) 

maximum deviatoric strain can be calculated for very loose samples. Therefore, based 

on those test results a maximum deviatoric strain of 1 0% in compression and 8% in 

extension are considered for 30% relative density. The maximum deviatoric strains 

estimated for the other relative densities are shown in Table 5.2. 
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The coefficient of permeability is usually determined by performing constant 

and falling head permeability tests. Based on results of tests performed at UBC for 36 

and 77% relative densities, the hydraulic conductivity values are calculated for other 

relative densities using following relation (based on Chapuis, 2004): 

(5.4) 

where e1, e2 are the void ratios corresponding to k1 and k2 and n is calculated 

based on the coefficient of permeability results at 36 and 77% relative densities. All 

the estimated hydraulic conductivity values are modified next, to consider the effect 

of high viscosity fluid which was used in the centrifuge. This modification has been 

done using the fine tuning procedure (discuss later in Section 5.3 .3) of the multi-yield 

surface plasticity model parameters. 

After estimating all the other multi-yield plasticity parameters, the dilation 

parameter (Xpp) was estimated next by performing a liquefaction strength analysis as 

described by Popescu and Prevost (1993). This analysis is based on fitting the 

experimental liquefaction strength curve using finite element simulations of cyclic 

undrained triaxial tests (element tests). The dilation parameter (Xpp) was obtained 

based on the results from undrained triaxial tests done by Vaid et al. (200 1) on 

anisotropically consolidated (k0=0.8) Fraser R iver sand samples. This liquefaction 

strength curve was selected because it gave a set of parameters which mimic the 

centrifuge test results on uniform soil deposits (test I) more accurately. The dilation 

parameter (shown in Table 5.2) was obtained based on the final number of cycles 

(NL = 1 0 in this case) required for liquefaction. A typical example of calculating Xpp 

from liquefaction strength curve and known soil relative density is shown in Figure 

5.5. 
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5.3.2. Finite Element Model 

The finite element calculations were conducted in terms of effective stresses, 

using fully coupled solid-fluid equations and a multi-yield plasticity soil constitutive 

model for the treatment of saturated porous media. The structure and adjacent soil 

were analyzed using the plane strain assumption. A 20m deep, 44m long saturated 

sand deposit corresponding to the prototype scale dimensions of the centrifuge models 

was included in the analysis domain. The soil was discretized into two-phase bi-linear 

four node elements with four degrees of freedom (DOF) per node, two for solid phase 

and two for fluid phase kinematics. Finite element meshes used in the numerical 

simulation of centrifuge tests on homogeneous and heterogeneous soil together with 

the boundary conditions are shown in Figure 5.6. Smaller finite elements were used 

below the structure, to more accurately capture the stress grad ients. The finite element 

dimensions were controlled in such a way that the locations of each pore water 

pressure transducer coincided with the mid point of an element, and accelerometer 

locations coincided with the node locations. 

In the numerical model the structure was idealized as linear-elastic. The 

material properties are shown in Table 5.4. The two strip footings were modelled 

using one-phase bi-linear four node elements with two degrees of freedom per node, 

for the solid phase kinematics. The beams and columns were discretized using 2-node 

beam elements with three degrees of freedom per node (two for displacements and 

one for rotation). There were 36 beam elements used for modelling the frame 

structure. The beams and roof masses were applied as nodal masses on the horizontal 

beam at the first floor level. The beams and columns dimensions and mass densities 

were modified to model them using the plane strain assumption. 
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4.9 

a. Testl 

b. Test3 

Figure 5.6: Finite element meshes used in the numerical simulation of 
centrifuge tests on homogeneous and heterogeneous soil. 

The walls of the centrifuge box were rigid; therefore, the rigid boundary was 

applied for the fi nite element mesh boundaries of the analysis domain. The input 

ground motion was appl ied in a horizontal direction at the base and lateral boundary 

of the analys is domain, similar to the centrifuge experiment performed in a rigid box. 

Use of a rigid box in earthquake s imulation centrifuge experiments induces a series of 

unwanted seismic waves that are generated by the reflection of seismic motion at each 

end wall of the box and are subsequently reflected back by the opposite wall. This 
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phenomenon, which might induce a behaviour in the model different from the real 

field, is partly attenuated by placing Duxseal (a relatively soft material) at each end 

wall of the box to create absorbing boundaries. Duxseal has been used in the 

centrifuge experiments to prevent seismic wave reflection from the lateral boundaries 

of the rigid centrifuge box and thus helping the soil deposit to behave like a semi­

infinite medium. This material was also considered in the numerical analyses, and 

idealized as linear-elastic. It was assumed that those phenomena occurring in the 

centrifuge experiments (wave reflection due to simulation of rigid end walls and 

subsequent attenuation by Duxseal) were reproduced by the numerical model. The 

material properties obtained from the literature (e.g., Popescu et al. , 2006) for Duxseal 

are listed in Table 5.4. Selective DOF slaving was used at the contact nodes to model 

the impervious surface between structure-soil, and soil-Duxseal. After the first phase 

of calibration (as discussed in Section 5.3.1 ), fine tuning of parameter values was 

done by back-analysis of test 1. This has been done by comparing the recorded and 

predicted test results for test I. Then the numerical model was verified and validated 

based in back-analysing oftest 2 and 3. 

5.3.3. Numerical Simulation of Centrifuge Tests: Model Validation 

The numerical analyses were performed to simulate the centrifuge tests on 

homogeneous and heterogeneous soil using fully coupled solid-fluid equations and a 

multi-yield surface plasticity soil constitutive model implemented in DYNAFLOW. 

The centrifuge models were subjected to an acceleration field 70 times higher than the 

gravity fie ld . The stresses increased accordingly (high stresses at the base of the 

model and low stresses at the top) due to this higher gravity fie ld which caused non­

uniform stress densification in an initially uniform relative density model. The amount 

136 



of stress densification was estimated based on a relation given by Park and Byrne 

(2004). The new relative densities after stress densification were verified during 

centrifuge tests by measuring the volume of soil in the box before the test and after 

the first spin and calculated the average soil densities of the model. The estimated 

relative densities (after stress densification) were considered in the numerical 

simulations. Soil constitutive parameters depending on relative density (such as 

porosity, hydraulic conductivity, friction angle at failure, dilation parameter, etc.) 

were recalculated at every elevation in the model according to the new values of 

relative density. Their ranges are shown in the last column ofTable 5.2. 

o Analysis Results 

After estimating the dilation parameter from the liquefaction strength analysis, 

the next step was fine tuning of parameters. It was done by comparing numerically 

simulated results of test 1 (homogeneous soil) with experimental results. Some 

parameters (e.g., hydraulic conductivity) were adjusted until a satisfactory match was 

obtained. The numerical simulation results, obtained using the fine tuned multi-yield 

plasticity constitutive model parameters, are presented here with the results recorded 

in centrifuge tests. The recorded and computed EPWP ratios with respect to the initial 

vertical stress at four different locations in test l (2 locations below structure and 2 

locations in the free field in homogeneous soil) are shown in Figure 5.7. Except for a 

location very close to the structure (i .e., P2), the numerical model accurately predicted 

the results recorded in the centrifuge test. 

The next step was comparing numerical (using the fine tuned multi-yield 

model) and experimental results for heterogeneous soil to validate the numerical 

model. The recorded and computed EPWP ratios with respect to the initial vertical 
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Figure 5.7: Recorded and computed excess pore water pressure (EPWP) ratio 
with respect to the initial effective vertical stress at 4 locations in testl 
(medium dense homogeneous soil): a. Below structure at shallow depth: P2; b. 
Below structure at larger depth: P3; c. Free field at shallow depth: P6; d. Free 
field at larger depth: P8. 

stress at four different locations in the free field in test 3 (on heterogeneous soil) are 

shown in Figure 5.8. Comparisons of recorded and computed EPWP ratios below the 

structure in heterogeneous soil are shown in Figure 5.9. From the results on the 

heterogeneous soil model it was observed that the numerical simulation results were 

in agreement (except P2) with the experimental results. The numerical model 

predicted more dilative behaviour for the soil at P2 than that observed in the 

centrifuge tests. This is believed to be due to presence of large static shear at that 

location because of the structure. This is a limitation of the model used in this 

research. In Dynaflow, this problem can be solved by using a double plastic potential 
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Figure 5.8: Recorded and computed excess pore water pressure (EPWP) ratio 
with respect to the initial effective vertical stress at 4 locations in the free field 
in test3 (heterogeneous soil): a. PS: Dense sand; b. PlO: Loose sand; c. P7: 
Dense sand; d. P8: Loose sand. 

model (not used in this research). However, the numerical model was deemed 

sufficiently accurate for the purpose of this study. 

Figures 5.1 Oa and b show the comparison of the EPWP ratio between 

homogeneous and heterogeneous soil, recorded after the end of earthquake ground 

motion during centrifuge tests. This result indicates a larger EPWP build-up in 

heterogeneous soil than in homogeneous soil (e.g. free field at 5m depth EPWP ratio 

in heterogeneous soil is 1 whereas in homogeneous soil it is 0.7). Similar results, 

obtained from numerical simulation of the centrifuge tests, are shown in Figure 5. 1 Oc 

and d. Although the heterogeneous soi l deposit was on average denser than the 
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uniform soil, its liquefaction resistance was lower than that of the uniform soil. 

Similar conclusions were also observed from earlier numerical simulations of 

heterogeneous soil (e.g. Popescu and Chakrabortty, 2006). 
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Figure 5.9: Recorded and computed excess pore water pressure (EPWP) ratio 
with respect to the initial effective vertical stress at 4 locations below structure 
in test3 (heterogeneous soil): a. Pl: Dense sand; b. P2: Loose sand; c. P3: 
Dense sand; d. P4: Loose sand. 

Settlements of the structure were also monitored during the tests. Recorded 

and computed settlements of the building in test I are shown in Figure 5.11. Similar 

comparisons for building settlements in test 3 (heterogeneous soil) are shown in 

Figure 5 .12. It was observed that the structure resting on heterogeneous soi I had 

settled more than that in uniform soil. A comparison of acceleration time histories in 

test I (homogeneous soil) recorded and computed at different depths in the free field 
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are shown m Figure 5.13. The acceleration record at A 7 shows very large high-
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Figure 5.10: Comparison of excess pore water pressure (EPWP) ratio 
between homogeneous and heterogeneous soil at time t=30s (depth at 
prototype scale). 
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Figure 5.13: Recorded and computed accelerations in testl (homogeneous 
soil). 

frequency acceleration spikes during the strong ground motion. These spikes actually 

co incide with the negative pore pressure spikes during strong ground motion, and 

have been termed as de-liquefaction shock waves by Kutter and Wilson (1999). 

However the numerical model was not able to reproduce those dilat ion spikes 

recorded during centrifuge tests. Computed and recorded acceleration time histories in 
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Figure 5.14: Recorded and computed accelerations in test3 (heterogeneous 
soil). 

the heterogeneous soil model are shown in Figure 5.14. From the recorded and 

computed results it was observed that accelerations are attenuated in heterogeneous 

soil more than in homogeneous soil. The reason was believed to be the generation of a 

larger amount of EPWP in heterogeneous soi l than uniform soil. The attenuation of 

seismic acceleration can be directly identified from the result shown in Figure 4.19 in 

page109. 

5.4. Liquefaction Mechanism in Heterogeneous Soil: Results and 

Discussion 

As discussed earlier in Chapter 2, based on numerical simulation results 

Popescu et al. ( 1997) stated that larger EPWP build-up is predicted in heterogeneous 
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soil than that m corresponding uniform soil. Later on, Popescu et al. (2006) 
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Figure 5.15: Computed EPWP ratio time histories in test3 (heterogeneous 
soil) in the middle of two adjacent dense and loose soil pockets in the free 
field: a. Element A: Dense soil vs. Element B: Loose soil; b. Element B: Loose 
soil vs. Element C: Dense soil; c. Element B: Loose soil vs. Element D: Dense 
soil; d. Finite element mesh with element locations. 

investigated this phenomenon in detai l by back-analys ing two centrifuge experiments 

performed at Cambridge University, one with a loose sand layer and another with a 

single loose sand pocket. Popescu and Chakrabortty (2006) extended th is study to 

spatially variable soil by numerically analysing the hypothetical variable soil deposit. 

Some of those results were already briefly discussed in Section 5.2. The numerical 

and experimental studies indicated that the presence of loose pockets in 

heterogeneous soi l would lead to earlier build-up of EPWP and local liquefaction in 

loose pockets. And ultimately, the pressure grad ient between loose and dense sand 

zones would lead to water migration and softening of dense soil due to build-up of 
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significant EPWP. However, there is no large scale experimental verification 

available to date to the practicing engineering community to verify the above 

mentioned behaviour for truly heterogeneous soil. The geotechnical centrifuge 

experiments conduced on heterogeneous soil in the experimental part of this research 

program, are the first of this kind. The liquefaction phenomenon in heterogeneous soil 

was subsequently studied in more detail by closely analysing the results from 

numerical simulations. 

To explain the liquefaction mechanisms for heterogeneous soil, computed 

results in terms of EPWP ratio with respect to the initial effective vertical stress are 

presented at four different locations shown in Figure 5.15: element B, located in the 

middle of a loose pocket in the free field, and elements A, C and D located in the 

dense sand area surrounding the loose pocket that contains element B. During an 

earthquake, EPWP builds-up faster in loose pockets (shown in Figure 5.15a, band c). 

Then, due to a pressure gradient, water starts migrating toward neighbouring dense 

sand. Due to this water migration EPWP build up in dense soil continued until few 

seconds after the earthquake, which ultimately causes softening of dense sands. The 

effect of the presence of structure on this liquefaction mechanism in heterogeneous 

soil is shown in Figure 5 .16. It shows the evolution of the EPWP ratio in two adjacent 

elements of the variable soil, one located in a loose soil pocket (element E and G -

shown in Figure 5.15d) and the other in a dense sand zone (element F and H). The 

effects of water migration are more evident in the free field compared to the soil 

below the structure. All four elements presented here are at the same depth . However, 

due to presence of extra overburden pressure, soil did not liquefied be low structure; 

whereas in the free field in dense soil (element F), EPWP reached almost equal to 

initial effective vertical overburden pressure at that location. 
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Figure 5.16: Computed EPWP ratio time histories in test3 (heterogeneous 
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Figure 5.17: Computed relative movement of water in the free field (lower 
depth) with respect to the solid phase at the interface location between loose and 
dense sand in test on heterogeneous soil: a. vertical movement at two different 
nodes; b. horizontal (x) and vertical (y) movement at same node in homogeneous 
soil; c. horizontal (x) and vertical (y) movement at same node in heterogeneous 
soil. Positive relative displacements are upward (vertical) and left to right 
(horizontal); d. Finite element mesh with locations of nodes. 
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Figure 5.18: Computed relative movement of water in the free field (higher 
depth) with respect to the solid phase at the interface location between loose 
and dense sand in test on heterogeneous soil: a. vertical movement at two 
different nodes in homogeneous and heterogeneous soil; b. horizontal (x) and 
vertical (y) movement at same node in homogeneous and heterogeneous soil. 
Positive relative displacements are upward (vertical) and left to right 
(horizontal); nodes are shown in Figure 5.17 (d). 
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Figure 5.19: Computed relative movement of water below structure with 
respect to the solid phase at the interface location between loose and dense 
sand in test on heterogeneous soil: a. vertical movement at two different 
nodes in homogeneous and heterogeneous soil; b. horizontal (x) and vertical 
(y) movement at same node in homogeneous and heterogeneous soil. 
Positive relative displacements are upward (vertical) and left to right 
(horizontal); nodes are shown in Figure 5.17(d). 

Simulation of water migration from loose to dense sand by the numerical 

model is illustrated in F igure 5.17, by computed time histories of relative water 

displacements, with respect to the solid phase at three locations at the interface 

between loose and dense sand zone. In the case of heterogeneous soil, it was observed 
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that during the earthquake water was migrating from loose to dense soil (shown in 

Figure 5.17 a). However, after the earthquake (at about 20s), water movement at node 

3 was upward. It is because during EPWP dissipation water moves mainly in an 

upward direction. A comparison of the relative water movement in homogeneous soil 

with heterogeneous soil is also presented in Figure 5.17. From the results it is evident 

that the water was coming out from the loose soil pockets in heterogeneous soil and 

transmitting into the dense sand zones. This ultimately causes liquefaction in 

theoretically non-liquefiable dense sand. Similar comparisons at higher depth in the 

free field are shown in Figure 5.18. The comparisons of the relative water movement 

in heterogeneous soil (in the interface of a loose pocket) below structure are shown in 

Figure 5.19. 

Contours of excess pore water pressure ratio with respect to the initial 

effective vertical overburden pressure, calculated at six different time instants for both 

the homogeneous and heterogeneous soil, are shown in Figure 5.20. EPWP ratio 

contours during strong shaking are shown in Figure 5.20a (test I) and g (test 3). Until 

the end of strong shaking, significant amounts of EPWP were generated in the free 

field (Figure 5.20b, h) in both tests. However, as shaking progresses in heterogeneous 

soil, water starts migrating from the loose pockets to the surrounding dense soil. 

Therefore, a few seconds after the end of strong motion (at time=41 s), larger areas in 

the free field of heterogeneous soil deposit liquefied (Figure 5.201), due to the water 

migration. A value of EPWP ratio close to one indicates soil liquefaction. Figure 5.21 

presents contours of computed volumetric strains at five different time instants for 

both homogeneous soil (Figure 5.2Ja, b, c, d, e) and heterogeneous soil (Figure 5.21/, 

g, h, i, )). It is interesting to note that the dense sand pockets exhibit a tendency of 
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dilation (positive volumetric strains at the end of shaking); however they liquefy due 

to water injection from neighbouring loose sands. 

Homogeneous soil (testl) Heterogeneous soil (test3) 

Figure 5.20: Evolution of predicted contours of excess pore water pressure 
ratios during tests on homogeneous and heterogeneous soil: a-f. in testl; g-1. 
in test3; The end of earthquake shaking is at time=20.5s. 
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Homogeneous soil (testl) 

a. time=8.2s 

b. time=l0.9s 

c. time=15s 

Heterogeneous soil (test3) 

f. time=8.2s 

g. time=l0.9s 

h. time=l5s 

Figure 5.21: Evolution of predicted contours of volumetric strain: a-e. in 
testl; f-j. in test3 at the end of analysis (time=89s); The end of earthquake 
shaking is at time=20.5s; The end of analysis is at time=89s. 

The failure mechanism illustrated by the maximum shear strain contours at the 

end of the analysis in Figure 5.22 is characteristic for local bearing capacity failures 

below the structure (shear strain larger than 12.5%) in both the homogeneous as well 

as in the heterogeneous soil. From the maximum shear strain contours in 

heterogeneous soil it was identified that the failure surface passes selectively through 

loose soils (location of loose pockets are shown in Figure 5.22b). This is similar to the 
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phenomenon observed by Popescu et at. (2005a) in the case of static bearing capacity 

failure in heterogeneous soil. Where it was observed that actual failure surface in 

heterogeneous soil deviated from its theoretical position and passed selectively 

through weaker soil zones and thus the average mobilized strength is reduced when 

compared to that of a corresponding uniform soil. 

Homogeneous soil (testl) Heterogeneous soil (test3) 

Figure 5.22: Predicted contours of maximum shear strain at the end of 
analysis (time= 89s): a. Testl; b. Test3 (locations of loose pockets are shown 
by red lines). 

5.5. Summary and Conclusions 

A series of centrifuge liquefaction tests were conducted to find out the seismic 

behaviour and liquefaction mechanisms for heterogeneous soil. The liquefaction 

phenomenon is explained in detail using the numerical simulation of those centrifuge 

tests. It was shown that this combined numerical and experimental study can be used 

as an efficient method to study and explain the liquefaction mechanism for 

heterogeneous soil. Based on a detailed analysis of numerical and centrifuge results, 

this study provides an explanation for an interesting and important behaviour detected 

in previous theoretical work, namely that more excess pore water pressure is 

generated by seismic loads in a heterogeneous soil than in an equivalent uniform soil. 

After closely observing the liquefaction mechanism (described in Section 5.4) in 

variable soil, it has been verified and concluded that EPWP is generated in loose 

pockets first. Next, the pressure gradient created between loose and dense sand zones 
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leads to water migration from loose to dense soil zones, resulting in softening of 

dense soil. This mechanism is also explained using the flowchart shown in Figure 

5.23. The reason for liquefaction ofthe dense sand is the injection of water from loose 

pockets. This water migration, equivalent to water injection into the dense soil, leads 

to gradual softening and eventual liquefaction of a theoretically non-liquefiable 

material. From this study it is concluded that although the average relative density 

(Drm=64%) of heterogeneous soil deposit (test 2 and test 3) was higher than that of the 

uniform (Dr=55%) soil (test 1), liquefaction resistance was less than that of uniform 

soil due to water migration from loose to dense soil zones in heterogeneous soil 

deposits. 

Saturated heterogeneous soil 
subjected to earthquake loading 

~ffects 

EPWP generated in loose soil 
pockets 

JJNext 

Pressure gradient created between 
loose and dense soil zones 

~}eads to 

Water migration from loose to dense 
soil zone in heterogeneous soil 

~JResulting 

Softening of theoretically non-
liquefiable dense soil zone 

Figure 5.23: Flowchart showing liquefaction mechanism in heterogeneous soil. 

From the experimental and numerical analyses it was observed that soil 

heterogeneity leads to more EPWP build-up than predicted for uniform soil. The 

average mobilized soil strength was also reduced due to deviation of failure surface 
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through loose sand pockets. The larger build-up of EPWP and reduction in average 

mobilized soil strength ultimately cause more damage (in terms of settlement) to the 

structure on heterogeneous soil as compared to homogeneous soil. 

Finally, it should be mentioned that the heterogeneous soil deposits 

exemplified here exhibit large, sudden variations in relative density from one location 

to another, unlike natural soil deposits where those variations are gradual. Therefore, 

the results of this study may over-emphasize the effects of soil heterogeneity on 

liquefaction potential of spatially variable soils. However, as most laboratory soil 

testing procedures use uniform soil samples for assessing the liquefaction potential, 

their results may well be under-conservative when applied to natural soil deposits 

exhibiting inherent spatial variability of their properties. 
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Table 5. 1: Experimental and numerical results of cyclic undrained triaxial tests on 

uniform and layered soil samples (for cyclic stress ratio CSR=O.l66) 

Type of soil Number of cycles to liquefaction (NL) 

sample Experiment Finite element analysis 

Uniform sand 150 180 

Uniform silt 90 98 

Silt layer in sand 
42 56 

sample 
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Table 5.2: Parameters of the multi-yield plasticity model used for the saturated soil 

Relative density Relative density (with stress densification) 
Type Constitutive parameter Symbol 

Dr=35% Dr= 55% Dr=75% Dr= (33.6% - 75.05%) 

Mass density- solid s 
p 2710 kg/m3 2710 kg/m3 2710 kg/m3 2710 kg/m3 

State parameters Porosity nw 0.453 0.433 0.412 0.454 - 0.412 

Hydraulic conductivity k 0.008862cm/s 0.00765cm/s 0.00651cm/s 0.00895cm/s- 0.00651 cm/s 

Low strain elastic shear 
Go 29.56MPa 39.04MPa 51 .55MPa 29.0MPa- 51.59MPa 

modulus 

Low strain elastic 
parameters Poisson' s ratio v 0.289 0.325 0.361 0.286 - 0.361 

Power exponent n 0.5 0.5 0.5 0.5 

Friction angle at failure ¢ 37.6° 40° 42.5° 37.43° -42.41° 

9.6 (C) 8.0 (C) 6.4 (C) 9.7-6.4 
Yield and failure Maximum deviatoric strain max 
parameters (comp/ext) &dev 

7.6 (E) 6.0 (E) 4.4 (E) 7.7-4.4 

Coefficient of lateral stress ko 0.8 0.8 0.8 0.8 

Dilation angle If 34° 34° 34° 34° 

Dilation parameters 

Dilation parameter X pp 0.074 0.031 0.0111 0.0777-0.0111 
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---------~-------------~ 

Table 5.3: Poisson's ratio for different types of sand 

Type of soil Das, 2006 Kulhawy and Mayne, 1990 

Loose sand 0.2-0.4 0.1-0.3 

Medium Sand 0.25-0.4 -

Dense Sand 0.3-0.45 0.3-0.4 

Silty sand 0.2-0.4 -

Table 5.4: Constitutive parameters for linear-elastic materials used m the numerical 

simulation 

Constitutive parameter Duxseal Frame structures(') 

Mass density (kg/m3
) 1650 7813 

Young' s modulus (MPa) 8 203,000 

Poisson' s ratio 0.46 0.287 

Notes: ( 1) mass calculated to obtain a bearing pressure in the prototype equivalent to the one in 

the centrifuge experiments 
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CHAPTER6 

Reliability Analysis of Structures on Heterogeneous Soil 

6.1. Introduction 

The first part of this research discussed the mechanism of liquefaction in 

heterogeneous soil. This has been done by means of geotechnical centrifuge tests and 

numerical modelling (discussed in previous chapters). After validating the numerical 

model, it has been used for a parametric study for finding the effects of soil heterogeneity 

on the structural responses. Dynamic analyses have been performed on various types of 

structures situated on heterogeneous soil. Based on the types of structures, this study is 

divided into two parts. The performance of a tower structure, where total settlements and 

base rotations are of primary interest, has been studied in the first part. In the second part, 

the performance of a frame structure (where total and differential settlements are of 

primary interest) has been studied. The results related to this study are presented in this 

chapter. 

In the next section, a brief discussion about different steps of Monte Carlo 

simulations (used here) is presented. The reliability analysis of tower structure resting on 

heterogeneous soil is presented in Section 6.3. The research related to the reliability 

analysis of the frame structure resting on heterogeneous soil is discussed in Section 6.4. 

Geotechnical design recommendations are provided for structures on liquefiable 

heterogeneous soil deposits by directly including the effects of soil-structure interaction. 

Updated design guidelines are also provided on the spectral amplification of seismic 
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ground motion travelling through uniform and heterogeneous soil. Summary and 

conclusions from this study on different types of structures are presented in Section 6.5. 

6.2. Monte Carlo Simulation 

6.2.1. Methodology of Monte Carlo Simulation 

A Monte Carlo simulation technique, using digital generation of non-Gaussian 

stochastic vector fields and nonlinear deterministic finite element analysis (using 

DYNAFLOW) was used to calculate the effect of soil heterogeneity on the structural 

response of soil-structure system. The Monte Carlo simulation has the following four 

steps (Popescu, 1995): 

1. Estimating the probabilistic characteristic of the spatial variability of index soil 

properties. Reasonable ranges of those probabilistic characteristics (e.g., marginal 

probability distribution functions, cross-correlation structure etc.) are used in this 

study based on the available information in the literature. 

2. Digitally generating sample functions of a bi-variate, two-dimensional (2V -2D) 

non-Gaussian stochastic field, where each simulated sample function represents a 

possible realization of relevant index soil properties over the analysis domain. 

3. Evaluating the soil constitutive model parameters at each location in the analysis 

domain using correlations with the index soil properties. 

4. Performing deterministic non-linear finite element analyses, using stochastic input 

parameters obtained from the step three. 
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In step one, ranges for the probabilistic characteristic of the spatial variability of 

soil properties used in this study were estimated based on available data in the literature. 

After an extensive research, Phoon and Kulhawy ( 1999 a, b) documented some 

guidelines for ranges of probabilistic characteristics of geotechnical properties (e.g., 

coefficient of variance of cone tip resistance (qn) for sand in natural deposits 20-60%). 

Those guidelines were used in this study. The step two of Monte Carlo simulation 

method is based on the spectral representation method. For the present study, 2D-2V 

(cone tip resistance qn and soil classification index Ic) sample functions of random 

stochastic field were generated based on a prescribed cross-spectral density matrix and 

prescribed marginal probability distribution functions. For more details about this 

generation of sample functions, the reader is referred to Section 2.5 .3.2 and Popescu et al. 

(1998). Sample functions of random stochastic fields in terms of q0 and Ic were generated 

over the analysis domain. In step three, the soil constitutive parameters are evaluated 

using some correlations with in-situ soil test indices (namely Ic and qn at each location). 

The correlation formulae for estimating multi-yield plasticity model parameters based on 

q0 and Ic at each element centroid have been presented by Popescu (1995) and Popescu et 

al. (1997). Those formulae are for the multi-yield plasticity soil constitutive model with 

conical yield surface (more discussion about multi-yield plasticity soil constitutive model 

and conical yield surface can be found in Chapter 3 Section 3.2). They have been 

modified in this study for the model with rounded Mohr-Coulomb yield surfaces. Those 

correlations used here for calculating multi-yield plasticity model parameters are shown 

in Table 6.1. In step four, the values of different soil properties from step three (for each 

sample function and at each spatial location) are used as input in stochastic finite element 
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analyses. The analyses are performed for each sample function using the finite element 

computer code DYNAFLOW. 

6.2.2. Stochastic Soil Properties 

Soil heterogeneity is described in this study using the probabilistic characteristics 

of two index soil properties: overburden stress-normalized cone tip resistance, qn, and soil 

classification index, Ic (Jefferies and Davies, 1993). The cone tip resistance is mainly 

related to the relative density and shear strength of the soil, while the soil classification 

index characterizes the soil type and is related to grain size and hydraulic conductivity. 

Modelling the two indices as the two components of a bi-variate stochastic field allows a 

more realistic simulation of the various soil properties that are derived from them, and are 

used in the liquefaction analysis. The probabilistic characteristics of the soil properties 

used in the first part of this study (with tower structure) are as follows (Popescu et al. , 

2005b): 

I. For qn: average value 6 MPa (corresponding to a relative density of 44% that is 

characteristic of a loose to medium dense sand), and coefficient of variation (CV q) = 

0.5. The selected marginal probability distribution function (PDF) is a Gamma PDF 

with parameters 11 = 4, A. = 0.67 and lower bound zero. 

2. For Ic: average value 2, coefficient of variation of Ic (CVI) = 0.15, symmetric Beta 

PDF bounded between 1 and 3, corresponding to a relatively clean, fine to medium 

coarse sand. 

3. Squared exponential auto-correlation structure, common for both qn and Ic (see 

Vanrnarcke (1983) for a description of the auto-correlation model). The correlation 

distances are assumed as: eh = 8m in the horizontal direction and 8v = 2m in the 
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vertical direction. These were selected based on the value in the literature (Phoon and 

Kulhawy (1999a), Popescu et al. (2005a), Fenton and Griffiths (2003)). 

4. The cross-correlation coefficient between qn and Ic is taken as p = - 0.58 (Popescu, 

1995). 

Some of these soil properties resulted from the stochastic characterization of an 

actual site (Popescu, 1995). Most of the probabilistic characteristics of the soil properties 

(e.g. average value of Ic, CVI, eh, ev, marginal PDF and cross-correlation coefficient 

between qn and Ic) used in the second part of this study (with frame structure) are san1e as 

that in the first part of this study. The only change in the probabilistic characteristics is as 

follows: 

1. qn: Calculated based on soil (loose (Dr=45%) /dense (Dr=85%)) relative density and 

three CVq (i.e., 0.2, 0.5 and 0.625) were used for loose soil and one CVq (i.e., 0.5) 

was used for dense soil in the study. 

6.3. Tower Structure on Heterogeneous Soil 

6.3.1. General 

A soil-structure system has its own characteristic frequency, which depends on 

material properties, geometry and degree of saturation of the soil. This characteristic 

frequency may decrease during dynamic excitation, due to degradation of the soil 

effective deformation moduli as a result of pore pressure build-up and/or large shear 

strains. Any mechanical system is more sensitive to dynamic loading as its characteristic 

frequency becomes closer to the frequency range corresponding to the maximum spectral 
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values of the excitation. Consequently, both the frequency content of seismic excitation 

and the evolution of structural frequency characteristics can make a significant difference 

in the dynamic response of geotechnical structures (Popescu, 2002). 

The behaviour of a tower structure situated on a liquefiable soil deposit and 

subjected to horizontal seismic motion was studied here. The effects of soil variability are 

accounted for by considering 100 possible realizations of soil property distributions over 

the analysis domain. All these realizations are sample functions of a two-dimensional , 

two-variate non-Gaussian random field with prescribed probability characteristics 

(described in previous section). The two components of the random field represent two 

soil index properties resulting from piezocone (CPT) field tests, namely normalized cone 

tip resistance, qn, and soil classification index, l c. The effects of frequency content of the 

seismic motion are introduced by considering two different seismic design spectra 

recommended by the Uniform Building Code (1994) and corresponding to two different 

local soil conditions (soil underlying the analysis domain): type-1 spectrum, for rocks and 

stiff soils, and type-3 spectrum, for soft to medium stiff clays and sands. The seismic 

accelerations in each group have similar probabilistic characteristics, but differ in 

individual realizations (e.g. location of peak values). Moreover, the accelerations in each 

group are scaled to correspond to a wide range of seismic intensities. 

All the factors mentioned before (soil variability including variations from one 

sample to another, seismic loading rate, including variations from one time history to 

another, and seismic acceleration intensity) are deemed to mimic a realistic design 

environment, where only some probabilistic characteristics of materials and loads may be 

known, but not their actual realizations. They induce a significant degree of variability in 
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the response, which is managed by means of fragility curves. Fragility curves are an 

illustrative way of expressing the probability of exceeding various thresholds in the 

response as a function of earthquake intensity. 

6.3.2. Seismic Motions 

The base input accelerations for this part of the research are generated using a 

procedure for non-stationary stochastic processes (Deodatis 1996a) capable of simulating 

seismic ground motion time histories that are compatible with prescribed response 

spectra and have a prescribed modulating function for amplitude variation. One hundred 

acceleration time histories are generated to be compatible to the type-! response spectrum 

recommended by the Uniform Building Code (1994), and another hundred time histories 

are compatible with the type-3 response spectrum. Both response spectra are shown in 

Figure 6.1 . All acceleration time histories in each group reflect the same target 

probabilistic characteristics (e.g. frequency content) and have identical modulating 

functions (i.e. the same duration of strong motion). The duration of the simulated 

earthquakes is about 12s, with about 1 Os of strong ground motion. The input acceleration 

time histories are then scaled according to predetermined Arias Intensity (Arias, 1970) 

values to uniformly cover a range between 0.19 and 2.1 m/s. This Arias Intensity (!A) is a 

measure of the total energy delivered per unit mass during an earthquake, and can be 

expressed as: 

(6. 1) 
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Figure 6.1: Comparison of the response spectra for the acceleration time 
histories used in the analysis. 

where Te is the total duration of the earthquake, a(t) is the ground acceleration at 

time instant t, and g is the acceleration due to gravity in the same unit as a. For the 

frequency content and modulating function used in this study, this Arias Intensity range 

corresponds to a range of peak ground accelerations (PGA) from about O.l g to about 

0.4g. 

6.3.3. Finite Element Model 

For every sample function representing a possible realization of the index soil 

properties over the analysis domain, a nonlinear dynamic finite element (FE) analysis 

was performed using the multi-yield plasticity constitutive model (Prevost, 1985) 

implemented in DYNAFLOW (Prevost, 2002). The finite element calculations were 
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conducted in terms of effective stresses, usmg fully coupled solid-fluid equations 

(discussed in more details in Chapter 3) for the treatment of saturated porous media. For 

each FE analysis, the soil parameters in each finite element were estimated based on the 

values of qn and Ic at the element centroid, following the procedure described by Popescu 

et al. ( 1997). The constitutive parameter values used in the deterministic analyses are 

listed in Table 6.2. The probabilistic characteristics of soil properties are already 

mentioned in Section 6.2.2. 

The structure and adjacent soil were analyzed using the plane strain assumption. 

A 12m deep, 72m long saturated sand layer underlying one metre of dry sand layer was 

included in the analysis domain. To accurately capture the soil spatial variability, the 

finite element dimensions were selected four times smaller than the correlation distances 

in all spatial directions. Smaller finite elements were used below the structure, to more 

accurately capture the stress gradients. Only the saturated sand was considered as 

variable in the stochastic analysis (the dry soil was assumed uniform). In the analyses the 

saturated soil was discretized into four-node quadrilateral continuum elements with four 

degrees of freedom per node (two for solid and two for fluid kinematics). For dry soil, 

one-phase elements with two degrees of freedom per node were used. There were 1008 

two-phase elements used for saturated soil and 34 one-phase elements were used for dry 

soil. The structure (shown in Figure 6.2) was idealized as a single degree-of-freedom 

oscillator with a characteristic frequency of I .4Hz, corresponding to a 7-story building. 

The foundation was 8m wide and placed at a depth of 1m. The factor of safety for bearing 

capacity under static conditions was about 13. The earthquake acceleration was applied at 

the base of the mesh in the horizontal direction. The base was assumed rigid and 
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Figure 6.2: Finite element mesh of soil-structure model. 

impervious. To simulate free field conditions at the lateral boundaries of the mesh, the 

degrees of freedom of all pairs of nodes situated at the same elevations at the lateral 

boundaries were slaved to each other in both spatial directions. Some preliminary 

analyses were performed (in 2004) to find the optimum mesh. Based on those analyses 

and the results reported in the literature it was concluded that the mesh used in Figure 6.2 

was refined enough to capture proper interface action. 

For each stochastic input analysis (involving a specific sample function of 

variable soil and a specific acceleration time history), a corresponding "deterministic" 

analysis was performed for comparison using soil properties that were uniform in the 

horizontal direction and whose values were equal to the average values of the soil 

properties in the stochastic analysis. 

6.3.4. Results and Discussions 

6.3.4.1. Pore Water Pressures, Deformations and Accelerations 

Some of the analysis results are presented in Figures 6.3 through 6.7 in terms of 

EPWP ratios, maximum shear strains and deformed meshes. The EPWP ratio is the ratio 
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d . Time = l sec. 

Figure 6.3: Excess pore water pressure contours for variable soil, seismic 
motion type 1, sample #51 (IA=l.lSrn!s, PGA=0.28g). 

between the predicted excess pore water pressure at certain location and time instant, and 

the initial effective vertical stress at that location. A value of EPWP ratio close to one 

indicates soil liquefaction. Figure 6.3 presents the evolution of EPWP ratio for sample 

#51 subjected to type-1 seismic input, with PGA = 0.28g. The soil is predicted to liquefy 

in the free field, while much lower EPWP' s are predicted below the structure. This is 

believed to be due to higher initial effective stress below the structure. Figure 6.4 presents 
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Figure 6.4: Maximum shear strain contours and deformed mesh for variable 
soil, seismic motion type 1, sample #51. Deformation magnification factor = 3. 

the evolution of maximum shear strains for the same sample. The contours indicate a 

local bearing capacity failure mechanism, with some asymmetries, due to variability of 

soil strength. Dependence of the computed response on the seismic acceleration intensity 

is presented in Figure 6.5 in terms of maximum shear strain contours and deformed 

meshes at the end of the strong shaking period for four different soil samples subjected to 

type-1 seismic acceleration with various Arias Intensities (sample #25 with /A=0.67rn/s, 
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Figure 6.5: Maximum shear strain contours and deformed mesh at time T=lO 
sec. for variable soil, seismic motion type 1, and various soil samples and seismic 
motion intensities. Deformation magnification factor = 3. 

sample #50 with /A=1.14rn/s, sample #75 with /A=1.62rn/s, and sample #100 with 

The effects of soil heterogeneity and seismic loading rate are illustrated in Figures 

6.6 and 6.7 for sample #51 (/A=l.15rn/s, PGA approx 0.28g). For this level of seismic 

intensity the EPWP ratio (Figure 6.6) is more affected by the differences in loading rate 
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• 

• Figure 6.6: Excess pore water pressure contours for sample #51 at time T=lO 
sec: a. uniform soil, seismic motion type 1; b. variable soil, seismic motion type 
1; c. uniform soil, seismic motion type 3; d. variable soil, seismic motion type 3. 

(compare a. vs. c. and b. vs. d.) than by accounting (or not) for soil heterogeneity (a. vs. 

b. and c. vs. d.). Soil heterogeneity has stronger effects on EPWP at lower seismic 

intensity (Popescu et al. 2005c). However, there is not much difference in the induced 

EPWP responses in homogeneous and heterogeneous soil for higher earthquake 
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• 

• Figure 6.7: Maximum shear strain contours and deformed mesh for sample #51 
at time T=lO sec: a. uniform soil, seismic motion type 1; b. variable soil, seismic 
motion type 1; c. uniform soil, seismic motion type 3; d. variable soil, seismic 
motion type 3. Deformation magnification factor = 3. 

intensities especially for type 3 seismic inputs. This is because at higher intensity the 

EPWP reaches almost one in most of the areas in both the homogeneous and 

heterogeneous soil. Both the soil heterogeneity and the seismic loading rate are found to 

significantly influence the computed deformations (Figure 6.7). While the maximum 

strain contours indicate local bearing capacity failure for all cases, the heterogeneous soil 
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seems to be affected on a more extended area around the structure than the uniform soil. 

Due to softening of soil below the structure, the seismic motion is strongly attenuated, 

especially for large Arias Intensities (/A), and the acceleration at the base of the structure 

has less specific energy compared to the input. This is illustrated in Figure 6.8, showing a 

plot of computed !A for accelerations predicted at the base of structure vs. !A of the input 

accelerations. This aspect of the seismic response is discussed in more detail by 

Chakrabortty et al. (2004b) for tower structures on uniform soil and later, in Section 6.4.5 

in this chapter for frame structure on uniform and variable soil. Regarding effects of soil 

heterogeneity, it can be concluded from the results presented in Figure 6.8 that soil 

variability leads to significantly larger attenuation of the seismic motion than uniform 

soil. 
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Figure 6.8: Comparison between Arias Intensities of base input accelerations 
and that of the computed accelerations at the base of the structure. 

6.3.4.2. Maximum Structural Displacements 

Computed maximum values of structure settlements and rotations are shown in 

Figure 6.9 for all the 400 cases analyzed. Those results represent earthquake effects in 

terms of rigid motion of the structure. The results in Figure 6.9 clearly indicate that both 
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Figure 6.9: Predicted maximum values of structural responses: a. maximum 
settlement and b. base rotation, for all cases analyzed. 

the seismic loading rate and the soil variability affect the structural response. For the 

entire range of seismic intensities, larger structural settlements and base rotations are 

predicted for type-3 than for type-1 seismic motion, and for heterogeneous soil than for 

uniform soiL The results for heterogeneous soil are more scattered due to presence of two 

uncertainty factors (seismic acceleration and random spatial distribution of soil strength). 

Complete collapse after 5 to 6s was predicted for sample #22 of heterogeneous soil for 

both types of seismic input. This was due to presence of an extended loose zone of soil 

immediately below the foundation. The computed maximum structural responses shown 

in Figure 6.9 are processed as fragili ty curves expressing the probability of exceeding 
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certain thresholds in the response (the procedure used for constructing the fragility curves 

is presented by Shinozuka et al. 2000). 

6.3.4.3. Fragility Curves for the Response Variable 

The fragility curves are expressed here in the form of two-parameter lognormal 

distribution functions. The procedure used for constructing fragility curves is already 

discussed in Chapter 2 (Section 2.6.5). The fragility curves presented here express the 

probability of exceeding certain thresholds in the response rather than certain damage 

levels. Figure 6.10 compares fragility curves for exceeding 20cm settlement and of 0.4 

degree base rotations for all cases analyzed. For example, for a seismic input with Arias 

Intensity IA=l.O, corresponding to a PGA of about 0.25g, one can infer from the fragility 

curves presented in Figure 6.1 Oa that: (1) for a uniform soil, there are almost no chances 

of exceeding a 20cm settlement for type-1 seismic input and about 95% chance for type-3 

input, and (2) for a variable soil with CV=0.5 the settlements would exceed 20 em with a 

probability of about 55% for type-1 input and almost surely for type-3 input. Fragility 

curves for various levels of settlements and base rotations are presented in Figure 6.11 for 

one of the four cases analyzed (variable soil and type-3 seismic motion). 

6.3.4.4. Combined Damage Curve 

A fragility curve or fragility function is one way of expressing the probability of 

the degree of structural damage as a function of load intensity. This conditional 

probability is expressed by the following equation: 
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Fragility function = P (LSIAI=Al;) (6.2) 

where LS is the limit state of damage level of the structure, AI is the load intensity 

(Arias Intensity) and AI; is a realization of the load intensity. In this section a way of 

expressing combined damage probability is presented. For extremely important lifeline 

structures such as a nuclear reactor or a communication tower, where one and/or more 
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Figure 6.10: Comparison between analysis results for various cases in terms of 
fragility curves: a. settlements; b. rotations. 
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exceeding responses can cause partial or total failure of the structure, this type of damage 

curve can provide a quick assessment of the probability of damage. This method is based 

on a basic probability theory and is briefly discussed here . 
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Figure 6.11: Fragility curves for structure on randomly variable 
subjected to type 3 seismic motion: a. settlements; b. rotations. 

soil deposit 

Let the event S express the damage of the structure due to maximum settlement 

exceeding some given limits, and the event R express the damage of the structure due to 

maximum base rotation exceeding some given limits. It is also assumed that the damage 

of the structure can be due to maximum settlement, or maximum base rotation, or both 
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being exceeded. This is explained by the Venn diagram in Figure 6.12. The total sample 

space is shown by the rounded rectangle (C). Circles Sand R are the events of failure of 

the structure due to maximum settlement and maximum base rotation exceeding 

c 

Figure 6.12: Venn diagram of damages. 

corresponding permissible limits, respectively. Therefore, the space C is the event of no 

failure. Therefore, the probability of failure due to maximum settlement or maximum 

base rotation or both exceeding corresponding permissible limits is P (SUR) = P (S) + P 

(R) - P ( S n R ), the union of S and R. And, the probability of failure due to both the 

maximum settlement and maximum base rotation exceeding permissible limits is P 

( S n R ), the intersection of Sand R. 

Based on the above theory, two types of combined damage curves are generated: 

Type-1 and Type-11 damage curves. The fragility function in the Type-1 damage curve is 

the conditional probability of exceeding specific levels of S or R or both S and R, i.e. 

( S U R ). This conditional probability is expressed by the following equation: 

Type-I fragility function = P(LScs>s,u1~> 11,)iAI = AI;) (6.3) 

where S is the maximum foundation settlement at arias intensity=A/;, S, is the 

limiting value of settlement (1 Ocm, 15cm, and 20cm in this study; listed in Table 6.3), R 

is the maximum foundation rotation at arias intensity=Al;, and R, is the limiting value of 
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foundation rotation (0.3°, 0.4°, and 0.5° in this study, listed in Table 6.3). Similarly, the 

fragility function in the Type-II damage curve is the conditional probability of exceeding 

both the specific level of Sand R, i.e. ( S n R) for a given load intensity. This conditional 

probability is expressed by the following equation: 

Type-II fragility function = P(LS(s>s, ni~>R), IAI = AI;) (6.4) 

From the Type-I damage curve we can determine the probability of damage, due 

to maximum settlement exceeding a permissible settlement or maximum base rotation 

exceeding the permissible base rotation, or both exceeding their permissible limits. On 

the other hand, the Type-II damage curve expresses the probability of exceeding both the 

permissible settlement and base rotation. This type of fragility curve is important for 

those structures, where significant damage is only possible when both settlement and 

base rotation exceed their corresponding limiting values. 

Figure 6.13 shows the Type-I combined damage curve. Figure 6.13a shows the 

Type-I damage curve for a level-2 damage limit. Similarly, Figure 6.13b shows the Type­

I damage curve exceeding the level-3 permissible limit for settlement and level-2 limit 

for rotation. Figure 6.14 shows the Type-II combined damage curves. Figure 6.14a shows 

the Type-II curve for level-2 damage limits. Similarly Figure 6.14b shows Type-II curve 

for a level-3 damage limit for settlement and level-2 damage limit for rotation. 

6.3.4.5. Design Recommendations 

The performance of a tower structure resting on a strip footing has been studied in 

the previous sections. This numerical study supported some of the findings obtained from 

numerical and centrifuge test results reported in previous chapter. Such as: a) more 
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Figure 6.13: Type-1 damage curve: probability of damage due to exceeding a. 
level-2 maximum settlement and/or level-2 maximum base rotation; b. level-3 
maximum settlement and/or level-2 maximum base rotation. 

EPWP build-up in heterogeneous soil than that in corresponding homogeneous soil ; b) 

larger predicted structural damage when accounting for soil variability as compared to 

assuming homogeneous soil; and c) due to soil softening after build-up of pore pressures, 

the characteristic frequency of the soil-structure system goes down to values close to the 

dominant frequency of low frequency inputs (e.g. type-3 input in this study), and 

therefore considerably more structural damage is predicted for this type of seismic 
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Figure 6.14: Type-11 damage curve: probability of damage due to exceeding a. 
both level-2 maximum settlement and level-2 maximum base rotation; b. both 
level-2 maximum settlement and Ievel-l maximum base rotation. 

motion. The analysis results are presented using the fragility curves and combined 

damage curves. These curves express the probability of exceeding certain thresholds in 

the response. The limiting Arias Intensity values for 1%, 5% and 10% probability of 

exceeding thresholds are presented in tabular form for design purpose for all the analysed 

cases. The limiting Arias Intensity is the value of IA which has a certain probability of 

exceeding the thresholds of response in a particular soil conditions. The Arias Intensity 
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values for total settlements and rotations exceeding certain threshold levels are tabulated 

in Table 6.4 and 6.5 respectively. Fragility curves from where those Arias Intensity 

values estimated are shown in the Appendix-A. From the fragility curves it can be 

concluded that a structure situated on variable soil and subjected to type-3 input motion is 

the most vulnerable case among all the cases studied here. 

How might these curves be useful for design? Suppose, for illustration purposes, 

that the Arias Intensity corresponding to the design earthquake is lrnls, and that type- I 

acceleration is warranted by deeper soil strata. Let's also assume that a limiting value for 

settlements is 20cm and the limiting value of base rotation is 0.4°. A certain degree of 

damage to the structure is possible when any of those limits are exceeded. Therefore, the 

Type-I combined damage curve (Figure 6.13b) can be used to calculate the probability of 

damage. From the damage curve for uniform soil and type-1 input acceleration, the 

probability of exceeding either limit is 17%. As soil properties in natural soil deposits 

randomly vary from one point to another, a fragility curve accounting for this aspect 

should be considered. For the degree of soil variability assumed in this study, the damage 

probability for the same structure results about 69%. 

6.4. Frame Structure on Heterogeneous Soil 

6.4.1. General 

The last part of this study focuses on the reliability analysis of a frame structure 

resting on heterogeneous soil. The Monte Carlo simulation methodology is used for this 

purpose. Two different aspects of responses are studied here. First, the spectral 
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amplification of seismic ground motion has been determined for heterogeneous soil and 

uniform soil. Updated design guidelines are provided for spectral amplification of seismic 

ground motion. Next, equivalent uniform soil relative densities to be used in deterministic 

analysis have been determined for a wide range of heterogeneous soil, based on the 

results of structural damage. Here, total and differential settlements are of primary 

interest. These responses for the structure on heterogeneous soil are compared with the 

responses in a structure resting on uniform soil ofvarious relative densities. Geotechnical 

design recommendations are provided for structures on liquefiable soil deposits, by 

directly including the effects of soil-structure interaction. Those recommendations can be 

used in design to consider the effects of small scale soil heterogeneity. 

6.4.2. Seismic Input Acceleration Time Histories 

The database of the strong motions used in this research includes a total of 90 

seismograms recorded from different earthquakes worldwide in the last four decades. 

Bazzurro and Cornell (2004) concluded that using about 10 input seismograms (properly 

selected) will give sufficient accuracy in estimating median amplification function . The 

magnitude, location, earthquake name, and type of soil where the accelerations are 

recorded for the selected seismograms are shown in Table A.1. These seismograms were 

obtained from COSMOS virtual data centre (http://db.cosmos-eq .org/scripts/default.plx). 

These seismograms were recorded either in rock or very stiff soil, which represents the 

condition below the base of the finite element model (soil underlying the analysis 

domain). All the selected seismograms cover a wide range of earthquake input energy. 

The earthquake energy is expressed here in terms of Arias Intensity (Arias, 1970). The 
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Arias Intensity (!A) was found to provide a better measure of earthquake severity than the 

peak ground acceleration (PGA) and root-mean-square acceleration (Koutsourelakis et 

a!., 2002). The !A is usually expressed in the unit of velocity (e.g. m/s). For ease in 

analysing the results, the input time histories were divided into 6 groups based on Arias 

Intensity: a) !A <0.05m/s, b) 0.05 m/s :::; !A < 0.1 m/s, c) 0.1 m/s :::; JA < 0.25 m/s, d) 0.25 

m/s :::; !A < 0.5 m/s, e) 0.5 m/s :::; !A < 1.0 m/s and f) !A > 1.0m/s. Fifteen real free field 

recorded acceleration time histories were selected in each group of lA. The calculated 

characteristics of the seismograms are shown in Table A.2. The response spectra with 5% 

damping for all the 90 acceleration time histories with the mean response spectrum 

(median of original value) are shown in Figure 6.15a. For the stochastic analysis, 18 input 

time histories (3 seismograms from each IA group) are selected in such a way that the 

mean response spectrum of those 18 seismograms matches with the mean response 

spectrum for all 90 inputs. The response spectra with 5% damping for the selected 18 

time histories for the stochastic analysis are shown in Figure 6.15b. 
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Figure 6.15: Response spectra at 5% damping of the selected records: a. for 
uniform soil; b. for variable soil. The arrows at 1Hz frequency in figure a) 
shows how Sa (1.0) values in Figure 6.24 are obtained. 
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6.4.3. Finite Element Model 

The finite element calculations are conducted in terms of effective stresses, using 

the multi-yield plasticity constitutive model (Prevost 1985) implemented in 

DYNAFLOW (Prevost 2002). A 28m deep, 60m long saturated sand layer underlying a 

2m deep dry sand layer is included in the analysis domain. Smaller finite elements are 

used below the structure, to more accurately capture the stress gradients. Only the spatial 

variability of saturated sand is considered in the stochastic analysis (the dry soil is 

assumed uniform, same as in the study for the tower structure). The finite element mesh 

is shown in Figure 6.16. Two different frame structures, with characteristic periods of 

0.29s and 0.78s respectively, are considered in the analyses in this part of the research. 

While modelled as single frames in the finite element analysis, the fundamental periods 

of the two structures corresponds to a 3-storey and an 8-storey building. The structure is 

placed on two isolated footings of 2m width. The depth of the foundations is 2m. The 

~0.5m 4m 6m Structure 1: T=0.29s 
Structure II: T=0.78s 

T 
m ... 

I 

In 
~ 

-~ IL' ~~--

Figure 6.16: Finite element mesh of soil-structure model. 
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factor of safety for bearing capacity under static conditions is greater than 10 (in uniform 

soil). The earthquake acceleration is applied at the base of the mesh in the horizontal 

direction. The base is assumed rigid and impervious. To simulate free field conditions at 

the lateral boundaries of the mesh, the degrees of freedom of all pairs of nodes situated at 

the same elevations at the lateral boundaries are slaved to each other in both spatial 

directions. 

The stochastic analyses were performed for the heterogeneous soil for two 

different average relative densities of the soil (i.e., 45% and 85%). A wide range for 

coefficient of variation (CV) of qn are considered in the analysis (CV=0.2 to 0.625). For 

each stochastic input analysis (involving a specific sample function of variable soil and a 

specific acceleration time history), a corresponding "deterministic" analysis is performed 

for comparison using soil properties that are equal to the average values of the soil 

properties in the stochastic analysis. For each FE analysis, the soil parameters in each 

finite element are estimated based on the values of qn and Ic at the element centroid, using 

the correlation formulas shown in Section 6.2.1. The structure and adjacent soil are 

modelled and analyzed using the plane strain assumption. The saturated soil is discretized 

into four-node quadrilateral continuum elements with four degrees of freedom per node 

(two for solid and two for fluid kinematics). For dry soil, one-phase elements with two 

degrees of freedom per node were used. There were 1350 two-phase elements used for 

saturated soil and 192 one-phase elements were used for dry soil. For the analyses with 

ground water level deeper than 30m (unsaturated soil), only one-phase elements (1542 

number) were used. The structure was discretized using 2-node beam elements with three 

degrees of freedom per node (two for displacements and one for rotation). There were 34 
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beam elements used for modelling the frame structure. The structure mass is applied as 

nodal masses on the horizontal beam at the roof level. 

6.4.4. Replacement Models for Settlements 

6.4.4.1. Response Surface Method 

Various researchers used a statistical methodology called design of experiments 

(DOE) as an efficient tool for identifying the most significant parameters contributing to 

a certain structural response and for modelling, among which: Azizian (2004) used 

Response Surface Method to model submarine slopes; Nobahar (2003) used factorial 

method with centre point and Face-Centred Central Composite Design (CCD). A more 

detailed description of the method used here was already presented in Chapter 2. In the 

preliminary phase of this study (not presented in this thesis), factorial design method was 

used for finding the significant factors, which control the responses. A two-level full 

factorial design gives a clear visual idea about which factor is significant for each 

response. Four important factors were selected for this study. In a 2-level full factorial 

design with four factors, 24 or 16 experiments are required. From the preliminary analysis 

it was observed that there was significant nonlinearity present in the models for the 

studied range of Arias Intensity. Therefore, a more advanced method (Face-Centred 

Central Composite Design) and four smaller ranges of Arias Intensity were used for 

formulating Response Surface models. Different levels of the factors in various response 

surface models presented here are shown in Table 6.6. 

In Face-Centred Central Composite Design with four factors and without any 

replication, 30 design points and experiments are required. Each finite element analysis is 
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considered here as an experiment and each combination of factors are considered here as 

design points. Four models (Replacement Model-l, Replacement Model-11, Replacement 

Model-III, and Replacement Model-IV) are formulated without considering any 

replication. In the Monte Carlo simulation, 5 different sample functions were generated 

for each CV value to express the soil variability. Therefore, five replications (one with 

each sample functions) were used for Replacement Model-IliA to consider the effect of 

the variable location of loose soil pockets in the heterogeneous soil with the same CV 

value. However, in the study there were two random quantities- realization of spatial 

variability of soil properties and realization of seismic acceleration. First source of 

randomness was considered in the Replacement Model-IliA, but the realization of 

seismic acceleration time history was not considered in that model. Therefore another 

model (Replacement Model-IIIB) was constructed where both the random quantities were 

considered. In this Replacement Model-IIIB, ten different acceleration time histories and 

ten different sample functions were used in formulating that model. The design layout for 

the experiments with the responses obtained from finite element analyses for 

Replacement Model-l are presented (as an example) in Table 6.7. Similar results for other 

Replacement Models are shown in Appendix-A (Tables A.3-A.7). 

6.4.4.2. Statistical Analysis of Results and Discussions 

The results are analysed and discussed in this section. As mentioned earlier, the 

DOE was used as a tool to determine the significant factors and Response Surface 

Models for different responses. Design-Expert® software version 7. 1.3 was used to 

statistically analyse the responses and fit the response surface model. The procedure for 
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formulating a response surface model and determining significant factors were already 

discussed in more detail in Section 2.6.6. These formulated models are only valid in the 

studied ranges (shown in Table 6.6) and can only be used in practical engineering 

applications to approximate complex behaviour in those ranges. Two different responses 

are considered here: maximum total settlements of left footing, and maximum differential 

settlements. The Analysis of Variance method (ANOVA) was used for determining 

whether the formulated models are appropriate or not. In some cases, the residuals of the 

responses were not uniformly distributed. In those cases, the responses were transformed. 

Natural log or inverse square root transformation for the responses of maximum total 

settlements and maximum differential settlements gives uniform distribution of the 

residuals. After analysing the results using Design-Expert® software version 7.1.3, 

different models were formulated for both the responses. The regression equations of 

Response Surface Models are presented in Tables 6.1 0. In case of both the responses 

(maximum total and differential settlements), all the four factors considered here, i.e. A 

(soil relative density), B (Coefficient of variation of qn), C (Arias Intensity) and D (period 

of the structure), are significant. It has been observed that maximum total settlement goes 

down with increases in soil relative density when all the other three factors are constant. 

This is believed to be due to increase in soil resistance with the increase in soil relative 

density which ultimately reduces the total settlements in the structure. On the other hand, 

maximum total settlement goes up with increases in Arias Intensity (settlements increases 

here due to increase in input seismic energy), CV of qn or fundamental period of the 

structure when other three factors are constant. The effects of different factors on 
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maximum differential settlements are same as that m the case of maximum total 

settlements. 

It was found for Replacement Model-III, IliA and IIIB that all three models (one 

without any replication and other two with replication) predicted almost similar results. 

Since five or ten sample functions are very low number of samples for a Monte Carlo 

simulation. This might affect the range of responses in Monte Carlo Simulation and 

might ultimately affect the accuracy of formulated response surface models. Therefore, 

further verifications of the model should be performed before using these models for 

calculating responses. There are a few limitations for these formulated models. They are 

as follows: a) these Response Surface models are only valid in the studied ranges of the 

factors; b) Replacement Model-l, Replacement Model-II, Replacement Model-III, 

Replacement Model-IliA and Replacement Model-IV are formulated for a particular 

acceleration time history neglecting the randomness in seismic input. Therefore, these 

models are not valid (also observed in Section 6.4.4.3 while model validation) for all 

earthquakes. They are valid for a class of seismic motions (reference of seismic motions 

are shown in Table A.l) similar to the one used for deriving these models; c) 

Replacement Model-IliA is formulated for structure-! only. Therefore, this model is valid 

for structure-I or structure with similar characteristic; d) a very limited number (1, 5 or 

1 0) of sample functions are used here to consider the soil variability in the model. 

Therefore, it might induce some bias in the formulated models. 
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6.4.4.3. Validation of Response Surface Model (RSM) 

After formulating all the RS models, all the models are validated for some input 

values of various factors which are not used for constructing that model. Each model is 

validated for 20 cases. The first 10 analyses for validation have been performed using one 

input acceleration time history (the one which was used for formulating that model) after 

scaling that in desired Arias Intensity and by changing the value of other factors. 
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Figure 6.17: Scatter plot for the validation of Replacement Model-l. 
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Figure 6.18: Scatter plot for the validation of Replacement Model-H. 

Remaining 10 analyses have been performed using arbitrarily selected input time 

histories (the one which has an Arias Intensity very close to the value of selected Arias 

Intensity) after scaling for the design Arias Intensity. The input values of all the four 

factors are selected in such a way that they are distributed uniformly in the ranges used 

for formulating that model. The selected input values of all the factors and the results 

obtained from finite element analysis and Replacement Model-IV are presented (as an 
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Figure 6.19: Scatter plot for the validation of Replacement Model-III, IliA and 
III B. 

example) m Table 6.9. Similar results for other Replacement Models are shown in 

Appendix-A (Tables A.8-A.l 0). The results are plotted in Figures 6.17 to 6.20 as a scatter 

plot between the results obtained from finite element analyses and that from Replacement 

models. From the model validation results it has been observed that, a) Replacement 

Models for predicting maximum total settlement is more accurate than that for calculating 

maximum differential settlements; b) In most cases, the Replacement Model is predicting 
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Figure 6.20: Scatter plot for the validation of Replacement Model-IV. 

very close results as that obtained from finite element analysis with same (which is used 

for formulating that Replacement Model) input acceleration time history; c) in some 

cases for the analysis with different (which is not used for formulating that RSM) input 

acceleration time history, the predicted results from RSM is not always in agreement with 

that obtained from FE analyses. Most of presented models (Replacement Model-l, 

Replacement Model-II, Replacement Model-III, Replacement Model-IliA and 
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Replacement Model-IV) are not able to consider the effect of time history to time history 

variation in frequency content and duration of the earthquakes. In some cases the error is 

as large as 50%-200%, especially in the case of lower magnitude of settlements. 

Therefore, these models are unable to accurately predict the maximum total and 

differential settlements for those cases. 

6.4.5. Site Amplification Study 

After determining the significant factors and replacement models using DOE, a 

parametric study on the spectral amplification of seismic ground motion was performed. 

The study was performed for the ranges of the previously mentioned (Section 6.4.4) four 

factors. The results for the structure, with a fundamental period of 0.29s and situated on a 

uniform soil relative density of 45%, are presented here as the base case results. 

6.4.5.1. Base Case- Uniform Soil 

For the base case (soil relative density=45%), 90 seismograms were used in the 

analyses. The effect of the soil condition was studied in terms of a site-specific, 

frequency dependent amplification function, AF(f), where f is the oscillator frequencies 

of interest for engineering structure. For each analysis, the AF(f) was computed by 

dividing the spectral acceleration (Sarcsponsc) of the responses (at the base of the structure 

level) by the spectral acceleration of corresponding input acceleration time histories 

(Sainput); i.e. AF =(Saresponse)/ (Sainput). The spectral accelerations were calculated for 5% 

damping. This AF(f) was calculated for both in the free field (node 4, shown in Figure 
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Figure 6.21: Amplification functions for loose saturated soil (Dr=45%) site: a. 
Free field- Node4; b. Below structure- NodeS; c. Partial finite element mesh 
showing output node locations. 

6.21c) and below structure (node 5). The 90 amplification functions along with the mean 

curve (dark line in Figure 6.21) for base case (Dr=45%) are shown in Figure 6.21. The 

two peaks are prominent (especially in the free field) at about 0.9Hz and 2Hz identified 

the first two resonant frequencies of the system. 

The amplification functions are sorted based on Arias Intensity (AI) to visually 

identify the dependence of AF(f) on these intensity measures of input acceleration time 

histories. They are divided into six different AI groups as mentioned earlier in Section 

6.4.2. The mean of all these six groups, with the mean of all 90 cases, are shown in 

Figure B.1 (shown in Appendix B). It has been observed that a high value of 

amplification is observed for low intensity input time histories and vice versa. It is also 

observed that as the earthquake intensity increases the frequency where maximum AF 

occur, continuously shifted towards lower frequency. This is believed to be due to 

195 



reduction of characteristic frequency of the soil deposit with the increase in earthquakes 

intensity. 

6.4.5.2. Effect of the Presence of Structure: 

Figure 6.22 illustrated the comparison between Arias Intensity (IA) of base input 

accelerations and that of the computed accelerations at the base of the foundation level. It 

expresses the total earthquake energy transfer from input to that at the base of the 

structure level. During an earthquake, due to build-up of EPWP in saturated soil, 

softening causes attenuation of seismic energy especially for large Arias Intensities. 

However, for the structures and soil types analyzed here there is no significant difference 

between free field Arias Intensity and that at the base of the structure (shown in Figure 

6.22a). Results for the structure situated on loose saturated soil are shown in the Figure as 

an example. Similar results are also observed for structure resting on other type of soil 

studied here (e.g., structure on dense saturated or dry soil, structure on loose dry soil 

etc.). Therefore, it can be concluded that, there is no significant effect of the presence of 

structure on resulting Arias Intensity for the case analysed in this study. A possible 

explanation is that the dominant frequency of the structures analysed here are much 

higher than the dominant frequency of the soil deposit (after it softens due to build-up of 

EPWP). Therefore, the presence of structure is not causing any significant effect on 

modifying response Arias Intensity at the foundation level. 
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6.4.5.3. Effect of Water Table Depth: 

The mean amplification functions (based on Arias Intensity groups), along with 

' 
the mean curve of 90 amplification function for unsaturated loose (Dr=45%) cohesionless 

soil, are shown in Figure B.2 (shown in Appendix B). From the comparison with Figure 

B. I it has been observed that AF(f) are higher in amplitude for unsaturated soil than that 

in saturated soil. Figure 6.22b shows the comparison of Arias Intensity (!A) while seismic 

waves travelling through unsaturated and saturated cohesionless soils. In most of the 

analyses, Arias Intensity values in the free field responses in saturated soil are less than 

that in the unsaturated soil. Because, in unsaturated soil this reduction is due to soil 

nonlinearity only and in saturated soil this reduction is due to both the soil nonlinearity 

and build-up of EPWP. For higher Arias Intensity input earthquakes, where there is 

significant EPWP build-up in saturated soil, this difference is larger. For example, where 

input Arias Intensity is larger than 1.1 m/s there is a significant reduction in the 

earthquake energy in the responses at the level of foundation for saturated soil. However, 

in unsaturated soil there is no significant reduction is earthquake energy in the responses. 

6.4.5.4. Effect of Soil Relative Density: 

The mean amplification functions (based on Arias Intensity groups), along with 

the mean curve of 90 amplification function for dense (Dr=85%) saturated cohesionless 

soil, are shown in Figure B.3 (shown in Appendix B). From the comparison with Figure 

B.1 , it has been observed that AF(f) is higher in amplitude for dense soil than that in 

loose soil. Figure 6.22c shows the effect of soil relative density on the attenuation of 

Arias Intensity. As the soil relative density increases, the generation of EPWP is usually 
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Figure 6.22: Comparison of Arias Intensity for different soil conditions- input 
vs. response at the foundation level: a. loose soil: free field vs. below structure; 
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reduced for a particular magnitude of earthquake. Therefore, Arias Intensity reduction in 

the response for loose soil is larger than in dense soil, particularly for higher magnitude 

of earthquakes (e.g., IA>0.8m/s). It is apparent that the generation of larger EPWP is 

helping here by reducing the earthquake energy transmitted to the structure. However, 

there are other consequences of larger EPWP build-up (e.g., more structural total and 

differential settlements) which will be discussed later. 

6.4.5.5. Effect of Fundamental Period of the Structure: 

The structure-!, with a fundamental period of 0.29s, was used for all the other 

results presented so far. The effect of the fundamental period of the structure is presented 

here. The 90 amplification functions along with the mean curve for dense (Dr=85%) 

cohesionless soil below structure II (fundamental period of structure=0.78s) are shown in 

Figure B.4 (shown in Appendix B). After comparing the results with Figure B.3, it has 

been observed that spectral amplification is reduced for structure II. The effects of the 

fundamental period of the structure on attenuation of Arias Intensity are shown in Figure 

6.22d. However, there is no significant effect of the fundamental period of the structure 

in the attenuation of Arias Intensity for the range of structural characteristics used in this 

study. 

6.4.5.6. Effect of Soil Variability: 

As mentioned in Section 6.4.2, 18 seismic acceleration time histories are selected 

for stochastic analysis. Different values for CV of qn (CV=0.2, 0.5 and 0.625 for loose 
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soil and 0.5 for dense soil) are considered in the amplification analysis. Five stochastic 

sample functions, for each CV value, are used in the Monte Carlo simulation. The 

amplification functions along with the mean curve for each case of variable soil are 

shown in Figure B.5 (shown in Appendix B). Regarding the effects of soil heterogeneity, 

it can be concluded from the results presented in Figure 6.22e and 6.22f that variable soil 

leads to significantly larger attenuation of the seismic motion than uniform soil. The 

Arias Intensity attenuation is stronger with the increasing in CV of qn value. 

Similar results on the comparison between peak acceleration (P A) of base input 

accelerations and that of the computed accelerations at the foundation level are shown in 

Figure 6.23. Here, the term 'peak acceleration' is used to express the absolute maximum 

acceleration at base input, or computed responses in the free field and below structure at 

2m depth. The generation of EPWP affects the P A in the same way as it affects Arias 

Intensity. Due to the generation of larger EPWP, significant attenuation of PA has been 

observed (particularly for stronger earthquakes) in saturated loose uniform and 

heterogeneous soil. 

6.4.5.7. Design Recommendations on Amplification of Seismic Ground 

Motion 

Design recommendations in terms of amplification factors are presented in this 

section. In the Canadian building code (NBCC, 2005), the idea of using the short (0.2s) 

and long period (l.Os) amplification factor, Fa and Fv was adopted from National 

Earthquake Hazard Reduction Program (NEHRP). NEHRP originally used peak ground 

acceleration and velocity, but the most recent version of NEHRP uses spectral value at 
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Figure 6.23: Comparison of peak acceleration for different soil conditions- input 
vs. response at the foundation level: a. loose soil: free field vs. below structure; 
b. loose soil: saturated vs. unsaturated; c. loose vs. dense soil; d. structure I vs. 
structure II; e. loose saturated soil: uniform vs. variable; f. loose saturated 
variable soil vs. dense saturated uniform soil vs. dense saturated variable soil. 

various periods, which are also used in this study. Updated guidelines are presented for 
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Figure 6.24: Regression equations of spectral amplification vs. input spectral 
acceleration for loose saturated, cohesionless soil: a. AF(0.2) or Fa vs input Sa at 
T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. The star markers in the figure are 
showing the values obtained from 90 analyses performed on loose saturated soil. 

those factors for different site conditions, based on fully coupled nonlinear time history 

analysis. Two different relative densities of the soil are considered here, 45% relative 

density corresponding to site class E (shear wave velocity (V s) <180m/s) and 85% 

relative density corresponding to site class D (V s between 180-360 m/s) based on shear 
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wave velocity. The shear wave velocity for 45% and 85% soil relative densities are 

calculated based on following relation: 

V =fio . 
s ' p 
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Figure 6.24 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for loose saturated, cohesionless soil: a. AF(0.2) or Fa vs 
input Sa at T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. The star markers in the 
figure are showing the values obtained from 90 analyses performed on loose 
saturated soil. 
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where Go is the low strain shear modulus, pis the mass density. There is a strong 

dependence of amplification factors on the input spectral acceleration. Therefore, the 

recommended values for amplification factors are given as functions of input spectral 

acceleration. Regression equations for calculating Fa and Fv (corresponding to T=0.2s and 

T= l.Os respectively) are presented here along with the equation for calculating the 

amplification factor at period=0.5 and 2.0s. The Fa and Fv values can be used for 

determining site specific response spectra in earthquake resistant design. The calculated 

spectral acceleration for 5% damping vs. amplification factors at four different periods: 

0.2s, 0.5s, l.Os, and 2.0s for saturated loose (Dr=45%) cohesionless soil site are presented 

in Figure 6.24. The regression equations for calculating Fa and Fv are shown in the 

figures. 

In Figure 6.24 and 6.25 Fa is the short period (0.2s) amplification factor, Fv is the 

long period (l.Os) amplification factor, Sa(0.2) is the spectral acceleration of input for 5% 

damping at period=0.2s, and Sa(l.O) is the spectral acceleration of input for 5% damping 

at period = l.Os (shown using arrows in Figure 6.15a for one acceleration input). 

The effect of the water table was also studied here. Amplification factors are also 

calculated for unsaturated uniform loose soil. Figure 6.25 shows the relation of 

amplification factors with input spectral acceleration at the above mentioned four 

different periods. The regression equations for calculating Fa and Fv are shown in the 

Figure 6.25. 

The amplification factors for a site comprised of dense (Dr=85%) saturated 

cohesionless soil are presented in Figure 6.26. The regression equations for calculating Fa 

and Fv are as shown in the Figure 6.26. The amplification factors for an unsaturated dense 
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(Dr=85%) cohesionless soil site are presented in Figure 6.27. The regression equations 

for calculating Fa and Fv are shown in the Figure 6.27. 

The effects of soil variability on amplification factors were also studied. 

Amplification factors for two different CV of q11 values (0.2 and 0.5) are provided. Figure 
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Figure 6.25: Regression equations of spectral amplification vs. input spectral 
acceleration for loose unsaturated cohesionless soil: a. AF(0.2) or Fa vs input Sa 
at T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. 

6.28 shows the relation of amplification factors with input spectral acceleration at the 
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above mentioned periods (0.2s, 0.5s, l.Os, and 2.0s) for the loose variable soil with CV of 

qn of 0.2. Similar results for the loose variable soil with CV of 0.5 are shown in Figure 

6.29 (probabilistic characteristics of the soil properties are discussed in Section 6.2.2). 

The regression equations for calculating Fa and Fv are shown in the corresponding 
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Figure 6.25 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for loose unsaturated cohesionless soil: c. AF(l.O) or Fv vs 
input Sa at T=l.Os; d. AF(2.0) vs input Sa at T=2.0s. 

Figures. From the results presented between Figure 6.24d and 6.29d it has been observed 
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that there is significant scatter present in the value for AF(2. 0) . Therefore, the R-square 

value for the regression equations provided for AF(2.0) are very low. 

The comparison of the Fa and Fv results for cohesionless soil at two different 

relative densities are presented in Table 6.1 0. The results are compared with the 
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Figure 6.26: Regression equations of spectral amplification vs. input spectral 
acceleration for dense saturated cohesionless soil: a. AF(0.2) or Fa vs input Sa at 
T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. 

recommended values of spectral acceleration in the Canadian Building Code (NBCC 
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2005), and with other values from the literature. The comparison of spectral amplification 

between presented results for loose cohesionless soil and site class E in Canadian 

Building Code is illustrated by Figure 6.30. Similar comparison for dense cohesionless 

soil with the value for site class D in Canadian building Code is illustrated by Figure 
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Figure 6.26 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for dense saturated cohesionless soil: c. AF(l.O) or Fv vs 
input Sa at T=l.Os; d. AF(2.0) vs input Sa at T=2.0s. 

6.31. The percentage change in the Fa and Fv values are compared with respect to that 
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value in Canadian Building Code. From the Table 6.10 it has been observed that there is a 

40-47% (depending on the value of Sa(l.O)) change in Fa value when the soil is loose 

unsaturated compared to the values recommended in the Canadian Building Code for site 

class E. This variation in F v value is about 20-118%. There is a 41-111% change in Fa 
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Figure 6.27: Regression equations of spectral amplification vs. input spectral 
acceleration for dense unsaturated cohesionless soil: a. AF(0.2) or Fa vs input Sa 
at T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. 

value when the soil is loose unsaturated compared to the values with loose saturated soil. 
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This variation in F v values is even larger, where more than 121% change in the values has 

been estimated. In unsaturated dense cohesionless soil a 11-41 % variation in Fa value and 

106-181% variation in Fv value have been estimated compared to the values 

recommended in the Canadian Building Code for site class D. There is a 25-35% 
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Figure 6.27 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for dense unsaturated cohesionless soil: c. AF(l.O) or Fv vs 
input Sa at T=l.Os; d. AF(2.0) vs input Sa at T=2.0s. 

variation in Fa value and 19-43% change in Fv value has been estimated m dense 

210 



--- ------------------------ - --- ----- --------- ---

saturated soil compared to the values in unsaturated dense soil. The companson of 

amplification factors for a dense cohesionless soil with loose soil also can be estimated 

from Table 6.1 0. There is about 40% to 60% variation in the amplification factors for 

dense soil compared to that in loose uniform soil. The Canadian building code also 
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Figure 6.28: Regression equations of spectral amplification vs. input spectral 
acceleration for loose saturated heterogeneous soil (CV=0.2): a. AF(0.2) or Fa vs 
input Sa at T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. 

reported a variation up to about 62% between site class D and E. Bazzurro and Cornell 
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(2004) presented some recommended value for Fa and Fv. The presented results for a 

sandy site are shown in Table 6.1 0. The soil characteristics are very much close to dense 

saturated soil presented here. From the comparison it is observed that the value for Fa and 
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Figure 6.28 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for loose unsaturated heterogeneous soil (CV=0.2): c. 
AF(l.O) or Fv vs input Sa at T=l.Os; d. AF(2.0) vs input Sa at T=2.0s. 

Fv recommended by Bazzurro and Cornell (2004) are very much agreement with the 

results for dense saturated uniform soil presented here in this study. 
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It has been found in this study that there is small (less than I 0%) change in the 

values of Fa and Fv for heterogeneous soil compared to that in uniform soil. Even for a 

variable saturated loose soil with CV of q0 = 0.5, < 2% change for the value in Fa and < 
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Figure 6.29: Regression equations of spectral amplification vs. input spectral 
acceleration for loose saturated heterogeneous soil (CV=O.S): a. AF(0.2) or Fa vs 
input Sa at T=0.2s; b. AF(O.S) vs input Sa at T=O.Ss. 

I 0% change for the value of F v has been estimate compared to that in uniform saturated 

soil. The EPWP generation in heterogeneous soil is higher (shown in previous Chapters) 
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than that in uniform saturated soil. But, it does not affect here the Fa and Fv value in 

heterogeneous soil. One possible explanation can be obtained from the results presented 

in Figure 6.22e. Where it was found that attenuation of Arias Intensity was almost similar 
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Figure 6.29 (cont.): Regression equations of spectral amplification vs. input 
spectral acceleration for loose saturated heterogeneous soil (CV=O.S): c. AF(l.O) 
or Fv vs input Sa at T=l.Os; d. AF(2.0) vs input Sa at T=2.0s. 

in heterogeneous soil as compared to that in uniform soil, especially for low intensity 

earthquakes. This implies that, the earthquake energy level in the free field was almost 
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similar in variable soil compared to that in uniform soil. So, Fa and Fv value obtained here 

are almost similar. Therefore, it can be concluded that soil variability has no significant 

influence on the values of the amplification factors for the ranges of soil properties 
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Figure 6.30: Comparison of spectral amplification vs. spectral acceleration for 
loose soil: a. AF(0.2) or Fa vs input Sa at T=0.2s; b. AF(l.O) or Fv vs input Sa at 
T=O.Ss. 

studied here (CV of q11 =0.2 and 0.5). However, the comparison for unsaturated variable 

soi l with unsaturated uniform soil is beyond the scope of this study. 
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--------------------------------------------------------------------------------------

On the other hand, the ground water depth has a huge influence on the 

amplification factors (shown in Table 6.1 0). There is an error larger than 40% might be 

induced in the value of amplification factors for not considering the effect of the ground 
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Figure 6.31: Comparison of spectral amplification vs. spectral acceleration for 
dense soil: a. AF(0.2) or Fa vs input Sa at T=0.2s; b. AF(l.O) or Fv vs input Sa at 
T=O.Ss. 

water level. So, nonlinear dynamic fully coupled site response analysis must be 

performed for saturated soil (which was performed in this study) instead of using 
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equivalent-linear methods such as the SHAKE program. It should be emphasized that the 

extra variability in the responses due to soil variability is not significant for the range of 

soil properties and variability studied here. However, the record-to-record variability of 

amplification factors is quite significant. The provided regression equations in Figures 

6.24 to 6.29 for Fa and Fv are recommended to use for calculating short and long period 

amplification factors in site specific response analysis for designing an earthquake 

resistant structure. As mentioned earlier, in the study 90 acceleration time histories were 

used. The Sa(0.2) values are inside the range ofO.Olg to 2.5g and S(l.O) values are inside 

the range of 0.005g to 1.5g. Therefore, the equations presented in Figures 6.24 to 6.29 are 

recommended for the above mentioned range of Sa(0.2) and Sa(l.O). 

Based on relative density and corresponding shear wave velocity, the results for 

loose unsaturated cohesionless soil (Dr=45%) can be used for site class E and those for 

dense unsaturated cohesionless soil (Dr=85%) can be used for site class D in the 

Canadian Building Code. However, due to liquefaction susceptibility of saturated sand at 

moderate to large earthquakes, those saturated cohesionless soils are usually classified as 

site class F (NBCC, 2005). Therefore, the spectral amplification results for unsaturated 

cohesionless soil presented here can be directly compared with the values in Canadian 

Building Code (for site class D and E). The results for saturated soil for moderate to high 

earthquake intensities are recommended for site class F. 
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6.4.6. Results and Discussion 

6.4.6.1. Maximum Structural Deformation Responses 

Some of the results from Monte Carlo simulation m terms of structural 

deformation are presented here. The structure is modelled here as a single-storied frame. 

Two different fundamental periods of the structure (0.29s and 0.78s) were considered in 

the study. To achieve different fundamental periods of the structure, the floor mass at the 

roof level and the column dimensions were varied. So, the absolute values of maximum 

bending moment or maximum first story drift are not realistic. Therefore, the absolute 

values of maximum bending moments and maximum first story drift are not presented 

here. Only the ratio between the response in the structure resting on other type of soil and 

the structure resting on uniform loose saturated soil are presented here. Computed 

maximum induced bending moment ratio between structure on different types of soil and 

uniform soil are presented in Figure 6.32. It has been observed that as the soil variability 

increases, the variability in the maximum bending moment also increases. It has been 

also observed that as the soil below the structure becomes stronger (either due to an 

increase in soil relative density or due to lowering ground water level) the induced 

moment in the structure is increases. This can be explained based on the results presented 

in Figure 6.22 (comparison of Arias Intensity input vs. response at soil surface). The 

earthquake energy transmitted to the structure resting on dense soil is larger than that in 

loose soil, and stronger shaking induces more bending moment in the structure. Figure 

6.33 show the computed maximum induced first story drift ratio between structure on 

different types of soil and on uniform loose saturated soil, respectively. Figure 6.34 

shows the maximum base shear in the column. The effect of soil variability on base shear 
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Figure 6.32: Maximum Bending Moment ratio (with respect to the structure on 
loose saturated soil) for different soil conditions. Where, bending moment 
ratio= maximum bending moment in the structure resting on other type of 
soiVmaximum bending moment in the structure resting on loose saturated soil. 

is illustrated in Figure 6.34a. It has been observed that as the soil variability increases, the 

maximum base shear in column is reduced. One possible explanation is that as soil 

variability increases the soil below the structure become weaker due to build up of more 
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EPWP. So it produces less resistance to the structure against rotation which ultimately 

induces less base shear in the column. 
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Figure 6.33: Maximum story drift ratio (with respect to the structure on loose 
saturated soil) for different soil conditions. Where, drift ratio= (maximum story 
drift at floor level in the structure resting on other type of soiUmaximum story 
drift at floor level in the structure on loose saturated soil. 
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floor level in the structure on loose saturated soil. 

Figure 6.35 illustrates the effect of earthquakes on structure in terms of maximum 

total settlements (shown here for the left footing). Effects of water table depth and soil 
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relative density on maximum settlement are shown m Figure 6.35a and 6 .35b. Soil 
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Figure 6.35: Scatter plot of maximum total settlement at left footing for 
different soil conditions below structure. 

strength increases with increase in relative density and water table depth. Therefore, 
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maximum settlements are larger in loose saturated soil compare to that in unsaturated soil 
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Figure 6.36: Scatter plot of maximum differential settlement for different soil 
conditions below structure. 

or dense saturated soil. The fundamental period of structure-II is close to the fundamental 
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period of the site; therefore, more structural settlements (total and differential) are 

computed for Structure II (Figure 6.35c and 6.36c). The results for heterogeneous soil are 

more scattered due to the presence of two uncertainty factors (seismic acceleration and 

random spatial distribution of soil strength).The sample function-to-sample function 

variability in the computed maximum total settlement is increased with the increase in 

CV value. And also, for the entire range of seismic intensities larger total settlements are 

computed for larger CV. 

Apart from earthquake intensity, the induced bending moment and deformation of 

the frame structure also depend upon maximum differential settlements. The maximum 

differential settlements are determined here by calculating the difference in total 

settlement at the mid point of both footings (shown in Figure 6.36f). Figures 6.36a and b 

show the effects of water table depth and soil strength on maximum differential 

settlements. Like total settlements, maximum differential settlements are also larger in 

the structure resting on loose saturated soil compare to unsaturated soil or dense saturated 

soil. Soil variability has a huge impact on maximum differential settlements. Larger 

differential settlements are computed in the structure on variable soil than that in uniform 

soil. The sample function to sample function variation in maximum differential 

settlements also increase with the increase in CV of qn. As mentioned in Section 6.4.5.3, 

the larger build up of EPWP significantly reduced the earthquake energy transmitted to 

the structure. On the other hand, maximum total and differential settlements increase with 

the development of larger EPWP. This ultimately induces more structural total and 
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------------------------- -

differential settlements. Therefore, the structure situated on loose variable soil suffered 

more structural deformation. 
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Figure 6.37: Fragility curves for maximum total settlement. 
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6.4.6.2. Fragility Curves 

The computed maximum structural total and differential settlements are processed 

as fragility curves, expressing the probability of exceeding certain thresholds in the 

responses as a function of earthquake intensity. The procedure used for constructing the 

fragility curves, presented by Shinozuka et a!. (2000), is already discussed in Chapter 2. 

Lambe and Whiteman (1969) provide some guidelines for allowable total and differential 

settlements for a frame structure. For the frame structure studied here, the permissible 

limits obtained based on the criteria suggested by Lambe and Whiteman (1969) are: total 

settlements of about 5-l Ocm and differential settlements of 3cm. Figure 6.3 7 compares 

fragility curves for exceeding a certain degree of structural total settlement for all cases 

analysed. For example, for an input with Arias Intensity of lm/s, it can be inferred from 

the fragility curves presented in Figure 6.37a and 6.37b that: 

a) There is about 2% probability of exceeding 1 Ocm total settlement in loose 

uniform unsaturated soil, about 22% probability of exceeding 1 Ocm total settlements in 

loose uniform saturated soil and about 25%, 50% and 53% chances for loose variable soil 

with CV= 0.2, CV=O.S and 0.625 respectively, 

b) There is a very small probability (<0.01 %) of exceeding Scm total settlement 

in dense uniform (both saturated and unsaturated) or variable soil, and about 50% chance 

for loose saturated uniform soil. 

Figure 6.38 shows fragility curves for exceeding a certain degree of structural 

differential settlement for all analysed cases. Fragility curves for various levels of total 

and differential settlements (including those for the allowable limits) are presented in 

Figure 6.39 for loose saturated variable soil with CV=O.S. Some threshold levels for 
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constructing fragility curves are selected same as the allowable limits which were taken 

from the recommendations suggested by Lambe and Whiteman (1969). The fragility 

curves based on these allowable limits can be used for determining the limiting Arias 

Intensity which will cause a given probability of exceeding. The limiting Arias Intensity 
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Figure 6.38: Fragility curves for maximum differential settlement. 

values for 1%, 5% and 10% probability of exceeding various thresholds are presented in 
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Figure 6.39: Fragility curves for structure on randomly variable loose saturated 
soil (COV=O.S) deposit subjected to 18 selected seismic motions: a. total 
settlement of left footing; b. differential settlement. 

tabular form for design purpose for all the analysed cases. The Arias Intensity values for 

total and differential settlements exceeding certain threshold level are tabulated in Tables 

6.11 and 6.12 respectively. The other fragility curves used for obtaining those Arias 

Intensity values are shown in the Appendix A. 
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Figure 6.40 shows the Type-1 combined damage curve. The procedure used for 

constructing the combined damage curves is already discussed in Section 6.3.4.4. Figure 

6.40a shows the Type-1 damage curve for exceeding allowable limits of total and 
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Figure 6.40: Type-1 damage curve: probability of damage due to exceeding a. 
lOcm maximum total settlement and/or 3cm maximum differential settlement; 
b. lOcm maximum total settlement and/or 0.4cm maximum differential 
settlement. 
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Figure 6.41: Type-11 damage curve: probability of damage due to exceeding a. 
Scm maximum total settlement and 3cm maximum differential settlement; b. 
Scm maximum total settlement and 0.4cm maximum differential settlement. 

differential settlements. Similarly, Figure 6.40b shows the Type-1 damage curve for 

exceeding 0.4cm of differential settlements and the allowable limit of 1 Ocm for total 

settlement. Figure 6.41 shows the Type-II combined damage curves. Figure 6.41 a shows 

the Type-11 curve for exceeding 3cm of differential settlements and Scm of total 
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settlement. Similarly Figure 6.41 b shows Type-II curve for exceeding 0.4cm of 

differential settlements and Scm of total settlement. 

6.4.6.3. 

Strength 

Design Recommendations for Selecting an Equivalent Uniform Soil 

Based on the reliability analysis of frame structure presented in this Chapter, 

design recommendations are provided in this section. It has been observed that intensity 

of seismic ground motion, soil relative density, fundamental period of the structure and 

degree of soil variability all have significant influence on the predicted structural 

responses reported in this chapter. As shown in previous chapters (Chapter 4 and 5), soil 

heterogeneity leads to more EPWP build up than that in uniform soil. This ultimately 

causes more structural damage in terms of total and differential settlements. The fragility 

curves, combined damage curves and tables (Tables 6.11 and 6.12) provided in the 

previous section also can be used in design. 

Based on the results of maximum total and differential settlements of the structure 

resting on heterogeneous soil, guidelines are provided here on selecting an equivalent 

uniform soil relative density (Dre). This equivalent uniform soil relative density 

represents the uniform soil density which will result in an equivalent response to that 

obtained for a structure on variable soil. The objective of this study was to find the 

fraction of the actual average relative density of the heterogeneous soil that, when used in 

a conventional analysis assuming uniform soil properties, would provide a response that 

is "equivalent" with that from Monte Carlo simulations. The meaning of "equivalent" 

response depends on what is the response parameter considered in the analysis- it may be 
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equivalent EPWP build-up, equivalent average settlements, equivalent total and 

differential settlements or equivalent base rotation. 

A series of time history analyses has been performed on the soil-structure models 

where the structure was placed on uniform soil deposits with various soil relative 

densities. The relative densities of those uniform soil deposits were selected in such a 

way that they are the fraction of the actual average relative density of the heterogeneous 

soil (i.e., Dre =F x Drm; where Drm is the average relative density of the heterogeneous 

soil, F is the fraction of the actual average relative density of the heterogeneous soil). The 

responses obtained for structure on heterogeneous soil are compared next with these 

analyses results. 

Figure 6.42 shows the comparison between maximum total settlements at the left 

footing of the structure resting on loose variable soil (Drm=45%) and that calculated for 

uniform soil. From the results it is observed that a uniform soil with a relative density 

90% of average relative density of the heterogeneous soil results in total settlements at 

the left footing similar to those in variable soil with CV=0.2. For variable soil with 

CV=0.5, a relative density 80% of average relative density of the heterogeneous soil 

induces conservative maximum total settlements in most of the earthquakes. However, in 

some cases (e.g., lA =0.3m/s) they are less than that computed in variable soil. Since it is 

very unlikely to get a natural soil deposit with relative density <35%, the results for 

uniform soil with 70% of average relative density of the heterogeneous loose soil are not 

presented here. Similar comparisons for maximum differential settlements in structure on 

loose soil are shown in Figure 6.43. Due to the presence of loose pockets in the soil 

below the structure, maximum differential settlements in heterogeneous soil are much 
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higher than that in uniform soil in most cases. Even with small variability (CV=0.2), 
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Figure 6.42: Comparison for maximum total settlements for the structure on 
loose heterogeneous soil and equivalent uniform soil. 

about 2-3 times larger maximum differential settlements are recorded in heterogeneous 

soil than that in corresponding uniform soil. 
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The comparison of responses (for maximum total and differential settlements) 

between the structure on heterogeneous dense sand with CV=0.5 and uniform soil are 
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Figure 6.43: Comparison for maximum differential settlements for the structure 
on loose heterogeneous soil and equivalent uniform soil. 

shown in Figure 6.44. All these results are briefly tabulated in Table 6.13. From the 

maximum total settlement comparison, it is found that a relative density 70% of average 
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relative density of the heterogeneous soil is conservative enough to produce similar 

responses as that in heterogeneous dense soil with CV=0.5 . However, for maximum 
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Figure 6.44: Comparison for maximum settlements for the structure on dense 
hetero~eneous soil and equivalent uniform soil. 

differential settlements, even about 50% equivalent uniform soil relative density (Dre 

=42.75%) is not conservative enough to produce similar responses than that in 

heterogeneous soil. Therefore, it can be concluded that using equivalent relative density 
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will not be able to reproduce the same results as obtained from the structure on 

heterogeneous soil. Therefore, soil heterogeneity must be taken into consideration to 

accurately determine differential settlements in the frame structure. Without considering 

the presence of loose pockets in the soil below structure, it is not possible to accurately 

calculate the differential settlements in frame structure. 

6.5. Summary and Conclusions 

Both the spatial variability of soil properties and the frequency content of the 

seismic motion have a major role in predicted structural responses. In the first part of this 

study (Section 6.3), it was observed that for the type of soil considered here, UBC type-3 

input acceleration time histories induce more damage to the structure than type-1 input 

acceleration. Due to soil softening after build-up of EPWP, the characteristic frequency 

of the soil-structure system goes down to the value close to the dominant frequency of 

low frequency inputs (e.g. type 3 input in this study). Therefore, considerably more 

structural damage is predicted for that type of seismic motion. It is also concluded that 

soil variability adversely affects the performance of the structure. The probability of 

damage of the structure situated on variable soil is higher compared to that of a structure 

situated on a uniform soil with the soil properties that are the average soil properties of 

the variable soil. The design guidelines based on this part of the study are presented in 

Section 6.3.4.5 (Table 6.4, 6.5 and Figure 6.10, 6.11 , 6.13, 6.14). The combined damage 

curves, constructed based on basic probability theory, are useful for the initial reliability 

analysis of structures. The number of Monte Carlo simulations used here was much 

smaller than the theoretical number of simulations required for proper assessment of 
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result range boundaries. This was due to the significant computational effort required by 

each FE analysis (each analysis was taking about 2 hours using a dual core 2 @2.16GHz, 

2MB ram computer). From previous similar studies (Bazzurro and Cornell, 2004; 

Nobahar, 2003) it was, however, found that 100 sample functions (as used here) are 

sufficient for correctly inferring the mean and standard deviation of the resulting 

quantities. 

In the second part of this study, the results related to the analysis of a frame 

structure have been presented. The design guidelines for spectral amplification factors (Fa 

and Fv) have been provided for different types of soil conditions. Regression equations 

(in Figures 6.24 to 6.29) are provided for loose saturated and unsaturated soil (equivalent 

to site class E) and dense saturated and unsaturated soil (equivalent to site class D). A 

comparison of these amplification factors with the value in Canadian Building Code and 

previous studies (e.g., Bazzurro and Cornell, 2004) are shown in Table 6.1 0. Effects of 

soil variability on amplification factors were also studied. The effect of soil variability 

has been found to be not very significant in the studied ranges for calculating the values 

of spectral amplification factors. There is a less than 10% change in the values of Fa and 

Fv for heterogeneous soil compared to that in uniform soil. Separate regression equations 

are provided for heterogeneous soil with CV of qn = 0.2 and 0.5 for calculating Fa and Fv. 

For intermediate CV values provided regression equations can be used with sufficient 

accuracy. However, water table depth has a significant influence on amplification factors. 

If the ground water level goes up, it decreases the soil strength and therefore 

amplification factors are decreased. So amplification factors in saturated soil are lower 
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than those in unsaturated soil. Therefore, not considering the effect of ground water table 

depth might induce significant errors in the values of amplification factors. 

A statistical methodology called design of experiments (DOE) was used for 

obtaining significant parameters and replacement Response Surface model for calculating 

total and differential settlements. Various Response Surface models were formulated in 

the studied ranges of different factors and presented in Section 6.4.4 in more detail. The 

equations for Response Surface models are presented in Section 6.4.4.2 (Table 6.8). 

These Response Surface models can be used in the studied range of various factors for 

approximately calculating responses (total and differential settlements) in the structure. 

The results of reliability analysis for the frame structure situated on heterogeneous soil 

are presented in form of fragility curves and combined damage curves. The limiting Arias 

Intensity values for 1%, 5% and 10% probability of exceeding various thresholds for total 

and differential settlements are presented in tabular form (Tables 6.11 and 6.12) for all 

the analysed cases. The limiting Arias Intensity is the value of lA which induces a certain 

probability of exceeding the thresholds of responses for particular soil conditions. These 

tabulated results can be used for design purposes. 

In the last part of this study, relative density of an equivalent uniform soil deposit 

was recommended based on the results of maximum total settlements. This equivalent 

uniform soil relative density is the relative density of a uniform soil deposit which will 

produce an "equivalent" structural response to that in the case of structure on 

heterogeneous soil. It is concluded that for a loose soil with CV=0.2, 90% of average 

relative density of the heterogeneous soil is conservative enough to represent total 

settlements in heterogeneous soil. For CV=0.5, 70% of average relative density of the 
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heterogeneous soil is conservative enough to represent heterogeneous soil. However, 

accurate calculation for maximum differential settlements is not possible by using this 

equivalent relative density of uniform soil. This concept is not considering the presence 

of loose pockets which actually controls the differential settlements of a structure situated 

on heterogeneous soil. Therefore, soil heterogeneity must be taken into consideration to 

accurately determine the differential settlements in the frame structure. 

Table 6.1: The correlations used for estimating parameters and the values of the multi­

yield plasticity model parameters used in the analysis 

Constitutive parameter 

Mass density- solid 

Soil relative density (Dr) 

Void ratio (e) 

Poro ity (n) 

Hydraulic conductivity 

Values/Correlations 

2660 kg/m3 

I 
Dr = q, h p . th \J , W ere atm IS e 

V 305Patm 
atmospheric pressure (lOOkPa) 

e = emax - Dr(emax - emin), where emax 

and emin are maximum and minimum 
void ratio 

e 
n=--

I+e 

e3 
k = 1 2--C0

'
735 D 0

·
89 C is the 

· (1 +e) " 10 ' u 

uniformity coefficient, D 10 is in mrn 

Reference 

Been et al. (1991) 

Kulhawy and Maine 
(1990) 

and are calculated using following Das (1994) 
relation: 

( 
11.619 )28.06629 

D10 = 0.015 + 
Ic + 10.293 
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Table 6.1(contd.): The correlations used for estimating parameters and the values of the 

multi-yield plasticity model parameters used in the analysis 

Low strain elastic shear G, ~70(2.17-e)' ( P; r Hardin and Richard 
modulus (1+e) ~rm (1963) 

Poisson's ratio 0.35 Popescu et al . ( 1997) 

Power exponent 0.5 Popescu et al. (1997) 

<P ~tan _, [ 0.1 + 0.381og_<k_] , q, is 
Robertson and 

Friction angle at failure O"vo 

the cone penetration resistance, O"vo' 
Campanella (1983) 

is the initial effective vertical stress 
Maximum deviatoric 
strain (complext) 0.0710.04 Been et al. 1991 

Coefficient of lateral 
0.7 Jefferies et al. (1988) 

stress 

Stress-strain curve a=0.217 -0.027Cu+0.037Dmax, Dmax Hayashi et al. (1992) 
coefficient is the maximum particle size 

Dilation angle 31° Been and Jefferies 
(1985) 

lo{ X "' J ~ 7.071-11.38x 
0.7 

( .JP: ( . )"" r, Dilation parameter 
15 + q c pa I 0" vO . Popescu (1995), 

0.1 ( ' t 386 Popescu et al. (2005) 
25 - q c .JP: I O"vo 

0.7- to account for Mohr-Coulomb 
yield surface effect 
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Table 6.2: The parameters of the multi-yield plasticity model, and the values used for the 

saturated soil in the deterministic analysis 

Constitutive parameter Symbol Value Type 

Mass density - solid / 2660 kg/m3 

Porosi ty nw 0.435 State parameters 

Hydraulic conductivity k 0.000264m/s 

Low strain elastic shear modulus Go 19.4MPa Low strain 

Poisson's ratio v 0.35 elastic 

Power exponent n 0.5 parameters 

• Friction angle at failure(J) ¢ 37.2° .. . .43.7° 

Maximum deviatoric strain 
Yield and failure 

(comp/ext) Cct max 
ev 0.07/0.04 

Coefficient of lateral stress 0.7 
parameters 

ko 

Stress-strain curve coefficient a 0.2756 

Dilation angle If/ 31° Dilation 

Dilation parameter(J) Xpp 0.035 .... 0.04 parameters 

Note: ( 1) Variable with depth, function of overburden stress. 

Table 6 .3: The damage levels used in the study for generating combined damage curves 

• Response parameter Damage level Value 

Maximum permissible Level - l damage !Ocm 

settlement (St) 
Level - 2 damage 15cm 

Level - 3 damage 20cm 

Level - I damage 0.3u 

Maximum permissible base 
Level - 2 damage 0.4u 

rotation (R1) 

Level - 3 damage 0.5° 
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Table 6.4: Minimum Arias Intensities corresponding to several probabilities of exceeding 

three threshold levels of total settlements for a tower structure constructed on liquefiable 

uniform or variable soil 

Uniform Uniform Variable Variable 

Analysis condition -+ soil, Type 1 soil, Type 3 soil, Type 1 soil, Type 3 

input input input input 

Threshold Exceeding 
Arias Intensity (m/s) 

level probability 

1% 0.484 0.237 0.418 0.092 

10cm 5% 0.540 0.251 0.444 0.116 

10% 0.572 0 .258 0.459 0.1 32 

1% 1.538 0.535 0.504 0.419 

20cm 5% 1.601 0.590 0.619 0.444 

10% 1.635 0.622 0.690 0.457 

1% >2.3(IJ 0.875 0.699 0.348 

30cm 5% >2.3(IJ 0.965 0.929 0.428 

10% >2.3(IJ 1.017 1.082 0.478 

Note: (l) Values are outside the analysis domain of Arias Intensity . 

242 



• 

• 

Table 6.5: Minimum Arias Intensities corresponding to several probabilities of exceeding 

three threshold levels of base rotation for a tower structure constructed on liquefiable 

uniform or variable soil 

Uniform Uniform Variable Variable 

Analysis condition -+ soil, Type 1 soil, Type 3 soil, Type 1 soil, Type 3 

input input input input 

Threshold Exceeding 
Arias Intensity (m/s) 

level probability 

1% 0.234 0.073 0.234 0.024 

0.3° 5% 0.344 0.103 0.313 0.04 

10% 0.424 0.124 0.365 0.052 

1% 0.388 0.118 0.204 0.098 

0.40 5% 0.621 0.181 0.316 0.137 

10% 0.798 0.226 0.400 0.165 

1% 1.586 0.176 0.186 0.181 

0.6° 5% 1.997 0.318 0.345 0.272 

10% 2.259 0.435 0.481 0.339 

Note: (1) Outside the analysis domain of Arias Intensity . 
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Table 6.6: Different factors used in Face-Centred Central Composite Design and their 

high and low levels 

Low High 
Models Factors Unit 

level level 

A: Soil relative density % 45 85 

B: Coefficient of variation of q11 - 0.2 0.5 
Replacement 

Model-l 
C: Arias Intensity rnls 0.01 0.1 

D: Fundamental period of the 
0.29 0.78 sec 

structure 

A: Soil relative density % 45 85 

B: Coefficient of variation of q11 - 0.2 0.5 
Replacement 

C: Arias Intensity m/s 0.075 0.5 
Model-II 

D: Fundamental period of the 
0.29 0.78 sec 

structure 

A: Soil relative density % 45 85 

B: Coefficient of variation of qn - 0.2 0.5 
Replacement 

C: Arias Intensity m/s 0.5 1.5 
Model-III, IliA 

D: Fundamental period of the 
0.29 0.78 sec 

structure 

A: Soil relative density % 45 85 
Replacement 

B: Coefficient of variation of qn - 0.2 0.5 
Model-IIIB 

C: Arias Intensity rn/s 0.5 1.5 

A: Soil relative density % 45 85 

B: Coefficient of variation of qn - 0.2 0.5 
Replacement 

C: Arias Intensity mls 1.0 4.0 
Model-IV 

D: Fundamental period of the 
0.29 0.78 sec 

structure 
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Table 6.7: Design layout for Response Surface Modei-I using Face-Centred Central 

Composite Design and calculated (from FE analysis) responses 

Response: 1 Response: 2 
A- C- D- Maximum 
Relative Arias Period of total 

Maximum 
Run# B-CV 

Density Intensity Structure settlement at 
differential 

(%) (m/s) (sec) left footing 
settlements 
(m) 

(m) 
1 85.00 0.50 0.010 0.29 3.539E-03 8.916E-04 
2 65.00 0.50 0.055 0.78 1.745E-02 1.882E-03 
3 65.00 0.35 0.010 0.29 3.309E-03 5.428E-04 
4 65.00 0.35 0.100 0.78 2.164E-02 1.997E-03 
5 85.00 0.50 0.010 0.78 5.359E-03 1.225E-03 
6 45.00 0.50 0.100 0.29 1.795E-02 2.753E-03 
7 85.00 0.20 0.100 0.29 9.540E-03 1.008E-03 
8 85.00 0.50 0.100 0.78 2.016E-02 2.088E-03 
9 65.00 0.35 0.010 0.78 6.464E-03 9.620E-04 
10 45.00 0.20 0.010 0.78 7.555E-03 1.339E-03 
11 45.00 0.50 0.100 0.78 2.670E-02 5.298E-03 
12 65.00 0.35 0.055 0.29 9.075E-03 9.653E-04 
13 85.00 0.20 0.010 0.29 2.569E-03 4.621E-04 
14 85.00 0.50 0.100 0.29 1.079E-02 9.425E-04 
15 45.00 0.20 0.100 0.78 2.548E-02 3.514E-03 
16 65.00 0.35 0.055 0.78 1.568E-02 1.890E-03 
17 45.00 0.20 0.010 0.29 3.650E-03 7.547E-04 
18 85.00 0.20 0.010 0.78 3.918E-03 6.132E-04 
19 65.00 0.20 0.055 0.78 1.532E-02 1.845E-03 
20 45.00 0.35 0.055 0.78 1.938E-02 2.895E-03 
21 45.00 0.50 0.010 0.78 7.693E-03 2.222E-03 
22 65.00 0.50 0.055 0.29 1.009E-02 9.276E-04 
23 85.00 0.20 0.100 0.78 1.849E-02 1.490E-03 
24 85.00 0.35 0.055 0.29 7.527E-03 7.098E-04 
25 45.00 0.50 0.010 0.29 3.927E-03 1.129E-03 
26 45.00 0.35 0.055 0.29 1.238E-02 1.174E-03 
27 65.00 0.20 0.055 0.29 8.645E-03 9.977E-04 
28 65.00 0.35 0.100 0.29 1.261E-02 1.560E-03 
29 45.00 0.20 0.100 0.29 1.652E-02 1.73IE-03 
30 85.00 0.35 0.055 0.78 1.453E-02 1.467E-03 

Note: Soil relative density, coefficient of variation of qn, and Arias Intensity are 
numerical factors and fundamental period of the structure is a categorical factor in this 
study. 
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Table 6.8: Equations for Response Surface Models 

Models 
Maximum total settlements (TS) of left footing in 

Maximum differential settlements (DS) in m 
m 

Tn=0.29: 

TS=7.862E-03 -2.281E-04Dr +3.997E-03CV Tn=0.29: 

+0.3039AI -1 .405E-03Dr.AI + 1.487E-06Dr2 
- Ln(DS) = -6.999- 0.012Dr + 1.117CV 

0.9142AI2
, R2=0.99 + 14.31A/ -0.090Dr.AI, R 2 = 0.9 

Replacement Model-l 
Tn=0.78: Tn=0.78: 

TS=l.031E-02 -2.281E-04Dr +3.997E-03CV Ln(DS) = -6.409-0.0 12Dr + 1.117 CV 

+0.3729AI -1.405E-03Dr.AI +1.487E-06Dr2
- + 14.31A/- 0.090Dr.AI, R 2 = 0.9 

0.9142Af, R2=0.99 

Tn=0.29: Tn=0.29: 

Ln(TS)= -2.313 -0.040Dr -1.541CV +4.222AI- Ln(DS) = -4.865 -0.011Dr- 2.97CV 

O.OlDr.CV +1.895CV.AI +1.689E-04Dr +3.424 + 3.212A/ + 1.475CV.Al + 4.619CV2
-

CV2 -4.318Ae, R2=0.99 3.605A/2
, R 2 = 0.98 

Replacement Model-II 
Tn=0.78: Tn=0.78: 

Ln(TS )= -1.820 -0.037Dr -1.541 CV +4.222AI - Ln(DS) = -3.875 - 1.509£- 02Dr- 2.97 

O.OlDr.CV +1.895CV.AI +1.689E-04*Dr CV +4.345A/ + 1.475CV.AJ +4.619CV 2 

+3.424*CV2 -4.318*AI2, R2=0.99 - 3.605Al2
, R 2 = 0.98 
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Table 6.8 (contd.): Equations for Response Surface Models 

Tn=0.29: Tn=0.29: 

Ln(TS)= -2.490 -0.041Dr -0.718CV +1.214AI- DS = + 1.048£-02- 2.183£- 04Dr- 0.0 15CV 

0.005Dr.AI +0.352CV.AI + 1.938E-04Dr2 +5.075E-03AI-5.277E-05Dr.Al + 

Replacement Model- +1.597CV2 -0.255AI2
, R2=0.99 1.631£- 06Dr2 + 0.022CV2

, R 2 = 0.96 

III Tn=0.78: Tn=0.78: 

Ln(TS)= -2.17 -0.036Dr -0.718CV +1.214AI- DS = +0.0 16- 2.643£- 04Dr- 0.0 1CV 

4.809E-03Dr.AI +0.352CV.AI +1.938E-04Dr2 + 7.573£- 03A/-5.277 E -OSDr.Al + 1.631£- 06Dr2 

+1.597CV2 -0.255AI2
, R2=0.99 + 0.022CV2

, R 2 = 0.96 

Tn=0.29: Tn=0.29: 

11 .JfiS} = 2.939 +0.119Dr -1 .887CV -2.849AI- 1/ .J[iiS} = +3.142+ 0.535Dr - 15.610CV-

Replacement Model- 4.256E-04Dr +0.666AI2
, R2=0.95 5.356Al- 2.366£- 03Dr2 ,R 2 = 0.84 

IliA Tn=0.78: Tn=0.78: 

11 .JfiS} = 2.493 +0.091Dr -1.193CV -2.433AI- 11..J[i5S} = +1.719+0.353Dr-5.514CV-

4.256E-04Dr +0.666AI2
, R2=0.95 2.347 AI- 2.366£- 03Dr2

, R 2 = 0.84 

Tn=0.29: 
Tn=0.29: 

Replacement Model-
1/ ~(TS) = -2.728 + 0.26Dr -1.732CV- 3.334A/ 

~(DS) = 0.292-8.930E - 03Dr+0.312CV 

IIIB + 0.117 AI-3.038£- 03Dr.CV- 6.278£- 04Dr.AI 
-1.388£- 03Dr2 + 0.902A/2

, R 2 = 0.99 
+ 6.653£- 05Dr2

- 0.021A/2
, R 2 = 0.99 
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Table 6.8 (contd.): Equations for Response Surface Models 

Tn=0.29: 

Tn=0.29: Ln(DS) = -4.294- 6.175£- 02Dr + 2.583CV + 

Ln(TS )= -7 .227E-02 -9 .626E-02Dr + 1.0 19CV 1.156A/ -5.410E-02Dr.CV -0.410CVA/ + 

Replacement Model- +0.741AI +4.986E-04Dr2 -8.728E-02Ae, R2=0.99 4.046£ -04Dr2 + 7.675CV 2
- 0.141A/2

, R 2 = 0.95 

IV Tn=0.78: Tn=0.78: 

Ln(TS)= +0.378 -9.345E-02Dr +1.019CV Ln(DS) = -3.061-6.175£- 02Dr + 1.072CV + 

+0.741AI +4.986E-04Dr2 -0.087Ae, R2=0.99 1.156A/ -5.410E-02Dr.CV -0.4 10CV.A/ + 

4.046£- 04Dr2 + 7.675CV2
- 0.141A/ 2

, R 2 = 0.95 

Where, Dr= Soil relative density and its value ranging from 45% to 85%, CV= Coefficient of variation of qc and its value ranging 

from 0.2 to 0.5, AI= Arias Intensity in m/s and its value depends on the range for corresponding model. 
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Table 6.9: Validation of Response Surface Model-IV 

Arias period of Input Maximum Total Settlements (m) Maximum Differential Settlements 

Dr(%) cv Intensity the acceleration (m) 

(m/s) structure file no Calculated From Calculated Calculated From Calculated 
(sec) FE Analysis From RSM FE Analysis From RSM 

79 0.31 2.7 0.78 ac098 0.10400 0.10960 0.02000 0.01994 
67 0.27 1.995 0.78 ac098 0.10700 0.10671 0.01830 0.01859 
52 0.43 2.714 0.78 ac098 0.27200 0.26570 0.06500 0.05595 
69 0.46 3.19 0.78 ac098 0.17700 0.17375 0.03830 0.03548 
54 0.48 1.693 0.29 ac098 0.11000 0.09808 0.03370 0.02674 
58 0.48 3.565 0.29 ac098 0.15700 0.14160 0.04840 0.03410 
57 0.35 3.821 0.29 ac098 0.13000 0.13218 0.02670 0.01991 
52 0.47 2.362 0.78 ac098 0.26500 0.24917 0.06650 0.06025 
70 0.34 1.145 0.29 ac098 0.03710 0.03740 0.00575 0.00565 
62 0.34 3.088 0.78 ac098 0.17900 0.18355 0.02960 0.03261 
83 0.31 2.908 0.29 ac096 0.00670 0.05543 0.00136 0.00926 
76 0.41 2.041 0.78 ac096 0.01030 0.10265 0.00207 0.01941 
83 0.49 1.688 0.29 ac094 0.02130 0.04396 0.00286 0.01098 
52 0.26 3.477 0.78 ac098 0.26000 0.26048 0.04370 0.04237 
70 0.33 3.826 0.29 ac097 0.06950 0.08444 0.00861 0.01295 
47 0.49 3.727 0.29 ac097 0.57000 0.23582 0.11500 0.05890 
70 0.46 3.398 0.29 ac098 0.09330 0.09193 0.02220 0.02027 
49 0.31 3.132 0.78 ac098 0.30200 0.29470 0.05420 0.04868 
70 0.22 3.705 0.78 ac097 0.10800 0.14270 0.02030 0.02715 
46 0.46 2.303 0.78 ac096 0.01430 0.31599 0.00274 0.07502 

Note: Th1s model was formulated usmg mput acceleratiOn file # ac098. 
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Table 6.10: Comparison of the short (0.2s) and long period (l.Os) amplification factors, Fa and Fv results for different types of soil 

Short period (0.2s) amplification factor, Fa 
Sandy 

Uniform saturated Uniform unsaturated 
Variable saturated 

Site site 
loose soil (Dr=45%) loose soil (Dr=45%) 

loose soil (Drm=45%, 
Sa(0.2) class E (Bazzurro CV=0.2) 

(NBCC and 
(% (% (% 2005) Cornell, Value Value Value 

2004) change)E change)E change)E 

0.25 2.1 1.489 0.783 -62.711 1.106 -47.342 0.778 -62.968 
0.5 1.4 0.962 0.476 -65.980 0.763 -45.471 0.472 -66.267 
0.75 1.1 0.703 0.348 -68.365 0.620 -43.617 0.348 -68.369 
1 0.9 0.549 0.276 -69.370 0.537 -40.290 0.278 -69.065 
1.25 0.9 0.446 0.229 -74.584 0.482 -46.450 0.233 -74.068 

Long period (l.Os) ampliftcation factor, Fv 
Sandy 

Uniform saturated Uniform unsaturated 
Variable saturated 

Site site 
loose soil (Dr=45%) loose soil (Dr=45%) 

loose soil (Drm=45%, 
Sa(l.O) class E (Bazzurro CV=0.2) 

(NBCC and 
(% (% (% 

2005) Cornell, Value Value Value 
2004) change)E change)E change)A 

0.1 2.1 3.016 2.071 -1.391 4.592 118.657 1.925 -8.322 
0.2 2.0 2.255 1.460 -27.024 3.396 69.824 1.402 -29.919 
0.3 1.9 1.811 1.174 -38.186 2.755 44.988 1.149 -39.525 
0.4 1.7 1.517 1.001 -41.119 2.340 37.623 0.992 -41.640 
0.5 1.7 1.305 0.881 -48.153 2.044 20.224 0.882 -48.095 

Note: Dr = Soil relative densit , CV = Coefficient of variation of Y qn, 

(% change)E = (
Fa or Fv in other type of soil - Fa or Fv recommended by NBCC for site class E J x 

1 
OO% 

Fa or Fv recommended by NBCC for site class E 
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Variable saturated 
loose soil (Drm=45%, 
CV=0.5) 

Value (% change)E 

0.773 -63.187 
0.468 -66.563 
0.343 -68.832 
0.273 -69.703 
0.227 -74.750 

Variable saturated 
loose soil (Drm=45%, 
CV=0.5) 

Value (% change)E 

1.929 -8.157 
1.358 -32.108 
1.085 -42.902 
0.917 -46.043 
0.801 -52.860 
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Table 6.10 (contd.): Comparison of the short (0.2s) and long period (LOs) amplification factors, Fa and Fv results for different types of 

soil 

Short period (0.2s) am Jlification factor, Fa 

Site Site class Sandy site (Bazzurro Uniform Uniform saturated dense Uniform unsaturated dense 
Sa(0.2) class D E and Cornell, 2004) saturated soil (Dr=85%) soil (Dr=85%) 

(NBCC (NBCC loose soil 
2005) 2005) Value (% change)o (Dr=45%) Value (% change)o Value (% change)o 

0.25 1.3 2.1 1.489 14.507 0.783 1.078 -17.059 1.445 11.120 
0.5 1.2 1.4 0.962 -19.824 0.476 0.707 -41.074 1.009 -15.947 
0.75 1.1 1.1 0.703 -36.056 0.348 0.544 -50.562 0.803 -26.973 
1 1.1 0.9 0.549 -50.108 0.276 0.448 -59.254 0.678 -38.350 
1.25 1 0.9 0.446 -55.394 0.229 0.384 -61.578 0.592 -40.798 

Long period (l.Os) amplification factor, Fv 

Site Site class Sandy site (Bazzurro Uniform Uniform saturated dense Uniform unsaturated dense 

Sa( 1.0) class D E and Cornell, 2004) saturated soil (Dr=85%) soil (Dr=85%) 

(NBCC (NBCC loose soil 
2005) 2005) Value (% change)o (Dr=45%) Value (% change)o Value (% change)o 

0.1 1.4 2.1 3.016 115.441 2.071 3.190 127.871 3.934 180.997 
0.2 1.3 2.0 2.255 73.451 1.460 2.225 71.150 3.181 144.690 
0.3 1.2 1.9 1.811 50.924 1.174 1.770 47.469 2.764 130.316 
0.4 1.1 1.7 1.517 37.876 1.001 1.492 35.646 2.483 125.748 
O.S 1.1 1.7 1.305 18.651 0.881 1.301 18.283 2.276 106.897 

(
Fa or F. in other type of soil- Fa or F. recommended by NBCC for site class D J lOOm 

(% change)0 = x -;o 
Fa or F. recommended by NBCC for site class D 
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Table 6.11: Arias Intensities (in m/s) corresponding to various exceedance probabilities for various threshold levels of structural 

settlements and various soil conditions 

Threshold level 
Scm 10cm 15cm 20cm 

Exceeding 
probability -+ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 
Soil condition 

Loose, uniform, 
0.11 0.215 0.308 0.313 0.514 0.669 0.403 0.625 0.789 0.297 0.550 0.763 

saturated 
Loose, uniform, 

0.143 0.261 0.361 0.668 0.992 1.225 7.711 8.249 8.551 >10.0(I) >lO.O(I) >10.0(IJ 
unsaturated 
Loose, variable, 
saturated 0.049 0.114 0.179 0.171 0.346 0.504 0.386 0.651 0.86 0.589 1.143 1.628 
CV=0.2 
Loose, variable, 
saturated 0.049 0.114 0.179 0.056 0.130 0.205 0.085 0.195 0.305 0.148 0.333 0.513 
CV=0.5 
Dense, uniform, 

1.062 1.878 2.544 >10.0(1) >10.0(1) >10.0(1) >10.0(1) >10.0°) >10.0(1) >10.0(I) >lO.O(I) >10.0(1) 
saturated 
Dense, uniform, 

1.537 2.021 2.339 >10.0(1) > 10.0°) >10.0(1) > 10.0(1) >10.0(1) >10.0° ) >10.0(1) >10.0(I) >10.0(I) 
unsaturated 
Dense, variable, 
saturated 2.807 2.998 3.105 >10.0(1) >10.0(1) >10.0(1) >10.0(1) >10.0(1) >10.0(1) >10.0(1) >10.0(I) >10.0(I) 

CV=O.S 
Note: (1) Outside the analysis domain of Arias Intensity. 
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Table 6.12: Arias Intensities (in m/s) corresponding to various exceedance probabilities for various threshold levels of structural 

settlements and various soil conditions 

Threshold level 
O.Scm l.Scm 3cm Scm 

Exceeding 
probability -+ 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 
Soil condition 

Loose, uniform, 
0.110 0.213 0.306 0.452 0.733 0.949 0.979 1.781 2.449 0.695 2.050 3.650 

saturated 
Loose, uniform, 

0.333 0.552 0.722 > 10.0°) >10.0(1) > 10.0(1) >10.0(1) > 10.0(1) >10.0°) >10.0(1) > 10.0(1) > 10.0°) 
unsaturated 
Loose, variable, 

0.028 0 .072 0 .118 0.089 0.207 0.326 0.109 0 .291 0.492 0 .105 0.543 1.302 
saturated CV=0.2 
Loose, variable, 

0.016 0.039 0.064 0.054 0.119 0.181 0.042 0.116 0.200 0.047 0.155 0.294 
saturated CV=O.S 

Dense, uniform, 
0.295 0.550 0.767 >10.0(1) >10.0°) > 10.0(1) >10.0°) >10.0°) >10.0(1) >10.0(1) >10.0°) >10.0(1) 

saturated 
Dense, uniform, 

0.597 0.957 1.231 >10.0(1) >10.0(1) >10.0°) > 10.0°) >10.0°) >10.0°) >10.0°) >I 0.0°> >10.0(1) 
unsaturated 
Dense, variable, 

0.068 0.162 0.257 1.053 1.860 2.520 >10.0(1) >10.0°) >10.0(1) >10.0(1) >10.0(1) >10.0(1) 
saturated CV=O.S 

Note: 1 ( ) Outside the anal y sis domain of Arias Intensit . y 
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Table 6.13: Practical recommendations on equivalent uniform soil relative density (Dre) 

Average relative Coefficient of 
Soil type Response Variable p CIJ = Dr' 

density (Drm %) variation of qn Dr"' 

Loose saturated variable soil 45 0.2 0.90 

Loose saturated variable soil 45 0.5 Total settlements 0.70\.L) 

Dense saturated variable soil 85 0.5 0.70 

Note: (l) F is the fraction of the actual average relative density of the heterogeneous soil. 

(2) Results are not presented in the thesis (since uniform soil relative density< 35%) 
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CHAPTER 7 

Concluding Remarks 

7.1. Summary and Conclusions 

This chapter presents a summary of the research conducted, the conclusions 

reached and the suggestions for future work. It is usually found that most of the soil 

properties of a natural deposit not only vary in the vertical direction but could also vary in 

the horizontal direction even within a so-called 'uniform' soil layer. From past numerical 

research it was observed that in the case of seismically induced excess pore water 

pressure (EPWP) generation, more EPWP is generated during an earthquake in a 

heterogeneous soil deposit than in a homogeneous soil with equivalent average geo­

mechanical properties. However, to date there are very limited number of experimental 

verifications available to the practicing engineering community to help in recognizing, 

quantifying and accepting the above-mentioned behaviour of heterogeneous soils. 

Therefore, the main aim of this thesis was to identify and explain the liquefaction 

mechanisms for heterogeneous soil. The second objective was to provide 

recommendations for structural foundation designs. 

This study has two main parts. In the first part, the liquefaction mechanisms for 

heterogeneous soil were studied in detail using numerical (finite element analysis) and 

physical (geotechnical centrifuge tests) modelling. A series of three centrifuge tests were 

performed (one on homogeneous soil and two on heterogeneous soil). The test on 

homogeneous soil was performed on a soil deposit with the soil relative density lower 
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than the average relative density of heterogeneous soil. The re ults were monitored and 

measured throughout the test duration to explain the liquefaction mechanisms for 

heterogeneous soil. The liquefaction mechanism was explained by observing EPWP 

build-up and water migration between neighbouring soil zones with different relative 

densities. However, it is not practical to monitor experimental results at very close 

proximity in the model. Therefore, a numerical model was calibrated and validated from 

the centrifuge test results (described in Section 5.3.3 in Chapter 5) on uniform soil first. 

Then, the liquefaction mechanism in heterogeneous soil (discussed in detail in Section 

5.4) was studied in more detail using the numerical simulation results. 

In the second part of this research, the effects of soil heterogeneity on structural 

response were studied using Monte Carlo simulation. Two different types of structures 

were considered in the analysis: a tower structure (where maximum total settlement and 

base rotation were of primary interest) and a frame structure (where maximum total and 

differential settlements were of primary interest). The reliability analysis of a tower 

structure resting on heterogeneous soil is presented in Section 6.3. The design 

recommendations based on this part of the study are presented in Section 6.3.4.5. The 

research related to the reliability analysis of the frame structure resting on heterogeneous 

soil is discussed in Section 6.4. Quantitative and qualitative guidelines were provided, 

based on the analysis results. A design of experiments approach was then used for 

formulating replacement Response Sutface models for calculating total and differential 

settlements. These are presented in Section 6.4.4.2 (shown in Table 6.8). These equations 

can be used in the studied range of various factors for approximately calculating 

structural responses (total and differential settlements). Updated design guideline were 
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also provided for the spectral amplification of seismic ground motion. Based on the 

nonlinear dynamic fully-coupled finite element site response analysis, regression 

equations for the short (0.2 ) and long period (l.Os) amplification factors , Fa and Fv were 

provided. Regression equations (shown in Figure 6.24-6.29) are provided for calculating 

spectral amplification factors in loose saturated and unsaturated soil and dense saturated 

and unsaturated soi l. Effects of soil variability on amplification factors were also studied 

(discussed in detail in Section 6.4.5.6). The effect of soil variability on spectral 

amplification factors has been found to be not very significant in the studied ranges. The 

Monte Carlo simulation results for the frame structure on variable soil are presented in 

Section 6.4.6.2 in form of fragility curves and combined damage curves. The Tables 6.11 

and 6.12, fragility curves and combined damage curve presented in Section 6.4.6.2 can be 

use for design purposes. Based on the results of maximum total settlements (discussed in 

details in Section 6.4.6.3) in the last part of this study, the relative density of an 

equivalent uniform soil deposit was recommended for use in simplified seismic analysis. 

A detailed summary was given at the end of each chapter. Based on the entire 

research, the following conclusions can be drawn: 

I. Recorded centrifuge test results (presented in Section 4.6.3 in Chapter 4) 

support the conclusion of previous numerical findings that more EPWP is 

generated in a heterogeneous soil than in the corresponding homogeneous 

soil. Although the average relative density of heterogeneous soil deposit 

(test 2 and test 3) were higher than that in uniform soil deposit model (test 

1), the liquefaction resistance was lower than that of the uniform soil. The 

higher EPWP ratio generated in the free field compared to that below the 
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structure showed that the presence of a structure causes a higher 

liquefaction resistance in the soil. 

2. After analysing the numerical and experimental results (in Chapter 5), it 

was concluded that the EPWP is generated in the loose sand pockets first. 

Next, due to the pressure gradient created between loose and dense sand 

zones in the heterogeneous soil, water migrates from loose to dense soil 

zones. This ultimately results in softening of the dense sand by reducing 

the effective stress, due to the build-up of EPWP . 

3. A structure placed on heterogeneous soil may experience larger 

differential settlements and base rotations than one placed on a 

homogeneous soil deposit with equivalent (average) properties. Overall, it 

can be concluded that soil variability adversely affects the seismic 

performance of the structure. 

4. From the Monte Carlo simulation results it was concluded that both the 

spatial variability of soil properties and the frequency content of the 

seismic motion have a major role in the structural response. 

5. Based on a limited number of sample functions from Monte Carlo 

simulation, an equivalent uniform relative density was suggested for the 

heterogeneous soil in Chapter 6 (Section 6.4.6.3). Depending on the result 

of maximum total settlements at the left footing of the structure, it was 

concluded that for a soil with CV of qn =0.2, 90% of average relative 

density of the heterogeneous soil is found to be conservative enough to 

represent heterogeneous soil. For CV of qn =0.5, 70% of average relative 
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density of the heterogeneous soil is conservative enough to represent 

heterogeneous soil. However, where differential settlements are important 

(e.g., a frame structure on heterogeneous soil), accurate calculation for 

differential settlements are not possible using the relative density of the 

equivalent uniform soil deposit. The actual spatial locations of soil pockets 

are very important for quantifying the differential settlements. Therefore, 

random soil heterogeneity must be taken into consideration to determine 

differential settlements in the frame structure. However, the location of 

soil pockets in a randomly heterogeneous soil is not known, and therefore 

Monte Carlo simulation and statistical analysis of results are required for 

estimating differential settlements. 

6. Some design guidelines for spectral amplification factors (the short (0.2s) 

and long period (l.Os) amplification factors, Fa and Fv) have been provided 

for different types of soil conditions (discussed in more detail in Section 

6.4.5.6). Provided regression equations (shown in Figure 6.24-6.29) can be 

used for seismic design purposes. From the study it is concluded that soil 

heterogeneity does not have much influence on the values of amplification 

factors for the range of soil properties studied here. However, there is a 

very significant influence of water table depth. Therefore, not considering 

the effect of water table depth might induce significant errors in the values 

of amplification factors. 

7. The combined numerical and experimental methods can be used as an 

efficient tool for including the soil-structure interaction effect during an 
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7.2. 

earthquake shaking and to model the structure resting on a natural soil 

deposit. Moreover, the numerical model used in this research can 

accurately reproduce experimental phenomena observed during 

liquefaction of heterogeneous soil, and therefore, it can be used to expand 

the scope of experimental results and provide design recommendations. 

Scope of future study 

Based on the research presented in the thesis, the following are recommendations 

for future tudy: 

I. Extend the study with numerical modelling: The calibrated numerical 

model can be used for further research in simulating the behaviour of 

heterogeneous soil. For example, the effect of the absolute value and ratio 

of horizontal and vertical con·eJation distance, span of the frame structure 

on quantifying structural differential settlement can be studied. While 

determining relative density of equivalent uniform soil (in Section 

6.4.6.3), the effect of earthquake intensity on the relative density value 

was not considered. A separate study on this factor on relative density of 

the equivalent uniform soil depo it can be performed. The present study 

has been performed for a structure situated on level heterogeneous soil 

deposit. However, further studies can be possible where the structure is 

situated on sloping ground. This numerical study on heterogeneous soil 

can also be extended on submerged and waterfront slopes made of 

heterogeneous soil. 
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2. Extend the study with physical modelling: The centrifuge experimental 

study can be extended for identifying the liquefaction mechanism to other 

type of cohesionless soils with different physical properties. Also, some 

advanced imaging techniques can be used in the centrifuge (on fl ight) to 

measure the relative water velocity during earthquake shaking. Accurate 

determination of actual relative density just before applying ground 

motion in the model can be done using some advanced techniques. 

3 . Extend the study with Design of Experiments: In the present study, 

various response surface models were formulated for various response 

variables. More factors (e.g., more structural types and layouts), more 

response variables and increased number of ample in Monte Carlo 

simulation (only 1, 5 and 10 amples were used in this study) can be 

selected to formulate more accurate response surface models. These 

models can be used for predicting the approximate responses inside the 

analysis domain. 

4. Further study of the constitutive model: The numerical model 

predicted, in general more dilative behaviour for the soi l below the 

structure than that observed in the centrifuge tests (both uniform and 

heterogeneous soil model). Therefore, there is a need for further research 

on the development of an efficient constituti ve model which can more 

accurately reproduce the behaviour of the soil with static shear. 

5. Extrapolate the study for liquefaction mitigation: The present study 

can be extended for mitigating liquefaction hazards in the heterogeneou 
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soil. Effectiveness of various mi tigation methods (e.g. stone column, 

dynamic compaction, vibroflotation etc) in heterogeneous soi l can be 

studied in more detail using the calibrated and validated numerical model 

and centrifuge tests . 
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APPENDIX A 

Table A. 1: Earthquake data base used in the analyses with frame structure 

Input Closest 
Focal 

accele- Date Distance Recording Soil 
No. Earthquake Recording Station Depth Magnitude 

ration (mm/dd/yy) to Fault Direction Type 
(km) 

file no (km) 

1 ac016 CHICHI 09/25/99 HWA026 58.9 16.0 6.3 ou S_B 

2 ac017 N.E. INDIA 05/08/97 PYNURSLA 67.1 34 6 59u rock 

3 aca18 CHICHI a9/25/99 HWAa56 51.5 16 6.3 au S_B 

4 aca19 CHICHI a9/25/99 KAUaa8 135.6 16 6.3 au S_D 

5 aca2a CHICHI a9/25/99 HWAa46 6a.3 16 6.3 au S_B 

6 aca21 N.E. INDIA a8/a5/97 NONGPOH 124.1 34 6.a 4au rock 

CHAMOLI 

7 aca22 (NW a7ta4/99 GOPESHWAR 16.2 1a 4.6 29a0 rock 

HIMALAYA) 

PARKFIELD, COALINGA, FIRE 
8 aca23 a9/28/a4 36.6 7.9 6.a ao rock 

CA STATION 39 
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CHAMOLI 

9 aca24 (NW 03/28/99 UTIARKASHI Iaa.6 15 6.6 72° rock 

HIMALAYA) 

CHAMOLI 

1a aca25 (NW 03/28/99 JOSHIMATH 26 15 6.6 8a0 rock 

HIMALAYA) 

11 aca26 N.E. INDIA a5ta8/97 NONGSTOIN 125.a 34 6.a 65u rock 

12 aca27 CHICHI a9/2a/99 CHYa99 86.8 8.a 6.2 au S_D 

13 aca28 N.E. INDIA a5/a8/97 SHILLONG 9a.1 34 6.a 4au rock 

CHAMOLI 

14 aca29 (NW a3/28/99 TEHRI 89.7 15 6.6 297° rock 

HIMALAYA) 

15 aca3a CHICHI a9/22/99 HWAa2a 34.9 1a 6.2 au S_D 

IMPERIAL STOREHOUSE, 
135° 16 aca3J 1a/15179 29.5 9.96 6.9 Stiff soil 

VALLEY PLASTER CITY 

17 aca32 UTIARKASHI 10119/91 TEHRI 5a.6 1a.a 7.a 297° rock 

18 aca33 CHICHI a9/22/99 CHYa99 1a5.5 1a 6.2 au S_D 

19 aca34 N.E. INDIA a8ta5/97 UMSNING 1a6.8 34 6.a 45u rock 

CHAMBA, 
2a aca35 03/24/95 CHAMBA 34 33.a 4.9 9a0 soil 

INDIA 
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21 aca36 CHICHI a9/25/99 CHYa99 92.7 16.a 6.3 au S_D 

HECTOR WHITEWATER 
155° 22 aca37 1a/16/99 76.a 5.a 7.1 Stiff soil 

MINE TROUT FARM 

ANZAARRAY-
36a0 23 aca38 ANZA a6!12/a5 17.4 14.1 5.6 rock 

TULECANYON 

24 aca39 CHICHI a9/22/99 TCUa55 49.a 1a 6.2 au S_D 

HECTOR SBA: FIRE 
36a0 25 aca4a 1a/16/99 1a7 5.a 7.1 Stiff soil 

MINE,CA STATION#4 

26 aca41 COALINGA a7/a9/83 SKUNK HOLLOW 12.6 9.a 5.4 36au Stiff soil 

27 aca42 CHICHI a9/2a/99 TCU1a9 34.8 8.a 6.2 au S_D 

28 aca43 N.E. INDIA a8/a5/97 UMMULONG 78.4 34 6.a 87u rock 

CHAMOLI 

29 aca44 (NW a3/28/99 GHANSIALI 75.3 15 6.6 ao rock 

HIMALAYA) 

3a aca45 CHICHI a9/22/99 CHYa35 58.2 10 6.2 au S_D 

LOMA 

PRIETA CALAVERAS 
27a0 31 aca46 1a/18/89 3l.a 17.48 7.1 rock 

EARTHQUAK ARRAY 

E 

32 aca47 CHICHI a912al99 TCU067 28.5 8.0 6.2 au S_D 
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33 ac048 CHICHI 09/22/99 TCU067 41.5 10 6.2 ou S_D 

UTTARKASHI 
10° 34 ac049 10/19/91 BARKOT 55.8 10.0 7.0 rock 

,INDIA 

35 ac050 CHICHI 09/22/99 KAU020 109.1 10 6.2 ou S_D 

BURNETT 
36a0 36 aca51 COALINGA 07/a9/83 15.9 9.0 5.4 Stiff soil 

CONSTRUCTION 

37 ac052 CHICHI a9t2al99 TCUa72 22.5 8.a 6.2 au S_D 

38 aca53 CHICHI a9122199 TCUa51 51.3 10 6.2 au S_D 

39 ac054 CHICHI 09/22/99 TCU123 54.2 1a 6.2 au S_D 

4a aca55 NORTHRIDGE a1117/94 855 ARCADIA AVE 39.6 17.5 6.8 262u Stiff soil 

41 ac056 CHICHI 09/20/99 CHY036 36.4 8.0 6.2 ou S_D 

MT. WILSON-

42 ac057 NORTHRIDGE 01117/94 CAL TECH 36.7 17.5 6.8 9a0 rock 

SEISMIC STATION 

43 ac058 CHICHI 09/22/99 TCU106 55.8 1a 6.2 au S_D 

44 aca59 CHICHI 09/20/99 TCU076 14.7 8.a 6.2 ou S_D 

LOMA UPPER CRYSTAL 
ao 45 ac06a 10118/89 31.6 17.48 7.1 rock 

PRIETA SPRINGS RES. 

LOMA HAYWARD-
310° 46 ac061 10118/89 46.3 17.48 7.1 Stiff soil 

PRIETA BART STATION 
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47 ac062 CHICHI 09/25/99 CHY088 65.7 16.0 6.3 90° S_D 

CHAMOLI 

48 ac063 (NW 03128/99 GOPESHWAR 17.3 15 6.6 290° rock 

HIMALAYA) 

SAN FRANCISCO 

LOMA BAY-
357° 49 ac064 10/18/89 26.7 17.48 7.1 Stiff soil 

PRIETA DUMBARTON 

BRIDGE 

50 ac065 ALASKA 05/02171 
ADAK, NAVAL 

78.9 43.0 7.1 90° rock 
BASE 

LOMA 

PRIETA CALAVERAS 
90° 51 ac066 10/18/89 35 17.48 7.1 rock 

EARTHQUAK ARRAY 

E 

535 SOUTH 
360° 52 ac067 NORTHRIDGE 01/17/94 33.7 17.5 6.8 Stiff soil 

WILSON AVE 

53 ac068 CHICHI 09/22/99 CHY024 48.7 10 6.2 90° S_D 

PETROLWCA EEL RIVER 

54 ac069 PE 04/25/92 VALLEY ARRAY, 60.6 9.6 7.1 60° rock 

MENDOCINO USGS STATION 
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EARTHQUAK 1112 

' 
E 

55 aca7a CHICHI a9/25/99 TCU129 24.8 16.a 6.3 au S_D 

LOS ANGELES, 

56 aca71 ORTHRIDGE 18/al/94 GRIFFITH 22.9 17.5 6.8 36a0 rock 

OBSERVATORY 

PETROLWCA 
EEL RIVER 

PE 

57 aca72 ME DOCINO a4/25/92 
VALLEY ARRAY, 

6a.6 9.6 7.1 33a0 rock 
USGS STATION 

EARTHQUAK 
1112 

E 

SAN GRIFFITH PARK 
27a0 58 aca73 a2/a9/71 25.5 13 6.6 rock 

FER ANDO OBSERVATORY 

59 aca74 CHICHI a9/22/99 CHYa24 48.7 la 6.2 au S_D 

6a aca75 CHICHI a9125199 CHYa88 65.7 16.a 6.3 au S_D 

PETROLWCA 
EEL RIVER 

PE 
VALLEY ARRAY, 

61 aca76 MENDOCINO a4/25/92 2a.9 9.6 7.1 36a0 rock 
USGS STATION 

EARTHQUAK 
1584 

E 
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62 aca77 CHICHI a9/2a/99 TCUa79 8.5 8.a 6.2 au S_D 

PETROLWCA 
EEL RIVER 

PE 

63 aca78 MENDOCINO a4/25/92 
VALLEY ARRAY, 

2a.9 9.6 7.1 27a0 rock 
USGS STATION 

EARTHQUAK 
1584 

E 

UTTARKASHI 
85° 64 aca79 10119/91 BHATWARI 21.7 1a.a 7.a rock 

, INDIA 

65 aca8a ANZAEQ a6112/a5 RARICK SPRINGS 15.9 14.1 5.6 27au rock 

UTTARKASHI 
345° 66 aca81 1a/19/91 UTTARKASHI 34 1a.a 7.a rock 

, INDIA 

67 aca82 COALINGA a7/a9/83 
COALINGA, OIL 

1a.a 9.a 5.4 36a0 Stiff soil 
CITY 

68 aca83 CHICHI a9/2a/99 TCU129 12.8 8.a 6.2 au S_D 

LOMA SUNNYVALE, 
36a0 69 aca84 1all8/89 18.1 17.48 7.1 Stiff soil 

PRIETA COLTON AVE 

KOBE 
9a0 7a aca85 KOBE a1/16/95 a.9 17.9 6.9 rock 

UNIVERSITY 

NORTHRIDGE LOS ANGELES -
9a0 7 1 aca86 al/17/94 35.8 17.5 6.8 rock 

EARTHQUAK CITY TERRACE 
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E 

72 ac087 KOBE 01/16/95 FUKUSHIMA 17.9 17.9 6.9 90° -

LOMA EMERYVILLE, 
260° 73 ac088 10118/89 67.7 17.48 7.1 Stiff soil 

PRIETA 6363 CHRISTIE GR 

LOMA STANFORD 
360° 74 ac089 10/18/89 20.5 17.48 7.1 -

PRIETA UNIVERSITY 

75 ac090 CHICHI 09/25/99 TCU078 11.5 16.0 6.3 ou S_D 

76 ac09 1 CHICHI 09/22/99 TCU129 38.9 10 6.2 ou S_D 

UCSB/USC 
270° 77 ac092 NORTHRIDGE 01117/94 19.5 17.5 6.8 rock 

PORTABLE SITE 

LOS ANGELES, 

78 ac093 NORTHRIDGE 01118/94 GRIFFITH 22.9 17.5 6.8 270° rock 

OBSERVATORY 

GILROY #1 -
LOMA 

90° 79 ac094 10/18/89 GAVILAN 2.8 17.48 7.1 rock 
PRIETA 

COLLEGE 

LOMA UCSC/LICK 
90° 80 ac095 10/18/89 18.8 17.48 7.1 rock 

PRIETA OBSERVATORY 

81 ac096 ANZAEQ 06/12/05 RARICK SPRINGS 15.9 14.1 5.6 360u rock 

82 ac097 CHICHI 09/20/99 TCU079 11 6.76 7.6 au S_D 

288 



• • 
JENSEN 

83 ac098 NORTHRIDGE 01117/94 FILTRATION 8.6 17.5 6.8 220 rock 

PLANT 

84 ac099 CHICHI 09/20/99 TCU079 8.5 8.0 6.2 90° S_D 

85 ac100 CHICHI 09120199 TCU129 2.2 6.76 7.6 90u S_D 

86 ac101 CHICHI 09/20/99 TCU129 12.8 8.0 6.2 90° S_D 

JENSEN 

87 ac102 NORTHRIDGE 01/17/94 FILTRATION 8.6 17.5 6.8 292° rock 

PLANT 

SAN 
164° 88 ac103 02/09/71 PACOIMA DAM 3.5 13 6.6 rock 

FERNANDO 

89 acl04 CHICHI 09/20/99 TCU071 4.9 6.76 7.6 90° S_D 

90 acl05 CHICHI 09/20/99 TCU071 4.9 6.76 7.6 au S_D 

Note: S_B -+Site Geology: rock (1997 UBC), S_D-+ Site Geology: stiff soil (1997 UBC) 
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Table A.2: Properties of various selected seismogram used in the finite element analy is 

Arias Smoothed Dominant 
Predomjnant 

Intensity Maximum Mean period predominant period (s) 

No (m/s) acceleration (s) [Rathje et 
period (s) 

period (s) [Vanmarcke 

[Arias, (in g) al. (1998)] 
[Rathje et 

[Rathje et al. and Lai 
al. (1998)] 

1970] (1998)] (1986)] 

1 0.011 0.03 1 0 .863 0.24 0.297 0.282 

2 0.011 0.028 0.086 0.098 0.159 0.123 

3 0.013 0.04 1 0 .548 0.236 0.192 0.191 

4 0.014 0.024 2.045 1.078 0.929 0.737 

• 5 0.016 0.032 1.244 0.402 0.35 0.346 

6 0.018 0.049 0.099 0.181 0.159 0.157 

7 0.020 0.053 0 .230 0.238 0.331 0.48 

8 0.028 0.027 1.310 0.'126 0.409 0.366 

9 0.028 0.053 0.198 0.202 0.29 0.179 

10 0.029 0.071 0.225 0.148 0.191 0.273 

11 0.030 0.048 0.111 0.204 0.173 0.187 

12 0.031 0.020 2.334 2.486 1.26 1.262 

13 0.038 0.072 0.154 0.224 0.277 0.158 

14 0.042 0.054 0.212 0.301 0.314 0.313 

• 15 0.044 0.056 0.573 0.34 0.226 0.11 

16 0.051 0.053 0.197 0.189 0.268 0.231 

17 0.054 0.073 0.216 0.307 0.256 0.221 

18 0.054 0.044 1.521 0.487 0.41 0.585 

19 0.054 0.077 0.143 0.131 0.221 0.135 

20 0.060 0.125 0.168 0.222 0.239 0.316 

2 1 0.071 0.054 1.757 0.495 0.505 0.812 

22 0.073 0.059 0.784 0.343 0.267 0.181 

23 0.084 0.169 0.265 0.11 0.092 0.086 

24 0.087 0.095 0.436 0.151 0.155 0.132 
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25 0.088 0.051 1.324 0.306 0.484 0.375 

26 0.091 0.147 0.459 0.236 0.159 0.157 

27 0.096 0.066 1.266 0.462 0.463 0.419 

28 0.097 0.155 0.091 0.086 0.109 0.099 

29 0.097 0.073 0.120 0.175 0.188 0.193 

30 0.099 0.075 0.711 0.218 0.248 0.184 

31 0.100 0.076 0.918 0.421 0.364 0.255 

32 0.104 0.206 0.837 0.214 0.155 0.266 

33 0. 108 0.099 0.561 0.172 0.198 0.159 

34 0.109 0.095 0.125 0.109 0.229 0.128 

35 0.117 0.055 1.994 0.518 0.675 0.754 

36 0.125 0.141 0.611 0.224 0.221 0.211 • 
37 0.158 0.154 0.814 0.435 0.246 0.296 

38 0.163 0.146 0.381 0.155 0.156 0.134 

39 0.165 0.104 0.794 0.218 0.179 0.222 

40 0.182 0.092 0.282 0.171 0.393 0.385 

41 0.182 0.084 1.788 0.407 0.665 0.927 

42 0.192 0.133 0.119 0.22 0.193 0.165 

43 0.199 0.126 0.487 0.119 0.139 0.155 

44 0.202 0.156 0.959 0.234 0.281 0.134 

• 45 0.207 0.103 0.502 0.52 0.546 0.453 

46 0.253 0.158 0.203 0.212 0.241 0.236 

47 0.279 0.134 1.163 0.295 0.377 0.416 

48 0.282 0.199 0.400 0.652 0.414 0.443 

49 0.310 0.127 0.546 0.722 0.552 0.74 

50 0.313 0.208 0.517 0.132 0.189 0.134 

51 0.322 0.194 0.985 0.201 0.315 0.306 

52 0.348 0.164 0.745 0.202 0.28 1 0.255 

53 0.350 0.239 0.539 0.235 0.212 0.18 

54 0.356 0.155 1.180 0.389 0.425 0.469 
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55 0.399 0.186 0.420 0.156 0.177 0.144 

56 0.400 0.163 0.954 0.509 0.304 0.168 

57 0.422 0.150 1.390 0.431 0.507 0.477 

58 0.475 0.171 0.261 0.2 13 0.367 0.247 

59 0.481 0.263 0.443 0.153 0.19 0.16 

60 0.493 0.259 1.178 0.286 0.308 0.613 

61 0.589 0.209 1.421 0.453 0.533 0.478 

62 0.626 0.262 0.612 0.245 0.208 0.257 

63 0.647 0.179 1.827 0.344 0.772 0.608 

64 0.670 0.253 0.219 0.28 0.335 0.218 

• 65 0.632 0.530 0.196 0.069 0.076 0.068 

66 0.688 0.242 0.148 0.243 0.257 0.185 

67 0.777 0.376 0.348 0.132 0.11 8 0.1 24 

68 0.777 0.396 0.482 0.195 0.18 0.162 

69 0.783 0.219 1.134 0.209 0.52 0.477 

70 0.807 0.3 10 0.697 0.416 0.38 0.314 

71 0.855 0.263 0.310 0.164 0.193 0.202 

72 0.874 0.216 1.174 0.926 0.66 0.89 

73 0.912 0.260 2.191 1.188 0.705 0.893 

74 0.935 0.288 1.149 0.307 0.381 0.284 

• 75 0.990 0.386 0.752 0.212 0.28 0.221 

76 1.010 0.279 0.374 0.169 0.159 0.144 

77 1.032 0.379 0.386 0.3 11 0.251 0.227 

78 1.500 0.289 0.850 0.5 0. 303 0.184 

79 1.538 0.442 0.208 0.381 0.275 0.185 

80 1.727 0.409 0.118 0.154 0.205 0.162 

8 I 1.775 0.946 0.202 0.072 0.075 0.071 

82 3.815 0.425 0.853 0.471 0.39 0.42 

83 3.251 0.572 0.941 0.354 0.311 0.288 

84 3.815 0.425 0.853 0.286 0.343 0.226 
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85 9.177 1.002 0.648 0.387 0.462 0.476 

86 5.496 0.623 0.648 0.189 0.197 0.2 

87 6.541 0.997 1.036 0.315 0.295 0.38 

88 7.645 1.170 0.282 0.386 0.241 0.249 

89 9.276 0.532 0.824 0.351 0.49 0.464 

90 9.418 0.652 0.644 0.249 0.213 0.193 

• 
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Table A.3: Design layout for Response Surface Model-II using Face-Centred Central 

Composite Design and calculated (from FE analysis) responses 

Response: l Response: 2 
A- C- D- Maximum 
Relative Arias Period of total 

Maximum 
Run# B-CV differential Density Intensity Structure settlement at 

(%) (m/s) (sec) left footing 
settlements 
(m) 

(m) 

1 85.00 0.50 0.075 0.29 1.178E-02 2.803E-03 
2 65.00 0.50 0.287 0.78 7.454E-02 1.830E-02 
3 65.00 0.35 0.075 0.29 1.557E-02 3.01 8E-03 
4 65.00 0.35 0.500 0.78 8.044E-02 2.099E-02 
5 85.00 0.50 0.075 0.78 2.487E-02 5.697E-03 
6 45.00 0.50 0.500 0.29 1.052E-Ol 3.907E-02 
7 85.00 0.20 0.500 0.29 2.625E-02 5.424E-03 
8 85.00 0.50 0.500 0.78 7.403E-02 2. I 32E-02 
9 65.00 0.35 0.075 0.78 3.055E-02 6.739E-03 
10 45.00 0.20 0.075 0.78 4 .709E-02 1.007E-02 
I 1 45.00 0.50 0.500 0.78 1.674E-Ol 4.373E-02 
12 65.00 0.35 0.287 0.29 2.956E-02 5.379E-03 
13 85.00 0.20 0.075 0.29 l.064E-02 2.452E-03 
14 85.00 0.50 0.500 0.29 3.286E-02 6.045E-03 
15 45.00 0.20 0.500 0.78 1. 123E-Ol 2.585E-02 
16 65.00 0.35 0.287 0.78 6.370E-02 1.457E-02 
17 45.00 0.20 0.075 0.29 2.375E-02 4.402E-03 
18 85.00 0.20 0.075 0.78 2.208E-02 5.080E-03 
19 65.00 0.20 0.287 0.78 5.941E-02 1.357E-02 
20 45.00 0.35 0.287 0.78 1.544E-02 3.565E-03 
21 45.00 0.50 0.075 0.78 5.277E-02 1. 108E-02 
22 65.00 0.50 0.287 0.29 3.467E-02 5.856E-03 
23 85.00 0.20 0.500 0.78 5.880E-02 1.608E-02 
24 85.00 0.35 0.287 0.29 2.089E-02 4.615E-03 
25 45.00 0.50 0.075 0.29 2.612E-02 4.819E-03 
26 45.00 0.35 0.287 0.29 4.524E-02 5.617E-03 
27 65.00 0.20 0.287 0.29 2.769E-02 5.082E-03 
28 65.00 0.35 0.500 0.29 3.743E-02 5.955E-03 
29 45.00 0.20 0.500 0.29 6.123E-02 7.606E-03 
30 85.00 0.35 0.287 0.78 4.617E-02 1.223E-02 

Note: SOJI relative density, Coefficient of variation of qn, and Anas Intensity are 
numerical factor and Fundamental period of the structure is a categorical factor in this 
study. 
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Table A.4: Design layout for Response Sutface Model-III (without replication) using 

Face-Centred Central Composite Design and calculated (from FE analysis) responses 

Response: 1 Response: 2 
A- C- D- Maximum 
Relative Arias Period of total 

Maximum 
Run# 

Density 
B-CV 

Intensity Structure differential 
settlement at 

(%) (m/s) (sec) left footing 
settlements 
(m) 

(m) 

I 85.00 0.50 0.50 0.29 1.723E-02 1.684E-03 
2 65.00 0.50 1.00 0.78 5.984E-02 1.003E-02 
3 65.00 0.35 0.50 0.29 2.030E-02 2.342E-03 
4 65.00 0.35 1.50 0.78 6.093E-02 l.054E-02 
5 85.00 0.50 0.50 0.78 3.406E-02 6.396E-03 • 6 45.00 0.50 1.50 0.29 8.950E-02 2.226E-02 
7 85.00 0.20 1.50 0.29 2.085E-02 2.564E-03 
8 85.00 0.50 1.50 0.78 5.429E-02 9.385E-03 
9 65.00 0.35 0.50 0.78 3.791E-02 6.166E-03 
10 45.00 0.20 0.50 0.78 4.966E-02 8.238E-03 
11 45.00 0.50 1.50 0.78 l.161E-01 1.534E-02 
12 65.00 0.35 1.00 0.29 2.750E-02 2.476E-03 
13 85.00 0.20 0.50 0.29 1.438E-02 1.806E-03 
14 85.00 0.50 1.50 0.29 2.732E-02 2.552E-03 
15 45.00 0.20 1.50 0.78 8.532E-02 1.393E-02 
16 65.00 0.35 1.00 0.78 5.036E-02 8.902E-03 
17 45.00 0.20 0.50 0.29 2.917E-02 2.927E-03 
18 85.00 0.20 0.50 0.78 2.900E-02 5.480E-03 
19 65.00 0.20 1.00 0.78 4.667E-02 7.887E-03 
20 45.00 0.35 1.00 0.78 7.627E-02 1.059E-02 
21 45.00 0.50 0.50 0.78 5.774E-02 1.099E-02 
22 65.00 0.50 1.00 0.29 3.313E-02 3.434E-03 
23 85.00 0.20 1.50 0.78 4.408E-02 8.793E-03 
24 85.00 0.35 1.00 0.29 1.910E-02 2.221E-03 
25 45.00 0.50 0.50 0.29 3.385E-02 3.439E-03 
26 45.00 0.35 1.00 0.29 4.533E-02 3.560E-03 
27 65.00 0.20 1.00 0.29 2.450E-02 2.418E-03 
28 65.00 0.35 1.50 0.29 3.246E-02 2.606E-03 
29 45.00 0.20 1.50 0.29 5.106E-02 6.580E-03 
30 85.00 0.35 1.00 0.78 4.054E-02 8.032E-03 
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Table A.5: Design layout for Response Surface Model-III (with 5-replication) using 

Face-Centred Central Composite Design and calculated (from FE analysis) responses 

Response: 1 Response: 2 
A- C- D- Maximum 
Relative Arias Period of total 

Maximum 
Run# B-CV 

Density Intensity Structure settlement at 
differential 

(%) (m/s) (sec) left footing 
settlements 
(m) 

(m) 

I 65 0.35 1.5 0.29 3.246E-02 2.606E-03 
2 45 0.35 I 0.29 6.641E-02 1.822E-02 
3 65 0.2 1 0.29 2.450E-02 2.418E-03 
4 85 0.5 1.5 0.78 6.257E-02 1.763E-02 
5 65 0.5 1 0.78 5.504E-02 8.811 E-03 • 6 65 0.2 1 0.29 2.838E-02 3.134E-03 
7 45 0.5 0.5 0.29 3.455E-02 6.232E-03 
8 45 0.5 1.5 0.29 5.450E-02 3.966E-02 
9 45 0.2 0.5 0.78 5.245E-02 5.899E-03 
10 85 0.5 1.5 0.29 2.561E-02 4.243E-03 
11 45 0.35 I 0.29 4.695E-02 6.515E-03 
12 65 0.35 0.5 0.29 1.800E-02 4.053E-03 
13 85 0.35 1 0.29 2.132E-02 2.305E-03 
14 65 0.35 0.5 0.29 2.023E-02 2.518E-03 
15 65 0.35 0.5 0.78 3.592E-02 7.192E-03 
16 45 0.5 0.5 0.78 4.930E-02 2.107E-02 
17 65 0.2 1 0.29 2.541E-02 2.366E-03 
18 45 0.5 1.5 0.78 1.879E-Ol 8.363E-02 
19 65 0.35 1.5 0.29 3.307E-02 3.878E-03 
20 85 0.5 0.5 0.78 3.928E-02 1.198E-02 
21 65 0.35 0.5 0.78 3.801E-02 7.587E-03 
22 45 0.5 1.5 0.78 l.l61E-Ol 1.534E-02 
23 85 0.35 1 0.29 1.798E-02 1.941E-03 
24 65 0.35 0.5 0.78 3.791E-02 6.166E-03 
25 45 0.2 1.5 0.78 8.532E-02 1.393E-02 
26 45 0.5 0.5 0.29 3.385E-02 3.439E-03 
27 85 0.5 1.5 0.78 5.152E-02 1.216E-02 
28 45 0.35 1 0.78 6.708E-02 1.997E-02 
29 65 0.35 0.5 0.78 4.541E-02 1.056E-02 
30 85 0.2 0.5 0.78 3.256E-02 8.709E-03 
31 85 0.2 0.5 0.78 2.806E-02 7.008E-03 
32 85 0.5 0.5 0.29 1.493E-02 3.023E-03 
33 65 0.35 0.5 0.29 2.339E-02 2.580E-03 
34 65 0.2 1 0.78 5.382E-02 1.029E-02 
35 85 0.2 0.5 0.78 2.930E-02 7.261E-03 
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36 85 0.2 1.5 0.29 1.987E-02 2.012E-03 
37 65 0.35 1.5 0.29 2.842E-02 7.850E-03 
38 85 0.5 0.5 0.78 2.897E-02 7.313E-03 
39 65 0.35 1 0.78 6.045E-02 1.310E-02 
40 85 0.2 0.5 0.29 1.445E-02 1.974E-03 
41 45 0.35 1 0.78 7.214E-02 8.858E-03 
42 45 0.35 1 0.29 4.533E-02 3.560E-03 
43 45 0.2 0.5 0.29 3.076E-02 3.525E-03 
44 45 0.2 1.5 0.78 8.105E-02 1.951E-02 
45 85 0.2 1.5 0.29 2.121E-02 2.004E-03 
46 45 0.2 1.5 0.29 5.094E-02 5.272E-03 
47 65 0.35 1.5 0.78 6.093E-02 1.054E-02 
48 45 0.5 1.5 0.29 8.948E-02 2.260E-02 
49 65 0.2 1 0.78 4 .744E-02 7.764E-03 
50 45 0.5 1.5 0.78 1.194E-Ol 1.973E-02 
51 65 0.5 1 0.78 5.588E-02 9.302E-03 
52 85 0.5 1.5 0.78 5.429E-02 9.385E-03 • 53 45 0.5 0.5 0.78 8.036E-02 2.432E-02 
54 65 0.5 1 0.78 4.745E-02 1.754E-02 
55 65 0.35 1 0.29 2.750E-02 2.476E-03 
56 45 0.5 1.5 0.78 8.440E-02 3.696E-02 
57 85 0.5 0.5 0.78 3.229E-02 8.240E-03 
58 85 0.2 1.5 0.29 2.313E-02 2.601E-03 
59 65 0.5 1 0.29 2.533E-02 9.163E-03 
60 85 0.5 1.5 0.78 4.523E-02 1.347E-02 
61 65 0.35 1.5 0.78 7.134E-02 1.456E-02 
62 45 0.5 1.5 0.29 7.429E-02 1.698E-02 
63 85 0.5 0.5 0.29 1.723E-02 1.684E-03 
64 85 0.35 1 0.29 1.923E-02 2.287E-03 
65 85 0.2 0.5 0.29 1.470E-02 1.520E-03 

• 66 85 0.2 1.5 0.29 2.085E-02 2.564E-03 
67 65 0.35 1 0.29 2.639E-02 2.523E-03 
68 45 0.5 0.5 0.78 5.558E-02 7.751E-03 
69 45 0.2 1.5 0.29 4.648E-02 1.440E-02 
70 65 0.35 1 0.78 5.007E-02 8.505E-03 
71 65 0.35 1.5 0.29 3.811E-02 6.238E-03 
72 65 0.5 1 0.78 7.318E-02 1.995E-02 
73 65 0.35 1 0.29 3.152E-02 4.084E-03 
74 45 0.5 0.5 0.78 5.774E-02 1.099E-02 
75 85 0.35 1 0.78 3.727E-02 9.262E-03 
76 45 0.2 0.5 0.29 2.917E-02 2.927E-03 
77 45 0.2 1.5 0.78 8.501E-02 7.784E-03 
78 85 0.5 0.5 0.78 3.406E-02 6.396E-03 
79 45 0.5 0.5 0.29 2.850E-02 9.861E-03 
80 45 0.2 1.5 0.78 1.139E-Ol 2.748E-02 
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81 45 0.5 1.5 0.29 1.977E-Ol 1.120E-Ol 
82 65 0.2 1 0.78 4.509E-02 9.521E-03 
83 85 0.2 1.5 0.78 4.3I8E-02 9.143E-03 
84 65 0.35 I 0.78 4.759E-02 7.911E-03 
85 85 0.2 0.5 0.29 1.592E-02 1.392E-03 
86 45 0.35 1 0.78 9.994E-02 2.652E-02 
87 45 0.2 0.5 0.29 2.873E-02 3.092E-03 
88 45 0.2 0.5 0.78 4.910E-02 6.I I IE-03 
89 65 0.35 0.5 0.78 3.476E-02 8.233E-03 
90 65 0.35 I 0.29 2.738E-02 3.369E-03 
91 85 0.2 0.5 0.29 1.380E-02 I.490E-03 
92 85 0.2 0.5 0.78 2.811E-02 5.512E-03 
93 85 0.5 1.5 0.78 4.874E-02 1.056E-02 
94 65 0.5 1 0.29 3.152E-02 4.503E-03 
95 45 0.2 0.5 0.29 2.782E-02 4.997E-03 

• 96 85 0.5 1.5 0.29 2.527E-02 1.536E-03 
97 65 0.5 1 0.29 3.199E-02 3.143E-03 
98 65 0.5 l 0.29 3.313E-02 3.434E-03 
99 45 0.5 1.5 0.29 8.950E-02 2.226E-02 
100 65 0.2 1 0.29 2.401E-02 2.057E-03 
101 65 0.35 1.5 0.78 5.913E-02 9.054E-03 
102 65 0.2 1 0.78 4.667E-02 7.887E-03 
103 45 0.2 0.5 0.78 4.966E-02 8.238E-03 
104 85 0.2 1.5 0.29 2.070E-02 2.931E-03 
105 65 0.5 I 0.29 3.908E-02 8.609E-03 
I06 65 0.5 I 0.78 5.984E-02 1.003E-02 
107 45 0.5 0.5 0.78 5.780E-02 8.400E-03 
108 85 0.35 I 0.29 l.823E-02 3.287E-03 
I09 85 0.5 0.5 0.29 1.652E-02 2.302E-03 
110 65 0.35 0.5 0.29 2.030E-02 2.342E-03 
111 85 0.2 1.5 0.78 4.411E-02 1.041E-02 
1I2 85 0.5 1.5 0.29 2.177E-02 6.043E-03 • 1I3 65 0.35 0.5 0.29 1.951E-02 1.954E-03 
114 45 0.35 1 0.29 3.860E-02 1.225E-02 
115 85 0.5 1.5 0.29 2.732E-02 2.552E-03 
116 45 0.2 1.5 0.78 8.766E-02 9.959E-03 
117 45 0.35 1 0.78 7.573E-02 1.189E-02 
118 85 0.2 1.5 0.78 4.905E-02 l .254E-02 
119 85 0.2 1.5 0.78 4.174E-02 1.005E-02 
120 85 0.35 I 0.29 1.910E-02 2.221E-03 
121 45 0.2 1.5 0.29 8.326E-02 2.500E-02 
122 45 0.2 0.5 0.78 6.166E-02 1.134E-02 
123 85 0.5 0.5 0.29 l.904E-02 2.658E-03 
124 45 0.2 0.5 0.29 3.567E-02 5.398E-03 
125 45 0.5 0.5 0.29 3.629E-02 5.398E-03 
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126 85 0.35 1 0.78 4.054E-02 8.032E-03 
127 65 0.2 1 0.29 2.450E-02 2.418E-03 
128 45 0.5 0.5 0.29 4.544E-02 1.091E-02 
129 65 0.2 1 0.78 4.500E-02 7.921E-03 
130 85 0.5 1.5 0.29 3.014E-02 6.1 03E-03 
131 45 0.35 1 0.78 7.627E-02 1.059E-02 
132 65 0.35 1 0.78 4.569E-02 1.274E-02 
133 65 0.35 1 0.78 5.036E-02 8.902E-03 
134 45 0.35 1 0.29 4.416E-02 6.112E-03 
135 65 0.35 1 0.29 2.396E-02 5.761E-03 
136 85 0.2 0.5 0.78 2.900E-02 5.480E-03 
137 85 0.35 1 0.78 4.511 E-02 1.203E-02 
138 85 0.35 1 0.78 3.715E-02 9.197E-03 
139 45 0.2 1.5 0.29 5.342E-02 4.770E-03 
140 85 0.2 1.5 0.78 4.408E-02 8.793E-03 

• 141 45 0.2 0.5 0.78 4.782E-02 1.120E-02 
142 65 0.35 1.5 0.78 5.281E-02 1.665E-02 
143 65 0.35 1.5 0.78 5.659E-02 8.794E-03 
144 45 0.2 1.5 0.29 5.106E-02 6.580E-03 
145 45 0.5 1.5 0.78 1.082E-Ol 2.062E-02 
146 65 0.35 1.5 0.29 3.167E-02 3.083E-03 
147 85 0.35 1 0.78 3.992E-02 l.OOIE-02 
148 85 0.2 0.5 0.29 1.438E-02 1.806E-03 
149 85 0.5 0.5 0.78 3.072E-02 7.818E-03 
150 85 0.5 0.5 0.29 1.554E-02 1.613E-03 

• 
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Table A.6: Design layout for Response Surface Model-IV using Face-Centred Central 

Composite Design and calculated (from FE analysis) responses 

Response: 1 Response: 2 
A- C- D- Maximum 
Relative Arias Period of total 

Maximum 
Run# B-CV 

Density Intensity Structure settlement at 
differential 

(%) (m/s) (sec) left footing 
settlements 
(m) 

(m) 
l 85.00 0.50 1.00 0.29 3.174E-02 6.238E-03 
2 65.00 0.50 2.50 0.78 1.867E-01 4.775E-02 
3 65.00 0.35 1.00 0.29 3.891E-02 6.328E-03 
4 65.00 0.35 4.00 0.78 1.932E-01 3.229E-02 
5 85.00 0.50 1.00 0.78 5.905E-02 1.086E-02 

• 6 45.00 0.50 4.00 0.29 2.374E-01 5.163E-02 
7 85.00 0.20 4.00 0.29 5.451E-02 9.165E-03 
8 85.00 0.50 4.00 0.78 1.554E-01 3.193E-02 
9 65.00 0.35 1.00 0.78 7.436E-02 1.275E-02 
10 45.00 0.20 1.00 0.78 1.337E-01 1.640E-02 
11 45.00 0.50 4.00 0.78 4.440E-01 9.068E-02 
12 65.00 0.35 2.50 0.29 7.212E-02 1.300E-02 
13 85.00 0.20 1.00 0.29 2.431E-02 3.596E-03 
14 85.00 0.50 4.00 0.29 7.809E-02 1.660E-02 
15 45.00 0.20 4.00 0.78 3.749E-01 5.150E-02 
16 65.00 0.35 2.50 0.78 1.395E-Ol 2.240E-02 
17 45.00 0.20 1.00 0.29 7.387E-02 6.1 26E-03 
18 85.00 0.20 1.00 0.78 4.675E-02 8.811E-03 
19 65.00 0.20 2.50 0.78 1.253E-01 2.225E-02 
20 45.00 0.35 2.50 0.78 3.245E-Ol 6.021E-02 • 21 45.00 0.50 1.00 0.78 1.937E-01 4.824E-02 
22 65.00 0.50 2.50 0.29 1.028E-Ol 3.247E-02 
23 85.00 0.20 4.00 0.78 1.151 E-01 2.520E-02 
24 85.00 0.35 2.50 0.29 4.645E-02 6.874E-03 
25 45.00 0.50 1.00 0.29 l.ll9E-Ol 3.663E-02 
26 45.00 0.35 2.50 0.29 l.896E-Ol 3.674E-02 
27 65.00 0.20 2.50 0.29 6.431E-02 7.745E-03 
28 65.00 0.35 4.00 0.29 9.693E-02 1.451 E-02 
29 45.00 0.20 4.00 0.29 2.204E-Ol 2.430E-02 
30 85.00 0.35 2.50 0.78 9.234E-02 1.683E-02 
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Table A.7: Design layout for Response Surface Modei-IIIB (with 10-replication) using 

Face-Centred Central Composite Design and calculated (from FE analysi ) responses 

A- C-
Response: 1 Response: 2 

Run# 
Relative 

B- CV 
Arias Maximum total 

Density Intensity settlement at left 
Maximum differen tial 

(%) (rn/s) footing (m) 
settlements (m) 

1 45 0.2 0.5 2.770E-02 2.882E-03 
2 45 0.2 0.5 7.250E-02 8.002E-03 
3 45 0.2 0.5 2.320E-02 2.865E-03 
4 45 0.2 0.5 1.160E-02 1.652E-03 
5 45 0.2 0.5 1.770E-01 5.154E-02 
6 45 0.2 0.5 4.300E-02 3.637E-03 • 7 45 0.2 0.5 3.000E-02 2.332E-03 
8 45 0.2 0.5 6.980E-02 1.683E-02 
9 45 0.2 0.5 2.990E-02 3.020E-03 
10 45 0.2 0.5 3.7708-02 5.972E-03 
11 85 0.2 0.5 1.5208-02 2.2498-03 
12 85 0.2 0.5 2.530E-02 5.2218-03 
13 85 0.2 0.5 1.320E-02 2.098E-03 
14 85 0.2 0.5 7.400E-03 7.7228-04 
15 85 0.2 0.5 2.1208-02 5.001E-03 
16 85 0.2 0.5 2.080E-02 2.806E-03 
17 85 0.2 0.5 1.420E-02 9.825E-04 
18 85 0.2 0.5 2.3908-02 3.651E-03 
19 85 0.2 0.5 1.5408-02 2.0378-03 
20 85 0.2 0.5 2.120E-02 4.432E-03 
21 45 0.5 0.5 3.120E-02 4.665E-03 
22 45 0.5 0.5 8.3908-02 1.199E-02 
23 45 0.5 0.5 2.8308-02 6.515E-03 • 24 45 0.5 0.5 1.2108-02 1.8318-03 
25 45 0.5 0.5 2.210E-01 8.334E-02 
26 45 0.5 0.5 5.6408-02 1.389E-02 
27 45 0.5 0.5 3.4508-02 5.3838-03 
28 45 0.5 0.5 1.420E-01 7.001E-02 
29 45 0.5 0.5 3.3808-02 5.9478-03 
30 45 0.5 0.5 4.1208-02 l.669E-02 
31 85 0.5 0.5 I.770E-02 2.360E-03 
32 85 0.5 0.5 2.900E-02 5.6918-03 
33 85 0.5 0.5 1.550E-02 3.377E-03 
34 85 0.5 0.5 7.2708-03 8.5088-04 
35 85 0.5 0.5 2.1908-02 8.3108-03 
36 85 0.5 0.5 2.4508-02 3.7618-03 
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37 85 0.5 0.5 1.540E-02 I.ll3E-03 
38 85 0.5 0.5 3.IOOE-02 7.372E-03 
39 85 0.5 0.5 l.660E-02 1.997E-03 
40 85 0 .5 0.5 2.170E-02 7.192E-03 
41 45 0.2 1.5 4.500E-02 2.982E-03 
42 45 0.2 1.5 2.020E-Ol 1.495E-02 
43 45 0.2 1.5 4.020E-02 7.124E-03 
44 45 0.2 1.5 1.820E-02 1.828E-03 
45 45 0.2 1.5 4.380E-01 5.412E-02 
46 45 0 .2 1.5 9.730E-02 1.118E-02 
47 45 0.2 1.5 5.870E-02 6.264E-03 
48 45 0.2 1.5 2.550E-Ol 7.966E-02 
49 45 0.2 1.5 5 .290E-02 7.61 lE-03 
so 45 0.2 1.5 7.290E-02 2.401E-02 
51 85 0.2 1.5 2.180E-02 3.909E-03 

• 52 85 0.2 1.5 4 .220E-02 1.107E-02 
53 85 0.2 1.5 1.970E-02 3.061E-03 
54 85 0.2 1.5 1.040E-02 1.509E-03 
55 85 0.2 1.5 3.850E-02 9.989E-03 
56 85 0.2 1.5 3.090E-02 4.418E-03 
57 85 0.2 1.5 2.040E-02 1.827E-03 
58 85 0.2 1.5 3.890E-02 8.237E-03 
59 85 0.2 1.5 2.4IOE-02 3.701E-03 
60 85 0.2 1.5 3.050E-02 4.965E-03 
61 45 0.5 1.5 5.920E-02 4.803E-03 
62 45 0.5 1.5 2.200E-Ol 2.395E-02 
63 45 0.5 1.5 6.440E-02 2.682E-02 
64 45 0.5 1.5 1.970E-02 2.267E-03 
65 45 0.5 1.5 5.520E-01 7.650E-02 
66 45 0.5 1.5 1.670E-Ol 6.953E-02 
67 45 0.5 1.5 7.370E-02 1.409E-02 
68 45 0.5 1.5 3.600E-Ol 1.006E-Ol • 69 45 0.5 1.5 6.860E-02 1.604E-02 
70 45 0.5 1.5 8.320E-02 6.219E-02 
71 85 0.5 1.5 2.680E-02 4.160E-03 
72 85 0.5 1.5 4.890E-02 1.235E-02 
73 85 0.5 1.5 2.420E-02 5.235E-03 
74 85 0.5 1.5 1.050E-02 1.693E-03 
75 85 0.5 1.5 4.120E-02 1.704E-02 
76 85 0.5 1.5 4.270E-02 8.757E-03 
77 85 0.5 1.5 2.370E-02 2.676E-03 
78 85 0.5 1.5 5.780E-02 1.967E-02 
79 85 0.5 1.5 2.730E-02 4.046E-03 
80 85 0.5 1.5 3.170E-02 9.633E-03 
81 45 0.35 1 4.000E-02 3.128E-03 
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82 45 0.35 1 1.680E-01 1 .672E-02 
83 45 0.35 1 3.570E-02 6.970E-03 
84 45 0.35 1 1 .620E-02 1.957E-03 
85 45 0.35 1 3.450E-Ol 6.602E-02 
86 45 0.35 I 8.650E-02 l.885E-02 
87 45 0.35 I 4.930E-02 6.775E-03 
88 45 0.35 I 2.100E-01 9.019E-02 
89 45 0.35 I 4.510E-02 7.497E-03 
90 45 0.35 I 5.910E-02 2.462E-02 
91 85 0.35 1 2.020E-02 3.263E-03 
92 85 0.35 I 3.580E-02 8.859E-03 
93 85 0.35 1 1.850E-02 3.438E-03 
94 85 0.35 I 9.020E-03 1.225E-03 
95 85 0.35 1 3.020E-02 9.588E-03 
96 85 0.35 I 2.770E-02 2.996E-03 

• 97 85 0.35 1 1.840E-02 1.410E-03 
98 85 0.35 I 3.570E-02 8.041E-03 
99 85 0.35 1 2.110E-02 2.796E-03 
100 85 0.35 I 2.690E-02 . 6.153E-03 
101 65 0.2 1 2.480E-02 3.551E-03 
102 65 0.2 I 5.120E-02 8.653E-03 
103 65 0.2 1 2.160E-02 3.388E-03 
104 65 0.2 I 1.030E-02 1.578E-03 
105 65 0.2 I 4.580E-02 1.082E-02 
106 65 0.2 1 3.640E-02 3.595E-03 
107 65 0.2 1 2.430E-02 1.805E-03 
108 65 0.2 1 4.890E-02 9.902E-03 
109 65 0.2 1 2.660E-02 3.625E-03 
110 65 0.2 1 3.280E-02 5.407E-03 
111 65 0.5 1 3.090E-02 3.441E-03 
112 65 0.5 1 6.430E-02 1.322E-02 
113 65 0.5 1 2.770E-02 6.493E-03 
114 65 0.5 1 1.140E-02 1.195E-03 
115 65 0.5 I 5.490E-02 2.725E-02 
116 65 0.5 I 5.130E-02 1.360E-02 
117 65 0.5 1 2.980E-02 4.349E-03 
118 65 0.5 1 8.760E-02 3.355E-02 
119 65 0.5 1 3.230E-02 5.282E-03 
120 65 0.5 1 3.560E-02 1.253E-02 
121 65 0.35 0.5 2.050E-02 2.796£-03 
122 65 0.35 0.5 3.780E-02 5.838E-03 
123 65 0.35 0.5 1.820E-02 3.227E-03 
124 65 0.35 0.5 8.470E-03 l.OIOE-03 
125 65 0.35 0.5 3.020E-02 7.552£-03 
126 65 0.35 0.5 2.900E-02 3.445E-03 
127 65 0.35 0.5 1.870E-02 1.459E-03 
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128 65 0.35 0.5 3.990E-02 8.436E-03 
129 65 0.35 0.5 2.090E-02 2.521E-03 
130 65 0.35 0.5 2.590E-02 6.356E-03 
131 65 0.35 1.5 3.090E-02 3.719E-03 
132 65 0.35 1.5 6.910E-02 1.302E-02 
133 65 0.35 1.5 2.800E-02 5.127E-03 
134 65 0.35 1.5 1.330E-02 1.278E-03 
135 65 0.35 1.5 7.820E-02 2.481E-02 
136 65 0.35 1.5 4.990E-02 8.583E-03 
137 65 0.35 1.5 3.240E-02 3.418E-03 
138 65 0.35 1.5 7.340E-02 1.901E-02 
139 65 0.35 1.5 3.370E-02 5.054E-03 
140 65 0.35 1.5 4.060E-02 8.298E-03 
141 65 0.35 1 2.670E-02 3.548E-03 
142 65 0.35 ] 5.510E-02 1.048E-02 

• 143 65 0.35 1 2.380E-02 4.279E-03 
144 65 0.35 1 1.070E-02 1.384E-03 
145 65 0.35 1 4.820E-02 1.615E-02 
146 65 0.35 1 3.980E-02 5.732E-03 
147 65 0.35 1 2.620E-02 2.567E-03 
148 65 0.35 1 5.780E-02 1.430E-02 
149 65 0.35 1 2.830E-02 4.204E-03 
150 65 0.35 1 3.360E-02 7.635E-03 

• 
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• 
Table A.8: Validation of Response Surface Model-l 

Period of Maximum Total Settlements (in m) Maximum Differential Settlements 
Arias Input (in m) 

Dr(%) cv Intensity 
the 

acceleration Calculated structure Calculated From Calculated Calculated (rnls) file no From FE (sec) FE Analysis FromRSM 
Analysis 

FromRSM 

79 0.31 0.024 0.78 ac045 0.00938 0.00857 0.00099 0.00109 
67 0.27 0.012 0.78 ac045 0.00687 0.00600 0.00096 0.00112 
52 0.43 0.068 0.78 ac045 0.02100 0.02036 0.00278 0.00278 
69 0.46 0.073 0.78 ac045 0.01900 0.01877 0.00199 0.00221 
54 0.48 0.056 0.29 ac045 0.01200 0.01170 0.00105 0.00140 
58 0.48 0.067 0.29 ac045 0.01250 0.01235 0.00126 0.00145 
57 0.35 0.053 0.29 ac045 0.01010 0.01039 0.00115 0.00112 
52 0.47 0.097 0.78 ac045 0.02600 0.02484 0.00252 0.00384 
70 0.34 0.087 0.29 ac045 0.01070 0.01151 0.00125 0.00118 
62 0.34 0.031 0.78 ac045 0.01200 0.01123 0.00167 0.00152 
83 0.31 0.075 0.29 ac037 0.00823 0.00932 0.00088 0.00081 
76 0.41 0.055 0.78 ac034 0.00762 0.01508 0.00126 0.00160 
83 0.49 0.099 0.29 ac046 0.01360 0.01072 0.00226 0.00117 
52 0.26 0.013 0.78 ac018 0.00515 0.00726 0.00098 0.00135 
70 0.33 0.051 0.29 ac031 0.00609 0.00861 0.00082 0.00087 
47 0.49 0.025 0.29 ac022 0.00523 0.00776 0.00101 0.00117 
70 0.46 0.028 0.29 ac024 0.00388 0.00606 0.00070 0.00084 
49 0.31 0.075 0.78 ac037 0.02470 0.02161 0.00270 0.00275 
70 0.22 0.098 0.78 ac044 0.01150 0.02064 0.00207 0.00202 
46 0.46 0.073 0.78 ac037 0.02750 0.02244 0.00297 0.00336 

Note: This model was formulated using input acceleration file# ac045. 
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Table A.9: Validation of Response Surface Model-ll 

period of Maximum Total Settlements (in Maximum Differential Settlements 
Arias 

the 
Input m) (in m) 

Dr(%) cv Intensity acceleration Calculated structure Calculated Calculated From Calculated (m/s) file no From FE (sec) 
Analysis 

FromRSM FE Analysis From RSM 

79 0.31 0.494 0.78 ac076 0.06550 0.06392 0.01800 0.01739 
67 0.27 0.265 0.78 ac076 0.05690 0.05347 0.01320 0.01294 
52 0.43 0.22 0.78 ac076 0.07400 0.07181 0.01690 0.01558 
69 0.46 0.099 0.78 ac076 0.03570 0.03343 0.00818 0.00788 
54 0.48 0.134 0.29 ac076 0.02890 0.02734 0.00463 0.00475 
58 0.48 0.458 0.29 ac076 0.04900 0.05670 0.01030 0.00812 
57 0.35 0.434 0.29 ac076 0.04150 0.04606 0.00591 0.00663 
52 0.47 0.316 0.78 ac076 0.08950 0.09953 0.02280 0.02230 
70 0.34 0.47 0.29 ac076 0.03380 0.03529 0.00583 0.00581 
62 0.34 0.318 0.78 ac076 0.06900 0.06825 0.01630 0.01641 
83 0.31 0.249 0.29 ac061 0.01260 0.01875 0.00152 0.00389 
76 0.41 0.327 0.78 ac066 0.03870 0.05840 0.00429 0.01455 
83 0.49 0.349 0.29 ac068 0.01290 0.02825 0.00193 0.00566 
52 0.26 0.481 0.78 ac074 0.02580 0.09861 0.00163 0.02523 
70 0.33 0.296 0.29 ac064 0.02260 0.02674 0.00300 0.00490 
47 0.49 0.293 0.29 ac064 0.18100 0.05720 0.08650 0.00763 
70 0.46 0.241 0.29 ac061 0.01540 0.02626 0.00159 0.00508 
49 0.31 0.093 0.78 ac041 0.01170 0.04453 0.00172 0.00932 
70 0.22 0.128 0.78 ac051 0.01310 0.03411 0.00222 0.00805 
46 0.46 0.187 0.78 ac057 0.01720 0.07792 0.00181 0.01585 

Note: This model was formulated using input acceleration file# ac076. 

306 



• • 
Table A.10: Validation of Response Surface Model-III 

Maximum Total Settlements (in m) Maximum Differential Settlements (in 

Arias 
period 

Input m) 
Dr of the Calculated Calculated Calculated Calculated cv Intensity acceleration Calculated Calculated (%) (rnls) 

structure 
file no From FE 

FromRSM FromRSM 
From FE 

FromRSM From RSM 
(sec) 

Analysis (without (with 5-
Analysis (without (with 5-

replication) replication) replication) replication) 
79 0.31 1.196 0.78 ac105 0.04410 0.04466 0.04534 0.00841 0.00796 0.00932 
67 0.27 0.844 0.78 ac105 0.04400 0.04341 0.04384 0.00704 0.00751 0.00782 
52 0.43 0.744 0.78 ac105 0.05980 0.05831 0.05898 0.00951 0.00958 0.01089 
69 0.46 1.049 0.78 ac105 0.05370 0.05460 0.05224 0.00890 0.00925 0.01032 
54 0.48 1.05 0.29 ac105 0.04180 0.04092 0.04054 0.00445 0.00376 0.00693 
58 0.48 0.594 0.29 acl05 0.02860 0.02721 0.02730 0.00277 0.00248 0.00414 
57 0.35 0.708 0.29 ac105 0.02800 0.02716 0.02777 0.00291 0.00232 0.00359 
52 0.47 1.209 0.78 ac105 0.08020 0.08135 0.07962 0.01170 0.01221 0.01462 
70 0.34 1.373 0.29 ac105 0.02760 0.02861 0.02879 0.00240 0.00261 0.00375 
62 0.34 1.493 0.78 ac105 0.06310 0.06473 0.06429 0.01180 0.01102 0.01192 
83 0.3 1 1.48 0.29 ac093 0.03300 0.02270 0.02331 0.00521 0.00216 0.00293 
76 0.41 0.857 0.78 ac086 0.03780 0.04296 0.04229 0.00490 0.00754 0.00883 
83 0.49 0.697 0.29 ac081 0.01550 0.01965 0.01873 0.00181 0.00213 0.00253 
52 0.26 1.165 0.78 ac092 0.06080 0.06639 0.06810 0.00813 0.01076 0.01101 
70 0.33 1.256 0.29 ac093 0.03810 0.02732 0.02741 0.00552 0.00245 0.00341 
47 0.49 1.009 0.29 ac091 0.02330 0.04843 0.04993 0.00123 0.00448 0.00999 
70 0.46 1.327 0.29 ac093 0.04700 0.03190 0.03062 0.00757 0.00288 0.00462 
49 0.31 1.217 0.78 ac093 0.08300 0.07494 0.07802 0.00741 0.01162 0.01300 
70 0.22 1.015 0.78 ac091 0.02440 0.04446 0.04471 0.00155 0.00788 0.00787 
46 0.46 0.862 0.78 ac086 0.07430 0.07414 0.07607 0.00646 0.01133 0.01413 

Note: Th1s model was formulated usmg mput acceleration file# acO 105. 
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Figure A.9: Fragility curve for maximum total settlements exceeds Scm. 
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Figure A.lO: Fragility curve for maximum total settlements exceeds lOcm. 

317 



• 

• 

E 
u 

l,[) 

~ 0.8 
aJ 
aJ 
u 
X 
aJ 

c 0.6 E a. 
aJ 

a; 
Ul 0.4 
(1l 

0 ..... 
n; 
..c 0.2 
..D 

2 
D... 

E 
u 

l,[) 

~ 0.8 
aJ 
aJ 
u 

~ b. 
c 0.6 
aJ 

E 
aJ ..... 
a; 
Ul 0.4 
(1l 

0 ..... 
n; 
..c 0.2 
..D 

2 
D... 

Loo se unif. sat. soil 
Loose unif. unsat. so il 
Loose var. sat. soil: CV=0.2 
Loose var. sat. soil : CV=0.5 
Loose var. sat. soii:CV=0.625 

0.1 1 
Arias Intensity (m/s) 

Loose unif. sat. soil 
Dense unif. sat. so il 
Dense unif. unsat. so il 
Dense var. sat. soi i:CV=0.5 

10 

0~--------~----~~~----~--~ 
10 0.01 0.1 1 

Arias Intensity (m/s) 

Figure A.ll : Fragility curve for maximum total settlements exceeds 15cm. 

318 



• 

• 

E 
u 

D 
N 

..gJ 0.8 
Q) 
Q) 
u 
X 
Q) 

c 0.6 
Q) a. 
E 
~ -a; 
(f) 0.4 

-ro 
0 

-ro 
..c. 0.2 

E 
u 

D 
N 

..gJ 0.8 
Q) 
Q) 
u 

~ b. 
c 0.6 
Q) 

E 
Q) -a; 
(f) 0.4 

-ro 
..c. 0.2 
.n 
2 

0... 

Loose unif. sat. soil 
Loose unif. unsat. so il 
Loose var. sat. soii:CV=0.2 
Loose var. sat. soil: CV=0.5 
Loose var. sat. soil: CV=0.625 

Loose unif. sat. soil 
Dense unif. sat. soil 
Dense unif. unsat. so il 
Dense var. sat. soil: CV=0.5 

0.1 1 
Arias Intensity (m/s) 

.. 

10 

Figure A.12: Fragility curve for maximum total settlements exceeds 20cm. 
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Figure A.14: Fragility curve for maximum differential settlements exceeds l.Scm. 
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Figure A.lS: Fragility curve for maximum differential settlements exceeds 3cm. 
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Figure A.16: Fragility curve for maximum differential settlements exceeds Scm. 
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Figure B.2: Mean amplification functions for loose unsaturated soil (Dr=45%) 
site: a. Free field- Node4; b. Below structure- NodeS. Locations of nodes are 
shown in Fi~ure 6.21. 
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Figure B.3: Mean amplification functions for dense saturated soil (Dr=85%) 
site: a. Free field- Node4; b. Below structure- NodeS. 
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Figure B.4: Mean amplification functions for dense saturated soil (Dr=85%) site 
for structure II: Below structure- NodeS. 
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